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Essays in Health Economics

Abstract

This dissertation presents three empirical studies that are broadly concerned with the val-
uation of human health and the evaluation of policies designed to improve it. The first study
evaluates how a supply-side policy intended to restrict drug diversion, prescription monitor-
ing, affects opioid prescribing and pain management in hospitals and homes. The results indi-
cate that prescription monitoring reduces opioid use in outpatient settings not but in hospitals,
and appears to have only modest effects on pain management, with suggestive evidence indi-
cating that it enables more effective targeting of opioid therapy. The second study reevaluates
the labor market evidence on compensating differentials for fatal injury risk, showing that the
standard estimator for the sample mean value of a statistical life (VSL) is biased when the
compensating differentials vary across the wage distribution and that correcting for this bias
is quantitatively significant. The last study revisits an old question with a new identification
strategy, using the financing mechanism for state medical boards as an instrument for local
physician supply in order to evaluate the impact of supply shocks on local health care mar-
kets. The results indicate that a larger physician supply leads to changes in the style of medical

practice but the welfare implications of this are unclear.
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Introduction

Americans spend 18% of their incomes on healthcare but a majority of the population routinely
expresses concerns about the quality and value of their care or their access to it. Health care
is incredibly valuable because it can save your life, but not all healthcare provides significant
enough benefits to be worth its price. The dividing line between worthwhile and excessively
costly care remains murky and while many policies have been proposed to increase the quality
or cost-effectiveness of care, their actual effects in the market are often unclear. This dissertation
presents evidence from three empirical projects broadly unified by their focus on healthcare
and its valuation.

The first chapter focuses on the opioid crisis in America, which is taking almost 50,000
lives each year through fatal drug overdoses. While most overdoses are caused by illicit drugs,
most users start by abusing prescription opioids before progressing to illicit substance use.
The chapter investigates the impacts of prescription monitoring programs, tools that can be
used to restrict access to prescription opioids and thus help reduce diversion and abuse. By
restricting access, however, these programs run the risk of harming legitimate pain patients
since monitoring and the potential for sanctions could cause even well-intentioned doctors to
be excessively cautious when prescribing opioids.

I assess this hypothesis by looking at shipments of opioids, tracked by the DEA’s ARCOS
system, to hospitals and pharmacies. Prescription monitoring is only intended to impact out-
patient prescribing, where diversion and abuse are feasible, and consistent with that intention
I find modest reductions in shipments to pharmacies but no effect on hospitals. I also evaluate

the effect of prescription monitoring on the prevalence of severe pain based on two surveys



and find small but insignificant improvements in pain management. In summary, prescription
monitoring does reduce consumption of opioids, but not in ways that unintentionally harm
pain patients, and it might be helping legitimate patients access opioid therapy.

The second chapter looks at the value of interventions that save lives. If a technology can
reduce the risk of dying by 1 percentage point but costs $100,000 is it worth the cost? The
standard economic method for answering this question is to look at the choices people make
when facing similar tradeoffs in the marketplace. The most common example is that some
jobs require doing dangerous labor but pay higher wages as compensation. The amount of
extra compensation per unit of risk, or value of a statistical life (VSL), is thus informative about
how much life-saving technologies are worth to those workers, but I show that the standard
statistic used to estimate the population VSL is biased except under implausible conditions.
Specifically, I show that when the compensation workers require varies with their underlying
earnings potential, and the elasticity of the VSL and earnings potential is not exactly one, then
the standard statistic is biased.

In order to get a sense of the direction of the bias and whether it is quantitatively signifi-
cant I estimate a quantile regression model which allows for some heterogeneity in estimated
VSLs across the wage distribution. I then employ recently developed distributional methods
to recover the distribution of VSLs in the population and provide a new estimate of the mean
VSL. My estimate is significantly larger than an estimate obtained using the standard method
on the same data and I show that further corrections for excluding high income workers from
the sample raises the estimated mean VSL even further.

The final chapter looks at how changes in the supply of healthcare inputs can influence ac-
cess to care. While having more hospital beds, scanning machines, and healthcare professionals
seems like it would naturally improve access to care, there are reasons that some economists
are skeptical. Physicians make recommendations about care so they can induce extra demand
for their services by recommending more intensive treatment, especially when demand would
otherwise be slack. In addition, productivity in the healthcare sector appears to vary enor-

mously across regions, potentially in response to supply pressures. Areas with few doctors



might have to develop processes to use their resources efficiently while areas that have a richer
supply of resources can provide all necessary care even with a poor allocation of resources.

I use two methods to assess how the supply of doctors in an area influences the physicians
and patients there. First, I use new methods to probe the robustness of ordinary least squares
estimates against selection bias, finding that the negative association between the number of
doctors working in an area and lower physician incomes is unlikely to be fully explained by
selection bias. Second, I use an instrument for physician supply to get two-stage least squares
estimates of the effects of supply on various outcomes. While some of the estimates are noisy, I
find relatively robust evidence that supply appears to influence how time is allocated between
seeing patients and administrative work, with a larger supply leading to a greater focus on

administration and each physician spending less time with patients.



Chapter 1

Does prescription monitoring harm

patients?

1.1 Introduction

The United States is suffering from an epidemic of fatal drug overdoses, fed by an underlying
epidemic of abuse of and dependence on opioids. While many deaths from overdoses result
from consumption of non-prescription opioids including illicit fentanyls and heroin, most opi-
oid use disorders appear to start with abuse of prescription opioids. At least 70% of those
seeking inpatient treatment for heroin, for example, report first experimenting with prescrip-
tion opioids supplied by doctors before progressing to heroin use and among recreational users
the vast majority of pills are obtained from prescriptions directly from a doctor (27%) or a pre-
scription for a friend or relative (52%) (Cicero et al. 2014, Jones et al. 2014). The epidemics
have generated enormous interest in supply-side tools to limit opioid prescriptions to situa-
tions where there is a manifest need.

Many commentators have hypothesized that the opioid epidemic is intertwined with a re-
lated epidemic of chronic pain. While the origins of the pain epidemic are unknown, it appears
that rising rates of obesity and disability are causal factors and the stagnation of middle income

wage growth could also be a factor (Case and Deaton 2015, Case and Deaton 2017). The pain



epidemic hypothesis has led to widespread concern among both providers and patients that ef-
forts to combat the drug epidemic by restricting opioid availability could have the unintended
side effect of curtailing access to effective treatment for legitimate pain. Not much is known
about these potential spillovers because data on volumes of prescriptions alone are not infor-
mative about mechanisms (National Academies of Science, Engineering and Medicine 2017).
For example, researchers have shown that the tightening of rules regulating the prescription of
hydrocodone combination products (e.g. Vicodin) in October 2014 led to decreases in prescrib-
ing (Chumpitazi et al. 2017, Oehler et al. 2016) but it remains unclear if patients were harmed.
Similarly, the CDC’s guidelines opioid prescribing guidelines, issued in 2016, appear to have
curbed the initiation of high-dose opioid therapy but anecdotes suggest they have also unin-
tentionally force taper and discontinuation of opioid therapy even for chronic pain patients
who had been on stable doses long term (Dowell et al. 2019). Ongoing debate about how and
whether to revise the guidelines has been hampered by a lack of systematic evidence on their
overall effects for patients.

The basic problem is that supply-side policies can have different effects on different pop-
ulations. If prescribers reduce the availability of pills only to abusers or those diverting them
to secondary markets then there is unlikely to harm patients If prescribers reduce access uni-
formly then a rising tide of pain is more likely. Without knowing which categories patients fall
into, or, better yet, having data on pain-related outcomes, it is difficult to assess overall effects
of these policies.

Prescription Drug Monitoring Programs (PDMPs), state run databases of prescriptions for
controlled substances, are one of the supply-side interventions that have generated the most
interest among policymakers. The deployment of these monitoring programs in 49 of the 50
states and the District of Columbia, mostly over the past two decades, provides a natural ex-
periment well suited for evaluating whether patients are harmed as a side effect of curtailed
supply. Since these programs were developed at different times in different states they enable
analysis in a difference-in-differences framework where states implementing the programs at

different times serve as control groups for one another. Another feature of the implementation



of PDMPs is also useful in shedding light on how supply-side policies work. PDMPs were typ-
ically developed in two stages, first achieving capacity to collect data on prescribing patterns,
as a deterrent against illegitimate prescribing, and a variable number of years later developing
the capacity to provide information to prescribes in order to inform treatment decisions. As I
discuss more below, the phased introduction of different elements of the PDMPs enabled me
to distinguish different mechanisms of supply-side influence.

This chapter also contributes to the growing literature evaluating the effectiveness of PDMPs.
This literature is divided with some research showing PDMPs have no effect on prescription
volume, others showing minimal effects, and a few showing large effects (Ponnapalli et al.
2018). Some of the disagreement in the literature may be due to variation in the populations
and time periods studied, but, as reviewed in more detail below, there is also substantial dis-
agreement about the fundamental issue of what constitutes a PDMP and when each state’s
program qualifies as operational. I draw on the latest legal and historical research on the devel-
opment of PDMPs and use a clear, consistent coding for what counts as an operational PDMP
and the latest data on the dates these features were implemented. As future research builds on
this approach it may help to resolve some of the discrepancies in the literature.

The rest of this chapter is organized as follows. The next section briefly reviews the context
of of the opioid epidemic, first reviewing the historical evolution of the opioid crisis and then
specifically reviewing the development of PDMPs and their most important features. The fol-
lowing section discusses the potential mechanisms by which PDMPs can influence prescribing
of controlled substances and population health and my identification strategy for disentangling
the different mechanisms. The following sections introduce the data used for the empirical
analysis, discuss the econometric details of the empirical strategy, and present the results of

my data analysis. The final section concludes.



1.2 Background

1.2.1 Opioids Background

Prescription opioids were a contributing factor in 17,029 deaths in the U.S. in 2017 and have
been killing at similar rates for over a decade (Scholl et al. 2019). Just as concerning as the
direct death toll from prescription opioids is their evident function as a gateway to other forms
of opioid abuse including heroin and “fake pills” containing illicitly manufactured fentanyl
(Cicero et al. 2014). These other opioids caused an additional 30,571 deaths in 2017 above and
beyond those linked to prescription drugs directly (Scholl et al. 2019).

The opioid epidemic has additional health costs due to widespread addiction and abuse.
SAMSHA estimates there were 1.753 million Americans 12 and older suffering from a pain
relief substance use disorder in 2016 and hundreds of thousands also suffer from heroin use
disorder (Han et al. 2015). Even with effective evidence based treatment these addictions result
in substantial morbidity for years or decades, perhaps exceeding the direct cost from overdose
deaths. As a result Eric D. Hargan, Acting Secretary of Health and Human Services, declared
the “opioid crisis” a public health emergency in the fall of 2017 in recognition of its importance
and the urgency need for a policy response (Hargan 2017). This subsection provides a brief
background on the chemistry and history of opioids.

Opioids are chemicals, either extracted from the opium poppy plant (morphine and codeine)
or synthesized in labs (oxycodone, fentanyl, etc.), that are similar to natural signaling molecules
produced by humans called endorphins. Opioids have similar effects to endorphins since they
bind to the same receptors dispersed throughout the body, leading to a variety of effects, mostly
notably drowsiness, analgesia, euphoria, and slower breathing (Rosenblum et al. 2008). The
opium poppy has been under human cultivation as its euphoric effects have long been recog-
nized, but the modern medical and chemical understanding of opioids developed in the 19th
century after German scientists extracted the active ingredients from raw opium in 1803. By
1820, extraction was taking place on an industrial scale and by the mid-19th century artificial

synthesis of both the natural chemical as well as derivatives (e.g. heroin) was possible on an



industrial scale (Meldrum 2003). Opioid use was rare in the U.S. until the American Civil War
prompted widespread use to treat the painful injuries suffered on the battlefield. This inaugu-
rated what some historians call the first American opioid epidemic in the later third of the 19th
century (Meldrum 2003, Booth 1996). The epidemic eventually prompted a federal response
Harrison Narcotic Tax Act and related legislation in 1914 which banned the importation and
distribution of opium and its derivatives (and cocaine) except by doctors and pharmacists “in
the course of [their] professional practice only” (Day 1919). The act appears to have reshaped
social views toward the use of opioids, even for severe pain, and these changes alon with vigor-
ous enforcement influenced “physicians and patients alike to avoid opiates” for the following
50 years (Jones et al. 2018).

Attitudes began to change in the medical community in the 1970s as palliative care doctors
used opioids to comfort patients on the cusp of death and later to manage chronic pain in
cancer patients, not all of whom were expected to die (Tompkins et al. 2017). In 1986 the
World Health Organization (WHO) adopted the position that cancer pain was inadequately
treated and that opioids should be more widely available as an opioid for cancer patients. It
claimed that “[p]sychological dependence is not an issue when strong opioids are taken to
relieve cancer pain” and that “doses of morphine and other strong opioids can be increased
indefinitely” (Meldrum 2003).

As views about malignant (cancer) pain evolved some doctors began to experiment with
treating acute severe pain and chronic non-malignant pain with opioids. Two key papers pub-
lished during this period led to a substantial reevaluation of the perceived risks of long term
opioid therapy, although neither paper provides strong evidence on the question. Porter and
Jick (1980), a short research letter in the New England Journal of Medicine, searched an early com-
puterized record of inpatients and found that only 4 of 11,882 patients treated with opioids
while hospitalized became addicted in some unspecified time frame and with unknown attri-
tion. Portenoy and Foley (1986) looked at a convenience sample of 38 chronic pain patients
taking doses equivalent to around 20mg of oxycodone (or less) per day, about half of whom

had been using opioids for several years. They found 24 of the 38 got adequate relief although



none had substantial improvement in their employment due to treatment and about 5% (2/38)
showed signs of dependence and drug abuse which was dismissed as a small risk.

Misreading of these papers led to a growing belief among doctors that “drug-seeking be-
havior synonymous with drug addiction does not occur in patients after pain relief with opi-
oids” (McQuay 1999). As attitudes evolved professional organizations began to push for recog-
nition of changing standards of treatment. For example, in 1995 the American Pain Society
(APS) began a campaign to consider pain “the fifth vital sign” (Jones et al. 2018). In effect this
meant that there should be more evaluation, monitoring, and treatment of pain, with opioids
prescribed for use as needed. This campaign influenced the VA to adopt new pain management
standards in 1999 and the Joint Commission on Accreditation of Healthcare Organizations (to-
day known simply the Joint Commission) made similar revisions in 2000 (Baker 2017). Nev-
ertheless, many doctors in the mid-2000s continued to feel that pain remained widely under-
treated. Apfelbaum et al. (2003) is representative, reporting that while 90% of inpatients were
satisfied with their pain medication “pain continues to be undermanaged” because “many pa-
tients continue to experience intense pain after surgery.” Regulators and law enforcement be-
gan to take notice of these changing norms, dropping their nearly century old hostility toward
opioids. The Federation of State Medical Boards issued a statement in 1998 that they would
avoid regulatory scrutiny of heavy prescribers and the DEA adopted what it called a “bal-
anced” policy toward outpatient opioid use (Tompkins et al. 2017). While historically doctors
had only been under legal compulsion to avoid excessive prescribing of opioids, patients began
to successful bring tort suits for inadequate treatment of pain in the 21st century. In 2001, for
example, a California court ordered a judgment of $1.5 million against a physician found liable
for undertreating a dying elderly man’s pain (Meldrum 2003).

Due to these changes in knowledge, attitudes, and policy opioid prescribing increased dra-
matically through the 1990s and early 2000s as documented in a growing literature. Pletcher et
al. (2008) found that opioids were prescribed at 23% of pain-related visits to emergency depart-
ments in 1993 and this rose to 37% by 2005 with no evidence that growth was slowing down.

Olsen et al. (2006) found opioid prescribing by primary care physicians rose by 50% from 1992-



1993 to 1998-1999 while Kenan et al. (2012) found growth on both the intensive and extension
margins for prescriptions between 2000 and 2009. The number of opioid prescriptions rose by
35.2% while the weight (in mg) rose by over 100%, implying dramatic growth in the number
(or size) of pills in each prescription.

This sea change in prescribing based more on norms than on evidence inevitably resulted
in pushback from some stakeholders. Journalists documented reports of widespread abuse
and diversion of opioids with particular attention focused on OxyContin, an extended release
version of oxycodone nicknamed “Hillbilly heroin.” The original FDA-approved label on Oxy-
Contin, used from 1996 to 2001, said that “[d]elayed absorption as provided by OxyContin
tablets, is believed to reduce the abuse liability of the drug” and that addiction to opioids is
“very rare” when they are legitimately used to manage pain (Esch 2017). By 2001 regulators
saw a need to act. The FDA required a new label for OxyContin which emphasized that Oxy-
Contin had an “abuse liability similar to morphine” and showed some vigilance in pushing
Purdue to ensure promotional materials directed readers to a boxed warning on advertise-
ments and pill bottles (GAO 2003). When reports of widespread abuse of OxyContin in Maine
came to the attention of Jay McClosky, the U.S. attorney for that district, he sent a letter to
Purdue and Maine physicians warning about reports of abuse (Pacheco 2002). This eventu-
ally developed into a lawsuit for “misbranding” the pharmaceuticals that ended when Purdue
Frederick Company Inc, a holding company for Purdue Pharma, pled guilty and agreed to pay
$634 million in fines. Three company executives also pled guilty individually and paid fines
of $7.5 million to $19 million. Similar concerns prompted action by the U.S. congress which
appropriate funding to expand prescription monitoring programs starting in 2002 (see section
1.2.2 below). The Senate Committee on Health, Education, Labor and Pensions began hearings
on the issue in 2003 and requested a government accountability office report (GAO 2003).

A series of papers began to appear starting in 2005 that documented the quantitative ex-
tent of the growing epidemic in terms of diversion, addiction, diversion, and overdose deaths.
Inciardi et al. (2007) warned of widespread and growing diversion while Cicero et al. (2005)

documented rates of abuse of OxyContin, noting importantly that abuse of less potent hy-
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drocodone combination products was potentially more prevalent than OxyContin abuse. A se-
ries of papers by Leonard J. Paulozzi of the CDC and coauthors noted high, rising, and variably
mortality related to prescription opioids (Paulozzi et al. 2006 and Paulozzi and Ryan 2006 are
representative). The anecdotal and statistical data prompted action on the part of most states
in the middle and later years of the 00s. The majority of states developed modern prescrip-
tion monitoring programs during this period and the Joint Commission revised its standards
on pain assessment and management (Baker 2017). Knowledge of the widespread abuse of
OxyContin and other opioids led the FDA to put pressure on manufacturers to develop abuse
deterrent versions. Manufacturers were happy to oblige since generally the abuse deterrent
mechanisms are patentable and thus insulated from competition. The fist formulation to hit
the market was a new OxyContin in late 2010 followed by Opana (2011), Embeda (2012) and a
flood of others in the following years (Rauck 2019).

As overdose death rates continued to climb the CDC began to view opioid abuse as a public
health emergency and began work on guidelines for prescribers treating chronic non-malignant
pain. This project built off a report the Agency for Healthcare Research and Quality commis-
sion a few years earlier (Chou et al. 2014) and emphasized the basic problem that at the time
there was “no study [that] evaluated effects of long-term opioid therapy versus no opioid ther-
apy” available to guide physicians. They also noted that literature on the rates of abuse had
estimates ranging from 0.6% to 37.1% depending on the definition of what counted as abuse.
As the CDC prepared its guidelines the Joint Commission began work on revising its standards
related to treatment of pain and a fully revised set were issued in 2018 to emphasize non-opioid
modalities for pain management, setting “reasonable expectations” about pain as opposed to
the older focus on complete elimination, and to emphasize enabling provider access to PDMPs.

Since the blowback against opioids was, like the initial enthusiastic wave, based more on
anecdotes and intuitions than hard evidence, there has been a predictable cry that “the pendu-
lum has no swung too far” (Rothstein 2017) the past few years as doctors, patients and other
advocates have expressed fears about undertreatment of pain in patients with legitimate needs.

Doctors Stefan G. Kertesz and Adam J. Gordon, for instance, have cautioned about “inhumane
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treatment” of chronic pain patients as practices change, especially hard limits on how much
individual physicians feel comfortable prescribing and seven day limits on prescriptions for
acute injuries (2017). Kertesz argues that there has been excessive focus on prescribing that has
hit “diminishing returns” and will likely “creat[te] significant risks for patients” (2017). Other
physicians have warned about the misinterpretation of the CDC’s guidelines and legal require-
ments. For instance, one doctor reportedly told his patient that he had to reduce their opioid
dosage “due to state law,” apparently interpreting the CDC guidelines as a binding standard for
what constitutes acceptable practice (Freyer 2016). The CDC lent credence to these argument in
a recent article by the lead authors of the guidelines there clarified their proper use (Dowell et
al. 2019). Rubin (2019) documents the work of Dr. Thomas Kline, a North Carolina physician
who focuses on “pain refugees” who are in withdrawal and severe pain after their former doc-
tors refused to continue opioid therapy they had started years earlier. Kline believes suffering
from undertreatment of pain due to the opioid crackdown is widespread and is leading many
people to take their own lives in desperation. He has cataloged 40 cases he claims illustrate the
problem and estimates there are many more he is unaware of. Advocacy groups, such as the
U.S. Pain Foundation have also mobilized, criticizing a “climate of fear” about opioid prescrib-
ing that has recently developed. Their work has helped to prompt to a series of articles from
many media outlets with anecdotes about patients suffering (Taylor 2018, Huber 2018, Ehley
2018, Stone 2018, Firth 2019). While many of these criticisms are fairly non-specific with none
offering statistical evidence and few giving concrete examples of patients hurt by supply-side
restrictions, the sheer number of stories suggests that this is a serious concern worth looking

into.

1.2.2 PDMP background

PDMPs have historically evolved in a series of phases from reactive tools of interest only to
law enforcement into flexible decision-support tools used by healthcare providers. There is no
consensus on the key stages of this transition but I conceptualize the evolution as taking place

over three phases. The earliest prescription monitoring programs instituted special documen-
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tation requirements for physicians prescribing certain controlled substances particularly likely
to be abused. Typically this would involve acquiring special multi-copy prescription pads, of-
ten with special serial numbers for tracking, from a state authority. The typical multi-copy pad
would produce three copies: one for the physician’s personal records, one for the patient to
take to a pharmacist, and a third that would be forwarded to a state agency within thirty days
of the prescription either being written. Technically New York started the first such program in
1918 but provider opposition to the paperwork burden led the state to halt the program after
just three years. (PDMP TTAC 2018). As a result, California’s program, started in 1939, can be
taken as the starting point for the first phase of PDMP development. California’s records were
kept by a newly created department, the Bureau of Narcotic Enforcement, operating within its
attorney general’s office. Seven states developed similar programs over the next fifty years in
this first phase of PDMP development, primarily following California’s lead in using multi-
copy pads and housing authority for their PDMPs within a law enforcement agency (Fishman
2004).

These programs were designed with two main goals in mind. First, by theoretically mon-
itoring all prescriptions for high-risk substances they could deter unscrupulous patterns of
prescribing in the first place. Second, in cases where a physician was brought to trial for vio-
lating controlled substance regulations the paper records could be brought together to paint a
picture of unusual prescribing volume. In practice the burden of compiling a large amount of
paper by hand limited this use to serious cases such as those involving “pills mills” handing
out prescriptions to abusers indiscriminately. For example, PDMP data assisted in prosecu-
tions of “sleep” clinics flooding the streets with Quaaludes and barbiturates in the 1970s and
“weight loss” clinics selling stimulants in the 1980s (PDMP TTAC 2018).

Oklahoma recognized that PDMPs had more potential if the records could be stored is a
more useful format and inaugurated the second generation of PDMPs by developing an elec-
tronic record keeping system that came online in 1990. This effort spurred the American So-
ciety for Automation in Pharmacy (ASAP) to develop standards for the formatting of elec-

tronic data on controlled substances which were formally issued in 1994 and five other states
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(Massachusetts, Utah, Nevada Indiana, Kentucky) followed Oklahoma’s lead in the follow-
ing decade, but most states remained skeptical of the need for these programs, particularly
when they would have to be financed by local taxes. Notably, the eight states with preexisting
PDMPs continued to use paper records as the conversion to electronic systems was deemed too
expensive (Sacco et al. 2018).

The lower cost of electronic data storage compared to paper records spurred a few notable
further innovations in this second phase. First, states began to track longer lists of controlled
substances, eventually including all substances on either the state or federal list of scheduled, or
controlled, drugs. The drug schedule system has existed on the federal level since the passage
of the Controlled Substances Act (CSA) in 1970 and most states have their own sets of schedules
as well. The scheduling system uses numbers to classify drugs based on their relative medical
value and risk of abuse, with schedule I indicating drugs with “no currently accepted medical
use” that also high potential for abuse such as heroin and LSD. Schedule I drugs are effectively
illegal to manufacture or distribute. Schedules II through V represent progressively less dan-
gerous drugs that all have an accepted medical use. The federal Schedule II includes most pure
opioid preparations while schedule III includes some opioid combination products and less
potent opioids mainly used for purposes other than pain relief like buprenorphine. Schedule
IV includes drugs the DEA considers to have “low potential for abuse and low risk of depen-
dence” in relative terms including all benzodiazepines like Xanax. Tramadol, an opioid that
has unique chemical properties but is commonly use to treat chronic pain, was moved up from
schedule V to schedule IV in 2014. All of the early multi-copy prescription pad programs only
covered schedule II drugs due to the paperwork burdens but electronic programs all covered
schedules II-IV and some also included schedule V.

The actual functions of PDMPs, however, largely remained reactive during this second
phase. The electronic data was housed solely on the computers of the agency in charge of drug
monitoring and was thus largely siloed off from clinical practice. A few states experimented
with ways to make the data more useful instead of simply waiting for requests during prose-

cutions. Massachusetts, for instance, allowed physicians to request reports on the prescribing
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history of specific patients they were concerned might be liable to abuse or divert prescriptions.
After a physician made a request the PDMP would gather data on that patient and mail it on a
tfloppy disc to the physician within a few days. Other states, including Nevada, experimented
with faxing records to expedite delivery, but with a latency of days or hours these data retrieval
processes were too slow to inform prescribers who had to make decisions while seeing patients.
Recognizing this problem, Nevada tried mailing unsolicited reports to all physicians prescrib-
ing to a patient that was flagged for high risk of abuse and but most states ultimately decided
it was important to find a way to give prescribers and pharmacists direct access to data on their
patients, which lead to the third phase of PDMP development.

The opioid abuse epidemic, discussed in section 1.2.1, provided the impetus state and fed-
eral legislators needed to finance this next phase of PDMP development (Sacco et al. 2018).
Congress authorized the a grant program, Harold Rogers Program Drug Monitoring Program,
amidst concerns about growing OxyContin abuse in Appalachia in 2003. The program was
named after its champion, a congressperson from eastern Kentucky, and consistent with the
early focus of PDMPs as tools for law enforcement, the grant programs was administrated by
the Bureau of Justice Assistance within the Attorney General’s office. The $81.58 million in
grants allocated to the states between 2003 and 2013 financed an explosion of development of
new PDMPs and the modernization of existing PDMPs. A second grant program, the National
All-Schedule Prescription Electronic Reporting Act (NASPER) of 2005 better reflects the focus
of PDMP development during this period, although the program ultimately only allocated $2
millions of funding due to a lack of congressional appropriations to finance it. The NASPER
program was administrated within the Center for Substance Abuse Treatment within the De-
partment of Health and Human Services, reflecting the growing interest among physicians and
other healthcare professionals in using PDMPs to identify and prevent substance abuse.

During this period states began to develop online portals that allowed registered physicians
to request and receive reports on patients in real time. A handful of states developed this

capability in 2003 or earlier but the federal grant programs led to a flood of systems coming
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Figure 1.1: The rapid deployment of modern PDMPs

online after 2006 with 42 systems becoming operational between 2006 and 2013 (see Figure
1.1). By 2017 all but one state (Missouri) had a modern PDMP that was accessible to end users.

In the later parts of this period states began to enhance their PDMPs with new function-
alities and variation in PDMP capabilities began to grow once again. For example, between
2012 and 2017, 17 states enhanced their PDMPs with mandates that either the prescriber or
pharmacist dispensing the medication check the PDMP under certain circumstances. In most
cases this mandate was added to an existing PDMP but in a few cases the mandate went into
force as soon as the PDMP became operational (New York, West Virginia, and Pennsylvania). A
few states have also started to integrate more information beyond just prescription records into
their PDMP databases so as to further inform prescribers. Wisconsin and Utah, for instance,
started integration of conviction records for drug violation in 2016 and some states are adding
information on the form of payment for prescription drugs since cash payment is known to be

associated with abuse (PDMP TTAC 2018).
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1.3 PDMP mechanisms and identification

1.3.1 PDMP mechanisms

With that history in mind I now turn to conceptualizing the potential effects of PDMPs through
the lens of economics. We have seen that PDMPs are designed to provide two distinct but
interrelated functions: (1) accumulate information for the purposes of law enforcement and (2)
provide otherwise unavailable information for healthcare providers. These two functions can

modify prescribing and impact health through three channels:
1. deter illegitimate prescribing and associated diversion to secondary markets
2. curtail legitimate prescribing due to fears of potential sanctions
3. resolve information asymmetries between a prescriber and patient

In the following subsections I discuss each of these channels in turn.

Deterence channel

The deterrence channel is the simplest and oldest channel by which prescription monitoring
can influence behavior. The Controlled Substances Act of 1970 criminalizes prescribing any
narcotic except by DEA-registered prescribers “for a legitimate medical purpose” when the
prescriber is “acting in the usual course of his professional practice” (21 CFR 1306.11, National
Academies of Science Engineering, and Medicine 2017). The Supreme Court clarified the mean-
ing of this vague standard in United States v. Moore (Powell 1975) listing common signs that

prescribing was outside the bounds of normal practice:
1. prescribing for pain treatment without a physical exam
2. prescribing “as much and as frequently as the patient demanded”
3. charging per pill prescribed instead of for specific medical services rendered

The DEA has occasionally found evidence of even more flagrant violation of legitimate practice

in a handful of cases, with doctors selling prescriptions directly in exchange for cash or sexual
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favors. One U.S. attorney has gone so far as to say these doctors are simply “drug dealers in
white coats” (Kanno-Youngs 2018).

Prescription monitoring puts these kinds of physicians on notice that the government is
monitoring their behavior and that unusual volumes or patterns of prescribing are likely to
draw attention. By raising the likelihood of sanctions, prescription monitoring raises the marginal
cost of illegitimate prescribing and should deter some in equilibrium.

It remains unclear how common illegitimately prescribing is, with or without prescription
monitoring, due to the difficulty gather data on such clandestine activity. By some measures it
is a widespread problem with some research indicating the DEA may open as many as 1,000 in-
vestigations of indiscriminate prescribing per year (Libby 2005, Nedelman 2017). Yet the DEA
only files for administration action against a handful of the prescribers investigated. ranging
from a low of 88 in 2011 to a high of 479 in 2016 over the past ten years (Nedelman 2017). In
addition to the uncertainty about the scale of illegitimate prescribing there is also consider-
able uncertainty about the significant of the marginal deterrence PDMPs provide against this
type of behavior so it is hard to get a quantitative sense of whether this channel is likely to be
important.

