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and healthy controls to improve genetic variant interpretation 

 

Abstract 

Whole exome and whole genome sequencing have become increasingly routine 

approaches in understanding the genetic basis of Mendelian diseases. Despite their 

success, the current diagnostic rate for genomic analyses across a variety of rare 

diseases is approximately 25-50%, and a genetic diagnosis does not yield a full 

understanding of disease pathology. A key challenge of genome-based diagnostics is 

that the capacity DNA sequencing technologies to discover genetic variants 

substantially exceeds our ability to interpret their functional and clinical impact. 

One approach to improve the interpretation of genetic variation is to integrate functional 

genomic information such as transcriptome sequencing, which provides direct insight 

into transcriptional perturbations caused by genetic changes. Such approaches have 

already proven useful for elucidating mechanisms of cancer and common disease but 

have yet to be systematically applied to rare disease. Here, we present complementary 

approaches to integrate transcriptome sequencing into our understanding of the genetic 

etiology of Mendelian disease. We first present our work establishing the utility of 

transcriptome sequencing as a complementary diagnostic tool in Mendelian disease 

diagnosis. We then focus on developing and validating a transcript expression aware 

annotation metric which allows for the integration of publicly available population 

transcriptome datasets into clinical variant interpretation. 
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Chapter 1 

Introduction 
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Genetic variation and disease  

A major goal of human genetics research is the ability to interpret variation in the 

genome in a way that is meaningful to human health and predictive of disease. In other 

words, a central aim is the accurate interpretation of the functional and clinical impact of 

variation we observe in a given genome.  

It has been stated that a majority of human diseases, with the exception of cases 

of trauma, have a genetic component 1. Twin and pedigree studies have clearly shown 

that common diseases such as type II diabetes, psychiatric disorders and cancer have a 

strong heritable component 1,2. However, understanding the existence of a genetic 

component of a disorder does not provide information about the specific genes that 

affect disease pathogenesis.  

A clear understanding of the link between specific genetic variants and disease 

would theoretically not only allow prediction of individual risk for a given disorder, but 

also offer insight into disease etiology, which can be harnessed to develop targeted 

therapeutics 1,3.  

Early efforts to identify genes associated with human disease adopted the use of 

linkage analysis, developed in fruit flies 4. This involves identifying families in which a 

phenotype segregates, and tracking polymorphic markers through generations to 

identify correlation between a phenotype and a variant site 4,5. The polymorphisms used 

have changed over the years, from restriction fragment length polymorphisms 6, to 

simple sequence repeats 7,8 and single nucleotide polymorphisms (SNPs) 9, each 

offering more resolution than the previous iteration 5. Through linkage analysis, a 

candidate genomic region is identified, and further scrutinized to pinpoint causal 
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mutation(s) and genes underlying the phenotype. The method was mostly confined to 

identifying highly penetrant large-effect genetic variants in rare disorders with notable 

successes of this approach, entitled “positional cloning”, including identification of genes 

underlying hemochromatosis 9, lactose intolerance , Duchenne muscular dystrophy 10, 

cystic fibrosis 11, hereditary disposition to cancer 12, and other Mendelian disorders 5.  

Linkage analyses in common diseases however, were unable to identify 

causative genes, which pointed to a possible polygenic model 4. Instead, as extensive 

maps of human polymorphisms became available, identifying genetic loci in common 

diseases has relied on using common variation and the linkage disequilibrium structure 

in the genome, whereby groups of variants are inherited together on haplotypes, to 

associate tagging SNPs with disease status in cohorts of unrelated individuals 13. Such 

genome-wide association studies (GWAS) are now performed routinely, using cohort 

sizes of hundreds of thousands and have tied thousands of genetic loci to numerous 

human phenotypes, primarily identifying loci with individually small effect sizes 14–19. 

 

Genetics of Mendelian disease  

Monogenic disorders that follow Mendelian inheritance patterns are broadly 

characterized as Mendelian disease 5,20. While these disorders are individually rare, at 

incidences ranging from a handful of cases worldwide to one in a few thousands, they 

are collectively common, accounting for approximately 10% of pediatric hospital 

admissions and up to 20% of infant deaths 21–23. In the United States, more than 25 

million people are affected by Mendelian disorders and in addition to the burden of 
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suffering faced by rare disease families, each patient has been estimated to cost the 

health care system approximately five million dollars during their lifetime 24–26.  

Diagnosing a child with a rare disease by conventional diagnostic testing and 

phenotypic features can be challenging 24. As a result, rare disease families often 

endure long periods of uncertainty and emotional turmoil involving multiple hospital 

visits and changing diagnoses 27,28 . This distressing period defined as the time between 

initial health concerns for a child, and when a diagnosis is reached, has been termed 

the “diagnostic odyssey” and can take many years 29: One European survey of eight 

rare diseases found that a quarter of families waited between 5 and 30 years 24,30 to 

receive a genetic diagnosis.  

Achieving a genetic diagnosis for rare disease families is critical to not only tailor 

the care needs of the patient, but also to alleviate emotional distress caused by an 

unnamed disease. Such care needs can range from better understanding of disease 

management and prognosis for a child’s condition, to procuring physical or occupational 

therapy in the school system, and forming communities with other rare disease families 

27,31,32. It has been reported that a genetic diagnosis can also alleviate a family’s sense 

of guilt in the community. Carmichael et al. report a case of a school gym teacher 

pushing their child with a rare disorder to ‘get over it’ and ‘rise to the occasion’ when 

struggling to keep up in gym class. After a genetic diagnosis was achieved, 

accommodations were made for activities that the patient was unable to perform 27. 

Another mother reports finally absolving herself from perceived faults she may have 

committed during pregnancy and early childcare that she believed resulted in her child’s 

condition before receiving the genetic diagnosis 27. 
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In addition to the many, unquantifiable psychosocial benefits of a genetic 

diagnosis, knowing the mutation and inheritance pattern of a disorder in a family can 

help inform reproductive counseling and family planning 23,33,34. From a biological 

perspective, linking genes and their allelic series to phenotypes aids our understanding 

of biological pathways underlying disease and health 20,35. This can inform therapeutic 

development in rare disease, which in recent years has yielded success stories such as 

those for cystic fibrosis 36–39 and spinal muscular atrophy 40,41. As therapeutic 

development continues, a genetic diagnosis can also be important for entry into clinical 

trials 42. 

Scientists have been mapping Mendelian disease genes and identifying highly 

penetrant mutations for the past 40 years 4,5,24. The early successes of linkage mapping 

and positional cloning led to the discovery of CYBB underlying chronis granulomatous 

disease in 1986 24 and CFTR underlying cystic fibrosis in 1989 5.The following decade 

saw the discovery of 42 additional Mendelian disease genes using these methods 24. 

The arrival of the human genome sequence in the early 2000s and development in DNA 

sequencing technology greatly expanded the known Mendelian disease gene catalog 43.  

Despite the importance of genetic diagnosis for rare disease families and the 

tremendous headway made in mapping Mendelian diseases and mutations, at present 

over half of patients with a suspected genetic disorder do not receive a genetic 

diagnosis 23,24 and the majority of genes underlying Mendelian diseases remain 

unknown. For example, while more than 80% of genes display detectable phenotypes 

upon homozygous inactivation in mice 44, suggesting analogously that many human 
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genes are likely to be implicated in disease phenotypes, less than 20% of human genes 

have been linked to any phenotype 43.  

 

The role of next-generation sequencing in Mendelian disease  

 Although traditional mapping approaches have led to great insight into many 

genes underlying Mendelian disorders, they can be laborious and miss important 

classes of genetic variation 1,3,35. In contrast, the introduction of next-generation 

sequencing technologies has rapidly accelerated the pace of gene discovery in 

Mendelian disease 24. 

 The advent of exome sequencing has greatly enhanced our capacity to identify 

variants that explain many Mendelian diseases in both known and novel disease genes. 

Chong et al. have reported that the pace of gene discovery has increased from ~166 to 

~236 per year from the period of 2005-2009 to 2010-2014 24. This is driven by a shift 

toward increasing use of whole exome and whole genome sequencing (WES and WGS, 

respectively). In fact, since 2014, WES and WGS have resulted in almost three times as 

many discoveries as conventional methods 24.  

