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Abstract

This dissertation is a cultural and conceptual history of the rise and development of graph-

ical methods in the 19th century physical sciences. It delineates the graphical as a particular

mode of seeing, manipulating and reasoning about physical phenomena that should be distin-

guished from the geometrical approaches of the 18th century. The dissertation goes beyond

previous studies that have only described the use of graphical methods as a form of discipline

or practice. Instead, it reconstructs a “period eye” to explain how historical actors formed

patterns and associations by looking at, thinking about or manipulating graphical objects.

Through this approach it is shown that the impact of graphical methods went beyond their

practical use. The graphical provided a rhetorical and intellectual mean of mediating between

different social and epistemological constraints such as the workshop and the classroom; ab-

stract theory, empirical rules and experimental data; algebraic equations and geometrical con-

structions; or conflicting notions of generality and precision.

By tracing the use of “graphical” either as a qualifying adjective or a suffix, it is shown

how in the late-18th and early-19th century certain operations, constructions, methods, rep-

resentations or instruments came to be understood, described and organized by this category.

By following the genealogy of paradigmatic diagrams (such as the phase diagrams in thermo-

dynamics and the curves of magnetization in electrical engineering) or the pedagogical role of

squared paper, it is shown how graphical objects came to be valued not just as practical paper

tools but as epistemological objects. These two approaches provide the basis for an interpreta-

tion of how the historical category of the graphical and graphical objects were perceived and

valued in the 19th century.
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· 1 ·
Introduction

This study establishes the graphical as a historical category and mode of seeing, manipulat-

ing and reasoning about physical phenomena. While there have been numerous historical

studies dedicated to graphical methods and representations, few have treated consistently and

coherently the graphical as a historical object of study. The contemporary interest in graph-

ical objects–diagrams, methods, instruments, practices etc.–has provided historians with an

analytical filter for selecting and ordering their historical material. Though historical meth-

ods have proved successful in describing the use or meaning of particular historical objects as

part of particular historical contexts (i.e. this diagram or method used by this person at this

location at this moment in time for this purpose etc.), they have provided few approaches for

describing general historical objects. Unfortunately, a common uncritical solution has been

that of “gluing” together the particular objects to make claims about the general objects.

What would it mean and what would one gain from studying the graphical as a general

historical object instead of looking at particular graphical objects? The challenge behind this

question is to understand how one can have access to such an object, the graphical, and what

kind of object this is. At a fundamental level, historical studies have defined their object of

study through an operation of identity and continuity. Thus, one can study a place, a person,

a physical object, or an idea as long as one can posit that the object stays the same while

changing! This apparent contradiction is solved once we conceptualize the object as defined

by multiple variables which do not change all at once.1 However, after a given time all the

1. Thomas Kuhn’s paradigm shifts, sudden and discontinuous, have been explained by Peter Galison as a
form of continuous change in a different domain: discontinuous shifts in theory are accomplished by continu-
ous changes in experimental or instrumental practices. Galison’s argument has been that though “there is no
absolutely continuous basis in observation”, one can find intercalated local continuities, see Peter Galison, Image
and Logic : A Material Culture of Microphysics (Chicago: University of Chicago Press, 1997), esp. 797-803. For
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INTRODUCTION

variables which have defined the object at the starting point might have changed; then, are

we still left with the same object? I will posit that the answer to this question is historically

contingent, and the very purpose of the study is to understand how these operations of identity

and continuity play out historically. For local changes to be historically meaningful, there

always needs to exist a global object of study.2 The usual approach of historians has been

to define the global object of interest through analytical categories, i.e. as trans-historical

objects which are conceptually useful and of interest for the contemporary reader. While the

shortcomings of such an approach are not always immediately obvious, one is often forced to

awkwardly hide the fact that these objects are not historically coherent; that is, their continuity

and identity are not historically reconstructed.3

This study aims to understand the graphical not as an analytical category, but as a historical

category. Its central question is not how or why certain graphical objects were used, but rather

why graphical objects came to matter as graphical objects? Or briefly, why did the graphical

come to matter?

1 ON HISTORICAL CATEGORIES

Consider, for example, the activities [Vorgänge] that we call “games”. I mean board-games, card-
games, ball-games, Olympic games, and so on. What is common to them all?–Don’t say: “They
must have something common, or they would not be called ‘games’ ”–but look and see whether
there is anything common to all. – For if you look at them you will not see something that is
common to all, but similarities, affinities, and a whole series of them at that. To repeat: don’t
think, but look! […]

And the upshot of these considerations is: we see a complicated network of similarities overlap-

his analysis Galison identified three levels of “constantly reinforced continuity”: a level of pedagogical continu-
ity, technical continuity, and demonstrative or epistemic continuity, see Galison, Image and Logic : A Material
Culture of Microphysics, 21-22.

2. One can find it useful to conceptualize this claim in terms of a mathematical surface – though one might
only have immediate access to a local description of the surface, in the form of a local coordinate system, there
still exists a global object (the surface itself) defined by some global properties.

3. For example, a dictionary entry brings together various meanings under the heading of a particular word.
However, the continuity between the various meanings of a word and their identity under a single heading is
not historical (unless we consider the dictionary as a primary source).

2



INTRODUCTION

ping and criss-crossing: similarities in the large and in the small.4

This key passage on family resemblances from Wittgenstein’s Philosophical Investigations

has been highly influential in the history of science because it has allowed historians to move

away from the attempts of logical positivism of reducing scientific activity to a system of

rules. Instead of a logically unified and coherent description of scientific activity, historians

have described the production of scientific knowledge as arising from a complicated system

of “overlapping and criss-crossing” localized practices.5

However, Wittgenstein’s central claim – “if you look at them you will not see something

that is common to all” – is partially incorrect, and depends on his distinction between looking

and thinking – “don’t think, but look!”. Trying to find resemblances between objects by look-

ing and not thinking is nonsensical. Once we think, we have to admit to at least one central

and crucial similarity common to all – the very name from which the question started – “Con-

sider for example the proceedings that we call ‘games”’.6 In haste, Wittgenstein has dismissed

the common name – “Don’t say: ‘They must have something common, or they would not be

called ‘games’ ”’ – and has assumed, without sufficient proof, that the “activities [Vorgänge]”

must have some overlapping similarities (i.e. continuity). But the very presumption that such

similarities exist, and the challenge to find them, originate in the very name that has already

brought together all the activities. In the end, Wittgenstein’s attempt to explain why such

disparate activities can be grouped together under the unifying name of “game” is doomed to

fail. First, one can always find other objects that share some overlapping similarities without

4. LudwigWittgenstein, Philosophical Investigations, Rev. 4th (Chichester, West Sussex, U.K.: Wiley-Blackwell,
2009), §66.

5. Thomas S. Kuhn, The Structure of Scientific Revolutions, 3rd (Chicago: University of Chicago Press, 1996), 44-
46; Galison, Image and Logic : A Material Culture of Microphysics, 765-771; David Kaiser, Drawing Theories Apart
: The Dispersion of Feynman Diagrams in Postwar Physics (Chicago: University of Chicago Press, 2005), 208-209.
Most contemporary accounts of scientific practice have appealed to such a description though under different
names: the system might be described as a net, network, matrix etc., while the “overlapping and criss-crossing”
could refer to a particular place, a “knot”, a “trading zone”, a “center of calculation”, a “face to face” interaction
etc.

6. Besides the very name, all the activities named “game” share something else – they are all supposed to be
“activities”.

3



INTRODUCTION

belonging into the same category (who decides the boundary?), or objects that might have no

overlapping similarities and which still belong to the category (or which can be added by fiat).

Second, how can the overlapping similarities be established, and aren’t some of these already

presupposed by the very grouping that needs to be explained?

Historians influenced by Wittgenstein have used the concept of family resemblances to

talk about shared features: a common set of ideas, skills or objects that came to be shared

through some form of interaction. However, less attention has been paid to the role played by

labeling in the organization and classification of objects. Nelson Goodman has described how

[a] label associates together such objects as it applies to, and is associated with the other labels
of a kind or kinds. Less directly, it associates its referents with these other labels and with their
referents, and so on.7

The concept of a label is important because it underlines the fact that objects are brought

together not only because of some shared physical properties, or a shared practice of classifi-

cation, but also through the very names we use to describe the objects.8 Because labels belong

to a language they are more readily intelligible than unorganized physical objects. One needs

to acquire more specialized skills to distinguish between a duck and a goose, compared to the

skill required in reading the labels describing such animals.9 I will refer to the objects described

by the same label as forming a category. Compared toWittgenstein’s concept of family resem-

blances, the concept of a category forces us to consider the ways in which various objects are

brought together not only through some form of continuity (such as shared, overlapping and

criss-crossing qualities) but also through an act of identification through labeling or naming.

A category, opposed to a concept, has no unified and well-defined meaning. One might be

7. Nelson Goodman, Languages of Art : An Approach to a Theory of Symbols, 2d ed. (Indianapolis: Hackett,
1976), 32.

8. Most approaches in the philosophy of language have abstracted the actual role played by the labels and
have focused exclusively on the process of classification; e.g.: “P is correctly predicated of an object a in virtue
of its objective quality of P-ness”, in Mary B. Hesse, The Structure of Scientific Inference (Berkeley, University of
California Press, 1974), 45.

9. For the original example see Thomas S. Kuhn, The Essential Tension : Selected Studies in Scientific Tradition
and Change (Chicago: University of Chicago Press, 1977), 293-319.
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INTRODUCTION

skeptical that much is gained by focusing on objects with ill-defined meaning (labels, names,

words etc.) instead of trying to understand the meaning of the concepts.10 In the end, any his-

torical explanation ties back to a social and cultural context that connects to concepts and be-

liefs and not to the arbitrary signs through which these are named. This criticism is addressed

in Chapter 3. However, it suffices to say, that by category we are not referring to words in

isolation of any meaning. A category is important not only because it provides someone with

a pre-made grouping, but also because it encourages one to find patterns, analogies or rules

through which to motivate the given grouping. Wittgenstein’s concept of family resemblance

has provided historians with a justification for dismissing the attempts of some philosophers

of describing the production of scientific knowledge as a rule-based activity. A scientist was

formed not by acquiring a system of rules, but through training, practice, discipline etc. If any

rule-like behavior (i.e. some global pattern that could be described in purely logical terms)

did emerge, it was to be explained in terms of the interactions and overlaps of the localized

practices. Such global patterns were seen as a consequence of real and concrete everyday

practices.11 Though partially justified, such an approach has ignored the role played by the

perceived or assumed rules: “They must have something common, or they would not be called

‘games’ ”. Thus, even if analytically we reject any form of unifying definition, historically the

fact that such a definition is expected–“They must have something common”–should not be

ignored. Despite the fact that there is no global agreement onmeaning, there can exist a global

(i.e. non-localized) object: the categories determined by the labels.12 Michel Bréal, Ferdinand

10. See for example Quentin Skinner’s criticism of Raymond Williams’ Keywords: Quentin Skinner, Visions of
Politics (Cambridge, U.K. ;New York: Cambridge University Press, 2002), 158-174; Raymond Williams, Keywords:
A Vocabulary of Culture and Society, Rev Sub edition (New York: Oxford University Press, 1985).
11. “… any global argument about a new phenomenon would have to be built, like the apparatus itself, out of

the integrated fragments of these subsystems”, or “In the fixing of meaning, local practices trump global issues of
ontology” in Galison, Image and Logic : A Material Culture of Microphysics, 558-559, 708. On the connection of
realism to practice see Ian Hacking, Representing and Intervening: Introductory Topics in the Philosophy of Natural
Science (Cambridge: Cambridge University Press, 1983).
12. Of course, the claim is not that “game” is an absolutely global object that requires no shared set of skills,

such as literacy, familiarity with certain fonts etc. However, the claim is that one does not need to understand the
meaning of “game” to infer a connection between various objects that carry such a label. A non-English speaker
who has no concept associated with “game” could assume a connection between objects which are labeled by it.

5
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Saussure’s maître, described young children acquiring a language as if they were trying to

guess a rule which was not yet formulated; the very supposition of such a rule, led to its for-

mulation and creation.13 A similar idea was expressed by Max Black in a study on metaphors:

“It would be more illuminating in some of these cases to say that the metaphor creates the

similarity than to say that it formulates some similarity antecedently existing.”14 Or, going

back to the example of classifying ducks and geese, a young observer might not immediately

realize that these birds belong to different natural kinds; however, once one is familiarized

with the categories (though not with the actual practice of distinguishing or identifying these

birds), one might very well suppose that some procedure for distinguishing between the birds

must actually exist.

Thinking about categories instead of concepts opens the possibility for a longue durée his-

tory. Historical categories, as used in this study, are to be distinguished from the commonly

invoked actor’s categories (which are contraposed to the analytical categories of the historian).

Though an actor’s categories also refer to historical terms, in this case the historian is inter-

ested in the original terms either to preserve or to recover their historical meaning.15 A his-

torian could refer to an actor’s category either to distinguish the contemporary and historical

meaning of commonly used terms, or to preserve the original terms for a particular meaning

(or concept).16 When studying an actor’s categories, the interest is either in determining its

meaning in relation to its context of use, or in identifying changes in its meaning which can

13. “Il est question ici d’une règle non formulée, que l’homme s’efforce de deviner, que nous voyons les en-
fants tâcher de découvrir: en la supposant, le peuple la crée”, in Michel Bréal, Essai de sémantique (science des
significations) (Paris: Hachette, 1904), 80.
14. Max Black, Models and Metaphors: Studies in Language and Philosophy (Cornell University Press, 1962), 27.
15. One famous example is Machiavelli’s concept of virtù which is generally referred to by the original Italian

word such that it is clearly distinguished from the modern meanings of virtue, see Skinner, Visions of Politics,
vol.2, 160-185.
16. See for example Pamela O. Long’s study of the historical meaning of the terms “invention”, “secrecy”, and

“theft”, or Lorraine Daston and Katharine Park’s study of the objects and meanings associated with wonders and
curiosities (which also discusses the terms by which they were referred to). Lorraine Daston and Katharine Park,
Wonders and the Order of Nature (New York :Cambridge, Mass.: Zone Books ;Distributed by the MIT Press, 1998);
Pamela O. Long, “Invention, Secrecy, and Theft: Meaning and Context in the Study of Late Medieval Technical
Transmission,” History and Technology 16, no. 3 (2000): 223–241.

6
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be correlated with some significant events.17 For these reasons, an actor’s categories might

be better described as historical concepts. The historical category, however, is not restricted to

a well-defined meaning and a narrow context of use but includes the whole family of resem-

blances. The historical category has the advantage of recovering a multiplicity of meanings; it

thus includes not only the meaning intended by the author of the utterance, but also the pos-

sible and potential meanings which an audience might associate with it.18 Most terms have a

multiplicity of meanings which are known and accessible to a historical actor (e.g. the cate-

gory of “game”). The struggles to keep scientific words free of any unwanted associations or

parasitic connotations will be discussed in greater detail in Chapter 3.

Actor’s categories have been often criticized as being “numerous, fluctuating and con-

tested”, while well-constructed analytical categories could have “stability across temporal and

spatial localities and have broad applicability across the sciences”.19 In one of the more fa-

mous examples, Bruno Latour has promoted a radical program of relabeling and reorganizing

the content of “science, technology and society” because “our work remains incomprehen-

sible, because it is segmented into three components corresponding to our critics’s habitual

categories”; instead, Latour provided “hybrid terms that blur the distinction between the re-

ally social and human-centered terms and the really natural and object-centered repertoires”.20

Even though critical of some of these radical programs of relabeling and redrawing boundaries,

historians have appreciated the role of analytical categories in revealing taken for granted as-

sumptions or (consciously and unconsciously) hidden aspects of scientific practice. Though

analytical categories play an essential role in making visible historical realities, one should

17. Though not referring explicitly to “actor’s categories” but rather to the more general and abstract category
of utterances, see Skinner, Visions of Politics, 84-87, 103-127.
18. For the distinction between the meaning of a text and its reception see James A. Secord, Victorian Sensa-

tion: The Extraordinary Publication, Reception, and Secret Authorship of Vestiges of the Natural History of Creation
(University of Chicago Press, 2003).
19. Patrick Carroll-Burke, “Tools, Instruments and Engines Getting a Handle on the Specificity of Engine Sci-

ence,” Social Studies of Science 31, no. 4 (2001): 593-596.
20. Bruno Latour, We Have Never Been Modern (Cambridge: Harvard University Press, 2012), 3; Michel Callon

and Bruno Latour, “Don’t Throw the Baby out with the Bath School! A Reply to Collins and Yearley,” in Science
as Practice and Culture, ed. Andrew Pickering (Chicago ; London: The University of Chicago Press, 1992), 347.

7
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not neglect the fact that the absence (or ignorance) of such categories to the historical actors

could have significant implications. We appeal to analytical categories because they are useful

to think with; thus, it should not be surprising if in the absence of such categories a histori-

cal actor would think, act and experience the world differently. Relying solely on analytical

categories could mean reifying our own world as historical reality.

A historical category combines some of the advantages and disadvantages of the actor’s

categories and the analytical categories. Being composed of actor’s categories, a historical cat-

egory preserves the original meaning and experience available to the historical actors. How-

ever, because it is not limited to a narrow context, it can provide a comparable breadth to an

analytical category. If the meaning and use of particular concepts is often constrained and

policed by certain disciplines or institutions, the historical category breaches across such di-

vides. If an actor’s category has an actual meaning defined in terms of a specified context, the

historical category defines a composite array of potential meanings and associations that would

have been historically available. If a historical concept (an actor’s category) could refer to what a

historical actor meant by something, the historical category is supposed to reveal what a historical

actor saw or thought when confronted with something. If a historical concept points to a given

meaning, a historical category points to possible meanings.

The closest concept that can illustrate some of the implications intended by a historical

category is Michale Baxandall’s notion of a cognitive style or a period eye defined as “a stock of

patterns, categories and methods of inference; training in a range of representational conven-

tions; and experience, drawn from the environment, in what are plausible ways of visualizing

what we have incomplete information about”.21 Baxandall’s key idea was that a “stock of pat-

terns, categories, habits of inference and analogy” lends “the fantastically complex ocular data

a structure and therefore a meaning”.22 Everyday experiences such as dancing or gauging the

21. Michael Baxandall, Painting and Experience in Fifteenth Century Italy: A Primer in the Social History of Pic-
torial Style (Oxford University Press, 1988), 32,30.
22. Ibid., 29.

8
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volume of a barrel provided the “Quattrocento man” with a series of skills to experience and

discuss a painting. The claim itself might not be immediately surprising for a historian – in

the end, training through repetition provides one with a set of skills for seeing things that

an unskilled person would not otherwise see.23 However, Baxandall’s claim is more general

than that. Instead of being concerned with how a painter learned to paint, Baxandall asked

what the public (made out of trained physicians, merchants etc.) saw when they looked at a

painting. Baxandall was interested in understanding “a public mind with different furniture

and dispositions from ours”, or the things one would be “less likely to see” and “more likely to

see”.24

The concepts of a historical category and a period eye are important because they draw our

attention to historically coherent objects, that is objects which are historically connected (as

perceived by a period eye). On the one hand, disconnected objects (as perceived by a contempo-

rary eye) could have been brought together by historical actors through an act of identification

or labeling; though such connections are merely formal, they could have encouraged historical

actors to expect or to seek more profound and meaningful connections between these objects.

On the other hand, an object could have undergone continuous transformations, and though

the end products as perceived by a contemporary eye would be significantly different and dis-

connected, the neighboring variation could have still preserved a relation of identity with its

previous iteration.

The approach of this study is inspired by David Kaiser’s analysis of the dispersion of Feyn-

man diagrams. In Drawing Theories Apart Kaiser relied on Wittgenstein’s concept of family

resemblances to criticize Bruno Latour’s notion of “immutable mobiles”. By pointing out the

variations between various Feynman diagrams, Kaiser showed that such objects “hardly re-

mained immutable, either in appearance, role, or meaning”.25 For Kaiser, it was the mutability

23. See Ludwik Fleck, Genesis and Development of a Scientific Fact (Chicago: University of Chicago Press, 2012).
24. Baxandall, Painting and Experience in Fifteenth Century Italy, 48, 30.
25. Kaiser, Drawing Theories Apart : The Dispersion of Feynman Diagrams in Postwar Physics, 281.

9



INTRODUCTION

or plasticity of the diagrams which served their mobility and staying power, as they could be

adapted to new purposes. In the end, “[l]ittle about the diagrams remained ‘immutable”’.26

However, Kaiser reconstructs the mutations of the diagrams as perceived by the contemporary

eye of the historian. It is enough for the reader to look at two Feynman diagrams drawn in

different pedagogical settings to spot the differences. For the period eye of the postdocs who

employed the ever varying diagrams, “Feynman diagrams appeared almost like batons in a

relay race – stable objects that retained their meaning and form as they were passed from one

user to another in a growing network”.27 While for Kaiser “[t]his initial appearance of stability

… is misleading”, for us the historical perception of the Feynman diagrams as “stable objects

that retained their meaning and form” is essential to understand how such objects could have

been applied to new problems. The staying power of the Feynman diagrams must be under-

stood not only in terms of their ability to be tinkered with and adapted to new problems, but

also in terms of their ability of being mutated such that they preserve a connection (of identity

and continuity) with their previous iterations. If each time a newly mutated Feynman diagram

had ceased to be connected to the old category of Feynman diagrams, it would be hard to un-

derstand Douglas Hofstadter’s frustration with the “diagrammatic menagerie” he encountered

as a postdoc in the 1970s:

It was sort of like, these are semi-Feynman diagrams, but they’re not quite. And everything was
blurry. There was never a sense of precision….Everywhere I turned, I found ugliness, and arbi-
trariness, and vagueness.28

Thus, what matters is not only that graphical objects can be analyzed through Wittgenstein’s

concept of family resemblances, but rather that they were historically perceived as forming a

family resemblance (i.e. a historical category).

26. Kaiser, Drawing Theories Apart : The Dispersion of Feynman Diagrams in Postwar Physics, 282.
27. Ibid., 173.
28. Hofstadter quoted in ibid., 315.
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2 THE COGNITIVE DIMENSION

What calls for thinking?29

Past studies in the history of science have invariably focused on the production of scien-

tific knowledge; this term has encouraged and validated a series of metaphors centered around

construction, fabrication, work, technology, mechanisms, engines, tools, devices etc. Some of

the early and most influential examples of this language can be found in Steven Shapin and

Simon Schaffer’s Leviathan and the Air Pump where “the experimental production of pneu-

matic facts” was explained in terms of material, literary and social technologies that were all

seen as “knowledge-producing tools”; similarly, Bruno Latour and SteveWoolgar’s Laboratory

Life described “the different stages in the construction of facts, as if a laboratory was a factory

where facts were produced on an assembly line”.30 Such approaches have been motivated by

a shared goal of avoiding “whiggish” teleological accounts in which the discovery of scientific

truth is inevitable (and can be at most delayed). Instead, the production of scientific knowl-

edge requires effort – the establishment of trust, the creation of networks, the foundation of

institutions, guided practice and exercise, the movement of objects etc. This whole infras-

tructure not only makes possible the production of scientific knowledge, but it also shapes it.

Though profoundly insightful, such approaches have inherited a teleological residue from the

“whiggish” accounts they had tried to replace. While they have provided new explanantia,

their explananda have remained the same: Why are things the way they are or How do things

come to be? In Harry Collins’ memorable analogy for knowledge production, the goal is to

explain how the ship got into the bottle.31 However, what is at least as surprising and worthy

29. Martin Heidegger, Basic Writings, ed. David Farrell Krell (Harper Collins, 1993), 385.
30. Steven Shapin and Simon Schaffer, Leviathan and the Air-Pump : Hobbes, Boyle, and the Experimental Life

(Princeton: Princeton University Press, 1985), 25; Bruno Latour, “Visualization and Cognition,” Knowledge and
Society 6 (1986): 236. I have purposefully singled out the more neutral term “production” over the common
reference to “constructivism” or “constructionism” that has been mostly associated with a particular approach
of history of science and STST. See also Ian Hacking, The Social Construction of What? (Cambridge: Harvard
University Press, 1999); Jan Golinski, Making Natural Knowledge: Constructivism and the History of Science, with
a New Preface (Chicago: University of Chicago Press, 2008).
31. H. M. Collins, “The Seven Sexes: A Study in the Sociology of a Phenomenon, or the Replication of Experi-
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of consideration is not only the fact that the ship made it into the bottle, but also that one

is awed by this. Besides the technical reasoning and practice required to put the ship in the

bottle, there is a reflexive and associative reasoning that starts from contemplating an object

such as the bottled ship. So far, the focus on the production of knowledge has provided an

external description of how things come to be. But besides the world which unfolds in front

of us, there is also a world of potentialities and virtualities which depends on how one looks

at or what one can see when they look at the world. This study will reconstruct a period eye

to go beyond the actual use of certain methods and objects as inculcated through practice, to

describe the potential use as revealed by what “comes to mind” when historical actors think

about, look at, or manipulate an object.

In the past two decades, historians have endeavored to treat on a “symmetrical footing” the

practices of the experimental and theoretical sciences by extending the framework used in the

study of the former to the latter.32 Though there are methodological advantages in postulating

a symmetry between two objects of study and in bringing them in close proximity, one must

always keep in mind the limitations of such a comparison.33 By appealing to concepts such

as paper tools and theoretical technologies, historians have been able to describe theoretical

science as a form of practice based on everyday labor, craftlike skills, regimens of training and

practice, or tacit knowledge. These approaches have inspired and shaped this study. However,

one must critically examine the uncritical assumptions introduced by metaphorical concepts

such as those of tool or technology.

ments in Physics,” Sociology 9, no. 2 (1975): 205–224.
32. Peter Galison and Andrew Warwick, “Introduction: Cultures of Theory,” Studies in History and Philosophy

of Modern Physics 3 Vol 29 B, no. 29 (1998): 288n2.
33. Cf.: “This asymmetry between historical accounts of experimental and theoretical work is, however, both

undesirable and unnecessary”, in Andrew Warwick, “Cambridge Mathematics and Cavendish Physics: Cunning-
ham, Campbell and Einstein’s Relativity 1905–1911 Part I: The Uses of Theory,” Studies in History and Philosophy
of Science Part A 23, no. 4 (1992): 632. No further motivation is given. Or, “I shall argue that this distinction
between theoretical and experimental work is in many ways artificial and that by acknowledging a number
of similarities between these activities we can begin to build a more symmetrical account of theory and experi-
ment”, AndrewWarwick,Masters ofTheory : Cambridge and the Rise of Mathematical Physics (Chicago: University
of Chicago Press, 2003), 12. Warwick never mentions the ways in which the distinction between theoretical and
experimental work is not artificial.
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The actual cognitive role played by material, external objects has remained unexplored

because historians have assumed a much too close analogy between “paper tools” and “lab-

oratory tools” without actually specifying what sets them apart: “at many levels paper tools

are fully comparable to physical laboratory tools and instruments and that both kind of tools

contribute to the creation of reference and meaning, or representations in that sense”.34 The

image of the tool (the device, the technology, the mechanism etc.) is self-reifying and gener-

ates a false expectation of power and efficacy. However, the sole evidence for such power and

efficacy is usually the mere manipulation, shuffling and multiplication of papers:

In our cultures “paper shuffling” is the source of an essential power, that constantly escapes at-
tention since its materiality is ignored. […] It is hard to overestimate the power that is gained by
concentrating files written in a homogeneous and combinable form.35

Historians have purposefully appealed to the concepts of paper tools and theoretical tech-

nologies to avoid talking about the “thinking” behind a scientific activity.36 Because a histo-

rian does not have direct access to what goes inside the head of a historical actor, one can

only engage with the material traces of his activity. Though such methodological restraint

is commendable, lack of access to a phenomenon does not imply that such a phenomenon

is irrelevant or reducible to something else. For example, Ursula Klein followed Bruno La-

tour’s dictum – “Most of what we impute to connections in the mind may be explained by this

34. Ursula Klein, Experiments, Models, Paper Tools (Stanford, Calif: Stanford University Press, 2003), 245. Two
remarkable exceptions are the studies of David Gooding and Reviel Netz. See David C. Gooding, “Visualizing
Scientific Inference,” Topics in Cognitive Science 2, no. 1 (2010): 15–35; David C. Gooding, “Cognition, Construction
and Culture: Visual Theories in the Sciences,” Journal of Cognition and Culture 4, no. 3 (2004): 551–593; Reviel
Netz, The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History (Cambridge University Press,
2003).
35. Bruno Latour, “Drawing Things Together,” in Representation in Scientific Practice, ed. Michael Lynch and

Steve Woolgar (Cambridge: MIT Press, 1990), 54-55.
36. It can be instructive to compare Andrew Warwick and David Kaiser’s essay on “Kuhn, Foucault, and the

Power of Pedagogy” with Kuhn’s own writings. The essay is carefully written to avoid any mental or cognitive
references. It only talks about how students “learn how to speak and act as scientists and engineers”, but not
how to think as scientists. The key terms are training, practice, skill, production. Kuhn, however, engaged with
the work of cognitive scientists or Gestalt psychologists which is also reflected in his choice of expressions such
as “mental sets”, “mental equipment”, “mental apparatus”, “divergent thinking”, “convergent thinking” etc., see
Andrew Warwick and David Kaiser, “Conclusion: Kuhn, Foucault, and the Power of Pedagogy,” in Pedagogy and
the Practice of Science: Historical and Contemporary Perspectives, ed. David Kaiser (Cambridge: MIT Press, 2005),
393.
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reshuffling of inscriptions” – in exploring “the explanatory capacity of material agency that

go hand in hand with the elimination of notions referring to mental processes”. Klein looked

at Berzelian formulas as “paper tools” which she considered to be “material devices in the

broadest sense of being exterior to mental processes, visible and maneuverable”.37 While this

approach was seen as “redressing the balance between the material and mental dimensions of

inscriptions”, in truth, the “mental dimension” is never addressed.38 This is a problem because

the power of inscriptions has often been attributed to their ability to connect with certain

mental processes. Berzelian formulas were useful not only because of their “maneuverability

on paper” but also, if not especially, because of their maneuverability off paper, in the mind.39

Unfortunately, Klein fails to recognize that powerful reasoning tools depend the least on the

materiality of their support. That is not to say that material culture is irrelevant for reasoning,

but rather that the relation between the two has only received unsatisfactory explanations.

Busy hands scribbling on paper cannot be a substitute for reasoning.

The tool nature of diagrams has been invoked by David Kaiser to describe the activity of

theoretical physicists as a form of practice defined by a set of craftlike skills which cannot

be easily communicated at a distance. When diagrams did move, they were adapted to new

kinds of calculation suited to their local setting. Following Claude Lévi-Strauss’s image of the

bricolage, Kaiser described the adaptation of the diagrams as a form of tinkering.40 However,

“tinkering” is just another form of the “busy hands” explanation criticized above. The fact that

we can see the moving hands of the scientists (or the traces produced by such an activity)

does not mean that there is nothing else going on. What the anthropological metaphor of

the tool absconds is the mental process that guides the “tinkering” (or the “shuffling” and “re-

37. Klein, Experiments, Models, Paper Tools, 242-243.
38. Ibid., 242.
39. Once the manipulation of Berzelian formula has been mastered, the material support of paper was not

required for actually manipulating the formulae.
40. Kaiser, Drawing Theories Apart : The Dispersion of Feynman Diagrams in Postwar Physics, 18-19. For the

description of the variations as forms of “tinkering” see ibid., 8, 18, 134, 174, 176, 199, 207, 230, 253, 282, 308, 317,
377.
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shuffling”). Lévi-Strauss’ image of the bricolage suffers from a second limitation: it assumes

that new tools are created solely through a process of recombination which uses a finite set of

forms or patterns.41 However, when regarded historically, no system is finite or closed; new

rules and patterns emerge which are not just a recombination (or reshuffle) of a finite set of

objects. The fact that knowledge cannot be reduced to a finite set of actions and rules was

one Michael Polanyi’s main insights behind his concept of personal knowledge or tacit knowl-

edge. While Kaiser builds on Polanyi’s tacit knowledge to explain how physicists acquired the

skill to manipulate Feynman diagrams, he appeales to Lévi-Strauss’s bricolage to explain how

diagrams were modified. The paradox of this combination between Polanyi and Lévi-Strauss

is that the acquisition of skills seems to require great effort (institutionalized and localized

regimens of practice and training), while innovation occurs almost spontaneously through

seemingly effortless acts of tinkering.

In a remark to the Vienna Circle in 1930, Wittgenstein pointed out that:

In Cambridge I have been asked whether I believe that mathematics is about strokes of ink on
paper. To this I reply that it is so in just the sense in which chess is about wooden figures. For
chess does not consist in pushing wooden figures on wood. If I say, ‘Now I shall get a queen with
very terrible eyes and she will drive everything from the field’, you will laugh. It does not matter
what a pawn looks like. It is rather the totality of rules of a game that yields the logical position
of a pawn. A pawn is a variable, just like ‘x’ in logic.42

Of course, Wittgenstein is only partially right. It can matter how a pawn looks like because

the size and color of the pieces or the board matters can affect the concentration and attention

of a player; and so does the light in the room, or the diet of the players, and a whole array of

myriad factors often known only to the individual player. However, all these material factors

that could affect the players’ concentration play only a marginal role in the actual reasoning

process of a chess player. By “mangling” a disparate array of factors within the non-descriptive

41. E.g. “The characteristic feature of mythical thought is that it expresses itself by means of a heterogeneous
repertoire which, even if extensive, is nevertheless limited”, in Claude Lévi-Strauss, The Savage Mind (University
of Chicago Press, 1966), 17.
42. Wittgenstein, Philosophical Investigations, 103-104.
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term of “work”, historians of the theoretical sciences or of mathematics have become less

capable of understanding what truly matters in seeing or understanding a solution. Of course,

theoreticians or mathematicians often need to write things down on paper, but the heavy work

(and the actual effort) does not invovle neither the paper nor the hands.

The inability of specifying all the acquired knowledge and skills (Polanyi’s tacit knowledge)

or all the hypotheses (the Duhem–Quine thesis) only comes to show that historians cannot

have a full understanding of when a practice or a tool is productive, effective or efficient, or

what can actually make it to be productive, effective or efficient. I will illustrate this line

of criticism with an example from Max Wertheimer’s Productive Thinking (1st ed. 1945).43

Visiting a classroom in which children had been previously taught how to find the area of a

parallelogram, Wertheimer was left unpersuaded by the students’ exhibition of their newly

acquired skill:

“What have they learned?” I ask myself. “Have they done any thinking at all? Have they grasped
the issue? Maybe all that they have done is little more than blind repetition. To be sure, they have
solved promptly the various tasks the teacher has assigned, and so they have learned something
of a general character, involving some abstraction. Not only were they able to repeat word for
word what the teacher said, there was easy transfer as well. But–have they grasped the issue at
all? How can I clarify it? What can I do?”44

To test the real understanding of the students (what Wertheimer called productive thinking),

he gave them a parallelogram drawn differently from the one they were accustomed to (see

Fig. 1.1). Though the great majority of students were able to solve the examples chosen by the

teacher, this time the reactions varied:

Some are obvious taken aback.

One pupil raises his hand: “Teacher, we haven’t had that yet.”

43. While there are more recent sources that one could employ, I chose Wertheimer’s book because of his role
in the development of Gestalt psychology which has been so influential in the development of history of science,
especially through the famous duck-rabbit digram invoked byThomas Kuhn. See Kuhn, The Structure of Scientific
Revolutions, 111-120; Kuhn, The Essential Tension : Selected Studies in Scientific Tradition and Change, 6-7.
44. Max Wertheimer, Productive Thinking (New York: Harper & Brothers, 1959), 15.
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Others are busy. They have copied the figure on paper, they draw the auxiliary lines as they
were taught, dropping perpendiculars from the two upper corners and extending the base line
(see Fig. 1.1b). Then they look bewildered, perplexed.

Some do not look at all unhappy; they write firmly below their drawing: “The area is equal to the
base times the altitude”–a correct subsumption, but perhaps an entirely blind one. When asked
wether they can show it to be true in this case, they too become perplexed.

[In the footnote:] A boy from another class, observing these difficulties, whispers to me, “In our
class we have learned how to work this overlapping example. It’s the teacher’s fault. Why didn’t
he teach them how to do it in the overlapping diagram too?”45

(a) (b)

Figure 1.1
(a) Students were taught to find the area of the parallelogram abcd by dropping the perpendiculars de and cf .
Because the two triangles ade and bcf were equal, and edcf formed a rectangle, the area of the parallelogram
was equal to the area of the rectangle, and thus equal to the product of the base and the height. (b) However,
for the new parallelogram the same construction failed to produce the expected rectangle. Redrawn after Max
Wertheimer, Productive Thinking (New York: Harper & Brothers, 1959), 14-16.

This example illustrates remarkably well the issues articulated above. Histories focused

exclusively on acquired skills (and which do not take into account some form of thinking)

cannot explain when and how a historical actor decides that an acquired skill or tool is ap-

plicable to a certain problem. Furthermore, the blind and mechanical use of the tool or skill

(through the mere repetition of known steps) will not always give rise to a correct solution

(and sometimes they will generate no solution at all). Talk about “tinkering” or “generaliza-

tion” will fail to explain why some students were successful with the new task (assuming that

they had not seen this problem before). The successful students managed to solve the problem

not because they drewmore diagrams and scribbled more assiduously, but rather because they

were able to look for a solution and see a solution.46 Of course, one might be led to say that the

45. Wertheimer, Productive Thinking, 15-16.
46. What looking for and seeing actually means is an answer to be provided by psychology. See for example
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successful (or productive) application of an acquired skill or tool to a new problem is a skill

in itself. Though, it can be described as a skill, it is not a skill acquired through repetition and

drilling. If it were then students could never be differentiated through a problem that forced

them to apply their skill in a novel situation and which tested their “true” understanding (or

what Wertheimer calls their “intelligent reactions”).

This issue should bring to focus an often neglected dimension of Michael Polanyi’s con-

cept of tacit knowledge. So far sociologists and historians have appealed to Polanyi’s concept

to explain why the replication of an experiment or the acquisition of a method requires direct,

face-to-face contact and cannot be always achieved through purely textual (or verbalized)

means.47 However, the understanding developed by students, though it is developed through

training, cannot be explained solely in terms of such training; often, it is a form of “personal

knowledge” (as it was first called by Polanyi), rather than a knowledge shared through per-

sonal contact and direct manipulations. Even in the case of tacitly shared knowledge, what

is transferred is not so much the knowledge but the results – the practitioners are usually

certified that they can reproduce a certain result.

Technical skills are, of course, required to solve a scientific problem. Wertheimer’s ex-

ample, however, points to a profound distinction between the thoughtless, blind, mechanical

repetition of a preexisting solution, and the intelligent, innovative, imaginative solution of a

new problem. While some students could see the two diagrams in Fig. 1.1 as being the same

despite being different (i.e. they could transform one into the other), others could not see any

connection between the two – “Teacher, we haven’t had that yet”. To understand how sci-

Herbert Simon’s tackling of the question: “What does an experienced chess player ‘see’ when he looks at a chess
position?”, in William G. Chase and Herbert A. Simon, “Perception in Chess,” Cognitive psychology 4, no. 1 (1973):
55–81; see alsoWilliam G. Chase and Herbert A. Simon, “TheMind’s Eye in Chess.,” Visual information processing
4 (1973): 215–281.
47. Kaiser employed tacit knowledge for its ability of emphasizing the “nontextual means of transmission”, see

Kaiser, Drawing Theories Apart : The Dispersion of Feynman Diagrams in Postwar Physics, 10-13; Warwick, Masters
of Theory : Cambridge and the Rise of Mathematical Physics; Kathryn Mary Olesko, “Tacit Knowledge and School
Formation,” Osiris 8, no. 1 (1993): 16–29.
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entists think when they use graphical objects means to be able to distinguish between such

cases: between scientists who perceive graphical objects as being related and those who see

them as unrelated. George Gamow used to tell his students that as a theoretical physicist

you can lie down on a couch, close your eyes, and no one will know whether or not you are

working.48 This image has been rejected by historians who have rightfully insisted on showing

that labor, practice and skill are essential for theoretical science. However, historians of sci-

ence have failed to show why closing your eyes and thinking about a problem is an essential

part of theoretical science (and not only). The great challenge ahead is to make the immate-

rial material without corrupting its essence (or confounding it with its material support and

manifestations).

3 THE GRAPHICAL DIMENSION

There is a vast literature on scientific visualization, representation, picturing, imaging etc.49

These studies have generally focused on the work required to produce scientific images, that

is objects which can be trusted to “represent” or “make visible” certain aspects of nature. Spe-

cial attention has been paid to the philosophical and historical tensions between the visual,

logical and verbal domains. In a few cases, historians have construed diagrams and models as

“cognitive tools” which can facilitate cognitive processes such as pattern-matching and visual

inference.50 While such histories of visual culture analyze the status, role, meanings etc. of

48. Kaiser, Drawing Theories Apart : The Dispersion of Feynman Diagrams in Postwar Physics, 7-8.
49. For a recent overview study see Klaus Hentschel, Visual Cultures in Science and Technology : A Comparative

History (New York: Oxford University Press, 2014). See also Michael Lynch and Steve Woolgar, eds., Representa-
tion in Scientific Practice (MIT Press, 1990); M. NortonWise, “Making Visible,” Isis 97, no. 1 (2006): 75–82; Galison,
Image and Logic : A Material Culture of Microphysics; Peter Galison and Caroline A. Jones, eds., Picturing Science,
Producing Art (New York: Routledge, 1998); Peter Galison, “Images Scatter Into Date, Data Gather Into Images,”
in Iconoclash, ed. Bruno Latour and Peter Weibel (Karlsruhe: Zentrum für Kunst und Medientechnologie, 2002),
300–323; James Elkins, The Domain of Images (Ithaca: Cornell University Press, 2001); Lorraine Daston and Peter
Galison, Objectivity (New York : Cambridge, Mass.: Zone Books, 2007); Catelijne Coopmans et al., eds., Represen-
tation in Scientific Practice Revisited (Cambridge, Massachusetts: The MIT Press, 2014, 2014); Wolfgang Lefèvre,
Picturing Machines 1400-1700 (Cambridge: MIT Press, 2004).
50. Gooding, “Visualizing Scientific Inference”; Gooding, “Cognition, Construction and Culture”; Netz, The

Shaping of Deduction in Greek Mathematics; John B. Bender and Michael Marrinan, The Culture of Diagram (Stan-
ford, Calif.: Stanford University Press, 2010).
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an already given object which can be specified from the beginning of the study (this image, or

this series of images), the history of the historical category of the graphical needs to start by

bringing together its objects of interest. This study does not aim to be a synthesis of visual

histories about graphical objects, but rather a history of the graphical category reconstructed

through a period eye looking at and valuing various graphical objects. It is a history of the

graphical within the objects.

The focus on the category of the graphical rather than on the graphical objects per se

allows us to move beyond the unchallenged interpretation of graphical objects as “tools” or

“working objects”.51 Though insightful and productive, such an interpretation only provides an

explanation for the isolated role and use of graphical objects. The only fact which matters for

this interpretation are the intrinsic qualities of the graphical objects and not their groupings

and associations. By focusing on the category of the graphical, this study will reveal the role

played by the historical perception of family resemblances between graphical objects. David

Kaiser has alluded to a similar “associative” explanation for why Feynman diagrams sticked

as opposed to the dual diagrams. One cannot explain the different “staying power” of these

diagrams if they were construed as paper tools which relied solely on habit and inculcation.

Kaiser’s explanation invoked the “realist associations” of the Feynman diagrams based on their

similarity to “real” photographs of “real” particles.52 This appeal to “realism” has been rightly

criticized by Adrian Wüthrich.53 Rather than “realism”, we consider the historical association

of Feynman diagrams and particle trajectories as a more appropriate explanation. It is not the

“realism” of the representations which matters but its density of meanings and associations.

Previous studies have predominantly dealt with the isolated histories of graphical objects

such as graphical representations, graphical methods, or graphical instruments.54 For exam-

51. For “working objects” see Bender and Marrinan, The Culture of Diagram.
52. Kaiser, Drawing Theories Apart : The Dispersion of Feynman Diagrams in Postwar Physics, 362-373.
53. Adrian Wüthrich, The Genesis of Feynman Diagrams (Springer Science & Business Media, 2010), 9-11.
54. For the history of graphical representations see: H. Gray Funkhouser, “Historical Development of the

Graphical Representation of Statistical Data,” Osiris 3 (1937): 269–404; Howard Wainer, Graphic Discovery: A

20



INTRODUCTION

ple, for historians interested in graphical instruments such as the autographs, the “graphic

method” is only “the technique of using an automatic recording instrument”.55 In contrast, for

the 19th century French physiologist Étienne-Jules Marey the graphical method was a “lan-

guage” for representing and inscribing phenomena which applied both to experimental plots

and self-recording instruments. Not only graphical representations, methods and instruments

have been analyzed in isolation from each other, but even the individual instances of these

objects have remained historiographically disconnected. Historical studies have usually dealt

with narrowly contextualized histories of some particular examples, while the broader works

have only synthesized a thematically and chronologically disjoint array of objects.56 Thus, a

Trout in the Milk and Other Visual Adventures (Princeton University Press, 2013); Howard Wainer, Visual Revela-
tions : Graphical Tales of Fate and Deception from Napoleon Bonaparte to Ross Perot (New York: Copernicus, 1997);
Thomas L. Hankins, “Blood, Dirt, and Nomograms: A Particular History of Graphs,” Isis 90, no. 1 (1999): 50–80;
Thomas L. Hankins, “A ”Large and Graceful Sinuosity”. John Herschel’s Graphical Method,” Isis; an international
review devoted to the history of science and its cultural influences 97, no. 4 (2006): 606–633; Laura Tilling, “Early
Experimental Graphs,” The British Journal for the History of Science 8, no. 3 (1975): 193–213; for graphical meth-
ods see: Dominique Tournes, “Pour une histoire du calcul graphique,” Revue d’histoire des mathématiques 6, no. 1
(2000): 127–161; Dominique Tournes, “L’intégration graphique des équations différentielles ordinaires,” Historia
Mathematica 30, no. 4 (2003): 457–493; Dominique Tournes, “Diagrams in the Theory of Differential Equations
(Eighteenth to Nineteenth Centuries),” Synthese 186, no. 1 (2012): 257–288; Erhard Scholz, Symmetrie, Gruppe, Du-
alität: Zur Beziehung Zwischen Theoretischer Mathematik Und Anwendungen in Kristallographie Und Baustatik Des
19. Jahrhunderts, vol. Bd. 1 (Basel ;Boston: Birkhäuser Verlag, 1989); Erhard Scholz, “Graphical Statics,” in Com-
panion Encyclopedia of the History and Philosophy of the Mathematical Sciences, red. Ivor Grattan-Guinness, vol. 2
(London ; New York: Routledge, 1994), 987–93; Konstantinos Chatzis, “La Réception de La Statique Graphique
En France Durant Le Dernier Tiers Du XIXe Siècle,” Revue d’histoire des mathématiques 10, no. 1 (2004): 7–43; for
graphical instruments: H. E. Hoff and L. A. Geddes, “The Beginnings of Graphic Recording,” Isis 53, no. 3 (1962):
287–324; H. E. Hoff and L. A. Geddes, “The Rheotome and Its Prehistory: A Study in the Historical Interrelation
of Electrophysiology and Electromechanics,” Bulletin of the history of medicine 31, no. 3 (1957): 212–234, contd;
H. E. Hoff and L. A. Geddes, “Graphic Registration before Ludwig: The Antecedents of the Kymograph,” Isis 50,
no. 1 (1959): 5–21; H. E. Hoff and L. A. Geddes, “The Technological Background of Physiological Discovery: Bal-
listics and the Graphic Method,” Journal of the History of Medicine and Allied Sciences XV, no. 4 (1960): 345–363;
Soraya De Chadarevian, “Graphical Method and Discipline: Self-Recording Instruments in Nineteenth-Century
Physiology,” Studies in history and philosophy of science 24, no. 2 (1993): 267–291; Robert Michael Brain, “The
Graphic Method: Inscription, Visualization, and Measurement in Nineteenth-Century Science and Culture” (PhD
diss., University of California, Los Angeles, 1996); M. Norton Wise and Robert M. Brain, “Muscles and Engines:
Indicator Diagrams and Helmholtz’s Graphical Methods,” in The Science Studies Reader, ed. Mario Biagioli (Taylor
& Francis, 1999), 51–66. One of the few studies which connect graphical representations to graphical instruments
seeThomas L. Hankins and Robert J. Silverman, Instruments and the Imagination (Princeton: Princeton University
Press, 1999).
55. Brain, “The Graphic Method,” 8.
56. For some examples of broad histories see Hentschel, Visual Cultures in Science and Technology; Daniel

Rosenberg and Anthony Grafton, Cartographies of Time, 1st ed. (New York: Princeton Architectural Press, 2010);
Bender andMarrinan,TheCulture of Diagram; MarkGreaves,ThePhilosophical Status of Diagrams (Stanford, Calif:
CSLI Publications, 2002). For an example of localized history see Hankins, “A ”Large and Graceful Sinuosity”.
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history of graphical representations or of graphical instruments reads as a long list of disparate

examples.

Such studies have a common shortcoming: a methodological inability of specifying the

historical value of these objects as graphical objects. While the graphical dimension of an ob-

ject is valued by the contemporary eye, there is no reason to project such values onto a period

eye. Not all instruments which produced a graphical trace and not all graphical methods were

employed because they were valued as graphical. Paraphrasing Peter Galison, a commitment

to one graphical object is not necessarily a commitment to all graphical objects.57 Further-

more, a commitment to a particular graphical object because of its graphical quality is not

necessarily a commitment to the graphical in general.

Most historical studies have construed graphical objects as innovations which punctured

history through the work of a few individuals:

Graphs, unambiguously recognizable as such, appeared in the last quarter of the eighteenth cen-
tury, probably independently, in three places – in the indicator diagram of James Watt, in the
lineal arithmetic of William Playfair, and in the scientific writings of Johann Heinrich Lambert.58

If construed solely as tools, it is hard to understand why graphical objects were not immedi-

ately embraced:

Why, then, was the scientific climate in the 1760s such that Lambert’s methods could not be assim-
ilated nor the usefulness of graphs be recognized, whereas in the 1850s graphical representation
became a popular technique? … If Forbes was able to borrow from Lambert, it is difficult to say
why earlier workers did not do so.59

Two explanatory models have been invoked:

1. Lack of knowledge. Either the writings of the innovators have remained unknown and

John Herschel’s Graphical Method.”
57. “And yet a commitment towards one kind of visualization is not necessarily a commitment to them all”, in

Galison, “Images Scatter Into Date, Data Gather Into Images,” 307-8.
58. Hankins, “Blood, Dirt, and Nomograms,” 52.
59. Tilling, “Early Experimental Graphs.”
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obscure, or the productive use of such graphical objects required some particular training or

knowledge:

Lambert’s graphical method did not catch on immediately, which may be attributed in part to the
obscurity of much of his writing and in part to the unfamiliarity of graphs themselves. … The
concept of a graph is abstract, and its meaning will seem obvious only to those who are familiar
with it.60

A similar explanation has been offered by Kathryn Olesko who considered that the “rela-

tive unimportance in Prussian mathematics instruction of both descriptive geometry and the

graphical analysis of functions” could be the reason why Franz Neumann’s seminar from the

mid-19th century did not rely on “more imaginative uses of graphs”.61

2. Trust in the precision of numbers. Graphical methods and representation were not more

readily employed because they lacked rigor and precision:

We do not have any contemporary reactions to Lambert’s graphs, but the graphs of William Play-
fair, which became much better known than Lambert’s, brought forth the criticisms that they
“lacked rigor”, that they were mere “plays of the imagination” and “without importance” outside
of pedagogy. Those who were used to working with tables of numbers could persuade themselves
that in drawing graphs one lost the precision of the numbers themselves. It is probably for these
reasons that experimental and statistical graphs did not become popular until the 1830s.62

Olesko has also pointed out that for “Neumann’s students, the points comprising graphs lacked

certainty”.63 The use of graphical methods and representations was limited by the “value they

placed not only on precisionmeasurement but also on accuracy as determined by the closeness

of theoretical calculations and experimental results”.64

Though both explanatory models rely on well established narratives within history of sci-

ence (the use of tools requires particular regimens of training and practice; some objects and

60. Hankins and Silverman, Instruments and the Imagination, 120-1.
61. Kathryn Mary Olesko, Physics as a Calling: Discipline and Practice in the Königsberg Seminar for Physics

(Ithaca: Cornell University Press, 1991), 252.
62. Hankins and Silverman, Instruments and the Imagination, 120-1.
63. Olesko, Physics as a Calling: Discipline and Practice in the Königsberg Seminar for Physics, 256.
64. Ibid., 252.
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methods embody more closely certain moral and scientific ideals), they do not readily apply

in the case of graphical objects. First, among all mathematical methods graphical methods

required the least amount of knowledge and training, and in the second half of the 19th cen-

tury they were easily imitated and transfered. Second, graphical objects were disseminated as

the value of precision measurements steadily increased throughout the 19th century. To un-

derstand the multiplication and dissemination of graphical objects, one must first understand

how these objects were seen, valued and associated through a period eye.

4 OVERVIEW

Each of the first three chapters is focused on a particular group of graphical objects: graph-

ical methods, graphical instruments and graphical representations. It will be shown that the

category of the graphical did not emerge because of the multiplication of graphical objects (as

identified by a contemporary eye), and it was never only a simple and isolated description of a

given object or method. Instead, the graphical was a value-laden label which reflected and re-

inforced the epistemological and pedagogical programs of those who promoted this category.

Chapter 2 follows the emergence of the label graphical within various specific contexts,

such as Newton’s Principia, the mathematical textbooks of 18th century French astronomers,

and the newly founded École polytechnique as envisioned by Gaspard Monge and his follow-

ers. The use of graphical as a separate category only partially overlapping with the geometrical

will come to reveal the increasingly strenuous place of geometry within 18th century mathe-

matics. Chapter 3 reconstructs the period eye through which the action of autographs and self-

registering instruments was described and understood by historical actors. It will be shown,

against the common belief of many historians, that the initial purpose of these instruments

was not that of producing inscriptions or traces; instead, historical actors perceived the main

function of these instruments as being that of replacing an observer. Chapter 4 identifies the

weather charts of 18th century meteorologists as the first historically coherent grouping of
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graphical representations. By analyzing their role and value, an explanation is given for the

presence or absence of graphical representations in early 19th century publications.

Chapters 5 and 6 follow the development of two powerful conceptual, computational and

representational tools of late 19th century physics: the phase diagrams of thermodynamics

and the curves of magnetization of electromagnetism. While inspired by previous studies on

“paper tools” and “knowledge in transit”, the goal of these chapters is to explain the appeal

of diagrammatic practices before they were institutionalized in the practice and teaching of

physics and engineering. By reconstructing what some physicists saw when they first con-

structed and contemplated such diagrams and curves, these chapters reveal a new historical

dimension of diagrammatic practices. Such a historical understanding of diagrammatic prac-

tices is possible only if one interprets diagrams not only as paper tools, but also as graphical

objects. For this reason, the object of analysis is not the diagram qua tool (and the skills

required to use it or apply it to new purposes), but rather its graphical dimension enriched

by meanings generated through novel associations, patterns and analogies. In contrast with

what was claimed by previous studies, these chapters show that the dissemination of partic-

ular graphical representations such as the phase diagrams and the magnetic curves were a

cause and not a consequence of the acceptance and valuation of graphical representations in

general.

Chapter 7 explores the pedagogical role of graphical methods in the reform of the teaching

of mathematics at the secondary school level in Britain, France and Germany. If in the late

18th century (as seen in Chapter 2) the graphical was always part of a dichotomy – opposed to

trigonometry, algebra or analysis – and was used as boundaries between various disciplines,

by the early 20th century the graphical was invoked as a place of intersection and coordination

for geometry and algebra, mathematics and experimental science, induction and deduction.
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· 2 ·
Operations and Constructions

1 GEOMETRICAL OR GRAPHICAL

In the seventeen volumes of the first edition of L’Encyclopédie, ou Dictionnaire raisonné des

sciences, des arts et des métiers (1751-1772) there is only one small entry that defined the term

“graphique”:

GRAPHIQUE, adjectif, (Astron.) on appelle en Astronomie opération graphique, celle qui consiste
à résoudre certains problemes d’Astronomie par le moyen d’une ou de plusieurs figures tracées
en grand sur un papier, & relatives à la solution de ces problèmes. Si ces opérations ne donnent
pas une solution extrèmement exacte, elles donnent en récompense la solution la plus prompte,
& fournissent une premiere approximation commode, qu’on peut ensuite pousser plus loin en
employant le calcul. Ainsi on employe les opérations graphiques pour avoir d’abord une solution
ébauchée du problème des cometes, de celui des éclipses, & de quelques autres. On peut en voir
des exemples dans différens ouvrages d’Astronomie. (O)1

The definition is striking because it restricted “graphique” only to astronomy as a type of

solution for some problems related to eclipses and comets. Furthermore, “graphique” was only

used in conjunction with “opération”, and not “construction” or “méthode” as it will be known

throughout the 19th century. The eight volume Dictionnaire encyclopédique et biographique de

l’industrie et des arts (1881-1891) provides a term of comparison. Its supplement included a

two-page entry on “graphique” that was defined as:

Graphique. On appelle graphique ou diagramme, tout tracé composé de lignes droites ou courbes,
ou d’espaces teintés ou recouverts de hachures, destiné à représenter dans son ensemble la marche
d’un phénomène scientifique, industriel, économique, commercial, etc.2

1. Denis Diderot and Jean D’Alembert, Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers
(Paris: Chez Briasson, 1751–1772), vol. 7, 859. With the exception of this entry, “graphique”, “graphiques” or
“graphiquement” are altogether absent from L’Encyclopédie or from the mathematical works of Jean d’Alembert
who wrote the entry.

2. Eugène-Oscar Lami, Dictionnaire encyclopédique et biographique de l’industrie et des arts industriels: Supplé-
ment (Paris: Librairie des dictionnaires, 1891), 916-918.

26



OPERATIONS AND CONSTRUCTIONS

The article aimed to illustrate the extensive use of diagrams (or “graphiques”) in all spheres of

activity. It briefly described: the curve of a function; the experimental curve fitting observa-

tions; the thermodynamic cycles used to compute the efficiency of engines; the meteorological

curves; the curves of a moving body; diagrams produced by self-registering instruments that

“today are universally applied to a multitude of observations of all sorts” and which could

automatically record through a trace on a piece of paper the air temperature, the blood pres-

sure, or the pressure inside a steam engine; polar coordinate diagrams; diagrams of discon-

tinuous quantities that employ rectangles of different height or shading; geographical maps

that indicate the population, degree of instruction, or the commercial and industrial business,

etc. The other volumes included references to “statique graphique”, “construction graphique”,

“méthode graphique”, “représentation graphique”, “travail graphique”, “tableaux graphiques”,

“arts graphiques”, “procédés graphiques”, “configuration graphique”, “tracé graphique”, “in-

dication graphique”, “théorie graphique”, “dessin graphique”, “erreur graphique”, “traduction

graphique”, “modèle graphique”, “machines graphiques”, etc.

This prolixity of terms and diagrams couldmistakenlymake us believe that graphical meth-

ods were hardly used before the 19th century, though that was not the case. Eighteenth cen-

tury artists and engineers were taught “l’art du lavis”, “le dessin en perspective ou le dessin

géométral”, “l’usage des plans, profils et élévations”, “l’art de lever les plans et les cartes”, “l’art

du trait”, “le tracé des ombres”, etc. What should intrigue us is not the variety of forms, but

rather their coalescence under the unifying category of the graphical. Did it make a differ-

ence if one referred to “a graphical representation” or “a graphical construction” instead of

“a trace” or “a construction by rule and compass”? Though the immediate meaning of these

expressions is almost identical, carefully tracking their use along a longue durée history can

reveal new alignments of bodies of practice and knowledge, and the rhetorical means through

which such realignments were carried out.

For example, though there was a continuity between the practices and diagrams used in
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early-modern stone and wood cutting and those of 19th century descriptive geometry, the lan-

guage employed to describe these domains of activity differed in significant ways. Descriptive

geometry employed a term like “graphique” to coordinate different aspects of its academic

teaching – the lectures and the practical work, the theory and its applications, the relations

between engineers and artists, or the opposition between geometry and analysis. The activity

of stone and wood cutters was centered around “le trait”, a term which cannot be fully reduced

to “graphical trace” – because “les traits” were often employed not only on paper but also on

materials like wood and stone, or on the surface of walls and floors – nor to “graphical method”

– because “le trait” was used not as a representation or solution, but as an intermediate step

that assisted one in cutting, building or assembling. Furthermore, the social identity of the

workers was also constructed around the term as in the case of the noms compagnonniques,

usually formed by combining the origin of the compagnon and some personal characteristic

such as “L’Ami du Trait”:

O vous, dont la modestie, dont les talents sont connus et appréciés, ô vous Lyonnais L’Ami du
Trait, Toulousain La Prudence, Suisse Le Résolu, Lafrance L’Ami du Trait, Bourguignon Franc-Cœur,
Gascon L’Ami du trait, vous tous enfin, Compagnons courageux, qui, marchant dans la même voie,
vous livrez à la démonstration, non seulement par métier, mais par devoir, mais par dévoûment,
mais par amour pour vos semblables, continuez la tâche que vous vous êtes imposée!3

The close study of such terminology allows one to supplement visual analyses or histories

of practice which tend to group together objects that look the same or which have the same

material support. A history of categories/terminology reveals the ways in which categories

were used to homogenize heterogeneous groups of objects (or to bring together objects which

were not immediately or intuitively grouped under one heading). Such coordination could be

carried out either by grouping together various objects under the same label, or by creating

relations between various groups of objects by using partial labels (see Fig. 2.1). While the

study of concepts has focused on meaning, the study of categories explores the coordination

3. Agricol Perdiguier, Le livre du compagnonage, 2nd ed. (Paris: Pagnorre, 1841), vol. 1, 210.
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of meaning through common terms or labels. The difference can be tracked back to Wittgen-

stein’s concept of “family resemblance” [Familienähnlichkeiten]. Historians have appealed to

Wittgenstein to study the break down of meanings around localized practices and their coordi-

nation along trading zones. However, their attention has been solely focused on the meaning

of the concepts forming a family, without considering the implications that a family of con-

cepts is united under one name/label/category. The very existence of vague and general words

like “game” or “graphical” should become a concern and it demands further investigation.

Figure 2.1

1.1 “Opération Graphiqe” in French Astronomy

The definition of “graphique” from L’Encyclopédie was reproduced in L’Encyclopédie

Méthodique: Mathématiques (1784-1789) with only the last sentence being replaced by:

On peut en voir des exemples dans mon Astronomie. L’Abbé de La Caille a donné une manière
commode pour trouver les longitudes en mer par une opération graphique. Nouveau Traité de
navigation, Bouguer & La Caille, 1769. (D. L.)4

“D. L.” were the initials of the astronomer Jérôme de Lalande (1732-1807) who wrote all the

entries related to astronomy in L’Encyclopédie Méthodique: Mathématiques. The shift in lan-

guage between the two encyclopedias is striking –while “graphique” (or any of its other forms)

was never used in the other articles of L’Encyclopédie, Lalande’s articles from L’Encyclopédie

Méthodique referred several times to “opération graphique” (especially when describing the

4. Encyclopédie Méthodique. Mathématiques (Paris: Chez Panckoucke, 1784), vol. 2, 149.
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construction of a dial) and to a “méthode graphique, par laquelle on peut trouver sans calcul,

avec la règle et le compas, les phases d’une éclipse de soleil à deux ou trois minutes près, ce

qui est très-suffisant pour prédire des eclipses en différens pays de la terre, & pour tous les

usages de l’astronomie”.5 With very few exceptions, all the articles that used “graphique(s)”

were signed by Lalande.6

Lalande’s reference to the astronomer Nicolas Louis de La Caille (1713-1762) could not

have been casual as it was La Caille who first made extensive use of the term “opérations

graphiques” starting with a mémoire presented to the Académie royale des sciences in 1744. In

this mémoire La Caille proposed a more precise method for determining the phases of a solar

eclipse or the occultations of fixed stars by the moon. He compared his method of determining

the phases of an eclipse “par le calcul” to Domenico Cassini’s determinations “par des opéra-

tions graphiques”.7 This characterization is not to be found in Cassini’s own descriptions of

the method who only emphasized its originality and referred to its geometrical constructions.

La Caille chose “graphique” instead of the common term “géométrique” because he drew a

distinction between the geometrical principles underlying his method, and the actual means

of computation. Both La Caille and Cassini employed a geometrical approach that projected

the eclipse on a convenient plane. But while astronomers generally used only orthographic

and stereographic projections, La Caille “reduced to a general method the computation of all

the imaginable projections of the sphere”.8 He described his goal as finding “la manière la plus

géométrique, la plus directe, de faire ce calcul & cette projection”.9 Astronomers who substi-

tuted the “boring computations [calculs ennuyeux]” with “opérations graphiques” could only

5. Encyclopédie Méthodique. Mathématiques, vol. 1, 592.
6. “graphique” was also used as “opération graphique” in the entry on “Trigonométrie” by d’Alembert and

in a preliminary note by Prony. The term might have had a ring of novelty as it was mistakenly replaced by
“géographiques” in Condorcet’s entry on “méthode”: “L’astronomie conserve des descriptions géographiques &
des constructions géométriques”; the error was pointed out in the errata, ibid., vol. 2, 390-391; vol. 3, 176.

7. Nicolas Louis de La Caille, “Sur le calcul des projections en général, et en particulier sur le Calcul des
Projections propres aux Eclipses du Soleil & aux Occultations des Etoiles fixes par la Lune,” Histoire de l’Académie
royale des sciences. Année MDCCXLIV, 1748, 205.

8. Ibid., 193.
9. Ibid., 205.
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identify the time of an eclipse with a precision of half a minute – an insufficient result when

compared to the precision of the observations that could determine the time up to a second.10

In 1740 La Caille was appointed to teach mathematics at the Collège Mazarin and shortly

after he started publishing his lessons.11 Several of his textbooks employed the distinction be-

tween “calcul” (usually referring to “le calcul de trigonométrie”) and “opérations graphiques”.

Leçons élémentaires d’astronomie géométrique et physique (1st ed. 1746) described how to “de-

termine graphically all the circumstances of the occultation of a satellite” or how to “determine

graphically the phases of a solar eclipse”. Though these “graphical operations” were only pre-

cise up to a few minutes, they were sufficient if one wanted to prepare for an eclipse or to use

this first rough estimate within a more precise “determination through computations”.12 In

Leçons élémentaires d’optique (1st. ed 1750) a solution could be found “par la Trigonométrique

ou par une opération graphique”.13 In the Nouveau traité de navigation (1760), a treatise writ-

ten by Pierrre Bouguer but expended after his death by La Caille, a special section was added

which supplemented the trigonometric calculations with graphical operations because

Le calcul trigonométrique est plus propre à donner de la précision aux opérations précédentes;
mais il est plus long & plus susceptible d’erreurs causées par faute d’attention. Le Pilote zélé pour
son art & pour son devoir, doit tâcher de faire tous ses calculs par ces deux méthodes successive-
ment. Les opérations graphiques lui donneront son résultat en très-peu de temps, & serviront à
guider le calcul trigonometrique qui lui donnera plus d’exactitude dans ce résultat.14

Published in several editions, La Caille’s textbooks were popular and influential.15 With

10. The precision of the “opérations graphiques” was diminished by several simplifying assumptions that were
required for the graphical representation (e.g. the Earth is immobile during the eclipse); also, in certain cases the
lines were almost parallel and their intersection point could not be precisely determined.
11. René Taton, ed., Enseignement et diffusion des sciences en France au XVIIIe siècle (Paris: Hermann, 1964),

144-145.
12. Nicolas Louis de La Caille, Leçons élémentaires d’astronomie, géometrique et physique (Paris: chez H. L.

Guerin & L. F. Delatour, 1755), 349.
13. Nicolas Louis de La Caille, Leçons élémentaires d’optique (Paris: chez H. L. Guerin & L. F. Delatour, 1756),

162.
14. Pierre Bouguer andNicolas Louis de La Caille,Nouveau traité de navigation: contenant la théorie et la pratique

du pilotage (Paris: chez H. L. Guerin & L. F. Delatour, 1760), 258.
15. Leçons élémentaires d’astronomie géométrique et physique was published in 1746, 1755, 1761, 1780 (aug-

mented by Lalande); it was translated into Latin (1759, 1765); English (1750). Leçons élémentaires d’optique was
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them spread not only La Caille’s mathematical methods but also his way of talking. La Caille’s

discussion of trigonometry inspired Antoine-René Mauduit, the professor of mathematics at

the Collège Royal and l’Académie royale d’Architecture, who also employed La Caille’s dis-

tinction in his Principes d’astronomie sphérique (1765) and Leçons de géometrie (1773; 1790).16

In the preface to the Principes d’astronomie sphérique Mauduit opposed the use of logarithms

to

constructions géométriques, par lesquelles, avec la regle & le compas, on peut aisément trouver
toutes les parties d’un triangle à résoudre. On les a nommées graphiques, parce qu’on y emploie
différentes projections ou développements du triangle.17

Because the term “graphique” was still novel it was often followed by an explanation, such

as that in La Caille’s Nouveau traité de navigation: “opérations graphiques, c’est-à-dire, des

constructions des figures faites sur le papier avec la Règle & le compas”.18 Mauduit used the

term almost interchangeably with “géométrique” referring to “les solutions géométriques ou

graphiques” and titling a chapter “De la Résolution Graphique ou Géométrique des Triangles

sphériques quelconques”. This indecision of choosing or distinguishing between the two terms

can also be encountered in François Bedos de Celles’s La gnomonique pratique (1st ed. 1760;

2nd ed. 1774): a section titled in the first edition “Maniere géométrique de tracer le Cadran

horisontal” was renamed in the second edition “Maniere graphique ou géométrique de tracer le

Cadran horisontal”. The same change was also carried out in the Preface which now advertised

the use of “deux méthodes, l’une est géométrique ou graphique; elle opère avec la simple règle

& le compas; l’autre s’exécute par le calcul”, or “Nous donnerons deux manieres de le décrire;

l’une graphique ou géométrique, c’est-à-dire, par la regle & le compas, & l’autre par le calcul”.19

published in 1750, 1756, 1802 (new edition), 1807, and 1810; it was translated in Latin (1757) – Taton, Enseignement
et diffusion des sciences en France au XVIIIe siècle, 157.
16. For Mauduit’s teaching see ibid., 277, 283-285, 452.
17. Antoine René Mauduit, Principes d’astronomie Sphérique (Paris: chez H. L. Guerin & L. F. Delatour, 1765),

iii.
18. Bouguer and La Caille, Nouveau traité de navigation, 210.
19. François Bedos de Celles, La gnomonique pratique ou l’art de tracer les cadrans solaires avec la plus grande

précision, 2nd ed. (Paris: Chez Delalain, 1774), xiii, 78. The same passages without “graphique” can be found in
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Though a pupil of Joseph-Nicolas Delisle, Jérôme de Lalande came into frequent contact

with La Caille whom he greatly admired and “gloried in having been his disciple”.20 Lalande

further popularized the use of “graphical operation” in his Astronomie (1764, 1st ed.), which

was the standard textbook in the field. For example, Lalande showed how one could find the

parallax of the transit of Venus and Mercury “without computation” using instead “a very

simple graphical operation and that with a precision of tenths of seconds”. Otherwise,

the work is so long by the other methods that most astronomers neglect to compute their obser-
vations, to make use & to draw some results, because they are not aware of the way I will explain
how to execute the most difficult part of this work very quickly & with a sufficient precision.21

The Italian astronomer Antonio Cagnoli, a former student of Lalande and an avid reader

of his Astronomie, published in 1786 a treatise on spherical trigonometry that was praised by

Lalande as “le meilleur ouvrage qu’on ait fait sur la trigonometrie, et sur son application a

l’astronomie”.22 In his Traité de trigonométrie rectiligne et sphérique (1786) Cagnoli remarked

that “les opérations graphiques ne pouvant jamais atteindre à l’exactitude du calcul”.23 In a

chapter on the solution of spherical triangles with the “la regle et compas” he added

L’invention des logarithmes a rendu la résolution des triangles si précise et si prompte, que les
Géomètres ne tiennent plus aucun compte, pour ainsi dire, des opérations graphiques, sujettes à
des erreurs de plusieurs minutes, quelque attention, quelque soin qu’on y apporte. Cependant
comme cette espèce de solutions peut être utile dans certains cas qui n’exigent pas une exactitude
rigoureuse, ou pour ceux qui ne sont pas familiarisés avec le calcul, je ne laisserai pas de les indi-
quer en peu de mots, et sans faire usage de la méthode des projections, pour mettre ces solutions
à la portée d’un plus grand nombre de Lecteurs.24

the first edition, François Bedos de Celles, La gnomonique pratique ou l’art de tracer les cadrans solaires avec la
plus grande précision, 1st ed. (Paris: Briasson, 1760), iv, 59.
20. Ian Stewart Glass, Nicolas-Louis de La Caille: Astronomer and Geodesist (Oxford: Oxford University Press,

2012), 125, 144.
21. Joseph Jérôme de Lalande, Astronomie (Paris: Desaint & Saillant, 1764), vol. 2, 769-770.
22. The treatise was translated the same year into French. Joseph Jérôme de Lalande, Bibliographie astronomique

avec l’histoire de l’astronomie depuis 1781-1802 (Paris: la Republique, 1803), 598. For more on Cagnoli see Calogero
Farinella, “Da Montesquieu a Lalande. Antonio Cagnoli e una specola privata del Settecento,” Studi Settecenteschi,
no. 17 (1997): 227–264.
23. Antonio Cagnoli, Traité de trigonométrie rectiligne et sphérique (Paris: Chez Didot fils aı̂né, 1786), 168.
24. Ibid., 288.
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While “graphique” was not mentioned in the third edition of theDictionnaire de l’Académie

françoise (1740), it did appear in the fourth edition from 1762 where it was defined as:

GRAPHIQUE. adj. de t. g. Terme didactique. Il se dit particulièrement des descriptions, des
opérations, qui, au lieu d’être simplement énoncées par le discours, sont données par une figure.
Description graphique d’une éclipse de Soleil, de Lune, &c. Représentation graphique du passage de
Vénus sur le disque du Soleil. Opération graphique.

GRAPHIQUEMENT. adv. Il se dit en Astronomie, Des choses dont on donne la peinture, ou une
description graphique.25

1.2 Operationes Graphicas in Newton’s Principia

While it was mainly through La Caille’s and Lalande’s articles and textbooks that the term

“graphique” was popularized in French scientific literature, the use of the term had some

precedents, especially in Latin. The terms graphice/graphicè, Graphicarum were used several

times in Newton’s Philosophiæ Naturalis Principia Mathematica (1st ed. 1687; 2nd ed. 1713;

3rd ed. 1726) in conjunction with a method of determining from three given observations

the trajectory of a comet moving in parabola (Book 3, Proposition 41).26 The problem had

greatly troubled Newton. As late as June 1686, with the second book of the Principia already

completed in the previous summer, Newton complained to Halley that

The third [book] wants the Theory of Comets. In Autumn last I spent two months in calculations
to no purpose for want of a good method, which made me afterwards return to the first Book &
enlarge it with divers Propositions some relating to Comets others to other things found out last
Winter. The third I now designe to suppress. Philosophy is such an impertinently litigious Lady
that a man had as good be engaged in Law suits as have to do with her. I found it so formerly &
now I no sooner come near her again but she gives me warning. The two first books without the
third will not so well beare the title of Philosophiae naturalis Principia Mathematica & therefore

25. Dictionnaire de l’Académie française (Paris: B. Brunet, 1762), 836.
26. Isaac Newton, Philosophiae Naturalis PrincipiaMathematica, 1st ed. (London: Jussu Societatis Regiæ ac Typis

Josephi Streater. Prostat apud plures Bibliopolas, 1687), 271, 494, 497, 509; Isaac Newton, Philosophiae Naturalis
PrincipiaMathematica, 2nd ed. (Cambridge: Cornelius Crownfield, 1713), 273, 458, 475; Isaac Newton, Philosophiae
Naturalis Principia Mathematica, 3rd ed. (London: William & John Innys, 1726), 263, 499. The variations across
the three editions can be followed in Isaac Newton, Philosophiae Naturalis Principia Mathematica, ed. I. Bernard
Cohen and Alexandre Koyré (Cambridge, Mass.: Harvard University Press, 1972), 392, 716f., 732, 748.
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I had altered it to this De motu corporum libri duo: but upon second thoughts I retain the former
title.27

Several of Newton’s failed attempts have been preserved.28 Thefirst manuscript ofDeMotu

Corporum (Autumn 1684) included a brief scholium after one of the problems that described a

way of determining the orbits of comets and their periods of revolution. The method was not

applied to any observations, and only noted that “in the case computations prove troublesome

to astronomers, it will be enough to determine all these things by a geometrical procedure

by the description of lines [praxin Geometricam per descriptionem linearum]”.29 The revised

version of De Motu (1684-1685) presented a new method which employed a graphical determi-

nation followed by an arithmetical correction – “[a]ll these things I accomplish first graphically

[graphicè] by a rough, swift operation, then graphically still but with greater care, and lastly

by a numerical computation”.30 No computations were appended probably because themethod

proved to be defective. Newton’s successful method was presented in Proposition 41, Book 3

of the Principia which opened with the remark:

Having tried many approaches to this exceedingly difficult problem, I devised certain problems
[i.e., propositions] in book 1 which are intended for its solution. But later on, I conceived the
following slightly simpler solution.31

In the Principia Newton explained that he found the position of the comet using “partially

arithmetical and partially graphical operations [per operationes partim Arithmeticas partim

Graphicas]”.32 Because this method was only an approximation, the next proposition dealt

27. Letter to Edmund Halley on the Doctrine of Projectiles and Motions of the Heavens (1686).
28. Isaac Newton, The Mathematical Papers of Isaac Newton, ed. Derek Thomas Whiteside (Cambridge, London:

Cambridge University Press, 1967), 5, 524-531; Newton, The Mathematical Papers of Isaac Newton, vol. 6, 57-61,
483-507.
29. Newton, The Mathematical Papers of Isaac Newton, vol. 6, 60-61.
30. Ibid., vol. 6, 495.
31. Isaac Newton, The Principia: Mathematical Principles of Natural Philosophy, trans. I. Bernard Cohen and

Anne Miller Whitman (Berkeley: University of California Press, 1999), 901.
32. Newton, Philosophiae Naturalis PrincipiaMathematica, 494; Newton, Philosophiae Naturalis PrincipiaMathe-

matica, 458; Newton, Philosophiae Naturalis Principia Mathematica, 499. Newton commonly opposed arithmetical
and graphical operations. For example, he described the activity of an arithmetician as a substitution of numbers
for lines, multiplication for “drawing into a line [ductu in lineam]”, division for “application to a line [applicatione
ad lineam]” and vice versa, see Newton, The Mathematical Papers of Isaac Newton, vol. 7, 406f.
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with its correction, appropriately titled “To correct a comet’s trajectory that has been found

graphically [Trajectoriam Cometae Graphice inventam corrigere]”.33

I made all these determinations graphically [determinavi graphice] by a scale of equal parts and
by chords of angles, taken from the table of natural sines, constructing a fairly large diagram
[schema], that is, one in which the semidiameter of the earth’s orbit (of 10,000 parts) was equal to
16 1/3 inches of an English foot.34

Newton’s use of “graphice” was connected to a subtle but clear distinction that he drew

between geometry (or rational mechanics) and mechanics (or practical mechanics). This dis-

tinction was developed in the Preface to the Principia, which as Niccolò Guicciardini has ar-

gued, “must be read as part of Newton’s reflections on the scope and methods of geometry”.35

In the Preface it was remarked that

the description [descriptiones] of straight lines and circles, which is the foundation of geometry,
appertains to mechanics. Geometry does not teach how to describe these straight lines and circles,
but postulates such a description. For geometry postulates that a beginner has learned to describe
lines and circles exactly before he approaches the threshold of geometry, and then it teaches how
problems are solved by these operations [operationes]. To describe straight lines and to describe
circles are problems, but not problems in geometry. Geometry postulates the solution of these
problems from mechanics and teaches the use of the problems thus solved.36

This was the distinction observed by Newton in the De Motu Corporum (Autumn 1684), dis-

cussed above, when he crossed “by a geometrical procedure [praxin Geometricam]” to replace

it with “by description of lines [per descriptionem linearum]”. The distinction was further

explored in a manuscript on geometry from the 1690s. After inserting the previous passage

from the Preface of the Principia, Newton continued with:

33. “Graphically” (graphice) was only used in the first two editions, see Newton, Philosophiae Naturalis Prin-
cipia Mathematica, 509; Newton, Philosophiae Naturalis Principia Mathematica, 475; in the third edition the title
was modified to “Inventam cometae trajectoriam corrigere”, see Newton, Philosophiae Naturalis Principia Math-
ematica, 518.
34. Newton, The Principia, 909; Newton, Philosophiae Naturalis Principia Mathematica, 499. Newton also re-

ferred to derivations “by constructions of figures, and by calculations [per constructiones figurarum & computa-
tiones]”, see Newton, Philosophiae Naturalis Principia Mathematica, 499.
35. Niccolò Guicciardini, Isaac Newton on Mathematical Certainty and Method (Cambridge: MIT Press, 2009),

300, for a discussion of the Preface see ibid., 293-305.
36. Newton, Philosophiae Naturalis Principia Mathematica, Praefatio; Newton, The Principia, 381-382.
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Both the genesis of the subject-matter of geometry, therefore, and the fabrication of its postulates
pertain to mechanics. Any plane figures executed by God, nature or any technician you will
are measured by geometry in the hypothesis that they are exactly constructed. A technician is
required and postulated to have learnt how to describe straight lines and circles before he may
begin to be a geometer. And it consequently does not matter how by what mechanical means
they shall be described. Geometry does not posit modes of description: we are free to describe
them [plane figures] by moving rulers around, using optical rays, taut threads, compasses, the
angle given in a circumference, points separately ascertained, the unfettered motion of a careful
hand, or finally any mechanical means whatever. Geometry makes the unique demand that they
are described exactly.…The purpose of mechanics is to form and move magnitudes in appointed
figures and motions: that of geometry is neither to form nor move magnitudes, but merely to
measure them. Geometry forms nothing except modes of measuring. It postulates a technician
who knows how to form straight lines and circles, and teaches him how through their formation
appointed magnitudes are to be measured.37

Geometrical solutions were “those accomplished by the geometrical mechanical operations of

drawing lines and constructing figures accurately by dint of postulates”.38 Thus, for Newton

“graphical operations” were just a subset of the larger category of “mechanical operations”

(which could also include the use of optical rays, taut threads or any mechanical means), and

were distinguished from geometry which only postulated the existence of exact descriptions.

The Latin “graphice”, as used by Newton, was not fully translatable in English. In the first

English translations of the Principia (1729) the term was rendered as “by scale and compass”.39

37. Newton, The Mathematical Papers of Isaac Newton, vol. 7, 289ff.
38. ibid., vol. 8, 173. “In geometrical theory it is allowable to imagine that any cones or any conic section

you wish are given and that these are cut by any given circles whatever, and we are thence permitted to form
certain ideas of the quantities sought; and in the case of imaginative notions or ideas or ideal constructions of
this sort the definitions of cones and conic sections suffice, without postulates. These constructions are, to be
sure, theorems rather than solutions of problems, or, to speak more truthfully, they are porisms having a middle
nature between theorems and problems”, ibid., vol. 8, 183. Or again “Definition of figures suffice for discovering
theorems about them; not, however, for describing the figures themselves. They are indeed had in thought
through their definitions, but no so in physical reality. The straight line and circle are not had in geometry
through their definitions. That they may so be had, geometers postulated to describe them. And similarly, that
there may be had a cone to be cut, its description ought either to be postulated or taught through postulates:
otherwise, the construction of the problems by means of conic sections will not be geometrical. Moreover, to
describe a cone and to cut it, once described, by a given plane are difficult operations and ones liable to error, and
for that reasons today’s geometers teach how to describe a conic in the place without a construction of solids”,
ibid., vol. 8, 209.
39. “All which I determin’d by scale and compass … partially by arithmetical operations, and partially by scale

and compass”, Isaac Newton, The Mathematical Principles of Natural Philosophy, trans. Andrew Motte, 2 vols.
(London: Benjamin Motte, 1729), vol. 2, 329.
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Only the instance of “graphice” from Proposition 10, Book 2 was translated as “graphically, or

by scale and compass, collect the lengthsAK ,Ak”, suggesting that the mathematical meaning

of the term “graphically” would have been unfamiliar to many of the English readers of the

Principia.40 This must have been the case, as 17th and early 18th English dictionaries defined

“graphical” solely as:

Graphical (graphicus) cunningly wrought, perfect, excellent. – Glossographia (1656)

Graphical, curiously described, express, or accurate. – A new English dictionary (1702)

GRAPHICAL [of γραϕικός, Gr.] curiously described, or after the Life, exact. – Dictionarium Bri-
tannicum (1730)

GRAPHICE [γραφική, Gr.] the Art of Painting, Limning or Drawing. – Dictionarium Britannicum
(1730)

GRAPHICAL. adj. [γραϕω.] Well delineated. – Dictionarium Britannicum (1730)

GRAPHICALLY. adv. [from graphical.] In a picturesque manner; with good description or delin-
eation. – A dictionary of the English language (1755)

Furthermore, it is doubtful that many of Newton’s contemporaries would have appreciated his

careful distinction between the geometrical and themechanical (which included the graphical).