An indirect method to bound the potential scale of illegitimate prescribing is to measure
its downstream effects such as diverted drug sales and use. The National Academies of Sci-
ence, Engineering and Medicine (2017) examined the National Survey on Drug Use and Health
(NSDUH) surveys to estimate recreational consumption of prescription opioids, finding that
is likely accounts for at least 17% of opioids dispensed, by weight, but potentially much more
because drug abuse is likely underreported and the NSDUH does not survey the homeless
or institutionalized, including those in residual drug treatment or prison, who plausibly con-
tribute significantly to overall drug abuse. Of the fraction diverted it also remains unclear how
much was supplied from doctors who knowingly prescribed illegitimately and how much was

obtained by other means including theft and deceiving careless or gullible prescribers.
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Chilling effect channel

The second channel by which PDMPs can influence prescribing and health is closely related
to the deterrence channel but has different implications for patient health and welfare so I
examine is separately. This channel involves the discouragement of legitimate prescribing due
to fears, warranted or not, of potential sanctions. This kind of unintended side effect is called a
chilling effect in the legal literature and I adopt that term for this mechanism.

Research into chilling effects in other domains, such as libel and censorship, suggest it is
most likely when surveillance or monitoring is routine and the standards separating criminal
for lawful behavior are ambiguous (Johnson 1996). For example, surveillance and censorship
of publications to screen out material that is “politically destabilizing” appear to chill polit-
ical speech quite generally as authors cannot tell what prosecutors and courts will consider
“destabilizing.” Fishman (2004), for example, claims that “fear that their prescribing patterns
of these heavily regulated drugs will be intensely monitored by legal authorities” prevents
some physicians from specializing in pain management while another doctor, wishing to re-
main anonymous, told reports that he believed that for every doctor investigated by the DEA
“there are a hundred doctors scared to prescribe proper pain medication for fear of going to
prison” (Owen 2003).

It is easy to understand why doctors would find the standards for legitimate prescribing
ambiguous. While it is obvious that a prescription sold for cash is not a “legitimate prescrip-
tion” written in the “usual course” of practice, there are many common practices that remain
in a gray area. Indeed, the DEA’s manual for practitioners is 60 pages long with 5 pages ded-
icated to clarifying what counts as a legitimate prescription written under a DEA registration
(DEA 2000). Even then, it remains unclear to what extent the DEA guidance is binding or
even describes usual professional practice. For example, the DEA believes that prescriptions
for painkillers given to patients after appointments shorter than 25 minutes are suspect, but
many doctors routinely see patients in prescheduled 15 minute windows. In addition, the
DEA believes a prescription for an opioid without explicit evaluation of pain outside the scope

of standard practice, it appears that at least 30% of prescription are written as refills at the end of
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appointments focused on other medical problems (Tisamarie et al. 2018). Congress attempted
to clarify some of this ambiguity years ago in the Pain Relief Promotion Act, by adding the lan-
guage “alleviating pain or discomfort in the usual course of professional practice is a legitimate
medical purpose” to the CSA but the act never became law due to concerns that its vagueness
could effectively legitimize so-called pill mills.

While all supply side drug policies, including the mere existence of the Controlled Sub-
stances Act could have a chilling effect, PDMPs seem likely to have particularly potent chilling
effects because they involve pervasive monitoring. Indeed, one U.S. attorney recently spoke
to the press about how his office “has put [doctors] on notice” because it has access to state
PDMPs without a subpoena and they serve as a vital new tool in cracking down on opioid
prescribing.

In light of these ambiguities it is clear why some physicians would rather be conserva-
tive, withholding medicine they believe might be beneficial for patients in order to avoid DEA
scrutiny (Rankin 2018). But just as with the deterrent effect discussed above it is difficult to
estimate the potential scale of a chilling effect. Survey evidence suggests it could be substantial
as 38% of physicians in one survey noted that they would consider cutting back on controlled
substance prescribing if a PDMP was implemented in their state (Rutkow et al. 2015). Fur-
thermore chilling effects are not strictly limited to preventing prescriptions since pharmacies
can also be sanctioned for filling illegitimate prescriptions. This mechanism may be quantita-
tively less important as only 13.87% of pharmacists agreed that they “would be discouraged
from dispensing controlled substances if a PDMP is implemented” but is still a potential cause
for concern (Fass and Hardigan 2011). That said, there are also reasons to think PDMPs will
have only modest chilling effects. Most importantly, physicians are likely aware that insurance
companies and data vendors like IMS Health also keep records on prescriptions that can be
linked to the original prescriber. PDMPs thus probably add little marginal information beyond
what exists in these disparate databases waiting to be compiled. Second, in a recent review
on chilling effects of drug control policies Davis et al (2018) expressed skepticism about this

channel, noting the pervasive lack of hard evidence for chilling effects in the literature, despite
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widespread concern, though they went on to note that the lack of high quality research meth-

ods may be the cause and concluded that “research into these questions is urgently needed.”

Asymmetric information channel

The third and most inherently economic effect of PDMPs is resolving an information asym-
metry between providers and patients. Patients know what drugs they have prescriptions for
and how many pills they have, but prescribers without access to a PDMP generally only know
what they personally prescribed to a patient and whatever information the patient is willing
to share. Modern PDMPs which provide real-time access to patient’s prescription history can
largely eliminate this asymmetry and lead to better informed patient care.! PDMPs are specif-
ically helpful in identifying one type of behavior commonly associated with opioid abuse and
diversion: doctor shopping. Doctor shopping involves deceiving multiple doctors in a short
timeframe in order to acquire multiple controlled substance prescriptions for an excessive num-
ber of pills which are then abused for recreational use or diverted to illicit drug markets. The
complaint could be genuine or faked as long as the consultations involve trying to deceive the
physicians about care and prescriptions available from other prescribers. PDMPs have obvious
utility in identifying doctor shoppers since doctors can see a complete record of all controlled
substances prescribed to the patient in the state. They can also help identify other patients at
high risk of abuse such as patients seeking an early refill, who have overlapping prescriptions,
or who get other non-opioid drugs that increase the risk of overdose such as benzodiazepines
from another prescriber. It is unclear how common the later situations are and, unlike with
doctor shopping, less clear how doctors should response.

The prevalence of doctor shopping remains unclear, largely because of disagreement about
the precise quantitative definition of doctor shopping. The simplest operational definitions
are based on the number of different doctors where one obtains on opioid prescription or the
number of different pharmacies where a patient fills opioid prescriptions. For example, Buch-

mueller and Carey (2018) use a cutoff of using five or more pharmacies and report that 0.59%

Many PDMPs have the limitation that they only cover prescription within a particular state, so if patients
obtained prescriptions from providers in different states this would not show up in most PDMPs at this time.
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of opioid users in their Medicare sample doctor shop. Other researchers have used softer cut-
offs like four or more pharmacies or four or more doctors and naturally find a greater preva-
lence of shopping and rates, of course, also vary with the population studied (Sansone and
Sansone 2012). Some researchers have attempted to generate multidimensional measures of
doctor shopping that integrate information about the number of physicians used, number of
pharmacies used, as well as form of payment, age, and the types of prescriptions obtained.
Carlson and McDonald (2013) use machine learning-based clustering approach applied to a
convenience sample from IMS Health representing the vast majority of prescriptions in the U.S.
to define two tiers of doctor shopping. Their top tier, clear doctor shoppers, account for 1.9% of
all opioid prescriptions, 4% of opioids by weight, and around 5-6% of opioids by milligrams of
morphine-equivalent (MME), a measure discussed more below that combines weight and po-
tency into a summary measure. Simeone (2017) uses a similar but more conservative approach
and estimates that between 2 and 3% of opioids were diverted by doctor shoppers in the 2008-
2012 period and that doctor shopping waned over this time frame, declining an estimated 26%.

In contrast to the chilling and deterrence effects, the asymmetric information channel relies
on doctors registering with the system and actively querying it for data. One major concern
in the healthcare literature is that only a small fraction of prescribers are registered to use a
PDMP so it is implausible to expect a big effect through this channel (Deyo et al. 2018). This is
a serious concern and deserves a brief investigation.

A number of studies have found that only a minority of physicians use modern PDMPs in
the years shortly after they become operational, but the registration and use rates vary sub-
stantially across specialties. Irvine et al (2014) looked at registration rates across specialties and
practice locations and found that emergency medicine, primary care, pain medicine, and addic-
tion medicine specialists were the heaviest users of PDMPs and that clinicians in safety net clin-
ics and emergency departments had particularly high rates of use and registration. These pat-
terns make sense as doctor shopping across emergency departments is easy since no patients
can be turned away and the other specialties prescribes large volumes of opioids. Rutkow et

al. (2015) look specifically at primary care doctors since they prescribe just slightly under half
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of all opioid prescriptions and found that most primary care physicians were aware of their
state’s PDMP with about 53% registered. Those who register query the PDMP on average for
about 1 in 23 patients or approximately half of the patients prescribed an opioid. Hafajee et
al. (2015) have the most comprehensive data on registration across states and report a median
registration rate of 35% for physicians in general, but this plausibly represents about a large
fraction of opioids prescribed given the higher rates of registration among high-prescribing

specialties noted above.

Table 1.1: Opioid prescribing rates by specialty

Physicians Opioid Prescriptions
Specialty number share (%) prescribe opioids (%) per prescriber share (%)
Pain medicine 3,783 0.51 83.1 2454.7 4.41
Physical, rehab 8,218 1.11 81.8 1028 3.95
Rheumatology 4,949 0.67 85.7 775.4 1.88
Ortho. Surgery 24,385 3.29 89.3 750.6 9.34
Sports 2,593 0.35 89.8 552.9 0.74
General practice 203,576 27.43 84.2 492.1 48.21
Neruosurgery 5,540 0.75 83.2 470.4 1.24
Anesthesiology 32,585 4.39 37.4 460.6 3.21
Emergency 33,375 4.50 90.3 429.7 7.40
Neurology 14,092 1.90 75.7 321.6 1.96
Geriatrics 4,518 0.61 77.1 275.2 0.55
Plastic surgery 7,914 1.07 88.4 237.9 0.95
Otolaryngology 9,588 1.29 88.5 226.9 1.10
Gen. surgery 29,965 4.04 81 2249 3.12
Urology 10,099 1.36 88.1 219.9 1.12
General, other 6,593 0.89 83.9 218.3 0.69
Heme-Oncology 19,156 2.58 84.5 196.7 1.82
Ob-Gyn 32,794 4.42 85.8 166.1 2.67
Cardiovascular 23,274 3.14 77.2 51 0.52
Pediatrics 50,584 6.81 67.5 245 0.48
Other 214,716 28.93 59.3 1072.7 4.63

Notes: Author’s calculations based on data from Currie and Schnell (2018) and AAMC (2018).

What fraction of doctor shopping could this share of registered physicians using the PDMP
detect? The data in Table 1.1 can provide a rough calculation since the answer depends on the
shares of opioids dispensed by the different specialities. If we suppose that the registration

rate is 0% among physicians that do not prescribe opioids (24%), 50% higher on average in the
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specialties identified by Irvine et al. (2014) and that the overall registration rate is 35% as noted
by Hafajee et al. (2015), then it would be approximately 57% for active pain medicine, general
practice, emergency medicine, who dispense 60.02% of opioids and make up 27.57% of physi-
cians, 38% for other active physicians who prescribe the remaining 39.98%, for a total coverage
of 49.4%. If registration within a specialty is biased toward prescribers who write more pre-
scriptions as seems plausible then coverage would be even higher. Based on these results we
should clearly not expect PDMP use to eliminate all doctor shopping and other forms or abuse
it but it seems plausible to think that if doctor shopping accounts for 6% of opioids dispensed
(by MME) then a PDMP effect on the order of 3% from reducing asymmetric information alone
is plausible. If doctor shopping arounds for more than 6% of opioids dispensed, as it would if
we include McDonald and Carlson’s (2013) second tier then doctor shopping could potentially
reduce prescribing by more.

In addition to preventing doctor shopping the asymmetric information channel can have
other effects on prescribing. One widely acknowledged problem for physicians is that they
worry about to prescribing pills that might be abused or diverted. Without a way to reassure
themselves that a patient can be trusted they find that they withhold prescriptions from pa-
tients that might benefit from them. Schnell (2017), for example, developed a structural model
of opioid prescribing and estimates that physicians would write 22% more opioid prescriptions
to legitimate patients if they were not concerned about diversion to secondary markets. By pro-
viding an independent source of information that can verify that patients do not doctor shop,
refill prescriptions early, or demonstrate otherwise aberrant behavior, PDMPs can help expand
access for legitimate pain patients. While it is hard to assess the likely scale of this channel ex
ante, there is some evidence that suggests it could quantitatively important. Weiner et al. (2013)
conducted an experiment where 38 emergency room physicians at two academic medical cen-
ters were instructed to formulate a treatment plan when assessing a patient presenting with a
complain of acute pain and then to review PDMP data and make adjustments if it seemed ap-
propriate. Physicians revised plans in 9.5% of cases, adding an opioid prescription in 6.5% and

eliminating a prescription in 3.0%, suggesting that not only is more liberal prescribing possible
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but that it might predominate over restricted prescribing to doctor shoppers. This study might
lack external validity since the participating hospitals were located in the downtown area of a
city where drug diversion is a widely acknowledged problem, but it illustrates that by reduc-
ing asymmetric information PDMPs can help both by preventing high-risk prescriptions and

by enabling more access to treatment for patients in need who otherwise appear too risky.

1.3.2 Identification

In this subsection I build on the discussion above to outline on my general identification strat-
egy for separating out the three channels for PDMP effects. A key element of this strategy is
careful attention to classifying and coding PDMPs in my data so I begin with that as a pre-
liminary discussion of the challenges associated with that task and how attempts to resolve it
motivated a key part of that strategy.

A major problem for the literature examining the effects of PDMPs is inconsistency in clas-
sifying whether a state has an operational PDMP. There are two publicly available datasets on
PDMP legislation from the Prescription Drug Abuse Policy Systems (PDAPS) and the National
Alliance of Model State Drug Laws (NAMSDL) and most studies utilize one of both of these
studies combined with individual research to verify the dates (Horowitz et al. 2018). This has
led to widespread inconsistencies across studies as illustrate in Table 1.2 which compares that
dates use in four studies for a subset of states.’

In only 1 of the 18 states is there full agreement on the year of PDMP implementation and
on average the largest subset that agrees about the year is 2.52, meaning on average there are
1.48 data sets with a different year. In addition, even in cases where there is agreement about
the year of implementation there is often disagreement about the exact quarter or month within
the year. For example, all of the studies agree that North Dakota’s PDMP was first operational
in 2007 but two studies report that it was operational in the first half of the year while the other

two report that it become operational only later.

20ne of the studies focused on a short time period where only the 18 states below made modifications so they
only report dates for these states.
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Table 1.2:

PDMP start dates used in four studies

state Study #1 Study#2 Study#3 Study #4
Alaska 1/1/12 2008h2  1/1/12 7/31/11
Arizona 12/1/08 2007h2  12/1/08 9/30/08
Arkansas 3/1/13 2011h2  3/1/13 2/28/13
Delaware 8/21/12 2012h1 8/1/12 1/1/11
Florida 10/14/11 2009h2 10/1/11 8/31/11
Georgia 5/8/13 2011h2  7/1/13 6/30/13
Kansas 4/1/11 2008h2  4/1/11 1/31/11
Maryland 1/1/14  2011h2 1/1/14 8/19/13
Minnesota 4/15/10 2007h2  4/1/10 1/3/10
Montana 10/15/12 2011h2  10/1/12 3/11/12
Nebraska 3/2/09  2012h2  pre-2000 4/13/11
New Hampshire 10/16/14  2011h2 pre-2000 9/1/14
New Jersey 1/4/12 2009h2 1/1/12  8/31/11
North Dakota 4/1/07  2007h2  1/1/07 8/31/07
Oregon 9/1/11 2009h2 9/1/11 5/31/11
South Dakota 3/1/12 2010nh2  3/1/12 12/4/11
Washington 1/4/12 2007h2 1/1/12 10/6/11
Wisconsin 6/1/13 2010h2  5/1/13 3/31/13

Some of the disagreement is easy to understand. Three of the studies report that Florida’s
PDMP became operational in late 2011 but study #2 codes it as starting operation in late 2009.
The discrepancy appears to be due to study #2 using a lower standard for functionality. Florida’s
PDMP only became accessible to doctors in 2011 but the states appropriated funds for its de-
velopment in 2009 and it appears to have started collecting data on prescriptions in that year.
Disagreements in coding for Nebraska are also illustrative. Nebraska had a multi-copy pro-
gram since the 1990s but its program was only modernized around 2010. Study #3 thus codes
Nebraska has having a PDMP prior to 2000 because of the multi-copy program while the other
sources give different dates for the modernization ranging from 2009 to 2012. The basis for the
disagreement about the date of modernization in that case is unclear but it likely has to do with
the standards for what features are required to count as fully functional.

A team of legal scholars led by Jill Horowitz were disturbed by this problem, noting that
the disagreements are understandable since “even experienced legal researchers have difficult

creating consistent and reliable measure of PDMP law enactment and operation dates.” There
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are a large number of judgment calls that go into determining what count as an “operational”
PDMP since programs vary in a large number of specific details that may or may not be con-
sidered important in the context of any particular study. In light of this the team proposed
creating a dataset based on a public and detailed protocol for resolving all ambiguities and that
explicitly details the features that qualify a PDMP as operational. Indeed, even this proved
difficult as the team disagreed about what standard of functionality should be used so it ended
up with two sets of dates capturing different criteria. The protocol and results were published
in Horowitz et al. (2018) and the reader is referred to the original source for more information. I
briefly review the most important results from their research that are applicable to this chapter.

One important aspect of PDMP development noted above is that most PDMPs were devel-
oped in stages, with different features coming online at different times. Horowitz et al. focus
on two main levels of overall implementation. First is a stage where the PDMP is capable of
data collection, maintaining a database of all applicable controlled substances prescribed in the
state. To qualify as being operational for data collection the program must have systematically
tracked all prescriptions for some set of drugs. In effect this is a loose criterion meant to cap-
ture the idea that prescription are being monitored with the data being pooled into a central
database for later use. By this standard even the most basic early multi-copy prescription pad
programs count as PDMPs with data collection. There are two main ambiguities that arise
when coding the specific date for PDMP enactment with this standard. The first is that a few
states required pharmacies to keep long term records of all controlled substances dispensed
but did not require these to be forwarded to a central database. Horowitz et al. do not count
these as PDMPs since the data will never collated a centralized data that could practically be
used to support enforcement of controlled substance regulations against prescribers, although
they acknowledge that they might have been useful for enforcement against pharmacies and
pharmacists. The second ambiguity is that in some states legislation specifies that a PDMP will
be created while separately authorizing data collection to begin on a particular date. In these
cases it is possible for the system be functional but lack legal authority to begin operation until

sometime in the future or, conversely, for data collection to be legally authorized but the pro-
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gram incapable of actually collecting the information. In these cases the team records the date
when the both data collection was authorized and the program had the capability to collect
data.

The second stage of PDMP development that they collected dates for is what they call the
establishment of a modern system but which I will call having user access. This functionally
often came online years or in a few cases decades after the database function was developed
and was difficult to code because, in practice, there is substantial variation in how end-user
access is implemented. They set three criteria to ensure consistent coding. First, the system
must be accessible to the entire population of end users. Many states started trial periods to
test their software before making it available to all doctors. In some cases these trial periods
lasted for substantial periods fo time. Virginia, for instance, started a large trial in 2003 and
failed to conclude the trial and expand access to all doctors until 2006, so Horowitz et al. use
the later date for when Virginia’s PDMP became a modern system. The second criteria is that
users must be able to query the system using the internet in, approximately, real time. This
rules out some of the late phase 2 systems discussed earlier that allowed for queries by fax or
that would mail discs of information. In practice this type of data retrieval was simply too slow
to be a useful decision support tool and was rarely used as a result, so it would be misleading
to classify these are user accessible. Finally, Horowitz et al. do not put specific requirements
on which schedules must be reported but data collection must take place at least weekly in
order for the system to count as up to date for end users. In practice this requirement is, to my
knowledge, never binding and most systems are updated for more often, usually daily.

The distinction between the two functionalities forms the basis for a key aspect of my iden-
tification strategy. Data collection enables the deterrence and chilling effect channels but cannot
resolve asymmetric information since the information was not made available to the end user.
In contrast, the user access function enables asymmetric information and might have a mod-
est chilling effect, but has no relevance to the deterrence channel. The staggered introduction
of these elements of the programs provides variation that can help disentangle the different

channels by which PDMPs can influence behavior. For instance, if the volume of opioids pre-
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scribed to outpatients drops when data collection begins but not when user access begins then
the PDMP must be having its effect through a chilling effect or deterrent effect but it could not
be by reducing asymmetric information.

Unfortunately, the chilling effect could theoretically operate both when data collection be-
gins or when user access becomes available so this strategy cannot completely distinguish the
channels. Intuitively it would seem like data collection would have a larger chilling effect since
the hypothesized mechanism is that knowledge of close government surveillance discourages
physicians from prescribing, and data collection enables the surveillance, but user access could
have a chilling effect because the origin of the chilling effect is in the ambiguity of the standards
for legitimate prescribing and beliefs about this standard may be reshaped after the PDMP is
available to end users. Physicians might feel they cannot prescribe “legitimately” without con-
sulting the system, which is time consuming, or that they can more easily be held liable for
“inappropriate prescribing” if they prescribe to a patient that the system shows other physi-
cians not longer prescribe to.

In light of these concerns I supplement my data analysis by studying how PDMPs effect two
more outcome variables. First, I gathered data on the prevalence of severe pain in the general
population. A chilling effect must, by definition, cause harm to patients because it limits the
availability of effective pain treatment. As a result it should cause a detectable increase in the
prevalence of severe pain. On the other hand, the deterrence channel should have no impact
on pain while the asymmetric information channel could either no effect pain patients or, by
enabling more aggressive treatment of legitimate patients, even lower the severe pain preva-
lence. Second, I investigated the effects on patients in a context where two of the channels are
inapplicable: inpatients. Hospital physicians know exactly what medications their patients are
taking since the medications are directly provided, often by IV, so the asymmetric information
channel is not operative. The deterrence channel is also inoperative at hospitals since hospitals
only provide small quantiles of narcotics for immediate consumption and thus cannot reason-
ably function as pill mills. Indeed, while many states now have mandates that require PDMP

use under certain circumstances, these regulations generally include a blanket exception for
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Table 1.3: Summary of Identification Strategy

Mechanism
Test Deterence Chilling Asymmetric information
prescriptions 1 1 Torl
pain prevalance  negligible T negligible or |
inpatient opioids n/a 1 negligible
inpatient pain n/a T negligible

opioids provided in the course of inpatient care as the PDMP is not meant to be useful in those
situations and querying it would only waste time. As the deterrent and asymmetric informa-
tion channels are not plausibly operative at hospitals, they provide a direct test of the chilling
effect hypothesis—any decline in prescribing at hospitals can only be attributed to the chilling
effect. Unfortunately the data on opioid use at hospitals is quiet noisy so I also look at a parallel
set of data to investigate how PDMPs affect the quality of pain management in hospitals. This
is a less direct test but the data are much less noisy so it provides a much more powerful test of
whether PDMPs harm inpatients. Table 1.3 summarizes the four tests and the expected effect

for each channel.

1.4 Data

This section discusses the sources of the data used in section 1.6 for the empirical analysis. Most
of the discussion involves the validity of the data and discussion of any cleaning or editing
involved to prepare it for analysis. In addition I present summary statistics for each source and

review key trends or patterns that are salient or otherwise noteworthy.

1.41 ARCOS

The federal Controlled Substances Act requires manufacturers and distributors of schedule II
drugs and a few narcotics on other schedules, to report all transactions to the Attorney Gen-
eral, who has delegated authority for collecting and analyzing these reports to the DEA. The

transaction reports are collected electronically and compiled in the ARCOS (Automation of Re-
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ports and Consolidated Ordering System) system and are made available to the public after
Freedom of Information Act requests. These data specifies how much of each type of opioid,
in grams, was shipped to each type of retail distributor or consumer (e.g. pharmacy, hospital,
etc.) for each state and year. The only opioid that is not monitored by this system is the tra-
madol, which is has a unique mechanism of action that led to it being placed on schedule V
and exempted from tracking. This is unfortunate because despite its scheduling there is some
evidence that tramadol can be abused and tramadol use was risen dramatically in recent years,
perhaps reflecting substitution as concerns about higher scheduled drugs has increased (Jeffrey
et al. 2018).

Because opioids vary dramatically in potency it is natural to reweight the masses of each
opioid by its potency so that they can be compared. The standard in the literature is the convert
amounts into milligrams of morphine-equivalent (MME). For example, oxycodone is thought
to be about 50% more potent than morphine based on bioavailability and binding affinity so 1g
of oxycodone should be considered equivalent to 1.5mg of morphine. Although there is some
disagreement about the exact conversion factors to use, the CDC’s estimates (Table 1.4) are an
emerging standard so I adopt them for this study. I also exclude three opioids that, while poten-
tially addictive and tracked by ARCOS, are not primarily used to manage pain, namely opium
(used to treat diarrhea) and methadone and buprenorphine (for managing opioid addictions).
It is particularly important to exclude the later two drugs since they can confound analysis of
the effects of PDMPs. For example, if PDMPs have a deterrent effect we would expect to see
smaller volumes of most opioids prescribed but potentially larger volumes of buprenorphine
and methadone used as addicts might turn to providers to help manager their addictions.

One minor limitation of the ARCOS data is that it tracks distribution to pharmacies and
hospitals, not to actual patients, which is theoretically the actual metric of interest, leading to
potential discrepancies between distribution measured by ARCOS and the actual distribution
of interest. The magnitude of these differences, however, are likely to be minor since pharma-
cies and hospitals generally only order drugs that they expect to and eventually do distribute

to patients. A potentially bigger problem is that even if the amount distributed to pharmacies
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Table 1.4: MME per mg of each opioid used in this study

Opioid MME per mg
Fentanyl 100
Levorphanol 11
Hydromorphone 4
Noroxymorphone 4
Oxymorphone 3
Oxycodone 1.5
Hydrocodone 1
Morphine 1
Tepentadol 0.4
Pethidine 0.3
Dihydrocodeine 0.25
Alfentanil 0.25
Codeine 0.15
Propoxyphene 0.1
Buprenorphine not included
Opium tincture not included
Methadone not included

or hospitals exactly matched the amount distributed to patients, patients still sometimes never
use the drugs. This is unlikely to be a major problem in hospitals where healthcare providers
often inject the drugs or watch patients take the pills, but could be a problem for the pharmacy
measures. Some studies document that many opioids distributed to post-surgical patients are
never consumed, at least by the post-surgical patient (Howard et al. 2018). Still, if some frac-
tion of the opioids distributed to pharmacies are never sold or sold but never consumed, this
fraction likely is similar across states and over time so it is unlikely to be a major threat to the
validity of the empirical strategy discussed below.

While the ARCOS data tracks distribution to final six retail providers of drugs (pharmacies,
hospitals, doctors, teaching institutions, mid-level practitioners, and narcotic treatment pro-
grams), this study focuses only on the first two as the the vast bulk of opioids included in this
study are distributed to pharmacies and hospitals (98-99% each year). Practitioners and teach-
ing hospitals make up a maximum of 1.1% of total distribution in 2010 and in most years far
less and while narcotic treatment programs receive substantial fractions of the buprenorphine

and methadone, as one would expected, but only trivial fractions of the other drugs.
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The ARCOS data is, in principle, a census of all opioids distributed legally within the United
States but one would expect that inevitably double-counting and misreporting will lead to
some biases and other data quality issues. Careful inspection of the data reveals at least two
outliers which I manually corrected. South Carolina’s hospitals received 7,871.7g of fentanyl
in 2013 but in other years averaged 616.9 grams. The 7,871.7g might be the result of a typo or
an entry of the amount of milligrams in place of grams at one hospitals. I impute a value of
610.5g based on the neighboring years. South Dakota similarly has a surge in hospital fentanyl
distribution in 2011, from an average of 314.2 grams in prior years to 14,451.9¢g in that year. I
imputed a value based on the neighboring years of 480g.

It is probably not an accident that the two obvious outliers involve fentanyl data at hos-
pitals. The year to year variation in fentanyl distribution to hospitals is much larger than for
other opioids. For example, the state-level standard deviation of the percent change in fen-
tanyl distributed to hospitals (after correcting the outliers above) is 0.3 and 0.13 for pharmacies
with the analogous standard deviations for oxycodone are 0.11 and 0.12 and for hydrocodone
0.13 and 0.08. One year, 2010, in particular stands out for having large fluctuations compared
to earlier years. Due to concerns about the fentanyl data quality I investigated whether there
was anything particular to fentanyl that could explain why the hospital quantities appear for
unstable and potential inaccurate.

There are two main differences concerning fentanyl that could serve as explanations. First,
fentanyl is a synthetic opioid designed to more easily pass into the brain compared to other
opioids. As a result fentanyl is about 100 times as potent as morphine so doses are generally
reported in in mcg (micrograms). It is easy to imagine data entry errors where someone typed
in the mcg amount but listed the units as mg, overestimating the distribution by a factor of
1000. If a hospital in a small state did this repeatedly over the course of a year then that could
conceivably explain why the total quantities in South Carolina and South Dakota for the years
mentioned earlier are about ten times larger than in other years. A hospital that normally
receives 1% of the fentanyl would report receiving 1000% of the fentanyl for a typical year and

the total amount distributed would be about ten times the state average based on that single
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hospital’s mistake. On the other hand, if these types of data entry errors are only occasionally
made for small orders then the errors might just show up as noise, with all quantities in all years
exaggerated but by varying amounts. This seems plausible but does not help explain why 2010
in particular shows exaggerated quantities in most states. Perhaps there was a change in the
data entry procedures but I could not find any evidence about it.

Another issue for all opioids is that the quantities can be reported in two forms, as a salt or
as an anhydrous base. Most opioids are electrically charged so are usually distributed pack-
aged together with another molecule as a salt, like how the sodium we consume is packaged
as a salt together with chloride. The most common counter ion for most opioids is, like for
sodium, chloride or hydrochloric acid, which are both small so 90% of the weight of the salt
(oxycodone HCI) is oxycodone so there is only a small bias from incorrectly reporting that the
salt is pure oxycodone or vice versa Fentanyl, in contrast, is usually packaged with the much
larger counter ion, citrate, and this fentanyl citrate salt is only 63.56% fentanyl by weight. AR-
COS allows entry of either the weight of the pure opioid or the weight of the salt which it
will automatically convert to the equivalent weight of the pure substance and since the con-
version factors are larger for fentanyl are much larger any errors in entry of this characteristic
will lead to particularly large biases. This does not explain why there is particular changes to
fentanyl quantities at hospitals in 2010 but, as noted earlier, changes in reporting in 2010 might
have caused this noise to be magnified. Due to concerns about the fentanyl hospital quantity
quality I do robustness checks excluding fentanyl on all regressions involving hospital opioid
quantities. The results are not sensitive to the inclusion or exclusion of fentanyl.

Summary statistics for the cleaned data are presented below and a few patterns are worth
noting. First, the mass of MME used at pharmacies generally dwarves the mass used in
hospitals-at the mean pharmacies received more than ten times as much as hospitals. Second,
the amounts shipped to pharmacies and hospitals vary dramatically across states, although the
variation is much larger in the pharmacy category, from a high of nearly 1.5 grams per person

(Tennessee in 2013) to less than 0.2 grams per person (D.C. in 2017). Third, oxycodone makes up
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Table 1.5: ARCOS summary statistics

N mean StD min max p25 p75

MME per capita (pharmacy) 612 6062 1919 176.6 1,380 4709 711.0
MME per capita (hospital) 612 56.05 2227 19.07 1639 4123 64.29
MME per day (hospital) 612 9297 4225 3351 2704 6594 108.2

oxycodone MME per capita (pharmacy) 612 2624 1164 5400 8928 1827 3258
hydrocodone MME per capita (pharmacy) 612 1083 67.70 7.485 376.0 6148 139.6
other MME per capita (pharmacy) 612 2355 6295 6196 4525 192.7 2753
MME per capita (hospital), no fentanyl 612 64.06 3415 18.65 2461 41.80 74.23

nearly half of the opioid MME shipped to pharmacies, consistent with intuition since it thought
to be widely used both for outpatient management of chronic pain and for recreational use.

