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Unraveling the Relationship between Education and Health:  

Genetic Controls, Heterogeneity across Sociodemographic Groups,  

and Variation across Biomarkers of Health Risk 

 

Abstract 

Despite decades of research demonstrating better health among the higher educated, the causal 

effect of education on health is still debated. This is due in part to mixed evidence obtained in quasi-

experimental work. These puzzling patterns could be explained by the influence of uncontrolled 

confounders in observational research, by effect heterogeneity across individuals or environments, or by 

variation in effects across manifestations of health. The empirical chapters of this dissertation draw 

motivation from these observations to further unravel the relationship between education and health 

among older adults in the United States. 

First, I assess the utility of a novel control variable: a measure of genetic selection into education. 

Genetic selection is operationalized using a polygenic score (PGS) that predicts years of schooling based 

on many hundreds of thousands of genetic variants across the genome. Among European-ancestry 

respondents to the Health and Retirement Study (HRS) and the Wisconsin Longitudinal Study (WLS), I 

find that controlling for the PGS significantly attenuates the association between education and later 

health. The level of attenuation I observe is comparable to that obtained when controlling instead for 

measures of other known confounders, including family background and childhood health. Additional 

results suggest that the education PGS reflects more proximal confounders of the education-health link 

that may not be adequately controlled using survey measures alone. Crucially, however, the positive 

relationship between education and health is robust to this particular measure of genetic selection into 

years of schooling. 



 iv 

Next, I evaluate whether the association of education with health varies across sociodemographic 

groups defined by socioeconomic (SES) origin, race, and gender using data from the HRS. In so doing, I 

take a more complex intersectional perspective than has been used in prior work. This is important, as 

exposure to discrimination, which shapes opportunities to use resources in support of health, may depend 

on multiple sociodemographic characteristics simultaneously. Results underscore the importance of one 

intersection in particular: that between SES origin and race. In line with prior work, I find that the 

association of years of schooling with self-reported health is stronger for those from low-SES 

backgrounds; however, this is only the case among whites. Seen from the other angle, the association of 

education with self-reported health and mortality is weaker for blacks than for whites, but primarily 

among those from low-SES origins. For both self-reported health and mortality, I find the smallest gain in 

health per year of schooling among low-SES origin black men, the group with the highest risk of poor 

health and mortality overall. 

In the final empirical chapter, I use data from the HRS to assess whether educational disparities in 

biomarkers of health risk vary across their distributions. Fundamental cause theory implies that such 

disparities will be largest where related resources can most successfully be leveraged to improve 

outcomes. For many biomarkers, this could be in the unhealthy tail of the distribution, where unequal 

access to and efficacy of medical interventions may exacerbate disparities. Consistent with this theory, I 

find that educational disparities in blood sugar and blood pressure are largest at their least healthy levels, 

precisely the points where impacts on subsequent morbidity and mortality are greatest. Meanwhile, high-

density lipoprotein (HDL) or “good” cholesterol—a biomarker that is not regularly targeted by 

medication—does not display such a pattern. These results are not only of theoretical and substantive 

interest; they also provide methodological guidance for future work on biomarkers of health risk, which is 

timely given the recent proliferation of such measures in social science datasets. 
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Chapter 1. Introduction 

The distribution of health within and between populations has been the focus of scientific enquiry 

for centuries. Hippocrates (c. 460–370 B.C.) was the first to argue that the origin of disease was not 

supernatural, but instead rational, depending in part on climate and behavior (Lloyd 1983). The 

systematic study of health disparities was refined in nineteenth-century Europe, when improvements in 

national population statistics enabled the study of variation by district or occupation (Krieger 2011). 

Building on these early observations, epidemiologists, demographers, and sociologists have theorized that 

health reflects the biological embodiment of both natural and social environments encountered over the 

life course (Krieger 2001, 2011). Segments of the population that occupy distinct physical, structural, or 

cultural contexts are therefore expected to experience different patterns of health and mortality. 

This dissertation focuses on health disparities across a dimension of population segmentation that 

is highly salient in the United States today: educational attainment. Prior research shows that educational 

disparities in health exist across time and space (Cutler and Lleras-Muney 2008; Hummer and Lariscy 

2011). The magnitude of these disparities are often staggering. At age 25, college graduates in the U.S. 

are expected to live five years longer than those with a high school diploma and more than 11 years 

longer than those who did not complete high school (Rostron et al. 2010). Moreover, educational 

disparities in health have widened in recent decades (Goesling 2007; Liu and Hummer 2008; Masters et 

al. 2012; Meara et al. 2008; Montez et al. 2011). 

Some have therefore advocated investment in education as public health policy (Cohen and Syme 

2013; Galea et al. 2011; Hahn and Truman 2015). Woolf et al. (2007), for example, estimates that 

eliminating educational disparities would have averted eight times more deaths between 1996 and 2002 

than the medical advancements that occurred over that period. This line of thinking assumes that 

schooling causally affects subsequent health, with effects occurring through some combination of 

economic, behavioral, and structural mechanisms (Cutler and Lleras-Muney 2008; Freese and Lutfey 

2011; Link and Phelan 1995; Mirowsky and Ross 2003).  
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The causal impact of educational attainment on health is difficult to demonstrate empirically, 

however. Many factors influence both schooling choices and later health and thus could confound causal 

estimates in observational research (Cutler and Lleras-Muney 2008). Quasi-experimental studies—those 

that net out confounding bias using natural experiments such as policy changes or discordant education 

between twins—return mixed results (Galama et al. 2018; Grossman 2015). However, since their 

estimates apply to varying non-representative subsets of the population, mixed results may indicate not a 

null effect of education on health, but rather heterogeneity in effects across population subgroups. More 

generally, the effect of education is likely to vary across dimensions of health depending on disease 

etiology and the ability to prevent or treat adverse outcomes (Phelan et al. 2010). 

Thus, there remains a need for research that (1) better measures and controls for potential 

confounders of the education-health link, (2) studies heterogeneity in the effect of education on health 

across populations or subgroups, and (3) investigates the effect of education on diverse manifestations of 

health. The three empirical chapters of this dissertation contribute to these gaps in the literature using data 

from the Health and Retirement Study (2016; RAND 2016), a representative survey of older U.S. adults 

that is sponsored by the National Institute on Aging (grant number NIA U01AG009740) and conducted 

by the University of Michigan. Below, I briefly describe the prior work on education and health that 

motivates this dissertation. I also introduce the empirical chapters to follow, each of which aims to further 

unravel the relationship between education and health. 

 

SOCIOLOGICAL PERSPECTIVES ON EDUCATIONAL ATTAINMENT AND ITS 

RELATIONSHIP WITH HEALTH  

Weber (1978[1922]) highlighted that, as a key contributor to both social class and status, 

education is likely to have major implications for subsequent life chances. Indeed, contemporary work 

shows that more education is associated with higher earnings, higher occupational status and prestige, 

lower unemployment, and even a lower divorce rate (Hout 2012). As noted earlier, there is also a robust 

relationship between education and health, such that more educated people are, on average, healthier 
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(Cutler and Lleras-Muney 2008; Hummer and Lariscy 2011).  

Social scientists have attempted to determine what characteristics select people into schooling 

trajectories for decades. The status attainment model emphasized childhood social class, as those whose 

parents have higher levels of schooling are likely to attain high levels themselves (Blau and Duncan 1967; 

Pfeffer and Hertel 2015). The Wisconsin Model argued that academic performance, aspirations, and 

encouragement also matter (Sewell et al. 1969). Scholars have since identified childhood health (Case et 

al. 2005; Jackson 2009; Palloni 2006) and cognitive and non-cognitive skills and personality (Bowles and 

Gintis 1976; Farkas 2003; Lleras 2008) as additional factors selecting people into educational outcomes.  

Because educational attainment is not randomly assigned, it is difficult to evaluate the extent to 

which the association of schooling with subsequent outcomes, including health, reflects a causal effect. 

Nonetheless, there are several reasons to suspect that the education-health link is due, at least in part, to 

the effects of schooling. Schooling may improve health by enhancing economic prospects, thereby 

minimizing financial stress and enabling the procurement of nutritious food, safe housing, quality medical 

care, and other goods and services that support wellbeing (Hout 2012; Hummer and Lariscy 2011; Link 

and Phelan 1995; Lynch 2006). Education may also instill the skills and norms that are required to 

recognize and enact healthy behaviors throughout the life course (Cockerham 2005; Mirowsky and Ross 

2003). Finally, education propels people into structural positions that may support health passively; for 

example, a town council in a wealthy neighborhood may pass strong restrictions on pollution, benefitting 

all local residents regardless of personal involvement or interest (Freese and Lutfey 2011).  

 

ROADMAP FOR THIS DISSERTATION 

Each of the three empirical chapters of this dissertation addresses one of the major issues 

confronting research on the relationship between education and health. These issues include confounding 

in observational research, heterogeneity across contexts and individuals, and variation across dimensions 

and distributions of health. In the sections that follow, I discuss each of these issues in turn while 

introducing the empirical chapters that they motivate. 
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Confounding in observational research 

As mentioned earlier, social scientists have identified several characteristics that select people 

into educational outcomes. These include family socioeconomic status, childhood health, and abilities, 

skills, and personality (Blau and Duncan 1967; Bowles and Gintis 1976; Case et al. 2005; Farkas 2003; 

Jackson 2009; Lleras 2008; Palloni 2006; Pfeffer and Hertel 2015; Sewell et al. 1969). Many 

epidemiological, demographic, and sociological studies attempting to describe the effect of education on 

health therefore control for measures of these concepts in a standard regression framework.  

Such studies have consistently shown that the positive relationship between educational 

attainment and health remains when holding measures of potential confounders constant (Cutler and 

Lleras-Muney 2008; Grossman 2015). For example, after controlling for an extensive list of variables 

reflecting childhood circumstances and health, Montez and Hayward (2014) find a strong independent 

association between educational attainment and active life expectancy. Further, though some have 

suggested that intelligence may explain socioeconomic disparities in health (Gottfredson 2004), research 

controlling for measures of cognitive performance shows, again and again, that a gradient remains (Batty 

et al. 2006; Conti et al. 2010; Link et al. 2008; Schnittker 2005; Zheng 2017).  

Critics argue, however, that even extensive lists of controls likely leave confounding influences 

unaccounted for in observational research. A key confounder may be entirely unmeasured in the data at 

hand and thus cannot be controlled. When a dataset does contain some measure of a potential confounder, 

the resulting operationalization is often incomplete or inaccurate such that the confounding concept 

continues to bias causal estimates. Consider, for example, that family background is often measured using 

parental education; at best, measures of family income or parental occupation are also available, but often 

as static measures that do not identify instability in socioeconomic conditions across childhood. These 

variables may also fail to capture additional confounding influences related to duration and quality of 

family interactions. Even in the unlikely scenario in which all known confounders are measured perfectly, 

unknown confounders may continue to generate spurious results.  

In sum, control variables feature heavily in sociological research on educational disparities in 
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health, and additional or better measures of potential confounders are always welcome. In Chapter 2 

(Polygenic Scores as Controls for Genetic Selection into Education in Models of Health), I assess the 

utility of an innovative control variable that reflects genetic selection into schooling. Genetic selection is 

operationalized using a polygenic score (PGS) that predicts a person’s years of schooling based on the 

estimated effects of many hundreds of thousands of genetic variants across their genome (Dudbridge 

2013; Lee et al. 2018). PGSs may be useful control variables (Cesarini and Visscher 2017; Conley 2016; 

Freese 2018) if they are correlated with more proximal confounders of the education-health link—family 

background, childhood health, abilities and skills or personality traits—especially those that are 

unmeasured, measured poorly, or that remain unknown.  

 

Heterogeneity across contexts and individuals 

Quasi-experimental research gets around confounding by isolating exogenous variation in 

education. Such studies provide mixed support for a causal effect of education on health and mortality 

(Galama et al. 2018; Grossman 2015). In a well-known instrumental variable (IV) study, for example, 

Lleras-Muney (2005) finds that one additional year of schooling induced by changes in compulsory 

schooling laws in the U.S. reduced 10-year mortality rates by over six percentage points (see also, 

Fletcher 2015). Similar studies from European countries, however, return null results (Albouy and 

Lequien 2009; Braakmann 2011; Clark and Royer 2013; Johnston et al. 2015). In another type of quasi-

experimental study, researchers compare the health outcomes of identical twins with discordant education 

(Kohler et al. 2011). As with IV studies, results vary (Amin et al. 2015; Behrman et al. 2011; Fujiwara 

and Kawachi 2009; Lundborg 2013; Lundborg et al. 2016; Madsen et al. 2010).  

Importantly, effects estimated in such studies are based on non-representative subsets of the 

population. In studies instrumenting education with changes in compulsory schooling laws, estimated 

effects reflect those who were compelled to attain more education than they would have without the 

policy change. And, twin study estimates reflect effects among twins with different levels of education, or 

only about one-third of all twin pairs (Boardman and Fletcher 2015; Lundborg 2013). Thus, evidence 
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against a causal effect of education on health in quasi-experimental research does not necessarily confirm 

there is no effect overall. Instead, inconclusive findings may reflect effect heterogeneity. As such, there is 

now a push to examine not whether education affects health, but under what contexts and conditions and 

for which groups of individuals this effect is largest and smallest (Montez and Friedman 2015).  

In Chapter 3 (The Association of Education with Health and Mortality by Socioeconomic Origin, 

Race, and Gender), I focus on heterogeneity in the relationship between education and health across 

sociodemographic groups. In so doing, I evaluate two theories purporting that, while education helps 

people accrue resources that are important for health, some individuals have useful resources to draw on 

whether or not they achieve high levels of education (Ross and Mirowsky 2006, 2010). The theory of 

resource substitution holds that people with the fewest alternative resources are thus likely to benefit most 

from the resources accrued through education. Alternatively, under resource multiplication, those with 

access to alternative resources stand the most to gain from education.  

Prior work has evaluated support for these theories by comparing the association of education 

with health across sociodemographic groups defined in terms of socioeconomic origin (Ross and 

Mirowsky 2011) or gender (Ross and Mirowsky 2006, 2010; Ross et al. 2012). I contend that a more 

complex intersectional perspective could shed light on additional sources of heterogeneity, as both access 

to alternative resources and the ability to use one’s education in support of health can be impacted by 

discrimination, exposure to which may depend on joint group membership. Thus, I evaluate whether the 

relationship of education with health differs jointly by socioeconomic origin, race, and gender.  

 

Variation across dimensions and distributions of health  

The effects of education on health are likely to vary across health conditions. The theory of 

fundamental causation, for example, implies that health disparities by socioeconomic status (SES)—of 

which education is a key component—depend on sociohistorical factors including extant knowledge 

regarding the ability to prevent, treat, or cure disease (Link and Phelan 1995; Phelan et al. 2010). 

Empirical work supports this hypothesis, as SES disparities in health are greatest when prevention and 
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treatment strategies exist but are not universally accessible (Chang and Lauderdale 2009; Clouston et al. 

2016; Glied and Lleras-Muney 2008; Masters et al. 2015; Phelan et al. 2004; Phelan and Link 2005; 

Tehranifar et al. 2009). It is only for these health conditions that resources associated with SES can be 

marshaled to improve outcomes. 

 The measures of health traditionally available to sociologists are generally limited to self-reports 

and mortality. Self-reports capture several important manifestations of health, including perceived overall 

health, difficulties with physical functioning, symptoms of suboptimal mental health, and past medical 

events. However, symptoms must cross some threshold of severity to be reflected in self-reports, making 

it difficult to study health in younger populations or to investigate the emergence of health issues across 

the life course. And, many self-reports are subjective. Not only is it difficult to know what factors lead 

people to perceive their health in a certain way, the considerations that go into perceptions of health may 

vary across the same population subgroups that are the subject of health disparities research. For example, 

self-rated overall health is more strongly related to mortality for those with higher education and income 

(Dowd and Zajacova 2007) and high-SES individuals judge their health more harshly, relative to 

objective measures, than those of low-SES (Dowd and Zajacova 2010). 

Mortality also has limitations as a measure of health. All-cause mortality merges together many 

diverse conditions and events that lead to death, each of which may evolve through unique social and 

biological mechanisms. Cause-specific mortality also presents complications, requiring very large 

samples for sufficient statistical power. 

In recent years, physical measurements and biological specimens have been collected of 

respondents to large social surveys in the U.S. and elsewhere. Using these data, biomarkers of health or 

health-related risk can be constructed (Harris and Schorpp 2018; McDade et al. 2007). Biomarkers 

include blood sugar, blood pressure, different forms of cholesterol, and more. Each of these new measures 

is objective as well as continuous, reflecting a range of health or health-related risk.  

Chapter 4 (Unconditional Quantile Regression and Educational Disparities in Biomarkers of 

Health Risk) uses these novel measures to assess not only whether the association of education with 
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health varies across dimensions of health, but also whether the magnitude of educational disparities varies 

across their distributions. This chapter contributes to research attempting to map the shape of the 

relationship between education and health (Montez et al. 2012). It also tests an implication of 

fundamental cause theory (Link and Phelan 1995; Phelan et al. 2010) that suggests that disparities will be 

greatest at points in the distribution of health at which medical interventions may be triggered to improve 

outcomes. Finally, results have methodological implications for future research using biomarkers.  

 

SUMMARY 

In sum, each of the three empirical chapters of this dissertation addresses an issue that continues 

to complicate our understanding of the relationship between education and health. Chapter 2 assesses the 

utility of a new and innovative control for genetic selection into education in observational research. 

Chapter 3 studies heterogeneity in the association of education with health across sociodemographic 

groups using a more complex intersectional approach than has been taken in prior research. Finally, 

Chapter 4 assesses educational disparities in several objective and continuous biomarkers of health risk, 

with particular attention given to variation in disparities across the distributions of these measures.  

Unraveling the relationship between education and health is an important and timely goal, as 

educational disparities are robust across time and space (Cutler and Lleras-Muney 2008; Hummer and 

Lariscy 2011), and in the U.S., appear to be widening (Goesling 2007; Liu and Hummer 2008; Masters et 

al. 2012; Meara et al. 2008; Montez et al. 2011). In Chapter 5 (Conclusion), I discuss the overarching 

contribution of this dissertation to the literature on educational disparities in health as well as emerging 

directions in this research area. In particular, I reflect on issues related to the incorporation of genetic 

data, the push to study heterogeneity, and the study of biomarkers of health-related risk. 
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Chapter 2: Polygenic Scores as Controls for Genetic Selection into 

Education in Models of Health 

Despite the robust positive association between education and health, education’s causal effect on 

health remains contested. Many factors, including family background, childhood health, and skills or 

personality, may influence both schooling choices and later health. Though the educational gradient in 

health persists after accounting for these confounders (Batty et al. 2006; Conti et al. 2010; Cutler and 

Lleras-Muney 2008; Link et al. 2008; Montez and Hayward 2014; Schnittker 2005; Zheng 2017), extant 

studies leave a unique aspect of selection uncontrolled: a person’s DNA.  

DNA influences both educational outcomes and health, albeit in complex ways that are only 

partially understood (Collins et al. 2003; Heath et al. 1985; Lee et al. 2018). One thing that is clear is that 

the effects of DNA on education and health are not independent: genetic effects on educational attainment 

are correlated with those on a variety of health outcomes and behaviors (Bulik-Sullivan et al. 2015; 

Wedow et al. 2018). Genetics may therefore confound the effect of education on health in observational 

research. In the current study, I examine the extent to which this is the case. 

This question could not be answered empirically until recently, with the development of variables 

known as polygenic scores (PGSs) (Dudbridge 2013). PGSs sum up the estimated effects of a person’s 

genetic variants on an outcome and therefore may be considered measures of genetic selection. I draw on 

a PGS that predicts educational attainment; it was constructed based on a sample of over 1.1 million 

people and explains around 11% of variation in years of schooling in representative samples of European 

ancestry individuals in the United States (Lee et al. 2018). 

Genetic effects on social and behavioral outcomes like educational attainment do not occur solely 

within the body; they must also be driven or enabled by the environment. As such, they may evolve 

through the development of traits and behaviors that lead to self-selection into, environmental pressures to 

follow, or structural barriers precluding particular educational trajectories. To date, scholars have 

considered that the education PGS might correlate with or influence familial factors, childhood health, 
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cognitive and non-cognitive skills, and personality traits (Belsky et al. 2016; Belsky et al. 2018; Conley et 

al. 2015; Domingue et al. 2015), all of which are associated with educational outcomes (Blau and Duncan 

1967; Case et al. 2005; Farkas 2003; Fletcher and Lehrer 2011; Jackson 2009; Lleras 2008; Palloni 2006; 

Pfeffer and Hertel 2015; Sewell et al. 1969). 

If genetic effects on education are all environmentally mediated, why not instead control for 

characteristics relevant to the more proximal social processes selecting people into schooling? This is 

what prior research has attempted by controlling for long lists of potential confounders (Batty et al. 2006; 

Conti et al. 2010; Cutler and Lleras-Muney 2008; Link et al. 2008; Montez and Hayward 2014; Schnittker 

2005; Zheng 2017). However, confounding constructs, such as family background, childhood health, and 

early skills or personality, are often incompletely measured, if measured at all, in the survey and 

administrative data that social scientists rely on. The education PGS may also correlate with traits we are 

not yet aware confound the association of education with health, traits that would otherwise be entirely 

uncontrolled.  

It has therefore been suggested that PGSs have potential for reducing bias in observational 

research (Cesarini and Visscher 2017; Conley 2016; Freese 2018). To my knowledge, this possibility has 

not yet been tested for the association of education with health. Accordingly, I assess the extent to which 

controlling for the education PGS attenuates the estimated effect of education on several dimensions of 

health using two complementary U.S. datasets of older individuals of European ancestries.  

 

EDUCATION AND HEALTH 

As a key contributor to both social class and status (Weber 1978[1922]), educational attainment is 

expected to have major implications for subsequent life chances (Hout 2012; Torche 2011). The current 

study takes interest in the effect of education on health. Educational disparities in health are found across 

time periods and societies (Cutler and Lleras-Muney 2008; Hummer and Lariscy 2011). In the U.S., high 

school graduates are expected to live between six and seven years longer, and college graduates over 11 

years longer, than those who did not finish high school (Rostron et al. 2010). 
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Education may affect health for several reasons (Cutler and Lleras-Muney 2008; Link and Phelan 

1995). It promotes economic wellbeing (Hout 2012), which enables people to access health-promoting 

goods and services, including quality health care. Education may also impart the norms, knowledge, and 

ability to maintain a healthy lifestyle (Mirowsky and Ross 2003). And, those with higher education often 

find themselves embedded in structural positions that confer health advantages without purposive action 

(Freese and Lutfey 2011).  

Nonetheless, studies utilizing natural experiments have produced mixed evidence for a causal 

effect of education on health and mortality (Galama et al. 2018; Grossman 2015). Several such studies 

instrument education using changes in compulsory schooling laws. For example, Lleras-Muney (2005) 

estimates that one additional year of schooling reduced 10-year mortality rates in the U.S. by over six 

percentage points. Similar research using other policy reforms, however, has returned null results (e.g., 

Albouy and Lequien 2009; Clark and Royer 2013). Such mixed results should, perhaps, be unsurprising, 

as estimates from instrumental variable designs are based on varying non-representative subsets of the 

population and reflect the effects of particular educational transitions that differ from study to study.  

Thus, there remains a need to investigate the effect of education on health in population-

representative data, which is typically survey-based and observational. Of course, as far back as 

Durkheim (1956[1922]), sociologists have noted that people are not selected into educational trajectories 

at random. A major challenge for observational work is therefore to identify, measure, and adjust for 

those aspects of selection that may confound the education-health link. The confounders most often 

considered include family background and socioeconomic status (SES), childhood health, and adolescent 

abilities or skills.  

Each of these factors is associated with, and causally prior to, both educational and adult health 

outcomes. For example, family background influences educational outcomes (Blau and Duncan 1967; 

Pfeffer and Hertel 2015) and those from high-SES households have better health in adulthood, on average 

(Ben-Shlomo and Kuh 2002; Galobardes et al. 2004; Montez and Hayward 2011). Evidence also suggests 

that early life experiences of poor health limit educational attainment (Case et al. 2005; Fletcher and 
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Lehrer 2011; Jackson 2009; Palloni 2006) and are associated with worsened health later in the life course 

(Case et al. 2005; Haas 2007; Lam et al. 2019). Similarly, early life cognitive performance and non-

cognitive skills or personality predict both improved educational outcomes (Farkas 2003; Lleras 2008; 

Sewell et al. 1969) and better subsequent health (Conti et al. 2010; Gottfredson and Deary 2004; Hauser 

and Palloni 2011). Some of the positive association between educational attainment and adult health 

could therefore be due not to a protective causal effect of schooling, but to the fact that socially 

advantaged, healthier, and smarter or more conscientious kids stay in school longer, on average, and are 

set up for better health starting in childhood.  

When holding measures of these confounders constant, there remains an independent positive 

association of education with health (Batty et al. 2006; Conti et al. 2010; Cutler and Lleras-Muney 2008; 

Link et al. 2008; Montez and Hayward 2014; Schnittker 2005; Zheng 2017), suggesting a causal effect of 

education. However, measures available in the survey and administrative data researchers rely on may not 

adequately reflect confounding concepts. Frequently, a key confounder is entirely unmeasured in the data 

at hand and thus cannot be controlled. For example, many surveys contain no measures of cognitive 

ability and non-cognitive skills or personality, particularly in adolescence.  

Even when datasets contain a measure of a potential confounder, the resulting operationalization 

is often incomplete. While most surveys inquire about parental education, for instance, parental 

occupation and income are often left out, or at best included as static measures. Moreover, people may 

report their parental education, occupation, and income inaccurately. Similar issues exist with respect to 

childhood health, which is often measured using a single subjective and retrospective assessment. And, 

when early abilities or skills are measured, they are typically based on test scores, grades, or teacher 

assessments, which may fail to capture relevant talents and behaviors. Some of these measures are also 

subjective and may be influenced by teacher bias (Downey and Pribesh 2004; Riegle-Crumb and 

Humphries 2012). 

Confounding concepts may continue to bias causal estimates when associated measures are 

controlled but operationalized with error. And, additional confounders likely exist that researchers remain 
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unaware of. As I describe below, controlling for education PGSs may therefore reduce remaining bias in 

education’s estimated effect on health in observational work. 

 

GENETIC SELECTION INTO EDUCATION 

Studies of twins suggest that up to 40% of variation in educational attainment is traceable to 

genetics (Branigan et al. 2013; Heath et al. 1985). Until recently, this was virtually all that was known 

about genetic selection into education. The effects of specific genetic variants, and the mechanisms that 

drove them, were a black box. 

Genome-wide association studies (GWAS) estimate relationships between an outcome of interest 

and millions of genetic variants, or segments of DNA (McCarthy et al. 2008; Visscher et al. 2017). They 

demonstrate that traits like education are influenced by a large number of genetic variants, each of which 

has a very small effect (Chabris et al. 2015; Rietveld et al. 2014). For example, the most recent GWAS of 

educational attainment found 1,271 genetic variants were significantly associated with years of schooling 

(Lee et al. 2018). Among the variants demonstrating significant associations, the median effect size was 

small, predicting a difference of just 1.7 weeks of schooling. 

For outcomes like education, it therefore makes sense to aggregate genetic effects from across the 

genome rather than focusing on the effects of individual genetic variants. Polygenic scores (PGSs) do just 

that, predicting a trait by adding up the effects—as estimated in an independent GWAS—of many 

hundreds of thousands of a person’s genetic variants (Dudbridge 2013). A PGS constructed using the 

most recent GWAS of education explains 11% of variation in years of schooling in representative U.S. 

datasets of European-ancestry individuals (Lee et al. 2018). By comparison, maternal education—one of 

the strongest social predictors of educational outcomes—explains 14% (Lee et al. 2018).1 

I refer to the education PGS as a measure of genetic selection into education. This is not to imply 

 
1 These figures represent incremental R2s. They are calculated by comparing the predictive power of models 

controlling only for sex, year of birth, their interaction, and measures of genetic ancestry to those that add either the 

education PGS or maternal education, respectively. The incremental R2 obtained by adding the PGS to a model that 

already controls for sex, year of birth, their interaction, measures of genetic ancestry, and maternal education is 

smaller but nonetheless substantial, at around 7% (Lee et al. 2018). 
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that the effects that comprise the PGS evolve through genetic mechanisms alone. On the contrary, genetic 

effects on non-biological outcomes like education cannot possibly evolve through purely biological 

mechanisms; they must be socially mediated and exist only insofar as they relate to institutional processes 

or norms that structure access to such outcomes (Jencks 1980). For example, in a society that forbids 

women to attend school, having two X-chromosomes would completely determine the educational 

trajectories of half of the population. However, this genetic effect would exist not for biological reasons, 

but rather because of the social environment.  

Genetic effects on education may thus occur due to correlation with or the development of 

characteristics that lead to self-selection into, environmental pressures to follow, or structural barriers that 

preclude particular educational trajectories. Scholars have considered, for example, whether the education 

PGS reflects social advantage, childhood health, and early skills or personality traits. Research suggests 

that it does. 

Specifically, the education PGS is modestly positively correlated with family SES2 and thus its 

relationship with educational outcomes arises partially due to factors related to family background 

(Belsky et al. 2016; Belsky et al. 2018; Conley et al. 2015; Domingue et al. 2015). The education PGS is 

also positively correlated with cognitive performance (e.g., test scores) in adolescence, which is the single 

largest mediator of the relationship between the education PGS and years of schooling (Belsky et al. 

2016; Domingue et al. 2015). Non-cognitive skills and related personality traits—self-control, sociability, 

and openness to experience—have likewise been shown to mediate this relationship (Belsky et al. 2016; 

Okbay et al. 2016; see also, Krapohl et al. 2014). And, while prior research has not found support for the 

notion that childhood health mediates the association between the education PGS and years of schooling 

(Belsky et al. 2016; see also, Krapohl et al. 2014), further investigation is warranted as results may 

depend on the measures of childhood health employed.  

 
2 Why does this correlation exist? DNA affects an individual’s education and their subsequent socioeconomic 

outcomes. By extension, we can assume that an individual’s parents’ DNA affected the socioeconomic environment 

in which that individual grew up. The process of reproduction also guarantees that parents pass their DNA down to 

their offspring. This leads to positive correlations between a person’s education PGS, their parents’ PGSs, and their 

family SES.   
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In sum, the education PGS is correlated with several characteristics, including family 

background, early life abilities and skills or personality, and (maybe) childhood health. These 

characteristics are all known to select people into schooling, as described earlier (Blau and Duncan 1967; 

Case et al. 2005; Farkas 2003; Fletcher and Lehrer 2011; Jackson 2009; Lleras 2008; Palloni 2006; 

Pfeffer and Hertel 2015; Sewell et al. 1969). Moreover, nearly half of the relationship between the 

education PGS and years of schooling remains unexplained by these measures (Belsky et al. 2016). Thus, 

the PGS may be associated with myriad additional selection-related characteristics, perhaps including 

some that are rarely studied or controlled in observational research. 

 

The education PGS as a control variable 

The processes described in the previous section are potentially consequential for estimating the 

effect of education on health. Measured characteristics have so far been insufficient to account for all the 

mediating pathways linking the education PGS to educational attainment. In that sense, the education 

PGS is currently akin to a propensity score for which we do not know what measures of selection were 

included in the model.  

This may be its strength as a control variable, as measured traits may likewise be insufficient to 

control for all the confounding pathways linking educational attainment to subsequent health. Selection 

into social environments—including years of schooling—is notoriously difficult to explain with measured 

characteristics alone. The education PGS may be well placed to attenuate the confounding that remains, 

as it may be correlated with or influence confounding concepts that are measured poorly, entirely 

unmeasured, or not yet recognized as confounders. In fact, some have argued that DNA directly or 

indirectly influences virtually all traits to some extent (Turkheimer 2000). Because of this, scholars have 

reasoned that PGSs may be valuable as control variables in observational research settings (Cesarini and 

Visscher 2017; Conley 2016; Freese 2018). 
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Roadmap for the current study 

The statistical models I estimate demonstrate the utility of the education PGS as a control variable 

when investigating the effect of education on health under various circumstances. Initial models assume 

that nothing is known about a respondent’s family background, childhood health, or adolescent abilities 

and skills, and thus only demographic confounders can be controlled using survey measures. The next set 

of models reflects the common case in which survey measures of family background and health in 

childhood exist and can be controlled, but no indicators of adolescent abilities or skills are available. The 

final models correspond to the oft-celebrated scenario in which adolescent cognitive performance is also 

measured and can be controlled.  

