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Abstract

We describe an algorithm for computational pattern detection

with expanded performance into low Signal-to-Noise Ratio (SNR) regimes.

Our approach consists of a Two-Stage Likelihood Pipeline (TSLP) and is

applicable to large N-dimensional datasets. We apply this approach to the

detection and localization of 3D fluorescent point sources (spots) in

datasets generated by fluorescent microscopy. We demonstrate by in silico

benchmarking that our approach is both maximal in sensitivity and

selectivity in detection and minimal in error in photometry and

localization of spots. Most importantly, the probability distribution of the

Likelihood ratio is empirically derived, therefore the detection of spots in

varying background conditions consists of one parameter. Since imaging in

low SNR regimes corresponds to imaging with low excitation energies, our

approach can enable long timescale imaging of 3D fluorescent spots at high

temporal resolution. We illustrate this capability by analyzing 3D in vivo

dynamics of fluorescently tagged single molecules and oligomeric

complexes. Additionally, imaging in 3D and/or multiple colors (or ND) is

achieved with a minimal increase in excitation energy as compared to 2D

single color imaging.
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1 Introduction

1.1 Biology through the lens of imaging

Time lapse imaging of living systems provides a glimpse into the non-

equilibrium universe that life depends on. At the cellular level, macroscopic

components ranging from the spindle to chromatin are made up of a multi-

tude of single molecule components that are dynamic, interacting, and often

catalyzing chemical reactions. It is an open question in molecular biology

how to explain macroscopic biological phenomenology based on the emer-

gent effects of these molecules and their interactions. If these molecules were

in equilibrium, time lapse information is not necessary since static snap-

shots are sufficient to completely characterize their dynamics. But draw

any boundary between the living system and its environment and there is

always a flux of energy and mass. This violates the equilibrium assumption

of conservation.

For single molecule time lapse imaging in living systems, 3D information

is necessary as molecular agents are organized differently along x, y, or z di-

mensions. Long time lapse information is important so as to reliably extract

information from noisy dynamic trajectories that is not just diffusion. High

temporal resolution is essential as this timescale relates to its biophysical

context such as binding and transport. Labeling multiple molecular agents

is important since this allows the interaction between different molecular

actors to be measured over space and time. However, imaging in these

desirable time and length scales has been prohibitive since the excitation

energy used for fluorescent imaging is toxic for both fluor and specimen.
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Recently, a renaissance of new techniques emerged that seek to reduce

this excitation energy cost. A diversity of new optical approaches have been

published, and they are all fundamentally about controlling the excitation

energy to limit unnecessary damage (Chen et al., 2014; Voie et al., 1993;

Fadero et al., 2017). Light sheet microscopy is one such example, in which

the excitation plane is optimized to only align with the focal plane. This

is in contrast to traditional imaging, like in epi-fluorescence and confocal,

in which the entire volume of the specimen is illuminated. However, other

recent innovations reduce the excitation energy required by increasing the

sensitivity of the microscope. Camera sensor improvements are one such

example, recently maturing to nearly their theoretical limits in sensitivity.

The final component in imaging to be optimized is signal processing, the

set of algorithms used to extract the relevant information from the measured

dataset. For single molecule imaging, signal processing is used to detect

and localize the digitized pattern manifested by the imaged molecule. If the

algorithms used can allow imaging to be done at lower Signal to Noise Ratios

(SNRs), this corresponds to lower excitation energies. Yet, the bulk of signal

processing used in imaging has remained the same for decades. For example,

for the task of detecting a particular pattern in a dataset, an algorithm called

matched filtering is typically used. This algorithm is theoretically proven to

be optimal in enhancing the signal of interest over that of noise (Rothstein,

1954). But the caveat is that the assumptions underpinning this optimality

does not include interference from other patterns and noise sources, and

these are important features to address when imaging living systems.

Since signal processing is a mature field, my initial assessment was that

Patent Pending 2



these commonly used algorithms were sufficient. However, in 2010, the

Sedat Lab published an observation that would challenge my understanding

(Carlton et al., 2010). They showed that they can dramatically lower the

excitation energy used by using a recently described patch-based de-noising

algorithm. This algorithm lowered the excitation energy used by allowing

very low SNR datasets to be measured while still maintaining the relevant

signal of interest1.

However, this paper was more a proof-in-principle that signal process-

ing is an important, yet oft-neglected component to the imaging system.

The formidable barrier to the practical application of their algorithm was

in the computational overhead of applying a patch-based de-noising algo-

rithm to datasets commonly encountered in imaging, e.g. large 3D timelapse

datasets. With respect to single molecule imaging, in which sub-pixel local-

ization is desired, the patch-based de-noising algorithm destroys all relevant

information used for this process.

Nonetheless, this Sedat et.al observation encouraged me to ask what are

the limits to signal processing, especially with regards to single molecule

detection and localization. The rest of my thesis describes how I reached

these limits, and how I applied this new algorithm to the domain of 3D

single molecule imaging in-vivo.

1The assumption of the algorithm is based on the fact that in most examples in imaging,
there exists a plethora of redundant information, be it in within a timepoint or neighboring
timepoints. The algorithm collates all of this redundant information as similar patches
and assumes they are the same. Then the algorithm extracts the denoised version by
averaging across the whole set. Finally, the algorithm puts this denoised version back to
where it was collated from.
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1.2 Optimal signal processing

That border between the ability to detect or not detect a faint signal typi-

cally defines the edge between scientific discovery and the unknown. From

detecting delicate gravitational waves in astronomy to the detection of faint

fluorescent single molecules in biology, the important task is to detect and

localize a weak signal of interest that is often embedded in noise from multi-

ple sources, including other interfering signals. An essential component that

contributes to the performance of this task are the computational algorithms

used for detection and localization of the pattern manifested by the signal

in the measured dataset.

In biology, imaging fluorescently labeled single molecules or objects smaller

than the diffraction limit (hereafter spots) is becoming increasingly impor-

tant. These signals represent the spatial positions of labeled molecules in a

living system, and understanding how Life structurally and dynamically or-

ganizes these molecules is informing the next generation of questions (Chen

et al., 2014; Liu et al., 2014). One of the holy grails for molecular biology

is the 3D molecule dynamics of different molecular agents in living systems,

over long timescales. It is this key measurement that will open up the in-

visible non-equilibrium world that is the foundation for Life.

However, there are several challenges to this endeavor: (i) The excitation

energy used to image the fluorescent signal is both toxic to the living system

and to the fluorophore (Laissue et al., 2017). (ii) The fluorescent signal

of interest is typically embedded in complex background signals (Ettinger

and Wittmann, 2014). (iii) Generalizing spot detection from 2D to 3D, let
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alone multi spectral 3D, in which different molecular actors can be imaged,

severely exacerbates this excitation energy cost.

It is known that lowering the amount of excitation energy used is criti-

cal for productive imaging, especially with living systems (Chen et al., 2014;

Balzarotti et al., 2017; Carlton et al., 2010). But, given a particular optical

setup, lowering the excitation energy corresponds to a lower Signal-To-Noise

Ratio (SNR) in the measured dataset. Consequently, this degrades the per-

formance of the algorithm used for spot detection and localization, and the

SNR regime in which the algorithm begins to fail defines the fundamental

lower bound on the minimum excitation energy that can be productively

used for that particular optical setup.

We solve these challenges by deriving and implementing an optimal and

general pattern detection and localization algorithm that outperforms all

other numerical methods. It is optimal in the sense that this algorithm

is derived using the well-known Likelihood Principle, which is a privileged

statistical framework notable for being able to extract all information with

respect to the pattern of interest that is available in the dataset (Edwards,

1993)2. For the domain of fluorescent spots, we show that our algorithm is

an optimal 3D multi-spectral and multi-emitter algorithm that is maximal

in sensitivity and selectivity in detection and minimum in error for photom-

etry and localization. Since this is a computational improvement, all imag-

ing modalities that produce a dataset, from epi fluorescent to lattice-light

2Edwards defined the Likelihood Principle as ”Within the framework of a statistical
model, all of the information which the data provide concerning the relative merits of two
hypotheses is contained in the likelihood ratio of those hypotheses.” (Edwards 1972, 1992
p. 30)
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sheet, can be improved by this low SNR extension. Additionally, we show

that our approach outperform previous theoretically proven computational

filters such as Convolution, Normalized Cross Correlation and Laplacian of

Gaussian in detection by statistical measures of sensitivity, and selectivity.

Consequently, for the case of epi fluorescent imaging, we can image 3D or

multi spectral 3D diffraction limited spots for long timescale and at high

temporal resolution.

1.3 The method of Likelihood

In general, detecting and localizing a pattern in a given dataset amounts

to fitting a statistical model of the pattern to the given dataset, with local-

ization given by the position parameters of the model and detection given

by the goodness of fit between the model and the dataset. In terms of

the Likelihood Approach, the goodness of fit between the model and the

dataset is called the Likelihood, and the operation of finding the parameter

set that returns the best Likelihood is the Maximum Likelihood Estimate

(MLE) (Edwards, 1993). The Likelihood is proportional to the probability

of observing the data given the model. Querying whether or not differ-

ent hypothetical patterns best fit a given dataset amounts to comparing

their different Likelihood values found at their MLEs by comparing their

Likelihood Ratios (LR). This LR at their corresponding MLEs is called the

Maximum Likelihood Ratio (MLR). The MLR is the most stringent criterion

to be used when comparing for the presence or absence of different types of

patterns.

The Likelihood Approach derives its power from its ability to proba-
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bilistically model the noise encountered in the dataset when detecting and

localizing the pattern of interest. For example, in fluorescent microscopy,

the noise typically encountered comes from various sources, from the quan-

tum emission process of fluorescence to the measurement read out noise. By

modeling the noise, the fitting of a given model can take into consideration

that some datum are noisier than others and thus should be given less weight

when determining the outcome of a fit. Mathematically and empirically, this

operation is proven to be theoretically optimal in providing the least error

in the estimates of parameter values (Smith et al., 2010a; Cramer, 1946).

Given that a defining characteristic of a low SNR regime is the prominence

of noise, it follows that the Likelihood Approach is uniquely powerful for

pattern localization at low SNR regimes.

The power of any pattern detection and localization approach is defined

on two fronts: Its detection performance and its localization performance.

In terms of detection performance, the Neyman-Pearson Lemma states that

using the Likelihood Ratio is the most stringent criterion when discrimi-

nating between two statistical hypotheses (Neyman and Pearson, 1933). In

terms of localization performance, the Likelihood Approach is mathemati-

cally proven to give the least error in the parameter fit of a given model as

given by the Cramer-Rao Lower Bound (Rao, 1945; Cramer, 1946).

Yet, directly applying the Likelihood Approach as described above is

computationally intractable for two reasons. (i) Many noise models, such as

those encountered in imaging, are non-trivial in numerical implementation,

meaning that the algorithms used are iterative in computation (Huang et al.,

2013a). In general, an iterative algorithm must begin with an initial guess,
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Figure 1: A. 3D intensity distribution of a Point Spread Function (PSF, aka spot)
typically encountered in fluorescent microscopy, rendered with floating 3D voxels
color coded by intensity. Maximum Intensity Projections for each dimension along
X, Y or Z are displayed within each principal axis plane, with the dimension of
each projection highlighted by a red line.

B. A schematic of the noise sources typically encountered in fluorescent
imaging. Top: the signal to be detected is a fluorescent 3D spot and it is embedded
in a fluorescent background (shown is average over many image acquisitions).
Middle: Signal and Background levels at each pixel fluctuate from image to image
(= ”noise”). Spot signal and photon background are intrinsically noisy due to
the quantum nature of light. The noisy signal and background are modeled
as a Poisson process, parameterized by the average signal and background.
Measurement noise is non-photon signal that appears in the data during conversion
to digitized for and) is modeled using statistics typical of an CMOS sensor, with
pixel dependent Gaussian read noise. The acquired data of the 3D spot is the sum
of all three noisy components. For data captured in a single image, a weak spot
signal will be obscured by noise/background.
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e.g. the initial parameter values for the hypothetical pattern, then climb the

local Likelihood peak by iteratively choosing at each step the next parameter

set that increases the Likelihood value. The iterative nature of this process

is already a challenge since this can be a computational bottleneck with

respect to analyzing large datasets. (ii) However, the most damning problem

is that in low SNR regimes, the Likelihood landscape is characterized to be

rocky, in which there are many local maximums. As a result, many initial

parameter guesses will never converge to the global maximum Likelihood,

thus efficiently finding the optimal MLE at low SNR is an open question

(Jin et al., 2016).

Because of these challenges, all pattern detection approaches including

state of the art spot detection software described thus far either (a) avoid

utilizing Likelihood methods at all or (b) apply it only after earlier ”ad-

hoc” computational steps (Sage et al., 2015a). Ad-hoc meant that non-

optimal algorithms were used to find potential candidate pattern(s) and then

roughly estimate their intensities and/or locations. Sage, et al. highlighted

that this ad-hoc computation expanded the number of parameters the user

needed to tune, and without expert understanding of such parameters, this

ignorance formed a barrier between the user and effective utilization of the

spot detection software.

Furthermore, many current spot detection software are limited to an-

alyzing 2D datasets. However, there are many applications for 3D spot

detection, in which the detection of the pattern consists of a 3D spot within

a 3D dataset. A review of all state-of-the-art spot detection approaches in

(Sage et al., 2015a) were mostly limited to 2D spot detection in 2D datasets.
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Because of this limitation, many labs used sub-optimal 3D spot detection in

which they adapt 2D spot detection to 3D data. For example, as described

in a recent publication (Finn et al., 2017), The x and y coordinates of the

brightest pixel in each spot were calculated [from the maximum intensity z

projection]. The z coordinate of the spot center was then calculated by iden-

tifying the slice in the z-stack with the highest value in fluorescence intensity

for each of the spot centers.

Additionally, a generalization of the pattern detection and localization

framework for the application of multi spectral and multi emitter applica-

tions is difficult since it is not clear how to generalize from these ad-hoc

approaches. Even if these sub-optimal approaches were forcibly generalized,

the concomitant number of parameters to be tuned would explode, thus

severely limiting its use.

Thus, there is in no case in which the full power of the Likelihood Ap-

proach is used for the critical step of primary pattern detection, and for the

case of multi spectral and multi emitter detection and localization.
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2 Description of the Two Stage Likelihood Pipeline

2.1 Overview

Our solution to these problems is by using the Likelihood Principle from the

start rather than the end of the computational pipeline, thus ensuring that

all computational steps are baptized by Likelihood Principles. To make this

computationally tractable for large datasets, the algorithm is structured as

a Two Stage Likelihood Pipeline (TSLP), in which the first stage (Stage

I) is derived from a minimally invasive approximation to the fully detailed

Likelihood function (see Mathematics of TSLP in Chapter 6). Given this

principled framework, we generalize the Likelihood methods to handle multi

spectral and multi pattern detection and localization.

The TSLP takes advantage of the fact that in most cases the pattern

of interest to be detected and localized in a given dataset exists in a small

subset of the dataset, e.g. in fluorescent imaging, spots take up a relatively

sparse subset of the dataset. Therefore, Stage I first detects and localizes

candidate spots in a computationally efficient way, but at the cost of some

stringency. These candidate regions of the dataset are selected by thresh-

olding the approximated LR calculated by Stage I - that is retaining the set

of pixels in which their LR values are above a user defined threshold. In

Stage II, a fully detailed Likelihood Analysis is applied to these candidates

regions, with the initial parameter estimates given by the outputs of Stage I.

The final detection of spots may be done by thresholding the fully detailed

LR of Stage II. Thus, the computationally expensive Stage II is applied only

to a small subset of the dataset, and it is armed with the most stringent
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initial parameter estimates given by Stage I. This guarantees convergence

even at low SNR.

For clarity, the TSLP will be first explained in terms of one spectral mea-

surement and one fluorescent spot detection and localization. Afterwards,

the generalization to multi spectral and multi emitter will be discussed. For

full generality, spot patterns and background patterns can be replaced with

any numeric pattern of interest. Atomic units of the dataset will be referred

as pixels, even though it can be of any dimension, e.g. voxels. Illustra-

tions will also be in terms 1D patterns and datasets even though it can be

of any dimension. The following is a colloquial description of the TSLP,

with the mathematical description located in the next chapter. The LR can

be used interchangeably with its log transformed version the Log Likelihood

Ratio (LLR). LLR is preferable because this is both numerically stable on

the computation side and informative on the information theoretic side.

2.2 Description of Stage I

For purposes of Stage I, the data set is divided into a series of small ”patches”,

sized so as to cover the pattern of interest, with one patch centered at ev-

ery position in the data set. For every patch, two intensity hypotheses are

tested – the signal and the null hypothesis. The signal hypothesis tests how

well the dataset in a given patch match the intensities predicted by assum-

ing there exists a pattern + background distribution of intensities. The null

hypothesis tests background only. Each hypothesis carries with it a set of

parameters that need to be optimized by MLE to best match the given data

in a patch, e.g position(s) of pattern(s) and their amplitude(s). The key dif-
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ference between the two hypotheses is whether or not assuming the presence

of the pattern better fits the dataset or not.

In Stage I, solving the MLEs for each hypothesis is made computationally

tractable for large datasets, but at the cost of precision:

(i) The position of the pattern is fixed within each patch, e.g. position

is removed as a variable in the model for the signal hypothesis, and instead

position is defined by the position of the patch. This limits the precision

with which the pattern is localized within the dataset to the resolution of a

single pixel.

(ii) For each patch, the MLEs for each hypothesis is determined by a

single algebraic step, meaning there is no iterative computation. This is

accomplished by combining assumption (i) and an approximation to the

fully detailed noise model, with this approximation exact in very low SNR

regimes. This approximation linearizes the equations in a way that allows

for the MLE of all the amplitude parameters to be solved for in one alge-

braic step (See Mathematical Derivation of Stage I in Chapter 6.4). This

avoids the problem of iterative algorithms in which they can get trapped at

false global maximas in the rocky Likelihood landscape. Additionally, this

approximation structures the MLE algorithm into a set of mathematical

operations that scale computationally well with large data sets, i.e. {+, -,

multiplication, division, convolution}.