It has been widely noted that opioid consumption has been on the rise in the U.S., espe-
cially for outpatients and the ARCOS data bear out these trends. Figure 1.2 shows the opioid
distribution per capita to pharmacies and hospitals per year between 2006 and 2017. The phar-
macy amounts rise from around 450 MME in 2006 to just over 675 MME in 2011 then steeply
decline to just slightly over 450 MME in 2017. Hospital amounts show a modest increase from
2006 to 2011 but declined in tandem with pharmacies after 2011, with particularly steep de-
clines in 2016 and 2017. The later drop-off may have less to do with changing practice patterns
and more to do with manufacturing problems involving injectable opioids. These trends help
provide face validity for the ARCOS data.

Other checks on the validity of the data also look good. The distribution of types of opioids
should vary across pharmacies and hospitals, with morphine and fentanyl more common in
hospitals, often used for IV administration and anesthesia respectively, and oxycodone and
hydrocodone, primarily packaged as pills, more common for pharmacies (see Table 1.6). The
ARCOS data bears this out as pharmacies distribute 42% oxycodone, 19% hydrocodone, only
10% morphine and 22% fentanyl, with other drugs accounting for the remainder. It would have
been surprising if oxycodone were not the top drug at pharmacies since it is often prescribed to
outpatients in large doses (up to 160mg per tablet) while hydrocodone is usually limited to 5mg

doses. Hospitals have a very different pattern with just 27% oxycodone, 11% hydrocodone,
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Figure 1.2: Trends in dispensing in ARCOS

Table 1.6: Opioid MME shares in Hospitals and Pharmacies
MME share of opioids (%)

Pharmacies Hospitals

Oxycodone 42.19 27.2
Hydrocodone 18.78 10.86
Morphine 10.05 17.98
Fentanyl 21.92 32.31
Other 7.06 11.65

18% morphine (nearly double the pharmacy fraction), and 32% fentanyl with the remainder
composed of other drugs.

One major potential threat to the validity of my empirical strategy is worth discussing.
The premise of investigating pharmacies and hospitals separately is that it helps to distinguish
the channels by which PDMPs can exert their effects. This approach depends on the accu-
rate coding of establishments under business code A (for pharmacies) and business code B
(hospitals) in the ARCOS. This seems easy enough for most cases, but may be more difficult
when hospitals contain in-house pharmacies that fill prescriptions for patients who are being
discharged as well as patients seen at onsite outpatient clinics, emergency departments, and

urgent care clinics. In discussions with the DEA it became clear that while it is preferred that
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these hospital-based pharmacies register separately as pharmacies (class A) there is no official
criteria that mandates this at the federal level since states manage this registration process. This
leads to the concern that some states may simply grant hospitals with pharmacies a single hos-
pital (class B) license and file all opioid used under that code, leading to the possibility that
measured opioid use at hospitals declines after the implementation of a PDMP when in fact
this is actually activity in their pharmacies that was misclassified. I investigated this issue in
detail and found that is unlikely to be a problem for several reasons.

First, and most importantly, calibration calculations suggest that the per capita and per day
MME used at hospitals in ARCOS are approximately what we would expect based solely on
inpatient use for medical and surgical patients. My basic approach for the calibration is to
estimate the amount of MME used per day by each of three groups of patients at hospitals
with widely different needs and then estimate the number of days in the hospital (per capita)
for each to scale up to total use. The three main categories are surgical admissions, medical
admissions, and emergency department outpatients, who sometimes get medicine dispensed
for pain while in the emergency department. Herzig et al. (2014) use billing records for non-
surgical inpatients at 286 hospitals to document typical opioid use and variation in opioid use.
They find that hospitals range from using opioids in a low of 5% of medical inpatients to a high
of 72% with a mean of 51%. This variation narrows, but remains enormous, after adjusting for
patient characteristics, consistent with the wide state to state variation in opioid distribution
per capita to hospitals. Of the 51% of patients given opioids during their stay, the mean daily
dose was 68 MME. Since surgeries are often painful and because fentanyl is sometimes used for
anesthesia the opioid consumption for surgical patients is naturally much higher. Koepke et al.
(2018) note that “almost all patients in the USA receive opioids during a surgical encounter”
and Pizzi et al. (2012) report a median dose of 60 MME per day with a mean probably around
double that, so I suppose that surgical patients average 120 MME per day. These data can be
combined with MEPS estimates of admissions rates for medical and surgical services and AHA

data on hospital utilization to estimate the opioid use per inpatient day.
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Table 1.7: Relationship of Hospital MME and types of hospital volume

Dependent: MMEjspitar per capita

inpatient days (per capita) 0.0593** 0.0414*
(0.0214) (0.0186)

ED visits (per capita) -0.0012 -0.0043
(0.0455) (0.0278)

outpatient visits (per capita)  0.00182 0.000932
(0.00441)  (0.00241)

Constant 64.61** 38.53**
(15.92) (12.32)

N 51 561

R? 0.157 0.831

Fixed effects? n/a state, year

Robust standard errors in parentheses
** p<0.01, * p<0.05, + p<0.1

MME per day = 68(0.51)(0.45) + 120(0.55) = 81.6

The observed amount in ARCOS is just 79.44 MME per inpatient day leaving none of the
opioid use unaccounted for.

A second, indirect, piece of evidence that the ARCOS hospital measures represent use in
hospitals as opposed to distribution to outpatients is that in cross-state regressions the number
of days spent in a hospital, per capita, is strongly correlated with hospital MME use per capita
while number of outpatient visits and emergency department visits are not (Table 1.6). This
suggests that even if the ARCOS measures include some hospital-based pharmacies by mistake
these pharmacies are not used by outpatients and are instead primarily used to fill prescriptions
for inpatients at discharge.

A third, related, piece of evidence is that the amount of MME used at hospitals does not pre-
dict drug overdose deaths, in contrast to pharmacy MME quantities which are a strong predic-
tor both in cross sectional and fixed effects regressions. Figure 1.3 shows results from regressing
In(drug over deaths per capita) on In(MME pharmacy per capita) and In(MME hospital per capita)

for each year in the sample. In most years a 1% increase in MME pharmacy per capita is associ-
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Figure 1.3: MME at pharmacies predicts overdoses but MME at hospitals does not

ated with around a 0.5% increase in drug overdose deaths while a 1% increase in MME hospital
per capita is associated with a modest, insignificant increase or decrease.

Fixed effect regressions reported in Table 1.8 show a similar pattern. This fits with an in-
terpretation where the ARCOS hospital measures MME used in the hospital and not opioids
dispensed to opioids that could potentially be diverted.

In summary the ARCOS hospital data appears to accurately reflect opioid use in hospitals

and not opioids distributed by hospital-based pharmacies.

14.2 HCAPHS

The Hospital Consumer Assessment of Healthcare Providers (HCAPHS) is one of two data
sources I use for assessing uncontrolled pain in the population. HCAPHS is a quality reporting

system for inpatient hospital care managed by the Centers for Medicare and Medicare services
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(CMS). Its two primary functions are to gather data about the patient experience in hospitals
and, on the basis of this data, incentivize better care. In practice the incentives come in two
forms, adjusting Medicare reimbursement rates and providing hospital ratings on the Hospital
Compare website that can steer customers toward better rated hospitals.

The surveys have been in widespread use since 2006 after a period of development and
testing by the Agency for Healthcare Research and Quality and the National Quality Forum.
The survey gathers demographic information along with ratings on seven aspects of care such
as treatment from nurses, experience in the hospital, and the discharge experience. Many ques-
tions ask respondents how often some unpleasant experience happened and give options for

responses. The main question is interest for this study asks “During this hospital stay, how

i /a

often was your pain well controlled?” with options of “always,” “usually,” “sometimes,” and
“never.” Medicare bins responses of “sometimes” and “usually” together before releasing the
data so in my data there are only three categories for responses.

Although surveys are used to adjust Medicare payments rates the surveys are given to a
random sample of (almost) all adult patients with only a few categories for exclusion such as
foreign patients and patients discharged to hospice. Some hospitals such as Critical Access
Hospitals, small hospitals mostly located in rural areas, are not required to use HCAPHS sur-
veys since they use a different payment system and cannot be penalized. Surveys are adminis-
trated in multiple available languages and multiple methods (mail, telephone, mixed methods
and interactive voice response) in order to ensure representative samples, although since hos-
pitals collect their own data there is some scope for manipulating how the data is collected in
order to get an improved score.

CMS makes some adjustments to the data before its public release on the Hospital Compare
website, from which is where I obtained the data. These include adjustments for case mix
and demographics since certain types of patients tend to systematically give lower scores, and
further adjustments based on mode of survey since mail surveys tend to lead to lower scores

than telephone surveys (Lemeneh, Lerhman, and Conway 2016)). CMS believes that for reliable

results hospitals need to obtain 300 or more surveys per year and the vast majority of hospitals
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far exceed this threshold with a median of 589 responses across hospitals and a much larger
average, but a subset of hospitals fail to meet this threshold. In my baseline analysis I focus
only on acute care hospitals that have at least 300 responses in a given year, but in robustness
checks I include those with fewer responses and Critical Access hospitals. It turns out that
results are not sensitive to the sample.

My baseline sample spans the years 2007 to 2016. The sample starts in 2007 because hospi-
tals only had a financial incentive to start reporting in the middle of that year. A few hospitals
failed to start reporting until 2008 but since that year the sample is effectively a census since all
of the nation’s approximately 3,300 acute care hospitals participate in Medicare and thus report
HCAPHS data to avoid financial penalties. The sample ends in 2016 because the relevant ques-
tions about pain were no longer reported after the fourth quarter of 2016 due to concerns that
they were creating bad incentives for healthcare providers. Physicians for Responsible Opioid
Prescribing alleged that the old question, by focusing on uncontrolled pain, had the “unin-
tended consequence of encouraging aggressive opioid use in hospitalized patients” (Chen et
al. 2016) and Adams et al. (2016) criticized it for helping to feed a misperception that patients

should expect to feel no pain.

Table 1.9: HCAPHS summary statistics
N mean StD min max p25 p75

pain uncontrolled (%) 38,315 30.03 6.068 0 100 27 33
pain SN controlled (%) 38,315 7.016 3414 O 96 5 8
number of patients surveyed 37,507 801.5 9394 50 13,956 239.7 1,010
acute care hospital 38,315 0.756 0.430 0 1 1 1
critical access hospital 38,315 0.238 0.426 0 1 0 0
non-profit hospital 38315 0.602 0.489 0 1 0 1
for profit hospital 38,315 0.174 0.379 0 1 0 0

I now turn to a brief summary of the key facts and trends for HCAPHS pain scores. The
most salient fact, as seen in Table 1.7, is that most hospitals have good scores for managing
pain. Over 99% of hospitals have a majority of respondents report that their pain is “always”
well controlled and nearly 70% of patients, on average, report that their pain is “always” well

controlled. Less than 10% complain that their pain was “never” well controlled with the re-
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Figure 1.4: Trends in uncontrolled inpatient pain (HCAPHS)

mainder in the sometimes or usually category. Aside from a few outliers these scores do not
vary that much across hospitals, with the 25th percentile for pain always well controlled at
27% and the 75th percentile only slightly higher at 33%. Responses of pain being sometimes or
never well controlled show even less variation.

A second key fact, illustrated in Figure 1.4, is that scores have improved considerably over
time, roughly in parallel, although progress slowed down later in the sample and even reversed
in the last few years of data collection. The fraction reporting that pain was always well con-
trolled has risen by 3.1 percentage points and the fraction reporting that pain was never well
controlled dropped by 1.3 percentage points in the same time frame or 13.6% from the 2007
baseline. Scores are fairly stable within hospitals as 61% of the variance in scores for uncon-
trolled pain can be explained by regressions with only indicators for the hospital alone and this

rises to 64.3% when year indicators are included. This implies that fixed effects regressions on
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a time-year panel of the HCAPHS have high power, especially compared to the noisy ARCOS
hospital data.

Finally, there are a number of statistical considerations about specification and interpreta-
tion of the HCAPHS data that each deserve a brief discussion. The first issue is that the Hospital
Compare website reports data quarterly but each quarterly report includes data from the pre-
vious four quarters averaged together. At first glance it might be preferable to use the quarter
as the unit of observation since it is more fine grained than by year but without knowing the
sample sizes for each quarter there is no way to get a pure scores for each quarter separately.
The alternative is to use the quarterly score for each quarter with the previous three quarters
included but this creates severe autocorrelation in a dependent variable which leads to biased
standard errors. The only feasible solution is to only use the subset of reports that have data for
a particular calendar year and ignore the other data-points that mix data across years to avoid
serial correlation.

A second issue is how to code uncontrolled pain. One seemingly natural option is to leave
the three categories CMS reports and do an ordered probit or logit analysis, but this comes at a
cost of substantial computational burden. The alternative strategy which has become standard
in the literature using these data is to pick a cutoff for what counts as uncontrolled pain. For
example, if the respondent says that their pain was “always” well controlled then it is coded as
a 0 (not uncontrolled) and any other responses is a 1 (for uncontrolled). Alternatively, I could
code “always” and “sometimes/usually” as a 0 for not uncontrolled and only consider “never”
well controlled as a 1. The emerging standard is to consider any response other than “always
well controlled” to be uncontrolled (Jena, Goldman and Karaca-Mandic (2016) and Jung et al
(2018)) and I adopt that for comparability with other studies. I use the alternative coding in
robustness checks.

A third statistical issue concerns weighting. It seems natural to want to weight the re-
sponses so that each patient’s responses would contribute equally in evaluating if uncontrolled
pain is getting better or worse in a state. In effect this would involve giving more weight to

larger hospitals but I lack data on the actual volume of patients seen at any particular hospital.
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I do have data on a proxy, the number of surveys filled out by patients at the hospital, which at
first glance this seems like a good proxy, but on reflection has two major problems. First, hospi-
tals have control over what fractions of patients they attempt to survey. This is clear from how
the number of responses can vary dramatically from year to year at a particular hospital when
there is no evidence it either expanded or contracted collection significantly. Second, response
rates vary from hospital to hospital, in part due to differences in survey methods but likely
also due to differences in quality of care that affect the likelihood of responding to a survey.
Both of these concerns illustrate the the number of survey responses collected in endogenous
to the quality of care, so with these problems in mind I use unweighted response in my baseline

results and only conducted weighted regressions for robustness checks.

1.4.3 Gallup Daily Tracking

My last outcome variable and primary measure of pain prevalance comes from Gallup, Inc.’s
tracking surveys from 2008 to 2016. The organization runs two surveys, the Gallup Sharecare
Well-Being Index survey and the U.S. Daily survey, that had pain related questions between
2008 and 2016. These tracking surveys are conducted over the phone, drawing a sample by
random digit dialing a mix of landline and mobile phones. The goal is to ensure a random sam-
ple of the non-institutionalized adult (18 years and old) American population. Weighing based
on demographics to match the CPS further ensures the data are representative. Interviews are
conducted with about 500 respondents each day throughout the year except on major holidays
to ensure a sample of around 175,000 for each survey.

Until 2012 both surveys asked all respondents “Did you experience the following feelings
during A LOT OF THE DAY yesterday: How about ___?” where the blank would be filled
in with a variety of potential emotions or feelings such as “enjoyment,” “worry”, “stress”, and,
importantly for this study, “physical pain.” From 2013 to 2016 only Sharecare survey asked
about physical pain so samples were reduced in size but still substantial.

This question is simple to understand and transparently captures information about levels

of pain in the country but it has a few undesirable features. The most obvious potential problem
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is that it only captures information about the extensive margin of unmanageable or severe pain.
If a respondent was in pain the day before but did not feel that they were in “a lot” of pain the
question fails to capture anything about that experience. Similarly, if respondents think that
they are in a lot of pain every day but that their pain has gotten worse, or better, the question
is ill-suited to capture any information about those trends. That said, it seems likely that any
changes on the intensive margin in pain will be reflected on the extensive margin as well. For
example, if fewer people have access to opioids and as a result more people are in pain this
question should detect that because some will go from having minimal amounts of pain that is
managed to having “a lot” of pain and the fraction answering yes will rise.

A second potential problem is that the context in which the question is asked has varied
over time as questions have been added to and removed from the Gallup Daily and Sharecare
surveys. For example, between 2008 and 2013 there were other questions about recurring pain
in certain areas (“In the last 12 months, have you had any of the following, or not? How
about neck or back condition that caused recurring pain? . . .”) It is unclear if these questions
were asked before or after the question of interest for this study but if they were asked before
then they might have helped prime respondents to think more about their pain, potentially
making them more likely to say “yes” that they did have a lot of pain. When these questions
were removed that changed the context and could thus change responses. This not a major
concern, however, for the validity of this study for two reasons. First, the empirical strategy
detailed below includes time fixed effects which control for time-varying factors that affects all
states simultaneously. Second, there are no discontinuous jumps in the “yes” or “no” response
rates from year to year, making it seems unlikely that the ordering of the questions are other
contextual changes mattered significantly.

Summary statistics for the question of interest are presented in Table 1.10 below.

A few trends are worth noting. First, the samples are larger, yielding fairly precise estimates
of the proportion in pain. Across all years the average sample is 5,400 respondents per state
and still average 3,400 in the later years. Since the sampling is done at random the number

of responses is roughly proportional to state population. As a result, the smallest samples
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Table 1.10: Gallup summary statistics

N mean StD min max
Pain yesterday 459 24.3 3.08 15.0 35.5
Top 5 states (average) Bottom 5 states (average)

West Virginia 33.6 D.C. 17.3
Kentucky 30.6 North Dakota  19.6
Arkansas 28.6 Hawaii 20.4
Alabama 28.3 Minnesota 20.5
Oklahoma 28.3 South Dakota  20.6

are in the later years for D.C., hitting a minimum of 395 in 2015, and the smallest non-D.C.
sample is for Delaware in 2016 with 465 responses. Another possibly surprising thing to notice
is that there was only a modest upward trend in reported pain in most states and for the U.S.
as a whole, from 23.45% with a lot of pain in 2008 to 24.65% in 2016. This modest increase
is consistent with an aging population but might be surprising in light of a growing body of
literature that suggests the U.S. is in the midst of a growing pain epidemic. Figure 1.5 shows
that pain on the Gallup survey rose steadily as opioid prescribing was loosening (2008-2010),
tightening (2014-2016), and roughly steady (2011-2013).

In light of this surprising trends I thought it was worth doing some tests for the validity
of the Gallup data to reassure that it appears to accurately capture information about pain
prevalance. The most basic test for validity is to look at which states score high and low on
reported pain, as listed in Table 1.10. It is widely thought that many of the poorer, older, most
obese states suffer the most from pain so we should expect that these states top the list. Indeed
they do with the top states for pain including West Virginia, Kentucky and Tennessee. The
states with the lowest average scores for pain are also generally unsurprising and fit with in-
tuition as they tend to be richer and younger. That said, a few states have surprising positions
such as Florida (24.9%) and Maine (25.3%), near the average despite having the largest fraction
of seniors. and Washington (25.7%) and Oregon (27.2%), near the top despite being relatively

healthy, affluent states, but the overall patterns fit with outside evidence and known patterns.
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Figure 1.6: Worldwide association of GDP and pain

Another test for face validity is available since Gallup has used the same question in the
Gallup World Poll since 2006. In 2018 over 142 countries were included in the World Poll so
we can assess to what extent pain rates are higher in poorer countries where health tends to be
worse. It has sometimes been suggested that pain surveys are biased because the respondent
has to subjectively determine what counts as “severe” or “a lot” of pain and these subjective
thresholds adjust based on circumstances, complicating interpretation. Blanchflower and Os-
wald (2019), for example, report that in a sample from the International Social Survey Program
in 2011 that asked about pain, the U.S. stands out as a major outlier with by far the highest
reported levels of pain, followed by other rich countries including the U.K., Australia, and
Norway. It is puzzling why these countries score as having more pain than the far poorer and
generally less healthy South Africa, China, Chile and Turkey.

Figure 1.6 shows the results of a regression of pain prevalence from the Gallup World
Poll against log per capita income and it is clear the Gallup data does not suffer from the
same problems as the International Social Survey Program. The line of best fit is pain =

—0.0584 In(GDP per capita) + 0.886 with the coefficient on GDP per capita highly significant
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(t = —9.79 ) at conventional levels. This is reassuring and helps validate that the Gallup ques-

tion is not subject any large or obvious bias.

1.4.4 PDAPS and Horowitz et al. (2018)

One of the key variables in all of the empirical specifications for this study is a dummy variable
indicating whether a PDMP exists for that state and year. As discussed earlier, I use the coding
standards from Horowitz et al. (2018) developed by a team of legal scholars. The dates for
when the PDMP was enacted and began operational are shown in the Table 1.11 where “early”
in the first column means the state had begun data collection at some point before 1990. As is
evident from the table many states had PDMPs capable of data collection before my analytic
data set starts (in 2006) and a few had modern systems with user access but 26 states started
data collection and 40 first enabled user access during the 2006-2017 time period I study. By
the end of the study period all states had data collection and all but systems except Missouri’s
enabled user access. The third column in the table shows the datas that states that had paper-
based systems of data collection converted their systems to electronic forms of surveillance.
There is arguably an important distinction between the two types of systems as electronic sys-
tems might have a larger deterrent effect, so I use these dates in robustness checks.

In addition to these dates for the key independent variable I draw dates when several other
potentially confounding policies that could have impacted opioid use when implemented from
the Prescription Drug Abuse Policy System (PDAPS) database. These policies suffer from some
of the same issues as PDMPs in that there is some ambiguity about what counts as an im-
plemented regulation or program, but PDAPS provides a detailed codebook on their criteria.
These potentially confounding programs I include as controls are medical marijuana regula-
tions, mandates to use a PDMP, and regulations on pain management clinics. I discuss each
briefly in turn. Medical marijuana access might influence opioid dispensing rates to the extent
marijuana is a substitute both as a recreational drug and as a treatment of pain. Some studies
have found that when medical marijuana is available there is less demand for diverted opioids

and thus less doctor shopping and fewer prescriptions (Bachuber et al. 2014, Powell et al 2018).
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Table 1.11: Dates of PDMP data collection and user access

State Data Collection User Access Electronic
Alabama Nov-05 Apr-06
Alaska Sep-08 Jan-12
Arizona Sep-07 Dec-08
Arkansas Mar-13 May-13
California early Sep-09 Jan-05
Colorado Jun-05 Feb-08
Connecticut Oct-06 Jul-08
Delaware Sep-11 Aug-12
D.C. Feb-14 Oct-16
Florida Dec-10 Oct-11
Georgia Jul-11 May-13
Hawaii early Feb-12 Dec-96
Idaho early Apr-08 Apr-00
linois early Dec-09 Apr-00
Indiana early Jul-07 Jul-07
Iowa May-06 Mar-09
Kansas Jul-08 Apr-11
Kentucky Jul-98 Jul-99
Louisiana Jul-06 Jan-09
Maine Jan-04 Jan-05
Maryland Oct-11 Dec-13
Massachusetts Dec-92 Jan-11 Feb-13
Michigan early Jan-03 Jan-02
Minnesota Jan-09 Apr-10
Mississippi Jun-06 Jul-08
Montana Jul-11 Oct-12
Nebraska Aug-11 Jan-17
Nevada Jan-96 Feb-11
New Hampshire Jun-12 Oct-14
New Jersey Aug-09 Jan-12
New Mexico Jul-04 Aug-05
New York early Jun-13 Oct-06
North Carolina Jan-06 Jul-07
North Dakota Dec-06 Oct-08
Ohio May-05 Oct-06
Oklahoma Jun-91 Jul-06
Oregon Jul-09 Sep-11
Pennsylvania early Aug-16 Jun-15
Rhode Island early Sep-12 Aug-95
South Carolina Jun-06 Feb-08
South Dakota Mar-10 Mar-12
Tennessee Jan-03 Jan-10
Texas early Aug-12 Sep-99
Utah Jul-95 Jan-06
Vermont Jun-08 Jan-09
Virginia Sep-03 Jun-06
Washington Aug-11 Jan-12
West Virginia Jun-95 May-13 Sep-02
Wisconsin Jun-10 Jun-13
Wyoming Jul-03 Jul-13
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In addition, marijuana may be an effective treatment for pain and is sometimes combined with
opioids in the treatment of cancer .

Some PDMPs have been enhanced with regulations that mandate use under certain circum-
stances. The most common mandate requires that physicians at narcotic addiction treatment
programs use the PDMP when admitting a patient, but since this does not affect treatment for
pain PDAPS does not count as a mandate. A handful of states have enhanced these mandates
to require PDMP use during treatment or acute or chronic pain or both and some require pre-
scriptions to check the PDMP every time they prescribe an opioid. PDAPS counts all of these
as mandates as long as they apply to all outpatient practitioners under some circumstances.
These mandates generally when into effect after a modern PDMP became operational so they
are unlikely to confound identification of the modern PDMP effect but they do help to explain
some of the variance in opioid consumption, especially in the later part of the sample and to
that extent help improve the precision of the estimates.

Pain management clinics are, like sleep clinics for downers and weight loss clinics for stim-
ulants, thought to be hubs for the mass diversion of controlled substances. They have a partic-
ularly notorious reputation in Florida as they contributed to the state’s reputation as the “Oxy
Express” until new regulations were issued in 2010 amidst a crackdown (Meinhofer 2015). A
few other states, mostly in the south, added new regulations on pain clinics during the sample
period in order to limit abuse and this could plausibly directly affect opioid dispensing rates
from pharmacies so it is important to include them as a control.

The table below shows summary statistics for all of the variables coding for laws or regula-
tions.

There are 612 observations for each since each of the 51 states (including D.C.) are followed
from 2006 to 2017 giving 12 observations each. About 81.2% of the observations have a PDMP
enacted while 64.4% have a modern PDMP. Mandates were only enacted in a handful of states
and mostly in the later period so only 8.5% of observations have mandates and pain clinic laws
are similarly rare. Marijuana laws are somewhat more common but were still only in force in

about a quarter of the state-year pairs in the sample.
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Table 1.12: PDAPS and Horowitz Data - summary statistics
N mean StD min max p25 p75

PDMP - Data Collection 612 0.853 0.354 0 1 1 1
PDMP - Electronic Data 612 0.825 0.380 0 1 1 1
PDMP - User Access 612 0.644 0479 0 1 0 1
PDMP - Mandate 612 0114 0319 0 1 0 0
Pain Clinic Law 612 0.0866 0.281 0 1 0 0
Marijuana Law 612 0.289 0.454 0 1 0 1

1.4.5 Other data sources

I used a small number of other sources for data on population, demographics, and hospital
utilization in order to construct per capita and per hospitalization measures of opioid con-
sumption as well as control variables. These are all well documented and widely used data
sources I only briefly discuss them.

For year by year state population estimates I used the Census Bureau projections as of June
2018. These include intercensal estimates for the population of each state as of July 1 for each
year from 2006 to 2009 which use the 2000 Census as a basis and intercensal estimates for 2010
to 2017 which use the 2010 Census as a basis.

I gathered state level data on hospital utilization including inpatient days per 1,000 people,
hospital admissions per 1,000 people, and outpatient visits per 1,000 people in order to con-
struct estimates of opioids dispensed per day to inpatients. These data are publicly available
through the Kaiser Family Foundation website for the relevant years and are based on original
data collected by the American Hospital Association through an annual survey of members
which are combined with Census population estimates.

Finally, I gathered data on demographic controls from two sources. First, I gathered data on
age, race, ethnicity and poverty rates through the IPUMS USA program which provides access
to the underlying American Community Survey (ACS) data and collapsed these into state by
year sets of controls (Ruggles et al 2019). Second, I gather state level unemployment rates from

the Bureau of Labor Statistics which are publicly available on its website.
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Table 1.13: Minor data sources - summary statistics

N mean StD min max  p25 p75

population (millions) 612 6.127 6885 0.522 3954 1.643 6.841
inpatient days (per 1000) 612 641.3  205.8 336 1674 512 6975

rural (share) 612 0.197  0.169 0 0.670 0.0580 0.276
white (share) 612 0.724 0.155 0328 0.969 0.610 0.841
black (share) 612 0.117 0.109 0.00498 0.560 0.0381 0.156
Asian (share) 612 0.0458 0.0727 0.00633 0.536 0.0173 0.0477
Hispanic (share) 612 0.107 0.0994 0.00681 0.487 0.0396 0.123
children (age < 18) 612 0234 0.0212 0.167 0314 0.222 0.245
seniors (age >= 65) 612 0.140 0.0205 0.0685 0.201 0.129  0.153
UE rate 612 0.0711 0.0230 0.0234 0.149 0.0543 0.0857
poverty rate 612 0.165 0.0326 0.0988 0.272 0.141 0.188
admissions 561 1115 2441 69 2383 93 125

inpatient days 561 6413 204.8 336 1674 512 697.5
outpatient visits 561 2426.1 894.8 941 5891 1734 2959

Summary statistics for these data sources are presented in Table 1.13. A few clarifications
are worth mentioning. The rural population share is the fraction of the population that lives
outside an urban area or urban cluster. Urban clusters can have as few of 2,500 people so the
majority of the deep South is rural by this standard although in common parlance might be
considered mostly rural. The rural population shares are only significant in the Mountain West
and parts of the midwest dominated by corn farms, areas that have opioid consumption far
below average. In addition the last three variables which report on hospital utilization are per
1,000 people so, for example, the mean state averages 0.11 admissions per capita although this

varies considerably across states.

1.5 Empirical Strategy

The basic empirical strategy used in the following section is a standard difference-in-differences
framework, viewing the introduction of prescription monitoring as a natural experiment. The
key assumption is that, while the states have widely varying pre-PDMP levels of opioid con-
sumption and reported pain, they would have followed a parallel trend in the absence of the

new programs. To some extent this assumption can be assessed by looking at pre-trends, as
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shown in figures in the following section, but it cannot be tested directly since we do not know
what would have happened in the absence of the PDMP.

The basic regression specifications report in tables all take the form

Yii = a; + ‘BlpDMP-DCit + ‘BQPDMP-UAZ} + v Xit + 6 + €t

where i indexes the state, t indexes the year, Y is some response variable (e.g. MME of opioids
sent to pharmacies), PDMP;; is a dummy for the existence of a modern PDMP in that state and
year, J is a year fixed effect, «; is a state fixed effect, Xj; is a vector of controls that varies across
specifications and ¢ is the error term.

In addition to the specification above I use the following non-parametric event study spec-
ification below to assess pre-trends and as a check on the quality of evidence when the basic

specifications show significant effects:

Yir = a; +)_ f1aPDMP-DCiy + ) B2aPDMP-UA;y + 7 Xit + & + it

Here d is a new index that measures the time since implementation of the modern PDMP. For
example, d = 0 in the year of implementation, then d = 1 in the following year, and d < 0
represents the years leading up to implementation. Under the identifying assumptions we
should see that 8,; < 0 when d < 0 since the PDMP features could not possibly have had
effects in the years prior to implementation. If we see significant values for p,,4 or a trend up or
down that would suggest that the assumption of parallel trends is likely to be violated since it
did not hold in the period prior to implementation.