I expect the proportional attenuation of education’s effect on health following the inclusion of the 

education PGS to decline across these sets of models, as the more proximal confounders that the PGS 

may reflect are controlled. Nonetheless, I expect the education PGS to reduce the association of education 

with health to some extent in all models. Even in the best-case scenario, the education PGS may continue 

to reflect and thus adjust for poorly measured and unknown confounders of the education-health link. 

 

METHODS 

Data 

I use two complementary datasets: the Wisconsin Longitudinal Study (WLS) and the Health and 

Retirement Study (HRS). Both are surveys of older U.S. adults. As described below, the WLS is limited 

in terms of geographic scope and range of educational outcomes, while the HRS is nationally 

representative. However, the WLS contains more detailed measures from adolescence. It also includes a 

sibling sample, allowing for analyses using family fixed effects.   

 

Wisconsin Longitudinal Study (WLS) 

The WLS began in 1957 when Wisconsin students in their final (senior) year of high school were 

surveyed about their plans for the future (Herd et al. 2014). In 1964, one-third of those who went on to 
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graduate were enrolled in the WLS (n = 10,317). This sample is roughly representative of non-Hispanic 

white American men and women with at least a high school education3 born between 1938 and 1940. In 

1993, the WLS expanded to include a randomly selected sibling from each respondent. Respondents were 

most recently surveyed in 2010-2012 when original graduates were around 70 years old. 

The WLS began collecting saliva samples for genotyping in 2007. Genetic data is now available 

for roughly 9,000 graduates and siblings,4 and the PGS I use has been constructed for 8,509 European-

ancestry respondents (Okbay et al. 2018a). I further drop 141 siblings who did not complete high school, 

as they would not have been eligible for the original WLS sample. Of those remaining, 6,713 responded 

to both the in-person and mail-in 2010-2012 surveys and are thus eligible for the main analytic sample. 

The final sample includes the 6,018 respondents who had non-missing information across the 11 

measures of health required to construct the dependent variables, which are described below. 

 

Health and Retirement Study (HRS)  

The HRS is a panel survey of U.S. households (RAND 2016). It began in 1992 with a sample of 

U.S. adults born between 1931 and 1941 and their spouses. Additional birth cohorts have since been 

added to the sample, and respondents have been followed up biennially. Since 1998, the HRS has 

surveyed a nationally representative sample of the U.S. population over age 50 and their spouses. Over 

the years, over 30,000 individuals have contributed data to the HRS.  

Saliva samples were collected for genotyping beginning in 2006,5 and the PGSs I use have been 

constructed for 8,652 European-ancestry respondents (Okbay et al. 2018b). I restrict this sample to those 

 
3 In the late 1950s, approximately 75% of Wisconsin students graduated from high school (Hauser and Willis 2005). 

4 Saliva was first collected for genotyping in 2007 and 2008 by mail; in 2010, additional samples were collected 

during home interviews. Genotyping was performed at the Center for Inherited Disease Research (CIDR) using the 

Illumina HumanOmniExpress beadchip array, which genotypes 713,014 SNPs. For further information, see the 

quality control report (Wisconsin Longitudinal Study 2016).  

5 DNA samples were first collected from HRS respondents during in-home interviews in 2006, at which time a 

random subsample of households was asked to participate. In 2008, all remaining households were asked to provide 

saliva samples for genotyping. Genotyping was performed by the Center for Inherited Disease (CIDR) using the 

Illumina HumanOmni2.5 beadchip array, which genotypes roughly 2.5 million SNPs. For further information, see 

Crimmins et al. (2013, 2015) and quality control reports (Health and Retirement Study 2012a, 2013a). 
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who responded to at least one HRS survey after providing saliva for genotyping (through 2012), those 

whose biomarkers were assessed, those ages 50 and over (the population that is technically eligible for 

HRS sampling), and those born in the U.S. This leaves 7,986 respondents eligible for analysis. A total of 

7,726 of these respondents had non-missing information across the 11 measures of health used to 

construct summary measures in at least one wave and thus are included in analyses. Respondents could 

contribute up to two observations to the analysis, depending on biomarker availability. There are thus 

12,629 HRS observations included in this study. 

 

Measures 

Summary measures of health 

Both the WLS and HRS assess many aspects of health, including self-reported symptoms, 

diagnoses, and physical and biological measurements. Rather than choose and rely on just a few, I 

combine measures found in both the WLS and HRS using principal components factor analysis (PCFA). 

Put simply, PCFA analyzes correlations between a set of measures to identify the unique dimensions or 

factors across which the total variance is spread. Variables can then be constructed for the most important 

factors using a weighted linear combination of the original measures, where the weighting is determined 

using the structure of correlations in the data.  

I draw on the 11 measures of health that are found in both the WLS and HRS datasets.6 These 

include a five-category measure of self-rated health, presence of basic (physical) limitations, presence of 

instrumental (cognitive) limitations, self-reported memory, and number of depressive symptoms. I also 

include indicators of whether the respondent has ever been diagnosed with high blood pressure, heart 

 
6 Self-rated health is a five-category variable indicating whether the respondent’s health is poor, fair, good, very 

good, or excellent.  Presence of any basic (physical) limitations is a binary indicator of whether the respondent has 

difficulty with any of the following basic physical activities: walking across a room, getting into or out of a chair, 

getting into or out of bed, bathing, dressing, eating/feeding, and toileting. Presence of any instrumental limitations is 

a binary indicator of whether the respondent has difficulty with any of the following instrumental activities: using a 

map, making phone calls, taking medication, and managing money. Self-reported memory is measured using the 

Health Utilities Index (HUI) in the WLS, while in the HRS, a simple five-category variable is used. Depressive 

symptoms are operationalized using versions of the Center for Epidemiologic Studies Depression score. In the HRS, 

I create three categories of total cholesterol based on Fletcher (2017). Categories indicate whether the respondent’s 

total cholesterol is under 200 milligrams per deciliter [mg/dL]), under 240 mg/dL, or 240 mg/dL or higher. 
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disease, stroke, and diabetes or high blood sugar. In the WLS, I use a variable indicating whether the 

respondent was ever diagnosed with high cholesterol; in the HRS, classifications based on total measured 

cholesterol, as collected by trained interviewers, are used instead. Finally, I include body mass index 

(BMI) category, as designated by the Centers for Disease Control (2016). 

A total of 6,018 WLS respondents and 12,629 HRS observations from 7,729 unique respondents 

had non-missing information for each measure of health and are therefore included in the PCFAs, which 

are conducted separately in each dataset. First, the original measures are standardized (mean = 0, standard 

deviation [SD] = 1) across included WLS or HRS respondents. As is standard, I retained PCFA-

constructed factors with eigenvalues above 1 and rotated results obliquely to allow factors to be 

correlated. Results are presented in Appendix Table A2.1. 

In both the WLS and HRS, this process returns three factors, which are remarkably similar across 

datasets. The first indicates general physical and mental or cognitive health; its highest loading variables 

include self-reported health, presence of basic (physical) and instrumental (cognitive) limitations, self-

reported memory, and depressive symptoms. In the WLS, it explains 24.4% of the variance across the 11 

measures of health included in the PCFA, and in the HRS, 26.4%. The second factor represents 

cardiovascular conditions (high blood pressure, cholesterol, heart disease, stroke) and explains 20.7% and 

20.5% of the total variance in the WLS and HRS datasets, respectively. The third and final factor 

indicates metabolic health (diabetes or high blood sugar, BMI), explaining 18.4% of the variance across 

measures in the WLS and 15.9% in the HRS. 

I use these factors to construct analogous summary measures of health, which are all standardized 

(mean = 0, SD = 1) and scaled so that higher values indicate better health. Correlations between these 

summary measures and original health variables are presented in Appendix Table A2.2.7 

 

 
7 Robustness checks (not shown) demonstrate that the use of original survey measures returns results that are 

substantively the same as those obtained when using PCFA-constructed measures. Use of the PCFA-constructed 

measures, however, allows for a more parsimonious analysis. 
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Educational attainment 

 In both the WLS and HRS, I operationalize educational attainment with self-reported years of 

completed schooling. All WLS respondents graduated from high school so the minimum level of 

educational attainment is 12 years. The survey top-codes years of schooling at 20. Among HRS 

respondents, I collapse those who reported very low levels of schooling into a single category (5 years or 

less), and schooling is top-coded at 17 years.  

Note that this measure is not identical to the measure of educational attainment employed in the 

study from which the education PGS is derived. As described below, Lee et al. (2018) harmonized 

measures of education collected by separate surveys in diverse educational systems; they did so by 

mapping to internationally comparable years of schooling. Because my primary interest is in the effect of 

education on health—rather than the effect of the PGS itself—this is not a major concern. It is an issue I 

return to in the Discussion, however, as measurement in the GWAS stage has implications for the 

predictive power of resulting PGSs and therefore their utility as control variables. 

 

Polygenic scores (PGSs) for education and measures of genetic ancestry 

I operationalize genetic selection into education using a PGS (Dudbridge 2013). PGSs predict an 

outcome by aggregating the effects of hundreds of thousands or even millions of single-nucleotide 

polymorphisms (SNPs), the type of genetic variant that is responsible for most genetic differences 

between humans. At each SNP, a person possesses two alleles, each of which may be considered either a 

risk allele or a non-risk allele. A person’s genotype at a particular SNP is simply the number of risk 

alleles (0, 1, or 2) that are found at that genetic site. A PGS is the weighted sum of a person’s genotypes, 

where the weight of a particular SNP is the effect of an additional risk allele at that SNP on the outcome 

of interest. Equation 1 provides a standard formula for individual i’s PGS (𝑃𝐺𝑆𝑖), 

 

𝑃𝐺𝑆𝑖 = ∑ 𝑥𝑖𝑗𝑤𝑗

𝐽

𝑗=1
, 

Equation 1 
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where 𝑥𝑖𝑗 is the genotype of individual i at SNP j (it may equal 0, 1, or 2), and 𝑤𝑗 indicates the weight or  

effect size of an additional risk allele at genetic variant j, as estimated in an independent GWAS 

(McCarthy et al. 2008; Visscher et al. 2017).  

In the GWAS, researchers estimate a separate regression for each genetic variant they wish to 

study. Specifically, they regress their outcome of interest on the number of risk alleles (0, 1, or 2) found at 

a particular SNP, controlling for a limited number of covariates such as sex, year of birth or age, and 

genetic ancestry. Genetic ancestry is operationalized using principal components of the genetic data.8 

Once genetic effects are estimated, researchers further adjust for confounding due to linkage 

disequilibrium (LD), a term used to describe the fact that genetic variants are not inherited independently; 

genotypes at genetic variants located close to each other on the genome tend to be correlated. It is too 

computationally intensive to control for genotype at all SNPs within the regression models themselves; 

thus, the adjustment is made on the back end by specifying the structure of LD in the research sample or a 

reference population. This ensures that the genetic effects are not double-counted when calculating PGSs. 

The PGSs I employ are constructed using the most recent GWAS of educational attainment (Lee 

et al. 2018), which was conducted in a sample of 1,131,881 people drawn from 71 separate datasets. 

Measures of educational attainment were harmonized across datasets into internationally equivalent years 

of schooling using International Standard Classification of Education (ISCED) guidelines. As mentioned 

earlier, this GWAS found 1,271 SNPs that were significantly associated with years of schooling, and 

PGSs constructed from the GWAS explain around 11% of the variation in years of schooling in 

independent U.S. samples after adjusting for year of birth, sex, their interactions, and ancestry.  

Graciously, the authors of this GWAS have constructed education PGSs for use in the WLS 

 
8 Ancestry and race are related but distinct concepts. Race is a set of categories that differ across time and space 

depending on which human differences are viewed as salient (Fujimura et al. 2014). Ancestry is instead a 

multidimensional, continuous concept reflecting the history of human migration and reproduction.  
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(Okbay et al. 2018a) and HRS (Okbay et al. 2018b) datasets.9 After making sample restrictions (as 

described earlier), I standardize these PGSs (mean = 0, SD = 1) within the respective analytic samples. 

Additional information regarding PGS construction is provided in Appendix Text A2.1. 

Note that PGSs were not constructed for respondents of non-European ancestries (Lee et al. 

2018). As described in Appendix 6 of Conley and Fletcher 2017 (see also, Martin et al. 2017), due to the 

history of human migration and subsequent isolation, ancestral groups differ in terms of genetic 

variability and the structure of correlations between inherited genotypes (LD). This complicates several 

critical processes: genotyping, imputing variants that are not directly genotyped, and adjusting estimated 

effects for confounding.10 Genetic effects may also be differentially mediated or moderated by 

environmental factors, including racialized experiences. Most genetic analyses therefore restrict ancestral 

heterogeneity to European ancestry groups.  

Statistical geneticists still worry that subtle variation due to ancestry could confound effects of the 

PGS. This is not a major issue in the current study, as I am not interested in the effects of the education 

PGS, per se. However, measures of genetic ancestry may be useful control variables in and of themselves. 

Ancestry groups may cluster in particular regions, cities, or neighborhoods due to past or present social 

networks. If characteristics of these places (e.g., labor market, climate) influence residents’ educational 

outcomes and health, a spurious association between education and health could ensue. Therefore, I 

control for genetic ancestry, which is operationalized using the top ten principal components (PCs) of the 

 
9 The WLS and HRS datasets were omitted from the GWAS sample for the purpose of PGS construction (Okbay et 

al. 2018a; Okbay et al. 2018b). 

10 Common genotyping chips are optimized to measure a sample of genetic variants that differ between Europeans. 

Chips may therefore fail to directly genotype important sources of genetic variability in non-Europeans. The 

accuracy with which non-genotyped variants are imputed is also likely to vary across ancestries. It is likely to be 

particularly inaccurate among those with substantial African ancestry, given the greater genetic variance among 

African populations. This is due to the genetic bottleneck that occurred when around 2,000 individuals migrated out 

of Africa 100,000 years ago: genetic variability is reduced in the descendants of the migrants compared to the 

descendants of those who remained in Africa. Because of the greater genetic variability in African populations, more 

genetic variants need to be directly genotyped to obtain the same imputation accuracy; this is not, however, done in 

practice. Relatedly, a larger number of genotyped individuals is needed to infer the LD structure in African 

populations, which is used to impute and to adjust genetic effects for confounding; unfortunately, genetic samples 

from African populations are, if anything, more limited than those from European and other ancestral groups. For 

further information, see Appendix 6 of Conley and Fletcher (2017). 
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genetic data, which are the ten largest dimensions of genetic variation in the sample. The PCs are 

provided with the PGSs (Okbay et al. 2018a; Okbay et al. 2018b).  

In Appendix Table A2.3, I show that controlling for the top ten PCs on their own barely 

attenuates the estimated effects of education on health. Thus, in the main analysis, I incorporate controls 

for genetic ancestry alongside the education PGS and stress that the vast majority of the observed 

attenuation is due to the education PGS rather than the ancestry PCs. 

 

Control variables 

The statistical models I estimate add sets of control variables sequentially. The idea is that the 

utility of the education PGS as a control may decline when the more proximal confounding characteristics 

it reflects are controlled directly. Initial models control for demographic variables only, in order to reflect 

a research scenario in which little is known about other proximal confounders of the education-health 

link. Intermediary models add controls for family background characteristics and childhood health, and 

final models control for a measure of ability in adolescence that I refer to as cognitive performance. 

Demographics characteristics: In both datasets, I control for demographic characteristics 

including sex, year of birth, age, a squared term for age, the interaction between year of birth and age, and 

the interaction between year of birth and age-squared. 

Family background: Measures of family background reflect family SES, structure, and place. In 

both the WLS and HRS, maternal and paternal years of schooling are expressed as six-category variables 

(less than eight years; eight; nine to eleven; twelve; 13-15; and 16 or more years). In the WLS, I also use 

paternal occupation (farming; unskilled; skilled; white collar; professional; and not in labor force) and a 

continuous measure of family income in 1957, when graduate respondents were about to complete high 

school. Both of these variables are derived from tax data by the WLS. No such data are available in the 

HRS; instead, I use a measure of perceived SES in childhood (poor; average; or well-off) and an indicator 

of whether the respondent’s father was consistently employed throughout childhood versus unemployed 

for several months or absent/deceased. 
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In the WLS, family structure is operationalized with a variable indicating whether the respondent 

lived with both parents through age 16 and the number of siblings they report having. In the HRS, 

paternal presence is subsumed in the measure of paternal employment. 

Publicly available WLS data does not report place of birth. Instead, I use a categorical variable 

indicating the population of the graduate’s hometown in 1957. In the HRS, I group region of birth into 

four categories (Northeast, Midwest, South, or West). 

Childhood health: In both the WLS and HRS, respondents were asked to reflect on their health as 

children and report it as poor, fair, good, very good, or excellent. I control for this measure as a five-

category variable. 

In the WLS, respondents were also asked whether they had each of 11 different health conditions 

as a child. Conditions include asthma, bronchitis, diphtheria, ear infections, hepatitis, meningitis, 

mononucleosis, pneumonia, polio, tonsillitis, and whooping cough. I create a measure of childhood health 

by adding one for each condition they had, top-coding the variable at five conditions or more (only 0.5% 

of respondents fall into this category). I further construct a variable in the WLS indicating whether the 

respondent experienced extended activity limitations because of their health sometime before the age of 

16: they may have missed school for a month or more, been confined to their home or bed for a month or 

more, or been restricted from physical activity for three months or more due to a health condition. 

 Cognitive performance in adolescence: Cognitive performance in adolescence is operationalized 

in the WLS using the respondent’s centile rank on the Henmon-Nelson test of mental ability (Henmon et 

al. 1957). At the time when original WLS respondents and their siblings attended school, the Henmon-

Nelson test was administered in all Wisconsin high schools; it was a multiple-choice test consisting of 90 

questions assessing verbal and quantitative ability. The test was taken when respondents were in their 

freshman or junior year of high school. Centile rank is based on all test-takers nationwide in a given year; 

it adjusts for the age at which the respondent took the test. 

Unfortunately, no measure of adolescent cognitive performance is available in the HRS. 
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Analysis 

I begin by estimating missing values of independent variables among otherwise-eligible 

respondents using chained imputations across 20 iterations.  

I then proceed with the regression analyses, in which I assess the extent to which controlling for 

the education PGS attenuates the association of educational attainment with health. I do so separately in 

the WLS and HRS datasets for each of the three summary measures of health. All models employ 

ordinary least squares (OLS) linear regression and cluster standard errors at the family (WLS) or 

household (HRS) level. In the WLS, a single observation is taken from each respondent, i, while in the 

HRS, respondents can contribute up to two observations to the analysis; observations within individuals 

are indexed with t. Recall that summary measures of health are standardized (mean = 0, SD = 1) within 

the WLS and HRS samples. Thus, coefficients on years of schooling indicate the expected SD change in 

the relevant summary measure of health for a year increase in educational attainment, holding covariates 

constant. 

The series of models I estimate reveal the extent to which the PGS confounds the effects of 

education on health when holding constant sets of more proximal, known confounders of the education-

health relationship. Model 1A estimates the association of years of schooling (EduYrs) with health 

(Health) controlling for demographic characteristics, indicated by the vector Dem. Model 1B adds the 

education PGS and a vector (PC) including the top ten principal components of the genetic data (i.e., 

genetic ancestry).  

 

𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑡 =  𝛼0 + 𝛼1𝐸𝑑𝑢𝑌𝑟𝑠𝑖 + 𝜃𝑇Demit + 𝜀𝑖𝑡 Model 1A 

 

𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑡 =  𝛽0 + 𝛽1𝐸𝑑𝑢𝑌𝑟𝑠𝑖 + 𝛽2𝑃𝐺𝑆𝑖 + 𝛿𝑇Demit + 𝜌𝑇PCi + 𝜖𝑖𝑡 Model 1B 

 

I use seemingly unrelated estimation to test whether the coefficient on EduYrs differs 

significantly between Models 1A and 1B. Seemingly unrelated estimation calculates the covariance 
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matrices for the models of interest jointly. It can be used to conduct tests of significance between models 

that rely on overlapping data, such as the nested models I evaluate here. I estimate p-values separately for 

each of the 20 multiply imputed datasets, and I report the averages. I also calculate the percent attenuation 

of the effect of education on health with the introduction of the education PGS using Equation 2.  

 

100 ∗
(𝛼̂1 − 𝛽̂1)

𝛼̂1
 

Equation 2 

 

The next two models incorporate, in addition to demographic characteristics, controls for 

measures of family background (Fam) and childhood health (ChHlth). As with Models 1A and 1B, Model 

2A estimates the association of health with years of schooling controlling for these measures only; Model 

2B adds the control for the education PGS and measures of genetic ancestry.  

 

𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑡 =  𝛼0 + 𝛼1𝐸𝑑𝑢𝑌𝑟𝑠𝑖 +  𝜃𝑇Demit + 𝛾𝑇Fami + 𝜏𝑇ChHlthi + 𝜀𝑖𝑡 

 

Model 2A 

𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑡 =  𝛽0 + 𝛽1𝐸𝑑𝑢𝑌𝑟𝑠𝑖 +  𝛽2𝑃𝐺𝑆𝑖 +  𝛿𝑇Demit + 𝜎𝑇Fami + 𝜆𝑇ChHlthi

+ 𝜌𝑇PCi + 𝜖𝑖𝑡 

Model 2B 

 

Finally, Models 3A and 3B parallel those above while adding a control for yet another potential 

confounder of the effect of education on health: cognitive performance in adolescence (CogPerf). These 

models are estimated in the WLS sample only, as no measure of cognitive performance in early life is 

available in the HRS.  

 

𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑡 =  𝛼0 + 𝛼1𝐸𝑑𝑢𝑌𝑟𝑠𝑖 +  𝜃𝑇Demit + 𝛾𝑇Fami + 𝜏𝑇ChHlthi + 𝜇𝐶𝑜𝑔𝑃𝑒𝑟𝑓𝑖

+  𝜀𝑖𝑡 

 

Model 3A 
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𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑡 =  𝛽0 + 𝛽1𝐸𝑑𝑢𝑌𝑟𝑠𝑖 + 𝛽2𝑃𝐺𝑆𝑖 +  𝛿𝑇Demit + 𝜎𝑇Fami + 𝜆𝑇ChHlthi

+ 𝜋𝐶𝑜𝑔𝑃𝑒𝑟𝑓𝑖 + 𝜌𝑇PCi  + 𝜖𝑖𝑡 

Model 3B 

 

Family fixed effects 

I also estimate models using family fixed effects in a sub-sample of n = 2,232 siblings from n = 

1,114 families in the WLS. These models effectively hold constant all stable family characteristics by 

investigating differences in health between siblings with differing levels of education. This analysis is 

useful as the measures of family background I control for in the main analysis are likely incomplete. The 

PGS could therefore function as a useful control variable in part because it reflects remaining 

uncontrolled social advantage. But if the education PGS attenuates the association of education with 

health within families (i.e., between siblings), it suggests that the score is not just reflecting family-level 

confounders of the education-health link. It must also effectively net out the confounding influences of 

childhood health, abilities and skills or personality, and potentially many other factors.  

 

RESULTS 

Table 2.1 presents key descriptive statistics. Summary measures of health are standardized across 

included respondents within datasets (mean = 0, SD = 1); all are scaled so that higher values indicate 

better health. In both datasets, measures tend to be skewed towards poorer health, with the median falling 

above the mean. For example, the median of physical and mental health is 0.3 in both the WLS and the 

HRS. Further, in the WLS, physical and mental health ranges from 6.5 SDs below the mean to 1.3 SDs 

above; in the HRS, it ranges from 4.7 SDs below to 1.7 SDs above.  

The education PGS is also standardized across included respondents within datasets; it is 

relatively symmetrically distributed, ranging from -3.5 to 4.0 in the WLS and from -3.7 to 3.9 in the HRS. 

Average education in the WLS is 14.0 years, higher than the mean in the HRS (13.2 years). This is 

because the WLS sample includes only high school graduates while 12.7% of HRS respondents did not 

graduate high school. 
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Table 2.1. Descriptive statistics 

 WLS HRSa 

 Mean (SD) 

or % 
Min, Max 

Mean (SD) 

or % 
Min, Max 

Summary measures of health     

Physical & mental health 0.00 (1.0) -6.5, 1.3 0.00 (1.0) -4.7, 1.7 

Cardiovascular health 0.00 (1.0) -3.5, 2.7 0.00 (1.0) -3.6, 2.5 

Metabolic health 0.00 (1.0) -4.1, 2.7 0.00 (1.0) -3.5, 2.5 

Key independent variables     

Education PGS 0.00 (1.0) -3.5, 4.0 0.00 (1.0) -3.7, 3.9 

Years of education 14.01 (2.4) 12, 20 13.17 (2.5) 5, 17 

Highest degree attained     

Less than high school 0.0% - 12.7% - 

High school or GED 49.9% - 38.8% - 

Associate’s or some college 16.9% - 24.1% - 

Bachelor’s or higher 33.2% - 24.4% - 

Demographic controls     

Female 52.9% - 58.1% - 

Year of birth 1939.6 (4.0) 1920, 1960 1937.9 (10.0) 1905, 1961 

Age 70.51 (4.0) 47, 92 69.99 (9.8) 50, 101 

N possible observations 6,018 12,629 (7,726 respondents) 

N complete observations b 4,322 10,076 (6,053 respondents) 
a In the HRS, descriptive statistics for measures of health and age represent 12,629 observations (up to 

two per respondent). All other figures represent means across respondents. 
b Information is missing primarily for control variables measuring family background, childhood 

health, and cognitive performance in adolescence, descriptive statistics for which can be found in 

Appendix Table A2.4. 
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Though WLS respondents were born between 1920 and 1960, over half were born in a single year 

(52.1% in 1939), reflecting the fact that a single graduating cohort was originally selected for sample 

inclusion. Just 1.3% of the sample was born before 1930 and 3.4% were born in 1950 or later. Average 

age at the time of the survey is 70.5 years. HRS respondents are comparable in terms of average birth year 

(1938), though the spread around the mean is more substantial. One in five respondents was born before 

1930 (21.8%) and 15.1% were born in or after 1950. Average age at the time of the survey is similar to 

that in the WLS (70.0 years). 

Descriptive statistics for additional control variables are provided in Appendix Table A2.4. 

 

The education PGS as a control variable 

Controlling for demographic characteristics only 

In Table 2.2, I present results from models of the three summary measures of health on years of 

education. Results from Models 1A and 1B, which control for demographic characteristics, are also 

presented in Figure 2.1. Put briefly, in Models 1A and 1B, education is positively and significantly related 

to all three summary measures of health in both datasets. However, in all cases, the estimated effect of a 

year of schooling is attenuated when controlling for the education PGS in Model 1B. In both datasets, the 

proportional attenuation is smallest for physical and mental health and largest for cardiovascular health. 

In Model 1A, each year of schooling predicts a 0.064-SD (p < .001) increase in physical and 

mental health in the WLS and a 0.105-SD (p < .001) increase in the HRS. When holding the education 

PGS constant (Model 1B), the magnitudes of these effects decline modestly, to 0.061 (p < .001) and 0.094 

(p < .001), respectively. Thus, the inclusion of the education PGS as a control reduces the estimated effect 

of education on physical and mental health by 4.8% in the WLS and by 10.5% in the HRS.  

Parallel models of cardiovascular health show that controlling for the education PGS attenuates 

the estimated effect of years of schooling by 21.1% in the WLS and by 26.1% in the HRS. Specifically, a 

year of schooling is associated with a 0.031-SD (p < .001) increase in cardiovascular health in the WLS 

and a 0.032-SD increase in the HRS, holding only demographics constant. When controlling for the



 

3
0

 

Table 2.2. Effect of a year of education on standardized summary measures of health, before and after controlling for the education PGS 

 
Model 1 Model 2 Model 3 

 1A: No PGS 1B: + PGS 2A: No PGS 2B: + PGS 3A: No PGS 3B: + PGS 

Dependent variable 𝛼̂EduYrs (SE) 𝛽̂EduYrs (SE) 𝛼̂EduYrs (SE) 𝛽̂EduYrs (SE) 𝛼̂EduYrs (SE) 𝛽̂EduYrs (SE) 

WLS       

Physical & mental health 0.064 *** 

(0.005) 

0.061 *** 

(0.005) 

0.058 *** 

(0.006) 

0.055 *** 

(0.006) 

0.047 *** 

(0.006) 

0.045 *** 

(0.006) 
       

Cardiovascular health  0.031 *** 

(0.005) 

0.025 *** 

(0.005) 

0.028 *** 

(0.006) 

0.022 *** 

(0.006) 

0.030 *** 

(0.006) 

0.025 *** 

(0.006) 
       

Metabolic health  0.055 *** 

(0.005) 

0.046 *** 

(0.006) 

0.048 *** 

(0.006) 

0.040 *** 

(0.006) 

0.048 *** 

(0.006) 

0.043 *** 

(0.006) 

HRS       

Physical & mental health 0.105 *** 

(0.004) 

0.094 *** 

(0.005) 

0.084 *** 

(0.005) 

0.076 *** 

(0.005) 

- - 

       

Cardiovascular health  0.032 *** 

(0.004) 

0.024 *** 

(0.005) 

0.019 *** 

(0.005) 

0.012 * 

(0.005) 

- - 

       

Metabolic health  0.042 *** 

(0.005) 

0.034 *** 

(0.005) 

0.030 *** 

(0.005) 

0.024 *** 

(0.005) 

- - 

Notes: Model 1 controls for demographic characteristics; Model 2 adds controls for family background and childhood health; and Model 3 adds a 

control for cognitive performance in adolescence. Models 1B, 2B, and 3B also control for the education PGS and the top ten principal components of 

the genetic data (measures of genetic ancestry). Standard errors are adjusted for clustering within families (WLS) or households (HRS).  

PGS = Polygenic score; SE = Standard error; WLS = Wisconsin Longitudinal Study; HRS = Health and Retirement Study; WLS post-imputation n = 

6,018; HRS post-imputation n = 12,629 observations from 7,726 respondents.  

*** p < 0.001; ** p < 0.01; * p < 0.05; † p < 0.1 (two-tailed test) 
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Figure 2.1. Effect of a year of education on standardized summary measures of health, before (Model 

1A) and after (Model 1B) controlling for the education PGS 

 

 

 
Notes: Effects are estimated in Models 1A (light grey bars) and 1B (dark grey bars), as shown in Table 2.2.  Both 

models control for demographic characteristics; Model 1B also controls for the education PGS and the top ten 

principal components of the genetic data (measures of genetic ancestry). 95% confidence intervals are shown; 

standard errors are clustered at the family (WLS) or household (HRS) level. PGS = Polygenic score; WLS = 

Wisconsin Longitudinal Study; HRS = Health and Retirement Study. 
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education PGS as well, estimates are reduced to 0.025 (p < .001) and 0.024 (p < .001), respectively. 

 Finally, a year of schooling is expected to improve metabolic health by 0.055 SDs (p < .001) in 

the WLS and by 0.042 SDs (p < .001) in the HRS, holding demographics constant. Incorporating the 

education PGS as a control, respective estimates decline by 15.8% and 18.3% to 0.046 (p < .001) and 

0.034 (p < .001). 

In all cases, the PGS’s utility as a control variable is at least marginally statistically significant. 

The difference in the estimated effect of education on physical and mental health with and without 

controlling for the education PGS is marginally significant at p = .072 on average across the 20 imputed 

datasets in the WLS; it is significant at p < .001 in the HRS. For cardiovascular and metabolic health, the 

difference is highly significant in both datasets (p < .001).  

That said, controlling for the education PGS certainly does not upend decades of previous 

research. A substantial and statistically significant positive association of education with each measure of 

health remains when controlling for the education PGS.  

 

Controlling for additional confounders 

 Subsequent models investigate whether the education PGS continues to attenuate the estimated 

effect of education on health when measures of more proximal confounders are controlled directly. I 

expect the percent attenuation to decline as additional proximal confounders are incorporated into the 

model. Figure 2.2 presents the percent reductions in the estimated effects of education on health in each 

set of models. 