John Flamsteed, the Astronomer Royal at the Greenwich Observatory and a correspondent of

Newton, published in 1680 a method of finding the phases and times of an eclipse “Geomet-

rically, by Scale and Compasses, without further Calculation” or “either by Calculation or

Construction”.41 Flamsteed’s “geometrical” method “by Scale and Compasses” and by “Con-

struction” was very similar in nature to those of Cassini, La Caille or Lalande.

2 GRAPHICAL GEOMETRY

While in Britain Newton’s distinction between the geometrical and the graphical was not im-

mediately expressible in vernacular, in France the new term was adopted with greater ease,

probably because “graphique” did not possess any entrenched associations or definitions. The

40. Newton, The Mathematical Principles of Natural Philosophy, vol. 2, 41.
41. John Flamsteed, The Doctrine of the Sphere (London: Printed by A. Godbid and J. Playford, 1680), Contents.
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Emilie du Châtelet’s translation of the Principia (completed in 1749 but only published in 1756)

made use of “graphique” and “graphiquement” without appealing to any extra explanations.42

Though the term started spreading through the work of French astronomers, its use remained

quite singular throughout the 18th century. When the term is encountered outside a work of

astronomy, it is only used a few times in passing. The use of “graphique” was only broadened

at the beginning of the 19th century, as can be observed if one follows, for example, the titles

of treatises on gnomonics or dial making, an art which involved various geometrical construc-

tions and traces. Such a list is particularly instructive because it allows one to immediately

identify the keywords that carried weight for such publishing endeavors. As Table 2.1 shows,

the titles of gnomonics treatises advertised a science, art or method that was universal, gen-

eral or practical and which exposed the tracing or construction of a dial. Only in 1815 was

published the first treatise with “graphique” in the title. The pattern is even stronger if one

considers the content of these treatises which did not make use of “graphique” to describe their

geometrical constructions.43 This claim is also confirmed by the article on “Gnomonique” from

l’Encyclopédie which only referred to “une méthode géométrique de tracer des lignes horaires

au moyen de certains points déterminés par observation” or how to “tracer géométriquement

un cadran horisontal” etc.44 The new visibility of “graphique” was a direct consequence of the

redefinition and articulation of the object of engineering education at L’École polytechnique.

2.1 Géométrie graphiqe ou descriptive

L’École polytechnique was established in March 1794, and was known in its first year of ex-

istence as l’École centrale des travaux publics.45 The organization and program of the school

42. Isaac Newton, Principes mathématiques de la philosophie naturelle, trans. Émilie du Châtelet, 2 vols. (Paris:
Desaint & Saillant, 1756), vol. 1, 280-281; vol. 2, 134.
43. The sole exception was François Bedos de Celles’s La gnomonique pratique (2nd ed. 1774) which is discussed

above.
44. Diderot and D’Alembert, Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers, vol. 7,

725-726.
45. For the debut of the school see Janis Langins, La République avait besoin de savants (Paris: Belin, 1987).

39



OPERATIONS AND CONSTRUCTIONS

Table 2.1
A list of the major 18th-century French treatises on dial making. Though this subject relied heavily on graphical
methods, “graphique” (as a historical category) was first used in a title in 1815.

1673 Traité de gnomonique, ou de la construction des cadrans sur toute sorte
de plans

Jacques Ozanam

1682 La gnomonique, ou, L’art de tracer des cadrans ou horloges solaires sur
toutes sortes de surfaces, par differentes pratiques : avec les demonstra-
tions geometriques de toutes les operations

Philippe de La Hire

1698 La gnomonique, ou, Methodes universelles pour tracer des horloges so-
laires ou cadrans sur toutes sortes de surfaces

Philippe de La Hire

1701 La Gnomonique universelle ou la science de tracer le cadrans solaires Paul Richer
1720 La gnomonique, ou l’on donne par un principe general la maniere de

faire des cadrans sur toutes sortes de surfaces, et d’y tracer les heures
astronomiques

Jacques Ozanam

1742 La gnomonique ou L’art de faire les cadrans D.-F. Rivard
1744 La Gnomonique, ou la Science des cadrans Pierre Blaise
1760 La gnomonique pratique, ou L’art de tracer les cadrans solaires avec la

plus grande précision : par les meilleures méthodes, mises a la portée de
tout le monde

F.B. de Celles

1773 Gnomonique mise à la portée de tout le monde, ou Méthode simple et
aisée pour tracer des cadrans solaires

Joseph-Blaise Garnier

1780 Méthode nouvelle et générale pour tracer facilement des cadrans solaires
sur toutes surfaces planes, en situation quelconque, sans calcul ni embar-
ras d’instrumens : par un seul problème géométrique qui fait connoître
l’axe & la soustylaire, la latitude du lieu, la situation du plan, la décli-
naison du soleil & le parallèle du jour lors de l’opération

J.G. de La Prise

1781 Méthode nouvelle et générale pour tracer facilement des cadrans solaires
sur toutes surfaces planes

J.G. de La Prise

1782 La gnomonique théori-pratique, ou les principes de géométrie, de
trigonométrie rectiligne et sphérique; sur lesquels est fondé l’art de tracer
les cadrans sciatériques ou solaires

Abbé Dulac

1789 Petit traité de gnomonique, ou l’art de tracer les cadrans solaires C. R. Polonceau
1806 Gnomonique élémentaire [Charles Delezenne]
1812 Gnomonique analytique, ou solution par la seule analyse, de ce problème

général: trouver les intersections des cercles horaires avec une surface
donnée

Joseph Mollet

1815 Gnomonique graphique, ou Méthode simple et facile pour tracer les cad-
rans solaires sur toute sorte de plans, sans aucun calcul, et en ne faisant
usage que de la règle et du compas suivie de quelques problèmes curieux,
relatifs aux surfaces sphérique et cylindrique

Joseph Mollet
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were chiefly designed by Gaspard Monge (1746-1818) who centered its teaching around the

new subject of descriptive geometry. While the name “descriptive geometry” was only em-

ployed after 1793, its content was based on a long tradition of applying geometrical principles

for constructing traces to be used in stone and wood cutting. Monge had perfected this sub-

ject as the professor of mathematics at l’École royale du génie de Mézières which, along with

l’École royale des Ponts et Chaussées, was the main engineering school of the 18th century.46

Under the lead of its founding director, Nicolas de Chastillon, l’École royale du génie de Méz-

ières had reformed its teaching in the 1760s by transforming a set of isolated techniques par-

ticular to the activity of carpenters and joiners [appareilleurs] into a model for engineering

drawing.47 Because the reform at Mézières extended mainly to its practical disciplines, it was

only at L’École polytechnique that the practice of engineering drawing was to be correlated

with that of theoretical mathematical instruction.

Though the courses and the instructors of l’École centrale des travaux publics overlapped

with those of l’École du génie de Mézières and l’École des Ponts et Chaussées, the new school

was designed to break with the privileges and corporatism of the institutions of l’Ancien

Régime. Its revolutionary aims were also implemented through the organization of courses.

In a manuscript probably dating from the months of July 1794 and attributed to Monge, the

teaching of mathematics was divided in two parts: 1. analysis and its application to geometry

and mechanics; 2. “the graphical description of objects” which was comprised of descriptive

geometry and drawing:

Certains objets sont susceptibles de définition rigoureuse; leur description graphique exige
l’emploi de la règle et du compas; l’art de les décrire peut être appelé la géométrie descriptive.
Certains autres objets ont des formes trop composées pour être susceptibles de définition par im-

46. On l’École royale du génie de Mézières see René Taton, “L’école royale du génie de Mézières,” in Enseigne-
ment et diffusion des sciences en France au XVIIIe siècle, ed. René Taton (Paris: Hermann, 1964), 559–615; Bruno
Belhoste, Antoine Picon, and Joël Sakarovitch, “Les exercices dans les écoles d’ingénieurs sous l’Ancien Régime
et la Révolution,” Histoire de l’éducation 46, no. 1 (1990): 72-90.
47. Belhoste, Picon, and Sakarovitch, “Les exercices dans les écoles d’ingénieurs sous l’Ancien Régime et la

Révolution,” 75.
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itation. C’est l’art du dessin.48

The study of descriptive geometry extended over the whole three years of the engineering

program. The first year of the course dealt with the general rules and methods of descriptive

geometry and their application to a series of special topics such as the trace of stone and wood

cutting; the rigorous determination of shadows in a drawing; the practice of linear perspective;

surveying [lever des plans et des cartes]; the description of machines. In the second year

students were introduced to the general principles of architecture and their application to the

construction of roads, bridges, canals or mines. The third year was dedicated to studying the

construction of ports and fortifications (see Fig. 2.2).

It was not the content of the courses that was novel but rather the lines around which

they were brought together. The grouping of stereotomy, architecture and fortifications under

the heading of “descriptive geometry” reflected the aims of the school to unify the teaching

of military and civil engineering. The connection between geometry and drawing under the

heading “the graphical description of objects” was not purely formal. It was meant to make

out of mathematical instruction a bridge between engineers, artists and savants rather than a

distinction of the engineering corp.

Historians agree that “descriptive geometry” was first used by Monge in September 1793

in a project for “écoles secondaires pour artisans et ouvriers”.49 However, it is most likely

that the term did not originate with Monge as it has sometimes been suggested.50 Several

precedents stand out. In a project on the organization of public instruction presented to the

48. Archives de l’École polytechnique, 1,1, carton n°1 reproduced in Bruno Belhoste, “De l’Ecole des ponts et
chaussées à l’Ecole centrale des travaux publics,” Bulletin de la Sabix. Société des amis de la Bibliothèque et de
l’Histoire de l’École polytechnique, no. 11 (1994): Document 4.
49. Bruno Belhoste and René Taton, “L’invention d’une langue des figures,” in L’Ecole normale de l’an III, Leçons

de mathématiques, ed. Jean Dhombres (1992), 371–400.
50. Cf. Joël Sakarovitch, “La géométrie descriptive, une reine déchue,” in La formation polytechnicienne: 1794-

1994, ed. Bruno Belhoste, Amy Dahan-Dalmédico, and Antoine Picon (Paris: Dunod, 1994), 78 n4; Bruno Belhoste,
La formation d’une technocratie: l’École polytechnique et ses élèves de la Révolution au Second Empire (Paris: Belin,
2003), 267.
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National Assembly in April 1792, Condorcet proposed a course on “la géométrie graphique, ou

la manière d’arriver avec la règle et le compas aux résultats de l’arithmétique, de la géométrie,

de la perspective, etc.”51 The course was to be taught by either the instructor of military art or

the instructor of “general principles of arts and crafts” and was part of the class on the “appli-

cation of the sciences to the arts” of a series of institutes specially designed for the perfection

of the industry.52 The termwas further used in a memoir on public instruction that was drafted

in July 1793 by the Bureau de Consultation des Arts et Métiers, but most probably written by

Lavoisier who was a member of the bureau.53 The program, which borrowed the structure and

much of the terminology of Condorcet, imagined that courses would begin with

l’exposition des principes élémentaires de la géométrie graphique. Le professeur s’attachera à
résoudre tous les problêmes relatifs à cette science, par la règle et par le compas; il donnera des
idées précises de la manière dont se forment les surfaces et les solides, dont ils se mesurent; il
apprendra à rapporter à un plan toutes les parties d’un objet, à en faire la projection: de là les
règles de la perspective, de la taille des pierres, de l’art de la charpente, de ce qu’on appelle le
trait.54

Furthermore, “les écoles élémentaires des arts et d’économie sociale” were supposed to teach

“la géométrie descriptive ou graphique, la stéréotomie, les principes de la composition des

machines, l’évaluation de leurs effets, et tout ce qui est relatif aux arts considérés dans

leurs rapports géométriques et mécaniques”.55 In a manuscript report titled “Mémoire sur

l’éducation” (October 1791 - June 1792), J. H. Hassenfratz – a former student and close collab-

orator of Monge – proposed the creation of “une chaire d’enseignement des mathématiques

graphiques”.56

51. Jean-Antoine-Nicolas de Caritat marquis de Condorcet, Rapport et projet de décret sur l’organisation générale
de l’instruction publique: présenté à l’Assemblée Nationale, au nom du Comité d’Instruction publique (Paris: de
l’Imprimerie Nationale, 1793), 86.
52. Antoine Léon, La Révolution française et l’éducation technique (Paris: Société des études robespierristes,

1968), 121-126.
53. For the identification of Lavoisier as the author see Emmanuel Grison, L’étonnant parcours du républicain

J.H. Hassenfratz (1755-1827): du faubourg Montmartre au Corps des Mines (Paris: Presses de l’Ecole des Mines,
1996), 189-190.
54. Antoine Laurent Lavoisier, Œuvres, vol. 6 (Paris: Imprimerie impériale, 1893), 524.
55. Ibid., 541.
56. Grison, L’étonnant parcours du républicain J.H. Hassenfratz (1755-1827), 176-178.
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The above sources suggest that “descriptive geometry” was probably a variation on “graph-

ical geometry”. The term was used by Condorcet to refer not to the Mézières type of practical

geometry but rather to the geometry practiced with scale and compass as he translated his

own term. The phrasing closely resembled a passage in Rousseau’s Émile (1762) which must

have been known to most educational reformers:57

La géométrie n’est pour mon élève que l’art de se bien servir de la règle & du compas; il ne doit
point la confondre avec le dessin, où il n’emploiera ni l’un ni l’autre de ces instrumens. La règle et
le compas seront enfermés sous la clef, et l’on ne lui en accordera que rarement l’usage et pour peu
de temps, afin qu’il ne s’accoutume pas à barbouiller: mais nous pourrons quelquefois porter nos
figures à la promenade, & causer de ce que nous aurons fait ou de ce que nous voudrons faire.58

Strictly defined, descriptive geometry referred to a method “of representing on a drawing

page with only two dimensions all three dimensional objects of nature” [explain the source].59

Opposed to other methods (such as perspective or axonometric projections), descriptive geom-

etry employed a correlated double projection on two planes which preserved all the geomet-

rical aspects of an objects such as size and shape (see Fig. 2.3). This method of representation

was more abstract than regular perspective and required a greater time of adjustment. To

develop a similar level of intuition one often added shadows, a technique that was greatly

developed and promoted by Monge.

In Monge’s program for L’École polytechnique two months were allocated to learning the

rules and principles of descriptive geometry, after which students were supposed to study its

practical applications. After the general lessons students divided in groups of twenty were

assigned to special classrooms [salles particulières] where they executed “the graphical op-

erations that were explained in the general lesson”.60 This division purposefully mirrored the

teaching of the physical and chemical sciences for which students used special laboratories

57. For the relation between Condorcet’s program and Rousseau’s ideas see Jean Bloch, Rousseauism and Edu-
cation in Eighteenth-Century France (Institut et musée Voltaire, 1995), 132-135.
58. Jean-Jacques Rousseau, Émile, ou de l’éducation, vol. 1 (Amsterdam: Chez Jean Néaulme, 1762), 382-383.
59. Gaspard Monge, Géométrie descriptive: leçons données aux écoles normales, l’an 3 de la République (Paris:

Baudouin, 1799), 6.
60. Belhoste, “De l’Ecole des ponts et chaussées à l’Ecole centrale des travaux publics,” Document 4.
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Figure 2.3
Source: Gaspard Monge, Géométrie descriptive: leçons données aux écoles normales, l’an 3 de la République (Paris:
Baudouin, 1799), Pl. 1.
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[laboratoires particuliers] to execute “chemical operations”.61 A similar system was used by

Monge for his course at l’École normale where the lectures on descriptive geometry were

delivered in the amphitheater of Jardin des Plantes while students “exercised their graphical

constructions” in “large drawing rooms” inside the former church of the Sorbonne.62 The re-

placement of “graphical operations” by “graphical constructions” was not purely aleatory as

Monge had to justify the relevance of the course on descriptive geometry for future primary

school teachers. While the “graphical operations” of L’École polytechnique were a form of

better learning the general rules of descriptive geometry, the “graphical constructions” taught

at l’École normale were presented as necessary for the arts:

On contribuera donc à donner à l’éducation nationale une direction avantageuse, en familiarisant
nos jeunes artistes avec l’application de la géométrie descriptive aux constructions graphiques
qui sont nécessaires au plus grand nombre des arts, et en faisant usage de cette géométrie pour
la représentation et la détermination des élémens des machines, au moyen desquelles l’homme,
mettant à contribution les forces de la nature, ne se réserve, pour ainsi dire, dans ses opérations,
d’autre travail que celui de son intelligence. … Ensuite on appliquera la méthode des projections
aux constructions graphiques, nécessaires au plus grand nombre des arts, tels que les traits de la
coupe des pierres, ceux de la charpenterie, etc.63

2.2 Travaux Graphiqes and Arts Graphiqes

The most coherent attack against Monge’s pedagogical program was framed by Jules de La

Gournerie (1807-1887) who was assigned in 1848 to teach descriptive geometry at L’École

polytechnique.64 While Monge had a been a revolutionary Jacobin and a dedicated professor

of geometry who never built anything in his life, La Gournerie was the son of a monarchist and

a practicing engineer who was forced by the circumstances to teach.65 The difference between

the two men was visible in La Gournerie’s Discours sur l’Art du trait et la Géometrie descrip-

61. Belhoste, “De l’Ecole des ponts et chaussées à l’Ecole centrale des travaux publics,” Document 4.
62. Gaspard Monge, Géométrie Descriptive (Paris: J. Klostermann, 1811).
63. Monge, Géométrie descriptive, 2-3.
64. For a detailed discussion of La Gournerie’s criticism of Monge see Joël Sakarovitch, Epures d’architecture

: de la coupe des pierres a la géometrie descriptive, XVIe-XIXe siècles (Basel ; Birkhäuser, 1998), 331-342; Enrique
Rabasa, “La Gournerie versus Monge,” Nexus Network Journal 13, no. 3 (2011): 715–735.
65. Rabasa, “La Gournerie versus Monge,” 717.
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tive (1855) which purposefully and systematically traced not so much the history of Monge’s

descriptive geometry but rather the history of “l’art du trait”.66 The Discours condemned the

emphasis on the theoretical development of descriptive geometry which allowed the British

to “surpass us with respect to the modern techniques of skew arches”.67

Two decades later, La Gournerie attacked the very core ofMonge’s program that had united

under the term “Arts graphiques” a series of disparate domains to which descriptive geometry

was directly applied. La Gournerie faulted this approach because it forcefully brought together

arts with “very different natures”:

J’ai adopté dans ce Mémoire l’expression d’Arts graphiques parce qu’elle est employée, mais je
la trouve assez impropre; elle correspond a l’idée d’aprés laquelle des arts ayant tous une partie
graphique plus ou moins importante, et d’ailleurs de natures trés-diverses, avaient été compris
dans le cours de Géométrie descriptive de l’Ecole Polytechnique.68

La Gournerie cleverly used some older reports of Prony to veil his criticism against Monge.

The school of Mongewas “very strict with respect to geometrical exactitude” and neglected the

material circumstances involved in constructions such as the cement, the costs or the bearing

pressures.69 Because of such failures, Prony had insisted that the course on stereotomy should

be taught as an applied course at L’École des ponts et chaussées.70 For similar reasons, La

Gournerie took the decision tomake an independent course out of the part on stereotomy from

what had been the course on descriptive geometry; this freed the course on stereotomy to delve

into the technical and economical constraints of constructions. Furthermore, La Gournerie

66. La Gournerie’s discourse opened with: “La Géométrie descriptive est une science nouvelle: elle ne date que
de Monge; mais, considérée dans ses applications, elle continue l’ancien art du Trait. Je me propose aujourd’hui
d’exposer rapidement l’histoire de cet art, d’étudier la transformation que Monge lui fit éprouver, et enfin de
rechercher quels ont été les progrès des arts graphiques depuis la création de la Géométrie descriptive”, Jules de
La Gournerie, Discours prononce au conservatoire impérial des arts et metiers, le 14 Novembre 1854, à l’ouverture du
cours de géométrie descriptive: Discours sur l’art du trait et la géométrie descriptive (Paris: Mollet Bachelier, 1855),
5.
67. Ibid., 36.
68. Jules de La Gournerie, “Mémoire sur l’enseignement des arts graphiques,” Journal de Mathématiques Pures

et Apliquées 19 (1874): 149.
69. Ibid., 115-116.
70. Sakarovitch, Epures d’architecture, 338.
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criticized Monge for failing to present different graphical methods of representation that were

useful in engineering practice, such as perspective or axonometric projections. Instead of

trying to create a unifying theory, La Gournerie resumed teaching a series of varied graphical

methods of representation.

2.3 The Graphical Language of Geometry

L’École polytechnique was mockingly named by Théodore Olivier “L’École monotechinque”

because of the increasing weight given to analysis under the influence of Laplace, Poisson

and Cauchy, “ces hommes qui ne connaissaient d’autre langue que l’algèbre”.71 Olivier also

found fault in Chasles’ remarks that “la géométrie descriptive n’est toujours qu’un instrument

dont l’ingénieur se sert pour traduire sa pensée et exécuter sur le papier les opérations que la

science, je veux dire la géométrie générale, lui indique.”72 Olivier employed the metaphor of

language centered on “graphique” to undermine both the claims of an algebraic language and

those that reduced descriptive geometry to a simple translation of rational geometry.73

Following Monge, Olivier explicitly distinguished between descriptive geometry as a

method and as a language: “Descriptive geometry, as a method, allows us to find novel ge-

ometrical properties (unknown until then); as a language, it allows us to write and transmit

to engineers geometrical truths which they can use and verify, that is to use them in their

work in the field”.74 If geometry was the language of the engineer, one had to learn how “to

read it and write it”.75 Descriptive geometry, as a method, allowed one to find new geometrical

71. Théodore Olivier, Mémoires de géométrie descriptive: théorique et appliquée (Paris: Carilian-Goeury et V.
Dalmont, 1851), xi-xii.
72. Chasles quoted in Théodore Olivier, Additions au cours de géométrie descriptive (Paris: Carilian-Goeury et

V. Dalmont, 1847), xi.
73. Olivier’s rhetoric is particularly surprising because he presented the attacks coming from analysis and

rational geometry as a form of reducing descriptive geometry to mere writing: “l’art des projections, qui écrit
graphiquement des résultats géométriques obtenus par la géométrie rationnelle”; “La géométrie descriptive ne
peut servir qu’à tracer graphiquement les résultats géométriques obtenus par l’analyse”, ibid., xi-xv.
74. Ibid., xiv.
75. Théodore Olivier, Cours de géométrie descriptive, 2 vols. (Paris: Carilian-Goeury et V. Dalmont, 1843), vol. 1,

2.
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properties; as a language, “it allows us to write and to communicate geometrical truths to the

engineers, and to even make them verify and use these truths”.76

Olivier considered that “geometrical ideas” were transmitted through two languages – “la

géométrie algébrique” and “la géométrie descriptive”, or as he commonly referred to them “la

langue algébrique” and “la langue graphique”.77 The first used symbols while the later used

lines, but they were both exact because they were guided by clear rules established by rea-

soning (“le raisonnement”). However, the principles of the two languages were different –

the algebraic language employed arithmetics as its fundamental principle, that is the number,

and it was applied to those geometrical problems dealing with metrical relations (“relations

métriques”). The graphical language had as its fundamental principle the form (“la forme”)

and it was applied in geometry to the solution of problems of position (“relations de posi-

tion”). Because the principles of these two languages was different so were their strengths

and abilities–“leur esprit ou génie est différent”:78

I think one can say that descriptive geometry, or the graphical language, is eminently capable of
expressing and of discovering the relations of position, and that analysis, or the algebraic language,
is eminently capable of expressing and of discovering the metrical results.79

Because of this “la langue géométrique” of ancient geometers resembled more closely the “al-

gebraic language” rather than the “graphical language of descriptive geometry” because one

solved problems from a “metrical” and not “formal” point of view.80

Olivier further developed the metaphor of a graphical language not only as an expression

76. Olivier, Additions au cours de géométrie descriptive, xiv.
77. “Inmathematics the human spirit always proceeds in the samemanner, whether by employing the graphical

language or the algebraic language, to arrive at the manifestation of a truth. The principles are identical in
their essence in both languages; they are only manifested in different forms…”, Olivier, Mémoires de géométrie
descriptive, 171.
78. Olivier, Additions au cours de géométrie descriptive, xiii.
79. Théodore Olivier, Développements de géométrie descriptive (Paris: Carilian-Goeury et V. Dalmont, 1843), 176.

Or: “C’est ainsi que ’’analyse s’applique à la recherche des propriétés de relation métrique, et que la géométrie
descriptive s’applique à la recherche des propriétés de relation de position”, Olivier, Cours de géométrie descriptive,
vol. 1, vi).
80. Olivier, Mémoires de géométrie descriptive, 61.
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of geometrical ideas, but also as a form of writing and reading. One projects a given spatial

system (“un système dans l’espace”) on two planes, and by studying the relations between

the projected lines, one can find theorems that apply to the spatial system. Thus, one can

say that “it is by reading the projections of a system situated in the space, the same way we

read equations, that we discover the geometrical properties written graphically on the diagram

[épure], and as a result we discover, in a certain manner, the geometrical properties that exist

in this spatial system [système de l’espace]”.81 Or again, that “we read a diagram [épure] the

same way we read pages of analysis”.82

Olivier described two types of images – “les figures” (or “croquis”) that were drawn in per-

spective were used “to help the mind of the reader and allow him to better grasp the true form

of a spatial system [système de l’espace]”; “les épures” were “figures rigorously constructed

with scale and compass; the graphical results which are found by their construction are im-

mediately translated in geometrical language in the text”.83 Olivier used a graphical marking

to help students to distinguish more easily between “les figures” and “les épures” (“la ligne de

terre” LT was shaded). The first type of drawings were used in the theoretical and oral part

of the course, while the latter were used in the manual and graphical part.84

Olivier used the expression “read in space [lire dans l’espace]” to mean that “by looking

at the vertical and horizontal projections on a diagram [épure], the student acquires the habit

of conceiving the relations of position that exist between the points, lines and planes that

compose a spatial system [système de l’espace]”.85 The action of reading in space by looking

at a diagram was facilitated by a new notation introduced by Olivier. Given a horizontal plane

H and a vertical plane V then (see Fig. 2.4):

On remarquera sans peine que cette notation a le grand avantage de pouvoir démontrer dans

81. Olivier, Additions au cours de géométrie descriptive, xiv.
82. Ibid.
83. Olivier, Développements de géométrie descriptive, viii.
84. Olivier, Cours de géométrie descriptive, vol. 2, vi-vii.
85. Olivier, Développements de géométrie descriptive, vii-viii.
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l’espace, car on peut parler du point m, de la droite D, du plan P , et l’élève lit sur l’épure le
pointm dont les pointsmv etmh sont les projections, la droiteD dont les droitesDv etDh sont
les projections, le plan P dont les droites HP et V P sont les traces, etc.86

Figure 2.4
Source: Théodore Olivier, Développements de géométrie descriptive (Paris: Carilian-Goeury et V. Dalmont, 1843),
Atlas, pl. 16.

At the level of practice and teaching, Olivier looked at geometrical and graphical points of

view from a different perspective. In descriptive geometry, there were two things to be consid-

ered – the geometrical solution and the graphical construction. Olivier contrasted the “point,

droite, courbe ou surface géométrique” and the “point, droite, courbe ou surface graphique”

86. Olivier, Développements de géométrie descriptive, vii.
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because the graphical construction of a point was governed by different requirements than its

geometrical construction. Because of this a “general geometrical solution” would often need to

be modified by the “graphical data [données graphiques]” of the particular problem.87 Ideally,

the graphical point had to be as close as possible to the geometrical point, but this depended

on the choice of methods or operations:88

très souvent les solutions géométriques les plus élégantes devaient être modifiées pour les rendre
graphiques; que souvent aussi elles devaient être abandonnées pour y substituer des solutions
moins élégantes sous le point prêtant avec facilité aux constructions graphiques.89

Il existe une grande différence entre une solution géométrique et une solution graphique; pour
bien faire concevoir en quoi les deux modes de solution diffèrent l’un de l’autre, je vais prendre
pour exemple la solution de deux problèmes de géométrie descriptive qui se trouvent résolus dans
tous les traités, par la méthode géométrique et non par la méthode graphique. Ces deux problèmes
sont l’un: la plus courte distance entre deux droites, et l’autre: la section droite d’un cylindre.90

Olivier gave the example of parabolas or hyperbolas for which a construction could be

elegant and simple from a geometrical point of view, but could not be accepted as a graphical con-
struction because in descriptive geometry one needs to construct rigorously, and also to be able
to verify through new constructions the graphical results that were obtained; because, in the end,
the diagram [épure] traced by the engineer has to be used to build on the spot, and it is therefore
necessary for the errors, that appear inevitably on paper due to the imperfection of the instru-
ments, not to be so large that when multiplied by the scale of the diagram we could make grave
mistakes of execution on the spot.91

Olivier opposed the “recipes for graphical constructions” and the narrow-minded “graph-

ical manipulations” of many instructors to what he called “the philosophy of the science of

diagrammatic space [la philosophie de la science de l’espace figuré]”.92

87. Théodore Olivier, Compléments de géométrie descriptive (Paris: Carilian-Goeury et V. Dalmont, 1845), 299-
300.
88. The same point is also made: “Ainsi, la méthode donnée par M. Plucker dans les Annales de Mathématiques,

publiées par M. Gergonne, est d’une élégance et d’une simplicité remarquables sous le point de vue géométrique;
mais il me sera permis de dire que sous le point de vue graphique, elle ne pourrait être acceptée.” ibid., 146.
89. Olivier, Développements de géométrie descriptive, 187-188.
90. Olivier, Compléments de géométrie descriptive, 351.
91. Ibid., 146-147.
92. Olivier, Mémoires de géométrie descriptive, 49.
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3 CONCLUSION

If the graphical is looked at through a contemporary eye it would be seen as a transparent

description of something drawn or inscribed. However, what is lost by this perspective is the

fact that no such term was needed until the late 18th century though there was no shortage

of graphical activities: quadrants were divided, maps were drawn, trajectories were traced,

curves were described, etc. The category of the graphical became necessary not because of the

multiplication of graphical objects, but rather because of themultiplication of choices. The cat-

egory was formed as a contrast or a counterweight to other preestablished categories. While

quadrant makers or stone-cutters had no use for a category such as the graphical, astronomers

and geometricians needed a term to describe equivalent operations which were neither arith-

metical nor trigonometrical. While geometrical could have been a satisfactory choice for many,

for a scrupulous geometrician such a term would have misconstrued his activity because all

his operations (either arithmetical, trigonometrical or graphical) were founded in the same

science of geometry. Though other expressions were in use (“construction”, “construction by

rule & compass”, “geometrical construction”, etc.) these lacked the malleability of a single-

word adjective such as graphical. While other professions also used a mix of graphical and

non-graphical methods, these methods were employed along each other, and not in opposi-

tion to each other. However, in the case of astronomy and mathematics, students started being

schooled in a variety of methods or operations through which they could solve the same prob-

lem. It is such choices that brought to the forefront the opposition between graphical and

non-graphical methods, and with it the category of the graphical.

If until the end of the 18th century graphical played only amodest role in distinguishing be-

tween different methods and operations described in mathematics and astronomy textbooks,

the revolutionary program of l’École polytechnique redefined its application. Monge and his

students reorganized the older courses of les Écoles spéciales around the principle of a univer-

sal graphical technique which could coordinate between multiple fields of application. This
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seductive but utopic vision of engineering teaching was implemented not only through ped-

agogical practices, but especially through their redefinition and redescription. The category

of the graphical was invoked to present descriptive geometry and drawing as the common

language of engineers, artists and mathematicians; the term was also used to redescribe the

relation between theoretical and practical lessons as one between oral lectures and the execu-

tion of “graphical operations” and “graphical work”; “graphical constructions” provided a way

of presenting the new and abstract principles of descriptive geometry as directly applicable to

practical arts.

However, as the next chapters will show there were several visions of a what a universal

graphical language could mean. While Monge imagined a unified language formed around

a rigid and abstract set of principles and methods, other engineers emphasized the intuitive

nature of graphical methods which allowed them to be understood by anyone. In Monge’s

school students had to work hard to acquire the skills of learning the abstract graphical lan-

guage of descriptive geometry. The other engineering traditions appealed to the graphical as

an intuitive language which produced diagrams that could be grasped “at a glance”. In this

parallel tradition it was not the students who labored to produce the diagrams, but rather the

diagrams worked for the student as labor-saving devices. One referred not to the graphical

language but rather to a graphical method.
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Indicating, registering, recording

Indicateur, enregistreur, inscripteur

The 19th century rise of graphical methods and representations has been inextricably linked

with the development of a special class of scientific instruments – the autographs, i.e. instru-

ments which could record their variations under the form of a trace.1 Some historians went

as far as defining the graphic method solely as “the technique of inscribing curves with self-

registering instruments”.2 While the restrictive singular could be encountered in the work of

some 19th century physiologists, especially that of Étienne-Jules Marey, it remained unpop-

ular with engineers who employed a varied array of “graphical methods” which only rarely

involved autographs.3 This minor distinction actually illustrates a more important point that

has so far not been properly addressed – the gap between the graphical as understood through

the contemporary eye and the period eye.

The contemporary eye perceives the autograph as an instrument which produces inscrip-

tions or graphs, both categories which were absent until the late 19th century.4 These terms are

particularly misleading because they unconsciously give agency to the traces produced by the

1. Hankins and Silverman, Instruments and the Imagination, 128-140.
2. Brain, “The Graphic Method,” 8. For a similarly restrictive use see Chadarevian, “Graphical Method and

Discipline.”
3. For a study that emphasizes the great variety of graphical methods and representations see Hankins, “Blood,

Dirt, and Nomograms.” For the indicator, the paradigmatic autograph used by engineers, see Wise and Brain,
“Muscles and Engines: Indicator Diagrams and Helmholtz’s Graphical Methods.”

4. Chadarevian sees the autographs exclusively as “automatic inscription devices”, in Chadarevian, “Graph-
ical Method and Discipline,” 287. The science sociologist Carroll-Burke also defined the purpose the graph-
instruments to be the production of inscriptions: “The centre of gravity of graphing is the activity of producing
inscriptions”, in Carroll-Burke, “Tools, Instruments and Engines Getting a Handle on the Specificity of Engine
Science,” 605. While the associations between autographs and “inscriptions” is not completely inappropriate for
some 19th century physiologists (such as the later work ofMarey) it is an inappropriate category forWatt’s indica-
tor or Morin and Poncelet’s dynamographs and instrument for observing the laws of falling bodies, Chadarevian,
“Graphical Method and Discipline,” 275; Brain, “The Graphic Method,” 82, 144.

56



INDICATING, REGISTERING, RECORDING
INDICATEUR, ENREGISTREUR, INSCRIPTEUR

autographs beyond what can be historically established. For example, some have suggested

that “the use of a recording instrument required the transition from tables to graphs”.5 Such

a requirement can only exist within the contemporary eye. For the period eye many other

scenarios were possible: a self-registering thermometer could have marked the minimum or

maximum temperature without producing any graphical trace; or, the curves (or punched pa-

per) produced by an autograph could have been reduced into tables, a much more manageable

format.6 Describing any trace produced by an autograph as an inscription conveys an ahistor-

ical sense of materiality and mobility. In many cases the traces of an autograph were mere

indications which were read on the spot, without ever being transferred to a mobile environ-

ment.

The analytical category of inscriptions, and their connection to autographs, is further

misleading because it has been uncritically derived from Étienne-Jules Marey’s La méthode

graphique dans les sciences expérimentales et principalement en physiologie et en médecine (1st

ed. 1878, 2nd ed. 1885). While historians who have looked at Marey’s text have noticed

his utopic vision of the graphical method as a universal language, they have only associated

this vision with the claims Marey made for his instruments.7 However, over the course of his

career Marey consciously and consistently changed the terms in which he described the ac-

tion and purpose of the autographs from self-indicating or self-registering instruments (i.e.

instruments which wrote their own indications or kept their own register) to instruments

that allowed a phenomenon to produce its own inscription. Not only the metaphors, but the

very language that Marey chose embodied his vision of what autographs could and should

do. The appeal of describing and perceiving self-registering instruments as inscribing instru-

ments which produce inscriptions has been particularly strong among philosophers who have

5. Hankins and Silverman, Instruments and the Imagination, 128. The claim was made for Watt’s indicator.
6. As discussed below, this was the case for the mechanical traces produced by meteorological autographs

which were never published until the second half of the 19th century when photographic forms of recording and
multiplication were introduced.

7. Chadarevian, “Graphical Method and Discipline”; Lorraine Daston and Peter Galison, “The Image of Objec-
tivity,” Representations, no. 40 (1992): 81–128.
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come in contact with Marey’s work. Via Marey, the term inscription (with all its variations

from “appareil inscripteur” to “inscription”) has entered the philosophical vocabulary through

François Dagognet’s work, to be picked up by Jacques Derrida and Bruno Latour.8

The aim of this chapter is to look at autographs through the period eye. To accomplish this

we must first reconstruct the proper historical category to which these instruments actually

pertained. This task is particularly challenging because previous studies have solely focused on

a subset of the autographs, i.e. graphic self-recording instruments.9 As it will be shown below,

the historical category was populated with instruments which could function independently

of an observer by performing the task of the observer. In Britain these instruments were

identified through the common tropes “in the absence of the observer” and “keep its own

register”, while in France or Italy through the suffix “graphe” or “grafo” (i.e. graph).10

This grouping of instruments is conceptually important because it evades standard classifi-

cations along a fixed function (e.g. thermometers or instruments for measuring temperature),

a particular mechanism (e.g. weather-clock, or aneroid barometer), a particular inventor or

model (Six’s thermometer), or a particular group of makers or activity (philosophical, mathe-

matical or optical instruments).11 Instead, it is a grouping defined by the relation between in-

8. The term was used by Dagognet in François Dagognet, Écriture et Iconographie (Paris: JVrin, 1973). Da-
gognet will later write a biography of Marey, see François Dagognet, Etienne-Jules Marey: A Passion for the Trace
(New York: Zone Books ; 1992). Part of the genealogy described above was acknowledged in Latour, “Visual-
ization and Cognition,” 88. See also Timothy Lenoir, ed., Inscribing Science: Scientific Texts and the Materiality of
Communication (Stanford University Press, 1998).

9. So far, Hebbel E. Hoff and L. A. Geddes multiple articles remain the most in-depth studies of this subset
of the larger category of self-registering instruments. More recent studies, such as those Thomas Hankins or
Soraya de Chadarevian have discussed “automatic recording” or “self-recording” instruments as if such instru-
ments were exclusively graphical. As shown below, this was hardly the case until the second half of the 19th
century. Cf. Hoff and Geddes, “The Rheotome and Its Prehistory”; Hoff and Geddes, “Graphic Registration before
Ludwig: The Antecedents of the Kymograph”; Hoff and Geddes, “The Technological Background of Physiological
Discovery”; Hoff and Geddes, “The Beginnings of Graphic Recording”; Hankins and Silverman, Instruments and
the Imagination; Chadarevian, “Graphical Method and Discipline.”
10. Because this study looks at the use of words in multiple languages, I will denote general linguistic ob-

jects through italics, while their specific form will be given inside inverted commas. Thus the morpheme graph
would be represented in English by “graph”, “grapher”, “graphy”, in French by “graphe” or “graphie”, in Latin by
“graphia”, etc.
11. For the last grouping see J. A. Bennett, “A Viol of Water or a Wedge of Glass,” in The Uses of Experiment:

Studies in the Natural Sciences, ed. David Gooding, Trevor Pinch, and Simon Schaffer (Cambridge: Cambridge
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strument and observer as an action of replacement, displacement, or imitation. To recover such

a meaning it is necessary to understand how instruments were categorized, not only grouped

or classified. While the latter operates through spatial divisions (proximity, hierarchies, etc.),

the former operates through linguistic divisions and tropes.

Histories of scientific instruments have so far paid little attention to the historical names

of instruments.12 While a few studies have looked at controversies related to particular names,

there has been no consistent endeavor for tracking the name of instruments to allow for a his-

tory of naming practices and historical trends.13 The first challenge is to pull apart the ahistor-

ical etymologies that are often used to interpret the name of an instrument. The first section

will delineate a method for describing naming practices and the interpretation of names, while

the second section will apply this approach to the label graph. The third section is dedicated

to self-registering instruments, while the fourth section discusses Marey’s redefinition of in-

strument labels.

1 HISTORICAL ETYMOLOGIES

1.1 The analogy of etymologies

The name given to a concept or an object is not completely random or arbitrary. Saussure’s

fundamental principle of l’arbitraire du signe can be highly misleading:

The bond between the signifier and the signified is arbitrary. Since I mean by sign the whole that
results from the associating of the signifier with the signified, I can simply say: the linguistic sign
is arbitrary.14

University Press, 1989), 105–114; J. A. Bennett, “Early Modern Mathematical Instruments,” Isis 102, no. 4 (2011):
697–705.
12. Maurice Daumas, Les instruments scientifiques aux XVIIe et XVIIIe siècles, 1st ed. (Paris, Presses universitaires

de France, 1953); Gerard L’Estrange Turner, Scientific Instruments, 1500-1900: An Introduction (University of Cali-
fornia Press, 1998); Gerard L’Estrange Turner, Nineteenth-Century Scientific Instruments (University of California
Press, 1983).
13. For a study surrounding the controversy of naming the “calorimeter” see Lissa Roberts, “A Word and the

World: The Significance of Naming the Calorimeter,” Isis 82, no. 2 (1991): 198–222.
14. Ferdinand de Saussure, Course in General Linguistics (New York: Philosophical Library, 1959), 67.

59



INDICATING, REGISTERING, RECORDING
INDICATEUR, ENREGISTREUR, INSCRIPTEUR

Only much later in the Cours this principle was further qualified – signs can be absolutely

arbitrary (i.e. unmotivated) or relatively arbitrary.15 “Dix” and “neuf” are unmotivated, but

“dix-neuf” is relatively motivated. Saussure admitted two limits to the arbitrariness of the sign

brought by: 1. syntagmatic relations that allow a term like “dix-neuf” to be analyzed in terms

of its components “dix” and “neuf”; 2. associative relations which connect the meaning of “dix-

neuf” to other terms like “dix-huit”. For Saussure the “irrational principle of the arbitrariness

of the sign” was opposed by a “principle of order and regularity”. The order principle was

contrived by the mind, while the arbitrariness principle was generated by a “system that is

by nature chaotic”.16 The proportions of arbitrariness and motivation varied from language to

language; some languages made greater use of “unmotivated signs” (and could be seen as more

“lexicological”), while others relied on structural rules (and were more “grammatical”). It was

the study of language as a system of signs that made arbitrariness into a crucial assumption

- “signs that are wholly arbitrary realize better than the others the ideal of the semiological

process”.17

Many linguists have considered Saussure’s principle of arbitrariness to be a misnomer

and an overstatement. Roman Jakobson went as far as calling it an “arbitrary principle” (all

puns intended) and rejected Saussure’s parallel between lexicon-grammar and arbitrariness-

motivation.18 While one could concede that the linguistic sign in isolation can be seen as arbi-

trary or unmotivated, once the sign is regarded as part of a system, the relation between the

signifier and the signified is also re-evaluated and re-defined. If one were to argue from the

arbitrariness principle that “it would make no difference to the linguistic transaction (the act

of parole) if the word for “sister” were not soeur but zoeur, or soeuf, or pataplu” then he would

run into a lot of trouble.19 Every word is part of a complex network of associations (word fam-

15. Saussure, Course in General Linguistics, 131.
16. Ibid., 133.
17. Ibid., 68.
18. Roman Jakobson, “Sign and System of Language: A Reassessment of Saussure’s Doctrine,” Poetics Today 2,

no. 1 (1980): 33–38.
19. Roy Harris, Reading Saussure: A Critical Commentary on the Cours de Linguistique Générale (Open Court,
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ilies, expressions, rhymes, etc.) that would resist such a change, or would react by producing

further changes.20 Dwight L. Bolinger attempted to show that the sign is not arbitrary and

that “there must be an intimate connexion between form and meaning — sufficiently close at

times for form to influence meaning, and for meaning to influence form”.21 Bolinger pointed

out the existence of “constellations of words having similar meanings tied to similar sounds”

such as “bash”, “clash”, “smash”, “crash”, “dash”, “flash”, etc.22

Figure 3.1
“Structural analogy” vs “Relational analogy”. After Masako K. Hiraga, “Diagrams and Metaphors: Iconic Aspects
in Language,” Journal of Pragmatics 22, no. 1 (1994): 5–21.

A similar point was made by Roman Jakobson who took interest in Peirce’s concept of

diagrams - a type of icons that are based on the structural similarity of the signifier and the

signified. He illustrated this concept through the expression “Veni, vidi, vici” for which the

structure of the sentence reflects the temporal structure of Caesar’s actions; similarly, “high –

higher - highest” reflected the gradation of the signified through the addition of the phonemes.

Jakobson has generated considerable interest for Peirce among linguists, who have introduced

a further distinction between structural diagrams that display a correspondence between the

structure of the content and the structure of the form (e.g. “Veni, vidi, vici”), and relational

diagrams that associate sameness in form and sameness in content, or difference in form and

1987), 67-8.
20. WilliamKeach replied to Harris’ example by pointing out that because signs are not absolutely arbitrary, the

French “soeur” is not completely equivalent to the English “sister” if one attempts to translate a poem by Byron.
The same restriction appears for Shakespearean rhymes like “womb” and “tomb”, or “breath” and “death”, see
William Keach, Arbitrary Power: Romanticism, Language, Politics (Princeton: Princeton University Press, 2015),
19.
21. Dwight Bolinger, “The Sign Is Not Arbitrary,” Boletıń del Instituto Caro y Cuervo 5 (1949): 53.
22. Ibid., 58-9.
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difference in content (e.g. the phonestheme /fl/ that associates the idea of movement with

“flap”, “flare”, “flee”, “flicker”, etc.).23 These two types of diagrammatic relations are represented

in Fig. 3.1.

Figure 3.2
Relational analogy for graph.

Figure 3.3
Structural analogy for scope, meter and graph.

The concepts of structural and relational analogy can help us understand the patterns

through which language is organized. Such an analysis is particularly fruitful when applied to

words with a well-established structure (see Figs. 3.2 and 3.3). However, while the above cited

linguistics studies were mainly interested in describing the state of language synchronically,

in what follows the concept of analogy will be applied historically.

1.2 Scopes and Meters

The productive use of “scopio” or “scopium” can be traced back to the activity of a well-

connected network of Italian natural philosophers. The term “telescopio” has been attributed

23. Masako K. Hiraga, “Diagrams and Metaphors: Iconic Aspects in Language,” Journal of Pragmatics 22, no. 1
(1994): 5–21; John Haiman, “The Iconicity of Grammar: Isomorphism and Motivation,” Language 56, no. 3 (1980):
515–540.
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to Frederico Cesi, the founder and president of the Accademia dei Lincei, who allegedly “un-

veiled” the term during a banquet in Galileo’s honor in 1611.24 A year later “telescopium”

was first used in print by Julius Lagalla, a professor of philosophy at the University of Rome

and a guest at Cesi’s banquet. There is some dispute over the origin of the term because

Lagalla–in a different book–has attributed the term to John Demisiani, a Greek mathemati-

cian and poet, who was also present at the Galileo dinner.25 An unsustained claim has been

made that Demisiani had also coined “microscopio”, though the term probably originated in

1625 with Giovanni Faber, a botanist and secretary of the Accademia dei Lincei, who called

“after the model of telescope, a microscope, because it permits a view of minute things”.26

The ending of “scopio/scopium” was so unique that when in 1612 Christopher Scheiner pro-

posed the term “heliscopium”, Cesi concluded that Scheiner must have read Lagalla’s book

where “telescopium” was first printed.27 In 1617 Giuseppe Biancani, a Jesuit astronomer well-

familiar with the “telescopio/telescopium”, coined the term “thermoscopium” to describe an

instrument with which “many things may be found out about the nature of the air”.28 The

scope ending was productive not only in Italian or Latin. “Baroscope”, probably coined by

Robert Hooke, came into use in 1664 among the members of the Royal Society.29 Hooke also

introduced in the “Preface” to the Micrographia (1665) the term “hygroscope” to describe an

instrument made from “the beard of a wild oat” which could measure the humidity of air. The

24. Edward Rosen, The Naming of the Telescope (New York: HSchuman, 1947), esp. 30-31. Before “telescopium”
was introduced, Galileo and Kepler mainly used “perspicillum”–a term commonly used to refer to an optical
lense–along with other variations such as “perspicillum duplicatum” (double lense) or “specillum”. In vernacular
Galileo preferred the term “occhiale”. However, neither of these terms was ideal because they could not easily
distinguish between the instrument and the lenses, see ibid., 4-5.
25. Ibid., 60. In a careful reading of Lincean documents Rosen has shown that while in the first accounts of the

banquet Cesi only bestowed (“indidit”) the name, in a later reworking of the story it was claimed that he “thought
it up and bestowed it [excogitavit et indidit]”, see ibid., 64. This has led Rosen to attribute the term to Demisiani.
26. Faber quoted in ibid., 23-24. For sources who attribute “microscopio” to Demisiani see ibid., 96n220, 97n227.
27. Ibid., 38, 56.
28. Biancani quoted in W. E. Knowles Middleton, A History of the Thermometer and Its Use in Meteorology

(Baltimore: Johns Hopkins Press, 1966), 11.
29. The term is first mentioned in a letter from Robert Hooke to Beale, June 24, 1664. Because the word is not

defined one can assume that it was already in use. See W. E. Knowles Middleton, The History of the Barometer
(Baltimore: Johns Hopkins Press, 1964), 72.
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microscope, an instrument on which Hooke was an almost uncontested authority, probably

provided the pattern on which the new names were constructed.

The endingmeter became productive in France in the second half of the 16th century when

several mathematical instrument makers published short pamphlets to advertise a particular

instrument they had designed. In 1567 Abel Foulon, “valet de chambre du roi”, published a

Usage et description de l’holomètre: pour scavoirmesurer toutes choses qui sont soubs l’estandüe de

l’oeil. Foulon’s example was followed by G. des Bordes in La declaration et vsage de l’instrument

nommé canomettre (1570) and Philippe Danfrie, also a “valet de chambre du roi”, who in 1597

published a Declaration de l’vsage du graphometre: par la pratique duql l’on peut mesurer toutes

distanceswith a supplement titled Traicté de l’usage du Trigometre. Thiswas the first instance in

which the graphometer, whichwould become themostwell-known surveying instrument, was

named and described.30 Soon after, a Breton instrument maker (Henry de Suberville) dedicated

to the king Henry IV an instrument which he advertised as L’Henry-Metre, instrument royal, et

universel (1598) with which one could “prend toutes mesures geometriques, & astronomiques”,

and Pierre Le Conte advertised La fabrique et l’usage du radiometre, instrument geometrique, et

astronomique (1604). In everyday use such instruments would have been simply described as

“quadrans” or “quadrans universels”.31 However, these pamphlets played a special role in both

advertising the novelty of the instrument and in associating the instrument with a particular

maker. Furthermore, the instruments were dedicated to the king, and as such an appropriate

name was required.32

Thus, it is not surprising that “thermometre” (instead of “thermoscopium” or “thermo-

scope”) was first used in a French mathematical text, the Recreation mathematique (1624) of H.

30. Maurice Daumas, Scientific Instruments of the Seventeenth and Eighteenth Centuries and Their Makers (Lon-
don: Portman Books, 1989), 16. For Danfrie’s activity and workshop see A. J. Turner, “Paper, Print, and Mathe-
matics: Philippe Danfrie and the Making of Mathematical Instruments in Late 16th Century Paris,” in Studies in
the History of Scientific Instrument, ed. Christine Blondel (London: Rogers Turner, 1989), 22–42.
31. See for example the “quadrans” listed by Jehan Quenif (1557) and reproduced in ibid., 33-34.
32. SeeMario Biagioli, “FromPrint to Patents: Living on Instruments in EarlyModern Europe,”History of Science

44, no. 2 (2006): 139–186.
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van Etten, an author connected to the French Jesuit priest and mathematician Jean Leurechon,

and in its Latin translation Thaumaturgus mathematicus (1628) by the German mathemati-

cian Caspar Ens.33 In this case, the division in language between scope and meter reflected a

more profound division in labor. As pointed out by historian Jim Bennett, in the 17th century

“[m]athematical instrument makers did not become involved in the production of telescopes

or microscopes”; the optical instrument makers were most often astronomer or “spectacle

makers”.34

For the next century the meter and scope endings competed with each other in the vocab-

ulary of natural philosophers. Marin Mersenne, a philosopher and mathematician educated

at the Jesuit College of La Flèche, referred to a “termoscope” (in vernacular) and to a “ther-

moscopium” (in Latin).35 Blaise Pascal preferred “thermometre”.36 In New Experiments and

observations touching the cold (1665) Robert Boyle introduced the term “barometer”, in anal-

ogy with “thermometer”, to avoid “circumlocutions”, despite the fact that “baroscope” and

“thermoscope” were also used throughout the text.37 By the end of 1665 the Philosophical

Transactions announced that “Modern Philosophers, to avoyd Circumlocutions, call that In-

strument… a Barometer or Baroscope”.38 “Thermometer” and “thermoscope” were similarly

interchangeable as exemplified in Thomas Hobbes’ Elements of Philosophy (1656): “This organ

is called a Thermometer or Thermoscope, because the degrees of Heat and Cold are measured

33. Middleton, A History of the Thermometer and Its Use in Meteorology, 20. For a while H. van Etten was
considered to have been Leurechon’s pseudonym but now scholars are inclined to see Etten as a student of
Leurechon, see Arianna Borelli, “TheWeatherglass and Its Observers,” in Philosophies of Technology: Francis Bacon
and His Contemporaries, ed. Claus Zittel et al. (Leiden; Boston: Brill, 2008), 119-121. In 1628 was published a book
called L’usage du thermomètre.
34. Bennett, “Early Modern Mathematical Instruments,” 703. Instead of grouping everything under “scientific”

instruments, Bennett is careful to distinguish between the historical categories ofmathematical, optical and philo-
sophical instruments. See Deborah Jean Warner, “What Is a Scientific Instrument, When Did It Become One, and
Why?,” The British Journal for the History of Science 23, no. 1 (1990): 83–93.
35. Marin Mersenne, Correspondance, ed. Paul Tannery and Cornelis de Waard, vol. 3 (Paris, 1946), 191; Marin

Mersenne, Cogitata Physico-Mathematica, vol. 2 (Sumptibus Antonii Bertier, via Iacobaea, 1644), 143. These were
mentioned in Middleton, A History of the Thermometer and Its Use in Meteorology, 23, 27.
36. See for example the quote in ibid., 28.
37. The text was probably written two years earlier, see Middleton, The History of the Barometer , 71-72.
38. “A Relation of Some Mercurial Observations, and Their Results,” Philosophical Transactions (1665-1678) 1

(1665): 153.
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and marked by it”.39 For most of the 17th century “baroscope” and “thermometer” were the

most common choices.40 However, analogy often ruled against common use. The philosopher

John Locke used a “baroscope” and a “thermoscope” to keep a daily register of the weather,

while the Philosophical Transactions described an “Aerometer, consisting of Hygrometer, Ther-

mometer, and Barometer”.41

The first distinction between a scope and a meter, that I could encounter, was made

in 1709 by Christian Wolff who distinguished between “thermometra”, “barometra”, “hy-

grometra”, or “manometra” as instruments which “measure [metimur]” and the “baroscopia”,

“thermoscopia”, “hygroscopia”, or “manoscopia” as instruments which “indicate [indicant]”.

“Manoscopia” was hardly ever used in scientific texts, and was only introduced by Wolff to

preserve the symmetry of the opposition. In a worried note, Wolff pointed out that

commonly the words thermometer & thermoscope are synonymous. We nevertheless carefully
distinguish these words, lest hereafter (which commonly happens) for the same words we have
altogether different instruments, and furthermore confuse observations and because of this con-
fusion draw erroneous conclusions from them.42

Wolff’s distinction between meter and scope as one between measuring and showing was em-

braced by Chambers’ Cyclopaedia (1728) which warned its readers:

The Barometer is frequently confounded with the Baroscope, tho somewhat improperly; the latter,
in strictness, being a Machine that barely shews an Alteration in the Weight of the Atmosphere;
but ’tis one thing to know the Air is heavier at one time than another, and another to measure

39. Thomas Hobbes, Elements of Philosophy (London: Printed by R& WLeybourn for Andrew Crooke, 1656),
387.
40. For example, in an advertising leaflet named Aeroscopium the instrument maker JohnWarner presented his

“baroscope” and “thermometer”; the leaflet is reproduced in R. T. Gunther, Early Science in Oxford (Oxford, 1920),
vol.12, 302-303. The same pattern of use can be observed in the pages of the Philosophical Transactions.
41. For Locke’s table of measurements see John Locke, “A Register of the Weather for the Year 1692, Kept

at Oates in Essex,” Philosophical Transactions 24 (1704): 1917–1937. For the description of the “Aerometer” see
Philosophical Transactions 6 (1685): 1185. For more on the early history of weather measurements, and especially
atmospheric pressure, see Jan Golinski, British Weather and the Climate of Enlightenment (Chicago: University
of Chicago Press, 2010), 108-136; Richard Yeo, Notebooks, English Virtuosi, and Early Modern Science (Chicago:
University of Chicago Press, 2014), 189-190.
42. ChristianWolff,Aërometriae Elementa. GesammelteWerke, II Abt., Band 37 (Hildesheim: GeorgOlmsVerlag),

9-10.
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how much that Difference is; which is the Business of the Barometer.43

Through Chambers the distinction made its way into Samuel Johnsons’ A Dictionary of the En-

glish Language (1755) and L’Encyclopédie (1st ed. 1751), dictionaries which as Chambers’ Cy-

clopaedia paid particular attention to consistent etymologies. L’Encyclopédie provided a similar

warning to the Cyclopaedia: “on confond ordinairement, quoique mal-à-propos, le barometre

avec le baroscope”.44 However, it also had to admit that “[a]u reste il n’y a plus aujourd’hui

de baroscope qui ne soit barometre, & ces deux noms désignent absolument le même instru-

ment”.45 Any distinction was simply dismissed by the Encyclopaedia Britannica (1st ed. 1771):

“BAROSCOPE, the same with barometer. See BAROMETER”.46 The example was followed by

technical or mathematical dictionaries, including Charles Hutton’s famous Philosophical and

Mathematical Dictionary (1795, new ed. 1815).

Besides the purely etymological distinction between scope and meter, which as

L’Encyclopédie had to admit did not correspond to any practical reality because one could

not encounter any proper baroscopes (though one could still inappropriately refer to barome-

ters as “baroscopes”), the distinction between “thermometers” and “thermoscopes” was more

subtle. Following “the excellentWolfius”, Chambers’ Cyclopaedia (1728) explained that “all the

thermometers in use are thermoscopes” because they can only show and not properly measure

the changes in heat. Chambers’ summary of Wolff’s arguments were readily transcribed in

L’Encyclopédie.47 While the quantity measured by a barometer, i.e. the weight of air, could

be clearly defined and standardized, the quantity measured by a thermometer, the amount of

“hot and cold”, was more illusive. The standardization of the thermometer calibration between

43. Ephraim Chambers, Cyclopædia, or, An Universal Dictionary of Arts and Sciences (London: Printed for James
and John Knapton, 1728), 83.
44. Diderot and D’Alembert, Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers, vol.2, 77.
45. Ibid., vol.2, 89.
46. Encyclopædia Britannica: Or, A Dictionary of Arts and Sciences (1771), vol.1, 523.
47. Diderot and D’Alembert, Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers, vol.16,

273-274.
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two fixed points was only carried out in the first half of the 18th century.48 This difference

between the principles of the instruments was not readily reflected in the symmetry of the

pairs “barometer-baroscope” and “thermometer-thermoscope”.

This short account of the endings scope and meter has shown that etymological construc-

tions and interpretations were not universal. It was never the case that an instrument was

given a Greek name only because such a name could be translated into a phrase that would,

more or less, summarize the use of the instrument. Such endings became productive not be-

cause of their etymological meaning, but rather through the emergence of patterns that would

be imitated through analogy. As instruments moved so did their labels which would become

the templates for new naming patterns. However, analogy could act in two directions. On the

one hand, new names would be generated based on a pattern. At the same time, differences in

naming patterns would require matching differences in the objects that were named. Thus, as

Christian Wolff warned its readers in 1709, a new danger arose – the misnomer, or the name

constructed through the wrong kind of analogy, which throughout most of the 18th and 19th

century will be labeled as a barbarism.49

1.3 The barbarism of etymologies

The potential conflict between scientific names and scientific objects came to the forefront

at the end of the 18th century when a series of chemists who included Guyton de Morveau,

Antoine Lavoisier, C. L. Berthollet and A. F. de Fourcroy proposed a new chemical nomen-

48. For the history of the “rational scales” see Middleton, A History of the Thermometer and Its Use in Meteorol-
ogy, 65-114. For the difficulties in actually constructing a rationally scaled thermometer see Jean-François Gauvin,
“The Instrument That Never Was: Inventing, Manufacturing, and Branding Réaumur’s Thermometer during the
Enlightenment,” Annals of Science 69, no. 4 (2012): 515–549; Hasok Chang, Inventing Temperature: Measurement
and Scientific Progress (Oxford University Press, 2004).
49. “Barbarism” was a technical word among philologists which defined it as: “Le barbarisme est de se servir

de quelque mot impropre, ou de quelque phrase estrangère, et qui n’est pas naturelle à la langue, ou d’oublier des
particules, des pronoms ou des prépo-sitions dans les endroits où elles sont nécessaires”, in Jean François Féraud,
Dictionnaire critique de la langue française … (1787), 246. The “barbarism” was anything strange and foreignwhich
did not belong to the language, or any combination of two parts which did not belong together.
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clature.50 The principles of the reform were first exposed by Guyton de Morveau in 1782 who

criticized the old language of chemistry as “aussi barbare, aussi vague, aussi incohérente”.51

Morveau considered that scientific progress could only be certain and fast if

les idées sont représentées par des signes précis & détermines, justes dans leur acception, simples
dans leur ex-pression, commodes dans l’usage, facile à retenir, qui conservent autant qu’il est
possible, sans erreur, l’analogie qui les rapproche, le système qui les définit & jusqu’à l’étymologie
qui peut servir à les faire deviner.52

Morveau set out five principles for his scientific language:

1. Simple substances should have simple names, while composite substances should have

composite names. Thus, the language would reflect the composite state of a substance.

2. The names had to correspond, as much as possible, to the nature of the things:

“Les dénominations doivent être, autant qu’il est possible, conformes à la nature des

choses”.53 While a simple, uncompounded word shared no similarity with the object it

represented, “les dérivés, les composés de ce mot sont les seuls noms conformes à la na-

ture des êtres congénères”.54 For this reason, De Morveau considered the term “huile de

vitriol” inappropriate because it brought out the idea of an oily substance to something

that completely lacks this character.

3. New words lacking any previous meaning or associations were to be preferred to words

that induced a false idea: “Lorsqu’on n’a pas une connaissance certaine du caractère qui

doit principalement déterminer la dénomination, il faut préférer au nom qui n’exprime

50. Jan Golinski, “The Chemical Revolution and the Politics of Language,” The Eighteenth Century 33, no. 3
(1992): 238–251; Jessica Riskin, Science in the Age of Sensibility: The Sentimental Empiricists of the French En-
lightenment (Chicago: University of Chicago Press, 2002); Maurice P. Crosland, Historical Studies in the Lan-
guage of Chemistry (Cambridge: Harvard University Press, 1962); Ursula Klein and Wolfgang Lefèvre, Materials
in Eighteenth-Century Science: A Historical Ontology (MIT Press, 2007).
51. Louis-Bernard Guyton de Morveau, “Mémoire sur les dénominations chimiques, la nécessité d’en perfec-

tionner le système, et les règles pour y parvenir,” Observations sur la physique 19 (1782): 371.
52. Ibid.
53. Ibid., 373.
54. Ibid.
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rien à un nom qui pourroit exprimer une idée fausse”.55

4. New words were preferably constructed from Greek and Latin such that the meaning

was recoverable from the word, and the word from the meaning: “Dans le choix des dé-

nominations à introduire, on doit préfèrer celles qui ont leurs racines dans les langues

mortes les plus généralement répandues, afin que le mot soit facile à retrouver par le

sens, & le sens par le mot”.56 The aim was to create names such that “le mot rappelle

sûrement la chose à l’esprit” and to “recréer le signe conventionnel de la chose”.57

5. “Les denominations doivent etre assorties avec soin au genie de la langue pour laquelle

elles sont formees”.58

For example, Morveau rejected the commonly used term “terre pesante” because: 1. though it

was a simple substance it was not expressed through a simple word that would allow the for-

mation of adjectives or composite words; 2. “cette expression manque de justesse, en ce qu’il

n’est pas prouvé que la terre qu’on tire du spath pesant soit elle même plus pesante qu’une

autre terre”. Instead, Morveau proposed “barote” because the Greek root was already natural-

ized and “pour ne pas introduire un signe dépourvu de toute analogie, qui n’ait qu’une valeur

arbitraire, j’emprunte un terme qui se relie par l’étymologie aux idées que je veux modifier”.59

“Barote” was chosen not because it was meaningless or arbitrary, but on the contrary because

it was intelligible.60 The term “barometer” was given as an example for what a properly con-

55. Guyton deMorveau, “Mémoire sur les dénominations chimiques, la nécessité d’en perfectionner le système,
et les règles pour y parvenir,” 374-5.
56. Ibid., 375.
57. Ibid., 382.
58. Ibid., 376.
59. Ibid.
60. Some historians have given a different, and somewhat misleading account of Morveau’s principles: “The

subsequent abandonment of the principle that a name should reflect the nature of its object marked the origin
of the new chemical nomenclature. In 1782 Morveau published a call for a systematic reform of chemical names
in which he denied outright Venel’s and Bergman’s common assumption that names should be founded in facts.
Facts alone, Morveau asserted, ‘say nothing to the mind’. He then casually anticipated a concept that would
dominate much twentieth-century language theory, that is, the arbitrary relation of the sign to the signified.
Morveau claimed that all names were essentially artificial: ‘Sounds, and the words they represent’, he wrote, ‘in
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structed scientific language could achieve. Despite the fact that etymologically the word was

translated solely as “the measure of weight”, the particular use of the instrument has lead to

“substituer un nom à une phrase, & de créer un mot qui portât avec lui son explication”.61

Both the proponents of the new nomenclature and its most avid critics seemed to agree

on two main issues: 1. the words had to be intelligible; 2. no word functioned on its own –

its meaning and sound depended on language as a whole. How one judged the intelligibility

and coherence of the new nomenclature was up for debate. Lavoisier considered that the

changes proposed were not possible “sans blesser souvent les usages reçus, & sans adopter des

dénominations qui paraîtront dures & barbares dans le premiermoment”; however, the ear was

easily accustomed to newwords when these were based on “un système général & raisonné”.62

The critics picked up exactly on the same issues. J. C. De La Métherie condemned terms like

carbonate, nitrate, and sulphate as “harsh and barbaric words that shock the ear and are not at

all in the spirit of the French language” – “des mots durs, barbares, qui choquent l’oreille, & ne

sont nullement dans le génie de la langue françoise”.63 Throughout the article the expression

“durs & barbares” was thrown against the new nomenclature.64 To these faults in language,

De La Métherie opposed the essential requirements of “l’harmonie” and “l’analogie”.65 The

reality have, by themselves, no relation, no conformity with things’. So, in the case of an individual substance that
one ‘envisions only for itself’, and not in relation to any other substance, Morveau argued, any name that ‘means
nothing’ would serve the purpose. In fact, he preferred meaningless names for such independently considered
substances and recommended that nomenclators ‘distance themselves as much as possible from familiar usage’.
For the purpose, he advised taking roots from classical rather than vulgar languages”, in Riskin, Science in the Age
of Sensibility, 236. There is a deep contradiction in Riskin’s claim that De Morveau recognized both “the arbitrary
relation of the sign to the signified” and that he preferred meaningless names that meant nothing.
61. Guyton deMorveau, “Mémoire sur les dénominations chimiques, la nécessité d’en perfectionner le système,

et les règles pour y parvenir,” 375.
62. Antoine Laurent Lavoisier, “Mémoire sur la nécessité de réformer et de perfectionner la nomenclature de la

chimie,” in Methode de nomenclature chimique, ed. Louis-Bernard Guyton de Morveau et al. (Paris: Cuchet, 1787),
23-4.
63. J. C. De la Métherie, “Essai sur la nomenclature chimique,” Observations sur la physique 31 (1787): 274.
64. “Muriate est dur & barbare”, “fluate est dur & barbare; nous dirons sels fluoriques”, “succinate est dur &

barbare”, “tartrite, tratrate sont durs & barbares”, “oxalate est dur & bar-bare”, “gallate, qui est dur & barbare”,
“benzoate qui est dur & barbare”, “laclate qui est dur & barbare”, “sormiate, qui est dur & barbare”, “bombiate, qui
est dur & barbare”, ibid., 279-281.
65. “L’harmonie des mots est encore une considération essentielle à faire dans une langue”, “On ne doit point

négliger l’harmonie des mots, & on ne peut absolument s’écarter du génie de la langue”, “Cependant une langue
ne pourra jamais arriver à sa perfection, que lorsqu’on aura acquis des connaissances suffisantes pour en réduire
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same points were raised by other French chemists who rejected the nomenclature because

it is “barbare, insignifiante, & sans étymologie” (Balthazar Georges Sage), or “jargon barbare

& mysterieux” (Christophe Opoix).66 One critique ended with the rhetorical question of: “Les

gens dumonde pourront-ils accoutumer leurs oreilles à l’étrange dissonance& à la barbarie des

termes?”.67 On the other side of the channel the Irish chemist Richard Kirwan considered that

the newnomenclaturewas unintelligible not because it was “sans étymologie” (as voiced by the

French chemist Balthazar Georges Sage), but rather because it replaced “single names, already

understood, and well known by all those that have attained any knowledge of chemistry”

with new names “derived from the Greek or new unknown barbarous Latin names”.68 Kirwan

singled out Morveau’s example of the word “barometer” (which the French considered that it

is “un mot qui portât avec lui son explication”) as a name which is “just as well understood by

those who are totally unacquainted with its etymology, as by those to whom this is perfectly

known”.69 Against those who read too much into etymologies, Kirwan pointed out that “the

instrument itself, and not its use, is denoted by the name”.70

Constructing satisfactory scientific names could be an impossible affair given the array of

expected constraints: dignified Greek roots that could be adapted to the phonetics of mod-

ern languages and which would be intelligible to those without a profound acquaintance with

classics. Faced with such a challenge, in the 1830s Michael Faraday contacted the Cambridge-

don William Whewell to to help him find “two good names not depending upon the idea of a

tous les termes à l’analogie”, “On consultera autant qu’on pourra l’analogie”. The new nomenclature failed too
often to respect the analogy of the language: “Elle n’a nullement consulté l’analogie dans un grand nombre
de cas”, “Ils blessent l’analogie en beaucoup de circonstances”, in De la Métherie, “Essai sur la nomenclature
chimique.”
66. Balthazar Georges Sage, “Lettre de M. Sage à M. de la Métherie sur la nouvelle nomenclature,” Observations

sur la physique, sur l’histoire naturelle et sur les arts 33 (1788): 479; ChristopheOpoix, “Lettre deM. Opoix, maı̂tre en
pharmacie à Provins & membre de plusieurs académies, à M. de la Métherie sur la nouvelle théorie,” Observations
sur la physique, sur l’histoire naturelle et sur les arts 34 (1789): 77-78.
67. Opoix, “Lettre de M. Opoix, maı̂tre en pharmacie à Provins & membre de plusieurs académies, à M. de la

Métherie sur la nouvelle théorie,” 77-78.
68. Richard Kirwan, “Of Chemical and Mineralogical Nomenclature,” The Philosophical Magazine 8 (1800): 175.
69. Ibid., 173.
70. Ibid.
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current in one direction only or upon Positive or negative”.71 Faraday could only fathom names

“which a scholar could not suffer I understand for a moment” such as “Eastode & Westode”,

“Voltode & Galvatode”, or “Alphode & Betode”.72 Whewell politely replied that these terms

only expressed difference, but it “is very desirable in this case to express an opposition, a con-

trariety, as well as a difference. […] They are also objectionable it appears to me, in putting

forwards too ostentatiously the arbitrary nature of the difference”.73 To express opposition

besides difference, Whewell appealed to a clever etymology to construct: “Anode & Cathode”,

“a way up and a way down”. While for a Cambridge graduate the meaning could have been

transparent, Faraday expressed his concern that “all to whom I have shown them have sup-

posed at first that by Anode I mean No way”.74 Such concerns were immediately rebuffed in

a scholarly vein by Whewell: “Anodos and cathodos do really mean in Greek a way up and a

way down; and anodos does not mean, and cannot mean, according to the analogy of the Greek

language no way.”75

Both Whewell and Faraday (or his acquiescences, if those were not a simple ruse for Fara-

day to politely criticize Whewell) understood the analogy to Greek differently. While Faraday

simply split the word “anode” into “an”, a negation and “ode” or “way” (a termwithwhich Fara-

day was already familiar), Whewell appealed to grammatical analogies which distinguished

both between the function of “ode” as an adjective or a substantive.76 As he explained to

Faraday:

71. Faraday to Whewell, 1834, in Frank James, ed., The Correspondence of Michael Faraday (London: Institution
of Electrical Engineers, 1991), vol.2 177 - letter 1711. I follow here the excellent and unfairly neglected study of
S. Ross, “Faraday Consults the Scholars: The Origins of the Terms of Electrochemistry,” Notes and Records of the
Royal Society of London 16, no. 2 (1961): 187–220.
72. James, The Correspondence of Michael Faraday, vol.2 177.
73. Ibid., vol.2 184.
74. Ibid., vol.2 181.
75. Ibid., vol.2 182-3.
76. Whewell employed a similar grammatical analogy to dismiss the term “zetode” (i.e. “that which seeks the

way”) proposed by Faraday because “this word being grouped with others of the same termination might be
expected to indicate a modification of electrode, as eisode, and exode, or anode and cathode do. Instead of this, it
means a notion altogether heterogeneous to these, and the ode is here the object of a verb zete, contrary to the
analogy of all the other verbs”, in ibid., v.2, 202.
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It is true that the prefix an put before adjectives beginning with a vowel, gives a negative significa-
tion, but not to substantives, except through the medium of adjectives. Anarchos means without
government, and hence anarchia, anarchy, means the absence of government; but anodos does not
and cannot mean the absence of way.77

Too proud to admit that “anode” could present any shortcomings, Whewell condemned the

faulty knowledge of Greek of anyone who misinterpreted the term:

when introduced in company with cathodos no body who has any tinge of Greek could fail to
perceive the meaning at once. The notion of anodos meaning no way could only suggest itself to
persons unfamiliar with Greek, and accidentally acquainted with some English words in which
the negative particle is so employed; and those persons who have taken up this notion must have
overlooked the very different meaning of negatives applied to susbtantives and adjectives.78

The close level of scrutiny employed by Whewell in analyzing analogies to Greek was not

unparalleled. Shortly after the Indian Rebellion of 1857, scholars from Oxford and Cambridge

carried out a heated debate in the pages of the London Times over the correct form for “tele-

gram”. The arguments made by the two sides were resumed as such:

If Pericles had had a telegraph from Athena to the Piraeus, and wished to say ‘I telegraph,’ would
he say ‘telegrapho’ or ‘tel[e]grapheo’? If he said ‘telegrapho,’ he would have called a telegraphic
message a ‘telegramma’. If he said ‘telegrapheo,’ he would have used ‘telegraphema.’ And so the
question lies between the two verbs. Cambridge asserts that as ‘grapho’ can only be used with a
preposition, Pericles most have said ‘telegrapheo’. And, then Oxford quotes from Homer to prove
that ‘tele’ is a preposition. Now, we believe that ‘tele’ is not, and never was a preposition, but
merely an adverb used as a preposition; and although a vulgar fellow like Cleon might have said
‘telegrapho’, Pericles would have certainly used the other form.79

The debate started after the Times used on September 14, 1857 the word “telegram” to refer

to the “telegraphic despatch” that was received at the foreign-office through the admirality to

provide news about “the mutinies in India”. As the war carried on, so did the telegrams and

the “telegrams”. The war in India was soon followed by “the Battle of the Telegram”, as it was

immortalized in the pages of the Punch (see Fig. 3.4).

77. James, The Correspondence of Michael Faraday, vol.2 182-3.
78. Ibid.
79. “Telegram,” Emerson’s Magazine and Putnam’s Monthly 6 (1858): 446.
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Figure 3.4
Source: “Pompey on Telegram,” Punch, 1857, 177; “Telegraph and Telegram,” Punch, 1857, 175; “The Battle of the
Telegram,” Punch, 1857, 185.
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While the Oxford and Cambridge scholars were debating if “telegram” was a “barbarism”

because it was not formed through proper analogy with the Greek language, the readers of

the Times and the Sunwere concerned with a different analogy which affected everyday use of

English. One reader hoped that others “will join the crusade against the use of the new word

“telegram” which “[i]f it should be adopted, half of our language would have to be changed”:

We shall have to say paragram instead of paragraph, hologram instead of holograph, photogram
instead of photograph, autogram instead of autograph, geogrammy instead of geography, lex-
icogrammy in-stead of lexicography, astrogrammy instead of astrography, lexicogrammer in-
stead of lexicographer, poly-grammy instead of polygraphy, stenogrammy instead of stenogra-
phy; stereogrammy instead of stereography, horogrammy instead of horography, ichtyogrammy
instead of ichtyography, micogrammy instead of micog-raphy, metallogrammy instead of metal-
lography, &c.

The lawless and barbaric “telegram” remained a reference point for many 19th century

philologists.80 Writing a decade later, F. W. Farrar considered that “the word ‘telegram’ is a

monstrusity, - ‘a spot of barbarity impressed so deep on the English language that criticism

never can wash away’ ”.81 TheAmerican scholar R.G. White was alarmed that after “telegram”

came to be accepted “[w]e have had photogram proposed, and stereogram, and — Cadmus save

us ! — cablegram, not only proposed, but used”.82

It is important to understand that what was opposed in such reactions was not just the ne-

80. See Fitzedward Hall, Recent Exemplifications of False Philology (Scribner, Armstrong & Company, 1872),
41-47.
81. Frederic William Farrar, A Brief Greek Syntax and Hints on Greek Accidence (1867), 49. The quote was

taken from the Preface of Johnson’s Dictionary (1755): “Such defects are not errours in orthography, but spots of
barbarity impressed so deep in the English language, that criticism can never wash them away; these, therefore,
must be permitted to remain untouched.”
82. RichardGrantWhite,Words andTheir Uses, Past and Present: A Study of the English Language (Sheldon, 1871),

233-4. After some had expressed their concern that “photograph” referred both to the “act of photographing,
but also the image photographed”, “photogram” was proposed as a substitute for a “photographic record”. The
new term reminded many of the barbaric “telegram”. Others questioned the very analogy between “telegram”
and “photogram” because “tele” was an adverb, while “photo” was a noun. Using this line of reasoning one
concluded that both “photograph” and “photogram” would express the same thing, and “photograph” could not
represent an active thing that produced the writing as in the case of “telegraph”. Instead, “to photograph” was
“utter barbarism”.“Photograph or Photogram,” Jackson’s Oxford Journal, 1871, “Photograph or Photogram (II),”
Jackson’s Oxford Journal, 1871, “Photograms,” The Standard, no. 2 (1885): 2; “Photograms (II),” The Standard, no. 2
(1885): 2; “Photograms (III),” The Standard, no. 6 (1885): 6.

76



INDICATING, REGISTERING, RECORDING
INDICATEUR, ENREGISTREUR, INSCRIPTEUR

ologism itself seen in isolation, but rather the “violation of analogy” or “the false analogy”. The

“genius” of a language was improved by cultivating its analogies.83 Late 19th century linguists

appealed to a similar opposition, this time between analogy which enriched a language with

newwords and forms, and “folk etymologies” which corrupted the language. Saussure consid-

ered that “les constructions de l’analogie sont rationnelles, tandis que l’étymologie populaire

procède un peu au hasard et n’aboutit qu’a des coq-à-l’âne”. Analogy was based on a form

of interpretation and reasoning (no matter if erroneous or imperfect), while “folk etymology”

was a direct and unconscious reaction. The latter had “quelque chose qui peut passer pour

vicieux, pour pathologique” and as such “elle est plutôt une déformation”.84

1.4 Conclusion

This section has delineated a particular attitude towards language. It was shown that naming

practices are culturally and historically determined, and by following the patterns they gen-

erate one can reconstruct networks of exchange. Compared to previous analyses, one should

not focus solely on the use of specific expressions or their intent (i.e. on the production of a

speech act), but especially in the patterns of association they generate which make the speech

acts intelligible. Michel Bréal, Saussure’s maître, used a revealing example in an article on “De

l’analogie” (1878). How can one make sense of a shop sign like “Parfumerie des écoles”? If the

sign would be taken out of the context in which it is found, it would be easily misunderstood

or misread, maybe as a school for making perfumes. However, the sign is made intelligible by

analogy with the signs surrounding it: “Papeterie des écoles”; “Brasserie des écoles”.85

Not only that names are generated based on some form of meaningful pattern, but they

83. Such a belief was generally held by both French and British thinkers in the 18th and 19th century. E.g. “The
chief thing to be attended to in the improvement of a language is the analogy of it”, in Joseph Priestley, Lectures
on the Theory of Language and Universal Grammar (1762), 185.
84. Ferdinand de Saussure, Cours de Linguistique générale: Édition: critique, ed. Rudolf Engler (Wiesbaden: Otto

Harrassowitz Verlag, 1989), vol.1 IR 3.1-3.11.
85. Michel Bréal, “De l’analogie,” Bibliothèque de l’Ecole des hautes études, no. 35 (1878): 101.
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are also interpreted and made meaningful by historical actors. For example, a mechanical

engineer who designed optical indicators proposed the following classification:

According to the number of variables to be measured such optical indicators can be classified as:
(A) One-variable indicators, called “-meters”, which measure only one variable on a graduated
scale (e.g., extensometer, vibrometer, galvanometer);
(B) Two-variable indicators which represent on a screen, or on a photographic film, in a two-
coordinates diagram, the interrelationship of two variables. If the representation is visual the
proper term is “-scope” (e.g., vibroscope, oscilloscope). If the representation is a permanent pho-
tographic record the proper term is “-graph” (e.g., extensograph, vibrograph, oscillograph, torsio-
graph). The distinction between “-scope” and “-graph” is not always sharply drawn and in many
cases the same instrument can be used for visual inspection as well as for photographic record-
ing.86

Notice, however, that this was not a simple grouping or classification of instruments based

solely on some material property they possessed. It is a classification motivated by the name

of the instruments, and at the same time a classification which tries to motivate these names.87

If we had ignored the names, the classification would have been simply conceptual and defined

by the number of variables to be measured or the type of representation. However, such

a conceptual division is preceded by a categorial division imposed by the very names. It is

this categorial division which motivates the conceptual division but without determining its

content (because, of course, other conceptual explanations are available for the same given

categories).

Bréal described the action of analogy in very similar terms: “Il est question ici d’une rè-

gle non formulée, que l’homme s’efforce de deviner, que nous voyons les enfants tâcher de

découvrir: en la supposant, le peuple la crée”.88 Categories (names or labels) create meaning

because such a meaning is presupposed. This connects back to Wittgenstein’s discussion of

family resemblances from Philosophical Investigations:

86. Kalman J. DeJuhasz, “On the Geometry of Optical Indicators,” Journal of the Franklin Institute 229, no. 1
(1940): 54.
87. While the particular division and meaning associated with the names is specific to the author and his field

of activity, the impulse for this style of thinking about names is much more general.
88. Bréal, Essai de sémantique (science des significations), 80.
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Consider for example the proceedings that we call “games”. I mean board-games, card-games,
ball-games, Olympic games, and so on. What is common to them all?–Don’t say: “There must
be something common, or they would not be called ‘games’ ”–but look and see whether there is
anything common to all.89

After this, Wittgenstein goes on to argue that the only thing common to all these objects is

“a complicated network of similarities overlapping and criss-crossing”.90 However, what is left

unquestioned is the initial assumption, that “Theremust be something common, or they would

not be called ‘games’ ”. Such an assumption can only be made possible by the very existence of

the name, label or category “game”. What is common to all the games listed by Wittgenstein

(board-games, card-games, ball-games, Olympic games) is their very name.

2 LABELING GRAPHS

2.1 The productivity of graph

L’Encyclopédie provides a good entry point for having an overall view of the use of “graphe”

or “graphie” in the second half of the 18th century. The entries ending in these suffixes can

be divided into six categories: 1. descriptions of a topic, or parts of a science or discourse:

“lithographie” (or “the description of stones”), “sialographie” (“the part within animal econ-

omy which deals with saliva”); 2. a person whose area of activity is connected to some form of

writing or expertise: “hydrographe” (or “a person skilled in Hydrography”), “démonographe”

(or “someone who writes about demons”); 3. an art of writing, drawing or engraving: “choré-

graphie” (or “the art of writing dance as song”), “horographie” (or “the art of making dials”);

4. a type of writing or document: “opistographe” (or “a large book in which one write the

various things that need to be revised or corrected”); 5. a type of image: “orthographie” (or

“the plane or drawing of a building which shows all parts in their true proportion”) ; 6. a type

of instrument: “pantographe”.