There are four main substantive choices particular to my data when using these basic spec-
ification and in most cases there is not a clearly right approach from among the options. First,
should the opioid quantity dependent variables be in raw amounts or per capita amounts, and
second, should the dependent variables be modeled in logs or levels when, as with all opioid
quantity amounts, the distribution is highly skewed due to some states having extreme high

consumption. If the amounts are in levels it seems obvious the per capita amounts are strongly
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preferred since it is otherwise difficult to control for variation in the size of the population. If
the dependent variables are in logs, however, then log population can be included as a control
variable and the coefficient on PDMP has a similar interpretation for the raw log quantity or
the log quantity per capita, it is roughly the percentage change in opioid consumption. Both
approaches are used in the literature (Pardo 2017, Kilby 2015, and Dowell et al 2016b for exam-
ples), but I prefer to use log per capita quantities as my base specification with levels per capita
reported as validity checks. The logged dependent variables have a more symmetric, normal
distribution so the standard errors have a better behaved (Stock and Watson 2007). In addition,
the logged dependent variable is more likely to yield less treatment effect heterogeneity. As
discussed earlier, modern PDMPs are designed to reign in doctor shopping, illegitimate pre-
scribing, and other forms of abuse. While the rates of these behaviors vary from state to state
the proportion of opioids that are abused may not vary much so it plausible to hypothesize
effects on the order of 0.05 log points that are fairly heterogenous. In contrast, the level effects
could vary from around 50 MME per capita in a state like Tennessee or Delaware where MME
per capita is often over 1,000 to as little as 20 MME in the less heavy using states like Illinois
or Minnesota. From one point of view the heterogeneity of expected effects might not be that
important since the difference in differences specifications are meant to estimate an average
treatment effect, but new research has shown that under conditions of heterogeneous treat-
ment effects the weighted average treatment effect this approaches estimate can be difficult to
interpret. The difficulty gets worse the more heterogenous the treatment effects are since, in-
tuitively, the distribution of weights matters more when the underlying observations are more
variable.

A third substantive issue is how to code the PDMP-DC;; and PDMP-UA;; variables during
the implementation years. If Florida’s PDMP enabled user access in October 2011 does that
mean it had a PDMP for the year 2011? If not, what about South Dakota, which enabled user
access in March of 2012, so had user access for most of the year? The simplest approaches are
to code them all as 1 as long as the PDMP feature was implemented at some point in the year,

which is my approach, or to code them all as 0 unless the PDMP feature was operational for the
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entire year. A more complex approach would be to require the PDMP to be in place for some
minimal fraction of the year, perhaps half. In practice this coding issue is unimportant except
in one case discussed in more detail in the results section.

The final substantive issue is what controls to include in the vector X. There are a variety
of controls that seem like obvious candidates for inclusion since they are likely to influence
reported pain, opioid consumption, or both. These include the fraction of the population that
are seniors, the unemployment rate, and the fraction that lives in a rural area. All of these are
strong predictors of either pain or opioid use, or both, in the cross section, but it turns out that
in fixed effects specifications they tend to be less important because they do not vary that much
within a state from year to year, so the residual variation is small and unimportant in explaining
year to year fluctuations in opioid consumption or pain. For the most part they tend not to be
significant when included in my main specifications. Still, to the extent controls help to eat up
variation in the residuals they improve the power of the tests so I include all available controls
in my regressions.

A final important issue before turning to reporting the results is how to construct standard
errors. While the difference-in-differences approach has gained acceptance as yielding unbi-
ased coefficient estimates of treatment effects under the parallel trends assumption, it is now
widely accepted that the standard errors must be constructed carefully to avoid excessive re-
jection rates. Bertrand, Duflo, and Mullainathan (2004) emphasized the observations within a
state or within a time period will often have correlated error terms. As a result it is important to
do some kind of clustering to avoid having underestimated standard errors. Further research
has clarified the conditions under which clustering matters and given practical guidance on
how and when to cluster. Cameron and Miller (2015), summarizing prior research, note that a
state-year panel like that used in this study is the classic case where errors are correlated within
a state. While the state fixed effects eliminate the possibility that any state could have high con-
ditional opioid consumption in all years because it cannot be above (or below) its on average
consumption in all years, this does not eliminate the possibility of serial correlation across a

few years. If Tennessee had high opioid consumption conditional on covariates and the fixed
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effect in 2010 then it is likely to have high conditional opioid consumption again in 2011 be-
cause whatever was anomalous about 2010 is also plausibly anomalous about 2011, perhaps
lax law enforcement after election of a new government or evolving demographics. Similarly,
the regressors of interest themselves, the PDMP dummies, are obviously serial correlated since
they are a series of Os followed by a series of 1s. Under these conditions it is vital to cluster the
standard errors by state or, they show, the standard errors can be underestimated severely. For
this reason, all standard errors estimated below make some attempt to cluster by state.

Cameron and Miller go on to note the different methods available for clustering. The sim-
plest is to use Liang and Zeger (1986) estimator for the covariance which is consistent as the
number of clusters goes to infinity. The practical problem is that the number of clusters is small
(51 or less) in state-year panels so Cameron and Miller suggest a finite sample correction which
inflates the standard errors slightly. This is generally accepted as reliable in the literature for
cases, like mine, where there are more than 20 clusters so these are the basic standard errors I
report in regression tables in section 1.6.

Another approach, which can potentially be more efficient, is bootstrapping. In theory,
bootstrapped clustered standard errors provide an asymptotic refinement on the Liang and
Zeger standard errors, so they will tend to be smaller with sufficiently large samples. When
they fail to be smaller they help, correctly, inflate the standard errors for the failure of the dis-
tribution to approach its theoretical limit distribution in the finite sample. The basic idea is to
creates random resamples of clusters which can be used to estimate a distribution of t-statistics
for the coefficients under the null hypothesis of no effect. A p-value is then constructed by
looking at where the original regression’s coefficient falls within this bootstrapped null distri-
bution. Roodman et al (2018) discuss some practical computation problems that arise when
doing the cluster wild bootstrap in Stata and provide software to solve these challenges and
perform diagnostics on problems that can arise, such as when one influential cluster leads to
an uneven (“lumpy”) null distribution. I use the Roodman et al. Stata program to calculate
bootstrapped p values for both the PDMP-DC;; and PDMP-UA;; regressors at the bottom of

results tables. These p-values are often smaller than the standard finite-sample adjusted clus-
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tered SEs suggesting that the samples are sufficient for reasonably close convergence of the

distributions to their theoretical limit distributions.

1.6 Results

I now turn to presenting the main results from the empirical investigation, placing emphasis
on both the statistical significance of estimates and their economic significance. In many cases
I find that the effect of the PDMP effects are statistically insignificant but modern econometrics
has reemphasized the importance on considering to what extent the results leave open the
possibility of economically significant effects. For example, I find that the effect of PDMP data
collection on the distribution of opioids to hospitals is insignificant, but it could be that a lack
of power drives this result and that economically significant reductions in use are taking place,
so the follow-up question is to ask what is the largest reduction in distribution that we can rule
out. In many cases this kind of analysis is informative since we can not only conclude that
effects are insignificant but also that economically important effects can be ruled out as well. In

some cases however the results are more ambiguous and further research is clearly called for.

1.6.1 Effect of modern PDMPs on opioid distribution to pharmacies

I estimated the difference-in-differences specification from section 1.5 with In(MME per capita)
dispensed to pharmacies as the dependent variable and the results are reported in Table 1.13.
The first two columns show the effects of data collection and user access entered independently
while the later two columns show the general specification, without weights (third column)
and weighted by population (fourth column). The results are consistent across specifications:
user access reduces opioid shipments by about 5 log points or 5% and this effect is significant
at conventional levels using the state-level clustered standard errors with finite sample adjust-
ments. The bootstrapped standard errors are smaller, suggesting that the data fit the assump-
tions for clustering and that as a result that bootstrapping only serves as a modest asymptotic

refinement. In contrast, data collection does not have a significant effect with small, though
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negative, point estimates in all specifications. In terms of the channels for PDMP discussed
earlier this evidence is consistent with the asymmetric information channel for PDMP being
important and potentially with a chilling effect, but inconsistent with the deterrence channel.

A natural follow up question to ask if to what extent I can rule out economically important
effects of data collection. Although the data collect effect is not significant, the point estimates
are negative and indicate a 1-2% decrease in opioid MME prescribed. The standard errors on
the PDMP-DC coefficients, however, are small, just 0023 in the combined specification so the
upper bound on the confidence interval for the estimate effect is 0.0678. Intuitively a 0.0678 log
point or about 7% decrease in outpatient opioid usage seems small and unlikely to representa
large chilling effect as this coefficient captures the effect of both chilling and deterrence. On
the other hand, this reduction might be concentrated into a small subset of users who might be
particularly harmed as a result. For example, if the 7% reduction represented a chilling effect
on prescribing of hydrocodone combination products for acute injuries it harm a large number
of patients, although only for a short time period each. In order to assess this possibility I
estimate the effect on pain prevalence in section 1.6.2.

Since the literature on PDMP effects has produced a wide range of estimates I think it is
important to try to assess the validity of the assumptions behind the difference in difference
analysis so I estimated the event study specification and plotted the coefficients for PDMP-DC
in Figure 1.7 and for PDMP-UA in Figure 1.8. Both graphs show no evidence of pre-trends
which is reassuring. Consistent with the pre-post regressions in Table 1.14 the PDMP-DC event
study shows little evidence of a real effect. Although most of the estimated coefficients are
negative the time pattern of effects is more consistent with noise than a genuine effect. Taken
at face value the point estimates suggest that there is no deterrent of chilling effect in the year
of implementation, then a large effect appears in the second year which slowly fades out over
time. If anything we would expect deterrence to grow over time as law enforcement illustrates
the effectiveness of the system, and a chilling effect also seems unlikely to fade as the country

has become more hostile to opioid prescribing.
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Table 1.14: Effect of PDMPs on opioids dispensed to pharmacies (logs)

Dependent: In(MME per capita from pharmacies)

PDMP - DC -0.0345 -0.0227  -0.0141
(0.0239) (0.0230)  (0.0216)

PDMP - UA -0.0532**  -0.0493** -0.0478*

(0.0182) (0.0174) (0.0196)

PDMP mandate  -0.0366  -0.0313 -0.0316  -0.0817*
(0.0351) (0.0357)  (0.0350) (0.0349)

pain clinic law 0.0303 0.0315 0.0344+ 0.0535**
(0.0198) (0.0193)  (0.0190) (0.0151)

marijuana law -0.078 -0.079 -0.0830  -0.184
(0.156)  (0.151) (0.150)  (0.217)
rural (%) 0.990 0.740 0.707 2.708
(1.107)  (1.082) (1.047)  (1.871)
white (%) 2.644 2.814 2.895 -1.318
(2.282)  (2.343) (2.343)  (2.841)
children (%) -0.427 -0.373 -0.315 -4.329
(2.221)  (2.267) (2.225)  (2.929)
seniors (%) 1.362 1.516+ 1.479 2.142
(0.914)  (0.901) (0.887)  (1.707)
UE rate -0.599 -0.449 -0.467 -1.016
(0.844)  (0.828) (0.813)  (1.224)
povety rate -598.1 -489.1 -497.3 -954.6
(676.4)  (668.0) (661.1)  (911.7)
Constant 4.935**  5.029**  5.045**  5.283**
(1.103)  (1.082) (1.078)  (1.235)
N 612 612 612 612
R? 0.954 0.955 0.956 0.959
Fixed effects? all include state and year
weight n/a n/a n/a pop
bootstrap p (DC)  0.188 0.348 0.506
boostrap p (UA) 0.003 0.005 0.0180
Standard errors clustered by state in parentheses
**p<0.01, * p<0.05, + p<0.1
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Figure 1.7: Event study for PDMP-DC on In(MME pharmacy per capita)
Note: The dots are coefficients from the event study specification described in the text. Year
zero is the year in which the PDMP began collecting data.
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Figure 1.8: Event study for PDMP-UA on In(MME pharmacy per capita)

The event study diagram for PDMP-UA on In(MME per capita) also tells a clear story.
There is no evidence of pre-trends and then modest effect in the first year of user access which
grows over time, presumably because more physicians register to use the system and it be-
comes easier to detect doctor shopping and other forms of abuse.

I reestimate the effects of PDMPs on the level of opioid dispensing (from pharmacies) per
capita and the results are reported in Table 1.15. Consistent with the prior results, in these
specifications the user access effect remains highly significant at conventional levels, reducing
pharmacy opioid volume by about 39 MME per person per year. The data collection effect
remains insignificant and, in the preferred specification, the point estimate is a 10 MME per
person per year reduction in MME, or the equivalent of two tablets of hydrocodone per capita.

Another robustness check that can help validate that the asymmetric information channel
is operative is to look at the effect on the effects on specific opioids. Most doctor shoppers

focus on getting tablets and oxycodone, in particular, is known to be the most popular drug
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Table 1.15: Effect of PDMPs on Opioids dispensed to Pharmacies (levels)

Dependent: MME per capita (pharmacy)

PDMP - DC -19.31 -10.34  -2.066
(14.04) (13.79)  (18.09)

PDMP - UA -39.34**  -37.54** -44.18*

(13.24) (13.03) (19.42)

PDMP mandate -31.78* -33.42* -3532* -16.94
(15.64) (15.63) (15.89) (23.76)

pain clinic law -19.61  -15.66 -15.78  -56.60%
(27.97) (27.85) (27.52) (26.34)

marijuana law 10.85 12.68 14.01  23.77%
(13.65) (13.15) (13.15) (10.36)

rural (%) -206.9* -208.9* -210.8* -381.6*
(93.13) (88.51) (88.40) (144.1)
white (%) 645.6 4448 429.7 1,950
(672.4) (631.6) (613.7) (1,501)
children (%) 1,747 1,901 1,937  -1,276
(1,562) (1,570) (1,570) (2,180)
seniors (%) -407.6  -349.0  -3223  -3,683
(1,376) (1,389) (1,367) (2,364)
UE rate 1,557*  1,662* 1,646 2,498
(774.6) (751.6) (749.1) (1,652)
povety rate -598.1  -489.1 -497.3  -954.6
(676.4) (668.0) (661.1) (911.7)
Constant -309.8  -233.2  -225.7  -20.51
(623.4) (605.9) (609.2) (712.5)
N 612 612 612 612
R? 0.923 0.925 0.925 0.922
Fixed effects? all include state and year
weight n/a n/a n/a pop
bootstrap p (DC)  0.161 0.465 0.903
boostrap p (UA) 0.002 0.003 0.029

Standard errors clustered by state in parentheses
** p<0.01, * p<0.05, + p<0.1
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of abuse (GAO 2003, Han et al 2015). As a result we should expect to see larger effects of
PDMP user access on oxycodone shipments and potentially hydrocodone shipments, since it
is distributed almost solely in tablet form, compared to other opioids which come in a mix of
tablets, lozenges, patches, and syrups. Table 1.16 shows difference in difference specifications
where the dependent variable is the logged quantity of the specified drug per capita shipped
to pharmacies.

As expected the data collection effects remain insignificant, although still negative, while
the user access effects are significant and negative for the expected drugs. The oxycodone effect,
in particular, is somewhat larger than the average effect and the effect on hydrocodone is also
significant, although imprecisely estimated. The point estimate for the effect on other drugs
indicates a reduction of about 2.5%, a much smaller and insignificant effect. One thing worth
noting, although it is beyond the main focus of this research and should be validated in further
study, is that mandates for PDMP use appear to have an especially large effect on hydrocodone
(almost 14 log points) and other opioid dispensing (almost 8 log points), but have little effect
on oxycodone. This is concerning because it suggests that mandates may be restricting access
for legitimate patients and doing a poor job reducing prescriptions that are more likely to lead
to drug abuse and diversion.

I present a few more robustness checks in Table 1.17, looking at the robustness of the user
access effect on subsamples and with the inclusion of time trends. The first column leaves out
Florida, a state that had a particularly severe opioid diversion problem and was the main target
of DEA raids on “pill mills” in 2010, around the same time its PDMP was developed (from
2009 to 2011). Since I do not have a specific control for DEA enforcement including Florida in
the sample could be biasing the results by loading some of the effect of the DEA raids onto
the PDMP-DC or PDMP-UA coefficients. The results without Florida help to validate that
this is not a major concern, with the coefficients largely unchanged, the data collection effect
negative but insignificant, and the user access effect significant only modestly smaller than in
the baseline model. The second column restricts the sample to states that changed their PDMP

during the sample period (2006 to 2017). This leaves out states that were early adopters of
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Table 1.16: Effect of PDMPs on Speciifc Drugs dispensed to Pharmacies

Dependent: In(MME per capita from pharmacies)
Drug: oxycodone hydrocodone all other
PDMP - DC -0.0227 -0.0339 -0.0158
(0.0230) (0.0408) (0.0231)
PDMP - UA -0.0593** -0.0416* -0.0252
(0.0174) (0.0270) (0.0187)
PDMP mandate -0.0286 -0.139** -0.0797**
(0.0232) (0.0340) (0.0257)
pain clinic law -0.0316 -0.0194 0.00179
(0.0350) (0.0231) (0.0330)
marijuana law 0.0344+ -0.00989 0.0396
(0.0190) (0.0365) (0.0252)
rural (%) -0.383* -0.547** -0.337+
(0.150) (0.175) (0.180)
white (%) 0.707 1.334 -0.258
(1.047) (2.198) (0.988)
children (%) 2.895 7.069* 4.459+
(2.343) (3.227) (2.540)
seniors (%) -0.315 2.065 0.178
(2.225) (4.306) (2.115)
UE rate 1.479 -0.740 0.585
(0.887) (1.236) (0.802)
povety rate -0.467 0.129 -0.543
(0.813) (1.228) (0.852)
Constant 5.045** 1.596 4.502**
(1.078) (1.556) (1.190)
N 612 612 612
R? 0.956 0.976 0.930
Fixed effects? all include state and year
weight n/a n/a n/a
bootstrap p (DC) 0.348 0.496 0.508
boostrap p (UA) 0.005 0.0280 0.192
Standard errors clustered by state in parentheses
** p<0.01, * p<0.05, + p<0.1
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Table 1.17: Robustness checks for effect of PDMPs (pharmacies)

Dependent: In(MME per capita from pharmacies)
Adjustment: noFL  subsample coding time trends
PDMP - DC -0.0177 -0.0224 -0.00557
(0.0231) (0.0231) (0.0137)
PDMP - UA -0.0456*  -0.0580**  -0.0502**  -0.0343*
(0.0171) (0.0167) (0.0174) (0.0164)
DC - electronic -0.0146
(0.0215)

PDMP mandate  -0.0583**  -0.0366  -0.0457+  -0.0350+
(0.0214)  (0.0272)  (0.0233)  (0.0206)
pain cliniclaw ~ -0.00554  -0.0169  -0.0319 -0.0297
(0.0291)  (0.0425)  (0.0354)  (0.0257)
marijuanalaw ~ 0.0353+ 00272  0.0339+  0.00863
(0.0197)  (0.0206)  (0.0193)  (0.0159)

rural (%) -0.346* -0.345% -0.380% -0.0739
(0.146) (0.147) (0.150) (0.103)
white (%) 0.335 1.067 0.698 1.410
(0.953) (1.027) (1.062) (1.089)
children (%) 2.832 3.911 2.836 -0.798
(2.304) (2.371) (2.340) (1.852)
seniors (%) -0.444 0.959 -0.372 -1.247
(2.129) (2.116) (2.224) (2.204)
UE rate 0.988 1.856* 1.473 1.394*
(0.747) (0.874) (0.887) (0.622)
povety rate -0.122 -0.500 -0.450 -0.0974
(0.763) (0.840) (0.817) (0.691)
Constant 5.309** 4.315%* 5.065** 59.56**
(1.081) (1.096) (1.070) (8.691)
N 600 504 612 612
R? 0.960 0.958 0.955 0.978
Fixed effects? all include state and year
weight n/a n/a n/a n/a
bootstrap p (DC)  0.482 0.385 0.514 0.668
boostrap p (UA) 0.0110 0 0.00400 0.0420
Standard errors clustered by state in parentheses
** p<0.01, * p<0.05, + p<0.1
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electronic user access like Kentucky but under the identifying assumptions should not effect
the overall pattern of results since these early adopters serve only as controls in the difference-
in-differences specifications. The results do not indicate anything troubling as coefficients show
the same overall pattern of significance and magnitude. The third column modifies the coding
of the data collection variable so that paper data collection using multi-copy prescription pads
does not count. This coding was discussed briefly in section 1.4.4 and only involves five states.
It turns out that the recoding is not materially important, with the coefficient on data collection
(“DC - electronic”) negative but insignificant like in the baseline model. The final column adds
state-specific linear time trends, improving the fit of the model slightly and eliminating any
bias from varying pre-trends across states, but also adding a lot of degrees of freedom. The
state time trends eat into the user access effect slightly, reduce it to about 3.5%, but it remains
significant. The data collection effect also drops to nearly zero, reinforcing the overall impress

that data collection alone does not impact prescribing.

1.6.2 Effect of modern PDMPs on pain prevalence

The results in section 1.6.1 indicated that PDMPs reduce opioid distribution to pharmacies and
this appears to be primarily through the asymmetric information channel as the effect only
occurs after doctors obtain the ability to query the system, but it is impossible to rule out that
this could alternatively be a chilling effect as doctor tighten prescribing to legitimate patients
know in light of uncertainty about how the PDMP changes legal norms and sanctions. As
such the evidence in section 1.6.1 is theoretically consistent with both helpful and harmful
effects for pain patients and it is important to try to assess the impact on pain management
directly. Furthermore, the asymmetric information channel, as noted above, might actually
improve access for some legitimate pain patients as their doctors can now verify that they
do not obtain prescriptions from other doctors, refill prescribers early, or demonstrate other
aberrant behavior. Looking directly at pain prevalence can help to assess this theory and its

quantitative significance.
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With these hypotheses in mind, I focus in this subsection on looking at the effect of pre-
scription monitoring on the fraction of the adult population that reports suffering from “a lot”
of pain on the previous day. This metric, from Gallup’s daily surveys, is discussed in more
detail in section 1.4.4. The results from the basic difference in differences specification (Table
1.18) show mostly null effects and because the share of people in any given state that reports
being in a lot of pain varies little from year to year the estimates are quite precise, with stan-
dard errors of around 0.2 percentage points in all specifications. Data collection appeared to
not impact opioid prescribing so it is reassuring that it appears to have no impact pain preva-
lence as any other conclusion would suggest misspecification. User access is more interesting
as the coefficients are small but negative but insignificant, suggest that user access does not
have a chilling effect and likely has no overall effect on pain patients but, if anything, it might
be helpful to them. Another interesting, though preliminary, result is that in the specifications
not weighted by population (columns 1-3) mandated use of a PDMP appears to lead to 0.6-0.7
percentage point increases in the prevalence of severe pain. These increases are consistent with
the results from section 1.6.1 that showed mandated use of a PDMP leads to large drops in the
types of opioids least likely to be abused and could be consistent with a chilling effect; however,
these estimates are only marginally significant so I leave it as a topic for further study without
drawing any firm conclusions.

I ran event study specifications to further explore the effect of user access on pain and the
results are plotted in Figure 1.9. Interestingly, the negative effect on pain seems more substan-
tial when viewing the full time course. In the initial year of implementation there is essentially
no change in report pain but in all subsequent years there is a modest and collectively signif-
icant decrease in reported pain by about 0.5 percentage points. Table 1.19 shows results from
robustness checks for the effect of PDMPs on pain. The middle column shows that when the
PDMP effect is split into an initial year effect and a subsequent effect the subsequent effect is
significant at the 10% level. I take this as suggestive evidence, consistent with the theory that
PDMPs can free up physicians to prescribe more liberally to legitimate patients, but perhaps

only after developing trust in the program’s ability to assist in detecting misuse. Another pos-
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Table 1.18: Effect of PDMPs on pain prevalence (Gallup)

Dependent: pain yesterday (percentage points)

PDMP - DC 0.240 0.309  0.223
(0.286) (0.257)  (0.166)

PDMP - UA -0.184 -0.241 -0.179

(0.228) (0.220) (0.149)

PDMP mandate  0.712* 0.648+ 0.690*  0.348
(0.323) (0.323) (0.325) (0.212)

pain clinic law -0.0725 -0.0384 -0.0396  0.128
(0.226) (0.233) (0.230)  (0.190)

marijuana law 0.595+ 0.689+ 0.646+ 0.146
(0.348) (0.365) (0.356) (0.277)

rural (%) -3.404* -3.486* -3.441* -1.476
(1.362) (1.372) (1.350) (1.358)
white (%) 3362 0998 0931 18.70+
(8.582) (8.465) (8.311) (9.418)
children (%) -31.88 2937 2956  3.335
(23.36) (23.13) (22.96) (30.63)
seniors (%) 54.52*  55.44* 56.11*  65.20*
(23.56) (23.63) (23.30) (26.95)
UE rate -1.400 -0.590 -0.736  1.782
(9.579) (9.597) (9.505) (10.98)
povety rate -1812  -1815  -17.57  -3.792
(13.70)  (13.87) (13.90) (7.039)
Constant 25.05*  26.26*  26.00*  2.336
(11.41) (11.66) (11.36) (12.58)
N 612 612 612 612
R? 0.888  0.887  0.888  0.886
Fixed effects? all include state and year
weight n/a n/a n/a pop
bootstrap p (DC)  0.355 0.542  0.581
boostrap p (UA) 0.828  0.558 0.647

Standard errors clustered by state in parentheses
** p<0.01, * p<0.05, + p<0.1
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Figure 1.9: Event study for PDMP-UA on pain prevalence

sibility, is that the PDMP user access effect on pain evolves over time, perhaps as other policies
have changed and made doctors feel like they cannot prescribe unless they can document rea-
sons to believe patients as complying with the treatment plan. PDMPs, in addition to urine
tests and other mechanisms can help to serve this function. Overall, however, the evidence
is most consistent with the view that PDMPs do not affect pain patients and without further
study that is the most reasonable conclusion.

Although all of the evidence so far is consistent with the view that PDMPs do not appear
to harm patients by limiting access to legitimate pain treatment it is important to consider the
power of these tests to detect a chilling effect. Can I rule out economically meaningful increase
in pain as a result of PDMP implementation? The short answer is probably no because, as dis-
cussed more in chapter 2, health is incredibly valuable so even tiny increases in the prevalence
of severe pain would be economically important. A few calculations are illustrative. In the

preferred specification the net effect of PDMPs on pain prevalence (Bppyp-pc + Brompr—uA)
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Table 1.19: Robustness checks for effect of PDMPs on pain (Gallup)

Dependent: pain yesterday (pecentage points)
Adjustment: subsample implementation time trends
PDMP - DC 0.383 0.254 0.322
(0.279) (0.258) (0.345)
PDMP - UA -0.319 0.124
(0.207) (0.219)
PDMP - UA (t=0) -0.0292
(0.252)
PDMP - UA (t>1) -0.433+
(0.246)
PDMP mandate 0.970* 0.632+ 0.625
(0.360) (0.332) (0.557)
pain clinic law -0.103 -0.0220 -0.200
(0.226) (0.235) (0.419)
marijuana law 0.575 0.688+ 0.618
(0.350) (0.343) (0.470)
rural (%) -4.139** -3.426* -5.271+
(1.352) (1.333) (2.661)
white (%) 2.527 -1.298 -32.04
(8.583) (8.266) (26.76)
children (%) -38.16 -26.42 -32.90
(23.19) (22.80) (36.94)
seniors (%) 73.56** 60.35% 23.15
(21.22) (24.05) (97.94)
UE rate 10.98 -0.0803 6.372
(9.453) (9.001) (10.74)
povety rate -24.87 -17.66 -18.78
(15.75) (13.74) (16.88)
Constant 24.74* 26.36* 419.0
(11.47) (11.07) (312.6)
N 378 459 459
R? 0.875 0.877 0.893
Fixed effects? all include state and year
weight n/a n/a n/a
bootstrap p (DC) 0.207 0.331 0.282
boostrap p (UA) 0.333 0.0631 0.553
Standard errors clustered by state in parentheses
** p<0.01, * p<0.05, + p<0.1
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has a point estimate of 0.044, with a standard error of 0.27, slightly larger than either coefficient
alone due to a positive covaraince. This point estimate would indicate that one in every 2,500
adults would suffer from unmanaged pain as a result of the PDMP, which seems small, but
does not exclude larger effects as the confidence interval extends to an upper bound of 0.57 or
that 1 in 175 adults would suffer from unmanaged pain.

In order to assess the significance of these possible increases in pain we have to assess
the economic cost, in dollars, of severe pain, which is not easy. One approach that remains
controversial but is common in the public health literature starts by assuming that each year
lived in good health (e.g. quality-adjusted life year or QALY) is worth a certain dollar amount,
often $100,000. Changes in health can then be valued by assessing how they change the length
or quality of life lived in QALYs and converting the QALYs to dollars. The difficult part is in
deciding how much any particular health problems, such as pain, reduces quality of life.

Murray and Lopez (1997), the classic reference on this approach, suggest that symptomatic
osteoarthritis reduces quality of life by 16% or 0.16 QALYs per year. To round up we might
suppose severe pain in general costs 0.2 QALYs. If each QALY is worth $100,000 then suffering
from severe pain for a year would have an economic cost of $20,000. At the extreme bound
from earlier where 0.57 percent of the adult population suffers severe pain each day due to
prescription monitoring that adds up to a cost of $28.5 billion per year. Olafsdottir et al. (2019)
use an alternative method to estimate the willingness to pay for pain relief in an elderly sample
from the HRS and get numbers in the range of $50-$145 per day. Over a year that adds up to
$18,250 to $52,925 which implies final estimates broadly similar to the QALY approach.

The basic problem, in summary, is that although the Gallup data allows fairly precise esti-
mates of the effects of PDMPs on pain, and they appear to be near zero, good health is generally
so valuable that even modest increases in pain add up to large social costs. The flip side of this
analysis is that to the extent PDMPs could potentially increase access to pain treatment for
legitimate patients the corresponding social benefits are extremely large as well. In addition

any overdose deaths or addictions prevented would also be enormously valuable. I leave it to
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further work to do a general welfare analysis of PDMPs integrating all the potential costs and

benefits.

1.6.3 Effect of modern PDMPs on opioid distribution to and pain in hospitals

As discussed earlier in section 1.3.2, PDMPs are not designed to influence inpatient care at
hospitals. Prescribers in hospitals know exactly what medicines the patients have been given
so there is little risk of abuse or diversion. Furthermore, overdoses are rare and can easily be
treated since the patient is already under a doctor’s supervision (Cauley et al. 2017). Nev-
ertheless, PDMPs could still effect hospital care through a chilling effect on prescribers. This
subsection uses data on opioid shipments to hospitals and surveys on pain management in
hospitals to assess whether there are unintentional effects of PDMPs on hospitals.

The main results for the effect on opioid use in hospitals are presented in Table 1.20. The
point estimates for the effect of data collection are small, ranging from around 2% to 4% re-
ductions and are all insignificant. As noted in the previous section, reductions on this order of
magnitude seem unlikely to be materially important for patient welfare, but the standard errors
are only small enough to result out decreases greater than 8%. The point estimates for the effect
of user access are even more precisely estimated and all very close to zero. It is also worth not-
ing that the other policies, PDMP mandates, pain clinic regulation, and marijuana regulation
also have insignificant effect as would be expected since these policies should only influence
outpatient care. In summary the results are broadly consistent with the prior subsection and
indicate that PDMPs do not have a chilling effect.