Models 2A and 2B reflect a research scenario in which some measures of family background and 

childhood health, but not adolescent ability or skills, can be controlled. The estimated effect of education 

on each measure of health is smaller in Model 2A compared to Model 1A, due to the introduction of 

family background and childhood health controls (Table 2.2). However, as shown in Figure 2.2, 

controlling for the education PGS reduces the estimated effect of education on measures of health to a 

similar extent in Model 2B versus 2A as in Model 1B versus 1A. Thus, the utility of the education PGS as 
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Figure 2.2. Percent reduction in the effect of a year of education on standardized summary measures of 

health when controlling for the education PGS, by model 

 

 

 
Notes: Percent reductions are calculated by comparing estimates from Models 1A and 1B (light grey bars), 

Models 2A and 2B (dark grey bars), and Models 3A and 3B (striped bars), as shown in Table 2.2.  Model 1 

controls for demographic characteristics; Model 2 adds controls for family background and childhood health; and 

Model 3 adds a control for cognitive performance in adolescence. Models 1B, 2B, and 3B also control for the 

education PGS and the top ten principal components of the genetic data (measures of genetic ancestry). PGS = 

Polygenic score; WLS = Wisconsin Longitudinal Study; HRS = Health and Retirement Study. 
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a control variable appears about equal in models that control for demographics only versus those that also 

control for measures of family background and childhood health. 

For example, a year increase in education is expected to improve physical and mental health by 

0.058 SDs (p < .001) in the WLS and by 0.084 SDs (p < .001) in the HRS, holding demographics, family 

background, and childhood health constant (Model 2A). When controlling for the education PGS as well, 

estimated effects decline to 0.055 SDs (p < .001) and 0.076 SDs (p  < .001) (Model 2B). As with the 

previous set of models, the estimated effect of education on physical and mental health is significantly 

smaller in the model controlling for the education PGS than the model omitting the PGS as a control 

(WLS p < .001, HRS p = .027). However, the levels of attenuation in the effect of education on physical 

and mental health—5.8% in the WLS and 9.8% in the HRS—are similar to those obtained previously. 

The same is true for cardiovascular (WLS: 22.8%; HRS: 34.6%; both p < .001) and metabolic health 

(WLS: 15.5%; HRS: 19.7%; both p < .001). 

 Models 3A and 3B add a control for cognitive performance in adolescence, another potential 

confounder of the education-health link. These models are estimated in the WLS only, no such measure is 

available in the HRS. As expected, controlling for cognitive performance in Model 3A attenuates the 

association of education with physical and mental health, compared to Model 2A. A year of schooling is 

now associated with a 0.047-SD (p < .001) improvement in physical and mental health. When the PGS is 

added to the model, the estimated effect of education declines 4.0% to 0.045 SDs (p < .001). However, 

the difference in effects estimated in Models 3A and 3B is not statistically significant (p = .125). 

Adding the control for cognitive performance does not attenuate the association of educational 

attainment with cardiovascular or metabolic health. This suggests that measured cognitive ability does not 

explain the relationship between education and these forms of health. The education PGS, however, 

continues to attenuate estimated effects of education significantly, however, by 16.9% for cardiovascular 

health (p < .001) and by 12.1% for metabolic health (p < .001). 

For each measure of health, the attenuation of education’s estimated effect following the 

introduction of the education PGS is smallest in WLS models that control for the most comprehensive set 
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of more proximal potential confounders: demographics, family background, childhood health, and 

cognitive performance in adolescence. Differences in attenuation across models are modest. For physical 

and mental health, adding the education PGS results in a proportional attenuation of 4.0% in the most 

comprehensive model versus 5.8% in the model preceding it; corresponding figures for cardiovascular 

health are 16.9% versus 22.8% and for metabolic health 12.1% versus 15.5%. However, these results 

provide suggestive evidence that the education PGS is particularly useful as a control variable when 

certain more proximal confounders of the education-health relationship are unmeasured or uncontrolled. 

In particular, the education PGS may function as a partial control for cognitive performance. This should 

not be surprising, as a sizeable portion of genetic selection into educational outcomes is explained by 

measures of cognitive performance in adolescence (Belsky et al. 2016; Domingue et al. 2015).  

 

Comparing the education PGS to more proximal confounders 

While controlling for the education PGS results in significantly smaller estimates of education’s 

effects on health, the scale of this attenuation needs to be contextualized. How does the proportional 

attenuation obtained when controlling for the education PGS compare to that obtained when instead 

controlling for the more proximal confounders that social scientists typically focus on? Figure 2.3 

provides the answer to this question, presenting the percent attenuation obtained by adding family 

background measures (light grey bars), measures of childhood health (dark grey bars), or the education 

PGS (striped bars) to models that control for demographic characteristics only. 

Adding measures of family background to models that otherwise control only for demographic 

characteristics reduces the association between education and health by between 8% and 34%, depending 

on the dataset and measure of health considered. Measures of childhood health attenuate associations by 

9% at most. And, adding the education PGS to models that otherwise hold only demographics constant 

reduces associations of education with health by between 5% and 26%. The education PGS’s value as a 

control variable is therefore more or less on par with measures of family background and childhood 

health, which are currently among the most recognized confounders of the education-health relationship. 
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Figure 2.3. Percent reduction in the effect of a year of education on standardized summary measures of 

health when controlling for the education PGS compared to that obtained when controlling for 

measures of family background or childhood health 

 

 

Notes: Percent reductions are calculated by comparing estimates from models controlling for demographic 

characteristics only to those also controlling for: family background (light grey bars); childhood health (dark grey 

bars); or the education PGS and the top ten principal components of the genetic data (measures of genetic 

ancestry) (striped bars). PGS = Polygenic score; WLS = Wisconsin Longitudinal Study; HRS = Health and 

Retirement Study. 
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 Family fixed effects  

While Models 2A/2B and 3A/3B above control for measured family background characteristics, 

the sets of variables used likely omit important aspects of the respondent’s childhood environment. To 

more completely control for family background, I use family fixed effects with 2,232 siblings from 1,114 

families in the WLS.  

First, as shown in Models 1A and 1B in Table 2.3 and in Figure 2.4, a year of schooling is 

associated with significantly better health across all three dimensions in family fixed effect models that 

control for demographic characteristics, both before and after incorporating the education PGS. Effect 

sizes are also similar to those presented above. The same is true for models that also control for childhood 

health (Models 2A and 2B) and adolescent cognitive performance (Models 3A and 3B). In this respect, 

results concur with the results from the main analysis presented above. Controlling for the education PGS 

does not fundamentally change what we know about the relationship between education and health: more 

education predicts better health even when genetic selection is accounted for. 

Second, Figure 2.5 shows that controlling for the education PGS attenuates the association of 

education with two of the three dimensions of health between siblings: physical and mental health and 

metabolic health. The education PGS reduces the estimated effect of education on physical and mental 

health by 11.2% in models controlling for fixed effects and demographics only (light grey bars); by 

11.0% in models also controlling for childhood health (dark grey bars); and by 8.8% in models 

incorporating a control for cognitive performance in adolescence (striped bars). These levels of 

attenuation are not statistically significant. In parallel models of metabolic health, estimated effects are 

attenuated significantly after the introduction of the education PGS, by 24.7% in models controlling for 

fixed effects and demographics only (p = .028); by 24.3% when adding childhood health (p = .024); and 

by 21.1% when controlling for adolescent cognitive performance (p = .017).  

Notice that, as in the main analysis, the percent attenuation observed for these measures of health 

following the introduction of the education PGS to the model is weakest in the most comprehensive 

models: those that control for cognitive performance in adolescence. Again, this suggests that the  
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Table 2.3. Effect of a year of education on standardized summary measures of health, before and after controlling for the education PGS, 

using family fixed effects in the WLS 

 
Model 1 Model 2 Model 3 

 1A: No PGS 1B: + PGS 2A: No PGS 2B: + PGS 3A: No PGS 3B: + PGS 

Dependent variable 𝛼̂EduYrs (SE) 𝛽̂EduYrs (SE) 𝛼̂EduYrs (SE) 𝛽̂EduYrs (SE) 𝛼̂EduYrs (SE) 𝛽̂EduYrs (SE) 

Physical & mental health 0.060 *** 

(0.015) 

0.053 ** 

(0.015) 

0.060 *** 

(0.015) 

0.054 *** 

(0.015) 

0.050 ** 

(0.015) 

0.046 ** 

(0.016) 
       

Cardiovascular health  0.029 * 

(0.014) 

0.028 * 

(0.014) 

0.029 * 

(0.014) 

0.028 * 

(0.014) 

0.029 *  

(0.014) 

0.028 † 

(0.015) 
       

Metabolic health  0.040 ** 

(0.014) 

0.030 * 

(0.014) 

0.040 ** 

(0.014) 

0.031 * 

(0.014) 

0.046 ** 

(0.014) 

0.036 * 

(0.015) 

Notes: Model 1 controls for demographic characteristics; Model 2 adds controls for family background and childhood health; and Model 3 adds a 

control for cognitive performance in adolescence. Models 1B, 2B, and 3B also control for the education PGS and the top ten principal components of 

the genetic data (measures of genetic ancestry). Standard errors are adjusted for clustering within families.  

PGS = Polygenic score; SE = Standard error; WLS = Wisconsin Longitudinal Study; Post-imputation n = 2,232 individuals from 1,114 families. 

*** p < 0.001; ** p < 0.01; * p < 0.05; † p < 0.1 (two-tailed test) 
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Figure 2.4. Effect of a year of education on standardized summary measures of health, before and after 

controlling for the education PGS, using family fixed effects in the WLS 

 

 

 
Notes: Effects are estimated in Models 1A (light grey bars) and 1B (dark grey bars), as shown in Table 2.3.  Both 

models control for demographic characteristics and family fixed effects; Model 1B also controls for the education 

PGS and the top ten principal components of the genetic data (measures of genetic ancestry). 95% confidence 

intervals are shown. PGS = Polygenic score; WLS = Wisconsin Longitudinal Study. 

0

0.02

0.04

0.06

0.08

0.1

Physical & mental

health

Cardiovascular

health

Metabolic

health

E
ff

ec
t 

o
f 

ed
u

ca
ti

o
n

Model 1A:

No PGS

Model 1B:

+ PGS



 

40 

 

 

  

Figure 2.5. Percent reduction in the effect of a year of education on standardized summary measures of 

health when controlling for the education PGS, using family fixed effects in the WLS 

 

 

 
Notes: Percent reductions are calculated by comparing estimates from Models 1A and 1B (light grey bars), 

Models 2A and 2B (dark grey bars), and Models 3A and 3B (striped bars), as shown in Table 2.3.  Model 1 

controls for demographic characteristics and family fixed effects; Model 2 adds controls for childhood health; and 

Model 3 adds a control for cognitive performance in adolescence. Models 1B, 2B, and 3B also control for the 

education PGS and the top ten principal components of the genetic data (measures of genetic ancestry). PGS = 

Polygenic score; WLS = Wisconsin Longitudinal Study. 
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education PGS acts as a partial control for this construct. Also, note that the magnitudes of attenuation 

observed in the family fixed effect models are greater than those obtained in the main analysis. I return to 

this finding in the Discussion.  

For cardiovascular health, the education PGS does not appear to play any role as a control 

variable within families. While this finding could be a result of limited variation in cardiovascular health 

between siblings, additional models indicate that roughly 85% of variation in cardiovascular health exists 

within, rather than between, families. Instead, it could be that the education PGS in part reflects aspects of 

one’s family or childhood environment that are constant between siblings but that are associated with 

cardiovascular health when considering unrelated individuals. More generally, the confounders of 

education’s effect on cardiovascular health are likely to differ from those relevant to other dimensions.  

 

DISCUSSION 

This paper set out to estimate the extent to which genetic selection into schooling confounds the 

estimated effect of education on later health in observational research. This is an important question, as 

scholars continue to debate the existence of a causal effect of education in part because schooling choices 

have long been recognized as non-random (Blau and Duncan 1967; Bourdieu 1984; Durkheim 

1956[1922]; Parsons 1961; Sewell et al. 1969) and because selection factors are notoriously difficult to 

control (Cutler and Lleras-Muney 2008). Measures of genetic selection might correlate with or influence 

personal characteristics that, for whatever reason, cannot be controlled directly. Controlling for genetic 

selection may therefore reduce bias in the estimated effect of education on health in observational 

research (Cesarini and Visscher 2017; Conley 2016; Freese 2018).  

I operationalize genetic selection using powerful PGSs (Dudbridge 2013; Lee et al. 2018) that 

predict a person’s years of schooling by summing up the estimated effects of many genetic variants across 

the genome. My results are remarkably robust across two U.S. datasets of older individuals of European 

ancestries. Key findings are italicized below.  

First and foremost among them is that controlling for the education PGS does not upend the 
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established robust and positive relationships between education and several key dimensions of health. In 

both the HRS and WLS datasets, there remains an educational disparity in health after adjusting for the 

PGS. This is true of all summary measures studied, including physical and mental, cardiovascular, and 

metabolic health. 

Nonetheless, the education PGS appears to have potential as a control variable. The association 

between education and each measure of health is attenuated significantly when controlling for the PGS, 

even when holding constant demographic characteristics, family background, and childhood health, and 

(at least for some health outcomes) cognitive performance in adolescence. Further, while the attenuation 

of the estimated effect of education on health with the incorporation of the education PGS as a control 

may be modest, it is on par with measures of family background and childhood health, which are 

currently among the most recognized confounders of the education-health relationship.  

Further, the proportional attenuation of the relationship between education and each measure of 

health with the addition of the PGS is somewhat stronger when adolescent cognitive performance is 

omitted as a control. This is consistent with the idea that the education PGS is a useful control variable 

primarily when more proximal confounders of education’s effect on health—such as early abilities and 

skills—are unmeasured or measured with error. By implication, controlling for PGSs could also limit bias 

induced by characteristics that we remain unaware confound the education-health link, as DNA may 

influence all traits to some extent (Turkheimer 2000). 

The education PGS does not, however, appear to act as a partial control for unmeasured aspects 

of family background and childhood health, as the proportional attenuation obtained when adding the 

PGS to models that omit measures of these confounders is no greater than that obtained when they are 

included. This result is consistent with prior research showing that childhood health does not mediate the 

relationship between the education PGS and educational outcomes (Belsky et al. 2016). That said, 

measures of childhood health employed here are less than ideal, as they are limited in scope and recalled 

many years later. Future research could assess whether education PGSs may pick up on and thus partially 

control for more objective measures of childhood health, such as biomarkers, which reflect variation in 
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health or disease risk even before symptoms are expressed. 

Models utilizing family fixed effects generally support results from the main analysis, though 

results differ in two ways. First, the education PGS reduces the magnitude of the estimated effect of 

education on physical and mental health and on metabolic health to a larger extent within families than 

in the main analysis of the full sample. This is consistent with prior research, as Domingue et al. (2015) 

finds that the association of the education PGS with years of schooling is greater between siblings than it 

is among unrelated individuals. They suggest that holding highly influential family and environmental 

factors constant accentuates the impact of the more subtle characteristics that tend to distinguish siblings, 

such as specialized skills, interests, and personality traits—all characteristics that the education PGS may 

be correlated with (see also, Boardman and Fletcher 2015; Krapohl et al. 2014) and which might also 

influence later health. Future research could utilize data with measures of these traits to assess whether 

this is the case. 

Second, for cardiovascular health, the education PGS does not appear to play any role as a 

control variable within families, though it did significantly attenuate the estimated effect of education in 

the main analysis. This finding does not appear to be a result of limited variation in cardiovascular health 

between siblings. It could be that the education PGS in part reflects aspects of one’s family or childhood 

environment that are constant between siblings but that are associated with cardiovascular health among 

unrelated individuals. In any case, my results echo prior work that suggests that cardiovascular and 

metabolic health is informed by complex processes (e.g., Gaydosh et al. 2018) that remain only partially 

understood. Further, these findings illustrate the importance of breaking health down into its unique 

dimensions to better understand the social and biological etiology of its specific forms.  

The current study has several limitations. First, while the PGSs I use are calculated based on one 

of the largest genetic association studies to date, they measure genetic selection imperfectly. The measure 

of education utilized in Lee et al. (2018) is rough, as it necessitated harmonizing information from many 

different datasets; while necessary, this likely increases error in estimated genetic effects and resulting 

PGSs. Indeed, while the PGS based on Lee et al. (2018) explains roughly 11% of variation in years of 
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schooling in representative samples of European-ancestry U.S. adults, Rietveld and colleagues (2013) 

suggest that PGSs based on population parameters of genetic effects could explain around 20%. 

Moreover, PGSs reflect additive genetic effects only; estimates from twin studies suggest that, including 

non-additive effects, DNA could explain roughly 40% of variation in educational outcomes (Branigan et 

al. 2013; Heath et al. 1985). Random measurement error in the education PGS likely renders my estimates 

of attenuation conservative. As newer and more powerful education PGSs become available in future 

years, they are likely to become more effective as control variables.  

A second and related issue is that, though demographic and environmental characteristics are 

likely to modify the effects of genetic variants on outcomes, current PGSs reflect only average genetic 

effects. Specifically, they reflect average effects in the GWAS sample, which is often comprised of data 

from medical case-control studies, opt-in biobanks (e.g., UK Biobank), and databases from genomic 

testing companies (e.g., 23andMe). GWAS samples may therefore be of higher SES than the general 

population and may be self-selected for interest in medical or genealogy research. These factors raise 

important concerns about the portability of PGSs across population subgroups (Mostafavi et al. 2019). In 

the context of the current study, interacting the education PGS with independent variables may reduce 

additional confounding due to moderated genetic effects.  

Third, statistical geneticists worry that small differences in genetic ancestry could bias the effect 

of the education PGS on schooling outcomes. This is not a major concern in the context of this study, as I 

am not interested in the effect of the PGS on outcomes, per se. Nonetheless, I follow methods of best 

practice by limiting my analyses to European-ancestry individuals and by controlling for the top 10 

principal components of the genetic data (i.e., the 10 key dimensions of genetic ancestry).  

While methodologically motivated, the restriction of the sample in this study and others like it to 

European-ancestry individuals is ethically questionable. Any beneficial implications of such studies may 

not be applicable to ethnically diverse populations, and, from a purely intellectual standpoint, current 

studies privilege the experiences of those of European descent. In the case of the current article, however, 

there is reason for optimism. Even in a sample of European ancestry adults—those for whom PGSs are 
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currently most predictive of outcomes (Lee et al. 2018; Martin et al. 2017)—controlling for the education 

PGS appears to neither drastically alter nor eliminate positive associations of education with health.  

I utilize summary measures of three major dimensions of health in order to demonstrate general 

proof-of-concept regarding the utility of PGSs as control variables; this strategy also allows me to 

compare the robustness of results across two datasets collecting different measures of health. Nonetheless, 

future research could employ alternative measures of health and wellbeing that are commonly used in 

social science research. Also, I am unable to investigate patterns when additional potential confounders—

including additional aspects of childhood health and non-cognitive skills or personality in adolescence—

are controlled. However, this “limitation” also underscores one of my key arguments: that such 

confounders are often unavailable to control.  

Despite the limitations described above, my results are remarkably robust across two U.S. 

datasets that differ in terms of geographic representation and range of age and educational outcomes. In 

sum, PGSs for educational attainment—measures of genetic selection—are likely to be useful control 

variables in studies of the education-health link. This study thus provides some of the first empirical 

evidence of the utility of PGSs as control variables in observational research. Nonetheless, it does not 

appear that genetic information will force a major reconsideration of the relationship between education 

and health: this relationship is positive, pervasive, and robust to confounders, including measures of 

genetic selection. 
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Chapter 3: The Association of Education with Health and Mortality 

by Socioeconomic Origin, Race, and Gender 

The positive relationship between education and health is one of the most robust in the social 

sciences, and the health advantage experienced by educated individuals is thought to be due in part to a 

causal effect of schooling (Cutler and Lleras-Muney 2008; Hummer and Lariscy 2011). Schooling may 

affect health by promoting access to flexible resources—economic, cognitive, social, and structural—that 

support wellbeing throughout the life course (Freese and Lutfey 2011; Link and Phelan 1995; Mirowsky 

and Ross 2003). Theories of resource substitution and multiplication, outlined by Ross and Mirowsky 

(2006, 2010), posit that the effects of education on health will differ across the sociodemographic groups 

that also structure access to these resources, such as socioeconomic (SES) origin, race, and gender.  

Resource substitution exists if education and the resources it generates stand in for resources that 

would otherwise be absent. By extension, the largest effect of education on health should be found among 

disadvantaged sociodemographic groups. Alternatively, under resource multiplication, education has the 

greatest impact on subsequent health for those with the most alternative resources to build on. 

Prior research suggests patterns of resource substitution by SES origin (Ross and Mirowsky 

2011). This result is often taken to suggest that education ameliorates the deleterious effects of a 

disadvantaged childhood on later health. However, results by race are more consistent with resource 

multiplication, with greater health benefits accruing to whites than to blacks in the United States (Farmer 

and Ferraro 2005; Holmes and Zajacova 2014; Shuey and Willson 2008). Thus, education’s equalizing 

effects do not appear to extend to health disparities by race. 

These contradictory findings may reflect the fact that the effect of education on health depends on 

the ability to successfully deploy education-related resources for health promotion and to avoid added 

stressors that accompany schooling itself or the high-SES spaces it affords access to (Masters et al. 2015). 

As long as the achievements of some sociodemographic groups are rewarded less generously with health-

relevant resources than others, the effects of those achievements on subsequent wellbeing are likely to be 



 

47 

 

muted. The effect of education on health may therefore also vary across the intersection of multiple 

sociodemographic characteristics, as joint group membership may affect exposure to discrimination and 

other potential stressors (Borrell et al. 2006; Colen et al. 2018; Pew Research Center 2016).  

In the current study, I therefore take a more complex intersectional approach than has been used 

in prior work. Specifically, rather than assessing heterogeneity in the association of education with health 

by SES origin or by race or by gender, I evaluate heterogeneity by SES origin, race, and gender 

simultaneously. I do so using self-reported health and mortality data from non-Hispanic whites and blacks 

in the Health and Retirement Study, a survey of older U.S. adults. 

Without considering the unique experiences of individuals at the intersections of these 

sociodemographic categories, the theory of resource substitution would expect the smallest effect of 

education on health to obtain among white men from high-SES origins: those with the most alternative 

resources stemming from their SES origin, their race, and their gender. Alternatively, resource 

multiplication would predict the smallest effect to be found among black women from low-SES 

backgrounds. Instead, I find the smallest association of education with both self-reported health and 

mortality among low-SES origin black men.  

Further, I show that, while higher education is associated with reduced disparities in self-reported 

health by SES origin for whites, it does not have the same substitutive, equalizing effect on health among 

blacks. Moreover, racial disparities in both self-reported health and mortality are exacerbated among the 

highly educated, particularly among those from low-SES origins. Education is not a remedy for all 

background-based and demographic disparities in health. 

 

PATTERNS OF RESOURCE SUBSTITUTION AND MULTIPLICATION IN PRIOR WORK 

First outlined by Ross and Mirowsky (2006, 2010), the theories of resource substitution and 

multiplication posit that the effects of education on health differ across sociodemographic groups 

depending on whether members have alternative access to health-enhancing resources. Resource 

substitution exists if the effect of education on health is strongest for those with the fewest resources 
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stemming from background or status. Education may enable those from disadvantaged groups to accrue 

the same health-promoting resources that more advantaged individuals can access in other ways. Or, 

education may be a distinct resource that can be used in lieu of advantages stemming from family 

background or demographic status. Ross and Mirowsky (2006) argue that “the less there is of one 

resource, the more important another will be” (Pp.1400).  

Contrasted with the theory of resource substitution is resource multiplication, which exists if 

education affects health most for those who are otherwise advantaged. Such a pattern by SES origin may 

develop if, for example, family contacts are instrumental for gaining entry into the most health-enhancing 

careers, neighborhoods, or social groups, particularly for the highly educated. By race or by gender, a 

pattern of resource multiplication may exist if high educational achievement is rewarded more generously 

in the labor market for whites or for men, respectively, assuming that labor market success improves 

subsequent health (Link and Phelan 1995; Lynch 2006).  

  

SES origin 

Much of the existing research on resource substitution and multiplication focuses on family SES, 

as those from low-SES origins have worse health in adulthood than those from more advantaged 

backgrounds, even when holding attained SES constant (Ben-Shlomo and Kuh 2002; Galobardes et al. 

2004; Montez and Hayward 2011). It is therefore encouraging that the largest effects of education on 

health appear to accrue to those from socioeconomically disadvantaged families (Andersson and Vaughan 

2017; Bauldry 2015; Luo and Waite 2005; Ross and Mirowsky 2011; Schaan 2014; Schafer et al. 2013).11 

Consistent with resource substitution, these studies show that health disparities by SES origin are greatest 

among less-educated adults; among those with high education, virtually no disparity exists.  

 
11 A few studies have returned null or inconsistent interaction effects; these studies have assessed mortality 

(Hayward and Gorman 2004), active life expectancy (Montez and Hayward 2014), and diagnosed chronic conditions 

(Nandi et al. 2012). Just one study to my knowledge has supported resource multiplication by SES origins. Bauldry 

(2014) finds that, among young adults, the association of college with self-reported health is strongest for those most 

likely to attend. However, because Bauldry predicts probability of college attendance using not only measures of 

SES origin but also of academic performance and aspirations for the future, results are not entirely comparable with 

the other cited literature. 
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The effects of education on health may be largest for those from low-SES backgrounds because 

their subsequent life chances rely primarily on their own skills, behaviors, and achievements, which can 

be improved through education (Hout 2012; Link and Phelan 1995; Mirowsky and Ross 2003). 

Meanwhile, health-promoting skills and norms may be modeled in the home from an early age for those 

from high-SES backgrounds, making schooling less critical (Hernández-Alava and Popli 2017; Laureau 

2003; Mollborn and Lawrence 2018). Those from high-SES origins may also succeed economically 

regardless of their own education (Hout 1984, 1988; Torche 2011) by drawing on family for information 

and contacts, or through direct receipt of financial and other assistance (Flaster 2018; Henretta et al. 

2012). To the extent that economic outcomes influence subsequent health (Link and Phelan 1995; Lynch 

2006), this would produce a greater effect of education on health among those from low-SES origin. 

 

Race 

To my knowledge, no research has drawn on theories of resource substitution and multiplication 

to describe heterogeneity in effects of education on health by race. Nonetheless, patterns similar to those 

observed by SES origin—declining disparities with increasing education—might be expected, given the 

correlation between race and SES and the fact that non-Hispanic whites evince better health and lower 

mortality than blacks. (Williams et al. 2010). Quite the reverse, the health advantages experienced by 

whites actually increase with education (Farmer and Ferraro 2005; Holmes and Zajacova 2014; Masters et 

al. 2012; Shuey and Willson 2008; Zajacova and Hummer 2009). Evidence thus points to resource 

multiplication by race, whereby the protective effects of education on health accrue mostly to whites.  

This may be because discrimination limits the effects of education on health among U.S. blacks. 

Discrimination in the labor market restricts socioeconomic attainment, and evidence suggests it is most 

consequential for highly educated blacks (Tomaskovic-Devey et al. 2005). Insofar as economic outcomes 

affect health (Link and Phelan 1995; Lynch 2006), this should dampen the effect of education on health 

among blacks. Similarly, interpersonal discrimination may reduce average wellbeing among blacks by 

inducing health-harming stress (Goosby et al. 2018; Lewis et al. 2015; Williams and Mohammed 2009). 
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It may also offset education’s positive effect on health, as blacks with higher levels of education are more 

likely to report experiencing discrimination (Borrell et al. 2006; Colen et al. 2018; Hochschild 1995; Pew 

Research Center 2016), perhaps because they are more often in spaces frequented by whites.  

The reduced association of education with health among blacks may also stem from early life 

experiences in segregated neighborhoods (Sampson and Winter 2016; Williams and Collins 2001). The 

quality of segregated black schools has historically been lower than others, which could result in reduced 

returns to health (Frisvold and Golberstein 2011). Similarly, heightened exposure to neighborhood-related 

environmental toxins or stress in childhood could irreversibly impact health across the life course 

(Galobardes et al. 2004; Shonkoff et al. 2009), weakening the effect of education on later outcomes.  

Another potential explanation is that competing obligations grow with education for blacks more 

so than for whites. In general, blacks in the U.S. are more likely than whites to lend to extended kin 

(Gerstel 2011; O’Brien 2012) and to live in multigenerational or extended households (Cross 2018; 

Perkins 2019). These patterns may be most dramatic among the highly educated if the likelihood of 

having a network member in need shrinks sharply with education for whites but not for blacks.  

 

Gender 

Patterns by gender are more complex than those by SES origin or race, as they occasionally 

support the resource substitution perspective and other times resource multiplication. Subjective aspects 

of health follow patterns of resource substitution by sex, as the relationships between education and self-

reported health, self-reported physical limitations, and depressive symptoms are stronger for women than 

for men (Ross et al. 2012; Ross and Mirowsky 2006, 2010). Ross and Mirowsky (2006) find that this is 

explained in part by the fact that education affords opportunities for creative expression at work more for 

women than for men, where creative work predicts improved mental health.  

Meanwhile, the negative association of education with mortality is steeper for men, largely due to 

deaths stemming from behavioral risks (Ross et al. 2012). Ross and colleagues (2012) reason that 

education might improve these outcomes more for men because men have “decision-making latitude” 
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(Pp.1180), while women have historically been subject to strict, overarching social controls.  Skills 

generated through education—such as self-regulation and direction—may thus factor into consequential 

behavioral choices (e.g., smoking) more for men than for women. Prior research supports this idea 

(Denney et al. 2010; Olson et al. 2017).  

Notably, women report poorer health and disablement due to nonfatal conditions than men, while 

men have higher rates of life-threatening chronic illnesses and higher mortality rates (Case and Paxson 

2005; Crimmins et al. 2011). Thus, in some sense, both sets of patterns are consistent with a resource 

substitution perspective: on health outcomes for which men are at a disadvantage, they benefit more from 

education, while the reverse is true on health outcomes for which women are at a disadvantage.   

 

THE INTERSECTION OF SES ORIGIN, RACE, AND GENDER 

Considering SES origin, race, and gender simultaneously, the theory of resource substitution 

would expect the smallest effect of education on health to be found among high-SES origin white 

males—those at an advantage in terms of their family background, their race, and their gender. The 

largest effect would be seen among those with the fewest alternative resources: black females from 

disadvantaged families. Resource multiplication would expect the reverse.  

I expect less simplistic patterns. The effect of education on health depends not only on access to 

resources, but also on one’s ability to deploy resources effectively for health promotion and to avoid 

added stressors that accompany schooling itself or the high-SES spaces it affords access to (Masters et al. 

2015). As described below, these factors may vary across the intersection of groups defined by SES 

origin, race, and gender. A more complex intersectional perspective may therefore shed light on 

additional sources of heterogeneity in effects of education on health.   

The intersectional approach emerged out of black feminist scholarship, which argued that the 

experiences of black women could not be explained by the additive effects of blackness and being female 

(Collins 1990; Crenshaw 1989). Instead, the effects of these characteristics were augmented by their 

interaction. Drawing on the intercategorical approach to intersectionalism (Choo and Ferree 2010; McCall 
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2005), I assess how inequalities are structured by interactions between memberships in various groups. 

Prior work suggests that joint membership in sociodemographic groups defined by SES origin, 

race, and/or gender may structure effects of education on health due to differential exposure to 

discrimination and other stressors. As described in earlier sections, discrimination in the labor market and 

in social settings may offset the effect of education on health for blacks compared to whites (Borrell et al. 

2006; Colen et al. 2018; Goosby et al. 2018; Hochschild 1995; Lewis et al. 2015; Pew Research Center 

2016; Williams and Mohammed 2009). Here, I contend that the regularity of discriminatory and other 

stressful experiences—and the resulting effects of education on health—may vary by not only by race, but 

also by SES origin and/or gender.  

For example, Borrell et al. (2006) finds that black men are more likely than black women to 

report experiencing racial discrimination in several realms of life, including getting a job and at work. 