These simplifications of (i) and (ii) define the ”minimally invasive ap-

proximation” to the fully detailed MLR. Given these simplifications, Stage I

LLR, or any of the MLEs are termed approximate LLR, approximate MLE

of A, etc.
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Figure 2:
A. Numerical data set characterized by pattern(s) plus background.

B. Pattern detection in a Likelihood framework. Mathematical expressions
are formulated to describe two hypothetical conditions: the pattern of interest plus
the background (the ”Signal Hypothesis) and the background alone (the ”Null
Hypothesis”.

Each hypothesis is evaluated by the Likelihood approach. Each such Maxi-
mum Likelihood Estimation defines a ”Maximum Likelihood” (ML). The ML
defies the set of parameter values at which the hypothesis could best explain
the data and gives the ”Likelihood” that, at those parameter values, the data
are explained by the model for that hypothesis. The ratio of MLs for the two
hypotheses, defined here as the Maximum Likelihood Ratio (MLR), is proportional
to the probability that a pattern (+ background) is present in the data, rather
than only background.
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Given an input dataset, Stage I outputs several datasets that are the

same size:

� Approximate LLR reports the fold probability difference between sig-

nal versus null intensity hypothesis for every position in the dataset.

� Approximate MLE of A and Bs, which correspond to the best fit pa-

rameters for the signal hypothesis, solved for every position in the

dataset.

� Approximate MLE of Bn, which correspond to the best fit parameters

in the null hypothesis, solved for every position in the dataset.

The approximate MLE of A for the signal hypothesis or the approximate

LLR are essentially filtered version of the dataset given, in which filter means

to enhance the signals coming from the pattern of interest only. These pro-

vide a quantitative visualization of the pattern information alone, separate

from any background contributions.

2.3 Candidate Region Selection

Outputs of Stage I are used to select for candidate regions in the dataset to be

further examined using a fully detailed Likelihood method. For example, the

approximate LLR can be thresholded for selection as relatively high values

of LLR indicate that the pattern is likely present in that location. Since

the LLR is interrogating the pattern + background hypothesis over that of

just background only, the LLR metric is a background subtracted measure.

This is crucial because in real-world scenarios complex background signals
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interfere with the detection and localization of the fluorescent spot, and this

problem has been a challenge to previous spot detection approaches (Sage

et al., 2015a).

2.4 Description of Stage II

In Stage II, each candidate region is subject to a fully detailed Likelihood

analysis which relieves the approximations made for Stage I analysis.

(i) The position of the pattern(s) is now an adjustable parameter, thus

allowing for its sub-pixel localization.

(ii) A fully-detailed noise model is used, therefore solving the MLE is

an iterative hill climbing algorithm; given an initial parameter guess, the

algorithm selects another parameter set that increases the Likelihood value,

then repeats. The algorithm terminates when the Likelihood value no longer

increases, therefore defining the peak ML and its corresponding MLE of the

parameters.

The initial parameter guess for the iterative hill-climbing MLE algorithm

are given by the outputs of the Stage I analysis. Since Stage I is a minimally

invasive approximation to the fully detailed Likelihood function, this initial

parameter guess is very close to the optimal MLE in the fully detailed Likeli-

hood landscape. It is this feature that guarantees robust MLE convergence,

especially in low SNR regimes. This initial parameter guess is extracted

from Stage I outputs that correspond to the candidate region examined.

That is, for the signal hypothesis, there exists 5 parameters for a 3D dataset

and 3D pattern: Amplitude of the pattern, its position in x, y, and z, and

the background. The initial xyz position is taken from the position of the
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maximum LLR value in the candidate region. The initial amplitude and

background estimate is taken from the corresponding approximate MLE of

A and Bs values at the xyz position respectively.
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Figure 3: The Two-Stage Likelihood Pipeline allows to scan a data set by the
pattern detection logic described in Figure 1 in a computationally tractable form.

Stage I. The data set is divided into patches that are slightly larger than
the pattern of interest, with each such patch centered on every position in the data
set. In the model for the pattern, the pattern is present at a constant specified
position within the patch. For each patch, MLs and their MLR is determined as
in Figure 1B, using approximated versions of the mathematical expressions for
the noise model. Below: the values of the MLRs for each patch (or the values
obtained from the MLR or by some other filter) provide a quantitative landscape
of the data that can be presented as a visual output if desired. Individual patches
or clusters of patches with high MLRs (e.g. above a defined threshold) indicate
the possible presence of a pattern, thus defined as a ”candidate pattern”.

Stage II. For each such high MLR position, a corresponding region that en-
compasses all patches with high MLRs, is defined and re-interrogated by Stage
II in a more rigorous way. At this stage, for each candidate pattern region, a
hill-climbing exercise is performed separately for the Signal and Null Hypotheses
(Figure 1), guided by Likelihood functions that now utilize fully-detailed noise
models and, for the Signal Hypothesis, with the position(s) of the pattern(s)
no longer fixed. For the hill-climbing exercise and for each hypothesis, each
parameter (e.g. position and amplitude) is defined relative to its preceding value
by the displacement that gives the biggest increase in Likelihood. This process is
continued until an ML is reached. An MLR is determined from the MLs of the
two hypothesis (Figure 1). If the value of this MLR is above a desired threshold, a
pattern is deemed to be present, with the position of that pattern in the dataset
concomitantly determined. Extensions of this approach can allow to identify
multiple partially-overlapping patterns within a dataset and/or multiple instances
of pattern(s) within a single patch, as described in Chapter 3.
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Figure 4: Pattern detection logic and Likelihood implementation for 3D fluorescence
spot detection. General approach (Figure 1B) as applied to a diffraction-limited
signal where the pattern is the Point Spread Runction (PSF) and the background
is uniform. Illustrated for a 1D data set for simplicity.
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3 Description of Multi-Spectral and Multi-Emitter

Generalization

3.1 The problem of multi-spectral imaging

It is often desirable to be able to simultaneously detect and follow more

than one type of molecule or object in a single sample so as to examine

their spatio-temporal relationships and interactions. This can be achieved

by labeling different entities of interest with different fluorophores, aka fluo-

rophores of different ”colors”. Multi-color imaging is achieved by collecting

data in a number of ”channels”, each involves excitation of the sample in

one wavelength window and collection of resulting photon emissions in an-

other window, where each of the two windows is defined by an appropriate

spectral filter. Often (but not always) data is collected in a set of c chan-

nels whose excitation/emission windows are each appropriate to one of c

fluorophore colors in the sample. Such approaches are referred to as multi-

spectral imaging with a corresponding multi-spectral dataset (Zimmermann

et al., 2014). Each datum in this multi spectral dataset is indexed by its po-

sition and also its spectral channel, e.g. [x,y,z,j], with j specifying the index

of the channel. Therefore 3D multi-spectral data sets are 4D datasets.

The challenge of multi-spectral imaging is that the excitation and/or

emission windows of different channels may partially overlap. For example,

the signal detected in a particular channel designed to excite and detect

emissions of one particular color may also include signals from other colors.

This is spectral crosstalk. For multi-color fluorescent spot detection and
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localization, the information related to a spot is now spread across multiple

channels, as well as interference coming from multiple channels. Thus, the

optimal algorithm used for detection and localization must take advantage

of this property (Cutrale et al., 2017). However, current state of the art

spot detection and localization treat each channel independently, in which

they first detect and localize the spot in each individual channel, then find

the correspondence of the detected spots between the channels (Bossi et al.,

2008). Consequently, if there is a probability of a certain error for the

detection of a single spot, this error is roughly multiplied by the number of

channels in this scheme. This limitation is among the reasons that multi-

spectral imaging is currently largely limited to relatively high SNR regimes

and/or low number of colors that are well separated.

The basic premise of our multi-spectral generalization of the TSLP is

based on calculating how a given intensity hypothesis manifests in a multi

spectral dataset with spectral crosstalk. Note that the starting intensity hy-

pothesis has no consideration of spectral crosstalk. For the example of two

colors, a multi-spectral intensity hypothesis can be of the form, a green spot

with its green amplitude, position and background, and a red spot with its

red amplitude, position and background. The task is to infer this original en-

tity, the intensity hypothesis, that is devoid of spectral crosstalk. Therefore,

only when the likelihood of this intensity hypothesis is calculated, e.g. how

this hypothesis manifests in a mulit-spectral dataset, is spectral crosstalk

considered. These spectral crosstalk coefficients are typically constants that

are calibrated beforehand and are specific to the optical setup and colored

fluors used (Zimmermann et al., 2014).
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3.2 Description of multi-spectral multi-emitter Stage I

The same patch based schema described above are used, in which there is a

patch centered at every position in the dataset. However, instead of assum-

ing one spot, there are c spots, with one spot of each color present at some

specified position within the patch. The model for the signal hypothesis is

thus a multi-spectral multi-emitter model in which all spots are overlapping

and the background is assumed to be uniform for all colors. The null hy-

pothesis is assumed to be composed of background only for all the colors.

The spectral crosstalk coefficients are given as constants. The same Stage I

approximations are applied here, and the multi-spectral multi-emitter signal

and null hypothesis are then evaluated for their approximate MLE and their

corresponding approximate ML.

The outputs of a multi-spectral multi-emitter Stage I therefore are gen-

eralized to be,

� Approx LLR

� Approx MLE of A1,...,Ac multi spectral multi emitter signal hypothesis

� Approx MLE of Bs1,...,Bsc multi spectral multi emitter signal hypothesis

� Approx MLE of Bn1,....,Bnc multi spectral multi emitter null hypothesis

in which, 1 through c indexes the channel

3.3 Description of multi-spectral multi-emitter Candidate

Region Selection

If the approximate multi-spectral LLR is high, it means there is likely some com-

bination of colors and spots at this position in the data set; e.g. if there is no spot
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Figure 5: (A) To image a fluorophore of a particular color, the sample is excited
in one wavelength window and resultant emissions are detected in a different wave-
length window. Each such combination comprises a ”channel” whose wavelength
windows are appropriately defined so as to target that particular color. Samples
containing fluorophores of more than one color are imaged in a corresponding num-
ber of specifically-targeted channels. This regime is known as ”multi-spectral imag-
ing”. In this regime, emissions from a given fluorophore may also be detected in
(an)other channel(s) whose excitation and emissions detection windows partially
overlap those of the targeted channel. This phenomenon is known as spectral
crosstalk. (B) For any given fluorophore, the level of signal for a particular color
as detected in a channel other than the ”target channel”, as a fraction of the level
seen in the target channel, can be determined empirically (details in text). Fluor is
tdTomato, analyzed using a Pinkel configured multi- band pass filter cube. (C) In
a given multi-color sample that is imaged in multiple channels, emissions for each
color may occur in any/all channels. Empirical determinations (panel B) define
the matrix of spectral crosstalk coefficients (b) for all combinations of colors and
channels. The crosstalk coefficient for a color in its cognate targeted channel is
defined as 1.
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(Continued) (D) The Stage I Signal Hypothesis for Multi-color (Multi-spectral)
fluorescence imaging assumes that a spot of each color is present at the same, spec-
ified position. The model sums: [for each channel, the signal from each fluorophore
color], for every channel. Uniform background is assumed for all channels (= B).
(E) Model written out explicitly (left) in relation to visual representation of the
data (right).

of a certain color, the amplitude corresponding to that color is close to zero. But if

there is a spot of a certain color, the corresponding amplitude is greater than zero.

Since multi-spectral multi-emitter LLR is the same LLR as for the single emitter

case above, candidate region selection follows the same protocol.

3.4 Description of recursive multi-spectral multi-emitter Stage

II

The same relaxation of the assumptions to Stage I are applied here, in which the

noise model is fully detailed and the spot(s) positions are now adjustable parame-

ters. However, instead of fitting just one spot, Stage II can fit a multiple number

of spots to a given candidate region, with these spots coming from any number of

channels.

However, to ensure proper convergence for the task of multi-emitter fitting, the

algorithm is recursive, building up a multi-emitter fit by sequentially subtracting

and then fitting the single most likely spot to the residues.

Step 1. The initial parameter guess for the iterative hill-climbing MLE algo-

rithm is given by the outputs of the multi-spectral multi-emitter Stage I analysis

that corresponds to the candidate region. The first single most likely emitter’s xyz

position is taken from the position of the maximum approximate LLR value in the

candidate region. The color index of the emitter is chosen by selecting the channel

containing the maximum MLE amplitude from the set of different colored MLE

amplitudes, at that xyz position. Given this color, the amplitude and background
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corresponding to that color and xyz position are extracted. A fully detailed MLE

and its ML of this initial emitter are found given these initial parameter estimates.

Step 2. The above fully detailed MLE corresponds to a hypothetical intensity

distribution for that first emitter, and this intensity distribution is then then sub-

tracted from the multi-spectral data in the candidate region. What is remaining is

the residue, with its composition mostly removed of that emitter.

Step 3. This residual data is also subject to noise and may contain additional

emitters. Hence the residue is then processed by Stage I again to determine the

approximate LLR (and thus possible existence) of another emitter of the same

or another color. The next potential emitter position is identified by the highest

approximate LLR, with its spectral component chosen from the one that contains

the maximum from the list of spectral MLE amplitudes solved for that position.

This emitter candidate with a sufficiently high approximate LLR in this analysis is

then jointly further analyzed by Stage II along with the previously analyzed spots.

Step 4. Steps 2 and 3 are repeated until the highest MLR for any remaining

signal is too low to indicate the presence of a spot or until the analysis reaches a

preprogrammed stop which defines a limit to the number of spots to be solved for.
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Figure 6: Implementation of Recursive Two-stage Likelihood Pipeline for sensitive
spot detection and precise localization of one or more spots of more than one color
in a multi-spectral dataset (or for one or more spots of one color in a single color
dataset).

4 Benchmarking

4.1 Synthetic benchmarking of detection and localization

In fluorescent microscopy, the SNR regime in which the performance of spot detec-

tion and localization is deemed unacceptable defines the corresponding minimum

excitation energy that can be used for imaging. What is deemed acceptable or

unacceptable is user-specific, based on a complex mix of constraints on localization

and photometry performance alongside detection performance. For live cell imag-

ing, it is commonly desirable to image at the lowest possible SNR regime in which

detection is the limiting metric (Carlton et al., 2010). Additionally, it is desirable

to distinguish between overlapping spots, be it in one channel or two or more chan-

nels. Distinguishing overlapping spots is dependent on SNR and their distances.
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Here, we summarize the performance of detection and localization of spots at low

SNR regimes, in which the spot intensity is low relative to the background. This is

accomplished by synthetically generating datasets with realistic noise models that

are typical in fluorescent imaging. Since the benchmark is synthetically generated,

ground truth information regarding the spots intensity and position are known.

The synthetic benchmarking models the noise and image formation typical in

fluorescent microscopy of diffraction limited spots. A range of different spot inten-

sity and background levels at low levels are presented. The spots are modeled as

a 3D Gaussian intensity distributions that is centered in a given position in the

dataset. The intensity model for the dataset is composed of this 3D Gaussian with

amplitude A added to a uniform background B in units of average photon emis-

sions. Therefore, different A and B levels set the mean photon emission rate per

pixel, which is then sampled as a Poisson Distribution (Hecht et al., 1942). The

camera measurement process is parameterized by its quantum efficiency coefficient

(QE) and its per-pixel read noise variance. The QE describes the efficiency of con-

verting a photon to an electron, and the read noise reflects the random process of

converting that captured electron to digital units. The read noise process models

CMOS sensor pixel statistics, with pixel specific read noise modeled as a Gaussian

parameterized by a variance and zero mean (Fossum et al., 1995). The read noise

is modeled per-pixel to account for the diversity of read noise variances that typical

CMOS sensors display; the distribution of read noise variance resembles a skewed

distribution with a very long tail, which means there exists a minority of pixels

that are very noisy relative to their neighbors (Huang et al., 2013a). Thus, to sim-

ulate a CMOS measurement process, given a Poisson-sampled photon distribution

over a set of pixels, these photons are multiplied by the QE coefficient and the per

pixel read noise is added. The gain, which converts electron units to digital units,

is multiplied and a constant offset added. The final units are in analog to digital

units (ADU).
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Localization and photometry performance are measured as the error in those

corresponding parameter estimates with respect to the ground truth (Smith et al.,

2010a). Even if the parameters that describe a synthetic spot are constant, e.g.

the spot is placed in a given x, y and z coordinate with a certain intensity A and

background level B, each random sampling of this process produces different inten-

sity distributions that are consistent with this random process. The consequence

is that when fitting an intensity model to this noisy dataset, the parameters of the

fit will also vary with the differing intensity distributions.

Detection performance depends on how well the criteria that are used for select-

ing spots from non-spots can distinguish true spots from spurious contributions due

to background and noise. In general, computational filters for pattern detection are

designed with these criteria in mind, in which a given input dataset is filtered and

the output intensities relate to the strength that a pattern of interest exists in that

position (Turin, 1960). When the signal for the pattern of interest is weak relative

to the noise and/or background contributions, the reported intensity criterion can

overlap between positions where there is no spot and where there is a spot. There-

fore, detection performance amounts to measuring the distribution of intensities in

non-spot versus spot positions of the dataset. In synthetic datasets the spot posi-

tions are known in advanced, and the filtered intensities corresponding to non-spot

and spot positions are defined as background and signal measurements, respectively.

The detection performance is essentially defined as the amount of overlap between

background and signal intensities. This can be measured for any computational

filter, including the outputs of Stage I. Detection performance, through the lens

of overlap in background and signal intensities, can be quantitatively described by

two measurements, sensitivity and selectivity (Peterson et al., 1954). Sensitivity is

equivalent to the True Positive Rate (TPR), which is the probability the algorithm

reports a spot when there is truly a spot. Selectivity is equivalent to the True

Negative Rate (TNR), which is the probability the algorithm successfully reports
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no spot, when there is truly no spot.

There are also additional statistical measures related to the TPR and TNR.

The False Positive Rate (FPR) is the probability the algorithm incorrectly reports

a spot, when there is truly no spot. Lastly, the False Negative Rate (FNR) is the

probability the algorithm incorrectly reports no spot, when there is truly a spot.