For completeness I've included results from some robustness checks for the effects of PDMPs
on hospital use of opioids. Table 1.18 shows a variety of modifications for the basic regression
specification. The first four columns use the amount of MME per capita as the dependent vari-
able instead of the amount of MME per inpatient day. This has no meaningful effect on the
results. The third and fourth column also exclude fentanyl from the opioid measure because,
as noted in section 1.4.1, fentanyl quantities for hospitals are particularly noisy, potentially due

to data entry errors on DEA tracking reports. Fortunately, the effects are unchanged with the
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Table 1.20: Effect of PDMPs on Opioids dispensed to Hospitals (logs)

Dependent: In(MME) per day (hospitals)

PDMP - DC -0.0426 -0.0336  -0.0243
(0.0372) (0.0367)  (0.0404)

PDMP - UA -0.00654  0.00453 0.00410

(0.0262)  (0.0251) (0.0254)

PDMP mandate 0.0214 0.0335 0.0218 0.0277
(0.0312)  (0.0323) (0.0315) (0.0317)
pain clinic law -0.0108 -0.0105 -0.0112  -0.00830
(0.0227)  (0.0244) (0.0234) (0.0226)

marijuana law 0.00807 -0.000497 0.00769  0.0328
(0.0257)  (0.0273)  (0.0263) (0.0287)

rural (%) -0.102 -0.0902 -0.101 -0.196
(0.169)  (0.175)  (0.170)  (0.198)
white (%) -2.272 -2.153 -2.246 0.769
(1.420)  (1.562)  (1.421) (1.819)
children (%) 3.561 3.313 3.538 5.196
(2.279)  (2.383)  (2.298)  (3.598)
seniors (%) -0.939 -1.114 -0.949 -1.905
(3.288)  (3.483)  (3.315)  (5.346)
UE rate 0.0533 0.146 0.0426 0.472
(1.108)  (1.134)  (1.102)  (1.082)
povety rate 0.513 0.551 0.501 0.880
(1.327)  (1.308)  (1.304) (1.833)
Constant 5271*  5215*  5.261*  2.557+
(1.084)  (1.124)  (1.078)  (1.480)
N 612 612 612 612
R? 0.918 0.917 0.919 0.923
Fixed effects? all include state and year
weight n/a n/a pop pop
bootstrap p (DC)  0.391 0.572 0.705
boostrap p (UA) 0.832 0.859 0.866

Standard errors clustered by state in parentheses
** p<0.01, * p<0.05, + p<0.1
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exclusion of fentanyl. The last two columns are the same style of robustness checks used in
section 1.6.1 above, recoding data collection to only count electronic surveillance and using the
subsample of states that changed their PDMPs during the sample time period. None of these
specifications shows materially different results.

Given that the ARCOS data for hospitals is noisy which makes it hard to rule out plausibly
meaningful decreases in opioid use I decided to look directly at the effect of PDMPs on pain
management in hospitals. These data provide significantly more power for testing the chilling
effect hypothesis and, because they represent the ultimate determinant of welfare, of interest on
their own. Table 1.22 shows the results for the baseline difference-in-differences specification.

The overall picture is that PDMPs appear to have no chilling effect in hospitals, ruling out
increases in uncontrolled pain of more than 0.25 percentage points due to PDMP data collection
and more than 0.12 percentage points due to PDMP user access. Interestingly, in the specifica-
tion where observations are weighted based on the number of surveys obtained by the hospital
PDMP user access appears to cause an extremely modest reduction in uncontrolled pain that
is significant at the 10% level. Most likely this is a false positive, inevitable when conducting a
large number of tests, but could also be consistent with hospitalists feeling freer to use opioids
aggressively after being able to verify that their patients do not have a history of misuse or
doctor shopping according to the PDMP. The event study plot of coefficients for PDMP-UA do
not help to shed light on this issue as the pattern, shown in Figure 1.10, is plausibly consistent
with a pre-trend or noise or with potentially modest real effects. I leave this open as a question

potentially worth further investigation.

1.7 Conclusion

Opioids are dangerous drugs that carry a substantial potential for abuse and diversion. In
the U.S. they are the underlying cause of tens of thousands of deaths each year. Yet they are
the most effective treatments available for severe, acute pain and potentially also for some

forms of chronic pain. As a result any policy designed to curb the availability of opioids to
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Table 1.21: Robustness checks for effect of PDMPs (hospitals)

Dependent: MME per capita MME per day
level or log? level log level log log log
Other adjustments: n/a no fentanyl coding subsample
PDMP - DC -4.125 -0.0337 -2.338  -0.0393 0.0349
(2.560) (0.0345) (2.860) (0.0426) (0.0353)
PDMP - UA -0.252  -0.00756  3.336 0.0158  0.00582 -0.0119
(1.920) (0.0241) (2.659) (0.0283)  (0.0252)  (0.0352)
DC - electronic -0.0385
(0.0335)
PDMP mandate 1909  0.0208  2.012 0.0146 0.0287 0.0568
(1.955) (0.0301) (2.847) (0.0384) (0.0317)  (0.0901)
pain clinic law 0.113  0.00710 -1.398 -0.00368 -0.0128 0.0348
(1.661) (0.0240) (2.373) (0.0319) (0.0237)  (0.0411)
marijuana law -0.0709 0.00171  1.714 -0.000899  0.00902 0.0698+
(1.773)  (0.0282) (2.666) (0.0295) (0.0260)  (0.0403)
rural (%) -6.462  -0.146  1.393 -0.116 -0.0973 -0.230
(8.651) (0.124) (12.96) (0.174)  (0.170) (0.199)
white (%) -265.2*  -2.379* -60.67  -2.122 -2.322 -2.031
(100.3) (1.184) (81.71) (1.704)  (1.437) (1.695)
children (%) -9.941 1.522 242.8 3.713 3.399 3.849
(145.2) (2.186) (235.4) (3.040)  (2.323) (4.164)
seniors (%) 155.8 0.830  -90.35 -0.855 -1.109 2.745
(228.4)  (3.008) (277.2)  (3.988)  (3.294) (3.152)
UE rate -36.18  -0.00769  71.36 0.594 -0.0259 -1.601
(90.46)  (1.051) (119.8) (1.157)  (1.089) (1.521)
povety rate 15.97 0.717 82.35 0.630 0.547 -0.825
(93.82) (1.280) (146.4) (1.596)  (1.297) (1.085)
Constant 239.5**  5207* 4097  4.665**  5.360** 4.981*
(70.65)  (1.077) (75.27)  (1.256)  (1.090) (2.053)
N 612 612 612 612 612 504
R? 0.852 0.901 0.869 0.927 0.918 0.946
Fixed effects? all include state and year
weight n/a n/a n/a n/a n/a n/a
bootstrap p (DC) 0.176 0.427 0.458 0.545 0.378 0.336
boostrap p (UA) 0.916 0.744 0.208 0.598 0.832 0.779

Standard errors clustered by state in parentheses
** p<0.01, * p<0.05, + p<0.1
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Table 1.22: Effect of PDMPs on uncontrolled pain for inpatients (HCAPHS)

Dependent: pain uncontrolled (percentage points)

PDMP - DC -0.279 -0.208 -0.137
(0.248) (0.234) (0.251)

PDMP - UA -0.304 -0.278 -0.355%

(0.208) (0.203) (0.159)

PDMP mandate  0.189  0.227  0.194 0.377+
(0.219) (0.217) (0.216) (0.213)

pain clinic law -0.175 -0.143 -0.131 -0.332
(0.239) (0.264) (0.259) (0.235)

marijuana law 0.218 0.242  0.250 0.514*
(0.249) (0.239) (0.243) (0.256)

rural (%) -4.090* -3.896* -4.044*  -5.098*
(1.530) (1.553) (1.613) (1.803)
white (%) 4.621  3.145  1.040 11.01
(15.24) (14.97) (14.83) (14.74)
children (%) 40.68 3691  39.96 60.23*
(25.88) (25.39) (25.15) (24.95)
seniors (%) 47.52+ 43.02+ 46.15+ 48.43*
(25.20) (25.09) (24.51) (21.80)
UE rate 4941 7209 6.771 5.112
(7.290) (8.056) (7.972) (8.000)
povety rate -24.00* -26.02* -24.90* -27.93%
(10.30) (10.44) (10.03) (10.99)
Constant 18.26+ 20.76*  21.09* 11.31
(10.52) (10.01) (10.04) (10.30)
N 27,195 27,195 27,195 25,652
R? 0.665  0.665  0.665 0.703
Fixed effects? all include hospital and year
weight n/a n/a n/a surveys
bootstrap p (DC)  0.344 0.469 0.678
boostrap p (UA) 0.138  0.163 0.0290

Standard errors clustered by hospital in parentheses
** p<0.01, * p<0.05, + p<0.1
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Figure 1.10: Event study for PDMP-UA on uncontrolled inpatient pain
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reducing diversion and abuse of these drugs necessarily runs the risk of also curtailing access
for legitimate pain patients. This chapter studied one widely advocated supply side method of
opioid regulation, prescription monitoring, investing whether it appears to harm patients and,
more generally, the mechanisms by which it can alter behavior.

I investigated the mechanisms by which PDMPs exert their effects, using the phasing in of
two distinct PDMP features, data collection and end user access, in different states at differ-
ent times as a natural experiment to distinguish the different channels by which prescription
monitoring can have an effect. I supplemented these inquiries by looking directly at the effect
of PDMPs on health outcomes, looking at the prevalence of severe pain in the general popu-
lation and at the quality of pain management for inpatients in acute care hospitals. The pre-
ponderance of the evidence indicated that what I called the asymmetric information channel
predominates as data collection appears to have no effect on prescribing, either for outpatients
as intended or inpatients as a chilling effect would suggest, but giving physicians the ability
to query the database has modest but significant effects on prescribing. Although, in theory,
the asymmetric information channel could lead to improved pain management, I found no
clear evidence that PDMPs impact the prevalence of chronic pain, for the better or worse. In

summary the evidence indicates that prescription monitoring does not harm patients.
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Chapter 2

Are we underestimating the value of

(statistical) life?

2.1 Introduction

Values of a statistical life (VSLs) are one of the primary inputs into cost benefit analyses of envi-
ronmental and consumer safety regulations so precise and unbiased estimates of these statistics
are particularly important. This chapter investigates biases that afflict the standard method re-
vealed preference method for estimating VSLs when the wage-elasticity of the VSL is large.
Theory and some empirical evidence strongly suggest that safety is a luxury good and thus
that the value of mortality risk reductions (i.e. the VSL) rises rapidly with income (Murphy
and Topel 2006, Kaplow 2005). This appears to be the economic rationale for rapid improve-
ments in safety across workplaces as countries develop (Hammit et al. 2000, Costa and Kahn
2004) and the secular rise in health spending in the late 20th century as countries became more
affluent (Hall and Jones 2007). If safety is indeed a luxury good, then there will be enormous
heterogeneity in VSLs across the population, just as there is substantial variation in willingness
to pay for yachts, Teslas, and other luxury goods. I identify three reasons that this heterogeneity
can lead the standard hedonic wage regression approach to yield downward biased estimates

of the population mean VSL. First, when there is heterogeneity in compensating differentials
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(or more generally, treatment effects) in a linear model then OLS yields a conditional-variance
weighted average of the underlying compensating differentials across groups. I show that in
a CPS sample of workers the conditional-variance of job-related mortality risk is much higher
among less skilled workers with lower household income, so the OLS wage premium (compen-
sating differential) estimate will disproportionally depend on the compensating differentials
these workers demand. Second, the standard method of translating an estimate of the com-
pensating differential for fatal injury risk into an estimate of a VSL implicitly assumes that the
wage premium and wage have no correlation, but if safety is a luxury good then these variables
will have a strong positive correlation and calibration suggests that methods that account for
such a correlation will be around 50% larger than estimates using the standard method. Finally,
I show that omitting the top-coded observations in datasets, while necessary for econometric
purposes, can seriously bias population mean VSL estimates downward since the excluded
workers have much larger VSLs.

A large literature has developed estimating the value of a statistical life (VSL) using hedonic
wage models, starting with (Thaler and Rosen 1976). Much of this literature is summarized in
in the widely cited meta-analyses by Aldy and Viscusi (2003) and Mrozek and Taylor (2002).
The typical study focuses on estimating the average market compensation, usually in percent,
for a small increment in on-the-job risk of death for some subpopulation. The assumption
implicit in these models is that percentage point increase in pay per unit of risk does not vary
across the population, at least in any significant way, and thus that the average return estimated
is informative about the return a random individual would require to assume that risk.

This chapter fits into a growing literature exploring the potential importance of heterogene-
ity in compensating differentials. Aldy and Viscusi (2007), for instance, empirically investigate
variation in VSLs across age groups, motivated by federal agency interest in potentially adjust-
ing the VSL used in cost-benefit analysis of regulations when seniors are impacted. They also
investigate cohort effects, noting that younger, richer, cohorts will likely have a higher VSL at
any given point in their lifecycle. Their general conclusion is that there is some variation in

VSLs across cohorts and across the lifecycle, with a U-shaped pattern over the lifecycle driven
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by liquidity constraints early in life and declining conditional life expectancy later in life. Aldy
and Smythe (2016) use a standard life-cycle consumption model to investigate the variation in
VSL expected across genders and races due to differences in life expectancy and earnings. They
tind that there is significant heterogeneity, but it driven predominantly by variation in earnings
and that differences in conditional life expectancy are relatively unimportant.

Another strand of research closely related to my focus in this chapter has emphasized the
potential importance of a highly income-elastic VSL in explaining and assessing the world-
wide rise in spending on health care and biomedical research. Hall and Jones (2007) calibrate
a model of health care production and argue that the rapid increase in spending on health care
as a fraction of GDP is the optimal response to steady GDP growth which pushes the value of
staying alive (VSL) higher at a more than proportional rate. In their model even conservative
choices for calibrating the intertemporal elasticity of substitution, the parameter that controls
the income-elasticity of the VSL, result in a steady rise in health spending as a fraction of GDP.
Jones (2016) follows up on the insights in Hall and Jones (2007) to argue that that the increasing
fraction of R&D dedicated to biomedical research is a natural side-effect of rising incomes and
income inequality since this results is a higher market value for outputs like new pharmaceu-
ticals that can prolong lives. In related work, Murphy and Topel (2006) build a similar model
of the VSL to value reductions in mortality due to medical progress and find enormous values
for the median consumer. Their model implies significant variation with income since the in-
come elasticity, although it varies with age and income, is generally above 1.5, but they do not
explore the implication of this for variation or what it implies about the distribution of VSLs in
the cross section, instead focusing on how growing incomes would lead to higher VSLs over
time. In a way this chapter functions as a cross-section counterpart to this literature, asking
what a high wage-elasticity implies about the distribution of VSLs at a given point in time and
how to manage the potentially large dispersion econometrically.

Finally, this chapter builds on recent work building a quantile regression framework for
hedonic wage models. Evans and Schaur (2010) explore variation in compensating differen-

tials by age and conditional wage quantile using the Health and Retirement Study (HRS). They
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find some variation in the returns to risk across age groups and enormous variation across con-
ditional wage quantiles. This is suggestive evidence that the VSLs for these older workers are
probably highly wage elastic but they cannot get a specific estimate for the wage elasticity since
they lack a method for converting the conditional quantiles of their marginal into a marginal
distribution of VSLs, a well-known problem in the quantile literature on which substantial
progress has been made in recent years (Fortin et al 2011).

The rest of the chapter is organized as follows. Section 2.2 lays out the basic theory of the
VSL as used in this chapter. Section 2.3 explains the problems heterogeneity in VSLs creates
for estimating the population mean VSL, focusing on the first two technical problems outlined
above. This section also clarifies the conditions under which this bias will be large, namely
when the VSL is has a wage-elasticity at least somewhat above 1. Section 2.4 reviews the mixed
theoretical and empirical evidence on the wage-elasticity of the VSL to assess the extent to
which we should expect the biases identified previously to matter. The mixed evidence moti-
vates the work in the following section which gives a detailed description of a quantile hedonic
wage model, the data used to estimate the model, and the results of the estimation. Section 2.6
uses the results from the quantile model to calculate a sample-mean VSL and to extrapolate val-
ues for censored observations and then uses this information to estimate the worker population
mean VSL. Comparison with the results of a baseline OLS hedonic wage model estimated us-
ing the same data allows for an assessment of the sizes of the three biases noted earlier in the

chapter and their relative importance. Section 2.7 briefly concludes.

2.2 Theory of the VSL

The theory of the VSL was developed in several classic papers (Thaler and Rosen 1976, Arthur
1979, Rosen 1988, Shepard and Zeckhauer 1984) and subsequently refined so that there is
largely a consensus on the theoretical issues involved in construction and interpretation of
this metric. In this section I review the main ideas in the theory that are relevant to this chapter.

The reader is referred to Viscusi (2013) for a more detailed review.
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Consider a consumer at an arbitrary time period ¢ of her life with expected utility E[U;(p,a)] =
max u(c) + pBUss1(a — ¢) where ¢ represents consumption, a represents assets, p is the prob-
ability of surviving into the next period, and B is the discount factor. Implicitly the utility of
being dead is normalized to zero and independent of assets. This is a standard assumption
that is not likely to be problematic in the contexts discussed below. The VSL reflects the trade-
off a consumer would make between assets and the probability of survival along a constant
expected utility locus. Thus we can define a VSL by totally differentiating E[U;(p,a)] = U

where U is a constant:

ou
BUis1 + pp(VSL) == =0
u
VSL(p,a) = Pt S
da

We can simplify this expression by noting that, by the envelope theorem, u”/(c) = pﬁag%l,

so we have

VSL(p,a) = ’BuL,[(t;r)l

Intuitively, the VSL represents the utility value of remaining alive in utils scaled by u.(c), a

conversation factor that tells us how many dollars each util is worth.

Theory has emphasized that for infinitesimal changes in p this quantity can be interpreted
either as the willingness to pay (WTP) for improving the odds of survival or as the willingness
to accept (WTA) compensation for a higher risk of death. In practice, when changes are not
infinitesimal, these quantities may differ slightly, but recent research has emphasized that in
the context of compensating differentials in the labor market the two quantities appear to not

differ by much in practice (Knieser et al. 2012).!

IFor non-rational consumers the two are likely to be different as many studies using the contingent valuation
method have found. People often reject the premise of accepting compensation to take on greater risk so it can be
hard to get estimates of a WTA using this methodology and the values stated are for a non-representative subset of
the population.
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Economists have long recognized that the definition of VSL implies heterogeneity because
it is a function of consumer characteristics—in this simple model the baseline risk of death, p,
and level of assets, 4, in addition to any variation in underlying preferences that could influ-
ence marginal utility (u/(c)) like risk aversion. Recently, Camerson (2010) made this point by
emphasizing that a VSL is, in effect, a rescaled demand for safety (in the form of higher p)
and it is widely acknowledged that individual demand is sensitive to an enormous number of
possible influences including the two probably most often cited: individual preferences and
income. Based on this brief background on the concept of a VSL and why we would expect it
to vary within the population, the next section explores the problems heterogeneity creates in

attempting to estimate the mean VSL for a population of workers.

2.3 Problems heterogeneity creates for the standard model

Heterogeneity in the VSL is interesting in its own right and could be useful in helping to in-
dividuate costs and benefits in analysis of regulations as advocated by Sunstein (2013) and
others. Less attention has been paid to the importance of accounting for such heterogeneity
when focusing on traditional objects of interest such as the mean VSL for any population being
studied. For concreteness we will assume throughout the rest of the chapter that the population
of interest is all adult workers and their mean VSL is of interest because it is one of the major
parameters of interest in cost-benefit analysis of federal regulations as well as assessments of
the value of new health technologies that would save lives at some known cost.

In this section I show that when there is unmodeled heterogeneity in the VSL by wage,
which intuitively we expect to be substantial, the standard hedonic wage model suffers from
three potential biases. I investigate the conditions under which these biases will be large and
provide rough calibrations of the plausible sizes of the biases where possible. Two of the diffi-
culties discussed in the following subsections depend on the main parameter estimated using
the hedonic wage regressions varying with wages or other characteristics, so before discussing

each of the difficulties I start by briefly reviewing the standard hedonic wage model.

86



2.3.1 Hedonic Wage Models

The hedonic wage model has become the dominant framework for revealed-preference esti-
mates of the VSL, serving as the guiding framework for almost all of the studies cited in recent
meta-analysis and by federal regulators (Aldy and Viscusi, 2003; Moran, 2016). The empirical
specification for these models is generally In(wage); = drisk; + X;B + ¢; where risk; is a mea-
sure of the risk of fatality on the job (often scaled in units of 1/10,000 or 1/100,000) and X; is a
vector of controls typically including age or experience, levels of education, union status, gen-
der, race, and sometimes dummies for industry and occupation categories in cases where these
are not perfectly collinear with the measure of job fatality risk. In theory the measure of risk
should be whatever the worker has in mind as the subjectivity probability of death in different
jobs, but this is obviously impossible to measure accurately, so, in practice, risk is measured
by calculating the empirical average risk of fatality over a period of years for each industry or
industry-occupation combination.

The coefficient of interest is § which is interpreted as the compensating differential, in log
point (approximately percent) increase in the wage, for a unit of risk The estimate is only un-
biased under the standard selection-on-observables assumption which is, of course, a strong
assumption that is occasionally questioned (Hwang et al 1992). In particular, since theory tells
us that the VSL rises with income we should expect to see sorting on potential earnings ability,
with higher ability workers choosing to “buy” more safety and thus sorting into safer jobs. To
the extent earnings ability is not controlled for by observables there will be selection bias; how-
ever, this is standard practice in the literature because it is needed in order to make empirical
headway without the ability to experimentally vary the on-the-job risk of death. Lavetti (2016)
provides a detailed discussion of potential sources of bias in estimating hedonic wage equa-
tions in the context of mortality risk as well as the assumptions necessary to eliminate these
biases and Heckmen et al. (2004) provide a more general discussion of the problems faced in
estimating compensating differentials in general.

The coefficients for the model are typically estimated using ordinary least squares (OLS)

and then § is interpreted as a market average wage premium per hour that compensates for
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a one-unit increase in risk. Typically the units of risk are 1/10,000 fatalities per year of work
and workers are assumed to work around 2,000 hours per year, so the compensation can be
rescaled into a VSL using the equation VSL = §(2,000wage)10,000. If § does not vary across
the population then this estimate is unbiased, but if it does vary then we have to consider what
kind of average § represents and how to interpret it.

It is easy to show that §; will not vary along the wage distribution only in the knife-edge
case that the VSL has a wage-elasticity exactly equal to one . We start by defining a worker i’s
VSL as VSL; = 105;(2000)wage;, then rearranging to get an equation for J; and differentiating

with respect to wage;.

VSLZ
~ 10*(2000wage;)
a5,  10*(2000wage;) L34 — 104VSL,
dwage; 108(2000wage?)
1 AVSL,; VSL,;
104(2000wage;) dwage;  10*(2000wage;)>

To simplify and assist in interpretation we can write the left-hand side as an elasticity

wage; 95 10*(2000wage; ) 1 OVSL; 10*(2000wage; )? VSL;
5; OJwage; VSL; 10%(2000wage; ) dwage; VSL; 104(2000wage;)?

€s,wage = €VSLwage — 1

This equation has a simple interpretation: the wage-elasticity of the wage premium to com-
pensate for risk will be zero only if the wage-elasticity of the VSL is one. If the wage elasticity
of the VSL is greater than (less than) one then the wage premium for risk will rise (decline)
with the wage. Intuitively, if the VSL scales proportionally with the wage then as people get
richer their VSL rises proportionally and the amount of money they require to take on risk (the
compensating differential) will rise proportionally. As a result, we would not expect there to be

variation in J; because of differences in wages and the problems discussed below are probably
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not major concerns. If, however, the wage elasticity of the VSL is above 1, as I find in my em-
pirical estimates below, then the §; will be systematically higher for higher-wage workers and

lower for lower-wage workers and it will be important to model this variation.

2.3.2 The conditional-variance weighting of OLS estimates

The first problem with estimating VSL when §; varies is that we have to be careful in inter-
preting how § is constructed by averaging over the various d; in the sample. In general OLS
estimates produce a conditional-variance weighted estimate, § = Y w;é; and in cases where
risk and all the covariates in X are discrete, which is always the case in practice even if the
number of cells is large, Angrist and Krueger (1999), building on Angirst (1998), show that the

weighting can be written analytically as

_var(riski| X;)
" Y var(riski| X;)

Using data from the CPS MORG discussed in more detail in section 2.5.2, I estimated the
conditional variance for the sample and Figure 2.1 shows a binned scatterplot of conditional
variance by income excluding the endogenous labor income from a primary job. It is clear
from the figure that the weight is much larger for workers with little outside income. This
makes intuitive sense because most jobs held by people in the CPS have low risk. It is the
handful of high risk jobs that have extremely large residual levels of risk after regression on the
covariate vector X that drive the results and most people working in these jobs are relatively
unskilled and earn almost all of their income from their job.

It is unclear how elastic we would expect §; to be with respect to other income so this bias
might not be that large in practice. Solon et al (2015) discuss how it is possible to use reweigh-
ing to identify the full-sample average partial effect in the presence of this kind of unmodeled
heterogeneity, but this is difficult and their preferred strategy is instead to explicitly model the
heterogeneity. I take a first pass at this type of modeling in section 2.5 by developing a quantile

hedonic wage model that allows the partial effects to vary along conditional wage quantiles
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Figure 2.1: Conditional variance in the CPS MORG sample by Other Household Income
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and use this model to assess whether the average partial effect for all quantiles diverges sub-

stantially from the OLS weighted average.

2.3.3 The cov(j;,wage;) problem

A second problem arises in translating the information contained in § into an estimate of the
population mean VSL. As noted above the standard practice is to use VSL = §(2,000wage)10,000
as the VSL estimate. This formula is an approximation for the sample analog to E[VSL| =
E[éwage](2,000)10,000, which is simply a rearrangement of the definition of 4. One prob-
lem is that it assumes E[wage|E[6] will equal E[dwage|, which is true if dis a constant or does
not vary with wage but is not generally true. This is easiest to see if we write E[dwage] =
E[d]E[wage] + cov(d, wage) using the standard identity that cov(X,Y) = E[XY] — E[X]E[Y].
If cov(6, wage) > 0 then the standard formula underestimates the true sample mean VSL be-
cause it ignores a positive covariance term or, intuitively, it ignores how workers with high
wages also have higher wage premiums for risk and thus particularly large VSLs. Conversely,
if cov(d, wage) < 0 as would be the case if the the wage elasticity of the VSL is below 1 then the
standard formula will overestimate the sample mean VSL.

Should we expect this bias to be large? Under some plausible assumptions it easily could
be. The key question here is how large do we expect the covariance term to be compared to the
product of means term. If the covariance term is on a smaller order of magnitude then the bias
would be limited to at most 10% which seems tolerable given the sensitivity analyses conducted
by regulatory agencies (Knieser and Viscusi, 2005). On the other hand, if the covariance team is
as large or larger than the means term the mean VSL could be underestimated by half or more.

We can calibrate the expected size of the bias term by making some reasonable assump-
tions about the underlying distributions and the wage-VSL elasticity. We start by rewriting
cov(d;, wage;) = 05 wageTwage¥s - Since we have only considered heterogeneity of VSL, and thus
of compensating differentials, by wage we have implicitly assumed that dis a function of wage;
although not necessarily a linear one. This would lead to a large correlation so I use 0.5 for

calibration as a lower bound estimate of the plausible correlation. The standard deviation of
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6 will depend critically on how much J varies with characteristics. As emphasized earlier, the
the wage-elastiicty of the VSL in particular will be important in determining the amount of
variation. If the wage-elasticity of the VSL is only slightly above or slightly below 1 then dwill
vary only slightly across the population. If, on the other hand, the wage elasticity of the VSL is
around 2, as seems plausible on theoretical grounds (reviewed in the next section), then dwill
scale proportionally with the wage, and thus having the same coefficient of variation as the
wage (05 / E[0;] = Owage/ E[wage;]). How large is 0yage / E[wage;]? Wages are usually distributed
with something like a log-normal distribution and for the log-normal this ratio is straightfor-
ward to calculate and depends solely on the variance parameter. In the case of wages the ratio
is probably around 1 or perhaps somewhat higher in recent years as wage inequality has in-
creased.

Substituting these estimates back into our expression for the covariance term we get that
cov(d;, wage;) = PswageTwage0s ~ 0.5E[6]E[wage] and thus approximately half as large as the
other term, E[§|E[wage]. Leaving out this covariance term is thus plausibly a major bias, lower-
ing the estimated sample mean VSL by around a third from what it would be after taking into

account the correlation between the wage premium and the wage.

2.3.4 The top-coding problem

A final problem for standard hedonic wage models is that, due to data limitations, research
have no choice but to exclude workers with top-coded earnings from their estimation samples.
In recent years this is often a significant fraction of the relevant sample—in the CPS MORG data
I use for estimation below, for example, just below 5% of full-time workers have top-coded
earnings. Generally studies also exclude low earners as well because they report unreliably
low wages (e.g. below minimum wage), minimal hours, or are too young, but if the VSL is
highly wage elastic the importance of the two group is highly asymmetric and the effects do

not cancel out as can be illustrated concretely with a numerical example.

2If X is distribution LN(u, o) then var(X) = (e24+0%) (¢ — 1) and E[X] = "2 5o the ratio Y ;F;[]X] = e —1.

For the wage distribution a conservative approximation is 0 = 0.7 giving the results in the text.
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Assuming a constant elasticity, the ratio of the VSLs for two workers with different wages

will depend on the ratio of their wages. In particular, for elasticity € the ratio of the VSLs is

VSL; _ [ wage;
VSL; = \ wage;

>€. For calibration purposes let us assume, as before, that the VSL wage-elasticity
is approximately 2. In that case the VSL of a low wage worker who earns, say, $6/hour or
about 25% as much as the average worker will have a VSL approximately (1/4)? = 0.0625 as
large as the average worker. Even if we round down and assume these workers have VSLs
of zero then adding in 5% or even 10% extra observations to represent excluded workers with
low wages can onlypull the average VSL down by 5% to 10%. On the other hand, consider
top-coded workers which are often assumed to have average wages around 1.5 times the cutoff
based on assumptions about the underlying distribution of the upper tail. If the cutoff for
censoring is 3 times the sample average wage then these workers will have, on average, a wage
about 4.5 times as large as the average worker. With a wage elasticity of 2 these workers will
have an average VSL at least 4.5 = 20.25 times as large as the average worker.> With such
large VSLs, excluding these workers substantially lowers the estimated VSL and adding back
in their extrapolated VSLs will substantially increase the average—in this example by almost
100% (1(0.95) +20.25(0.05) = 1.9625). The main lesson then is clear, if the VSL is wage-elastic
than it is deeply problematic to leave out the top-coded earners since they are likely to have
particularly high VSLs, while leaving out low earners is less of a concern since in the extreme
they could only pull the average VSL down by less than their population share.

The rest of the chapter attempts to empirically assess the importance of the three biases
discussed above and get a corrected estimate for the population mean VSL. It proceeds as fol-
lows. First, since the importance of these biases depends on the wage-elasticity of the VSL, I
review the past literature on the income elasticity of the VSL, a closely related concept with
a much larger literature, to see if it makes sense to be worried about these biases. Motivated
by mixed evidence from that review, I discuss the construction and estimation of a quantile
hedonic wage model that can be used to directly assess the first two biases as well as estimate

the wage-elasticity of the VSL and thereby account for the top-coding bias.

3This is a conservative approximation since the VSL is convex in the wage so by Jensen’s inequality the expecta-
tion E[VSL(wage)] > VSL(E[wage]).
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2.4 What is the wage elasticity of the VSL?