89. Wittgenstein, Philosophical Investigations, §66.
90. Ibid.
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The distribution of words into these categories (see table Table 3.1) allows us to observe

several linguistic phenomena. “Graphe” and “graphie” were not homogeneously productive

across all categories. Most types of documents ending in “graphe” were words borrowed from

Greek or Latin which reflected an ossified ending. By far the most productive category was

that of “graphie” as a type of description or science. “Graphe” as the ending of an instrument

will only become productive at the end of the 18th century; L’Encyclopédie only listed the

pantograph. Also, there is a productivity across the aisle: a “cosmographie” was written by

a “cosmographe”, while the art of “typographie” was exercised by a “typographe”. Such a

phenomenon cannot be observed in the case of meter and scope, and as we will see, it is this

cross-productivity of graph that will transform it into a popular ending for instruments.

Many of the terms ending in graph became part of the scholarly parlance during the great

age of translations when works like Ptolemy’s Γεωγραφικὴ Ὑφήγησις (which came to be

known as the Geographia or Cosmographia) were translated into Latin. While these trans-

lations only introduced Greek or Latin words, the ending was made productive by the early

modern culture of publication. Though Greek was known only to a small number of human-

ists, Greek nameswere often employed in book titles written in Latin or vernacular to associate

the content of the books with Greek knowledge or its tradition. The title of Ptolemy’s Cosmo-

graphia was both copied – as in Pomponius Mela’s treatise which circulated under the names

Cosmographiae liber (1471), Cosmographi de situ orbis (1478), Cosmographi Geographia (1482),

or Sebastian Münster’s Cosmographia (1544) – and imitated to create new titles – as in Antoine

Mizauld’s Cometographia (1549) or Adriaen von Roomen’s Ouranographia (1591). Once the

pattern was in place, a whole new series of titles would follow (see Table 3.2). However, while

cosmography (“cosmographia”, “cosmographie”, etc.) was a recognized discipline (which was

studied and practiced), most of the graph titles were employed not because they would have

been recognized as pertaining to a particular field or sub-field, but rather because they pro-

vided a quasi-unique and scholarly name for a treatise. There were many unique names such
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as Helkiah Crooke’s Somatographia anthropine (1616), John Greaves’s Pyramidographia (1641),

Pierre Crochat’s Astérographie (1682), or Georg von Hartenfels’ Elephantographia (1723).91

Table 3.2
A selection of books published between 1500-1750 with “graphia”, “grahie” or “graphy” in the title. The title of
such books both reflected and reinforced the etymological translation of graph as “description”.

Adenographia 1656. Thomas Wharton. Adenographia: sive, glandularum totius corporis descriptio

1692. Antonio Nuck. Adenographia Curiosa Et Uteri Foeminei Anatome Nova Cum Epistola

Ad Amicum De Inventis Novis

Aenigmatographia 1590. Nicolaus Reusner. Aenigmatographia, sive Sylloge aenigmatum et griphorum convi-

valium

Anemographia 1578. Ignazio Danti. Anemographia : in anemoscopium verticale instrumentum ostensorem

ventorum

1586. Jehan Lauron. L’Anemographie, ou, Description des Vents, avec la cause, source,

nature, & propriété d’iceulx

Asterographia 1682. Pierre Crochat. Astérographie, ou description des estoiles fixes et de toutes les con-

stellations célestes

Botanographia 1718. Casparus Commelin. Botanographia a nominum barbarismis restituta, quam Florae-

Malabaricae nomine celebrem

Chronographia 1546. Alexander Scultetus. Chronographia sive Annales omnium fere regum, principum, &

potentatuum, ab orbe condito

1567. Gilbert Genebrard. Chronographia : in duos libros distincta; prior est de Rebus veteris

populi, posterior recentes historias praesertimque ecclesiasticas complectitur

1596. Lorenz Codomann. Chronographia : A description of time, from the beginning of the

world

Cometographia 1549. Antoine Mizauld. Cometographia : crinitarum stellarum quas mundus nunquam im-

pune vidit…

1661. Eberhard Welper. Cometographia : oder Beschreibung deßen im 1661…

Continued on next page

91. Catalogue book titles can often be misleading because they reduce the page title, a two-dimensional object,
to a one dimensional string of letters. Many of these book titles encoded more information, and were probably
hardly known under these names. For example, in Crooke’s Somatographia anthropine this title was written in
small Greek letters (hardly legible) and it was only the subtitle that stood out.
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Table 3.2 (Continued)

1665. Jakob Honold. Cometographia oder Kurtzer Bericht

1668. Johannes Hevelius. Cometographia, totam naturam cometarum

Elephantographia 1723. Georg von Hartenfels. Elephantographia curiosa, seu elephanti descriptio

Hecatomgraphia 1540. Gilles Corrozet. Hécatomgraphie, c’est à dire les declarations de plusieurs apoph-

tegmes, proverbes, sentences, & dictz

1540. Gilles Corrozet. Hecatomgraphie : c’est à dire les descriptions de cent figures &

hystoires, contenantes plusieurs appophtegmes, prouerbes, sente[n]ces & dictz

Mecographia 1603. Guillaume de Nautonier. La Mécographie, de l’eymant, c’est-à-dire, la description

des longitudes, trouvées par les observations des déclinaisons de l’eymant

1603. Guillaume de Nautonier. The mecographie of ye loadstone : Tat is to say ane descrip-

tion of the lenthes or longitudes, quhikis ar son be ye obseruations of ye loadstone

Metallographia 1671. John Webtser. Metallographia: or a history of metals

Meteorographia 1667. Ferdinando Parkhurst. Meteorographia: seu Meterography or the first booke of the

doctrine of meteors

Methigraphia 1620. Georgius Nicolasius. Methigraphia, Sive Ebrietatis Descriptio, Effectvs Eivs, Et Vitia

Annexa

Micrographia 1665. Robert Hooke. Micrographia, or, Some physiological descriptions of minute bodies

1687. Johann Franz Griendel. Micrographia nova; oder, Neu-curieuse Beschreibung ver-

schiedener kleiner Körper

1742. Benjamin Martin. Micrographia nova, or, a new treatise on the microscope

1745. Henry Baker. Micrographia restaurata or the copper-plates of Hooke’s wonderful dis-

coveries by the microscope

1746. George Adams. Micrographia illustrata, or, The knowledge of the microscope explain’d

Mumiographia 1716. Christian Hertzog. Mumiographia Medica: oder Bericht von den Egyptischen Mumien

1718. Christian Hertzog. Essay de mumio-graphie, ou plutôt description exacte et sincére

d’une des plus rares et d’une des plus curieuses moumies qu’on a jamais veues en Europe

Myographia 1684. John Browne. Myographia nova sive musculorum omnium (in corpore humano

hactenus repertorum) accuratissima descriptio

Continued on next page
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Table 3.2 (Continued)

1697. John Browne. Myographia nova, or, A graphical description of all the muscles in

humane body

Onomatographia 1617. Luis Ballester. Onomatographia, Sive Descriptio Nominvm Varii Et Peregrini Idioma-

tis

Ophthalmographia 1632. Vopiscus Fortunatus Plemp. Ophthalmographia sive tractatio de oculi

1676. Will Briggs. Ophthalmographia sive oculi ejusque partium descriptio anatomica

1713. Peter Kennedy. Ophthalmographia or, a treatise of the eye

(O)uranographia 1591. Adriaen von Roomen. Ouranographia, sive caeli descriptio

1690. Johannes Hevelius. Firmamentum Sobiescianum; sive, Uranographia, totum coelum

stellatum

1710. Roberto Bellarmino. Ouranography: Or Heaven Opened

1801. Johann Elert Bode. Uranographia, sive Astrorum descriptio

Prosopographie 1573. Antoine Du Verdier. La prosopographie, ou, Description des personnes insignes

Pyramidographia 1641. John Greaves. Pyramidographia: or, a description of the pyramids in Egypt

Selenographia 1647. Johannes Hevelius. Selenographia: Sive lunae descriptio

Somatographia 1616. Helkiah Crooke. Somatographia anthropine, or, A description of the body of man

Because we have only selected the titles ending in graph, one might infer that there was

a disciplinary uniformity. That was not the case. Mizauld followed his Cometographia (1549)

with a Planetologia (1551) which inspired Robert Greene’s Planetomachia (1585). A century

later, in 1684 the physician John Browne published a treatise on muscles, Myographia nova

(the nova being in reference to the previous treatise he published in 1681), and a treatise on

glandules, Adenochoiradelogia. The simpler name Adenographia had already been used by

Thomas Wharton in 1656. Also among Browne’s manuscripts one can find “Somatopolitia: or,

The city of humane body artificially defended from the tyranny of cancers and gangreens”.92

In the century separating Adriaen von Roomen’s Ouranographia (1591) and Hevelius’ Ura-

92. K. F. Russell, “A List of the Works of John Browne (1642-1702),” Bulletin of the Medical Library Association
50, no. 4 (1962): 675–683.
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nographia (published posthumously in 1690) one encounters no graph titles, but only books

such as Johann Bayer’s Uranometria (1603), Guillaume Pasquelin – Ouranologie (1615), Denis

Petau’s Uranologion (1630), etc. The unicity of the title is also observed in the case of Robert

Hooke’s Micrographia (1665) which was followed by books that had to distinguish themselves

through some extra term such as “nova”, “illustrata” or “restaurata” (see Table 3.2).

The scholarly ring of Greek and its ability of generating meaningful but unique names,

transformed graph (along with other Greek suffixes such as “metria”, “logia”, “machia”, etc.)

into a highly productive ending. These titles propagated not only the ending but also a trans-

lation for it, as it is underlined in Table 3.2. Graph (“graphia”, “graphie” or “graphy”) was

translated, mainly, as description. A second group of titles translated graph as a form of art,

associated in particular with writing (see Table 3.3).

2.2 Graph as instrument

If the pattern of naming instruments with scope was based on telescope and with meter on the

graphometer (or the holometer), the graph ending was established by the pantograph. The in-

strument was first described by the Jesuit priest Christoph Scheiner in Pantographice, seu ars

delineandi res quaslibet per parallelogrammum lineare seu cavum, mechanicum, mobile (1631).

Here, the instrument was only referred to as a “parallelogrammum lineare, Cauum, Delineato-

rium, Descriptorium, Graphicum”.93 The first use of pantograph can be found in French in the

second half of the 17th century, but these examples are isolated and the word does not seem

to have caught on.94 It was absent from the 1690 and 1701 editions of Antoine Furetière’s

93. Christoph Scheiner, Pantographice, seu ars delineandi res quaslibet per parallelogrammum lineare seu cavum,
mechanicum, mobile (Grignani, 1631), 11. Also, notice that “-graphice” in the title referred to the art of drawing
and not to the name of the instrument.
94. The first example I could identify is from 1654: “On Fait plusieurs sortes d’instruments pour prendre la

figure d’une surface proposée, ausquels on donne des noms specieux de Cosmographe, Pantographe, Grafometre,
Trigonometre, &c.”, in Jean François, La science des eaux (chez Sebastien Piquet, 1654), 36; this sentence is to be
found in multiple books by François. The only other distinct example from the 17th century is to be found in
Jacques Ozanam, Méthode de lever les plans et les cartes de terre et de mer (1693), 208.
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Table 3.3
A selection of books published between 1500-1750 with “graphia”, “grahie” or “graphy” in the title. The title of
such books both reflected and reinforced the etymological translation of graph as an “art”.

Brachigraphia 1620. W Folkingham. Brachigraphy, post-writ, or, The art of short-writing

1672. S Shelton. Brachygraphy, or the Art of Short-Writing

Cryptographia 1684. Johannes Balthasar Friderici. Cryptographia, oder, Geheime schrifft-, mund- und wür-

ckliche Correspondentz : welche lehrmässig worstellet eine hoch-schatzbare Kunst

Horologiographia 1626. Thomas Fale. Horologiographia. The Art of Dialling

Pantographia 1631. Christoph Scheiner. Pantographice, seu ars delineandi res quaslibet per parallelo-

grammum lineare seu cavum, mechanicum, mobile

1744. Claude Langlois. Description et usage du Pantographe : autrement appellé singe

Polygraphia 1672. William Salmon. Polygraphice : Or, TheArt of Drawing, Engraving, Etching, Limning,

Painting, Washing, Varnishing, Colouring and Dying

Sciographia 1635. John Wells. Sciographia, or the art of shadowes

Scotographia 1543. Abramo Colorni. Scotographia overo scienza di scrivere oscvro, facilissima, et sicvris-

sima per qual si uoglia lingua

Steganographia 1602. John Willis. The Art of Stenographie, teaching by plaine and certaine Rules … the way

of compendious Writing

1606. Johannes Trithemius. Steganographia: hoc est : Ars per ocevltam scriptvram animi

svi volvntatem absentibvs aperiendi certa

1620. Daniel Schwenter. Steganologia & Steganographia nova : Geheime, Magische, Natür-

liche Red unnd Schreibkunst

Stenographia 1644. Thomas Heath. Stenographie: or, The art of short-writing

1695. William Addy. Stenographia; or, the Art of Short-writing compleated in a far more

compendious method than any yet extant

Tachygraphia 1641. Thomas Shelton. Tachygraphy the most exact and compendiousmethode of short and

swift writing that hath ever yet beene published by any

1660. Thomas Shelton. Tachygraphia, sive Exactissima et compendio-sissima breviter

scribendi methodus

Zeiglographia 1649. Thomas Shelton. Zeiglographia, or, a New Art of Short-writing never before published
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Dictionnaire universel which only included the equivalent term “Singe” under which the in-

strument was described. The term got more traction after 1709, when Nicolas Bion introduced

an instrument that “est nommé Pantagrophe [sic]; on le nomme aussi Singe, parce qu’il sert

à copier toutes sortes de desseins”.95 In a later edition of the same treatise, Bion (or the pub-

lisher) revised this sentence and changed the name from “pantagrophe” to “pentographe”.96

Bion, who was the “ingénieur du Roi pour les instrumens de mathématiques”, wrote a highly

influential treatise on “instruments de mathématique” that was used as a source for words and

definitions in Antoine Furetière’s revised Dictionnaire universel. “Pentographe” was added in

1727 and defined as “Instrument de Mathématique qui sert à copier toutes sortes de desseins.

On le nomme aussi pour cette raison Singe. Voyez ce mot”.97 The actual description of the in-

strument was still listed under “Singe”, as it had also been used in the previous editions from

1690 and 1708. Bion’s book was translated in English in 1723, and it included a section “Of the

Pentograph, or Parallelogram”.98 The term was subsequently included in Ephraim Chambers’

Cyclopædia, though this time under the form “pentagraph”.99

The fact that a word was included in a dictionary does not necessarily mean it was ac-

tually used. The word re-emerged in 1743 in a short pamphlet titled Description et usage du

Pantographe: autrement appelé singe published by Claude Langlois, “ingénieur du Roi & de

l’Académie royale des sciences pour les instrumens de mathématiques”.100 Langlois also sub-

mitted the instrument that he had referred to as “Pantographe” to L’Académie Royale des Sci-

ences and it was included among the five “machines et inventions” that were approved by

95. Nicolas Bion, Traité de la construction et des principaux usages des instruments de mathematique (chez la
veuve de Jean Boudot, 1709).
96. Nicolas Bion, Traité de la construction et des principaux usages des instrumens de mathematique: avec les

figures nécessaires pour l’intelligence de ce traité (P. Husson, 1723).
97. Antoine Furetière, Dictionnaire universel, contenant généralement tous les mots françois, tant vieux que mod-

ernes et les termes des sciences des arts […] (P. Husson, 1727).
98. Nicolas Bion, The Construction and Principal Uses of Mathematical Instruments, trans. Edmund Stone (Lon-

don: Printed for John Senex and William Taylor, 1723), 86.
99. Chambers, Cyclopædia, or, An Universal Dictionary of Arts and Sciences, 780.

100. Claude Langlois, Description et usage du pantographe, autrement appelé singe, changé & perfectionné par C.
Langlois, ingénieur du Roi & de l’Académie Royale des Sciences pour les instrumens de mathématiques. (S. l., France,
1744).
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L’Académie in 1743. Claude Langlois was heading the most important workshop for mathe-

matical instruments in France during this period. For almost twenty years he had been the

official instrument maker of the French astronomers, and he made the quadrants and sectors

for the expeditions to Peru and Laponia. After his death, his business and his position of “in-

génieur du Roi & de l’Académie royale des sciences pour les instrumens de mathématiques”

was taken over by his nephew Canivet.101 Among other things, Canivet continued Langlois’

work on the pantograph, and republished his pamphlet as Description et usage du pantographe,

nommé communément singe: considérablement changé & perfectionné (1758). Langlois’ new de-

sign proved to be highly successful, and with the help of the publicity from L’Académie, the

improved instrument and its name were widely distributed. A posthumous edition of Jacques

Ozanam’s Méthode de lever les plans (1750) included a detailed description of the new instru-

ment and Langlois was credited with improving so much the older models that it could be

said that he has invented a new instrument to which “il a donné le nom de Pantographe ou

Singe”.102 Ozanam’s book was used to compile the description of the “Pantographe” that was

included in Saverien’sDictionnaire Universel de Mathematique et de Physique (1753) where only

the names of Scheiner and Langlois were mentioned. A very similar, but shorter entry was

then included in Diderot and d’Alembert’s Encyclopédie (1765) for “le pantographe ou singe”.

The main description was listed under “pantographe” while “singe” only included a short note

that added “mais le vrai mot est pantographe. Voyez PANTOGRAPHE”.103 The image provided

in Canivet’s pamphlet was used in one of the plates (see Fig. 3.5). Jean-Gaffin Gallon’s seven

volume collection ofMachines et inventions approuvées par l’Academie royale des sciences (1735-

1777) also included an entry on the “pantographe ou singe perfectionné par M. Langlois”, the

101. Daumas, Scientific Instruments of the Seventeenth and Eighteenth Centuries and Their Makers, 260-1; Maya
Hambly, Drawing Instruments, 1580-1980 (Sotheby’s Publications, 1988), 28.
102. Jacques Ozanam, Méthode de lever les plans et les cartes de terre et de mer: avec toutes sortes d’instrumens &
sans instrumens (C. Jombert, 1750), 214-5 Ozanam’s first edition already mentioned the “pantographe” in a list of
mathematical instruments (see Ozanam, Méthode de lever les plans et les cartes de terre et de mer , 208).
103. Diderot and D’Alembert, Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers, v. 15,
210-211.
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description of which was taken from Langlois’ pamphlet.104

Figure 3.5
The pantograph as represented in l’Encyclopédie based on an illustration from Canivet’s pamphlet. Source: Denis
Diderot and Jean D’Alembert, Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers: Planches
(Chez Briasson, 1762), vol.3, “Dessein”, pl 3.

What a reversal of fortune for the names “pantographe” and “singe”! As in the case of

“mètre”, “graphe” ascended through the work of engineers and instrument makers associated

with the French king. As such, dignified names for the instruments had to be used and the

lowly “singe” had to bow in front of the noble “pantographe”. At the same time, another

distinction was drawn as shown in the text of l’Encyclopédie. The true word (“le vrai mot”)

104. Jean-Gaffin Gallon, Machines et inventions approuvées par l’Academie royale des sciences depuis son étab-
lissement jusqu’à present (Paris: Gabriel Martin : Jean-Baptiste Coignard : Hippolyte-Louis Guerin, 1735), v. 7,
207.
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was preferred to the common word (“nommé communément”). The distinction was similar to

that drawn by Wolff between the common (“vulgo voces”) and true meaning of words.

The term “pantograph” was taken over in English in 1750 when Hammond and Warner’s

new edition of The practical surveyor included a section on “The Pantographer, for copying of

Drawings” that was based on Claude Langlois’ pamphlet. The French “pantographe” was ren-

dered as “Pantographer” in the table of contents, then as “Pantographia” in the corresponding

section, and as “Pantography” in one of the subsections (see Fig. 3.6)! These were not simple

typos as it is clear from the fact that the revised edition of 1765 only replaced “Pantography”

with “Pantographia”. Instead, these three words show how foreign the “graph” ending was in

English in the mid 18th century. The only graph endings that were intelligible to the publishers

or readers of a book such as the The practical surveyor were “grapher”, “graphia” or “graphy”.

“Graph” had yet no analogy.

Figure 3.6
Comparison of the 1750 and 1765 editions of Hammond and Warner’s Practical surveyor.

Once “pantograph” was established, it was soon imitated. The “Catalogue of Instruments”

(1789) of the instrument maker George Adams advertised a “cyclograph, or an instrument by

which circles may be described”. The instrument was described in detail in Adams highly

popular book Geometrical and Graphical Essays (1st ed. 1791). The use of the ending increased
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exponentially (see Table 3.4). While there were some French or German instruments which

used graph the highest concentration of such instruments was to be found in Britain. Because

many of these instruments were first described in the pages of the Transactions of the Society

of Arts, a very distinct and localized naming pattern emerged.

Table 3.4
The first mentions of graph referring to instruments. The list comes to show the establishment of a new naming
pattern.

Cyclograph 1789. George Adams. “an instrument by which circles may be described”

Ellipsograph 1794. Georg Friedrich Parrot. “womit man wahre Ellipsen ohne Berechnung der Bren-

npunkte sehr leicht beschreiben kann”

Optigraph 1807. Thomas Jones. Instrument for perspective drawing

Pronopiograph 1812. Soliel. “Instrument dont on se sert pour dessiner ce que l’on a devant soi”

Elliptograph 1813. John Farrey. “instrument for describing Ellipses”

Sectograph 1813. Thomas Jones. “Description and Use of an Instrument called ’The Sectograph’, princi-

pally intended for the Purposes of dividing right Lines into equal Parte, measuring Angles,

and inscribing Polygons in the Circle”

Perspectograph 1814. Edmund Turrell. “Instrument for drawing objects in perspective”

Dioragraph 1813. Simeon De Witt. “serve the purpose of drawing in perspective mechanically”

Cyclograph 1815. P. Nicholson. An instrument for drawing arcs of circles

Curvagraph 1818. W. Warcup. “an instrument for describing curved lines”

Hyalographe 1818. Clinchamp. Instrument “pour dessiner des perspectives et obtenir des épreuves du

dessin”

Quarreograph 1819. Auracher von Aurach. “ein neues und einfaches Instrument um jede perspektivische

Zeichnungmit der strengsten Genauigkeit aufzunehmen, und selbe im gehörigen Ton durch

Schatten und Licht vollkommen zu entwerfen.”

Arcograph 1821. Benj. Rotch. Similar to the cyclopgraph

Eidograph 1821. WilliamWallace. Instrument for copying drawings, either on an enlarged or a reduced

scale.

Diagraphe 1830. Gavard. “une machine à dessiner”, similar to the optigraph

Continued on next page
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Table 3.4 (Continued)

Agatographe 1834. J.N. Symian. “instrument de perspective servant aux artistes pour obtenir l’ensemble

d’une pose ou d’un mouvement quelconque.”

Cymagraph 1837. Robert Willis. Instrument for tracing profiles and mouldings

Odontograph 1838. Robert Willis. Tooth modeling instrument

Isograph 1838. Thomas Sopwith. Instrument for transferring plans from orthographical to isometrical

projections

Helicograph 1851. Francis Penrose. Logarithmic Spiral Compass

2.3 Graph as person

By the beginning of the 19th century, labeling a drawing instrument with a name ending in

graph was a practice established through analogy with previous names. It was these prece-

dents that validated the naming practice. However, if we turn our attention to the moments

when the first instruments were labeled by graph, when there was no preestablished pattern

to rely on, we will encounter a different validation procedure.

“Singe”, the 18th century French word for pantograph, meant not only “monkey”. It could

also refer to an imitator, a counterfeiter, or a copist. Antoine Furetière’s Dictionnaire universel

(1708) explained that “On dit aussi d’un homme, que c’est un vrai singe, quand il affecte de

contrefaire quelcun, d’imiter ses actions, ses discours, son stile.” This sense of the word was

used in expressions such as “ces copistes, ces singes de Seneque” or “peuple singe du maître”.

The name “singe” described the function of the instrument through a personification: it de-

scribed the job accomplished by the instrument as if it was a person. This personification was

preserved when “singe” was replaced by “pentographe”, because the ending “graphe” was al-

most uniquely associated with a person (see Table 3.1). This association between a person and

the instrument was preserved in English where The practical surveyor (1750) introduced “the

Pantographer, or Imitator”. It is this feature of graph, the ability to personify an instrument,

which distinguished its use and meaning from meter and scope.
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When in 1792 Claude Chappe, a clergymen, presented what many credit as the first op-

tical telegraph he called the instrument the “tachygraphe”, or “qui écrit vite”. The name was

soon changed following the advice of the count Miot de Mélito, an official in the war ministry,

who proposed instead “télégraphe”, or “qui écrit de loin”.105 Chappe’s choice of “tachygraphe”

was based on the well-known “tachygraphie” or “ l’art d’écrire avec rapidité & par notes”, a

term which also generated “des tachygraphes”, the people who practiced this art.106 “Le tachy-

graphe”, the instrument, accomplished the job of “le tachygraphe”, the person. As a reward

for his invention Chappe was named “ingénieur-télégraphe”, a term which again eluded the

distinction between person and instrument.

This insight applies also to the first autograph that was actually labeled using the ending

graph. In 1775 it was reported that M. Courgeoles (or Courejolles) presented to Louis XV a new

instrument for observing the time and physical quantities measured in meteorology such that

“les physiciens qui font des observationsmétéorologiques n’auront plus besoin de s’en occuper

[des observations météorologiques]”. The instrument was accordingly named “Météorologue

ou Météorographe” and could “tient note de tous les mouvements de l’atmosphere pour toutes

les heures de la nuit & du jour”.107 In this case graph described not so much the action of the

instrument or the trace it produced, but rather the title of the observer that the instrument

could replace.

The “Météorographe” presented to the king and exposed at Versailles in the Royal apart-

ments was mainly a rhetorical spectacle, a promise of what such an instrument could achieve.

The imprecision of the instrument was too great to have any practical value. Some improve-

ments were proposed by Pierre Changeux who published between 1780 and 1781 a series

105. The etymological interpretations pertain to Mélito, see Miot de Mélito, Mémoires du comte Miot de Mélito,
vol. 1 (Paris: M. Lévy frères, 1873), 36, my underline.
106. Diderot and D’Alembert, Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers, vol.15
815. Though a person who practiced the art of tachygraphy would have been called a “tachygraph(er)”, this was
not a recognized occupation the way a biographer or bibliographer were.
107. Journal Encyclopedique Ou Universel, vol. 7 (A Bouillon, 1775), 155.
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of texts popularizing his self-registering meteorological instruments. Changeux’s innovation

was to change the writing mechanism to significantly reduce frictions: instead of a continuous

action of the pencil on paper, the pencil would only come in contact with the paper every two

minutes. Changeux advertised his instruments as “machines Météorographiques” which in-

cluded “le Barométrographe, le Thermométrographe, l’Anemométrographe, l’Higrometrographe”,

or “l’eudiométrographe, pour mesurer l’élasticité de l’air ; le manométrographe, pour sa densi-

té ; l’électométrographe, pour la quantité d’électricité qu’il contient ; le magnétométrographe,

pour mesurer les variations de la boussole”, or “le pluviométrographe, …l’atmimétrographe ou

instrument pour mesurer l’évaporation, …le royamétrographe ou instrument pour marquer

la hauteur précise de chaque marée”.108 Changeux added to Courgeoles’s “Météorographe”

eleven new instrument labels. Out of all the named instruments only the barometrographs

were actually constructed. The new name was supposed to reflect the fact that the instrument

did not only measure the atmospheric pressure but also “tient note par écrit, c’est-à dire, par

des traces sensibles, & des variations”.109 Changeux submitted one of barometrographs to be

inspected and approved by L’Académie Royale des Sciences who assigned Jean-Baptiste Le Roy

andMathurin-Jacques Brisson with the task. Their laudatory report emphasized both the orig-

inal and innovative solution proposed by Changeux, and the utility of meteorographs for the

continuous meteorological observations of phenomena that so far escaped human attention

or diligence.110 Johann Jakob Hemmer, the secretary of the Palatine Meteorological Society

that had just been established in 1780, bought directly from Changeux one of his barometro-

108. Pierre Changeux, “Aux Auteurs du Journal de Physique, contenant la confirmation des avantages de
l’Elecricité dans les Asphyxies, & l’annonce d’un Barométrographe & de plusieurs machines Météorographiques,”
Journal de physique, de chemie, d’histoire naturelle et des arts 13 (1780): 75-76; Pierre Changeux, “Description de
deux Barométrographes ou Baromètres qui tiennent note, par des traces sensibles, de leurs variations & des tems
précis où elles arrivent. Avec l’idée de plusieurs autres Instrumens Metéorographiques,” Journal de physique, de
chimie, d’histoire naturelle et des arts 16 (1780): 342; Pierre Changeux, Météorographie, ou Art d’observer d’une
manière commode et utile les phénomènes de l’atmosphère (Paris, 1781), 32-33.
109. Changeux, “Description de deux Barométrographes ou Baromètres qui tiennent note, par des traces sensi-
bles, de leurs variations & des tems précis où elles arrivent. Avec l’idée de plusieurs autres Instrumens Metéoro-
graphiques,” 330.
110. The report is reproduced in ibid., 343-347.
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graphs.111 The fame of Changeux’s instruments was considerable enough to spark a priority

dispute with the Portuguese natural philosopher and instrument maker Jean Hyacinthe de

Magellan.112 Magellan, who was a member of the Royal Society and was living in London at

the time, just published a “letter” in which he described the “Idée d’un Météorographe Per-

petuel”.113 Magellan referred to Changeux’s January letter from the Journal de physique, and

most probably that is how he came upon the term “Météorographe”. However, he did not ac-

knowledge the source of the term, and he slyly tried to get credit for it by changing the name

of the instrument “que je l’appele Météorographe Perpetuel”.114

The new names, and the pattern through which they were constructed, entered Italy

through the translation of the description of Changeux’s instruments.115 Less than a year

later Giambattista Beccaria introduced a new instrument that he called a “ceraunografo”:

A clock-work rotated a circular cardboard disk, and on each side of the circumference were at-
tached two wires: one connected to the ground, and the other connected to the outside collected
the electricity of the storm. The sparks between the two wires left a trace on the paper corre-
sponding to the time of discharge.116

In 1782 Marsilio Landriani described two new instruments, one he called a “croniografo” that

could record the time of rain besides the amount of water, while the second instrument he

called a “iometrografo” which could record the amount of rain water per hour.117 In 1785

111. David C. Cassidy, “Meterology inMannheim:ThePalatineMeterological Society, 1780-1795,” Sudhoffs Archiv
69, no. 1 (1985): 22.
112. For more on Magellan, but mainly in connection to his chemical enterprises, see Jan Golinski, Science as
Public Culture: Chemistry and Enlightenment in Britain, 1760-1820 (Cambridge: Cambridge University Press, 1999),
esp. 122-127. Magellan was corresponding with Watt and Boulton who invented the indicator diagram.
113. J. H. Magellan, Collection de differens traites sur des instrumens d’astronomie, physique, &c (London: W.
Richardson, 1780), 158.
114. Ibid., 159.
115. Changeux’s instruments was described in Italian journals as a “barometrografo ossia stromento in cui
vengno segnate sul barometro le variazioni”, in “Barometrografo,” Opuscoli scelti sulle scienze e sulle arti 2 (1779):
246–7.
116. Giambatista Beccaria, Di un ceraunografo e della cagione de tremuoti (Torino: Presso Giammichele Briolo,
1780).
117. Marsilio Landriani, “Descrizione di una nuova macchina Metereolagica colla quale si determina la durata
della pioggia,” in Opuscoli scelti sulle scienze e sulle arti, vol. 3 (Milano, 1780), 273–76; Marsilio Landriani, “De-
scrizione di una macchina Metereolagica,” Memorie di matematica e fisica della Societa italiana 1 (1782): 203–224.
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Figure 3.7
Cavalli’s design for a “sismografo”. Source: Cavalli’s original drawing reproduced in Annali dell’Ufficio centrale
meteorologico e geodinamico italiano, vol. 17 (Roma: Unione cooperativa editrice, 1897).

Atanasio Cavalli’s described a “sismografo” which was an instrument that could determine

the direction of the shock of an earthquake (similar to a “sismoscopio a mercurio”) but which

could also indicate the time of the earthquake (see Fig. 3.7).118 Cavalli’s “sismografo” is partic-

ularly interesting because it clearly shows that not all graph instruments produced a graph-

ical trace. In a description of his meteorological observatory in Milano Pietro Moscati in-

cluded among his many instruments “mie macchine meteorografiche”: “anemometrografo”,

“elletrografo” (inspired by Beccaria’s ceraunografo), “pluviografo” (an adaptation of Landri-

118. Atanasio Cavalli, “Lettera del Sig Ab Cavalli a S E il Sig Duca di Sermoneta,” Antologia romana 12 (1786):
121–123; Cavalli, “Lettera del Sig Ab Cavalli a S E il Sig Duca di Sermoneta.”
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ani’s croniografo), and a “atmidografo”.119 Moscati’s meteorological observatory inMilanowas

not unique in the names it used for its instruments. A description from 1810 of the Physics

Museum in Florence mentioned that “La Stanza Meteorologica” was furnished with a “Desi-

aerometrografo”, “Barometrografo”, “Anemoscopiografo con suo anemometrografo”, and “Plu-

viometrografo”.120

3 IN THE ABSENCE OF THE OBSERVER

3.1 A register by mark, not trace

The French “météorographes” of the late-18th century were not a novel idea. Already in 1647,

when only fifteen, Christopher Wren designed “a weather clock namely, with revolving cylin-

der, by means of which a record can be kept through the night”, as he described it in a letter

to his father.121 The physician Charles Scarborough with whom Wren was lodging offered

to finance the invention, however, there is no further notice about it. During his studies at

Wadham College at Oxford, Wren further cultivated his interests in the “weather clock”, to

which he now added a thermometer he called a “weather-wheel” to form a “perpetual motion,

or weather-wheel and weather-clock compounded”.122 While we do not know if Wren actu-

ally built these instruments, he did describe them to a French visitor, Balthazar de Monconys,

in July 1663.123 In Monconys’ account the “weather-clock” could measure and record the di-

119. PietroMoscati, “Descrizione d’un nuovo atmidometro orario,”Opuscoli scelti sulle scienze e sulle arti 5 (1782);
Pietro Moscati, “Descrizione dell’Osservatorio meteorologico eretto al fine dell’anno 1780,” Memorie di matemat-
ica e fisca della societa italiana 5 (1790): 356–381.
120. Annali del Museo Imperiale di fisica e storia naturale di Firenze, vol. 2 (Firenze: Patti, 1810).
121. Wren quoted in Lena Milman, Sir Christopher Wren (Duckworth and Company, 1908), 19. For the history
of these early self-registering instruments see Hoff and Geddes, “The Beginnings of Graphic Recording.”
122. Christopher Jr. Wren, Parentalia: Or Memoirs of the Family of the Wrens (London: Osborn, 1750), 198.
123. Based on Monconys’s account of Wren, historians have assumed that Monconys actually saw these instru-
ments. “This meteorograph was seen by Balthasar de Monconys on June 10, 1663”, Middleton, A History of the
Thermometer and Its Use in Meteorology, 42; “Wren’s weather clock (see Monconys, 1665, v. 2, p. 53) which he
saw in June 1663”, J. A. Bennett, The Mathematical Science of Christopher Wren (Cambridge: Cambridge Univer-
sity Press, 1982), 84-85. However, Monconys only claimed that Wren told him about these instruments, but not
necessarily that he saw them: “Il ne laissa pas de me dire fort librement de son Horologe du temps… Le 12 je fus
voir M. Renes [Wren], qui me dit…”, Balthasar de Monconys, Journal des voyages de Monsieur de Monconys (Lyon:
Horace Boissat, 1666), v. 2, 53-54. There is only one mention that seems to suggest that Monconys has seen the
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rection of the wind, the amount of rainfall and temperature at the same time. In December

1663, Wren also described his “weather-clock” to the Royal Society, and Robert Hooke was

put in charge with building such a machine.124 The enterprise took longer than expected and

only in 1678, fifteen years later, Hooke presented the new weather-clock which now included

a barometer, a thermometer, a hygroscope, a rain-bucket, and a wind-vane.125 The machine

was installed in Harry Hunt’s lodgings.126 Besides the number of instruments, Hooke also

changed the mechanism of recording; instead of using a pencil that leaves a continuous trace

(as specified in Wren’s design), the “weather-wiser” (as Hooke also called the machine) em-

ployed a hammer that stroke “punches” every quarter of an hour – a very similar design to

what Changeux will use a century later.127

It is doubtful these instruments ever worked properly–at best they gave the impression,

that if improved upon, they could accomplish their task. What interests us here is the language

through which the action and purpose of these instruments was described. Everyone agreed

that keeping a steady account of the weather was a particularly difficult and tedious task. First,

keeping a weather diary was “very Difficult to perform so as to make it useful and instructive

without a great apparatus of Barometers, Thermometers, Hygroscopes, Instruments for telling

the Point of the Wind, the Force of the Wind, the Quantity of Rain that falls, the times of the

Sun’s shining and being overcast”.128 Second, as Wren remarked, out of all quantities that had

to be measured “the greatest difficulty will be in keeping the Diary of the Winds, and Air,

because it seems to require constant Attendance”.129 The purpose of the weather-clock was to

meet these two challenges. Because “many changes may happen while the observer is absent

“weather-wheel”, but not the “weather-clock”: “J’y vis aussi la Machine de M. Renes [Wren] pour la mesure du
chaud & du froid, qui est faite de fer blanc…”, Monconys, Journal des voyages de Monsieur de Monconys, v. 2, 56.
Only the “weather-wheel” seems to have actually have been built by Wren, though again we must be careful
because Monconys only described how the machine looked, not if it was actually working.
124. Bennett, The Mathematical Science of Christopher Wren, 84-85.
125. Robert Hooke, Philosophical Experiments and Observations (Printed by W. and J. Innys, 1726), 41.
126. Thomas Birch, The History of the Royal Society of London (A. Millar, 1756–1757), v. 3, 486-7.
127. Hooke, Philosophical Experiments and Observations, 41-42.
128. Gunther, Early Science in Oxford, v. 12, 137.
129. Wren, Parentalia: Or Memoirs of the Family of the Wrens, 221.
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or asleep”, Wren imagined that

if you visit your chamber but one half hour in the day, [the weather-clock] shall tell you howmany
changes of wind have been in your absence… Neither shall the thermometer need a constant
observance, for after the same method may that be made to be its own register.130

In the minutes of the Royal Society the purpose of Hooke’s weather-clock was described in

similar terms as

to keep an account of all the changes of weather, which should happen, viz. 1. The quarters and
points, in which the wind should blow. 2. The strength of the wind in that quarter. 3. The heat
and cold of the air. 4. The gravity and levity of the air. 5. The dryness and moistnefs of the air. 6.
The quantity of rain, that should fall. 7. The quantity of snow or hail, that shall fall in the winter.
8. The times of the shining of the sun.131

While instruments like Wren’s and Hooke’s remained rare throughout the 18th century,

a different type of instrument came to borrow the tropes of the weather-clock. In 1757 Lord

Charles Cavendish presented a thermometer for “shewing the greatest degree of heat, which

happens in any place during the absence of the observer”.132 Though Cavendish imagined that

his thermometer could even be used for plunging into the sea, it was actually too delicate

to be of practical use; furthermore, it could only register large steps in temperature. After

designing a thermometer which could mark by a pencil its indications in “the absence of an

observer”, Keane Fitzgerald presented another thermometer “on the same principle …with

registers to mark the least variation that can happen during the absence of the observer”. The

new instrument removed the inconvenience from the friction, and “the trouble with rubbing

out the mark, every time a new observation was intended”.133

130. Wren, Parentalia: Or Memoirs of the Family of the Wrens, 221-224, my underline.
131. Birch, The History of the Royal Society of London for Improving of Natural Knowledge, from Its First Rise, v. 3,
445.
132. Charles Cavendish, “A Description of Some Thermometers for Particular Uses,” Philosophical Transactions
50 (1757): 300–310. The first description of a maximum and minimum thermometer is attributed to Jean Bernoulli
who described such an instrument in a letter to Leibniz in 1698, though he never constructed it, see Middleton,
A History of the Thermometer and Its Use in Meteorology, 149-165.
133. Keane Fitzgerald, “A Description of a New Thermometer and Barometer,” Philosophical Transactions 52
(1761): 146.
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It was the thermometer of James Six, designed “to shew accurately the greatest degree of

heat and cold which could happen in the observer’s absence”, that redefinedmeteorological in-

struments and observations.134 Thiswas the first maximum andminimum thermometer sturdy

enough to be used on a large scale. In 1794, the Royal Society adopted Six’s thermometer for

its own meteorological observations, and their example was followed by the Kew Observatory

in 1798. The success of the instrument assured Six’s election to the Royal Society. For me-

teorological observations, Six’s thermometer was gradually replaced by Daniel Rutherford’s

thermometer that was more precise and reliable. Employing the same language, Rutherford

presented his thermometer as “fitted to mark the lowest or the highest point to which the fluid

has attained in the absence of the observer”.135 However, because the Rutherford thermome-

ter employed glass cones it forced the instrument to be mounted perfectly horizontal. For this

reason Six’s thermometer remained popular for sea expeditions, deep-sea measurements or

balloon ascents. The thermometer was used on several arctic voyages (including John Ross

and William Parry), or in measuring the average temperature in London (by Howard Luke in

1807).136 Six did not patent his thermometer which was manufactured and improved upon by

various instrument makers. One such variation on Six’s thermometer was produced by the

Italian physicist Angelo Bellani who referred to his instrument as “thermometrograph, or ther-

mometer with a double indicator with which the temperature is marked in the absence of the

observer [Termometrografo, ossia Termometro a doppio indice col mezzo del quale viene dino-

tata la temperatura in assenza dell’osservatore]” or “thermometer for inaccessible places [Ter-

mometro per luoghi inaccessibili]”.137 Among its various uses, Bellani’s thermometrograph

134. James Six, “Account of an ImprovedThermometer,” Philosophical Transactions of the Royal Society of London
72 (1782): 73-4. For a history of James Six and his thermometer see Jillian F. Austin and Anita McConnell, “James
Six F.R.S.. Two Hundred Years of the Six’s Self-Registering Thermometer,” Notes and Records of the Royal Society
of London 35, no. 1 (1980): 49–65.
135. Daniel Rutherford, “Description of an Improved Thermometer,” Transactions of the Royal Society of Edin-
burgh 3 (1794): 247.
136. Austin and McConnell, “James Six F.R.S.. Two Hundred Years of the Six’s Self-Registering Thermometer,”
60-62.
137. Antonio Bellani, “Memoria sopra un nuovo termometrografo ossia termometro per luoghi inaccessibili,”
Giornale di fisica, chimica e storia naturale 4 (1811): 89–110.
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found its way into the practice of silk worm cultivators because “it indicates the maximum

and minimum of the temperature of the rooms, where the worms are reared, whilst the rearer

is absent”.138

The titles of the papers in which such instruments were first presented is revealing for how

the new grouping emerged. Cavendish titled his paper “A Description of Some Thermometers

for Particular Uses” (1757), Six chose “Account of an ImprovedThermometer” (1782), an exam-

ple followed by Rutherford’s “Description of an Improved Thermometer” (1794). However, in

the 1790s a new pattern emerged. In 1791 the reverend Arthur M’Gwire communicated a “De-

scription of a self-registering barometer”, an instrument consisting of a ruled piece of paper

was moved horizontally by a clock-work, while a pencil moved vertically when the mercury

level in barometer changed.139 Alexander Keith published a “Description of a thermometer,

which marks the greatest degree of heat or cold, from one time of observation to another, and

may also register its own height at every instant” (1798). By the 1820s the new label was well

established and it was applied to either instruments “which by inspection denote the greatest

heat or cold which has occurred since the last observation, or else are employed to note the

temperature at any moment in the absence of the observer”.140

It is important to notice that the self-registering instruments which produced a trace were

not labeled by this feature, but rather by their ability to keep a register “at any moment” or

“at every instant”. Such a feature was deemed particularly important in the case of quickly

varying quantities such aswind direction or speed.141 But even in the case of temperature or air

138. Joseph Hazzi, Letter from James Mease: Transmitting a Treatise on the Rearing of Silkworms (Duff Green,
1828), 68.
139. Arthur M’Gwire, “Description of a Self-Registering Barometer,” The Transactions of the Royal Irish Academy
4 (1791): 141–143.
140. The Edinburgh Encyclopaedia (Joseph Parker, 1832), v. 18, 13. For the common use of the label in titles see
for example H. H. Blackadder’s “Description of a New Register Thermometer, Without Any Index” (1826), “On
the Construction of Meteorological Instruments, so as exactly to determine their Indications during Absence,
at any given instant, or at successive intervals of Time” (1826); James King’s “Account of a new self-registering
thermometer” (1828); David Brewster’s “Remarks on self-registering thermometers” (1828), etc.
141. “But the determination, however precise, of the velocity of the wind at anymoment, is of little importance to
meteorology; and it is not till we can obtain some general register of the state of the wind in the absence of the
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pressure, knowing the intermediate values between the minimum and maximum value would

have been crucial for determining an accurate average temperature.142 However, the spread

of these instruments was limited mainly because their measurements were fairly imprecise.

Especially in the case of mercury-based barometers and thermometers the motion of the liquid

transmitted only a very slight impulse to the pencil; thus, any friction with the paper greatly

affected the accuracy of the registered curve. In 1832 David Brewster expressed his doubts

about the utility of such instruments:

This mechanical invention [Keith’s thermometer] is very elegant, but has never met with, and is
not calculated for, general adoption. Such mechanically drawn charts might please the eye or the
fancy of the general observer, but we think we may lay it down as a maxim in meteorological
science, that little is to be done in the present state of its advancement, by any mere mechanical
contrivances not of the simplest possible nature, or which extend beyond the limits of a glass tube
hermetically sealed.143

As discussed below, these instruments would only become popular in the 1840s when either

newmethods of registrationwere introduced, or the liquidmercurywas replaced by a different

principle (as in the case of the aneroid barometer). In the 1820s themain instruments that could

keep a fairly precise register at every instant were the wind and tide gauges because their parts

were acted upon with enough force to compensate for the friction between pencil and paper.

3.2 The Absent Observer

Why were the observers absent? Was not observation the job of an observer?

observer, by a machine of sufficient simplicity to be generally adopted, that we can hope to raise the philosophy
of the wind to that importance which I am disposed to think it deserves to hold in atmospheric science; and no
period was ever farther from such an acquisition than the present, when the anemometer is the most neglected
of all meteorological instruments. A register of the force or velocity of the wind in the absence of the observer
must of course include the register of its direction. An instrument for the last purpose was contrived by one
Michael Lomonosow, as I found long after the contrivance I have now to describe was formed; but for the former
and more important object, no plan, as far as I know, has been proposed”, in James D. Forbes, “Description of a
New Anemometer,” The Edinburgh Journal of Science 2, no. 3 (1830): 32, my underline.
142. Often, in the early 19th century the average temperature was determined as the average of the minimum
and maximum values.
143. The Edinburgh Encyclopaedia, v. 18, 15.
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In the description of his improved thermometer, Six described poetically the hardships of

observations that had to be carried out in the open:

The sultry heat of the summer’s days, and freezing cold of the winter’s nights, which is commonly
most severe at a late unseasonable hour, render it very unpleasant to be abroad in the open air,
although it is absolutely necessary for the thermometer to be placed in such a situation.144

These observations were particularly painful when one aimed to measure extreme temper-

atures, because any measurement with a standard thermometer entailed that one had to be

exposed in the open for long periods of time. It is not a coincidence that Six’s thermometer

was particularly popular on arctic expeditions and the study of glaciers.145 Even carrying out

normal measurements at sea could be particularly challenging, as one observer confessed that

“[s]ea-sickness, and the unaccommodating temper of the skipper, prevented me from keeping

a regular meteorological journal”.146 In other cases, the place was simply inaccessible to the

presence of an observer, especially if one carried out deep-sea or high-altitude measurements.

Bellani inspiredly named his version of Six’s thermometer a “thermometer for inaccessible

places [Termometro per luoghi inaccessibili]”.147

The physical absence of observers charged with the tedious task of constant presence

was not uncommon, especially when the observation point was remotely located outside the

watchful gaze of the central observatory. In the early 1830s Thomas Young, John Herschel

and Charles Babbage went to visit the tide-pole near Greenwich to find out “to their surprise,

that the small house surrounding the tide pole was locked and had not been opened for some

time”.148 When the first self-registering tide-gauge was erected at Sheerness in Kent by the

144. Six, “Account of an Improved Thermometer,” 72.
145. For the arctic expeditions see Austin andMcConnell, “James Six F.R.S.. Two Hundred Years of the Six’s Self-
Registering Thermometer,” 60-62. A version of Six’s thermometer (Bunten’s “thermométrographe”) was used in
the early 1840s by the Swiss naturalist Louis Agassiz in his research on glaciers.
146. James King, “Observations on the Climate and Geology of New South Wales,” Edinburgh journal of science
9 (1828): 118.
147. Bellani, “Memoria sopra un nuovo termometrografo ossia termometro per luoghi inaccessibili.”
148. Michael S. Reidy, “Gauging Science and Technology in the Early Victorian Era,” The Machine in Neptune’s
Garden: Historical Perspectives on Technology and the Marine Environment, 2004, 6.
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engineer J. Mitchell, it was remarked that:149

Yet, notwithstanding the correctness of this [previous] gauge in giving the rise and fall of tide, it
requires an observer at high and low water to watch for the time. By night, no attendant is on
the spot; by day, too, he is sometimes absent; and even when present, the most watchful observer
often cannot tell the precise time from five to twenty minutes; as the water is at times stationary,
or nearly so, for more than half an hour; moreover, sometimes it falls a few inches, and rises again.
To meet these difficulties, it occurred to the civil engineer at that dock-yard, Mr. Mitchell, to cause
the tide-gauge to register itself… 150

Even when the observer was physically present, his mind might have been away. Henry

Palmer, an engineer at the London Docks, addressed this problem in 1831 in a communication

to the Royal Society on a “Description of a graphical register of tides and winds”:

Theperformance of such amachinemust if well arranged be evidently free from those inaccuracies
and doubts which the frequent and long-continued observations of individuals, through nights as
well as days, must be liable to. It will require only the occasional attention of a superintendant to
correct the time, and supply it with paper.151

Even professional meteorologists were afflicted with the boredom of observation. One ob-

server called the keeping of weather journal “the veriest drudgery in science”, while another

recalled the “mühsame als langweilige Beschäftigung” of observation.152

3.3 Self-recording Graphs

If in French and Italian the suffix graph was highly productive in naming meteorological in-

struments since the late 18th century, the term only became productive in German and English

in the 1840s.

149. Michael S. Reidy, Tides of History: Ocean Science and Her Majesty’s Navy (Chicago: University of Chicago
Press, 2008), 141-142; Reidy, “Gauging Science and Technology in the Early Victorian Era.”
150. The Nautical Magazine, vol. 1 (Brown, Son and Ferguson, 1832), 402.
151. Henry R. Palmer, “Description of a Graphical Registrer of Tides and Winds,” Philosophical Transactions of
the Royal Society of London 121 (1831): 210.
152. James King, “Account of a New Self-Registering Thermometer,” Edinburgh Journal of Science 9 (1828):
118; Carl Kreil, “Beschreibung eines selbstverzeichnenden Barometers und Thermometers,” Astronomisch-
meteorologisches Jahrbuch für Prag 2 (1843): 255.
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The first consistent use of graph in German was made by Carl Kreil, an Austrian mete-

orologist and astronomer who in 1845 became the director of the Prague observatory and

in 1851 the director of the Centralanstalt für Meteorologie und Erdmagnetismus in Vienna.

Kreil undertook a full mechanization of his meteorological instruments to form a “meteo-

rologischen Beobachtungs-Systems”. His instruments, to which he referred as “autographen

Apparate”, “Autographen”, “autographe Barometer und Thermometer”, “Barometergraphen”,

“Thermometergraphen”, etc., would register their observations at intervals of five minutes.153

The label “autographen” was probably coined by Kreil as an alternative to the common terms

“selbstverzeichnen”, “selbstaufzeichnen”, or “selbstaufschreiben”. “Autographen” became a

staple of Kreil’s circle, being used almost exclusively by him and meteorologists working in

Prague or Vienna, or who were in contact with Kreil.154

In Britain, a major shift in terminology occurred after the photographic method of

registration was introduced in 1845 by Francis Ronalds at the Kew Observatory and by

Charles Brooke at the Greenwich Observatory. Ronalds described the method in a pa-

per “On photographic self-registering meteorological and magnetical instruments” which

mentioned a “photo-electrograph”, “thermograph”, “photo-barometrograph” and “magneto-

graph”.155 Ronalds coined the term “magnetograph” by analogy with “electrograph”, an instru-

153. Kreil, “Beschreibung eines selbstverzeichnenden Barometers undThermometers.” For a description of some
of these instruments see also W. E. Knowles Middleton, Invention of the Meteorological Instruments (Baltimore,
Johns Hopkins Press, 1969), 161-163, 181; Middleton, A History of the Thermometer and Its Use in Meteorology,
190.
154. Carl Kreil,Magnetische undmeteorologische Beobachtungen zu Prag, vol. 3 (Prag: K. Kreil, 1843), 131-138; Carl
Kreil,Magnetische undmeteorologische Beobachtungen zu Prag, vol. 5 (Prag: K. Kreil, 1845), i-iii; Carl Kreil, Entwurf
eines meteorologischen Beobachtungs-Systems für die österreichische Monarchie (Wien: Kaiserl.-Königl. Hof- und
Staatsdr., 1850). The term was used by Carl Jelinek who served as an assistant at the Prague observatory between
1847-1852, see his Beiträge zur Construction selbstregistrirender meteorologischer Apparate (1850). Jelinek became
the editor of the Zeitschrift der Österreichischen Gesellschaft für Meteorologie where the term was used in 1868 to
describe F. Pfeiffer’s “Windautograph” of in 1872 Schön’s “Windrichtungs-Autograph”. The term was also used
by the Viennese meteorologist Carl Fritsch in Ergebnisse der meteorologischen Beobachtungen für das Jahr 1846.
In French or English the term was only used in reports on Kreil’s instruments which often translated parts of his
articles.
155. Francis Ronalds, “On Photographic Self-Registering Meteorological and Magnetical Instruments,” Philo-
sophical Transactions of the Royal Society of London 137 (1847): 111–117.
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ment and term he was well familiar with since his early experiments on electricity.156 Despite

Ronalds’ preference for the suffix graph, the official description of the instruments at the Paris

Exposition of 1855 was more formal. It only mentioned the instruments as “self-registering

magnetometer” or “self-registering barometer”:

12. Self-registering Magnetometer, for recording photographically the variations of the horizontal
magnetic intensity, or of the magnetic declination. Invented by Francis Ronald, Esq., F.R.S., and
constructed under his direction for the Kew Observatory.
13. Self-registering Barometer: for recording photographically the variations of the atmospheric
pressure, with mechanical compensation for the effect of temperature. Invented by Francis
Ronalds, Esq., F.R.S., and constructed under his direction for the Kew Observatory.
34. Specimens of the Photographic Records of the Self-registering Magnetometer and Barometer,
with apparatus for measuring the ordinates of the curves.157

Similarly, the catalogue entries from the 1862 exhibition referred to “[p]hilosophical instru-

ments from Kew Observatory, Richmond, consisting of self-registering magnetometers and

meteorological apparatus, exhibited by the British Association for the Advancement of Sci-

ence”.158 Informally, as revealed in a letter from Welsh (the Chairman of the Kew Observa-

tory) to the Chairman of the Exhibition Committee, Ronalds’ instruments were referred to

as “the Bifilar Magnetograph and Barometrograph”, “Self-registering Magnetograph”, or the

“Self-recording Barometer”.159 As Ronalds’ method of photographic registration spread to the

other British observatories, so did the new terminology. Radcliffe Observatory introduced in

1855 a “thermograph” and “barograph”; an “anemograph” was added in 1858.160

The methods of self-registration knew another breakthrough in the 1840s when telegra-

phy started being used. The first contribution was made by Charles Wheatstone in 1843 who

156. See his “description of a new electrograph” in Francis Ronalds, Descriptions of an Electrical Telegraph: And
of Some Other Electrical Apparatus (R. Hunter, 1823), 47.
157. As given in the “Copy of the Labels affixed to the various Instruments and Apparatus deposited by the Kew
Observatory Committee in the Paris Universal Exhibition” in “Report of the Kew Committee,” in Report of the
British Association for the Advancement of Science, vol. 25 (J. Murray, 1856), xxxii-xxxiv.
158. Official Catalogue of the Industrial Department (1862): xiv.
159. “Report of the Kew Committee,” xxx-xxxi.
160. As seen in the annual reportAstronomical andMeteorological ObservationsMade at the Radcliffe Observatory.
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constructed an “electro-magnetic meteorological register” for the Kew Observatory.161 At the

British Association meeting at Cork in 1843 Wheatstone claimed that his instrument “records

the indications of the barometer, the thermometer and the psychrometer every half-hour dur-

ing day and night, and prints the results, in duplicate, on a sheet of paper in figures. It requires

no attention for a week, during which time it registers 1008 observations”.162 The machine did

not “print” a curve but actual numbers corresponding to the indications of the meteorological

instruments.

The most impressive use of Wheatstone’s electromagnetic registration was made by the

Italian astronomer Angelo Secchi, the director of the observatory of the Collegio Romano,

who presented at the 1867 Paris exposition an electrical “Météorographe” (see Fig. 3.8). The

imposing instrument was more than three meters high; it carried two charts on which it reg-

istered pressure, temperature, the time and amount of rain, and the direction and speed of

wind. Some witnesses considered Secchi’s meteorograph to have been the main attraction of

the exposition, “la pièce capitale et le joyau de la science à l’Exposition universelle”.163 The

instrument was rewarded with the Grand Prix of the Exposition. Its success was assured not

only by its complexity and aesthetics, but especially by the fact that it was fully operational

during the exposition.164

The success of Secchi’s “Météorographe” encouraged many instrument makers to either

construct similar compounded-machines, or to rename their instruments as “meteorographs”.

G.W. Hough, from the Dudley Observatory in Albany, had presented in 1865 “an automatic

registering and printing barometer” (which produced both a “linear diagram or curve of at-

mospheric pressure” and a printed record “to avoid the tedium and uncertainty of measuring

161. Robert P. Multhauf, The Introduction of Self-Registering Meteorological Instruments (Washington: Smithso-
nian Institution, 1961), 106-107.
162. Charles Wheatstone, “Report on the Electro-Magnetic Meteorological Register,” in Report of the British As-
sociation for the Advancement of Science, vol. 13 (London: John Murray, 1844), xl.
163. Les mondes 13 (1867), 537.
164. Paolo Brenni, “Il Meteorografo di Padre Angelo Secchi,” Nuncius 8 (1993): 224.
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Figure 3.8
Secchi’s “Météorographe”. Source: A. Secchi, Descrizione del Meteorografo dell’Osservatorio del Collegio Romano
(Roma: Belle Arti, 1870).

up such results”); in 1871 he advertised a “new meteorograph, for the automatic registration

of meteorological phenomena”.165 In Switzerland the director of the Bern observatory Hein-

rich vonWild presented in 1865 a “Universal-Registrir-Apparat” which registered on the same

strip of paper the indications from a “Thermometer”, “Barometer”, “Windrichtungsmesser”,

“Windstärkemesser”, “Regenmesser”; a few years later the machine constructed in the tele-

graphic workshop of Hasler & Escher was advertised as a “Universal-Meteorographen”, which

165. G. W. Hough, Description of an Automatic Registering and Printing Barometer (J. Munsell, 1865), 4; American
Journal of Science 50 (1870): 287.
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now included a “Barograph”, “Thermo-Hygrograph”, and “Anemo-Ombrograph”.166 In Belgium

F. van Rysselberghe built a “meteorograph” (1873) embodying a unified method of registra-

tion (or “universal system of meteorography”), while in Sweden A.G. Theorell built both a

“Typendruck-meteorograph” which printed its register similarly to Wheatstone’s recorder (it

was presented at the London Exhibition in 1871) and a “Meteorographe” which supplied its

indications as curves.167

The emergence of graph as a favorite ending for labeling self-registering instruments was

not a straightforward practice. Until the 1840s, self-registering instruments were rarely la-

beled with graph in Britain. The name thermometrograph, commonly used on the continent to

refer to Six’s thermometer, was almost never employed in Britain. The adoption of the label

occurred not because there was a surge in self-registering instruments, but rather because a

new technology was introduced, photography, which produced a “continuous registration” or

a “continuous record”.168 It was the association with photography (and photographic records)

which made “recording” an alternative to “registering”. Though in the 1850s and 1860s the

two terms were often interchangeable, in 1868 a Report of the Meteorological Committee of

the Royal Society included a special chapter on “self-recording instruments” described as in-

struments which could “record continuously”, while the label “self-registering” was preserved

for instruments such as Six’s thermometer.169 If the instruments presented in 1855 by the Kew

committee were labeled “self-registering magnetometer” or “self-registering barometer”, in

the 1872 report to the Royal Society, such instruments were described as “self-recording”:

“The several self-recording instruments, registering respectively the Pressure, Temperature,

166. H. Wild, “Die selbstregistrirenden meteorologischen Instrumente der Sternwarte in Bern,” Repertorium
für physikalische technik für mathematische und astronomische instrumentenkunde 2 (1867): 161–201; G. Hasler,
“Anemo-Ombrograph,” Repertorium für physikalische technik für mathematische und astronomische instru-
mentenkunde 11 (1875): 98–101.
167. A.-G. Theorell, “Description d’un Meteorographe Enregistreur,” Nova acta Regiae Societatis Scientiarum Up-
saliensis. 7 (1869). For a brief history of meteorographs see Middleton, Invention of the Meteorological Instruments,
245-263.
168. Report of the Meteorological Committee of the Royal Society, for the Year Ending 31st December 1867 (London:
Eyre, 1868), 17, 28.
169. Ibid., 27.
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Vapour-tension, Rainfall, and Wind, have been maintained in constant action…”170

While the distinction between a self-registering instrument such as Six’s minimum and

maximum thermometer, and the new self-recording instruments was straightforward, both

“record” and “continuous” remained ambiguous. A thermometer that would measure the

temperature at a fixed hour could have been advertised as “self-recording” (see Fig. 3.10).

Some distinguished between the “absolutely continuous” records (such as the photographic

records) and the “intermittent” records produced by most mid-19th century mechanical or

electrical self-registering instruments which only recorded the observations at fix intervals of

time.171 The former did that to minimize frictions, while the latter tried to save their battery.

These “intermittent” continuous self-recording devices would only gradually be replaced by a

new generation of instruments that employed pencils controlled by levers and cylinders with

smoke-blacked glazed paper. One of the earliest, popular devices of this type was produced

by Louis Breguet.172 Wheatstone’s “meteorological recorder” or A.G. Theorell’s “Typendruck-

meteorograph” typed the actual measurements. Though such a feature was clearly appreciated

by some, it was dismissed by the French physicist Rodolphe Radau because “it only offers iso-

lated readings, expressed in digits; it is certainly preferable to have a continuous trace which

talks to the eyes [qui parle aux yeux].”173

3.4 Grams, or traveling records

Even when the self-recording instruments did produce quasi-continuous traces, the interac-

tion with these traces could have been significantly different. An electrical instrument had

the ability of registering multiple quantities on the same piece of paper. In this case, the value

170. “Report of the Kew Committee for the Fifteen Months Ending October 31, 1872,” Proceedings of the Royal
Society of London 21 (1872): 41.
171. Illustrated and Descriptive Catalogue of Standard, Self-Recording, and Other Meteorological Instruments (Lon-
don, 1870), 5.
172. Rodolphe Radau, Études sur l’Exposition universelle de 1867 (Paris: impr. de Renou et Maulde, 1867), 39.
173. Ibid., 16.
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Figure 3.9
Source: Illustrated and Descriptive Catalogue of Standard, Self-Recording, and Other Meteorological Instruments
(London, 1870), 7.

of the record resided particularly in its immediate comparison of the registered quantities.

Furthermore, both mechanical and electrical recorders allowed the direct observation of the

recording process. If for a self-registering instrument, like Six’s thermometer, the observer

would have been most probably absent when the instrument marked its maximum or mini-

mum point, the continuous action of a self-recording instrument presented a spectacle. As in

the case of Secchi’s meteorograph or Breguet’s barograph, many of these instruments were

purposefully designed to allow the direct observation of the functioning instrument without

any need to interact with it. Breguet’s barograph could function undisturbed for a whole week.

The recordings of photographic instruments, however, could not be observed until the

sensitive paper was removed from the covering cylinder. Even then, extra steps had to be
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Figure 3.10
Source: Illustrated and Descriptive Catalogue of Standard, Self-Recording, and Other Meteorological Instruments
(London, 1870), 72.

taken until the record was readable. While most self-recording instruments with a mechanical

mean of registration used ruled paper which allowed the direct reading of measurements, the

photographic records had to be manually tabulated using a special instrument, a glass plate

engraved with vertical and horizontal lines.174 In most British observatories the instruments

were not left to function unattended. Every two hours, the light was cut from the photographic

paper for exactly four minutes. Meanwhile an observer read a standard thermometer and

barometer to find “what ought to be the true reading of the curves at the moment when the

174. For a description of the instrument see Report, 34. The earliest such instrument seems to have been intro-
duced for tabulating the curves produced by magnetographs – see The Report of the Kew Committee of the British
Association for 1860-1861.
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Figure 3.11
Source: Illustrated and Descriptive Catalogue of Standard, Self-Recording, and Other Meteorological Instruments
(London, 1870), 75.

light is cut off”.175

At first, the circulation of the photographic records was rather limited. At the Royal Green-

wich Observatory, after the barometric and thermometric photographs were reduced into ta-

bles, “[n]o further reference is made to the photographic sheets; they are, however, bound in

volumes, and are carefully preserved in the Record Room of the Observatory”.176 However,

G.B. Airy, the Astronomer Royal of Greenwich Observatory, noted in his report to the board

of visitors that “lithographs of Photographic sheets have been prepared, in conformity with

the instructions of the Visitors, for insertion in this volume”.177 TheMeteorological Committee

of the Royal Society also considered publishing their instrumental records, but “the expense

175. Report, 34.
176. Reduction of Twenty Years Photographic Records (London: Eyre, 1878), 8.
177. George Biddell Airy, “Report of theAstronomer Royal to the Board of Visitors, 1849,”GreenwichObservations
in Astronomy, Magnetism and Meteorology made at the Royal Observatory, Series 2 9 (1849): 14.
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of photolithography was found to be serious, so that it was resolved to have tracings of the

curves made in the office”; a limited sample of copies was sent to meteorologists to collect

opinions if such an endeavor was useful.178 Starting in 1876, at the request of the Times “a

copy of the traces of the self-recording instruments on a reduced scale” was sent by the Kew

Observatory to the newspaper, the costs being covered by the proprietors.179

As the meteorological records started traveling, they were defined using the suffix gram in

analogy with the pair telegraph-telegram. Edward Sabine studied the lunar-diurnal variation

of the magnetic declination based on the “photograms” he obtained from the Kew Observa-

tory. As the term was novel and was not used in other scientific publications, Sabine added a

laconic explanation – “The term Photogram is adopted in place of Photograph in conformity

to modern usage”.180 The term “magnetogram” entered the conversation after the publication

of “Results of a Comparison of certain traces produced simultaneously by the Self-recording

Magnetographs at Kew and at Lisbon; especially of those which record the Magnetic Distur-

bance of July 15, 1863”. While “magnetogram” was not used in this report, readers of the

report had referred to its curves as “The Kew and Lisbon magnetograms”.181 Soon the labeling

pattern generated “barograms”, “thermograms”, “anemograms”, etc.

Because processing the curves required man-power and expertise, the photographic

records moved from the observatories where they were produced and tabulated to a central

meteorological office:

The photograms, with tabulations carefully prepared from them, are transmitted monthly by Mr.
Stewart, the Superintendent of the Kew Observatory, to Mr. Scott, the Director of the Meteoro-
logical Office in London, where the results are computed and embodied in Tables, of the nature of
those which are now presented.182

178. Report of the Meteorological Committee of the Royal Society, for the Year Ending 31st December 1868 (London:
Eyre, 1869), 21.
179. Catalogue of the Special Loan Collection of Scientific Apparatus at the South Kensington Museum (George E.
Eyre and William Spottiswoode, 1876), 373.
180. Edward Sabine, “On the Lunar-Diurnal Variation of the Magnetic Declination Obtained from the Kew Pho-
tograms in the Years 1858, 1859, and 1860,” Proceedings of the Royal Society of London 11 (1861): 73.
181. See The Reader 4 (20 August, 1864), 236.
182. Edward Sabine, “Results of the First Year’s Performance of the Photographically Self-Recording Meteoro-
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The photograms from the secondary observatories (Aberdeen, Armagh, Falmouth, Glasgow,

Stonyhurst and Valencia) were first sent to Kew where they were centralized, and then sent

to the Meteorological Office in London:

The photograms and the tabulations prepared from them at the several observatories are trans-
mitted monthly to Kew, where they undergo careful examination, and revision if required; and
at the expiration of a second month they are sent, with the records prepared at Kew itself, to the
Meteorological Office, where, under the direction of Mr. Scott, they are formed into Tables, and
used for all meteorological purposes for which they may be available.183

A surveillance system was put in place. The observatories were in charge with regulating

the self-recording instruments to make sure they all functioned based on the Greenwich mean

time; several times a day the standard barometer had to be read as a measure of calibration

and control; every change made in the instruments, every peculiarity in the curves had to be

inserted in the journal with the exact time specified. The curves, journals and tabulation were

sent to the Central Observatory at Kew every Thursday. Here, an assistant was supposed to

observe each curve and check for light, finger marks, bad photography or appearance of bag-

ging; he had to check the timing of the curves, and make sure all the dates matched; check the

accordance of the barograph and standard readings, the accuracy of subtractions. All curves

and tabulations with deficiencies were brought to the Kew director who made the necessary

remarks on the curves and tabulations. The director then communicated to the Meteorological

Committee all cases of failure, along with forty remeasurements for each month and every ob-

servatory (see Figs. 3.12 and 3.13). The barograms, thermograms and anemograms were thus

part of a carefully designed system of observation and registration. However, this time it was

not nature but the instruments themselves which were under constant observation.

logical Instruments at the Central Observatory of the British System ofMeteorological Observations,” Proceedings
of the Royal Society of London 18 (1869): 3.
183. Sabine, “Results of the First Year’s Performance of the Photographically Self-Recording Meteorological In-
struments at the Central Observatory of the British System of Meteorological Observations,” 7.
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Figure 3.12
Source: Report of the Meteorological Committee of the Royal Society, for the Year Ending 31st December 1868 (Lon-
don: Eyre, 1869), 68.
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3.5 From indicateur to enregistreur

While “register”, “registering” or “self-registering” were hugely popular terms in England at

the beginning of the 19th century, that was not the case in France where “indicateur” and

“indications” dominated the list of names referring to similar instruments or machines. We

get a glimpse of these differences in an essay written by l’abbé Gossier in which he resumed

some of Charles Babbage’s ideas from the recently publishedOn the Economy of Machinery and

Manufactures (1832). Gossier was confronted with the problem of finding an adequate transla-

tion for Babbage’s “registering operations” and “machine for registering”. The closest French

equivalent was “indicateurs”, but this did not capture the real essence of these instruments or

machines. The essential difference for Gossier was that the indicator only displayed an instan-

tenous value corresponding to the very instant at which the instrument was looked upon. A

registering machine would keep track of a process that carried out over a time interval:184

L’espèce de machines dont nous avons à vous parler comprend les instruments connus en France
sous le nom générique d’Indicateurs, et que les anglais, avec un peu plus de bonheur dans l’expres-
sion, appellent machines registrantes, ou qui tiennent registre, machines à registrer, ou à enregis-
trement (registering machines, machines for registering). Ces machines, en effet, tiennent registre,
car, d’elles-mêmes, sans que le maître soit obligé de s’en occuper ou même d’être présent, elles
enregistrent, soit le nombre de certaines opérations multipliées et identiques, et, par conséquent,
fatigantes à compter, soit les actes et les omissions de certains agens et employés, sur la fidélité ou
l’exactitude desquels nous ne pouvons ou nous ne devons pas entièrement compter. A prendre le
nom français indicateur dans son acception ordinaire, une montre, une horloge, sont des instru-
ments indicateurs, parce qu’ils nous indiquent l’heure qu’il est au moment où nous les consultons.
Cependant, dans cet usage, usage le plus ordinaire d’une montre et d’une horloge, elles ne sont
pas, à parler strictement, des machines qui présentent un registre ou un état de ce qui s’est passé ;
quoique nous soyons assez portés à croire qu’elles deviennent véritablement instruments à regis-
trer quand nous nous en servons pour connaître combien de secondes, par exemple, combien de
minutes ou d’heures se sont écoulées pendant une opération quelconque, ou depuis un instant
déterminé. Mais si après une marche à pied ou une course en voiture, une machine me montre
combien d’espace j’ai parcouru ; si une autre me dit combien de personnes, dans mon absence,
ont passé par une barrière, combien de mesures de liquide ont été retirées d’un vase, combien
de pouces cubiques de gaz ont été consommés, combien d’aunes d’étoffe sont passées sous un
cylindre, dont l’usage m’est payé à raison de la longueur de la pièce, alors toutes ces machines

184. A “registering machine” could have also been translated or associated with a “compteur”.

118



INDICATING, REGISTERING, RECORDING
INDICATEUR, ENREGISTREUR, INSCRIPTEUR

entrent dans la classe de machines à registrer, ou machines registrantes.185

While there are no other examples that so clearly expressed the problem of naming and

translating “indicateur” into “machine à registre”, we can still track the shift in the actual

practice of naming meteorological instruments. Meteorological instruments that in England

were labeled as “self-registering” were described in France by “indication” or “indiquer”. For

example, Gay-Lussac presented his minimum andmaximum thermometer as “un thermomètre

propre à indiquer des maxima ou des minima de température”.186

The shift from “indicateur” to “enregistreur” began in the 1850s, triggered by the novel pho-

tographic and telegraphic methods of registration developed in Britain. For example, French

journals referred to Ronalds’ method “sur l’enregistrement photographique de l’électromètre,

du baromètre, du thermomètre et du magnétomètre de déclinaison”.187 If in 1851 Théodose

Du Moncel had submitted to the French Academy a “Description de deux anémomètres à in-

dications continues”, in 1853 he published an article “Sur les enregistreurs électriques” that

opened with a discussion of “enregistreurs météorologiques”.188 Moncel further pushed the

terminology in his famous and popular treatise Exposé des applications de l’électricité (1856)

where he dedicated two special sections to the “enregistreurs et appareils météorologiques”

and “enregistreurs et appareils astronomiques”. For a while the new terminology was applied

to the name of the instruments (or their class) rather than describing their operation. For ex-

ample, Antoine and Edmond Becquerel’s Traité d’électricité et de magnétisme (1856) defined

the instruments as:

Appareils enregistreurs. Dans les observatoires où l’on cherche à avoir des indications non
interrompues touchant les variations du magnétisme du globe, on a disposé des appareils capables

185. J. F. Gossier, “Essai sur les indicateurs, ou instruments à registre,” Précis analytique des travaux de l’Académie
des sciences, belles-lettres et arts de Rouen, 1833, 75-76.
186. Joseph Louis Gay-Lussac, “Description d’un thermomètre propre à indiquer des maxima ou des minima de
température,” Annales de chimie et de physique 3 (1816): 90–91.
187. L’institut 15 (1847): 78.
188. Théodose Du Moncel, “Sur les enregistreurs électriques,” Mémoires de la Société des sciences naturelles de
Cherbourg 1 (1852): 193–221.
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de tracer eux-mêmes leurs indications. Nous citerons les appareils construits par M. Broocke, et
qui ne sont autres que les trois magnétomètres de M. Gauss, mais disposés de façon à ce que leur
position donne lieu à des indications tracées par la photographie et capables d’indiquer quelles
ont été à chaque instant les positions des barreaux aimantés, et par conséquent les variations de
l’intensité magnétique.189

By the time of the 1867 Paris exposition, the label was well rooted and the meteorographs and

self-recording instruments were described as “appareils météorographiques”, or more broadly

as “appareils enregistreurs”.190

4 THE REDEFINITION OF GRAPH

The paradigmatic domain that has come to be associated with graph instruments is physiol-

ogy. In 1847, the German physiologist Karl Ludwig described one of the first self-registering

instruments applied to physiology, however, without naming it. It was Alfred Volkmann

who first called Ludwig’s instrument the “Kymographion” in 1849-1850.191 Ludwig’s “Ky-

mographion” inspired a series of new instruments which borrowed not only the design but

also the name of the instrument: in the early 1850s Hermann von Helmholtz developed an

instrument which he first called “Froschzeichenmaschine [Frog-drawing-machine]” but later

renamed “Myographion”, while in 1855 Karl Vierordt described his “Sphygmographen”.192

The instruments developed by the three German physiologists were a source of inspira-

tion for Étienne-Jules Marey who in his doctoral thesis, Recherches sur la circulation du sang

à l’état physiologiques et dans les maladies (1859), provided a detailed discussion of Vierordt’s

189. Antoine César Becquerel and Edmond Becquerel, Traité d’électricité et de magnétisme, vol. 3 (Paris: Didot,
1856), 106, my underline.
190. Radau, Études sur l’Exposition universelle de 1867 .
191. “Ich werde dieses ingeniöse Instrument (welches der Kürze wegen Kymographion heissen mag)…”, in Alfred
Wilhelm Volkmann, Die Hämodynamik (Leipzig: Breitkopf und Härtel, 1850), 120.
192. In a letter to du Bois-Reymond from June 13, 1854 Helmholtz wrote: “The physiologist institute in Gießen
has constructed their own frog drawing apparatus or ‘myographion’, as I would like to pompously call it from
now on” (Helmholtz quoted in Henning Schmidgen,TheHelmholtz Curves: Tracing Lost Time (New York: Fordham
University Press, 2014), 192-193 n28). For Vierordt see Karl Vierordt, Die Lehre vom Arterienpuls (Braunschweig:
Vieweg, 1855), 21.

120



INDICATING, REGISTERING, RECORDING
INDICATEUR, ENREGISTREUR, INSCRIPTEUR

sphygmograph; the name he used to refer to this class of instruments was “appareils à indi-

cations continues”. The key word around which the variations of meaning were constructed

was “indication”, such as: “indications graphiques du mouvement” or “appareils à indication

graphique”.193 In 1859 Marey designed his own sphygmograph, which won him an honorable

mention in an experimental physiology competition, the Prix Montyon, and an invitation to

demonstrate the instrument at the court of Napoleon III.194 The following year Marey contin-

ued advertising his modified “sphygmographe” in a pamphlet and in a report to the Académie

des Sciences. In the title of both of these texts the sphygmograph was presented as “un nouvel

appareil enregistreur”. However, in the text Marey only referred to “instruments à indica-

tions continues” without any mention to “enregistreur(s)”.195 The patent for the instrument

submitted by Marey on December 31, 1860 was titled: “Appareil dit: Sphygmographe, propre

à observer et inscrire les pulsations du cœur”.196 Most probably Marey came to value the new

name shortly before the publication of these texts and did not bother to make further correc-

tions. However, this was not a fluke. In his future publications Marey would carefully and

consistently replace “instruments à indications continues” by “appareils enregistreurs”. What

caused the sudden shift? ThoughMarey designed the sphygmograph, the instrumentwas actu-

ally manufactured by Louis Breguet (or Bréguet) one of the leading French instrument makers

famous especially for his telegraphic and meteorological instruments.197 Breguet was partic-

ularly famous for his clockwork mechanisms which he used in manufacturing self-recording

193. Étienne-Jules Marey, “Recherches sur la circulation du sang à l’état physiologiques et dans les maladies”
(PhD diss., 1859), 29-30, 43, 114.
194. Marta Braun, Picturing Time: The Work of Etienne-Jules Marey (1830-1904) (Chicago: University of Chicago
Press, 1992), 17.
195. Étienne-Jules Marey, Recherches sur le pouls au moyen d’un nouvel appareil enregistreur, le sphygmographe
(Paris: E. Thunot et cie, 1860), 5; Étienne-Jules Marey, “Recherches sur la forme et la fréquence du pouls au
moyen d’un nouveau sphygmographe, ou appareil enregistreur des pulsations,” Comptes rendus hebdomadaires
des séances de l’Académie des sciences, 1860, 634.
196. See Laurent Mannoni, “Le sphygmographe, une invention en trois étapes,” in Sur les pas de Marey: Sciences et
cinéma, ed. Thierry Lefebvre, Jacques Malthête, and Laurent Mannoni (Paris: L’Harmattan/SEMIA, 2004), 74n73.
197. Mannoni has suggested that Breguet was not the first manufacturer of Marey’s sphygmograph, but he has
not been clear when the collaboration of the two actually started. The fact that the image of Marey’s sphyg-
mograph from 1860 already carried Breguet’s brand (see Fig. 3.14) suggests that the collaboration was already
started in 1860. Cf. ibid.
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instruments such as barometrographs and thermometrographs. And of course, such instru-

ments were labeled as “appareils enregistreurs”.198 The improvements brought by Breguet to

the sphygmographe allowed him to obtain a patent in his own name in 1869.199 Until Marey

actually started manufacturing his instrument (and interacting with instrument makers) he

only used the language of “indications” which was specific to physics textbooks.

Figure 3.14
The sphygmograph designed by Marey and built by Louis Breguet. Source: Étienne-Jules Marey, Recherches sur
le pouls au moyen d’un nouvel appareil enregistreur, le sphygmographe (Paris: E. Thunot et cie, 1860), 7.

In 1860 Marey described Poncelet and Morin’s instrument for illustrating the law of falling

bodies as:

Les instruments à indications continues ont fourni le moyen de réaliser ces espérances. Tout
le monde connaît la machine de Morin imaginée pour démontrer les lois du mouvement dans
les corps qui tombent; c’est le type le plus simple de ce genre d’appareils qui ont introduit une

198. See Louis Bréguet, Catalogue illustré: appareils et matériaux pour la télégraphie électrique, instruments divers,
électricité, physique, mécanique, météorologie, physiologie (Paris: impr. de S. Raçon, 1873).
199. See Mannoni, “Le sphygmographe, une invention en trois étapes,” 45.
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véritable révolution dans l’étude des mouvements variés.200

In 1863, the label for this instrument was changed to:

Nous rappellerons en quelques mots l’appareil enregistreur que MM. Poncelet et Morin ont con-
struit pour déterminer le mouvement d’un corps qui tombe dans l’espace; la description de cette
machine si simple fera comprendre aisément le mécanisme de tous les instruments enregistreurs
employés par les physiologistes.201

The chapter on “Des appareils enregistreurs” from Du mouvement dans les fonctions de la vie

(1868) opened with a detailed description of Morin and Poncelet’s machine which was built to

“enregistrer les lois de la chute des corps” and seemed to be “le premier type d’un enregistreur

parfait”.202

French textbooks described Poncelet and Morin’s instrument as “un appareil, à l’aide

duquel on peut observer directement le mouvement de chute libre des corps” or “appareil à

indications continues […] qui permet de vérifier directement les lois de la chute des corps”.203

Nowhere in these textbooks were the terms “enregistreur(s)” or “enregistrer” ever used. This

choice closely followed the original descriptions of Morin and Poncelet who only talked about

“indications”. Morin referred to this machine as an “appareil chronométrique à cylindre et

à style pour observer les lois du mouvement”.204 Otherwise, the expression most favoured by

Morin to refer to this type of objects was “à style”: “indicateur à style”, “dynamomètre à style”,

“appareils chronométriques à style”, etc.205 The action of such instruments was not to regis-

ter (Morin hardly ever used “enregistre(r)”) nor to inscribe, but “trace”.206 Marey borrowed

200. Marey, Recherches sur le pouls au moyen d’un nouvel appareil enregistreur, le sphygmographe, 5-6, my un-
derline.
201. Étienne-Jules Marey, Physiologie médicale de la circulation du sang (A. Delahaye, 1863), 49, my underline.
202. Étienne-Jules Marey, Du mouvement dans les fonctions de la vie (Paris: Germer Baillière, 1868), 108, 112.
203. Paul Quentin Desains, Leçons de physique, vol. 1 (Paris: Dezobry, E. Magdeleine et cie, 1857), 24; Nicolas
Deguin, Cours Élémentaire de Physique, vol. 1 (Eugene Belin: Paris, 1854), 56.
204. Arthur Morin, Notions Fondamentales de Mécanique (Paris: Hachette, 1855), 255.
205. Morin, Notions Fondamentales de Mécanique, 54, 255; Arthur Morin, Description des appareils
chronométriques à style, propos à la représentation graphique et à la determination des lois du mouvement, et des
appareils dynamométriques (Metz: S. Lamort, 1838).
206. In practice Morin’s “trace” acted very much as a “register”. For example: “Les indications des flexions du
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Figure 3.15
WhileMarey copied the image ofMorin’s instrument fromDesains’s Leçons de physique (1857), he redescribed the
purpose of the instrument from “observer directement le mouvement” to “enregistrer les lois”. See also Table 3.6.
Source: Étienne-Jules Marey, Du mouvement dans les fonctions de la vie (Paris: Germer Baillière, 1868), 108.
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the image of Morin’s instrument from Desains’s Leçons de physique (1857) but redescribed the

purpose of the instrument from “observer directement le mouvement” to “enregistrer les lois”

(see Fig. 3.15).