The FPR and FNR are not independent measures but sister statistics to the TPR

and TNR, in which FPR = 1 - TNR and the FNR = 1- TPR.

The operation of determining these detection metrics is as follows: first de-

fine hypothetical dataset parameterized by the (A)mplitude of the spot and the

(B)ackground levels. A noisy sample is taken using the realistic noise model de-

scribed above. This is repeated many times and the background and signal in-

tensities of the filtered output are collected corresponding to regions that contain

no-spot and centered at the spot, respectively. The background and signal inten-

sities will be a probability distribution of intensities. The detection metrics are

calculated from the cumulative distribution functions of the background and sig-

nal intensities, with the FPR = 1 - CDF(background intensities) and the FNR =

CDF(signal intensities).

There is another complication to consider. Selection of a pattern in a filtered

datasets amounts to selecting a threshold, and positions in the dataset that ex-

ceed that threshold are deemed candidates. Different thresholds select for different

stringencies on the sensitivity and selectivity of the computational filter used. For

example, if the threshold is set too low, all available patterns can be selected but

at the cost of selecting many spurious contributions that do not come from the

pattern. This means that given a particular filter, there is a tradeoff to sensitivity

and selectivity, in which increasing one will decrease the other.

To fairly benchmark a given filters detection performance, a consistent criterion

for selecting the filter specific threshold is needed. The Equal Error Rate (EER)

is one such criterion, and defines the threshold at the level in which sensitivity

Patent Pending 29



equals the selectivity (when the FPR equals the FNR). The EER is then defined

as the value of the FPR or FNR at this particular threshold. Graphically, the

EER is a measure of the overlap between the distribution of background and signal

intensity measurements, with complete overlap mapping to EER = 0.5 and complete

separation to EER = 0.
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Figure 7: Visualizing the performance of the single color version of the Two Stage
Likelihood Pipeline for low SNR detection and localization of fluorescent spots:
alternative filters and comparison with conventional detection Part I.

(Top) Regions of raw synthetic data, each containing a centrally-located
spot, were generated at each of the indicated levels of signal and background
amplitudes (A and B, respectively). All combinations tested represent low SNR
conditions.

(Left) Visual performance of other commonly used computational filters as
applied to the raw data.

(Right) Visual performance of various Stage I outputs applied to the raw
data. The design of -Log(estimated FPR) filter is described in the next chapter.

Greyscale presentations of the quantitative landscape for each region in each SNR
condition are shown for raw data (top left) and output of each filter (below)
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Figure 8: Benchmarking the performance of the single color version of the Two
Stage Likelihood Pipeline for low SNR detection and localization of fluorescent
spots: alternative filters and comparison with conventional detection Part II.

A. A method for determining the discrimination between Signal and Back-
ground in a particular set of raw data or of the output of an applied filter for
synthetic data sets. Each region shown in each of the greyscale presentations
of Figure 5 was analyzed quantitatively to asses the distributions of intensities
for Signal and Background. For this purpose, specific definitions of ”Signal” and
”Background” were used. The ”Signal” is the voxel selected as the center of the
spot in the synthetic raw data set (Red spot). The ”Background” is a region
located outside of a square region that contains the Signal (blue area).

For each region analyzed, the distribution of pixel intensities in the Signal
and Background sub-regions are determined.

Greater overlap between the two histograms implies less success in discrimi-
nating signal from background.

A convenient threshold for defining overlap, and thus success in discrimina-
tion, is the Equal Error Rate (EER). The EER is defined as the threshold where
the False Negative Rate (FNR) equals the False Positive Rate (FPR). EER = 0
means no overlap, EER = 0.5 means 100% overlap. (FNR = proportion of cases
where signal is wrongly considered as background; FPR = proportion of cases
where background is wrongly considered as signal.)
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(Continued) B. A heatmap of the EER measured for each A and B (and thus SNR)
combination is shown for raw data and for each filter output as displayed in Figure
5. A contour line of EER=0.5% is presented as a white line.
LLRatio, As, -Log(est. FPR) and Convolution display the largest permissive area
for detection (ie better performances at lower SNRs). However, only -Log(est. FPR)
filter is robust to changing background conditions and this is shown in Figure 10.

5 Distribution of the Log Likelihood Ratio

5.1 Deriving the theoretical distribution for the Log Likeli-

hood Ratio

At low SNR, the distinction between background fluctuations and the intensity of

the signal of interest is small. The purpose of computational filtering is to enhance

the signal of interest over that of background so as to further expand low SNR

distinction between background and signal. The essential next task after filtering

is to determine a threshold in which all background signals are eliminated, only

leaving the signal of interest. In the schema of the detection metrics discussed

above, this is equivalent to finding the threshold where the False Positive Rate is

low. To do so, we need a theoretical link between the Likelihood Ratio and the

detection metrics discussed above.

In 1938, Wilks derived a theorem that relates the Likelihood Ratio to these

detection metrics, known as the Likelihood Ratio test (Wilks, 1938). The theorem

states that the probability distribution of the possible Likelihood Ratios observed

is asymptotically Chi-squared distributed. Given this distribution, a p-value can

be calculated for the observed Likelihood Ratio, and the magnitude of this p-value

relates to the False Positive Rate.

However, applying Wilks theorem to our situation is misleading since we violate

several assumptions demanded by Wilks. The most egregious violations are: 1)

Our Likelihood Ratio is calculated for a small sample size that comes from a patch
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Figure 9: Figure 11 Benchmarking the performance of Multi Color Stage I filter at
different levels of Backgrounds (B) and Amplitudes (A) for the case of two spectral
measurements.

Synthetic data were generated in which signals comprising the PSFs for
GFP and tdTomato were placed 0 distance apart. Each of the respective spot
intensities and background are set by the corresponding A and B, assumed to be
the same for both spots.

Data were filtered with Stage I of the multi-color spot detection algorithm.
LLR landscape is shown for one of the two colors (which give the same result).
Significance of the signal, compared to background (as in Figure 7) , is indicated
by EER = 0.5% (yellow). Significance obtained by analysis of the same color
in a single channel, From Figure 7, is shown in (white). Difference shows that
multi-color analysis outperforms single color analysis (arrow).
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or candidate region. Wilks demands that the sample size is large or infinite. 2)

Our null hypothesis is essentially a simpler version of the signal hypothesis, in

which the pattern of interest is set to zero amplitude. Wilks demands that the

parameters of the null hypothesis is not on the border of the parameters of the signal

hypothesis. Given our assumption that there is no negative photon emission rate,

a zero amplitude pattern is on the lower bound border of amplitude possibilities.

The limitations described above are general to many different applications,

therefore applying Wilks theorem results in erroneous estimates of the FPR, and

other detection statistics. This problem is general to many fields, ranging from

astronomy to biology (Protassov et al., 2002a; Huang et al., 2013a).

A clue to the theoretical Likelihood Ratio distribution is apparent when exam-

ining the derivation to Stage I (see Chapter 6.4). The approximate Log Likelihood

Ratio (LLR) in Stage I is composed of a difference between two mean squared error

components, with each mean squared error component corresponding to the signal

and null hypothesis, e.g. one component is the squared error between the data

and the best fit intensity model of the signal hypothesis. It is well known that the

distribution of a random variable that is composed of a squared error is given by

the Chi-squared distribution. Furthermore, a Chi-square distribution is one specific

parameterization within the Gamma distribution family. Because the LLR is com-

posed of a difference of two squared error components, how the LLR is distributed

is determined by a difference of two Gamma random variables. The closed form

solution for the difference of two Gamma random is described here (Mathai, 1993)

as Theorem 2.1.

For computational simplicity and the fact that a difference of two Gamma ran-

dom variables may be another Gamma distribution (depends on the parameters), I

have fit a Gamma distribution to the signal and background measurements of the

Stage I benchmarking. In other words, for every (A)mplitude and (B)ackground

condition in the Stage I benchmark, there corresponds a best-fit Gamma distribu-
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tion describing either the background or signal measurements of the approximate

LLR distribution. Therefore the parameters of the Gamma distribution, in which

one describes the signal and the other describes the background distributions, de-

pend on the (A) and (B) values of the benchmark. (see Chapter 6.5 for the Gamma

fits to the benchmarking)

However, when processing a given dataset, there is only one instance of the

data. Stage I filters this dataset and estimates the (A)mplitude and (B)ackground

MLEs and the LLR at every position in the dataset. Since we are armed with how

(A) and (B) parameters correspond to the Gamma parameters, we can estimate the

theoretical distributions of the LLR of the background and signal measurements.

The FPR and FNR can then be calculated with high fidelity.

Future work will complete the closed form proof of the distributions of the Log

Likelihood Ratio of two hypotheses.

The most important aspect of this statistically aware transformation of the Log

Likelihood Ratio is that it becomes a background robust way of thresholding the

data. This is important because in many biological applications, the pattern to be

detected and localized, e.g. the spot, is typically embedded in a wide variety of

different background conditions. Given that datasets are scaling faster in size than

the ability of an experimentalist to manually curate them, it is essential to define a

robust threshold for all of the encountered conditions. One threshold to rule them

all. The one threshold can be defined by the False Positive Rate (or one of the

other statistical metrics).
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A.   B.   

-log(estimate FPR) from LLR 

Figure 10: Identification of -log(estimate FPR) of LLR as the only filter output
that is insensitive to the level of background.

A-B Synthetic data sets like those presented in Figure 7 top were prepared
at a constant level of signal (0 photons) and varying levels of background from
0-1000 photons. Data were filtered in various ways as in Figure 7 bottom. The
(log of) the Probability Density Function (PDF) for the value obtained for the
Background Component at different levels of background levels is plotted for each
filter.

Comparison of (A) vs (B) shows that only the filter output based on the
FPR of the LLR is robust to different background levels. Thus this single
parameter can be used to threshold spots in varying background conditions.
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6 Mathematical Derivation of the Two Stage Like-

lihood Pipeline

6.1 Introduction

To find a fluorescent spot with the most sensitivity and selectivity, and with the

least possible localization error, especially in low SNR regimes, consists of using

the Likelihood Approach with all gory details of measurement noise modeled in3.

However, this approach as-is is computationally intractable when you apply it to

every position in a large data set, especially those commonly generated by CMOS

sensors. The reason is because the fully detailed Likelihood Approach is iterative

in nature, thus not only computationally expensive, it requires initial conditions

that are already close to the correct solution, with this constraint exaggerated at

low SNR regimes. To address this challenge, we describe a Two Stage Likelihood

Pipeline in which the First Stage finds candidates spots and their initial conditions

(using an Approximate Likelihood), and then the Second Stage applies the fully

detailed Likelihood. This end-2-end Likelihood pipeline retains the stringency of

the Likelihood Approach from beginning to end (which captures all information

with respect to the spot), thus enables extremely low SNR spot detection and

localization. The calculation of the False Positive Rate (FPR) and Multi Emitter

and Multi Spectral Generalization are also discussed.

6.2 Background

Localization is defined as the fitting procedure to acquire sub-pixel localization.

Detection is defined as spot discrimination between when a spot exists and when

it doesn’t.

3Within the framework of a statistical model, all of the information which the data
provide concerning the relative merits of two hypotheses is contained in the likelihood ratio
of those hypotheses. (Edwards 1972, 1992 p. 30)
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Benefits of the Likelihood Approach for 2D spot localization is discussed in

(Mortensen et al., 2010) and (Smith et al., 2010b). 2D spot localization with

sCMOS cameras, in which there is pixel dependent noise heterogeneity discussed in

(Huang et al., 2013b). Limitations of current 2D spot detection discussed in a survey

of most 2D spot detection algorithms, (Sage et al., 2015b). In summary, limitations

stem from the fact that there exists many ad-hoc computations in the state of-

the-art spot detection softwares, with a large variety of user tuneable parameters

that are difficult to understand and tune. The cause of this problem stems from

application specific problems of handling interfering background signals obscuring

the spot. Currently, all known Likelihood based spot detection software deploy

Likelihood methods at the end of the computational pipeline.

Discussion below applies to ND pattern detection, with fluorescent spot detec-

tion and localization a 3D instance of an ND pattern, and multi spectral fluorescent

spot detection and localization a 4D instance of an ND pattern.

6.3 The Noise Model, Intensity Hypothesis and the Likeli-

hood

The fully detailed noise model typical in imaging is composed of:

Gaussian read noise per pixel i.

P (Xi = xi|µi, σ2
i ) =

1

σi
√

2π
e

−(xi−µi)
2

2σ2
i

Poisson shot Noise per pixel i.

P (Yi = yi|λi) =
λyii
yi!

eλi

These distributions convolve to create the measurement noise, Poisson∗Gaussian
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per pixel i4.

Pfull(Di = di|µi, σ2
i , λi) =

∞∑
xi=0

P (Xi = xi|µi, σi) · P (Yi = di − xi|λi)

= (Gaussian(µi, σ
2
i ) ∗ Poisson(λi))[di]

For a patch of pixels, you define an intensity hypothesis that defines the average

intensity λi per pixel i. For example, the signal hypothesis contains the signal of

interest fi with amplitude A that is embedded in an interfering background gi with

amplitude B. The null hypothesis is when the amplitude of the signal is zero.

posA or posB are the vectors that specify that position of the patterns fi and gi

respectively.

signal hypothesis = λi(A,B, ~posA, ~posB) = Afi( ~posA) +Bgi( ~posB)

null hypothesis = λi(B, ~posB) = Bgi( ~posB)

In the case of fluorescent spot detection, in which the spot is a diffraction limited

signal, fi is the point spread function and gi is uniform.

signal hypothesis = λi(A,B, ~pos) = Afi( ~pos) +B

null hypothesis = λi(B) = B

The Likelihood Function is proportional to the probability of observing the data

given the noise model and intensity hypothesis5. So discrimination of whether or

not a spot exists is akin to asking what is the Likelihood of different intensity

4described in Section 1.3
5kj in the Likelihood function is a proportionality constant that is function of the given

dataset. Here, it is a reminder that Likelihood inference is not Bayesian – a system of
inference that is strictly probability based.
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hypotheses as manifested in a Likelihood Ratio between the signal vs null.

`(hypothesis|~dj)noiseModel = kjPnoiseModel(~dj |hypothesis)

These Likelihood Functions contain parameters specific to each hypothesis and

the optimal combination needs to be found before a Likelihood comparison. This

called a Maximum Likelihood Estimate (MLE). For example, for the case of the

diffraction limited signal hypothesis, the Likelihood function requires the MLE of

{A,B, ~pos} to be found.

`(A,B, ~pos|~dj)noiseModel = kjPnoiseModel(~dj |~λ(A,B, ~pos))

= kjPnoiseModel([d1, d2, d3, ..., di, ...dn]j |~λ(A,B, ~pos))

= kj

n∏
i=1

PnoiseModel(di|λi(A,B, ~pos))

6.4 Derivation of Stage I

Problems: 1) Fluorescent spots typically sparsely populate a data set, so we would

like to limit the computationally expensive iterative approach to be limited to that

sparse subset. 2) We need estimates of the initial MLE conditions for iterative

solving as close to the final solution as possible. This ensures robust convergence

at low SNR.

Answer: Stage I is an approximated version of the Likelihood Approach that ac-

counts for sCMOS pixel dependent noise. It is the most selective and specific

candidate selection filter, while also providing the required initial conditions for

robust iterative processing at low SNR regimes.
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As noted by a previous publication describing sCMOS 2D spot localization,

(Huang et al., 2013b), the Poisson ∗ Gaussian Distribution can be approximated

by a Poisson ∗ Poisson Distribution with a change of variables. This Poisson ∗

Poisson approximation of the original Poisson ∗ Gaussian Distribution is very

good, therefore both versions are called the fully detailed noise model.

`(hypothesis|~dj)full = kj

n∏
i=1

Pfull(di|σi, λi(A,B, ~pos))

= kj

n∏
i=1

(Gaussian(0, σ2
i ) ∗ Poisson(λi(A,B, ~pos)))[di]

Pfull(di|µi = 0, σ2
i , λi) = (Gaussian(0, σ2

i ) ∗ Poisson(λi))[di]

Pfull(di + σ2
i |µi = 0, σ2

i , λi) = (Gaussian(σ2
i , σ

2
i ) ∗ Poisson(λi))[di]

≈ (Poisson(σ2
i ) ∗ Poisson(λi))[di]

PPoissPoiss(di|µi = 0, σ2
i , λi) = Poisson(σ2

i + λi)[di + σ2
i ]

Let us start with the definition of the fully detailed Likelihood function based

on a Poisson ∗ Poisson noise model:

`(hypothesis|~dj)PoissPoiss = kj

n∏
i=1

(Poisson(σ2
i + λi)[di + σ2

i ])

= kj

n∏
i=1

(λi + σ2
i )di+σ

2
i

(di + σ2
i )!

e−(λi+σ
2
i )
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And then its corresponding Log Likelihood function:

L(hypothesis|~dj)PoissPoiss =Log(`PoissPoiss)

=

n∑
i=1

log

(
1

(di + σ2
i )!

)

+

n∑
i=1

(
di + σ2

i

)
log
(
λi + σ2

i

)
−

n∑
i=1

λi −
n∑
i=1

σ2
i + log(kj)

To motivate the derivation of Stage I, we will start with the signal hypothesis,

and the goal is to find the MLE of {A,B, ~pos} for every position of the data set.

For now, we will solve a subset of the parameters {A,B} for a given patch ~dj in

the data set and a given pattern position. Later, we will generalize to solve for the

MLEs of all parameters for the entire dataset.

max
{A,B}

L(signal|~dj)PoissPoiss

The MLE of {A,B} is found by the following system of equations:

0 =
∂LPoissPoiss

∂A
=
∂LPoissPoiss

∂λi

∂λi
∂A

0 =
∂LPoissPoiss

∂B
=
∂LPoissPoiss

∂λi

∂λi
∂B

with

∂LPoissPoiss
∂λi

=

n∑
i=1

di − λi
λi + σ2

i

At low SNR, camera noise σ2
i dominates.

∂LPoissPoiss
∂λi

∣∣∣∣
approx

=

n∑
i=1

di − λi
λi + σ2

i

≈
n∑
i=1

di − λi
��λi + σ2

i

Thus the above sequence of approximations: Poisson∗Poisson approximation,
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fixing the pattern position, solving the MLEs of {A,B} for a given patch ~dj define

the minimally invasive approximations to the fully detailed Likelihood method.