Whole exome sequencing (WES) utilizes capture technologies to enrich for 

protein-coding regions that make up 1-2% of the human genome and is a cost-effective 

alternative to sequencing the complete genome 45,46. Whole genome sequencing (WGS) 

is an alternative option as it uncovers virtually all the genetic variation in a person’s 

genome. Studies have shown that WGS outperforms WES at covering protein-coding 

regions, since WES has historically been limited by its capture efficiency 47,48. WGS also 

offers improved identification of structural variants missed by WES 49,50.  



  7 

Despite its benefits, WGS is substantially (~3x) more expensive than WES, and 

our ability to interpret the pathogenicity of variants is currently largely confined to protein 

coding sections of the genome. Results from studies aiming to use WGS in Mendelian 

disease diagnosis have so far concluded that variants uncovered by WGS are largely 

identifiable and interpretable by genotyping arrays (for CNVs) and WES24,51. However, 

these studies have focused on heterogeneous Mendelian diseases with the goal of 

identifying novel genes.  

There remains considerable debate on the relative value of high-quality WES 

versus WGS for genetic diagnosis and gene discovery in the field 52–55. The view I’ve 

reached in preparation for this thesis is that for genetic diagnosis of an individual 

patient, the comprehensive nature of WGS will allow for fewer false-negatives and 

should be preferred, whereas for gene discovery for cohorts of rare disease patients, 

WES offers a more cost-effective approach that allows access to the interpretable 

regions of the genome.  

 

The genetic diagnosis gap: What are we missing? 

While exome sequencing is a current mainstay in Mendelian disease diagnosis, 

the success rate of detecting the causal variant with WES is far from complete, ranging 

from 15-50% 56–59 . The molecular diagnostic rate varies widely based on several factors 

including the age of onset of the disease, inheritance mode and genetic heterogeneity 

24,60. For example an approximate rate of 30-40% has been reported for neuromuscular 

disorders 56,61 and familial dilated cardiomyopathy 62 whereas the diagnostic rate for 

pediatric diseases with more complex presentations presented to the NIH Undiagnosed 
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Disease Program was ~11% 24,63. Studies have also shown that of cases that achieved 

a molecular diagnosis, 53% were autosomal dominant, of which 87% were diagnosed 

with a de novo mutation, followed by 34% for autosomal recessive cases, 12% for X-

linked inheritance and 0.2% for mitochondrial inheritance 58. In addition, the average 

molecular diagnosis rates across a variety of adult rare disease patients was shown to 

be lower at 17.5%, than that for a primarily pediatric population 60.  

The tremendous progress made in rare disease genetics and the disruptive 

impact of DNA sequencing begs the question of what current diagnostic technologies 

are missing in genetic diagnoses 64. Akin to the missing heritability question in common 

diseases, explained below, several possible explanations have emerged. Firstly, as 

discussed, it is likely that many Mendelian disease genes remain to be discovered 24. 

Individual patients arriving at various centers across the world may present as unique 

cases, for whom establishing a novel disease gene mutation as causative is extremely 

difficult, given that every individual harbors many private benign variants. This is known 

as the “n of 1” problem. For some cases, identifying a single additional unrelated case 

with a putatively pathogenic variant in the same gene and overlapping disease 

presentation can provide sufficient evidence to implicate the gene and provide a 

diagnosis for the patient 65. Therefore, discovery of all Mendelian phenotype - gene 

relationships requires infrastructures of genetic variant interpretation and data sharing 

between centers. Many national efforts have been established towards the goal of 

identifying novel gene - phenotype relationships in Mendelian disease including Finding 

of Rare Disease Genes (FORGE) Canada 66, the Wellcome Trust Deciphering 

Developmental Delay Study 67, and the Centers for Mendelian Genomics68. It has been 
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shown that re-analysis of previously undiagnosed cases using novel disease gene 

information, has a positive impact on diagnostic rates, underlining the importance of 

novel gene discovery to improve genetic diagnosis 69–71.  

In addition to the impact of novel disease gene discovery on genetic diagnosis 

rate, cases involving non-Mendelian inheritance patterns are also likely missed by 

current analytical approaches. For example, facioscapulohumeral muscular dystrophy 

(FSHD) is characterized by the activation of DUX4 which is found in the D4Z4 

microsatellite repeats occurring on the subtelomeric arm of chromosome 4q35 72–74. In 

individuals with FSHD type 1, contraction of the array below 10 repeats results in 

inefficient epigenetic silencing of the region, resulting in DUX4 expression. In contrast, 

individuals with FSHD type 2 harbor inactivating mutations in SMCHD1, an epigenetic 

silencer, which also results in DUX4 expression. Interestingly, neither the repeat 

contraction nor the SMCHD1 loss-of-function is sufficient to cause the disease. Both 

subtypes also require the mutations to arise on the permissive 4qA haplotype which 

contains a polyadenylation signal, to produce functional DUX4 mRNA 72. Thus, both 

genetic subtypes of FSHD have a digenic inheritance model. Other cases Mendelian 

phenotypes such as retinitis pigmentosa, and Bardet-Biedl syndrome have also shown 

to result from digenic inheritance 74. In some cases, oligogenic inheritance, in which 

several rare variants across more than two genes result in the disease phenotype, when 

one of the variants itself is not causative have been suggested 75,76. In addition, the role 

of polygenic risk conferred by common variants has been explored in a cohort of 

approximately 7,000 Mendelian disease patients with developmental delay and 

intellectual disabilities 77. Similarly large cohort sizes of rare disease patients will be 
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required for an unbiased understanding of the role of multigenic inheritance patterns in 

Mendelian diseases.  

Incomplete penetrance is one possible mechanism which can result in false 

negatives for rare disease diagnosis. Penetrance is defined as the proportion of people 

with a causative genotype who display the clinical characteristic associated with the 

genotype and is likely due to a combination of genetic and environmental factors 78. For 

rare disease diagnosis, a dominant mutation may be overlooked if it has been 

transmitted from a seemingly unaffected parent, resulting in a decrease in the diagnosis 

rate 79. Given that our understanding of pathogenic Mendelian mutations is based on 

evaluating the genome of rare disease patients, it has been suggested that the 

penetrance of these mutations has likely been overestimated 80. Evaluation of putatively 

disease-causing mutations in individuals that do not carry rare disease will be 

informative to improve estimates of genetic variation 61.  

While much work remains to be done in mapping the genetic architecture of rare 

diseases such as continued discovery of novel disease genes, identifying genes 

exhibiting non-Mendelian inheritance patterns and elucidating the role of incomplete 

penetrance, a seemingly simple but critical component to improving genetic diagnosis is 

improving rare variant interpretation. Currently, while both WES and WGS can miss 

important classes of variation, a larger issue is that our ability to identify genetic 

variation far outstrips our capacity to interpret what we identify 81,82.  

Many classes of genetic variation remain difficult to interpret. For example, 

although most missense variants are expected to be benign 4, countless gain- and loss-

of-function missense variants have been implicated in rare disease 83. In another 
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example, while it is well understood that mutations that disrupt the canonical two base 

pair GT/AG splice motifs have disruptive effects on transcription and are regarded as 

deleterious, variants found outside the four base pair canonical splice junction have 

often been ignored or characterized as variants of unknown significance (VUS)84 similar 

to noncoding variants identified via WGS61. A central aim of this thesis is to improve rare 

variant interpretation in Mendelian disease diagnosis, which is extensively discussed in 

chapters 2 and 3. 

 

The role of next generation sequencing in common disease  

 The approach to mapping genes to common diseases has historically relied on 

the common disease - common variant hypothesis, which proposes variants with 

population allele frequencies over 1% will contribute to disease susceptibility 4. This 

hypothesis, which led to the so-called “GWAS era”, was grounded in population genetic 

models of the interplay between recent human expansion, which results in most 

variation in the human genome being common, with the late-onset nature of common 

diseases allowing for mildly deleterious alleles to rise in population frequency 4. 