After 1874 Marey shifted once again his terminology and replaced “enregistreur(s)” with

“inscripteur(s)”. In La Méthode graphique (1878) Morin’s instrument was redescribed as:

La physique et la mécanique ont réalisé de grands progrès par l’emploi des appareils inscripteurs.
C’est à Poncelet qu’on doit l’invention de plusieurs de ces instruments que le général Morin a
réalisés et dont il a tiré de remarquables résultats. Le plus connu de ces instruments est celui qui
sert à déterminer les lois de la chute des corps.
…la machine de Poncelet et Morin semble être le premier type d’appareil inscripteur parfait, il
n’en est pas moins vrai que, dès le commencement du dernier siècle, on essaya d’écrire automa-
tiquement certains phénomènes.207

There are several ways throughwhich one can observe the radical and consistent difference

in the language used by Marey. Table 3.5 contrasts Marey’s description of two thermographs

to show how both the category and the individual pieces were redefined in terms of the new

language. Table 3.6 displays an instance of Marey’s triple re-description of Morin’s machine

from “Appareils à indications continues”, to “Appareils Enregistreurs”, and “Appareils Inscrip-

teurs”. Fig. 3.16 presents a word-count distribution to contrast the use of “enregistre(r)” and

“entregistreur(s)” compared to “inscrit+inscrire”, “inscripteur(s)”, and “inscriptions” inMarey’s

major books. This makes clearly visible the sudden and consistent shift which has occurred in

the mid-1870s.

ressort doivent être obtenues d’une manière indépendante de l’attention, de la volonté ou des préventions de
l’observateur, et par conséquent fournies par l’instrument lui-même au moyen de traces ou de résultats matériels
qui subsistent après l’expérience”, Morin, Notions Fondamentales de Mécanique, 35.
207. Étienne-JulesMarey, LaMéthode graphique dans les sciences expérimentales et particulièrement en physiologie
et en médecine (Paris: G. Masson, 1878), 111-113.

125



INDICATING, REGISTERING, RECORDING
INDICATEUR, ENREGISTREUR, INSCRIPTEUR

Table 3.5
Marey’s description of two thermographs, one centered on “enregistrer” while the other on “inscrire”.

“Du thermographe, appareil enregistreur des
températures” (1864)

“Sur un nouveau thermographe” (1881)

L’emploi des appareils enregistreurs dans les ex-
périences physiologiques m’a déjà permis d’apprécier
avec une grande exactitude les phénomènes qui se
traduisent par un mouvement, quelque faible et
quelque instantané qu’il soit. …Enfin, les contractions
des différents muscles peuvent être enregistrées avec
tous leurs caractères d’intensité, de forme et de durée.

Il y a une quinzaine d’années que je recherche un
instrument capable d’inscrire les variations de la
température animale en deux points du corps, afin
d’observer les changements que des influences de dif-
férents ordres exercent sur la répartition de la tem-
pérature. …Des tubes flexibles en cuivre rouge réu-
nissent les boules thermométriques aux appareils in-
scripteurs.

1° Cet appareil devait enregistrer l’intensité et la
durée de tous les changements de température d’un
point quelconque. 2° II fallait pouvoir réunir deux ou
plusieurs de ces instruments pour obtenir une indi-
cation simultanée des changements survenus dans la
température de plusieurs points.

L’inscription simultanée des températures superfi-
cielle et profonde montre que, dans les troubles va-
somoteurs, la température animale éprouve des vari-
ations de sens inverses dans les régions centrales et
périphériques du corps.

Au moment où cette soupape est ouverte, on peut
amener le levier enregistreur à zéro…

…les changements de courbure de ce dernier action-
nent un levier inscripteur.

4.1 The language of inscription

The evidence amassed so far proves that at some point in the mid-1870s Marey carefully and

consistently redescribed the action and purpose of his instruments. What was there to be

gained from all this trouble? The distinctions between “enregistreur” and “inscripteur”, as re-

vealed by the language use, is subtle but revealing. In 1868Marey described the “enregistreurs”

as:

…appareils qui fonctionnent d’eux-mêmes, et livrent à l’expérimentateur un graphique formé
d’une ligne continue sur laquelle on peut lire et analyser à son aise toutes les phases du phénomène
enregistré.208

In 1878 the emphasis was shifted from the instrument that keeps its own register or which

registers a phenomenon, to a self -inscribing phenomenon: “Quand on se sert d’appareils in-

scripteurs, on obtient sans aucune peine les courbes que trace lui-même le phénomène qui

208. Marey, Du mouvement dans les fonctions de la vie, 106-7, my underline.
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Figure 3.16
A word count distribution of “enregistre(r)” and “enregistreur(s)” compared to “inscrit+inscrire”, “inscripteur(s)”,
and “inscriptions” in Marey’s major books.

s’inscrit.”209 This was not an isolated instance, but rather a new pattern. Marey referred to “le

tracé que le Poisson inscrit lui-même” and called the self-inscription of the phenomena “le lan-

gage des phénomènes eux-mêmes”.210 The role of the instruments was to “forcer le phénomène

lui-même à inscrire mécaniquement son début et sa fin”.211 The pulse, motions, or variations

would all “inscribe themselves”, as reflected in the reflexive pronoun: “s’inscrit”, “s’inscrire”,

“s’inscrivent”, etc. (see Table 3.7).

209. Marey, La Méthode graphique dans les sciences expérimentales et particulièrement en physiologie et en
médecine, 107, my underline.
210. Ibid., 543, iii.
211. Ibid., 139.
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Table 3.7
Self-inscribing phenomena as described by Marey.

les phénomènes électriques devront s’inscrire
des actes qui doivent s’inscrire
le phénomène qui s’inscrit
un mouvement vibratoire qui s’inscrira
les appuis du pied droit s’inscrivent
l’action musculaire s’inscrit
le mouvement s’inscrit
s’inscrivaient les secousses musculaires
les changements de volume du cœur s’inscrivaient
la courbe des espaces parcourus s’inscrit
l’évaporation s’inscrirait
les différents degrés de dilatation s’inscrivent
les secousses s’inscrivent
les deux tracés s’inscrivent

The metaphor employed by Marey was not new. In 1825 the Weber brothers designed a

device which would allow the waves to “depict themselves [sich selbst abbilden]”.212 When

photography was introduced for solar observations, astronomers considered that the sun “im-

prime lui-même son passage”.213 However, by trying to trace the language of inscriptions we

can find a more direct connection. Until Marey embraced “appareils inscripteurs”, the expres-

sion was hardly ever used.214 However, talk about “inscription” did occur in one field – that

of acoustics.

In the late 1850s Édouard-Léon Scott de Martinville, a typographer and stenographer,

presented to various academic societies “l’invention de la graphie du son et de sa fixation”,

which he named “phonoautographie”.215 This invention was described in terms of two defin-

212. Ernst Heinrich Weber and Wilhelm Weber, Wellenlehre auf Experimente gegründet (Leipzig: bei Gerhard
Fleischer, 1825), 109; See Christa Jungnickel and Russell McCormmach, Intellectual Mastery of Nature (Chicago:
University of Chicago Press, 1990), v. 1 46-49.
213. Hervé Faye, “Sur Les Photographies de l’éclipse Du 15 Mars,” Comptes rendus hebdomadaires des séances de
l’Académie des sciences 46 (1858): 708; See Jimena Canales, A Tenth of a Second: A History (Chicago: University of
Chicago Press, 2009), 106-110.
214. The Annales of the Paris Observatory referred to a self-recording magnetometer or “l’appareil inscripteur
de M. Brooke”; see Annales de l’Observatoire de Paris. Mémoires 7 (1863), 242; Annales de l’Observatoire de Paris.
Observations 15 (1861), 51.
215. Édouard-Léon Scott de Martinville, Le Problème de la parole s’écrivant elle-même (Paris: l’auteur, 1878), 43,
29; see Jonathan Sterne, The Audible Past: Cultural Origins of Sound Reproduction (Duke University Press, 2003).
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ing metaphors: writing and photography. On the one hand, “phonoautographie” was to sound

what photography was for light. It was a “fixation graphique de la voix” which could pro-

duce “une impression naturelle des phénomènes sonores” or “un diagramme naturel”.216 On

the other hand, it was “une écriture phonoautographique” achieved by “fixer une plume à ce

fluide fugitif, impalpable, invisible” and “forcer la nature à constituer elle-même une langue

générale écrite de tous les sons”.217 Through Scott’s phonoautograph “la voix humaine s’écrit

elle-même”.218 The double metaphor of the photographic fixation” and the writing of sound

were merged into the expression “inscription automatique des sons de l’air”, part of the title

of the mémoire he submitted to the French Academy in 1861.219

Shortly after Edison introduced his phonograph, Scott attacked the American inventor and

his invention in a self-published book, Le Problème de la parole s’écrivant elle-même (1878),

which also collected his previous writings on his “phonoautographe”. Besides questioning the

originality of Edison’s phonograph, Scott also condemned it as a misnomer:

la tres-grande majorité du public lisant ne sait pais qu’il existe un appareil français, non pour
répéter, mais pour écrire la parole, selon la signification du mot phonographe. […]
Lisons vite l’écriture du phonographe, car c’est une écriture, le mot phonographe (oumieux phoné-
graphe) voulant dire ‘le son qui ecrit’. Le problème que s’est posé M Edison, comme le nom de
l’appareil l’indique, est bien d’écrire la parole. L’écrit-il, en effet? Cette apparence de ponctuation
que l’on voit sur la feuille d’étain après l’opération offre-t-elle les caractères d’une écriture, ou si
l’on veut, d’une graphie? 220

TheAmerican phonograph could only repeat sounds, but not write them; accordingly, it would

have been more properly called a “phoneglyph”, a pun on the hill-and-dale grooves on the

cylinder which Scott associated with hieroglyphs. Definitely, not the natural language of

sound. It was only his “phonoautographe” that could still hold the merit of making “la pa-

216. Scott de Martinville, Le Problème de la parole s’écrivant elle-même, 62, 54.
217. Ibid., 40, 30.
218. Document from 1857 reproduced in ibid., 39.
219. Édouard-Léon Scott de Martinville, “Inscription automatique des sons de l’air au moyen d’une oreille arti-
ficielle,” Comptes rendus hebdomadaires des séances de l’Académie des sciences 53 (1861): 108–111.
220. Scott de Martinville, Le Problème de la parole s’écrivant elle-même, 3-4, 10.
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role s’écrivant elle-même”.

Despite Scott’s idiosyncrasies and his unflinching goal of forcing sound to write itself

down, his treatment of sound shared many characteristics with mid-19th century French

physicists. Pierre Adolphe Daguin’s Traité élémentaire de physique (1st ed. 1855) established

a pattern in how Duhamel’s vibrating diapason was to be discussed in French textbooks for

the next half a century. The chapter on acoustics in Daguin’s Traité included a special section

titled “Méthode Graphique” which opened with: “Dans cette méthode, la plus exacte de toutes,

le corps vibrant trace lui-même ses vibrations…”. Duhamel’s vibroscope exemplified the appli-

cation of the method.221 Other textbooks copied the exact division and phrasing: Jules Jamin’s

Cours de physique de l’École polytechnique (1859) – “MÉTHODE GRAPHIQUE. — On doit enfin

à M. Duhamel une méthode générale beaucoup plus simple qui consiste à faire tracer par le

corps sonore lui-même les vibrations qu’il exécute”; A. Ganot’s Traité élémentaire de physique

expérimentale et appliquée (11th ed. 1864) – “Dans la méthode graphique due à M. Duhamel

(211), c’est le corps sonore qui trace lui-même ses vibrations”.222 In the 1860s, the textbooks

started using “inscrire” to describe the action of Scott’s “phonoautographe” (this term was

quasi absent until then). The French translation of Wilhelm Wundt’s Traité élémentaire de

physique médicale added a new section to the original: “Méthode graphique pour mesurer le

nombre des vibrations sonores. Rhonautographe” which talked about “le corps sonore inscrit

lui-même ses vibrations sous forme d’une courbe ondulée”.223 Meanwhile Desains’ Leçons de

physique (1860) integrated more of Scott’s terms and described how “on peut forcer un corps

qui résonne à inscrire lui-même ses vibrations sur un tableau quelconque, et l’on conçoit im-

médiatement l’usage de ce tracé graphique”.224

221. P. A. Daguin, Traité élémentaire de physique théorique et expérimentale (Paris: Édouard Privat, 1855), v. 1,
466.
222. Jules Jamin, Cours de physique de l’École polytechnique (Paris: Mallet-Bachelier, 1859), v. 2 449; A. Ganot,
Traité élémentaire de physique expérimentale et appliquée, 11th ed. (Paris: Chez l’Auteur, 1864), 224.
223. Wilhelm Wundt, Traité élémentaire de physique médicale, trans. Ferdinand Monoyer (Paris: Baillière, 1871),
216.
224. Paul Quentin Desains, Leçons de physique (Paris: Dezobry, E. Magdeleine et cie, 1860), v. 2, 9. Desains’
Leçons de physique is probably the place from where Marey took the image of Morin’s machine – see Fig. 3.15
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Marey had long compared the graphical method to a universal language of science which

was comprehensible across national barriers because it employed “des expressions tellement

naturelles”.225 Marey was also fond of a second linguistic metaphor:

j’aimerais mieux comparer l’étude des sciences naturelles au travail des archéologues qui
déchiffrent des inscriptions écrites dans une langue inconnue; qui essayent tour à tour plusieurs
sens à chaque signe, s’aidant à la fois des conditions dans lesquelles chaque inscription a été trou-
vée, et de l’analogie qu’elle présente avec des inscriptions déjà connues, et n’arrivent enfin qu’en
dernier lieu à la connaissance des principes à l’aide desquels ils enseigneront à d’autres à déchiffrer
cette langue.226

While these two metaphors were already in place in the 1860s, they were only fused in 1875

when Marey’s laboratory started collaborating with the French Société de linguistique to de-

velop means of registering (or inscribing) vocal sounds.227 Their efforts were presented in an

article by Charles Rosapelly on “Inscription des mouvements phonétiques” (1876).228 Now, the

two metaphors, of the graphical method as a universal language and of science as an archeol-

ogy of inscriptions written in an unknown language, were fused andmaterialized in a concrete

image (see Fig. 3.17). Marey’s mémoires from this period had already switched to the new ter-

minology.

4.2 Description / Inscription

While the meaning of graph has always remained closely associated with the metaphor of

writing, its interpretation has changed from description to inscription. While both these are

connected towriting, they underline different aspects ofwhat is written: its content or its form.

and Desains, Leçons de physique, v. 1 24.
225. Marey, Du mouvement dans les fonctions de la vie, 82.
226. ibid., 24.
227. For the connection of Marey to phonology and acoustics see Brain, “The Graphic Method,” 231-308; Giusy
Pisano, “L’acoustique de la parole par la méthode expérimentale de l’abbé Rousselot,” in Sur les pas de Marey:
Sciences et cinéma, ed. Thierry Lefebvre, Jacques Malthête, and Laurent Mannoni (Paris: L’Harmattan/SEMIA,
2004), 219–241; Dagognet, Etienne-Jules Marey, 33-36.
228. Étienne-Jules Marey, Physiologie expérimentale: Travaux du laboratoire de M. Marey (Paris: Masson, 1876),
v. 2 109-131.
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Figure 3.17
Phonemes “complètement caractérisés par la méthode graphique”. Source:Étienne-Jules Marey, Physiologie ex-
périmentale: Travaux du laboratoire de M. Marey (Paris: Masson, 1876), v. 2, 125.

Example: the king’s description of the land was inscribed in stone. Each of these terms has

its own set of central metaphors. If initially inscriptions were engravings in stone or bronze

capable of enduring over long spans of time, modern forms of engraving such as lithographs

and photography have added a newmetaphor to this term, that of a faithful copymade directly

after the original, if not by the original. As we saw above, Marey employed both of these

metaphors – the inscription as the archaeological artifact that had to be deciphered, and as

the faithful copy of the phenomenon. Should all scientific forms of writing be collapsed under

the category of inscriptions? Such an approachmightmean not to see the forest for the trees; or

even worse, to be tempted by the central metaphors implied by inscription such as materiality,

immutability, faithfulness, etc. There are good reasons why a geometrician describes a circle
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and does not inscribe it;229 why one referred to graphical or descriptive geometry and not

inscriptive geometry; or why a map is a description of a place and not an inscription of it.230

Opposed to modern academic writings which have often been seduced to see an inscription

in almost everything, for Marey there was a clear distinction to be made between inscriptions

and descriptions: “Comment attendrait-on sans impatience le jour où de longues et obscures

descriptions feront place à de saisissantes images!”231

5 CONCLUSION

The Handbook to the Special Loan Collection of Scientific Apparatus (1876) identified three

classes of instruments according to the method of reading them:

In the self-recording class the observer leaves the instrument to itself, and examines the record at
his own convenience.
In those which depend on eye observations alone, the observer must be there to look at the indi-
cator of the instrument, but he does not touch it.
In the third class, which depend on eye and hand, the observer, before taking the reading, must
make some adjustment of the instrument.232

This division, full of meaning for a mid-19th century person versed in the world of mete-

orological instruments, is generally ignored by the contemporary eye. Self-recording instru-

ments, understood broadly and ahistorically as inscription-producing devices, could equally

well span all three categories. Through a period eye, Six’s thermometer would be included in

the first group, while Watt’s indicator in the second. For a contemporary eye, Six’s thermome-

ter would not come to mind when thinking about self-registering instruments, while Watt’s

indicator would be seen simply as a self-recording instrument. The crucial distinction between

229. The “inscription” of a geometrical figure employs a different meaning of “inscribe” from the one discussed
here.
230. Cf. Bruno Latour and Steve Woolgar, Laboratory Life: The Construction of Scientific Facts (Princeton, N.J.:
Princeton University Press, 1986).
231. Étienne-Jules Marey, “De la méthode graphique dans les sciences expérimentales et de ses applications
particulières à la médecine,” in Congrès périodique International des Sciences Medicales, Bruxelles, 1875 (Bruxelles:
Manceaux, 1876), lxviii.
232. Handbook to the Special Loan Collection of Scientific Apparatus 1876 (London: Chapman & Hall, 1876), 14.
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the contemporary and period eye is that the former perceives the instruments and their action

in isolation, while the latter defines such instruments in relation to an observer. That is, the

products of the instrument are secondary to the spatial and temporal relations which define

human interactions.

The first category of self-registering instruments is defined by instruments which can func-

tion in the absence of the observer, i.e. at a distance, for long periods of time. The observer is

not replaced in the name of some form of mechanical objectivity, but rather he is displaced.

It is still the human observer which needs to observe and control the self-registering instru-

ments. The record of the instrument is valuable only so far as it can match, satisfactorily, the

record of the human observer. As revealed through the use of graph, man and instrument

stand in a relation of equality. In the second category, the observer is fixed in space in front

of the instrument, but does not need to act instantaneously. He can simply observe the indi-

cations unfolding. This was the case with Watt’s indicator or Morin’s machine, which though

they could have been made self-registering, that would have defeated their purpose in the first

place – which was that of seeing the action of the engine or the fall of the body unfold in front

of the observer. In the third category, the observer has to act in the right place, at the right

time, that is in a fixed space and at a fixed time.233 Because these three categories are defined

in terms of the human interaction with the instrument, they each enforce their own epistemic

virtues.234

Marey’s inscripteurs completely reshuffled the three categories. As seen above, Marey was

schooled in the tradition of Poncelet’s and Morin’s indicators through which a phenomenon

could be observed unfolding.235 At the same time, Marey drew from the technical expertise of

233. For the temporal localization of the observer for such observations see Simon Schaffer, “Astronomers Mark
Time: Discipline and the Personal Equation,” Science in Context 2, no. 1 (1988): 115–145; Canales, A Tenth of a
Second.
234. See Daston and Galison, Objectivity, 39-42. The relation between observer and instrument parallels that
between scientific self and scientific representation.
235. For the early association between indicators and Helmholtz’s myograph see Wise and Brain, “Muscles and
Engines: Indicator Diagrams and Helmholtz’s Graphical Methods.”
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instrument makers specialized on self-registering instruments, such as Louis Breguet. How-

ever, Marey moved away from the language that defined the instrument in relation to the

observer, to define the phenomena in relation to its inscription. In both equations the third

term was suppressed. If a self-registering instrument only registered its variations under the

constant action of a phenomenon, so a phenomenon could inscribe itself only through an in-

strument. The action of Marey’s self-recording instruments was equally diffused. Marey’s

inscripteurs claimed to be self-recording, though they required the hand and eye of the ob-

server to be adjusted, and operated not in the absence but “sous les yeux de l’observateur”.236

236. Marey, La Méthode graphique dans les sciences expérimentales et particulièrement en physiologie et en
médecine, 210.
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Curves and Traces

The dissemination of graphical representations (plots or graphs which are “unambiguously

recognizable” by a contemporary eye) has long puzzled historians.1 Such modern looking ob-

jects can be spotted in themost disconnected places such as the pages of amedieval manuscript

of scholastic philosophy or in the description of a 17th century weather clock.2 Even more

shocking is the vivid contrast between the graphical prolixity of a couple of individuals such

as Johann Heinrich Lambert andWilliam Playfair compared to their arid, ungraphical contem-

poraries. Historians have tended to agree that even though graphs began to appear around

1770 (due to Lambert), they “only became common around 1820”.3 As I will show in this chap-

ter, this view is founded on a faulty methodological approach.

1 WEATHER CHARTS

Historians of graphical representations have so far undervalued or ignored a well established

graphical tradition which starts in the mid-17th century and extends throughout the 18th cen-

tury: the charts of weather. In a pioneering and comprehensive study on the graphical rep-

resentations of statistical data, H. Gray Funkhouser pointed out, in connection with a remark

made by William Playfair, that

The occurrence of meteorological graphs before Playfair’s time is probable, yet a search in the
places most likely to yield an answer to the question, the Philosophical Transactions of the Royal
Society of London, the Comptes rendus of the French Academy of Sciences and lesser journals,
reveals no graphs of that nature. The Philosophical Transactions carried meteorological data but

1. See Hankins and Silverman, Instruments and the Imagination, 52.
2. See above Chapter 2 or Matthias Schemmel, “Medieval Representations of Change and Their Early Modern

Application,” Foundations of Science 19, no. 1 (2014): 11–34.
3. Hankins, “Blood, Dirt, and Nomograms,” 52; Tilling, “Early Experimental Graphs,” 196; Hankins and Silver-

man, Instruments and the Imagination, 9.
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always in tabular form.4

While Laura Tilling in her seminal paper on “Early Experimental Graphs” (1975) acknowledged

the existence of a single “graphical presentation” in the Philosophical Transactions from 1724,

she reached a similar overall conclusion to that of Funkhouser:

No great interest seems to have been aroused by these early attempts at automatic recording, and
certainly nobody was inspired to present data produced by non-automatic methods in graphical
form. Whilst tables of meteorological data make frequent appearances in the Philosophical trans-
actions throughout the century, only once do we find a graphical presentation, that of Nicolaus
Cruquius’s barometric observations in 1724, and he made no attempt to analyse the data in any
way. No similar graphs appear again until the 1820s. This absence is typical of the majority of
eighteenth-century scientific journals. Even where exceptions occur, there is no attempt to anal-
yse the results given; that is, to take advantage of the graphical mode of presentation.5

The same conclusion has been reached more recently by Howard Wainer, who like Tilling

acknowledged the existence of a few outlying examples but pointed out the otherwise re-

markable absence of graphical representation with the single exception of Lambert:

Before Playfair, the use of data graphics although not completely unheard of, was rare. During the
entire eighteenth century no graphs were to be found in any volume of the following journals:

Acta Eruditorum; Annals of Philosophy; Edinburgh Journal of Science; Mémoires de l’Académie des
sciences (Paris);Mémoires présentés par divers savans à l’Académie royale des sciences (Paris); Journal
of Natural Philosophy; Novi Commentarii [sic]; Academiae Scientiarvm Imperialis Petropolitanae;
Observations sur la Physique; Philosophical Transactions of the Royal Society of Edinburgh

The only European journal containing graphs during this entire century was the Mémoires de
l’Académie Royale des Sciences et Belle-Lettres (Berlin), in papers by Lambert in the mid- to late
eighteenth century (about thirty line graphs showing a variety of physical phenomena like evap-
oration rates) and one paper by Benjamin Thompson in an article on ballistics.6

Though historians have acknowledged a few single individual cases of weather charts, they

have failed to delineate their historical coherence – i.e. their historical continuity and identity.

In what follows I will show that by the end of the 18th century, weather or barometric charts

4. Funkhouser, “Historical Development of the Graphical Representation of Statistical Data,” 289.
5. Tilling, “Early Experimental Graphs,” 196.
6. Wainer, Graphic Discovery, 47-48.
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formed a recognizable and well-individualized historical object that pertained to a specific

scientific community and form of practice. Furthermore, the remarkable graphical activity of

individuals like Johann Heinrich Lambert orWilliam Playfair should be understood in relation

to this graphical tradition and not as its origin.

The scientific study of the weather required the daily measurement of an ever expanding

series of quantities (temperature, air pressure, humidity, amount of rain, wind direction or

velocity, etc.) at uncomfortable hours and in exposed conditions. Then, measurements and

observations had to be written down in an orderly fashion. These operations were carried out

every day (if not several times a day) for a long and uninterrupted period of time of months

or years. Besides the effort of upkeeping the instruments, a weather diary was an extremely

tedious and painful affair. As such, any mean of facilitating this task was more than welcomed.

As described in the previous chapter, several attempts were made in the 17th and 18th century

to design and build weather instruments that would keep a register of the weather at every

instant. Most commonly, the variations indicated by an instrument were to be recorded by

a trace on a moving cylinder or disk. While for the contemporary eye the salient feature

of such instruments is the graphical representations that it produced, the early modern eye

admired their ability to make unnecessary the presence of an observer. The curves produced

were only registered or recorded indications with little value as graphical traces. Because of

this, and because such self-registering instruments were not perfected until the 19th century,

these traces played little role in the development of graphical representations before the 19th

century.7

It was a different type of graphical representation that was popularized through the sci-

entific study of the weather. In 1683 Martin Lister, a prolific member of the Royal Society,

presented at Oxford “his way of keeping the Account of the Barometer which is the most

7. Cf. Hankins and Silverman, Instruments and the Imagination, 128, where in the case of Watt’s indicator “a
recording instrument required the transition from tables to graphs”.
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Figure 4.1
Molyneux’s monthly weather diary kept after Lister’s method. Source: R. T. Gunther, Early Science in Oxford
(Oxford, 1920), v. 12, 208.

easy and exact that wee ever saw”, remarked a member of the audience.8 Instead of writing

down the numbers for the height of mercury one only cut across the line corresponding to

the value indicated by the barometer (see Fig. 4.1). While such a method did produce a graph-

ical representation of sorts, it was construed only as a “compendious” or “commodious” way

for “Registering the Baroscope’s motions” or keeping a “Diary of the Weather”.9 The method

was embraced with some enthusiasm by William Molyneux and Robert Plot, who each had a

plate engraved after Lister’s method in the hope that others will also start keeping their own

weather diaries.10 Plot – one of the founders of the Philosophical Society at Oxford, keeper

of the Ashmolean Museum and professor of chemistry at Oxford – further popularized Lis-

ter’s method in the pages of the Philosophical Transactions where he described it as a “new

and easy invention of observing the rise and fall of the Mercury in the Barometer (by parallel

8. Aston quoted in Gunther, Early Science in Oxford, v. 12, 41; Birch, The History of the Royal Society of London
for Improving of Natural Knowledge, from Its First Rise, v. 4, 212-213.

9. Molyneux quoted in Gunther, Early Science in Oxford, v. 12, 136-139.
10. For the engravings see ibid., v. 12, 208, 304. Plot appealed to John Warner, a mathematical instrument

maker who advertised his instruments in a leaflet called Aeroscopium, ibid., v. 12, 302-305.
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lines drawn from every decimal part of each month of its whole extent)” (see Fig. 4.2).11 The

same year Molyneux presented an account in which he compared the history of the weather

at Oxford and Dublin, most probably using his own barometric charts along with those kept

by Plot.12

Plot’s andMolyneux’s diaries or plates failed to generate any further enthusiasm in Lister’s

method.13 Only in the 1720s the Philosophical Transactions published two other graphical ta-

bles submitted by the Dutch polymaths Nicolaas Cruquius and Pieter van Musschenbroek (see

Figs. 4.3 and 4.5). Though these tables resembled the British charts of 1684, they served a differ-

ent purpose and emerged out of a different culture. Nicolaas Cruquius was a surveyor turned

cartographer who kept a daily account of the weather (almost uninterruptedly between 1706

and 1734) along with astronomical observations.14 Cruquius believed that changes in weather

could be correlated with the motion of heavenly bodies. Cruquius also published astronomical

charts of the latitude of various planets for a whole year (see Fig. 4.3). Both his cartographic

background and interest in astronomical observations were reflected into the weather charts

which introduced a new symbolic language to represent the variation in barometric pressure

along with the constitution of the sky, or the strength and direction of the wind. In the charts

he submitted to the Royal Society both barometric pressure and temperature were represented

by curves, but the latter were suppressed in the published plate, most probably for clarity.15 A

few years later Musschenbroek employed a very similar notation and layout with the excep-

11. Robert Plot, “Observations of the Wind, Weather, and Height of the Mercury in the Barometer, through out
the Year 1684; Taken in the Musaeum Ashmoleanum at Oxford…,” Philosophical Transactions 15 (1685): 930. To
simply interpret Plot’s plate as a graphical representation in the modern sense would mean to completely neglect
its purpose and use. Cf. Wainer, Graphic Discovery, 13-15.
12. Gunther, Early Science in Oxford, v. 12, 192.
13. For the great variety in tabulation during the late 17th century see Lorraine Daston, “Super-Vision:Weather

Watching and Table Reading in the Early Modern Royal Society and Académie Royale Des Sciences,” Huntington
Library Quarterly 78, no. 2 (2015): 187–215.
14. A.F.V. van Engelen and H.A.M Geurts, Nicolaus Cruquius (1678-1754) and His Meteorological Observations

(De Bilt: KNMI, 1985), 29, 44-45.
15. In most 18th century weather charts only the atmospheric pressure was represented by a curve because

this was the quantity whose variation had to be predicted and understood. One of the few exceptions, Plot’s plate
engraved after Lister’s method treated both pressure and temperature symmetrically, see Gunther, Early Science
in Oxford, v. 12, 304.
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Figure 4.2
Plot’s weather diary popularizing Lister’s method for registering the variations of the barometer. Source: Robert
Plot, “Observations of the Wind, Weather, and Height of the Mercury in the Barometer, through out the Year
1684; Taken in the Musaeum Ashmoleanum at Oxford…,” Philosophical Transactions 15 (1685): 930–943.

Figure 4.3
A fragment of Cruquius’s astronomical chart which shows the latitude of various planets throughout the year.
Source: Loop, plaats, en distantie der planeten, uyt den aardbol, voor ’t jaar 1731, in collab. with Nicolaas Cruquius,
Leiden, 1731.
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tion of some minor changes (he employed numerical values for both the intensity of the wind

and temperature).

Why were these weather charts constructed? In a letter to the Royal Society Cruquius

alluded to the work and innovation he put into his table:

in order that all things may be presented to the mind for simultaneous consideration, I spent a
great deal of time exploring many different avenues of approach. At length I came up with the
following carefully arranged Table, which I present as a Contribution on my part: i.e. I dedicate
it to You.16

While tables were often praised because they could be parsed “at a glance”, Cruquius’ and

Musschenbroek’s charts had the important advantage of also displaying “at a glance” the dili-

gence and virtuosity of their authors.17 Both Musschenbroek and Cruquius carried out at least

three daily observations (of pressure, temperature, atmospheric conditions, wind direction and

intensity) for a whole year, an unprecedented feat for early 18th century weather measure-

ments.18 To these Musschenbroek would also add magnetic declination and inclination, and

quantity of evaporated water (see Fig. 4.4).19 On their charts each day was divided into three

parts to account for these measurements (in Musschenbroek’s chart the dots probably corre-

sponded to individual measurements). While a conventional table would have required more

than a thousand rows, their graphical charts could display all this unprecedented effort and

attention on a single large sheet of paper.

While Lister’s method was meant to be used as a “compendious” mean of registering mea-

surements (and especially barometric pressure), Cruquius’ and Musschenbroek’s charts were

16. Cruquius quoted in Engelen and Geurts, Nicolaus Cruquius (1678-1754) and His Meteorological Observations,
115.
17. For the reading of tables and the unfounded hope that tables could allow one to decipher weather patterns

see Daston, “Super-Vision.”
18. For the spotted record of other observers see ibid., 198, 213. One should also consider that Cruquius’ and

Musschenbroek’s tables were only a summary of their actual measurements. Cruquius also developed an original
“table of winds”, described by Musschenbroek in his Essai de physique (Leiden, 1739): 897-898.
19. Magnetic declension was not specified in Musschenbroek’s chart from Physicae experimentales (1729) but

was later added in his reports to the Royal Society or the French Academy, see Fig. 4.4 and Pieter van Muss-
chenbroek, “Ephemerides Meteorologicae, Barometricae, Thermometricae, Epidemicae, Magneticae, Ultrajecti-
nae,” Philosophical Transactions 37 (1731): 357–384; Daston, “Super-Vision,” 194, 201.
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Figure 4.4
Compared to Muschenbroek’s previous chart (see Fig. 4.5), this table also included magnetic inclination and
declination, and quantity of water evaporated. The legend in the margin of the table was added by the editors of
the Philosophical Transactions. Source: Pieter van Musschenbroek, “Ephemerides Meteorologicae, Barometricae,
Thermometricae, Epidemicae, Magneticae, Ultrajectinae,” Philosophical Transactions 37 (1731): 357–384.
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an exquisite mean of presenting an ever growing number of observations. Cruquius started

keeping a weather diary in 1706, but his earliest graphs (still “elementary and clearly exper-

imental examples”) date from 1721.20 The graphical charts which summarized a whole year

(compiled for 1723, 1724 and 1725) were expressly made for the Royal Society.21 Similarly,

though Musschenbroek kept a “meteorological and magnetical diary” from 1728 until 1758, he

only constructed seven large tables for the years 1728-1734. Though Cruquius’ and Musschen-

broek’s contributions were highly valued, their tables were of limited use in print. The Royal

Society only published Cruquius’ first chart for 1723 and only a selection of Musschenbroek’s

chart for 1729 (only the full month of January and a few days from five other months were

published).22

Figure 4.6
A fragment of one of Beguelin’s “Tableau des Hauteurs quotidiennes” which he published between 1769 and
1788 in the Mémoires de l’Académie of Berlin. Source: Nouveaux Mémoires de l’Académie Royale des Sciences et
Belles-Lettres 13 (1784): 255.

After a hiatus of a few decades, weather charts came back into fashion in 1769 when Niko-

laus von Beguelin was charged by the Berlin Academywith daily meteorological observations.

For the next eighteen years Beguelin published an annual barometric chart in the Mémoires de

20. Engelen and Geurts, Nicolaus Cruquius (1678-1754) and His Meteorological Observations, 28.
21. ibid. No correspondence between Cruquius and the Royal Society has been preserved after January 1726

when Cruquius sent his graphical chart for the previous year, see ibid., 35.
22. If Cruquius’ chart only appeared in the pages of the Philosophical Transactions, Musschenbroek’s charts

were more widely distributed being also included in Physicae experimentales (1729) and Uitgeleeze Natuurkundige
Verhandelingen 1 (1733).
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l’Académie royale des sciences et belles-lettres of Berlin (see Fig. 4.6).23 As Cruquius and Muss-

chenbroek before him, Beguelin carried out three daily measurements of which only a sum-

mary of themonthly averages and extreme values was published in theMémoires de l’Académie

of Berlin. This great discrepancy between the volume of observations and the small amount

that was being reported probably motivated Beguelin to also publish his barometric charts,

titled “Tableau des Hauteurs quotidiennes”. In 1783 the Ephemerides: Societatis Meteorologicae

Palatinae (a meteorological journal founded in the same year) started publishing a table with

Beguelin’s daily measurements for the whole year; the thirteen-column table took over twenty

pages (see Fig. 4.7).24 After Beguelin had to retire due to bad health, his successor–Franz Karl

Achard–published for several years in the Mémoires de l’Académie of the Berlin academy the

full table of measurements which extended over sixty pages. However, no barometric charts

were published.25

Beguelin’s barometric charts did not go unnoticed. In 1773 the French journalObservations

et Mémoires sur la Physique, sur l’Histoire Naturelle et sur les Arts et Métiers published a short

note about Beguelin’s style of reporting meteorological observations and suggested as a fur-

ther improvement also charting the variation of temperature or even superimposing the two

curves on the same diagram.26 Louis Cotte, the leading French meteorologist of the late 18th

century, also referred to “M. Beguelin’s method” and remarked that it was adopted by various

observers in Russia, Germany, Switzerland and France.27 Cotte was not exaggerating at all.

23. See Histoire de l’Académie Royale des Sciences et Belles Lettres, v. 25 (1771) and Nouveaux Mémoires de
l’Académie Royale des Sciences et Belles-Lettres, v. 1 (1772) - v. 17 (1788).
24. For Beguelin’s observations see alsoTheodore S. Feldman, “Late Enlightenment Meteorology,” in The Quan-

tifying Spirit in the Eighteenth Century, ed. J. L. Heilbron, Robin E. Rider, and Tore Frängsmyr (1990), 170-171.
25. See the Mémoires de l’Académie royale des sciences et belles lettres between the years 1788-1793.
26. “Manière très simple de faire les observations météorologiques,” Observations et Mémoires sur la Physique,

sur l’Histoire Naturelle et sur les Arts et Métiers 1 (1773): 427–430. The charts were also noticed in the Histoire et
mémoires de la Société des sciences physiques de Lausanne (1789) which remarked that meteorological measure-
ments should be published as was done by the Berlin academy, “par le moyen d’une courbe qui en fait sentir les
nuances” (212).
27. However, Cotte considered that despite its clear advantages such a method had an obvious shortcoming

because it did not allow one to manipulate the observations to obtain monthly averages. For these reasons,
numerical tables were indispensable, see Louis Cotte, Mémoires sur la météorologie, pour servir de suite & de
supplément au Traité de météorologie publié en 1774 (De l’Imprimerie royale, 1788), 7-8. A decade later, Cotte
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Figure 4.7
Beguelin’s table ofmeteorological measurements as published in the Ephemerides. Source: Ephemerides: Societatis
Meteorologicae Palatinae. Observationes Anni 1782 (1784): 78.

In the 1780s some of the memoirs of the Petersburg academy, Novi Commentarii Academiae

Scientiarvm Imperialis Petropolitanae, included a “Tabula Variationum Barometri” (v. 19-21,

1775-1776) or a barometric chart comparing barometric curves for various locations (v. 15,

1770). In one instance, the same style of representation was used to represent the variation of

the tide for the Cronstadt canal.28 The Commentationes Societatis Regiae Scientiarvm Gottin-

gensis (v. 4, 1782) also included charts of temperature and pressure for the year 1779-1780.

Starting in the 1770s barometric curves were also used by Marc-Auguste Pictet, a Swiss

physicist and meteorologist.29 Pictet published the first curve in 1778 to show how one could

“represent with a curved line the course of the barometer during the whole year …where the

inflexions more or less frequent, or more or less pronounced, make visible at a glance the

confessed that he used monthly barometric curves to find the average pressure for the corresponding month, see
Louis Cotte, “Recherches météorologiques,” Observations sur la physique, sur l’histoire naturelle et sur les arts 41
(1792): 275.
28. See Acta Academiae Scientiarvm Imperialis Petropolitanae (v. 2, 1780).
29. It has been alleged that Pictet started drawing such curves in 1774, independently of Beguelin – see Journal

de physique 54 (1802): 411.
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nature of the course of atmospheric variations”.30 If Beguelin’s barometric charts were part of

a publication strategy, Pictet’s curves were mainly private. In a letter from 1780 to the Swiss

meteorologist Horace-Bénédict de Saussure, Pictet confessed that he decided to “always trace

this curve for my own satisfaction, and I will inquire howmuch it would cost to engrave it and

wewill then talk if it is worth the effort”.31 He chose such curves because tables did not contain

any daily observations, but also because “cela paraîtra assez joli à ceux qui ne le connaissent

pas et ne déplaîra pas à ceux qui le connaissent”.32

Pictet also exchanged barometric curves with his network of correspondents. He either

constructed the curves himself based on the observations he received from his informants, or

he distributed special sheets on which such curves could have been easily drawn by others.33

By 1820, barometric curves were freely circulating in both directions between Pictet and his

correspondents:

Non seulement tu ne m’ennuyes point mon cher Edouard en m’adressant tes lettres et tes courbes,
mais, si j’en ai le temps, je veux riposter et t’envoyer les miennes sur le même canevas et pour le
même intervalle, en sorte que tu pourras comparer les marches du Thermomètre et du Baromètre
dans les deux pays.34

Besides being used as a form of tabulation, barometric curves were also employed for argu-

mentative purposes to make visible alleged patterns in the variation of atmospheric pressure.

Because of the known effect of the moon on the rising and falling of tides, it seemed more than

likely that a similar effect should also apply to the atmosphere leading to a “tidal” variation

of atmospheric pressure. The problem was tackled by Johann Heinrich Lambert who relied

on forty years of measurements compiled by Giuseppe Toaldo, the professor of astronomy at

30. Marc-Auguste Pictet, “Considérations sur la météorologie et résultats d’observations faites à Genève pen-
dant l’année 1778,” Mémoires de la Société établie à Genève pour l’encouragement des Arts et de l’Agriculture, 1778,
165.
31. Marc-Auguste Pictet, Correspondance: Sciences et Techniques (Genève: Slatkine, 1996), v. 1, 615-616.
32. Ibid., v. 1, 615.
33. In one case, he built curves that compared the temperature and pressure for St-Bernard and Genève. See

ibid., v. 1, 217, 510-518, 615-617; v. 2, 300-301, 738; v. 4, 53, 61-62, 550.
34. Ibid., v. 1, 518-520.
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Figure 4.8
Lambert’s barometric curves which correlated the variation of the barometer with the astrological position of the
moon. Source: JohannHeinrich Lambert, “Observations sur l’Influence de la Lune dans le poids de l’Atmosphère,”
Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres, 1773, 66–73.

Figure 4.9
Toaldo’s barometric curve which correlated the variation of the barometer with the 24-hours of the moon. It fol-
lowed Lambert’s model. Source: Giuseppe Toaldo, “Observation d’une variation particulière dans le baromètre,”
Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres 9 (1780): 45–56.
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Figure 4.10
One of the several barometric charts published in the Ephemerides. Such charts usually tried to correlate the
variation of the barometer with the position of the moon. Source: Antonio Strnad, “Observationes meteoro-
logicae unius lunarius synodici factae pragae bohemorum 1785,” Ephemerides Societatis meteorologicae palatinae
observationes anni 1785, 1787, 596ff.

Figure 4.11
Source: Luke Howard, “On a Periodical Variation of the Barometer, Apparently Due to the Influence of the Sun
and Moon on the Atmosphere,” Philosophical Magazine Series 1 7, no. 28 (1800): 355–363.
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Padua.35 Lambert constructed a curve based on Toaldo’s tables to show that the lowest point

of the average barometric pressured was closely associated with the zodiac sign of the moon’s

apogee (see Fig. 4.8). Though Toaldo had not previously employed any curves, after Lambert’s

short observations, he also followed suit to represent the variation of the atmospheric pres-

sure with respect to the twenty-four hours of the moon. The “tidal” effect of the moon was

shown by a curve which Toaldo called “la marche confuse du baromètre, à cause qu’elle résulte

de toutes ces observations mêlées ensemble” (see Fig. 4.9).36 The first and few graphical rep-

resentations published in the Ephemerides in the 1780s were also dedicated to the influence

of the moon on barometric oscillations (see Fig. 4.10).37 A very similar barometric chart was

used in 1800 by Luke Howard to show a relation between the phases of the moon and the

atmospheric pressure (see Fig. 4.11).38

1.1 A paradigmatic curve

By the end of the 18th century, the curve of barometric pressure had become a paradigmatic

curve through which other graphical representations were understood and defined. When

J.A. Eytelwein presented a chart of the water level of the river Oder between 1782-1791, he

remarked that in constructing the chart he followed “the examples found in the memoires

35. Johann Heinrich Lambert, “Observations sur l’Influence de la Lune dans le poids de l’Atmosphère,” Nou-
veaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres, 1773, 66–73.
36. Giuseppe Toaldo, “Observation d’une variation particulière dans le baromètre,” Observations et Mémoires

sur la Physique, sur l’Histoire Naturelle et sur les Arts et Métiers 20 (1782): 91. Because the effect that Toaldo was
trying to illustrate was extremely feeble, he did not plot directly the variation of the pressure, but its variation
with respect to the average (represented by the zero line). For reactions to Toaldo’s claims about the effect of the
moon see the source cited in Cassidy, “Meterology in Mannheim,” 15-16. For a detailed history of the problem
see O. B. Sheynin, “On the History of the Statistical Method in Meteorology,” Archive for History of Exact Sciences
31, no. 1 (1984): 56-62.
37. Another similar graphical representation was used in Vincentii Chiminello, “De Diurna Nocturnaque Oscil-

latione Barometri Monitum,” Ephemerides Societatis meteorologicae palatinae observationes anni 1784, 1786, 230–
233. For other examples of studies from the Ephemerides that discussed the influence of the moon on atmospheric
pressure see Cassidy, “Meterology in Mannheim,” 21-22, n58.
38. Luke Howard, “On a Periodical Variation of the Barometer, Apparently Due to the Influence of the Sun and

Moon on the Atmosphere,” Philosophical Magazine Series 1 7, no. 28 (1800): 355–363.
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of different academies” of how to display the values of pressure.39 The concept behind the

barometric curve was also extended outside the field of meteorology. Already Beguelin and

Pictet had imagined that the “course of the barometer” could be translated into a “courbe de

la vie” which would represent the amount of happiness or unhappiness corresponding to each

day (see Fig. 4.12).40

Figure 4.12
Beguelin’s representation of “la courbe de la vie” drawn in analogy with his barometric charts (see Fig. 4.6).
Source: Nicholas Beguelin, “Réflexions sur les Plaisirs et les Peines de la vie, comparés à l’égard du nombre, des
fréquents retours, et de la multitude des genres,” Mémoires de l’Académie Royale des Sciences et Belles-Lettres 1
(1792): 481–490.

The most impressive extension of the weather charts was that of William Playfair’s Com-

mercial and Political Atlas: Representing, by Means of Stained Copper-Plate Charts, the Progress

of the Commerce, Revenues, Expenditure and Debts of England during the Whole of the Eigh-

teenth Century (1786). Two decades later, Playfair acknowledged that he owed the invention

of his economic charts to his brother John Playfair – the chair of Natural Philosophy at the

University of Edinburgh – who

made me keep a register of a thermometer, expressing the variations by lines on a divided scale.
He taught me to know, that, whatever can be expressed in numbers, may be represented by lines.

39. J. A. Eytelwein, “Von dem Nutzen einer Wasserstandsscale, nebst Anweisung zur Verfertigung derselben,”
Sammlung nützlicher Aufsätze und Nachrichten die Baukunst betreffend für angehende Baumeister und Freunde der
Architektur 2, no. 1 (1798): 26. The chart was reproduced in Hentschel, Visual Cultures in Science and Technology,
48.
40. Nicholas Beguelin, “Réflexions sur les Plaisirs et les Peines de la vie, comparés à l’égard du nombre, des

fréquents retours, et de la multitude des genres,” Mémoires de l’Académie Royale des Sciences et Belles-Lettres 1
(1792): 481–490; Pictet, Correspondance: Sciences et Techniques, v. 2, 479-483.
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The Chart of the thermometer was on the same principle with those given here; the application
only is different.41

While this passage has been well-known to historians, its real meaning has often been un-

derestimated because not enough examples of weather charts were known to motivate Play-

fair’s claim.42 As we have seen above, such claims are faulted by a bias in sampling and def-

inition. While it is the case that journals like the Philosophical Transactions din not publish

weather charts between 1731 (Muschenbroek) and 1800 (LukeHoward), such a fact carries little

weight if one is to make a more general claim about the use of weather charts in meteorologi-

cal work and publications. Not only that, but the weather charts that were published in other

journals were impactful enough to be noticed and imitated. The impact of these charts has so

far been undervalued by historians because they did not match the complexity of Lambert’s

graphs and graphical analysis. For this reason, Lambert along with Watt and Playfair have

come to be seen as the sole possessors of “the graphical method” of representation. Despite

the fact that Lambert’s graphical prolificity did not have a direct impact on his contemporaries,

historians have insisted to connect Lambert with anyone else who used graphical representa-

tions. For example, Tilling only acknowledged Beguelin’s weather charts through the lens of

Lambert’s graphs:

During the period of Lambert’s publications in the journal, Beguelin presented some meteorolog-
ical data in graph form every year. But soon after Lambert had died, in 1777, the old habit of
publishing tables of meteorological data was resumed.43

Even in more recent studies like Hankins and Silverman’s Instruments and the Imagination

(1995), Lambert andWatt are presented as the origin of Playfair’s charts. Either because “[i]t is

quite possible that” John Playfair, William’s brother, “was familiar with Lambert’s Pyrometrie,

41. William Playfair, An Inquiry Into the Permanent Causes of the Decline and Fall of Powerful and Wealthy
Nations (London: Greenland & Norris, 1805), xvi.
42. See Funkhouser, “Historical Development of the Graphical Representation of Statistical Data,” 289; Tilling,

“Early Experimental Graphs,” 196; Wainer, Graphic Discovery, 47-48; Hankins and Silverman, Instruments and the
Imagination, 127-128.
43. Tilling, “Early Experimental Graphs,” 206. As seen above, Beguelin published his barometric charts until

he retired and his endeavor was most probably independent of Lambert.
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because Lambert’s graphs were also temperature data”, or becauseWilliam Playfair worked as

a machinist and draftsman for Boulton andWatt, “[h]e may have taken the idea of graphs from

Watt, although this seems unlikely, considering the early date (1785) of Playfair’s Commercial

and Political Atlas”.44

The likelihood of these scenarios is evaluated strictly in terms of access (to a book, or a

person) and chronology. However, as shown through the example of the weather charts, what

was imitated was never the general method of graphical representations or the idea of a graph.

Instead, historical actors always referred to a particular form of representation as the source

for their graphical innovations. The point was not lost on Playfair’s contemporaries such as

Alexander von Humboldt who in Essai politique sur le royaume de la Nouvelle-Espagne (1811)

traced the genealogy of his charts and Playfair’s charts back to the barometric curves:

Cette méthode graphique est analogue à celle que M. Playfair a employée le premier, et d’une
manière très ingénieuse, dans son atlas commercial et politique, et dans ses cartes statistiques de
l’Europe. Sans attacher beaucoup d’importance à ces esquisses, je ne puis les regarder comme de
simples jeux d’esprit étrangers à la science. Il est vrai que la carte que M. Playfair a donnée des
progrès de la dette nationale de l’Angleterre, rappelle le profil du pic de Ténériffe; mais depuis
long-temps les physiciens ont indiqué, par des figures tout à fait semblables, la marche du
baromètre, et la température moyenne des mois. Il seroit ridicule de vouloir exprimer par des
courbes des idées morales, la prospérité des peuples, ou la décadence de leur littérature. Mais
tout ce qui a rapport à l’étendue et à la quantité, est propre à être représenté par des figures
géométriques. Les projections statistiques qui parlent aux sens sans fatiguer l’esprit, ont l’avantage
de fixer l’attention sur un grand nombre de faits importans.45

There are two ways in which we can interpret Playfair’s and Humboldt’s remarks. First,

because their charts had some claim of novelty it might have been important to acknowledge

any source of inspiration. However, the charts remained original not despite, but because of

their analogy with the barometric charts; as Humboldt pointed out, Playfair’s charts were “très

ingénieuse”. Second, while Humboldt acknowledged the influence of Playfair’s charts, he also

44. Hankins and Silverman, Instruments and the Imagination, 127-128.
45. Alexander vonHumboldt, Essai politique sur le royaume de la Nouvelle-Espagne, vol. 1 (Paris: Chez F. Schoell,

1811), 185-186, my underline.
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mentioned the barometric charts probably because he wanted to provide his readers with an

analogy such that his graphical method would be more readily intelligible and acceptable.

If a contemporary eye might perceive or understand the barometric charts as graphical rep-

resentations, for a period eye graphical representations came to be defined through analogy

with the barometric charts. Late 18th century sources employed the term “graphical” to de-

scribe the methods, operations or constructions through which a curve was generated rather

than the curve itself. One of the earliest instances inwhich a curvewas described as a graphical

object, “tracé graphique”, can be found in a footnote of J. B. Biot’s translation of Ernst Got-

tfried Fischer’s Physique mécanique (1806). Biot had been a student at l’École Polytechnique in

its founding year 1794 and had been probably inculcated with the new term “graphique” (see

Chapter 1). More importantly, Biot introduced the new concept of “tracé graphique” through

the paradigmatic example of the barometric charts:

Le tracé graphique est la manière la plus commune de rassembler comparativement de longues
suites d’observations barométriques. On se sert pour cela d’une longue bande de papier, au milieu
de laquelle on trace une ligne droite qui la traverse d’un bout à l’autre. Cette ligne est destinée
à représenter la hauteur moyenne du baromètre dans le lieu de l’observation. On la divise en un
certain nombre de parties égales, qui sont destinées à représenter des jours; puis, parallèlement
à cette ligne, et tant au-dessus d’elle qu’au-dessous, on en trace plusieurs autres à des distances
égales, comme par exemple d’une demi-ligne. Lorsqu’on a observé le baromètre un tel jour, si
sa hauteur est la moyenne, on marque d’un trait le point de la ligne principale qui correspond
à ce jour-là; s’il est plus haut d’une demi ligne, on porte l’observation sur la première parallèle,
au-dessus de la ligne moyenne; s’il est au-dessous de la hauteur moyenne, on porte l’observation
au-dessous de cette ligne, sur la parallèle qui lui correspond. On porte ainsi successivement les
observations de tous les jours, chacune au rang et à la hauteur qui leur convient. On peut même, et
cela est plus exact, repéter les observations plusieurs fois par jour, et les porter de même chacune
à leur place, en divisant en parties égales l’intervalle qui correspond à un jour; et si, par tous les
points ainsi déterminés, on fait passer une ligne courbe qui les unisse, et qui en suive toutes les
irrégularités, cette ligne, par ses ondulations, représentera fidèlement l’état du baromètre dans les
époques successives où l’on aura observé.

Je connais, en Suisse, un propriétaire fort instruit, qui tient ainsi, depuis plusieurs années, un
tableau très exact d’observations barométriques, faites trois fois par jour, avec un fort bon
baromètre. Il a eu soin de noter l’état de l’atmosphère, près de chaque observation: or, à
l’inspection de ce tableau, on voit que, dans le très grand nombre des cas, lorsque le baromètre a
baissé, il est tombé de la pluie; et au contraire, lorsqu’il s’est élevé, le temps est devenu serein. On
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aperçoit par intervalles des exceptions à cette règle; mais elles sont beaucoup moins nombreuses
que les cas dans lesquels elle se vérifie. Cette connaissance peut être fort utile à l’Agriculture; et
la personne dont je parle en tirait elle-mêmc un très grand parti.46

With few alterations, Biot repeated this description of the “graphical trace” as exemplified

by barometric curves in his later publications such as the textbook Traité de physique expéri-

mentale et mathématique (1816) or the article on “Meteorology” from Dictionnaire de Science

médicale (1819). I have quoted the whole passage to reveal two elements. First, Biot did not

instruct his students how to apply a general graphical method or representation to plot the

variation of barometric pressure. Instead, he instructed his readers how to construct a baro-

metric chart. Second, Biot was less interested in pointing out the inventor of the graphical

method, as much as a man who made constant and productive use of this method. Almost

without a doubt, the Swiss to whom Biot was referring was Marc-Auguste Pictet.47 This comes

to show how the period eye perceived and valued graphical representations – not as a general

method of representation which has an inventor, but rather as a particular method (or tool)

which can be put to good use.

2 GRAPHICAL CONSTRUCTIONS

2.1 Published Graphs

As seen above, graphical representations have eschewed the attention of historians that have

focused exclusively on some particular journals. However, the problem is not only to know

where to look, but also to know what to look for. A graphical representation is not a well-

defined object that only exists in its published form. It can very well be part of scientific

practice, without ever becoming visible in print. Plots were not published merely because

they were drawn, but rather because they played a role in the overall structure of the published

46. Ernst Gottfried Fischer, Physique mécanique, trans. Jean-Baptiste Biot (Paris: Bernard, 1806), 191-192.
47. For the correspondence between Biot and Pictet see Pictet, Correspondance: Sciences et Techniques, v. 2

124-151.
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Figure 4.13
Betancourt’s experimental curves (dotted line) and the curves of the interpolation formulas (continuous line).
Source: Gaspard Riche de Prony, Nouvelle architecture hydraulique (Paris: F. Didot, 1790), v. 2, pl 20.
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work.

In 1790 Agustín de Betancourt, a young Spanish engineer, submitted to the French

Academy a mémoire on the expansive force of steam. After carrying out his experiments

and measurements, Betancourt wrote, “one of my first concerns was with tracing a curve with

temperature on the abscissas and pressure on the ordinates to bring out the regularity [of the

measurements] and the connection between them”.48 Though the resulting curve was highly

regular, he failed to find any function that could match the entirety of the curve. Gaspard de

Prony provided him with a general interpolation formula

y = eµ+λx − eµ+λ′x − eρ+λ′′x + eρ
′+λ′′′x

and a method for determining the coefficients. Betancourt then plotted on a plate attached

to his mémoire the experimental and empirical curves which in the words of the review com-

mittee “coincided almost perfectly”.49 Betancourt’s article became one of the commonly ref-

erenced sources in the early 19th century on the expansion of steam. Prony, who provided

the interpolation formula, summarized Betancourt’s article in his monumental Nouvelle archi-

tecture hydraulique (1790-1796). In the second volume of the treatise he even reproduced the

original plate along with a series of similarly constructed plots which were meant to show the

agreement between his formulas and experimental measurements (see Figs. 4.13 and 4.14).

In a volume published a few years later, Recherches physico-mathématiques sur la théorie des

eaux courantes (1804), Prony provided his readers with an impressively large folded plate (see

Fig. 4.15). This time, however, the plate was not used to present the agreement between exper-

imental measurements and empirical formulas, but rather to graphically represent a graphical

construction for how to determine the coefficients of a linear equation based on experimental

48. Agustıń de Betancourt, Mémoire sur la force expansive de la vapeur de l’eau (Paris: Laurent, 1790), 15-16.
49. Ibid., vii. For the original plate see ibid., pl. 2.
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results.50 Prony recommended that one use a sheet of up to one or two meters for the ab-

scissas.51 Because in the book he provided the value of coefficients determined both by his

graphical construction and by analytical methods, Prony insisted to reproduce the sheet he

used at a 1:1 scale. Because the value of the plot was purely to exemplify the size and steps of

the construction (and maybe to encourage students to practice on the actual plate), the second

plot was reproduced on a smaller scale, 1:4, as duly noted by Prony.52

Figure 4.17
Table of experimental results for potassium chloride. Source: Joseph Louis Gay-Lussac, “Premier mémoire sur la
dissolubilité des sels dans l’eau,” Annales de chimie et de physique 11 (1819): 296–315.

In a paper from 1819 Gay-Lussac presented his experimental results on the dependence of

solubility on temperature through tables, empirical equations and a plot (Figs. 4.16 and 4.17).

Though there were overlaps between these three modes of presentation, none was fully re-

ducible to the others. In those cases for which the temperature and the concentration were

linearly related, Gay-Lussac provided an empirical formula. It was this line (and not the exper-

imental data) that was plotted. However, if the relationship between temperature and concen-

tration could not be approximated to a line, Gay-Lussac chose to plot directly the experimental

data as curves without fitting it to any empirical formulas. The choice was motivated as such:

It would have been possible to represent [these curves] by an algebraic expression; but their graph-
ical trace has the advantage to give immediately and without further calculation, with a precision

50. Gaspard Riche de Prony, Recherches physico-mathématiques sur la théorie des eaux courantes (Paris: Im-
primerie impériale, 1804), xviii-xxi.
51. Ibid., 63.
52. Ibid., 70. This method of representation was subsequently followed by Saint-Venant in A. de Barré Saint-

Venant, “Mémoire sur des formules nouvelles pour la solution des problemes relatifs aux eaux courantes,”Comptes
rendus de l’Académie des sciences 31 (1850): 283.
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at least as good, the solubility for all the temperatures in the experimental range.53

Gay-Lussac’s plate was constructed as a final product of his experimental observations

and fitted lines. The intermediate graphical steps were never represented. For example, after

presenting his measurements for potassium chloride (see table Fig. 4.17), Gay-Lussac noted:

If we construct these results on the abscissa the degree of temperature, and on the ordinate the
quantity of salt dissolved in 100 parts of water, we would see that they can be represented by a
straight line.54

On his plate Gay-Lussac never drew these experimental points to show that they could be fitted

by a line, instead he drew directly the line. While Prony employed a graphical construction

as an intermediate step to determine the coefficients of a linear equation by drawing a line

through his experimental points, Gay-Lussac appealed to an analytical method to determine

his lines of solubility. He computed the tangent of the line from his table of measurements

after which he drew the line through an experimental point which he considered to be the

most precise.

Let’s take a moment to contrast the three examples just discussed. As I have insisted,

regarding a plot simply as a graphical representation tells us too little about either the role

of the plot within the structure of the argument presented in the published paper, or within

the process of research and publication. There are two factors that we need to keep in mind:

1. what is the order in which tables, equations and graphs interact? 2. in what phase of the

interval research-publication was a graph produced?

As seen above, Betancourt mentioned constructing a plot immediately after he had ob-

tained a series of experimental measurements. The plot was constructed to evaluate the reg-

ularity of the curves and if they could be approximated to any known curve. Gay-Lussac

invoked a similar plot when he motivated his choice to fit some of his experimental results

53. Joseph Louis Gay-Lussac, “Premier mémoire sur la dissolubilité des sels dans l’eau,” Annales de chimie et de
physique 11 (1819): 313-314.
54. Ibid., 308, my underline.
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by a line. The existence of such unpublished plots is not a simple speculation (see Fig. 4.18).

If the relation between the experimental data was linear one had a choice of determining the

coefficients either graphically or analytically. If the coefficients were to be determined graphi-

cally probably a second graph was produced at a large scale, and on special paper, to minimize

errors. If the relation between the measurements was more complicated requiring a special

interpolation function, such a function might have been plotted against the experimental data

to test for agreement.

Figure 4.19
“The irregularity of these curves has not allowed the substitution of the direct experimental results with a simple
equation that allows to obtain immediately for a known temperature the corresponding solubility.” Source: J.
Pelouze, “Mémoire sur l’action mutuelle de l’acide phosphorique et de l’alcool,” Annales de chimie et de physique
52 (1833): 43.

Usually such plots would not have been published because they carried little weight for

the overall argument. Any reader could verify on his own that some relation between the

experimental results could be approximated by a line. Most often the author of the paper pub-

lished a table with the difference between the experimental results and the empirical formula

with which he fitted the results. So why did Betancourt and Prony bother to publish their

plots? Because they were making an implicit claim that a non-trivial empirical formula could

satisfactorily approximate the whole span of the experimental results. While it was always

rather easy to find a first or second degree polynomial that would approximate parts of an

experimental curve, finding a single empirical formula was a much more difficult and impor-

tant task (because this would have been a first step in connecting the experimental results to

a theory). Otherwise, an author might have been motivated to publish a plot if it was highly

irregular and no satisfying formula could be found. This was Gay-Lussac’s choice, and the

choice of J. Pelouze who published a series of solubility curves because “the irregularity of
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these curves has not allowed the substitution of the direct experimental results with a sim-

ple equation that allows to obtain immediately for a known temperature the corresponding

solubility” (see Fig. 4.19).55

Though for the contemporary eye Betancourt’s and Gay-Lussac’s curves might seem to be

similar graphical representations, they are distinguished by an essential feature: their place

within the argument of the paper. In the case of Betancourt, the curves occupy a middle

step between his experimental results and the empirical formula, which could be seen as the

finished product of the paper. The curves themselves are just a confirmation step. Gay-Lussac’s

curves of solubility, however, were the finished product of the paper because they summarized

both the experimental results and the interpolation lines. Because the curves embodied the

final results, and they were not just a step in the confirmation of the results, Gay-Lussac’s

curves will have a significantly different history than Betancourt’s curves.

2.2 The pedagogy of Graphs

Though not present in print, graphical representations could have very well been used in the

classroom. J. H. Hassenfratz, the professor of “physique générale” at l’École Polytechnique

from 1794 to 1814, detailed in a pedagogical note how a series of experiments should be pre-

sented in a physics lesson in front of a “large assembly”. Tables were inconvenient because

it took a long-time for one to perceive a relation between numbers. Instead, Hassenfratz pre-

sented a method that “had been successfully employed at l’École Polytechnique” and which

could also “retain the attention of the audience by making it follow the resulting chain of

ideas”. The method consisted in “representing quantities by lines, placing the lines in a conve-

nient ratio, and connecting them with a curve that passed through their ends”. Hassenfratz’s

note included two plates with some examples of experimental curves based on experiments

55. J. Pelouze, “Mémoire sur l’action mutuelle de l’acide phosphorique et de l’alcool,” Annales de chimie et de
physique 52 (1833): 43.
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by Newton, Desaguliers, or Coulomb (see Fig. 4.20).56 Hassenfratz also recommended the use

of graphical methods in constructing curves in one of his scientific articles where he listed

the advantages of such a method: simplicity in constructing and reading such curves, and its

ability to reveal regularities and irregularities. A curve was also attached.57

Figure 4.20
An example of Hassenfratz’s pedagogical curves. All three figures represented the resistance of strings on the
abscissa and their thickness on the ordinates for different torsion cylinders. Source: J. H. Hassenfratz, “Physique
générale. De l’enseignement de cette science,” Journal de l’École Polytechnique 2, no. 6 (1799): 372–308.

It is important to notice that in his pedagogical note Hassenfratz advocated for the use

of graphical representations as a method of teaching and of presenting experimental results,

and not as a required exercise or practice for students. Even so, in the first decades of the

19th century experimental curves were only rarely presented to students, and almost never as

part of a general graphical method. Gay-Lussac’s Cours de chimie (1828) did not include any

experimental curves, not even his curves of solubility. Only when discussing the solubility

of potassium nitrate – which he described as having a very variable solubility – Gay-Lussac

mentioned that

Si l’on voulait représenter la marche de sa solubilité par une courbe dont les abscisses représen-
teraient les degrés de chaleur et les ordonnées, les quantités de sel dissous, on trouverait qu’aux

56. J. H. Hassenfratz, “Physique générale. De l’enseignement de cette science,” Journal de l’École Polytechnique
2, no. 6 (1799): 372–308.
57. J. H. Hassenfratz, “De l’Aérométrie. Troisième mémoire,” Annales de chimie 27 (1798): 127-128.
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abscisses représentant plus de 100 degrés, correspondraient bientôt des ordonnées infinies.58

Gay-Lussac’s Cours de physique (1828) only included two curves: one related temperature to

the elastic force, while the other represented the variation of temperature throughout the year

(see Fig. 4.21). In both cases the curves were provided solely to illustrate a feature of the

relations, without any general discussion of graphical representations.59

Figure 4.21
Curves representing the relation between temperature and elastic force, and the variation of temperature
throughout the year. Source: Joseph Louis Gay-Lussac, Cours de physique (Paris: Grosselin, 1828), pl 10, 13.

Other French chemistry textbooks had a similar attitude. While they alluded to Gay-

Lussac’s results and his graphical construction, they did not reproduce the actual curves. Jean-

Baptiste Dumas’ imposing eight volume Traité de chimie appliquée aux arts (1828-1846) was

accompanied by an atlas with 147 plates, none of which included any experimental plots. The

pages of these textbooks, however, need not have fully reflected what was carried out in a

classroom. In 1831, L’École Centrale des Arts et Manufactures which had been co-founded by

Dumas in 1829, included in the description of its general chemistry course that the students

“are required to produce various drawings, and in particular the curves of solubility of salts,

of concentration and the boiling point of acids, etc.”60

Gay-Lussac’s curves of solubility only started being included in French chemistry text-

58. Joseph Louis Gay-Lussac, Cours de chimie (Paris: Pichon et Didier, 1828), Leçon 10, 16-17.
59. Joseph Louis Gay-Lussac, Cours de physique (Paris: Grosselin, 1828), 421, 508.
60. École Centrale des Arts et Manufactures. [A prospectus.] (Paris: H. Fournier, 1831).
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books in the late 1840s. It is hard to identify when or why this shift occurred. The first use of

the curves in France was in a translation of a German textbook–Lehrbuch der Chemie (1831)

by Eilhard Mitscherlich, a pupil of Berzelius–which included an in-text, small sized reproduc-

tion (see Fig. 4.22). Soon, other textbooks followed suit, such as Alexandre-Edouard Baudri-

mont’s Traité de chimie générale et expérimentale (1844), Victor Regnault’s Cours élémentaire

de chimie (1st ed. 1847-1848; 2nd ed. 1849-1850) or Jules Pelouze and Edmond Fremy’s Cours

de chimie générale (1848).61 Each of these textbooks included a large folded plate of the curves

(see Fig. 4.24). By this point, the curves were reproduced not only in the textbooks but were

also part of the classroom teaching as was the case of Edmond Fremy’s “Cours de chimie”

(1847-1848) taught at l’École polytechnique where each individual curve was drawn and dis-

cussed separately (see Fig. 4.23). The curves were introduced directly without any previous

discussion of a general graphical method of representation. The sole justification given by

Fremy was that “l’étude de ces courbes présentent quelque fois des résultats assez curieux et

qui peuvent avoir de l’intérêt dans les arts”.62

In his several books Étienne Marey always invoked the solubility curves as an important

example of the application of the graphical method in science:

whatever question we ask about these two variables, solubility and temperature, the graph [le
graphique] answers to it immediately, without any effort. Refer instead to the numerical tables
that contain the same elements, and you will see what difficulties we encounter to represent the
relations that are here very easily grasped.63

Twenty years later, Marey was even more radical:

whatever question we ask about these two variables, solubility and temperature, the graphical
table answers to it in an instant; in addition, it makes room for some comparisons and general
views that a numerical table would not allow.64

61. Alexandre-Edouard Baudrimont, “Traité de chimie générale et expérimentale,” 1844, v.1, 472-473; Victor
Regnault, Cours élémentaire de chimie, 2nd ed. (Paris: Victor Masson, 1849), v.2, 70-73; J. Pelouze and E. Fremy,
Cours de chimie générale, vol. 3 (Paris: Victor Masson, 1848), atlas, pl. xvi; v.2, 322.
62. E. Fremy, “Cours de chimie, 2e division, 1e année, 1847-1848” (Paris, 1847), 340.
63. Marey, Du mouvement dans les fonctions de la vie, 99.
64. Étienne-Jules Marey, La Méthode graphique dans les sciences expérimentales et principalement en physiologie

et en médecine (G. Masson, 1885), 51.
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(a) The German edition

(b) The French translation

Figure 4.22
The earliest reproductions of Gay-Lussac’s curves of solubility in a textbook. Source: (a): Eilhard Mitscherlich,
Lehrbuch der Chemie, vol. 1 (Berlin: Ernst Siegfried Mittler, 1831), 287; (b): Eilhard Mitscherlich, Élémens de
Chimie, trans. Benoı̂t Valérius, vol. 1 (Bruxelles: Louis Hauman et Compe, Libraires, 1835), pl. 17.
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Figure 4.23
Gay-Lussac’s curves of solubility as presented in Edmond Fremy’s “Cours de chimie” (1847-1848) taught at l’École
polytechnique. The curve of each solution was studied and discussed individually. Source: E. Fremy, “Cours
de chimie, 2e division, 1e année, 1847-1848” (Paris, 1847), 340, © Archives de l’École polytechnique (Palaiseau,
France).
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Figure 4.24
Regnault’s plot of solubility curves was much more crowded than Guy-Lussac’s diagram (Fig. 4.16), not so much
because more salts were added, but also because Regnault represented the curves of sodium sulfate hydrate or
potassium nitrate over their whole temperature range (Fig. 4.26). Source: Victor Regnault, Cours élémentaire de
chimie, 2nd ed. (Paris: Victor Masson, 1849).
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Marey’s books included a reproduction of the solubility curves based on Regnault’s chemistry

textbook (see Fig. 4.25).65 Compared to Marey, Regnault’s position was more reserved. In his

chemistry textbook, he only pointed out that “the curve can be used to find the solubilities

at all intermediate temperatures.”66 It was interpolation that was the main advantage of such

curves. This was also Regnault’s main improvement over Gay-Lussac’s curves. Because the

curve of hydrated sodium sulfate did not fit into the plot, as it reached the limit of the solubility

scale before 25◦C, Regnault employed an ingenious solution to represent the curve for the

entire range of temperatures: he drew the continuation of the curve on the same plot (see

Fig. 4.26).67

The four volumes of Regnault’s Cours élémentaire de chimie contained 689 in-text images.

However, there was only one graph - attached as a folded plate - representing the curves

of solubility. The Cours was also published in a condensed one volume edition under the

title Premiers éléments de chimie (1st ed. 1850)68 While the abridged volume used 142 figures,

it did not provide any image of the solubility curves. Instead, it only mentioned the curve

(reproducing part of the original text).69 Once again, it was not the general practice of graphical

representations that was embraced, but only a very particular and special representation.

2.3 The graphical method of Victor Regnault

Victor Regnault studied at the École Polytechnique and École des Mines, and spent time in

Liebig’s laboratory in Giesse.70 In 1836, he became Gay-Lussac’s assistant, and in 1840 he was

appointed chemistry professor at L’École Polytechnique. Though trained as a chemist, Reg-

65. Marey, Du mouvement dans les fonctions de la vie, 97-98; Marey, La Méthode graphique dans les sciences
expérimentales et principalement en physiologie et en médecine, 49-51.
66. Regnault, Cours élémentaire de chimie, v.2, 70.
67. Ibid., v. 2, 70-73.
68. Anders Lundgren and Bernadette Bensaude-Vincent, Communicating Chemistry: Textbooks and Their Audi-

ences, 1789-1939 (Science History Publications/USA, 2000), 279.
69. See Victor Regnault, Premiers éléments de chimie (Paris: Garnier, 1861), 233-234.
70. Robert Fox, The Caloric Theory of Gases: From Lavoisier to Regnault (Oxford: Clarendon Press, 1971), 296.
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Figure 4.25
Étienne Marey’s curves of solubility based on Regnault’s Cours élémentaire de chimie (see Fig. 4.24).
Source:Étienne-Jules Marey,Dumouvement dans les fonctions de la vie (Paris: Germer Baillière, 1868), 98; Étienne-
Jules Marey, La Méthode graphique dans les sciences expérimentales et principalement en physiologie et en médecine
(G. Masson, 1885), 49.
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nault became increasingly interested in experiments on heat. With the financial support of

the Minister of Public Works, he dedicated almost thirty years to “the systematic redetermina-

tion of all the experimental data that could conceivably be required in the theory and practice

of steam-engines and other heat engines”.71 His results became an example of experimental

precision, almost unsurpassed in accuracy and reliability for most of the 19th century.72

While sharing some of the features of Gay-Lussac’s solubility curves, in the hands of Vic-

tor Regnault the graphical method became a mean not only of representing experimental re-

sults, but also one of selection and correction. In an article from 1844 Regnault set out to

find an interpolation formula to relate the elastic force of steam to temperature. To estimate

the agreement between his proposed formulas and the experimental results, Regnault chose

to first rectify the experimental measurements by graphically constructing an experimental

curve on a large scale. It was the numbers “given by the graphical curve constructed from ob-

servations” that were compared with the values generated by the empirical formulas.73 Most

importantly, these experimental curves were never published. The article produced three in-

terpolation formulas for different ranges of temperature (a unified formula was left for future

research), and a table with the elastic force computed from the interpolation formulas at dif-

ferent temperatures and the difference between these computed values and the values read

from the graphical curves.

This initial study of steamwas amplified in a work which will span three volumes over two

decades, and which aimed to “determine the principal laws and the numerical data that enter

into the calculation of steam engines”.74 A central role was given to “the graphical method”,

71. Fox, The Caloric Theory of Gases, 298.
72. Ibid., 299.
73. Victor Regnault, “Mémoire sur les forces élastiques de la vapeur d’eau,” Annales de chimie et de physique 11

(1844): 331.
74. Victor Regnault, “Relation des expériences entreprises par ordre demonsieur leministre des travaux publics,

et sur la proposition de la Commission Centrale des Machine à Vapeur, pour déterminer les principales lois et
les données numériques qui entrent dans le calcul des machines à vapeur,” Mémoires de l’Académie Royale des
Sciences de l’Institut de France. 21 (1847): 1–748.
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which “when properly constructed is preferable to all methods of interpolation by computa-

tion”.75 While Regnault considered interpolation formulas to be “sufficiently exact for most

applications”, if one wanted to know some values with greater precision “it is better to obtain

them from graphical constructions executed on the immediate experimental results”. If in the

1844 paper Regnault did not publish any of the plots he used to correct the experimental re-

sults, he now made a great effort to publish an impressive plate with experimental curves (see

Fig. 4.27). The choice was made not because the results had to be visualized or analyzed, but

because many of Regnault’s final tables of results were “derived from graphical constructions

executed with great care on the immediate experimental results”.76 As such, the acceptance

of the accuracy of his experimental results depended on the acceptance of the accuracy of

his graphical constructions. For this reason, Regnault described at large all the procedures

through which the engravings on the plate were constructed so that “anyone could judge the

degree of confidence that one must have in our graphical constructions”.77

Regnault took particular pride in his large plate and described its construction in great

detail. He considered graphical constructions on commercial “papiers divisés” to be unreliable

because they were not rigorously divided, nor was the paper a reliable support because it

“is moist when the figures are drawn, and when drying out contracts irregularly in different

directions”. For these reasons Regnault decided to execute his graphical constructions directly

on a copper sheet that “we have divided ourselves with the utmost care”. This plate inscribed

by Regnault himself was only deepened by the engraves and used to print the plates of the

book.78

First, Regnault drew two perpendicular axes and divided each one of them in 100 divi-

sions.79 Initially he wanted to print the plot on one meter-squared paper, but as he could not

75. Regnault, “Relation des expériences sur des Machine a Vapeur,” 316.
76. Ibid., 234-238.
77. Ibid., 316.
78. Ibid.
79. For a detailed description of the graphical constructions see ibid., 316-328, 574-581.
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Figure 4.27
Source:Victor Regnault, “Relation des expériences entreprises par ordre de monsieur le ministre des travaux
publics, et sur la proposition de la Commission Centrale des Machine à Vapeur, pour déterminer les principales
lois et les données numériques qui entrent dans le calcul des machines à vapeur,” Mémoires de l’Académie Royale
des Sciences de l’Institut de France. 21 (1847): v. 1 pl. VIII.
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easily find in commerce anything of this size he settled for the size of 80 squared-centimeters.

For this reason, each division corresponded to 8 millimeters. Using a special micrometer he

inscribed points with a precision of five significant digits. The precision of the inscription was

crucial for using such a plot to read out interpolated points with the same accuracy. Because

the interpolated results obtained from the experimental curves were so crucial in his evalua-

tion of empirical formulas and constructing tables, Regnault reminded again his readers that

“I have traced myself on the copper plate all the small crosses” representing the points that

have coordinates equal to the numerical values given by direct observation.80 Equal care was

taken for tracing the lines of the empirical formulas: “I have marked myself this trace with a

light line on the copper plate and afterwards the artist has given it with the burin the required

depth to allow the reproduction of the drawing”.81

Figure 4.28
Regnault numbered the points corresponding to different series of experiments. By his own admission, he tried
to keep the final curve close to the series of experiments that he trusted the most. In this case the series 2 was
privileged over series 4.

For Regnault graphical analysis was part of the error analysis. Because he carefully distin-

guished between series of measurements by marking every experimental point with a num-

ber corresponding to a different series, one could use the plate “to distinguish at first sight

the variations caused by accidental observation errors” (which were visible for the same se-

ries of experiments) and “the constant errors which depend on the diversity of methods that

were employed” (which were visible when the curves of different series of experiments did not

80. Regnault, “Relation des expériences sur des Machine a Vapeur,” 320.
81. Ibid., 581.
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overlap but were separated by small distances).82 On the engraved plate Regnault only traced

“the curves that I admit as the definitive expression of my experiments, and that are capable

of satisfying the ensemble of the observations”. For this reason, he “drew the curve closer to

the series [of measurements] in which I confided the most that they were exact”.83 The reader

was left to judge how much the curves that satisfied Regnault departed from the other se-

ries of measurements. However, for Regnault this was “la courbe qui représente réellement le

phénomène”.84

3 CONCLUSION

In Instruments and the Imagination, Hankins and Silverman have attempted to explain why

Lambert’s graphical methods had little impact on his contemporaries:

Lambert’s graphical method did not catch on immediately, which may be attributed in part to the
obscurity of much of his writing and in part to the unfamiliarity of graphs themselves. We do not
have any contemporary reactions to Lambert’s graphs, but the graphs of William Playfair, which
became much better known than Lambert’s, brought forth the criticisms that they “lacked rigor”,
that theyweremere “plays of the imagination” and “without importance” outside of pedagogy. The
concept of a graph is abstract, and its meaning will seem obvious only to those who are familiar
with it. Thosewhowere used to workingwith tables of numbers could persuade themselves that in
drawing graphs one lost the precision of the numbers themselves. It is probably for these reasons
that experimental and statistical graphs did not become popular until the 1830s.85

Despite Hankins and Silverman’s claim, there were contemporary reactions to Lambert’s

graphs. However, these reactions were mostly negative because, in the words of the historian

of meteorology Theodore Feldman, Lambert’s “handsome curves rest more on imagination

than reality.”86 Feldman has contrasted Lambert’s studies on hygrometry with the exact ex-

perimental physics and precise measurements of his Swiss contemporaries Jean-André Deluc

82. Regnault, “Relation des expériences sur des Machine a Vapeur,” 316, 580.
83. Ibid., 581.
84. Ibid., 428.
85. Hankins and Silverman, Instruments and the Imagination, 120-1.
86. Theodore S. Feldman, “The History of Meteorology, 1750-1800: A Study in theQuantification of Experimen-

tal Physics” (PhD diss., University of California, Berkeley, 1983), 51-56.
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and Horace-Bénédict de Saussure.87 Saussure sardonically remarked that Lambert had been

more concerned with “tracer géométriquement la marche de l’hygrometre” than with the hy-

grometer proper.88 While Saussure identified himself as a “physicien” he referred to Lambert

as the “grand géomètre”, “célèbre mathematicien”, “philosophe”.89 Several times in the essay

Saussure made a point of honor and constraint for not having employed any curves:

Il eût été plus élégant de faire passer une courbe uniforme & réguliere par toutes ces variations;
mais ici, comme par-tout ailleurs, je me suis imposé la loi de suivre pied à pied l’expérience, sans
prétendre l’assujettir à des idées métaphysiques de régularité & de symmétrie90

Thus, if for the contemporary eye Lambert’s curves might be seen as a modern and useful

method of representing and analyzing experimental data, for the period eye they could have

easily embodied an antiquarian spirit of geometry and metaphysics. The negative reactions

were not against the graphs or the graphical method in general (objects that did not exist, or

were not perceived as such) but against imperfect experimental results used to find doubtful

regularities. The fact that graphical representations were not condemned or mistrusted al-

together is evidenced by the barometric charts of Beguelin or Pictet. Pictet even mentioned

these curves in a letter to Saussure (see above). Furthermore, one is mistaken to try to find

reactions to “Lambert’s graphical method”; instead, what can be found are reactions to par-

ticular representations. One was not imitating a general method or a general representation,

but rather a way of approaching a particular problem. That was the case of Toaldo’s baromet-

ric charts which were drawn after Lambert’s. Even among Gay-Lussac’s manuscripts, there

is a curve of magnetic declension which clearly imitated one of Lambert’s magnetic curves,

or a descendant of it (see Fig. 4.29). The two curves, when put together, clearly show the

difference between Lambert’s geometrical curve and Gay-Lussac’s graphical curve; while the

former is highly regular, especially at the origin, the later has an irregular kink. While Lam-

87. Feldman, “The History of Meteorology, 1750-1800,” 62-63.
88. Horace Bénédict de Saussure, Essais sur l’hygrométrie (S. Fauche, 1783), ix-x.
89. Ibid., ix, 143, 146, 196, 330.
90. Ibid., 126.
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bert’s graphical representation are unique in volume and purpose, they were not disconnected

from the larger culture of the 18th century. Among other influences, Lambert studied under

Musschenbroek in Leiden (1757-1758) who became a main source of inspiration for his stud-

ies on hygrometry.91 The connection between Musschenbroek’s weather charts and Lambert’s

graphical methods have so far been left unaddressed.

This chapter has argued that to understand the spread of graphical representations one

must follow coherent historical objects that pertain to specific scientific communities and forms

of practice. It is the spread of lowly and unimpressive weather charts or curves of solubility

which can account for the development and acceptance of more abstract and general forms

of graphical representation. It is also crucial to distinguish between the various contexts and

disguises in which a graphical representation might be encountered: as a form of registration,

opposed to a form of presentation; as a mean of calculating a numerical value, opposed to a

mean of supporting a claim of concordance; as a quick draft for understanding the regularities

of experimental results, or as a carefully drawn, large plate summarizing all the results. Each

context and disguise imposed its own forms of visibility and mobility.