The previous section emphasized that the wage elasticity of the VSL is critical for determin-
ing the quantitative significance of the three biases from heterogeneity. This section briefly
reviews the literature on a closely related concept with a larger literature, the labor income
elasticity of the VSL (IEVSL) in order to get a sense of whether the aforementioned biases are
worth worrying about. There are two main strands of the literature on this subject, one theo-
retical that emphasizes models and economic intuition, and the other empirical, emphasizing
reduced form estimation and correlations. The theoretical literature emphasizes two intuitive
mechanisms that cause us to expect safety (i.e. risk reduction) to be a luxury good with a large
income elasticity. First, when wages or incomes are low then, under the standard assumption
of diminishing marginal utility, the marginal utility of consumption is high. As emphasized in
section 2.2, the marginal utility of consumption functions as a conversion factor between utils
and dollars; when it is high then a stream of utils from avoiding death translate into relatively
few dollars as each dollar spent on consumption can yield a lot of utils. As incomes increase,
due to high wages for instance, the marginal utility falls and the the stream of utility from
survival is worth more than dollar terms. Hall and Jones (2007) emphasize this mechanism in
modeling the rise in demand for health care as the U.S. has become more affluent. A second
factor, emphasized in Murphy and Topel (2006), is that the utility from staying alive itself rises
with income. The flow of utility from surviving is presumably low if one is on the edge of
survival but increases with higher levels of income. As incomes grow the flow utility from
survival becomes large, making any reduction in risk worth more utils and thus more when
converted to dollars. In essence, these two observations tells us that if a consumer is rich the
value of risk reduction is high (in utility terms) and the opportunity cost (in utility terms) is
low, so demand for risk reduction will grow rapidly with income.

Kaplow (2005) formalizes these intuitions, showing that each of the two mechanisms above
are important but which is dominant depends on parameters. In particular, he showed that
there is a tight link between a parameter that controls diminishing marginal utility, the coeffi-

cient of relative risk aversion (CRRA), and the IEVLS if utility has sufficiently rapidly dimin-
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ishing returns (CRRA > 1). The IEVLS will be larger than the CRRA at low levels of income
and then asymptotically approach CRRA as income increases. Some calibration of the model
suggests that that for people in affluent countries the IEVLS should be reasonably close to the
asymptote with CRRA if CRRA > 1. Alternatively, if CRRA < 1 then u’(c) declines slowly, min-
imizing the importance of the first mechanism, but increasing the importance of the second
mechanism since the flow utility accumulates rapidly with income and consumption. Kaplow
showed through illustrative calculations that the IEVLS in that case is likely to be close to but
slightly above 1 and his general conclusion is that under standard assumptions it is difficult to
find parameter values where safety is not a luxury good.

The coefficient of relative risk aversion is often represented by oy and I adopt that convention
for the rest of the chapter. A large literature in financial economics and macroeconomics has
attempted to estimate y with plausible estimates ranging from slightly above 1 to nearly 10.
A common reading of the literature is that values around 2 or slightly above are reasonable
(Havranek 2013). Surveys that use stated preferences to get implied values of risk aversion
have found even higher values with Barsky et al. (1997) suggesting 3.97 as a reasonable value
in their elderly sample. Finkelstein, Hendren, and Luttmer (2016) use a value of 3 for calibrating
the value of Medicaid and Lakdawalla, Reif, and Bauer (2017) assume y = 2 when investigating
how VSLs are affected by various types of old-age insurance such as pensions. Hall and Jones
(2007) use more conservative estimates in the range of 1.5 in order to reconcile their model with
findings on the growth of optimal health spending. Overall, there is nearly universal agreement
that empirically v > 1 and thus we should expect the IEVSL > 1 so theoretical analysis makes
a strong case that we should be worried about the biases from heterogeneous VSLs.

An alternative approach to studying the IEVSL focuses on reduced-form empirical estima-
tion with four main approaches. The simplest is to look at cross-country variation in income
and how this is related with safety regulations and healthcare spending. If richer countries have
safer workplaces and greater spending on healthcare then that is prima facie evidence that the
income elasticity is positive and potentially large. Two pieces of cross country evidence from

this line of research are particularly striking. The first is the dramatic decline in workplace fa-
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Figure 2.2: Relationship of workplace fatality rates and GDP per capita

tality rates across low and high income countries, illustrated in Figure 2.2 using data from the
International Labor Organization (ILO) and World Bank for 2001, the most recent data I could
find. Aside from a few oil-rich countries that are outliers the general relationship is robustly
elastic with workplace fatalities dropping more than 1% for every 1% increment in income
per capita. An additional striking piece of evidence, emphasized by Hall and Jones (2007) is
richer countries spend disproportionally larger amounts on healthcare, suggesting that it, and
survival, are luxury goods.

The second strategy in widespread use is meta-analysis of a pool of studies, usually ones
based on revealed-preference using hedonic wage models, to investigate how estimates of the
VSL vary across samples with different average incomes. The most widely cited of such meta-
analyses is Aldy and Viscusi (2003) who also survey older meta-analyses. They report that
most of the older meta-analyses find income elasticities in the wide range of 0.43-0.96. In their

updated sample of studies and using different specifications with a broad set of controls they
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find estimates all in the narrow range of 0.5-0.6 and “in none of [their] specifications [does] the
income elasticity’s 95 percent confidence interval upper bound exceed 1.0.” However, many
other meta-analyses have found larger IEVSLs. Dionne and Michaud (2002) estimate a confi-
dence interval of 1.0-1.7 for the IEVSL and Viscusi (2018) reports a wider confidence interval
of 0.378 to 1.322. In the later paper the wider confidential interval is a result of modeling how
selection bias limits the observed sample of VSL estimates to, for the most part, only positive
ones, censoring the variation for the meta-analysis and potentially leading to unwarranted pre-
cision. Making adjustments for selection bias leads to lower precision in the meta-regressions
and helps illustrate why the IEVSL is difficult to pin down using this methodology.

In addition to concerns about sample selection and imprecision, there are several issues
that make meta-analysis estimates of the IEVSL difficult to interpret and potentially biased.
First, as noted in section 2.3.1, the standard OLS hedonic wage regression does not estimate the
mean compensation that workers require to take on a small increase in risk. In practice, under
the standard assumptions about selection on observables, the coefficient reflects a weighted
average of the wage premiums for risk that different types of workers require. It is reasonable
to think that the weighting might vary across samples and this complicates using meta-analysis
to estimate the income elasticity. A concrete example can help illustrate these complications.
Suppose, as is common, one study uses a sample of all workers with wages above the minimum
wage and earnings that are not top coded to estimate a hedonic wage model while another
study focuses on high-risk jobs. The full sample of workers likely has a higher average income
since, as noted earlier, on the job fatality risk is much lower in high income countries and
among high wage earners within a country. Now suppose we get similar VSLs in both studies.
We could interpret that as evidence of a small IEVSL since the estimated VSL is not any higher
in the sample with higher incomes. But it could instead be an artifact of how in both samples
the estimated return to risk is driven by putting more weight on similar workers in high-risk
blue collar occupations, thus generating similar VSLs. In order to avoid confounding these
effects, studies would need to calculate the conditional variance weights and then use them

to find the weighted mean income of the study which would be the appropriate input into
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meta-analysis. In addition to this bias, there are a number of concerns with meta-analysis,
such as the completeness of income reporting in different surveys and how this could bias the
reported sample mean income. For example, it is known that income reporting in the PSID
is more complete than in either version of the CPS (Fixler and Johnson, 2014). As a result,
studies of compensating differentials using the PSID will have higher average incomes, all else
equal, even though they are of essentially the same population (American workers) as studies
using the CPS. If studies of the PSID and CPS find similar VSLs, as we would expect given the
identical populations, then it would appear that the IEVSL is nearly zero as it does not vary
with apparent income. These issues make it hard to be confident in empirical estimates of the
IEVSL based on meta-analysis, especially considering how much these estimates diverge from
our theoretical expectations.

As alternatives to meta-analyses economists have turned to a number of methods includ-
ing using repeated cross sections and natural experiments to assess the IEVSL. Miguel and
Leon (2017) survey air travelers in Sierra Leone who must get to the international airport in the
capital. To reach the airport passengers must cross a body of water and have multiple trans-
portation options with varying levels of safety. They find that richer travelers are much more
likely to choose a safer but more expensive mode of transport and estimate a sample IEVSL
of 1.77. Unfortunately, their context makes external validity a concern. The VSLs estimated in
their study are uniformly low, below $1 million both for Africans and non-Africans, despite
most of the travelers having fairly high incomes as one would expect for people taking inter-
national flights. This may be because the sample represents a set of highly risk-tolerant people,
which would make sense as they are visiting a country that recently emerged from civil war
and harbors a variety of deadly pathogens including the ebola virus.

A third method for getting an estimate of the IEVSL is to estimate hedonic wage regressions
using repeated cross sections from the same country but at different time periods as safety
and wages changed. Hammit, Liu, and Liu (2000) use data from Taiwan province in China to
explore how the VSL evolved over several decades, from the 1970s through 1990s, showing that

wage premiums rose dramatically even as wages were rising, leading to an estimated IEVSL
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of close to 3 in their preferred specification. Costa and Kahn (2004) apply the same strategy to
data from the U.S. in the 20th century and find a slightly lower but still substantial IEVSL of 1.4.
The U.S. also displays the same general trend of rising wages and broad-based improvements
in safety that would be hard to reconcile with a low IEVSL. One concern in both studies is that
there may have been time-varying factors that could have influenced the wage structure such
as, in Taiwan’s case, industrialization or, in the U.S. case, skill biased technological change, that
confounds the evolving compensating differential for risk.

To date no method for empirically estimating the IEVSL has gained universal acceptance
but my reading of the literature is that there is good reason to expect the VSL is highly income
(and wage) elastic and as a result we should be concerned about the biases discussed in the
previous section. Theory is unambiguous that safety is a luxury good and as a result it is hard
to develop a model where the IEVSL is not at least one. Empirical evidence, while mixed,
suggests that the IEVSL could easily be above one, although the data limit the ability to give
precise numbers. Having established that it is likely the wage-elasticity of the VSL is large and
thus that the heterogeneity bias is important to correct for, I turn to estimating a more flexible
hedonic wage model that allows for some heterogeneity. This allows me to take a first pass as
assessing the empirical importance of these biases, although only under somewhat restrictive

assumptions.

2.5 A Quantile Hedonic Wage Model

In this section I estimate a conditional quantile hedonic wage model, extending the model
developed by on Evans and Schaur (2010) to recover a joint distribution of wages and risk pre-
miums, which I think use to calculate the implied marginal distribution of VSLs consistent with
the conditional quantile model. These methods, as discussed below, build on work by Machado
and Mata (2005). I also estimate a standard OLS hedonic wage model on the same sample for
comparison purposes so that the following section can assess the quantitative significance of

the differences.
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2,51 Empirical Strategy

The standard estimating equation for the OLS quantile hedonic model is

In(wage;) = a + drisk; + XB + ¢;

where X is a vector of controls. The conditional quantile hedonic wage model simply ex-

tends this to allow the coefficients to differ by conditional quantile g:

Qq(In(wage;)|risk;, X;) = a(q) + 6(q)risk; + XB(q)

Intuitively, the key difference between the models is that the conditional quantile model al-
lows for some heterogeneity in the compensation for risk along conditional wage quantiles. In
effect I am estimating 6(g) for each of 99 quantiles as opposed to a single parameter ¢ that rep-
resents a weighted average of the compensating differential across the population. This should
help mitigate the bias from assuming there is no heterogeneity in compensating differentials,
but does not necessarily eliminate the bias since the heterogeneity is required to fit a certain
parametric form. In that sense the estimates below are best seen not as providing a new num-
ber that is an improved estimate of the VSL for use in policy analysis, but rather as providing
evidence on the scale of the bias and importance of finding ways to model heterogeneity. The
model allows me to estimate an analog of éby averaging 6(q) across the quantiles, which are all
equally likely, for comparison purposes, which allows me to get a sense of how much ¢ varies
across workers.

A few words about the identifying assumptions of this model are important. They include
all the standard assumptions needed for the OLS hedonic wage model including the key as-
sumption of selection on observables. While both the OLS and quantile models can be fit with a
rich set of demographic covariates as well as covariates for other influences on wages (occupa-
tion, industry) this remains a strong and untestable assumption. Nevertheless, this is standard
practice in the literature because there is no better alternative and some assumptions are nec-

essary in order to get a number to guide public policy.
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The quantile model does not as easily yield estimates of compensation for risk as the OLS
hedonic model because the quantile operator is not linear, as widely discussed in the quantile
treatment efforts literature (Angirst and Pishke, 2009). Under only the selection-on-observables
assumption the quantile model identifies the effect of risk on conditional quantiles of the wage
distribution, but not necessarily on any individual person. For instance, if we find that the
coefficient on risk at the 10th quantile is 0.01 then that tells us that, after conditioning on the
effect of the other covariates, an extra 1 in 10,000th risk of fatality on the job raises wages in the
10th quantile by approximately 1%. This does not mean that it raises the wage for a particular
individual who is in the 10th (conditional) quantile by 1% unless the same person would be at
that point in the distribution under the lower and higher values for risk. That changes in risk (or
any other covariate) do not change the ordering of wages in the distribution is called the rank
invariance assumption and it is required in order to interpret the coefficients in the quantile
model as treatment effects on individuals they way we generally do with OLS models.

Like the selection on observables assumption, the rank invariance assumption seems un-
likely to hold exactly. In particular, changes in the level of risk faced by a worker are likely
associated with at least some changes in the actual tasks done on the job. It seems likely that
some workers might have strong skills in tasks related to crab fishing, a high risk job, but no
particular skills for a low risk job like cooking crabs as a quick service restaurant. This pattern
of skills is likely to violate the rank invariance because this worker will be higher up in the
wage distribution when risk is high and lower in the distribution when risk is low. That said,
it is possible that some relaxation of the rank invariance assumption is possible and this is a
topic of active investigation by a number of researchers (Frandsen et al 2015). Furthermore, it
is possible that small deviations from the rank invariance assumption do not severely bias the
treatment effect estimates but bounding this sort of bias quantitatively remains an active area
of research as well. Ultimately, some assumptions must be invoked in order to make head-
way assessing the importance of heterogeneity in VSLs for estimation purposes. To the extent
this assumption is invalid or unreasonable the results below must be taken as suggestive and

pending confirmation or reassessment in future research as methods improve.

101



A related difficulty in interpreting the conditional quantile model comes from the fact that
the quantiles are only conditional. I need to recover the joint distribution of § and wage in
order to calculate the covariance term discussed in section 2.3.3 and the conditional quantiles
are not directly helpful for this purpose. I adopt the strategy proposed and implemented in
Machado and Mata (2005) to generate an estimate of the joint distribution of the variables
of interest that is based on the conditional quantile model. Following their method, I draw
a large random sample of vectors (risk;, X;) from the empirical distribution in the estima-
tion sample (with replacement) and pair them with a randomly chosen quantile (g;). I then
use the model to predict the wage (wage; = a(q;) + d(q;)risk; + XB(g;)) and risk premium
(6(q)) associated with each draw, yielding a large simulated sample of (wage,d) pairs. The
VSL for each point can then be calculated using the standard formula for an individual’s VSL
(VSL; = (2,000)wage;6;(10,000)) and I can calculate any sample statistic of interest such as the
mean sample VSL based on this marginal distribution. This method assumes that the quantile
regression model does a good job fitting the data, an assumption that is tested below by plotting

the marginal distribution of wages generated by the model against the empirical distribution.

2.5.2 Data

I follow standard practice in the hedonic wage model literature in assembling my estimation
sample and constructing measures of risk, paralleling the widely cited Viscusi (2004) as closely
as possible but with updates due to changes in data coding. The main data source for earnings
and demographics is the Current Population Survey (CPS) Merged Outgoing Rotation Groups
(MORG) sample for 2015. The CPS MORG includes information on hours worked, wages or
usual weekly earnings, industry, occupation, and a host of demographics that can be used as
controls. I drop observations for part-time workers and then impute an hourly wage for non-
hourly wage workers by dividing usual weekly earnings by usual hours worked. Following
standard practice in the literature, I drop observations with reported wages below $6 as implau-
sible and exclude workers with top-coded earnings ($72/hour or $2880/week) since censoring

will obscure any relationship between risk and earnings for these workers. I restrict attention
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to private sector workers because I lack information on non-wage compensation which is dis-
proportionally important for public sector workers. The most recent BLS estimate from the
Employer Costs for Employee Compensation data is that private sector workers earn 69.5% of
their compensation as wages while state and local government workers receive just 62.6% in
wages. Estimates of the size of compensating differentials will be biased for all workers to the
extent that higher on the job fatality risk leads to higher (unmeasured) compensation, but this
underestimate will be much larger for workers who bargain to obtain so much of their com-
pensation as benefits. As is standard in the literature I use pre-tax wages for analysis due to
data limitations and I focus on workers in their fourth month in the sample to avoid repeated
observations which rarely add much new information but significantly complicate the calcu-
lation of standard errors. # I construct standard demographic controls for education groups,
race, potential experience, membership in a union, gender, marital status, and an indicator for
whether a respond-ant is a veteran using the demographic information in the CPS. Finally, for
consistency with prior research I limit the estimation sample to workers between the ages of 18
and 65 inclusive. The final estimation sample has 39,006 observations and summary statistics
for the group are reported in Table 2.1 below.

To construct a measure of on-the-job fatality risk I use the Census of Fatal Occupational
Injuries (CFOI) collected by the BLS, which regarded as the most accurate source of information
for the U.S. and is widely used in estimating hedonic wage models (Viscusi 2013). The CFOI
data is, as the name indicates, a census of all fatalities on the job in the U.S. each year, assembled
meticulously by the Bureau of Labor Statistics (BLS) and matched to a full NAICS (industry)
code and SOC (occupation) code for each deceased worker. The CFOI has been compiled each
year since 1992 but the coding of industries changes slightly every five years as industries are
recategorized so I limit my use of the data to the years 2011 to 2015 for consistency with the
2015 CPS. The BLS publicly reports fatality rates for 2-digit NAICS by 2-digit SOC cells and

further disaggregation could introduce substantial measurement error into the measure of risk,

“Standard errors must already be clustered for correlation within industry-occupation cells since this the level
of aggregation for the risk variable. If there are repeated observations for some individuals then I would need to
account for an additional dimension of clustering and two-way clustering is an active area of research.
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Table 2.1: Summary statistics for the CPS MORG sample

Variables N mean StD min max
wage (2015 $s) 39,006 2325 1333 6.010 72
union member 39,006 0.0703 0.256 0 1
risk 39,006 0.277 0.480 0 5.424
experience 39,006 23.12 12.06 0 46
High school 39,006 0.318 0.466 0 1
Some college 39,006 0.290 0.454 0 1
Bachelors 39,006 0.230 0.421 0 1
Masters 39,006 0.072 0.258 0 1
PhD 39,006 0.014 0.117 0 1
Professional Deg 39,006 0.011 0.106 0 1
veteran 39,006 0.0514 0.221 0 1
male 39,006 0565 0.496 0 1
Hispanic 39,006 0.149 0.356 0 1
Black 39,006 0.100 0.301 0 1
Indian 39,006 0.007 0.084 0 1
Asian 39,006 0.062 0.241 0 1
Other (race) 39,006 0.012 0.108 0 1
married 39,006 0555 0.497 0 1

Note: units for risk and further details in the main text.

so I stick to this level of aggregation for measuring risk. There are 25 different 2-digit NAICS
codes and 23 major occupational groups (2-digit SOC codes) and thus a total of 575 combined
industry-occupation categories that workers in the estimation sample can be matched to. Many
of these cells have no fatalities in any given year but most have at least one over the five year
period used for averaging and some have substantial levels of risk. For instance, protective
service workers in the accommodations industry suffer 5.4 deaths per 10,000 workers each
year and and forestry workers in the wood products industry have a comparable risk with
3.48 deaths per 10,000 workers each year. The counts of fatalities by occupation-industry cell
were matched to CPS counts of the total number of worker-years in each group over the time
period to calculate a fatality rate per worker per year. Finally, I multiplied all of the fatality
rates by 10,000 for readability so that we can interpret the rate as the number of deaths per
10,000 workers per year on the job.

A few observations from the summary statistics are worth noting. First, the mean wage

in the sample is $23.25 compared with $29.18 estimated in the National Income and Product
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Accounts. This is due to the omission of the 2,042 workers with top coded earners who earn
a significant fraction of the total earnings in the sample but are excluded. The sample also ex-
cludes some low-wage and part-time workers which pushes the average up, but as discussed
in the theoretical sections, these effects are highly asymmetric. I draw attention to this because
it emphasizes how significant the relatively small sample of top-coded workers can be in in-
fluencing the population average for a variable like wage or, as we will see, VSL. Second, the
median risk in the sample is just 0.06 deaths per 10,000 workers but the mean is close to 0.3
deaths per 10,000 workers, illustrating the heavy skew in the distribution of risk across work-

ers.

2.5.3 Results

The results of the OLS hedonic wage model as well as selected quantiles of the conditional
quantile model are shown together in Table 2.2. The OLS coefficient of interest is 0.0244 indi-
cating approximately a 2.44% wage premium for a 1/10,000th risk of death. This is comparable
to other estimates in the literature which are typically in the 1-3% range. The standard implied
estimate of the population VSL is then this wage premium times the average wage times a
scaling factor to get the proper units which yields $11.346 million for an estimate of the mean
VSL, slightly above the Department of Transportations preferred VSL of $9.6 million and close
to many estimates of around $10 million that are common when using the CFOI data (Moran
2016).

The quantile results reported in the table show substantial variation as expected. At lower
quantiles the estimates of compensation are positive but not significant either statistically or
economically. The compensation for a 1/10,000th risk of death is below 1% at both the 10th
and 25th quantiles. This may have to do with bunching of wages around minimum wage,
which suppresses variation in observed wages, or it may be a result of the known impreci-
sion of quantile models for extreme quantiles (Chernozhukov and Fernandez-Val 2005). By
the 50th percentile the coefficient is remains insignificant statistically be has risen to 1.84%,

similar to typical hedonic wage estimates although perhaps surprisingly still below the OLS
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Table 2.2: Quantile Regression Results

Dependent: In(wage)
OLS q=0.1 q=0.25 q=0.5 q=0.75 q=0.9
risk 0.0244 0.0065 0.0076 0.0184  0.0399**  0.0695**
(0.0153)  (0.0142) (0.00535) (0.0147)  (0.0144)  (0.0203)
union 0.146** 0.0965**  0.152** 0.171** 0.155** 0.137**

(0.017)  (0.0153)  (0.0109)  (0.0144) (0.0124)  (0.0146)
highschool ~ 0.201*  0.118%  0.167* 0212  0250%  0.261*
(0.0108)  (0.0121)  (0.0118) (0.00856) (0.0125)  (0.0204)
some college  0.258* 0156  0.228* 0277  0.321**  0.334*
(0.0115)  (0.0134)  (0.0119) (0.00823) (0.0102)  (0.0168)

bachelors 0.474%  0322%*  0429% 0513  0.558*  0.566**
(0.0156)  (0.0163)  (0.0162) (0.0117)  (0.012)  (0.0249)
masters 00.570%  0.429**  0.546%  0.637**  0.654**  0.619**
(0.0184)  (0.0192)  (0.0167) (0.0157)  (0.016)  (0.0185)
doctorate 0.650%*  0.508**  0.646%*  0.722**  0.773*  0.691**

(0.0359)  (0.0485)  (0.0251)  (0.0211)  (0.0149)  (0.0325)
experience  0.0253**  0.0143**  0.0202*  0.0269**  0.032**  0.0313*
(0.00166)  (0.00142)  (0.00010) (0.00010) (0.00056) (0.00117)

veteran -0.009875 0.0000787 0.00259  -0.00178 -0.0314** -0.0295**
(0.0091)  (0.0107)  (0.00839) (0.0105) (0.0111)  (0.0147)
married 0.0537**  0.0419**  0.0507**  0.0565** 0.0566**  0.0599**
(0.00657)  (0.00564) (0.00617) (0.00757) (0.00536) (0.00686)
Hispanic -0.0934*  -0.0744**  -0.0916** -0.0866** -0.086**  -0.0915**
(0.0142)  (0.0097)  (0.00923) (0.0066) (0.00796) (0.0127)
Black 0133 -0.116*  -0.126*  -0.131*  -0.131**  -0.117**
(0.011)  (0.0117) (0.00813) (0.0173)  (0.0156) (0.00775)
male 0.173*  0.121*  0.162*  0.177%*  0.192*  0.173*
(0.00855)  (0.0071)  (0.00813) (0.0173)  (0.0156) (0.00775)
Constant D774%  2.458%  2582%  2745%  DO50%*  3.144*
(0.0477)  (0.0471)  (0.0430)  (0.0434)  (0.0514)  (0.0570)
N 39006 39006 39006 39006 39006 39006

Standard errors clustered on industry and occupation in parentheses.
** p<0.01, * p<0.05, + p<0.1

106



@
fute
%%
e e
=0
@ i
S » Y
G -»
23+ L4 ™ s
5 ol %
E *
= & [ ]
: "M"..
ED_ ... ‘
®
o
=]
v T T T T T
0 20 40 60 80 100

Conditional quantile
Risk is in units of ten-thousandths. See text for details.

Figure 2.3: Raw estimates of B by quantile

estimate. From the 50th percentile to the 90th percentile the coefficient on risk rises dramati-
cally, almost quadrupling to 6.95% and becoming statistically significant at the 75th and 90th
quantiles. The steady rise in the coefficients on risk across the quantiles is consistent with the
theory articulated earlier and suggests a large wage-elasticity of the VSL. It is also consistent
with the quantile estimates reported in Evans and Schaur (2010) who fit a similar model for
elderly workers using the HRS and Polat (2013) who estimates a similar model for a sample of
workers in Turkey.

The full set of coefficients on risk for each of the 99 quantiles are plotted in Figure 2.3.
The general trend of increasing compensation for risk at higher conditional quantiles is clear
but a few other trends emerge. First, there is substantial noise at both the top and bottom of
the distribution. This is not unusual for quantile regression estimates due to the same biases
that plague non-parametric estimates around boundaries, amplified here by censoring. The

coefficients at the higher quantiles are especially imprecisely estimated, halting the rising trend
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around the 90th quantile and dropping dramatically for the top few quantiles. This is likely
also due to censoring since no wages above $72/hr are included in the estimation sample. This
kind of censoring is known to induce a bias toward zero since, to the extent compensating
differentials increase wages, they tend to push the wages above the cutoff and thus out of the
sample. This forces the coefficients on all characteristics including education and experience to
be pushed toward zero in the higher quantiles. For example, the premium for attending college
(versus a dropping out of high school) rises steadily with quantiles until hitting at peak of 0.58
at the 89th quantile and dropping to 0.347 for the 99th quantile. The returns to experience drop
off by more than half in the top 10 quantiles and the gender bias in favor of men peaks at the
79th quantile before dropping by almost 60% by the 99th quantile.

I fit two models to correct this bias on the estimated compensating differential for risk and
the results reported in Table 2.3. Both models project the coefficient on risk for each quantile
(0(g)) on different features of the data. Model 1 regresses these coefficients to the average
wage at that conditional quantile and the fraction of projected wages above the cutoff. The
later term is highly significant and suggests adjusting the s by adding back in the estimated
amount they are dragged down due to censoring. Model 2 takes a simpler approach and simply
predicts §(g) based on the empirical (roughly quadratic) trend in the lower 79 quantiles. The
compensation for risk in the top 10 conditional quantiles are then based on the fitted values
from the model. Both are these proposed solutions are ad hoc and it is unclear which model is
superior or if the more conservative approach of not making adjustments in preferred. Based
on these considerations I report results for each model in the following sections.

Following the procedure outlined above I drew 10,000 samples (with replacement) of co-
variates from the empirical distribution of the estimation sample and paired them with ran-
domly chosen quantiles from 1 to 99. Then for each simulated observation I used the quantile
hedonic wage model to predict the associated wages. The (kernel smoothed) empirical distri-
bution of wages from the sample is plotted against distribution of simulated wages in Figure

24.
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Table 2.3: Models to adjust for bias in the top quantiles

Model 1 Model 2
Dependent: 5(q) 5(q)
wage 0.00267***
(0.00013)
% above cutoff  -0.875***
(0.099)
quantile -0.00019***
(0.000117)
quantile? 9.43e-06***
(1.12e-06)
constant -0.034*** 0.00460*
(0.00285) (0.00266)
N 99 79
R? 0.840 0.941

Robert standard errors in parentheses
**p<0.01, ¥ p<0.05, * p<0.1
Note: Details on the specifications included in main text.

0 20 40 60 80
wage ($/hrin 2015 )

wage simulated wage

Figure 2.4: Density of simulated wages compared to the CPS
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This provides a test of goodness of fit for the model and the model appears to perform
reasonably well. The distributions are easy to distinguish on a couple of minor points since
only the simulated distribution has any mass above $72/hr and the CPS wage distribution has
clumps of excess mass at certain round numbers such as $50/hr, but otherwise the fit seems
quite good. This provides confidence in using the model for the next step of calculating implied
VSLs and comparing the mean of this distribution to the standard OLS estimate from above.

Using the predicted wage for each observation and the associated compensating differen-
tial for its quantile, I calculated a VSL for each draw and plotted the distribution in Figure 2.5.
As expected the distribution is highly skewed with a long right tail. This is partly because
the underlying distribution of wages is skewed as shown in Figure 2.4 but the effect is rein-
forced because higher wage earners also tend to have the largest compensating differentials for
risk. About 2.9% of the sample has a negative VSL, consistent with the fact that 3 of the quan-
tiles have a negative estimated compensating differential for risk. I opted not to censor these
obviously erroneously low values because it would introduce an upward bias in estimates of
the population mean VSL if I didn’t also simultaneously censor estimates with coefficients too

high, which are impossible to identify.

2.6 Implications for estimates of Population mean VSL

In this section I focus on interpreting the results of the model estimated in the previous section
and decompose the difference between the standard OLS hedonic wage VSL and the quantile
model mean VSL into contributions from the three factors identified earlier in the chapter. To
begin the analysis we consider some sample statistics, reported in Table 2.4, for the distribution
of the simulated VSLs from each of the three models of compensating differentials (raw and
adjusted according to Model 1 and Model 2).

Each of the models generates a sample mean VSL substantially larger than the standard
OLS hedonic wage model. The standard model sample mean VSL is $11.346 million while the

unadjusted quantile model has a mean of $15.12 million (about 33% larger) and the adjusted
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Figure 2.5: Marginal distribution of VSLs

Table 2.4: Summary statistics for simulated VSLs
n mean SD min  max
VSL (raw) 10,000 15.12 18.74 -4.681 128.0
VSL (model 1) 10,000 18.04 25.83 -4.681 211.0
VSL (model 2) 10,000 16.44 21.38 -4.681 129.5
Note: Units are millions of 2015 $s.
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Table 2.5: Relationship between In(VSL) and In(wage)
Dependent: Raw VSL VSL (model 1) VSL (model 2)

In(wage) 1.797%%% 2.005%* 1.931%*
(0.0206) (0.0179) (0.0172)

Constant 3224 37804 -3.578%*
(0.0648) (0.0577) (0.0557)

N 6,186 7,084 7,084

Standard errors in parentheses
**p<0.01, ** p<0.05, * p<0.1

models have even higher averages of $18.04 and $16.44 million (up to 59% larger). The quantile
model helps to correct for the uneven weighting of the compensating differentials in the OLS
model and the bias from omission of the covariance term so at least one of these sources of
bias must be substantial. All three quantile models have standard deviations larger than their
mean, consistent with the underlying theory discussed in section 2.2. All three have a common
minimum VSL of -$4.681 since the lower quantiles with are not affected by the censoring bias
and are not adjusted, but the maxima range considerably since the models differ primarily in
the compensating differentials for workers in higher conditional quantiles and this translates
to differences in VSLs for some of these workers.