 The early days of the GWAS approach, applied to many complex disorders, 

yielded tens of loci associated with common human phenotypes. However, a perplexing 

observation was the relatively marginal proportion of phenotypic variation explained via 

the discovered loci 85. In other words, most common variants conferred small amounts 

of relative risk (at about 1.1-1.5-fold) and explained a tiny fraction of the estimated 

heritability 85. This observation was termed the “missing heritability” problem and it was 

suggested that increasing sample sizes, evaluating unappreciated variant classes (such 
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as structural variants), modeling genetic epistasis and other methodological 

improvements would be required to address the full spectrum of genetic effects on 

common disease. 

 As genotyping approaches have improved with more resolution, and DNA 

sequencing in large numbers has become attainable, one avenue of research for 

common disorders has been the exploration of the role of rare variants in common 

disease 85–88 with the underlying intuition being that due to selection, rare variation will 

have higher impact on disease risk, towards the spectrum of Mendelian variants, and 

that this may help account for the unexplained heritability in common disease 89.  

 Two distinctions exist between common and rare variant association tests. 

Firstly, due to the numerous nature of rare variation, sequencing is preferred to catalog 

rare variants. Secondly, because individual variants are rare, direct association tests 

between a rare variant and a phenotype are implausible and variants must be grouped 

into categories for burden testing 45,87,88. Studies have aggregated variants based on 

genes, gene sets and pathways 88. Recent years have seen the amassing of large 

exome sequence cohorts of common diseases, which will continue to allow linking 

genes or groups of genes to common disease 90–93.  In this thesis, we hypothesize that 

interpretation of individual rare variants that are discovered will become important to 

inform analyses and understand disease etiology, and this is discussed in chapter 3.  

 

Tools available for rare variant interpretation  

Establishing a causal relationship between a gene or variant can have different 

meanings for rare and common diseases. For the purposes of this thesis, we focus on 
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rare variants with high effect sizes, that can be implicated in both rare as well as 

common diseases, the latter of which is most likely to be identified through rare variant 

association tests including gene burden testing. While the methods discussed in the 

thesis can certainly be applied to interpretation of high frequency variants, we will not 

discuss the interpretation of low-effect size variants commonly identified in GWAS. 

 

Guidelines to establish causality for rare variants 

 Guidelines for implicating genes and variants as causative for disease have been 

developed and revisited by the human genetics community over the years 82,94. In 2013, 

the American College of Medical genetics, along with the Association for Molecular 

Pathology and the College of American Pathologists joined forces at a workshop to 

revise and reinstate standards and guidelines for the interpretation of sequence 

variants94. The resulting framework aims to place a variant on the spectrum of 

pathogenic, likely pathogenic, uncertain significance, likely benign and benign.  Lines of 

evidence for interpretation are considered from supporting, moderately supporting, 

strongly supporting and very strongly supporting. For example, identification of a null 

variant, defined as nonsense, frameshift, canonical splice site-disrupting, single or multi-

exon deletions, in a gene with a known loss-of-function mechanism of disease, is 

considered very strong evidence of pathogenicity. In contrast, in-frame insertions or 

deletions in repetitive regions are considered supporting evidence of benign impact. In 

addition to assessment of variant classes, lack of segregation evidence in cases where 

paternity and maternity are confirmed is considered strong evidence against 

pathogenicity 94. Such guidelines allow for a systematic assessment of variants that is 



  14 

consistent across laboratories and analysts, and it is recommended that all evidence, 

not only those that support the final verdict are presented82,94,95. 

 When attempting to follow proposed guidelines, implicating a pathogenic variant 

in a Mendelian disease patient theoretically still requires the assessment of every rare 

variant in the patient, of which there are many thousands96. This problem therefore 

requires tools for variant prioritization. Below, we discuss two important tools for 

prioritizing many variants: in silico prediction algorithms and population allele 

frequencies, the latter of which has been made increasingly accessible over the years 

through the publication of large databases of human genetic variation.  

 

In silico prediction tools  

In silico prediction tools aim to predict the functional impact of sequence variation 

using a variety of information such as conservation, location of a variant in the gene, or 

the biochemical properties of possible amino acid changes 94,96. A variety of tools exists, 

including comprehensive tools that can be applied to all genetic variants97,98, or those 

that are aimed specifically at the prediction of the effect of coding variation such as 

missense99,100 or splice-affecting variants101,102 in addition to tools aimed at noncoding 

variants such as those in untranslated regions103 (UTR) or predicted transcription factor-

binding sites 104.  

In silico prediction tools are useful guiding tools for variant interpretation. Such 

tools have consistently shown to globally differentiate between benign variants and 

those identified in databases of pathogenic variation, such as ClinVar 81,98 and are 

highlighted in the 2013 ACMG guidelines. For example, the prediction of no impact on 
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gene product via in silico algorithms is considered supporting evidence of benign impact 

94. However, for a given variant, the prediction of damaging does not equate to clinically 

pathogenic 96. For example, using missense variants of unknown significance in BRCA1 

it has been shown that all tools suffer from poor specify and sensitivity making them 

unsuitable for pathogenicity prediction 105. In another study, it was shown that prediction 

tools can have as high as a 30% false positive rate for calling benign variation 

pathogenic 106. The damaging prediction of noncoding variants are known to be even 

less accurate than their coding counterparts due to insufficient understanding of the 

regulatory machinery encoded in DNA 96,107.  Therefore, it is generally recommended 

against using a single prediction tool as the sole source evidence to make clinical 

assertions 94,96 and predictions from different in silico tools are often combined and used 

as a single piece of evidence in variant interpretation.  

 

Large-scale databases of genetic variation 

One of the most useful pieces of information analysts have about a variant is its 

allele frequency in the general population. Indeed, a variant allele frequency of over 5% 

is considered stand-alone support for the interpretation of variants as benign, and an 

allele frequency greater than expected for the disorder is considered strong support 94. 

Until 2014, approximately 3,000 genome sequences from diverse populations in 

1000 Genomes project and approximately 6,500 exomes from NHLBI Exome sequence 

project were used to available the population variant frequency 108. In 2014, the Exome 

Aggregation Consortium (ExAC) made summary variant-level data from approximately 

60,000 exome sequences publicly available 109. The dataset was released, in part, to 
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aid variant interpretation for rare diseases and accordingly passed through stringent 

quality control to remove related individuals and samples known to have a rare disease 

109. This dataset is referred to as a set of “ostensibly healthy” individuals without rare 

disease 110 and can be thought of as a population cohort.  

The use of ExAC as a reference dataset for clinical variant interpretation to filter 

variants too common to plausibly cause a highly penetrant severe disease, was shown 

to be sevenfold more powerful than ESP 109. Using a 1% allele frequency cutoff in both 

the entire dataset and in South Asian or Latino individuals, two populations that were 

underrepresented in reference databases, the authors reassigned 126 previously 

pathogenic variants to benign or likely benign. In one case, a variant associated with a 

severe recessive Mendelian liver disease was found to be present in homozygous state 

in 4 ExAC individuals. The variant was identified in a North American Indian pediatric 

cohort through linkage mapping, subsequent Sanger sequencing and functional 

analyses111. Phenotypic follow-up of the 4 ExAC individuals showed no signs of a 

severe Mendelian liver disorder, and the variant was reclassified as benign, highlighting 

the relative importance of population frequency evidence in comparison to linkage 

mapping and functional analyses 109.  

Five years after the publication of the ExAC manuscript, its successor, the 

Genome Aggregation Consortium released summary data from over 140,000 

individuals, this time a combination of approximately 125,000 WES and 15,000 WGS 

samples112. Both the ExAC and gnomAD datasets are presented in an intuitive interface 

to enable clinical geneticists and biologist to explore variants and genes of interest 113. 

Other large databases of human genetic variation have also been released including 
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WES data from 50,726 individuals in the DiscovEHR study 114 and 53,831 genomes 

from the NHLBI TopMed program. The UK Biobank, a national prospective cohort with 

approximately 500,000 participants who have contributed physical and health data, 

aims to provide exome sequencing on all of its participants, an effort that is currently 

10% complete 115,116.  