Though Regnault’s large plate of experimental curves was widely discussed, carefully stud-

ied and universally appreciated, it was almost never reproduced in books. In La méthode

graphique, a book which compared graphical representations to a universal language, Marey

had to settle for a wordy description of Regnault’s plate:

On doit à Regnault plusieurs tableaux de ce genre; l’un des plus célèbres est celui qui représente
aux différentes températures la force élastique de la vapeur d’eau, la dilatation du mercure, la com-
pressibilité de l’air et celle de l’azote. Sur la même feuille sont encore indiquées les corrections que
l’on doit faire aux thermomètres à air, suivant la nature de leur enveloppe. Comme les dimensions
de ce tableau sont considérables à cause de la multiplicité des détails dont il est chargé, nous ne
pouvons en donner ici la reproduction même partielle. [a footnote added: Ce tableau se trouve à
Paris, chez Gauthier-Villars.]92

91. Maarten Bullynck, “Johann Heinrich Lambert’s Scientific Tool Kit, Exemplified by His Measurement of
Humidity, 1769–1772,” Science in Context 23, no. 1 (2010): 68; Johann Heinrich Lambert, “Essai d’hygrométrie ou
Sur la mesure de l’humidité,” Histoire de l’Académie Royale des Sciences et Belles Lettres 25 (1771): 70-72.
92. Marey, La Méthode graphique dans les sciences expérimentales et particulièrement en physiologie et en
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(a) Lambert

(b) Gay-Lussac

Figure 4.29
Curves of magnetic variation over the year. Source: (a): Johann Heinrich Lambert, Beyträge zum Gebrauche der
Mathematik und deren Anwendung (Berlin: Verl. des Buchladens der Realschule, 1765); (b): © Archives de l’École
polytechnique (Palaiseau, France), IX GL 3.M.

Regnault’s plate was substituted for Gay-Lussac’s curves of solubility because “le principe

sur lequel ces tableaux graphiques sont construits et la clarté des relations qu’ils expriment

ressortent suffisamment de la figure”.93 In some cases, one of the most famous representations

can also be the least visible and least re-presentable.

médecine, 48.
93. Marey, La Méthode graphique dans les sciences expérimentales et particulièrement en physiologie et en

médecine, 48.
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· 5 ·
States of Matter

1 ANDREWS’ ISOTHERMS

In 1869 Thomas Andrews (1813-1885, FRS 1849) – the professor of chemistry at Queen’s Col-

lege in Belfast – presented a paper to be read as the Bakerian Lecture at the Royal Society titled

“On the Continuity of the Gaseous and Liquid States of Matter”.1 The paper put forward the

novel claim that “the gaseous and liquid states are only distant stages of the same condition

of matter, and are capable of passing into one another by a process of continuous change.”2

Andrews studied the variation of the volume with the change of pressure for various temper-

atures. While similar experiments had been carried out before by Cagniard de la Tour (1822),

Michael Faraday (1826), or Victor Regnault (1847), Andrews’ experiment had an advantage

because he used carbonic acid which could be liquefied within an accessible range of tem-

peratures and pressures. Also, while previous experimenters used metal containers and only

deduced the state of the fluid from the steepness of the variation of volume with pressure, An-

drews could actually observe the state of the fluid inside his glass tubes. At the pressure point

where one expected liquefaction to start, something unexpected happened: instead of seeing

the carbonic acid separating into two clearly demarcated states, “the most careful examination

fails to discover any heterogeneity”.3 Because above 30.9◦C the liquid and gaseous states were

visually indistinguishable, Andrews called this temperature the critical point. What was the

state of the fluid above the critical point? Was it a gas or a liquid? Andrews argued that “we

1. It seems that contrary to common belief, the paper was not delivered by Andrews’ himself who was still in
Belfast when the paper was read – see J. S. Rowlinson, “The Work of Thomas Andrews and James Thomson on
the Liquefaction of Gases,” Notes and Records of the Royal Society of London 57, no. 2 (2003): 145-146.

2. Thomas Andrews, “The Bakerian Lecture: On the Continuity of the Gaseous and Liquid States of Matter,”
Philosophical Transactions of the Royal Society of London 159 (1869): 589.

3. Ibid., 584.
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have no valid grounds of assigning it to the one form of matter any more than to the other”.4

Beyond the critical temperature, the fluid was not in a new state of matter but rather in “the

intermediate states which matter assumes in passing, without sudden change of volume, or

abrupt evolution of heat, from the ordinary liquid to the ordinary gaseous state”.5 Andrews’

experiment showed not only that there was no liquefaction above the critical temperature, but

also that one could “continuously” move from the gaseous to the liquid state. If one were to

start in a gas state at some high temperature, and increase the pressure to 150 atmospheres

and then decrease the temperature below 30.9◦C, the fluid would end in a liquid state without

any abrupt changes of its state, such as liquefaction:

during the whole of this operation no breach of continuity has occurred. […] The closest ob-
servation fails to discover anywhere indications of a change of condition in the carbonic acid, or
evidence, at any period of the process, of part of it being in one physical state and part in another.6

While the evidence for his novel claims was based on the visual observations and table of

measurements, Andrews also constructed a plot of the experimental results (Fig. 5.1).7 Though

Andrews did not directly connect it to any of his arguments, the plot provided a satisfactory

illustration because the meaning of the curves was encoded in their shape: the tilted lines

corresponded to the gaseous state (to make this more readily visible, the curves of a perfect

gas obeying Mariotte’s law were also added in the upper-right corner of the plot); the vertical

lines represented the “fall from the gaseous to the liquid state” (i.e. the liquefaction process);

the almost horizontal lines corresponded to the liquid state. The changing shape of the in-

termediate curves displayed the process through which the fluid transitioned from the liquid

state into the gaseous state. The “continous” change between the gaseous and liquid states

above 30.9◦C was associated with the shape of the curves: “[t]he graphical representation of

these experiments [the curves above 30.9◦C], as shown in the preceding page, exhibits some

4. Andrews, “The Bakerian Lecture,” 588.
5. Ibid.
6. ibid., 587.
7. The original orientation of Andrews’ diagram was later rotated by 90 degrees in Maxwell’s Theory of Heat

(1871), see Fig. 5.8.
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marked differences from the curves for lower temperatures” because the curves above the crit-

ical temperature did not exhibit a fall as “abrupt as in the case of the formation of the liquid

at lower temperatures”.8

Figure 5.1
“The graphical representation of these experiments [the curves above 30.9◦C], as shown in the preceding page,
exhibits some marked differences from the curves for lower temperatures.” The curves above the critical tem-
perature did not exhibit a fall “as abrupt as in the case of the formation of the liquid at lower temperatures”.
This graphical difference was correlated with Andrews’ discovery that above the critical temperature the liquid
and gaseous states were physically indistinguishable. Source: Thomas Andrews, “The Bakerian Lecture: On the
Continuity of the Gaseous and Liquid States of Matter,” Philosophical Transactions of the Royal Society of London
159 (1869): 575–590.

Very soon, Andrews’ experimental setup and experimental results attracted the atten-

tion of his peers. His results were noticed by theoretically inclined physicists such as Clerk

Maxwell, J. W. Gibbs and J. D. van derWaals, while his experiments were continued in England

by W. Ramsay and S. Young (first at the University College in Bristol, and later at the Univer-

sity College London), in France by L. P. Cailletet (École Normale Supérieure) and E. H. Amagat

8. Andrews, “The Bakerian Lecture,” 584-5.
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(Faculté Libre des Sciences in Lyons), in Switzerland by R. Pictet (University of Geneva), in the

Netherlands by H. Kamerlingh Onnes (University of Leiden), and in Poland by S. Wroblewski

and K. Olszewski (University of Krakow).9 The extension of Andrews’ observations to other

gases provided an incentive for high-pressure and low-temperature experiments which cul-

minated in a race for the liquefaction of the permanent gases: oxygen in 1877 by Cailletet

and Pictet (independently), nitrogen in 1883 by Wroblewski and Olszewski, methane in 1886

by Olszewski, hydrogen in 1898 by J. Dewar, and helium in 1908 by H. Kamerlingh Onnes.

While the interest in the liquefaction of various gases predated Andrews, his work made clear

the relation between pressure and temperature (and it showed why certain gases could not

be liquefied even at very high pressures if the temperature was above the critical point) and

explained previous failures to liquefy the permanent gases. Along with Andrews’ ideas and

apparatus, his graphical representation of the isotherms also spread and soon became ubiqui-

tous in both theoretical and experimental physics.

While the success of Andrews’ experiment and its special position at the intersection of

experimental and theoretical concerns could explain the wide diffusion of the curves, their

origin is not immediately obvious. In the mid-19th century graphical representations of ex-

perimental data were present in scientific publications, most consistently in those of German

scientists. In Britain, some of the most esteemed experimentalists of the first half of the 19th

century, such as Michael Faraday or James Joule, never produced experimental plots. An-

drews, who kept a close correspondence with other important experimentalists like Faraday

or Jean-Baptiste Dumas, was closer to this rule rather than an exception – the only plots he

9. Kostas Gavroglu, “The Reaction of the British Physicists and Chemists to van Der Waals’ Early Work and
to the Law of Corresponding States,” Historical Studies in the Physical and Biological Sciences 20, no. 2 (1990):
199–237; Kostas Gavroglu and Yorgos Goudaroulis, “Heike Kamerlingh Onnes’ Researches at Leiden and Their
Methodological Implications,” Studies in History and Philosophy of Science Part A 19, no. 2 (1988): 243–274; Rowl-
inson, “TheWork ofThomas Andrews and JamesThomson on the Liquefaction of Gases”; Faidra Papanelopoulou,
“Louis Paul Cailletet: The Liquefaction of Oxygen and the Emergence of Low-Temperature Research,” Notes and
Records of the Royal Society of London 67, no. 4 (2013): 355–373; Dirk van Delft, Freezing Physics : Heike Kamerlingh
Onnes and the Quest for Cold, in collab. with Koninklijke Nederlandse Akademie van Wetenschappen (Amster-
dam: Koninklijke Nederlandse Akademie van Wetenschappen, 2007).
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ever published were the isotherms for carbonic acid. The choice of coordinates (pressure on

the abscissa and volume on the ordinates) was also surprising because it differed from the

conventional choices. By far the most famous graphical representations of experimental re-

sults were the curves produced by Victor Regnault (1847) who used the temperature on the

abscissa and pressure on the ordinates.10 This would have been a natural choice for an exper-

imentalist because in most experiments temperature was the independent quantity that was

controlled and whose variation produced an effect in the volume or pressure. In the study

of steam engines, the common representation was the indicator or volume-pressure diagram

– with volume on the abscissa and pressure on the ordinates. However, Andrews’ original

diagram had no direct connection to this type of representation; only later, the diagram was

rotated by 90◦ to match the orientation of the axis in the indicator diagram.

The source of Andrews’ isotherms was, most probably, James Thomson (1822-1892),

William Thomson’s elder brother. James was the professor of civil engineering at Queen’s

College in Belfast and a close friend of Andrews fromwhom he learned about his experiments.

In May and June 1862 (long before Andrews presented his results to the Royal Society in 1869),

Thomson wrote several notes interpreting the implications of Andrews’ results accompanied

by what he called “sketches of curves” (Fig. 5.2). While Andrews’ curves represented the vari-

ation of pressure with volume for different temperatures, a natural choice given the fact that

he had over twenty volume-pressure points for six different temperatures, Thomson chose to

“sketch” the relation of temperature and volume for different pressures, a surprising choice

because each curve was extrapolated from a couple of temperature points (see Fig. 5.2). How-

ever, opposed to Andrews, Thomson’s sketches were not simply reproducing the experimental

results, but were meant to be a guide for future experiments: “The sketching of probable fea-

tures or approximate forms of these curves may serve useful purposes in indicating desirable

courses for experimental investigation.”11 While Andrews’ experiments showed that above a

10. For Regnault’s curves see Chapter 2.
11. JamesThomson,Collected Papers in Physics and Engineering (Cambridge: Cambridge University Press, 1912),
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certain “critical” temperature the carbonic acid fluid did not show any sudden transition from

liquid to gas,Thomson used his sketch to extend this claim and introduce the analogue concept

of critical pressure:

Now it seems clear that we have a similar superior limit of pressure, so that for pressures above
that limit we meet with no discontinuity in the possible volume or in the possible quantity of
heat.12

While Andrews identified the critical temperature by direct observation of the fluid inside

the glass tubes, Thomson derived the existence of a critical pressure from the behavior of

the curves. The “continuous” transition between gaseous and liquid states which Andrews

observed in his glass tubes was interpreted by Thomson graphically: the curves below the

critical pressure displayed a “discontinuity”, i.e. they were not smooth as the curves above the

critical pressure.

Thomson went beyond observing the shape or smoothness of the experimental curves to

propose a series of hypothetical or theoretical curves. While their existence was to be decided

experimentally, their shape and properties were not arbitrary but were based on a form of

graphical reasoning. Thomson imagined the change in the pressure curves as a rotation of the

tangent drawn through the inflexion point of the curves. If one continued rotating the tangent

beyond its vertical position (corresponding to the curve p4 in Fig. 5.3), then the shape of the

curves would have changed while still remaining smooth (see the dotted curves in Fig. 5.3).

Thomson considered that “it would seem probable that the angle would go on increasing be-

yond 90◦ in which case the curve would stand thus: – [see Fig. 5.4]”.13 A second notion of

continuity was at play. Thomson postulated the theoretical “continuity” (i.e. smoothness)

of curves below the critical pressure (the dotted portion of p1, p2, p3) by arguing that it was

probable that the slope of the tangent at the inflexion point could be increased continuously.

319-320.
12. Thomson, Collected Papers in Physics and Engineering, 321.
13. Ibid., 324.
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Figure 5.2
This sketch from James Thomson’s notebooks was meant to show “the relation between the wave in p4, p5, p6 as
compared with the abrupt rise in p1, p2, p3”; the curves p1, p2, p3 show a “discontinuity” (i.e. the curves are not
smooth). Source: JamesThomson, Collected Papers in Physics and Engineering (Cambridge: Cambridge University
Press, 1912), 320.
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Figure 5.3
The dotted curves represented Thomson’s theoretical curves which extended the continuous transition between
gaseous and liquid states below the critical point. The existence of this continuity (which had not been observed
experimentally by Andrews) was inferred by Thomson from a graphical argument: Thomson imagined the mor-
phing of the curves p8, p7, p6, p5, p4 by following the rotation of the tangent at the inflexion point of the curves.
For the critical pressure p4 the tangent would have been vertical. If the curves continued morphing beyond this
point following the same rule, they would have looked as the dotted curves drawn by Thomson (see Fig. 5.4).
Source: James Thomson, Collected Papers in Physics and Engineering (Cambridge: Cambridge University Press,
1912), 322.

Figure 5.4
Thomson imagined the change in the pressure curves as a rotation of the tangent drawn through the inflexion
point of the curves. If one continued rotating the tangent beyond its vertical position (corresponding to the
curve p4 in Fig. 5.3), then the shape of the curves would have changed as depicted in this diagram. Source: James
Thomson, Collected Papers in Physics and Engineering (Cambridge: Cambridge University Press, 1912), 324.
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Because Thomson believed that the continuous transition found by Andrews manifested

itself not only above a critical temperature, but also above a critical pressure, he decided to

carve out in wood a curved surface to better exhibit “the relation between liquids and their

gases, or rather the various conditions of pressure, temperature, volume, and quantity of heat

in which a fluid can exist” (see Fig. 5.5).14 Such a surface would not only represent experimental

results, but as in the case of the sketched curves it could also guide future experiments:

It is only by experiment that the exact form of the curved surface can be found; but some of the
facts of the case being already certainly known it is possible already to carve or mould some of
the chief features of the curve surface, and these may serve to aid in showing the courses along
which further experimental researches might best be directed, and also to aid in understanding
the correlation of experimental results; and to aid in forming opinions in advance of experiments
as to what is likely to result in intermediate cases between various experimental results which
may already or at any time be arrived at.15

(a) “Model cut out between June 6 and June 9, 1862” (b) “Cut 9th May 1869”

Figure 5.5
The axes for these models were temperature, volume and pressure (pointing out of the paper). Because these
variables could not be varied independently, it was only the surface of the model that described the physical states
of the fluid. Thomson made other models. Source: James Thomson, Collected Papers in Physics and Engineering
(Cambridge: Cambridge University Press, 1912), 277.

Despite the originality and importance of these ideas, Thomson refrained from publishing

his notes until Andrews first published his whole experimental account. He only incidentally

mentioned his ideas in a letter to his brother William from 1862:

14. Thomson, Collected Papers in Physics and Engineering, 321.
15. Ibid.
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…I thought there may be a continuous set of states between the steam and the water, for constant
pressure as shown by the above curve [Fig. 5.6]: the dotted part representing possible but unstable
states of the fluid in respect to the quantity of heat in a given mass of it. […]

I may say that nothing in this letter nor in what William Bottomley told you is a disclosure of
what Dr. Andrews has found out by his experiments. He has shown me his experiments but his
view of their indications or their meaning has been usually essentially different from mine: – but
whatever has occurred to me does not belong to myself and must be strictly suppressed until Dr
Andrews publishes his experiments and the views which he will finally decide on adopting as to
them.16

Figure 5.6
Thomson’s theoretical curve. Source: James Thomson to William Thomson, 30 June 1862, T471, Add. MS 7342,
Kelvin Papers (microfilm edition), Cambridge University Library.

Soon after Andrews’ Bakerian Lecture, Thomson also started advertising his ideas in front

of the Royal Society and the British Association for the Advancement of Science. The premise

of his argument was that although there is a “practical breach of continuity” when a liquid is

boiled or vapors are liquefied, “there may exist, in the nature of things, a theoretical continuity

across this breach having some real and true significance”.17 To support the hypothesis of a

“theoretical continuity”, Thomson added a plot with the same features as his 1862 “sketches of

16. James Thomson to William Thomson, 30 June 1862, T471, Add. MS 7342, Kelvin Papers (microfilm edition),
Cambridge University Library.
17. James Thomson, “Considerations on the Abrupt Change at Boiling or Condensing in Reference to the Con-

tinuity of the Fluid State of Matter,” Proceedings of the Royal Society of London 20 (1871): 2.
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curves”, but superimposed on Andrews’ experimental curves (Fig. 5.7).

Figure 5.7
Thomson re-used the digram previously published by Andrews (see Fig. 5.1), to which he added the dotted curves
corresponding to the postulated continuous but unstable transition from a gaseous to a liquid state. In his notes
from 1862, Thomson only used a volume-temperature diagram. Source: James Thomson, “Considerations on the
Abrupt Change at Boiling or Condensing in Reference to the Continuity of the Fluid State of Matter,” Proceedings
of the Royal Society of London 20 (1871): 4.

Andrews’ experimental results andThomson’s interpretation immediately attracted James

Clerk Maxwell’s attention. Maxwell was just in the midst of publishing his Theory of Heat
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(1871) and he took a keen interest in both Andrews andThomson.18 After talking directly with

Thomson at Glasgow and attending Andrews’ lecture at the Royal Institution, Maxwell added

an account of their contributions in the Theory of Heat.19 While Maxwell remained faithful to

their original ideas, there were small changes in his presentation. Because other physicists

like Gibbs or van der Waals learned about Andrews and Thomson from Maxwell’s textbook,

it is worth paying close attention to Maxwell’s presentation of the graphical arguments.

First, Maxwell rotated the diagram used by Andrews andThomson such that the axes were

consistent with the indicator diagrams he employed throughout the textbook (Fig. 5.8). In

Maxwell’s hands, Andrews’ isothermswere not just a graphical representation of experimental

results, but were experimental results expressed in a graphical language. The Theory of Heat

provided a gradual introduction in the use of indicator diagrams (which amounted to 16 out

of the 41 drawings in the book), “as a means of explaining and representing to the eye the

working of a fluid”.20 ForMaxwell, the indicator diagramwas the product of a practical method

developed by James Watt to trace “every part of the action of the steam”, of a geometrical

method introduced by Émile Clapeyron to analyze the working of a Carnot cycle, and of a

pedagogical method developed by William Rankine in his textbook on steam-engines.21 This

placed the indicator diagram at the intersection of practice, experiment, theory and training.

A second intervention of Maxwell was to add a dotted line on top of Andrews’ diagram

“showing the region within which the substance can exist as a liquid in the presence of its

vapour”.22 This small alteration increased the clarity of the diagram as it offered a geometrical

interpretation of the critical point which had not been represented in the original version. The

dotted line also imposed a different perception of the diagram which could be seen not only as

18. James Clerk Maxwell, The Scientific Letters and Papers of James Clerk Maxwell, ed. P. M. Harman, 3 vols.
(Cambridge: Cambridge University Press, 1990), v. 2, 668-669, No. 381.
19. Ibid., v.2 668, No. 381.
20. James Clerk Maxwell, Theory of Heat, 1st ed. (London: Longmans, Green and Company, 1871), 102.
21. Ibid.
22. Ibid., 119.
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Figure 5.8
Maxwell’s reproduction of Andrews’ diagram (see Fig. 5.1), with slight modifications. In the Theory of Heat
(1871) Maxwell consistently employed indicator-diagrams with the volume on the abscissa and the pressure on
the ordinates. Besides flipping the diagram, Maxwell also added the dotted line which showed the region in
which the substance could exist as a liquid in the presence of its vapor. Maxwell described how “we can convert
carbonic acid gas into liquid without any sudden change of state”; the only condition was that the curve of the
process would not cross into the region between the dotted curves. One could start at the bottom-right side
at low pressure and temperature, increase the temperature and move to the upper-right side, then increase the
pressure and move to the upper-left side, and then decrease the temperature and move to the lower-left side.
While “during this process no sudden change of state can be observed, but carbonic acid at 50◦F and under a
pressure of 100 atmospheres has all the properties of a liquid.” Source: James Clerk Maxwell, Theory of Heat, 1st
ed. (London: Longmans, Green and Company, 1871), 119-124.
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the space in which experimental curves were drawn, but also as a space (or region) on which

the physical states of the substance were mapped.23

Besides the diagramwith Andrews’ experimental curves, Maxwell added a second drawing

with Thomson’s hypothetical curves (Fig. 5.9). Though the differences in presentation were

minor, they remain suggestive of the direction in whichMaxwell was moving. WhileThomson

used his hypothetical curve only “to suggest desirable courses for experimental researches”,

Maxwell aimed to understand its geometrical properties. For this purpose, he drew the lines

BF and DH which had no physical meaning, but which bounded the region in which any

horizontal line cut Thomson’s curve in three different points. Maxwell deduced that:

The literal interpretation of this geometrical circumstance would be that the fluid at this pressure,
and at the temperature of the isothermal line, is capable of existing in three different states. One
of these, indicated by C , evidently corresponds to the liquid state. Another, indicated byG, corre-
sponds to the gaseous state. At the intermediate point E the slope of the curve indicates that the
volume and the pressure increase and diminish together. No substance having this property can
exit in stable equilibrium, for the very slightest disturbance would make it rush into the liquid or
the gaseous state. We may therefore confine our attention to the points C and G.24

The few pages about Thomson and Andrews that Maxwell wrote in the Theory of Heat

(1871) played an important role in the doctoral dissertation of the young Dutch physicist J. D.

van derWaals (1837-1923). The title of van derWaals’ thesis, “On the continuity of the gaseous

and liquid states” [Over de continuiteit van den gas- en vloeistoftoestand] (1873) was almost

identical to that of Andrews’ Bakerian lecture from 1869. Both Andrews’ andThomson’s ideas

about the continuity of states were present in van der Waals’ understanding of the concept:

The expression, “continuity of the gaseous and liquid state”, is perhaps the most suitable, because
the considerations are based on the idea that we can proceed continuously from one state of ag-
gregation to the other; geometrically expressed, both portions of the isotherm belong to one curve,
even in the case in which these portions are connected by a part which cannot be realized.25

23. For another example of a diagram that employed not only curves, but also regions of space see Maxwell,
Theory of Heat, 137.
24. Ibid., 125
25. J. D. van der Waals, On the Continuity of the Gaseous and Liquid States, ed. J. S. Rowlinson (Amsterdam ;

New York: North-Holland, 1988), 125.
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Figure 5.9
“…the isothermal line, as deduced from experiments of the ordinary kind, will consist of the curve ABC, the
straight line CG, and the curve GH. But it has been pointed out by Prof. J. Thomson that by suitable contrivances
we may detect the existence of other parts of the isothermal curve [the parts CD and FG]… The state of things,
however, represented by the portion of the isothermal curve DEF, can never be realised in a homogeneous mass,
for the substance is then in an essentially unstable condition, since the pressure increases with the volume. We
cannot, therefore, expect any experimental evidence of the existence of this part of the curve, unless, as Prof. J.
Thomson suggests, this state of things may exist in some part of the thin superficial stratum of transition from a
liquid to its own gas, in which the phenomena of capillarity take place.” Source: James Clerk Maxwell, Theory of
Heat, 1st ed. (London: Longmans, Green and Company, 1871), 125-127.

Van der Waals always insisted that his concept of continuity had been developed indepen-

dently, and was based on a physical reasoning about the molecular nature of the liquid and

the gaseous states. Laplace’s theory of capillarity led him “to establish the connexion between

the gaseous and liquid condition, the existence of which, as I afterwards learned, had already

been suspected by others”.26 Laplace’s theory of capillarity led van der Waals to consider the

26. Waals, J.D. van Der Waals, 125. Much later, in his Nobel Prize lecture from 1910, van der Waals also at-
tributed his concept of “continuity” to a physical reasoning about the molecular nature of the liquid and gaseous
states: “Clausius’ treatise was a revelation for me although it occurred to me at the same time that if a gas in
the extremely dilute state, where the volume is so large that the molecules can be regarded as points, consists of
small moving particles, this is obviously still so when the volume is reduced; indeed, such must still be the case
down to the maximum compression and also in liquids, which can only be regarded as compressed gases at low
temperature. Thus I conceived the idea that there is no essential difference between the gaseous and the liquid
state of matter – that the factors which, apart from the motion of the molecules, act to determine the pressure
must be regarded as quantitatively different when the density changes and perhaps also when the temperature
changes, but that they must be the very factors which exercise their influence throughout. And so the idea of

199



STATES OF MATTER

effects of intermolecular forces, while Clausius’ virial theorem suggested a method to him

through which he was able to derive an equation of state:27

(
p+

a

v2

)
(v − b) = (1 + a)(1− b)(1 + αt) (5.1)

While this equation was compatible with the behavior of gases and under the appropriate

limits it reduced to the equation of the ideal gas, “some hesitation may be experienced in

extending it to liquids, because by doing so we implicitly ignore the difference between the

two states”.28 To prove that the equation could equallywell represent both states, van derWaals

appealed to Andrews’ experimental results: “the experiments of Andrews and the values of b

calculated from them show that doubts as to the legitimacy of the extended method may be

safely abandoned”.29 Using the equation of state, he calculated the critical temperature to be

32.5◦C (compared to Andrews’ experimental result of 30.9◦C), which he considered to be “very

satisfactory” given the errors in estimating a and b.30

The evidence supporting van der Waals’ equation was not only numerical but also graph-

ical. The Eq. (5.1) reduced to a cubic equation for v, which implied that “at a given pressure

and temperature there are either three volumes possible or else only one”.31 Van der Waals traced

the curve of Eq. (5.1) for the temperature of 13.1◦C (see van der Waal’s Fig.6 reproduced in

Fig. 5.10). While this curve did not match Andrews’ isotherms, it did correspond to Thom-

sons’ curve “which is quite analogous to that deduced from my equation. In order to show

this agreement graphically I have taken from Maxwell the curves in figs. 7 and 8, and con-

trasted them with fig.6, which gives my isothermal”.32 The graphical agreement that van der

continuity occurred to me”, in Nobel Lectures, Physics 1901-1921 (Amsterdam: Elsevier, 1964), 254-255.
27. M.J. Klein, “The Historical Origins of the Van Der Waals Equation,” Physica 73, no. 1 (1974): 34.
28. Waals, J.D. van Der Waals, 194.
29. Ibid.
30. Ibid., 202.
31. Ibid., 195.
32. Ibid., 196.
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Waals referred to was quite unusual because he did not compare directly his equation with

the experimental results by plotting them on the same diagram. Instead, the agreement was

based on the features of the diagram. To make the visual resemblance clear, van der Waals

employed the same lines and points as Maxwell did. However, the status of the curves had

changed. Van der Waals considered his equation of state to be a “universal physical law” and,

as such, he rejected Maxwell’s line CG as an alternative path – “The idea of joining C and G

by a straight line, as is done by Maxwell, is not a happy one, but is calculated to throw one off

the right track.”33

Maxwell was one of the first to salute van der Waals’ original ideas, though he found fault

with the use of Clausius’ virial theorem:

The results obtained by M. Van der Waals by a comparison of this equation with the determina-
tions of Regnault and Andrews are very striking, and would almost persuade us that the equation
represents the true state of the case. But though this agreement would be strong evidence in
favour of the accuracy of an empirical formula devised to represent the experimental results, the
equation of M. Van der Waals, professing as it does to be derived from the dynamical theory, must
be subjected to a much more severe criticism.
It appears to me that the equation does not agree with the theorem of Clausius on which it is
founded.34

Most probably prompted by van der Waals’ remark about the line CG, Maxwell tried to find

a physical connection between Thomson’s and Andrews’ curves.35 He supposed that the

medium passed from C to G along the path CDEFG, and returned back to C along the

line GC ; since “the temperature has been constant throughout, no heat can have been trans-

formed into work”. The heat transformed into work was represented by the areas CDE and

EFG – “Hence the condition which determines the maximum pressure of the vapour at given

temperature is that the line CG cuts off equal areas from the curve above and below”.36

33. Waals, J.D. van Der Waals, 196.
34. James ClerkMaxwell, “Van DerWaals on the Continuity of the Gaseous and Liquid States,”Nature 10 (1874):

480.
35. Have another look at the letter 674; 604
36. James Clerk Maxwell, The Scientific Papers of James Clerk Maxwell, ed. W. D. Niven, 2 vols. (Cambridge:
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Figure 5.10
“Though, so far as I know, the theoretical proof of the existence of the third volume condition has not been hitherto
given, it has been conjectured by James Thomson, who conceived the happy idea of constructing the part of the
isothermal belonging to volumes beyond the reach of experiment by means of the part of the isothermal given
by experiment; and the curve thus resulting is quite analogous to that deduced from my equation. In order to
show this agreement graphically I have taken from Maxwell the curves in figs. 7 and 8 [for Maxwell’s curves see
Fig. 5.8, Fig. 5.9], and contrasted them with fig. 6, which gives my isothermal. […] The idea of joining C and G
by a straight line, as is done by Maxwell, is not a happy one, but is calculated to throw one off the right track.”
Source: J. D. van der Waals, On the Continuity of the Gaseous and Liquid States, ed. J. S. Rowlinson (Amsterdam ;
New York: North-Holland, 1988), 196.
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2 THE TRIPLE POINT

While Maxwell was concerned with the geometrical properties of the isotherms, JamesThom-

son focused on interpreting the physical meaning of the experimental curves. Between 1871

and 1873 he presented several papers at the meetings of the British Association and the Royal

Society about the relations between the gaseous, liquid and solid states of matter. To represent

these relations, he employed a different graphical construction – instead of Andrews’ pressure-

volume or his earlier volume-temperature diagrams, he now used temperature (on the vertical)

and pressure (on the horizontal); the plane of the diagram represented all possible points of

pressure and temperature, while the lines corresponded to transitions from gas to liquid, liquid

to solid, and gas to solid states (see Fig. 5.11). The gas-solid line did not extend indefinitely for

high pressures and temperatures, but ended in the critical point E introduced byAndrews. This

allowed Thomson to rephrase in graphical terms Andrews’ physical/experimental description

of how one could reach a liquid state from a gas state through a continuous process:

wemay see that from any ordinary liquid state to any ordinary gaseous state the transition may be
gradually effected by an infinite variety of courses passing round the extreme end of the boiling-
line.37

But Thomson’s attention was concentrated somewhere else. He made the suggestion that

the three curves met in one point which he named the triple point. As in the case of Andrews’

isotherms, Thomson proposed that the curves could be prolonged beyond the transition point

– “the dotted lines TP and TQ, may have some theoretical or practical significance not yet

fully discovered”.38 This meant that the gas-solid line TN and the liquid-gas line TLwere not

“continuous” at the triple point T (i.e. T was a singular point).

As in the case of Andrews’ isotherms, Thomson’s observations were not derived from the

Cambridge University Press, 1890), v.2 425, where BF in the original was changed to CG to match the notation
in Fig. 5.9.
37. James Thomson, “Speculations on the Continuity of the Fluid State of Matter, and on Relations between

the Gaseous, the Liquid, and the Solid States,” Report of the Forty-First Meeting of the British Association for the
Advancement of Science, 1871, 31.
38. Ibid., 32.
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Figure 5.11
TN represents the line between gas and solid, TM the line between liquid and solid and TL the line between gas
and liquid. E is the critical point first described by Andrews in 1869 beyond which the liquid and gaseous states
were experimentally indistinguishable. T is the triple point introduced by Thomson. Opposed to previous views
(e.g. Regnault), Thomson argued that the TL and TN lines were not “continuous” (i.e. smooth); he represented
this by the dotted line TP as the continuation of TL, and the dotted line TQ as the continuation of TN . In
his 1871 paper to the British Association, Thomson only considered the diagram on the left in which the gas-
liquid and gas-solid lines crossed on the concave side. In 1872, Thomson presented an argument why the second
case (the diagram on the right for which the gas-liquid and gas-solid lines crossed on the convex side) could be
discounted as unphysical. Source: James Thomson, “On Relations between Gaseous, the Liquid, and the Solid
States of Matter,” Report of the Forty-Second Meeting of the British Association for the Advancement of Science, 1872,
24–30

actual experimental curves, but from the geometrical properties of his sketches – “the figure is

intended only as a sketch to illustrate principles, and is not drawn according to measurements

for any particular substance, though the main features of the curves shown in it are meant to

relate in a general way to the substance of water, steam, and ice”.39 To support his observations,

Thomson appealed to the most accurate and complete experimental results available, Victor

Regnault’sMemoir (1847), and “made careful examinations of his [Regnault’s] engraved curve,

and of his empirical formulae adapted to fit very closely to the results exhibited in that curve,

39. James Thomson, “A Quantitative Investigation of Certain Relations between the Gaseous, the Liquid, and
the Solid States of Water-Substance,” Proceedings of the Royal Society of London 22 (1873): 28.
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and of his final Tables of results”.40 Despite his great care, Regnault admitted that he “could

not avoid certain small irregularities in the curves”; he pointed out one unusual irregularity in

particular because all the experimental determinations were above the curve for the portion

between -16◦C and 0◦C (see Fig. 5.12).41 It was this part of the curve that attracted Thomson’s

attention:

The engraved curve drawn on the copper plate by Regnault himself is offered by him as the defini-
tive expression of his experiments, as being an expression which satisfies as well as possible the
aggregate of his observations – subject, however, to a very slight alteration, which he has pointed
out as a requisite amendment in the part of the curve immediately below the freezing-point, a part
with which the investigations in the present paper are specially concerned.42

Figure 5.12
The circled area represents the portion of Regnault’s curve with “certain small irregularities” which could not
be avoided. While Regnault considered that these irregularities arose out of unavoidable experimental errors,
for Thomson the irregularity of the curve represented a potential confirmation of his hypothesis. Source: Victor
Regnault, “Relation des expériences entreprises par ordre de monsieur le ministre des travaux publics, et sur la
proposition de la Commission Centrale des Machine à Vapeur, pour déterminer les principales lois et les données
numériques qui entrent dans le calcul des machines à vapeur,” Mémoires de l’Académie Royale des Sciences de
l’Institut de France. 21 (1847): v.1, pl. VIII.

40. Thomson, “AQuantitative Investigation of Certain Relations between the Gaseous, the Liquid, and the Solid
States of Water-Substance,” 31-32.
41. Regnault, “Relation des expériences sur des Machine a Vapeur,” 581.
42. Thomson, “AQuantitative Investigation of Certain Relations between the Gaseous, the Liquid, and the Solid

States of Water-Substance,” 32.
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Two different attitudes towards the continuity of the curve were at play. For the exper-

imentalist Regnault, it was “the curve that truly [réellement] represents the phenomenon”

because the graphical method “allows one to distinguish, at a glance, the variations that come

from accidental errors of the observations, and the constant errors which depend on the va-

riety of methods that have been employed”.43 The curves were “the final expression of my

experiments [l’expression définitive de mes expériences]” from which were obtained, by in-

terpolation, the tables with experimental results.44 Regnault could correct for errors because

the graphical method allowed him to deal with the “ensemble of observations”. The “perfect

continuity” of the curve assured that “the accidental errors of the observations can only be

extremely small”.45 Thomson recognized that the continuity of the curve was a prerequisite of

Regnault’s graphical method –

it is not surprising that there should have been a tendency to smooth off this feature on the sup-
position that any departures of the experimental observations from the course of a continuous or
smooth curve were only slight irregularities due to experimental errors or imperfections.46

In the first two papers about the “triple point”, Thomson used the temperature on the

vertical, and the pressure on the horizontal (see Fig. 5.11), most probably because it matched

the orientation of the pressure axis for Andrews’ isotherms (see Fig. 5.7).47 However, in the

third paper from 1873 presented to the Royal Society, Thomson engaged much more closely

with Regnault’s experiments and his graphical representation. It should not come as a surprise

thatThomson chose to also redraw his diagram with pressure on the vertical, and temperature

on the horizontal (see thomson-1873-29). In a letter to his brother about the upcoming talk at

the Royal Society, James acknowledged the role played by the diagram in explaining his ideas

43. Regnault, “Relation des expériences sur des Machine a Vapeur,” 428.
44. Ibid., 581.
45. “Si l’on fait passer une courbe par tous les points obtenus dans une même série d’expériences, on reconnaît,

à sa continuité parfaite, que les erreurs accidentelles des observations ne peuvent être qu’extrêmement petites”
(ibid., 580-581).
46. Thomson, “AQuantitative Investigation of Certain Relations between the Gaseous, the Liquid, and the Solid

States of Water-Substance,” 36.
47. Thomson, “Speculations on the Continuity of the Fluid State of Matter, and on Relations between the

Gaseous, the Liquid, and the Solid States.”
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(see Fig. 5.13):

I suppose I would need to insert for the Royal Society a diagram of the three curves crossing in
the triple point, such as here sketched: because the paper would be rather unreadable without the
diagram and a few introductory explanations…48

Figure 5.13
“In making it for the R.S. [Royal Society] I would turn the whole diagram round in the plane of the paper through
90◦ so as to have the axis of temperature running from right to left and the axis of pressure running up and
down on the paper. The Brit. Assoc. figures by chance I made at Edinburgh and in Edin volume thus: [see
right figure]”. Source: James Thomson to William Thomson, 9 January 1873, T487, Add. MS 7342, Kelvin Papers
(microfilm edition), Cambridge University Library

In his talks, Thomson also used a model which “helps to afford a clear view of the nature

and meaning of continuity of the liquid and gaseous states of matter” (Fig. 5.15).49 Thomson

briefly mentioned how such a model could be constructed from the experimental curves:

For the practical execution of this, it is well to commence with a rectangular block of wood, and
then carefully to pare it down, applying, from time to time, the various curves as templates to it,
and proceeding according to the general methods followed in a shipbuilder’s modelling-room in
cutting out small models of ships according to the curves laid down on paper as cross sections of
the required model at various places in its length50

Thomson was speaking from experience. In his youth, in the early 1840s, Thomson served

as an apprentice in William Fairbairn’s iron shipbuilding yard on the Thames where he made

48. James Thomson to William Thomson, 9 January 1873, T487, Add. MS 7342, Kelvin Papers (microfilm edi-
tion), Cambridge University Library
49. Thomson, “Considerations on the Abrupt Change at Boiling or Condensing in Reference to the Continuity

of the Fluid State of Matter,” 5.
50. Ibid.
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Figure 5.14
“The curve L represents the boiling-line terminating in the critical point E.The line TM represents the line between
liquid and solid. It is drawn showing in an exaggerated degree the lowering of the freezing temperature of water
by pressure, the exaggeration being necessary to allow small changes of temperature to the perceptible diagram.
The line TN represents the line between the gaseous and the solid states of water-substance. The line LTN
appears to have been generally (in the discussion of experimental results on the pressure of aqueous vapour
above and bellow the freezing-point) regarded as one continuous curve; but it was a part of my object in the
two British-Association papers referred to, to show that it ought to be considered two distinct curves (LTP and
NTQ) crossing each other in the triple point T.” Source: JamesThomson, “AQuantitative Investigation of Certain
Relations between the Gaseous, the Liquid, and the Solid States of Water-Substance,” Proceedings of the Royal
Society of London 22 (1873): 29

drawings of engines and worked in the fitting shop.51 Nineteenth century ship design made

constant use of experimental and theoretical curves – in the 1840s, John Scott Russell, the

designer of the Great Eastern and one of the founders of the Institution of Naval Architects,

proposed the wave-line system for which ship curves imitated the outlines of waves in the

water;52 in the 1860s, William Froude advanced a method of using small ship models to ex-

51. Crosbie Smith and M. Norton Wise, Energy and Empire: A Biographical Study of Lord Kelvin (Cambridge
[Cambridgeshire] ;New York: Cambridge University Press, 1989), 130,285-292.
52. “The principle on which these wave ships are constructed is, that the hollow lines forming the entrance are

to correspond, as nearly as may be consistent with the form of a ship, to the form of a certain wave capable of
moving with the same velocity as the vessel”, in John Scott Russell, On the Nature, Properties and Applications of
Steam, and on Steam Navigation. From the Seventh Edition of the Encyclopædia Britannica. [With Plates.] (A. & C.
Black, 1841), 304.
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Figure 5.15
One of James Thomson’s thermodynamic models. Source: © The Hunterian, University of Glasgow 2017.

perimentally determine optimal design.53 Thomson’s model immediately caught the attention

of other physicists, and inspired Maxwell, Gibbs and van der Waals. Andrews’ also used the

model in a talk at the Royal Institution, and in 1876 he presented it at the international ex-

hibition of scientific instruments and equipment at the South Kensington Museum.54 Under

Maxwell’s care, the model was also to be acquired and displayed in the glass cabinet of the

53. On Froude’s use of models see Gina Hagler,Modeling Ships and Space Craft: The Science and Art of Mastering
the Oceans and Sky (Springer, 2012), 109-134. In 1873, Froude proposed a better method for constructing models
that did not have to rely on the time consuming method of building up the model “in a series of horizontal layers
of uniform thickness, consisting of boards of that thickness cut to the form of the intended water lines at the
corresponding successive levels as laid down on the drawn plan of the vessel”; see William Froude, “Description
of a Machine for Shaping the Models Used in Experiments on Forms of Ships,” Proceedings of the Institution of
Mechanical Engineers 24, no. 1 (1873): 202–215.
54. Thomas Andrews, The Scientific Papers (London, New York, Macmillanand Co, 1889), 340; Catalogue of the

Special Loan Collection of Scientific Apparatus at the South Kensington Museum, 142.
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Cavendish Laboratory.55

3 GIBBS’ THERMODYNAMIC SURFACES

The graphical treatment of thermodynamical problems was radically changed by two articles

published by the American physicist Josiah Willard Gibbs (1839-1903) in 1873. In the first

paper, “Graphical Methods in the Thermodynamics of Fluids”, Gibbs aimed to generalize and

extend some of the graphical methods currently in use:

So far as regards a general graphical method, which can exhibit at once all the thermodynamic
properties of a fluid concerned in reversible processes, and serve alike for the demonstration of
general theorems and the numerical solution of particular problems, it is the general if not the
universal practice to use diagrams in which the rectilinear co-ordinates represent volume and
pressure.56

Gibbs was right about “the general if not the universal practice” of using solely pressure-

volume diagrams. Some of the most popular textbooks – such as Rankine’s A Manual of the

Steam Engine and Other Prime Movers (1859), Clausius’ Abhandlungen über die mechanischen

Warmetheorie (1864-1867), Verdet’sThéorie mécanique de la chaleur (1868), orMaxwell’sTheory

of Heat (1871) – made exclusive use of this type of representation. Its appeal was both peda-

gogical and practical – on the one hand, it allowed for an immediate geometrical interpretation

of work and efficiency, and on the other hand, Watt’s indicator automatically inscribed such

diagrams for any type of steam-engine. However, the pressure-volume diagram did not ex-

tend to all aspects of theoretical and experimental practice which often employed different

independent variables that better suited their purposes.57

55. “It will give me a great pleasure to receive on the part of the Cavendish Laboratory a cast of your thermo-
dynamic model with the lines marked on it. We have now got an excellent case with a glass front containing
an thermometer by Il Gonfio (before 1640) Wollaston’s optical and thermal apparatus etc., and we shall have a
special place for models such as yours” (Maxwell, The Scientific Letters and Papers of James Clerk Maxwell, v.3,
231).
56. Josiah Willard Gibbs, The Scientific Papers of J. Willard Gibbs (Longmans, Green and Company, 1906), v.1, 1.
57. As has been said above, pressure-temperature graphical representations were the standard choice among

experimentalists. It is unclear how familiar Gibbs was with experimental work in thermodynamics in 1873. The
only authors cited by Gibbs in the two articles from 1873 are Clausius, Rankine, Zeuner, Cazin, Maxwell, Tait,
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The pressure-volume diagram allowed one to observe the mechanical action of a steam-

engine, but not its underlying thermodynamical principles. In the first half of the 19th century,

the theoretical challenge was to understand the relation between the heat absorbed by an en-

gine and the work generated by it. The fundamental principles of thermodynamics would

follow from the solution of this problem. Émile Clapeyron – the engineer who made famous

the pressure-volume diagram – “translated analytically the geometrical operations” in terms

of which he described the stages of a Carnot-cycle, and he chose as independent variables the

pressure and volume because this “choice accords best with the graphic representation”.58 He

described the other physical quantities, like “absolute heat” or temperature, as functions of

these variables. This choice was unfortunate because it further imposed the idea of heat as

dependent only on the state of the system (i.e. Q = Q(p, V )) and complicated the funda-

mental role played by temperature in a Carnot-cycle.59 Other physicists, who still made use

of Clapeyron’s pressure-volume diagram, preferred different independent variables for their

analytical calculations. Rudolf Clausius chose volume and temperature because

in the theory of heat the temperature t is especially important, and at the same time very suitable
for determination by direct measurements, accordingly it is ordinarily regarded as a previously
known magnitude upon which depend the several other magnitudes which there enter into con-
sideration.60

This approach facilitated Clausius’ definition of entropy and the mathematical statement of

the “theorem of the equivalence of transformations” as
∫
dQ

T
≥ 0.

William Thomson also made brief use of Clapeyron’s graphical method, but he preferred

to consider temperature as the independent variable when employing an “analytical method”

Andrews, and J. Thomson. The work of the last two was probably brought to his attention by Maxwell’s Theory
of Heat. Regnault is first mentioned in an article by Gibbs in 1879.
58. Émile Clapeyron, “Mémoire sur la puissance motrice de la chaleur,” Journal de l’Ecole Polytechnique 23

(1834): 163; Rudolf Clausius, The Mechanical Theory of Heat (J. Van Voorst, 1867), 23.
59. The historian of science Clifford Truesdell has called Clapeyron choice of variables “awkward” and “unfor-

tunate”, though he did not provide a historical justification, see C. Truesdell, The Tragicomical History of Thermo-
dynamics, 1822-1854 (New York: Springer-Verlag, 1980), 139-143.
60. Clausius, The Mechanical Theory of Heat, 23; this choice of variables was first made in Clausius’ famous

article “Über die bewegende Kraft der Wärme” (1850).
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for obtaining the relation between heat and work; this approach was closely connected to

the definition of absolute temperature that he proposed.61 While both Thomson and Clausius

referred to Clapeyron’s diagram, they did not extend its use but relied solely on analytical

methods without offering any new geometrical interpretation. This discrepancy in the choice

of variables between the graphical and analytical methods was also pointed out by P. G. Tait in

his entry on “Thermodynamics” in the Encyclopædia Britannica (1888) – “it is usual, however,

to choose v and t as independent variables, while we deal analytically (as distinguished from

diagrammatically) with the subject”.62

Some engineers, who expounded the pedagogical value of graphical methods, further ex-

tended the use of Clapeyron’s diagram, while remaining faithful to the pressure-volume con-

vention for variables. William Rankine made use of adiabatic curves (a term he coined) to

represent the mechanical equivalent of the heat absorbed by a substance that passed from one

state to another. If Clapeyron translated his geometrical insights into analytical expressions,

Rankine followed the reverse path and translated analytical results back into the diagram. For

example, Rankine provided a graphical representation of the second law of thermodynamics,

but his approach was particularly cumbersome and did not provide any novel insights. In-

stead, it was Rankine’s analytical methods that opened new theoretical possibilities, for which

he also had to give up pressure and volume as independent variables. His “thermodynamic

61. William Thomson, “An Account of Carnot’s Theory of the Motive Power of Heat,” Transactions of the Royal
Society of Edinburgh 16 (1849): 549-556; William Thomson, “On the Dynamical Theory of Heat,” Philosophical
Magazine Series 4 4, no. 22 (1852): 18-19. This difference can be seen in the way they have approached Carnot’s
function, that connected the work produced to the heat transfered:

dW

dQ
=

dT

C(T )
(5.2)

Clapeyron started from the assumption that Q was a function of pressure and volume, and ended up defining C
as, C =

dQ

dv

dT

dp
− dQ

dp

dT

dv
. The actual behavior of C(T ) had to be determined experimentally. Thomson instead,

considered t to be the independent variable, and wroteM = H
∫ S

T
µdt, where inThomson’s notation,M was the

mechanical effect or work;H the amount of heat passing through the engine; µ was just the inverse of Carnot’s
function, µ =

1

C
.

62. Peter Guthrie Tait, Scientific Papers (University Press, 1900), v.2, 479.
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function” was an early expression of entropy, but “to find the thermodynamic function for the

expansion of a fluid, the pressure p is to be expressed in the form of a function of the volume

v, and absolute temperature τ ”.63

It might seem surprising that despite real interest in graphical representations, for almost

two decades, the new analytical methods of thermodynamics did not generate new types of

representations. Complicated concepts and functions were only given a brief and intricate in-

terpretation in the old pressure-volume diagrams. This surprise can be dispelled if we consider

that in the mid-19th century, a graphical representation was part of a graphical method. One

did not translate an isolated analytical expression into a geometrical relation. The desire to see

was trumped by the need to manipulate. Non-consequential visual representations were not

worth the effort. Gibbs was keenly aware of this when he referred to the pressure-volume dia-

gram as the only “general graphical method, which can exhibit at once all the thermodynamic

properties of a fluid”.64

Gibbs started his paper by investigating the most general diagram that could be drawn.

He first listed the possible quantities that determined the state of the body – which he called

“functions of the state of the body”: the volume, v; the pressure, p; the (absolute) temperature,

t; the energy, ϵ; the entropy, η. Two other quantities, the heat and the work, were to be

determined by “the whole series of states through which the body is supposed to pass”.65 Out

of the five functions of the state only two were independent, while the other three could be

determined from three finite equations. This fact allowed one to

associate a particular point in a plane with every separate state, of which the body is capable, in
any continuous manner, so that states differing infinitely little are associated with points which
are infinitely near each other, the points associated with states of equal volume will form lines,

63. William JohnMacquorn Rankine,AManual of the Steam Engine and Other Prime Movers. (London, Glasgow,
RGriffin, 1859), 311. Or, in other cases temperature and pressure were to be used as independent variables: “In
some investigations it is convenient to take the pressure and temperature as independent variables, the volume
being expressed as their function” (ibid., 314).
64. My underline.
65. Gibbs, The Scientific Papers of J. Willard Gibbs, v.1, 1-3.
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which may be called lines of equal volume, the different lines being distinguished by the numerical
value of the volume (as lines of volume 10, 20, 30, etc.). In the same way we may conceive of lines
of equal pressure, of equal temperature, of equal energy, and of equal entropy. […] Suppose the body
to change its state, the points associated with the states through which the body passes will form
a line, which we may call the path of the body.66

This procedure would have puzzled most of Gibbs’ readers because it did not rely on the

standard methods of plotting. Gibbs was not associating points in the plane with pairs of

numerical values. There was no system of coordinates. Instead, infinitely close points corre-

sponded to infinitely close states; points sharing some property (of equal volume, temperature,

pressure, etc.) were connected by a curve. This procedure of directly associating points on a

surface with physical states without the use of any metric closely resembled Riemann’s no-

tion of a manifold, especially the often invoked example of a color manifold.67 Similarly to

Riemann, Gibbs restricted all assumptions to a minimum: “Thus far we have made no sup-

position in regard to the nature of the law, by which we associate the points of a plane with

the states of the body, except a certain condition of continuity.”68 The only required assump-

tion was that the association of states and points should be made such that the continuous

transition between physical states to be matched to a continuous trace passing through the

associated points.

Gibbs identified a series of topological properties that were independent of any system of

coordinates, or metric. Imagine that you are given a law of association such that the curves of

equal pressure and volume are straight, perpendicular lines. Such a pressure-volume diagram

can be continuously transformed into a volume-temperature diagram. The curves of equal

temperature can be stretched into straight lines, perpendicular to the lines of equal volume.

While the distance between points or the shape of curves might change, there are some rela-

tions that will remain invariant under such transformations. For example, two lines of equal

66. Gibbs, The Scientific Papers of J. Willard Gibbs, v.1, 3.
67. See the chapter on colors
68. Gibbs, The Scientific Papers of J. Willard Gibbs, v.1, 8.
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temperature cannot intersect, or a line of equal temperature and a line of equal pressure can-

not coincide (though they can intersect more than once). Gibbs was actually able to show that

the lines of equal volume, pressure, temperature and entropy passing through a point were al-

ways arranged in a particular order which “is not altered by any deformation of the surface on

which the diagram is drawn, and is therefore independent of the method by which the diagram

is formed” (see Fig. 5.16).69 Gibbs did not provide a formal, algebraic proof; instead, he based

his argument on the intuitive notion of continuous deformations (stretching and bending, but

not cutting or piercing):

The different diagrams which we obtain by different laws of association are all such as may be
obtained from one another by a process of deformation, and this consideration is sufficient to
demonstrate their properties from the well-known properties of the diagram in which the volume
and pressure are represented by rectangular coordinates. For the relations indicated by the net-
work of isometrics, isopiestics etc., are evidently not altered by deformation of the surface upon
which they are drawn, and if we conceive of mass as belonging to the surface, the mass included
within given lines will also not be affected by the process of deformation.70

Figure 5.16
Gibbs focused exclusively on the topological properties of the lines of equal pressure, volume, temperature and
enthropy. He associated the order of these lines with particular thermodynamical properties: Fig. 13 corre-

sponded to
(
dp

dη

)
v

> 0 and Fig. 14 to
(
dp

dη

)
v

< 0. Source: Josiah Willard Gibbs, The Scientific Papers of J.

Willard Gibbs (Longmans, Green and Company, 1906), v.1, 30-31.

While the idea of representing the states of a substance by points was not new (as we

69. Gibbs, The Scientific Papers of J. Willard Gibbs, v.1, 29.
70. Ibid., v.1, 8.
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have already encountered it in the case of Clapeyron’s or James Thomson’s diagrams), Gibbs

brought epistemological clarity to such representations. He considered thatThomson’s graph-

ical representation of the triple point by a single point was an unfortunate choice of coordinates

– “this must be regarded as a defect in these diagrams, as essentially different states are rep-

resented by the same point.”71 Gibbs used an entropy-volume diagram to show how the triple

point could be opened into a triangle for which each vertex corresponded to a pure state (solid,

liquid and vapor) while the points inside the triangle represented a unique mixture of these

states (Fig. 5.17). At the same time, Gibbs acknowledged that not all states could be uniquely

represented by a point on the diagram. For example, if some liquid state next to the boiling

line MM was heated until it crossed the line, it could either pass into a superheated liquid

state or in a vapor-liquid state (Fig. 5.18):

…every point on the right ofMM and sufficiently near to it represents two different states of the
body, in one of which it is partially vaporized, and in the other it is entirely liquid. If we take
the points as representing the mixture of vapor and liquid, they form one diagram, and if we take
them as representing simple liquid, they form a totally different diagram superposed on the first.
There is evidently no continuity between these diagrams except at the lineMM ; we may regard
them as upon separate sheets united only alongMM . For the body cannot pass from the state of
partial vaporization to the state of liquid except at this line.72

The image that Gibbs had in mind was that of “three sheets, which are united along the line

MM (one on the left and two on the right)”. This construction might seem at first gratuitous.

Thomson and Maxwell also represented the boiling-line in their volume-pressure diagrams,

however in the case of their diagrams, when the isotherm passed the boiling line from the

liquid state it bifurcated into two curves CEG and CDEFG. While the physical status and

relation between these curves was still uncertain, Gibbs aimed to preserve the consistency

of his diagrammatic convention. For Maxwell and Thomson the two curves corresponded to

different physical processes, and that was well represented by the shape of the curves. Gibbs

attention was not concentrated on the curves – he actually did not draw any experimental

71. Gibbs, The Scientific Papers of J. Willard Gibbs, v.1, 25.
72. Ibid., v.1, 27.
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Figure 5.17
Thomson’s triple point showed that for some unique temperature and pressure, the three states of matter of a
substance can coexist. However, this does not mean these states are indistinguishable. On an entropy-volume
diagram, the states would correspond to different points (all at the same pressure and temperature). The state of
a mixture of solid, liquid and vapor states corresponds to the center of mass of the triangle, which will always
be a point inside the triangle. Because all these states have the same pressure and temperature, “the pressure
and temperature are constant for this triangle, i.e., an isopiestic [isobaric] and also an isothermal here expand to
cover a space.” Gibbs did not further comment on this, but the concept of a curve that expands to cover a space
is ill-defined. Gibbs proposed a more cogent geometrical explanation in his second article from 1873. Source:
Josiah Willard Gibbs, The Scientific Papers of J. Willard Gibbs (Longmans, Green and Company, 1906), v.1, 24.

curves on his diagrams. Instead, he realized that his requirement of continuity would fail

if the curves were drawn on the same sheet, because this would mean that one curve could

be continuously transformed into the other. However, there was no such continuous physical

transformation between the lines of the superheated liquid and themixture of liquid and vapor.

To move between two states on the superposed diagrams one had to first reach the lineMM

where the two sheets were glued.

This was a particularly intriguing collage of diagrams because no “distortion” could bring

these three sheets “into a single plane surface without superposition”.73 Though ingenious, this

could not have been a fully satisfactory representation. The shape of the line MM was not

physically accurate and it failed to take into account Andrews’ critical point. But most impor-

tantly, there was no justification why there was a need to glue the three diagrams together.

This was a problem because Gibbs’ diagrams were not meant to be just another useful and

73. Gibbs, The Scientific Papers of J. Willard Gibbs, v.1, 28.
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Figure 5.18
While this diagram had almost no content, it still helped the reader imagine Gibbs’ explanations. When a sub-
stance passed from a state to the left of the lineMM (i.e. a liquid state) to the right of the line it would either be
found in a superheated liquid state, or a mixture of liquid and vapor. While both of these states could have been
represented on the same diagram (as Maxwell and Thomson did), Gibbs argued that such a representation would
contravene his requirement of continuity. This forced him to argue that to the right of the line one should imag-
ine two different diagrams corresponding to these different states glued together along the line MM . Source:
Josiah Willard Gibbs, The Scientific Papers of J. Willard Gibbs (Longmans, Green and Company, 1906), v.1, 27.

practical method of solving problems, but rather a mean of providing physical insights. Gibbs

was particularly clear that his graphical method was not just a translation or interpretation

of analytical results. While he did employ analytical methods, it was mostly for convenience

and he claimed that one could “show the independence and sufficiency of a graphical method”,

such that

starting from the first and second laws of thermodynamics as usually enunciated, to arrive at the
same results without the aid of analytical formulae, –to arrive, for example, at the conception of
energy, of entropy, of absolute temperature, in the construction of the diagram without the ana-
lytical definitions of these quantities, and to obtain the various properties of the diagram without
the analytical expression of the thermodynamic properties which they involve.74

Gibbs’ goal of deducing various thermodynamic properties directly from diagrams with-

out the aid of any analytical expressions was also at the center of his second 1873 paper,

74. Gibbs, The Scientific Papers of J. Willard Gibbs, v.1, 32.
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“A method of geometrical representation of the thermodynamic properties of substances by

means of surfaces”. Gibbs’ approach was very similar to the first paper – he only extended his

representation from the two-dimensional plane to a three-dimensional surface. This was also

the reason why “the graphical methods” of the first paper were now extended to “a method of

geometrical representation”. While Gibbs’ novel entropy-temperature diagram was particu-

larly useful in illustrating the second principle of thermodynamics, there were some issues that

were not yet satisfactorily explained: phase transitions and the coexistence of mixed states.

A possible source of influence for Gibbs could have been James Thomson’s thermody-

namic model which was referenced in the beginning of the paper. However, if Thomson used

pressure, volume and temperature for the axes, Gibbs preferred energy, entropy and volume

because he considered that Thomson’s choice “affords a less complete knowledge of the prop-

erties of the body”.75 The advantage of Gibbs’ thermodynamical model was that it allowed him

to visualize all the five thermodynamical quantities for a given point – while the coordinates

of the point specified its energy, entropy and volume, the pressure and temperature could be

obtained from the geometrical interpretation of two thermodynamical relations:76

p = −
(
dϵ

dv

)
η

, t =

(
dϵ

dη

)
v

(5.3)

These relations implied that the pressure was equal to the variation of energy with volume

at constant entropy, and the temperature was equal to the variation of energy with respect

to entropy, at constant volume. This provided a straightforward geometrical interpretation.

The intersection of the thermodynamic surface with a plane parallel to the volume axis was

a curve of constant entropy; the tangent to a point on this curve was the pressure at that

point. One could similarly find the temperature as the tangent to the curve of constant volume.

The pressure and temperature tangents determined a tangent plane at that point. That is, if

75. Gibbs, The Scientific Papers of J. Willard Gibbs, v.1, 34.
76. These two relations were obtained from the general equation dϵ = tdη − pdv.
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the thermodynamic surface was given, the inclination of the tangent plane at a certain point

determined its pressure and temperature. Thus, all five quantities could be directly observed

on the thermodynamic model.

However, Gibbs’ interest in graphical or geometrical methods was not to represent what

was known, but to offer a mean of understanding properties that were only vaguely explained

by analytical means. Gibbs found a coherent and powerful method of explaining geometrically

phase transitions and the coexistence of mixed states. In what follows, I will present Gibbs’

geometrical interpretation in parallel with Maxwell’s own account of Gibbs’ methods.

While Gibbs’ 1873 articles did not spark a lot of general interest, they did attract Maxwell’s

attention who included a whole section on “Prof. Gibbs’ Thermodynamic Model” in the

fourth revised edition of the Theory of Heat (1875). Gibbs’ geometrical ideas fit perfectly

with Maxwell’s scientific and pedagogical work. While Gibbs’ only described his thermody-

namic surface in words and provided a simplified diagram of a projection of the surface on the

volume-entropy plane, Maxwell actually built a plaster model. In a letter to Andrews, Maxwell

confessed that he “made several attempts to model the surface” in the winter of 1874.77 Because

of technical difficulties he chose not to model a real substance using experimental data:

The numerical data about entropy can only be obtained by integration from data which are for
most bodies very insufficient, and besides it would require a very unwieldy model to get all the
features, say of CO2, well represented, so I made no attempt at accuracy, but modelled a fictitious
substance, in which the volume is greater when solid than when liquid, and in which, as in water,
the saturated vapour becomes superheated by compression. When I had at last got a plaster cast
I drew on it lines of equal pressure and equal temperature, so as to get a rough notion of their
forms. This I did by placing the model in the sun light, and tracing the curve when the rays just
grazed the surface.78

Maxwell was particularly proud of the method he developed for tracing curves of equal pres-

77. Maxwell, The Scientific Letters and Papers of James Clerk Maxwell, v.3, 236, No. 567; see also 147, No. 537.
78. ibid., v.3, 236-237, No. 567. Maxwell’s clay model was described to Gibbs by Alexander Freeman: “You will

be gratified to hear that Prof. Maxwell has made a clay model of your Thermodynamic surface wherein entropy,
energy & volume are the three coordinates, and is able to explain a great deal by it.”, Freeman quoted in ibid., v.3,
148.
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sure and temperature on the model; tracing the lines of equal volume, entropy and energy was

straightforward.79 If the model was to have any use in practice, such curves were essential –

not only because they “form a complete representation of the relations between the five quan-

tities”, but they could also potentially allow for much better extrapolations than any empirical

formulae:80

I have not got the model here, but I have been trying to trace the lines of temperature and pressure
so far as we can conjecture their forms, I think such graphical methods are better fitted for purely
conjectural applications of the principle of continuity beyond the range of experiment than any
empirical formulae.81

Maxwell’s and Thomson’s models differed not only in the choice of coordinates, but also

in their construction and use. While Thomson carved his model from experimental curves,

Maxwell started with a “fictitious” model on which he constructed the thermodynamic curves.

Thomson’s attentionwas concentrated on theway the curves changed as theymoved along the

surface of the model. Maxwell, however, followed Gibbs in concentrating not exclusively on

the curves, but also on the curvature of the surface and showed how its geometrical properties

could explain the stability or coexistence of different states of matter. If until now physical

properties were interpreted mathematically or geometrically, now mathematical/geometrical

properties received a physical interpretation.

When in thermodynamic equilibrium, it was assumed that the substance and its surround-

ing medium were at the same temperature and pressure. This implied that the states which

could be in thermodynamic equilibrium with the surrounding medium at fixed pressure and

temperature had parallel tangent planes. Energy considerations indicated if these equilibrium

states were stable, unstable or neutral. The geometrical condition for a stable equilibrium state

79. To trace the lines of equal pressure and temperature “we have only to place it in the sunshine and to turn it
so that the sun’s rays are parallel to the plane of volume and energy, and make an angle with the line of volume
whose tangent is proportional to the pressure. Then, if we trace on the surface the boundary of light and shadow,
the pressure at all points of this line will be the same”, James Clerk Maxwell, Theory of Heat, 4th ed. (London:
Longmans, Green and Company, 1875), 197.
80. Ibid., 198.
81. Maxwell, The Scientific Letters and Papers of James Clerk Maxwell, v.3, 237, No. 567.
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Figure 5.19
The diagram represents a vertical section of the thermodynamic model, where the horizontal direction repre-
sents the entropy or volume and the vertical direction represents the energy, which increases downwards for the
substance, and upwards for the medium. A B C are three points on the thermodynamic surface for which the
tangent planes are parallel such that these points have the same pressure and temperature, and are in thermo-
dynamic equilibrium with the surrounding medium. To know if these states are stable, “we wish to determine
whether the substance will tend of itself to pass from one of these states to the other.” If the substance could move
from stateA to stateB, it would increase its energy withBK . During this transition, the medium remains at the
same pressure and temperature, but the change in entropy or volume will match the change of these quantities
for the substance. If the substance could transition to the state B, the medium would be in the state a and it
would have lost an energy equal to Ka. The difference between the energy gained by the substance and that
lost by the medium, aB, would have to be provided by an external force. “The working substance, therefore,
cannot of itself pass from the state A to the state B, if B lies below the plane which touches the surface at A.”
Only the states above the tangent plane are energetically available. StateB, “if physically possible for an instant,
is essentially unstable, and cannot be permanent” and it would almost immediately move to B or C . State C is
stable, because the “substance cannot pass through any continuous series of states fromC toA” without crossing
below its tangent plane. However, if parts of the substance in stateA are in contact with the rest of the substance
in state C , the portions would pass from state C to A without passing through the intermediate states. Source:
James Clerk Maxwell, Theory of Heat, 4th ed. (London: Longmans, Green and Company, 1875), 199-202.

(i.e. “the substance cannot of itself pass into any other state while exposed to the same ex-

ternal influences of pressure and temperature”) was that the tangent plane at that point was

everywhere above the thermodynamic surface (see Fig. 5.19).82 This observation provided a

simple, but powerful, geometrical mean of determining the coexisting states of a substance

for every pressure and temperature –

when the tangent plane touches the surface at two or more points, and is above the surface ev-
erywhere else, portions of the substance in states corresponding to the points of contact can exist
in presence of each other, and the substance can pass freely from one state to another in either
direction.83

82. Maxwell, Theory of Heat, 201.
83. Ibid., 202.

222



STATES OF MATTER

The points at which a sheet of paper touched the thermodynamic surface could coexist. If

the paper touched the surface only at two points, then the substance had only two coexisting

states for that temperature and pressure. The mixed state was

represented by a point in the straight line joining the centre of gravity of two masses equal re-
spectively to the masses of the substance in the two states, and placed at the points of the model
corresponding to these states.84

While the coexisting states were points on the thermodynamic surface, the mixed states were

points along the line determined by the two points of contact. If one rolled the sheet of paper

along the thermodynamics surface always touching it at two points without cutting it, the lines

connecting the points of contact determined a “secondary” or “derived” surface.85 Maxwell

called the points of contact node-couples, and the curves traced by these points on the rolling

tangent plane node-couple curves.

Maxwell’s interest in the secondary surface was not abstract. He immediately provided a

procedure by which such a surface could be determined from the thermodynamic model:

To construct it, spread a film of grease on a sheet of glass and cause the sheet of glass to roll
without slipping on the model, always touching it in two points at least.
The grease will be partly transferred from the glass to the model at the points of contact, and there
will be traces on the model of the node-couple curves, and on the glass of corresponding plane
curves.
If we now copy on paper the curve traced out on the glass and cut it out, we may bend the paper
so that the cut edges shall coincide with the two node-couple curves, and the paper between these
curves will form the derived surface representing the state of the body when part is in one physical
state and part in another.86

In the Theory of Heat (1875), Maxwell included a plane projection of his thermodynamic

surface (Figs. 5.21 and 5.22). The few dozens lines crowded together made Maxwell’s diagram

less comprehensible than Gibbs’ simpled drawing. However, both focused on the critical point

84. Maxwell, Theory of Heat, 202.
85. Gibbs used the name “derived surface”, while Maxwell used “secondary surface” (Gibbs,The Scientific Papers

of J. Willard Gibbs, v.1, 36; Maxwell, Theory of Heat, 203). Mathematically, they defined the “secondary surface”
as a “a developable surface, being the envelope of the rolling tangent plane”, Maxwell, Theory of Heat, 203.
86. Ibid.
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Figure 5.20
“S, L, and V are the points which have a common tangent plane and represent the states of solid, liquid, and
vapor which can exist in contact. The plane triangle SLV is the derived surface representing compounds of these
states. LL’ and VV are the pair of lines traced by the rolling double tangent plane, between which lies the derived
surface representing compounds of liquid and vapor. […]
The geometrical expression of the results which Dr. Andrews, Phil. Trans., vol. 159, p. 575, has obtained by his
experiments with carbonic acid is that, in the case of this substance at least, the derived surface which represents
a compound of liquid and vapor is terminated as follows: as the tangent plane rolls upon the primitive surface,
the two points of contact approach one another and finally fall together. The rolling of the double tangent plane
necessarily comes to an end. The point where the two points of contact fall together is the critical point.” Source:
Josiah Willard Gibbs, The Scientific Papers of J. Willard Gibbs (Longmans, Green and Company, 1906), v.1, 44-45.

C and the triangle SLG (SLV for Gibbs) that was determined by the coexisting solid, liquid

and gaseous states. Because these three states were coexisting, the tangent plane touched the

thermodynamic surface at these points at the same time (i.e. all three points were coplanar).

As one moved away from the solid state, the tangent plane touched the surface only at two

points, along the node-couple curves CL and CG. Up to the point C , the liquid and vapor

states could coexist. But at the point C and beyond the tangent plane had only one point of

contact with the surface, thus showing that there was only one possible state of equilibrium.

What was particular interesting and consequential was the geometrical interpretation of

the critical point C . Imagine that one could cut the thermodynamic surface perpendicular to

the line HK . The section that would be obtained is represented in Fig. 5.24, where K corre-

sponds toA andH toD. Though its coordinates are energy and volume (or entropy), this dia-

gram represented the same physical process as Maxwell’s and Jameson Thomson’s isotherms.

224



STATES OF MATTER

Figure 5.21
Plaster thermodynamic model made byMaxwell and sent to JosiahWillard Gibbs at Yale. Source: © Yale Peabody
Museum, Division of Historical Scientific Instruments (YPM HSI 290012).

Figure 5.22
Maxwell’s sketch of the lines on Gibbs’ thermodynamic surface. Notice the critical point in the lower-middle of
the model and the drawing. Maxwell referred to it as a tacnodal point because it aws here that the two node-
couple curves meet and the spinode curve is tangent to the node-couple curves. Also, one can spot the triangle
of the solid-liquid-gaseous states (this is not represented on the model). Source: Special Collections, Queen’s
University Belfast, Thomson MS.13/22h.
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Figure 5.23
Maxwell’s diagram is a projection on a plane of his thermodynamic model. While this diagram is useful to depict
all the lines, to understand their geometrical meaning one needs to imagine it as a surface embedded in three
dimensions. The rolling tangent plane touches S, L, G at the same time (i.e. the points are coplanar). These
points correspond to the co-existing solid, liquid and gaseous states. The inside of the SLG triangle corresponds
to all possible mixtures of these states. As the rolling tangent plane is moved downwards, it will only have two
points of contact with the thermodynamic surface. These points are positioned on the curves CL and CG (the
node-couple curves) corresponding to co-existing liquid and vapor states. When the tangent plane reaches C, it
will touch the thermodynamic surface at only one point. This point C is Andrews’ critical point. The dotted line
XCX represents the spinode-curve. The point C has a particular geometrical property because the spinode-curve
(XCX) and the node-couple curve (LCG) are tangent; Maxwell called this the tacnodal point. The curves Pi and Ti
represent lines of equal pressure and temperature, respectively. For a less crowded diagram, see Gibbs’ drawing
(Fig. 5.20). James Clerk Maxwell, Theory of Heat, 4th ed. (London: Longmans, Green and Company, 1875), 207
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Figure 5.24
A and D are points of stability (because the energy axis is pointing downwards). B and C are inflexion points.
The region between B and C is “essentially unstable”. The points between A and B (or C and D) are stable when
the substance is homogeneous, but “liable to sudden change if a portion of the same substance in another state is
present.” Source: James Clerk Maxwell, Theory of Heat, 4th ed. (London: Longmans, Green and Company, 1875),
205.

The line AD represented the mixed states of liquid and vapor (similarly to the line CG in

Fig. 5.9), while the curve ABCD represented a homogeneous state (similarly to CDEFG

in Fig. 5.9), and the points B C marked the margins of the instability region (similarly to the

points D F ). In the pressure-volume diagram, the portion DEF was known to be unstable

because pressure and volume could not increase together. In the thermodynamic model, the

instability regions received a purely geometrical interpretation. On the thermodynamic sur-

face the instability region was bounded by the dotted line XCX , which Maxwell called the

spinode curve (or in Gibbs’ diagram, the line ll′Cvv′ which he called “the limit of essential

instability”). Inside this region the curvature was concave upwards, while outside the region

it was convex. The spinode curveXCX and the node-couple curve LCG at the critical point,

that Maxwell called the tacnodal point.

The thermodynamic surface was most fruitfully applied to the study of the equilibrium of

heterogeneous substances. It was, again, Gibbs who opened this field of investigation with a

series of articles published in 1876 and 1878.87 The geometrical method he employed in these

articles was very similar, but now one had to deal with a higher number of variables. If for

a homogeneous substance there were only two independent variables, for a heterogeneous

substance one could also vary the amount of each individual component. For example, if the

heterogeneous substancewas formed by two homogeneous substances one could vary their ra-

tio which would correspond to one independent variable; if the substance was formed by three

87. Gibbs, The Scientific Papers of J. Willard Gibbs, 55-354.
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components, then there would be two independent ratios to vary. Each of the homogeneous

components could be in a different state of matter, and multiple states could be coexistent.

For example, a binary mixture of two substances S1 and S2 could have for a given pressure

and temperature the coexistent states liquid(S1)-liquid(S2)-vapor(S2), liquid(S1)-vapor(S2)-

solid(S2), liquid(S1)-vapor(S1)-liquid(S2)-vapor(S2) etc. Which states could actually coexist

would depend on both the thermodynamic properties of each individual substance, and the

ratios in which they were mixed. The obvious challenge was to construct a theory that could

predict the properties of a heterogeneous substance only knowing the properties of the ho-

mogeneous compounds.

Figure 5.25
Source: Josiah Willard Gibbs, The Scientific Papers of J. Willard Gibbs (Longmans, Green and Company, 1906),
123.

If in the 1873 paper Gibbs used volume, energy and entropy as the coordinates for his

thermodynamical surface, now he made a different choice of variables employing pressure,
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temperature and his newly defined ζ potential (i.e., the Gibbs free energy).88 The choice was

purely pragmatic as the temperature and pressure defined the states of equilibrium. Besides

these three variables – p, t, ζ – now Gibbs also had to consider the ratio of the components.

A mixture of two substances had to be described in a four-dimensional space (p, t, ζ,m1,m2),

while a mixture of three components needed a five-dimensional space (p, t, ζ,m1,m2,m3).89

To be able to visualize such surfaces, Gibbs fixed the temperature and pressure and only fo-

cused on describing the two-dimensional ζ −m space (see Fig. 5.25).

4 ψ-SURFACES AND PLASTER MODELS

Maxwell was the first to react when in 1876 he received from Gibbs a copy of the first part of

his paper. In no time, he published a short note and gave a lecture about the article, though

he did not mention Gibbs’ new thermodynamic surface.90 This is understandable, as the article

was considerably long and rich in novel ideas – such as the chemical potentials, the conditions

of equilibrium, etc. – which deserved all the attention. What further use Maxwell would have

made of Gibbs’ geometrical ideas remains unknown as he shortly died in 1879. However, in

1879 Gibbs also sent van der Waals his recently published paper “On the equilibrium of het-

erogeneous substances”.91 While van der Waals was among the ninety or so possessors of the

paper, he was the only one to consider the new avenue of research opened by Gibbs.92 He

combined Gibbs’ thermodynamic relations (or what he broadly referred to as “the mechanical

theory of heat”) with the properties of molecules, such as their sizes and mutual attractions.

88. The fundamental function ζ was defined as: ζ = ϵ−tη+pv. After taking the differential and substituting dϵ,
onewould get: dζ = −ηdt+vdp+µ1dm1+µ2dm2+. . .+µndmn, whereµi are the chemical potentials defined by

the previous relation: µi =

(
dζ

dmi

)
t,p,mj ̸=i

. By definition, the sum of themasses was one: m1+m2+. . .+mn =

1. These two equations showed that all the thermodynamic properties of the substance could be described by a
surface embedded in the space (ζ, p, t,m1,m2, . . . ,mn−1).
89. The sum of the masses was always defined to be one: m1 +m2 + . . .+mn = 1
90. Maxwell, The Scientific Letters and Papers of James Clerk Maxwell, v.3, 281-293, No.587-589; Maxwell, The

Scientific Papers of James Clerk Maxwell, v.2, 498-500.
91. Nobel Lectures, Physics 1901-1921, 263.
92. A. Ya. Kipnis, B. E. Yavelov, and J. S. Rowlinson, Van Der Waals and Molecular Sciences (Oxford: Clarendon

Press, 1996), 108.
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He used his equation of state for a single substance to describe a binary mixture by substitut-

ing the parameters of the substances a and b with ax and bx “which depend on the properties

of the components and on the proportion in which they are mixed”; these new parameters

depended on both the individual properties of the substances, and the molecular interactions

of the two types of molecules.93 While Gibbs described the geometrical properties of a general

thermodynamic function, van der Waals was able to construct an actual thermodynamic sur-

face based on his equation of state. It was this “happy synthesis” that allowed van der Waals

to apply Gibbs’ abstract insights and solve a problem that escaped even Maxwell.94

Van der Waals closely followed Gibbs’ geometrical approach, but he used the ψ-function

(the Helmholtz free energy), instead of the ζ-function.95 Using the equation of state to express

p = f(T, V ):

p =
MRT

V − bx
− ax
V 2

(5.4)

van der Waals found a closed-form expression for ψ(x, V, T ):96

ψ = −MRT log(V − bx)−
ax
V

+MRT [x log x+ (1− x) log(1− x)] (5.5)

Using this relation for a fixed temperature, van der Waals was now able to construct a ψ-

surface embedded in the space (ψ, x, V ), where x was the ratio of the two components of

the binary mixture. He used this surface and its projections on the three coordinate planes –

93. Waals, J.D. van Der Waals, 244. The mixture parameters were defined as:

ax = a1(1− x)2 + 2a12x(1− x) + a2x
2

bx = b1(1− x)2 + 2b12x(1− x) + b2x
2.

a1, a2, b1, b2 were the parameters of the individual substances, and a12, b12 were the mutual attraction of the
two types of molecules. Estimating these parameters was more challenging, and they did not receive a unique
definition (see Kipnis, Yavelov, and Rowlinson, Van Der Waals and Molecular Sciences, 268).
94. Lorentz quoted in ibid., 111.
95. The ψ-function was defined as ψ = ϵ − tη; after differentiation and the substitution of dϵ, dψ = −ηdt −

pdv + µ1dm1 + . . .+ µndmn.
96. J. D. van der Waals, “Théorie moléculaire d’une Substance composée de deux matiéres différentes,” Archives

néerlandaises des sciences exactes et naturelles 24 (1891): 11.
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(ψ, x), (ψ, V ), (x, V ) – to describe the coexistence and separation of phases.

The new theory of mixtures was first presented publicly during a lecture in February 1889.

Van der Waals made use of a wooden model to show how coexisting phases could be easily

determined by a rolling tangent plane, while the regions of instability would be situated in

concave-shaped folds or plaits [plooi] (see Fig. 5.26). The complete miscibility of coexisting

phases would be found by following the boundaries of these regions to a tacnodal point, i.e.

a critical point. The source of inspiration for the model was most probably Maxwell who

presented his thermodynamic model of a Gibbs’ surface during an address at the International

Exhibition of Scientific Apparatus in May 1876, in the South Kensington Museum in London.

The exhibition had been attended by eight Dutch physicists, including two close friends of van

der Waals – P. L. Rijke and J. Bosscha.97

Van der Waals’ theory was published in full in the Archives néerlandaises des sciences ex-

actes et naturelles in 1891, and his paper was followed by two related articles by the Dutch

mathematician Diederik Johannes Korteweg (1848–1941), a friend and colleague of van der

Waals at the University of Amsterdam.98 In these articles, Korteweg provided a more de-

tailed mathematical description of the formation of plaits and the coexistence of phases on

the ψ-surface.99. Korteweg introduced the name “plait points” (Faltenpunkte, point de plissure,

plooipunt) for what Maxwell and Cayley referred to as a “tacnodal points” (see Fig. 5.27). The

choice was not hazardous – Korteweg considered that while “the name tacnodal point recalls

97. Kipnis, Yavelov, and Rowlinson, Van Der Waals and Molecular Sciences, 111-112. For a list of the Dutch
contributors see Handbook to the Special Loan Collection of Scientific Apparatus 1876, xliii-xliv.
98. D. J. Korteweg, “La Théorie Générale Des Plis Et la Surface Psi de Van Der Waals Dans Le Cas de Symétrie,”

Archives néerlandaises des sciences exactes et naturelles 24 (1891): 295–368; D. J. Korteweg, “Sur les points de plisse-
ment,” Archives néerlandaises des sciences exactes et naturelles 24 (1891): 57–98. “Sur les points de plissement”
was the French translation of an article he published in German two years earlier – D. J. Korteweg, “Über Fal-
tenpunkte,” Sitzungsberichte der Akademie der Wissenschaften Wien, Mathematisch-Naturwissenschafliche Klasse,
Abteilung A 2 (1889): 1154–1191.
99. For a detailed description of Korteweg’s contribution to van der Waals’ theory of mixtures see Johanna

Levelt Sengers,How Fluids Unmix : Discoveries by the School of Van DerWaals and Kamerlingh Onnes (Amsterdam:
Koninklijke Nederlandse Akademie van Wetenschappen, 2002), 59-85; Johanna Levelt Sengers and Antonius HM
Levelt, “Diederik Korteweg, Pioneer of Criticality,” Physics Today 55, no. 12 (2002): 47–53.
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Figure 5.26
Van der Waals’ model of a ψ-surface at constant temperature. The surface of the model was determined by the
free energy ψ (its axis pointing into the paper), the volume (its axis pointing upwards) and the mixture ratio of
two substances (its axis oriented left-right). The upper part of the surface represented the vapor phase, while the
lower part represented the liquid phases of the two substances. Coexisting phases were determined by a rolling
tangent plane, and represented on this model by the long wires. To make the relations more visible, I have
superimposed on the original image the white circles corresponding to a vapor phase in equilibrium with two
liquid phases. The coexisting phases are separated by folds or plaits, in this case by a transversal and a longitudinal
fold. The concave part of the fold represents a region of thermodynamic instability. Source: J. D. van der Waals,
“Théorie moléculaire d’une Substance composée de deux matiéres différentes,” Archives néerlandaises des sciences
exactes et naturelles 24 (1891): 28.

without question one of their characteristic properties, […] the name plait point seems to me

to indicate even better the nature of these points”.100 For George Salmon and Arthur Cayley,

the two mathematicians that Korteweg referred to, a tacnodal point was a double point where

two branches of a curve touched. While Cayley extended the notion to surfaces, the tacnode

was still understood as a type of singularity point of a curve.101 Korteweg, instead, regarded

the plait points as the origin of the folds (plaits) of the surface – “one thinks, for example, at

100. Korteweg, “Über Faltenpunkte,” 1154-1155; Korteweg, “Sur les points de plissement,” 57-58.
101. A. Cayley, “On the Singularities of Surfaces,” Cambridge and Dublin Math. J 7 (1852): 166–171.
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the fall of the folds of a curtain”.102 Korteweg focused on describing the formation and disap-

pearance of plait points of a surface under a “continuous deformation”. In the second paper,

these mathematical ideas were applied to van der Waals’ ψ-surface. Korteweg looked at how

a tritangent plane – an object of great interest for the physicists because these planes were

determined by three coexistent phases (see the white circles in Fig. 5.26) – could appear or

disappear under continuous transformations (Fig. 5.28).103 He then classified all possible folds

and plait points for a van der Waals symmetric mixture in terms of the relations between the

various physical parameters (see Fig. 5.29).