Now the MLEs of {A,B} for a given patch ~dj by linear algebra.

0 =
∂LPoissPoiss

∂A
≈ ∂LPoissPoiss

∂λi
|approx

∂λi
∂A

=

n∑
i=1

di − (Afi( ~pos) +B)

σ2
i

fi( ~pos)

0 =
∂LPoissPoiss

∂B
≈ ∂LPoissPoiss

∂λi
|approx

∂λi
∂B

=

n∑
i=1

di − (Afi( ~pos) +B)

σ2
i

A

n∑
i=1

fi( ~pos)
2

σ2
i

+B

n∑
i=1

fi( ~pos)

σ2
i

−
n∑
i=1

fi( ~pos)di
σ2
i

= 0

A

n∑
i=1

fi( ~pos)

σ2
i

+B

n∑
i=1

1

σ2
i

−
n∑
i=1

di
σ2
i

= 0

The system of equations in matrix form.


n∑
i=1

fi( ~pos)
2

σ2
i

n∑
i=1

fi( ~pos)
σ2
i

n∑
i=1

fi( ~pos)
σ2
i

n∑
i=1

1
σ2
i



A

B

 =


n∑
i=1

fi( ~pos)di
σ2
i

n∑
i=1

di
σ2
i


To apply this MLE {A,B} operation to every position in the data set, the ~pos

is left fixed, and the dot product between fi and the patch of data is applied to

every position in the data set via convolution. The result is that the approximate

MLE of {A,B, x, y, z} is known for every position in the data set. S now indexes

over the patch of data at position i.


∑
k∈S

f2
k

σ2
i−k

∑
k∈S

fk
σ2
i−k

∑
k∈S

fk
σ2
i−k

∑
k∈S

1
σ2
i−k



Ai

Bi

 =


∑
k∈S

fk
di−k
σ2
i−k

∑
k∈S

di−k
σ2
i−k
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For the general case in which the interfering signal pattern is gk the matrix

form is: 
∑
k∈S

f2
k

σ2
i−k

∑
k∈S

fkgk
σ2
i−k

∑
k∈S

fkgk
σ2
i−k

∑
k∈S

g2k
σ2
i−k



Ai

Bi

 =


∑
k∈S

fk
di−k
σ2
i−k

∑
k∈S

gk
di−k
σ2
i−k


And for the generalization to n − 1 interfering signals, or n overlapping spots,

it is easy to see the general solution from with the three signal example below, in

which Ai, Bi, Ci are the amplitudes of the three pattern of interest.



∑
k∈S

f2
k

σ2
i−k

∑
k∈S

fkgk
σ2
i−k

∑
k∈S

fkhk
σ2
i−k

∑
k∈S

fkgk
σ2
i−k

∑
k∈S

g2k
σ2
i−k

∑
k∈S

gkhk
σ2
i−k

∑
k∈S

fkhk
σ2
i−k

∑
k∈S

gkhk
σ2
i−k

∑
k∈S

h2
k

σ2
i−k





Ai

Bi

Ci


=



∑
k∈S

fk
di−k
σ2
i−k

∑
k∈S

gk
di−k
σ2
i−k

∑
k∈S

hk
di−k
σ2
i−k


Solving the system of equations for our original signal hypothesis results in

a convolution based filter for the approximate MLE of {A,B} for every position

in the data set (hence optimal fits for the signal hypothesis is known for every

position in the data set). For fluorescent imaging of diffraction limited structures

(fluorescent spots), the pattern of interest is defined by the point spread function

of the optics, fk = PSF (k), and the background pattern is uniform, gk = 1.

Ai =

(∑
k∈S

di−kgk
σ2
i−k

) ∑
k∈S

fkgk
σ2
i−k
−
(∑
k∈S

di−kfk
σ2
i−k

) ∑
k∈S

g2k
σ2
i−k(∑

k∈S

fkgk
σ2
i−k

)2

−
(∑
k∈S

f2
k

σ2
i−k

) ∑
k∈S

g2k
σ2
i−k

Bi =

(∑
k∈S

f2
k

σ2
i−k

) ∑
k∈S

di−kgk
σ2
i−k
−
(∑
k∈S

di−kfk
σ2
i−k

) ∑
k∈S

fkgk
σ2
i−k

−
(∑
k∈S

fkgk
σ2
i−k

)2

+

(∑
k∈S

f2
k

σ2
i−k

) ∑
k∈S

g2k
σ2
i−k
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To recover the Likelihood Function from the approximation we integrate.

Lapprox =

∫
∂LPoissPoiss

∂λi

∣∣∣∣
approx

∂λi + C ≈ −
n∑
i=1

(di − λi)2

σ2
i

≡W.L.S.

The Likelihood function is Weighted Least Squares (W.L.S) weighed by pixel de-

pendent read noise.

Since As and Bs are already found, λi = Afi +B can be plugged in to Lapprox

to derive the convolution based Log Likelihood Function of the signal hypothesis.

Lsignalapprox,i =−Ai

(
Ai
∑
k∈S

f2k
σ2
i−k

+ 2Bi
∑
k∈S

fk
σ2
i−k
− 2

∑
k∈S

fkdi−k
σ2
i−k

)

+B2
i

(
−
∑
k∈S

1

σ2
i−k

)
+ 2Bi

(∑
k∈S

di−k
σ2
i−k

)
−
∑
k∈S

d2i−k
σ(u− x)2

Similarly, the null hypothesis can be tackled the same way. This is the convo-

lution filter for the MLE {B} of the null hypothesis

Bi =

∑
k∈S

di−k
σ2
i−k∑

k∈S

1
σ2
i−k

This is the convolution based Log Likelihood Function of the null hypothesis.

Lnullapprox,i = B2
i

(
−
∑
k∈S

1

σ2
i−k

)
+ 2Bi

(∑
k∈S

di−k
σ2
i−k

)
−
∑
k∈S

d2i−k
σ2
i−k

The LLRatio is defined as

LRatioapprox,i = Lsignalapprox,i − L
null
approx,i

Thus Stage I is a Likelihood derived and convolution based computational filter

Patent Pending 46



that outputs the MLEs of both signal and null hypotheses and their LLRatio.

6.5 Derivation of the False Positive Rate

So far the user can threshold the Approximate LLRatio derived in Stage I to define

candidates for stage II iterative processing. However, the threshold needed to define

candidates shifts depending on the background conditions, see figure 11 on the

following page. This means the LLRatio is not a universal threshold parameter.

Additionally, the LLRatio is a cryptic parameter to set for the typical end user.

Converting LLRatio to a False Positive Rate solves both challenges, but to get

there, currently people invoke Wilks Theorem, in which under a list of conditions,

the LLRatio is asymptotically Chi-squared distributed. However, this distribution

is misleading since we violate the assumptions of Wilks Theorem, namely 1) small

sample size 2) parameters tested is not interior to the parameter set, in other words

having the null hypothesis a zero amplitude version of the signal hypothesis violates

assumption 2). This problem has been noted in astronomy by (Protassov et al.,

2002b).

We take advantage of numerical simulation and measure the distribution of

LLRatios where there is no signal by measuring the background LLRatio fluctua-

tions. We measure this at different Amplitude and Background levels for a typical

diffraction limited spot and fit a gamma PDF, figure 12 on the next page.

We plot the two parameters of the gamma PDF, the scale and the shape versus

amplitude and background and see that there is a linear relationship between the

scale and the intensity of the background levels.

Now we can predict the distribution of LLRatios given the background level,

thus this sets the False Positive Rate (FPR).

FPR(LRatioapprox,i) = 1− CDF (Gamma(0.5, 2.6Bi + 2))[LRatioapprox,i]
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Figure 11: Approximate LLRatio values at different (B)ackground values
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Figure 12: Gamma PDF fit to the histograms of background values at various
(A)mplitude and (B)ackground Values from the simulations defined above
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eter of the Gamma fits
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Figure 15: Linear
fit of the Scale vs
(B)ackground values

The FPR is now a universal threshold parameter that can be used in many

different conditions. With such a nice fit, this hints at a closed form derivation for

the theoretical distribution for the approximate LLRatio.

This gamma fitting can be done to the signal portion of the numerical simu-

lation, figure 17 on the following page, with excellent fits of the scale and shape

parameters versus the amplitude and background levels. We currently do not use

this information, but this predicted LLRatio distribution of the signal component

can predict the True Positive Rate, and possibly set the threshold for multi spot

fitting.

The FPR values are then −Log transformed in order for high intensities values

to map to likely positions of the pattern of interest. In other words, low FPR

indicates that that the LLRatio value observed at this position is likely free from

spruious background contributions. This output dataset is labeled as −Log(FPR).

Note that other statistical metrics, such as the FNR, etc. could also have been

used.
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Figure 16: -Log(FPR) as calculated by the gamma pdf fit at different (B)ackground
Values

A0 B0
0.50,2.07

0 5 10
0

0.2

0.4

0.6

0.8

1

A3 B0
1.76,15.74

0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

A6 B0
3.92,26.53

0 100 200 300
0

2

4

6

8

10 -3
A9 B0

4.96,45.17

200 400 600 800
0

1

2

3

4

10 -3
A12 B0

6.62,59.35

200 400 600 800 1000
0

0.5

1

1.5

2

2.5

10 -3
A15 B0

7.93,77.75

0 500 1000 1500
0

0.5

1

1.5

10 -3
A18 B0

8.52,103.13

500 1000 1500 2000
0

0.5

1

10 -3
A21 B0

9.16,129.79

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

10 -3
A24 B0

9.45,167.15

1000 2000 3000
0

2

4

6

8
10 -4

A27 B0
9.49,207.63

1000 2000 3000 4000
0

2

4

6

10 -4
A30 B0

10.22,234.42

1000 2000 3000 4000 5000
0

1

2

3

4

5
10 -4

A0 B6
0.48,18.68

0 20 40 60 80
0

0.02

0.04

0.06

0.08

0.1

A3 B6
0.67,51.92

0 100 200 300
0

0.01

0.02

0.03

A6 B6
1.69,63.25

0 200 400 600
0

2

4

6
10 -3

A9 B6
2.79,82.32

0 200 400 600 800
0

1

2

3

10 -3
A12 B6

4.36,93.78

0 500 1000 1500
0

0.5

1

1.5

2

2.5 10 -3
A15 B6

5.59,111.54

0 1000 2000
0

0.5

1

1.5

10 -3
A18 B6

6.64,134.84

500 1000 1500 2000
0

0.5

1

10 -3
A21 B6

6.85,171.96

1000 2000 3000
0

2

4

6

8

10 -4
A24 B6

7.68,203.35

1000 2000 3000
0

2

4

6

10 -4
A27 B6

7.97,247.59

1000 3000 5000
0

2

4

6
10 -4

A30 B6
9.28,264.45

1000 2000 3000 4000 5000
0

1

2

3

4

5
10 -4

A0 B12
0.48,32.50

0 100 200
0

0.02

0.04

0.06

A3 B12
0.57,71.54

0 200 400
0

0.005

0.01

0.015

0.02

A6 B12
1.08,104.26

0 200 400 600
0

2

4

6

10 -3
A9 B12

2.06,117.84

0 500 1000 1500
0

1

2

3
10 -3

A12 B12
3.02,137.76

0 500 1000 1500
0

0.5

1

1.5

2
10 -3

A15 B12
4.44,143.30

0 1000 2000
0

0.5

1

10 -3
A18 B12

5.31,165.31

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

10 -3
A21 B12

5.58,221.78

0 1000 2000 3000
0

2

4

6

8
10 -4

A24 B12
6.28,251.69

0 2000 4000
0

2

4

6

10 -4
A27 B12

7.53,263.90

1000 2000 3000 4000
0

2

4

6
10 -4

A30 B12
7.32,327.55

1000 2000 3000 4000 5000
0

1

2

3

4

10 -4

A0 B18
0.50,44.07

0 100 200
0

0.01

0.02

0.03

0.04

A3 B18
0.54,88.31

0 200 400
0

0.005

0.01

0.015

0.02

A6 B18
0.90,147.93

0 200 400 600 800
0

1

2

3

4

5

10 -3
A9 B18

1.57,158.75

0 500 1000
0

0.5

1

1.5

2

2.5

10 -3
A12 B18

2.47,165.66

0 1000 2000
0

0.5

1

1.5

10 -3
A15 B18

3.44,187.33

0 1000 2000
0

0.5

1

10 -3
A18 B18

4.06,220.41

0 1000 2000
0

2

4

6

8

10 -4
A21 B18

5.17,236.35

0 1000 2000 3000
0

2

4

6

8
10 -4

A24 B18
5.76,272.88

0 2000 4000
0

2

4

6
10 -4

A27 B18
6.50,300.53

1000 3000 5000
0

1

2

3

4

5
10 -4

A30 B18
7.83,310.82

2000 4000 6000
0

1

2

3

4

10 -4

A0 B24
0.49,62.86

0 200 400 600
0

0.005

0.01

0.015

0.02

0.025

A3 B24
0.52,110.96

0 200 400
0

0.005

0.01

0.015

A6 B24
0.71,192.26

0 500 1000
0

2

4

6
10 -3

A9 B24
1.23,202.57

0 500 1000
0

1

2

3
10 -3

A12 B24
2.05,206.04

0 500 1000 1500
0

0.5

1

1.5

10 -3
A15 B24

2.80,232.13

0 1000 2000
0

0.5

1

10 -3
A18 B24

3.87,235.43

0 1000 2000 3000
0

2

4

6

8

10 -4
A21 B24

4.51,267.73

0 2000 4000 6000
0

2

4

6

10 -4
A24 B24

5.19,302.48

0 2000 4000 6000
0

2

4

6

10 -4
A27 B24

6.50,311.72

0 2000 4000
0

1

2

3

4

5

10 -4
A30 B24

6.60,374.06

2000 4000 6000
0

1

2

3

4
10 -4

Figure 17: Gamma PDF fit to the histograms of signal values at various
(A)mplitude and (B)ackground Values

Patent Pending 50



sig scale

0 5 10 15 20 25 30
A

0

5

10

15

20

25

B

50

100

150

200

250

300

350

Figure 18: Scale parameter of the
Gamma fits to the signal histograms
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Figure 19: Shape parameter of the
Gamma fits to the signal histograms

6.6 Derivation of the Multi Spectral Multi Emitter Stage I

For multi spectral spot detection, the signal to be detected is spread over the multi

spectral data set, appropriately weighed by the spectral bleed thru coefficients6.

To motivate the derivation, we will first do a two color case, green and red, which

results in having to handle two data sets with two corresponding diffraction limited

spots.

d =
{
~dG, ~dR

}
f =

{
~fG, ~fR

}
6All fluorescent spot detection software surveyed so far detect spots independently for

each spectral data set, then take the intersection of each detected set. This results in a
loss of sensitivity and selectivity
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Figure 20: Two color intensity model, λ’s represent the acquisition protocol for that
color, β’s represent the spectral bleed through, d’s represent the dataset captured
for that acquisition protocol

The two spectra signal hypothesis for two spectral data sets {~dG, ~dR}:

two signal hypothesis =
{

ΛG,ΛR

}
=
{
β11λ1 + β21λ2, β12λ1 + β22λ2

}
=
{
β11(AGfG,i( ~pos) +BG) + β21(ARfR,i( ~pos) +BR),

β12(AGfG,i( ~pos) +BG) + β22(ARfR,i( ~pos) +BR)
}

The Log Likelihood Function sums over the two spectral data sets, appropriately

weighted:

L(two signal hypothesis|d)PoissPoiss =

L(β11(AGfG,i( ~pos) +BG) + β21(ARfR,i( ~pos) +BR)|~dG)PoissPoiss

+ L(β12(AGfG,i( ~pos) +BG) + β22(ARfR,i( ~pos) +BR)|~dR)PoissPoiss
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Similar to stage I derivation above, we solve for the linear parameters {A,B}.

0 =
∂LPoissPoiss

∂AG

0 =
∂LPoissPoiss

∂AR

0 =
∂LPoissPoiss

∂BG

0 =
∂LPoissPoiss

∂BR

With a a large amount of algebraic manipulation, this system of equations is

equivalent to a matrix formulation with a general form of

βTi,jMβi,j = βTi,j
~b

with M in block diagonal form and βi,j in block diagonal form (after some permu-

tations). This matrix form of these equations provides the structure for the general

n-color solution.

The βTi,jMβi,j = βTi,j
~b form of the two color case is shown below, with the βTi,j

terms canceled out7.

7This conversion from algebra to matrix form is validated for a 2 color case using
Mathematica in the document 2ColorMatrixFactor.nb.
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Canceling out the spectral bleed thru components we see the problem of

multi spectral spot detection is composed of two steps.
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The First Step is to solve for the MLE of each channels {A,B} without

regard to the bleed thru coefficients since M is in block diagonal form, with

each block equivalent to the stage I solution above.
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= RHT (Right Hand Terms)
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Then the second step is to apply the inverse of the bleed thru coefficient to

each respective {A,B}, which is equivalent to linear unmixing the As and

then the Bs.



β11 β21 0 0

β12 β22 0 0

0 0 β11 β21

0 0 β12 β22





AG,i

AR,i

BG,i

BR,i


= R̂HT



AG,i

AR,i

BG,i

BR,i


=



β11 β21 0 0

β12 β22 0 0

0 0 β11 β21

0 0 β12 β22



−1

R̂HT

In summary, to solve for the approximate MLE of multi spectral {A,B}, 1)

treat eat spectral dataset independently, and apply the convolution filters

of stage I with its corresponding diffraction limited PSF. 2) Linear Unmix

the A’s and B’s with the spectral bleed thru coefficients.

The approximate LLRatio for multi spectral data sets is found by notic-

ing that the multi spectral signal hypothesis can be effectively a single signal

Patent Pending 57



λ1

d1

λ2

d2

β11
β22β12

β21
λ3

d3

β33β32

β31

β13 β23

Figure 21: Three color intensity model, λ’s represent the acquisition protocol

for that color, β’s represent the spectral bleed through, d’s represent the

dataset captured for that acquisition protocol

hypothesis for each channel.