 It is difficult to overstate the impact of large-scale databases on Mendelian 

variant interpretation. Countless genetic diagnosis and gene discovery papers have 

been published using the ExAC and gnomAD resources 96 and the ExAC resource has 

been cited 3,965 times to date since its publication in 2016. In addition to the initial 

reclassification in the ExAC manuscript of high frequency variants previously annotated 

as pathogenic, disease-area specific studies have used the resource to reclassify 

previously reported variants as benign 117–119. Multiple studies have reported that 

proposed pathogenic variation with strong prior support, such as segregation data, are 

more likely to be rare or absent in reference databases, whereas those with a weaker 

evidence basis are more likely to have many carriers 80,117.  

Despite the tremendous positive impact of large genetic reference databases, 

they can also pose new variant interpretation challenges. In some cases, well-

established pathogenic variation can be observed in healthy individuals in ExAC, and 

requires careful follow-up analyses. In one published case, a de novo loss-of-function 

variant in ASXL1 was observed in a 6 year old child with presumed Bohring-Opitz 

syndrome. Germline inactivating mutations in ASXL1 have previously been established 

to cause Bohring-Opitz syndrome, and this specific variant had previously been 

reported as de novo in another patient with a closely resembling clinical presentation120. 
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However, a perplexing observation was the presence of this exact same variant in 

ExAC in 7 samples. Furthermore, ExAC individuals were also shown to carry other 

ASXL1 loss-of-function variants previously reported to cause severe disease, with the 

most common two variants present in 132 and 118 individuals. Manual evaluation of the 

de novo mutation observed in the initial in ExAC samples revealed considerable allele 

imbalance, in which the two haplotypes differ from the expected 50%, and which is in 

line with the variants being somatic mosaic in ExAC individuals 120. In other words, 

presence of this disease-causing variant in ExAC individuals was shown to not be 

germline and therefore not presumed to be disease-causing. Further evaluation of the 

two other disease-causing variants, each seen in over 100 ExAC samples were shown 

to be in line with variant calling errors, namely two frameshift variants occurring at the 

end of a homopolymer run, likely representing PCR artifacts 120. This case study of a 

single gene cautions against blind filtering of variants based only on the ExAC 

frequency and highlight the importance of careful curation of variants in population 

databases that we do not expect to occur.  

Large scale databases have begun to allow unbiased estimates of penetrance 80. 

Specifically, the gnomAD database, a cohort depleted for rare disease, can help answer 

the penetrance question for a variety of diseases. However, as exemplified in the 

ASXL1 case, variants observed in population databases should pass through careful 

quality control and ideally manual curation for such estimates to be as precise as 

possible. Chapter 3 of this thesis discusses one underappreciated error mode, and 

presents a tool to improve variant interpretation in such cases, which we expect will 

improve estimates of penetrance.  
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Transcriptome sequencing: a functional genomics tool 

 The terms exome and genome refer to the full set of all exonic regions, and the 

complete genome, respectively. Similarly, the transcriptome is defined as the type and 

quantity of all transcripts in a cell 121. Transcriptome sequencing, also known as RNA 

sequencing, or RNA-seq, refers to the experimental procedure of generating 

complementary DNA from RNA molecules and performing next-generation sequencing 

122,123. RNA-seq is a high throughput method with high technical reproducibility122 and 

offers base-level resolution of the RNA molecules present in a cell or tissue, and 

information about gene expression patterns, splicing, allele imbalance, and the variants 

present on RNA molecules, which can be germline, somatic or due to RNA editing 122. 

While several RNA-seq approaches are available, including those that aim to analyze 

long noncoding RNA (lnRNA)124, micoRNA (miRNA)125, short interfering RNA 

(siRNAs)126, small nucleolar RNA (snoRNA) 127, circular RNA (circRNA)128 or others, 

this thesis primarily focuses on the sequencing of human polyadenylated mRNAs.  

 

Quantifying gene expression with RNA-seq  

Profiling the gene expression levels in a cell type, tissue or organism is central to 

understanding new biological processes. Sequencing RNA molecules in a given 

sample, allows the use of the number of sequencing reads identified per gene to be 

utilized as a proxy for the level of expression of the gene 129.  

The number of sequencing per gene is subject to normalization to account for 

gene length, and sequencing depth in a sample. The reads per kilobase per million 

mapped reads (RPKM), the fragments per kilobase per million mapped reads (FPKM) 
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and the transcript per million mapped reads (TPM) are the three most commonly used 

gene expression units 130. RPKM involves dividing the number of reads per gene with 

the gene length and total sequencing depth in the sample, using a million as a scalar 

130. FPKM uses the same transformation, but the numerator is the number of paired end 

reads instead of single reads. The difference between TPM and RPKM/FPKM is the 

order of the division, in which TPM calculates sample scaling factors before dividing 

read counts and gene lengths whereas RPKM/FPKM first divides read counts by gene 

lengths 130. In other words, the TPM metric normalizes for gene length first, and 

sequencing depth second. 

The TPM/RPKM/FPKM units allow for the comparison of gene expression across 

different samples. This can provide insight on the differing transcriptional landscape 

across tissue or cell types. One main approach in which gene expression values are 

used is to compare different biological conditions to identify “differentially expressed” 

genes 130. However, given the normalization methods described result in proxies of 

gene expression, as RNA-seq represents a sampling of the true mRNA molecules 

present in a sample, statistical tests are required to identify the extent to which a gene is 

differentially expressed 130,131.  

Traditionally RNA-seq has involved short-read sequencing, with read lengths 

between 25-100 bps. While this is useful for assigning a read to a gene of origin, one 

drawback of the approach is that it does not assess full-length isoforms, which 

represent the true biological unit of the transcriptome. However, methods have been 

developed for the probabilistic assignment of each sequencing read to its transcript of 

origin. Such methods, which rely on the available gene and transcript annotation, 
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account for confounding factors such as isoform length and GC content of the isoforms, 

which can affect mapping and 3’ bias which is the preferential coverage of bases close 

to the 3’ end of a transcript due to RNA degradation 132–136. Recently developed long-

read sequencing technologies aim to sequence full isoforms instead of short fragments, 

and are discussed in the final chapter of this thesis.  

 

Evaluating alternative splicing with RNA-seq 

The excision of introns from pre-mRNA in mRNA processing is called splicing 

and is an essential biological process in eukaryotic organisms 137,138. Alternative 

splicing, which is the process wherein certain exons are skipped, creates protein 

diversity from the approximately 20,000 genes in the human genome 139.  

In RNA-seq data, short read sequences can be confined within an exon or 

untranslated region, or they may map to exon-exon junctions, indicating the two exons 

are spliced together during mRNA maturation. Splice-aware mapping algorithms can 

successfully identify such junction reads, allowing for single base pair resolution insight 

into patterns of alternative splicing and exon inclusion rates 140.  

Similar to differential expression analysis, algorithms exist for differential splicing 

analysis between conditions 130. In addition, genetic variants that disrupt splicing have 

been linked to a wide variety of common disorders such as cancer and 

neurodegenerative disease 141,142. Splice-affecting variants have been linked to several 

Mendelian disorders 143–145. A canonical rare disease example is Hutchinson Gilford 

progeria syndrome in which a heterozygous de novo synonymous variant in LMNA 

results in gain of splicing form within exon 11, resulting in truncation of the protein 
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product 145. It is estimated that over 70% of patients with this disorder have this 

recurrent mutation 145. Other cases of splice-affecting mutations that do not occur in the 

essential 2 base pair junction have been reported, however many such cases are likely 

to remain undiagnosed.  

 

Variant calling with RNA-seq 

 Given that germline variants will be present on mRNA products of a gene, RNA-

seq can be thought of as a form of exome sequencing in genes that are expressed in 

the sample 146. For some disorders, such as cancer, mutations in expressed regions 

may be of greater interest, as they are more likely to affect cellular function, and 

therefore identifying genetic variation via RNA-seq can be useful 147,148. In addition to 

germline genetic variation, identifying variant information from RNA-seq can offer 

additional information to DNA sequencing, as it can identify somatic variation occurring 

only in a given tissue that may not be detectable in the tissue used for WES/WGS, and 

it can provide insight into post-transcriptional processes, such as RNA editing 146,149,150.  