Black men are also more likely than black women to report being seen as suspicious or being inexplicably 

stopped by police (Pew Research Center 2016). Recall that research also suggests discrimination 

increases with education for blacks (but presumably not for whites) (Borrell et al. 2006; Colen et al. 2018; 

Hochschild 1995; Pew Research Center 2016; Tomaskovic-Devey et al. 2005) and that discrimination 

worsens health (Goosby et al. 2018; Lewis et al. 2015; Williams and Mohammed 2009). If the racial gap 

in exposure to discrimination grows with education more for men than for women, we might expect the 

difference in the effect of education on health by race to also be most dramatic among men.  

Similarly, discrimination on the basis of SES origin may occur more frequently for blacks than 

for whites. Indeed, Colen et al. (2018) find that upward socioeconomic mobility predicts reduced 

discrimination for whites, but enhanced discrimination for blacks. Discrimination is known to occur on 

the basis of black-identifiable voices (Fischer and Massey 2004) and names (Bertrand and Mullainathan 

2004), both of which may be more prevalent among blacks from low-SES origins compared to high-SES 

origin blacks and whites of either background (Gaddis 2017).  

The concept of John Henryism (James 1994; James et al. 1987) and the related theory of skin-

deep resilience (Brody et al. 2013; Chen et al. 2015; Miller et al. 2015) also suggest that the effect of 
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education on health is moderated by both SES origin and race. These perspectives imply that the constant 

striving required to achieve high-SES status—or to achieve a high level of education—induces health-

harming stress for those from disadvantaged backgrounds regardless of race (Stephens et al. 2012a, 

2012b). However, this stress may be particularly problematic for low-SES origin racial minorities, who 

must adjust not only to an unfamiliar class environment, but also to a heightened threat of discrimination 

that persists in the high-SES spaces that education subsequently affords access to (Borrell et al. 2006; 

Colen et al. 2018; Goosby et al. 2018; Hochschild 1995; Lewis et al. 2015; Pew Research Center 2016; 

Williams and Mohammed 2009). 

Consistent with this idea, Gaydosh et al. (2018) find that physical health—specifically, metabolic 

syndrome—is predicted by the interaction between childhood disadvantage, race, and education among 

young adults in the U.S. A college education predicts better health among whites and among blacks from 

relatively advantaged backgrounds. However, among blacks from less advantaged origins, college 

education actually predicts poorer health. In the language of resource substitution and multiplication, this 

suggests that the larger racial disparities in health seen at high levels of education (Farmer and Ferraro 

2005; Holmes and Zajacova 2014; Wilson and Shuey 2008)—patterns of resource multiplication by 

race—may be particularly evident among those from low-SES backgrounds. Likewise, it suggests that 

patterns of resource substitution by SES origin—larger positive effects of education on health for those 

from low-SES backgrounds (Ross and Mirowsky 2011)—will not be found among blacks. 

In sum, while prior work on resource substitution and multiplication has tended to focus on single 

sociodemographic characteristics, effects of education on health may vary across the intersection of SES 

origin, race, and gender. In particular, the effects of education on health may vary across the intersection 

of race and gender and/or by race and SES origin. Heterogeneity at the intersection of the SES origin, 

race, and gender remains understudied, providing additional motivation for taking a more complex 

intersectional perspective, as I do here.  
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METHODS 

Data 

I use data from the Health and Retirement Study (HRS), a panel survey of U.S. households that is 

funded by the National Institute on Aging and conducted through the University of Michigan (RAND 

2016). The HRS began in 1992 with a sample of U.S. adults born between 1931 and 1941 and their 

spouses. Additional birth cohorts were later added to the sample, and respondents have been re-

interviewed biennially. Since 1998, the HRS has surveyed a nationally representative sample of the U.S. 

population over age 50 and their spouses. I draw data from survey years 1998 through 2014; I begin in 

1998 rather than 1992 as this is the first year respondents were asked to report their health in childhood, a 

key covariate. 

I restrict the sample of self-reported health to observations taken from respondents ages 50 to 64; 

likewise, hazard models of mortality are limited to those who were between ages 50 and 64 in their first 

eligible survey year. The lower bound of this range is the age at which people are eligible for HRS 

sampling. I set an upper bound due to research showing that the association of education with health 

morphs over the life course. Educational disparities in mortality, for example, decline among the elderly 

due to selective attrition and to natural aging processes that render resources associated with educational 

attainment less relevant for health (Willson et al. 2007).12 In addition, I limit the sample to U.S.-born non-

Hispanic white and non-Hispanic black respondents, as sample sizes are too small to generate precise 

estimates of education’s association with health among Hispanics and the contents and implications of 

education for health may vary by nativity (Acevedo-Garcia et al. 2007; Kimbro et al. 2008). 

There are 16,439 respondents meeting these criteria and eligible for both the SRH and mortality 

analysis. Nearly 10% of respondents (n = 1,626) are missing data on a key covariate.13 I multiply impute 

missing independent variables across 10 imputations and use the imputed data in analysis.  

 
12 Results for those ages 65 and above are available on request. 

13 The vast majority is missing information on maternal education (n = 1,535). This is in part because many 

respondents were not asked their parental years of schooling at all; early HRS surveys asked only whether each 

parent had attained fewer than eight years of schooling versus eight or more years.  
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The analysis of self-reported health pools 57,587 observations from the 16,439 respondents 

between survey years 1998 and 2014. Each respondent may therefore contribute between one and nine 

observations to the analysis of self-reported health (average = 3.5). The mortality analysis includes the 

same 16,439 respondents and tracks mortality outcomes through 2014. 

 

Measures 

Health 

Self-reported health (SRH) correlates strongly with objective measures, like the presence of 

diagnosed conditions and timing of subsequent mortality (Idler and Benyamini 1997; Jylhä 2011). 

Moreover, when reporting SRH, people may consider the severity, number, and duration of any 

unpleasant physical or psychological symptoms they experience. SRH was ascertained using the 

following question: “Would you say your health is excellent, very good, good, fair, or poor?” I 

dichotomize SRH as follows: (0) Poor or fair health; (1) Good, very good, or excellent health.14  

Mortality data is taken from the National Death Index through 2011, the latest year for which it 

was linked with the HRS sample. From 2012 through 2014, mortality data is obtained through exit 

interviews with respondents’ family members or spouses. In the hazard models I estimate, mortality is 

operationalized with a binary indicator of whether the respondent was deceased at a particular age.  

 

Education 

In the main analysis, education is measured using years of formal schooling. The HRS top-codes 

years of education at 17 or more, and I collapse those who reported very low levels of schooling into a 

single category. The resulting variable ranges from five to 17. I center this variable at its mean across 

respondents; I do this so that when years of schooling is interacted with other characteristics, coefficients 

on those other characteristics can be interpreted as effects when holding education at its mean.  

 
14 In robustness tests (not shown), I replicate the main analysis using alternative models and measures of SRH. 

Results are substantively the same as those presented here. 
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In robustness tests, I operationalize education using highest degree attained: (1) Less than high 

school; (2) High school or GED; (3) Associate’s degree or some college; (4) Bachelor’s degree or higher. 

 

Socioeconomic origin, race, and gender 

I use a binary measure of maternal education to operationalize SES origin, as maternal education 

is associated with child and adult health as well as educational attainment (Case et al. 2005; Currie and 

Moretti 2003; Gage et al. 2013). I dichotomize maternal education as follows: (0) Less than twelve years 

of education; (1) twelve years of education or more.15 

I then construct an eight-category nominal variable indicating SES origin (maternal education 

twelve years or more versus less than twelve years), race (non-Hispanic white or non-Hispanic black), 

and gender (male or female) to use in analyses. 

 

Control variables 

I control for a person’s age, age-squared, year of birth, and interactions between age and year of 

birth and between age-squared and year of birth. I also control for childhood health, since research 

suggests that poor health in early life both deters educational attainment and affects later health (Haas 

2007; Jackson 2009; Palloni 2006). Childhood health is assessed with a simple question asking 

respondents to consider their health through age 16 and rate it as excellent, very good, good, fair, or poor.  

 

Analysis 

Self-reported health 

To analyze SRH, I estimate a series of logistic regression models. Model 1 does not take an 

intersectional approach; instead, its goal is to establish that average health disparities by education, SES 

 
15 Paternal education more often goes unreported than maternal education. Among otherwise-eligible respondents, 

9.3% are missing maternal years of education versus 16.3% paternal education. Missingness on paternal education is 

also more strongly linked to race: 7.3% of whites and 15.6% of blacks in the sample are missing maternal education, 

compared to 11.4% and 32.0% for paternal education, respectively. 
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origin, race, and gender in this sample are consistent with those identified in previous research (e.g., 

Cutler and Lleras-Muney 2008; Montez and Hayward 2011; Williams et al. 2010; Case and Paxson 

2005). I anticipate that, all else constant, years of schooling will be associated with higher odds of good 

SRH, while low-SES origin, black race, and female sex will be associated with lower odds.  

Model 1 therefore regresses good or better SRH (GoodSRH, indexed by person, i, and time, t) on 

years of education (EduYrs) and binary indicators of low-SES origin (LowSES), black race (Black), and 

female sex (Female). Control variables (indicated by the vector X) include age at interview, age-squared, 

year of birth, the interaction between age and year of birth, the interaction between age-squared and year 

of birth, and health in childhood. To correct for non-independence of observations from the same 

respondent or household, I cluster standard errors at the household level. Models of SRH include 57,587 

observations from 16,439 respondents. 

 

logit(𝐺𝑜𝑜𝑑𝑆𝑅𝐻𝑖𝑡) = 𝛽0 + 𝛽1𝐸𝑑𝑢𝑌𝑟𝑠𝑖 + 𝛽2𝐿𝑜𝑤𝑆𝐸𝑆𝑖 + 𝛽3𝐵𝑙𝑎𝑐𝑘𝑖 +  𝛽4𝐹𝑒𝑚𝑎𝑙𝑒𝑖 

+ 𝜏𝑇Xit 

Model 1 

 

Model 2 builds on Model 1 by incorporating a limited intersectional perspective, one that is 

comparable to that employed in prior research. Specifically, Model 2 adds interactions between years of 

education and the three binary sociodemographic variables. Based on prior work (e.g., Farmer and Ferraro 

2005; Holmes and Zajacova 2014; Ross and Mirowsky 2006, 2011; Ross et al. 2012), I expect to find a 

greater increase in odds of good SRH per year of schooling for those from low-SES origins and for 

women—evidence of resource substitution by SES origin and gender. Thus I expect odds ratios 

associated with 𝛽5 and 𝛽7 to be greater than 1. I anticipate a smaller improvement in odds of good health 

per year of schooling for black respondents—indicative of resource multiplication by race—and thus for 

the odds ratio associated with 𝛽6 to be less than 1. 
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logit(𝐺𝑜𝑜𝑑𝑆𝑅𝐻𝑖𝑡) = 𝛽0 + 𝛽1𝐸𝑑𝑢𝑌𝑟𝑠𝑖 + 𝛽2𝐿𝑜𝑤𝑆𝐸𝑆𝑖 + 𝛽3𝐵𝑙𝑎𝑐𝑘𝑖 +  𝛽4𝐹𝑒𝑚𝑎𝑙𝑒𝑖 

+ 𝛽5𝐸𝑑𝑢𝑌𝑟𝑠𝑖𝐿𝑜𝑤𝑆𝐸𝑆𝑖 + 𝛽6𝐸𝑑𝑢𝑌𝑟𝑠𝑖𝐵𝑙𝑎𝑐𝑘𝑖 +  𝛽7𝐸𝑑𝑢𝑌𝑟𝑠𝑖𝐹𝑒𝑚𝑎𝑙𝑒𝑖 + 𝜏𝑇X𝑖𝑡 

 

Model 2 

The approach used in Model 2 assumes that any heterogeneity in the effect of education on health 

across one sociodemographic characteristic is constant regardless of a person’s other characteristics. 

Taking a more complex intersectional perspective, Model 3 considers membership in all three 

sociodemographic groups simultaneously by regressing good or better SRH on education, an eight-

category variable indicating SES origin, race, and gender, and their interaction.16 While I specify high-

SES origin white males as the reference group here, I also calculate and present odds ratios on years of 

education for the seven other sociodemographic groups.  

 

logit(𝐺𝑜𝑜𝑑𝑆𝑅𝐻𝑖𝑡) = 𝛽0 + 𝛽1𝐸𝑑𝑢𝑌𝑟𝑠𝑖 

+ 𝛽2𝐿𝑜𝑤𝑆𝐸𝑆_𝑊ℎ_𝑀𝑎𝑙𝑒𝑖  

+ 𝛽3𝐻𝑖𝑔ℎ𝑆𝐸𝑆_𝑊ℎ_𝐹𝑒𝑚𝑖 + 𝛽4𝐿𝑜𝑤𝑆𝐸𝑆_𝑊ℎ_𝐹𝑒𝑚𝑖  

+ 𝛽5𝐻𝑖𝑔ℎ𝑆𝐸𝑆_𝐵𝑙_𝑀𝑎𝑙𝑒𝑖 + 𝛽6𝐿𝑜𝑤𝑆𝐸𝑆_𝐵𝑙_𝑀𝑎𝑙𝑒𝑖  

+ 𝛽7𝐻𝑖𝑔ℎ𝑆𝐸𝑆_𝐵𝑙_𝐹𝑒𝑚𝑖 +  𝛽8𝐿𝑜𝑤𝑆𝐸𝑆_𝐵𝑙_𝐹𝑒𝑚𝑖 

+ 𝛽9𝐸𝑑𝑢𝑌𝑟𝑠𝑖𝐿𝑜𝑤𝑆𝐸𝑆_𝑊ℎ_𝑀𝑎𝑙𝑒𝑖 

+ 𝛽10𝐸𝑑𝑢𝑌𝑟𝑠𝑖𝐻𝑖𝑔ℎ𝑆𝐸𝑆_𝑊ℎ_𝐹𝑒𝑚𝑖 +  𝛽11𝐸𝑑𝑢𝑌𝑟𝑠𝑖𝐿𝑜𝑤𝑆𝐸𝑆_𝑊ℎ_𝐹𝑒𝑚𝑖 

+ 𝛽12𝐸𝑑𝑢𝑌𝑟𝑠𝑖𝐻𝑖𝑔ℎ𝑆𝐸𝑆_𝐵𝑙_𝑀𝑎𝑙𝑒𝑖 + 𝛽13𝐸𝑑𝑢𝑌𝑟𝑠𝑖𝐿𝑜𝑤𝑆𝐸𝑆_𝐵𝑙_𝑀𝑎𝑙𝑒𝑖  

+ 𝛽14𝐸𝑑𝑢𝑌𝑟𝑠𝑖𝐻𝑖𝑔ℎ𝑆𝐸𝑆_𝐵𝑙_𝐹𝑒𝑚𝑖 +  𝛽15𝐸𝑑𝑢𝑌𝑟𝑠𝑖𝐿𝑜𝑤𝑆𝐸𝑆_𝐵𝑙_𝐹𝑒𝑚𝑖  

+𝜏𝑇X𝑖𝑡 

Model 3 

 

 
16 It would be mathematically equivalent to estimate a model incorporating a four-way interaction between 

educational attainment, SES origins, race, and gender along with all lower-level interactions and main effects. Such 

a model would draw primary attention to the statistical significance of higher-order interaction terms. Some have 

termed this approach “intersectionality as testable explanation” (Evans et al. 2018). Where relevant, I present results 

from such models below. 
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Differences in odds ratios across groups may not align with differences in effects on probabilities 

(Long and Freese 2014; Long and Mustillo 2018; Mood 2010). Thus, I also estimate and present 

predicted probabilities of good SRH by years of education for each sociodemographic group. To do so, I 

hold age at its mean across observations (58 years) and other covariates at their means across respondents. 

Finally, to assess whether patterns hold at different points in the distribution of education, I 

estimate a model that is identical to Model 3 but that instead uses highest degree attained to operationalize 

education (Model 3b).  

 

Mortality 

To study all-cause mortality, I estimate a series of discrete-time hazard models with a logit link 

function. These models use data from the same 16,439 respondents as the analysis of SRH. Time is 

indexed with year of age, starting with the age at which the respondent was first eligible for the analytic 

sample and ending with the respondent’s age at the end of 2014. Respondents who died over this period 

are eliminated from risk set after the age at which they are recorded deceased.  

The mortality analysis follows a series of models that are analogous to Models 1-3 described 

above. Specifically, Model 1 regresses an indicator of mortality status (0 = Not deceased; 1 = Deceased) 

on education and indicators of low-SES origin, black race, and female sex. Model 2 adds interactions 

between education and each of the three sociodemographic variables. Model 3 incorporates a more 

complex intersectional angle by interacting education with the eight-category variable indicating joint 

membership in groups defined by SES origin, race, and gender. Finally, Model 3b is identical to Model 3 

except that education is operationalized using highest degree attained rather than years of schooling. 

As with the analysis of SRH, in addition to age (which indexes time), each model controls for 

age-squared, year of birth, interactions between age, age-squared, and year of birth, and childhood health. 

I cluster standard errors at the household level. To ease interpretation, I present odds ratios by group and 

estimate the probability of mortality at age 58, holding covariates at their respondent-level means.  
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RESULTS 

Table 3.1 presents unweighted descriptive statistics. Of the 57,587 observations of SRH, three in 

four report being in good or better health (76.6%). And, of the 16,439 respondents included in the 

analysis, 15.2% were deceased by 2014. On average, respondents attained 13.13 years of education. Just 

14.4% did not complete high school; half earned a high school diploma or GED (55.6%); 6.8% earned an 

Associate’s degree or attended some college; and 23.2% attained a Bachelor’s degree or higher. Around 

half of respondents’ mothers attained twelve or more years of education (57.8%); these respondents are 

considered to be from high-SES origins. Three in four are non-Hispanic white (75.9%), 24.1% are non-

Hispanic black, and just over half are female (56.5%). Across all observations in the analysis of SRH and 

at entry into the mortality analysis, respondents range in age from 50 to 64 years.  

 

Self-reported health 

Table 3.2, Model 1 presents results from a logistic regression of good SRH on years of education 

and binary indicators of the three focal demographic characteristics. All else constant, a year of education 

increases odds of good health by 24.9% (p < .001). As expected, those from low-SES origins have lower 

odds of good health than those from socioeconomically advantaged backgrounds (odds ratio [OR] = 

0.747, p < .001) and black respondents have worse odds than whites (OR = 0.576, p < .001). 

Unexpectedly, odds of good health do not differ significantly by gender (OR = 1.048, p = .154). 

Model 2 adds a limited intersectional angle, interacting years of education with the three focal 

sociodemographic variables. The association of education with odds of good health is greater for those 

from low-SES origins (interaction OR = 1.045, p = .009). Further, odds of good SRH increase with years 

of schooling significantly less for blacks than for whites (interaction OR = 0.934, p < .001) and 

marginally more for women than for men (interaction OR = 1.029, p = .057). Results by SES origin and 

potentially gender thus support a pattern of resource substitution, while those for race follow resource 

multiplication. Each of these results is consistent with prior research (e.g., Farmer and Ferraro 2005; 

Holmes and Zajacova 2014; Ross and Mirowsky 2006, 2011; Ross et al. 2012).
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Table 3.1. Descriptive statistics 

Variable N % 

Total observations for self-reported health  57,587 100 

Observations with complete data c 52,299  

Self-reported health   

Poor or fair 13,482 23.4 

Good, very good, or excellent 44,105 76.6 

Agea Mean (SD): 57.97 (3.9) 

Total respondents 16,439 100 

Respondents with complete data c 14,813  

Mortality by end of 2014 2,494 15.2 

Years of educationb Mean (SD): 13.12 (2.5) 

Highest degree attained   

< High school or GED 2,359 14.4 

High school diploma or GED 9,137 55.6 

Associate’s degree or some college 1,123 6.8 

Bachelor’s degree or higher 3,820 23.2 

Sociodemographic characteristics   

Low-SES origin (Maternal ed. <12 years)  6,285 42.2 

High-SES origin (Maternal ed. 12+ years) 8,619 57.8 

White (non-Hispanic) 12,479 75.9 

Black (non-Hispanic) 3,960 24.1 

Male 7,158 43.5 

Female 9,281 56.5 

High-SES white males  3,383 22.7 

Low-SES white males  1,742 11.7 

High-SES white females  3,807 25.5 

Low-SES white females  2,631 17.7 

High-SES black males  598 4.0 

Low-SES black males  686 4.6 

High-SES black females  831 5.6 

Low-SES black females  1,226 8.2 

Year of birthb Mean (SD): 1946.48 (8.2) 

Childhood health   

Poor  231 1.4 

Fair  790 4.8 

Good  2,413 14.8 

Very good  4,062 24.9 

Excellent  8,830 54.1 
a Unless noted otherwise, this variable is centered at the observation-level mean in analyses. 
b Unless noted otherwise, this variable is centered at the respondent-level mean in analyses. 
c Maternal education was missing for n = 1,535 respondents and childhood health was missing 

for n = 113 respondents. Imputed values are used in analyses. 
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Table 3.2. Odds ratios (OR) from logistic regression models of good self-reported health 

 Model 1 Model 2 Model 3 

 OR (SE) OR (SE) OR (SE) 

Education (Years) 1.249 (0.010) *** 1.228 (0.017) *** 1.221 (0.023) *** 

Low-SES origin (Ref: High) 0.747 (0.029) *** 0.768 (0.030) *** - 

Black (Ref: White) 0.576 (0.023) *** 0.546 (0.022) *** - 

Female (Ref: Male) 1.048 (0.035) 1.068 (0.036) † - 

Sociodemographic group    (p < 0.001) 

High-SES white males  - - Ref. 

Low-SES white males  - - 0.781 (0.055) *** 

High-SES white females  - - 1.113 (0.063) † 

Low-SES white females  - - 0.831 (0.052) ** 

High-SES black males  - - 0.577 (0.051) *** 

Low-SES black males  - - 0.414 (0.036) *** 

High-SES black females  - - 0.541 (0.044) *** 

Low-SES black females  - - 0.457 (0.032) *** 

Education X Low-SES origin - 1.045 (0.018) ** - 

Education X Black - 0.934 (0.015) *** - 

Education X Female - 1.029 (0.015) † - 

Education X Sociodemographic group   (p = 0.002) 

High-SES white males  - - Ref. 

Low-SES white males  - - 1.066 (0.029) * 

High-SES white females  - - 1.015 (0.028) 

Low-SES white females  - - 1.090 (0.033) ** 

High-SES black males  - - 0.991 (0.040) 

Low-SES black males  - - 0.949 (0.030) † 

High-SES black females  - - 1.002 (0.040) 

Low-SES black females  - - 1.008 (0.029) 

N observations (N respondents) 57,587 (16,439) 57,587 (16,439) 57,587 (16,439) 

Pseudo R2 0.1063 0.1074 0.1078 

Notes: Years of education is centered at the mean across respondents (13.12 years). Models control for age, 

age-squared, year of birth, the interaction between age and year of birth, the interaction between age-squared 

and year of birth, and childhood health. Standard errors are adjusted for clustering at the household level.  

*** p < .001; ** p < .01; * p < .05; † p < .1 (two-tailed test) 

Ref. = Reference group; SE = Standard error; SES = Socioeconomic origin 
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Taking a more complex intersectional approach, Model 3 interacts years of education with the 

eight-category indicator of sociodemographic group. Figure 3.1 presents the estimated effect of education 

by sociodemographic group, demonstrating that additional schooling is associated with elevated odds of 

good SRH at a high level of statistical significance (p < .001) for all (see also, Appendix Table A3.1). As 

expected given the results of Model 2, the terms involved in the interaction between education and 

sociodemographic group are jointly significant (p = .002), indicating that the association of schooling 

with SRH differs across groups.  

Neither the most status- and background-advantaged group (high-SES origin white men) nor the 

least (low-SES origin black females) demonstrates the greatest gain in odds of good SRH per year of 

schooling. In fact, odds of good SRH increase a similar amount per year of schooling for high-SES white 

men (22.1%) and low-SES black women (23.1%). Instead, the association is strongest for white women 

from low-SES origins, among whom an additional year of schooling increases odds of good SRH by 

33.1%. Meanwhile, low-SES origin black men experience the smallest gain in odds of good SRH per year 

of schooling, at just 15.9%.  

While patterns of heterogeneity thus do not uniformly support theories of resource substitution or 

multiplication, support for both theories is evident in subsets of respondents. Consistent with prior 

research and the results of Model 2, there is evidence in Model 3 that the largest effects of education on 

health accrue to those from disadvantaged backgrounds, suggestive of resource substitution by SES 

origin. However, this is only the case for whites.  

Among white men, odds of good SRH increase by 30.1% per year of schooling for those from 

low-SES backgrounds compared to a much smaller 22.1% for those from high-SES origins (difference p 

= .021). Results are similar for white women (ORlow-SES = 1.331; ORhigh-SES = 1.239; difference p = .023). 

Among black respondents, there is no sign of resource substitution by SES origin, as those from low-SES 

origins do not appear to experience greater health returns to schooling than those from high-SES origins 

among either men (ORlow-SES = 1.159; ORhigh-SES = 1.210; difference p = .326) or women (ORlow-SES = 

1.231; ORhigh-SES = 1.224; difference p = .891). A model regressing good SRH on all possible three-way 
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Figure 3.1. Effects of a one-year increase in education on odds of good self-reported health, by 

sociodemographic group  
 

 
Notes: Group-specific odds ratios are calculated using Model 3 in Table 3.2. See Appendix Table A3.1 for further 

information. Error bars represent 95% confidence intervals. SES = Socioeconomic origin. 
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interactions between the four focal variables and lower level terms confirms that this pattern, as the 

interaction between education, SES origin, and race, is statistically significant (p = .033).17 

Viewed from a different angle, these results indicate resource multiplication by race—such that 

the largest effects of education on odds of good health accrue to whites—but only among those from low-

SES origins.18 Among low-SES origin males, whites’ odds of good SRH increase by 30.1% per year of 

education compared with 15.9% among blacks (difference p < .001). This is also found among females 

(ORwhites = 1.331; ORblacks = 1.231; difference p = .014).  Among those from high-SES origins, however, 

white and black men (ORwhite = 1.221; ORblack = 1.210; difference p = .820) and women (ORwhite = 1.239; 

ORblack = 1.224; difference p = .744) experience roughly equivalent gains per year of schooling. 

No other higher-level terms estimated in the model of SRH on all possible three-way interactions 

between education, SES origin, race, and gender is statistically significant. The four-way interaction 

between these variables, estimated in another model, is also insignificant (p = .561). Still, it is worth 

noting that in Model 3, the largest difference in the estimated effects of education on health by gender is 

found between low-SES origin black men and women. Specifically, odds of good health increase by 

23.1% for each year of education for low-SES origin black women but by only 15.9% for low-SES origin 

black men, a marginally significant difference (p = .069).  

 

Predicted probabilities 

Figure 3.2 presents predicted probabilities of being in good SRH by years of schooling and 

sociodemographic group. Probabilities are calculated based on Model 3 in Table 3.2, holding age at 58 

years and covariates at their respondent-level means. As indicated by the regression results, the 

probability of good SRH increases with education for all groups. Probabilities range from 0.42 to 0.63 at  

 
17 These findings are also evident when estimating Model 2 separately by race. The interaction between education 

and low-SES origins indicates resource substitution among whites (interaction OR = 1.071, p = .001) but not blacks 

(interaction OR = 0.977, p = .461).  

18 These findings are also evident when estimating Model 2 separately by SES origin. The interaction between 

education and black race indicates resource multiplication among those from low-SES origins (OR = 0.904, p < 

.001) but not those from high-SES origins (OR = 0.996, p = .883). 
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Figure 3.2. Predicted probability of good self-reported health, by sociodemographic group and years of 

education  

 
Notes: Predicted probabilities are calculated using Model 3 in Table 3.2. Age is held at 58 years and covariates 

are held at their respondent-level means. SES = Socioeconomic origin. 
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low levels (eight years) of schooling and from 0.77 to 0.92 at high levels (17 years or more). Thus, unlike 

what might be predicted by resource substitution, variation in probabilities across groups does not shrink 

substantially at high levels of education, nor does it grow, as would be expected based on resource 

multiplication.  

Also consistent with the regression results, disparities in health by SES origin decline with 

education for whites. Among white men with eight years of schooling, 62% and 48% of those from high- 

and low-SES origins are expected to report good SRH, respectively. Among those with 17 years or more, 

however, there is virtually no difference by SES origin, with a predicted 91% of both high- and low-SES 

origin white men reporting good SRH. Similarly, good SRH is predicted for 63% of high-SES origin 

white women with eight years of education compared with 46% of those from low-SES backgrounds. 

Among those with at least 17 years of schooling, no disparity exists (high- and low-SES: 92%). 

The predicted probabilities suggest that the lack of such a pattern among blacks—that is, no 

resource substitution by SES origin—may have something to do with the fact that health disparities by 

SES origin are smaller for blacks than for whites, especially at low levels of schooling. For example, 

among black males with eight years of schooling, 50% of those from high-SES origins are expected to 

have good SRH, compared with 47% of those from less advantaged backgrounds; the corresponding 

figures for white men are, as noted above, 62% and 48%. While advantaged family background appears 

to protect whites with low education from poor health in middle age, it may not do so for blacks.  

These results have implications for health disparities by race. Specifically, among those from 

high-SES origins, the probability of good SRH increases at a similar rate for whites and blacks and for 

men and women. As a result, racial disparities in the probability of good SRH change very little with 

education. Meanwhile, among those from low-SES origins, results are indicative of resource 

multiplication by race. That is, whites evince greater gains in the probability of good SRH with education 

than do blacks, and consequently, racial health disparities grow with education. For example, at eight 

years of schooling, there is very little difference in probabilities of good SRH by race among low-SES 

origin men (whites: 48%; blacks: 47%). At 17 years or more, however, 91% of low-SES origin white men 
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are expected to report good SRH, much more than the 77% of low-SES origin black men. This pattern is 

present but less pronounced among women. 

 Patterns by gender are remarkably similar for most groups, with at most small disparities at all 

levels of education. The two groups for which this is not the case are low-SES origin black men and 

women. At low levels of schooling, low-SES black women are less likely to report good health than low-

SES origin black men. However, this disparity narrows and then reverses with education. 

 

Highest degree attained  

 Probabilities of good SRH are plotted by highest degree attained in Figure 3.3; they are calculated 

based on Model 3b, results of which are presented in Appendix Table A3.2 and Appendix Figure A3.1. 

Overall, results are consistent with those above. Probabilities of being in good health increase with degree 

attainment for all groups. Among whites, disparities by SES origin shrink with each degree attained; no 

such pattern appears for blacks. Meanwhile, among those from low-SES origins, racial disparities in 

predicted probabilities grow with degree attainment, while this pattern is not evident for those from 

advantaged SES backgrounds. 

Results further suggest that effects of education on health are more heterogeneous across groups 

when considering the transition between less than high school and a high school diploma or GED, 

compared to that between high school and college graduation. The difference in the predicted probability 

of good SRH between high school graduates and non-graduates is much smaller for low-SES origin black 

men than other sociodemographic groups, while the effect of attaining a Bachelor’s degree or higher is 

not substantially different for low-SES origin black men compared to other groups. Insofar as education 

moderates the magnitude of disparities in probabilities of good SRH, it appears to be due largely to 

differences in returns to moderate levels of schooling across sociodemographic groups.  
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Figure 3.3. Predicted probability of good self-reported health, by sociodemographic group and highest 

degree attained 

 

Notes: Predicted probabilities are calculated using Model 3b in Appendix Table A3.2. Age is held at 58 years and 

covariates are held at their respondent-level means. SES = Socioeconomic origin. 
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Mortality 

 In Table 3.3, Model 1, I present results from a hazard model of mortality on years of education 

and binary indicators of sociodemographic characteristics. Holding sociodemographic characteristics 

constant, each year of schooling is associated with 10.3% lower odds of mortality (p < .001). Those from 

low-SES origins do not experience significantly higher odds of mortality compared with those from more 

advantaged backgrounds, though the point estimate falls in the anticipated direction (OR = 1.077, p = 

.115). As expected, blacks have higher odds of mortality than whites (OR = 1.377, p < .001) and women 

have lower odds than men (OR = 0.645, p < .001).  