L(two signal hypothesis|d)PoissPoiss =

L(β11(AGfG,i( ~pos) +BG) + β21(ARfR,i( ~pos) +BR)|~dG)PoissPoiss

+ L(β12(AGfG,i( ~pos) +BG) + β22(ARfR,i( ~pos) +BR)|~dR)PoissPoiss

= L(ÂGfG,i( ~pos) + B̂G|~dG)PoissPoiss

+ L(ÂRfR,i( ~pos) + R̂G|~dR)PoissPoiss

The {Â, B̂} are the As and Bs before linear unmixing was applied. Each

term, e.g. L(ÂGfG,i( ~pos) + B̂G|~dG)PoissPoiss is the Log Likelihood Ratio of

that spectral dataset without the unmixing applied. So the total LLRatio for

a multi spectral dataset is equal to applying the single spectra LLRatio filters

defined above to each spectra then summing across the spectral datasets.
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Figure 22: Scale parame-
ter of the Gamma fits for
2 spectra LLRatio
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Figure 23: Shape param-
eter of the Gamma fits
for 2 spectra LLRatio
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Figure 24: Linear
fit of the Scale vs
(B)ackground values

6.7 Calculating the Multi Spectral Multi Emitter FPR

Similar to the single channel FPR fits above, The two channel LLRatio

histograms were fit to a gamma PDF to calculate the two channel FPR.

The only thing that changes is the scale parameter changes from 0.5 to 1,

which may reflect the summation of two LLRatios.

6.8 Candidate Selection

After Stage I, the input dataset is processed to produce an LLRatio (LLR) or

−Log(FPR) dataset, in which the intensities in either output relate to the

fold probability increase the pattern of interest exists at a given position.

The user may threshold at a given value, thus selecting a subset of the

dataset as candidation regions to be further examined.

6.9 Derivation of Stage II

Stage II is a fully detailed MLE solver, thus it is iterative in nature and

requires initial parameters θ that depend on the given intensity hypothe-

sis. Since the intensity hypothesis can include multi spot models, stage II
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can jointly solve for multi spot models8. For robust convergence at low

SNR regimes, stage II first begins with Gradient Ascent then finishes with

Newton Raphson, which is spiritually similar to the Levenberg-Marquardt

algorithm. This requires that the Gradient and Hessian (curvature) of the

Log Likelihood with respect the parameters of the hypothesis be defined.

To motivate the Stage II algorithm, let us examine a two spectra case.

L(two signal hypothesis|d) =

L(β11λG(AGfG,i( ~posG) +BG) + β21λR(ARfR,i( ~posR) +BR)|~dG)

+ L(β12λG(AGfG,i( ~posG) +BG) + β22λR(ARfR,i( ~posR) +BR)|~dR)

∂L
∂θl

= βi
∑ ∂L(~dG)

∂ΛG

∂ΛG
∂θl

+ βj
∑ ∂L(~dR)

∂ΛR

∂ΛR
∂θl

The gradient of the Log Likelihood w.r.t. θl is composed of a weighted

sum between the gradients found in both channels, and each gradient com-

ponent is a dot product between ∂L
∂λ and ∂λ

∂θ . ∂L
∂λ is essentially the weighted

error (weighed by the details of the noise model) between the data and the

intensity hypothesis, and ∂λ
∂θ is how the intensity hypothesis changes w.r.t

θl.

8So far all programs surveyed do multi spot fitting by first fitting a spot, then sub-
tracting the fit. This introduces biases as the fit is distorted by the presence of another
spot. For multi spectral spot fitting, all programs surveyed so far fit a spot independently
for each spectral dataset.
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∂2L
∂θl∂θm

=βi
∑(∂2L(~dG)

∂Λ2
G

∂ΛG
∂θm

∂ΛG
∂θl

+
∂L(~dG)

∂ΛG

∂2ΛG
∂θl∂θm

)
+ βj

∑(∂2L(~dR)

∂Λ2
R

∂ΛR
∂θm

∂ΛR
∂θl

+
∂L(~dR)

∂ΛR

∂2ΛR
∂θl∂θm

)

Similarly, the Hessian of the Log Likelihood is composed of a weighted

sum between the Hessians found in both channels.

Therefore information from both channels are being used to define the

Gradient and Hessian. This makes sense as information pertaining to the

pattern/spot is also spread across both channels when there is spectral bleed

thru.

For Stage II, this is the Gradient update to θ

~θnext = ~θprev + k
~∂L
∂θ

∣∣∣
prev

This is the Newton Raphson update to θ.

~θnext = ~θprev −
[ ∂2L
∂θl∂θm

]−1
~θprev
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6.10 Derivation for the recursive Multi Spectral Multi Emit-

ter Stage II

Given a candidate region, multi spectral multi emitter fitting is accomplished

in Stage II by recursively fitting intensity models that contain zero or more

patterns of interest. To motivate the general structure of this portion of the

algorithm, let us examine a two spectra case for fluorescent spot detection.

two signal hypothesis =
{

ΛG,ΛR

}
=
{
β11λ1 + β21λ2, β12λ1 + β22λ2

}

Given a two signal hypothesis, the task is to assume different intensity

hypotheses for each spectral channel {λ1, λ2}. e.g. λ1 describes the intensity

hypothesis in spectral channel 1, and can consists of background only to one

or more spots in that channel. λ2 is similar. The criterion of selecting a

given intensity hypothesis, no matter how complex, is via one metric, the

LLR of the given signal hypothesis fit over that of the null only.

A candidate region is processed as thus:

1. Fit a background only model: in which {λ1, λ2} equals a channel spe-

cific constant. This is the null intensity hypothesis of uniform back-

ground for each channel. Within the given candidate region that is

located in the corresponding Stage I MLE outputs, there exists a par-

ticular maximum value of the LLR output and its corresponding po-
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sition. The initial background parameter estimates are taken from

this position of the Stage I MLE, in the B component of each spec-

tral channel. Iterative MLE with a fully detailed noise model is then

applied to this initial condition, with the goodness of fit given by the

Log Likelihood of this intensity hypothesis (LL0) with 0 signifying a

0 spot assumption.

2. Fitting a spot: i) with the chosen initial position dictated by the posi-

tion of the maximum LLR (from stage I) in that candidate region. ii)

with the chosen spectral component dictated by the channel contain-

ing the largest MLE stage I amplitude iii) with the initial amplitude

of the spot set to this amplitude. Iterative MLE with a fully detailed

noise model is then applied to this initial condition, with the good-

ness of fit given by the LL1, with 1 signifying the 1 spot assumption.

the MLR of this intensity hypothesis over that of background only is

calculated as the MLR1, with 1 signifying a 1 spot hypothesis.

3. Fitting the next spot: The hypothetical intensities that correspond to

the MLE fit from the previous step is subtracted from the original data.

This leaves a residual error that may or may not contain additional

spots. Since this residual is also subject to similar noise as before

the subtraction, Stage I is applied to this residual so as to optimally

determine the position and the amplitude of the next spot to be fit.

The steps outline in 2) are then applied to initialize the next spot to

be fit. the MLR of this intensity hypothesis over that of background

only is calculated as the MLR2, with 2 signifying a 2 spot hypothesis.
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4. Repeat 3) until a user defined stop condition, e.g. number of spots to

be fit, or a MLRn threshold reached

6.11 Deriving the Standard Error

The standard error in the parameter estimates given by MLE is related to

the Expected Fisher Information Matrix, which in turn defines the Cramer-

Rao lower bound on this error (Rao, 1945; Cramer, 1946).

The Fisher Information Matrix is defined as:

I(θ) = −E
[

∂2L
∂θl∂θm

]
= E

[
∂L
∂θl

∂L
∂θm

]

To motivate a general derivation of the Fisher Information for the 3D

multi spectral case, let us examine a two spectra case. The Fisher Informa-

tion is additive across the two spectral measurements since the LogLikelihoods

are additive across these two measurements.

I(θ) = −E

[
∂2L( ~dG)

∂θl∂θm

]
− E

[
∂2L( ~dR)

∂θl∂θm

]

Given the Poisson approximated form of the L, this Expectation simpli-

fies to

I(θ) =
∑
i

1

ΛG

∂ΛG
∂θl

∂ΛG
∂θm

+
∑
i

1

ΛR

∂ΛR
∂θl

∂ΛR
∂θm

with the Λ’s defining the intensity hypothesis for each channel, thus they
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account for the spectral bleedthru components.

{
ΛG,ΛR

}
=
{
β11λG + β21λR, β12λG + β22λR

}
=
{
β11(AGfG,i( ~pos) +BG) + β21(ARfR,i( ~pos) +BR),

β12(AGfG,i( ~pos) +BG) + β22(ARfR,i( ~pos) +BR)
}

Geometrically, the Fisher Information for our situation is defined as the

dot product between the gradients of Λ and 1
Λ and can be evaluated at the

MLE.

Cov(θ) = I(θ)−1

With the standard error of θ the square root of the diagonal of the

covariance matrix.

In general, multi spectral measurements are the sum of the Fisher Infor-

mation for each respective channel. Multi emitter estimates are accounted

for in this calculation by modifying the λs for multi emitter versions.
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Figure 25: Schematic of the Two Stage Likelihood Pipeline (TSLP) for detecting and
localizing a 3D Point Spread Function (PSF) in noisy datasets generated by fluorescent
microscopy.
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(Continued) 3D datasets are presented as 2D Max Z-Intensity Projections (MZP)
and image contrast is quantitatively presented. Stage I is based on an approxi-
mate Likelihood model, whereas Stage II is fully detailed. For this example, the
ground truth consists of A) Two 3D PSFs with equal intensities embedded in B)
Background composed of an intensity gradient in 3D. C) An example noisy dataset
sampled from the summed ground truths using an sCMOS camera model. H) Stage
I is a computationally efficient filtering step, in which every patch of voxels in the
noisy dataset, represented as a sliding red cube, have two operations carried out:
D) First operation is to optimally fit the shape of the PSF to the intensities found
in a patch by finding the best combination of the PSFs intensity (MLE As) and
background level (MLE Bs), E) Second operation is to optimally fit the background
component without the PSF (MLE Bi) to the intensities found in the same patch;
F) Then, a comparison between the goodness of fit between the two operations is
defined by the Log Likelihood Ratio (LLRatio). G) The False Positive Rate (FPR)
is calculated from its corresponding LLRatio and Bs. I) The LLRatio or the FPR is
thresholded to define the candidates. J) For each candidate, the initial conditions
for Stage II are extracted from its corresponding MLE As, Bs,and Bi values. Joint
multi spot fitting occurs in Stage II. Filtered datasets such as MLE As, LLRatio,
and FPR can be used for denoised quantitative visualization.
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7 3D Single Molecule Imaging in a Living System

7.1 MreB dynamics in B. subtilus

The difficulty in imaging 3D single molecule dynamics in living systems is

compounded by several factors. One limitation is that the single molecule

is attached to a single fluor, and this one fluor can only emit very little

photons. The performance of any fluor is dominated by its photostability

and its quantum yield (QY) with QY defined as the conversion efficiency

between the number of photons emitted versus absorbed. Even with modern

fluors that have been optimized to maximize QY and photostability, e.g.

Janelia Fluors (Grimm et al., 2015), the rate limiting constraint is that

there is only a single fluor (Dickson et al., 1997).

This problem of limited photon output is exacerbated by the fact that in

living systems there is non-specific fluorescent background that is typically

not uniformly distributed. This non-specific background could be from the

specimen itself, e.g auto-fluorescence, or from non-specific labeling or spec-

tral crosstalk from other fluorescent labels.

Since the TSLP algorithm is fundamentally a sensitive 3D-fluorescent

spot detection and localization approach, optimized for low signal and high

background conditions, I imagined that it could also facilitate in-vivo 3D

single molecule measurements. In collaboration with the Garner Lab, we

used this approach to image 3D single molecule dynamics of a prokaryotic

cytoskeletal protein (MreB) that is essential for organizing non-spherical cell

morphology. Up to now, taking these measurements has not been possible,

even when deploying state-of-the-art 3D spot detection optics and algo-
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rithms, i.e. Astigmatic or Double Helix PSF (Huang et al., 2008; Pavani

et al., 2009).

Currently, these state-of-the-art 3D single molecule measurements are

accomplished using engineered Point Spread Functions (PSFs). The PSF is

how the optical apparatus manifest the image of small objects around the

length scale of the diffraction limit, and PSF engineering modifies the native

PSF to encode 3D information given a 2D measurement. Thus, 3D infor-

mation is mapped to a distorted 2D PSF, with a systematic relationship

between the type of distortion and the z position of that small object. Mea-

surements of that small object are then taken with 2D datasets, in which

the 3D position of that object can be inferred from the distortion. There

are two dominant approaches currently in use, the Astigmatic and the Dou-

ble Helix PSF approach. The reason for using engineering PSFs is that if

measuring 2D datasets is already costly in terms of excitation energy, then

taking 3D datasets, such as from the acquisition of multiple focal planes,

will be prohibitive. This is a true sentiment if the TSLP algorithm did not

exist.

The problem with PSF engineering is the loss in sensitivity of the mi-

croscope via two modes. The first mode is the loss in photon transmission

efficiency of the imaging system since engineering the PSF requires the inser-

tion of additional optical components in the emission pathway. The second

mode is the loss in peak signal intensity of the distorted PSF. The native

PSF resembles a 3D Gaussian in intensity, with a concentrated peak at the

center, closely corresponding to the position of the imaged fluor. In contrast,

all engineered PSFs distort this 3D Gaussian shape to encode z information.
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Therefore, the concentrated peak is significantly lowered and distributed to

the lateral areas. At low SNRs, the spreading of the peak signal results in

loss of information to the read noise floor.

To image 3D single molecule trajectories of MreB in B. subtilis, we in-

cubated MreB-Halo with J549 Halo fluor at pM concentrations9. Growth

conditions was set to log phase. Cells were placed on a glass bottom dish

with an agarose pad on top. Temperature was held at 30°C throughout the

entire procedure.

An epifluorescent microscope with a 30°C chamber coupled to LED illu-

mination was used. Mechanical z-stacks were taken, in which a 3D dataset

is acquired by sequentially imaging different focal planes at different z posi-

tions.

Given just one initial measurement, unanticipated MreB dynamics were

observed, including complex 3D trajectories that were missed by 2D meth-

ods and fixed observations. The next steps are to link this microscopic

complexity to macroscopic morphology.

9These MreB experiments were done in collaboration with Yingjie Sun from the Garner
Lab
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Figure 26: Imaging of a single molecule of MreB as it moves around the circum-
ference of a cell of the bacterium B. subtilis (defined by phase image). Images
collected every 5 sec for 2 min. Positions over time, as defined by full two-stage
Likelihood Pipeline, coded from blue to yellow.
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8 Dynamical Localization of a Thylakoid Mem-

brane Binding Protein is Required for Acqui-

sition of Photosynthetic Competency

8.1 Abstract

Vipp1 is highly conserved and essential for photosynthesis, but its function

is unclear as it does not participate directly in light-dependent reactions. We

analyzed Vipp1 localization in live cyanobacterial cells and show that Vipp1

is highly dynamic, continuously exchanging between a diffuse fraction that

is uniformly distributed throughout the cell and a punctate fraction that

is concentrated at high curvature regions of the thylakoid located at the

cell periphery. Experimentally perturbing the spatial distribution of Vipp1

by relocalizing it to the nucleoid causes a severe growth defect during the

transition from non-photosynthetic (Dark) to photosynthetic (light) growth.

However, the same perturbation of Vipp1 in dark alone or light alone growth

conditions causes no growth or thylakoid morphology defects. We propose

that the punctuated dynamics of Vipp1 at the cell periphery in regions of

high thylakoid curvature enable acquisition of photosynthetic competency,

perhaps by facilitating biogenesis of photosynthetic complexes involved in

light-dependent reactions of photosynthesis.

72



8.2 Introduction

Oxygenic photosynthesis is a metabolic process that must be dynamically

modulated to accommodate varying light conditions and cellular needs (Eber-

hard et al., 2008). If extraneous light energy is not productively engaged

in a timely manner, phototoxic damage can arise and lead to cellular death

(Apel and Hirt, 2004). These light-dependent reactions are catalyzed by

photosynthetic protein complexes that are assembled in a specialized mem-

brane system which forms the thylakoid compartment in both chloroplasts

and cyanobacterial cells (Rast et al., 2015). Although much is known about

the structure and function of individual photosynthetic complexes, it is still

unclear how the thylakoid membrane system is formed or maintained, and

how the photosynthetic complexes are assembled in the thylakoid membrane

(Pribil et al., 2014; Rast et al., 2015). These two issues are interrelated thy-

lakoid structure depends on the presence of photosynthetic complexes (Pribil

et al., 2014; Zhang et al., 2014) and assembly of photosynthetic complexes

depends on the presence of thylakoid membrane (Yang et al., 2015; Nickelsen

and Rengstl, 2013). Thus, experimentally uncoupling the factors required

for thylakoid membrane formation from those required for photosynthesis is

difficult.

Vipp1 (Vesicle-inducing protein in plastids 1), a conserved protein in

plants, algae and cyanobacteria, has been proposed to play a role in thy-

lakoid formation (Vothknecht et al., 2012; Heidrich et al., 2017; Kroll et al.,

2001). Vipp1 is not known to participate in photosynthetic reactions and

its deletion in plants causes loss of photosynthesis and thylakoid organiza-
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tion, as well as loss of viability (Kroll et al., 2001; Westphal et al., 2001).

The biophysical properties of Vipp1 are consistent with a membrane-related

function as in vitro studies of Vipp1 revealed that it is a soluble protein

with high affinity for lipid components (McDonald et al., 2015; Otters et al.,

2013). On membrane surfaces prepared in vitro, recombinant Vipp1 forms

higher order oligomers and, under certain conditions, mediates vesicle fu-

sion (Hennig et al., 2015). Thus, Vipp1 may facilitate thylakoid membrane

formation, with one recent model proposing that oligomeric Vipp1 is an in-

termembrane lipid transporter, possibly transporting lipids from the plasma

(or chloroplast inner) membrane to the thylakoid membrane (Heidrich et al.,

2017).