While the analytical methods used by Korteweg – such as the Taylor expansion of singular-

ity points – were not new, his minutiose use of drawings was unmatched. In the article on van

derWaals’ψ-surface, Korteweg used forty-one in-text drawings (similar to Fig. 5.28) and three

plates with twenty-eight diagrams (similar to Fig. 5.27). When dealing with tacnodal points

Salmon and Cayley employed no diagrams. The graphical reasoning developed by Korteweg

is particularly interesting because it was almost fully absent in the works of other mathemati-

cians. Korteweg’s work was well known and referenced by the “Dutch School of Thermo-

dynamics” which made constant use of the concept and term of “plaitpoint”.104 In his Nobel

Lecture, van der Waals mentioned that “my friend Korteweg, to whom I had communicated

in broad outlines the outcome of my examinations, had studied the mathematical properties

of these points [plaitpoints] and curves, a study which I have often found of great use”.105

4.1 A familiar curve

More than a decade passed between the moment when van der Waals started working on the

theory of mixtures after he received Gibbs’ articles, and the full publication of his work in

102. Korteweg, “Über Faltenpunkte,” 1154-1155; Korteweg, “Sur les points de plissement,” 57-58.
103. Korteweg, “La Théorie Générale Des Plis Et la Surface Psi de Van Der Waals Dans Le Cas de Symétrie,”
310-313.
104. Levelt Sengers, How Fluids Unmix, 61.
105. Nobel Lectures, Physics 1901-1921, 262.
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Figure 5.27
Three examples of plait points (tacnodal points inMaxwell and Cayley’s terminology). The dashed line represents
the spinodal (spinode) curve, and the full line represents the connodal or binnodal (node-couple) curve. Source:
D. J. Korteweg, “Über Faltenpunkte,” Sitzungsberichte der Akademie der Wissenschaften Wien, Mathematisch-
Naturwissenschafliche Klasse, Abteilung A 2 (1889): 1154–1191.

1891. His work was not hindered by any technical difficulties, but by the death of his wife in

1881. Grieved by the loss, van der Waals showed no interest towards scientific research and

publishing, and he stopped attending the meetings of the Academy of Science which until then

he diligently attended.106 Van der Waals’ interest was rekindled by a strange graph presented

at the Academy on 27 December 1884.

The communicationwasmade by J. M. van Bemmelen, the chair of chemistry at the Univer-

sity of Leiden, about the recent findings of his doctoral student and assistant, H. W. Bakhuis

Roozeboom.107 Roozeboom had been working on the dissociation of various hydrates, and

plotted the relation between the temperature and dissociation pressure. This type of graphi-

cal representation had become common among French chemists in the early 1870s, when an

analogy was drawn between dissociation and vaporization.108 Regnault’s work was taken as

an example of experimental research, and with it his graphical method of representing the

106. Kipnis, Yavelov, and Rowlinson, Van Der Waals and Molecular Sciences, 85, 92. If between 1880 and 1881
van der Waals published eleven articles, in 1882 and 1883 he published none, and only one short article in each
of the following two years (see the list of publication in ibid., 290-292).
107. Ibid., 157-158.
108. F. Isambert, “Recherches sur la dissociation de certains chlorures ammoniacaux,” Annales scientifiques de
l’École Normale Supérieure 5 (1868): see pl. II.
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Figure 5.28
Fig. 20 represents three coexistent states a1, a2, a3, similar to the white circles in Fig. 5.26. Korteweg then
considered the various ways in which this tritangent plane could disappear under a continuous transformation.
Figs. 21-23 present the series of transformations for one such case in which the surface was deformed until
the states a2 and a3 coincided with the plait point (represented by a circle), after which the points become
imaginary (Fig. 23). (The curves b1a1c1d1e1 and b2a2c2d3a3e3 represent connodal curves (or what Maxwell
called node-couple curves in Fig. 5.23), where b1b2, c1c2 . . . are coexistent states.). Source: D. J. Korteweg, “La
Théorie Générale Des Plis Et la Surface Psi de Van Der Waals Dans Le Cas de Symétrie,” Archives néerlandaises
des sciences exactes et naturelles 24 (1891): 310-313.

relation between pressure and temperature.109 The interest in this type of representation was

also boosted by Andrews’ experiments and his notion of “critical point” that was paralleled by

the concept of “point critique de décomposition”.110 Among the pressure-temperature plots

for hydrate dissociation, Roozeboom stumbled upon the dissociation curve of the hydrate of

109. See Chapter 2.
110. For example: “C’est un phénomène un peu analogue à celui du point critique de certains gaz liquéfiables,
une sorte de point critique de décomposition” (R. de Forcrand, “Recherches sur les hydrates sulfhydrés,” Annales
de chimie et de physique 5, no. 38 (1883): 9).
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Figure 5.29
The full curves represent the connodal curves, the dotted lines are the spinodal curves, the grayed surface is the
instability region, and the circles are the plait points. The straight lines between the connodal curves connect
coexistent states. Such diagrams represent a projection on the plane V x of van der Waals’ model (Fig. 5.26).
Source: D. J. Korteweg, “LaThéorie Générale Des Plis Et la Surface Psi de VanDerWaals Dans Le Cas de Symétrie,”
Archives néerlandaises des sciences exactes et naturelles 24 (1891): 295–368.

hydrobromic acid which had three inflexion points. He carried various experiments to discard

any potential interference, but in the end he had to conclude that “the parts FB and BL of

the curve had to be considered as true tensions of dissociation” (see Fig. 5.30).111

111. H. W. Bakhuis Roozeboom, “Dissociation de l’hydrate HBr 2 H2O,” Recueil des Travaux Chimiques des Pays-
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Figure 5.30
The curve that rekindled van der Waals’ interest in physics. The unusual meandering of the curve III displayed a
similar behavior to Andrews’ isotherms (see Fig. 5.10). The tell sign was that a vertical line would have intersected
the curve in three points. Source: H. W. Bakhuis Roozeboom, “Dissociation de l’hydrate HBr 2 H2O,” Recueil des
Travaux Chimiques des Pays-Bas 4, no. 4 (1885): 108–124.

During the December meeting at the Academy, van der Waals remained silent and asked

no questions, but two months later he published a short explanation for the “surprising re-

sults obtained by M. Roozeboom”.112 The equation provided by van der Waals did not prove

to be fully satisfactory for Roozeboom’s experimental results, and an exchange of letters fol-

lowed between the two. This interaction culminated in the mid-1886, when van der Waals

Bas 4, no. 4 (1885): 122.
112. Kipnis, Yavelov, and Rowlinson, Van Der Waals and Molecular Sciences, 158; J. D. van der Waals, “Influence
de la température sur la richesse en gaz d’une solution et sur l’équilibre entre des solutions gazeuses et des
hydrates solides,” Recueil des Travaux Chimiques des Pays-Bas 4, no. 4 (1885): 135; J.M. van Bemmelen, “Het leven
en de werken van H. W. Bakhuis Roozeboom in zijnen Leidschen tijd,” Chemisch weekblad, 1907, 254.
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went to Leiden to give a lecture on Gibbs’ thermodynamics of phase equilibrium which was

attended by van Bemmelen, Lorentz, KamerlinghOnnes and Bakhuis Roozeboom.113 Themeet-

ing proved to be crucial for the future careers of the last two scientists. The Gibbs’ phase rule

provided Bakhuis Roozeboom “with a theoretical basis for his experimental work, which he

had begun to study in 1882”.114

Van der Waals’ theory of the Gibbs’ phase rule played a similarly decisive role in the work

of Heike Kamerlingh Onnes (1853-1926), a Dutch physicist remembered especially for the dis-

covery of superconductivity and the liquefaction of helium for which he received the Nobel

Prize in 1913. Starting in the 1880s, Onnes had been the professor of experimental physics

and the director of the Physical Laboratory at the University of Leiden, and a close friend and

collaborator of van der Waals whose theoretical studies inspired and guided his experimental

research.115 Pieter Zeeman, who studied at the University of Leiden and worked with Lorentz

and Kamerlingh Onnes, stated that “without the guidance of van der Waals’s theory the great

undertaking of Kamerlingh Onnes would have failed from a lack of satisfactory knowledge”.116

Throughout his career Onnes made extensive use of graphical methods based on van der

Waals’ ψ-surface. For example, because using the equation of state “by analytical processes

is certainly exceedingly complicated even when it is feasible”, Onnes hopped that “van der

Waals’ theory could be graphically solved […] to determine numerically all the phenomena

of condensation from the knowledge of a small number of constants”.117 For this purpose, he

113. W. Stortenbeker, “Henri-Guillaume Bakhuis Roozeboom,” Recueil des Travaux Chimiques des Pays-Bas et de
la Belgique 27, no. 10 (1908): 370; Kipnis, Yavelov, and Rowlinson, Van Der Waals and Molecular Sciences, 159.
114. Klaas van Berkel, Albert Van Helden, and L. C. Palm,AHistory of Science in the Netherlands : Survey, Themes,
and Reference (Leiden ; Boston: Brill, 1999), 407.
115. For a general overview of Kamerlingh Onnes’ work see Simón Reif-Acherman, “Heike Kamerlingh Onnes:
Master of Experimental Technique and Quantitative Research,” Physics in Perspective 6, no. 2 (2004): 197–223; for
a more in-depth study see Gavroglu and Goudaroulis, “Heike Kamerlingh Onnes’ Researches at Leiden and Their
Methodological Implications.”
116. Zeeman quoted in Kipnis, Yavelov, and Rowlinson, Van Der Waals and Molecular Sciences, 156; Reif-
Acherman, “Heike Kamerlingh Onnes,” 202.
117. H. Kamerlingh Onnes, “Contributions to the Knowledge of Van Der Waals’ Psi-Surface I. Graphical Treat-
ment of the Transvere Plait,” Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical
Sciences 3 (1900): 276.
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(a) (b)

Figure 5.31
One of Kamerlingh Onnes’ thermodynamic plaster models and a diagram constructed from it by one his students.
(a): H. Kamerlingh Onnes, “Contributions to the Knowledge of Van Der Waals’ Psi-Surface I. Graphical Treat-
ment of the Transvere Plait,” Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical
Sciences 3 (1900): 275–288; (b): CharlesMarie Antoine Hartman, “Metingen omtrent de dwarsplooi op het Psi-vlak
van Van der Waals bij mengsels van chloormethyl en koolzuur” (PhD diss., IJdo, 1899).

developed both a “graphical method in a plane” and a “graphical method by the model”. Onnes

aimed to construct accurate plaster models of van der Waals’ ψ-surface from empirical data

on which he would draw certain curves of interest; these curves would then be projected on

different planes from which one could extract further numerical results (see Fig. 5.31). Onnes

used the assistance of a local “modeller”, Zaalberg van Zelst, to make his first plaster-casts

which had a size of 30 x 20 x 40 cm and weighted 80 kg even when hollowed inside.118 Because

118. Kamerlingh Onnes, “Contributions to the Knowledge of Van Der Waals’ Psi-Surface I. Graphical Treatment
of the Transvere Plait,” 280.
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the size “appeared too small for several constructions”, a new cast was made with twice these

dimensions.119

Onnes’ models were not fully successful, both because of material difficulties in their con-

struction and because the equations of state did not “give with sufficient accuracy the real

behaviour of the pure substances and the mixtures”.120 In the end, Onnes had to settle for a

less ambitious goal – instead of computational tools, the models became theoretical tools that

allowed him to better understand and predict the consequences of van der Waals’ theory:

it appeared to me, as the number of the applications of van derWaals’ theory increased, to become
more and more desirable to know in detail the properties of the plait obtained, especially in the
neighborhood of the plaitpoint, and to render the graphical construction of the connodal line,
the tangent-chords and the condensation phenomena now more useful rather for explaining this
theory than for calculating the numerical results of the observations from van derWaals’ theory.121

Themodels still played a prominent role in Onnes’ laboratory (see Figs. 5.32 and 5.33). Between

1900 and 1907, Kamerlingh Onnes and his students published a long series of sixteen articles

on “Contributions to the Knowledge of van der Waals’ ψ-surface”. The new explanatory role

of the diagrams was central for the scientific activity of the Dutch physicists (see Fig. 5.34).

5 CONCLUSION

I have chosen to end my inquiry at the moment when phase diagrams had become institution-

alized in the practice and teaching of thermodynamics and physical chemistry because by this

point the diagrams behaved as the paper tools previously analyzed by historians.122 By the early

20th century students were inculcated in the use of phase diagrams through direct hands-on

practice, such as those used in Onnes’ laboratory in Leiden; the diagrams were further dissem-

inated and adapted to solve new problems. However, the context in which the phase diagrams

119. Kamerlingh Onnes, “Contributions to the Knowledge of Van Der Waals’ Psi-Surface I. Graphical Treatment
of the Transvere Plait,” 280.
120. Ibid., 276.
121. Ibid., 281.
122. See Kaiser, Drawing Theories Apart : The Dispersion of Feynman Diagrams in Postwar Physics.
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Figure 5.32
Kamerlingh Onnes’ Laboratorium, Leiden - 1902. Source: © Museum Boerhaave Leiden, Inventarisnummer:
P13080.

Figure 5.33
Thermodynamic models from Kamerlingh Onnes’s laboratory in Leiden - 1902. Source: © Museum Boerhaave
Leiden, Inventarisnummer: P13014, P13015, V07617.
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developed in the second half of the 19th century is remarkably different. Instead of being part

of localized and institutionalized pedagogical settings, the phase diagrams were of interest

only to a handful of physicists. The dissemination of the diagrams was not limited because

their use required special skills that could only be acquired through tacit knowledge and could

only be transfered through personal contact. Rather, they were not yet a proper tool.

Because any purposeful manipulation of paper (such as scribbling, drawing, solving equa-

tions, etc.) can be described as form of paper tool or theoretical technology, we need a better

way of distinguishing between the modes of operation of these manipulations. Instead of an

external description (what it looks one is doing), I will provide an internal description (how

one is thinking while acting). A paper tool or theoretical technology provides one with a

“streamlined method for making calculations”.123 That is, once one has mastered the use of

such a tool or technology they can reliably and easily transform a given input into a needed

output through the quasi-mechanical repetition of a series of quasi-standardized steps. The

essential feature of a tool or technology is that it needs to act on something which is given

(a well-defined problem, a number, a curve, etc.). The act of using a tool or technology can

be resembled to the act of translating or the act of copying because for such acts to take place

something has to be given. Furthermore, the final products of these acts need to be consis-

tent and reliable. A numerical table can be translated through a graphical representation into

a curve. An indicator diagram can be translated into a value for the efficiency of an engine

by measuring the area within a closed cycle. In such cases, the tool creates a correlation or

correspondence (not necessarily one-to-one) between two objects.

In contrast to the paper tools, the use of the phase diagrams presented in this chapter is

best resembled by an act of writing, that is something which is open-ended and innovative.

The distinction is not immediately visible if one focuses exclusively on the manipulation of

the paper, as both an act of copying and act of writing produce traces on paper. The act of

123. Kaiser, Drawing Theories Apart : The Dispersion of Feynman Diagrams in Postwar Physics, 43.
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writing, instead of acting on an object which is given, inserts an object which has no previous

correspondent. The act of writing is meaningful not because the written object is the transla-

tion of something given, but rather because it can be translated into something. Understood

through this lens, the argument of this chapter can be summarized as such:

While Andrews’ isotherms were a simple translation of the table of measurements into

a graphical form, James Thomson’s hypothetical curve was drawn through an act of writing.

The constructionwasmeaningful not because it corresponded to something real, there were no

corresponding experimental measurements, but rather because it could correspond to some-

thing real. The written curve could guide future experiments by postulating a possible new

state. Thomson’s hypothetical curve, though unlikely to have been easily found experimen-

tally because it was unstable, provided a confirmation for van der Waals’ molecular theory

because it matched the shape of the curve corresponding to his equation of state. Thomson

continued using his approach ofwriting hypothetical curves by representing the triple point as

the singular intersection of two curves rather than as a smooth point on a curve. Thesewritten

curves allowed him to reinterpret the slight deviation of Regnault’s experimental curves.

Inspired by Thomson’s attempts, Gibbs aimed to formalize a system of writing out graph-

ically physical states and processes equivalent to the writing of algebraic equations. If previ-

ous graphical methods in thermodynamics used diagrams as paper tools by translating some

numerical values or the indications of an instrument into graphical traces, Gibbs “made no

supposition in regard to the nature of the law, by which we associate the points of a plane

with the states of the body.”124 His diagrams were not a translation of something given, but

rather they were a system of signs which could be translated into equations or into meaningful

statements about physical states and processes. Because Gibbs’ aimed to specify a system of

rules for how his graphical writing could be translated into physical states, Thomson’s triple

point had to “be regarded as a defect in these diagrams, as essentially different states are rep-

124. Gibbs, The Scientific Papers of J. Willard Gibbs, v.1, 8.
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resented by the same point.”125 The writing system envisioned by Gibbs was transformed into

a proper paper tool (or plaster model tool) by Maxwell, van der Waals and Onnes. These have

showed how experimental results could be translated into the models, and then how the mod-

els could be manipulated and translated through projections into two-dimensional graphical

representations which could be further translated into numerical values.

125. Gibbs, The Scientific Papers of J. Willard Gibbs, v.1, 25.
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Curves of Power

There is a great advantage in using graphical methods over using algebraic methods in some cases.
If, you make use of an empirical formula to express a physical law, you get a nice simple formula
and it becomes your master, and you cannot believe anything that goes contrary to it; it seems
to me, therefore, that a graphical method is always better than a purely empirical formula. (John
Hopkinson)1

I believe that empirical formulae are of tremendous use to people who are taking up some of
the many investigations connected with dynamo machines. Nearly all the laws that I know of in
connection with dynamos, compounding and so on, have been worked out algebraically, by simple
algebraic formulae, by empirical formulae which were known to be very wrong indeed. Rules
are worked out algebraically, and when we have obtained the rules it is easy to find a graphical
method of employing these rules. The ordinary graphical methods which we know of were really
discovered algebraically, and when Dr. Hopkinson gives the advice to young engineers to use only
graphical methods I think he is giving advice that is a little misleading, and that he does not quite
understand his own and their relative positions. (John Perry)2

While heated discussions as the one above were not a novelty at the Society of Telegraph

Engineers and Electricians, the role embraced by the two protagonists is rather unexpected.3

In one corner John Hopkinson, a “Senior wrangler” in the Mathematical Tripos examination

at Cambridge (a title “synonymous with academic supremacy”); in the other corner John Perry

who would condemn the Cambridge Tripos for sacrificing “myriads of people for the purpose

of finding the one demigod” and who preferred to be known that “I belong to the very much

greater body of men who may be called persons of average intelligence”.4 Because Hopkinson

1. John Hopkinson in Gisbert Kapp, “The Pre-Determination of the Characteristics of Dynamos,” Journal of
the society of telegraph-engineers and electricians 15 (1887): 569.

2. John Perry in ibid., 583-4.
3. When published in the journal of the Society the paper under discussion covered slightly over ten pages

while the transcripts of the discussion took up another sixty-five pages.
4. For a description of the Cambridge Tripos as “synonymouswith academic supremacy” seeWarwick,Masters

of Theory : Cambridge and the Rise of Mathematical Physics, 205; John Perry, “The Teaching of Mathematics,” in
Discussion on the Teaching of Mathematics: British Association Meeting at Glasgow, 1901, ed. John Perry (London,
New York: Macmillan and Co., 1902), 4-7. For Perry’s pedagogical program see Chapter 7.
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employed the mathematical methods he had mastered in Cambridge to develop an analyti-

cal (or algebraic) theory for the alternating current generator, historian Graeme Gooday has

described Hopkinson as “unyieldingly committed to the necessity of Wrangler methods”:

As onemight have expected of one tutored in the rigor of the CambridgeMathematics Tripos, Hop-
kinson emphasized the practice of solving all problems by first formulating differential equations
to capture the material conditions, and solving these analytically to arrive at an all-encompassing
algebraic expression.5

In contrast with Hopkinson, John Perry attended the Model National School in Belfast where

“[d]rawingwas taught well, but in the Science and Art Department way–descriptive geometry,

mechanical drawing, shading in crayons, drawing frommodels, and even landscape painting”.6

Appointed in 1882 professor of mechanical engineering at Finsbury Technical College, Perry

came to be known as an indefatigable advocate for the use of graphical methods and squared

paper in the teaching of mathematics.7

Despite their backgrounds and pedagogical commitments, in the discussion of Gisbert

Kapp’s paper on “The pre-determination of the characteristics of dynamos” from November

1886, Hopkinson and Perry found themselves switching sides. Against all expectations, Hop-

kinson proclaimed that “a graphical method is always better than a purely empirical formula”

while Perry retorted that “[r]ules are worked out algebraically” only after which one finds

a graphical method for employing these rules: “[t]he ordinary graphical methods which we

5. Graeme Gooday, “Fear, Shunning and Valuelessness,” in Pedagogy and the Practice of Science, ed. David
Kaiser (Cambridge, Mass: MIT Press, 2005), 135-136; For Hopkinson’s biography see T. H. Beare, “Hopkinson,
John (1849-1898),” in The Oxford Dictionary of National Biography (Oxford: Oxford University Press, 2004).

6. Perry in Report of the Special Committee on the Subjects and Modes of Instruction in the Board’s Schools
(London: Hazell, Watson & Viney, 1888), 89. After leaving school, Perry apprenticed for seven years at the Lagan
Foundry, and between 1868 and 1870 he attended the engineering classes of JamesThomson atQueen’s College in
Belfast from where he graduated with an engineering degree. For Perry’s biography see Graeme Gooday, “Perry,
John (1850–1920),” in The Oxford Dictionary of National Biography (Oxford: Oxford University Press, 2004).

7. W. H. Brock and M. H. Price, “Squared Paper in the Nineteenth Century: Instrument of Science and Engi-
neering, and Symbol of Reform in Mathematical Education,” Educational Studies in Mathematics 11, no. 4 (1980):
365–381; for the program of engineering education at Finsbury College see W. H. Brock, “Building England’s
First Technical College: The Laboratories of Finsbury Technical College, 1878–1926,” in The Development of the
Laboratory, ed. Frank James (London: Macmillan, 1989), 155–170.
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know of were really discovered algebraically”.8 Hopkinson’s stubborn commitment in this dis-

cussion to graphical methods is even more surprising because only two years earlier, when

prompted by a fellow engineer why he had not adopted a geometrical method to present his

theory of alternators, Hopkinson declared that “for my own part I generally find that I can get

along faster with the analysis, and therefore, as a rule, I naturally bring it into use”. Ten years

later, in a lecture on “the Relation of Cambridge Mathematics to Engineering”, Hopkinson

voiced almost the same position with Perry:

my belief is that as a fact algebraic methods have been useful for discovery more frequently than
geometrical. …discoveries are often made algebraically, and are afterwards translated into geom-
etry.9

Hopkinson’s public appraisal of algebraic methods attracted him the criticism of various “prac-

tical men” who felt the need to defend graphical methods from the monopoly of Cambridge

mathematics: “The Cambridge man looks upon a graphical solution as a kind of foul play, and

would as soon think of solving an equation by trial, or by omission of a term, or in any other

reasonable way.”10 At the same time, though a staunch defender of algebraic methods, Hop-

kinson also introduced between 1879-1880 one of the most popular and powerful methods of

late-19th century electrical engineering – the “characteristic curve” of a dynamo. The irony

behind Hopkinson’s commitments was not lost on his contemporaries, as it was pointed out

by an editorial from The Electrician:

Dr. Hopkinson himself, as an engineer, rather than a mathematician, gave us that invaluable
diagram, which Marcel Deprez afterwards called a “characteristic curve”. Let the honour of this
discovery atone for all the shortcomings which we have attributed to the Cambridge school of
mathematics in its relation to engineering.11

8. Perry in Kapp, “The Pre-Determination of the Characteristics of Dynamos,” 584.
9. John Hopkinson, “The Theory of Alternating Currents, Particularly in Reference to Two Alternate-Current

Machines Connected to the Same Circuit,” Journal of the Society of Telegraph-Engineers and Electricians 13, no. 54
(1884): 556; John Hopkinson, “The Relation of Cambridge Mathematics to Engineering,” The Electrician 33 (1894):
85.
10. “The Use and Abuse of Mathematics”, Industries 10 (1891): 328; see Gooday, “Fear, Shunning and Value-

lessness,” 133.
11. Anonymous, “The Relation of Cambridge Mathematics to Engineering,” The Electrician, 1894, 46.
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How can one explain Hopkinson’s double commitment to graphical and algebraic meth-

ods? Was this a strange case of Dr. Jekyll andMr. Hyde, of mathematician by day and engineer

by night? Graeme Gooday considered that Hopkinson, in his contribution to the alternator

theory, tried to use techniques of graphical analysis to make his “Wranglerish” approach more

palatable to the vast majority of engineers. It was “the demographic predominance of prac-

titioners who protested against the glibness of his Cambridge methods” which forced Hop-

kinson towards the “accommodation of the analytical and practical traditions”.12 Analyzing

his work on direct current dynamos, Stathis Arapostathis presented Hopkinson as “driven by

practical problems and industrial needs towards a more rationalized practice”; these practical

concerns led Hopkinson to initiate and rely on graphical methods which were probably used

in his on-site activities.13

However, as this chapter will show, the value of graphical representations in the 19th-

century study of electromagnetism cannot be reduced either to the background of training or

to the context of practice. Instead, this chapter will show how graphical representations came

to have a higher epistemological status.

1 THE LAW OF THE CURVE

1.1 Optimizing the Dynamo

One of Michael Faraday’s experiments on induction from 1831 showed that an electric cur-

rent was induced in a wire moving through a magnetic field. Though extremely simple in

theory, it took almost four decades for this idea to be implemented in a mechanism viable

12. Gooday, “Fear, Shunning and Valuelessness,” 139-41.
13. Stathis Arapostathis, “Dynamos, Tests, and Consulting in the Career of John Hopkinson in the 1880s,” An-

nales historiques de l’électricité 5, no. 1 (2007): 22-23. However, as Arapostathis acknowledges, because none of his
notebooks have been preserved it is difficult to know if and howHopkinson actually employed the “characteristic
curve” of dynamos in his engineering practice.
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for industrial purposes.14 The earliest magneto-electric machines relied on permanent mag-

nets or electromagnets (energized from a battery) which generated magnetic fields that were

neither strong nor permanent enough. The breakthrough came in 1866 when Henry Wilde

used a “magneto-machine” with magnets to energize an “electro-magneto-machine” which

could generate “enormous and unprecedented power”.15 The idea was immediately extended

by Werner Siemens (January 1867) and Charles Wheatstone (February 1867) to construct dy-

namos that were “self-excited” such that part of the current that was produced could be cir-

culated through the electromagnet.16 It was enough to start with a small magnetic field to

produce an initial current that would pass through the electromagnet, increasing the intensity

of the magnetic field, and consequently increasing the current. This bootstrap effect could not

go on indefinitely because at some point the intensity of the magnetic field in the core would

be saturated and stop increasing despite the increasing currents.

Once the basic principle was set, the goal was to find the designs thatmaximized the energy

output and the efficiency. What was the best way to loop the wires to form the armature of the

dynamo? Which part of the dynamo should rotate - the magnet or the armature? What type

of iron should be used for the core and how should it be shaped? What designs minimized

magnetic leakage? How would the output power scale compare to the costs of production

and the costs of coal? Any improvement was done at a cost. If one increased the magnetic

field by rotating the dynamo faster, more mechanical power would have been needed; a larger

iron core required increasing the size of the armature, which also increased the resistance, the

manufacturing costs and the mechanical energy needed to rotate a larger dynamo. To know

what was worth expanding, one had to know how the efficiency of the dynamo depended on

all these factors. While in the case of telegraphic transmissions the task was that ofminimizing

14. For a history of these first four decades see D. S. L. Cardwell, “On Michael Faraday, Henry Wilde, and the
Dynamo,” Annals of Science 49, no. 5 (1992): 479–487.
15. For a contemporary description see Charles Brooke, The Elements of Natural Philosophy (London: J.

Churchilll and Sons, 1867), 512; for a description of various dynamos, including Wilde’s, see Silvanus P. Thomp-
son, Dynamo-Electric Machinery: A Manual for Students of Electrotechnics (London: E. & F.N. Spon, 1886).
16. Cardwell, “On Michael Faraday, Henry Wilde, and the Dynamo,” 484-486.
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waste and maximizing useful work, in the case of dynamo design and operation the task was

that of optimization. If the minimizing-maximizing conditions had a straighforward moral and

mathematical interpretation, the optimization problem remained uncertain on both grounds.17

Mechanical and naval engineers had been long confronted with similar optimization prob-

lems in the case of steam engines and steamships; the relation between size, output and ef-

ficiency was not trivial. Going against all expectations based on common sense, Isambard

Brunel’s steamship Great Western proved that the increase in tonage was not linearly propor-

tional with an increase in water resistance. In some cases, intelligently designed waste (or an

opposition to “unwise parsimony”) could bring about greater benefits.18 However, in the case

of the dynamo a further problem arose. A dynamo machine could be advertised as capable

of reaching a certain output and efficiency, but these quantities depended on the parameters

at which it was used. In the case of dynamos, much more than in the case of steam engines

and steamships, these parameters were highly variable because they depended on the electric

network to which the dynamo was attached. John Hopkinson (1849-1898, FRS 1877), one of

the leading British electrical engineers, phrased the problem in these terms:

It is desirable to knowwhat the various machines can do with varied and known resistances in the
circuit, and with varied speeds of rotation: and what amount of power is absorbed in each case. It
is a question of interest, whether a machine intended for one light can or cannot produce two in
the same circuit, and if not, why not; whether a machine, such as the Wallace-Farmer, intended as
it is for many lights, will give economical results when used for one; and so on. It is clear that the
attempt to examine all separate combinations of so many variables would be hopeless, and that
the work must be systematised.19

17. For themoral andmathematical interpretation of maximum-minimum conditions in the first half of the 19th
century see Smith and Wise, Energy and Empire, 448-452; M. Norton Wise and Crosbie Smith, “Work and Waste:
Political Economy and Natural Philosophy in Nineteenth Century Britain (I),” History of Science 27, no. 3 (1989):
263–301; M. Norton Wise and Crosbie Smith, “Work and Waste: Political Economy and Natural Philosophy in
Nineteenth Century Britain (II),” History of Science 27, no. 4 (1989): 391–449; M. Norton Wise and Crosbie Smith,
“Work and Waste: Political Economy and Natural Philosophy in Nineteenth Century Britain (III),” History of
Science 28, no. 3 (1990): 221–261.
18. For the moral and economical competition between the steamships which embodied “reckless extrava-

gance” or avoided “equally extravagance and parsimony” see Crosbie Smith, Ian Higginson, and Phillip Wol-
stenholme, “”Avoiding Equally Extravagance and Parsimony”: The Moral Economy of the Ocean Steamship,”
Technology and Culture 44, no. 3 (2003): 443–469.
19. John Hopkinson, Original Papers by the Late John Hopkinson, 2 vols. (Cambridge: Cambridge University
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Because early electrical networks were highly unstable and dynamos could not always

function at fixed, optimal parameters, one had to optimize the output and efficiency for a

wider array of circumstances. Hopkinson considered that

to know the properties of any machine thoroughly, it is not enough to know its efficiency and the
amount of work it is capable of doing; we need to know what it will do under all circumstances of
varying resistance or varying electromotive force.20

Knowing the efficiency of a dynamo “under all circumstances” was a moral, technical and sci-

entific problem. Manufacturers, consulting engineers, practicing engineers, and users were all

interested in the accuracy of the measurements of the efficiency of dynamos.21 What defined

an accurate and trusted measurement depended on the relations between these actors.22 The

technical difficulty of developing on-site testing procedures was further amplified by a scien-

tific challenge: at the time, there was no theory or law of the dynamo, something equivalent

to Ohm’s law for an electric circuit. The output power of the dynamo was the product of the

electromotive force (i.e. the voltage) and the current through the circuit. For a dynamo made

with a permanent magnet or an electromagnet that was fueled by a separate electric source,

the electromotive force was constant for all resistances in the circuit (as long as the dynamo

rotation velocity stayed constant). However, in the case of a self-excited magnet a change in

the current produced a change in the electromotive force that would further change the cur-

rent. The overall change was non-linear and could not be satisfactorily approximated by any

theoretical or empirical formula.

John Hopkinson was in a unique position to tackle the challenge of the dynamo in its full

complexity. Hopkinson had been a SeniorWrangler in theMathematical Tripos examination at

Cambridge and held a doctorate in science from the University of London.23 His mathematical

Press, 1901), 32.
20. Hopkinson, Original Papers by the Late John Hopkinson, 72.
21. Arapostathis, “Dynamos, Tests, and Consulting in the Career of John Hopkinson in the 1880s,” 29.
22. For the problem of accuracy and trust in the [practice of 19th century engineering see Graeme Gooday,

The Morals of Measurement: Accuracy, Irony, and Trust in Late Victorian Electrical Practice (Cambridge University
Press, 2004).
23. Beare, “Hopkinson, John (1849-1898)”; for Hopkinson’s career as an engineer see Arapostathis, “Dynamos,
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acumen was balanced by a fruitful career as a practicing engineer: Hopkinson worked for ten

years at the optical works of Chance Brothers at Birmingham, and as a consulting engineer

for various companies including the British Edison Company in London and the Mather and

Platt Company in Manchester.

Hopkinson first presented a method for testing dynamos in 1879 in a paper for the Institu-

tion of Mechanical Engineers. At the time he had been working at the optical works of Chance

Brothers where he had to deal with the design and the production of optical systems, and was

interested to know “whether a [electrical] machine intended for one light can or cannot pro-

duce two in the same circuit, and if not, why not”.24 To this purpose he carried out a series of

experiments on a medium-size Siemens machine for which he measured the voltage for dif-

ferent resistances and rotation velocities. These measurements were presented in a table and

in a plot of the electromotive force (the voltage of the dynamo) and the current through the

circuit (Fig. 6.1). Hopkinson only remarked in passing that

The curve really gives a great deal more information than appears at first sight. It will determine
what current will flow at any given speed of rotation of the machine, and under any conditions
of the circuit, whether of resistances or of opposed electromotive forces. It will also give very
approximate indications of the corresponding curve for other machines of the same configuration,
but in which the number of times the wire passes round the electromagnet or the armature is
different.25

As none of Hopkinson’s notebooks have survived, it is not known if Hopkinson employed

these graphical representations in his on-site activities.26 However, from the above passage it

is clear that Hopkinson recognized its important value as a practical tool for solving problems

related to dynamo design and operation. Hopkinson’s goal to “to know the properties of any

machine thoroughly […] under all circumstances of varying resistance or varying electromo-

Tests, and Consulting in the Career of John Hopkinson in the 1880s”; for Hopkinson’s theory of the alternator see
Gooday, The Morals of Measurement; for the role of his Cambridge education on his scientific work see Gooday,
“Fear, Shunning and Valuelessness.”
24. John Hopkinson, “On Electric Lighting,” Proceedings of the Institution of Mechanical Engineers 30, no. 1

(1879): 238.
25. Ibid., 247.
26. Arapostathis, “Dynamos, Tests, and Consulting in the Career of John Hopkinson in the 1880s,” 25.
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Figure 6.1
Hopkinson’s curve of the electromotive force of a Siemens dynamo as a function of the current. Though at
first sight the curve looks like a straightforward graphical representation of the experimental results, the curve
would become an essential tool in the practice and teaching of engineering, and a bridge between experiment and
theory, and engineering and scientific constraints. Source: John Hopkinson, “On Electric Lighting,” Proceedings
of the Institution of Mechanical Engineers 30, no. 1 (1879): pl. 29.

tive force” was satisfied by the ability of the curve to “determine what current will flow at any

given speed of rotation of the machine, and under any conditions of the circuit”. In the fol-

lowing years Hopkinson amplified these claims and presented the curve as “capable of solving

almost any problem relating to a particular machine, and that it was also capable of giving

good indications of the results of changes in the winding of the magnets, or of the armatures

of such machines”.27 I have underlined “any” and “all” because these terms reveal a defining

attitude of some scientific engineers for whom the solution of an engineering problem had to

possess a certain practical generality.

In a follow-up paper from 1880 Hopkinson expanded on the actual use of the curve in

the solution of practical problems. He presented two geometrical constructions – the first

allowed one to determine the lowest speed at which a given machine could run and still be

27. Hopkinson, Original Papers by the Late John Hopkinson, 72; 44-45 – my underline.
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able to produce an electric arc (see Fig. 6.2); the second explained the occasional instability of

the electric light as produced by a dynamo.28 While Hopkinson was clearly interested in the

practical applications of his curve and most probably used it in his engineering practice, there

is another dimension of Hopkinson’s use of the curve that has so far remained unnoticed. To

understand Hopkinson’s intentions for the cure we must concentrate on his choices and not

accept their utility at face value.

Figure 6.2
Problem: What is the minimum speed at which a machine can run and be capable of producing a short arc that
needs a minimum of 20 volts?
Solution: Start by plotting the curve of the electromotive force as a function of the current, for a certain fixed
speed. ConstructOA such that it corresponds to 20 volts on the vertical axis. ConstructOB on the horizontal axis
such that OA

OB
equals the resistance of the circuit. From B you construct a tangent to the curve and cutting the

vertical axis inD. Then the speed of the machine must be reduced in the ration OD
OA

(because the electromotive
force is proportional to the speed). Source: John Hopkinson, Original Papers by the Late John Hopkinson, 2 vols.
(Cambridge: Cambridge University Press, 1901), 55.

1.2 The characteristic curve of the dynamo

Both college-trained electrical engineers and “practical men” made extensive use of graphical

methods in their everyday practice.29 However, the publication of these graphical methods

usually required some special circumstances.30 For most engineers, the novelty behind Hop-

28. Hopkinson, Original Papers by the Late John Hopkinson, 54-55.
29. For the opposition between “practical men” (or “half-educated electricians”) and the new generation of

college-trained electrical engineers see Bruce J. Hunt, “”Practice vs. Theory”: The British Electrical Debate, 1888-
1891,” Isis 74, no. 3 (1983): 341–355. For the use of graphical methods in the practice of electrical engineering see
Ronald Kline, Steinmetz: Engineer and Socialist (Johns Hopkins University Press, 1992), 38-39gooday2005.
30. See Chapter 3 for an analysis of the publication of graphical representations in the early 19th century.
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kinson’s curve was not the plot itself, but the transformation of the plot into a tool suited for

engineering practice. William Ayrton and John Perry, two engineers who made a pedagogical

cornerstone out of the use of square paper and plots (see Chapter 7), confessed that:

We had, both, in 1878 used a curve to express this relationship [between the electromotive force
and the current], but it was not until 1881, when wemet M. Deprez, and learnt of his work, that we
had any conception of the many calculations which might be made by graphical methods, using
the curve as a fundamental relation.31

The French engineer Marcel Deprez (1843-1918) was responsible for popularizing the prac-

tical applications of the dynamo curve which he named appropriately “la caractéristique de la

machine”..32 Deprez’s interest in such graphical methods can be partially explained by his

training and practice as an engineer. He had studied at L’École des Mines but never gradu-

ated. Throughout his career as an engineer he had been involved with using and perfecting

various graphical methods and graphical instruments. Before he started working on electric-

ity in the early 1880s, he had designed dynamometers and indicators for steam engines while

developing his own graphical methods for analyzing the indicator diagrams; he also designed

an integrometer based on the model of Amsler’s famous planimeter that could easily measure

the area, the curvature, the center of gravity and the moment of inertia of almost any plane

figure.33 Because of the striking similarity to an indicator diagram, it is easy to understand

Deprez’s interest in developing such a tool for the study of dynamos.

Deprez presented his graphical method in a communication to the Académie des Sciences

from 1881.34 At the time, Deprez was trying to show that the transport and distribution of elec-

31. W.E. Ayrton and John Perry, “The Magnetic Circuit of Dynamo Machines,” Philosophical Magazine Series 5
25, no. 157 (1888): 230
32. Marcel Deprez, “Sur un mode de représentation graphique des phénomènes mis en jeu dans les machines

dynamo-électriques,” Comptes rendus hebdomadaires des séances de l’Académie des sciences 92 (1881): 1153.
33. For a comprehensive survey of Deprez’s professional and academic activity see GirolamoRamunni, “Deprez,

Marcel (1843-1918). Professeur d’Électricité industrielle (1890-1918),” in Les professeurs du Conservatoire national
des arts et métiers, Dictionnaire biographique 1794 - 1955 (Paris: Institut national de recherche pédagogique, 1994),
405–418.
34. Deprez, “Sur un mode de représentation graphique des phénomènes mis en jeu dans les machines dynamo-

électriques.”
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Figure 6.3
Deprez’s geometrical analysis of a general characteristic curve. Eight such diagrams were included in the first ar-
ticle, but no experimental curves. Source: Marcel Deprez, “Transport et distribution de l’énergie par l’électricité,”
La Lumiére électrique 5 (1881): 326.

trical energy was a practical affair. With the help of Oskar vonMiller, Deprez designed the first

long-distance transmission of an electric current fromMiesbach to Munich (57 km).35 Deprez’s

presentation of his graphical representation employed the same reference to diagrammatic

holism that we have previously identified in the case of Hopkinson. Deprez proudly claimed

that he had found “a graphical technique of great simplicity that would allow the immediate

calculation of the values of the current generated by an electro-dynamic machine under all

the possible conditions for the velocity of the coil and the resistance of the external circuit”;

the conclusion referred again to how “this very simple method permits the immediate solu-

tion of all the questions regarding the dyanmo-electric machines”.36 The short report to the

Académie des Sciences was followed by a series of detailed articles in La Lumière Electrique in

which the functioning of the dynamo was analyzed through a series of geometrical construc-

tions similar to those of Hopkinson (Fig. 6.2) as seen in Fig. 6.3.37 While initially Deprez only

35. Thomas P. Hughes,Networks of Power: Electrification inWestern Society, 1880-1930 (Baltimore: JohnsHopkins
University Press, 1983), 131.
36. Deprez, “Sur un mode de représentation graphique des phénomènes mis en jeu dans les machines dynamo-

électriques,” my underline.
37. Marcel Deprez, “Représentation graphique des phénomènes qui s’accomplissent dans lesmachines dynamo-

electriques,” La Lumière électrique 4 (1881).
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published his graphical method (which he exemplified on a general curve), he soon decided

to also publish his experimental curves for various dynamos after he was insistently asked

for the characteristic curves by various engineers (see Fig. 6.4): “Je dois donc penser que ces

courbes présentent une utilité sérieuse et immediate pour les hommes spéciaux.”38 Because

Deprez considered that “we can use the determined curves to construct tables much more ex-

act than those obtained with interpolation formulas that are purely arbitrary”, the tables he

published did not contain the actual experimental results but rather the values interpolated

from the curves.39

Figure 6.4
Deprez’s experimental results for a Gramme dynamo. The table on the left included the values interpolated from
the characteristic curve and not the direct measurements. Source: Marcel Deprez, “Recherches expérimentales
sur les machines dynamo-électriques,” La Lumiére électrique 6 (1882): 365.

1.3 The formula of the dynamo

Marcel Deprez’s long series of articles in La Lumière Electriquewas also prompted by the recent

publication of some very similar results by the German physicist and engineer Oscar Frölich

whose articles from the Elektrotechnische Zeitschrift had just been summarized and partially

38. Marcel Deprez, “Recherches expérimentales sur les machines dynamo-électriques,” La Lumiére électrique 6
(1882): 364.
39. Ibid.
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translated in La Lumière Electrique in 1881.40 In these articles Frölich proposed his own theory

of the dynamo which shared many features with that of Deprez and Hopkinson.

Compared to the French and British counterparts, German experimentalists often pub-

lished graphical representations of their experimental results.41 One of the most thorough

experimental studies on dynamos was published by O. E. Meyer and F. Auerbach in 1879, a

fewmonths before Hopkinson’s first article on the characteristic curve. TheGerman physicists

presented some very similar experimental results regarding the dependence of the current gen-

erated by a dynamo on the resistance of the circuit and the rotation velocity of the dynamo.42

They also included four plots, all of which represented on the abscissa the physical quanti-

ties that were experimentally controlled (the resistance and the rotation velocity) against the

quantities of interest (the current and the voltage) (see Fig. 6.5). However, the plots played a

marginal role – they were only mentioned at the end of the paper and they were only meant

to show in a more vivid manner the partial agreement between the experimental results and

the predictions of an empirical formula.

Meyer and Auerbach did not use their plots to construct their own empirical formula as

Frölich will do, but used an already established formula for the relation between the magne-

tization as a function of the magnetizing force. They first considered using Wilhelm Weber’s

theoretical formula which was based on his molecular theory magnetism, but their experi-

mental setup did not allow them to determine all the constants present in the formula. In

the end they settled on Jacob Müller’s empirical formula which closely approximated Weber’s

theoretical formula and could thus be considered to be “not purely empirical [nicht als eine

rein empirische]”.43 While Müller’s formula provided a straightforward relation between the

40. Oscar Frölich, “Versuche mit dynamoelektrischen Maschinen und elektrischer Kraftübertragung und theo-
retische Folgerungen aus denselben,” Elektrotechnische Zeitschrift 2 (1881): 134–41, 170–5.
41. For a detailed analysis of the use of graphical methods in Franz Neumann’s seminar in Königsberg see

Olesko, Physics as a Calling: Discipline and Practice in the Königsberg Seminar for Physics.
42. O. E. Meyer and F. Auerbach, “Ueber die Ströme der Gramme’schen Maschine,” Annalen der Physik 244, no.

11 (1879): 494–514.
43. ibid., 502. Müller’s and Weber’s formulas will be more closely discussed in the next section.
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Figure 6.5
Meyer and Auerbach plotted the physical quantities that were experimentally controlled (the resistance and the
rotation velocity) on the horizontal and the quantities of interest (the current and the voltage) on the vertical.
The plots displayed the partial agreement between their experimental results and Müller’s empirical formula.
However, the irregular nature of the curves precluded them to propose any correction to the empirical formula.
For a different approach of plotting these quantities see Fig. 6.6. Source:O. E. Meyer and F. Auerbach, “Ueber die
Ströme der Gramme’schen Maschine,” Annalen der Physik 244, no. 11 (1879): 494–514.
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rotation velocity (v) as a function of the current (I):

v =
aI

m+ arctan I
,

Meyer and Auerbach chose to plot the current as a function of the rotation velocity, a consid-

erably less precise relation because they had to expand and approximate the arctan function.

The extra steps taken by Meyer and Auerbach to adapt Müller’s formula to their experimental

data comes to further confirm that their initial choice of variables (the quantities of interest,

the current and voltage, expressed as a function of the experimentally controlled quantities,

the resistance and velocity) was not hazardous. For Meyer and Auerbach the plot was a re-

flection of their experimental results, and a mean of pointing out the limitations of empirical

formulas such as that of Müller. While their plots could provide a comparison between their

experimental results and Müller’s formula, the irregular nature of the experimental curves

precluded any further attempts to determine a more accurate empirical formula with which

to fit the experimental data.

Oscar Frölich’s approach was different. Instead of starting from the “experimental func-

tions” (i.e. the quantities of interest expressed in terms of the experimentally controlled quan-

tities) he reconsidered the theoretical relations between them. The electromotive force was

determined by the rotation velocity and the magnetization of the iron core (Mv); Ohm’s law

connected the electromotive force to the current and resistance to give: IR =Mv.44 Because

the magnetization depended on the magnetizing current, M = f(I). Put together the two

equations led to IR = vf(I) or:
v

R
=

I

f(I)

It was probably this relation that suggested to Frölich to plot the current as a function of v/R.

44. I have changed the notation for consistency. Frölich used J for the current,W for the resistance and v for
the rotation velocity.
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To his good luck, Meyer and Auerbach’s complicated curves for I(v) or I(R) simplified to

a curve that could be approximated to a line (see Fig. 6.6).45 Another advantage, spelled out

by Frölich, was that his choice of variables multiplied the number of data points compared to

Meyer and Auerbach who had to plot I(v) as separate curves for different resistances. Frölich

confidently approximated the curves to a line:
v

W
= a+ bI . This gave him an expression for

the current, I =
1

b

( v

W
− a

)
, but more importantly an expression for the magnetization as a

function of the magnetizing current (or force):

M =
I

a+ bI
.

Frölich’s new empirical formula, or what he called “interpolation formula [Interpolations-

formeln]”, was a huge success. It was more precise than the previous formulas of Weber or

Müller, but also simpler; its constants could be determined both easily and with a high accu-

racy. This was a remarkable result. Silvanus P. Thompson considered that:

It is indeed extraordinary that such able physicists as Mascart and Angot, Mayer and Auerbach,
Schwendler, and Herwig sought in vain for the true law to connect the electromotive force of the
dynamo with its speed, the resistance of its circuit, and the constants of its construction. […] The
discovery is almost entirely due to Dr. Frölich…46

It was the change of variables that allowed Frölich to find a better empirical formula. In

this case, the experimental curves were not a direct translation of the table of experimental

measurements but a tool for searching and confirming the choice of variables which could

simplify to a linear relation. The difference between these two ways of plotting experimen-

tal curves cannot be explained by a simple difference in background as both O.E. Meyer and

Oskar Frölich had attended Franz Neumann’s seminar in Königsberg (Meyer graduated in

45. In the following article Frölich emphasized the choice of variables and expressed the current explicitly as a
function of v/R: I = F

( v
R

)
, in Oscar Frölich, “Uieber die Theorie der dynamoelektrischen Maschine und über

die elektrische Uebertragung und Vertheilung der Energie.,” Elektrotechnische Zeitschrift 3 (1882): 69.
46. Silvanus P. Thompson, “On the Law of the Electromagnet and the Law of the Dynamo,” Philosophical Mag-

azine Series 5 21, no. 128 (1886): 267.
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Figure 6.6
Frölich’s breakthrough in finding a surprisingly accurate formula for the dynamo was made possible by his
choice to compare not the immediate quantities which were experimentally measured (the current, rotation,
resistance, magnetization, etc.) but rather a carefully chosen combination of them. Instead of plotting I(v)
as Meyer and Auerbach did (see Fig. 6.5), Frölich plotted I(v/R) which reduced the experimental data to an
almost linear relation. Source: Oscar Frölich, “Versuche mit dynamoelektrischen Maschinen und elektrischer
Kraftübertragung und theoretische Folgerungen aus denselben,” Elektrotechnische Zeitschrift 2 (1881): 136.

Figure 6.7
Frölich’s “current curves” or Stromkurven. Though initially the curves were used only to find and confirm
Frölich’s new empirical formula, Frölich developed them into a pedagogical and practical tool. In his textbook
on dynamos students were trained to associate particular physical meanings with certain features of the curves
which they could then read on the experimental curves. Source: Oscar Frölich, Die dynamoelektrische Maschine:
eine physikalische Beschreibung für den technischen Gebrauch (1886), 35-51.
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1860, Frölich in 1868).47 However, while Meyer followed an academic career (he had been ap-

pointed professor of physics at Breslau in 1866 where F. Auerbach was a Privatdocent), Frölich

had been working as an engineer at the firm Siemens & Halske since 1873; while Meyer and

Auerbach published their experimental findings in the Annalen der Physik, Frölich published

in the Elektrotechnische Zeitschrift.

In the following years Frölich worked to consolidate the status of his theory of the dynamo,

and with it, his graphical method. While in the first articles Frölich only used the curves to

find and confirm his new formula, in his later work he developed the curves into a pedagogical

and practical tool (see Fig. 6.7). The main motivation was the competing graphical method of

Deprez and Hopkinson. Probably to counteract the influence of the “courbe caractéristique”,

Frölich chose to also coin the name “current curve” or Stromkurve for the curve of the func-

tion I(v/R).48 The importance of the curve in Frölich’s theory of the dynamo was noticed

by Silvanus Thompson who considered that Frölich’s theory “is based upon (1) Faraday’s law

of induction, (2) Ohm’s law, (3) a curve, called by him the current-curve, expressing certain

results of experiments made on the series-wound dynamo.”49 Because of the role played by

the “current curves”, Thompson classified Frölich’s approach as a “graphical method” similar

to those of Deprez and Hopkinson.50 However, the “graphical methods” of these three engi-

neers could not have been more different. While Deprez developed a series of geometrical

methods to analyze the characteristic curve, Frölich only used his curves to interpret alge-

braic equations and represent some of the empirical constants which otherwise could have

been seen as meaningless or arbitrary (Fig. 6.7). More importantly, Frölich outrightly rejected

the epistemological status that Deprez and Hopkinson tried to give to their curves.

47. For Meyer’s and Frölich’s training in Neumann’s seminar see Olesko, Physics as a Calling: Discipline and
Practice in the Königsberg Seminar for Physics; Jungnickel and McCormmach, Intellectual Mastery of Nature.
48. Frölich, “Uieber die Theorie der dynamoelektrischen Maschine und über die elektrische Uebertragung und

Vertheilung der Energie.,” 70.
49. Silvanus P.Thompson, Dynamo-Electric Machinery: A Manual for Students of Electrotechnics (E. & F.N. Spon,

1886), 3.
50. Ibid., 5-6.

264



CURVES OF POWER

Frölich considered that there were two “general methods” for solving the dynamo – a

graphical and an algebraic method. However, the algebraic method had the advantage of being

“more certain and precise [sicherere und genauere]”, while the graphical method was prone

to numerical errors because it was based on direct observations and the drawing of curves.

Because of this,

those who often deal with such problems should reject the graphical method and only do com-
putations based on the knowledge of the constants of the machine; this is the shortest and most
general method.51

Frölich admitted that Deprez’s curves allowed one to tackle problems in an “easy” and “simple”

manner, however they could not address “all questions”.52 This was an important point for

Frölich which he repeated throughout his textbook on the dynamo-machine:

A complete theory of dynamo machines, which allows one to answer any arbitrary [alle beliebi-
gen] questions, can be established only through an analytical method and as its foundation an
(empirical) formula must be found which represents the relation of the magnetism to the intensity
of the current.53

1.4 The law of the dynamo

When Hopkinson’s paper was discussed at the Institution of Mechanical Engineers in 1879,

W. G. Adams–a professor of applied science at King’s College–proposed a different graphical

representation in which the resistance of the circuit was used for the abscissa and the electro-

motive force for the ordinates (a choice also employed by Meyer and Auerbach, see Fig. 6.5).

This would have been an immediate choice for an experimentalist because the resistance was

the variable in the experiment, though in this case, Adams’ choice was motivated by a prac-

tical concern. For this graphical representation the tangent to the curve would determine the

current through the circuit, and through a simple geometrical construction one could obtain

51. Oscar Frölich,Die dynamoelektrischeMaschine: eine physikalische Beschreibung für den technischen Gebrauch
(1886), 46-47.
52. Ibid., iv.
53. Ibid., 11, my underline.
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Figure 6.8
Theelectromotive force as a function of the resistance. The diagramwas analyzed geometrically: AH represented
the heat produced by a current equal to AP/AO, because H was constructed such that OP and OH would
be perpendicular. Source: John Hopkinson, “On Electric Lighting,” Proceedings of the Institution of Mechanical
Engineers 30, no. 1 (1879): Pl. 29.

Figure 6.9
Graphical analysis applied to the characteristic curve. In the geometrical analysis of Fig. 6.8, the objects of
interest are segments that represent numerically physical quantities without any consideration for the units. In
the graphical analysis, the objects of interest are points and curves, and the physical quantity is read by locating
the point in a grid of coordinates. Source: Silvanus P. Thompson, Dynamo-Electric Machinery: A Manual for
Students of Electrotechnics (E. & F.N. Spon, 1886), 361; 369.
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Figure 6.10
Hopkinson showed that the characteristic curve was symmetrical with respect to the origin, in contrast with
Frölich’s empirical formula E = aI/(1+ bI). Source: John Hopkinson, Original Papers by the Late John Hopkin-
son, 2 vols. (Cambridge: Cambridge University Press, 1901), 73.

the output power and the dissipated heat (Fig. 6.8). In his reply to Adams, Hopkinson defended

his choice of coordinates because his diagram could “almost be said to be an indicator diagram,

inasmuch work done was represented by area. For this reason, from an engineering point of

view, there was a certain appropriateness in having the diagram in that shape”.54 No extra

geometrical constructions were needed because one could simply multiply the coordinates to

get the power output.55

Hopkinson mentioned three other reasons for preferring his choice of coordinates. First,

his curve better handled the display of the experimental values because the points 4-12 were

not crowded in such a small region of space; in Adams diagram point 1 did not even fit in the

resistance range. Second, there was a physical reason: the electromotive force truly depended

on the current circulating around the magnets no matter how this current was regulated. As

wewill see next, this was an important reason forHopkinson because it allowed him to connect

the behavior of the dynamo to its underlying physics – the dependence of the magnetization of

54. Hopkinson, “On Electric Lighting,” 261; my underline.
55. Adams analysis was purely geometrical, and the physical meaning of the actual curves was lost. For ex-

ample, AH represented the heat produced by the current due to the electromotive force along the abscissa that
represented the resistance. Notice that in Adams’ diagram the curve and the axes are not even necessary. I
say that Adams had a “geometrical” interpretation of the figure (opposed to a graphical/physical interpretation)
because he only considered the relation between the lengths of the segments, and not the units. Cf. Fig. 6.9
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the iron core on the magnetic field of the magnet. Third, “from a mathematical point of view

his own curve was most appropriate” because in Adams’ curve “the resistance, represented

by the abscissa, was a thing which could have only a positive value, not a negative value”.56

However, “the line of the abscissae was an essentially reversible line, and they ought to be

able to produce that line backwards, and draw the corresponding curve on the other side of

the origin”.57 This objection did not apply to his curve, and Hopkinson constructed such a

plot a year later (Fig. 6.10). Hopkinson also used this line of reasoning to dismiss Frölich’s

empirical formula E = aI/(1 + bI) because he considered that the curve had to be odd (i.e.

symmetrical with respect to the origin) and consequently “there should be a point of inflexion

in the characteristic curve at the origin”.58

Besides these four reasons that Hopkinson explicitly articulated there was something else

that seemed to motivate his decision to draw such a curve in the first place. Though Hop-

kinson did not fit any empirical or rational formulas to his curve, he did draw a theoretical

connection to Weber’s theory of magnetism and Weber’s formula (Fig. 6.11). This point was

also emphasized at the beginning of the discussion of the paper where Hopkinson specified

that

He also thought a sufficiently accurate formula for the curve in question might probably be based
uponWeber’s theory of induced magnetism in iron, as he had suggested at the end of the paper. It
would be a formula with only two constants in it, so that a full description could be given briefly
of all the curve had to tell.59

As Meyer and Auerbach before him, Hopkinson did not make any attempt to plot We-

ber’s formula on his experimental plot probably because the coefficients of the formula could

not have been easily estimated. What made Hopkinson confident that “[w]e should naturally

56. Hopkinson, “On Electric Lighting,” 262; my underline.
57. Ibid., 262.
58. John Hopkinson and Edward Hopkinson, “Dynamo-Electric Machinery,” Philosophical Transactions of the

Royal Society of London 177 (1886): 331-332.
59. Hopkinson, “On Electric Lighting,” 250. The passage was in the third person because it was a rendition of

the discussion which followed the paper.

268



CURVES OF POWER

Figure 6.11
Hopkinson referencing Weber’s theory of magnetism as presented in Maxwell’s Treatise on Electricity and Mag-
netism. The reason why “[w]e should naturally expect” that a similar formula to that of Weber would be applica-
ble to the theory of the dynamo was because Hopkinson’s curve closely resembled the graphical representation
of Weber’s formula as reproduced in Maxwell’s treatise (see Fig. 6.12). Source: John Hopkinson, “On Electric
Lighting,” Proceedings of the Institution of Mechanical Engineers 30, no. 1 (1879): 248.

expect that a similar formula [to that derived from Weber’s theory] would be approximately

applicable to dynamo-electric machines”?60 Hopkinson probably considered that his experi-

ments on dynamos could be connected toWeber’s theory ofmagnetism because both produced

remarkably similar curves. Maxwell’s Treatise on Electricity and Magnetism, which Hopkinson

referenced as his source for Weber’s theory and formula, also provided a graphical represen-

tation for the magnetization as a function of the magnetizing force (Fig. 6.12).61 While Hop-

kinson did not directly comment on their similarity, it is probable that the curve in Maxwell’s

Treatise assured him that he might be able to find a theoretical and physical interpretation for

his own curve.

Though Hopkinson seemed to be hopeful that a law for the dynamo could be derived from

theoretical principles, he never proposed such a formula in any of his papers. This striking

omission should come as a surprise. Empirical and rational formulas were the bread and butter

of engineers and physicists; almost everyone involved in the study of dynamos put forward a

60. Hopkinson, “On Electric Lighting,” 248.
61. Magnetization was usually preferred by the German physicists, while the British mostly used magnetic

induction. But, in modern parlance, both M(H) and B(H) had the same behavior and they could be used to
derive E(I) because B determined E and I determined H . Notice that in the Maxwell selection (Fig. 6.12) the
notation is different - X represents the magnetizing forceH , and I orM represent the magnetization.
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Figure 6.12
The pages in Maxwell’s Treatise referenced by Hopkinson (see Fig. 6.11). It was probably Maxwell’s curve which
made Hopkinson hope that he might connect his characteristic curve of the dynamo to Weber’s theory and
formula of magnetism. Source: James Clerk Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press,
1873), vol.2, 78-79.
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formula or made use of one.62 Silvanus P. Thompson credited Hopkinson with coming close

to discovering the “law for the dynamo” but stopping short because “he did not state the

law of the machine algebraically, and apparently he accepted as true Weber’s formula for the

electromagnet”. Instead, Thompson believed that “the discovery is almost entirely due to Dr.

Frölich”.63 So why did Hopkinson not put forward an algebraic relation?

A potential explanation is offered by some comments made by Hopkinson in 1886 during

a discussion of a paper by Gisbert Kapp, one of the leading electrical engineers in Britain.

Kapp’s paper presented a method of predetermining the characteristic curve of a dynamo.

While Kapp’s approach was mainly graphical, he did make use of an empirical formula to

express the magnetization of iron. This prompted Hopkinson to make the following revealing

remarks:

…I think that both the graphical and algebraic methods have their proper place. There is a great
advantage in using graphical methods over using algebraic methods in some cases. If, you make
use of an empirical formula to express a physical law, you get a nice simple formula and it becomes
your master, and you cannot believe anything that goes contrary to it; it seems to me, therefore,
that a graphical method is always better than a purely empirical formula. At Cambridge, the rule is
in a part of the mathematical tripos that you are only to use geometrical methods. But candidates
soon learn that they can get round that rule by working out the problems by powerful analytical
methods, and then translating to geometrical methods. So it is here that, instead of being under
any hard and fast rule, we can do as we like and get the advantage of a combination of analytical
with graphical methods. I do feel very strongly that the use of empirical formulae, such for example
as that introduced by Frölich for the characteristic curve of a dynamo, is full of danger. One presently
begins to think that the empirical formula, which is only intended to be used as an expression of the
results which have been obtained by experiment, is really a law of nature.64

It is worth pausing over this quote because it holds several crucial distinctions. In this

passage Hopkinson advocated for the dual use of graphical and algebraic methods, without

subordinating onemethod to the other because each had its own advantages for the solution of

62. Some famous examples are: William Ayrton and John Perry, Oskar Frölich, Silvanus P. Thompson, Gisbert
Kapp, Marcel Deprez, etc. There were also various empirical and rational formulas for the magnetization of a
piece of iron (Weber, Lamont, J. Müller, etc.) that could have been used to derive a (rather imprecise) formula for
the dynamo. See Thompson, “On the Law of the Electromagnet and the Law of the Dynamo.”
63. Ibid., 3.
64. Hopkinson in Kapp, “The Pre-Determination of the Characteristics of Dynamos,” 569, my underline.
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certain practical problems. On several occasions Hopkinson did acknowledge his preference

for algebraic methods, but mostly as a personal choice. For example, after Hopkinson pre-

sented a more mathematical paper with several demanding equations, an engineer expressed

his “wonder that Dr. Hopkinson has not adopted the geometrical method of exhibiting some

of the results which he has brought out in his paper”.65 Hopkinson replied that

to many, a geometrical treatment is easier than an analytical one; for my own part I generally find
that I can get along faster with the analysis, and therefore, as a rule, I naturally bring it into use;
but, for all that, I think to have the thing put from two points of view is a very great advantage.66

Almost ten years later, he confessed that his “belief is that as a fact algebraic methods have

been useful for discovery more frequently than geometrical. […] discoveries are often made

algebraically, and are afterwards translated into geometry”. However, “mathematicians should

be ambidextrous – equally ready with algebra and geometry”.67 It should be clear from these

passages, that Hopkinson (like most engineers) did not have any strong and dogmatic com-

mitments to one method or technique.68

The preference for a method was not unconditioned. For Hopkinson, a physical law was

to be preferred to an empirical law, and this trumped the choice of the method. Hopkinson’s

opposition against empirical formulae was also shared by some of his associates, such as James

Swinburne or J. A. Fleming.69 Hopkinson’s disregard for empirical formulae was immediately

rebuffed by John Perry, a much more practical engineer:

65. Hopkinson, “The Theory of Alternating Currents, Particularly in Reference to Two Alternate-Current Ma-
chines Connected to the Same Circuit,” 542.
66. Ibid., 556.
67. Hopkinson, “The Relation of Cambridge Mathematics to Engineering,” 85.
68. Cf. Gooday, “Fear, Shunning and Valuelessness.”
69. In the same discussion, Swinburne said that: “I have no faith in such formulae as Fröhlich’s or the inverse

tangent, because they have obviously no sort of connection with the phenomena. […] It is no answer to say that
such formulae fit the results; nothing is easier than to get results to agree with empirical formulae, and a man
cannot help choosing the data that fit his theory. In dealingwith aman of science verifying his own theory, it must
be remembered that his coefficient of involuntary mendacity is about equal to that of an inventor”, Swinburne
in Kapp, “The Pre-Determination of the Characteristics of Dynamos,” 541. Hopkinson’s former assistant, J. A.
Fleming also accepted that: “it is evident that his graphic method affords a better and more scientific method for
the predetermination of the characteristic curves than the use of an empirical formula”, Fleming in ibid.
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I believe that empirical formulae are of tremendous use to people who are taking up some of
the many investigations connected with dynamo machines. Nearly all the laws that I know of in
connection with dynamos, compounding and so on, have been worked out algebraically, by simple
algebraic formulae, by empirical formulae which were known to be very wrong indeed. Rules are
worked out algebraically, and when we have obtained the rules it is easy to find a graphical method
of employing these rules. The ordinary graphical methods which we know of were really discovered
algebraically, and when Dr. Hopkinson gives the advice to young engineers to use only graphical
methods I think he is giving advice that is a little misleading, and that he does not quite understand
his own and their relative positions. When a senior wrangler uses a geometrical method he uses
along with it, instinctively, unconsciously, a number of other mathematical methods of working;
but an ordinary practical electrical engineer will find far more advantage in using an empirical
formula, even though that empirical formula is slightly wrong, than in using the graphical method.
I should advise the use of that formula which is called Frölich’s… If anybody expects to get very
much more exactness than the formula will give him in the predetermination of a dynamo, I think
that he will be disappointed. .70

In this case, the crucial distinction between Perry and Hopkinson was not a disagreement

regarding the practical methods for solving an engineering problem. It was mainly a differ-

ence of purpose. Hopkinson aimed to derive a “law of nature”, rather than a practical empirical

formula. Kapp’s paper from 1885 prompted Hopkinson to publish his own “Theoretical Con-

struction of a Characteristic Curve”. Opposed to Kapp who used some heuristic empirical

formulae, Hopkinson’s approach was based on the “ordinary laws of electro-magnetism and

the known properties of iron” and “without any further assumptions”. Though Hopkinson’s

example was based on simplifying approximations, he claimed that his theory was both sci-

entific and practical because “a sufficiently powerful and laborious analysis would be capable

of deducing the characteristic of any dynamo to any desired degree of accuracy”.71

To determine the law of the dynamo equivalent to Ohm’s law for an electric circuit, Hop-

kinson had to specify the dependence of the electromotive force on the current passing through

the armature of the dynamo, or E(I). This problem was equivalent with specifying the rela-

tion between the magnetizing force (H , a quantity directly determined by the current passing

through the armature: H = 4πnI , where where n is the number of turns) and the magnetic

70. Perry in Kapp, “The Pre-Determination of the Characteristics of Dynamos,” 583-4, my underline.
71. Hopkinson and Hopkinson, “Dynamo-Electric Machinery,” 332.
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Figure 6.13
A simplified sketch of a dynamo. A (armature); B (air space); C (magnets); G (yoke); H (pole piece). Source:
Adapted from John Hopkinson and Edward Hopkinson, “Dynamo-Electric Machinery,” Philosophical Transactions
of the Royal Society of London 177 (1886): 331–358; D. W. Jordan, “The Magnetic Circuit Model, 1850-1890: The
Resisted Flow Image in Magnetostatics,” The British Journal for the History of Science 23, no. 2 (1990): 131–173.

induction (B, a quantity which directly determined the electromotive force), or B(H). Hop-

kinson considered a closed magnetic circuit passing through the components of the dynamo

(see Fig. 6.13). The problem of finding the characteristic of a dynamoE(I)was equivalent with

finding B(H), where B was the magnetic induction (or magnetization) andH the magnetiz-

ing force. Themagnetizing force was directly determined by the current, and the electromotive

force by the magnetic induction (and the rotation velocity of the dynamo). Hopkinson’s anal-

ysis started from two theoretical premises: 1. the line integral for the magnetizing force H

around a close loop had to match the current passing through the loop, 4πnI (where n is the

number of turns); 2. the induction through any tube of induction was the same for every sec-

tion of the dynamo (Fig. 6.13). The line integral for the magnetizing force (4πnI) was equated

274



CURVES OF POWER

to the sum of the contributions from each section of the dynamo:72

magnetizing force︷ ︸︸ ︷
4πnI = l1f

(
B

A1

)
︸ ︷︷ ︸
armature core

+ 2l2
B

A2︸ ︷︷ ︸
air spaces

+ l3f

(
νB

A3

)
︸ ︷︷ ︸

magnet core

+ l4f

(
νB

A4

)
︸ ︷︷ ︸

yoke

+2l5f

(
B

A5

)
︸ ︷︷ ︸

pole pieces

Ai represented the area of the sections and li their lengths. ν was a leakage coefficient Hop-

kinson had to introduce because not all the magnetic lines of the magnet also passed through

the armature.73

Figure 6.14
Hopkinson’s curve of magnetization for wrought iron that represented the induction (B) as a function of the
magnetizing force (H). Hopkinson proposed a method of constructing the “characteristic curves” of a dynamo
starting from the magnetic curves of their components (see Fig. 6.15). Source: John Hopkinson, “Magnetisation
of Iron,” Philosophical Transactions of the Royal Society of London 176 (1885): 455–469.

The function f was determined experimentally and connected the induction in a piece

of iron to the magnetizing force, or H = f(B). The dependence of the magnetization (or

magnetic induction) on the magnetizing force had long interested both physicists and engi-

neers. In 1885 Hopkinson dedicated a whole paper to the “Magnetization of iron” in which

he provided a series of curves of magnetization for B(H) (see Fig. 6.14). These experimental

magnetization curves were used to construct the characteristic curves for each section of the

72. I have slightly changed Hopkinson’s notation for consistency.
73. While Hopkinson found the value of ν experimentally, Forbes showed in 1886 how one could compute this

coefficient from theoretical considerations, and based solely on the geometry of the machine.
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dynamo (Fig. 6.15). Notice that Hopkinson always plotted B(H), i.e. B = f−1(H), despite

the fact that he could have as easily plotted H(B). The latter choice would have been more

appropriate given his equation; however, by this pointB(H) was already the standard choice

for the graphical representation. Once one understood how the magnetic force depended on

the induction, Hopkinson could represent the “characteristic curve” as:

B = F (4πnI)

This short summary of Hopkinson’s work on direct current dynamos has showed that

his use of the characteristic curve was different from that of other graphical representations

which could be found in the work on the same topic of experimental physicists and engineers.

In these other cases, the curves were used to represent the results of an experiment (and its

agreement with the theoretical predictions), to better analyze or fit experimental data, to illus-

trate and make more meaningful algebraic or theoretical concepts, to provide a set tools for

solving practical problems.

Hopkinson’s use of the characteristic curve is particularly distinctive. In the case of Meyer,

Auerbach and Frölich the curves were useful, but not essential; little would have changed in

their papers and arguments if all the curves were removed. In the case of Deprez the curves

were essential, but only as paper tools; Deprez had only a practical commitment to his curves

but not an epistemological one. However, for Hopkinson the curve was both a scientific and

conceptual object. As we have seen, his characteristic curves were not immediately reducible

to a formula or a set of constants, nor were they just a method of computation or graphical

manipulation. The characteristic curve allowed Hopkinson to pull together his commitments

to theoretical and experimental physics and engineering practice.
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2 THE CHARACTER OF THE CURVE

As I have showed above, despite its later use as a practical tool in the solution of engineering

problems, Hopkinson first used the “characteristic curve” indexically to point to a potential

connection between a theory of the dynamo and Weber’s theory of magnetism. Instead of

providing an empirical formula that could have been derived from Weber’s theory of mag-

netism, Hopkinson’s only remark was that “we should naturally expect that a similar formula

to that obtained byWeber would be approximately applicable to dynamo-electric machines”.74

Nothing was said about why Weber’s formula was “naturally applicable”, and no empirical or

theoretical formulas were plotted along the experimental curve. When presenting Weber’s

formula, Hopkinson referenced Maxwell’s Treatise on Electricity and Magnetism where We-

ber’s theory of magnetism was illustrated by a similar curve. Hopkinson pointed out that the

main features of his curve were that it approached an asymptote and that its earlier part was

approximately a straight line.75 For those involved with the study of magnetism, these were

the defining features of the magnetic curves that were well explained by Weber’s theory. This

section will provide a history of how the magnetic curves came to have defining features.

2.1 The Asymptote: Maxwell and Weber

Among the 20 plates and 105 in-text illustrations included in Maxwell’s Treatise on Electricity

andMagnetism (1873) therewere only two plots, both representingmagnetization as a function

of the magnetizing force.76 The plotting of experimental data or of empirical and theoretical

formulas was not part of Maxwell’s graphical repertoire that otherwise made extensive use of

diagrams.77 As such, it is clear that the two plots played a special role in the Treatise.

74. Hopkinson, Original Papers by the Late John Hopkinson, 45.
75. Ibid., 48.
76. See fig. 7 and 10 in James Clerk Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, 1873),

vol.2, 79;83.
77. Themost famous such diagrams studied by historians have beenMaxwell’s “lines of force and equipotential

surfaces”. See P. M. Harman, The Natural Philosophy of James Clerk Maxwell (Cambridge: Cambridge University
Press, 2001); David C. Gooding, “From Phenomenology to FieldTheory: Faraday’s Visual Reasoning,” Perspectives
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The two plots were included in the chapter on “Weber’s theory of magnetic induction”. In

the Elektrodynamische Maassbestimmungen (1852), Wilhelm Weber had explained the magne-

tization of iron by assuming that molecules were permanently magnetized such that when a

magnetic force acted on the iron it turned the axes of the molecules in one direction causing

the iron to become a magnet. Starting from this assumption, he derived a formula for the mag-

netization as a function of the magnetizing force which he then compared to his experimental

measurements using both a table and a plot (see Fig. 6.16). The close agreement between the

formula and the experiment, as shown by the plot, led Weber to claim that “because of this,

it would seem that the rotation of the iron molecules has been put beyond doubt”.78 Because

he found a mistake in Weber’s formula, Maxwell provided a corrected version of the relation

between the magnetization and the magnetizing force.79 However, “the law of the magneti-

zation” as arising from Weber’s theory of magnetization was expressed not in the corrected

analytical formula, but rather in the figure which represented the formula (see Fig. 6.17). The

differences between Weber’s and Maxwell’s graphical representations are indicative of two

different programs and epistemological methods.

Despite the fact that he had modified Weber’s formula, Maxwell remarked that “Weber’s

on Science 14, no. 1 (2006): 40–65.
78. Wilhelm Weber, “Elektrodynamische Maassbestimmungen insbesondere über Diamagnetismus,” Abhand-

lungen der Sächsischen Akademie der Wissenschaften zu Leipzig 1 (1852): 574.
79. Weber’s original formula was:

I = mn
X√

X2 +D2

X4 + 7
6X

2D2 + 2
3D

4

X4 +X2D2 +D4
,

where I was the magnetization, X the magnetizing force, m the magnetic moment between the molecules, n
the number of molecules, D the force with which each molecule, when deflected, tends to return to the original
position. ibid., 572

Maxwell, who carried out his own integration, found a different relation:
For X less than D, I =

2

3

mn

D
X ;

for X equal to D, I =
2

3
mn;

for X greater than D, I = mn

(
1− 1

3

D2

X2

)
;

when X was infinite I = mn. Maxwell, A Treatise on Electricity and Magnetism, vol.2, 78.
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own experiments give results in satisfactory accordance to this law”.80 While Weber actually

plotted both the experimental results and his formula to infer their concordance, Maxwell did

not bother with this step. This was not an oversight on Maxwell’s side, but rather a careful

decision. Maxwell considered that “the scientific value of a theory of this kind, in which we

make so many assumptions, and introduce so many adjustable constants, cannot be estimated

merely by its numerical agreement with certain sets of experiments”.81 This was not meant to

be a dismissive criticism ofWeber. Though he did not subscribe toWeber’s theory of magnetic

induction, Maxwell did find value in its physical explanation: “If it has any value it is because

it enables us to form a mental image of what takes place in a piece of iron during magne-

tization.”82 Such an attitude can be found throughout Maxwell’s writings. In “On Faraday’s

Lines of force” (1856) Maxwell described the need for a method of investigation which avoids

the “purely mathematical formula” through which “we lose sight of the phenomenon to be

explained” and the physical hypothesis which makes one “liable to that blindness to facts and

rashness in assumption which a partial explanation encourages”. Instead, Maxwell required

some method of investigation which allows the mind at every step to lay hold of a clear phys-
ical conception, without being committed to any theory founded on the physical science from
which that conception is borrowed, so that it is neither drawn aside from the subject in pursuit of
analytical subtleties, nor carried beyond the truth by a favourite hypothesis.83

The danger behind a physical hypothesis was not its incompleteness but the temptation of pre-

mature commitment. For this reason, Maxwell considered that “the chief merit of a temporary

theory is, that it shall guide experiment, without impeding the progress of the true theory

when it appears”.84 When Maxwell introduced his famous model of idle wheels to describe

the action of particles and vortices, he pointed out again “that any one who understands the

provisional and temporary character of this hypothesis, will find himself rather helped than

80. Maxwell, A Treatise on Electricity and Magnetism, vol.2, 79.
81. Ibid., 83.
82. Ibid.
83. Maxwell, The Scientific Papers of James Clerk Maxwell, 155-156.
84. Maxwell, A Treatise on Electricity and Magnetism, 208.
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hindered by it in his search after the true interpretation of the phenomena”.85

Figure 6.17
The first plot corresponded to the graphical representation of Weber’s formula for magnetization; opposed to
Weber’s experimental plot (see Fig. 6.16), Maxwell was interested in displaying the asymptotic behavior of the
curve. It was this feature that made Weber’s formula (and his molecular theory of magnetism) valuable as a
“mental image”. The second plot was Maxwell’s extension of Weber’s theory which took into account the effect
of residual magnetization. Source: James Clerk Maxwell, A Treatise on Electricity and Magnetism (Clarendon
Press, 1873), vol.2; 79-83.

Thus, Maxwell’s interest in Weber’s theory of magnetic induction was motivated by its

ability to provide a “mental image” or “physical conception” of the underlying phenomenon.

The choice to present such a “physical conception” was not justified by a commitment to its

85. Maxwell, The Scientific Papers of James Clerk Maxwell, 486.
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underlying hypothesis about the rotation of molecules, nor by the close and indiscriminate

agreement between formulas and experiments. Because Maxwell assumed the “provisional

and temporary character” of Weber’s theory, he only focused on the main implication of the

theory which showed that the magnetization approached a limiting value. This was the es-

sential feature that could be derived as a consequence of the assumption that molecules were

permanently magnetized, and which was “in satisfactory accordance” with the experimental

evidence. Because the asymptotic behavior of the magnetization was the main feature of inter-

est forMaxwell, his curve extended until it almost became horizontal. Weber’s curve, however,

only extended up to the last experimental point because it was used to show the concordance

between his experimental results and his formula. Because the magnetizing force was not

sufficiently high, the asymptotic behavior could only be inferred by extrapolation.

Because Weber’s derivation did not take into account the residual magnetization that was

left in the iron rod once the magnetizing force was removed, Maxwell extended Weber’s ini-

tial assumptions to cover for this case “as an assistance to the imagination in following out

the speculations suggested by Weber”.86 As in the previous case, Maxwell was not interested

in finding a true and correct formula for the magnetization, but only in understanding the

consequences of the extended theory. As such, the relevant result was not the formula but

the diagram that showed both the temporary and residual magnetization curves approaching

an asymptote (see Fig. 6.17). Maxwell used the two plots to reduce the formulas that were

based on “so many assumptions, and […] so many adjustable constants” to one key feature

that displayed the main physical implication of the “mental image” from which he started.

While the use of models and “mental images” was specific to Maxwell’s scientific style,

the display and interpretation of specific features of an equation or of a model through a plot

was mainly derivative and restricted to Maxwell’s pedagogical endeavors.87 Maxwell did not

86. Maxwell, A Treatise on Electricity and Magnetism, 79.
87. See Chapter 7 for Maxwell’s use of indicator diagrams in his textbook on the Theory of heat.

283



CURVES OF POWER

construct the two plots on magnetization because that was his habitual practice, nor because

he considered that plots in general have a special pedagogical value. As pointed out above,

there are no other examples in the Treatise on Electricity and Magnetism in which Maxwell

constructed the graphical representation of a function or of experimental results. Not only

Maxwell’s Treatise, but British scientific articles in general did not make great use of plots to

present their experimental findings. Michael Faraday, a highly visual experimentalist, or James

Joule, one of the first experimentalists who noticed the saturation of the magnetization inside

an iron core, never produced any plots. The two plots Maxwell did provide were special not

only because they connected explicitly to Weber’s theory and graphical representations, but

also because it engaged graphically with amorewell-established tradition thatwas particularly

visible in the writings of German scientists.

2.2 The Asymptote: the first traces

The experimental claim that the magnetization of an iron rod approached a maximum was

first established by the German physicist J. J. Müller with the aid of graphical representations.

In 1850, Müller published an article in the Annalen der Physik in which he claimed to have

disproved the Lenz-Jacobi law which stated that the magnetization by a current is propor-

tional to the intensity of the current (i.e. the magnetizing force).88 Müller used a magnetizing

coil (Magnetisirungsspirale) through which he passed a current whose intensity he measured

using a tangent galvanometer. He used a needle compass to measure the deflection produced

by an iron rod which was introduced inside the magnetizing coil. The magnetic force (mag-

netisirende Kraft, p) was computed by multiplying the intensity of the current and the number

of windings; the magnetization (Magnetismus,m) was obtained by taking the inverse tangent

of the deflection angle. He repeated his measurements for different magnetizing coils with dif-

88. Lenz and Jacobi’s original article (1839) did not employ any plots, see E. Lenz and M. Jacobi, “Ueber die
Gesetze der Elektromagnete,” Annalen der Physik 123, no. 6 (1839): 225–266.
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ferent currents, and iron rods of different diameter. Müller found that while the Lenz-Jacobi

law held for small currents (and thus for small magnetic forces), it failed at higher intensities.

This was immediately visible from one of his tables of measurements which included the ratio

m/p between the magnetization and the magnetic force. The ratio should have been constant

(or almost constant) if the quantities were proportional.

Figure 6.18
s – the magnetizing coil; b – the compass used to measure the magnetic deflection; t – the tangent galvanometer
used to measure the current. J. Müller, “Ueber die Magnetisirung von Eisenstäben durch den galvanischen Strom,”
Annalen der Physik 79 (1850): 337–344

Figure 6.19
Müller’s table comparing the observed measurements to those calculated by his empirical formula for the mag-
netic force p and the magnetization m. Source: J. Müller, “Ueber die Magnetisirung von Eisenstäben durch den
galvanischen Strom,” Annalen der Physik 79 (1850): 343.

Müller then added that after “many failed attempts” he was able to find a formula that
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covered all the results in his table (see Fig. 6.19):89

p = 220d3/2 tan
m

0.00005d2

This empirical formula played a particularly important role in Müller’s paper because it indi-

cated that the magnetization approached asymptotically a maximum limit and it allowed him

to estimate its value. Only then, Müller plotted the function “to make more vivid the relation”

of the increase in magnetization as a function of the magnetic force (see Fig. 6.20).90 If the

Lenz-Jacobi law would have been always true, all four curves should have been straight lines.

However, for the thinnest iron rod one could already see how the curve bent into a horizon-

tal line, suggesting that the magnetization reached a maximum. Lenz and Jacobi found the

two quantities to be proportional only because their currents were too weak. The next step in

Müller’s article was to show the extent to which his empirical formula actually approximated

the experimental results. He did that using a using a table, not the graphical representation

(see Fig. 6.19). That was by far the most common choice in the 19th century because one could

both compare the observed and calculated values, and specify the difference between the two.