The third bias discussed previously was from omitting top coded earners who remain omit-
ted even in the quantile model due to a lack of data on wages. VSLs for these workers can be
extrapolated by using the quantile model to estimate a general wage-VSL relationship. As re-
viewed in section 2.4, theoretical modeling predicts that this relationship should have a roughly
constant elasticity close to the coefficient of relative risk aversion (CRRA), often thought to be
in the range from 1.5 to 4. Table 2.5 shows the results of regressing the simulated In(VSL) on
simulated In(wage).?

Results are broadly similar across the three models. In the raw model the wage-elasticity
of the VSL is just below 1.8, while it is barely above 2 for Model 1, and 1.93 for Model 2. It is

surprising how well these elasticities fit into the narrow range predicted by theory. For brevity,

5The bottom 30 quantiles are excluded from this analysis since the log transformation cannot be applied to
negative values. The top 10 quantiles are also excluded from the raw model since we know these coefficients are
heavily biased due to censoring.
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Table 2.6: Extrapolated VSL results for the three models
Model  E[VSL|wage >72] E[VSL|wage < 72] E[VSL]

Raw $215.93 $15.12 $25.16
Model 1 $363.70 $18.04 $35.32
Model 2 $302.51 $16.44 $30.74

Note: Units are millions of 2015 $s.

I illustrate how I extrapolated a mean VSL for the top-coded workers using only the raw model
and just summarize the results for the other models in the tables below. The regression models
in Table 2.5 relate the VSL (in millions of 2015 $s) to the wage. For example, the raw model is
In(VSL) = —3.224 4+ 1.797 In(wage). We can exponentiate both sides to get the approximate
relationship VSL = 0.0397wage'7®” .° For example, for a wage of $72/hour the model predicts
a VSL of $86.5 million, not far below the highest VSLs estimated using the quantile model,
which is what we would expect since this model is derived from the quantile one.
Our object of interest is the average VSL for workers above the cutoff, or in symbols E[V SL|wage >

72] which can be rewritten as E[0.0397wage'”?” |wage > 72] using the relationship between VSL
and wage in the basic model. It is widely documented that the wage distribution has a long up-
per tail that has, approximately, a Pareto distribution. The standard technique for imputing
wages is to assume that the mean above the top code is about 1.5 times the cutoff, or around
$108 in our case. The mean of a Pareto distribution is always the cutoff times ;%7 where ais
the Pareto parameter so to match the standard assumption it is implied & = 3 and thus we
can approximate the wage distribution for top-coded workers as Pareto(x,, =72, « =3). To
the extent rising inequality has lead the rule of thumb that wages are 1.5 times the cutoff to be
conservative then the resulting estimates below will be conservative, although they turn out to
substantial nevertheless. For most distributions E[0.0397wage'”*” |wage > 72] would needed to
be estimated by simulation since it is hard to get an exact formula for a random variable raised
to a random exponent, but, fortunately, the moments of the Pareto distribution have a simple
closed form, E[X?] = -2 x%. Using the closed-form formula for the moments we have that

a—a

E[0.0397wage' 7 |wage > 72] = 0.0397 55> (72)7%7 = 215.41 million for the raw model.

®Exponentiation is not a linear transformation, so there should be a constant term reflecting uncertainty in the
regression parameters that slightly raises the estimated VSL but it is omitted for clarity.
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Table 2.6 shows the estimates for the VSL above the cutoff for each of the three models
as well as the population mean VSL that is implied by combining the estimates for the sub-
populations. Although the top-coded workers only make up 5% of the workers they have an
outsized impact because of their large VSLs. For the baseline model, for instance, the average
VSL among the top-coded workers is $215 million, which helps to pull the estimated average
VSL for workers up to $25.16 million, more than double the standard hedonic wage model
estimate and more than 50% larger than the average for the other 95% of the workers.

It is natural to ask whether these nine-figure mean VSLs are plausible since they are an order
of magnitude larger than typical estimates in the hedonic wage model literature. I think are for
three reasons. First, the order of magnitude makes sense based on the underlying economics.
These workers have wages that are, by assumption, $108/hr on average or almost five times
the sample average. Since the wage-VSL elasticity is around 2 the VSL will scale up by almost
2% for every 1% increase in wages. As a result, when if a group of workers has wages 400%
larger than normal we would expect their VSLs to be more than 800% larger or about an order
of magnitude larger.

Another helpful perspective is to compare the weight that the top 5% of earners have in the
wage distribution with the weight they have in the VSL distribution. In the CPS sample, which
probably suffers from income underreporting and may have a fatter tailed wage distribution
than I assumed earlier, the top 5% of workers earn about 20% of total wage income. As a
result is seems implausible that with 20% of the total income they would contribute any less
than 20% toward total demand for risk reduction and, since safety is a luxury good, plausibly
would contribute an oversized share or 30-60% toward the total demand. In my estimated
models they contribute 43-56% to the total demand for risk reduction, fitting this reasoning. If
the top 5% contributes around 50% toward total demand then it is a mathematical necessity
that their average willingness to pay (i.e. VSL) must be roughly an order of magnitude larger
than the median worker’s.

Finally, while there is no solid empirical evidence on the VSL for high earners there is some

anecdotal evidence that some wealthy people have extraordinarily high VSLs. First, there is a
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Table 2.7: Breakdown of the relative importance of the biases
Model AS cov(d, wage)  Excluding top-coded
Raw +$0.314 (2.8%)  +$3.50 (31.0%) +$10.04 (88.5%)
Model 1 +$1.739 (15.3%) +$4.99 (44.0%)  +$17.28 (152.3%)
Model 2  +50.942 (8.3%)  +$4.29 (37.8%) +$14.30 (126.0%)
Note: Units are millions of 2015 $s. Percent changes in parentheses.

thriving medical tourism industry which suggests people with means are willing to pay sig-
nificant sums for small amounts of mortality risk reduction. The medical care at top academic
medical centers is probably only marginally more effective than at other first-world hospi-
tals, but executives from around the U.S. and the ultra-wealthy from around the world pay
enormous markups to get such marginally better medical care. Future research, pending data
availability, may be able to tease out information on the elasticity of this demand by looking at
how it varies with exchange rate fluctuations. Second, there are large markets for ransom and
extortion in some countries and ransoms demanded tend to be highly elastic to the victim’s
resources. Smith (2018) reports that the typical ransom charged after a kidnapping in Mexico
is around $500 but there are documented cases of ransoms of $30 million or more being paid
and there are documented cases of larger ransoms being paid in richer countries. Li KaShing’s
paid 2 billion (HKD) or 258 million (USD) to ransom his son (Vines 1997) or about half a bil-
lion in todays dollars and Argentinian grain traders Juan and Jorge Born were kidnapped and
ransomed for $60 million in 1974 which would be well over $300 million in today’s dollars.
These ransoms are hard to interpret since they are paid in highly emotional situations with
concentrated risk so they do not correspond to a VSL or any closely related concept, but they
do illustrate the fact that differences in ability to pay plausible lead to differences in willingness
to pay for safety of several orders of magnitude.

Table 1.7 provides a breakdown of how much each of the three sources of biases contributed
to the final difference between the standard VSL estimate and my final quantile model esti-
mates with extrapolated VSLs included. The baseline standard OLS estimate of the VSL is
$11.364 million. This increases by 2.8-15% depending on model when we allow for hetero-

geneity in the compensation for risk (6(g)) across conditional quantiles but ignore the possible
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covariance between the wage and 4. It was difficult to a priori assess the importance of this
bias, so it is reassuring that the bias is not spectacularly large. Factoring in the covariance term
is quantitatively more important, increasing the estimated VSL by 31-44% depending on the
model. Earlier calibrations suggested this term would increase the estimated VSL by around
50% so these estimates seem reasonable and certainly quantitively significant. Finally, the third
and most important source of bias was ignoring high wage earners in the estimates. In the base-
line model with an elasticity of 1.8 the top-coded workers pull the average VSL up by 88.5%
while in Model 1 with an elasticity slightly above 2 the top-coded workers pull the average up
by 152.3%. It is clear that the population mean VSL depends critically on this elasticity so fu-
ture work pinning it down will be especially valuable. For now, my tentative conclusion is not
to emphasize any one number in the table as the best estimate for the population mean VSL,
but rather to emphasize the importance of understanding and modeling heterogeneity when

estimating hedonic wage models since the bias from not doing so can clearly be substantial.

2.7 Conclusion

The theory of the VSL predicts that it will be heterogenous across people since it is a rescaled
measure of demand and demand is influenced by a multitude of factors, perhaps most impor-
tantly income and preferences. This chapter has emphasized that this heterogeneity is not only
important in its own right, but it is also essential to take into account when estimating a popu-
lation mean VSL. I identified three reasons that standard hedonic wage regressions might yield
estimates substantially below true the population mean VSL.

First, the standard OLS regression implicitly weights the observations by the conditional
variance of the risk for each combination of covariates. This means that estimates of compen-
sating differentials do not necessarily reflect the preferences of all workers equally and appear
to put most of the weight on male workers with relatively little formal education who work in
blue-collar jobs. To the extent these workers require more, or less, compensation to take on fatal

injury risk than the average person, the estimated VSL will be biased. Second, since we expect
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safety to be a luxury good, VSLs will rises rapidly with income and thus the wage premiums
demanded by workers will vary significantly across the wage distribution. To the extent there
is a correlation between the compensating differentials for risk and wages the standard formula
for the sample VSL is biased because it leaves out an important covariance term. Third, most
estimates of the population mean VSL ignore top-coded observations due to data limitation.
If the VSL is not wage-elastic then systematically leaving out high earners is not particularly
problematic, but to the extent the VSL is wage-elastic leaving out even a small fraction of the
top earners can severe bias the estimated mean for the population.

I showed that all three of these potential problems are likely to be quantitatively important
when there is substantial heterogeneity in the wage premiums that workers require to take on
risk. I showed that the condition for this to be the case is that the wage-elasticity of the VSL
is not equal to one. The empirical literature of how the VSL varies with wages and income is
mixed but theory makes clear that we should expect a large wage-VSL elasticity and thus that
these biases could be quantitatively significant. I extended the standard hedonic wage model
into a quantile regression framework, building on Evans and Schaur (2010), to estimate a joint
distribution of wages, compensating differentials and VSLs and then used this model to assess
the quantitative significance of the three biases. The first bias, from variation in compensation
wage premiums, is tolerable (2-15%) but the later two biases were substantial. Factoring in the
covariance between risk premiums and wages increased the estimated VSL in the sample by 33
to 44% and including extrapolated estimates of the VSLs for top-coded workers approximately
doubled the average VSL in all specifications.

My main conclusion is that most VSL estimates from hedonic wage models are likely biased
downward significantly due to ignoring heterogeneity so an important goal for future work is
to better understand and model this heterogeneity, perhaps by refining the quantile hedonic
wage model framework as one approach to modeling heterogeneity and explore to what extent
some of the stronger assumptions can be relaxed. Finally, since the key parameter controlling
the scale of the bias is the wage-VSL elasticity, it is clear that a better understanding of this

parameter would be valuable.
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Chapter 3

Do physician shortages explain long

wait times?

3.1 Introduction

There is an ongoing debate about the adequacy of the current supply of physicians in the
United States and how supply will need to evolve in the future to meet growing health care
needs. Cooper et al. (2002) estimate that there is a substantial shortage based on a model of
demand that emphasizes income and demographics and argue that the steady aging of the
population and rising incomes will only aggravate this shortage over time. Goodman et al.
(2008) criticize this approach to modeling, noting that there is substantial variation in physi-
cian supply across the country, suggesting that a proper distribution of current health resources
would be sufficient. Bodenheimer and Smith (2013) reconceptualize the problem by arguing
that whether the physician supply is adequate or not is hard to determine from studying raw
inputs since productivity appears to vary dramatically across the U.S. They suggest that re-
forms to reduce paperwork, improve coordination, and prevent duplication would substan-
tially increase total factor productivity, potentially turning projected shortages into surpluses
in the coming years. This line of argument dates back to at least 1993 when Wennberg et al.

used the patient-doctor ratios at successful HMOs such as Kaiser Permanente as a benchmark
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to suggest the required supply of physicians for the coming years. Green et al. (2013) use a
simulation-based supply-demand model to support this claim, emphasizing how expanding
scope of practice and use of technology can increase productivity.

This debate has taken on new urgency as the Affordable Care Act (ACA) has expanded
insurance coverage for millions of Americans and there is continued interest in developing
a universal system of coverage that would provide coverage for the 30 million residents who
lack it in any given year. Due to the well-documented relationship between insurance coverage
and demand for medical care these changes are likely to contribute to an ongoing surge in
demand for physician services, amplifying higher demand from an aging and increasingly frail
population. In this context it is reasonable to ask whether supply constraints will replace lack of
insurance as the dominant impediment to getting care. Rhodes et al. (2014) conducted an audit
study across 10 states and thousands of primary-care providers in 2013 and found that many
doctors were not accepting new patients, particularly if the patient had Medicaid coverage.
Furthermore, Massachusetts, which has nearly universal coverage, stood out in their study for
its abnormally long wait times and low rates for accepting new patients, despite its large supply
of physicians. Commentators have voiced concerns that the rest of the states could suffer from
similar problems in the coming decade. Others commentators, however, have noted that most
new Medicaid enrollees claim to have a usual source of care (Kenny 2014) and that the long
wait times in the Boston metropolitan area pre-date the insurance reform.

In this chapter I investigate how variation in physician supply impacts both physicians
and patients on dimensions such as wait times for an appointment, measures of access to care,
and physician incomes. While the evidence is noisy and the topic deserves further research I
find suggestive evidence that greater physician supply lowers physician incomes and stronger
evidence that physician supply impacts the style of medical practice. I find little evidence of
an effect of physician supply on access to care, even using methods to account for endogenous
sorting of physicians, but the estimates are not precise enough to rule out a substantial effect
The rest of the chapter is structured as follows. Section 3.2 discusses several theories for how

local physician supply could impact the market for physician services, touching on both a

119



benchmark competitive model and frictional models with endogenous productivity. Section 3.3
introduces the empirical framework for this reduced form analysis of this chapter and presents
the two identification strategies used to deal with endogeneity. Sections 3.4 and 3.5 present
results from the estimation of the econometric models, discussing the estimated impacts of

physician supply on outcomes for physicians and for patients. Section 3.6 briefly concludes.

3.2 Theories

The traditional view of the effects of physician supply emphasizes economic intuition from
the theory of competitive markets where a large number of price-taking sellers competes for
business from a large number of price-taking customers. In this model growth in the supply
of licensed physicians in a local healthcare market leads to lower prices and more total vol-
ume of services but each individual physician provides less care. Modest deviations from this
framework would have similar implications as the basic mechanism is that limited demand
from customers mixed with greater supply weakens the bargaining power of each provider
(Friedman and Kuznets 1954). This view helps to explain why the American Medical Associa-
tion (AMA) long opposed expanding the physician supply and worked to restrict competition
through regulations. Petersen et al. (2014) also document that, consistent with this model,
many state medical boards explicitly banned non-citizens from the practice of medicine, evi-
dently in order to reduce competition, until their power to do so was eliminated by the In re
Griffiths decision (Oyez 2019).

The pattern of support and opposition to scope of practice regulations among healthcare
occupations also suggests some validity to this theory. Physician groups have generally advo-
cated limiting the scope of practice for nurse practitioners and others with advanced training
and have prevented psychologists from prescribing neuroleptics in most states. The effects of
these regulations remains an unsettled and active area of research but the motivation behind

them seems clear (Kleiner 2016).

120



A counterpoint to this view notes that healthcare markets are frictional and, in practice,
appear to be far from the ideal of competitive markets (Cutler and Zeckhauser 2000). Medicare
sets prices for most physician services administratively and they are uniform across the nation
aside from adjustments for local input prices. Private insurance reimbursement rates tend be
strongly influenced by the Medicare fee schedule, adjusting almost one for one in responses to
updates (Clemens and Gottlieb 2017). Physicians can also pool together in group practices with
little concern about antitrust oversight and use this as leverage when bargaining. There is some
evidence that such consolidation leads to higher prices, explicitly violating the competitive
norm of price taking (Hausman and Lavetti 2018). Consistent with these more sophisticated
theories of market organization, the AMA’s position on expanding the physician workforce
has changed in recent years, switching to supporting expanded opportunities for training in
order to meet pending shortages. It remains unclear why the AMA reversed its stance but
it suggests that it no longer seems supply as a threat to existing physician’s financial interests.
The competitive model also runs up against surprising prima facia evidence against its validity:
local areas with greater supply do not appear to have any improvements in access to care.
Figure 3.1 shows that wait times are actually slightly longer in areas with more physicians per
capita and a few states, including Massachusetts and Connecticut. in particular stand out for
their larger supply of physicians and abnormally long wait times for appointments.

This upward slope on the graph could be a result of noise and is explored in more detail
later in this chapter but there is a simple economic explanation for the pattern. Physicians
in the competitive model have a financial incentive to sort based on local demand. As the
population grows or becomes older or sicker in an area there will be more demand for medical
care, drawing in more physicians, but only enough to roughly balance the greater need. In
equilibrium there will be variation across states in the number of physicians per capita as well
as other healthcare inputs like hospital beds per capita that balances the variation in demand,
with little variation in wait times or utilization rates (e.g. fraction of hospital beds filled).

This spatial equilibrium view, however, contrasts with the enormous variation in supply

that appears to have no relationship with needs. Massachusetts and Connecticut, as noted ear-
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Figure 3.2: Physician density varies significantly across states

lier, have particularly large numbers of physicians per capita but are two of the richest and
healthiest states. The patterns are even less explicable when looking at sub-state patterns. As
Wennberg et al (1998) note, an affluent suburb of New York (White Plains) has the most physi-
cians per capita of any hospital referral region in the country. This strongly contrasts with
intuition based on obesity rates, rates of drug overdose deaths, and other population health
indicators which would suggest parts of South Dakota, Mississippi, or West Virginia would
garner the greatest number of physicians in a spatial equilibrium dominated by demand-side
factors.

In addition to potential maldistribution, the underlying variation in physician supply across
states appears difficult to reconcile with variation in demand. There is nearly three to one vari-
ation in the number of primary care physicians (PCPs) per capita across states and similar
variation in physicians in general per capita as illustrated in Figure 3.2. The patterns of distri-
bution among specialties are also hard to reconcile with either the spatial equilibrium model as
we would expect less variation in basic inputs required by all people for primary care and more

variation in specialty inputs only needed for particularly sick patients. Surprisingly, however,
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the coefficient of variation is roughly the same for PCPs (CV = 0.160) and specialists (CV =
0.181).

Another approach to the market for physician services emphasizes variation in produc-
tivity (Bodenheimer and Smith 2013). Potentially endogenous variation in the way in which
physicians practice—their standards for diagnostic testing or the typical frequency of check up
visits—influences the efficiency of providing health care in different areas and then indirectly
the local supply. In effect, sine some places have low levels of productivity they require more
physicians to provide the same care. In this framework there can be substantial variation in
inputs across localities without corresponding variation in pay or measures of access to care.
Furthermore, there is little reason for physicians to worry about supply as changes could lead
to endogenous adjustments in practice styles, becoming more efficient when required by nega-
tive supply shocks and less efficient when positive supply shocks allow a slow pace of work or
more aggressive treatment. This theory ties in with the hypothesis that physicians can induce
demand for their own services, recommending more aggressive treatment and more frequent
follow-up visits when their schedules become slack and these patterns of induced demand
might become ossified as variation in practice styles over time.

These theories are not necessarily mutually exclusive and so in this chapter I focus on a
preliminary investigation to answer reduced form questions about how changes in physician
supply influence doctors and patients. Does a larger supply of physicians lower physician
incomes as the competitive model might predict or does it appear unimportant as induced
demand would suggest? Does having more physicians in an area lead to shorter wait times or
more people to have a usual sources or care? These questions are important as an input into the
policy planning process and can also provide a basis for future structural work that explores

mechanisms in competing models.
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3.3 Empirical Strategy

The basic empirical approach is this chapter is to use regression analysis to undercover asso-
ciations and, under identifying assumptions, treatment effects of changes in physician supply.

All specifications under in the empirical analysis sections take the form:

Y;; = a + BIn(physicians per 100k) + yX;; + 0Z; + ¢;;

where i indexes the state and j indexes either physicians or patients, depending on the
source of the measure, X is a vector of patient or doctor level controls, Z is a vector of state-
level controls, and ¢ is an error term. B is the coefficient of interest.

Standard errors are clustered at the state level since the predictor of interest, In(physicians
per 100k) is measured at the state level and, as discussed in chapter 1, this can lead severe un-
derestimation of standard errors without accounting for correlation across observations within
a state.

The basic threat to validity in interpreting B as a treatment effect is the possibility of omitted
variable bias. Suppose, for example, that some states have sicker patients due to local diet
and its impact on health. Following Angrist and Pischke (2009) we can quantify the size of
the bias by contrasting two regressions, the long form that includes the omitted variable O,
Yii = a+ Biong In(physicians per 100k) + vXij + 6Z; + pO; + ¢;; and the short form, above,
which excludes it.

An auxiliary regression helps illustration the relationship between between fy,, and B:
In(physicians per 100k) = 7m; Xij + m2Z; + 130; + vjj. In this setup it can be shown that g =
Biong + n7ts. If the long regression is the correct specification then 73 quantities the bias of
B. For the example above it seems likely that areas with sicker patients should draw in more
physicians (773 > 0) and if the outcome is mean physician income, will lead to more business
and higher incomes (¢ > 0) so the omitted variable bias will lead to an overestimate of the effect
of supply on incomes. Since that effect is likely to be negative this would bias the coefficient

estimate toward zero and finding no effect.
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Unfortunately, there are many potential omitted variables, both at the market (state) level
and the individual level, that could potentially bias the treatment effects estimates either up or
down so it is hard to know a priori whether estimates are too high or too low. To some extent
these biases can be mitigated with the inclusion of controls for factors such as the fraction of
the area that is obese, a proxy for health status, but these controls and mostly imperfect proxies
and some omitted factors cannot be proxied for. Factors at the physician or household level
are likely to be problematic in particular since we would expect wide variation in many traits
that cannot easily my measured and included in the regression models. Physicians presumably
differ significantly in abilities, such as the ability to do specific procedures or the speed at which
they can do procedures, and this will influence their incomes, but I do not have data to proxy
for ability beyond the most basic controls of experience, specialty, and board certification. I use
two approaches in this chapter to deal with the omitted variables problem, each discussed in

turn below.

3.3.1 Instrumental variables

The first and simplest approach is to find a natural experiment, represented by an instrumen-
tal variable, that causes variation in state-level physician supply but plausibly has no impact
downstream outcomes except through its effect on supply. Such instruments are difficult to
find and especially difficult to validate, but I propose one based on the economic theory of reg-
ulatory capture. In particular, some states have autonomous, or self-financing medical boards,
due to conditions during their initial chartering in the late 19th and early 20th centuries. Boards
have wide scope to regulate medical licensing, particularly for physicians trained overseas,
called international medical graduates (IMGs), and the autonomous boards have less super-
vision in how they use their power to limit supply. As a result, the seemingly arbitrary char-
acteristic of medical board financing should have a significant influence shaping local supply.
The rest of this subsection lays out the theory behind how medical boards, in general, can limit
physician supply and why we would expect autonomous medical boards to be more aggres-

sive in limiting supply and then shows some evidence on the relevance and validity of the

126



proposed instrument. Most of the discussion on the mechanism for medical board function
builds on Petersen et al (2014) who kindly provided the data on medical board characteristics.

IMGs are licensed after a multiyear process used to prove their competence to practice
medicine. The first step is passing the three stages of the U.S. Medical Licensing Exam (USMLE),
a standardized exam given in three parts on basic science, clinical knowledge and clinical skills
that is used to “ensure that all licensed MDs have passed the same assessment standards —
no matter in which school or which country they have trained” (Federation of State Medical
Boards and National Board of Medical Examiners 2019). Just 42.6% of IMGs pass the exam.

The second and longer step is to complete an internship year training at an academic med-
ical center in the United States. Obtaining an internship is difficult as there are far more ap-
plicants than positions available each year in this Medicare-funded program. Like step 1 this
step applies to both IMGs and American-trained physicians, but most states allow American
physicians to practice independently after completing this stage of their training. In contrast,
IMGs may or may not have to undergo further training before they can practice independently,
applying for a residency in a specialty of medicine and competing at least two more years of
training before being granted a full license. This is the primary mechanism by which I ex-
pect autonomous medical boards to be able to influence supply, although there might be other
mechanisms since boards have wide latitude in interpreting foreign credentials such as degrees
that are needed before an applicant can even quality to start the licensure process.

Why would state medical boards vary in their requirements at the last stage of IMG licen-
sure? It seems likely that they vary in the extent to which they are subject to regulatory capture
(Stigler 1971). The theory of regulatory capture posits that regulatory bodies charged with the
public interest will often instead work to advance a special interest of the groups that capture
power over the agency. The classic examples are the so-called revolving doors at federal reg-
ulatory agencies as staff members of the agencies depart for lucrative offers in the industries
they formerly regulated creating incentives to favor potential future employers while working
as a regulator. [Further evidence comes from the fact that many heads of regulatory agen-

cies are former executives of the industry they regulate. A recent example is appointment of
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Robert G. Cameron, an executive at the Pennsylvania Higher Education Assistance Agency, a
federal loan servicer reportedly “at the center of every major industry scandal” and known
for lax compliance with consumer protection laws, was recently appointed the student loan
ombudsman within the Consumer Financial Protection Bureau (Kreighbaum 2019). Of course,
another explanation for these patterns are these only a limited number of people have expertise
in administrative law and regulations specified to any industry, so naturally companies and the
government compete for this limited pool of experts.]

Capture of a regulator and defense against it both rely on collective action, on behalf of an
interest group or on behalf of the general public, which is difficult due to incentives to free ride
(Olson 1971). It is generally easier, however, for the special interest to organize since benefits
tend to be concentrated for them while costs for the general public are diffuse, amplifying their
incentive to not bother getting involved in the issue. Furthermore collective action on behalf
of the special interest is even easier if a small board is charged with oversight, as with medical
licensing and sanctions. These boards have only 6-25 members with an average of just 11.5.

So far all of these factors suggest that regulatory capture should be a problem in states re-
gardless of how their medical board is organized or financed. Weingast and Moran (1983) fur-
ther refined the theory in a study that focused on self-financing regulatory agencies. Since they
are self-funded they have less interaction with and oversight by a more publicly accountable
body such as the legislature and can fly under the radar even if severely captured. Weingast
and Moran (1983) tested these predictions with empirical evidence across industries to validate
the theory. Under this theory if medical boards are autonomous, meaning they are financed by
charging for renewal of licenses, continuing education, and other services as opposed to with
annual appropriations from a state legislature, then they should have more scope to limit entry
by IMGs. I use a strict rule, following Petersen et al. (2014) and code a medical board as au-
tonomous only if it receives no appropriations from a state regardless of the share of its budget
that this appropriation makes up. The intuition is that it is not so much the amount of money
appropriated, which is trivial within a modern state budget, but rather the oversight and po-

tential for investigation of board practices that come with appropriation requests that mitigates
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Table 3.1: Summary statistics for the state level variables

N mean sd min  max p25 p75

autonomous 50 0.600 0.495 0 1 0 1
Physicians per 100k 50 221.8 36.37 1643 3242 1942 2432
Primary care per 100k 50 81.96 13.10 5877 115.0 7128 89.63

IMGs per 100k 50 4481 2674 821 130.75 3095 67.77
seniors (%) 50 1332 1671 7700 1740 1240 14.30
White (%) 50 7140 1548 2270 9440 6030 83.10
Black (%) 50 1033 9557 0.400 37 2900 1540
Hispanic (%) 50 1061 9980 1.200 4630 4.200 12.40
income per capita 50 44,083 6329.6 33072 60491 39293 47573
obesity (%) 50 2542 2935 21 34 23 27.00
smoking (%) 50 19.84 3.625 10.60 2830 1730 22.50
UE rate 50 5978 1396 2.600 8.700 4.900 6.900
uninsured (%) 50 1432 4.087 3757 2426 1176 16.85

regulatory capture. The rest of this section is focused on testing whether the theory above has
validity, namely whether states with autonomous medical boards actually have fewer physi-
cians. Summary statistics for the instrument, state level controls, and the number of physicians
per 100,000 residents are presented in table 3.1. The state level controls were obtained from
IPUMS USA and the counts of physicians per state and state populations were obtained from
the American Association of Medical Colleges” 2009 State Physician Workforce Data Book. A
few things about the data are worth noting. First, thirty of the 50 states have autonomous
medical boards so there are large groups of states with and without self-financing boards. Sec-
ond, the number of IMGs per 100,000 residents is, consistent with the theory, significantly more
variable as indicated by the coefficient of variation.

State-level first stage regressions of the instrument on the logged number of physicians per
100,000 residents along with various sets of controls are shown in Table 3.2. As the theory
predicts, autonomous medical boards are associated with fewer physicians per capita. In the
basic specification the effect is about 15 log points fewer or about a 15% decrease in supply
due to having a self-financing medical board. This grows to 18.2 log points when some basic
demographic controls are added but then shrinks to just under 10 log points when further

economic and health controls are added. The pattern is similar when the data are restricted to
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Table 3.2: First stage for medical board autonomy instrument

Dependent: In(physicians per 100k) In(primary care per 100k)
autonomy -0.151**  -0.182**  -0.0957**  -0.125**  -0.146**  -0.0997**
(0.0411) (0.0408)  (0.0302)  (0.0422)  (0.0380) (0.0297)
seniors (%) 0.0366**  0.0326** 0.0332**  0.0295**
(0.0121)  (0.00858) (0.0113)  (0.00845)
White (%) -0.00107  0.000523 -0.00220  -0.000450
(0.00208)  (0.00135) (0.00194)  (0.00133)
Hispanic (%) 0.000847  -0.00233 -0.00295  -0.00574*
(0.00308)  (0.00232) (0.00287)  (0.00228)
Black (%) -0.00354  -0.00174 -0.00802**  -0.00811**
(0.00253)  (0.00199) (0.00236)  (0.00196)
mean income 3.16e-05%* 3.59e-05**
(5.49e-06) (5.41e-06)
obesity (%) -0.0303 1.050
(0.947) (0.933)
smoking (%) -0.473 -0.605
(0.664) (0.654)
UE rate 0.0132 0.00538
(0.0106) (0.0104)
uninsured (%) -0.802+ -1.592**
(0.436) (0.429)
Constant -6.033**  -6.399**  -6.949**  -7.044*  -7.202** -7.657**
(0.0319)  (0.240) (0.351)  (0.0327)  (0.224) (0.345)
N 50 50 50 50 50 50
R? 0.219 0.387 0.789 0.154 0.453 0.789
F-stat 13.5 19.9 10.1 8.8 14.8 11.3

Robust standard errors in parentheses
** p<0.01, * p<0.05, + p<0.1

PCPs which is important as some of the measures of access to care used later are only applicable

for primary care.

A general issue with the two stage least squares (2SLS) method of estimation is that while
the coefficient estimates are consistent they are biased in finite samples. The bias comes from
the fact that the method requires fitting a first stage which can be overfit in small samples
leading to a biased second stage. The bias shrinks with the sample size since large samples
can limit overfitting but in this study the samples are quite limited since there are only 50

states and thus, even in later regressions where technically there are thousands of observations
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from individual physicians and households, there are effectively only 50 observations after
clustering. The size of the bias is also reduced when the instrument is a powerful predictor
of the variable of interest since in that case the fit is less influenced by noise and reflects the
genuine correlation of the variables. The rule of thumb is that if the squared t-statistic on the
instrument in the first stage, or equivalently the F-statistic, is greater than 10 then the bias from
finite samples is unlikely to be problematic (Stock, Wright, and Yogo 2002). The F-statistics for
the instrument are shown at the bottom of Table 3.2 and are slightly larger than 10 when the
full set of controls is included. Overall then it appears bias is not necessarily a problem but the
instrument does not pass this test by a wide margin either so the potential is worth keeping in
mind.