However, not all experiments are consistent with the above hypothesis.

When expression of Vipp1 is reduced to a low level in cyanobacteria (Gao

and Xu, 2009), photosynthetic output was severely affected but thylakoid

morphology remained intact, suggesting that Vipp1 plays a role in photosyn-

thesis in addition to, or instead of, being required for thylakoid formation.

This observation, combined with the fact that deletion of a core photosyn-

thetic complex induces a thylakoid morphology defect (Zhang et al., 2014),

raises the possibility that Vipp1 may not directly facilitate thylakoid forma-

tion but instead its function may be related to photosynthesis. If this is true,

knockdown or deletions of Vipp1 could generate a thylakoid morphology de-

fect as a secondary consequence. Given this pleiotropy of vipp1 phenotypes

and the contrasting conclusions reached by other studies (Aseeva et al., 2007;

Fuhrmann et al., 2009b), separating the effects on thylakoid membrane for-

mation from the effects on photosynthetic complexes formation is thought
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to be hard, and potentially impossible (Heidrich et al., 2017).

Previous localization studies found that fluorescently labeled Vipp1 man-

ifest as both diffuse and/or concentrated signals of various shapes that are

largely immobile (Nordhues et al., 2012; Zhang et al., 2012; Bryan et al.,

2014). In isolated chloroplasts exposed to low osmolarity stress conditions,

the concentrated form of Vipp1 becomes more mobile which was suggested to

be important for membrane protection (Zhang et al., 2012). In cyanobacteria

exposed to damaging high light stress conditions, the diffuse form of Vipp1

was found to convert into long-lived peripheral foci at the plasma membrane

region which was thought to be important for light-induced stress protection

(Bryan et al., 2014). However, native dynamics of Vipp1 in normal growing

conditions has not been observed or fully examined. Furthermore, without

a perturbation that only targets Vipp1 localization, it is still unclear the

importance of this dimension in the function of Vipp1.

In the present study we show that in normal living cells (non-stressful

conditions), fluorescently labeled Vipp1 is highly dynamic, continuously ex-

changing between two fractions – a punctate fraction at the cell periphery

that is concentrated at high curvature regions of the thylakoid, and a diffuse

fraction that is uniformly distributed in the cytoplasm. Further, by rapidly

perturbing the spatial distribution of Vipp1 in living cells, we show that

native Vipp1 localization is not required for thylakoid membrane formation,

but is essential during the transition from non-photosynthetic to photosyn-

thetic metabolism. We propose that the punctate fraction of Vipp1 is the

cytological manifestation of the oligomeric and membrane-bound form of

Vipp1 whose role is to enable acquisition of photosynthetic competence. We
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hypothesize that Vipp1 facilitates the functional assembly of photosynthetic

complexes.
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8.3 Results

8.3.1 Vipp1 forms transient puncta at regions of high thylakoid

curvature at the cell periphery

To gain insight into the cellular role of Vipp1 we sought to investigate its lo-

calization and and dynamics in live cells. In low light growing conditions (8

µE light intensity) fluorescently tagged Vipp1 was previously found to local-

ize predominantly as a diffuse signal in the cytoplasm, which upon exposure

to stress via high light (600 µE light intensity) induces Vipp1 mobilization to

the cell periphery where they form large puncta (Bryan et al., 2014). Since

both of these light conditions are suboptimal for growth (Kopecna et al.,

2012), we sought to investigate Vipp1 localization and dynamics in optimal

log-growth conditions at moderate light intensity of 100 µE (see Methods).

To fluorescently label endogenous Vipp1 in Synechocystis sp. PCC6803

cells we integrated a Vipp1-mGFPmut3 fusion construct (hereafter Vipp1-

GFP) at the native vipp1 locus via homologous recombination. Both the

expression level of Vipp1-GFP protein and the bulk growth rate of the strain

harboring the construct were similar to that of the wild type parental strain

(Fig. 27A-B), as was reported previously (Bryan et al., 2014).

In actively growing cells Vipp1-GFP is present in two fractions: as flu-

orescent diffraction limited spots (hereafter puncta), and as a diffuse signal

in the cytoplasm (Fig. 28A and Fig. 27C). Since Vipp1 puncta form when

Vipp1 is fused to a known monomeric GFP variant that is least prone to in-

duce multimerization of various bacterial targets (Landgraf et al., 2012) and

also when fused to the SNAP-tag (Keppler et al., 2003) (Fig. 27D), which
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(Continued) A) Immunodetection of Vipp1 in cell lysates obtained from wild type,
vipp1-gfp and vipp1-snap cells. Western blotting was performed as previously de-
scribed (Gutu and OShea, 2013). Anti-Vipp1 rabbit polyclonal antibodies raised
against Vipp1 from Chlamydomonas reinhardtii (Agrisera AS06145) were used.
Left are the diagrams of the Vipp1-tagged DNA constructs used in this study (see
Methods). B) Growth of wild type, vipp1-gfp and vipp1-snap strains in liquid cul-
ture bubbled with a mix of air and 1% CO2 at 100 µE intensity light. C) Merged
Vipp1 (green) and thylakoid (magenta) images of Maximum Z-Intensity Projec-
tions of a mix of vipp1-gfp and wild type cells (arrows) showing the difference in
cytosolic signal intensity (i.e. diffuse fraction of Vipp1) between the two cell types.
On the right, an illustration of the filtering procedure (see Methods) used to en-
hance visualization of puncta and thylakoid features is shown. Scale Bar = 2 µm.
D) Images of Maximum Z-Intensity Projections (raw epifluorescence) of wild type
and vipp1-snap cells labeled with 5 µM SNAP-Cell 430 substrate (NEB S9109S)
(after 20 min incubation in growth conditions) showing that Vipp1 puncta form in-
dependently of the GFP-tag. To facilitate comparison in signal intensity, the same
grayscale contrast was applied to all four images. Scale bar = 2 µm. E) Intensities
and distances of Vipp1 puncta relative to the cell edge. For any Vipp1 puncta
found at or near the mid-Z plane of a cell, the intensity and the Euclidian distance
(d) between its xy coordinates and the nearest point on the cell boundary edge
obtained from segmentation in the brightfield channel was extracted and plotted.
The <r>on the x-axis is the average cell radii of the 117 analyzed cells.
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is not known to induce artificial clustering, we conclude that the observed

Vipp1 puncta formation and diffuse signal reflect native spatial localization.

Next we investigated the distribution and localization of Vipp1 puncta

in cells growing on the microscope stage (see Methods). We find that the

number of Vipp1 puncta per cell is well described by a Poisson distribution

with a mean and variance of 1.36 (Fig. 28B), suggesting that the formation

of each punctum is an independent event. By measuring the positioning of

each punctum relative to the cell boundaries we find that most Vipp1 puncta

localizes near the cell periphery (Fig. 28C and Fig. 27E). At this region, the

thylakoids are highly abundant (Fig. 28C), as estimated by the fluorescence

emitted by the endogenous photosynthetic proteins in the far-red portion of

the visible spectrum (Vermaas et al., 2008).

Within the thylakoids, we observed that Vipp1 puncta tended to localize

to regions where the thylakoid signal is low. These low thylakoid signal

regions correspond to the edges of the thylakoid stacks and are known as

zones of high thylakoid membrane curvature (Heinz et al., 2016). To confirm

localization at sites of high thylakoid curvature, we asked whether Vipp1

puncta co-localize with CurT, a membrane protein enriched at these regions

(Heinz et al., 2016). For this, we imaged at high resolution the simultaneous

localization of Vipp1, CurT, and the thylakoid signal in living cells (see

Methods). We find that in any given cell, Vipp1 puncta localize at the

edge of thylakoid stacks where CurT is concentrated (Fig. 28 C-E). To

quantify the relationship between Vipp1 puncta and CurT, we extracted

and compared the intensity profiles of 76 arc lines that are each centered

on a Vipp1 punctum found at the mid cell plane (Fig. 29A). We found
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(Continued) C) Analysis of the positioning of Vipp1 puncta relative to the cell ra-
dius. For each Vipp1 puncta identified at a given mid-cell plane (see inset diagram
for an illustration), the corresponding distances to the cell center (labeled as C) and
to the closest cell edge (labeled as E), as defined by brightfield segmentation masks,
were obtained. The sum of the two distances defined the radius (blue dashed line)
that was scaled from 0 to 1 on the x-axis. On the left y-axis, the mean of the thy-
lakoid signal intensity along the line profiles (i.e. radii) connecting the cell centers,
the Vipp1 puncta and the closest cell edge points is shown. The right y-axis shows
the range of intensities (sizes) of all Vipp1 puncta analyzed. To limit the variability
in size coming from dividing cells only cells whose area shape met an eccentricity
value of 0.6 or less were analyzed.D) 3D rendering of a super-resolution image of
a live cell of Synechocystis PCC6803 expressing Vipp1-GFP (green) and CurT-
mTurquoise2 (blue). Thylakoids (red) are distributed at the cell periphery which
by fluorescence microscopy show up as peripheral sheets. Vipp1 puncta are local-
ized at the edge of thylakoid enrichments, at the same regions where the thylakoid
membrane protein CurT is concentrated. Images were obtained with a laser scan-
ning confocal system equipped with an Airyscan detector (Zeiss LSM880) which
affords increased spatial resolution. Bar = 1 µm. For a full rendering of the same
cell) Representative live-cell confocal fluorescence image of a cell expressing both
Vipp1-GFP and CurT-CFP obtained by Airyscan imaging. As diagramed on the
left, the rows show Vipp1, thylakoid and CurT channels at the top, middle and the
bottom of a cell. Two Vipp1 puncta are shown at mid-cell slice (orange arrowheads)
which co-localize with CurT enrichments and with gaps in the thylakoid signal. A
profile line (dashed in light grey) running circumferentially through the peripheral
thylakoids was used to extract the intensities of Vipp1, CurT and thylakoid fluo-
rescence and plotted in panel F. Bar = 1 µm. F) Intensities of the Vipp1, CurT
and thylakoid signals along the mid-cell circumferential curved line profile traced
in panel E. Raw signal intensities were normalized from 0 (minimum) to 1 (max-
imum) on the y-axis. Orange arrowheads indicate colocalization of Vipp1 puncta
with CurT, which is enriched at regions of high thylakoid signal changes (edges).
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that in general, Vipp1 signal positively correlated with the CurT signal and

negatively with the thylakoid signal (Fig. 29A). We also used automatic

3D object-based colocalization analysis to evaluate the spatial relationship

between Vipp1 puncta with CurT enrichments and find that the majority

of puncta overlap with the volume of CurT objects (Fig. 29B).

To better localize Vipp1 at the cell periphery and determine its relation

to the thylakoid membranes we used immunoelectron microscopy. For im-

munodetection we used anti-GFP and gold-conjugated secondary antibodies

to stain ultrasections (60 nm thickness) of freeze-substituted cells obtained

from vipp1-gfp and wild type strains. We find that immunogold signals spe-

cific for Vipp1-GFP were enriched near the edges of thylakoids (high cur-

vature regions which appear as tips in 2D representations) which typically

converge near the plasma membrane (Fig. 30). Even though the antibod-

ies can only bind the antigens from the surface of ultrasections, thus only

probing a sparse subset of Vipp1-GFP, occasional clusters of 2-3 nanogold

signals were observed near the thylakoid edges (Fig. 30C. This distribution

is consistent with the idea that a fluorescent Vipp1 punctum consists of

multiple Vipp1-GFP molecules closely juxtaposed in space. Based on these

fluorescent and electron microscopy observations we conclude that the re-

gions of high thylakoid membrane curvature are the sites of Vipp1 puncta

localization.

At a given snapshot in time, many cells appear to contain no Vipp1

puncta, raising the question of whether only a fraction of cells form Vipp1

puncta or if Vipp1 puncta are relatively short lived. We used time-lapse

fluorescent microscopy to investigate Vipp1 dynamics in cells growing pho-
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Figure 29: Vipp1 puncta colocalize with CurT enrichments at thylakoid edges.
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(Continued) A) Top - examples of circumferential mid-cell intensity profiles in the
Vipp1, CurT and thylakoid channels. The arc lines were manually traced parallel
to the cell boundaries, through any given Vipp1 puncta situated at mid-cell (simi-
larly to Figure 1E-F). 3D stacks of live-cells were imaged in the Vipp1, CurT and
thylakoid channels on a confocal system equipped with the Airyscan detector (Zeiss
LSM 880) which enhances the spatial resolution by a factor of 1.7x (Korobchevskaya
et al., 2017). For any given Vipp1 puncta identified as a peak in the profile, the
intensity of the CurT and thylakoid signals were also collected for a 0.4 µm arc
segment on either side of the Vipp1 peak. 76 Vipp1 puncta (identified as peaks in
2D profiles - see Methods) obtained from 38 independent cell profiles were analysed.
Bottom - Pearsons linear correlation between Vipp1 and CurT, and Vipp1 and the
thylakoid signals were calculated for each of the 76 datasets (plotted as bar graph
below) revealing mostly a positive relationship between Vipp1 and CurT and a neg-
ative one between Vipp1 and thylakoid signals (aggregated p-values: 1.22*10-6 and
5.57x10-62 respectively, null hypothesis tested being there is no relationship be-
tween the observed measurements). The correlation values of the examples shown
on top are labeled with lowercase a, b and c above their corresponding bars. The
weaker correlation values are obtained when the long axes of the thylakoid edges
are quasi-parallel to the intensity profiles. B) Object-based colocalization analysis
of Vipp1 puncta with the CurT enrichments. Left - example of Airyscan merged
images of Vipp1 (green) and CurT (blue) channels and the corresponding segmen-
tation masks obtained by iterative thresholding of the 3D stacks as implemented in
the 3D ImageJ Suite plugin (Ollion et al., 2013). Both mid Z-slice and Maximum
Intensity Projection along the Z axis are shown. Right - histogram of the distance
distribution of each Vipp1 puncta to its most adjacent CurT object (Vipp1 puncta
centers to CurT object edges). 267 Vipp1 puncta obtained from an image stack
containing 70 cells were analysed. Note that this analysis includes all distances
regardless if the Vipp1 centers are inside or outside of the CurT objects . Majority
of the distances between Vipp1 puncta and CurT edges fall under the optical res-
olution resolution limit afforded by the Airyscan confocal imaging system (140 nm
lateral and 400 nm axial). Inset pie chart shows how many of the Vipp1 puncta
volumes overlap with the CurT objects.

85



A

0

10

20

30

40

Outside Cyto-
plasm

Thy-
lakoid

Thylakoid
Edge

Plasma 
membrane

C
ou

nt

vipp1-gfp
wild type control

B

C D

Figure 30: Detection and quantification of Vipp1-GFP by immuno-electron mi-
croscopy. Representative immunoelectron microscopy image of vipp1-gfp (A and
C) or wild type cells (B) stained with anti-GFP primary antibodies detected by
gold-conjugated secondary antibodies (black arrowheads). Arrows show the stacked
thylakoids which run parallel to the plasma membrane. Scale bar = 100 nm (inset
scale bar = 50 nm). C) Count of gold particles categorized by the proximity to
the nearest cellular feature (plasma membrane, thylakoid edges, thylakoid (exclud-
ing edges), cell outside and the cytoplasm) in 35 independent whole cell sections
obtained from the same immunodetection experiment on vipp1-gfp and wild type
cells.
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tosynthetically on the microscope stage and find that sparse Vipp1 puncta

dynamically appear and disappear in all cells over time. Thus, this punc-

tuated Vipp1 dynamics exists in all growing cells over time, explaining the

zero puncta bin seen in the distribution of Vipp1 counts per cell (Fig. 28B).

To determine if Vipp1 puncta form on the membrane or if they form in

the cytoplasm and diffuse to the membrane, we imaged photosynthetically

growing cells at high temporal resolution to capture the appearance and

disappearance as well as the mobility of Vipp1 puncta. We find that the

majority of Vipp1 puncta rise and fall in intensity on a time scale of 1-2 min

(Fig. 31A-B) and their mobility at the cell periphery is greatly limited (Fig.

31C). This constrained mobility and the rise and fall in fluorescence within

a diffraction limited volume is consistent with a Vipp1 assembly process

occurring on the membrane. Given that in vitro Vipp1 displays membrane

binding property as a homo-oligomeric complex, and in cell lysates Vipp1

exists as a distribution of oligomeric states (Fuhrmann et al., 2009a; Mc-

Donald et al., 2015; Hennig et al., 2015; Heidrich et al., 2016), we infer

that the dynamically forming Vipp1 puncta, occurring at or near the highly

curved regions of the thylakoid compartment, represent events of punctu-

ated oligomerization and de-oligomerization between its cytosolic and its

membrane-bound forms.