Model 2 interacts years of education with the focal sociodemographic variables. Unlike the 

results for SRH, the association of education with odds of mortality does not differ by SES origin 

(interaction OR = 1.016, p = .416). This finding is consistent with previous studies of mortality and active 

life expectancy that have also failed to detect an interaction between personal and parental years of 

schooling (Hayward and Gorman 2004; Montez and Hayward 2011). The association of education with 

mortality does differ by race, such that blacks experience a smaller reduction in odds of mortality per year 

of schooling than do whites (interaction OR = 1.067, p < .001).  Finally, women experience significantly 

greater reductions in odds of mortality for each year of education attained (interaction OR = 0.925, p < 

.001). Thus, as in the SRH analysis, education appears to substitute for disadvantages stemming from 

female gender while exacerbating those associated with minority race.   

In Model 3, I interact years of education with the eight-category indicator of sociodemographic 

group. The association of education with odds of mortality differs significantly across groups (interaction 

p < .001), as expected given the results of Model 2. As shown in Figure 3.4 and Appendix Table A3.3, 

odds ratios are below one and statistically significant for most groups. As in the analysis of SRH, low-

SES origin white women experience the greatest effect of education on odds of mortality (OR = 0.826, p 

< .001), while odds of mortality decline the least—and in fact, do not decline significantly—for low-SES 

origin black men (OR = 0.979, p = .345).
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Table 3.3. Odds ratios (ORs) from logistic regression models of mortality 

 Model 1 Model 2 Model 3 

 OR (SE) OR (SE) OR (SE) 

Education 0.897 (0.007) *** 0.896 (0.014) *** 0.888 (0.017) *** 

Low SES origin (Ref: High) 1.077 (0.051) 1.069 (0.051) - 

Black (Ref: White) 1.377 (0.068) *** 1.531 (0.082) *** - 

Female (Ref: Male) 0.645 (0.026) *** 0.589 (0.026) *** - 

Sociodemographic group    (p < 0.001) 

High-SES white males  - - Ref. 

Low-SES white males  - - 0.987 (0.069) 

High-SES white females  - - 0.535 (0.039) *** 

Low-SES white females  - - 0.596 (0.045) *** 

High-SES black males  - - 1.313 (0.162) * 

Low-SES black males  - - 1.613 (0.156) *** 

High-SES black females  - - 0.869 (0.112)  

Low-SES black females  - - 0.948 (0.085) 

Education X Low SES origin - 1.016 (0.019) - 

Education X Black - 1.067 (0.018) *** - 

Education X Female - 0.925 (0.015) *** - 

Education X Sociodemographic group   (p < 0.001) 

High-SES white males  - - Ref. 

Low-SES white males  - - 1.022 (0.018) 

High-SES white females  - - 0.958 (0.023) † 

Low-SES white females  - - 0.956 (0.020) * 

High-SES black males  - - 0.995 (0.038)  

Low-SES black males  - - 1.044 (0.024) † 

High-SES black females  - - 1.000 (0.050) 

Low-SES black females  - - 1.010 (0.024) 

N observations (N respondents) 191,685 (16,439) 191,685 (16,439) 191,685 (16,439) 

Pseudo R2 0.0447 0.0461 0.0465 

Notes: Years of education is centered at the mean across respondents (13.12 years). Models control for age, age-

squared, year of birth, the interaction between age and year of birth, the interaction between age-squared and 

year of birth, and childhood health. Standard errors are adjusted for clustering at the household level.  

*** p < .001; ** p < .01; * p < .05; † p < .1 (two-tailed test) 

Ref. = Reference group; SE = Standard error; SES = Socioeconomic origin 
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Figure 3.4. Effects (odds ratios) of a one-year increase in education on odds of mortality, by 

sociodemographic group  

 

 

Notes: Group-specific odds ratios are calculated using Model 3 in Table 3.3. See Appendix Table A3.3 for further 

information. Error bars represent 95% confidence intervals. SES = Socioeconomic origin. 
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Here, however, the protective effect of education on odds of mortality is no greater for whites 

from low-SES origins than for those of higher-SES backgrounds. Thus, while Model 2 shows that there is 

no support for resource substitution by SES origin overall, Model 3 confirms that resource substitution by 

SES origin does not exist even among whites when considering mortality in middle and older age.  

Results regarding race are more consistent with those for SRH, though the three-way interaction 

between education and binary indicators of SES origin and race is not statistically significant (p = .305) in 

a model of mortality on all possible three-way interactions between education and binary measures of 

SES origin, race, and gender. Still, there is suggestive evidence that the pattern of resource multiplication 

by race is primarily present for those of low-SES origin.19 As noted above, the association of education 

with odds of mortality is smallest (and insignificant) among low-SES origin black men (OR = 0.979, p = 

.345); it is significantly larger in magnitude for white men from low-SES backgrounds (OR = 0.913, p < 

.001) (difference p = .013). Likewise, low-SES origin black women evince significantly smaller 

reductions in odds of mortality per year of schooling (OR = 0.906, p < .001) than white women (OR = 

0.826, p < .001) (difference p = .003). In contrast, among those of high-SES origin, white (OR = 0.888, p 

< .001) and black (OR = 0.895, p = .009) men experience a similar reduction in odds of mortality per year 

of schooling (difference p = .864), though white women (OR = 0.849, p < .001) do experience a 

marginally greater effect than black women (OR = 0.915, p = .121) (difference p = .058). 

Finally, while results from Model 2 suggest that women experience greater reductions in odds of 

mortality per year of schooling than men, Model 3 suggests that this is primarily among those from low-

SES origins. Low-SES origin white women experience a 17.4% decline in odds of mortality per year of 

education, compared with 8.7% among men. Among low-SES origin blacks, women evince a 9.4% 

decline in odds of mortality per year of schooling, compared to an insignificant 2.1% among men. This 

pattern is marginally statistically significant, as confirmed in a model including all possible three-way 

interactions between the four focal variables (education and binary indicators of SES origin, race, and 

 
19 These findings are also evident when estimating Model 2 separately by SES origin. The interaction between 

education and black race indicates resource multiplication among those from low-SES origins (OR = 1.081, p < 

.001) but not those from high-SES origins (OR = 1.021, p = .552). 
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gender); the interaction between education, SES origin, and gender has a p-value of .080.20   

No other three-way interaction is statistically significant, nor is the four-way interaction between 

education and binary indicators of SES origin, race, and gender, which was estimated in a separate model 

(p = .622). 

 

Predicted probabilities 

Predicted probabilities of mortality at age 58, constructed using results of Model 3 in Table 3.3, 

are presented by years of schooling and sociodemographic group in Figure 3.5. The probability of 

mortality declines with education for all groups. But as with the analysis of SRH and unlike what might 

be predicted by theories of resource substitution and multiplication, variation in probabilities across 

groups does not decline nor grow substantially at high levels of education.  

At low levels of schooling, black males from high-SES origins have the highest probability of 

death (e.g., 0.021 at eight years of schooling). Mortality rates for other groups range from about 0.011 to 

0.016 at eight years of schooling. The most striking pattern across years of schooling is seen for low-SES 

origin black men, among whom the probability of mortality declines very little with education in 

comparison to the other groups. Among those with 17 or more years of schooling, low-SES origin black 

males have a probability of death that is nearly double that of the next-highest group (0.0134 versus 

0.0077). This finding parallels the SRH analysis, where the probability of good health improved with 

education least for low-SES origin black men.  

Also consistent with the SRH analysis, disparities in the probability of mortality by race increase 

with education among those from low-SES origins. The probability of death among those with eight years 

of schooling is 0.014 for low-SES origin white men compared with 0.016 for low-SES origin black men; 

at 17 or more years of schooling, probabilities among low-SES origin black men (0.013) are more than

 
20 These findings are also evident when estimating Model 2 separately by SES origin. The interaction between 

education and female gender suggests a pattern of resource substitution for those from low-SES origins (interaction 

OR = 0.913, p < .001) but not those from high-SES origins (interaction OR = 0.968, p = .264).  
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Figure 3.5. Predicted probability of mortality, by sociodemographic group and years of education  

 
Notes: Predicted probabilities are calculated using Model 3 in Table 3.3. Age is held at 58 years and covariates 

are held at their respondent-level means. SES = Socioeconomic origin. 
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double that of low-SES origin white men (0.006). Among women from disadvantaged backgrounds, a 

similar pattern by race exists, with equivalent probabilities by race at eight years of schooling (both 

0.014) but disparate probabilities at 17 years of more (0.003 among whites and 0.006 among blacks).  

Racial disparities in the probability of mortality do not grow at all among high-SES origin men and grow 

only slightly among high-SES origin women.  

 

Highest degree attained 

Results of Model 3b, which operationalizes education using highest degree attained, can be found 

in Appendix Table A3.4 and Appendix Figures A3.2 and A3.3. Results align with those presented above. 

However, as with SRH, the reduced effect of education on mortality for low-SES origin black men 

compared with other groups is more pronounced when considering the impact of a high school education 

or GED versus than when considering the effect of a Bachelor’s degree. Likewise, among low-SES origin 

women, racial disparities in the probability of mortality are relatively small among those with less than a 

high school education and increase among those with a high school diploma or GED—in line with the 

theory of resource multiplication by race. However, the magnitude of the racial disparity declines among 

those with a Bachelor’s degree or higher. In sum, differences in returns to moderate levels of schooling 

across sociodemographic groups appear to drive the patterns reported here. 

 

DISCUSSION 

This article draws on theories of resource substitution and multiplication, which purport that the 

effect of education on health will differ across the sociodemographic groups that structure access to 

health-promoting resources (Ross and Mirowsky 2006, 2010). Consistent with the logic behind both of 

these theories, I find that, while education is positively associated with health for all, the magnitude of 

this association differs significantly across groups defined by SES origin, race, and gender. This finding is 

robust across analyses of self-reported health and mortality.  

However, the complex intersectional perspective I take shows that support for theories of 
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resource substitution and multiplication does not apply uniformly across the population. While prior work 

finds evidence of resource substitution by SES origin—larger effects of education on health for those 

from disadvantaged families (Andersson and Vaughan 2017; Bauldry 2015; Luo and Waite 2005; Ross 

and Mirowsky 2011; Schaan 2014; Schafer et al. 2013)—I find that this pattern is only evident among 

whites. Among blacks, the association of education with health is similar regardless of SES origin. 

Importantly, this finding applies to self-reported health but not to mortality. This is in line with 

prior work. While a sizeable body of research finds stronger associations of education with self-reported 

health, physical functioning, and depressive symptoms among those from disadvantaged SES origins 

(Andersson and Vaughan 2017; Bauldry 2015; Luo and Waite 2005; Ross and Mirowsky 2011; Schaan 

2014), studies of mortality and severe medical diagnoses have failed to find such a pattern (Hayward and 

Gorman 2004; Montez and Hayward 2014; Nandi et al. 2012). Perhaps this is because behaviors that are 

clearly linked to mortality are correlated with education to a similar extent regardless of SES background. 

Research on educational disparities in smoking supports this idea (Andersson and Maralani 2015).  

Among black respondents, I find no evidence of resource substitution by SES origin. However, it 

is worth highlighting that disparities in self-reported health by SES origin are small for blacks no matter 

their level of education. That is, while high-SES origin protects less educated whites from poor health, 

they do not appear to do the same for blacks. This finding aligns with prior research on health 

(Walsemann et al. 2016) as well as studies showing, for example, that parental wealth is less predictive of 

offspring wealth for blacks than whites (Pfeffer and Killewald 2015) and that household stability is less 

important for educational outcomes among black than white children (Perkins 2019).  

Relatedly, my results show that education is less strongly associated with self-reported health and 

mortality for blacks than whites, thus providing evidence of resource multiplication by race. This 

resonates with existing research (Farmer and Ferraro 2005; Holmes and Zajacova 2014; Hummer and 

Lariscy 2011; Masters et al. 2012; Shuey and Willson 2008; Zajacova and Hummer 2009) while adding 

an additional piece to the puzzle. Specifically, resource multiplication by race is evident primarily among 

those from low-SES backgrounds.  
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Though I cannot test the mechanisms underlying these patterns directly, the theory of skin-deep 

resilience (Brody et al. 2013; Chen et al. 2015; Miller et al. 2015) and the related concept of John 

Henryism (James et al. 1987; James 1994) suggest that results may be driven in part by the additional 

stressors that accompany upward mobility for racial minorities compared to whites from low-SES origins. 

When pursuing higher education, low-SES origin racial minorities must strive in the face of not only an 

unfamiliar class environment (Stephens 2012a, 2012b), but also a heightened threat of health-harming 

discrimination (Borrell et al. 2006; Colen et al. 2018; Goosby et al. 2018; Hochschild 1995; Lewis et al. 

2015; Pew Research Center 2016; Williams and Mohammed 2009). Stress due to discrimination could 

uniquely compromise the health of highly-educated blacks from low-SES origins, producing the smaller 

positive effects of education on health for low-SES blacks compared with low-SES whites seen here and 

elsewhere (Gaydosh et al. 2018). 

Labor market discrimination could also explain the depressed associations of education with 

health among low-SES blacks. Prior research shows that employers discriminate against black applicants 

using names (Bertrand and Mullainathan 2004) and accents (Fischer and Massey 2004). These signals of 

minority group membership may be more common among blacks from low-SES origins than among 

blacks from relatively advantaged backgrounds (Gaddis 2017), and they are unlikely to be found among 

whites regardless of socioeconomic background. Discrimination may thus prevent low-SES origin blacks 

from using their education for upward mobility, weakening the effects of education on health. 

Notably, I find that improvements in health associated with education are smallest not for the 

groups predicted by theories of resource substitution or multiplication—high-SES origin white men or 

low-SES origin black women, respectively—but instead for low-SES origin black men. This may be 

because discrimination is particularly pervasive for highly educated black men from low-SES origins, 

offsetting the positive effects of education on later health. Consider, for example, that discrimination is 

more common among black men than women (Borrell et al. 2006; Pew Research Center 2016) and, as 

noted above, among upwardly mobile blacks. In any case, this result is discouraging, given that low-SES 

origin black men are also the group most likely to experience poor health and mortality in general. 
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On a more positive note, results suggest that, while low-SES origin black men gain less from a 

high school education than other groups in terms of both self-reported health and mortality, there is less 

heterogeneity across groups in the effect of earning a Bachelor’s degree. Moreover, while Gaydosh and 

colleagues (2018) find that the probability of presenting with metabolic syndrome (a multifaceted 

condition involving high blood pressure, high blood sugar, and obesity) increases with college education 

among low-SES origin blacks, I find that education is not detrimental to the health of any group—it 

invariably predicts better overall health. 

While results by gender are less straightforward than those by SES origin or race, nowhere is 

there evidence that men accrue greater health returns to schooling than women. Where the association of 

schooling with health does differ by gender, it is stronger for women. This pattern is indicative of 

resource substitution, as female gender is associated with resource disadvantage in terms of income, 

status, power, and authority (Ross and Mirowsky 2006).  

This result differs somewhat from prior research. While Ross and colleagues (2012) find that the 

association of education with self-reported health is stronger for women (a pattern that I reproduce here), 

they find that the association of education with mortality is stronger for men. Differences in our results 

may be driven by the age compositions of our samples: Ross and colleagues’ (2012) sample is diverse 

with respect to age, including those ages 25 and up, while the current analysis is limited to those of 

middle and older age. Indeed, Ross et al. (2012) find that the heightened association of education with 

mortality for men is driven by causes of death that disproportionately afflict younger adults (e.g., 

accidents, violence, smoking-related diseases). Note also that Zajacova and Hummer (2009) show that 

there are no systematic gender differences in educational effects on mortality among older Americans, 

besides stronger returns to the highest levels of schooling among white men.  

A few limitations of the current study bear mentioning. First, while the sample used here is 

nationally representative of the U.S. population ages 50 to 64, the subsample of non-Hispanic blacks is 

relatively small. Thus, estimates are less precise among blacks than among whites, particularly among 

blacks from high-SES origins. Future research using a larger sample of non-Hispanic blacks and 
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extending the analysis to other ethnic groups (e.g., Hispanics) is warranted.  

Second, I analyze two common measures of general health: self-reported health and mortality. It 

may be that the patterns I explore vary depending on the etiology of the health condition in question. 

Studying heterogeneity in the association of education with a diverse range of health conditions may 

suggest mechanisms producing the patterns described here. 

Further, the theories I evaluate propose that the association of education with health may vary 

depending on the value of health-promoting resources a person has access to outside of their education. 

Following previous research (and the theories themselves), I do not measure these resources directly. 

Instead, they are proxied using key sociodemographic characteristics across which they are structured.  

While this strategy is useful to evaluate support for these theories, it also leaves unanswered 

questions regarding which resources matter and why. This is particularly troubling given the mixed 

support for resource substitution and resource multiplication. Why might education substitute for 

resources lacking due to disadvantaged SES origin (among whites), but not for those that are absent for 

those of minority race (among those from low-SES origins)? A few potential explanations are provided 

above. Namely, it may be that access to resources is not all that matters. So too does the ability to 

successfully deploy those resources for health promotion and to limit stress that may accompany higher 

education (Masters et al. 2015), both of which may be weakened by discrimination. Future research 

would therefore do well to study resources and mechanisms directly. 

Scholars have come to refer to education as a great equalizer, as disparities in economic outcomes 

by SES origin are smallest among college graduates (Hout 1984, 1988; Torche 2011). The theory of 

resource substitution likewise predicts that education equalizes health outcomes across sociodemographic 

groups (Ross and Mirowsky 2006, 2010). While prior research generated substantial support for this 

theory with respect to SES origin, my results suggest that this optimism must be tempered. Education 

does not appear to eliminate health disparities by race and in fact may exacerbate them, particularly 

among those from disadvantaged backgrounds. More generally, disparities in the probabilities of good 

health and mortality differ substantially even among the highly educated. Echoing others (Masters et al. 
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2015; Montez and Friedman 2015), my results underscore the need to situate education within the 

contours of broader society. As long as the achievements of some sociodemographic groups are rewarded 

less generously than others, the effects of those achievements on health are likely to be muted. 
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Chapter 4: Unconditional Quantile Regression and Educational 

Disparities in Biomarkers of Health Risk 

Decades of research documents that, on average, those with more education have better health 

(Cutler and Lleras-Muney 2008; Hummer and Lariscy 2011). Recent studies have refined our 

understanding of the association between education and health by, for example, studying its optimal 

functional form (Montez et al. 2012) and assessing whether it is modified by sociodemographic 

characteristics (Zajacova and Hummer 2009) or by features of the institutional environment (Montez et al. 

2017a; Montez et al. 2019). However, the shape of the relationship between education and health remains 

incompletely mapped, as prior work has focused on educational disparities at single points in the 

distribution of health.  

Studies of binary measures in effect estimate educational disparities in the probability of negative 

health events, such as mortality (Masters et al. 2012; Miech et al. 2011). When health is operationalized 

using continuous measures, models generally estimate differences in conditional means (Brummett et al. 

2011; Gruenewald et al. 2009). Very little research sheds light on education’s association with health 

across the illness-wellness continuum. Are educational disparities of the same magnitude at all points in 

the distribution of health?   

 The answer to this question may rely on key observations from fundamental cause theory (Link 

and Phelan 1995; Phelan et al. 2010). High socioeconomic status (SES)—of which education is a key 

component—is associated with material resources, social connections, knowledge, and skills (Link and 

Phelan 1995; Mirowsky and Ross 2003). The utility of these and other (Freese and Lutfey 2011) 

resources for health promotion is not guaranteed, however, as they can only be marshaled when 

preventive methods or treatment options exist. Indeed, prior research finds larger SES disparities in health 

conditions that are amenable to prevention or intervention (Chang and Lauderdale 2009; Glied and 

Lleras-Muney 2008; Masters et al. 2015; Phelan et al. 2004; Phelan and Link 2005; Tehranifar et al. 

2009). When there are no known methods to prevent or treat a health problem, or when such methods are 
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implemented universally (Clouston et al. 2016), resources associated with SES are of limited use. 

The same logic should apply to educational disparities across the distribution of health or related 

risk. Disparities are likely to be largest at points in the distribution at which education-linked resources 

can be leveraged to improve outcomes most effectively. When medical treatments exist, this is likely to 

be in the unhealthy tail of the distribution, as medical interventions are typically only triggered—and 

therefore become relevant for health disparities—when some elevated threshold of risk is crossed. 

Using data from the Health and Retirement Study, a survey of older adults in the United States, I 

study variation in the magnitude of educational disparities across unconditional quantiles of blood sugar, 

blood pressure, and “good” and “bad” cholesterol. I expect educational disparities in blood sugar, blood 

pressure, and bad cholesterol to be greatest at their least healthy levels, given that medical intervention on 

these measures—access to and efficacy of which may vary by education—is only initiated once the 

clinical threshold of risk is surpassed. I do not expect the same result to obtain for good cholesterol, which 

is not regularly targeted by medication. Further, while the biomarkers I study are all influenced by diet, 

physical activity, and tobacco use (American Diabetes Association [ADA] 2018; Grundy et al. 2018; 

Whelton et al. 2018), I do not expect lifestyle to fully explain the observed variation in disparities across 

their distributions.  

In addition to further describing the shape of the relationship between education and health and 

testing an implication of fundamental cause theory, this study thus also hints at mechanisms. Specifically, 

it posits that differential access to and experience within the health care system underlies educational 

disparities in biomarkers of health risk, particularly at unhealthy levels. Identifying the mechanisms 

producing disparities at unhealthy points in the distribution of blood sugar, blood pressure, and 

cholesterol should be of high priority, as this is precisely where change is most strongly associated with 

risk of subsequent morbidity and mortality (Coutinho et al. 1999; Lewington et al. 2002; Navarese et al. 

2018; Stamler et al. 2000).  

The current study also has methodological implications for future research on biomarkers of 

health risk, which are now available in many social surveys (Harris and Schorpp 2018; McDade et al. 
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2007). Studying conditional means may mask disparities that exist primarily or even only at the least 

healthy biomarker levels. Yet disparities at levels of risk below clinical thresholds should not be ignored, 

as they may also have meaningful consequences for subsequent health (Brunner et al. 2006; Coutinho et 

al. 1999; Lewington et al. 2002; Rapsomaniki et al. 2014; Selvin et al. 2010; Vasan et al. 2001). 

 

INSIGHTS FROM FUNDAMENTAL CAUSE THEORY 

Link and Phelan’s (1995; Phelan et al. 2010) fundamental cause theory urges scholars to consider 

what structural conditions put people “at risk of risks” to their health. They identify SES as one such 

condition, as it affects various aspects of health through numerous mechanisms. Perhaps the most obvious 

mechanisms operate at the individual level, as SES comprises multiple flexible resources—money, social 

connections, knowledge and skills, power and prestige—that can be deployed to prevent poor health or 

ameliorate it should it occur. Mirowsky and Ross (2003) likewise argue that education facilitates learned 

effectiveness and along with it the motivation and skills required to construct a healthy lifestyle and adapt 

to new health needs. 

Freese and Lutfey (2011) elaborate on structural mechanisms that link SES with health without 

purposive action or health-directed agency on the part of the individual. Those of high-SES may benefit 

from spillover effects of the actions of others in their network. SES-related variation in habitus (Bourdieu 

1984) may drive disparities in health-related behaviors (Cockerham 2005; Cutler and Lleras-Muney 2010; 

Pampel et al. 2010). And, status or prestige can benefit those of high-SES without their own purposive 

action because it influences perceptions by those in the healthcare system and other institutions and 

therefore affects experience (Spencer and Grace 2016). In sum, SES is associated with both individual 

and structural resources that can support health. 

Despite SES being a fundamental cause of health, disparities are not evident for all health 

outcomes. This is to be expected given the mechanisms thought to link SES with health. When preventive 

methods and treatments do not exist, SES-related resources cannot be marshaled—actively or passively—

to support health. Thus, SES disparities are larger for health outcomes that are preventable or treatable 
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(Chang and Lauderdale 2009; Glied and Lleras-Muney 2008; Masters et al. 2015; Phelan et al. 2004; 

Phelan and Link 2005; Tehranifar et al. 2009), especially those for which prevention and treatment is not 

yet universal (Clouston et al. 2016). 

 

EDUCATION AND THE PROMOTION OF HEALTH ACROSS ITS DISTRIBUTION 

The current study expands on observations from fundamental cause theory. I posit that, for 

aspects of health that are amenable to prevention or treatment, education is likely to be more important at 

points in the distribution where a wider variety of resources can promote positive outcomes, or where 

such resources are particularly effective. Put in descriptive terms, I ask whether educational disparities 

vary in magnitude across the distribution of health or related risk. I expect that they do, such that 

disparities are larger at unhealthy levels. 

There is little prior research on this topic. Studies find that education is associated with both an 

increased likelihood of good self-reported health (SRH) and a reduced likelihood of bad SRH (Hardy et 

al. 2014; Mackenbach et al. 1994; Reile and Leinsalu 2013). These results are sensitive to the choice of 

reference group—what is considered medium health—so the magnitude of education’s association with 

good and bad SRH cannot be readily compared. Moreover, SRH is subjective. While people reflect on 

diagnosed health conditions and symptoms when reporting being in poor health, a wider range of factors 

appears to underlie reports of good health (Mackenbach et al. 1994; Martinez-Sanchez and Regidor 2002; 

Reile and Leinsalu 2013; Shields and Shooshtari 2001; Shooshtari et al. 2007). Considerations may also 

differ systematically across sociodemographic groups (Chaparro et al. 2019; Dowd and Zajacova 2007, 

2010). Put simply, SRH is not a suitable measure of health for investigating the question at hand, in part 

because it is not continuous and in part because it is subjective.  

Barcellos et al. (2019) instead study variation in the effect of education on later health using 

continuous, objective outcomes. Exploiting changes in the minimum school-leaving age in the United 

Kingdom, the authors find that reductions in body size induced by additional schooling were largest at 

unhealthy points in its distribution. Meanwhile, education actually increased blood pressure, but only at 
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low (healthy) levels. Given its regression discontinuity design, Barcellos and colleagues’ estimates are not 

representative of the population; they reflect individuals who would have attained a very low level of 

schooling in the absence of the reform. Still, they provide evidence that long-term causal effects of 

education differ across the distribution of health for some subset of the population. 

Moreover, Barcellos et al. (2019) highlight the practical significance of distributional variation in 

the relationship between education and health. Education was found to have no effect on rates of 

hypertension, as education’s impact on blood pressure occurred only within its healthy range. Meanwhile, 

the concentration of education’s effects in the unhealthy tail of body size is important not only because it 

resulted in reduced rates of obesity, but also because the relationship of body size to morbidity and 

mortality is nonlinear such that reductions at its highest levels are likely to have the greatest impact on 

subsequent health (Aune et al. 2016). The same may be true of the biomarkers studied here, including 

blood sugar (Coutinho et al. 1999), blood pressure (Lewington et al. 2002), and cholesterol (Navarese et 

al. 2018; Stamler et al. 2000). 

Descriptive research on educational disparities across the range of biomarkers is therefore likely 

to return methodological implications for future work, which is timely given the recent proliferation of 

such measures in social science datasets (Harris and Schorpp 2018; McDade et al. 2007). Common 

analytic strategies, including the analysis of conditional means, might mask disparities in biomarkers that 

exist only or primarily in particular segments of their distributions. That said, if educational disparities 

exist across the range of biomarkers, studies that dichotomize measures following clinical guidelines will 

overlook unequal outcomes at moderate levels, which also have consequences for subsequent health 

(Brunner et al. 2006; Coutinho et al. 1999; Lewington et al. 2002; Rapsomaniki et al. 2014; Selvin et al. 

2010; Vasan et al. 2001). 

 

Educational attainment and the prevention and treatment of poor health  

Following key tenets of fundamental cause theory (Link and Phelan 1995; Phelan et al. 2010), I 

anticipate educational disparities in some biomarkers of health risk to be greatest at their least healthy 
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levels. I do not expect this distributional variation to be explained by lifestyle factors alone. Of course, 

more educated people tend to follow healthier diets, engage in more frequent physical activity, and avoid 

tobacco use (Cutler and Lleras-Muney 2010; Pampel et al. 2010). And, these behaviors affect health: 

healthy diet, exercise, and non-smoking are known to reduce risk of heart disease, stroke, kidney disease, 

Type 2 diabetes, lung disease, various cancers, and joint pain (ADA 2018; Grundy et al. 2018; Whelton et 

al. 2018). As a result, such behaviors partially mediate the relationship between education and health 

(Cutler and Lleras-Muney 2008; Brummett et al. 2011).   

However, I anticipate these lifestyle factors to mediate educational disparities to a similar extent 

across the distribution of health. Lifestyle not only affects the likelihood of experiencing severe health 

events; it is also associated with reductions in indicators of health-related risk even at low and modest 

levels (Bottai et al. 2014; Moon et al. 2017). As a result, I do not expect distributional variation in 

biomarker disparities to be eliminated when holding constant proxies for health lifestyle. 

While lifestyle may link education with health at various points in its distribution, additional 

education-related resources are relevant primarily when a health threat emerges or when some threshold 

of risk is crossed. Risk factors may be discovered during routine medical examinations or when seeking 

attention for concerning symptoms. Resources held by the highly educated—private medical insurance, 

money to pay out-of-pocket expenses, generous workplace leave policies, norms regarding healthcare 

utilization—may lead to earlier assessment and treatment (Ayanian et al. 2000; Ayanian et al. 2003).  

Once a threat to health is identified, SES-related resources are likely to affect both treatment 

decisions and likelihood of successful adherence to medical advice. Treatment options vary in cost and 

complexity, and the most expensive, complicated regimens are often the most effective. Thus, economic 

resources and memory are required to achieve optimal control of many conditions (Lutfey and Freese 

2005; Osterberg and Blaschke 2005).  

Less educated individuals may also struggle to adhere to medical advice regarding medication, 

health monitoring, and behavior change due to constraints imposed by their job, household, or social 

network (Lutfey and Freese 2005; Osterberg and Blaschke 2005). Consider that taking medications at the 
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same time every day—especially when multiple doses are required—may be difficult for people whose 

work schedule changes from week to week or whose job does not permit break time, work conditions that 

are more common among the less educated. The status that accompanies high education may also affect 

treatment and improve outcomes, as physicians may instruct low-SES patients to follow basic medication 

regimens regardless of their willingness or ability to try alternatives (Lutfey and Freese 2005; Spencer 

and Grace 2016; van Ryn and Burke 2000; van Ryn et al. 2006).  

In sum, I expect to find larger educational disparities in several biomarkers of health risk at the 

least healthy points in their distributions. This has major implications for socioeconomic disparities in 

health, as differences at the least healthy levels of the biomarkers I study are likely to have a greater 

impact on morbidity and mortality than those at moderate and lower levels (Coutinho et al. 1999; 

Lewington et al. 2002; Navarese et al. 2018; Stamler et al. 2000). I do not expect patterns to be explained 

fully by measures of health lifestyle, which may affect biomarkers to a similar extent across their 

distributions. Instead, distributional variation in disparities may be driven by differential access to and 

efficacy of medical intervention by education level, as medical interventions become relevant for health 

and health disparities only after some elevated level of risk is surpassed.  

Put differently, in the absence of medical interventions, educational disparities in biomarkers 

might exist due to lifestyle factors; however, disparities may be relatively uniform in magnitude across 

the biomarkers’ distributions. Medical interventions might exacerbate the magnitude of disparities 

primarily in their unhealthy tails. There, differences in diagnosis, treatment assignment, and treatment 

success drive additional gaps in outcomes by pulling the unhealthy tail in among those with more 

education-linked resources. This distributional pattern should therefore be found primarily for biomarkers 

that are subject to medical intervention (Chang and Lauderdale 2009; Glied and Lleras-Muney 2008; 

Masters et al. 2015; Phelan et al. 2004; Phelan and Link 2005; Tehranifar et al. 2009). Hypotheses 

regarding the specific biomarkers I study are derived below. 
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Biomarkers of health risk 

Chronic diseases are now extremely common among U.S. adults, affecting six in ten (Buttorff et 

al. 2017). Risk of chronic disease and related morbidity and mortality is heightened among those with 

unhealthy biomarker profiles (ADA 2018; Grundy et al. 2018; Whelton et al. 2018). Thus, I study 

biomarkers of health risk, including blood sugar, blood pressure, and both “good” and “bad” cholesterol. I 

assess whether educational disparities in these biomarkers vary across their distributions, and I test 

whether indicators of health lifestyle explain the observed variation. I briefly discuss each measure here, 

ending with hypotheses. 