The pattern of the coefficient shrinking toward zero as more controls are added is also con-
cerning as, if the instrument is exogenous, the point estimates should not be impacted by the
inclusion of controls—the controls mainly serve the function of improving the precision of the
estimates by shrinking the unexplained variation in the dependent variable. This could indi-
cate that the instrument is not exogenous, a genuine concern, or be a byproduct of the small
samples. I think the later is at least as likely as the former since low power and imprecise
estimates are problems throughout this study and the estimates have overlapping confidence
intervals, indicating that they are unlikely to be different in statistical terms.

One way to test the validity of the instrument is to look at the effect of autonomous medical
board specifically on IMGs. Based on the hypothesized mechanism discussed earlier we should
see substantial effects of self-financing on the supply of IMGs and minimal effects on locally
trained physicians. Table 3.3 shows that this is indeed the case. IMG density is reduced by over
30 log points while non-IMG density is largely unaffected with negative but very small and
insignificant estimated effects.

A final note about the instrumental variables method is important. This econometric method
estimates a particular type of treatment effect known as a Local Average Treatment Effect or
LATE. Intuitively, if treatment effects vary, it tells us about the effect of increasing supply in the

kinds of states influenced by the instrument and for the kinds of supply changes the treatment
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Table 3.3: Validity test for medical board autonomy instrument

Dependent: In(IMG per 100k)  In(non-IMG per 100k)
autonomy -0.311+  -0.310** -0.012 -0.046
(0.161) (0.107) (0.0455) (0.0431)
seniors (%) 0.219** -0.0106
(0.0306) (0.0123)
White (%) 0.000576 -0.000255
(0.00480) (0.00192)
Hispanic (%) 0.0413** -0.0118**
(0.00825) (0.00331)
Black (%) 0.0147* -0.00573+
(0.00709) (0.00284)
income 6.18e-05** 1.92e-05*
(1.96e-05) (7.84e-06)
obesity (%) 5.149 -1.261
(3.374) (1.352)
smoking (%) 4.367+ -1.029
(2.367) (0.949)
UE rate 0.0633 -0.00571
(0.0377) (0.0151)
uninsured 5.042** -1.681*
(1.552) (0.622)
Constant -7.556**  -17.84**  -6.318** -5.152**
(0.125) (1.250) (0.0353) (0.501)
N 50 50 50 50
R? 0.072 0.793 0.101 0.596

Robust standard errors in parentheses
** p<0.01, * p<0.05, + p<0.1
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induces. This could be important for interpretation as IMGs completed part of their training
overseas and thus might have a different style of practice than American-trained physicians.
They could be, for instance, more or less likely to practice defensive medicine and more or less
likely to response to financial incentives created by payment reforms. To some extent this the-
ory can be tested as the HTS physician surveys (discussed below) can be used to build models
where IMG status is a predictor of various behaviors. For the most part such models show sig-
nificant but modest differences between IMGs and other physicians. IMGs, for instance, have
lower incomes conditional on specialty and spend about 5% more time on patient care, all else
equal. As a result, the effects of supply shocks estimated here are not necessarily the same as

the effects of a supply shock from training more physicians at American medical schools.

3.3.2 Coefficient stability and selection

My second approach to making inferences about treatment effects is based on the bounding
approach developed in Oster (2019) which builds on Altonji, Elder, and Taber (2005). The
intuition for this approach comes from the omitted variable bias formulas discussed at the
start of section 3.3 which showed that comparing estimates from short and long regressions
is informative about the bias from a known omitted variable. The short and long regressions
cannot, of course be estimated for variables known to be important but for which data does not
exist, but Oster shows that comparison of the short and long regressions for known controls can
be informative about the bias from excluded controls under certain assumptions. Specifically,
she shows that her assumption imply that the change in a coefficient between the short and
long regression can be used to calculate a limit on how much more the coefficient could change
if further controls were added. I briefly review the basic framework below.

Consider a regressor of interest X, that is correlated with some other factors that influence
Y: variables C, the control, and O, the omitted variable. Assume that the full, correct model

is Y = BX + 9C + aO + € . The feasible short and long regressions are Y = B0 X and Y =

oox /03

9 is constant and small,
ocx / UC

BiongX + yC. Oster’s proportional selection assumption is that § =

meaning that the effect of O on X is proportional to the effect of C on X and not too much larger.
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In intuitive terms ¢ tells us how much more important O is as a predictor of X compared to C.
Oster suggests that often a plausible assumption is § = 1.

Defining Ry as the R? from the full model, R; as the R? from the long regression and
Rss as the R? from the short regression, Oster shows that under some regularity assumptions
Biong — 0(Biong — Bshort) (%) is a consistent estimator for f, the unbiased treatment effect of
X on Y with the full set of controls. A similar results holds up under weaker assumptions. She
suggests using the formula not as an estimator for  but as a way to bound the plausible size
of the bias baseline estimates. For example, if the correction term (Bjo,y — ﬁshort)(%) is
large then that suggests we should have low confidence that S, is representative of the p we
would expect in a better model with more controls. One limitation on this method is that Ryux
cannot be estimated since full regression including O cannot be run without data on O. Oster

suggests using knowledge about the data generating process to pick a reasonable number or

using Ry, = 1.3R; which appears to work well in practice based on her case studies.

3.3.3 Data Description

Some of the data used in this study were discussed in section 3.3.1 including the key predictor,
instrument and state-level controls. The outcomes for physicians and patients come from two
surveys that are part of the Health Tracking Surveys (HTS) conducted by the Inter-university
Consortium for Political and Social Research (ICPSR). These surveys are successors to the Com-
munity Tracking Surveys that began in 1996 but with revisions to create a new sampling frame
and focus. The older study sampled intensively from a set of 60 communities thought to be rep-
resentative of the U.S., with particularly large samples from 12 of the communities. This meant
that the older studies are not representative of health care markets in the nation as a whole so
the HTS was redesigned to sample from all 50 states in proportion to their population. The
public use dataset does not include geographic identifiers, critical for matching physicians and
households with state characteristics, but the restricted access data, obtained by application,

includes this information.
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Table 3.4: Summary statistics for HTS physician variables

N mean StD min max p25 p75

income ($s) 4621 213,861 107,515 75,000 400,000 125,000 275,000
total hours (patients) 4,621 2,014 728.5 500 4,992 1,500 2,400
total hours (admin) 4,621  406.0 391.5 0 4,851 144 500
Specialty:

- internal medicine 4,622 0.134 0.341 0 1 0 0

- general medicine 4,622  0.175 0.380 0 1 0 0

- pediatrics 4,622 0.09 0.287 0 1 0 0

- medical specialty 4,622  0.228 0.448 0 1 0 1

- surgery 4,622 0.19 0.392 0 1 0 0

- psychiatry 4,622  0.066 0.248 0 1 0 0

- ob-gyn 4622 0.067 0.250 0 1 0 0
experience 4,621 18.22 10.46 1 68 10 26
IMG 4622 0.217 0.412 0 1 0 0
male 4622 0.737 0.440 0 1 0 1
Hispanic 4,622 0.051 0.220 0 1 0 0
Black 4,622 0.039 0.193 0 1 0 0
White 4622 0.779 0.415 0 1 1 1
Asian 4,622 0.146 0.354 0 1 0 0
Board Certified 4,622 0.897 0.305 0 1 1 1

The physician survey, conducted in 2008 samples only physicians active in patient care, so
it excludes those who are retired or focus on management, consulting, or research. A small
subset of the sample (1.7%) nevertheless reported working far below half-time with patients so
I trimmed observations reporting fewer than 500 hours with patients in the previous year to
ensure the sample conforms to the active in patient care criteria. Residents and fellows are also
excluded from the sampling frame since residents do not practice independently and fellows
are nominally focused primarily on research. ICPSR matched responses to the survey with
information from the AMA on practice location, specialty, experience and training background
in order to enrich the set of demographic controls available. Most of the questions in the survey
involve the physician’s perspectives on aspects of their business including how they allocate
time, what forms of care they provide, sources of income, and the organization of their practice
including ownership structure.

Summary statistics for the HTS physician survey are presented in Table 3.4. The physician

income variable in particular is worth discussing. Income on the survey is binned into cat-
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egories: less than $100,000, $50,000 increments up to $300,000 and more than $300,000. For
regression analysis is important to be able to treat income as a continuous variable so impute
values for each category using the mean of the $50,000 increments, $75,000 for the lowest cat-
egory (just under 12% of physicians), and $400,000 for the top category, to reflect the highly
skewed distribution of earnings in almost all professions. The average income with these impu-
tations is $213,861 which seems reasonable, although a bit low, with a large standard deviation
($107,515) reflecting the significant variation across respondents.

The data confirm that physicians tend to work long hours, spending just over 2000 hours
with patients and an additional 400 on administrative tasks, although this varies significantly
with a few doctors claiming to work almost 100 hours weeks. I do not censor any observations
aside from those who appear to be only marginally involved in patient care as noted above
although some of these numbers appear unreasonable. About 20% of the sample are IMGs and
underrepresented groups are, of course, underrepresented. Black and Hispanic physicians,
for instance, make up just under 10% of the sample. About 90% of the physicians are board
certified which is higher than the national rate of about 79% at the time (Young et al. 2017)
suggesting that it is mildly unrepresentative.

A few outcome variables related to access to care are drawn from the complementary HTS
household survey, which focuses on gathering information about insurance coverage and inter-
actions with health care providers, including questions about satisfaction, trust, and problems
paying bills. For background the survey also asks about demographics including the standard
indicators about race, income, and geography, as well as additional questions about health
background, such as presence of chronic conditions. These surveys were conducted a few
years after the physician surveys, in 2010, which could be a problem, but there were no major
changes to the health care system during this period as the Affordable Care Act’s provisions
primarily went into effect several years later. The sampling frame sampled households but
then asked questions about all members of the family at that address so I use responses from

all adults as individuals.
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Table 3.5: Summary statistics for HTS household variables

N mean StD min max p25 p75

age 13,858 5055 1725 20 91 37 63
male 13,861 0.459 0498 0 1 0 1
college grad. 13,861 0332 0471 O 1 0 1
employed 13,861 0.499 0500 O 1 0 1
below poverty line 13,861 0.198 0399 0 1 0 0
Hispanic 13,861 0.102 0302 0 1 0 0
White 13,861 0.721 0448 O 1 0 1
Black 13,861 0.113 0317 0 1 0 0
M.D. visits 13,858 4.173 5206 0 30 1 5
Other visits 13,858 0.606 1.747 0 13 0 0
has usual source 13,861 0.605 0.489 0 1 0 1
wait time 6,254 5.069 7.198 0 84 1 7
Insurance:
- Medicare 13,861 0.258 0437 0 1 0 1
- Medicaid 13,861 0.0651 0.247 0 1 0 0
- Private 13,861 0.519 0500 O 1 0 1
- Military 13,861 0.0127 0.112 0 1 0 0

One potential problem with these surveys is that lots of information about the household is
provided by a single respondent who proxies for other adults. In some cases this is likely in-
nocuous and in instances where the proxy would be unlikely to know the answers to questions
there is a self-response module which each adult fills out and mails back. Still, it is possible
that on some questions the proxy answers but was inaccurate. This could be a contributing
factor for why the results using this sample are so imprecise as seen in section 3.5. Response
rates, as with most surveys, were low at 42% and the pattern of non-response is non-random as
seen in the summary statistics in Table 3.5. Adults that responded are more likely to live below
the poverty line, about 19.8% of sample of adults versus around 15.1% according to the Census
Bureau for 2010, and slightly less likely to be employed compared to the general population.
According to the survey the respondents average 31% more doctors’ visits than comparable
surveys of physicians would indicate (CDC 2018) but this appears not to be a result of the re-
sponse pattern as reweighting with weights constructed by IPSCR to match the CPS yield a

similar estimate.

137



3.4 Physician Supply and Spending

This section presents results for how changes in physician supply influence physician out-
comes. [ start by presenting basic OLS models for physician income that likely suffer from
omitted variable bias, which leads to an application of the proportional selection bounding
procedure disused earlier and then to instrumental variables estimates. Results from the OLS
models are presented in Table 3.6 where the columns add progressively more controls. All of
the specifications use a log-log specification for physician income and the physician workforce
per 100,000 residents so that the effect of supply increases can be interpreted as an elasticity. In
the most basic model where supply is the only predictor the elasticity is significant and neg-
ative although not particularly large in absolute value. Adding physician demographics as
controls shrinks the coefficient by 40% but it remains significant at conventional levels. The fit
of both of these models is poor as indicated by the R? but adding controls for physician spe-
cialty significantly improves the fit, raising the R? from 0.133 to 0.305. This makes sense as a
physician’s specialty determines the rates they can charge for evaluations and the procedures
for which they specialize in and bill for. The controls for specialty raise the elasticity slightly
and it remains significant, but further expanding the set of controls to include state level factors
shrinks the coefficient enough to make it significant only at the 10% level.

These results make some sense in the competitive market framework discussed earlier,
showing a robust negative association between physician income and local supply. In a supply-
demand framework where we think of the physician density as exogenous, conditional on
covariates, then the coefficient is the inverse of the price elasticity of demand for physician
services. Most of the coefficient estimates are clustered in the range of -0.2, indicating that the
implied price elasticity of demand for physician services is around 5. This seems extraordinar-
ily high as we would expect medical care demand to be relative inelastic, intuition confirmed
by the RAND health insurance experiment (Manning et al. 1987). This suggests that either the
OLS estimates suffer from substantial bias or that there is more to this market than the simple

frictionless model would suggest.
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Table 3.6: Regression models for In(physician income)

Dependent: In(income)
In(physicians per 100k) -0.259** -0.155% -0.192** -0.165+
(0.0655)  (0.0581) (0.0481) (0.0920)
experience 0.0231** 0.0223** 0.0223**
(0.00245) (0.00236) (0.00239)
experience? -0.000671**  -0.000617**  -0.000620**
(5.29¢-05)  (5.37e-05)  (5.42e-05)
IMG -0.0949** -0.0289 -0.0299
(0.0189) (0.0189) (0.0189)
male 0.349** 0.274** 0.274**
(0.0199) (0.0160) (0.0159)
Hispanic -0.0754** -0.0423 -0.0505+
(0.0274) (0.0269) (0.0274)
Black -0.149** -0.0981+ -0.0829+
(0.0464) (0.0488) (0.0472)
White -0.0148 0.00703 0.0158
(0.0354) (0.0439) (0.0427)
Asian -0.0212 -0.000315 0.00100
(0.0332) (0.0369) (0.0366)
Board Certified 0.148** 0.147**
(0.0182) (0.0181)
Constant 13.55** 12.65** 12.53** 12.24**
(0.353) (0.320) (0.273) (0.460)
Additional Controls:
specialty no no yes yes
state controls no no no yes
N 4,621 4,621 4,621 4,621
R? 0.005 0.133 0.305 0.308
Standard errors clustered by state in parentheses
** p<0.01, * p<0.05, + p<0.1
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Does the bounding exercise described in section 3.3.2 help to clarify the emerging picture?
Comparing model 1, with the fewest controls, and model 4, with the largest set of controls,
the coefficient shrinks from -0.259 to -0.165, suggesting the omitted factors shrink the treat-
ment effect, but the R rises significantly from 0.005 to 0.308 suggesting there is limited scope
for further shrinkage unless Ry, is particularly large. The upper bound assuming § = 1
andR;;;x = 1.3R; = 0.4004, the parameters suggested in Oster (2019), is -0.136, still substan-
tially below zero. Perhaps a more informative way to look at the data is that with this rate of
selection the omitted variables would have to push the R? up to 0.835 before the § of interest
would drop to zero. That seems highly implausible on two grounds. First, it is roughly double
the variance in physician income that can be explained in the most saturated models. Second,
even overfitting the model with dummies for subspecialty codes and states of practice can only
explain about 40% of the variance in incomes. In summary it seems unlikely that omitted vari-
able bias could completely wipe out the negative association between physician supply and
incomes observed in these models. I now turn to the instrumental variables estimates for the
effects of physician supply on outcomes and focus on the IV method for the rest of the chapter.
IV estimates for the effect of supply on incomes are presented in Table 3.7. The point estimates
are similar to the OLS results for all doctors and for a subsample of only PCPs (columns 3-4)
as seen by comparing columns 1 to 2 and 3 to 4. Unfortunately the moderate strength of the
instrument combined with the small number of clusters result in much wider standard and
preclude statistical significance or even being able to rule out large positive effects of physician
supply on incomes. For example, in the PCP only IV model (column 4) the point estimate is
modestly negative but with a standard error of 0.256 the 95% confidence interval includes co-
efficients as high as 0.177 meaning a 10% increase in local physician supply would lead to a
1.77% increase income.

The estimates for the effect of supply on time allocation are clearer and presented in Tables
3.8 and 3.9. The estimates are much more precise with both of the IV estimates achieving
statistical significance at the 5% level or beyond. These specifications use the log of time spent

as the dependent variable so, like with the models of income, the coefficients can be interpreted
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Table 3.7: Instrumental variables estimates for effect of supply on income

Dependent: In(income)
In(physicians per 100k) -0.165+ -0.126
(0.0923) (0.197)
In(primary care per 100k) -0.136 -0.325
(0.128) (0.256)
experience 0.0223** 0.0223** 0.0182** 0.0183**
(0.00238) (0.00236) (0.00263) (0.00255)
experience? -0.000620**  -0.000620** -0.000479** -0.000481**
(5.41e-05)  (5.39e-05)  (6.20e-05)  (6.07e-05)
IMG -0.0298 -0.0299 -0.00499 -0.00374
(0.0199) (0.0195) (0.0246) (0.0251)
male 0.274** 0.274** 0.248** 0.248**
(0.0159) (0.0158) (0.0185) (0.0180)
Hispanic -0.0507+ -0.0503+ -0.0220 -0.0243
(0.0288) (0.0287) (0.0436) (0.0432)
Black -0.0836* -0.0837* -0.0435 -0.0420
(0.0342) (0.0339) (0.0493) (0.0486)
White 0.0151 0.0152 0.0172 0.0177
(0.0198) (0.0195) (0.0275) (0.0274)
Board certified 0.147** 0.147%* 0.0844** 0.0879**
(0.0181) (0.0180) (0.0270) (0.0272)
Constant 12.24** 12.06** 10.63** 9.268**
(0.468) (0.921) (0.894) (1.827)
Additional controls:
specialties yes yes no no
state controls yes yes yes yes
N 4,621 4,621 1,847 1,847
R? 0.308 0.308 0.118 0.118
sample all PCPs only
instrument n/a autonomy n/a autonomy

Standard errors clustered by state in parentheses
** p<0.01, * p<0.05, + p<0.1
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Table 3.8: Instrument variables estimates for effect of supply on hours worked

Dependent: In(total hours with patients)
In(physicians per 100k) -0.216** -0.412**
(0.0494) (0.117)
In(primary care per 100k) -0.167 -0.543*
(0.109) (0.223)
experience 0.00762**  0.00760** 0.0108** 0.0110**
(0.00183) (0.00179) (0.00242) (0.00233)
experience? -0.000298**  -0.000297** -0.000325** -0.000329**
(4.42e-05)  (4.32e-05)  (5.06e-05)  (4.85e-05)
IMG 0.0528** 0.0533** 0.0447 0.0471
(0.0157) (0.0156) (0.0300) (0.0291)
male 0.198** 0.197** 0.204** 0.203**
(0.0127) (0.0125) (0.0204) (0.0203)
Hispanic -0.0261 -0.0284 -5.46e-05 -0.00453
(0.0244) (0.0242) (0.0262) (0.0267)
Black 0.0602+ 0.0606+ 0.0745+ 0.0775*
(0.0330) (0.0329) (0.0403) (0.0395)
White 0.0204 0.0200 0.0289 0.0300
(0.0158) (0.0157) (0.0192) (0.0190)
Board certified -0.00457 -0.00305 0.0240 0.0310
(0.0203) (0.0200) (0.0264) (0.0259)
Constant 8.394** 9.290** 6.251** 3.535*
(0.248) (0.529) (0.831) (1.589)
Additional controls:
specialties yes yes no no
state controls yes yes yes yes
N 4,621 4,621 1,847 1,847
R? 0.112 0.111 0.107 0.103
instrument n/a autonomy n/a autonomy

Standard errors clustered by state in parentheses
** p<0.01, * p<0.05, + p<0.1
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as elasticities. In the OLS specifications these elasticities are modestly negative, -0.216 for all
physicians and -0.167 for PCPs. The former is significant at the 1% level while the later just
misses the 10% significant level due to the small sample of PCPs. The instrumental variables
estimates are roughly double in magnitude, -0.412 for all physicians and -0.543 for PCPs, and
both significant at the 5% level. This is consistent with the suggestive evidence that supply
lowers income as it indicates that physicians have fewer patients and as a result can schedule
fewer appointments and bill for fewer hours. The drop-off is not one for one, suggesting scope
for either inducing demand or, perhaps, scheduling longer visits per patient, but indicate that
the induced demand cannot fully offset the dilution of demand for individual physicians.

If physicians spend less time with patients what do they use the extra time for? One pos-
sibility, noted earlier and emphasized by Bodemheimer and Smith (2013) is that productivity
might be endogenous to the availability of clinical inputs. In areas where more physicians
practice then more time can be wasted on administrivia without crowding out time needed
evaluate and treat patients. Table 3.9 shows OLS and instrumental variables estimates for the
effect of physician supply on time spent on administrative tasks and the estimates are con-
sistent with the endogenous productivity hypothesis. The elasticity for the OLS specification
is 0.343 and slightly larger in the IV specification for all physicians, 0.486, indicating that for
every 10% more physicians that see patients each physician spends a little less than 5% more
time on administrative tasks. It should be noted that this is not necessarily bad for patient
health as documentation can be important for quality of care if it facilitates smoother transi-
tions, eliminates duplication of tests, or enables research that improves standards of care and
clinical processes, so further work should investigate how marginal hours spent on adminis-
trative work impact health outcomes. Another caveat with these results is that they do not hold
up in the PCP subsample. The point estimates are similar and slightly larger, consistent with
the larger administrative burden of primary care in general, but lacks significance due to a lack

of power.

143



Table 3.9: Does variation in physician supply influence practice styles?

Dependent: In(total hours on administrative)
In(physicians per 100k) 0.343* 0.486*
(0.150) (0.224)
In(primary care per 100k) 0.451+ 0.587
(0.259) (0.497)
experience 0.0110* 0.0110* 0.0164* 0.0164*
(0.00473) (0.00468)  (0.00770)  (0.00760)
experience? -0.000324**  -0.000325** -0.000357* -0.000356*
(0.000108)  (0.000107)  (0.000158) (0.000156)
IMG 0.0355 0.0352 0.0889+ 0.0880+
(0.0332) (0.0330) (0.0457) (0.0453)
male 0.0619 0.0625+ 0.0218 0.0222
(0.0370) (0.0364) (0.0581) (0.0572)
Hispanic 0.0515 0.0530 0.0517 0.0526
(0.0527) (0.0522) (0.0795) (0.0792)
Black 0.260** 0.260** 0.437** 0.436**
(0.0610) (0.0605) (0.128) (0.126)
White 0.0897* 0.0900* 0.119 0.119
(0.0376) (0.0373) (0.0815) (0.0800)
Board certified -0.0414 -0.0423 -0.0339 -0.0365
(0.0453) (0.0449) (0.0655) (0.0647)
Constant 3.838** 3.181** 7.928** 8.915%
(0.803) (1.134) (1.972) (3.730)
Additional controls:
specialties yes yes no no
state controls yes yes yes yes
N 4,294 4,294 1,708 1,708
R? 0.019 0.019 0.040 0.040
instrument n/a autonomy n/a autonomy

Standard errors clustered by state in parentheses
** p<0.01, * p<0.05, + p<0.1
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Figure 3.3: Histogram of wait times
3.5 Physician Supply and Access to Care

In this section I briefly report results from models of the effect of physician supply on access
to care, using outcomes drawn from the HTS patient surveys. It turns out that all of these esti-
mates have wide confidence intervals making them largely uninformative and the models have
such poor fit that the proportional selection analysis also provides wide bounds on plausible
causal effects. The basic underlying problem is a combination of weak power from the instru-
ment and small sample of clusters combined with substantial noise in recall by respondents on
the surveys. Reported wait times, seen in Figure 3.3, illustrate the problem. The distribution
is uneven, with significant excess mass on round numbers such as 10 and 30 as well as multi-
ples of seven including, notably 21 and 42, indicating that respondents had poor recall of their
wait times and gave approximate, rounded answers. The reported numbers of medical visits
suffer from similar problems with excess mass at 2, 5, 10, and 15 visits. This rounding, in ad-
dition to genuine recall biases that lead to under and over-reporting visits, creates substantial

measurement error.
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With that in mind I present the results for the effect of physician supply on access to care in
Table 3.10. The first two columns show the OLS and IV estimates for the effect of primary care
physician supply on whether a respondent has a primary care physician that manages their
care. I restrict this sample to patients with insurance as it is unclear what standard respondents
without insurance use for having a usual source of care and it appears that many have in mind
that they visit an emergency department.

I would expect that having more PCPs per capita in an area leads to a larger fraction of
patients having a PCP and the OLS point estimate shows a large positive association. A ten
percent increase in PCP supply is associated with a 1.5 percentage point increase in the proba-
bility of having a PCP from a baseline of 65%. The IV point estimate is similar but not significant
due to a wide confidence interval.

The HTS survey follows up with respondents that have a PCP (or other usual source of
care) and asks about the wait time for the last visit they requested. These estimates are noisy
and counterintuitive, with PCP supply associated with significant increases in wait times in the
OLS model and associated with even larger increases in wait times in the IV model, although
the standard error for that estimate includes large negative effects on wait times. I think it
is best to avoid reading too much into these results but, taken at face value, they represent a
challenge to the view that training more physicians will improve difficulties with access to care.

My final estimates are presented in Table 3.11 which shows the relationship between the
number of physician visits and physician supply as well as the association of physician sup-
ply with visits to other medical providers such as nurse practitioners and advanced practice
nurses. The OLS results fit with intuition as having more physicians in an area is associated
with more visits to doctors and slightly fewer visits to other providers, but the magnitudes are
miniscule. The counterpart IV estimates are so noisy as to be uninformative. Future research
with billing data on office visits or another more reliable data source may be able to reassess

this relationship using my proposed instrument or another natural experiment.
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Table 3.10: Instrument variables estimates for effect of supply on access to care

Dependent: has a PCP wait time
In(primary care per 100k) 0.142% 0.178 2.506% 5.682
(0.0611) (0.149) (1.128) (3.610)
age 0.00762**  0.00760** 0.0108** 0.0110*
(0.00183) (0.00179) (0.00242) (0.00233)
age’ -0.000298**  -0.000297**  -0.000325** -0.000329**
(4.42e-05)  (4.32e-05)  (5.06e-05)  (4.85e-05)
male 0.0528** 0.0533** 0.0447 0.0471
(0.0157) (0.0156) (0.0300) (0.0291)
college grad 0.198** 0.197** 0.204** 0.203**
(0.0127) (0.0125) (0.0204) (0.0203)
employed -0.0261 -0.0284 -5.46e-05 -0.00453
(0.0244) (0.0242) (0.0262) (0.0267)
below poverty line 0.0602+ 0.0606+ 0.0745+ 0.0775*
(0.0330) (0.0329) (0.0403) (0.0395)
Hispanic 0.0204 0.0200 0.0289 0.0300
(0.0158) (0.0157) (0.0192) (0.0190)
White -0.00457 -0.00305 0.0240 0.0310
(0.0203) (0.0200) (0.0264) (0.0259)
Black 8.394** 9.290** 6.251** 3.535*
(0.248) (0.529) (0.831) (1.589)
Insurance:
- Medicare 0.00561 0.0718 0.159 0.0195
(0.0223) (0.0513) (1.082) (1.200)
- Private -0.0787** -0.0128 0.183 0.0356
(0.0254) (0.0545) (1.194) (1.320)
- Military -0.0672 0.0647 0.767 0.685
(0.0563) (0.0552) (1.498) (1.505)
Constant 1.456** 1.648 20.90** 43.46+
(0.446) (1.055) (7.347) (26.41)
N 11,846 11,846 5,705 5,705
R? 0.045 0.045 0.012 0.009
instrument n/a autonomy n/a autonomy

Standard errors clustered by state in parentheses
** p<0.01, * p<0.05, + p<0.1
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Table 3.11: Instrument variables estimates for effect of supply on number of visits

Dependent: M.D. visits other visits
In(physicians per 100k)  0.978+ -1.259 -0.118 0.265
(0.510) (2.139) (0.156) (0.505)
age 0.165** 0.165** 0.0273** 0.0275**
(0.0255) (0.0258) (0.00964) (0.00957)
age® -0.00180**  -0.00179** -0.000314** -0.000315**
(0.000314) (0.000317)  (0.000101)  (9.99e-05)
male -0.938** -0.933** -0.117* -0.118*
(0.132) (0.133) (0.0493) (0.0486)
college grad -0.0460 0.00244 -0.0480 -0.0563
(0.148) (0.169) (0.0586) (0.0586)
employed -1.357** -1.362** -0.303** -0.302**
(0.126) (0.123) (0.0686) (0.0678)
below poverty line 0.342 0.298 0.114 0.122
(0.228) (0.245) (0.112) (0.115)
Hispanic 0.245 0.202 -0.0652 -0.0578
(0.485) (0.494) (0.105) (0.0996)
White 0.171 0.139 0.0556 0.0610
(0.287) (0.282) (0.0923) (0.0928)
Black 0.547 0.462 -0.0143 0.000200
(0.330) (0.360) (0.106) (0.104)
Insurance:
- Medicare 1.383* 0.602 0.0488 -0.340
(0.564) (0.895) (0.221) (0.396)
- Private -0.715 -1.470+ -0.197 -0.590
(0.524) (0.770) (0.209) (0.387)
- Military 0.853 0.659 0.376 0.409
(0.932) (0.900) (0.434) (0.421)
Constant -3.045 9.876 1.071 -0.617
(3.060) (11.75) (0.823) (2.708)
N 11,846 11,846 11,846 11,846
R? 0.060 0.057 0.018 0.017
instrument n/a autonomy n/a autonomy

Standard errors clustered by state in parentheses
** p<0.01, * p<0.05, + p<0.1
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3.6 Conclusion

Many commentators are concerned that as the number of insured Americans increases and the
population continues to age that the health care system does not have an adequate supply to
provide timely care for all patients. In a recent Wall Street Journal survey of 19 health policy
experts, seven indicated that the response to the putative physician shortage should be an
increase in payments to physicians (i.e. student debt relief) or the number of physicians (i.e.
more funding for residencies). Five experts suggested reforming practice styles, emphasizing
coordination and technology, to improve productivity, while eight recommended expanding
scope of practice for mid-level providers such as nurse practitioners (Potempa et al. 2013).
This chapter examined the evidence on whether a greater physician supply, as recommended,
is associated with better access to health care for patients and found mixed evidence. A larger
physician supply is associated with worse access to care as judged by longer wait times but also
associated with a higher probability of having a PCP. I found stronger evidence that a larger
physician supply impacts physicians, leading them to spend less time with patients and more
time on administrative tasks, and some evidence that greater supply leads to lower incomes.
Further study is needed on this topic, both to validate these tentative results and to explore how

the reduced form evidence maps onto mechanisms within the market for physician services.
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