 Varying sensitivity and specificity metrics have been reported for genetic variant 

identification for RNA-seq data. One study reports that approximately 70% of coding 

variants were identified by RNA-seq 149, while other reports 92% of all expected variants 

in expressed exons could be detected at > 10 x coverage 146. In addition, 98% of 

variants identified with RNA-seq were reported to also be captured by WES/WGS 149. 

An additional study reported 95% and 80% sensitivity for single nucleotide mutations 

and indels, respectively 151 highlighting the potential utility of RNA-seq data as a 

complementary tool for variant detection to DNA sequencing 147. 
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Identifying allele imbalance with RNA-seq 

 In addition to the ability of RNA-seq to identify genetic variation, it can also 

distinguish between expression of haplotypes 152. In other words, at heterozygous sites 

in the human genome, RNA-seq can help detect unequal expression of the two 

chromosomal gene copies 153. This approach is called allele-specific expression (ASE) 

analysis and can reveal insight into genetic imprinting, X-inactivation, truncating 

mutations causing nonsense-mediated decay, and allele specific transcription induced 

by genetic changes 153–155. Several tools and frameworks have been developed to 

account for biases that can affect ASE estimates, such as mapping bias, quality control 

of read counts, and statistical tests to assign significance to ASE estimates 152,154. In the 

case of variant interpretation, ASE can help prioritize genes where unequal expression 

between haplotypes exists, without identifying the causative mechanism of ASE, and 

prioritize the locus for follow-up interpretation.  

 

Overview of large-scale population transcriptome datasets  

 As discussed in this chapter, interpreting the functional impact of variation in the 

genome is a central goal of human genetics, but is difficult to do based on DNA 

sequence alone. Therefore, integrating functional genomics information, such as RNA-

seq, to link genetic variation to molecular phenotypes such as gene expression and 

splicing, as an intermediate link between genetics and disease has been a focus of the 

human genetics’ community 156. In this effort, several large-scale transcriptome datasets 

have been generated to decipher the effect of genetic variation on cellular phenotypes. 
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Here we summarize some of the larger datasets and touch on efforts to harmonize the 

project specific transcriptome sequencing efforts.  

 A canonical dataset of human genetic variation is the 1,000 Genomes data, 

which provided genome sequencing on diverse populations 157. The Geuvadis 

Consortium produced RNA-seq from lymphoblastoid cells lines from 465 individuals in 

the 1,000 Genomes Project, with approximately 89-95 samples per five represented 

populations: Utah Residents with Northern and Western European Ancestry, Finnish 

from Finland, British in England and Scotland, Toscani in Italy, and Yoruba in Nigeria. 

The project showed that integrating RNA and DNA sequencing data can help uncover 

the landscape of regulatory variation, including variants that have effects on gene 

expression (commonly referred to as expression quantitative trait loci, or eQTLs), which 

can help further resolve GWAS loci that have been associated with disease.  

 The Cancer Genome Atlas (TCGA) has produced RNA-seq data from over 8,000 

tissue samples over 30 cancer types and normal tissues to characterize gene 

expression alterations across and within cancer types  158,159 to complement their DNA 

sequencing efforts from tumors and normal samples. This effort has helped explore 

biomarkers of cancer subtypes and stages within a cancer subtype 160,161, the effect of 

splice disruptions in cancer pathogenesis 162–164, and the identification of somatic 

variation in tumors 165,166. 

 Geuvadis offered transcriptome sequencing from a diverse range of populations 

in a single tissue, and TCGA offered a disease-specific transcriptome dataset across a 

variety of tissues. The Genotype Tissue Expression Consortium (GTEx) in contrast 

aimed to provide transcriptome sequencing across several human tissue types in a 
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broad range of individuals. The consortium, whose initial goals were to create a 

resource to enable systematic analyses of genetic variation and disease, to fine-map 

GWAS associations, and to provide a biobank of tissues for other assays, has to date 

released transcriptome sequencing samples from 714 donors in 53 tissue types, 

corresponding to a total of 11,688 samples in the version 7 of the dataset 167,168. The 

version 8 dataset, to be released in 2019, will include data from over 900 donors 

corresponding to a transcriptome sequencing dataset of almost 20,000 samples [Kristin 

Ardlie, personal communication]. The GTEx dataset has allowed for the characterization 

of gene expression patterns across tissues 169, development of statistical methods and 

analyses of expression and splicing QTLs and the characterization of their link to 

common and rare disease 137,141,168,170–174  

 In addition to the consortium-based large-scale transcriptome sequencing efforts, 

several project specific RNA-seq datasets have been produced. Currently, it is 

estimated that there over 70,000 such project specific RNA-seq datasets 175. Several 

efforts to joint-process and harmonize these datasets for combined analyses have been 

made including the TOIL pipeline, which presents a uniform pipeline for data alignment 

and gene and transcript quantification 176 as well as recount2, which allows researchers 

to search for keywords in project abstracts and download gene, isoform and junction 

quantifications 175. These databases include RNA-seq data that is not available in the 

Geuvadis, TCGA or GTEx datasets such as fetal brain expression data and 

experimental data from stem cell experiments, and can be a useful resource to 

complement the larger datasets.  
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Abstract 

Exome and whole-genome sequencing are becoming increasingly routine 

approaches in Mendelian disease diagnosis. Despite their success, the current 

diagnostic rate for genomic analyses across a variety of rare diseases is approximately 

25-50%1–4. Here, we explore the utility of transcriptome sequencing (RNA-seq) as a 

complementary diagnostic tool in a cohort of 50 patients with genetically undiagnosed 

rare muscle disorders. We describe an integrated approach to analyze patient muscle 

RNA-seq, leveraging an analysis framework focused on the detection of transcript-level 

changes that are unique to the patient compared to over 180 control skeletal muscle 

samples. We demonstrate the power of RNA-seq to validate candidate splice-disrupting 

mutations and to identify splice-altering variants in both exonic and deep intronic 

regions, yielding an overall diagnosis rate of 35%. We also report the discovery of a 

highly recurrent de novo intronic mutation in COL6A1 that results in a dominantly acting 

splice-gain event, disrupting the critical glycine repeat motif of the triple helical domain. 

We identify this pathogenic variant in a total of 27 genetically unsolved patients in an 

external collagen VI-like dystrophy cohort, thus explaining approximately 25% of 

patients clinically suggestive of collagen VI dystrophy in whom prior genetic analysis is 

negative. Overall, this study represents a large systematic application of transcriptome 

sequencing to rare disease diagnosis and highlights its utility for the detection and 

interpretation of variants missed by current standard diagnostic approaches.   
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Introduction 

 

RNA sequencing as a diagnostic tool for Mendelian disease 

RNA is the direct functional output of genetic variation on gene expression, 

making it a useful tool to assess the pathogenicity of variants as well as to identify 

genetic lesions that may elude DNA sequencing technologies. Given that DNA 

sequence changes first manifest in the way genes are expressed, we hypothesized that 

studying transcriptional changes in the affected tissue of patients with Mendelian 

disease would provide valuable insights into the cause of disease. 

RNA-seq is the current state of the art technology for transcriptomics research, 

allowing the analysis of transcripts at single base pair resolution 5. We hypothesized 

that the use of RNA-seq will empower Mendelian disease diagnosis by validating 

candidate pathogenic variants uncovered by DNA sequencing and by identifying new 

causal variants where DNA sequencing alone does not provide a definitive molecular 

diagnosis.  

RNA-seq can provide several insights that are currently missed by DNA 

sequencing. Transcriptional aberrations, such as skipping of an exon, have been shown 

in many cases to explain Mendelian disorders6–10. Such aberrations are often due to 

canonical splice site variants that obliterate efficient splicing at an exon-intron junction, 

but can also be caused by mutations in the extended splice site region or exonic splice 

enhancer motif 7,8,11. Currently, it is well understood that mutations that disrupt the 

canonical GT/AG splice motifs have detrimental effects on transcription. However, other 

classes of splice mutations have often been ignored or characterized as variants of 
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unknown significance (VUS)12. This is a prime motivating example for the use of RNA 

sequencing in diagnosis given that RNA-seq can help identify splicing patterns in 

patients that are missing in controls and sequencing including splice defects, somatic 

variation and allele-specific expression. 