Blood sugar: High blood sugar slowly damages the eyes, kidneys, nerves, heart, and blood 

vessels (ADA 2018). It often exhibits few outward signs until major complications develop, making early 

detection critical for health promotion. High blood sugar is characteristic of diabetes, which is estimated 

to affect 12% of American adults (Centers for Disease Control [CDC] 2017). Unfortunately, 3% of 

Americans, or nearly one in four with diabetes, do not know they have it (CDC 2017). 

The prevalence of undiagnosed diabetes is higher among those with less education. The CDC 

(2017) estimates that 4% of American adults who did not complete high school have diabetes but do not 

know it; comparable figures for high school graduates and those with more than a high school education 

are 3% and 2%, respectively. Similarly, while 28% of those without a high school diploma have blood 

sugar levels indicative of pre-diabetes but do not know it, just 25% of high school graduates and 20% of 

those with more than a high school education have unreported pre-diabetes.  

If, due to lack of diagnosis, those with low education are less likely manage their blood sugar 

successfully, disparities at the highest levels of blood sugar are likely to be greater than those at low or 

moderate levels. Even among those who receive a diabetes diagnosis, treatment success might vary by 

education, as the best method for controlling blood sugar takes trial and error to find and may ultimately 

be both complex and expensive, leading to different treatment assignment and/or poorer medication 

adherence among those with less education (Lutfey and Freese 2005; Spencer and Grace 2016).  

Blood pressure: High blood pressure or hypertension is a risk factor for heart attack and stroke 
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(Whelton et al. 2018). The most recent guidelines classify nearly half (46%) of American adults as 

hypertensive (Whelton et al. 2018). And, as is the case with high blood sugar, high blood pressure is more 

common among U.S. adults of low-SES and education (Gillespie and Hurvitz 2013; National Center for 

Health Statistics 2014).  

Early detection and treatment is critical for managing the impact of high blood pressure on 

cardiovascular outcomes. When high blood pressure is discovered, medication is typically prescribed to 

bring it down to healthy levels, and consistent monitoring is recommended (Whelton et al. 2018). Thus, 

like blood sugar, I expect educational disparities in blood pressure to be largest at its least healthy levels.  

The mechanisms underlying this pattern may differ from those described for blood sugar. 

Prevalence of undiagnosed hypertension is no higher among those of low education (Ayanian et al. 2003; 

Paulose-Ram et al. 2017). Instead, differential treatment plans or rates of adherence to medical advice 

may produce larger disparities at high levels of blood pressure. Research shows, for example, that among 

those with diagnosed hypertension, likelihood of successful control varies by SES, with those of higher 

SES achieving acceptable levels of blood pressure more often than those of low SES (Gillespie and 

Hurvitz 2013; National Center for Health Statistics 2014). 

Cholesterol: High total cholesterol is estimated to affect 12.4% of U.S. adults (Carroll et al. 

2017). Total cholesterol is comprised of both bad (non-high density lipoprotein, or non-HDL) and good 

(HDL) forms of the compound. Non-HDL cholesterol, particularly low-density lipoproteins (LDL), can 

build up in arteries; it is therefore associated with cardiovascular disease (Grundy et al. 2018).  

Chang and Lauderdale (2009) show that, in the early 2000s, average LDL cholesterol declined 

with income, a finding that is attributed to greater uptake of medical innovations (statins and related 

medications) by those of high-SES. While statin use has diffused widely since the early 2000s, it remains 

underutilized among some groups, including the uninsured and racial and ethnic minorities (Salami et al. 

2017), who may have lower average levels of education. Thus, I again expect greater educational 

disparities in bad (non-HDL) cholesterol at higher levels.  

HDL is known as the good form of cholesterol because it assists in the removal of bad cholesterol 
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from the body; higher levels have traditionally been viewed as desirable. HDL cholesterol is not, 

however, a widespread target of medical intervention, as the causal effect of circulating levels of HDL on 

cardiovascular outcomes is debated (Rader and Hovingh 2014; Toth et al. 2013). HDL cholesterol is thus 

influenced primarily by lifestyle factors including diet and exercise; it may also be raised inadvertently by 

drugs targeting bad forms of cholesterol. It is therefore a useful negative case for the current study. 

Summary: The research outlined above leads me to the following hypotheses: 

• For blood sugar, blood pressure, and bad (non-HDL) cholesterol, educational disparities will 

be greatest at unhealthy levels. As outlined in the previous section, I do not expect that 

variation in disparities across the distributions of these biomarkers will be explained by 

mediating lifestyle factors.  

• While education will be associated with higher good (HDL) cholesterol on average, this 

association will not change across the range of HDL. In particular, I do not predict a greater 

association of education with unhealthy levels of HDL. 

 

METHODS 

Data 

I draw data from the Health and Retirement Study (HRS), a panel survey of U.S. households 

funded by the National Institute on Aging (RAND 2016). The HRS began in 1992 with a sample of U.S. 

adults born between 1931 and 1941 and their spouses; additional birth cohorts have since been added to 

the sample, and respondents have been followed up biennially. Since 1998, the HRS has surveyed a 

nationally representative sample of the U.S. population over age 50 and their spouses. Over 30,000 

individuals have contributed data to the HRS. 

The HRS began collecting physical measurements, including blood pressure and dried blood 

spots for biomarker assessment, in 2006 (Crimmins et al. 2013, 2015). At that time, half of HRS 

households were invited to provide an extended in-home interview; the other half was invited to do so in 

2008. New households and those that had participated in 2006 were invited to do so again in 2010, and in 
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2012, the same was done for those who participated in 2008. Thus, physical measurements were assessed 

up to two times per respondent, either in 2006 and 2010 or in 2008 and 2012.  

Eligibility for the current analysis requires that the respondent was included in the physical 

measurement sub-sample at some point between 2006 and 2012 and that they were age 50 or above at the 

time. There are 27,748 observations from 18,902 respondents matching these criteria. Of these, 23,908 

observations from 17,370 respondents have non-missing information across the four biomarkers I study.  

My regression analyses include the 20,927 observations from 15,077 respondents with no missing data 

across the covariates I use.21  

 

Measures 

Biomarkers of health risk 

The first biomarker I study is hemoglobin-A1C (A1C) (ADA 2018; Hanas and John 2010), an 

indirect measure of average blood glucose or blood sugar over the course of several months. A1C values 

greater than or equal to 5.7% are indicative of pre-diabetes, while levels 6.5% or above justify a diabetes 

diagnosis. In diagnosed diabetics, A1C indicates how well treatment is working to keep blood sugar under 

control. Among non-diabetics, increasing A1C—even at modest levels—is associated with heightened 

risk of future diabetes, heart disease, stroke, and death (Brunner et al. 2006; Coutinho et al. 1999; Selvin 

et al. 2010). 

Next, I assess systolic blood pressure (SBP), which is averaged across three trials.22 The latest 

guidelines suggest that hypertension be diagnosed when SBP exceeds 130 millimeters of mercury 

(mmHg) (Whelton et al. 2018). Risk of adverse cardiovascular outcomes increase with blood pressure, 

 
21 By far the most common variable to be missing across otherwise-eligible respondents is maternal education (n = 

2,186 observations or 73.3% of those missing data). In robustness checks (not shown), I estimate models with a 

limited set of control variables across all respondents with non-missing biomarker data; results are substantively the 

same as those from the complete case analysis presented here. 

22 I use SBP rather than diastolic blood pressure (DBP) because it is more closely related to subsequent 

cardiovascular events and is therefore given more weight by physicians when making diagnostic and prescriptive 

recommendations (Whelton et al. 2018). In additional analyses (not shown), I obtain comparable results using mean 

arterial pressure, which is a weighted average of SBP and DBP.  
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even at modest levels (Lewington et al. 2002; Rapsomaniki et al. 2014; Vasan et al. 2001). 

Finally, I study two forms of cholesterol: non-high-density lipoprotein (non-HDL) and HDL. 

Non-HDL encompasses several forms of bad cholesterol that raise the risk of cardiovascular disease, 

including low-density lipoproteins (LDL) (Grundy et al. 2018; Stamler et al. 2000).23 The targeted level 

of non-HDL cholesterol varies depending on an individual’s risk of future cardiovascular events. Those 

with higher risk due to family history or comorbid conditions are recommended to receive more 

aggressive treatment targeting lower cholesterol than those without additional risk factors (Grundy et al. 

2018). HDL or “good” cholesterol, on the other hand, is associated with improved cardiovascular 

outcomes (Rader and Hovingh 2014; Toth et al. 2013).  

It is important to note that, for all four biomarkers studied, abnormal levels in the healthy tail of 

the distribution are associated with poor health outcomes (Allard-Ratick et al. 2019; Carson et al. 2010; 

Currie et al. 2010; Jacobs et al. 1992; Kang and Wang 2016; Selvin et al. 2010). It is unclear precisely 

what levels of blood pressure and non-HDL cholesterol are too low and what levels of HDL cholesterol 

are too high. For blood sugar, Carson et al. (2010) finds elevated mortality rates among non-diabetics 

with A1C levels below 4%, which affects only 0.1% of observations in the analytic sample used here. As 

described below, I focus on the 10th to the 90th percentiles of biomarkers rather than more extreme levels 

to avoid interpretational issues related to these nonlinearities.  

For analysis, I standardize (mean = 0; standard deviation [SD] = 1) all four biomarkers across the 

n = 20,927 observations in the sample. Density plots are provided in Appendix Figure A4.1. 

 

Education 

I operationalize educational attainment with self-reported years of completed schooling. Very few 

people reported attending school for 5 years or less, so I collapse those who reported such levels into a 

single category. Years of schooling was top-coded by the HRS at 17 years.  

 
23 The HRS does not collect measures of LDL cholesterol. Non-HDL cholesterol is a useful alternative, as it can be 

calculated by subtracting HDL cholesterol from total cholesterol, neither of which requires fasting to collect. 
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Prior research demonstrates that years of schooling may not be the optimal way to operationalize 

education in research on health, as it may obscure nonlinearities (Montez et al. 2012). Thus, in robustness 

checks, I operationalize schooling instead using highest degree attained. In those analyses, respondents 

are divided into four categories: did not finish high school; completed high school or earned a GED; 

earned an Associate’s degree or completed some college; and earned a Bachelor’s degree or higher.  

 

Covariates 

 Age and cohort: Because earlier birth cohorts obtained less education, on average, and are likely 

to be less healthy than younger, more educated cohorts, age and year of birth could confound the 

association of education with biomarkers of health risk, perhaps especially in the unhealthy tails of their 

distributions. Thus, in all models, I control for respondent’s age at the completion of the relevant HRS 

survey, a squared term for age, year of birth, and interactions between age and year of birth and between 

age-squared and year of birth.  

Sex, race, and socioeconomic and health background: In some models, I also control for 

demographic characteristics and background factors that could be associated both with educational 

attainment and with biomarker profiles, particularly at the extreme ends of their distributions. These 

include an eight-category indicator of sex and race (non-Hispanic white male; non-Hispanic white female; 

non-Hispanic black male; non-Hispanic black female; Hispanic male; Hispanic female; other race male; 

other race female) and measures of the respondent’s socioeconomic background and childhood health.  

To account for socioeconomic background, I use maternal education, which is expressed as a 

seven-category variable (less than eight years; eight years; more than eight years, no further details24; 

nine-eleven years; twelve years; 13-15 years; and 16 years or more). Another variable indicates the 

respondent’s perceived socioeconomic status in childhood: poor, about average, or pretty well off. A 

dummy variable indicates whether the respondent’s father was present and consistently employed 

 
24 Respondents answered questions about their parental education in their first HRS survey only, and early HRS 

surveys asked whether each parent had attained fewer than eight years of schooling versus eight or more years. Later 

HRS surveys instead recorded responses in years, ranging from 0 to 17 years or more. 
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throughout adolescence versus unemployed for several months or absent or deceased. Another variable 

indicates the respondent’s region of birth (Northeast, Midwest, South, West, or outside the U.S.).  

I also utilize a measure of childhood health, which is known to influence both educational 

outcomes and later health (Haas 2007; Jackson 2009; Palloni 2006) and which may be most strongly 

related to biomarkers in their unhealthy tails. Respondents were asked to reflect on their health as children 

and report it as poor, fair, good, very good, or excellent. I merge “poor” and “fair” into one category 

because very few respondents reported having had poor health in childhood. Childhood health is 

expressed as a nominal four-category variable in analyses. 

Health lifestyle and behaviors: I also assess the extent to which body mass index (BMI) and 

smoking status mediate the association between education and biomarkers at different points in the 

distribution of health. BMI is a proxy for diet and physical activity, which the HRS does not measure 

comprehensively. BMI is calculated as weight in kilograms divided by squared height in centimeters. 

Where possible, I calculate BMI from objective measurements collected during extended in-home HRS 

interviews. I also control for BMI-squared, as the relationship between BMI and biomarkers may be 

nonlinear. Smoking status is expressed as a three-category variable (never, former, or current smoker). 

 

Analysis 

 I use unconditional quantile regression (UQR) to assess variation in the association of education 

with biomarkers across their distributions. First described by Firpo et al. (2009), UQR estimates the 

association of independent variables with the unconditional distribution of the outcome (see also, 

Killewald and Bearak 2014). Controlling for covariates mitigates concerns regarding confounding and 

selection, but quantiles are not defined with respect to covariates as they are in a conditional regression 

framework. 

Estimating a UQR model requires transforming the dependent variable of interest using the 

recentered influence function (RIF) in Equation 1, 
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𝑅𝐼𝐹(𝐻𝑒𝑎𝑙𝑡ℎ; 𝑞𝜏, 𝐹𝐻𝑒𝑎𝑙𝑡ℎ) = 𝑞𝜏 +
(𝜏 − 𝟏{𝐻𝑒𝑎𝑙𝑡ℎ ≤ 𝑞𝜏})

𝑓𝐻𝑒𝑎𝑙𝑡ℎ(𝑞𝜏)
, 

 

 

Equation 1 

where 𝑞𝜏 is the value of the outcome variable, Health, at the quantile, 𝜏, of interest, and 𝐹𝐻𝑒𝑎𝑙𝑡ℎ is the 

cumulative distribution function of Health. 𝟏 is a function that equals one if the value of Health is less 

than or equal to 𝑞𝜏 and 0 otherwise. Finally, 𝑓𝐻𝑒𝑎𝑙𝑡ℎ(𝑞𝜏) is the density of Health at 𝑞𝜏. Notice that the RIF 

transformation does not utilize the independent variables at all; the transformed dependent variables are 

functions of the distribution of health across the sample of interest and the chosen quantile. I transform 

each measure of health for each of nine quantiles, specifically, quantiles 0.10 (i.e., the 10th percentile) 

through 0.90 (i.e., the 90th percentile), in increments of 0.10. I do so using the command rifreg (Firpo 

et al. 2009) in Stata 15.0 (StataCorp 2017).  

I then estimate ordinary least squares (OLS) linear regression on the RIF-transformed dependent 

variables for each quantile of interest. Quantile-specific coefficients estimated through this process 

indicate the marginal effect of a one-unit shift in the independent variable on the unconditional quantile of 

the dependent variable, holding covariates constant. I cluster standard errors at the household level. To 

account for the uncertainty involved in the estimation of the RIF, standard errors are bootstrapped across 

200 repetitions. To test whether estimates differ significantly across quantiles, I use seemingly unrelated 

estimation.  

As shown below, I estimate a series of UQR models for each measure of health. The dependent 

variable (RIF) and coefficients are quantile-specific and therefore are indexed with q. The focal 

independent variable, educational attainment, is expressed as EduYrs. Recall that respondents could 

contribute up to two observations to the data; time-varying measures are therefore indexed by person (i) 

and time (t).  

Model 1 assesses whether total educational disparities in health-related risk differ across the 

distribution of each biomarker; this model is entirely descriptive, as it controls only for age, age-squared, 
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year of birth (YOB), and their interactions. I expect 𝛽1—an indicator of educational disparities—to grow 

across quantiles of blood sugar, blood pressure, and non-HDL cholesterol, but not across quantiles of 

HDL cholesterol, which is not regularly targeted by medical intervention. Note that, for this model and 

others, I also estimate parallel equations using ordinary least squares (OLS) linear regression to obtain 

estimates of education’s association with conditional means.  

 

𝑅𝐼𝐹𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑡,𝑞 = 𝛽0,𝑞 + 𝛽1,𝑞𝐸𝑑𝑢𝑌𝑟𝑠𝑖 + 𝛽2,𝑞𝐴𝑔𝑒𝑖𝑡 + 𝛽3,𝑞𝐴𝑔𝑒𝑖𝑡
2 + 𝛽4,𝑞𝑌𝑂𝐵𝑖 

+ 𝛽5,𝑞𝐴𝑔𝑒𝑖𝑡𝑌𝑂𝐵𝑖 + 𝛽6,𝑞𝐴𝑔𝑒𝑖𝑡
2 𝑌𝑂𝐵𝑖 + 𝜀𝑖𝑡,𝑞 

Model 1 

 

In Model 2, I aim to eliminate the confounding influences of demographic characteristics and 

socioeconomic or health-related background. To do so, I incorporate controls for sex and race (SexRace) 

and maternal education, perceived socioeconomic status in childhood, an indicator of paternal presence 

and employment, region of birth, and self-reported health in childhood (Background). 

 

𝑅𝐼𝐹𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑡,𝑞 = 𝛽0,𝑞 + 𝛽1,𝑞𝐸𝑑𝑢𝑌𝑟𝑠𝑖 + 𝛽2,𝑞𝐴𝑔𝑒𝑖𝑡 + 𝛽3,𝑞𝐴𝑔𝑒𝑖𝑡
2 + 𝛽4,𝑞𝑌𝑂𝐵𝑖 

+ 𝛽5,𝑞𝐴𝑔𝑒𝑖𝑡𝑌𝑂𝐵𝑖 + 𝛽6,𝑞𝐴𝑔𝑒𝑖𝑡
2 𝑌𝑂𝐵𝑖 

+ 𝜏𝑞
𝑇SexRace𝑖 + 𝛿𝑞

𝑇Background𝑖 + 𝜀𝑖𝑡,𝑞 

Model 2 

 

The final models aim not to reduce confounding, but rather to assess whether lifestyle factors 

explain distributional heterogeneity in the association of education with biomarkers of health risk. I do not 

anticipate that they will, as the mediating role of lifestyle is expected to be similar across the biomarkers’ 

distributions. To test this hypothesis, Model 3 controls for BMI, BMI-squared, and smoking status, 

limited but influential indicators of health-related lifestyle and behaviors. Results support my hypothesis 

if the percent change in the coefficient on years of schooling (𝛽1) between Models 2 and 3 is similar 

across quantiles. The ratio of effects estimated on the 90th and 10th percentiles is therefore expected to be 
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more or less the same in Models 2 and 3. 

 

𝑅𝐼𝐹𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑡,𝑞 = 𝛽0,𝑞 + 𝛽1,𝑞𝐸𝑑𝑢𝑌𝑟𝑠𝑖 + 𝛽2,𝑞𝐴𝑔𝑒𝑖𝑡 + 𝛽3,𝑞𝐴𝑔𝑒𝑖𝑡
2 + 𝛽4,𝑞𝑌𝑂𝐵𝑖 

+ 𝛽5,𝑞𝐴𝑔𝑒𝑖𝑡𝑌𝑂𝐵𝑖 + 𝛽6,𝑞𝐴𝑔𝑒𝑖𝑡
2 𝑌𝑂𝐵𝑖 

+ 𝜏𝑞
𝑇SexRace𝑖 + 𝛿𝑞

𝑇Background𝑖 

+ 𝛽7,𝑞𝐵𝑀𝐼𝑖𝑡 + 𝛽8,𝑞𝐵𝑀𝐼𝑖𝑡
2  

+ 𝛽9,𝑞𝐹𝑜𝑟𝑚𝑒𝑟𝑆𝑚𝑜𝑘𝑒𝑖𝑡 + 𝛽10,𝑞𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑚𝑜𝑘𝑒𝑖𝑡 +  𝜀𝑖𝑡,𝑞 

Model 3 

 

Models 1-3 assume that the association of a year of schooling with health does not depend on the 

particular year of education under consideration. Though this assumption justifies a common and 

parsimonious modeling strategy, prior research has shown that the education-health relationship depends 

both on years of schooling and on the attainment of milestone educational credentials (Montez et al. 

2012). Thus, I estimate Models 1b-3b, which operationalize education using highest degree attained rather 

than years of schooling, but which are otherwise analogous to the models described above. 

 

RESULTS 

Descriptive statistics for the analytic sample of 20,927 observations and 15,077 respondents are 

provided in Table 4.1. In analyses, the four biomarkers are standardized with mean = 0 and SD = 1, 

though Table 4.1 also provides information on biomarkers in their original units. Unhealthy biomarker 

profiles are common in this sample. The average level of blood sugar is 5.9%, which is considered pre-

diabetic (ADA 2018); in fact, for more than half of observations, blood sugar is consistent with either a 

diabetes diagnosis (14.3%) or pre-diabetes (43.9%). Likewise, the average systolic blood pressure in the 

sample is 131.0mmHg, just above the level that current guidelines consider hypertensive (Whelton et al. 

2018), which nearly half of observations (48.4%) surpass. The average non-HDL cholesterol is 

144.1mg/dL. Finally, the average HDL cholesterol in the sample is 54.4mg/dL; 58.1% of observations fall 
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Table 4.1. Descriptive statistics 

 Mean or %    (SD) Min, Max 

Observations (n = 20,927)    

Standardized biomarkers    

Blood sugar  0.00 1.00 -2.08, 8.01 

Blood pressure  0.00 1.00 -3.00, 4.66 

Non-HDL cholesterol 0.00 1.00 -2.91, 4.31 

HDL cholesterol 0.00 1.00 -2.41, 4.18 

Unstandardized biomarkers    

Blood sugar (%) 5.85 1.00 3.78, 13.84 

Blood pressure (mmHg) 131.04 20.36 70.0, 226.0 

Non-HDL cholesterol (mg/dL) 144.12 39.09 30.3, 312.6  

HDL cholesterol (mg/dL) 54.40 16.01 15.8, 121.4 

Age 67.34 10.36 50, 101 

Respondents (n = 15,077)    

Years of education 12.86 2.90 5, 17 

Highest degree    

Less than high school 17.3%   

High school diploma or GED 34.5%   

Associate’s or some college 24.8%   

Bachelor’s degree or higher 23.5%   

Year of birth 1942.41 11.23 1908, 1963 

Sex and race/ethnicity    

Males, non-Hispanic white 30.3%   

Females, non-Hispanic white 39.8%   

Males, non-Hispanic black 5.9%   

Females, non-Hispanic black 9.6%   

Males, Hispanic 4.9%   

Females, Hispanic 6.8%   

Males, Other race 1.2%   

Females, Other race 1.6%   

Notes: Descriptive statistics for additional control variables are provided in Appendix Table A4.1. 
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below what is considered the ideal level of HDL (Grundy et al. 2018). 

On average, respondents obtained 12.9 years of schooling. Less than one in five (17.3%) did not 

graduate high school; one in three earned a high school diploma or GED (34.5%); 24.8% earned an 

Associate’s degree or attended some college; and 23.5% obtained a Bachelor’s degree or higher. The 

average age across observations is 67.3 years; the range encompasses those ages 50 to 101.25 Descriptive 

statistics for additional control variables can be found in Appendix Table A4.1. 

 

Educational attainment and the distribution of biomarkers of health risk 

Table 4.2 presents biomarker means across four levels of schooling (less than 12 years, 12 years, 

13-15 years, and 16 years or more). As expected, average blood sugar and blood pressure decline with 

years of schooling, while average HDL cholesterol increases: higher education is predictive of reduced 

health risk. Patterns are less clear for non-HDL cholesterol. 

In Figure 4.1, I present density plots of biomarkers for those with less than 12 years of schooling 

and for those with 16 years or more (see also, Appendix Table A4.2). Consistent with my hypothesis, the 

distributions of blood sugar and blood pressure do not simply move to the right—towards higher levels 

and poorer health—while keeping their shape intact for those with less schooling. Instead, among those 

with less than 12 years of schooling, the right tails of these distributions—the unhealthy tails—are 

stretched further to the right. This is not the case for non-HDL cholesterol, the distribution of which is 

virtually identical by education level. Further, the opposite pattern obtains for HDL cholesterol, for which 

the healthy tail of the distribution is pulled further outwards for those with higher education. 

 

Blood sugar and blood pressure 

I begin by discussing results for blood sugar and blood pressure, the biomarkers for which results 

in Figure 4.1 (see also, Appendix Table A4.2) support my first hypothesis. That is, there appear to be 

 
25 Prior research shows that health disparities differ across age groups, with smaller differences in health by 

education among the elderly (Willson et al. 2007). In robustness checks (not shown), I assess results when including 

only those ages 50 to 69; results from these models are substantively the same as those presented here. 
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Table 4.2. Means of biomarkers by years of education 

 Years of education 

 < 12 12 13-15 ≥16  

Standardized biomarkers     

Blood sugar  0.20  0.02 -0.05 -0.13 

Blood pressure  0.19 0.05 -0.06 -0.15 

Non-HDL cholesterol -0.02 0.03 0.02 -0.04 

HDL cholesterol -0.13 -0.02 0.04 0.09 

Unstandardized biomarkers     

Blood sugar (%) 6.06 5.88 5.80 5.72 

Blood pressure (mmHg) 134.98 132.02 129.89 127.90 

Non-HDL cholesterol (mg/dL) 143.18 145.26 144.92 142.53 

HDL cholesterol (mg/dL) 52.25 54.03 55.01 55.91 

Observations N = 3,884 N = 6,886 N = 4,976 N = 5,181 
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Figure 4.1. Distributions of standardized biomarkers by years of education 
 

 

Notes: Figure includes data from the n = 9,065 observations from respondents with fewer than 12 years of 

education or 16 years or more. Biomarkers are standardized across all n = 20,927 observations. 
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larger educational disparities in both blood sugar and blood pressure at unhealthy quantiles of their 

unconditional distributions. 

Model 1 in Table 4.3 presents the estimated associations of a year of schooling with the 

conditional means of all biomarkers as well as with three points in their unconditional distributions (the 

10th, 50th, and 90th percentiles) when controlling for age, age-squared, year of birth, and interactions 

between age and year of birth and between age-squared and year of birth. Estimated effects of education 

on all nine deciles of each measure are provided in Figure 4.2. First, note that education is significantly 

associated with the conditional means as well as all deciles of blood sugar and blood pressure, such that 

higher education predicts lower (healthier) biomarkers. Schooling predicts reduced health-related risk at 

all points in the distributions of blood sugar and blood pressure.  

Second, as hypothesized, the estimated effects of a year of schooling increase monotonically 

across quantiles, such that they are largest in the unhealthy tails. Variation in associations across quantiles 

is sizeable. A year of education predicts a relatively small 0.010 SD (p < .001) decline in the 10th 

percentile of blood sugar. The effect on the 90th percentile is nine times larger, with a year of schooling 

associated with a 0.091 SD reduction (p < .001). For blood pressure, the estimated effect of a year of 

schooling ranges from a 0.018 SD (p < .001) decline in the first decile to a 0.058 (p < .001) reduction in 

the last. In Figure 4.2, the 95% confidence intervals on effect estimates for the first and last deciles of 

both blood sugar and blood pressure do not overlap; the differences are statistically significant at p < .001. 

In Model 2, I add controls for additional potential confounders, including demographic 

characteristics and socioeconomic and health background. While changes in effect sizes across the 

distribution of blood sugar become much less dramatic with the addition of these control variables, they 

do not disappear. The association of education with the 90th percentile of blood sugar (-0.045, p < .001) is 

still over six times larger in magnitude than the association with its 10th percentile (-0.007, p = .004). And, 

for blood pressure, the estimated effect of education on the last decile (-0.053, p < .001) remains nearly 

four times greater than that on its first (-0.014, p < .001). Again, the relationship of education with both 

blood pressure and blood sugar is significantly greater (p < .001) when considering the 90th percentiles of 
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Table 4.3. Association of a year of education with standardized biomarkers across their distributions 

 Mean Quantile .10 Quantile .50 Quantile .90 

 Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE) 

Blood sugar     

Model 1: C/F Age, cohort a -0.039 (0.003) *** -0.010 (0.002) *** -0.023 (0.002) *** -0.091 (0.009) *** 

Model 2: + Sex, race, background b -0.019 (0.003) *** -0.007 (0.002) ** -0.014 (0.002) *** -0.045 (0.010) *** 

Model 3: + BMI, smoking status c -0.014 (0.003) *** -0.005 (0.002) * -0.010 (0.002) *** -0.033 (0.010) ** 

Blood pressure     

Model 1: C/F Age, cohort a -0.034 (0.003) *** -0.018 (0.003) *** -0.032 (0.003) *** -0.058 (0.006) *** 

Model 2: + Sex, race, background b -0.031 (0.003) *** -0.014 (0.003) *** -0.029 (0.004) *** -0.053 (0.007) *** 

Model 3: + BMI, smoking status c -0.026 (0.003) *** -0.010 (0.003) ** -0.024 (0.004) *** -0.047 (0.007) *** 

Non-HDL cholesterol     

Model 1: C/F Age, cohort a -0.006 (0.003) * -0.004 (0.004) -0.005 (0.003) -0.011 (0.005) * 

Model 2: + Sex, race, background b -0.010 (0.003) ** -0.008 (0.004) -0.008 (0.004) * -0.010 (0.006) 

Model 3: + BMI, smoking status c -0.008 (0.003) ** -0.007 (0.004)  -0.006 (0.004) -0.006 (0.006) 

HDL cholesterol     

Model 1: C/F Age, cohort a 0.026 (0.003) *** 0.013 (0.003) *** 0.025 (0.003) *** 0.037 (0.006) *** 

Model 2: + Sex, race, background b 0.028 (0.003) *** 0.009 (0.004) ** 0.027 (0.003) *** 0.040 (0.006) *** 

Model 3: + BMI, smoking status c 0.020 (0.003) *** 0.005 (0.004) 0.019 (0.003) *** 0.028 (0.007) *** 

Notes: Standard errors are clustered at the household level and standard errors for quantile regression estimates are bootstrapped across 200 iterations.  
a Control variables include age, age-squared, year of birth, the interaction between age and year of birth, and the interaction between age-squared and 

year of birth.  
b Control variables include those from Model 1 as well as sex and race/ethnicity, maternal education, perceived socioeconomic status in childhood, an 

indicator of paternal presence/employment, region of birth, and health in childhood.  
c Control variables include those from Model 2 as well as body mass index (BMI), BMI-squared, and smoking status.  

*** p < .001; ** p < .01; * p < .05 (two-tailed test); N = 20,927 observations from 15,077 respondents 
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Figure 4.2. Association of a year of education with standardized biomarkers across their distributions, 

from Model 1 

 

Notes: Estimates are based on ordinary least squares regression (OLS) and unconditional quantile regression 

(UQR) models that control for age, age-squared, year of birth, the interaction between age and year of birth, and 

the interaction between age-squared and year of birth (Model 1 in Table 4.3). Biomarkers are standardized across 

the n = 20,927 observations. Standard errors are clustered at the household level and are bootstrapped across 200 

iterations; 95% confidence intervals are shown. 
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their unconditional distributions than the 10th percentiles.  

Figure 4.3 presents the association of a year of schooling with each biomarker across its 

unconditional distribution as estimated in Models 1, 2, and 3 (see also, Table 4.3). BMI and smoking 

status—indicators of health lifestyle and behaviors—are controlled in Model 3 to assess the extent to 

which they mediate the association of education with health across quantiles. For blood sugar, the 

addition of these variables to the model reduces the magnitude of estimated educational disparities by a 

similar extent—between 26 and 33%—at all points in its distribution. For blood pressure, the mediating 

role of BMI and smoking is also pervasive and if anything, stronger in the healthy tail of the distribution 

than in the unhealthy tail. As a result, the ratio of effects estimated on the first and last deciles of blood 

sugar and blood pressure are not reduced in Model 3 compared with Model 2. 