Müller’s article was immediately dismissed by two experimentalists from Giessen, H. Buff

and F. Zamminer, who insisted that the Jacobi-Lenz law was valid and that Müller failed to

reproduce it because of defective soft iron cores.91 What for Müller was a property of the mate-

rial, for Buff and Zamminer was a defect that had to be removed. In a follow-up article, Müller

explained that Buff and Zamminer did not detect the saturation of the magnetization in the

iron because their rods were too thick, and the current too small. To support his case, Müller

added three different plots for the magnetizing spirals he used; the curves in each plot still

89. J. Müller, “Ueber die Magnetisirung von Eisenstäben durch den galvanischen Strom,” Annalen der Physik 79
(1850): 340.
90. Ibid., 342.
91. Buff and Zamminer, “Ueber die Magnetisirung von Eisenstäben durch den galvanischen Strom,” Justus

Liebigs Annalen der Chemie 75, no. 1 (1850): 83–94.
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Figure 6.20
Müller’s curves played an important role in his criticism of the Lenz-Jacobi law because they clearly showed that
only for small magnetic forces (curve IV) was the relation between the magnetic force and the magnetization
linear. For high magnetic forces (Curves I, II, III) the magnetization was asymptotically constant or saturated.
Source: J. Müller, “Ueber die Magnetisirung von Eisenstäben durch den galvanischen Strom,” Annalen der Physik
79 (1850): 337–344.

corresponded to iron rods of different length and diameter. In this way he could show that for

the same iron rod one magnetizing spiral produced an interval of currents that only exhibited

a linear relation between the current and the magnetization (see plot 1, curve I in Fig. 6.21),

while a spiral that produced higher currents could show that the magnetization approached a

limit (see plot 3, curve III in Fig. 6.21). Müller confidently conclude that his experimental curves

closed the dispute: “My claim is so decidedly stated [ausgesprochen] by these curves that they

probably do not require any further dispute [Auseinandersetzung]”.92 Though Müller’s article

represented a strong refutation of Buff and Zamminer’s counter-claims, the dispute was set-

tled by Weber’s study on Elektrodynamische Maassbestimmungen (1852), which was discussed

92. J. Müller, “Ueber den Sättigungspunkt der Elektromagnete,” Annalen der Physik 82, no. 2 (1851): 181–188.
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Figure 6.21
Müller’s curves for different magnetizing spirals. The curves showed that for low currents (i.e. small magnetizing
forces), the magnetization was proportional to the magnetic force. However, for high currents the magnetiza-
tion became asymptotically horizontal. “My claim is so decidedly stated [ausgesprochen] by these curves that
they probably do not require any further dispute [Auseinandersetzung]”. Source: J. Müller, “Ueber den Sätti-
gungspunkt der Elektromagnete,” Annalen der Physik 82, no. 2 (1851): 181–188.
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above.93

Outside Germany, Müller’s study was brought to the attention of the British public by

a summary published by John Tyndall in 1851.94 After learning about Müller’s results from

Tyndall’s summary, James Joule hurried to publish a short letter in the Philosophical Magazine

with an “Account of Experiments demonstrating a limit to the Magnetizability of Iron” (1851)

that collected a series of previous articles regarding his experiments on the magnetization of

iron. Joule emphasized that the saturation of the magnetization was a phenomenon he had

noticed as early as 1839.95 However, it should not come as a surprise that Joule’s thoughts

on the saturation of magnetization had remained unnoticed because in the original paper the

focus was on establishing an empirical law between the magnetization and the magnetizing

current.96 Joule chose the most simple law that posited a linear relation, while noticing only

in passing that for high currents “the law in this case seems to fail principally because the iron

is sooner saturated with magnetism”.97

Compared to Joule, Müller had put forward an empirical formula that accounted for the

saturation and provided a value for the maximum magnetization. Furthermore, he had made

the saturation phenomenon one of the cornerstones of his experimental results. The impact

of Müller’s experiment was further expanded by Weber’s study on Elektrodynamische Maass-

bestimmungen (1852) which showed that the saturation phenomenon could be explained by

assuming that molecules possessed a permanent magnetic moment. Along with Müller’s re-

sult and formula spread also his graphical representation. Before 1850, there were no graphical

representations of the magnetization as a function of the magnetizing force, mostly because

93. Weber, “Abhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig,” 566-567.
94. John Tyndall, “Reports on the Progress of the Physical Sciences,” Philosophical Magazine Series 4 1, no. 3

(1851): 194–205.
95. J. P. Joule, “Account of Experiments Demonstrating a Limit to the Magnetizability of Iron,” 2 (1851): 313.
96. Compared to the Jacobi-Lenz law which had been published two months earlier in March 1839, Joule’s law

was stated as the relation between the magnetic attraction of an iron needle and a coil (M ), and the current
passing through the coil (E): M = E2W 2, whereW was the length of the iron wire. However, the implication
was still the same – the magnetization of the iron was proportional to the magnetizing current.
97. Joule, “Account of Experiments Demonstrating a Limit to the Magnetizability of Iron,” 313.
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the function was assumed to be linear. Immediately after the publication of Müller’s paper,

several other physicists started employing this style of plotting. Julius Plücker, who had al-

ready published several articles on magnetism and often employed experimental plots, made

use of Müller’s magnetic curves to show that “for all magnetic and diamagnetic substances

one and the same universal law gives the intensity of the induced magnetism as a function

of the excitation force”.98 While Plücker proposed his own empirical formula, he insisted on

pointing out that his “curves are the immediate expression of observations, independent of

any hypothesis or theoretical opinion”.99

Müller also included themagnetic curves in his textbook, Pouillet’s Lehrbuch der Physik und

Meteorologie (4th ed; 1852), which was based on Pouillet’s Éléments de physique expérimentale

et de métédrologie.100 Revised by several authors, the textbook which will come to be known

as the Müller-Pouillet’s Lehrbuch der Physik was published throughout the 19th century up to

the 1930s. Starting in the 1860s, the curves were soon reproduced in all the main textbooks

on electricity and magnetism, such as Gustav Wiedemann’s Die Lehre vom Galvanismus und

Elektromagnetismus (1861) or Julius Dub’s Der Elektromagnetismus (1861).101 Maxwell was fa-

miliar with many of the German textbooks and articles that made use of Müller’s magnetic

curves (such as Wiedemann’s Galvanismus).102 In France, Müller’s magnetic curves were first

popularized by Émile Verdet in an article that summarized the results of the German physicist;

Verdet made further use of Müller’s 1850 plot in his lessons on electricity at the L’École Nor-

male.103 Otherwise, the main French textbooks on electricity and magnetism only reported

98. Plücker, “Ueber das Gesetz der Induction bei paramagnetischen und diamagnetischen Substanzen,” Annalen
der Physik 167, no. 1 (1854): 51.
99. Ibid., 35.

100. J. Müller, Pouillet’s Lehrbuch der Physik und Meteorologie (F. Vieweg & Sohn, 1852), 259.
101. Gustav Heinrich Wiedemann, Die Lehre vom Galvanismus und Elektromagnetismus (Braunschweig: F.
Vieweg & Sohn, 1861), vol.2, 290; Julius Dub, Der Elektromagnetismus: Mit 120 in d. Text Eingedruckten Holzschnit-
ten (Julius Springer, 1861), 89. Of course, there were also notable exceptions such as J. Lamont’s Handbuch des
Magnetismus (1867) which provided a detailed summary of Müller’s results but did not include any of the curves
– see Johann Lamont, Handbuch des Magnetismus (Voss, 1867), 45-49.
102. Maxwell, A Treatise on Electricity and Magnetism, vol.1, 330, 356.
103. Emile Verdet, “Mémoires sur la physique publiés à l’étranger,” Annales de chimie et de physique 48 (1856):
119–128; Emile Verdet, Conférences de physique faites a l’École normale, vol. 1 (Impr. Nationale, 1872), 215.
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the general implications of Müller’s results and his empirical formula, without reproducing

the curves.104 While they did not include Müller’s plots, some textbooks noted in passing that

“one can confirm [the results] graphically by tracing the curves in which we take the intensity

of the current to be the abscissa and the magnetic moment the ordinate”.105 The plots could

not be found in any British publications.

This short review of the German, French and British reactions to Müller’s results and his

graphical representations allows us to delineate some general national attitudes. These re-

marks will be further corroborated in the following discussions. While Müller’s results did

attract some attention among the British, these plots were never reproduced or imitated. This

again confirms our claim that graphical representations of experimental results were not com-

mon among British scientists. In France, the reactions were mixed – while the plots were re-

produced in some cases, the general attitude was to reproduce only the table of measurements

and the empirical formula; sometimes the curves or themethod of plottingwas described.106 In

Germany, Müller’s curves had the most direct and powerful impact – several experimentalists

borrowed this mode of representation, while the curves were widely reproduced in textbooks.

The sources of these differences are complex and cannot be reduced to a single factor.

Whenever Müller’s results were presented graphically in a textbook, it was mostly through

the reproduction of the original curves; other tables of measurements were never indepen-

dently plotted. This suggests, that in this case, the curves were associated and perceived as

part of the original experimental finding. The curves were not added because of the interven-

104. See Becquerel and Becquerel, Traité d’électricité et de magnétisme et des applications de ces sciences à la
chimie, à la physiologie et aux arts par Mm. Becquerel et Edmond Becquerel, 181-182; Auguste De la Rive, “Traité
d’électricité théorique et appliquée par A. De La Rive,” 1858, 324; Jules Jamin, Cours de physique de l’École poly-
technique, vol. 3 (Mallet-Bachelier, 1866), 255. The only exception was a textbook by Pierre-Adolphe Daguin, a
physics professor at the university of Toulouse; like Émile Verdet, Daguin also graduated from École normale in
Paris, see P. A. Daguin, Traité élémentaire de physique théorique et expérimentale, vol. 3 (Édouard Privat, 1861),
23-24.
105. De la Rive, “Traité d’électricité théorique et appliquée par A. De La Rive,” 324.
106. We have encountered a similar attitude towards Gay-Lussac’s curves of solubility which were often de-
scribed in textbooks, but not reproduced until the late 1840s and also under German influence, see Chapter 2.

291



CURVES OF POWER

(a) muller 1852 (b) Wiedemann 1861

Figure 6.22
Müller’s original curves reproduced in some German textbooks. Source: (a): J. Müller, Pouillet’s Lehrbuch der
Physik und Meteorologie (F. Vieweg & Sohn, 1852), 259; (b): Gustav Heinrich Wiedemann, Die Lehre vom Gal-
vanismus und Elektromagnetismus (Braunschweig: F. Vieweg & Sohn, 1861), vol.2, 290.

tion of the author in explaining or illustrating a concept, but as a way of better portraying

and supporting the original experimental claims. We can further speculate on why Müller’s

curves received such an important status. As I mentioned earlier, while German physicists

often employed plots in their articles, these representations were almost never reproduced in

the textbooks that reported their findings (Weber’s curve from Elektrodynamische Maassbes-

timmungen (1852) could be such an example of a curve that not was not reproduced). Further-

more, with the exception of Müller’s curves, German textbooks on electromagnetism hardly

292



CURVES OF POWER

included any other graphical representations of experimental data. In the case of Müller’s

curves, the plot showed something that neither the tables nor the formula could fully display

– they established a graphical law. The saturation region was the new finding, and while a

table of measurements could show that such a maximum exists in the case of some iron rods,

it could not show this for all the rods (because for a certain thickness, the currents had to be

too high to reach the saturation region). Instead, the plots allowed one to extrapolate these

results independently of Müller’s empirical formula.

2.3 The inflexion

While German textbooks focused the attention of students on the asymptotic behavior of the

magnetic curves for large magnetizing forces, in the early 1870s the linear behavior of the first

part of the curve came to be questioned.

The first challenge came from Aleksandr Stoletow, a young Russian physicist who had

attended the lectures of Helmholtz, Kirchhoff and Wilhelm Weber and who had just finished

the work on his dissertation in Kirchoff’s laboratory in Heidelberg.107 Stoletow published the

results of his dissertation in the Annalen der Physik in 1872 and the Philosophical Magazine in

1873.108 Stoletow looked at the magnetic susceptibility of iron as a function of the magnetizing

force. While previous experimental results only showed that the susceptibility dropped with

the increase of the magnetizing force, Stoletow managed to show that for low magnetizing

forces the susceptibility actually increased until it reached a maximum. He first inferred this

claim from the table of measurements, which he then plotted. The advantage of the plot was

that it allowed him to show that both his measurements and those of other experimentalists

107. “Stoletov, Aleksandr Grigorievich,” in Complete Dictionary of Scientific Biography, vol. 13 (Detroit: Charles
Scribner’s Sons, 2008), 79–81.
108. A. Stoletow, “On the Magnetizing-Function of Soft Iron, Especially with Weaker Decomposing-Powers,”
Philosophical Magazine Series 4 45, no. 297 (1873): 40–57; A. Stoletow, “Ueber die Magnetisirungsfunction des
weichen Eisens, insbesondere bei schwächeren Scheidungskräften,” Annalen der Physik 222, no. 7 (1872): 439–
463.
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displayed the same pattern (a maximum of susceptibility for low magnetizing forces), thus

boosting his claim (see Fig. 6.23).

Figure 6.23
The full line corresponded to Stoletow’s own experiemental results, while the dotted lines represented experi-
mental data obtained from von Quintus Icilius. As in the case of Müller’s magnetic curves, the general purpose
of the plot was to establish a general pattern by comparing the behavior of the magnetic curve for different series
of measurements. Source: A. Stoletow, “Ueber die Magnetisirungsfunction des weichen Eisens, insbesondere bei
schwächeren Scheidungskräften,” Annalen der Physik 222, no. 7 (1872): 439–463.

Only a few months later, the Philosophical Magazine published the very similar results of

a young American physicist – Henry A. Rowland.109 Though Rowland carried out his experi-

ments between 1870-1871, he had to postpone publication because the first draft of his article

was rejected by the American Journal of Science. Rowland’s article was only published after

Maxwell’s intervention at the Philosophical Magazine.110 After presenting the tables of experi-

mental measurements Rowland did not directly interpret the numbers, but exclaimed that “the

best method of studying these Tables is to plot them”.111 This should come as a striking differ-

109. Henry A. Rowland, “On Magnetic Permeability, and the Maximum of Magnetism of Iron, Steel, and Nickel,”
Philosophical Magazine Series 4 46 (1873): 140–158.
110. Maxwell, The Scientific Letters and Papers of James Clerk Maxwell, vol.2, 479, No. 466. For a detailed descrip-
tion of Rowland’s work on magnetism see: John David Miller, “Rowland’s Magnetic Analogy to Ohm’s Law,” Isis
66, no. 2 (1975): 230–241; D. W. Jordan, “The Magnetic Circuit Model, 1850-1890: The Resisted Flow Image in
Magnetostatics,” The British Journal for the History of Science 23, no. 2 (1990): 131–173.
111. Stoletow, “On the Magnetizing-Function of Soft Iron, Especially with Weaker Decomposing-Powers,” 153.
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ence from the German style of using tables and plots, as illustrated in the articles of Müller

or Stoletow. For example, Stoletow’s main insights were directly inferred from the tables of

results from which it “hence becomes evident the remarkable fact…” or “we see further from

these tables…”.112 Though their experimental method and results agreed, Rowland dismissed

Stoletow’s graphical representation because it made “the curve infinitely long, it forms a very

irregular curve, and it is impossible to get the maximum of magnetism from it”.113 He con-

sidered that Stoletow failed to identify a law because of his choice of variables that gave rise

to a highly irregular curve: “He plots a curve showing the variation of k; but he plots with

reference to R [the magnetic force] as abscissa instead of R · k [the magnetization], and thus

fails to determine the law”.114

Rowland considered more closely the best ways of plotting his experimental results. He

first plotted the magnetization as a function of the magnetizing force because the curve was

regular and “it is often employed, and gives a pretty good idea of the action” (see Fig. 6.25).115

As I have showed above, this style of graphical representation had become widely used after

it was made famous by J. Müller’s articles on the saturation of the magnetization. In the

case of Rowland, the main source of inspiration for this graphical representation was most

probably Maxwell’s Treatise on Electricity and Magnetism (1873) which was also cited in his

paper.116 While Stoletow’s curve illustrated well his conclusion, it lacked the accepted and

widely spread graphical meaning of Müller’s magnetic curves. For example, the susceptibility

curves failed to clearly show that themagnetization approached amaximum.117 The correction

that Rowland identified in the behavior of the magnetic curves – “the concavity of the curve

112. Stoletow, “On the Magnetizing-Function of Soft Iron, Especially with Weaker Decomposing-Powers,” 43.
113. Rowland, “On Magnetic Permeability, and the Maximum of Magnetism of Iron, Steel, and Nickel,” 153.
114. Ibid., 141-142.
115. Ibid., 153-154.
116. We also know that Rowland was one of the first Americans to buy Maxwell’s Treatise in mid-April 1873. As
Rowland admitted, he knew only little about the mathematical theory of magnetism in 1870 when he started his
experiments; for this reason he invented his own units which he did not bother to modify after he read Maxwell’s
Treatise. See Miller, “Rowland’s Magnetic Analogy to Ohm’s Law,” 240.
117. For that to be visible, the susceptibility curveswould have had to be greatly prolonged until they approached
the abscissa.
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at its commencement, which indicates a rapid increase of permeability” – would also become

a defining feature such as Müller’s horizontal asymptote.118

Despite the advantages, this type of representation still suffered from two of the shortcom-

ings of Stoletow’s curve – the curve was infinitely long and one could not precisely determine

the maximum of magnetization. Rowland’s insight was to choose a different pair of variables

– instead of plotting the susceptibility (or permeability) as a function of the magnetizing force,

he plotted it as a function of the magnetization. This choice would not have been immediately

transparent to an experimentalist who, in general, plotted the quantity under investigation

as a function of the quantity that was experimentally controlled. One considered that the

quantity that was directly varied caused the change in the investigated quantity. Though

counter-intuitive, Rowland choice of variables had the advantage of producing a “perfectly

regular” curve of finite dimensions (see Fig. 6.24). The regularity, symmetry and finiteness of

the curve allowed Rowland to guess an appropriate fitting function:

µ = β sin

(
B+ bµ+ π

D

)

Furthermore, he could graphically determine the parameters of the function: β was the max-

imum value of µ and was determined by the height of the curve (BD); b established the

inclination of the diameter; π was the line AO; D depended on the line AC . The qualities of

the curve led Rowland to believe that his method of plotting proved “in the most unequivocal

manner that magnetic permeability is a function of the magnetization of the iron and not of

the magnetizing force”.119

Stoletow’s and Rowland’s experimental finding of a maximum for the permeability at-

tracted considerable attention. While both their curves illustrated and supported their con-

118. Rowland, “On Magnetic Permeability, and the Maximum of Magnetism of Iron, Steel, and Nickel,” 154.
119. Henry A. Rowland, The Physical Papers of Henry Augustus Rowland (Baltimore: The Johns Hopkins Press,
1902), 105.

296



CURVES OF POWER

Figure 6.24
Rowland made the unusual choice of plotting the permeability (here, λ = 4πµ) as a function of the magnetic
induction (here, Q = B), opposed to Stoletow who plotted the permeability as a function of the magnetic force
(see Fig. 6.23). Because the plot was highly regular, symmetric and finite, it allowed Rowland both to find an
empirical formula and to determine graphically the parameters of the formula. Source: Henry A. Rowland, “On
Magnetic Permeability, and the Maximum of Magnetism of Iron, Steel, and Nickel,” Philosophical Magazine Series
4 46 (1873): 140–158.

clusions, the new feature of Rowland’s curve, its concavity or inflexion, also inspired some

theoretical considerations. Edmond Bouty, a young French physicist who had been working

under the guidance of Jules Jamin, published a series of articles concerning his experiments

on the temporary and permanent magnetization of thin needles in which he determined the

overall magnetism in terms of a magnetizing current. Though he did not plot his results, he

remarked that if one were to draw the experimental curve he would notice that it is “at first

concave towards the positive ordinates, the curve then presents an inflexion point […] and
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Figure 6.25
Rowland’s plot engaged directly with Maxwell’s graphical representations of Weber’s formula. The dotted line
corresponded toWeber’s original formula, while the dotted line represented Maxwell’s correction of the formula.
The full lines represented Rowland’s equation which closely fitted the experimental points and showed that for
low magnetizing forces the magnetization did not increase linearly but displayed an inflexion point where the
curve changed from concave to convex. This feature of the magnetic curve would become one of the main
staples of Rowland’s contribution. Source: Henry A. Rowland, “On Magnetic Permeability, and the Maximum of
Magnetism of Iron, Steel, and Nickel,” Philosophical Magazine Series 4 46 (1873): 140–158.
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approaches asymptotically a parallel to the axis of the abscissas”.120 Based on these graphical

features, Bouty related his results to those of Rowland and Stoletow regarding the magnetiza-

tion of iron and steel:

These characters are identical with those of the curves which, according to Rowland and Stoletow,
represent the magnetizing function of iron or steel. The general features are everywhere the same;
and the resemblance is especially striking when, opposite the preceding curve, we draw that found
by Rowland for Bessemer steel.121

Bouty did include a redrawing of Rowland’s magnetic curve, but for a different purpose –

he used a geometrical interpretation of the plot to illustrate Coulomb’s concept of “coercive

force”. Coulomb’s theory of magnetism had long fallen out of fashion, and Bouty remarked

that “it is interesting to remark that, if the hypothesis of the coercive force is powerless in rep-

resenting the ensemble of phenomena, it can represent well enough the behavior of permanent

magnetization”.122 Bouty employed a geometrical construction to show the correspondence

between Rowland’s experimental curve and Coulomb’s theory. In Fig. 6.26, he approximated

Rowland’s experimental curve OPQRST with the broken lines OM,MN,NL. Coulomb’s

theory of magnetism claimed that when the coercive forces (C) surpassed the magnetizing

forces (F ), F < C , the magnetic induction was null (the line OM in Fig. 6.26); when the

magnetizing forces surpassed the threshold, F > C , the magnetic effect was proportional to

F − C and thus increased linearly as represented by the line MN .123 While Bouty did not

find Coulomb’s theory satisfactory, he did apply a year later the same geometrical analysis

to his experimental results on temporary magnetism because by looking at the curve of tem-

porary magnetism “we can see that it presents the same general character as the curve P of

permanent magnetism”.124 A few years later when charged with revising Jules Jamin’s famous

Cours de physique de l’École polytechnique (1883), Bouty also added a short description of Row-

120. E. Bouty, “Études sur le magnétisme (deuxième partie),” Annales scientifiques de l’École Normale Supérieure
5 (1876): 130.
121. Ibid., 130.
122. E. Bouty, “Études sur le magnétisme,” Annales scientifiques de l’École Normale Supérieure 4 (1875): 50.
123. Ibid., 50-51.
124. Bouty, “Études sur le magnétisme (deuxième partie),” 141.
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land’s experiment and a reproduction of his magnetic curve, along with his own diagram and

geometrical interpretation of them.125

(a) Bouty 1875 (b) Bouty 1876

Figure 6.26
Bouty’s geometrical interpretation of Rowland’s curve and inflexion point. In Fig-a Bouty used Rowland’s curve
as an illustration of Coulomb’s theory of magnetism which predicted that the magnetization would be null until
the magnetizing force surpassed the coercive force (M in the plot), after which it would increase linearly with the
magnetizing force (the lineMN ). This geometrical analysis was later used by Bouty in the analysis of temporary
magnetism. In Fig-b he showed that both the permanent and temporary magnetic qualities of a substance could
be “characterized very well” by the end points of the line passing through the inflexion point (R1, R2 for the curve
P , and R′

1 for the curve T ). Source: (a): E. Bouty, “Études sur le magnétisme,” Annales scientifiques de l’École
Normale Supérieure 4 (1875): 50; (b): E. Bouty, “Études sur le magnétisme (deuxième partie),” Annales scientifiques
de l’École Normale Supérieure 5 (1876): 141.

2.4 The Tail

In the mid 1880s, Rowland’s curve of permeability (Fig. 6.24) came under the scrutiny of exper-

imentalists whomeasured the magnetization of iron in strongmagnetic fields – up to ten times

higher than in Rowland’s experiments. In his graphical representation of the permeability as

a function of magnetization Rowland extrapolated the curve beyond the last data point until it

intersected the abscissa to obtain a regular and finite curve. As we have seen in the previous

section, for Rowland this was an essential feature because it allowed him to find an empirical

formula. However, new studies showed that the permeability did not approach zero for the

magnetic fields predicted by Rowland’s curve and formula. The point of interest for our study

125. E. Bouty and J. Jamin, Cours de physique de l’École polytechnique (Gauthier-Villars, 1883), vol. 4, 298-300.
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is that these experimentalists engaged not so much with Rowland’s experimental results or

empirical formula, but with his graphical representation. It was the neat and regular shape of

his plot that had the biggest impact, and it was this graphical claim that needed correction. In

these papers the plots were not the means through which one carried a debate about empirical

formulas, but rather the plots themselves became the object of debate.

Rowland had already noticed that in his experiments on the magnetization of cobalt, “on

plotting the curve I was much surprised to find an entire departure from the regularity which I

had before found in all curves taken from iron and nickel when the metal was homogenous”.126

Rowland ascribed these problems to want of homogeneity in the cobalt rings, or as an effect of

the increase in temperaturewith highermagnetic fields. In the end, because of this irregularity,

he only published permeability curves for iron and nickel but not for cobalt. But even in the

case of ironwhich produced themost regular curves andwere best fitted by his formula, “a sort

of tail appears on the curve showing the permeability”.127 Rowland ascribed this troublesome

issue with the curve also to a lack of homogeneity in the iron – “it is evident that this tail

must always show itself whenever the section of the ring is not homogeneous throughout”.

However, the curves published by Rowland never included this “tail” which was present only

in the table ofmeasurements – “a tail appears to the curve like that in Table III” (see Fig. 6.27).128

As the magnetic fields became stronger, other experimentalists were bothered by the tail

of the permeability curve. The matter was not without consequence because the intersection

of the permeability curve with the abscissa was used as an estimate for the maximum of mag-

netization. If the permeability was never zero, the very existence of the maximum would have

been under dispute. In 1881, Carl Fromme pointed out that when he graphically represented

his experimental measurements for the magnetization of iron after “Rowland’s method” he

found that the permeability curve had an inflexion point [Wendepunkt] after which the con-

126. Rowland, The Physical Papers, 70.
127. Ibid., 44.
128. Ibid., 52.
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cave curve became convex.129 No plots were included in this short two-page notice. Despite

knowledge of the existence of such a tail, many experimentalists preferred to ignore this fea-

ture when plotting the permeability curves. One experimentalist even acknowledged that the

intersection of the curve with the horizontal axis was unphysical –

it is to be expected that the form of the curve will change as it approaches the axis, to which it no
doubt becomes finally parallel, since, µ = 1 for non-magnetic bodies, and in no known case is as
low as zero. Such an inflection was observed in the curve for iron by Rowland and by Fromme, as
before stated.130

Though he pointed out the inflexion of the tail, such a feature was not graphically represented

(see Fig. 6.27).

The first graphical challenge of Rowland’s curves came from Shelford Bidwell and James

Alfred Ewing (1855-1935). Bidwell remarked that “in connexion with the well-known experi-

ments and views of Professor Rowland, the figures thus obtained are of the highest interest”.131

He provided a representation of “Rowland’s curve” along with the representation of his ex-

perimental data (see Fig. 6.28). The pain taken by Bidwell to fit the range of his measurements

along Rowland’s curve comes to show the iconic status of the curve. What Bidwell set out

to disprove with his plot was a graphical claim. In 1887, Ewing employed a similar graphical

representation that only focused on the tail of the curve. He described the plot as being drawn

in “the manner introduced by Rowland for showing the relation of B to µ” and pointed to

the “inflection that a curve of µ and B begins to have when the magnetising force is raised

sufficiently high” (see Fig. 6.28). The reader was immediately notified that

This feature of the curve of µ andBwas not noticed by Rowland himself, who applied to his curve
an empirical formula which fails to take account of it. It has, however, been noticed by several

129. Carl Fromme, “Notiz über das Maximum des temporären Magnetismus beim weichen Eisen,” Annalen der
Physik 249, no. 8 (1881): 695–696.
130. C. A. Perkins, “Variation of the Magnetic Permeability of Nickel at Different Temperatures,” American Jour-
nal of Science s3-30, no. 177 (1885): 229.
131. Shelford Bidwell, “On the Lifting Power of Electromagnets and the Magnetisation of Iron,” Proceedings of
the Royal Society of London 40, no. 242 (1886): 494.

302



CURVES OF POWER

(a) Rowland 1873 & 1874

(b) Perkins 1885

Figure 6.27
Though both authors acknowledged that the experimental results indicated an inflexion of the curve for high
magnetic fields, such a feature was not depicted on the actual curves. Source: (a):Henry A. Rowland,The Physical
Papers of Henry Augustus Rowland (Baltimore:The Johns Hopkins Press, 1902), 55;64; (b):C. A. Perkins, “Variation
of the Magnetic Permeability of Nickel at Different Temperatures,” American Journal of Science s3-30, no. 177
(1885): 218–230.

later observers [Fromme, Bidwell, Ewing].132

132. James Alfred Ewing and William Low, “On the Magnetisation of Iron in Strong Fields,” Proceedings of the
Royal Society of London 42 (1887): 208.
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(a) Bidwell 1886

(b) Ewing & Low 1887

Figure 6.28
The inflection of the tail of “Rowland’s curve”. To clearly make visible this feature, a special style of representa-
tion was required: the curve was to be plotted only for the relevant range of high magnetizing forces. Source:
(a):Shelford Bidwell, “On the Lifting Power of Electromagnets and the Magnetisation of Iron,” Proceedings of the
Royal Society of London 40, no. 242 (1886): 486–496; (b):James Alfred Ewing and William Low, “On the Magneti-
sation of Iron in Strong Fields,” Proceedings of the Royal Society of London 42 (1887): 200–210.
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If Müller used curves to support his conclusions, for both Bidwell and Ewing the curves were

an integral part of their conclusion.

When carefully read, Ewing’s articles reveal the new status of the curves not only as ob-

jects of credit (notice in the passage above Ewing’s care in pointing out the observers who had

identified the new feature), but also as irreducible epistemological objects. Ewing considered

that the upward inflection of the “descending limb” in Rowland’s curve was not only a note-

worthy discovery, but also a warning against the hasty reliance on empirical formula fitted to

the curve:

These considerations, if they serve no other useful purpose, show the futility of drawing conclu-
sions as to the initial and ultimate values of the magnetic susceptibility of iron in indefinitely low
and indefinitely high fields, from observations made, as all observations must be made, in fields
of finite magnitude. For this reason it appears that an empirical formula, such as Rowland applies
to the curves of µ and B, must be misleading when pushed beyond the range of actual experi-
ment. If we do not know whether I or B, or either of them, attains a maximum, it is a truism to
say that there is no use in assigning numerical values to that maximum. The results obtained by
extending a formula past the limits of experience have scarcely even a speculative interest if the
basis of the formula is not an intelligible physical theory and its terms are not capable of physical
interpretation.133

While the extrapolation of empirical formulas without a physical basis was meaningless,

“[c]urves of this kind [see Fig. 6.29] suggest several interesting theoretical questions regarding

the results which we should find if we were able to extend indefinitely the range of observa-

tions, both towards vanishingly low and towards indefinitely high values of H [H in frak-

tur]”.134 Instead of simply extrapolating the curve, the graphical trace of the curve suggested

possible continuations with different physical consequences. In Ewing’s major study “Exper-

imental Researches in Magnetism” (1885) which summed his work on the topic, no empirical

formulas nor any graphical representations of formulas could be found. Instead the article was

lavished with 11 plates and 60 plots! Even when adjusted to the length of the article (of almost

133. James Alfred Ewing, “Experimental Researches in Magnetism,” Philosophical Transactions of the Royal Soci-
ety of London 176 (1885): 576-577.
134. Ibid., 574.
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120 pages), this profusion of plots is a signal of a new style of presentation which characterized

Ewing’s scientific publications.135

Figure 6.29
Ewing’s graphical restraint limited the curve only to the experimental points (cf. Fig. 6.27). This graphical choice
was correlated with the “theoretical questions” suggested by such curves. Source: James Alfred Ewing, “Experi-
mental Researches in Magnetism,” Philosophical Transactions of the Royal Society of London 176 (1885): 523–640.

Instead of trying to find empirical formulas, Ewing focused on the curves to find pattern

and features. First, the curves were not singular representations of the experimental data. Ew-

135. To gain a better sense of the scale, I have listed some of Ewing’s articles that used a high number of plots:
60 plots – Ewing, “Experimental Researches in Magnetism”; 34 plots – James Alfred Ewing, “Effects of Stress and
Magnetisation on the Thermoelectric Quality of Iron,” Philosophical Transactions of the Royal Society of London
177 (1886): 361–381; 10 plots – James Alfred Ewing and G. C. Cowan, “MagneticQualities of Nickel,” Philosophical
Transactions of the Royal Society of London. A 179 (1888): 325–332; 41 plots – James Alfred Ewing and Helen G.
Klaassen, “Magnetic Qualities of Iron,” Philosophical Transactions of the Royal Society of London. A 184 (1893):
985–1039.
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ing specifically tried to identify features that would repeat across several sets of measurements

that were exposed to some similar conditions. Then, he would try to set-up the experiment

such that those features of the curve would be made visible (see Fig. 6.28). This new episte-

mological attitude can be seen unfolding if we pay close attention to the language employed

by Ewing. When read carefully, Ewing’s experimental aims were to reduce “effects of a very

complex character” to a behavior that “was clearly marked and perfectly regular” that could

be described as “thoroughly characteristic” of a certain phenomenon or material.136 The 1885

article had a special section on “characteristics of the curve of magnetisation” or “curves of the

same character”.137 Ewing emphasized the ability of his curves to display certain phenomena

in a “decidedly” fashion, or he referred to the “decided character” of a phenomenon. This led

him to create a strong correlation between characters and features of the curve, and phys-

ical properties or phenomena. In the following passages I have underlined this correlation

between mentions of the features or characteristics, the description of those features and

their physical interpretation.

The curves here have the square-shouldered form, which is often found in steel as well as almost
always in annealed soft iron. (The absence of this characteristic in Ring I., as well as its compar-
atively low permeability, was an indication of its being in a somewhat hard state.) […]
A characteristic of the curves of fig. 5 is the remarkably uniform rate at which B changes
with respect to H during a great part of the process of magnetic reversal. After the shoulder of
the descending curve has been turned, by applying a sufficiently strong demagnetizing force, the
quantity dB/dH takes a large and nearly constant value which it retains until a tolerably strong
reversed magnetization has been produced. The steep and nearly straight portion of the curve
which corresponds to this part of the process has, moreover nearly the same gradient in all except
the smallest cycles. The same characteristic will be found in examples of annealed iron, to be
given later, and the gradient in them is of course even steeper than it is here. […]
A reference to fig. 12 will show that the overlapping of one cyclic curve by the next lower curve
(corresponding to a slightly narrower magnetic range) is characteristic of low cycles as well as
of high ones.138

The curves connecting these quantities always form loops as in fig. 2, and the characteristic
mentioned in the last sentence of §11 appears to be quite general. […]

136. Ewing, “Experimental Researches in Magnetism,” 582.
137. Ibid., 574.
138. Ewing and Klaassen, “Magnetic Qualities of Iron.”
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Anoticeable feature in this diagram is… Thischaracteristic is very conspicuous in the early parts
of the operation, but disappears when the magnetisation becomes strong. The same feature is
present in many other diagrams. […]
This characteristic of the curves affords strong confirmation of the idea that retentiveness in soft
iron is chiefly due to a resistance to the rotation of Weber’s molecular magnets of a kind resem-
bling the static friction of solid bodies. […]
Hysteresis affects both experiments, though quite differently, but by examining the two sets of
curves together we can see the general relations of magnetic susceptibility to stress in the fea-
tures which are exhibited by both. […]
Several other experiments of a similar kind have shown that the sloping curves of fig. 14 are
thoroughly characteristic of strained iron. […]
Earlier and later experiments agree in showing that this behaviour, which will now be described,
is thoroughly characteristic of stretched iron. […]
Another characteristic of the curves, obviously attributable to hysteresis, is the comparatively
easy gradient at the beginning of the on curve and again at the beginning of the off curve. […]
The curve already described as characteristic of the effects of stress on a stretched wire in an
inducing field reappears here as equally characteristic of the effects of stress on a stretched wire
when there is no inducing field, and when the magnetism which is varied is wholly residual. […]
…but the general character of the curves is substantially the same in both cases. […]
The general characteristics of the curves are these…
The presence of stress in an annealed wire tends to round off the outlines of the curve of mag-
netisation, so that it resembles somewhat the curve described in fig. 33 as characteristic of a
wire which has been stretched beyond its limit of elasticity, and this happens although the stress
is too small to give the wire any permanent set, or to harden it appreciably. 139

2.5 The Loop

James Ewing is often credited with discovering the phenomenon of hysteresis. As in the case

of most discoveries, the historical record is more complex and its interpretation is affected by

hindsight.140 Several other physicists before Ewing produced what nowadays would be seen

as hysteresis-like loops, but which at the time were described as closed curves or cycles. Such

curves were published by William Thomson for the variation of the magnetism inside a wire

over a cycle of twisting (1879); Emil Cohn for the effects of stress on the current through an

139. Ewing, “Experimental Researches in Magnetism.”
140. For a history of hysteresis see Matthias Dörries, “Prior History and Aftereffects: Hysteresis and ”Nach-
wirkung” in 19th-Century Physics,” Historical Studies in the Physical and Biological Sciences 22, no. 1 (1991): 25–
55.
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iron wire (1879); Emil Warburg for the magnetization cycles (1881); and James Ewing for the

thermoelectric and magnetic effects of stress on and the magnetization cycles (1881-1883).141

What interests us here are not the full details of these experiments but solely their graphical

style of representation.

(a) (b)

Figure 6.30
WilliamThomson’s “exceptional diagrams”. The dotted curve in Fig-a showed “the general character of the effect
of continued periodic applications of positive and negative torsion, through equal angles on the two sides of zero”.
The “general character” of all the experimental curves such as the one in Fig-a was essentialized and abstracted
in Fig-b; this curve showed that “if the experiment was continued long enough, the history of the variation of
magnetization would in every case be represented by a curve like that in the annexed sketch”. Source: William
Thomson, “Electrodynamic Qualities of Metals. Part VII. Effects of Stress on the Magnetization of Iron, Nickel,
and Cobalt,” Philosophical Transactions of the Royal Society of London 170 (1879): 72.

William Thomson’s study from 1879, which was part of his highly influential and often

quoted series of articles on the “Electrodynamic Qualities of Metals”, employed an unusual

high number of plots because the experimental results were more easily and fully summa-

rized graphically.142 In total, twenty-nine diagrams were used to summarize each run of the

141. William Thomson, “Electrodynamic Qualities of Metals. Part VII. Effects of Stress on the Magnetization of
Iron, Nickel, and Cobalt,” Philosophical Transactions of the Royal Society of London 170 (1879): 55–85; Emil Cohn,
“Ueber das thermo-electrische Verhalten gedehnter Drähte,” Annalen der Physik 242, no. 3 (1879): 385–403; E.
Warburg, “Magnetische Untersuchungen,” Annalen der Physik 249, no. 5 (1881): 141–164.
142. As readily acknowledged by William Thomson, these experiments had been carried out by Donald Macfar-
lane, see Thomson, “Electrodynamic Qualities of Metals. Part VII. Effects of Stress on the Magnetization of Iron,
Nickel, and Cobalt,” 56,68. Because this detailed graphical style had not been used inThomson’s previous articles
in the “Electrodynamic Qualities of Metals” series, we are inclined to attribute these diagrams to Macfarlane. For
Macfarlane’s role as Thomson’s assistant see Silvanus P. Thompson, The Life of William Thomson, Baron Kelvin of
Largs (London: Macmillan, 1910), vol.2, 626, 650-652.
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experiment corresponding to different stretching weights, and different initial and final mag-

netizations. The diagrams were used to point out common “interesting features”. Through the

“continued periodic applications of positive and negative torsion” one could obtain a curve

which represented “the general character of the effect” (see Fig. 6.30).143 Emil Cohn had com-

pleted his doctoral dissertation in 1878 at the University of Strassbourg on a topic inspired by

WilliamThomson’s previous work on the thermoelectric properties of wires.144 Cohn’s results

were also published in 1879 in an article which included two experimental plots with closed

curves for the variation of the current through a wire when cyclically stretched (see Fig. 6.31).

While Thomson’s curves were highly regular (in part because they were produced after “con-

tinued periodic applications” of torsion and not after a single cycle), Cohn’s plot connected

with a broken line the experimental points (a common approach in German scientific articles).

Two years later Emil Warburg, who was familiar with Thomson’s and Cohn’s work, pub-

lished a study onmagnetismwhichwas praised byAlbert Einstein as “one of themost beautiful

fruits of his work”.145 While Cohn and Thomson studied the electric and magnetic effects of

stress, Warburg observed the variation in magnetization during a cyclical change in the mag-

netic force. Besides representing graphically his experimental results, Warburg also provided

a physical interpretation of the cycle: the area determined by the closed loop represented the

energy lost during a full cycle of magnetization. While this result was a straightforward con-

sequence of the mathematical theory, the experimental proof that such curves existed made it

relevant. Warburg ended by presenting an analogy of the phenomenon of magnetization with

the friction of solids; the connection was further illustrated by representing the relation be-

tween position and force for a block resting on a rough surface and connected to a tensionless

spring which pulled the block with a force that could increase continuously; after a point, the

force was decreased back to zero (see Fig. 6.32).

143. Thomson, “Electrodynamic Qualities of Metals. Part VII. Effects of Stress on the Magnetization of Iron,
Nickel, and Cobalt,” 72.
144. Dörries, “Prior History and Aftereffects,” 38-39.
145. Einstein quoted in ibid., 40.
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Figure 6.31
Emil Cohn’s “Cyclus” for the change of current against change of stress. Source: Emil Cohn, “Ueber das thermo-
electrische Verhalten gedehnter Drähte,” Annalen der Physik 242, no. 3 (1879): 385–403.

The plots of all three articles represented a cyclical phenomenon and showed that the ther-

moelectric and magnetic properties of a wire did not depend solely on the given deformation

of the wire or the magnetizing force, but also on the previous deformations and magnetiza-

tions. While this finding was associated with the loop-like nature of the cycle, onlyThomson’s

article insisted on trying to identify some “general character”; in Cohn’s and Warburg’s plots

little attention was paid to the symmetric nature of the two curves that formed the loop. It

was only with James Ewing that the study of hysteresis was centered around the hysteresis

loop.

Between 1881 and 1883 Ewing published several studies on the thermoelectric and mag-
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Figure 6.32
The left image showedWarburg’s graphical representation of the experimental data for amagnetization cycle. The
diagram on the upper right represented a simplified cycle for which the area enclosed by the curve, or−

∮
mdK ,

corresponded to the energy during the cycle. The lower right image represented the relation between position
and force for a block resting on a rough surface and connected to a tensionless spring which pulled the block
with a force that could increase continuously; after a point, the force was decreased back to zero. The closed
area of the parallelogram ABCD corresponded to the expended energy. Source: E. Warburg, “Magnetische
Untersuchungen,” Annalen der Physik 249, no. 5 (1881): 141–164.

netic effects of stress, and the magnetization cycle.146 Opposed to Cohn and Warburg, Ewing

took great care to produce highly regular and symmetric experimental curves (see Fig. 6.33).

146. James Alfred Ewing, “Effects of Stress on the Thermoelectric Quality of Metals. Part I.,” Proceedings of the
Royal Society of London 32, no. 212 (1881): 399–402; James Alfred Ewing, “On the Production of Transient Electric
Currents in Iron and Steel Conductors by Twisting Them When Magnetised or by Magnetising Them When
Twisted.,” Proceedings of the Royal Society of London 33, no. 216 (1881): 21–23; James Alfred Ewing, “On Effects of
Retentiveness in the Magnetisation of Iron and Steel,” Proceedings of the Royal Society of London 34, no. 220 (1882):
39–45; James Alfred Ewing, “On the Production of Transient Electric Currents in Iron and Steel Conductors by
Twisting Them When Magnetised, or by Magnetising Them When Twisted,” Proceedings of the Royal Society of
London 36, no. 228 (1883): 117–135; James Alfred Ewing, “On the Magnetic Susceptibility and Retentiveness of
Iron and Steel,” Philosophical Magazine Series 5 16, no. 101 (1883): 381–383.
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As we have shown in the previous section, understanding the features and characteristics of a

curve was an essential component of Ewing’s experimental method. In 1881 he even coined a

name for the new phenomenon: “Hysteresis (ὑστέρησις from ὑστερέω, to be behind)”.147 Ew-

ing’s “hysteresis” did not apply to a specific physical phenomenon (like those described by

Thomson, Cohn, or Warburg) but rather to a general pattern:

To define the new term more precisely, let there be given two qualities of matter, M and N, of
which M is a function of N; then if when N is changed cyclically the corresponding changes of M
lag behind the changes of N, we may say that there is “hysteresis” in the relation of M to N.148

The choice was somewhat surprising because such a phenomenon had already possessed a

name in the case of magnetization: “retentiveness”. However, Ewing defended the new name

because it applied to new instances which “at least apparently, [have] no connexion with mag-

netism”.149 While John Hopkinson saluted Ewing’s choice, “The name is a good one, and has

been adopted”, Warburg was considerably reluctant because he insisted that the phenomenon

was purely magnetic and should not be mistaken with the thermodynamic effects of stress.150

The phenomenon of hysteresis came to be associated with Ewing not only because of his in-

defatigable studies, but also because of his coinage of the name and its style of representation.

An interesting debate over the law of hysteresis emerged in the early 1890s between James

Ewing and the electrical engineer Charles Steinmetz. Steinmetz approached the research on

hysteresis with “the eye of a mathematical physicist who was becoming an engineer”.151 Stein-

metz found an empirical formula with which he could fit Ewing’s experimental data:

∫
HdI = ηBϵ

147. Ewing, “On the Production of Transient Electric Currents in Iron and Steel Conductors by Twisting Them
When Magnetised or by Magnetising Them When Twisted.,” 22.
148. Ewing, “On the Production of Transient Electric Currents in Iron and Steel Conductors by Twisting Them
When Magnetised, or by Magnetising Them When Twisted,” 123.
149. Ibid.
150. Hopkinson, Original Papers by the Late John Hopkinson, 218; Dörries, “Prior History and Aftereffects,” 46.
151. Kline, Steinmetz, 48.
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(a) (b)

Figure 6.33
Ewing’s hysteresis loops for the variation of magnetization with rotation (Fig-a) and the variation of magnetiza-
tion with the magnetizing force (Fig-b). Similarly to Thomson, but different from Warburg and Cohn, the shape
of the curves was particularly important for Ewing. Great care had been taken to obtain well-defined experi-
mental curves. Source: (a) James Alfred Ewing, “On the Production of Transient Electric Currents in Iron and
Steel Conductors by Twisting Them When Magnetised, or by Magnetising Them When Twisted,” Proceedings of
the Royal Society of London 36, no. 228 (1883): 117–135; (b) James Alfred Ewing, “Experimental Researches in
Magnetism,” Philosophical Transactions of the Royal Society of London 176 (1885): 523–640.

Using Ewing’s data, Steinmetz computed that the parameter ϵ had to be equal to 1.6. In 1890,

when he first published this relation, Steinmetz referred to it as a “law of hysteresis”. The

agreement between the observed and calculated values “justifies my considering this coinci-

dence as something more than a mere accident, and, indeed, as an indication of a general law,

although certainly this law might be more complicated that the formula”.152 Steinmetz carried

a series of lenghty experiments to test his law. He remarked that what “had been undertaken,

first, for a strictly practical purpose […] have since developed in scientific research”. His new

experiments, and the great concordance between his formula and measurements, made Stein-

metz increasingly confident that he had found a true physical law. Steinmetz ended his second

article drawing a parallel between his law and the law of gravity – “this law of 1.6th power

I believe is not a differential law, like for instance the quadratic law of gravitation, but an

152. Charles Steinmetz, “Note on the Law of Hysteresis,” Electrician 26 (1891): 261–262.
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integral law like the law of probability with which it seems to be connected in some way”.153

While some of Steinmetz’s colleagues were already speculating about the deeper physi-

cal meaning of the law – A. E. Kennelly declared that he will write ηB1.6 as ηB8/5 because

“it gives us little more hope of being able to understand what the equation means” – some

derided Steinmetz’s presentation of his empirical formula as a law of nature.154 A vitriolic at-

tack came from a British instrument maker who had done research on the magnetization of

transformers:155

Could infatuation go any further? What can be done with a man who prefers to accuse American
founders of casting bad iron rather than abandon a more or less clumsy empirical formula – which
it is ridiculous to call a law – and which was only made to fit the facts as far as they were known.
Is it possible that Mr. Steinmetz is unable to distinguish between a physical law and that miserable
abortion an empirical law?156

While he acknowledged Steinmetz’s empirical formula to be “ofmost practical importance”

especially in calculations connected with transformer design, Ewing challenged the idea that

the formula had any physical meaning – “a formula of this type cannot be admitted to have

any physical significance”.157 Ewing did not reject the physical meaning of the formula be-

cause it was not sufficiently accurate, but rather because it was not accurate in the right way.

While Steinmetz considered his empirical formula to be a “law of hysteresis” because it could

be successfully applied to a wide range of materials, what mattered the most for Ewing was the

“character” of the divergence between the formula and the experimental curves. The formula

was comparable to the limits of experimental accuracy only when the coefficient ϵ was ad-

justed for different intervals of the magnetic field. However, these changes “correspond to the

passage from one to another of the familiar successive stages in the process of magnetization”.

153. Charles Steinmetz, “On the Law of Hysteresis (II),” American Institute of Electrical Engineers, Transactions of
the IX, no. 1 (1892): 711-712.
154. Charles Steinmetz, “On the Law of Hysteresis,” American Institute of Electrical Engineers, Transactions of the
IX, no. 1 (1892): 52-53.
155. Kline, Steinmetz, 57.
156. S. Evershed, “A Key to All Magnetism,” The Electrical Journal 29 (1892): 670.
157. Ewing and Klaassen, “Magnetic Qualities of Iron,” 1018.
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Each stage might be well approximated by a carefully chosen value of the coefficient ϵ, but

the overall pattern was left unexplained, and it was these “well-marked changes of gradient

curve which characterize the magnetizing”.158 The formula failed in describing what mattered

the most for Ewing – the defining features of the magnetic curve.

By 1900 Steinmetz had to acknowledge defeat –

we know that the hysteresis loss follows the 1.6th power, but we know that is not an inherent,
physical law. It must sometimes deviate from the law. It is a somewhat complex phenomenon
which can be closely represented by the 1.6th power, but it is not a physical law.159

When testing the law, Steinmentz had concentrated not so much on expending the range of

the magnetic fields but on varying the type of materials. His initial concern was to prove that

“this law does not depend upon a particular constitution of the material, but is of more gen-

eral meaning”.160 His initial excitement of having had discovered a physical law was based in

particular on the application of his law to a wide array of materials. When confronted with

the potential tension between his law and Ewing’s theory, Steinmetz shrugged it of – “my aim

was to gather facts, being convinced that based upon a large number of facts, a theory will

be found in due time to explain them.”161 While Ewing’s molecular theory of magnetization

predicted that the hysteresis should initially increase very rapidly and then slowly in the por-

tion of saturation, Steinmetz’s formula predicted that “hysteresis seems to follow the same law

over the whole range of magnetization”.162

Though he did not employ any formulas, Ewing did not give up all hope to construct

a theory of the hysteresis cycle. In 1890 he published an article on “Contributions to the

Molecular Theory of Induced Magnetism” in which he presented his experimentations on “a

model molecular structure consisting of a large number of short steel bar magnets, strongly

158. Ewing and Klaassen, “Magnetic Qualities of Iron,” 1018.
159. Charles Steinmetz, “Discussion,” American Institute of Electrical Engineers, Transactions of the XVII (1900):
332.
160. Steinmetz, “On the Law of Hysteresis (II),” 716.
161. Steinmetz, “On the Law of Hysteresis,” 58.
162. Ibid., 28.
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magnetised, each pivoted like a compass needle upon a sharp vertical centre and balanced

to swing horizontally”.163 The bar magnets were then exposed to an external magnetic field,

and their different arrangements were observed. Ewing associated their behavior with three

different “stages” in the magnetization of iron that he defined based on the defining features of

the magnetic curve: its concavity which inflected in a linear portion which was then followed

by an asymptotic saturation (see Fig. 6.35).

Figure 6.34
Hysteresis curves constructed after the experiments with the model of pivoting magnetic bars, and the curve
constructed after the model had “all the general character of the curve of magnetization in actual iron”. Source:
James Alfred Ewing and Helen G. Klaassen, “Magnetic Qualities of Iron,” Philosophical Transactions of the Royal
Society of London. A 184 (1893): 985–1039.

Shortly after this theoretical article, Ewing made some experiments with the actual model,

using sometimes up to 130 little magnets. By measuring the aggregate magnetic moment as a

function of the magnetizing current he was able to obtain a curve “which has all the general

163. James Alfred Ewing, “Contributions to the Molecular Theory of Induced Magnetism,” Proceedings of the
Royal Society of London 48, no. 292 (1890): 344.
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Figure 6.35
Each stage in the magnetic arrangements of the magnetic bars was associated with a different portion and feature
of the magnetic curve. Stage a corresponded to the inflexion point identified by Rowland and Stoletow; stage b
corresponded to the linear portion of the curve identified by Lenz-Jacobi; stage c corresponded to the saturation
part of the curve pointed out by J. Müller. Source: James Alfred Ewing, “Contributions to the Molecular Theory
of Induced Magnetism,” Proceedings of the Royal Society of London 48, no. 292 (1890): 342–358.
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character of the curve of magnetization in actual iron”.164 After carrying the pivoted magnets

through a complete magnetization cycle he obtained loops that showed that “the behaviour of

the model agrees in all respects with that of a magnetic metal” (see Fig. 6.34).165 For such an

interpretation to hold the general features of the curve were essential:

Observations made on such a model are necessarily somewhat rough, and too much stress must
not be laid on particular features of the curves. But in several repetitions of these experiments the
same general distinction has always been apparent in the behaviour of the model after one and
the other mode of preliminary treatment, a distinction which, as we have seen, forms a striking
analogue to what is observed in actual iron or steel.166

Ewing’s reasoning and use of a model was not far from that of Maxwell. Ewing never claimed

that his “molecular theory of magnetization” was fully developed and finished theory, but

rather that it allowed one “to explain some characteristic manifestations of magnetic hystere-

sis”.167

Ewing’s analysis of hysteresis was almost entirely graphical. Ewing employed an auto-

matic “magnetic curve tracer” that he had designed in the early 1890s (the instrument was

built by Nalder Bros. and Co.) to produce photographic records of the hysteresis loops (see

Fig. 6.36).168 Ewing used the curve tracer to produce almost cinematic diagrams of the “the

superposed magnetizations in soft iron”, hysteresis curves for cycles of different time peri-

ods, or to show “the projection of the extremities of each cyclic curve over the rising limb

of the cycle next above it” (see Fig. 6.37). For Ewing the study of magnetism, and especially

that of hysteresis, could not be reduced any longer to simple table of measurements or formu-

las. No numerical table could make visible the subtle features brought out by Ewing’s curves,

and no formula could accurately span their entire range. As such, the magnetic curves and

the hysteresis loops became the epistemological objects through which Ewing carried out his

164. Ewing and Klaassen, “Magnetic Qualities of Iron,” 1036.
165. Ibid., 1037.
166. Ibid., 1039.
167. Ibid., 985.
168. A Heyland, “The Circle Diagram,” in The Electrician (James Gray, 1903), 708–709.
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analysis. Experimental results were now to be interpreted solely in terms of the changes and

variations of the shape of the hysteresis loops. This endeavor could be profitable only because

a graphical language had emerged in which one could both trace the experimental results and

translate them into well established and stable physical meanings.

3 CONCLUSION

The dramatic change in the use of graphical representations in the practice of physics can be

observed at a glance if wewere to follow the entry on “Magnetism” from the various editions of

the Encyclopaedia Britannica. In the 8th edition (1853-1860), among the 118 images in David

Brewster’s article there were no experimental plots. In the 9th edition (1875-1889), among

the 49 images of George Chrystal’s article there were only four experimental plots, three of

which were taken from Rowland’s articles (Chrystal superimposed on top of Rowland’s curves

for magnetization Stoletow’s curve of susceptibility); the fourth plot, which also represented

magnetic curves, was taken from an article by the German physicist Felix Auerbach. In com-

parison, Chrystal’s article on “Electricity” included 58 images among which there was only

one experimental plot drawn by F. Kohlrausch.169 However, in the 11th edition (1910-1911)

Shelford Bidwell’s article on “Magnetism” included among its 29 images 12 plots, all from

British or Japanese scientists.170 Similarly, the article on “Electromagnetism” written by John

A. Fleming had 6 images among which 3 were plots (all taken from Ewing’s articles).

One could be easily deceived by such numbers in believing that they are solely a reflection

of a general trend. In the end, all scientific fields relied heavily on graphical representations by

the end of the 19th century. Thus, should we not consider this as a consequence of a general at-

169. The article also included one of Tait’s thermo-electric diagrams from 1873.
170. As will be discussed in the next chapter, in the second half of the 19th century there was a strong connection
between English and Japanese engineers. Ewing had served until 1883 as professor of mechanical engineering
at the Tokyo Imperial University. See W. H. Brock, “The Japanese Connexion: Engineering in Tokyo, London,
and Glasgow at the End of the Nineteenth Century,” The British Journal for the History of Science 14, no. 3 (1981):
227–244; Graeme Gooday and Morris F. Low, “Technology Transfer and Cultural Exchange: Western Scientists
and Engineers Encounter Late Tokugawa and Meiji Japan,” Osiris 13 (1998): 99–128.
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Figure 6.37
“Magnetic curve-tracer curves”. Ewing used his curve-tracer to study “the superposed magnetizations in soft
iron”, hysteresis curves for cycles of different time periods, or to show “the projection of the extremities of each
cyclic curve over the rising limb of the cycle next above it”. Source: James Alfred Ewing and Helen G. Klaassen,
“Magnetic Qualities of Iron,” Philosophical Transactions of the Royal Society of London. A 184 (1893): 985–1039.
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titude towards the role and value of graphical representations within scientific practice? This

chapter has endeavored to prove the opposite claim: the curves used in the study of electro-

magnetism were drawn in reaction to previous representations within the field. Rather than

being a consequence of a general scientific practice of plotting experimental results, they were

one of the main causes for which such a practice spread in the first place. Graphical represen-

tations came to be valued first because of the specific problems to which they were applied;

only as the number of such paradigmatic examples multiplied did graphical representations,

as a general method of presenting experimental results, came to be valued.

There are a several important trends that have been established in this chapter:

1. In the mid-19th century, the publication of experimental plots was mainly a German

activity. These plots were mainly used to display “at a glance” the evidence for the conclu-

sions of a study; the plots would either compare sets of measurements or show the agreement

between a formula and the experimental results. Because they were neither the evidence nor

the conclusion, these plots played only a local role within the economy of the article: they

were almost never reproduced in publications which cited the findings of the original study.

In most cases, the experimentally controlled variables were plotted on the abscissa and the

investigated quantities on the ordinates. Though this choice might seem harmless, as I have

showed, it did have important consequences in terms of the empirical formulas with which

one could fit the experimental curves. Both Frölich and Rowland took an extra step in finding

a non-trivial choice of variables. The fact that both of them emphasized the merits and origi-

nality of their choice suggests that this was not a common practice – which is to be expected

as long as the plot was not used to determine an empirical formula, but only to display the

agreement between the experimental results and some already known formula. In comparison

to their German colleagues, mid-19th century British physicists made a muchmore limited use

of graphical representation. However, because their interest was not in establishing empirical

formulas, when they did appeal to plots, it was not to show the direct concordance between ex-
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periments and formulas but to reveal and establish some general characteristics of the curves,

as it was shown in the case of Maxwell, Hopkinson and Ewing.

2. Though J. Müller’s plot fits well in the trend described above, several important factors

played a role in themultiplication of his curve. First, the shape of the curve embodied his novel

experimental finding that the magnetization of an iron bar could be saturated. The curve was

not only a representation of the results, but also a rebuttal of the linear Jacobi-Lenz law. As

such, the curve more than his measurements or his empirical formula became the take-away

conclusion of his study. Second, Weber also relied on the shape of Müller’s curve as evidence

for his molecular theory of magnetism. While the formula derived from his theory could have

broadly approximated the experimental measurements, what mattered the most (especially for

someone like Maxwell) was the ability of the formula to reproduce the saturated region of the

curve. These experimental and theoretical meanings assured the fame of Müller’s curve and

its reproduction in multiple German textbooks.

3. Through Maxwell’s Treatise, the curve of magnetization was extended from an experi-

mental curve into a paradigmatic curve through which a whole theory could be represented

and analyzed. For Maxwell, it was not the precision with which Weber’s theory could agree

with the experimental results that mattered, but rather the ability of the theory to reproduce

the essential features of the experimental results, i.e. the features defined through the curve.

Thus the curve, rather than the formula, became the bridge between experiment and theory.

The paradigmatic status of the magnetic curve is revealed in particular in the work of Rowland,

Hopkinson and Ewing. Rowland, who was familiar with Maxwell’s Treatise, had decided to

represent his experimental results through a magnetization curve exactly because it engaged

directly with Weber’s theory of magnetism as graphically presented by Maxwell. This repre-

sents a significant departure from the trend described above (1.), or from the Rowland’s use

of the permeability curve to find an empirical formula. In contrast, Stoletow, who had been

trained in Kirchoff’s laboratory, chose to represent his results employing the usual convention
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described above. For Hopkinson, the main appeal of the characteristic curve of a dynamo was

its direct and distinct connection to the magnetization curves from Maxwell’s Treatise.

4. By noticing the paradigmatic status of the magnetic curve, we were able to identify a

phenomenology of the curve (represented especially by Ewing). In the case of most experi-

mental curves, one was focused on the variation of a quantity in terms of another. In terms

of gestures, one was following the curve by moving along it. The second common use was

to have multiple representations of curves on the same plot; in this case one was gesturing

along a vertical to compare the values of the curve for the same abscissa. However, in the

case of these types of readings, the curve did not have a long term impact on someone’s mind.

Ewing’s method of reading curves was focused on shapes, patterns, characters, and features.

One was not following local variations of a value (the motion of the index along the curve), but

shapes (kinks). While in the mathematical reading of a curve one was focused on special points

(points of inflexion, maxima, minima, etc.), in the phenomenological reading one was focused

on whole regions; instead of following the variation of a value one followed the mutation of a

curve – i.e. the change of one shape into another (see Fig. 6.37).

5. By analyzing the choice of variables, we were able to provide a better understanding of

what role an experimental curve could play for a historical actor: 1. in most early cases the

experimentally controlled variables were plotted on the abscissa and the investigated quan-

tities on the ordinates (e.g. Meyer & Auerbach, Stoletow, E. Cohn, etc.); 2. in a few cases

one employed a clever choice of variables which could produce a regular and finite curve that

could be easily fit to an empirical formula (Frölich, Rowland); 3. starting with Müller’s plot

and through the work ofWeber andMaxwell, the magnetization as a function of the magnetiz-

ing force came to play a dominating role (see Fig. 6.38). These different roles of experimental

curves can suggest a broader analytical division of the graphical:

Graphical Representation: the graphical is understood as a translation of the non-graphical;

the plots or the experimental curves are a translation of a numerical table or algebraic formula.
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It is an equivalent mode of presentation which has the advantage of showing “at a glance” the

evidence or conclusions of a study. Understood solely as a translation, the graphical representa-

tion has a low epistemological status having the purpose of facilitating an easy understanding

for the reader.

Graphical Method: the graphical is understood as an operation; through a series of con-

structions and measurements one can determine the coefficients of a formula or the value

of certain quantities. For example, by graphically manipulating the characteristic curve one

could answer all practical questions about a dynamo (see the concept of diagrammatic holism

introduced above). Understood under these terms, the graphical method could be used by en-

gineers to challenge the epistemological claims of theoretical science. To the generality and

rigor of algebra, the engineer opposed the practical generality of the graphical methods which

could take into account complex configurations without requiring the sort of approximations

and simplifications necessary to manipulate an algebraic relation.

Graphical Feature: the graphical is understood as an association between graphical repre-

sentations which reveals graphical features or graphical characteristics. While the graphical

representation, as defined above, is a translation of a different type of representations (a nu-

merical table or formula), the graphical feature comes to be associated with a physical state

or process. While the graphical representation is exhausted in displaying the agreement be-

tween experiment and theory (and thus, it is never further reproduced), the graphical feature

essentializes the physical phenomenon and becomes the mean through which experimental

and theoretical results are interpreted and represented.

327



· 7 ·
Squared Paper

Graphic methods of representing functions have become universal in the last generation. […]
Graphic methods of one form or another are now found in the courses in mathematics, at least
in the Realanstalten, in all countries, having gradually made their way from engineering, through
thermodynamics and general physics, to pure mathematics.1

The use of graphical methods in elementary algebra teaching is universal and entirely a 20th-
century development.2

A momentous reform in the teaching of mathematics at the secondary school level took

place in the first decade of the 1900s. The teaching of mathematics as a rigorous, deductive

system was challenged by a new approach based on intuition and experimentation. Some of

the reformers went so far as suggesting that mathematics itself was an experimental science

which should be taught in a similar fashion to the physical sciences and should make use of

“mathematical laboratories”. The reform took place almost concomitantly in Britain, France,

Germany and the US, and spread to several other countries through the activity of the Interna-

tional Commission onMathematical Instruction. The spirit of the reformwas best embodied by

andmost often exemplified through the use of graphical methods, especially the graphical rep-

resentation of a function on squared paper. Such a graphical method was seen as correlating

the three main parts of school mathematics – arithmetic, geometry and algebra – which until

then were commonly taught as independent and non-intersecting topics; as connecting the

teaching of mathematics to the physical sciences because graphs were commonly employed

1. David Eugene Smith, “Intuition and Experiment in Mathematical Teaching in the Secondary Schools,” in
Proceedings of the Fifth International Congress of Mathematicians, ed. Ernest William Hobson and A. E. H Love,
vol. 1 (Cambridge: University Press, 1913), 614, 622.

2. Charles Godfrey, “Methods of Intuition and Experiment in Secondary Schools,” in Proceedings of the Fifth
International Congress of Mathematicians, ed. Ernest William Hobson and A. E. H Love, vol. 1 (Cambridge: Uni-
versity Press, 1913), 641.
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in experimental work and in determining empirical laws; as making mathematics more acces-

sible to the average student because it appealed to his intuition and it was connected to the

graphs that students encountered on a daily basis in newspapers; and not the least, as prepar-

ing students for technical careers by allowing them to learn more easily advanced topics such

as calculus. These various roles distinguished the late 19th and early 20th century graphical

representation of a function on squared paper from the geometrical representations, interpre-

tations or illustrations of algebraic expressions employed in the previous centuries. Though

backed by the same underlying mathematical idea, graphical and geometrical representations

were part of different paper worlds.3

1 REFORMING MATHEMATICS

The reform of mathematical education in the first decade of the 20th century was spearheaded

by an address delivered by John Perry in 1901 at the Glasgowmeeting of the BritishAssociation

for the Advancement of Science. Perry faulted current teaching practices which valued more

than anything logical rigor and trained students mainly to excel in their examinations. He

envisioned instead a program which was aimed at students with “average intelligence” and

which cultivated their love for mathematics by providing them with “mental tools” to tackle

real-life problems. While many of Perry’s recommendations were considered to be too radical,

a few of themwere pushed forward by a special committee and a year later they were endorsed

by the examination syndicates of the Universities of Cambridge, Oxford and London. Among

the momentous changes was the replacement of Euclid based geometry that dominated British

schools throughout the 19th century. In the words of the early 20th century historian Florian

Cajori, as a result of Perry’s address “Euclid was dethroned in England…”.4

3. The term is borrowed from Warwick’s study of the “paper world” of Cambridge mathematics in Warwick,
Masters of Theory : Cambridge and the Rise of Mathematical Physics, esp. 168-169.

4. Florian Cajori, A History of Elementary Mathematics: With Hints on Methods of Teaching (Macmillan, 1917),
292.
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The teaching of geometry based on Euclid’s Elements had previously come under scrutiny

in the 1870s after a Schools Inquiry Commission from 1868 inquired if “Euclid is a good text

book for beginners” and “whether boys should not commence with something easier and less

abstract”.5 The Commission’s inquiry prompted James Wilson, the mathematical master at

Rugby, to publish an alternative textbook to Euclid which he attacked for “his artificiality,

the invariably syllogistic form of his reasoning, the length of his demonstrations, and his un-

suggestiveness”.6 Wilson, together with other masters and mathematicians, formed an Asso-

ciation for the Improvement of Geometrical Teaching (AIGT) which by 1873 numbered more

than a hundred members. Over the next two decades the Association put forward a revised

syllabus and textbook. Though they generated a heated debate, these early attempts failed

to produce concrete changes – most examination bodies, including those of Oxford and Cam-

bridge, accepted original proofs only if they were based on Euclid’s axioms and order of proof.7

Furthermore, textbooks that closely followed Euclid remained the norm.

While the 1870s debate over Euclid remained mostly academic and focused on questions

regarding the system of axioms and order of proofs, the later debate engaged with broad peda-

gogical arguments about the role of mathematics.8 The impact of John Perry’s address is more

than unusual given the fact that hewas only a professor of mechanical engineering and applied

mathematics. How could an engineer successfully persuade a room full of mathematicians?

5. Schools Inquiry Commission, vol. 1 (GE. Eyre & W. Spottiswoode, 1868), 30-31. For a comprehensive history
of the debates over the use Euclid in 19th century British see Joan L. Richards, Mathematical Visions: The Pursuit
of Geometry in Victorian England (Boston: Academic Press, 1988), 161-200; W. H. Brock, “Geometry and the
Universities: Euclid and His Modem Rivals 1860–1901,” History of Education 4, no. 2 (1975): 21–35; Michael Haydn
Price, “The Reform of English Mathematical Education in the Late Nineteenth and Early Twentieth Centuries”
(Thesis, University of Leicester, 1981). For the role of the Commission in starting the debate over Euclid see
Brock, “Geometry and the Universities,” 25; Price, “The Reform of English Mathematical Education in the Late
Nineteenth and Early Twentieth Centuries,” 84-85.

6. James Maurice Wilson, Elementary Geometry (Macmillan, 1869), vii.
7. Brock, “Geometry and the Universities,” 28.
8. Most of the AIGT members were interested mainly in improving the formal training in deductive geometry

and showed little interest in practical geometry or geometrical drawing, see Brock, “Geometry and the Univer-
sities,” 26; Price, “The Reform of English Mathematical Education in the Late Nineteenth and Early Twentieth
Centuries,” 91, 342; Richards, Mathematical Visions, 173. Brock has identified only two members of the AIGT
who could “stand out for technical geometry and, equally significantly, for the admixture of arithmetical and
algebraic matter”, Brock, “Geometry and the Universities,” 34n51.
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1.1 The Education of an Engineer

As stated in various autobiographical notes, John Perry attended the Model National School

in Belfast until the age of fourteen where he was taught well how to draw “in the Science

and Art Department way – descriptive geometry, mechanical drawing, shading in crayons,

drawing from models, and even landscape painting”.9 After leaving school he apprenticed for

seven years at the Lagan Foundry, and between 1868 and 1870 he attended the engineering

classes of James Thomson at Queen’s College in Belfast from where he graduated with an

engineering degree.10 From 1870 to 1873 he taught at Clifton College in Bristol, where he es-

tablished “a school workshop and a physics and mechanics laboratory”, “the first workshop in

connection with a public school”.11 In 1874 he became William Thomson’s assistant in Glas-

gow who recommended him for the professorship of mechanical and civil engineering at the

Imperial College of Engineering in Tokyo.12 Here he joined the physical laboratory of William

E. Ayrton (1847-1908), the professor of natural philosophy and telegraphy since 1873 and a

former pupil of William Thomson. For the next two decades Perry and Ayrton became close

collaborators on scientific topics in electrical engineering and on the reform of engineering

education.13

While the Tokyo laboratory was closely modeled after Kelvin’s and Rankine’s Glasgow

laboratories, Ayrton and Perry experimented with the curriculum and their teaching meth-

9. Report of the Special Committee on the Subjects and Modes of Instruction in the Board’s Schools, 89; for Perry’s
biography see Gooday, “Perry, John (1850–1920).”
10. See John Perry’s kind obituary of James Thomson in The Engineer (May 13, 1892), 413.
11. John Perry, England’s Neglect of Science (Unwin, 1900), 73.
12. Brock, “The Japanese Connexion”; Y. Takahashi, “William Edward Ayrton at the Imperial College of En-

gineering in Tokyo-the First Professor of Electrical Engineering in the World,” IEEE Transactions on Education
33, no. 2 (1990): 198–205. In 1894-1895 Perry criticized William Thomson’s estimate of the sun’s age; for the
exchange between the two see Smith and Wise, Energy and Empire, 544-548.
13. For a comprehensive study on the reform of engineering education see R. A. Buchanan, “The Rise of Sci-

entific Engineering in Britain,” The British Journal for the History of Science 18, no. 2 (1985): 218–233; for Perry
and Ayrton’s reform of engineering education see D. W. Jordan, “The Cry for Useless Knowledge: Education for
a New Victorian Technology,” Physical Science, Measurement and Instrumentation, Management and Education -
Reviews, IEE Proceedings A 132, no. 8 (1985): 587–601; Brock, “Building England’s First Technical College”; for the
examples of the collaboration between Perry and Ayrton see Gooday, The Morals of Measurement, 153-160.
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ods.14 The Tokyo laboratory was hailed in Britain as “the only college in which telegraphy

is systematically taught” and “the only English-speaking technical university”.15 If mid-19th

century British engineering schools were less systematized and centralized in comparison to

their counterparts in France, Germany or Switzerland, Japan provided a “quasi-colonial ex-

periment in a radically new scheme for state-funded technical education and research”.16 The

pedagogical methods and organization “rehearsed” in Japan were brought back to Britain by

Ayrton and Perry.17

Returned to Britain in 1878, Ayrton became professor of applied physics at the newly

founded City and Guilds of London Institute which provided evening lectures for artisans. In

1883 the Institute was reorganized into Finsbury College which now provided day and evening

classes in electrical, chemical, mechanical engineering and applied art. Ayrton was joined at

Finsbury College by John Perry as professor of applied mechanics and by Henry Edward Arm-

strong as professor of chemistry.18 Together the three men developed a particular pedagogical

approach – “the Finsbury method”, as it has been called by the historian William Brock. The

method consisted of five features: 1. teaching was supposed to be analytic (or “heuristic”)

rather than deductive; 2. the teaching was carried out in particular through the laboratory

and the workshop rather than just the lectures; 3. it developed a “practical” mathematical

syllabus based on the specific needs of scientific and engineering practice rather than abstract

mathematics; 4. all students in the first-year took a common course which included chemistry,

mathematics, mechanical drawing, electrical and mechanical engineering, French or German;

14. Graeme Gooday, “Teaching Telegraphy and Electrotechnics in the Physics Laboratory: William Ayrton and
the Creation of an Academic Space for Electrical Engineering in Britain 1873-1884,” History of Technology, no. 13
(1991): 85-90.
15. Gooday, “Teaching Telegraphy and Electrotechnics in the Physics Laboratory,” 93; on Rankine’s teaching

methods see David F. Channell, “The Harmony of Theory and Practice: The Engineering Science of W. J. M.
Rankine,” Technology and Culture 23, no. 1 (1982): 39–52.
16. Gooday and Low, “Technology Transfer and Cultural Exchange,” 102.
17. Brock, “The Japanese Connexion,” 239.
18. Brock, “Building England’s First Technical College”; Jordan, “The Cry for Useless Knowledge”; Gooday,

“Teaching Telegraphy and Electrotechnics in the Physics Laboratory”; Graeme Gooday, “Precision Measurement
and the Genesis of Physics Teaching Laboratories in Victorian Britain,”TheBritish Journal for the History of Science
23, no. 1 (1990): 25–51.
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5. Finsbury College administered its own examination rather than use outside examinations

based on a less than useful school curricula.19 Some of these key principles are best illustrated

in the textbooks published by John Perry.

In 1883 Perry published his first textbook, Practical Mechanics, that aimed “to put before

non-mathematical readers a method of studying mechanics” which had been developed and

tested “at the Imperial College of Engineering in Japan, and in other places”. The core idea was

that “all experimenting must be quantitative” and the technical instruction should be based

not on first principles and proofs, but on experience and experimentation. The theoretical

generality of “elementary principles” was to be supplanted by practical generality as students

were taught “a method of studying whatever phenomena happen to come before his eyes”.20

Perry invoked the background of his students to justify his method:

Now, the standpoint of an experienced workman in the nineteenth century is very different from
that of an Alexandrian philosopher or of an English schoolboy, and many men who energetically
begin the study of Euclid give it up after a year or two in disgust, because at the end they have
only arrived at results which they knew experimentally long ago.21

Instead of starting his teaching from “elementary principles” as if his students were “school-

boys of no experience”, Perry began from his students’ “natural standpoint, the standpoint

given him by all his experience”. In this way the teacher could take “advantage of the fact that

his pupil may already possess an excellent foundation on which a superstructure of knowl-

edge may be built”. Thus, “the most illiterate men may be rapidly taught practical mechanics

if we take the right way to teach them”.22 The “Preface” to the Practical Mechanics illustrated

so well Perry’s core pedagogical ideas that it was later included in his collection of essays on

England’s Neglect of Science (1900).23

Though Perry’s Practical Mechanics received positive reviews in the English Mechanic and

19. Brock, “Building England’s First Technical College,” 166-168.
20. For the concept of practical generality see also Chapter 6.
21. John Perry, Practical Mechanics (1883), viii
22. Ibid., v-ix.
23. Perry, England’s Neglect of Science, 110-113.
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the Scientific American it was scathingly attacked in Nature by Dr. J. F. Main (a Trinity College

alumnus and tenth wrangler in the Cambridge Mathematical Tripos of 1876) who considered

the book to have failed in “logical arrangement and clearness and exactness of expression”.24

The reviewer targeted Perry’s core pedagogy – proofs based on quantitative experiments in-

stead of deductive reasoning. Main derided that

the empire of the Greeks in geometry must give place to the supremacy of the intelligence of the
workingman, and even Euclid himself must fall from his high estate to be compared and contrasted
with the modern schoolboy.25

While his first textbook from 1883 was met with some ridicule (as Perry himself acknowl-

edged), fifteen years later Perry published a new textbook on Applied Mechanics (1898) which

received a laudative review in Nature from James Alfred Ewing who titled his piece “Applied

Mechanics, and the way to teach it”.26 The textbook was based on the course taught at Fins-

bury College and was aimed “for the use of students who have time to work experimental,

numerical and graphical exercises illustrating the subject”.27

The use of graphical exercises on squared paper became a core feature of the Finsbury

method.28 In 1882, before the new building of Finsbury College was opened, Ayrton and Perry

presented their pedagogical method of using squared paper:

Students must be early taught to graphically express the results of their work on squared paper;
indeed, it is wonderful what an insight into analytical geometry even a non-mathematical student
can obtain from a judicious use of squared paper. Hence it has been necessary to have prepared
for the students at the Finsbury Technical College a special form of squared paper, for drawing
curves on, which combines accuracy with about the sixth of the price of ordinary squared paper

24. See English Mechanic and World of Science 36 (Feb 23, 1883): 560; Scientific American 48 (Apr 21, 1883): 250.
25. J. F. Main, “Perry’s Practical Mechanics,” Nature 27 (1883): 456.
26. For Perry’s reaction to the reception of his first textbook see John Perry, Applied Mechanics (New York:

Van Nostrand, 1898), iv; James Alfred Ewing, “Applied Mechanics, and the Way to Teach It,” Nature 57 (1898):
313–314. Ewing shared a similar background with Perry: he had studied physics under Peter Guthrie Tait at the
University of Edinburgh, and worked on telegraph cables for William Thomson and Fleeming Jenkin. In 1878
Ewing replaced Perry as professor of mechanical engineering at the Imperial College of Engineering in Tokyo.
Since 1890 Ewing was professor of mechanism and applied mechanics at the University of Cambridge.
27. Perry, Applied Mechanics.
28. Brock, “The Japanese Connexion”; Brock and Price, “Squared Paper in the Nineteenth Century.”
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such as is used by engineers.29

Because it allowed even the “non-mathematical student” to gain “wonderful” insights, the

squared paper was an important ally for Perry’s brand of practical mathematics. The engineer

deplored that “so many people should be ignorant of the great uses to which a sheet of squared

paper may be put”.30

On numerous occasions, Perry and Ayrton tried to take full credit for transforming the

use of squared paper from a tool “for the recording of results of original experiments” into a

pedagogical tool for training future practitioners:

Prior to the commencement of the courses at the Finsbury Technical College, in 1879 squared
paper was practically used in England only for the recording of results of original experiments.
And as these results, rather than the training of the experimenter, were the most important part
of the investigation, the paper was very accurately divided, and sold at a high price totally out
of the reach of students. It became, therefore, necessary to have squared paper specially made
cheap, and at the same time sufficiently accurately divided for students’ purposes; and such paper,
machine-ruled, can now be obtained at less than a farthing per sheet, or at about one-thirtieth of
the cost of the older squared paper.31

A similar account was presented by Perry, who traced the use of squared paper back to the

Tokyo laboratory:

Before 1876 sheets of squared paper were very expensive; they were only used by a few people in
important work. In that year Prof. Ayrton and I began to use it extensively in Japan, and when
we returned to London and introduced at the Finsbury Technical College our methods of teaching
Mechanical and Electrical Engineering and laboratory work which have now become so common,
we saw that one essential thing was the manufacture of cheap squared paper. It can now be bought
for 7d. a quire instead of 8d. per sheet. Our students treat it almost like scribbling paper. This
year the candidates in three important subjects of the Science and Art Department will, for the
first time, write their answers upon books of squared paper. It is of importance that the student
should use many sheets of squared paper, use them lavishly. It used to be that many men knew
how squared paper might be used, but they really never used it, or if they did use it, they used it

29. William Edward Ayrton and John Perry, “Some Remarks on the Technical Education of an Electrical Engi-
neer,” Journal of the Society of Telegraph Engineers and of Electricians 11, no. 43 (1882): 397-398.
30. Perry, Practical Mechanics, 7.
31. William Edward Ayrton, Practical Electricity: A Laboratory and Lecture-Course (London: Cassell, 1887), 30.
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not for solving problems but for illustrating methods of solving problems.32

Indeed, a visitor of the Tokyo laboratory also remarked that the majority of students in the

drawing office “were reducing observations and drawing curves on squared paper”.33

1.2 The Mind of the Student

Between 1896 and 1913, John Perry acted as the professor of mathematics and mechanics at

the Royal College of Science (which became part of the Imperial College from 1907).34 Dur-

ing this period he delivered a series of lectures on “practical mechanics” to working men and

published a popular textbook on the Calculus for Engineers (1896). Most significantly, Perry

started extending his views on engineering education to general education; he even put for-

ward the bold claim that “the proper method of teaching any subject is through some kind

of experimental work”.35 But how could an engineer persuade fellow mathematicians or sec-

ondary school teachers that his views on “practical mathematics” were applicable not only to

technical students, but also to students that would pursue some liberal profession? Simply

invoking the practical utility of such an education would not have been enough to make it ac-

ceptable for a general education. What made Perry’s rhetoric so effective was that he did not

advocate only that all students should acquire a practical or technical knowledge, but rather

that such knowledge was best suited for all (or at least, most) students.

For most of the 19th century, the purpose of a liberal or general education was that of

training, cultivating, disciplining or forming the mind. This “formal discipline” was often based

on a “muscular model of mental capacity” (as referred to by the historian Fritz K. Ringer)

because it described the mind as a muscle which can be trained and strengthened through

32. John Perry, Practical Mathematics: Summary of Six Lectures Delivered to Working Men (London: Printed for
H.M. Stationery, 1899), 27.
33. “The Physical Laboratory of the Imperial College of Engineering, Tokei,” Japan Weekly Mail, 1878, 1130.
34. Gooday, “Perry, John (1850–1920).”
35. Perry, “The Teaching of Mathematics,” 19.
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“mental gymnastics”.36 The form of education ruled over its content because what mattered

was not the acquisition of some particular or specialized “useful knowledge”, but rather the

overall formation and strengthening of the intellect.