While exome sequencing capture technologies are constantly being improved, 

there are regions of the genome that WES does not efficiently sequence13,14. 

Hybridization based-capture technologies are limited by specific targets and capture 

efficiency of the probes, leaving many disease-relevant exons uncovered14. The input 

for RNA sequencing is the expressed transcripts, therefore it is not limited by probe-

based capture systems. Therefore RNA-sequencing can complement WES through 

analysis of variants in regions poorly captured with WES. 

In next-generation sequencing studies, DNA is usually derived from blood or 

saliva and not the affected tissue. In these cases, WES may also miss pathogenic 

somatic variants that are only found in the affected tissue. Somatic variants are 

mutations that occur post-zygotically and result in variants being present in a subset of 

tissues15,16. Somatic variation has already been linked to several Mendelian diseases 

including neuromuscular disorders15–17. We hypothesized that RNA-seq would be 

capable of identifying somatic variants present in an affected tissue that may be absent 

in blood or saliva-based WES. 

Lastly, regulatory variants. or variants in the non-coding portion of a gene, remain 

difficult to interpret with DNA sequencing. It has been suggested that a large proportion 

of Mendelian regulatory variants may occur in the promoter region, resulting in reduced 

or eliminated expression of the gene from the affected copy18.. In this case, only mRNA 
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transcribed from the unmodified promoter will be expressed and thus will be the only 

transcript picked up by RNA-seq. In these cases, we expect to see RNA-seq to show 

striking allelic imbalance in the gene, with heterozygous sites in the gene, identified by 

DNA sequencing, appearing homozygous in the RNA data 19.   

 

Neuromuscular disorders as a model Mendelian disease for RNA-sequencing 

Neuromuscular disorders (NMDs) are broadly characterized by progressive 

skeletal muscle weakness, fatigue, and loss of neuromotor capabilities. There is 

considerable clinical heterogeneity in neuromuscular disease with a wide spectrum of 

onset, rate of progression and clinical severity, making the broad class of disease 

difficult to diagnose based on phenotype alone20,21. WES has had a dramatic impact on 

both the understanding and clinical diagnosis of neuromuscular disorders. Over 150 

genes have been associated to muscle disease and the current rate of genetic 

diagnosis in muscle disease patients is approximately 40-50% 20,22. 

DNA sequence remains largely constant in tissue types, with the exception of 

somatic mutations. In contrast, recent large-scale studies have shown that gene 

expression and mRNA isoforms vary widely across tissue types and that up to 80% 

alternative splicing of pre-mRNA may be tissue-specific23. Therefore, sequencing the 

affected tissue is critical to correctly interpreting the effect of genetic variation on the 

transcriptomic landscape in muscle disease patients. Furthermore, our analysis of RNA-

seq from 200 muscle biopsies from samples in the Genotype Tissue Expression 

Consortium (GTEx) demonstrates that genes associated with neuromuscular disease 
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are poorly expressed in blood, making blood-derived RNA-seq underpowered to detect 

relevant transcriptional aberrations that can cause muscle disease (see below). 

Muscle biopsies are routine clinical practice for undiagnosed muscle disease 

patients that are used for histopathology screen as well as protein-based assays 24,25. 

This current ease of access to affected skeletal muscle tissue coupled with the 

heterogeneity of neuromuscular disease makes it an attractive class of disorders for 

studies of transcriptome sequencing guided diagnosis. 

 

Study design 

To investigate the value of RNA-seq for diagnosis, we obtained primary muscle 

RNA from 63 patients with putatively monogenic muscle disorders. Thirteen of these 

cases had been previously diagnosed with variants expected to have an effect on 

transcription, such as loss-of-function or essential splice site variants, allowing us to 

validate the capability of RNA-seq to identify transcriptional aberrations (Appendix Table 

2.1). The remaining cohort of 50 genetically undiagnosed patients included cases for 

whom DNA sequencing had prioritized variants predicted to alter RNA splicing or strong 

candidate genes, as well as cases with no strong candidates from genetic analysis. 

We sought to explore the utility of transcriptome sequencing as a complementary 

diagnostic tool to exome and whole genome analysis. We reasoned that RNA-seq 

would allow us to interpret variants previously identified through genetic analysis and 

may pinpoint genetic lesions that may have eluded DNA sequencing. To interpret 

transcriptional aberrations seen in patients, we obtained a reference panel of RNA-seq 

data from skeletal muscle samples generated by the GTEx project26. Our framework 
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was based on identifying transcriptional aberrations present in patients that are missing 

in GTEx controls. We first validated the capacity of RNA-seq to resolve transcriptional 

aberrations in thirteen patients with prior genetic diagnosis and then analyzed the 

remaining fifty genetically undiagnosed patients to detect aberrant splice events and 

allele-specific expression and performed variant calling from RNA-seq data to identify 

pathogenic events or to prioritize genes for closer analysis. 

 

Importance of sequencing the disease-relevant tissue 

Recent large-scale studies have shown that gene expression and mRNA 

isoforms vary widely across tissues, indicating that for many diseases, sequencing the 

disease-relevant tissue will be valuable for the correct interpretation of genetic 

variation23,27. This is illustrated by the relative expression of known muscle disease 

genes in skeletal muscle, whole blood, and fibroblast samples from the Genotype 

Tissue Expression Consortium project (GTEx)26,28 (Figure 2.1). The majority of the most 

commonly disrupted genes in muscle disease are poorly expressed in blood and 

fibroblasts, suggesting RNA-seq from these easily accessible tissues may be 

underpowered to detect relevant transcriptional aberrations in certain genes. For these 

reasons, we chose to pursue RNA-seq from primary muscle tissue biopsies, which are 

routinely performed as part of the diagnostic evaluation of undiagnosed muscle disease 

patients25,29. 
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Materials and Methods 

Clinical sample selection 

Patient cases with available muscle biopsies were referred by clinicians from March 

2013 through June 2016. Samples fell into four broad categories: 

  

1. patients for whom previous genetic analysis had resulted in a diagnosis 

with at least one loss-of-function or essential splice site variant, serving as 

 

 
 
Figure 2.1 Expression of commonly disrupted muscle disease genes in muscle, blood, and 
fibroblasts. Expression of commonly disrupted neuromusucular disease genes in  430 muscle (green), 393 
whole blood (red), and 283 fibroblast (yellow) GTEx samples shows these genes are relatively poorly 
expressed in more easily accessible blood and fibroblast tissues.  
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positive controls to assess the capability of RNA-seq to identify the 

transcriptional effect of the variants (n = 13, patient IDs starting with ‘D’). 

 

2. patients with candidate extended splice site variants that had been 

categorized as variants of unknown significance for which assignment of 

pathogenicity would result in a complete diagnosis for the patient (n=4, 

patient IDs starting with ‘E’). 

 

3. patients for whom a strong candidate gene was implicated due to either a  

well-defined monogenic disease phenotype, such as patients with clear 

Duchenne muscular dystrophy evidenced by clinical diagnosis and loss of 

dystrophin expression (n=6), or to the presence of one pathogenic 

heterozygous variant identified in a gene matching the patient’s phenotype, 

without a second pathogenic variant in that gene (n= 6, patient IDs starting 

with ‘C’). 

 

4. patients with no strong candidates based on previous genetic analysis 

such as exome or whole genome sequencing (n=34, patient IDs starting with 

‘N’) 

  

Patients that fit categories 2-4 are referred to as undiagnosed prior to RNA-seq 

and constitute the denominator for the 35% diagnosis rate. All patients had prior 

analysis of exome and/or whole genome sequencing data, except two cases (patients 
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E4 and D11) for whom targeted sequencing had identified a candidate extended and 

essential splice site variant, respectively. We favored cases with previous trio exome or 

whole genome sequencing: 29/63 patients had complete trios, with 3 additional patients 

having one parent sequenced. Although age of onset was not considered as an 

exclusion criterion, a majority of the patients in the cohort had a congenital or early-

childhood onset primary muscle disorder. 