These results are in line with my expectations. The association of education with the 90th 

percentile of blood sugar (-0.033, p = .001) remains significantly larger in magnitude than its association 

with the 10th percentile (-0.005, p = .034) (difference p = .005). Similarly, a year of education is expected 

to reduce the 90th percentile of blood pressure by 0.047 SDs (p < .001), while it is expected to reduce the 

10th percentile by just 0.010 SDs (p = .003) (difference p < .001).  

Results from models operationalizing education using highest degree attained are consistent with 

those presented above. As shown in Figure 4.4 and Appendix Table A4.3, Model 1b estimates that the 

10th percentile of blood sugar among college graduates is 0.039 SDs (p = .017) lower than that among 

those who did not complete high school. At the 90th percentile, however, the disparity is estimated to be 

much larger, at nearly one-half of a standard deviation (-0.490, p < .001). These patterns are not explained 

by background characteristics or by lifestyle factors (Figure 4.5; Appendix Tables A4.4 and A4.5). 

Further, estimated disparities between those who did and did not complete high school (Appendix Figure 

A4.2) and between high school and college graduates (Appendix Figure A4.3) are greatest at higher 

quantiles of blood sugar. Similar patterns are found for blood pressure.
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Figure 4.3. Association of a year of education with standardized biomarkers across their distributions, 

from Models 1, 2, and 3 
 

 
Notes: Estimates are based on unconditional quantile regression models, as shown in Table 4.3. Model 1 controls 

for age, age-squared, year of birth, the interaction between age and year of birth, and the interaction between age-

squared and year of birth. Model 2 adds controls for sex and race/ethnicity, maternal education, perceived 

socioeconomic status in childhood, an indicator of paternal presence/employment, region of birth, and health in 

childhood. Model 3 adds controls for body mass index (BMI), BMI-squared, and smoking status. Lowess 

smoothing functions are applied. Biomarkers are standardized across the n = 20,927 observations. 
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Figure 4.4. Estimated disparities in standardized biomarkers across their distributions between those 

who did not complete high school (reference category) and those with higher degrees, from Model 1b 
 

 

Notes: Estimates are based on unconditional quantile regression models that control for age, age-squared, year of 

birth, the interaction between age and year of birth, and the interaction between age-squared and year of birth, as 

shown in Model 1b, Appendix Table A4.3. Lowess smoothing functions are applied. Biomarkers are standardized 

across the n = 20,927 observations. 
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Figure 4.5. Estimated disparities in standardized biomarkers across their distributions between those 

who did not complete high school (reference category) and those with a Bachelor’s degree or higher, 

from Models 1b, 2b, and 3b 
 

 

Notes: Estimates are based on unconditional quantile regression models, as shown in Appendix Tables A4.3-

A4.5. Model 1b controls for age, age-squared, year of birth, the interaction between age and year of birth, and the 

interaction between age-squared and year of birth. Model 2b adds controls for sex and race/ethnicity, maternal 

education, perceived socioeconomic status in childhood, an indicator of paternal presence/employment, region of 

birth, and health in childhood. Model 3b adds controls for body mass index (BMI), BMI-squared, and smoking 

status. Lowess smoothing functions are applied. Biomarkers are standardized across the n = 20,927 observations. 



 

110 

 

Cholesterol 

While results for blood sugar and blood pressure support my hypothesis, those for non-HDL 

cholesterol do not. As Model 1 in Table 4.3 and Figure 4.2 show, point estimates for the association of 

education with non-HDL cholesterol are negative at all quantiles. They increase slightly in magnitude 

across quantiles (as per my hypothesis), but the difference between the estimated effect on the first and 

last deciles is not statistically significant (p = .245). I return to these results in the Discussion. 

I expected to find a different pattern for HDL cholesterol than for the other biomarkers, as HDL 

cholesterol is not widely targeted by medication. Instead, it is influenced primarily by lifestyle factors 

such as diet and exercise, or may be raised inadvertently by drugs intended to lower LDL cholesterol. I 

therefore did not expect to find larger educational disparities at low, unhealthy quantiles of HDL.  

Results shown in Model 1 of Table 4.3 as well as Figure 4.2 support this expectation, though 

surprisingly, an inverse pattern obtains. That is, the positive association of education with HDL 

cholesterol is greatest at its highest, healthiest levels. While background and lifestyle factors do appear to 

mediate some of the association between education and HDL (Table 4.3, Models 2 and 3; Figure 4.3), the 

variation across quantiles remains. In Model 3, a year of schooling is found to be associated with a non-

significant 0.005 SD (p = .195) increase in the 10th percentile of HDL cholesterol, a 0.019 SD (p < .001) 

increase in the median, and a 0.028 SD (p < .001) increase in the 90th percentile. In all models, the 

difference in the effects of education estimated on the first and last deciles of HDL cholesterol is 

statistically significant (p ≤ .001). 

A model incorporating an interaction between sex and race demonstrates that this unexpected 

result is driven entirely by non-Hispanic white women (Appendix Figure A4.4). For all other groups, the 

relationship of education with HDL is small and roughly constant across the distribution of HDL. Thus, 

with the exception of white women, patterns for HDL align with my hypothesis.  

As with the analyses of blood sugar and blood pressure, results for non-HDL and HDL 

cholesterol are substantively the same when operationalizing education using highest degree attained 

rather than years of schooling (Appendix Tables A4.3-A4.5). 
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DISCUSSION 

This study was motivated by a gap in prior research: while there is clearly a positive association 

between education and average health and an inverse association between education and the probability of 

negative health events (Cutler and Lleras-Muney 2008; Hummer and Lariscy 2011), it remained unknown 

whether educational disparities varied across the distribution of health. Using data from U.S. adults ages 

50 and above, I analyzed four biomarkers that are commonly used in clinical evaluations of health-related 

risk, three of which are commonly targeted by medication.  

For two such biomarkers—blood sugar and blood pressure—I find significant variation in 

educational disparities across quantiles, with the largest disparities in the unhealthy tails of their 

distributions. The most educated people with the best biomarker profiles are actually not much better off 

than the healthiest people who completed very little schooling. However, educated individuals with the 

worst biomarker profiles are substantially healthier than their less educated peers.  

This result is consistent with my hypothesis, which draws on fundamental cause theory (Link and 

Phelan 1995; Phelan et al. 2010) and related research. Specifically, educational disparities are largest for 

health conditions that are amenable to prevention or intervention (Chang and Lauderdale 2009; Glied and 

Lleras-Muney 2008; Masters et al. 2015; Phelan et al. 2004; Phelan and Link 2005; Tehranifar et al. 

2009). This is thought to be because it is only for these aspects of health that resources can help to secure 

better outcomes. Analogously, I posited that educational disparities would be largest at points in the 

distribution of health where education-related resources can most effectively be mobilized to improve 

wellbeing. This is likely to be in the unhealthy tail of health, where thresholds that trigger medical 

intervention have been crossed.  

Put differently, in the absence of medical interventions, educational disparities in biomarkers 

might be relatively uniform in magnitude across their distributions. Medical interventions are likely to 

exacerbate the magnitude of disparities primarily at the least healthy levels, where differences in 

diagnosis, treatment assignment, and treatment success drive additional gaps in outcomes. Specifically, 

these factors are likely to rein in unhealthy biomarker tails among those with more education and 
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resulting health-relevant resources.  

My results for blood pressure differ from those obtained in a recent paper that instruments 

educational attainment with changes to the minimum school-leaving age in the United Kingdom 

(Barcellos et al. 2019). Barcellos and colleagues (2019) find that if anything, additional education spurred 

by the policy change resulted in increased blood pressure, with effects concentrated at low, healthy levels. 

Our contradictory findings may be explained by differences in study design and the population of 

inference. Barcellos and colleagues’ (2019) estimates reflect those whose educational attainment was 

affected by the policy change, presumably those with a relatively low level of schooling. The current 

study instead offers a descriptive overview, showing how educational disparities in blood pressure vary 

across its distribution in a representative sample of older U.S. adults.  

The results I obtain for non-HDL or “bad” cholesterol are not consistent with my hypothesis; 

instead, I find little variation in educational disparities across quantiles of non-HDL cholesterol. This 

might be because statins and other cholesterol-lowering drugs target just one form of non-HDL 

cholesterol: low-density lipoproteins (LDL). The other forms of cholesterol that comprise non-HDL may 

not be as easily manipulated by medication as LDL. Evidence suggests, for example, that the percentage 

of people who manage to reach their LDL cholesterol target is higher than the percentage that achieves 

their non-HDL goal (Virani et al. 2011). Variation across quantiles could be muted in the current study if 

educated people do not have as much of an advantage in terms of non-HDL control as they would for 

LDL control. 

In addition, the result for non-HDL cholesterol may stem from the way cholesterol targets are set. 

For those with diagnosed diabetes or hypertension, the goal of treatment is generally to reduce 

corresponding biomarkers to levels within or slightly above what is considered the normal range (ADA 

2018; Whelton et al. 2018). But for cholesterol, the target level is often even lower, particularly for those 

with a heightened risk of cardiovascular disease due to family history or comorbid conditions. Thus, it is 

precisely for those with the highest risk that non-HDL cholesterol, when properly controlled, is likely to 

be lowest. If those with low education are more likely to be considered at high risk of cardiovascular 
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disease due to family history or comorbid conditions than more educated people with the same initial 

cholesterol level, their treatment will be more aggressive, on average. This could reduce variation in 

educational disparities across quantiles of non-HDL cholesterol. 

 HDL or “good” cholesterol differs from the other three biomarkers I assess. HDL cholesterol is 

associated with improved cardiovascular outcomes, though because its causal role is debated, it is not 

widely targeted by medication (Rader and Horvingh 2014; Toth et al. 2013). Thus, I did not expect to find 

substantial variation in educational disparities across the distribution of HDL. Consistent with my 

expectations, I did not find larger educational disparities at unhealthy (low) levels of HDL. Instead, I 

found larger disparities at healthy (high) levels of HDL. Follow-up analyses reveal that this result is 

driven entirely by non-Hispanic white women. For all other groups, patterns align with my hypothesis, 

showing no systematic variation in educational disparities across quantiles of HDL cholesterol. Future 

research should assess why this is the case. 

 HDL cholesterol is not a perfect example of a negative case, in part because it may inadvertently 

be raised by medication intended to lower non-HDL cholesterol. However, it is challenging to identify an 

alternative—a biological measurement that shows substantial variation in the population, that is known to 

affect health, and yet that cannot be influenced with medication at all. There are no such measures in the 

dataset I use, though as biomarkers become increasingly available in social surveys, their range may 

expand to include more appropriate options.  

 The primary limitation of the current study is that I cannot investigate the main hypothesized 

mechanism for variation in educational disparities across quantiles of these biomarkers directly. That is, I 

cannot estimate distributional variation in biomarkers in the counterfactual scenario in which no medical 

intervention was possible. As a result, findings can be interpreted as consistent with the theory I present, 

but they cannot rule out alternative explanations. 

In particular, though I expect that differences in diagnosis, treatment assignment, and treatment 

success are responsible for variation in educational disparities across the range of blood sugar and blood 

pressure, I cannot test this idea directly. The HRS does collect information on diabetes and hypertension 
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diagnosis. However, these measures are unsuitable for mediation analyses. Those who had high blood 

sugar or blood pressure at some earlier point in time are more likely to have been diagnosed with the 

corresponding health condition and to have less healthy subsequent biomarker profiles. Diagnoses may 

therefore spuriously appear to mediate the association between education and biomarkers, particularly at 

unhealthy points in their distributions. Fine-grained longitudinal data would be needed to confidently 

assess the roles of these potential mediators. This would be a fruitful area for future research. 

My results do show that, as expected, rough proxies of health lifestyle and behaviors—BMI and 

smoking status—are not enough to explain the larger educational disparities at unhealthy points in the 

distributions of blood sugar and blood pressure. In fact, controlling for these measures does not attenuate 

the observed variation across quantiles at all. Future research could attend to a more comprehensive set of 

potentially influential measures, such as diet and exercise at different points in the life course.   

The patterns I uncover for blood sugar and blood pressure are discouraging, as the points at which 

educational disparities are largest are also the points at which the association with subsequent morbidity 

and mortality is likely to be greatest (Coutinho et al. 1999; Lewington et al. 2002). Guidelines for clinical 

intervention are established precisely for this reason: to reduce the particularly strong risk of negative 

health outcomes associated with biomarkers in excess of some threshold. At the same time, a key finding 

of research on fundamental cause theory is that medical knowledge and technologies also drive 

socioeconomic disparities in health outcomes (Chang and Lauderdale 2009; Clouston et al. 2016; Glied 

and Lleras-Muney 2008; Masters et al. 2015; Phelan et al. 2004; Phelan and Link 2005; Tehranifar et al. 

2009). Likewise, the current study suggests that, by exacerbating disparities in the unhealthy tails of these 

biomarkers’ distributions, unequal access to or efficacy of medical intervention may aggravate 

inequalities in resulting health crises and death. 

The lack of attention in prior research to distributional heterogeneity in the association of 

education with health is perhaps unsurprising, as until recently there were few objective, continuous 

measures of health available to study. The recent collection of biomarkers in social surveys makes this 

research possible. In addition to being both continuous and objective, biomarkers reflect health risk that 
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may emerge before physiological symptoms do, and thus are often the first line of defense against chronic 

disease for clinicians (Harris and Schorpp 2018; McDade et al. 2007). The current study highlights the 

utility of biomarkers for more completely mapping the contours of educational disparities in health. 

It also provides practical guidance for future biomarker research. Results underscore that the 

analysis of conditional means might mask disparities in biomarkers that exist primarily in particular 

segments of their distributions. That said, studies dichotomizing biomarkers following clinical guidelines 

risk overlooking unequal outcomes at moderate levels, which also have consequences for subsequent 

health (Brunner et al. 2006; Coutinho et al. 1999; Lewington et al. 2002; Rapsomaniki et al. 2014; Selvin 

et al. 2010; Vasan et al. 2001).  
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Chapter 5: Conclusion 

This dissertation builds on decades, if not centuries, of scientific research documenting disparities 

in health within and between populations (Krieger 2001, 2011). I focused on educational disparities in 

health among older adults in the United States, which prior research demonstrates are large and growing 

(Goesling 2007; Liu and Hummer 2008; Masters et al. 2012; Meara et al. 2008; Montez et al. 2011). For 

example, estimates indicate that at age 25, college graduates can expect to live more than five years 

longer than those with a high school degree and at least 11 years longer than those who did not complete 

high school (Rostron et al. 2010).  

In this respect, the results of this dissertation are consistent with prior research. In all three 

empirical chapters, I found that those with more education evinced better health across numerous 

measures. And yet, mounting evidence—including the results presented here—suggests that the 

relationship between education and health is more complex than descriptive average disparities might 

imply.  

 

EXECUTIVE SUMMARIES AND EMERGING DIRECTIONS 

The empirical chapters of this dissertation drew motivation from a puzzle presented by the 

conflicting results of prior research. While research based on observational data tells a consistent story—

one of better health among the higher-educated—quasi-experimental research has often failed to produce 

evidence of a causal effect of education on health (Galama et al. 2018; Grossman 2015; Montez and 

Friedman 2015). This is surprising at first glance, as increased educational attainment may influence later 

health through a combination of economic, behavioral or normative, and structural mechanisms (Freese 

and Lutfey 2011; Link and Phelan 1995; Mirowsky and Ross 2003).  

Differences in results from observational and quasi-experimental work may arise due to 

confounders that are not adequately controlled in observational work, resulting in upwardly biased 

estimates of education’s effect on health. The first empirical chapter of this dissertation (Chapter 2: 



 

117 

 

Polygenic Scores as Controls for Genetic Selection into Education in Models of Health) thus investigated 

the utility of an innovative control for selection into years of schooling in studies of health. Specifically, it 

investigated a control for genetic selection.  

First and foremost among my findings is that controlling for genetic selection into schooling does 

not upend the established positive relationship between education and health. This result is robust across 

two datasets and three unique dimensions of health. Nonetheless, the measure of genetic selection used 

appears to have potential as a control variable that is on par with measures of family background and 

childhood health, currently among the most recognized confounders of the education-health relationship.  

I operationalized genetic selection into schooling using a polygenic score (PGS), which predicts 

years of schooling based on the estimated effects of many hundreds of thousands of genetic variants 

across the genome (Dudbridge 2013; Lee et al. 2018). I posited that this PGS may be a useful control 

variable in research on education and health because it correlates with more proximal confounders of the 

education-health link, such as family background, abilities, skills, and personality traits (Belsky et al. 

2016; Belsky et al. 2018; Conley et al. 2015; Domingue et al. 2015; Okbay et al. 2016), that may be 

poorly measured. It may also be correlated with additional confounders that remain unknown. My results 

are consistent with this idea, as the proportional attenuation in the estimated effect of education on health 

obtained when controlling for the PGS is greatest when a key confounder—cognitive performance in 

adolescence—is omitted from the model.  

While the results of this chapter lend support to arguments for the incorporation of PGSs in social 

science research (Cesarini and Visscher 2017; Conley 2016; Conley and Fletcher 2017; Freese 2018), this 

emerging research space is not without controversy. In particular, the education PGS that I use has stirred 

both excitement and debate. Freese (2018) illustrates this tension well, stating, “To be clear: nobody is 

saying genes determine educational attainment. Nobody is even saying genetic information predicts 

educational attainment all that well. But standard sociological variables do not predict educational 

attainment that well either” (Pp.525).  

Several uses for PGSs in the social sciences have been suggested. First, as advanced in this 
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dissertation and suggested elsewhere (Cesarini and Visscher 2017; Conley 2016; Freese 2018), PGSs may 

be used to control for selection. This use is relevant even to those who are disinterested in genetic effects, 

as controlling for PGSs may reduce confounding bias and improve estimate precision by shrinking 

residual error.  

Second, PGSs may be used to study processes of cumulative (dis)advantage (Freese 2018). We 

know that a person’s DNA is more or less set from birth, and PGSs show us that DNA ends up being 

correlated with a variety of important outcomes much later in life. The sociological puzzle, then, is why. 

In this sense, DNA is similar to the family characteristics that have held the interest of sociologists for 

decades (Blau and Duncan 1967; Pfeffer and Hertel 2015). I might ask, for example, when in the life 

course the relationship between the education PGS and health emerges and what environmental factors 

moderate its change over time. 

Third, PGSs can be used to study gene-by-environment interactions (GxE), that is, whether the 

effects of environmental conditions on outcomes vary by genetics or vice versa. One GxE study, for 

example, indicates that genetic predisposition to smoke is now a stronger predictor of smoking status than 

it was for earlier birth cohorts, who were not subject to the strict tobacco control policies and norms of 

today (Domingue et al. 2016; see also, Wedow et al. 2018). Extending this idea to the topic of education 

and health, future research could assess, for example, whether the effect of the education PGS on later 

health outcomes differs across times or places that are characterized by different educational policies 

(e.g., mandatory minimum school-leaving ages) or different health-related institutions and technologies 

(e.g., insurance schemes, sanitation, immunization). 

These uses of PGSs are not inherently controversial. The controversy over PGSs—and the 

education PGS in particular—relates to their interpretation. PGSs can be thought of as propensity scores 

for which we do not know what variables were included in the prediction model. Studies trying to “back 

out” these “variables” have shown that the education PGS is correlated with cognitive performance, but 

not perfectly so; it has also been shown to be related to non-cognitive skills and personality traits, and 

still, about half of the relationship between the PGS and educational outcomes remains unexplained 
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(Belsky et al. 2016; Belsky et al. 2018; Conley et al. 2015; Domingue et al. 2015; Okbay et al. 2016). 

Lots of mediating characteristics and behaviors likely shape the relationship between the education PGS 

and educational outcomes, and we do not yet fully understand this process. In my view, sociologists have 

a role to play in future research identifying these mechanisms. Sociologists can also help to ensure that 

the interdisciplinary scholars working in this space do not slip into simplistic and inaccurate descriptions 

of the education PGS as a measure of genetic intelligence.  

The interpretation of PGSs is likely also to affect whether and how they are used out in the world. 

PGSs were designed in part to advance precision medicine by identifying people with elevated health risk 

or indicating optimal treatments. Corollary applications of PGSs for social or behavioral outcomes—

precision education or precision policy, for example—may be neither feasible nor useful. The issue 

confronting schooling-related applications, for example, is not necessarily that students requiring 

additional help cannot be identified, but rather that resources are insufficient to do much about it. 

Moreover, allocating educational resources or determining policy based on DNA may have major adverse 

consequences that far outweigh potential benefits (Conley and Fletcher 2017; Duster 2003).  

Another pressing issue is that those of non-European ancestries are regularly omitted from 

genome-wide and PGS analyses, including Chapter 2 of this dissertation. Any resulting beneficial 

applications may thus be less effective for them (Martin et al. 2017). From a purely intellectual 

standpoint, current studies privilege the experiences of those of European descent.  

Despite these issues, genetic data is becoming more widely available than ever before. People are 

going to use this data no matter what, and a sociological voice at the table is likely to bolster discussion of 

the ways in which the environment mediates and moderates genetic effects as well as the unintended 

consequences of genetic research for inequality in outcomes and intellectual representation. The first three 

uses of genetic data described above are, in my assessment, consistent with the sociological mission, such 

that related research is likely to advance knowledge of social processes more so than it will tell us about 

genetics, per se. 

The second empirical chapter of this dissertation (Chapter 3: The Association of Education with 
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Health and Mortality by Socioeconomic Origin, Race, and Gender) was motivated by another possible 

explanation for the inconsistent results in observational and quasi-experimental work on education and 

health. It may be that effects of education on health differ across individuals and environments, resulting 

in discrepancies between the average effects estimated in observational work and local average effects—

effects present in a particular non-random subset of the population—in quasi-experimental work. 

Building on the emerging literature on heterogeneity (Montez and Friedman 2015), this chapter took a 

complex intersectional perspective and evaluated the association of education with health across groups 

defined by socioeconomic (SES) origin, race, and gender. 

My results underscore the importance of one intersection in particular: that between SES origin 

and race. As in prior work (Ross and Mirowsky 2011), I find that the association of years of schooling 

with self-reported health is stronger for those from low-SES backgrounds. This finding supports Ross and 

Mirowsky’s (2006, 2010) theory of resource substitution by SES origin, as one’s own education and the 

resources it generates appear to make up for those lacking due to background or status. However, my 

results add an additional piece to the puzzle: this pattern is apparent among whites, but not among blacks.  

Seen from the other angle, the association of education with self-reported health and mortality is 

weaker for blacks than for whites, a finding that is again consistent with prior work (Farmer and Ferraro 

2005; Holmes and Zajacova 2014; Shuey and Willson 2008). However, this is primarily the case among 

those from low-SES origins. Thus, the pattern of resource multiplication by race—whereby education 

exacerbates disparities—is also limited to a particular subset of the population. These results may be 

driven by the fact that the ability to use one’s education in support of health is impacted by 

discrimination, exposure to which varies across the intersection of SES origin and race. 

While the results of this empirical chapter demonstrate that a complex intersectional perspective 

can illuminate additional layers of heterogeneity in the relationship of education with health, it also 

underscores the need for research on heterogeneity to straddle two competing goals. Specifically, such 

studies must both highlight meaningful differences while also summarizing commonalities. It can be a 

challenge to strike the ideal balance.  
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A series of papers by Montez and colleagues nicely demonstrate how knowledge regarding 

heterogeneity in the relationship between education and health can effectively evolve. Montez and 

Berkman (2014) first document that educational disparities in mortality vary across regions of the U.S. 

Follow-up papers have used this as motivation to study heterogeneity in educational disparities across 

U.S. states, to study state-level mechanisms, to study differential impacts of state-level mechanisms by 

demographic characteristics, and then to study variation in disparities across states and over time (Montez 

et al. 2016; Montez et al. 2017a; Montez et al. 2017b; Montez et al. 2019). Each of these studies builds on 

those conducted previously using theory to inform new directions.  

Future work could extend the same logic to the topic of this empirical chapter, using its results as 

motivation to study the interaction between educational attainment, SES origin, and race in greater depth. 

If the smaller effects of education on health for low-SES origin blacks that I observe is due to racial 

discrimination and related stressors, I would not expect to find a strong interaction in environments where 

discrimination is absent. Thus, studies could evaluate heterogeneity in the effects of education on health 

by SES origin and race across environments in which racial discrimination was likely to be more or less 

pervasive and damaging. For example, patterns in southern states during the Jim Crow era could be 

compared to those observed in later decades or to those observed in northern states.  

In both of the previously mentioned empirical chapters of this dissertation, I assessed whether 

educational disparities varied across measures of health. Chapter 2 examined summary measures of 

physical and mental, cardiovascular, and metabolic health. Chapter 3 studied self-reported health and 

mortality. The final empirical chapter (Chapter 4: Unconditional Quantile Regression and Educational 

Disparities in Biomarkers of Health Risk), however, took this investigation a step further by assessing 

whether educational disparities in biomarkers of health risk vary across their distributions.  

Drawing on fundamental cause theory (Link and Phelan 1995; Phelan et al. 2010), I anticipated 

that educational disparities in some biomarkers would be greatest at their least healthy levels, where 

unequal access to and efficacy of medical interventions might exacerbate the magnitude of educational 

disparities. Results for blood sugar and blood pressure are consistent with this hypothesis. The 
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implications of these results are discouraging, as the points at which educational disparities in blood sugar 

and blood pressure are largest are also the points at which the association with subsequent morbidity and 

mortality is greatest (Coutinho et al. 1999; Lewington et al. 2002).  

Future research should assess the precise mechanisms underlying these patterns. Longitudinal 

data—ideally starting in adolescence, before diabetes, hypertension, and other chronic conditions 

emerge—could be used to assess whether differences in rates and timing of diagnosis and/or differences 

in treatment assignment and adherence across education levels lead to the large differences at unhealthy 

levels of blood sugar and blood pressure that I observe. Studies could also investigate educational 

differences in uptake of new health guidelines by leveraging the fact that clinical standards for blood 

sugar and blood pressure, as well as cholesterol, are occasionally changed. Such research is needed to 

identify which stage(s) of medical intervention should be targeted to reduce disparities in extreme health 

risk by education and SES more generally. 

The results of this chapter are not only of theoretical and substantive interest; they also provide 

methodological guidance for future work using biomarkers. Common analytic strategies—including the 

analysis of conditional means—might mask disparities in biomarkers that exist only or primarily in 

particular segments of their distributions. That said, studies that dichotomize measures following clinical 

guidelines will overlook unequal outcomes at moderate levels, which also have consequences for 

subsequent health (Brunner et al. 2006; Coutinho et al. 1999; Lewington et al. 2002; Rapsomaniki et al. 

2014; Selvin et al. 2010; Vasan et al. 2001).  

These methodological implications are timely, given the recent proliferation of biomarkers in 

social science datasets (Harris and Schorpp 2018; McDade et al. 2007). The increasing availability of and 

attention to biomarkers reflects a broader shift away from the study of subjective measures of health. This 

is in part because the considerations involved in subjective perceptions of health have been found to vary 

across the same characteristics that are the subject of health disparities research. For example, among 

those rating their health categorically the same, the highly educated have healthier biomarker profiles, 

suggesting that high-SES individuals judge their health more harshly than those of low-SES (Dowd and 
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Zajacova 2010; see also, Dowd and Zajacova 2007; Zajacova and Dowd 2011).  

Diagnoses present similar interpretational challenges, as they may be driven not only by 

underlying physiological functioning but also by access to and utilization of medical services. And, 

though mortality is a useful objective measure of health, it presents its own limitations. For example, all-

cause mortality reflects many different dimensions of health, each of which evolves through unique 

biological mechanisms, and studying cause-specific mortality requires large samples for sufficient 

statistical power. This is particularly problematic in studies of younger populations, since mortality tends 

to occur in older age.  

Biomarkers like those studied in Chapter 4 pose a unique solution to some of these issues (Harris 

and Schorpp 2018; McDade et al. 2007). They are objective and continuous, reflecting a range of risk to 

health, which, as shown in Chapter 4, enables modeling strategies that are not feasible using previously 

available binary and categorical measures of health. Biomarkers also demonstrate variation even in 

young, healthy populations, identifying risk to health before outward symptoms manifest. Because of this, 

in clinical settings they are often the first line of defense against chronic disease, morbidity, and mortality. 

Research on biomarkers thus has real potential for contributing to improved population health and 

reduced health disparities.  

One of the largest issues confronting the study of biomarkers in social science research, in my 

view, is that the literature on these measures is largely found in medical journals. And, much like the 

language of sociology, the language of the medical establishment is largely foreign to those not explicitly 

instructed in it. Training opportunities for biomarker researchers may help to encourage a more 

widespread adoption of these measures in social science research. They would also likely reduce the 

number of flawed studies and conclusions that make their way into social science journals due to 

understandable misinterpretations of medical research. 

 

SUMMARY 

This dissertation moved the literature on education and health forward by estimating the utility of 
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a control for genetic selection, by highlighting heterogeneity in the relationship of education with health 

at the intersection of socioeconomic origin and race, and by demonstrating distributional variation in the 

magnitude of educational disparities in biomarkers of health risk. One overarching takeaway is that, 

consistent with prior observational research (Cutler and Lleras-Muney 2008; Hummer and Lariscy 2011), 

more education invariably predicts better health. In no chapter and in no analysis did I find that 

educational attainment predicted worsened health along any dimension.  

In that sense, results suggest that investment in education as a tool for public health 

improvement—which has been suggested by many (Cohen and Syme 2013; Galea et al. 2011; Hahn and 

Truman 2015; Woolf et al. 2007)—may be worthwhile. That said, future research would do well to 

examine whether increasing educational attainment is the best way to achieve public health goals. 

Improving access to early schooling may also be vital for future life chances (Heckman 2006). The 

content and quality of schooling is also likely to matter both in addition to (Dudovitz et al. 2016; Johnson 

2010) and in interaction with (Frisvold and Golberstein 2011; Sansani 2011) years of education.  

My results do not offer a clear-cut response to the question, “Does education affect health?” 

Instead, my findings resonate with the idea, previously expressed by Montez and Friedman (2015), that 

this question itself is untenable. Effects of education on health vary across individuals and environments 

and across manifestations of health. Variation may be driven by cross-sectional differences and temporal 

changes in the social world, particularly those that render education-linked resources more or less relevant 

to particular health conditions.  