The true view of education, on the contrary, is to regard it as a course of training. The youth in a
gymnasium practises upon the horizontal bar, in order to develop his muscular powers generally;
he does not intend to go on posturing upon horizontal bars all through life. School is a place
where the mental fibres are to be exercised, trained, expanded, developed, and strengthened, not
’crammed’ or loaded with ’ useful knowledge’ (Jevons 1877, 197).37

The acquisition of knowledge was similarly opposed to mental development because the goal

of a general education was “to form mental muscle and not mental fat”.38

The central metaphor of a “formal discipline” based on “mental gymnastics” valued ped-

agogical approaches which emphasized the role of struggle and hardship in the acquisition

of knowledge. For example, William Whewell, one of the main early 19th century defenders

of the place of mathematics within a liberal education, rejected the use of Continental alge-

braic and analytical tools which facilitated the solution of certain problems because “brief and

easy methods of arriving at each result” could provide “no exercise of intellectual vigour and

power”. “Struggle” was “the very condition and essential point of intellectual discipline”.39 Au-

gustus de Morgan replied in a similar vein when he acknowledged that students would prefer

36. “A related characteristc of the French case for the classcal curriculum was the almost universal recourse
to the metaphor of mental gymnastics. No single definition of education acquired as much currency among
French educational traditionalists, and indeed in reformist circles as well, as the notion of a ’general cultivation
of the mind’ or of ’the intelligence’. Croiset dramatized this aspect of his argument by picturing the child gaining
strength in a ’contest’ with though more ’vigurous’ than his”, in Fritz K. Ringer, Fields of Knowledge : French Aca-
demic Culture in Comparative Perspective, 1890-1920 (Cambridge England ; NewYork: Cambridge University Press,
1992). This coordinating metaphor was active in both Britain, the US, France and Germany. See Walter Bernard
Kolesnik, Mental Discipline in Modern Education (University of Wisconsin Press, 1958), esp. 10-29; Sheldon Roth-
blatt, Tradition and Change in English Liberal Education : An Essay in History and Culture (London: Faber and
Faber, 1976), 126-129; Ringer, Fields of Knowledge, 145; Katja Krüger, Erziehung Zum Funktionalen Denken: Zur
Begriffsgeschichte Eines Didaktischen Prinzips (Berlin: Logos-Verl., 2000), 76-77; Lewis Pyenson,Neohumanism and
the Persistence of Pure Mathematics in Wilhelmian Germany (Philadelphia: American Philosophical Society, 1983),
29. For mathematics as a “mental gymnastics” required in the “formation of the spirit” see Alexandre Ribot, ed.,
Enquête sur l’enseignement secondaire: procès-verbaux des dépositions, vol. 1 (Motteroz, 1899), 340.
37. W. Stanley Jevons, “Cram,” Mind os-2, no. 6 (1877): 197.
38. William Kingdon Clifford, Lectures and Essays (Macmillan and co., 1886), 71.
39. William Whewell, Of a Liberal Education (London: J. W. Parker, 1845), 51.
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J.M. Wilson’s Elementary Geometry over Euclid’s Elements because

they all like systems to be shaved clean of difficulties by the razor of unlimited assumption. But
the way to accurate thought is hard and stony, requires the mind to be turned upon the sources
of error, and braced to their discovery.40

Morgan considered that beginners should be first

accustomed to deduction by reasoning, without having recourse to the mechanism of algebra,
which, as a quaint editor of Euclid observed, “is the paradise of the mind, where it may enjoy the
fruits of all its former labours, without the fatigue of thinking”.41

A similar emphasis on struggle and hardship in education to increase the “mental power” of

students was also common in the US:

[if a student] wants mental power, let him write out in choice language a difficult page of Greek or
Latin, or study out a theorem of geometry, or the reaction of a chemical experiment. Now, what
is the result, as seen in society, of easy-going methods which do not demand the most strenuous
effort on the part of the pupil? By mitigating hard tasks we are raising a pack of noodles who
fumble but do not skilfully manipulate the conditions of success. We have a large class of kid-
gloved, milk-and-water fellows who are lazily looking after a soft job and thus bringing reproach
on the public school.42

Especially in places such as Cambridge, physical prowess demonstrated through rowing com-

petitions paralleled the intellectual prowess demonstrated through examinations such as the

Tripos Examinations.43

To the mid-19th century image of intellectual and physical vigor, John Perry opposed the

image of “a spiritless boy of nineteen, with rounded shoulder” who has “has done much sci-

ence, and all algebra, and all trigonometry”.44 Average students were “killed with torments”

because of the “mental harm” produced by the “academic machinery”:

40. Augustus De Morgan, “Review of Elementary Geometry,” The Athenaeum, no. 2125 (1868): 72; see also
Richards, Mathematical Visions, 165-167.
41. Augustus De Morgan, An Essay on Probabilities, and Their Application to Life Contingencies and Insurance

Offices (Longman, Orme, Brown, Green & Longmans, 1838), xii.
42. Annual Report of the State Superintendent of Common Schools. State of Maine (Augusta: Burleigh & Flynt,

1888), 106.
43. See Warwick, Masters of Theory : Cambridge and the Rise of Mathematical Physics.
44. John Perry, “The Preliminary Education of the Engineer,” School Science and Mathematics 2, no. 5 (1902): 10.
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Theaverage English boy takes unkindly to abstract reasoning, and if compelled to such studywhen
unwilling, is hurt mentally for life; loses his self-respect first, then his respect for all philosophy;
gets to hate mathematics.45

Perry targeted not only the secondary school mathematical education, but also mathematical

examinations such as the Cambridge Tripos which he saw not as a celebration of the heroic

performance of gifted students, but rather as a sacrifice of the average student in which “10

million destroyed for the sake of producing one great mathematician”, or:

In the heroic times every traveller was asked an enigma; if he did not answer he was killed with
torments; if he answered, he was declared a demigod and given to rule over nations. In those times
it was thought good to sacrifice myriads of people for the purpose of finding the one demigod.46

Perry’s rhetoric would have found some resonance not only with the outside critics of the

Tripos, but even with the students who did pass through the “academic machinery”.47 In a

letter to his father from 1842, after considering a long list of men who broke down under the

pressure of hard study, Francis Galton reached a similar conclusion to Perry:

I feel more convinced every day that if there is a thing more to be repressed than another it is
certainly the system of competition for the satisfaction enjoyed by the gainers is very far from
counterbalancing the pain it produces among the others.48

Galton himself broke down during his third year at Cambridge and had to lose a term:

I suffered from intermittent pulse and a variety of brain symptoms of an alarming kind. A mill
seemed to be working inside my head; I could not banish obsessing ideas; at times I could hardly
read a book, and found it painful even to look at a printed page. Fortunately, I did not suffer from
sleeplessness, and my digestion failed but little. Even a brief interval of complete mental rest did
me good, and it seemed as if a long dose of it might wholly restore me. It would have beenmadness
to continue the kind of studious life that I had been leading. I had been much too zealous, had

45. John Perry, ed., Discussion on the Teaching of Mathematics: British Association Meeting at Glasgow, 1901
(London: Macmillan and Co., 1902), 22.
46. Perry, “The Teaching of Mathematics,” 6; Perry, “The Teaching of Mathematics,” 7; see also John Perry,

“Oxford and Science,” Nature 69, no. 31 (1903): 207–14; John Perry, “The Mathematical Tripos at Cambridge,”
Nature 75 (1907): 273–274.
47. See Warwick, Masters of Theory : Cambridge and the Rise of Mathematical Physics, 182-191.
48. Karl Pearson, The Life, Letters and Labours of Francis Galton, vol. 1 (Cambridge: University press, 1914), vol.

1, 171.
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worked too irregularly and in too many directions, and had done myself serious harm. It was as
though I had tried to make a steam-engine perform more work than it was constructed for, by
tampering with its safety valve and thereby straining its mechanism. Happily, the human body
may sometimes repair itself, which the steam-engine cannot.49

Perry’s accusations of “mental harm” would have been cogent beyond such personal anec-

dotes. In the late 19th century, the principles of the economy of work started also being ap-

plied to the “mental economy” which paid particular attention to “mental fatigue” and “mental

effort”. An 1886 report on “le surmenage intellectuel” of students described how the “sur-

charge intellectuelle” could produce “une fatigue, un affaiblissement plus ou moins durable de

l’intelligence, qui perdant toute initiative, toute force de volonté, toute énergie morale, devient

et parfois demeure durant le reste de l’existence remarquablement lente, lourde, hébétée”.50

Some classified “mental fatigue” as a “malady of the will [malaldies de la volonté]”.51 Themain

recommendation was to decrease the amount of study, and increase physical exercise. The

concern with “mental fatigue” reflected a much more general trend within 19th century so-

ciety.52 In Germany, the pedagogical value of “das Schwierige in der Mathematik” came to

be questioned because such a training would transform the student in a “gefühllosen, trauri-

gen Sklaven”. The effort of abstraction and abstract manipulations was to be supplanted by a

practical and intuitive education centered on cultivating a student’s interest, understanding,

creativity, joy for success, curiosity, or ambition.53

Perry’s reform of mathematics was successful not because he advocated for useful knowl-

49. Sir Francis Galton, Memories of My Life (London: Methuen, 1908), 79; Warwick, Masters of Theory : Cam-
bridge and the Rise of Mathematical Physics, 183.
50. Revue d’hygiène et de police sanitaire 8 (1886): 431.
51. See for example Th. Ribot, Les Maladies de La Vononté (Paris: G. Balliere, 1883).
52. On mental fatigue see Anson Rabinbach, The Human Motor: Energy, Fatigue, and the Origins of Modernity

(University of California Press, 1992), 146-178. Henri Bergson tried to identify the nature of “l’effort intellectuel”
required by understanding inHenri Bergson, “L’effort intellectuel,” Revue philosophique de la France et de l’étranger
53 (1902): 1–27; John Dewey also tackled the “psychology of effort” in John Dewey, “The Psychology of Effort,”The
Philosophical Review 6, no. 1 (1897): 43–56; see also Edward Thorndike, “Mental Fatigue. I,” Psychological Review
7, no. 5 (1900): 466–482; Edward Thorndike, “Mental Fatigue. II,” Psychological Review 7, no. 6 (1900): 547–579
53. B. Habenicht, “Erleichterungen im geometrischen Unterrichte, besonders des ersten Jahres,” Unterrichts-

blätter für mathematik und naturwissenschaften 5 (1899): 92, 109.
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edge, but rather because he construed utility as the prerequisite of true knowledge acquisition.

This step was essential if he wanted to make his brand of practical mathematics appropriate

for a general education. Some mathematical educators like Sir Philip Magnus attacked Perry

because he did not properly specify the aims of mathematical teaching: was it “a tool to be

used for obtaining certain practical results”, or was the aim “brain development, accuracy in

calculation and in measurement, the acquisition of correct methods of reasoning”?54 In the

end, Magnus thought that “for the purposes of general education, a boy cannot be said to be

learning mathematics by merely acquiring dexterity in the use of mathematical tables”.55

Perry had anticipated this line of attack. In the address he presented the goals of his math-

ematical education as being not that of teaching a student how to use practical mathematical

tools, but rather that ofmakingmathematical and scientific principles “become part of hismen-

tal machinery” such that “he can no more forget them”.56 However, such a knowledge could

not be imparted through “academic absorption from a book”.57 Only what a student “discovers

for himself, that is of real value to him, that becomes permanently part of his mental machin-

ery”.58 In the mechanical laboratory even “the dullest student” could make the fundamental

principles of mechanics “become part of his mental machinery”, “if he is not too much spoon-

fed; and if his difficulties are not cleared away by some wretched routine system of laboratory

work being adopted by cheap laboratory instructors”.59 Properly taught mathematics “ought to

be as much a part of [a student’s] mental machinery as the power to walk is part of his physical

function”, such that “the pupil is certain to apply it in all sorts of practical problems, and will

no more allow it to become rusty than his power to read or write or walk”.60 Perry contrasted

54. Magnus in Perry, Discussion on the Teaching of Mathematics: British Association Meeting at Glasgow, 1901,
83.
55. Magnus in ibid., 84.
56. Ibid., 11.
57. John Perry, The Steam Engine and Gas and Oil Engines (London: Macmillan and Co., 1909), 402.
58. Perry, Discussion on the Teaching of Mathematics: British Association Meeting at Glasgow, 1901, 8.
59. John Perry, “On the Teaching of Elementary Mechanics,” in Discussion on the Teaching of Mechanics: British

Association Meeting at Johannesburg, 1905, ed. John Perry (London, New York, Macmillan, 1906), 56.
60. Perry, Discussion on the Teaching of Mathematics: British Association Meeting at Glasgow, 1901, 5, 29.
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his experience of learning calculus – “to me every example was a labour, an interesting labour;

but truly a difficult job” – with that of other students who were taught “the knack … of rapidly

picking up just such instruction as enabled them to do the examples”. Though he “lagged

behind in exercise work”, Perry felt that because he was “really using the idea of calculus in

all sorts of problems outside the academic ones” it became “part of my mental machinery”.61

Opposed to “mental gymnastics”, Perry’s aim was “giving men mental tools as easy to use as

their legs or arms”.62

1.3 The New Geometry

Following the 1901 Glasgow meeting of the British Association where John Perry read his

paper on “The Teaching of Mathematics”, a committee was appointed to report on possible

improvements in the teaching of mathematics, and especially on elementary geometry. The

chairman of the committee was Prof. Forsyth, while the secretary was John Perry. In 1902,

at the next meeting of the BAAS in Belfast, a report was presented that made several recom-

mendations. The impact of this report was boosted after it was endorsed by the examination

syndicates of the Universities of Cambridge, Oxford and London. Although the report was

quite conservative compared to Perry’s initial stance, it still pushed forward several of his

ideas. Most remarkably, the teaching of demonstrative geometry was to be preceded by

the teaching of practical and experimental geometry, together with a considerable amount of ac-
curate drawing and measurement. Simple instruments and experimental methods should be em-
ployed exclusively in the earliest stages, until the learner has become familiarised with some of
the notions of geometry and some of the properties of geometrical figures, plane and solid.63

There was no unique textbook, order or method of proof. If until then, geometry and algebra

had been taught as distinct water-tight compartments , now “[a]lgebraical processes” were to

61. Perry, Discussion on the Teaching of Mathematics: British Association Meeting at Glasgow, 1901, 9.
62. Ibid., 5.
63. John Perry, “Teaching of Elementary Mathematics - Report of the Committee,” in Report of the British As-

sociation Meeting at Belfast, 1902 (London, New York: Macmillan and Co., 1903), 475.
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be combined “with themethods of practical geometry” because “some association of arithmetic

and algebra with geometry is desirable in all cases where this may be found possible”; this

was particularly the case in the teaching of proportions.64 Furthermore, propositions in Euclid

were to be experimentally “tested by squared paper” either by “counting squares on squared

paper to verify rules”, while areas were to be measured by “weighing a piece of cardboard and

comparing with the weight of a square”.65

These recommendations were followed by the new geometry textbooks which were soon

published, such as Charles Godfrey and Arthur Siddons’s Elementary Geometry: Practical and

Theoretical (1903) or AlfredWarren’s Experimental andTheoretical Course of Geometry (1903).66

Both textbooks opened with an experimental part followed by a theoretical part. Their pref-

aces emphasized that the textbooks were aimed at making geometry “an attractive subject to

the average British boy or girl” for whom “the experimental course… [was] found to stimu-

late interest”.67 Opposed to previous textbooks, the new textbooks employed a wide array of

exercises: “some are experimental and lead up to future propositions, some are graphical and

numerical illustrations of known propositions, some are ’riders’ of the ordinary type”.68 The

central role was occupied by the manipulation of paper: “the fullest possible use is made of

squared paper, set squares, rule and compasses”, while “geometrical properties are illustrated

by paper folding”.69

Several aspects set apart the old “practical geometry” from the new “experimental geom-

etry” advocated by Perry. First, the order of teaching was reversed. Practical geometry, de-

scriptive geometry or graphical drawing were supposed to be an application of the principles

64. Perry, “Teaching of Elementary Mathematics - Report of the Committee,” 476.
65. Ibid., 479.
66. Taro Fujita, “The Study of ”Elementary Geometry” (1903) by Godfrey and Siddons (1): Roles of Experimental

Tasks in the Teaching of Geometry.,” Hiroshima Journal of Mathematics Education 9 (2001): 11–19.
67. C Godfrey and A. W Siddons, Elementary Geometry: Practical and Theoretical (Cambridge: University Press,

1903), v.
68. Ibid., vi.
69. A. T Warren, Experimental and Theoretical Course of Geometry (Oxford: Clarendon Press, 1903), Preface.
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of rigorous, deductive geometry. In the case of “experimental geometry”, students were “led

to discover many geometrical truths which are proved later” and “the pupil is led to draw for

himself conclusions”.70 If “practical geometry” was often taught as a “bundle of rules”, “exper-

imental geometry” was modeled after an experimental science.71 Students were taught how

“to use instruments, to measure accurately lines and angles (this will in future be regarded as

an indispensable part of geometrical work), to construct and recognize the simpler plane and

solid figures, to solve problems by drawing to scale”. Instead of constructing abstract proofs

or following practical rules, students were “encouraged to put into words and make notes of

any such discoveries”.72 Only after the experimental proofs did the theoretical proofs follow.

If for Monge and his followers graphical constructions embodied the language of geometry,

for Perry and his associates graphical methods were the language of experimental science.

2 THE PERRY MOVEMENT ABROAD

2.1 US

Despite the fact that much of Perry’s criticism was specific to Britain, his address generated a

surprising amount of interest among German, French and American pure mathematicians. In

December 1902 Eliakim Hasting Moore (1862-1932), professor of mathematics at the Univer-

sity of Chicago and president of the American Mathematical Society, delivered a presidential

address on the “The Foundations of Mathematics” which mentioned “the surprisingly vigor-

ous and effective agitation with respect to the teaching of elementary mathematics which is

at present in progress in England”.73 Moore declared that

As a pure mathematician, I hold as the most important suggestion of the English movement the

70. Warren, Experimental and Theoretical Course of Geometry, Preface.
71. John Perry, “Reform of Mathematical Education,” Engineer 93 (1902): 203.
72. Godfrey and Siddons, Elementary Geometry: Practical and Theoretical, v.
73. On Moore’s pedagogical aims see David Lindsay Roberts, “E. H. Moore’s Early Twentieth-Century Program

for Reform in Mathematics Education,” The American Mathematical Monthly 108, no. 8 (2001): 689–696; David
Lindsay Roberts, “Mathematics and Pedagogy: Professional Mathematicians and American Educational Reform,
1893-1923” (PhD diss., The Johns Hopkins University, 1998).
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suggestion of Perry’s, just cited, that by emphasizing steadily the practical sides of mathematics,
that is, arithmetic computations, mechanical drawing and graphical methods generally, in con-
tinuous relation with problems of physics and chemistry and engineering, it would be possible to
give very young students a great body of the essential notions of trigonometry, analytic geometry,
and the calculus.74

Moore defined the fundamental problem of teachingmathematics as “the unification of the pure

and applied mathematics” and “the correlation of different subjects of the curriculum”.75 Such

a unification was to be carried out through the “laboratory method” which was centered on

“graphical depiction”:

This program of reform calls for the development of a thoroughgoing laboratory system of instruc-
tion in mathematics and physics, a principal purpose being as far as possible to develop on the
part of every student the true spirit of research, and an appreciation, practical as well as theoretic,
of the fundamental methods of science.

…

As the world of phenomena receives attention by the individual, the phenomena are described
both graphically and in terms of number and measure; the number and measure relations of the
phenomena enter fundamentally into the graphical depiction, and furthermore the graphical de-
piction of the phenomena serves powerfully to illuminate the relations of number and measure.
This is the fundamental scientific point of view. Here under the term graphical depiction I include
representation by models.76

In Moore’s laboratory students were supposed to collaborate with each other and use “labora-

tory record books, cross-section paper, computational and graphical methods in general, in-

cluding the use of colored inks and chalks”.77 Thepoint was taken up again in 1906whenMoore

read at theMathematical Club of the University of Chicago a paper on “The cross-section paper

as a mathematical instrument”.78 Moore proposed “the systematic use of cross-section paper

74. E. H. Moore, “On the Foundations of Mathematics,” Bulletin of the American Mathematical Society 9, no. 8
(1903): 411.
75. Ibid., 413.
76. Ibid., 417-418.
77. Ibid., 420.
78. Moore engaged with the broader category of “cross-section paper” which included along with square-ruled

paper other styles of ruling – rectangles, parallelograms, triangles, circles or diverging radii. Moore pointed out
that “the interaction of the various papers is especially important” (Eliakim Hastings Moore, “The Cross-Section
Paper as a Mathematical Instrument,” The School Review 14, no. 5 (1906): 317 n2).
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as a unifying element in mathematics”. Because “cross-section paper” led directly to the to

the concept of functionality it could both correlate mathematics and the physical sciences, and

unify pure and applied mathematics.79 As Perry before him, Moore emphasized the ideological

value of such an approach:

In general, we agree to develop arithmetical, algebraic, geometric technique in a physical and
intellectual environment logically and psychologically rich, full of movement, force, color, full of
connotations and implications of and for real life of all kinds, including most certainly the real life
of mathematics and the sciences. 80

The paper ended with the hyperbolic slogan – “Canonize the Cross-section Paper”.81

2.2 France

In France, secondary school education (for boys) was substantially reformed in 1902 after a

special committee had been previously established in 1898 under the supervision of Alexandre

Ribot. The mathematical commission in charge of the reform was presided by Gaston Dar-

boux, while the subcommissions were formed by Jules Tannery, Paul Appell, Gabriel Koenigs,

etc.82 Most of the members of the mathematical commission were coming from institutions

of higher education, mainly l’École Normale Supérieure and Sorbonne, and aimed to replace

the teaching that was “routinier, dogmatique, et abstrait” with an education accessible to most

students.83 The teachers of physics for all the sections (including the classical education cen-

tered on Greek and Latin) were asked to “use frequently graphical representations, not only

for better showing to students the shape of phenomena, but to make them understand [pour

79. Moore, “The Cross-Section Paper as a Mathematical Instrument,” 317-318.
80. Ibid., 338.
81. Ibid.
82. In the 1890s Gaston Darboux had coordinated a popular series of mathematical textbooks under the title

Cours complet de mathématiques élémentaire: Jules Tannery,Leçons d’arithmétique, théorique et pratique (1894);
M. Tisserand and H. Andoyer, Leçons de cosmographie (1895); Carlo Bourlet, Leçons d’Algèbre élémentaire (1896);
Jacques Hadamard, Leçons de géométrie élémentaire (1898); Carlo Bourlet, Leçons de trigonométrie rectiligne (1898).
83. Bruno Belhoste, “L’enseignement secondaire français et les sciences au début du XXe siècle: La réforme de

1902 des plans d’études et des programmes,” Revue d’histoire des sciences 43, no. 4 (1990): 372.

346



SQUARED PAPER

faire pénétrer dans leur esprit] the so important ideas of function and continuity”.84 Because

the notion of function played a key role in the physics curriculum, it was also extended to the

mathematical lessons.85 The study of mathematics in the “classe de philosophie” (the final year

of study in the Greek-Latin section) required “l’usage du papier quadrillé” in solving equations;

“représentation graphique de la variation d’un phénomène qui dépend d’une seule variable;

courbes des températures, des poids; application à la statistique”; “graphique des chemins de

fer”; “courbes fournies par les appareils enregistreurs”.86 For the science based sections, the

graphical representations of simple equations was introduced much earlier, at the end of the

first cycle.87 A further modification was brought to themathematical curriculum in 1905 which

defined the teaching of geometry as “essentiellement concret”.88

The use of “papier quadrillé” in mathematical instruction had been strongly advocated by

the French mathematician Charles-Ange Laisant, who along with the Swiss mathematician

Henri Fehr co-founded in 1899 the journal L’Enseignement mathématique. Between 1899 and

1903 Laisant delivered a series of lectures at the Psycho-physiological Institute in Paris on

“L’éducation fondée sur la science”. In a lecture from 1899 on “l’initiation mathématique”,

Laisant presented “le papier quadrillé” as an

instrument merveilleux qui devrait être entre les mains de quiconque fait des mathématiques
(depuis la famille ou la salle d’asile jusqu’à l’école Polytechnique, et même au delà), et, d’une
manière générale, de quiconque fait de la science. Mais c’est surtout un instrument merveilleux,
au point de vue pédagogique, pour donner aux petits enfants ces premières notions de la forme,
de la grandeur et de la position, sans lesquelles l’initiation n’est qu’un leurre.89

84. Plan d’études et programmes d’enseignement dans les lycées et collèges de garçons arrêtés du 31 mai 1902 (Paris:
Delalain frères, 1902), 74,118,126.
85. “L’étude des fonctions, en mathématiques, reste marquée par ses origines physiciennes. Elle est pra-

tique, quasi-expérimentale : pas de définitions générales et abstraites, mais un crayon et du papier millimétré
pour construire les graphes des quelques fonctions simples que le programme prévoit d’étudier.” in Belhoste,
“L’enseignement secondaire français et les sciences au début du XX e siècle,” 394.
86. Plan d’études et programmes d’enseignement dans les lycées et collèges de garçons arrêtés du 31 mai 1902,

163-164.
87. Ibid., 88-89, 122, 178.
88. L’Enseignement mathématique 7 (1905): 493.
89. Charles-Ange Laisant, “L’initiation mathématique,” Revue scientifique 11 (1899): 365. The lecture was later

republished in Charles-Ange Laisant, L’éducation fondée sur la science (F. Alcan, 1905).
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Similarly, in La mathématique: philosophie-enseignement (1st ed. 1898, 2nd ed. 1907), Laisant

emphasized the universal use of squared paper in the teaching of mathematics which “est

aussi nécessaire à l’auditeur des cours les plus élevés de nos facultés qu’au petit enfant for-

mant pour la première fois ses chiffres”.90 The “method of graphical representations” was also

recommended as presenting “d’immenses avantages”.91

While the 1902 reform was mainly concerned with algebra, the 1905 changes focused

mainly on geometry. The shift was bolstered by a 1904 series of conferences at the Musée

pédagogique regarding the teaching of the mathematical and physical sciences. Though John

Perry’s name was not mentioned, the central ideas and principles closely resembled those of

Perry and Moore. The young mathematician Émile Borel, a former student of Gaston Dar-

boux and maître de conférences at l’École normale supérieure, gave a talk on “les exercices

pratiques de mathématiques dans l’enseignement secondaire” which could bring “plus de vie

et de sens du réel” in the teaching of mathematics.92 Borel also embraced the idea of creating

“de vrais laboratoires de mathématiques” imagined as “mensuration workshops”.93 The labo-

ratory was an opportunity to bring closer together the teaching of mathematics and physics.

Like Felix Klein in Germany, Borel did not support the abolishment of “theoretical mathe-

matics” but only its supplementation by practical mathematics. Ultimately such an education

would “create free men” for whom “reason only bends in front of facts”.94 Borel defended the

idea that “mathematics is not a pure abstraction” and advocated the incorporation of geomet-

rical drawing within geometry classes, and its connection to numerical computations.95 A few

years later, Borel and Jules Tannery (who had been a member of Gaston Darboux’s mathe-

matical commission for the 1902 reform) started at l’École Normale Superieure a “laboratoire

90. Charles-Ange Laisant, La mathématique: philosophie, enseignement (Paris: Carre et Naud, 1898), 202.
91. Ibid., 153.
92. Emile Borel, “Les exercices pratiques de mathématiques dans l’enseignement secondaire,” in L’enseignement

des sciences mathématiques et des sciences physiques (Paris: Imperimerie nationale, 1904), 121.
93. Ibid., 123.
94. Ibid., 131.
95. Ibid., 122.
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d’enseignement mathématique”.96 Thew new “laboratory” taught future teachers how to build

mathematical models and mechanical apparatus out of wood and cardboard.97

Borel further advocated the new pedagogical principles in his textbook on Algèbre (1903)

which was written with the main purpose of “intéresser les élèves” by paying attention to “les

nécessités de la vie pratique” and “la réalité journalière”.98 If such realities were ignored one

ran the risk of “dégoûter un grand nombre d’excellents esprits”.99 The idea was taken up again

in an article from 1914 in which Borel warned about the dangers of an education which was

increasingly divorced from “life and reality”.100 Only by employing familiar objects, such as

the graphs encountered in newspapers, could mathematical instruction actually interest the

student. However, when “an education is too scholastic, it repels [dégoûte] a great number

of students and deforms rather than forms the spirit”.101 The same point had been raised by

Charles Laisant who proposed that one should educate a student “by amusing instead of boring

him, by substituting the play for the fatigue, by making him interested instead of disgusted”.102

Jacques Hadamard, a former student of Jules Tannery at l’École Normale Supérieure, also

expressed his support for the “mathematiques experimentales”. Hadamard considered that if

geometry was taught as “une science physique — ce qu’elle est véritablement”, then “on fera

96. Albert Châtelet, “Le laboratoire d’enseignement mathématique de l’École Normale Supérieure de Paris,”
L’Enseignement mathématique 11 (1909): 206–210.
97. In the case of Italy, the reform of the teaching of geometrywas translated into the term “geometria intuitiva”,

as in Aureliano Faifofer’s Trattato di geometria intuitiva ad uso dei ginnasi e scuole tecniche (1882); G. Veronese’s
Nozioni elementari di geometria intuitiva (1901); G. Frattini’sGeometria intuitiva per uso delle scuole complementari
e del ginnasio inferiore (1901). See Livia Giacardi, “From Euclid as Textbook to the Giovanni Gentile Reform (1867–
1923): Problems, Methods and Debates in Mathematics Teaching in Italy,” Paedagogica Historica 42, no. 4 (2006):
587–613; Marta Menghini, “From Practical Geometry to the Laboratory Method: The Search for an Alternative
to Euclid in the History of Teaching Geometry,” in Selected Regular Lectures from the 12th International Congress
on Mathematical Education, ed. Sung Je Cho (Springer International Publishing, 2015), 561–587.
98. Between 1903 and 1905, Émile Borel ended up publishing a complete series of courses on arithmetic, alge-

bra, geometry and trigonometry. Borel’s textbooks were given as an example by Felix Klein, and were readily
translated in German.
99. Émile Borel, Algèbre (Paris: A. Colin, 1903), 3-5.

100. Émile Borel, “L’adaptation de l’enseignement secondaire aux progrès de la science,” L’Enseignement Math-
ématique 16 (1914): 204.
101. Ibid.
102. “…en l’amusant au lieu de l’ennuyer, en substituant le jeu à la fatigue, en arrivant à l’attrait à la place du
dégoût”, in Charles-Ange Laisant, “La première éducation scientifique,” Revue scientifique (Revue rose), 1908, 451.
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disparaître ce que son enseignement a présenté jusqu’ici d’artificiel et de rebutant”.103 The

idea of a “géométrie empirique” or “géométrie expérimentale” was dismissed by a few school

teachers who considered that what was taught under this namewas not actually geometry, and

it thus had no pedagogical value. The new trend was seen as arising from “vouloir supprimer

chez l’élève tout effort intellectuel. Cette tendance est mauvaise. Il faut au contraire faire

chercher l’élève par lui-même, l’habituer au travail personnel.”104

2.3 Germany

A similar reform of secondary school eduction took place in Germany in 1905, and came to

be known as the “Meran reform” or “Meran program”. The reform committee defined “the

most important tasks of the teaching of mathematics” as being “the strengthening of spatial

perception and the education of the habit of functional thought [die Stärkung des räumlichen

Anschauungsvermögens und die Erziehung zur Gewohnheit des funktionalen Denkens]”.105

Felix Klein, the main proponent of the program, continued to insist that “the soul of mathe-

matical school instruction” should generally be “[t]he concept of function in geometric form

[der Funktionsbegriff in geometrischer Form]”.106

Similarly to Perry and Moore, Klein emphasized that the “arithmetic and geometry merge

[verschmelzen] in the central idea: the function-concept in geometrical form [Der Funktions-

begriff in geometrischer Form]”.107 Opposed to the notion of an equation, the notion of func-

tionwas presented as somethingmuchmore general that connected thewhole ofmathematical

103. L’enseignement des sciences mathématiques et des sciences physiques (Paris: Imperimerie nationale, 1904),
163-164.
104. J. Richard, “Contre la géométrie expérimentale,” Revue de l’enseignement des sciences, 1910, 152.
105. Die Tätigkeit der Unterrichtskommission der Gesellschaft Deutscher Naturforscher und Ärzte (B. G. Teubner,
1908), 96, 104; See also Krüger, Erziehung Zum Funktionalen Denken.
106. Felix Klein and Rudolf Schimmack, Vorträge über den mathematischen unterricht an den höheren schulen
(B. G. Teubner, 1907), 34; Gert Schubring, “Der Aufbruch Zum „funktionalen Denken“: Geschichte Des Mathe-
matikunterrichts Im Kaiserreich,” NTM International Journal of History and Ethics of Natural Sciences, Technology
and Medicine 15, no. 1 (2007): 6.
107. Klein and Schimmack, Vorträge über den mathematischen unterricht an den höheren schulen, 38.
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teaching.108 The “conceptual formation [Begriffsbildung]” imparted by this type of education

based on “mathematical mental activity [mathematischen Geistestätigkeit]” was supposed to

accompany the student throughout his life.109 In all of this, graphical methods were to be at

the center of the new education based on functions. As Klein remarked, “[w]e cannot open

a newspaper from which no such figure springs out [Wir können keine Zeitung mehr auf-

machen, aus der uns nicht eine solche Figur entgegenspringt!]”110 Graphical representations

were not only ubiquitous in the “modern literature of the exact sciences”, but they were also

“going through the whole life of the present!”111 For such reasons, the student had to learn to

draw on “Koordinatenpapier”.112 In a few years, the pedagogical principles of Klein and the

“Meran reform” were incorporated in a new generation of textbooks such as D. Behrendsen

and E. Götting’s Lehrbuch der mathematik nach modernen grundsätzen (1909), or K. Schwab

and O. Lesser Mathematisches Unterrichtswerk zum Gebrauche an höheren Schulen (1909).113

Given the common goals of their reform programs it is not surprising that, especially after

the Glasgow address, John Perry became a figure of interest for Felix Klein and his associates.

Perry’s textbooks and ideas were popularized in Germany especially through the activity of

Robert Fricke, Klein’s nephew and one of his main collaborators.114 Fricke, together with

Fritz Süchting, prepared a German translation of Perry’s Calculus for Engineers under the title

108. “Die Erziehung zum funktionalen Denken ist eben etwas viel Allgemeineres! [The education to functional
thinking is something much more general!]” in Rudolf Schimmack, Die Entwicklung der mathematischen Unter-
richtsreform in Deutschland (Leipzig und Berlin: Teubner, 1911), 98.
109. Klein and Schimmack, Vorträge über den mathematischen unterricht an den höheren schulen, 40, 6.
110. Ibid., 34.
111. Ibid., 21.
112. Ibid., 34.
113. Krüger, Erziehung Zum Funktionalen Denken, 180-1.
114. Several of Klein’s mathematical works were written in collaboration with Fricke, such as Vorlesungen über
die Theorie der elliptischen Modulfunktionen (1890) or Vorlesungen über die Theorie der automorphen Functionen
(1897-1912). For Klein’s goals in the reform of technical education and secondary school education see Gert
Schubring, “Mathematics Education in Germany (Modern Times),” in Handbook on the History of Mathematics
Education, ed. Alexander Karp and Gert Schubring (Springer New York, 2014), 241–255; Schubring, “Der Auf-
bruch Zum „funktionalen Denken“”; Gert Schubring, “Pure and Applied Mathematics in Divergent Institutional
Settings in Germany: The Role and Impact of Felix Klein,” The history of modern mathematics 2 (1989): 171–
220; Karl Heinz Manegold, Universität, Technische Hochschule und Industrie (Berlin: Duncker & Humblot, 1970);
Krüger, Erziehung Zum Funktionalen Denken; Pyenson, Neohumanism and the Persistence of Pure Mathematics in
Wilhelmian Germany, 63-65.
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Höhere Analysis für Ingenieure (1902). The book was justified as a mean of “abolishing the

alienation between the technical and the mathematical science”.115 “Perry’s method [Perrys

Weg]” was only recommended as a mean of reaching a “golden middle way” between the

“wissenschaftlichen Grundcharakter” of the mathematical lectures that were given in German

schools, and the practical use and application of such knowledge.116 The goals of the “Perry

movement” and the British textbooks which were shaped by it were discussed in great de-

tail in an 1904 article by Fricke.117 Fricke criticized some of the textbooks based on Perry’s

methods (such as Castle’s Elementary practical mathematics (1899) or Practical mathematics

for beginners (1901)) for being too “dogamtic” in presenting only rules and theorems without

developing a true understanding or justification. By implementing Perry’s method, “the oppo-

site extreme has been adopted” and Euclid’s teaching had been “simply thrown overboard”.118

Fricke’s views on Perry were also voiced by Klein who praised the British engineer for hav-

ing launched “a reform of, one might even say, a revolutionary character”. However, Klein

considered Perry’s recommendations suitable only for “in-service schools, and lower and mid-

dle vocational schools”. For secondary schools, Klein recommended a “middle course between

the two possible extremes: where along with the intuitive development of geometry, starting

from practical experiences, the logical demonstrations will not be neglected”.119 The idea of

mathematical instruction as a middle-path between application and abstraction had been one

of the guiding principle of Klein’s educational reforms. Already in 1900, Klein remarked that

we want to stimulate mathematical instruction by using the applications, but we do not wish that
the pendulum, which in earlier decades has perhaps pointed too much to the abstract side, to now
pass into the other extreme; rather, we want it to stay in the center.120

115. John Perry, Höhere Analysis für Ingenieure, ed. Robert Fricke and Fritz Süchting (B.G. Teubner, 1902), v.
116. Ibid., vi.
117. Robert Fricke, “Über Reorganisationsbestrebungen des mathematischen Elementarunterrichts in England.,”
Jahresbericht der Deutschen Mathematiker-Vereinigung 13 (1904): 283–296.
118. Ibid., 293.
119. Felix Klein, Elementary Mathematics from a Higher Standpoint: Geometry (Berlin: Springer, 2016), 245-246.
120. Verhandlungen über Fragen des höheren Unterrichts: Berlin, 6. bis 8. Juni 1900 (Halle: Buchhandlung des
Waisenhauses, 1901), 153-154.
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3 THE SQUARED PAPER IN ACTION

3.1 The Textbooks

The previous section has focused on school curricula and reform programs to delineate the

place of graphical methods within mathematical training. While the early 1900s reform of

secondary school mathematics gave rise to a new generation of mathematics textbooks which

were centered on graphical methods, some of the earlier textbooks also employed graphical

methods. By comparing the use and place of graphical methods within pre- and post-reform

textbooks, this section will reveal the central role given to the graphical.

By the late 19th century, graphical methods were mainly and most consistently encoun-

tered in mathematical textbooks aimed for technical and engineering schools. While such

methods were initially associated with the field of graphical statics, they were soon general-

ized into a topic commonly referred to as “graphical calculus”, “calcul graphique” or “graphis-

che Rechnen”. This topic was brought to prominence by Carl Culmann’s Die Graphische statik

(1866) which had almost a hundred pages dedicated to “graphische Rechnen”.121 Following

Culmann, many nineteenth century textbooks on graphical statics opened with a consistent

discussion of graphical calculus. Karl von Ott, a professor at an Oberrealschule and a gradu-

ate of the Prague Polytechnicum, published Der Grundzüge des graphischen Rechnens und der

graphischen Statik (1870) an extremely popular textbook which from the fourth edition (1879)

included a whole volume on “graphische Rechnen”.122 While Culmann’s course on graphical

statics was aimed at engineer students who were familiar with descriptive and projective ge-

ometry, the teaching of graphical calculus was soon extended to students in technical schools

who only possessed a rudimentary grasp of basic geometry.123 For example, Julius Wenck,

121. Tournes, “Pour une histoire du calcul graphique”; Chatzis, “La Réception de La Statique Graphique En
France Durant Le Dernier Tiers Du XIXe Siècle.”
122. Ott’s textbook was also translated in English as The Elements of Graphic Statics (1876). In 1865, Ott also
published a short pamphlet on Graphische Darstellung der Funktionen. See also Andeutung über die graphische
Darstellung von Funktionen (1848) by Edmund Oberreit, from the Gewerbeschule in Zittau.
123. Scholz, Symmetrie, Gruppe, Dualität; Scholz, “Graphical Statics.”
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the director of the “Baugewerbe- und Gewerbeschule” in Gotha, published a textbook on Die

graphische Arithmetik und ihre Anwendungen auf die Geometrie (1879) – which though was

initially conceived as part of a larger treatise on graphical statics, it was published as separate

part because it could be of use not only in technical schools but also in Realschulen and höheren

Bürgerschulen.124

While graphical calculus was mainly restricted to engineering schools (though, some in-

troductory lessons and basic methods trickled down into the technical schools), secondary

schools often introduced some basic concepts of analytical geometry (mainly restricted to the

concept of coordinates which was only introduced in the highest classes) or the graphical rep-

resentations of polynomials or the law of movement. In France, l’enseignement secondaire

spécial required the “graphical representation of the law of movement”, while le concours

d’agrégation also included the topic of the “locus represented by the first degree equation with

two unknowns. The graphs [graphiques] of railroads”.125 As for the lycée, the graphical repre-

sentation of simple equations was required only for the classes ofmathématiques élémentaires,

the last class of the section which sustained the Baccalauréat classique in lettres-mathématiques

opposed to lettres-philosophie.126 In Germany, the Bavarian curriculum from the 1870s required

for the highest class in the Realgymnasium (the equivalent of the French lycée d’enseignement

secondaire spécial) the teaching of the “Function; ihre geometrische Darstellung”.127 The Aus-

trian curriculum from 1884 for the highest class of the Gymnasium (the equivalent of the

French lycée) expected students to be familiar with “Cartesischen Coordinaten” from their

lessons in trigonometry; the lessons on analytical geometry used “die Coordinatengeometrie”

124. In Britain, “graphic arithmetic” was added as a special chapter in a textbook on Practical plane and solid
geometry (1890) aimed at draughtsmen preparing for the South Kensington Examinations.
125. Programmes officiels de l’enseignement secondaire spécial (Librairie de L. Hachette, 1866), 170; Bulletin ad-
ministratif du Ministère de l’Instruction Publique, vol. 44 (Paris: Impr. Nationale, 1888), 628.
126. Plan d’études et programmes de l’enseignement secondaire classique dans les lycées et collèges, suivis des pro-
grammes des classes de mathématiques élémentaires et spéciales (Paris: Delalain frères, 1897), 89. For the division
of French secondary school education at the end of the 19th century see Belhoste, “L’enseignement secondaire
français et les sciences au début du XX e siècle,” 375.
127. Herwig Säckl, “Die Rezeption Des Funktionsbegriffs in Der Wissenschaftlichen Basis an Hochschule Und
Schule Im Neunzehnten Jahrhundert” (PhD diss., Universität Regensburg, 1984), 110.
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to show “der geometrischen Abbildung linearer Gleichungen”. To save time, the graphical

representations were to be drawn “on paper divided by lines into very small squares”.128 “Der

Koordinatenbegriff und einige Grundlehren von den Kegelschnitten”was also added from 1892

in the Prussian curriculum for the highest class of the Gymnasium; this requirement was im-

mediately followed by the curricula of Hesse and Saxony.129

The textbooks reflected very well the narrow place occupied by graphical representations

within the late 19th century school curriculum. Most textbooks only included an isolated

chapter or section on the graphical representation of a function or the geometrical locus of

an equation.130 Because their purpose was only that of introducing some notions of analyti-

cal geometry or calculus, such a chapter or section was often placed at the end of the book

or in an annex; sometimes such material could even be published as a very short pamphlet.

Ernst Bardey’s Arithmetische Aufgaben (1881), a textbook written not for the general edu-

cation of a Gymnasium but rather “für Realschulen zweiter Ordnung, Gewerbeschulen und

höhere Bürgerschulen”, stated that “no pupil should be released from these schools who does

not know what a graphic representation is”.131 However, Bardey’s textbook for the secondary

schools (höheren Schulen which included “Gymnasien, Realgymnasien und Oberrealschulen”),

Methodisch geordnete Aufgabensammlung (1st ed. 1871), did not include any graphical rep-

resentations until the 11th edition from 1883.132 In both textbooks, the section on graphical

representations was the very last section of the book. In the early 1900s, Felix Klein criticized

such approacheswhich onlymade a limited use of functions as a special topic. Schimmack, one

128. Verordnungsblatt für den Dienstbereich des Ministeriums für Cultus und Unterricht (Wien: Ministerium für
Cultus und Unterricht, 1884), 233-234.
129. See Schimmack, Die Entwicklung der mathematischen Unterrichtsreform in Deutschland, 27. Several short
pamphlets on “Der Koordinatenbegriff und einige Grundlehren von den Kegelschnitten” were published by Al-
brecht Emmerich (1893), Wilhelm Krimphoff (1893), Ignaz Praetorius (1894), Heinrich Schotten (1895), or Karl
Koppe (1897). Schotten would later play an important role in the “Meran reform”, see Krüger, Erziehung Zum
Funktionalen Denken, 156-158. “Der Koordinatenbegriff” was part of the “allgemeines Lehrziel” for the Gymna-
sium in the 1902 Prussian curriculum, see Lehrpläne und lehraufgaben für die höheren Schulen in Preussen von
1901 (Halle: Buchhandlung des Waisenhauses, 1913), 52, 54, 59.
130. J. E. Oliver, L. A. Wait, and G. W. Jones, A Treatise on Algebra (Ithaca: D. F. Finch, 1887), 181-193.
131. Ernst Bardey, Arithmetische Aufgaben (Leipzig: Teubner, 1881), 4.
132. Schimmack, Die Entwicklung der mathematischen Unterrichtsreform in Deutschland, 20.
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of Klein’s close associates on education reform, considered that the presentation of the func-

tion concept in older textbooks was as good as nothing.133 The only book that made extensive

use of the concept of function was A. Schülke’s Aufgaben-Sammlung aus der Arithmetik, Ge-

ometrie, Trigonometrie und Stereometrie (1902), which however, was not used until 1906 in any

Prussian classrooms.134

A similar trend was to be found in the US. The popular Elementary Algebra for Schools

(1st ed. 1885) and Higher Algebra (1st. ed 1887) by H.S. Hall and S.R. Knight, both former

scholars at Cambridge, or A Treatise on Algebra (1st ed. 1888, aimed for higher classes of the

schools and junior students in the universities) by Charles Smith, master of Sidney Sussex

College in Cambridge, did not contain any discussion of graphical representations until the

end of the 19th century. When Smith added a chapter on this topic in the fifth edition from

1896, it was inserted as an off-sequence “Chapter X*” following “Chapter X” on “Simultaneous

Equations”; the chapter employed its own pagination not to offset the rest of the chapters (see

Fig. 7.1). After the examination curricula changed in 1902, Hall hurried to publish a booklet,

A Short Introduction to Graphical Algebra (1902), that was later included as the last chapter in

his algebra textbook which was now advertised as Elementary algebra for schools containing

a full treatment of graphs (1907). In the US, James Taylor’s College Algebra included in 1889 a

final chapter on the “Graphic Solutions of Equations and of Systems”.

A similar pattern can be identified if one examines George Albert Wentworth’s textbooks

on algebra. Initially, the graphical representations of functions was only discussed in Went-

worth’s college textbooks but no diagrams were included in his high school textbooks.135 Only

theNew School Algebra (1898) had a special chapter on “Graphs”. The chapter, positioned at the

end of the textbook, had been included “at the request of many teachers and superintendents”

133. Schimmack, Die Entwicklung der mathematischen Unterrichtsreform in Deutschland, 35.
134. Ibid.
135. Such a discussion was absent from the high school edition of Elements of Algebra (1881) or School Algebra
(1890).
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Figure 7.1
A special “Chapter X*” on the “graphical representation of functions” was added off-sequence after the Chapter
X on “Simultaneous Equations”. The chapter employed its own pagination not to offset the rest of the chapters.
Source: Charles Smith, A Treatise on Algebra (London: Macmillan, 1896)

because:

Many colleges now require for entrance examination a very elementary knowledge of the rudi-
ments of the subject of Graphs. It is the opinion of many good teachers that an insight into Graphs
is of considerable value to the pupil in finding the roots of equations, especially equations of the
second degree and of degree higher than the second. All agree that the study of Graphs tends to
stimulate the interest of the pupil in the work of finding the roots of equations.136

While Wentworth’s first college textbook on algebra from 1881 included a chapter on the

“loqi of equations”, the next reiteration from 1888 referred to “the graphical representations

of functions” or “the graph of a function” (see Figs. 7.2 and 7.3).137 The banal shift in termi-

nology underlines a more profound redefinition of epistemological and disciplinary objects.

While the “geometrical locus of an equation” was the standard term of analytical geometry,

“the graphical representation of a function” was a new catchphrase (or Schlagwort) that was

common to both mathematical analysis and experimental science. Wentworth clearly strug-

gled to move from the intuitive concept of “line” to the general concept of “curve”, and then

136. George Albert Wentworth, New School Algebra (Boston: Ginn, 1898), 408.
137. George Albert Wentworth, Elements of Algebra (Boston: Ginn, 1881), 447; George Albert Wentworth, A
College Algebra (Boston: Ginn, 1888), 401. Elements of Algebra came out in two editions – a short edition for high
school and academies, and a “complete edition” for colleges; only the latter edition included the chapter on “loqi
of equations”.
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to the technical terms “graph” and “locus” (these gradations were also embodied in the font

style):

If different values of x be laid off as abscissas, and the corresponding values of f(x) as ordinates,
the points thus obtained will all lie on a line; this line will generally be a curved line, or, as it is
briefly called, a curve. This curve is called the graph of the function f(x); it is also called the locus
of the equation y = f(x).138

While the 1888 edition of Wentworth’s College Algebra only changed the terminology,

the high school algebra textbook of 1898 also employed a different visual language. Now,

the graph was not introduced as a purely geometrical object (or figure) that was to be geo-

metrically constructed. The chapter on graphs opened not with general definitions and the

construction of the axes (as in the previous editions), but rather with a reminder and a mo-

tivation: “Diagrams, called graphs, are often used to show in a concise manner variations in

temperature, in population, in prices etc. etc.”139 Graphs were considered to be either familiar

to many of the students, or intuitive enough to be first introduced by the concrete example of

the changes in temperature for a day (see Fig. 7.4). Only afterwards, did the general definitions

and constructions followed. Though the general construction was very similar to that of the

previous editions, now the paper was also rendered visible (see Fig. 7.5). This was a conscious

choice used in all the diagrams. The utility of the squared paper was underlined in the chapter:

“in plotting points and graphs the student will find coordinate paper of much help in giving

accuracy and in saving time.”140 We should not be mislead by this point. The squared paper

was not simply more useful, but it was more useful for its new purpose. Now students were

required to plot more, and more precisely.

As illustrated by the analysis of Wentworth’s textbooks, in the US, the use of plots in the

teaching of algebra was first introduced in higher education to only later be extended to sec-

ondary school education. This trend is somewhat surprising because one would commonly

138. Wentworth, A College Algebra, 402.
139. Wentworth, New School Algebra, 409.
140. Ibid., 413.
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expect higher mathematics to be increasingly abstract, and thus intuitive means such as dia-

grams to be increasingly scarce. Several factors contributed to this unusual trend. First the

concept of coordinate geometry was usually taught in conjunction with analytical geometry,

an advanced topic in both the US and Europe. Second, the wide use of graphical representa-

tions within scientific practice provided the most important incentive to teach students how

to construct graphs. Third, the emphasis on graphical representations was part of a newmath-

ematical trend which focused on functions rather than equations.

The pattern for such texts seems to have been set by “a novel and successful treatise” on

Graphic Algebra or Geometrical Interpretation of the Theory of Equations of one unknown quan-

tity (1882) written by A. W. Phillips and W. Beebe, assistant professors of mathematics at

Yale.141 Though the book was “based on some years’ experience in teaching the Theory of

Equations to the Freshman Class in Yale College”, Phillips and Beebe chose not to write a text-

book on the theory of equations with a special chapter on graphical representations. Instead,

all the topics of the bookwere discussed and illustrated through graphical representations. The

appeal of this approach went beyond narrow curricular interests. Graphical methods, which

“have been used with great profit in many departments of science”, were now used to “give

a clear notion of the geometrical meaning of the theorems and operations of the theory of

equations”, and also to furnish a suitable introduction to analytical geometry and calculus.142

However, opposed to regular treatises on analytical geometry, Phillips and Beebe introduced

their graphs not as geometrical constructions but rather as concrete constructions (on squared

paper) based on empirical measurements.

A similar approach was followed in the UK by George Chrystal, the professor of mathe-

matics at the University of Edinburgh, who published an Introduction to algebra (1898) for the

141. The description of the textbook is from Florian Cajori,The Teaching and History of Mathematics in the United
States (Washington: U.S. Government Printing Office, 1890), 157.
142. A. W. Phillips and W. Beebe, Graphic Algebra, Or Geometrical Interpretation of the Theory of Equations of
One Unknown Quantity (New York: H. Holt and Company, 1882), 2.
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use of secondary schools and technical colleges. In the “Preface”, Chrystal pointed out that

his textbook made “constant use of graphical illustrations” to which about fifty pages were

exclusively dedicated:

This proportion may startle some; but will not astonish those who are familiar with the tendency
of the best modern teaching. The graphic method furnishes the most valuable antidote to the
tendency of school algebra to degenerate into puzzle-solving and legerdemain. By the constant
exercise of graph-tracing the beginner acquires through his fingers three fundamental mathemat-
ical notions, viz. the Idea of a Continuously Varying Function, the Conception of a Limit, and the
Method of Successive Approximation. These notions he will find to be more valuable in the higher
mathematics and in applications to practice than all the rest of his algebraic accomplishments put
together.143

However, to get “the full educative benefit of graph-tracing”, the sole reading of the book was

not enough!

The teacher must trace the graphs before his pupils; and also cause them to work the curves out
independently. To facilitate this kind of work, I strongly recommend that a blackboard, perma-
nently ruled into small squares, like a sheet of plotting paper, should be part of the furniture of
every mathematical class-room.144

When working out the chapter on rational function, the student was supposed to “trace out

all the fundamental curves for himself, using either plotting paper or square and scale. In no

other way can he arrive at that kind of ‘lively conviction’ which will enable him to discuss

new cases for himself without hesitation or liability to error”.145 And again, “the proper way

to acquire skill and conviction” was by drawing a “considerable variety of graphs to scale by

means of plotting paper”.146

By the end of the 19th century, a whole array of short textbooks (or pamphlets) were

dedicated exclusively to “graphs” and “graphic algebra” (see Table 7.1). This new topic was

started in the US by college instructors such as Arthur L. Baker, a professor of mathematics

143. George Chrystal, Introduction to Algebra: For the Use of Secondary Schools and Technical Colleges (A & C
Black, 1898), x.
144. Ibid., x-xi.
145. Ibid., 365.
146. Ibid., 393.
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at the University of Rochester, who published a Graphic Algebra. Graphs (1892), “an elemen-

tary textbook for college students” based on “the notes used in the author’s class room from

time to time”;147 or F.E. Nipher, a professor of physics and electrical engineering at Washing-

ton University, who published an Introduction to Graphical Algebra (1898) for the use of high

schools. In the UK such textbooks appeared in the wake of the 1902 reform and were aimed

at secondary schools. A notable exception was Plotting, or, Graphic mathematics (1888) by

Richard Wormell, a prolific author of of mathematics and physics textbooks and “head master

of the city of London middle class schools”. Though the book was considered to be a “new

departure” from standard presentations of analytical geometry, it was seen as an insufficient

introduction of the topic.148 An unpersuaded reviewer pointed out that Wormell’s textbook

could not serve “any but the science student whose sole wish in acquiring co-ordinate geom-

etry”. But even this purpose was somewhat inappropriate because a book need not have been

devoted “to so small an object which an hour’s talking by a good teacher might have attained

for better”. Finally, even the title of the book “Graphic Mathematics” was seen to be a “a too

high-sounding title, inasmuch as it must lead anyone who knows anything about the subject

to anticipate some discussion, at all events, of Graphic Statics and other methods, which he

will certainly fail to find”.149

The reaction to Wormell’s textbook comes to show that “graphs” and “graphic algebra”

were not yet an accepted topic before the 1900s reforms. Somewhat paradoxically, the sys-

tematic teaching of analytical geometry or calculus often suppressed the diagrams that could

have been found in the introductory chapters. The shift that took place is particularly visible

if we compare the first two editions of Jules Tannery’s Introduction à la théorie des fonctions

d’une variable (1st ed. 1886, 2nd ed. 1904-1910). While in the first edition Tannery abstained

“de tout langage et de toute figure géométriques”, in the second edition he took advantage

147. Arthur Latham Baker, Graphic Algebra: An Elementary Text Book for College Students. Graphs (Scrantom,
Wetmore & co., 1892), iii.
148. The Practical Teacher 8 (1889): 419.
149. Ibid.
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Table 7.1
The earliest British and American textbooks and pamphlets dedicated exclusively to graphs and graphic algebra.

1875 A Graphic Method for Solving Certain Algebraic Problems George L. Vose US
1882 Graphic Algebra or Geometrical Interpretation of the Theory

of Equations of one unknown quantity
A. W. Phillips and W. Beebe US

1888 Plotting, or, Graphic mathematics Richard Wormell UK
1892 Graphic algebra: An elementary text book for college stu-

dents. Graphs
Arthur L. Baker US

1898 An Introduction to Graphical Algebra: For the Use of High
Schools

F. E. Nipher US

1902 Graphs Robert J. Aley US
1902 A Short Introduction to Graphical Algebra H. S. Hall UK
1903 Graphs or the graphical representation of algebraic functions C. H. French and G. Osborn UK
1904 Graphs and Imaginaries J. G. Hamilton and F. Kettle UK
1904 Elementary Graphs R. B. Morgan UK
1904 An Introduction to the Calculus, Based on Graphical Methods G. A. Gibson UK
1905 An Elementary Treatise on Graphs G. A. Gibson UK
1905 Graphic Algebra for Elementary and Intermediate Students John Lightfoot UK
1905 Graphic Algebra for Secondary Schools H. B. Newson US
1908 Graphic Algebra A. Schultze UK

“des facilités qu’offre le langage géométrique”. Tannery attributed his “timidity” in employing

diagrams to a fear that “if the reader saw a figure would not be well persuaded that this figure

was only an aid and did not conceal some hole impossible to fill only with the resources of

logic.”150 Tannery’s Notions de mathématiques (1903), an introductory textbook for the class of

philosophy published after the 1902 reform, included over 170 figures with an introduction to

the use of “papier millimétrique”, the plotting of empirical curves such as temperature curves,

and the “graphique des chemins de fer”. The graphical representation of functions and the

“courbes empiriques” of automatic registers were also covered in Tannery’s Leçons d’algèbre

et d’analyse (1906).

One graphical representation in particular became paradigmatic in the study of algebra

because it perfectly embodied the spirit of the new reforms: “the graphic railroad time-table”,

or “le graphique des chemins de fer”, or “graphische Eisenbahnfahrpläne”. This mode of rep-

150. Jules Tannery, “Introduction à La Théorie Des Fonctions d’une Variable,” 1904, vol. 1, vi.
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resentation was first developed by the French engineer Ibry in 1840.151 Though eminently a

practical object mainly encountered in rail-road offices, the graphic time-table was also a ped-

agogical tool for some engineers. For example, George L. Vose, a professor of engineering at

Bowdoin College and the author of aManual for railroad engineers (1873), published in 1875 “A

Graphic Method for Solving Certain Algebraic Problems” which relied on graphical railroad

time-tables.152

This graphical construction was specifically required by the 1902 French curriculum to

be studied in the “classe de philosophie”.153 All the main French textbooks published after

the reform (Tannery’s Notions de mathématiques, Borel’s Algèbre (1903), Bourlet’s Éléments

d’algèbre (1904), Laisant’s Initiation mathématique (1906), etc.) included such a diagram. Felix

Klein, who praised these textbooks as models to be followed by the German reformers, also

included his own “graphischer Eisenbahnfahrplan” for the line Northeim-Göttingen-Münden

for the Winter 1906-1907 (see Fig. 7.6).154 Such diagrams were readily included in the Ger-

man textbooks which followed the Meraner program, such as Behrendsen/Götting’s Lehrbuch

der mathematik nach modernen grundsätzen (1909) or Schwab/Lesser’s Mathematisches Unter-

richtswerk (1909).155 The representation was less common in elementary algebra books written

in English.156 However, some teachers such as the American mathematician Florian Cajori

strongly advocated for the use of such a “real applied problem” and provided a local timetable

chart taken from the American Railway.157 Opposed to other graphical representations, the

graphic railroad time-tables were quite unique because the plots were given for real trains.

151. Funkhouser, “Historical Development of the Graphical Representation of Statistical Data,” 308.
152. The method was first published as an article in Van Nostrand’s Engineering Magazine, and republished the
same year as a separate pamphlet.
153. Plan d’études et programmes d’enseignement dans les lycées et collèges de garçons arrêtés du 31 mai 1902, 164.
154. Klein and Schimmack, Vorträge über den mathematischen unterricht an den höheren schulen, 34-36.
155. See also Krüger, Erziehung Zum Funktionalen Denken, 180-1.
156. Though the “the graphic railroad time-table” was not as visible in the English elementary algebra textbooks,
it could still be found sometimes as an exercise which required students to construct a diagram from a table, see
W.G. Borchardt’s Elementary Algebra (1905).
157. Florian Cajori, “Graphic Railroad Time-Tables,” School Science and Mathematics 10, no. 3 (1910): 204–205.
In a reply to Cajori, Beman pointed out the French textbooks in which one could encounter such diagrams, but
no English textbooks were mentioned, see beman1910.
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(a) Bourlet 1904

(b) Klein & Schimmack 1907

Figure 7.6
“Le graphique des chemins de fer” and “der graphische Eisenbahnfahrplan”. Source: (a) C. Bourlet, Éléments
d’algèbre (Paris: Hachette, 1904), 176; (b) Felix Klein and Rudolf Schimmack, Vorträge über den mathematischen
unterricht an den höheren schulen (B. G. Teubner, 1907), 34-36
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Laisant provided a chart for the beginning of the year 1905 for the rapide 1 between Paris and

Marseille, and the rapide 16 between Marseille and Paris; Bourlet chose the rapide 7 and 101

and the express 33 between Paris and Bordeaux; Klein chose to compare the Schnellzüge, Per-

sonenzüge and Güterzüge for the line Northeim-Göttingen-Münden for the Winter 1906-1907;

Behrendsen and Götting chose the line Göttingen-Bebra for the Winter 1907-1908.158

3.2 Child’s Play

As discussed above, the early 1900s graphical revolution depended on an essential rhetorical

move: graphical methods were not merely practical (which would have made them ideal for

technical and engineering schools but unsuited for a general or liberal education), but ped-

agogical: they kept students interested and allowed them to make discoveries on their own.

Henry Armstrong, the professor of chemistry at Finsbury College and a colleague of John

Perry, was the main proponent of the “heuristic method” in education.159 Armstrong believed

that a child should learn through self-discovery, instead of being passively taught something.

Knowledge could only be gained through personal observation and experimentation.

Many of Armstrong’s pedagogical ideas were supported by his own teaching experience

at Finsbury College. However, in the late 1890s, Armstrong carried his own pedagogical ex-

periments on three of his children – Harold, Nora and Robbin – who were 7, 10 and 12 years

old (see Fig. 7.7).160 Armstrong tried to motivate his children to undertake their own scientific

investigations. He started by reading them a children’s story, The Monkey that would not Kill,

158. Charles-Ange Laisant, Initiation mathématique (Paris: Hachette, 1906), 122; 34-36 C. Bourlet, Éléments
d’algèbre (Paris: Hachette, 1904), 176; Klein and Schimmack, Vorträge über den mathematischen unterricht an
den höheren schulen, 34-36; D. Behrendsen and E. Götting, Lehrbuch der mathematik nach modernen grundsätzen
(Leipzig und Berlin: Teubner, 1911), 218.
159. Henry Edward Armstrong, H. E. Armstrong and Science Education : Selections from The Teaching of Scientific
Method and Other Papers on Education, ed. G. Van Praagh (London: Murray, 1973), See; Henry Edward Armstrong,
H.E. Armstrong and the Teaching of Science, 1880-1930, ed. William H. Brock (London: Cambridge University Press,
1973).
160. Armstrong’s investigations are described in Henry Edward Armstrong, The Teaching of Scientific Method
and Other Papers on Education, 2d (London: Macmillan and co., 1910), 393-399
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Figure 7.7
Armstrong’s children: Harold (7), Nora (10), Robbin (12). Source: Nora’s Notebook in the Papers of H.E. Arm-
strong, Archives Imperial College London.

where a monkey was thrown into the sea, tied to a stone which he could not lift; while un-

der water the monkey was able to lift the stone and walk to the shore, because the stone was

lighter in the water than in air (see Fig. 7.8). Instead of satisfying their curiosity, Armstrong

gave his children a weight balance and guided their experiments. Each of the children kept a

notebook, where they had to thoroughly describe all their experiments, and the insights and

conclusions they would draw from them. These notebooks, carefully revised by the father,

combined the style of a personal diary with that of a laboratory report.

Armstrong’s daugher, Nora, studied the relative weight of different materials in water. At
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Figure 7.8
The opening page of Nora’s diary. Source: Source: Nora’s Notebook in the Papers of H.E. Armstrong, Archives
Imperial College London.
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“father’s suggestion I have represented the four things weighed” because her conclusions were

“better shown by the picture” (see Fig. 7.9). Nora described in great detail how her first diagram

was constructed:

I first drew four upright strips each 10 millimeters wide, and marked off on each of these lengths
corresponding to the loss of weight inwater, and theweight of each of the four things; representing
1 gram by the length of 2millimeters. The parts coloured blue, represent the loss ofweight inwater;
the upper part of the stone is coloured yellow, that of the iron, brown, and that of the ebony, grey.
I have marked off by dotted lines on the stone and iron strops the lengths corresponding to the loss
in water; but in the case of ebony as I could not do this I have divided the length representing the
loss by the difference between this and the total weight. Such pictures are called diagrams, Father
[f corrected to F] said, and he told me to see what this word meant, so I looked in the dictionary,
and found that…The diagrams show very clearly how much the light ebony, and how little the
heavy iron loses.

After Nora learned what diagrams were, she used such representations again “in order

to make this [Law of the Duchess] clear to everyone” (see Fig. 7.10). Because the children

were encouraged to write their notebooks independently, each employed their own language.

Harold, pointed out how his diagram “saves a lot of time as you need only to look at it once

to see if the results are good or bad; it would take you a long time to look all over the figures”,

and “[y]ou can help yourself to understand the results a great deal by making a curve to show

how they differ”. Each time a new diagram was drawn, the children wrote down how the

images helped them and their virtual readers – “So as to show more clearly what the size of a

thing had to do with its loss of weight in water, I drew the diagram on page 18” (Harold). All

diagrams had to be clearly labeled and described: “[a]s some people may not know what the

red and blue mean, I will tell you…” (Harold).

Armstrong carefully pushed his children to solve increasingly more difficult problems. If

the children initially dealt with cubes for which they could easily calculate the volumes, they

then had to deal with cylinders. To fully prove his key pedagogical principle Armstrong did

not provide his children with any formulas, but pushed them to find independently a way of

computing the volume. At Armstrong’s incentive, the children had to describe each step of
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their reasoning. Harold, the youngest of the three children, described his reasoning as such

(see Fig. 7.11):

As the volume of a cube is found by multiplying the area of one face by the thickness, I thought
that the volume of a log might also easily be found in the same manner. But on examining a small
cylinder of Pine wood, which Father gave me, I was in a difficulty as I did not know how to find
the area of a circular face. It took me a long time to think how to calculate this out, but, I at last
decided that the best way would be to draw, on squared paper, a square with a circle inside it of
the same diameter. I could then count the number of the small squares within the circle and those
in the square, and see what was the relation between the square and the circle. When I had drawn
the circle inside the square, I at once saw that a portion in each corner of the square was cut off
by the circle, and that it was only necessary to count the number of squares in a quater circle and
a quater [sic] square and to multiply by four.

The diagram which I drew will be seen in the margin. I have rulled [sic] off a quater square, and
painted yellow the little squares through which the circle is drawn, in order to be able to count
them more easily.

On counting the number of squares in the quarter [sic] circle and quater [sic] square I discovered
that the former was 172/225 = 0.76 times the size of the latter. On multiplying 0.76 by 4, as I had
only dealt with a quarter circle, I find that the circle is 3.05 times the size of the quater square;
which, as I saw on looking at it, is better described as the square on the radius of the circle. Thus
in order to find the area of a circle I must multiply the radius squared by 3.05.

In a different problem, curves were used to interpolate intermediate values. Once, this

method was mastered, the children (with or without immediate guidance from their father)

extended the use of this method to find the cube root of 1096:

There was no way in which I could at once find the number of which 1096 was the cube, and as it
would be a very troublesome business to do so by guessing, I thought that as curves had helped
me before to get intermediate values I might draw a curve showing how the number from 1-12 are
related to their cubes. The number I wanted must be between 10 and 11. As H[arold] had made
such a curve, I was saved the trouble and as he has fully described how the curve was drawn I
need not do so again. On looking at the curve, it appeared that 1096 was the cube of 10.3.

Haroldwas equally careful to point out when one graphical solutionwas inspired by a previous

one:

I did this because from the curve on page 41 showing how density and carrying power were related
we were able to calculate the density if we knew the carrying power of a wood and vice versa, so
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Figure 7.11
Harold’s use squared paper to find the area of a circle. Source: Harold’s Notebook in the Papers of H.E. Armstrong,
Archives Imperial College London.

I thought that if I made a curve of the same sort for cubes I should be able to get at the length of
their faces very easily.

These notebooks were the experimental proof for Armstrong’s “heuristic method”. As in

the case of Perry’s program, the point was not that graphical methods were useful (a trivial

point) but rather that such methods were more than practical tools – they were mental tools

whose use could be mastered by anyone. The independent use of these tools was the real test

of true understanding.

4 CONCLUSION

The introduction of graphical methods in mathematics has taken a tortuous path. By the end

of the 19th century, graphical methods were commonly used in three disjoint pedagogical

settings. First, graphical calculus was taught in technical and engineering schools as a way
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of familiarizing students with the principles and constructions of descriptive and projective

geometry which were to be applied to graphical statics. Second, the concept of a coordinate

system and the geometrical representation of an equation was taught in conjunction with

analytical geometry in universities or the terminal years of secondary education. Third, the

graphical representation of experimental measurements though commonly used in scientific

publications was consistently employed as a pedagogical tool only in a few laboratories such

as those at Finsbury College.

Because it was the exemplar of rigorous reasoning and the model for abstract theoret-

ical science, for much of the 19th century deductive geometry had been the most cherished

mathematical topic in secondary schools.161 Furthermore, only the abstraction of deductive ge-

ometry could exercise the mind of students to its highest extent because it did not divert their

attention to secondary practical problems. Graphical drawing and practical geometry were of

subordinate importance and were often ignored altogether. However, as modern experimental

science came to occupy an increasingly important role in classrooms and laboratories, several

reformers felt compelled to militate for a reversal of the old order.

If geometry had been the model for deductive science, inductive science was now to be-

come the model for geometry. Such an inversion was supported not so much by epistemolog-

ical arguments about the true nature of mathematics or rigorous proofs, but rather by psycho-

logical arguments about what could encourage genuine understanding. The logical necessity

of a proof was now to be preceded by the psychological necessity of the method of proof.

The “laboratory method”, the “heuristic method”, or the “scientific method” would make “the

pupil be led to feel the need of the mathematical tool through some material experiment he

has made or things he has done”.162 Thus, “[t]he logical proof is regarded rather as the climax

161. For the role of geometry in French scientific education before the 1902 reform, see Belhoste,
“L’enseignement secondaire français et les sciences au début du XX e siècle,” 380; For “geometry as an exem-
plar of reasoning” in Britain, see Richards, Mathematical Visions, 175, 196.
162. J. W. A. Young, The Teaching of Mathematics in the Elementary and the Secondary School, in collab. with
University of Connecticut Libraries (New York [etc.] Longmans, Green, and co., 1907), 104.
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of the work than as its foundation”.163 This opposition between the logical and psychological

can also be understood as an opposition between the (geometrical) system and the (graphical)

method: “Der systematische Lehrbetrieb ordnet den Unterrichtsstoff nach sachlich-logischen,

der methodische nach psychologischen Gesichtspunkten.”164

If in the late 18th century (as seen in Chapter 1) the graphical was always part of a di-

chotomy – opposed to trigonometry, algebra or analysis – andwas used to separate the bound-

aries between various disciplines, by the early 20th century the graphical was invoked as a

place of intersection for geometry and algebra, mathematics and experimental science, induc-

tion and deduction. Furthermore, if in the 17th and 18th century the graphical was a subdo-

main of the mechanical, in the early 20th century graphical pedagogies came to be opposed

to mechanical pedagogies based on rote memorization and mechanical drilling. In this new

context, graphical methods did not only train the hands but also the mind by cultivating the

students’ interest and providing them with mental weapons. The place of the graphical had

shifted not only in relation to the school disciplines, but also within the economy of the class-

room. While in the school of Monge the graphical work was an application of the principles of

descriptive geometry (and as such, followed after the theoretical instruction), in the reformed

education envisioned by John Perry and Henry Armstrong graphical work was the foundation

on which future theoretical instruction was to be based. For Perry and E.H. Moore the ideal

classroom resembled not so much the drawing rooms of Monge’s École Polytechnique, but

rather the mechanical and electrical laboratories of Tokyo and London.

163. J. W. A. Young, “A Course in Practical Mathematics. By F.M. Saxelby,” The School Review 14 (1906): 460–461.
164. Friedrich Pietzker, “System und Methode im exact wissenschaftlichen Unterricht,” Unterrichtsblätter für
mathematik und naturwissenschaften 5 (1899): 46.
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Conclusion

The purpose of this study has been that of revealing the internal structure or topology of the

historical category of the graphical. Instead of approaching graphical objects as unproblematic

and transparent entities which are simply given to us – “you know a graphical object when

you see one” – this study has showed that the graphical was a value-laden category which

reflected and reinforced various epistemological and pedagogical programs.

Though graphical methods (as seen by a contemporary eye) were used throughout the early

modern period, they only emerged as a historical category in 18th century France to refer to

an array of operations, methods or constructions. Two factors were essential. First, a distinc-

tion was drawn between geometry (seen as the model of rigorous reasoning which defined

the principles and objects of its science) and the arithmetical, trigonometrical, mechanical or

graphical operations through which it was manipulated. For those practitioners for whom ge-

ometry was not first of all a model of rigorous reasoning, the category of “geometrical meth-

ods” would have sufficed. Second, a few particular problems had to be tackled by multiple

methods. While everyday practitioners would have indiscriminately used any method which

they deemed to be the most expedient, 18th century academic authors employed a uniform

and general style of presentation to write their mathematical treatises. The price to be paid for

such stylistic unity was a certain number of cumbersome solutions for which more practical

methods had to be considered.

By the end of the 18th century, the status of geometry was challenged by mathematical

analysis generating a conceptual opposition between the two – each field appealing to its

own principles and objects.1 In this context the graphical became the language of geometry,

1. See Lorraine Daston, “The Physicalist Tradition in Early Nineteenth Century French Geometry,” Studies In
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an interpretation which was employed in particular by Monge and his students to unify the

teaching at l’École Polytechnique. Thus, graphical methods gave way to graphical disciplines

and graphical work. This interpretation of the graphical category was employed in the mid-

19th century by Karl Culmann who introduced through his seminal textbook Die graphische

Statik (1865) the new discipline of “graphical statics” as an attempt “to use the newer geometry

[i.e. the projective geometry of Jean Victor Poncelet] to solve those tasks of engineering suit-

able for geometric treatment” by “replacing as much as possible the algebra with the geometry

of position”.2 The category of the graphical was useful for Culmann because his discipline was

an application of the principles of projective geometry and was presented as an alternative to

the already established analytical methods. In the first edition of Die graphische Statik (1865)

Culmann even banned all analytical proofs, a decision he had to revoke in the second edition.3

Some engineers even drew a direct parallel between descriptive geometry and graphical stat-

ics: while from geometry “we obtain a method of construction, or descriptive geometry”, from

“geometrical statics we obtain also a construction method or routine–viz., graphical statics”.4

Thecategory of the graphical could only play such a role in a particular pedagogical setting.

While British physicists and engineers developed important methods for what will become the

discipline of graphical statics, their preferred category was not the graphical but the diagram.

William Rankine’s “method of drawing diagrams of forces” inspired Maxwell to introduce his

famous “reciprocal figures” or “reciprocal diagrams”, which were later extended in a “gen-

eral theory of diagrams of stress”.5 Similarly, Maxwell expressed his appreciation for Robert

Henry Bow’s “method of drawing diagrams”, while Culmann’s Die graphische Statik was only

History and Philosophy of Science Part A 17, no. 3 (1986): 269–295; Joan L. Richards, “Rigor and Clarity: Foundations
of Mathematics in France and England, 1800–1840,” Science in Context 4, no. 2 (1991): 297–319.

2. Karl Culmann, Die Graphische Statik (Mayer & Zeller, 1866), vi-xi; see also Karl-Eugen Kurrer, The History
of the Theory of Structures : From Arch Analysis to Computational Mechanics (Berlin: Ernst & Sohn, 2008), 318;
Scholz, Symmetrie, Gruppe, Dualität.

3. Karl Culmann, Die Graphische Statik (Meyer & Zeller, 1875).
4. Augustus Jay Du Bois, The Elements of Graphical Statics and Their Application to Framed Structures (New

York: J. Wiley and son, 1875), xlv.
5. Maxwell, The Scientific Papers of James Clerk Maxwell, v.1 514-525; v.2 161-209; see Kurrer, The History of

the Theory of Structures, 320-322.
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described briefly as “makes great use of diagrams of forces, some of which, however, are not

reciprocal”.6 Though the category of graphical also became fashionable in Britain, it did not

carry with it its Continental associations. The “graphical methods” were not an application of

the principles of descriptive or projective geometry, but rather, as Maxwell defined them in

his article on “Diagrams” from the Encyclopaedia Britannica (9th ed., 1875), they were those

“[m]ethods in which diagrams are used for purposes of measurement”.7 It was their ability of

manipulating and representing numerical values, rather than being an application of geomet-

rical principles, which brought them to the forefront of engineering practice in the second half

of the 19th century.8

While at the beginning of the 19th century the graphical was the language of geometry and

the method through which the principles of geometry were applied, by the end of the century

the graphical became the language of inductive science and the method through which the

experimental method was applied. The new associations of the graphical were so strong that

they allowed the reinterpretation of school geometry from a model of deductive reasoning

into an application of inductive science.

6. Maxwell, The Scientific Papers of James Clerk Maxwell, v. 2, 494.
7. See ibid., v. 2, 647-659.
8. For Culmann’s failed program see Scholz, Symmetrie, Gruppe, Dualität; Scholz, “Graphical Statics.” For the

connection between graphical methods and computational techniques see Joseph Lipka, Graphical and Mechani-
cal Computation - Including Nomographs and Mechanical Integration (Watchmaker Publishing, 2003); Dominique
Tournes, “Du compas aux intégraphes : les instruments du calcul graphique,” Repères, no. 50 (2003): 63–84;
Tournes, “Pour une histoire du calcul graphique.” For the description of graphical methods by engineers in
the late 19th century see H. S. Hele Shaw, “First Report of the Committee … Appointed to Report on the Devel-
opment of Graphic Methods in Mechanical Science,” in Report of the Fifty-Ninth Meeting of the British Association
for the Advancement of Science (J. Murray, 1890), 322–327; H. S. Hele Shaw, “The Graphical Method of Solving
Engineering Problems,” Transactions of the Liverpool Engineering Society 14 (1893): 173–188; H. S. Hele Shaw, “The
Teaching of Graphical Methods in Engineering Colleges and Schools,” Proceedings of the Society for the Promotion
of Engineering Education 1 (1894): 184–206; H. S. Hele Shaw, “Third Report on the Development of Graphic Meth-
ods in Mechanical Science,” in Report of the Sixty-Third Meeting of the British Association for the Advancement of
Science (J. Murray, 1894), 573–613.
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Geometrical Illustrations, Empirical Curves and Graphical Objects

Opposed to empirical curves, geometrical illustrations (i.e. objects constructed through some

well-defined geometrical operations such as constructions by rule and compass) were of lim-

ited epistemological value within scientific practice. The geometrical illustrations could only

be an approximation of a numerical table (by the 19th century the precision of measurements

greatly exceeded the precision of a graphical construction) or of an equation (while all ge-

ometrical constructions could be translated into an equation, some equations could only be

approximatively represented through iterative geometrical constructions). Though they were

not absent from scientific publications or mathematical textbooks, geometrical illustrations

only played a secondary, intermediate role: they were not used to establish conclusions, but

only to illustrate them.

The first consistent and coherent category of empirical curves were the weather charts of

18th century meteorology. Such charts were seen as the most efficient manner of condensing

an ever increasing number of barometric measurements (towards the end of the 18th cen-

tury some observers took up to three measurements per day). Condensing the measurements

within an average was not a satisfactory solution in the study of the weather because one

had a special interest in trying to understand and predict pressure variations. Weather charts

became particularly popular among those meteorologists who tried to correlate the changes

in atmospheric pressure with the phases of the moon. Two factors allowed weather charts to

become the paradigm for empirical curves: 1. the barometric curves were not reducible to any

simple geometrical curve (when some meteorologists tried to identify a pattern of variation,

they drew geometrical curves on top of the barometric curves); 2. the great number of mea-

surements allowed one to construct well-defined curves by only drawing individual points.

Thus, even before self-registering instruments started being employed, the variation of the

pressure drew its own curve. When in the early 19th century empirical curves started being
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employed to represent other quantities, there was almost always a direct connection to the

practice of constructing a weather chart.

By the beginning of the 19th century empirical curves were also drawn in the case of ob-

servations with a small number of measurements. While most of the time one only displayed

the agreement between the experimental measurements and empirical formula (in these cases

no actual empirical curve was drawn, but only the curve corresponding to the formula), in a

few particular instances empirical curves were drawn when no empirical formula could sat-

isfactorily describe the whole range of measurements (see the curves of solubility in Chap-

ter 3). While initially such empirical curves were only considered to be more accurate than

the empirical formulas, they also came to challenge the role of the individual measurements.

Because the empirical curve had to be drawn between the experimental points, one was con-

fronted with a moral choice of deciding which individual measurements were more trustwor-

thy.9 Furthermore, because the empirical curve was an object which reflected the whole set

of measurements, each individual measurement could be corrected in relation to the curve.

While individual measurements were used to evaluate the adequacy of an empirical formula,

an empirical curve could be used to evaluate the adequacy of the individual measurements.

Because the empirical curves were drawn between the points libera manu (free-handed) or

by bending a metal rule, some authors carefully distinguished between such graphical con-

structions and geometrical constructions. For example, in 1833 William Herschel presented a

method for carrying out double-star measurements which was “essentially graphical” and “not

a mere substitution of geometrical construction and measurement for numerical calculation”

because instead of being a system of calculation, it relied on “the eye and hand to guide the

judgment”.10 Herschel considered that “such charts and graphical representations” should not

9. See Hankins, “A ”Large and Graceful Sinuosity”. John Herschel’s Graphical Method.”
10. John FW Herschel, “On the Investigation of the Orbits of Revolving Double Stars; Being a Supplement to a

Paper Entitled” Micrometrical Measures of 364 Double Stars”,”Memoirs of the Royal Astronomical Society 5 (1833):
178; See Hankins, “A ”Large and Graceful Sinuosity”. John Herschel’s Graphical Method.”
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be considered as “mere helps” but rather “the only means we possess, or ever can possess, of

purifying great masses of observational data from the effects of local influence and personal

or casual error”.11[625]hankins2006 Similarly, for Victor Regnault the graphical method when

used with sufficient care could produce “la courbe qui représente réellement le phénomène”.12

Though some empirical curves could claim a higher epistemological status compared to a

table of measurements or an empirical formula, it was only the latter which could easily travel.

This was not so much a limitation of “optical consistency” as much as one of “material consis-

tency”.13 As seen in the graphical work of Victor Regnault, paper could not be always trusted

as it could easily change when stretched or exposed to humidity. Because one could only trust

the graphical constructions and not the graphical representations (i.e. the object which was

left at the end of the graphical process), empirical curves could only play a significant scientific

role at a local level. When graphical representations did travel or were reproduced in a pub-

lication, they were a mere illustration of the graphical constructions. This situation applied

throughout the mid-19th century when self-registering and self-recording instruments started

being used extensively in observatories and physiology laboratories; as showed in Chapter 2,

initially the inscriptions and traces of these instruments did not travel either; the graphical

traces were usually reduced on the spot into numerical tables.

As long as the epistemological value of the empirical curves depended on the precision

with which they were drawn, such objects could not easily travel while preserving their epis-

temological status. This changed when some empirical curves acquired a new role – instead of

being just objects of precision they also became paradigmatic objects. A paradigmatic graph-

ical object (either a curve, a diagram, a model etc.) was not defined any longer in terms of

the precision with which it was drawn (as was the case with Regnault’s graphical table), but

11. John Herschel, “Terrestrial Magnetism,” Quarterly Review 66 (1840): 89-90.
12. Regnault, “Relation des expériences sur des Machine a Vapeur,” 428.
13. For the importance of “optical consistency” in the making of “immutable mobiles” see Latour, “Visualization

and Cognition.”
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rather in terms of its graphical features. Thus, the windings of a curve could be associated with

unseen hypothetical states of matter and used as evidence for the agreement between van der

Waals’ molecular theory of heat and Thomas Andrews’ experimental isotherms for carbonic

acid; or, the topological order of lines in a plane and of folds on a solid could show the state of

equilibrium of mixed states of matter; the asymptote of a magnetic curve could be interpreted

either macroscopically as corresponding to a region of magnetic saturation, or microscopically

(in terms of a fictitious model) as corresponding to a perfect molecular alignment.

It is important to notice that these graphical features were not simply read off the curves

and diagrams, despite the utopic vision of some graphical practitioners like Étienne-Jules

Marey who presented his inscription devices as capable of writing in an universal pictorial

language, the language of the phenomena themselves. A visual object could be read only if

one knewwhat to look for – which patterns, shapes or variations were meaningful. While one

learned to read well-established or institutionalized graphical objects through a special regi-

men of training and practice, the graphical features of these objects could not have emerged

through inculcation alone. Graphical features emerged through a historical process of conti-

nuity and identity. A new graphical feature was not revealed by an isolated graphical object

– this curve – but rather by a curve which could be identified as a variation (a correction or a

rewriting) of a previous curve.

The concept of historical family resemblances or historical category has been essential be-

cause it has forced us to consider not only the variation of graphical objects, but rather a

unified variation which reinforced itself. This approach showed that thinking with a graphi-

cal object did not imply solely looking at an image or manipulating a tool, but it also meant

thinking about objects as being the same and yet different. While a tool acted on what was

given, a unified variation allowed one to think new possibilities.
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