8.3.2 Spatio-temporal distribution of Vipp1 enables photosyn-

thetic competency

To test the functional importance of the spatial distribution and dynamics of

Vipp1 in the cell, we designed a perturbation in which Vipp1 was rapidly and
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Figure 31: Vipp1 forms transient puncta of limited mobility at the cell periphery.
A) Time-series montage of a live cell growing photosynthetically on the microscope
stage. The images were acquired every 30 seconds in the Vipp1 and thylakoid chan-
nels for a duration of 10 minutes. The montage shows only the mid-cell Z plane for
the first 2.5 minutes. The blue arrows highlight the appearance and disappearance
of a Vipp1 puncta in consecutive time points. The dashed circumferential line was
used to extract the intensity profiles of the two channels and build the kymogram
displayed below the montage. The Vipp1 puncta appear and disappear at the edge
the thylakoids which manifest as horizontal streaks. Two examples of Vipp1 inten-
sity profiles in time (i and ii) are graphed on the right to illustrate how the full-width
at half-maximum (FWHM) durations and peak intensities were obtained for a given
punctum. B) Distribution of Full-Width at Half Maximum (FWHM) durations rel-
ative to their peak intensities for a representative subset of Vipp1 puncta. The
values were extracted from the individual kymograms of 15 growing cells that were
imaged every 30 seconds for a duration of 20 min. C) Example of Vipp1 puncta
mobility recorded by continuous imaging (frame rate 81 milliseconds). On the left,
the Laplacian-of-Gaussian filtered image of a cell containing two peripheral Vipp1
puncta is shown. A circumferential line profile traversing the cell periphery (dashed
line) was used to extract the kymogram on the right to illustrate the constrained
mobility of Vipp1 puncta over time. The kymogram also captures the birth of a
new Vipp1 punctum as evidenced by the appearance of a middle horizontal streak
over time. Scale bar =1 µm.
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(Continued) A) Diagram illustrating how Vipp1 can be relocalized to the nucleoid,
away from the cell periphery using the anchor-away approach. A schematic cell is
shown, with red disks representing thylakoids, the black circle in the center repre-
senting the nucleoid, and green dots representing the diffuse and punctate fractions
of Vipp1. Human FKBP12 (12 kDa FK506-binding protein) was fused to Vipp1-
GFP and the FRB (FKBP-rapamycin binding) domain was fused to the histone-like
HU protein. In the presence of the cell permeable drug rapamycin, the Vipp1-GFP-
FKBP12 chimera tethers to HU-FRB and forms a ternary complex enriched at the
nucleoid due to the high binding affinity of HU to DNA. B) Rapamycin-dependent
relocalization of Vipp1 to the nucleoid region at the cell center is effective and rapid.
Raw images of Maximum Z-Intensity Projections in the brightfield and Vipp1 chan-
nels of exponentially growing cells expressing the Vipp1-GFP anchor-away system
in the presence or absence (solvent only) of rapamycin after 20 min incubation.
Nucleoid-localized Vipp1-GFP manifests as bright concentrations Vipp1-GFP sig-
nal at the cell centers. The grayscale contrast is the same for both conditions.
Cell outlines based on the brightfield channel are overlaid in red. C) The three
growth conditions used for testing the functional importance of native Vipp1 local-
ization via anchor-away: Dark Growth, based on glucose, during which thylakoids
are multiplied while photosynthetic competency is highly reduced; Dark-to-Light
Transition, during which dark-grown cells are shifted to light in glucose-free me-
dia so that cells can regain their photosynthetic competency over time; and Light
Growth, during which the cells grow in constant photosynthetic conditions. In
each panel, a cell is shown growing from a smaller size to a larger size, and thy-
lakoids are shown in orange if not competent for photosynthesis and in green if
they do support photosynthesis. Photosynthetic competency is illustrated as the
ability to produce O2 when light is applied. Approximate growth rates shown
were estimated by monitoring the optical density of liquid cultures and are con-
sistent with previously published measurements (Anderson and McIntosh, 1991).
D) Thylakoids are present in both dark- and light-grown cells. Top - representa-
tive electron microscopy images of dark- and light grown cells showing a similar
thylakoids arrangement consisting of several cell peripheral stacks of 2-4 thylakoid
sheets (arrows). Scale bar = 0.5 µm. Bottom - thylakoid fluorescence images of two
dark-grown cells before (left) and after 24 hours of growth in light (right) directly
on the microscope stage in glucose-free media. In both conditions, the thylakoid
signal is enriched at the cell periphery with occasional gaps in fluorescence intensity
that correspond to the thylakoid stacks edges. The same grayscale contrast applied
for both conditions. Only the mid-Z planes of filtered image stacks are shown. Scale
bar = 2 µm. The dark-grown cells were obtained by growing a culture in darkness
on glucose for 144 h ( 8 generations), as described in Methods.
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(Continued) E) Both dark- and light-grown cells contain photosynthetic complexes
and pigments. Whole-cell absorption (dashed lines) and low-temperature (77K)
fluorescence emission (solid lines) spectra of dark-grown (144 h in darkness) and
light-grown (24 h post-dark) cultures. The chlorophyll (445 and 680 nm) and the
phycocyanin (625 nm) peaks in the absorption spectra are present in both growth
conditions, albeit at slightly lower level in dark-grown culture. The fluorescence
emission spectra (excitation at 445 nm) reveal the signature peak of the photosys-
tem I at 725 nm present in both cultures, and the peaks associated with active
photosystem II (685 nm and 690 nm) which appear conspicuous in the light-grown
culture only, as was reported previously (Barthel et al., 2013). F) Dark-grown
cells are photosynthetically incompetent. Rates of whole-cell oxygen production
of dark- and light-grown cultures. Light-grown cells were obtained by shifting the
dark-grown cells to light for 24 h in glucose-free medium. Linear rates of oxygen
production were obtained from cells maintained in darkness (respiration, i.e. oxy-
gen consumption) or in saturating light (photosynthesis, i.e. oxygen evolution) for
the duration of the measurement. Respiratory activity which originates from the
protein complexes that also localize in thylakoid membranes is similar between the
dark- and light-grown samples. Error bars are standard error of the mean obtained
from three biological replicates.

reversibly localized to the cell center, away from the cell periphery, without

changing its overall concentration. To achieve this perturbation we used the

anchor-away technique (Liberles et al., 1997; Haruki et al., 2008) in which

a protein of interest can be rapidly moved away from its native location by

inducing a drug-dependent dimerization to another protein, known as the

anchor, that is in a different sub-cellular location (Fig. 32A). For the anchor

we used the histone-like HU protein that binds to DNA in the nucleoid and

is localized at the center of the cell (Wang et al., 2011). In the presence

of the drug rapamycin, cells expressing the components of the anchor-away

system rapidly alter native localization of Vipp1 by coalescing the entire

pool of Vipp1 to the nucleoid region of the cell, away from the cell periphery

(Fig. 32B, Fig. 33). We note that this perturbation of Vipp1 localization

inherently alters the dynamics of puncta formation occurring at the cell
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Figure 33: Time-course of rapamycin-induced Vipp1 relocalization. Maximum Z-
Intensity Projection images of cells expressing all the components of the anchor-
away system and taken from a log-phase culture bubbled with 1% air-CO2 mix
at 100 µE light intensity at different times before and after addition of 20 µM
rapamycin or solvent (dimethyl sulfoxide) alone showing that relocalization of Vipp1
to the nucleoid at the cell centers is rapid, effective and stable for at least 4-5 hours.
The same grayscale contrast was applied to all panels within each condition.

periphery.

To reveal the functional role of native Vipp1 localization, we chose to ap-

ply the anchor-away perturbation in three different physiological conditions

that could enable us to disentangle interactions between thylakoid forma-

tion and photosynthesis Dark Growth, Dark-to-Light Transition, and Light

Growth (Fig. 31C). During Dark Growth (Anderson and McIntosh, 1991),

cells rely on glucose from the media to grow and divide in the absence of

photosynthetic light while still multiplying their thylakoid membranes and

associated pigments. However, dark-grown cells are not photosynthetically
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competent (Barthel et al., 2013), meaning they are incapable of immediate

oxygen production upon application of light. In the Dark-to-Light Tran-

sition, photosynthetic competency is induced when dark-grown cells are

shifted to light conditions for at least 6 - 8 hours (Barthel et al., 2013).

During Light Growth, cells rely on photosynthesis to grow and divide in the

absence of glucose and also continuously multiply their thylakoids and pho-

tosynthetic components. We confirmed in our own settings that dark-grown

cells, even after multiple cell divisions, still maintain and produce thylakoids

and photosynthetic pigments as measured by electron and fluorescence mi-

croscopy, and spectrophotometry respectively (Fig. 32D-E). We note that

in electron microscopy images, the thylakoid sheets in dark-grown cells ap-

peared less stacked than in light-grown cells, however they still maintained

a cell peripheral arrangement that was also observed in fluorescence images

of live cells, which later grew and divided when shifted to Light Growth

(Fig. 32D). We also confirmed that dark-grown cells are photosynthetically

incompetent as evidenced by their inability to evolve oxygen in the presence

of light (Fig. 31F). When these dark-grown cells are shifted to Light Growth

in glucose free media, the photosynthetic competency is restored within 24

h (Fig. 31F) as was previously established (Barthel et al., 2013).

We asked whether the rapid drug-induced relocalization of Vipp1 to the

nucleoid in the three conditions (Dark, Dark-to-Light and Light) would elicit

either a growth or thylakoid morphology defect. For each of the conditions,

we added rapamycin to induce Vipp1 relocalization and used time-lapse fluo-

rescent microscopy to monitor thylakoid content, Vipp1 localization and cell

growth for at least half of the cell cycle (Fig. 34A-C). For longer timescales,
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we measured growth by monitoring turbidity in bulk culture (Fig. 35A-B)

and examined thylakoid morphology by both fluorescence and electron mi-

croscopy (Fig. 35C) We find that Vipp1 relocalization causes no growth or

thylakoid morphology (Fig. 34A-B, Fig. 35A-C, Fig. 36) defects in Dark

or Light conditions, but causes a severe growth defect when Vipp1 is re-

localized during the Dark-to-Light Transition (Fig. 34C, Fig. 35A). The

growth defect observed during the Dark-to-Light Transition is not due to

nucleoid-related changes, but to Vipp1 relocalization, since a control strain

in which heterologously expressed GFP is relocalized to the nucleoid ex-

hibits no growth phenotype (Fig. 35B). The severity of the growth defect

correlates with the timing of Vipp1 relocalization during the Dark-to-Light

Transition, with less of a growth defect observed when the perturbation oc-

curs later in the transition (Fig. 37A). Intriguingly, the most severe growth

defect is observed when relocalization is induced at the start of the Dark-

to-Light Transition, which coincides with the peak burst in Vipp1 puncta

formation in normal conditions (Fig. 37B).

Based on the following observations, we conclude that the native lo-

calization of Vipp1 is not necessary for thylakoid membrane growth, but is

necessary for enabling acquisition of photosynthetic competency. First, since

perturbing Vipp1 in the Dark condition (in which there is active thylakoid

growth) triggers no defect in thylakoid growth or morphology (Fig. 35C, Fig.

36A-B), we conclude that Vipp1 localization is not required for thylakoid

membrane growth. However, since perturbing Vipp1 in the Dark-to-Light

condition (in which cells must enable photosynthesis in order to grow) elic-

its a severe growth defect (Fig. 34C, Fig. 35A), we infer that native Vipp1
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Figure 34: Relocalization of Vipp1 to the nucleoid has no significant effect on Dark
or Light Growth but elicits a severe growth defect during Dark-to-Light Transition.
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(Continued) A) Relocalization of Vipp1 induces no growth defect during Dark
Growth. Left: Example images of dark-grown cells (Maximum Z-Intensity Pro-
jections, 12 Z-steps) in brightfield, thylakoid and Vipp1 channels before addition
of rapamycin (0 h) and after 23 hours of growth in darkness. A mix of two strains
are shown, one (yellow outlines) in which the Vipp1-GFP-FKBP12 construct is ex-
pressed alone, and another (red outlines) in which the HU-FRB anchor construct
is also expressed in trans (i.e. responsive to rapamycin-based relocalization). 20
µM rapamycin was added to the agarose pad holding the cells on the microscope
stage immediately after time 0 h. Dark-grown cells were obtained from a culture
growing in darkness in the presence of glucose for at least 144 h with a s. Right:
quantification of cell growth as areas (extracted from automatic segmentations in
the brightfield channel - open circles) over time of ten random cells obtained from
each strain (with or without HU-FRB anchor) in the same field of view. On the
bottom x-axis, normalized time is shown as the time it took for -anchor cells to
increase the average cell area by 50%. On the top x-axis (dashed grey line), time
is shown in hours. Arrows indicate the addition of rapamycin to the agarose pad.
Average growth trace is shown as a black bold curve. The mean and standard
error of the mean of area expansions rates of the 10 cells are shown in the lower
right corners. We found no significant difference between the means of +anchor
and - anchor cells as calculated with the two-sample two-tailed t-test at 5% signifi-
cance level. B) Relocalization of Vipp1 induces no significant growth defect during
Light Growth. Similar to panel A - on the left: selected images of light-growing
cells obtained from a timelapse movie (8 Z-steps, every 30 min for 7.5 hours to-
tal). Right: quantifications of cell growth as areas over time of ten random cells
obtained from each strain from the same field of view. No significant differences
between the means of +anchor and -anchor cells rates (shown at the lower right
corner) as calculated with the two sample two-tailed t-test at 5% significance level
were found. C) Relocalization of Vipp1 during Dark-to-Light Transition induces a
severe growth defect. Similar to panel A - on the left: selected images of dark-grown
cells shifted to Light Growth obtained from a timelapse movie (10 Z-steps, every 20
min for 12 hours). Photosynthetic light and rapamycin were applied immediately
after the first timepoint. On the right: quantification of cell growth as areas over
time of ten random cells obtained from each strain from the same field of view.
The difference between the means of +anchor and -anchor cells rates (shown in
the lower right corner) was found to be significant (** P < 0.001) based on the
two-sample two-tailed t-test at 5% significance level.
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Figure 35: Vipp1 relocalization produces no growth or thylakoid morphology defect
in Dark or Light Growth cultures but elicits a severe growth defect in the Dark-to-
Light Transition.
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(Continued) Vipp1 relocalization produces no growth or thylakoid morphology de-
fect in Dark or Light Growth cultures but elicits a severe growth defect in the Dark-
to-Light Transition. A) Effect of Vipp1 relocalization on growth in bulk culture.
Dark- and light growing vipp1-gfp-fkbp12 cells of the two strains - with or without
the HU-FRB anchor construct expressed in trans - were resuspended in fresh media
in pairs of flasks at the same starting inoculum and incubated in dark or in light
for 48 h. 20 µM rapamycin (arrows) or solvent only (dimethyl sulfoxide, denoted as
-) was added at time 0 h. B) Control cultures showing that relocalization of GFP
alone at the nucleoid elicits no growth defects. Dark- and light growing gfp-fkbp12
cells of the two strains - with or without the HU-FRB anchor construct expressed in
trans - were inoculated in fresh media in pairs of flasks at the same starting inocu-
lum and incubated in dark or in light for 48 h. 20 µM rapamycin (arrows) or solvent
only (dimethyl sulfoxide, denoted as -) was added at time 0 h. C) Relocalization
of Vipp1 during Dark or Light Growth induces no changes in overall thylakoid con-
tent or morphology. Top - filtered images in the thylakoid channel (mid-cell plane)
obtained from cells expressing all the components of Vipp1 anchor-away in the
presence or absence of rapamycin after 48 h of growth in darkness (left) or in light
(right). The images are displayed at the same grayscale contrast for rapamycin and
no rapamycin treated cells. The overall thylakoid morphology (i.e. peripherally
localized signal with occasional gaps in fluorescence intensity that correspond to
regions of high curvature of thylakoid membranes) in the rapamycin-treated cells
is similar to that of the control cells. Bottom - corresponding electron microscopy
images of representative cells from each of the conditions tested. Stacked thylakoids
(arrows) are present in both dark- and light-grown cells and their morphology and
arrangement remain unaffected by Vipp1 perturbation.
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Figure 36: Representative transmission electron microscopy images of dark- and
light-grown cells expressing all the components of the anchor-away system after
48 hours of growth in darkness or in light in the absence or presence of 20 µM
rapamycin. Dark-grown cells obtained by culturing the cells for 144 hours in dark-
ness in the presence of glucose with brief exposures to activating light (see Methods)
were diluted to an OD750 of 0.1 in glucose-containing media and to which either
dimethyl sulfoxide solvent (A) or 20 µM rapamycin dissolved in dimethyl sulfoxide
was added (B) and further grown in complete darkness for 48 hours. Light-grown
cells obtained from a log-growing culture were similarly diluted to an OD750 of 0.1
in media with no glucose to which dimethyl sulfoxide alone (C) or 20 µM rapamycin
in dimethyl sulfoxide (D) was added and grown in light for 48 hours. The overall
morphology of the thylakoid stacks in rapamycin-treated cells is similar to that of
the control cells. Scale bars = 0.5 µm.
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Figure 37: The early stages of Dark-to-Light Transition are more prone to the effect
of Vipp1 perturbation.
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(Continued) A) Delaying Vipp1 relocalization to a later time during the Dark-to-
Light Transition lessens the impact of the perturbation on growth as evidenced by
the increased pigmentation (i.e. growth) of cultures labeled 12 and 24 h. B) Vipp1
undergoes a burst in the rate of puncta formation in the early stages of the Dark-to-
Light Transition. Top - selected images from a time-lapse montage of dark-grown
vipp1-gfp cells transitioning to Light Growth. Maximum Z-Intensity Projections
of 3D filtered stacks in the thylakoid and Vipp1 channels are shown. The same
grayscale contrast was applied to the entire montage within each channel. Bottom:
quantification of Vipp1 puncta number per cell, Vipp1 puncta intensities, total
thylakoid signal per cell and total cell area extracted from brightfield segmentation
masks over time (every 30 min for 24 h) from a field 260 starting vipp1-gfp cells. At
time 0 h, before light is turned on, thylakoid auto-fluorescence per cell is high, likely
because the existing photosynthetic pigments residing in the thylakoid membranes
are uncoupled from photochemical reactions (hence more fluorescent). In growing
photosynthetic light, total thylakoid signal per cell is relatively flat early on and
starts accumulating after 12 hours as the cells increase their thylakoid content
and acclimate fully to the photosynthetic lifestyle. The initial dip in total cell area
reflects the shrinkage of a small fraction of cells that fail to grow. For full movie of
a representative group of cells.

localization is necessary to enable acquisition of photosynthetic competency.

As photosynthetic competency is already established during Light Growth

and Vipp1 perturbation does not trigger a growth or thylakoid morphology

defect (Fig. 34B, Fig. 35C, Fig. 36C-D), we infer that Vipp1 localization is

not critical for maintaining thylakoid membranes or supporting active and

pre-existing photosynthetic capacity.

8.4 Discussion

Punctate or elongated Vipp1 structures have been previously observed by

fluorescence microscopy in both chloroplast (Nordhues et al., 2012; Zhang

et al., 2012) and in cyanobacteria (Bryan et al., 2014). However their lo-

calization and dynamics in growing cells (non-stress conditions) has not

been fully examined. Using live-cell timelapse fluorescence microscopy we
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show that Vipp1-GFP continuously exchanges between a diffuse fraction and

punctate fraction on a timescale of minutes (Fig. 28C, Fig. 31A-B). This

punctate fraction displays limited mobility and localizes to regions of high

thylakoid curvature (Fig. 28D-F, Fig. 29), which is consistent with known

biochemical properties of membrane binding and oligomerization (Fuhrmann

et al., 2009a; Otters et al., 2013; Hennig et al., 2015). Moreover, the local-

ization of Vipp1 puncta to high thylakoid curvature regions is consistent

with the previously described in vitro observations in which Vipp1 binds

with high affinity to artificial membrane vesicles manifesting high stored-

curvature-elastic stress (McDonald et al., 2015).