Defining the concept of embodiment, epidemiologist Nancy Krieger (2001) states, “no aspect of 

our biology can be understood absent knowledge of history and individual and societal ways of living” 

(Pp.672). Like the social world that informs it, the relationship between education and health is diverse 

and dynamic. This both complicates and motivates attempts to further unravel the relationship between 

education and health. 
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CHAPTER 2 APPENDICES 

 

 

Appendix Table A2.1. Rotateda loadings of original measures of health on PCFA-constructed factorsb 

 WLS (n = 6,018)  HRS (n = 12,629) 

  

Factor 1: 

Physical & 

mental 

health 

Factor 2: 

Cardio-

vascular 

health 

Factor 3: 

Metabolic 

health 

  Factor 1: 

Physical & 

mental 

health 

Factor 2: 

Cardio-

vascular 

health 

Factor 3: 

Metabolic 

health 

Self-reported (good) health 0.547 0.213 0.344  0.693 0.139 0.216 

Any basic (physical) limitations -0.632 0.132 -0.421  -0.748 -0.041 -0.115 

Any instrumental (cognitive) limitations -0.785 -0.014 0.196  -0.669 -0.108 0.197 

Depressive symptoms -0.598 0.198 -0.161  -0.794 0.187 -0.086 

Self-reported (good) memory 0.716 -0.002 -0.182  0.573 0.005 -0.119 

Diagnosed high blood pressure 0.102 -0.568 -0.380  -0.054 -0.374 -0.475 

Diagnosed or measured high cholesterolc 0.110 -0.781 0.051  -0.254 0.724 0.032 

Diagnosed heart disease -0.108 -0.684 0.028  -0.122 -0.700 0.035 

Diagnosed stroke -0.459 -0.446 0.146  -0.231 -0.643 0.220 

Diagnosed diabetes or high blood sugar -0.046 -0.350 -0.541  -0.052 -0.311 -0.620 

Body mass index category 0.086 0.061 -0.866  -0.074 0.230 -0.878 

% Variance explained after rotatinga 24.41 20.71 18.36  26.40 20.53 15.85 

Eigenvalue 3.31 1.72 1.05  3.36 1.52 1.17 

Notes: Loadings of magnitude 0.3 or greater are bolded. WLS = Wisconsin Longitudinal Study; HRS = Health and Retirement Study. 
a Factors are rotated obliquely, which allows them to be correlated.  
b Both original measures of health and PCFA-constructed factors are standardized (mean = 0, SD = 1) across the observations eligible for the PCFA. 
c In the WLS, respondents were asked whether they had ever been diagnosed with high cholesterol. In the HRS, respondents had their cholesterol 

measured directly; thus, low cholesterol readings in the HRS could be the result of a healthy lifestyle, genetics, or medications. 
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Appendix Table A2.2. Correlations between original and summary measures of healtha 

 WLS (n = 6,018)  HRS (n = 12,629) 

  

Physical & 

mental 

health 

Cardio-

vascular 

health 

Metabolic 

health 

  Physical & 

mental 

health 

Cardio-

vascular 

health 

Metabolic 

health 

Self-reported (good) health 0.575 0.346 0.474  0.707 0.319 0.299 

Any basic (physical) limitations -0.547 0.014 -0.435  -0.653 -0.162 -0.161 

Any instrumental (cognitive) limitations -0.616 -0.053 0.107  -0.569 -0.166 0.131 

Depressive symptoms -0.592 0.047 -0.217  -0.700 -0.002 -0.121 

Self-reported (good) memory 0.641 0.070 -0.057  0.537 0.114 -0.055 

Diagnosed high blood pressure -0.028 -0.561 -0.448  -0.148 -0.413 -0.515 

Diagnosed or measured high cholesterolb -0.009 -0.688 -0.088  -0.064 0.618 0.140 

Diagnosed heart disease -0.185 -0.621 -0.109  -0.250 -0.650 -0.092 

Diagnosed stroke -0.383 -0.390 0.050  -0.271 -0.558 0.109 

Diagnosed diabetes or high blood sugar -0.139 -0.391 -0.570  -0.132 -0.367 -0.631 

Body mass index category -0.039 -0.115 -0.799  -0.096 0.032 -0.796 

Notes: Correlations of magnitude 0.3 or greater are bolded. WLS = Wisconsin Longitudinal Study; HRS = Health and Retirement Study 
a Both original and summary measures of health are standardized (mean = 0, SD = 1) across the observations included in the PCFA. 
b In the WLS, respondents were asked whether they had ever been diagnosed with high cholesterol. In the HRS, respondents had their cholesterol 

measured directly; thus, low cholesterol readings in the HRS could be the result of a healthy lifestyle, genetics, or medications.  
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Appendix Text A2.1. PGS construction 

 

PGSs for education based on Lee et al. (2018) were constructed by several of the GWAS’s lead 

authors to be merged with the WLS (Okbay et al. 2018a) and HRS (Okbay et al. 2018b) samples.  

In the WLS, genetic data was initially available from 9,109 individuals and for 713,014 SNPs. A 

total of 8,527 individuals and 604,710 SNPs remained after quality control procedures were completed.26 

Non-measured SNPs were imputed against the Haplotype Reference Consortium v1.1 European reference 

panel (McCarthy et al. 2016) using the Michigan Imputation Server. Genetic effects were then adjusted 

for linkage disequilibrium using LDpred (Vilhjálmsson et al. 2015) after restricting to HapMap3 SNPs, 

which are known to be well imputed and to provide good coverage of the genome in European-ancestry 

individuals (Altshuler et al. 2010). The PGSs incorporate information from 1,170,820 SNPs and are 

available for 8,527 individuals; 8,509 can successfully be merged with public WLS data.  

HRS genetic data was originally available for 15,620 respondents across over 2 million SNPs. 

Imputation of non-measured genotypes and initial quality control procedures were undertaken at the 

University of Washington’s Genetics Coordinating Center (GCC) (Health and Retirement Study 2012b, 

2013b). Imputation was conducted for 12,454 individuals using the March 2012 release of the 1000 

Genomes Phase 1 reference panel (Abecasis et al. 2012). Lee and colleagues’ (2018) coauthors used this 

imputed data to construct PGSs for years of schooling (Okbay et al. 2018b), first adjusting genetic effects 

for linkage disequilibrium using Ldpred and restricting to HapMap3 SNPs.  The HRS PGSs combine 

information from 1,104,681 SNPs across 8,652 European-ancestry respondents. 

 

 

 

 
26 Individuals were dropped from the data if they had non-European or outlying ancestry, a mismatch between 

reported and genetic sex, a mismatch between reported and genetic familial relationships, a high rate of missing 

genetic data (missingness exceeding 0.05 on any chromosome), or an outlying rate of heterozygosity/homozygosity 

(which suggests genotyping error). A SNP was removed from the data if its call rate was below 0.95 (i.e., if its rate 

of missingness across respondents was above 0.05), if its minor allele frequency was below 0.01 (i.e., if it 

demonstrated little variation across respondents), or if its Hardy-Weinberg exact test p-value was below 10-5 (which 

suggests genotyping error). 
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Appendix Table A2.3. Percent reduction in the effect of a year of education on standardized 

summary measures of health when controlling for the top ten principal components (PCs) of 

the genetic data (measures of genetic ancestry) alone versus when controlling for the PCs as 

well as the education PGS 

 % Effect of education reduced 

Dependent variable 
Model 1A  

vs. 1B 

Model 2A  

vs. 2B 

Model 3A  

vs. 3B 

WLS     

Physical & mental health    

Model B controls for PCs only -0.5% -0.3% 0.4% 

Model B controls for PCs & PGS 4.8% 5.8% 4.0% 
    

Cardiovascular health     

Model B controls for PCs only 0.9% 1.7% 1.3% 

Model B controls for PCs & PGS 21.1% 22.8% 16.9% 
    

Metabolic health     

Model B controls for PCs only 2.4% 1.5% 1.5% 

Model B controls for PCs & PGS 15.8% 15.5% 12.1% 

HRS    

Physical & mental health    

Model B controls for PCs only 0.2% 0.4% - 

Model B controls for PCs & PGS 10.5% 9.8% - 
    

Cardiovascular health     

Model B controls for PCs only 0.6% 2.8% - 

Model B controls for PCs & PGS 26.1% 34.6% - 
    

Metabolic health     

Model B controls for PCs only 0.8% 1.5% - 

Model B controls for PCs & PGS 18.3% 19.7% - 

Notes: Percent reductions are calculated by comparing estimates from Models 1A, 2A, and 3A to 

different versions of Models 1B, 2B, and 3B, respectively. Model 1 controls for demographic 

characteristics; Model 2 adds controls for family background and childhood health; and Model 3 adds 

a control for cognitive performance in adolescence. Rows labeled “Model B controls for PCs only” 

utilize a version of Model 1B, 2B, or 3B that adds controls for the top ten principal components of the 

genetic data (measures of genetic ancestry). Results found in rows labeled “Model B controls for PCs 

& PGS” utilize the version of Model 1B, 2B, or 3B that is used in the main analysis and that adds 

controls for the top ten principal components of the genetic data as well as a control for the education 

PGS. PCs = Principal components; PGS = Polygenic score; WLS = Wisconsin Longitudinal Study; 

HRS = Health and Retirement Study. 
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Appendix Table A2.4. Additional descriptive statistics 

 WLS HRSa 

 Mean (SD) 

or % 
Min, Max 

Mean (SD) 

or % 
Min, Max 

Family background controls     

Mother’s education     

< 8 years 8.1% - 14.4% - 

8 years 26.8% - 18.5% - 

9-11 years 11.5% - 14.0% - 

12 years 37.9% - 36.9% - 

13-15 years 9.7% - 9.0% - 

16+ years 6.1% - 7.2% - 

Father’s education     

< 8 years 19.67% - 22.1% - 

8 years 29.0% - 20.0% - 

9-11 years 10.9% - 12.3% - 

12 years 25.1% - 28.6% - 

13-15 years 7.2% - 7.4% - 

16+ years 8.2% - 9.7% - 

Parental income (100s of USD) 65.06 (60.4) 1, 998 - - 

Perceived SES     

Poor - - 27.7% - 

Average - - 65.8% - 

Well off - - 6.5% - 

Father’s occupation     

Farming 22.6% - - - 

Unskilled 30.3% - - - 

Skilled 9.5% - - - 

White collar 21.6% - - - 

Professional 11.6% - - - 

Not in labor force 4.4% - - - 

Father experienced extended 

unemployment or was absent  
- - 26.4% - 

Lived with both parents  92.1% - - - 

Number of siblings 3.24 (2.4) 0, 15 - - 

Population of hometown     

Rural: < 1,000 29.4% - - - 

1,000 – 9,999 23.4% - - - 

10,000 – 49,999 24.9% - - - 

50,000 – 149,999 10.1% - - - 

Urban: 150,000 + 12.2% - - - 
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Appendix Table A2.4 (Continued) 

 WLS HRSa 

 Mean (SD) 

or % 
Min, Max 

Mean (SD) 

or % 
Min, Max 

Region of birth     

Northeast - - 20.4% - 

Midwest - - 40.0% - 

South - - 29.3% - 

West - - 10.4% - 

Childhood health controls     

Childhood health     

Poor  0.5% - 1.2% - 

Fair 3.1%  4.5%  

Good 12.4% - 14.2% - 

Very good 34.4% - 25.8% - 

Excellent 49.7% - 54.4% - 

Number of health conditions 1.09 (1.0) 0, 5 - - 

Extended activity limitations 12.8% - - - 

Cognitive performance in 

adolescence, centileb 
63.9 (25.3) 0, 100 - - 

N possible observations 6,018 12,629 (7,726 respondents) 

N complete observations c 4,322 10,076 (6,053 respondents) 
a Figures represent means across respondents. 
b This is the centile rank, compared to national test-takers, of the respondent’s score on the Henmon-

Nelson test of mental ability (Henmon et al. 1957), taken in high school and adjusted for age.  
c In the WLS, the most commonly-missing variables are number of health conditions experienced in 

childhood (n missing = 751), experienced extended activity limitations (n missing = 541), parental 

income in adolescence (n missing = 697), childhood health (n missing = 461), and adolescent cognitive 

performance (n missing = 284). No other variables listed above are missing for more than 200 

respondents. In the HRS, parental education was often missing (n respondents missing maternal 

education = 1,096; paternal education = 1,291). Fewer than 200 respondents are missing information on 

any other independent variable.  
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CHAPTER 3 APPENDICES 

Appendix Table A3.1. Effects of a one-year increase in education on odds of good self-reported 

health, by sociodemographic group 

Sociodemographic group OR (SE) Pairwise comparisons of OR 

White males, high SES 1.221 (0.023) *** Ref       

White males, low SES 1.301 (0.025) *** * Ref      

White females, high SES 1.239 (0.025) *** NS † Ref     

White females, low SES 1.331 (0.031) *** ** NS * Ref    

Black males, high SES 1.210 (0.042) *** NS † NS * Ref   

Black males, low SES 1.159 (0.029) *** † *** * *** NS Ref  

Black females, high SES 1.224 (0.042) *** NS NS NS * NS NS Ref 

Black females, low SES 1.231 (0.027) *** NS † NS * NS † NS 

Notes: Group-specific odds ratios are calculated using Model 3 in Table 3.2. Model controls for age, age-

squared, year of birth, the interaction between age and year of birth, the interaction between age-squared and 

year of birth, and childhood health. Standard errors are adjusted for clustering at the household level.  

*** p < .001; ** p < .01; * p < .05; † p < .1; NS = Not significant, p > .1 (two-tailed test) 

Ref = Reference group; OR = Odds ratio; SE = Standard error; SES = Socioeconomic origin 
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Appendix Table A3.2. Odds ratios (ORs) from a single logistic regression model of good self-reported health on highest degree attained, by 

sociodemographic group 

 
Model 3b:  

OR (SE), by sociodemographic group 

 

White  

males,  

High SES 

White  

males,  

Low SES 

White 

females, 

High SES 

White 

females, 

Low SES 

Black  

males,  

High SES 

Black  

males,  

Low SES 

Black 

females, 

High SES 

Black 

females, 

Low SES 

Panel A. Reference: Less than high school 

< HS Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. 

HS/GED 2.143 *** 

(0.349) 

2.684 *** 

(0.298) 

2.398 *** 

(0.379) 

3.046 *** 

(0.290) 

1.773 ** 

(0.378) 

1.536 ** 

(0.215) 

2.150 *** 

(0.448) 

2.226 *** 

(0.247) 

AA/Some college 2.861 *** 

(0.608) 

3.201 *** 

(0.793) 

3.412 *** 

(0.689) 

2.986 *** 

(0.564) 

2.197 * 

(0.753) 

3.039 ** 

(1.071) 

1.933 * 

(0.515) 

3.356 *** 

(0.706) 

BA/BS+ 4.977 *** 

(0.873) 

8.760 *** 

(1.676) 

5.973 *** 

(1.042) 

10.140 *** 

(2.134) 

4.320 *** 

(1.167) 

3.829 *** 

(1.033) 

4.918 *** 

(1.228) 

5.452 *** 

(1.117) 

Panel B. Reference: High school or GED 

< HS 0.467 *** 

(0.076) 

0.373 *** 

(0.041) 

0.417 *** 

(0.066) 

0.328 *** 

(0.031) 

0.564 ** 

(0.120) 

0.651 ** 

(0.091) 

0.465 *** 

(0.097) 

0.449 *** 

(0.050) 

HS/GED Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. 

AA/Some college 1.335 † 

(0.207) 

1.193  

(0.282) 

1.423 * 

(0.206) 

0.980  

(0.173) 

1.239 

(0.368) 

1.979 † 

(0.692) 

0.899  

(0.187) 

1.507 * 

(0.304) 

BA/BS+ 2.322 *** 

(0.227) 

3.264 *** 

(0.580) 

2.491 *** 

(0.251) 

3.328 *** 

(0.658) 

2.436 *** 

(0.512) 

2.494 ** 

(0.666) 

2.287 *** 

(0.440) 

2.449 *** 

(0.486) 

Notes: Models control for age, age-squared, year of birth, interactions between age and age-squared and year of birth, and childhood health. Standard 

errors are adjusted for clustering at the household level. N = 57,587 observations from 16,439 respondents; Pseudo R2 = 0.1079. 

*** p < .001; ** p < .01; * p < .05; † p < .1 (two-tailed test) 

Ref = Reference group; OR = Odds ratio; SE = Standard error; SES = Socioeconomic origin; <HS = Less than high school; HS/GED = High school 

diploma or GED; AA/Some college = Associate’s degree or some college; BA/BS+ = Bachelor’s degree or higher 
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Appendix Figure A3.1. Effects of highest degree attained on odds of good self-reported health, by 

sociodemographic group  

 

Panel A: Odds ratios for those with a high school diploma or GED compared to those with less than a 

high school education  

 

Panel B: Odds ratios for those with a Bachelor’s degree or higher compared to those with a high 

school diploma or GED  

 
Notes: Group-specific odds ratios are calculated based on Model 3b in Appendix Table A3.2. Error bars represent 

95% confidence intervals. SES = Socioeconomic origin. 
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Appendix Table A3.3. Effects of a one-year increase in education on odds of mortality, by 

sociodemographic group 

Sociodemographic group OR (SE) Pairwise comparisons of OR 

White males, high SES 0.888 (0.017) *** Ref       

White males, low SES 0.913 (0.016) *** NS Ref      

White females, high SES 0.849 (0.023) *** NS * Ref     

White females, low SES 0.826 (0.018) *** * *** NS Ref    

Black males, high SES 0.895 (0.038) ** NS NS NS † Ref   

Black males, low SES 0.979 (0.022)  ** * *** *** † Ref  

Black females, high SES 0.915 (0.052)  NS NS NS † NS NS Ref 

Black females, low SES 0.906 (0.020) *** NS NS † ** NS * NS 

Notes: Group-specific odds ratios are calculated using Model 3 in Table 3.3. Model controls for age, age-

squared, year of birth, the interaction between age and year of birth, the interaction between age-squared and 

year of birth, and childhood health. Standard errors are adjusted for clustering at the household level.  

*** p < .001; ** p < .01; * p < .05; † p < .1; NS = Not significant, p > .1 (two-tailed test) 

Ref = Reference group; OR = Odds ratio; SE = Standard error; SES = Socioeconomic origin 
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Appendix Table A3.4. Odds ratios (ORs) from a single logistic regression model of mortality on highest degree attained, by 

sociodemographic group 

 
Model 3b: 

OR (SE), by sociodemographic group 

 

White  

males,  

High SES 

White  

males,  

Low SES 

White 

females, 

High SES 

White 

females, 

Low SES 

Black  

males,  

High SES 

Black  

males,  

Low SES 

Black 

females, 

High SES 

Black 

females, 

Low SES 

Panel A. Reference: Less than high school 

< HS Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. 

HS/GED 0.562 *** 

(0.090) 

0.625 *** 

(0.066) 

0.496 *** 

(0.093) 

0.489 *** 

(0.047) 

0.616  

(0.196) 

0.922 

(0.139) 

0.878  

(0.389) 

0.746 * 

(0.098) 

AA/Some college 0.663  † 

(0.149) 

0.737  

(0.169) 

0.491 * 

(0.137) 

0.418 ** 

(0.127) 

0.625 

(0.347) 

0.668  

(0.331) 

0.890 

(0.493) 

0.504  

(0.211) 

BA/BS+ 0.356 *** 

(0.061) 

0.407 *** 

(0.068) 

0.287 *** 

(0.063) 

0.280 *** 

(0.063) 

0.432 * 

(0.175) 

0.724 

(0.218) 

0.719  

(0.341) 

0.348 *** 

(0.105) 

Panel B. Reference: High school or GED 

< HS 1.778 *** 

(0.284) 

1.600 *** 

(0.170) 

2.016 *** 

(0.376) 

2.043 *** 

(0.195) 

1.624  

(0.518) 

1.085 

(0.164) 

1.140 

(0.505) 

1.341 * 

(0.176) 

HS/GED Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. 

AA/Some college 1.179 

(0.213) 

1.180 

(0.260) 

0.990 

(0.228) 

0.855 

(0.257) 

1.015 

(0.514) 

0.725 

(0.359) 

1.014 

(0.436) 

0.676 

(0.284) 

BA/BS+ 0.634 *** 

(0.067) 

0.651 ** 

(0.100) 

0.578 *** 

(0.086) 

0.572 * 

(0.126) 

0.702 

(0.236) 

0.785 

(0.237) 

0.819 

(0.253) 

0.467 * 

(0.142) 

Notes: Models control for age, age-squared, year of birth, interactions between age and age-squared and year of birth, and childhood health. Standard 

errors are adjusted for clustering at the household level. N = 191,685 observations, 16,439 respondents; Pseudo R2 = 0.0464. 

*** p < .001; ** p < .01; * p < .05; † p < .1 (two-tailed test) 

Ref = Reference group; OR = Odds ratio; SE = Standard error; SES = Socioeconomic origin; <HS = Less than high school; HS/GED = High school 

diploma or GED; AA/Some college = Associate’s degree or some college; BA/BS+ = Bachelor’s degree or higher 
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Appendix Figure A3.2. Effects of highest degree attained on odds of mortality, by sociodemographic 

group  

 
Panel A: Odds ratios for those with a high school diploma or GED compared to those with less than a 

high school education  

 

 

Panel B: Odds ratios for those with a Bachelor’s degree or higher compared to those with a high 

school diploma or GED  

 

 
Notes: Group-specific odds ratios are calculated based on Model 3b in Appendix Table A3.4. Error bars represent 

95% confidence intervals. SES = Socioeconomic origin. 
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Appendix Figure A3.3. Predicted probability of mortality, by sociodemographic group and highest 

degree attained 

 
Notes: Predicted probabilities are calculated using Model 3b in Appendix Table A3.4. Age is held at 58 years and 

covariates are held at their respondent-level means. SES = Socioeconomic origin. 
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CHAPTER 4 APPENDICES 

 

 

Appendix Figure A4.1. Distributions of standardized biomarkers  

 
Notes: Biomarkers are standardized across all n = 20,927 observations. 
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Appendix Table A4.1. Additional descriptive statistics 

 Mean or % (SD) Min, Max 

Observations (n = 20,927)    

Body mass index (BMI) 29.69 6.22 14.0, 61.7 

Smoking status    

Never smoker 44.3%   

Former smoker 42.1%   

Current smoker 13.6%   

Respondents (n = 15,077)    

Mother’s years of education    

Less than 8 22.2%   

8 14.0%   

Greater than 8, details unknown 5.0%   

9-11 12.5%   

12 32.4%   

13-15 7.4%   

16 or more 6.5%   

Perceived childhood SES    

Poor 30.0%   

About average 62.7%   

Pretty well-off 7.3%   

Father present and employed 72.5%   

Region of birth    

Northeast 17.9%   

Midwest 27.6%   

South 33.6%   

West 8.5%   

Outside U.S. 12.5%   

Childhood health    

Poor or fair 6.6%   

Good 15.8%   

Very good 24.5%   

Excellent 53.1%   
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Appendix Table A4.2. Percentiles of biomarkers by years of education 

 Years of education 

 < 12 12 13-15 ≥16  

Standardized biomarkers     

Blood sugar      

10th percentile -0.75 -0.84 -0.84 -0.87 

50th percentile -0.07 -0.18 -0.26 -0.29 

90th percentile 1.43 0.99 0.87 0.68 

Blood pressure      

10th percentile -1.07 -1.15 -1.21 -1.25 

50th percentile 0.10 -0.05 -0.15 -0.25 

90th percentile 1.59 1.36 1.23 1.03 

Non-HDL cholesterol     

10th percentile -1.22 -1.19 -1.19 -1.23 

50th percentile -0.12 -0.06 -0.06 -0.11 

90th percentile 1.32 1.35 1.35 1.25 

HDL cholesterol     

10th percentile -1.25 -1.16 -1.16 -1.12 

50th percentile -0.26 -0.18 -0.09 -0.04 

90th percentile 1.16 1.30 1.40 1.49 

Unstandardized biomarkers     

Blood sugar (%)     

10th percentile 5.11 5.02 5.02 4.99 

50th percentile 5.78 5.68 5.60 5.57 

90th percentile 7.28 6.84 6.72 6.53 

Blood pressure (mmHg)     

10th percentile 109.33 107.67 106.33 105.67 

50th percentile 133.00 130.00 128.00 126.00 

90th percentile 163.33 158.67 156.00 152.00 

Non-HDL cholesterol (mg/dL)     

10th percentile 96.24 97.67 97.71 96.07 

50th percentile 139.62 141.89 141.92 139.72 

90th percentile 195.84 197.06 196.97 192.93 

HDL cholesterol (mg/dL)     

10th percentile 34.45 35.88 35.88 36.48 

50th percentile 50.28 51.59 53.01 53.73 

90th percentile 73.00 75.14 76.80 78.29 

Sample size N = 3,884 N = 6,886 N = 4,976 N = 5,181 
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Appendix Table A4.3. Association of highest degree with standardized biomarkers across their distributions (Model 1b) 

 Mean Quantile .10 Quantile .50 Quantile .90 

Reference category: < High school Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE) 

Blood sugar     

High school or GED -0.196 (0.026) *** -0.039 (0.015) * -0.090 (0.016) *** -0.490 (0.077) *** 

Associate’s or some college -0.261 (0.027) *** -0.062 (0.017) *** -0.136 (0.017) *** -0.639 (0.081) *** 

Bachelor’s or higher -0.361 (0.027) *** -0.077 (0.016) *** -0.197 (0.015) *** -0.855 (0.081) *** 

Blood pressure     

High school or GED -0.169 (0.024) *** -0.081 (0.027) ** -0.160 (0.027) *** -0.279 (0.057) *** 

Associate’s or some college -0.234 (0.025) *** -0.117 (0.029) *** -0.223 (0.028) *** -0.373 (0.057) *** 

Bachelor’s or higher -0.323 (0.025) *** -0.166 (0.029) *** -0.301 (0.026) *** -0.543 (0.058) *** 

Non-HDL cholesterol     

High school or GED 0.029 (0.022) 0.006 (0.032)  0.022 (0.028) 0.008 (0.046) 

Associate’s or some college -0.004 (0.024) -0.013 (0.033) 0.004 (0.028) -0.019 (0.046) 

Bachelor’s or higher -0.064 (0.024) ** -0.048 (0.033) -0.054 (0.028) -0.123 (0.049) * 

HDL cholesterol     

High school or GED 0.109 (0.022) *** 0.084 (0.027) ** 0.077 (0.027) ** 0.116 (0.043) ** 

Associate’s or some college 0.165 (0.024) *** 0.075 (0.025) ** 0.147 (0.029) *** 0.220 (0.044) *** 

Bachelor’s or higher 0.226 (0.024) *** 0.122 (0.025) *** 0.207 (0.028) *** 0.305 (0.050) *** 

Notes: Standard errors are clustered at the household level and standard errors for quantile regression estimates are bootstrapped across 200 iterations.  

Control variables include age, age-squared, year of birth, the interaction between age and year of birth, and the interaction between age-squared and 

year of birth.  

*** p < .001; ** p < .01; * p < .05 (two-tailed test); N = 20,927 observations from 15,077 respondents 
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Appendix Table A4.4. Association of highest degree with standardized biomarkers across their distributions (Model 2b) 

 Mean Quantile .10 Quantile .50 Quantile .90 

Reference category: < High school Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE) 

Blood sugar     

High school or GED -0.065 (0.028) * -0.017 (0.016) -0.024 (0.016)  -0.168 (0.085) * 

Associate’s or some college -0.123 (0.029) *** -0.040 (0.020) * -0.068 (0.016) *** -0.307 (0.084) *** 

Bachelor’s or higher -0.189 (0.030) *** -0.043 (0.019) * -0.108 (0.018) *** -0.461 (0.081) *** 

Blood pressure     

High school or GED -0.115 (0.025) *** -0.035 (0.026) -0.110 (0.029) *** -0.211 (0.055) *** 

Associate’s or some college -0.180 (0.027) *** -0.062 (0.030) * -0.172 (0.030) *** -0.313 (0.060) *** 

Bachelor’s or higher -0.276 (0.028) *** -0.126 (0.030) *** -0.260 (0.032) *** -0.471 (0.059) *** 

Non-HDL cholesterol     

High school or GED -0.003 (0.023)  -0.031 (0.034) 0.005 (0.030) -0.020 (0.050) 

Associate’s or some college -0.044 (0.026) -0.054 (0.036) -0.024 (0.032) -0.043 (0.055) 

Bachelor’s or higher -0.095 (0.027) *** -0.081 (0.040) * -0.076 (0.031) * -0.115 (0.057) * 

HDL cholesterol     

High school or GED 0.073 (0.023) ** 0.042 (0.028) 0.037 (0.026) 0.067 (0.044) 

Associate’s or some college 0.122 (0.025) *** 0.021 (0.029) 0.103 (0.030) ** 0.166 (0.054) ** 

Bachelor’s or higher 0.242 (0.027) *** 0.091 (0.031) ** 0.224 (0.029) *** 0.335 (0.052) *** 

Notes: Standard errors are clustered at the household level and standard errors for quantile regression estimates are bootstrapped across 200 iterations.  

Control variables include age, age-squared, year of birth, the interaction between age and year of birth, the interaction between age-squared and year 

of birth, sex and race/ethnicity, maternal education, perceived socioeconomic status in childhood, an indicator of paternal presence/employment, 

region of birth, and health in childhood.  

*** p < .001; ** p < .01; * p < .05 (two-tailed test); N = 20,927 observations from 15,077 respondents 
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Appendix Table A4.5. Association of highest degree with standardized biomarkers across their distributions (Model 3b) 

 Mean Quantile .10 Quantile .50 Quantile .90 

Reference category: < High school Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE) 

Blood sugar     

High school or GED -0.055 (0.027) * -0.014 (0.015) -0.017 (0.015) -0.146 (0.084) 

Associate’s or some college -0.107 (0.029) *** -0.034 (0.018) -0.056 (0.016) *** -0.271 (0.081) ** 

Bachelor’s or higher -0.146 (0.030) *** -0.026 (0.019) -0.077 (0.018) *** -0.364 (0.083) *** 

Blood pressure     

High school or GED -0.100 (0.025) *** -0.028 (0.026) -0.096 (0.026) *** -0.192 (0.058) ** 

Associate’s or some college -0.159 (0.027) *** -0.051 (0.033) -0.152 (0.030) *** -0.287 (0.063) *** 

Bachelor’s or higher -0.231 (0.028) *** -0.097 (0.034) ** -0.216 (0.033) *** -0.415 (0.064) *** 

Non-HDL cholesterol     

High school or GED 0.002 (0.023) -0.028 (0.032) 0.009 (0.028) -0.009 (0.050) 

Associate’s or some college -0.037 (0.026) -0.050 (0.034) -0.019 (0.028) -0.029 (0.055) 

Bachelor’s or higher -0.081 (0.027) ** -0.075 (0.036) * -0.066 (0.031) * -0.084 (0.056) 

HDL cholesterol     

High school or GED 0.053 (0.022) * 0.029 (0.027) 0.018 (0.026) 0.040 (0.045) 

Associate’s or some college 0.093 (0.024) *** 0.005 (0.026) 0.075 (0.026) ** 0.124 (0.054) * 

Bachelor’s or higher 0.172 (0.026) *** 0.050 (0.030) 0.156 (0.027) *** 0.236 (0.055) *** 

Notes: Standard errors are clustered at the household level and standard errors for quantile regression estimates are bootstrapped across 200 iterations.  

Control variables include age, age-squared, year of birth, the interaction between age and year of birth, the interaction between age-squared and year 

of birth, sex and race/ethnicity, maternal education, perceived socioeconomic status in childhood, an indicator of paternal presence/employment, 

region of birth, health in childhood, body mass index (BMI), BMI-squared, and smoking status.  

*** p < .001; ** p < .01; * p < .05 (two-tailed test); N = 20,972 observations from 15,077 respondents 
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Appendix Figure A4.2. Estimated disparities in standardized biomarkers across their distributions 

between those who did not complete high school (reference category) and those with a high school 

diploma or GED, from Models 1b, 2b, and 3b 

 
Notes: Estimates are based on unconditional quantile regression models, as shown in Appendix Tables A4.3-

A4.5. Model 1b controls for age, age-squared, year of birth, the interaction between age and year of birth, and the 

interaction between age-squared and year of birth. Model 2b adds controls for sex and race/ethnicity, maternal 

education, perceived socioeconomic status in childhood, an indicator of paternal presence/employment, region of 

birth, and health in childhood. Model 3b adds controls for body mass index (BMI), BMI-squared, and smoking 

status. Lowess smoothing functions are applied. Biomarkers are standardized across the n = 20,972 observations. 
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Appendix Figure A4.3. Estimated disparities in standardized biomarkers across their distributions 

between those with a high school diploma or GED (reference category) and those with a Bachelor’s 

degree or higher, from Models 1b, 2b, and 3b 

 
Notes: Estimates are based on unconditional quantile regression models, as shown in Appendix Tables A4.3-

A4.5. Model 1b controls for age, age-squared, year of birth, the interaction between age and year of birth, and the 

interaction between age-squared and year of birth. Model 2b adds controls for sex and race/ethnicity, maternal 

education, perceived socioeconomic status in childhood, an indicator of paternal presence/employment, region of 

birth, and health in childhood. Model 3b adds controls for body mass index (BMI), BMI-squared, and smoking 

status. Lowess smoothing functions are applied. Biomarkers are standardized across the n = 20,972 observations. 
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Appendix Figure A4.4. Association of a year of education with standardized HDL cholesterol across its 

distribution, by sex and race 

 

 

Notes: Estimates are based on unconditional quantile regression (UQR) models (not shown) that incorporate an 

interaction between sex/race and years of schooling. Lines for those of “other” race are not shown as they were 

imprecisely estimated. Model 3 controls for age, age-squared, year of birth, the interaction between age and year 

of birth, the interaction between age-squared and year of birth, maternal education, perceived socioeconomic 

status in childhood, an indicator of paternal presence/employment, region of birth, health in childhood, body mass 

index (BMI), BMI-squared, and smoking status. Lowess smoothing functions are applied. Biomarkers are 

standardized across the n = 20,972 observations. 
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