Muscle biopsies or RNA were shipped frozen from clinical centers via a liquid 

nitrogen dry shipper and stored in liquid nitrogen cryogenic storage. Before submission 

to the sequencing platform, all muscle samples were visually inspected, photographed, 

cut into 50 μm sections on Leica CM 1950 model cryostat, and transferred to pre-chilled 

cryotubes in preparation for RNA extraction. When muscle arrived embedded in OCT, 8 

μm transverse cryosections were mounted on positively charged Superfrost plus slides 

(VWR, 48311-703) and stained with hematoxylin and eosin (H&E) to assess the relative 

proportion of muscle versus fibrosis and adipose infiltration as well as the presence of 

overt freeze-thaw artifact. All samples analyzed with H&E showed muscle quality 

sufficient to proceed to RNA-seq. 

 

 Selection of GTEx controls 

GTEx data were downloaded from dbGaP (http://www.ncbi.nlm.nih.gov/gap) 

under accession phs000424.v6.p1. From 430 available GTEx skeletal muscle RNA-seq 

samples, we selected 184 samples based on RNA Integrity (RIN) score (between 6 and 

9), number of non-duplicate uniquely mapped read pairs (between 35M and 75M), and 

ischemic time (<12 hours) to remove any samples that were outliers for these quality 
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metrics. GTEx samples were further filtered to remove samples with known clinical 

conditions such as Klinefelter’s syndrome or those for whom death followed after long or 

intermediate term illness or medical intervention (Hardy Scale 0, 3, or 4). Overall, 

approximately 80% of GTEx samples with available muscle RNA-seq are above the age 

of 40 (median age 54) and have BMI over 25 (median BMI 27). Thus we selected 

samples to enrich for younger GTEx donors to more closely match our patient cohort. 

All samples below the age of 50 were selected, resulting in 76 samples with high quality 

RNA-seq data. We then added older samples back on the criterion that their BMI was 

below 30. This resulted in a total of 184 GTEx control samples for our reference panel, 

with comparable male and female sample count (105 male and 79 female). This filtering 

method also enriched RNA-seq data from organ donors and surgical donors as 

opposed to postmortem samples (72% of selected GTEx controls are derived from 

surgical or organ donors vs 45% in the unfiltered dataset). 

 

RNA sequencing, processing and quality control 

RNA was extracted from muscle biopsies via the miRNeasy Mini Kit from Qiagen 

per kit instructions. All RNA samples were measured for quantity and quality. Samples 

had to meet the minimum cutoff of 250 ng of RNA and RNA Quality Score (RQS) of 6 to 

proceed with RNA-seq library prep. A fraction of samples falling below an RQS of 6 

were also submitted for sequencing. All samples submitted had a range of RQSs 

between 3.5-8. 

Sequencing was performed at the Broad Institute Genomics Platform using the 

same non-strand-specific protocol with poly-A selection of mRNA (Illumina TruSeq) 
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used in the GTEx sequencing project 28, to ensure consistency of our samples with 

GTEx control data. Paired end 76 bp sequencing was performed on Illumina HiSeq 

2000 instruments, with sequence coverage of 50M or 100M. One sample (patient N33) 

was sequenced to higher depth at 500M reads allowing us to perform downsampling 

analysis of the effects of increasing RNA-seq depth. 

GTEx BAM files downloaded from dbGaP were realigned after conversion to 

FASTQ files with Picard SamToFastq. Both patient and GTEx reads were aligned using 

Star 2-Pass30 version v.2.4.2a using hg19 as the genome reference and Gencode V19 

annotations31. Briefly, first-pass alignment was performed for novel junction discovery, 

and the identified junctions were filtered to exclude unannotated junctions with less than 

5 uniquely mapped read support, as well as junctions found on the mitochondrial 

genome. These junctions were then used to create a new annotation file, and second-

pass alignment was performed as recommended by the STAR manual to enable 

sensitive junction discovery. Duplicate reads were marked with Picard MarkDuplicates 

(v.1.1099). 

Quality metrics for patient and GTEx RNA-seq data were obtained by running 

RNA-seQC32 (v1.1.8) on STAR aligned BAMs. PCA on gene expression was performed 

based on RPKM values calculated by RNA-seQC. Two samples (D6 and N3) were 

removed due to outlier status in PCA, consistent with a high proportion of non-muscle 

tissue in the samples. For GTEx samples, the expression and exon-level read count 

data were downloaded from dbGAP under accession phs000424.v6. For PCA of exon 

inclusion metrics, we obtained PSI values for GTEx samples as described in 33 . 
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To ensure that patient DNA and RNA data were identity-matched, we compared 

variants identified in WES, WGS, and RNA-seq data. WES, WGS, and RNA-seq data 

were joint-genotyped for a set of ~5,800 common SNPs collated by Purcell et al.34 using 

Genome Analysis Toolkit (GATK) HaplotypeCaller package version 3.435. We then 

calculated pairwise inheritance by descent (IBD) estimates between DNA and RNA-seq 

data using PLINK36 (v1.08p). Relatedness coefficients for WES, WGS, and RNA-seq 

data from the same individual ranged from 0.67-1.00 across our samples (mean = 0.9), 

compared to a range of 0-0.18 (mean= 0.001) for non-matching individuals, confirming 

that the sources for DNA and RNA-seq were the same for each patient in our dataset. 

  

Identification of pathogenic splice events 

Splice junctions were identified from split-mapped reads, considering only 

uniquely aligned, non-duplicate reads that passed platform/vendor quality controls. For 

each splice junction we noted: 

 

1. the genomic coordinates 

2.    the gene in which the junction was observed based on Gencode v.19 

3.    the number of samples in which the splice junction was observed 

4.    the number of total reads supporting the junction in 245 samples (184 GTEx 

and 61 patient) 

5.    the per-sample read support for the junction 
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Splice 
junction

Number of reads 
supporting splice 

junction
Type of Event

A-B 300 Canonical splicing

C-D 100 Canonical splicing

A-D 200
Exon skipping event 

(Unannotated exon-exon 
junction)

A-E 3 Likely mapping noise

300

200

A B C D

3

100
E

Exon-Intron Junction

Number of reads at the 
exon-intron junction 

overlapping a canonical 
splicing junction

A 300

B 300

C 100

D 100

Splice Junction Normalized Value

A-B 300/300 = 1

A-D 200/300 = .66

A-E 3/300 = 0.01

C-D 100/100 = 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2 Overview of splice junction filtering approach. A. Types of possible aberrant splice events 
targeted for detection with splice junction discovery method. Among possible pathogenic splice events, such 
as exon skipping or intronic splice gain, shown in red, at least one exon-intron junction will be a part of a 
known annotated transcript, thus allowing for filtering of junctions that have no sharing with an annotated 
junction. B. An example of the normalization scheme for the case of heterozygous exon skipping. Exon-exon 
junctions A-B and C-D are wildtype splice events, whereas A-D represents an exon skipping event and A-E 
is likely mapping noise with low level read support. Every exon-exon junction is normalized by the maximum 
read support of a shared exon-intron junction that is annotated in Gencode v19. Here, the exon skipping 
event has 200 read support and the shared annotated exon-intron junctions have 100 and 300 read support. 
Therefore 200/300 is the normalized value that supports this event. In contrast, 3 reads support a splicing 
event between junction A-E, which is normalized by 300, therefore the normalized value is 0.01 and the 
junction is filtered. 

Exon Skipping

Exon Extension

Intronic Splice Gain

Exonic Splice Gain
: Annotated Junction

: Unannotated Junction

A. 

B. 
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We then performed local normalization of per-sample read support based on the 

support for the highest shared annotated junction (Figure 2.2A). For example, an exon-

skipping event harbors two annotated exon-intron junctions, and we normalize this by 

the maximum of read count support for canonical splicing at these two wildtype 

junctions. This local normalization allows for filtering low-level mapping noise and 

accounts for stochastic gene expression and library size differences between samples 

(Figure 2.2B). 