The ability of Synechocystis PCC6803 cells to grow non-photosynthetically,

while still maintaining and multiplying their thylakoids (Fig. 32D) - which

are also the sites of respiratory activity (Mullineaux, 2014) - allowed us ask

whether the localization and dynamics of Vipp1 is important for thylakoid

membrane growth alone. By experimentally perturbing the native spatial

distribution of Vipp1 in this Dark condition, we show that thylakoid mem-

brane growth is independent of Vipp1 localization (Fig. 35C). This suggest

that thylakoids (at least the ones generated in Dark Growth) can be made

even when Vipp1 is not available at the thylakoids or cell periphery, cast-

ing doubt on the lipid (or other components) transport hypothesis from the

plasma membrane to thylakoids.

Given that the dark-grown cells are photosynthetically incompetent, yet

multiply both their thylakoid membranes (Fig. 32D) and the resident photo-

synthetic protein components (Barthel et al., 2013) (Fig 32E) as they grow

and divide, the Dark-to-Light Transition is a sensitized context in which
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the cells must either functionally turn on the pre-existing components or

synthesize new active components. In other words, Dark-to-Light cells must

enable their photosynthetic competency. Vipp1 relocalization in this Dark-

to-Light Transition causes a severe growth defect (Fig. 34C, Fig. 35A). At

this point, the outcome of this relocalization effect can be interpreted in two

ways: i) Vipp is involved in enabling photosynthesis or ii) Vipp1 functions

as a protective factor from light-induced stress. Given the previously de-

scribed phenotype of a Vipp1 depletion strain (Gao and Xu, 2009) in which

the photosynthetic activity is abrogated without affecting respiration or the

thylakoid membranes, we interpret that by altering Vipp1 localization, the

dark-grown cells cannot enable the acquisition of photosynthetic competence

when light is available. In other words, the light-dependent maturation of

photosynthetic machinery occurring during the Dark-to-Light Transition is

dependent on the localization dynamics of Vipp1.

Finally, Vipp1 relocalization during Light Growth must not be rate-

limiting for growth (at least over the perturbation time-window), since we

do not see a significant effect (Fig. 34B, Fig. 35A). Granted that Vipp1

is not necessary for thylakoid membrane growth (see Dark perturbation),

and Vipp1 is necessary for enabling photosynthetic competency (see Dark-

to-Light perturbation), we interpret that the effect of Vipp1 relocalization

in Light Growth is masked because the cells are already photosynthetically

competent.

Although relocalization of Vipp1 to the nucleoid alters both the diffuse

and the punctate fractions, we hypothesize that it is the punctate fraction

enriched at high curvature regions of the thylakoid, that is important for
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enabling the acquisition of photosynthetic competency. This is supported

by the coincidence in time between the sensitivity to Vipp1 relocalization

and the observed burst in Vipp1 puncta formation at the start of the Dark-

to-Light condition (Fig. 36), which is also when the need to initiate photo-

synthetic capacity is high. Furthermore, Vipp1 puncta form dynamically at

the cell periphery (Fig. 28B and Fig. 30A) at regions of thylakoids marked

by CurT enrichments (Fig. 28D), a specialized zone previously proposed

to act as biogenetic centers for new photosynthetic complexes (Heinz et al.,

2016). We note that the association between Vipp1 and CurT that that

we measured cytologically has not been confirmed in previous biochemical

interaction studies, suggesting only an indirect connection between Vipp1

and CurT (Bryan et al., 2014; Heinz et al., 2016).

What could be the molecular mechanisms by which Vipp1 enables ac-

quisition of photosynthetic competency? Combining our analysis of Vipp1

localization and dynamics with its known biochemical properties, we hy-

pothesize that punctuated oligomerization of Vipp1 at regions of high thy-

lakoid curvature mediates functional light-dependent assembly of photosys-

tem(s) complexes. Perhaps due to its membrane-binding and/or lipid rear-

rangement properties, oligomerized form of Vipp1 could facilitate efficient

translation and/or assembly of newly made photosynthetic complexes in

the membrane this may be accomplished by alleviating the high curva-

ture membrane stress emerging at thylakoid edges (McDonald et al., 2015),

assisting complex assembly by providing lipid cofactors, as previously pro-

posed (Nordhues et al., 2012; McDonald et al., 2017), or mediating putative

transient intermembrane contacts (Hennig et al., 2015; Heidrich et al., 2017).
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Our conclusions are consistent with the previous analysis of Vipp1 deple-

tion in Synechocystis, which showed that when Vipp1 levels are lowered,

the photosynthetic function is significantly reduced while respiration and

thylakoid morphology remains unchanged (Gao and Xu, 2009). Similarly,

deletion of Vipp1 in Synechococcus PCC 7002 implicated Vipp1 primarily

in the translation or assembly of photosystem I, not for thylakoid membrane

biogenesis per se (Zhang et al., 2014). Additionally, Vipp1 has been shown

to interact with specific chaperones, translation factors and core photosyn-

thetic proteins, supporting a role for Vipp1 in the translation or assembly

of photosystems (Bryan et al., 2014).

Our results highlight the importance of Vipp1 dynamic behavior at high

curvature areas of the thylakoid which could act as sites of activation or

synthesis of new photosynthetic complexes. Additionally, we present a

new rapid perturbation of Vipp1 and its corresponding synthetic phenotype

which opens a new context to biochemically understand which photosyn-

thetic component(s) requires Vipp1 in its functional assembly. Finally, this

work highlights how single-cell time lapse imaging and rapid perturbations

can complement biochemical and genetic observations in understanding com-

plex processes such photosynthesis that change in space and time.

8.5 Experimental Procedures

8.5.1 Strains and Growth Conditions

Synechocystis sp. PCC 6803 GT strain (kind gift of Dr. Wim Vermaas)

(Trautmann et al., 2012) was used for all the work presented. Strains were
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propagated on BG11-1.5% GelRite (PlantMedia) containing 10 mM HEPES-

KOH pH 8.0 in the presence of the appropriate antibiotic. Photosynthet-

ically grown cultures were grown at 30 ◦C either in Nalgene plastic flasks

tilted at low angle on an orbital shaker (70 rpm) or in 40 ml glass tubes

bubbled with 1% CO2-air mix. Philips cool fluorescent tube light bulbs

(F40T12/841 Alto) provided the light whose intensity was set to 30 (when

flasks were used) or 100 µE m2 s-1 (when air was bubbled) as measured

with a LI-COR 190R sensor. Depending on the conditions, the doubling

time in the log-phase ranged from 10 to 5 hours (see example of a typi-

cal growth curve in Fig. S1B) For all growth or imaging experiments, the

cells were prepared and maintained in media with no antibiotics. Prior to

imaging, cells were acclimated for 30 min on the microscope stage under a

thin agarose pad made with BG-11 medium at 30 ◦C while illuminated by

an external LED white light source (set to 100 µE m2s−1 intensity light

measured at the objective lens) (See Light Microscopy and Image Analy-

sis Section below). To sustain non-photosynthetic growth (Dark Growth),

the cultures were supplemented with 27 mM glucose and kept in darkness

and stimulated with a daily 5 min exposure of 5 µE m2 s-1 light as was

previously established to promote their viability (Anderson and McIntosh,

1991). The cultures were grown in dark up to 144 hours on an orbital shaker

(70 rpm) and diluted to an OD750 of 0.1 when their OD750 reached 1 or

above (doubling time 16 h). To limit any light effect during Dark Growth

perturbation of Vipp1, the cultures were kept in continuous darkness for the

duration of the experiment.
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8.5.2 Genetic Manipulations

To obtain the GFP-tagged allele of Vipp1, we cloned into pBR322 between

EcoRI and NcoI using Gibson Assembly (Gibson, 2011) a chimeric construct

containing the upstream region and the open reading frame of sll0617 trans-

lationally fused (SGGG linker) at the C-terminus to the codon-optimized

variant of mGFPmut3 (Landgraf et al., 2012), the putative native 3 un-

translated region of sll0617 (68 bp), the spectinomycin resistance cassette

(aadA) and a 1 kb homology regions downstream of sll0617. The re-

sulting plasmid (pAGH42) was used to transform the naturally competent

Synechocystis according to published procedures (Zang et al., 2007). As

for the vipp1-gfp construct, the SNAP-tagged version of Vipp1 - also codon

optimized - was cloned and transformed into Synechocystis cells.

To make the Vipp1-GFP-FKBP12 construct for the anchor-away relo-

calization system (Liberles et al., 1997) we fused the codon optimized frag-

ment of the human FKBP12 to the C-terminus of GFP (GSGG linker) in

the Vipp1-GFP construct described above using the Gibson assembly pro-

cedure. The resulting plasmid (pAGH50) was transformed into the appro-

priate Synechocystis strain to replace the native vipp1 locus. No differences

in growth or Vipp1 localization and dynamics were observed between the

vipp1-gfp-fkbp12 and vipp1-gfp strains.

To make the HU-anchor fusion, we designed a construct synthesized by

Integrated DNA Technologies (Coralville, IA) in which the codon optimized

FRB fragment- was fused to the C-terminus (GSG linker) of HU (encoded

by sll1712 ). The DNA construct included the putative native promoter and
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5 untranslated region (265 nt) of the sll1712 gene. At the 3end, the 68 bp 3

untranslated region of vipp1 was used. The HU-anchor construct was cloned

by Gibson assembly downstream of the kanamycin resistance cassette in a

pBR322-based plasmid designed to recombine into the slr0168 neutral site

of the Synechocystis chromosome (Gao and Xu, 2009).

A GFP-FKBP12 control construct (pAGH93) was made similarly to

vipp1-gfp-fkbp12, except that the L03 synthetic promoter was used to drive

its expression (Huang and Lindblad, 2013).

In all cases, the colonies obtained after transformation were re-streaked

onto fresh selection media and the genetic modification was confirmed by

PCR amplification with primers flanking the locus of interest. For long-

term storage, all Synechocystis strains were kept at -80 ◦C in BG11 with 8%

dimethyl sulfoxide. All vectors used in this study are [will be] deposited in

the Addgene plasmid bank.

8.5.3 Light microscopy and image analysis

All epifluorescence imaging was performed on a Zeiss AxioObserver.Z1 in-

verted microscope equipped with an environmental chamber, a Definite Fo-

cus module, a hardware-triggered Hamamatsu ORCA Flash4.0 V2+ camera

and a Plan-Apochromat 63x/1.40 Oil DIC M27 (NA 1.4) objective. Unless

noted, all images were acquired at Nyquist sampling rate as Z-stacks in Zen

2.1 software (Zeiss). Sola SE (Lumencor, Beaverton, OR) white light source

was used to image Vipp1 and the thylakoid in the GFP and the far-red flu-

orescence channels (Zeiss Filter Sets 38HE and 50). All brightfield imaging

was done in Khler illumination with light passing through the same filter
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cube as the one used for Vipp1 channel.

For superresolution imaging we used Zeiss LSM 880 laser confocal system

equipped with an Airyscan unit, environmental control chamber, and 1.4 NA

Plan-Apochromat 63x DIC M27 oil objective. Similar to epifluorescence

imaging procedures, cells were acclimated on the microscope stage for 30

min, while being illuminated by photosynthetic light. To limit any potential

laser-induced stress on cells (and also changes to Vipp1 localization) we

identified fields of view with the use 594 nm laser set to the lowest power

at maximal detector gain. Image stacks were acquired for 16 Z-planes (512

x 512) with a voxel size 40 x 40 x 180 nm centered at mid-cell where the

focus was the sharpest. Laser lines 458 nm, 515 nm and 594 nm were used

though the same beamsplitter (MBS 458/514/594) for excitation of CurT-

mTurquoise2, Vipp1-GFP (mGFPmut3 variant: excitation maximum - 501

nm, emission maximum - 511 nm) and thylakoid respectively. Emissions

from the CurT and Vipp1 channels passed through a dual bandpass filter

BP 420-480, BP 495-550). Pixel dwell time (set at the fastest) and laser

power were adjusted to avoid saturation and bleaching effects while the

detector gain was set to 800. For Airscan processing, Zen Black 2.1 was used

to process the image stacks by performing the filtering, deconvolution and

pixel reassignments in 3D mode at default settings. This processing confers

the increased spatial resolution (by a factor of 1.5 to 1.7x both laterally and

axially) and an enhanced signal to noise ratio (Korobchevskaya et al., 2017).

For live-cell imaging, an aliquot of cells (obtained from an OD750 of 0.2

- 0.3 culture) was placed onto the glass of a 35 mm MatTek dish (P35G-

0.170-14-C) (MatTek, Ashland, MA) under a thin BG11 1% agarose pad (2
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mm thickness) prepared in advance and covered with a coverslip to reduce

evaporation. The dish was placed onto the objective in the stage insert and

around the agarose pad a basin of water was poured to create a humidified

atmosphere. The temperature was maintained at 30 ◦C while the photo-

synthetic light was provided by a white light LED ring: RL1360 or DF198

(Advanced Illumination, Rochester, VT) that was positioned on the stage

insert and controlled by an analog signal through Zen 2.1. The LED white

light was programmed to switch off only during the fluorescence image ac-

quisition. The light intensity reaching the cells at the objective lens was 100

µE which permitted a growth rate comparable to the rate measured in bulk

culture. To limit photobleaching and phototoxicity, the imaging light power

was limited to 20% by the FL attenuator and the light exposure for image

acquisition in the GFP channel (20 to 30 ms) was adjusted to generate a

signal-to-background ratio of less than 1.5. Also, the Z-series were limited

to 12 steps or fewer. For thylakoid channel, all exposures used were 3.2 ms.

Cell doubling time under these conditions was approximately 8 h.

Multispectral datasets were aligned using the affine transformation plu-

gin in Zeiss Zen 2.1 using a standard prepared from TetraSpeck (Invitrogen,

Carlsbad, CA) multicolor beads immobilized on a 1.5 coverslip.

To obtain filtered images, a custom MATLAB script (available upon re-

quest Patent Pending) was written to computationally enhance both diffraction-

limited spots and contours of thylakoids by applying a local maxima filter

that fit a 3D Gaussian to every position in the dataset and returned the

Maximum Likelihood Estimate (MLE) of the amplitude, background and

square-error. The amplitude component of the MLEs reports a quantitative

110



visualization of the diffraction limited signal since it is separated from its

background component. See Fig. S1C for an example of the raw and MLE

amplitude filtered image. Unless noted, all filtered images presented are

MLE visualizations of the signal amplitudes. There are no parameters to

adjust for this computational filter.

To automatically segment cells in the brightfield channel a custom MAT-

LAB script was written that implemented correlation imaging as described

previously (Julou et al., 2013). In summary, the edge of a cell is uniquely

defined by its Z intensity profile given a 3D brightfield Z-stack. Therefore,

to computationally find all cell edges, a brightfield Z-stack was filtered in

Z by cross-correlating this unique Z-intensity profile using the MATLAB

function convn. This cross-correlated dataset was then thresholded and all

enclosed objects were then segmented by MATLABs function regionprops.

Fiji (Schindelin et al., 2012) was used to prepare the kymograms, extract

the intensity profiles, and convert the final images. Unless noted, in all

images displayed, the grayscale contrast was auto-adjusted linearly before

converting to bitmaps.
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9 Conclusion

The signal processing module of an imaging apparatus has a disproportion-

ate affect on its total sensitivity because this module is positioned at the

end of a series of optical components. The reason for this importance is

because the transmission efficiency of each component multiplies, with the

total transmission efficiency of the entire optical device exponential to the

number of components used (and there are many optical components in even

a simple microscope objective). Since signal processing is the last compo-

nent in this optical path, any improvement in sensitivity and selectivity in

this final module will be exponentially magnified by the total efficiency of

the optical path.

By deriving and implementing an optimal pattern detection and local-

ization algorithm, we are able to significantly enhance the sensitivity and

selectivity of the signal processing used for 3D fluorescent spot detection.

Armed with an epi-fluorescent microscope, we enabled long timescale and

high temporal resolution 3D molecular imaging of diffraction limited spots

in living systems.
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A Appendix

A.1 Publications

Gutu, Andrian, Frederick Chang (co-author), and Erin OShea. Dynamical

localization of a thylakoid membrane binding protein is required for acqui-

sition of photosynthetic competency.

Content available at:https://www.biorxiv.org/content/early/2017/10/08/199943

FC contributed to the design, analysis & writing.

Estrada, Javier, Natalie Andrew, Daniel Gibson, Frederick Chang, Flo-

rian Gnad, and Jeremy Gunawardena. ”Cellular Interrogation: Exploiting

Cell-to-Cell Variability to Discriminate Regulatory Mechanisms in Oscilla-

tory Signalling.” PLoS Comput Biol 12, no. 7 (2016): e1004995.

FC contributed to the design, microlfuidics & analysis

Liang, Zhangyi, Denise Zickler, Mara Prentiss, Frederick S. Chang, Guil-

laume Witz, Kazuhiro Maeshima, and Nancy Kleckner. ”Chromosomes

Progress to Metaphase in Multiple Discrete Steps via Global Compaction/Expansion

Cycles.” Cell 161, no. 5 (2015): 1124-1137.

FC contributed to the imaging experiments

Mirkin, Ekaterina V., Frederick S. Chang, and Nancy Kleckner. ”Protein-

Mediated Chromosome Pairing of Repetitive Arrays.” Journal of Molecular

Biology 426.3 (2014): 550-557.

FC contributed to the imaging & analysis.
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Mirkin, Ekaterina V., Frederick S. Chang, and Nancy Kleckner. ”Dy-

namic Trans Interactions in Yeast Chromosomes.” PloS One 8.9 (2013):

e75895.

FC contributed to the imaging & analysis.
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