To identify pathogenic splice events, splice junctions in protein coding genes 

were filtered in terms of the number of samples a splice junction is present in and the 

number of reads and the normalized value supporting that junction. Specifically, we 

defined a sensitive cutoff at which an aberrant splice event is seen with at least 5% of 

the read support compared to the shared annotated junction, with at least 2 reads 

supporting the event. We also required a splice junction to contain at least one 

annotated exon-exon junction, indicating that the event was spliced into an existing 

transcript (Figure 2.2A). We performed analysis on a per-sample basis, each time 

requiring the normalized value of a given splice junction to be maximum in that sample 

and twice that of the next highest sample, allowing us to search for unique events in the 

patient. 

All candidate pathogenic splice events were manually evaluated using the 

Integrative Genome Viewer (IGV)37. This resulted in the identification of aberrant 

splicing at 8/9 pathogenic essential splice site variants and resulted in the diagnosis of 

10/17 patients in the study. A splice aberration was not observed around an essential 

splice site variant found in TTN in patient D5 due to insufficient number of reads 
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mapping to the local region. We extended filtering parameters to identify splice junctions 

present in fewer than 10 samples, but with high read support in each sample, allowing 

us to identify the intronic splice-gain event present in 4 patients in COL6A1 (see below). 

We note that this approach would also identify putatively pathogenic splice aberrations 

for which there are GTEx carriers. The remaining 3 Duchenne muscular dystrophy 

patients were diagnosed through manual analysis of splicing patterns in DMD and 

resulted in the identification of splice disruption. Overlapping structural variants at these 

regions were confirmed by subsequent WGS. 

 

 Allele specific expression analysis 

Allele counts for heterozygous variants were calculated from RNA-seq data using 

GATK ASEReadCounter package version 3.638. Heterozygous variants that passed 

VQSR filtering were first extracted for each sample from exome sequencing VCFs 

(GTEx v6 VCF exome downloaded via accession phs000424.v6.p1) using GATK 

SelectVariants. The analysis was restricted to biallelic SNPs due to known issues in 

mapping bias in RNA-seq against indels38. Sample-specific VCFs and RNA-seq BAMs 

were inputted to GATK ASEReadCounter, requiring coverage in the RNA-seq data of 

each variant to be at least 20 reads, with a minimum base quality of 10 and counting 

only uniquely mapped reads. 

To detect allele-specific expression unique to patients, we first calculated a 

distribution of allele balance in each gene based on GTEx reference and alternative 

allele counts and identified patients who fell outside of the 95% confidence interval for 

mean allele balance in the gene. This resulted in the identification of a median of 3 
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genes with allele imbalance in 189 neuromuscular disease genes. The method re-

identified allele imbalance in all 4 cases where the patient was known to have a loss of 

function variant in trans with an additional variant. Allele imbalance in causative genes 

was observed in 5 diagnoses made in the study (patients E2, C1, C9, N22, and N25; fig. 

S16C, D). Due to hemizygosity on the X chromosome in 6 Duchenne muscular 

dystrophy males and the protein-level effect of pathogenicity in the 4 patients harboring 

the COL6A1 intron inclusion, we would not have expected ASE in 10 diagnoses made 

in the study. 

 

Variant calling from RNA-seq data 

Variant calling was performed using GATK HaplotypeCaller following best 

practices guidelines (https://www.broadinstitute.org/gatk/guide/article?id=3891). BAMs 

aligned with STAR were processed for genotyping using GATK SplitNCigar reads, and 

variant calling was performed using HaplotypeCaller for each sample. The resulting 

VCFs were merged with GATK MergeVCFs and annotated with VEP v8139. The variant 

call set was uploaded onto seqr analysis platform (seqr.broadinstitute.org), and analysis 

was performed using the various inheritance patterns, functional annotation, and variant 

frequency in reference databases including ExAC40 and 1000 Genomes41. 

  

Expression outlier analysis 

We identified samples that are outliers for gene expression by calculating z-

scores derived from log2(RPKM+1) for gene expression values obtained from RNA-

seQC. We identified gene expression outliers with a z-score cutoff of 3, defining 



 56 

samples that were both under and over expression outliers. This resulted in the 

identification of a median of 207, 37, and 2 genes per sample in all genes, OMIM 

genes42, and neuromuscular disease genes, respectively. This method resulted in the 

identification of 1 of 12 causative genes as an expression outlier for samples previously 

diagnosed by DNA sequencing. This method also identified only 3/6 Duchenne or 

Becker’s muscular dystrophy patients as expression outliers for DMD, suggesting 

expression outlier status analysis was underpowered in our study. 

  

Identification of pathogenic variants in triplicate repeat regions 

The triplicated regions of NEB and TTN (chr2:179517931-179528342 and 

chr2:179,517,939-179,528,317, respectively) contain repeats with high sequence 

similarity, resulting in low mapping quality scores and low-quality variant43,44. In order to 

improve variant detection in these regions, we first constructed pseudo-mini-references 

by masking the hg19 genome except for a given triplicate region using BEDtools45 

(v2.16.1) maskfasta (Figure 2.3A). We extracted reads mapped to the region from 

exome, split RNA-seq, and whole genome BAMs where available, using SAMtools46 

v1.3 and BEDTools bamtofastq. We then re-mapped the reads aligning to the full 

triplicate region to the masked reference containing only one triplicate component using 

BWA-mem47 v.0.7.12 (Figure 2.3B) Variant calling was performed on the resulting 

BAMs using GATK HaplotypeCaller with ploidy 6 to account for reads originally aligned 

to 3 genomic regions being realigned to a single region. VCFs were then annotated with 

VEP v8139. 
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We searched the resulting annotated VCFs for putative loss-of-function variants 

including nonsense, frameshift, essential splice, and extended splice site variants. For 

the two variants identified using this method, we performed manual evaluation of read 

data to ensure allele balance was in line with ploidy 6. For patient N25, 3,133/41,618 

and 13/89 reads supported the nonsense variant in RNA-seq and WGS data, 

respectively (Figure 2.3C). For patient N22, 74/470 reads supported the presence of the 

frameshift variant (Figure 2.3D). Three references were constructed for each gene, 

masking two triplicate regions at a time to ensure putatively pathogenic variants were 

detected in all three cases. We performed remapping of all data types available for 

patients to confirm any putatively pathogenic variants were detected in all datasets. 

Both variants identified via this method were confirmed via genotyping. Code for 

remapping the triplicate region and a masked reference for the first triplicate region of 

NEB can be found at  https://github.com/berylc/MendelianRNA-seq. 

 
Splice site prediction 

In silico splice site predictions were obtained using the Alamut Batch Software 

v.1.4.4 available from Interactive Biosoftware (http://www.interactive-biosoftware.com). 

MaxEntScan (MES)48, GeneSplicer (GS)49, Splice Site Prediction by Neural Network 

(NNSplice)50, and Human Splicing Finder (HSF)51 are integrated into this commercial 

software and were all evaluated for prediction of discovered splice affecting variants. 

While these tools predict the impact of splice-disrupting variants, Alamut also reports 

variants with predicted splice-gain effects in 6 categories: i. cryptic donor weakly 

activated; ii. cryptic donor strongly activated; iii. cryptic acceptor weakly activated; iv. 

cryptic acceptor strongly activated; v. new donor site; and vi. new acceptor site. 
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We ran Alamut predictions on 6 patients for whom extended splice site variants 

were evaluated or novel splice-creating variants were discovered with RNA-seq and 

where WES data were available (patients E1-3, C9, C11, and N22). The analysis was 

restricted to WES data as Alamut software was not amenable to parallel computation on 

the Linux RedHat version 4.4.7-17 cluster utilized at the Broad Institute with a Univa 

Grid Engine for Research (UGER) v.8.4.0 queuing system: Attempts to run the software 

on a WGS VCF  
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Figure 2.3: Overview of triplicate region remapping. A. Schematic of references built for remapping 
the triplicate region. Reads that have aligned with low quality are extracted and remapped to a pseudo-
reference, and variant calling is performed with ploidy 6. This is performed for all three regions to ensure 
a given variant is called in all three remapping instances. C. IGV screenshot showing reads with mapping 
quality > 20 demonstrates that reads re-mapped to each of the three pseudo-references have high quality 
alignment. D. Nonsense variant identified in the NEB triplicate region of patient N25. While raw whole 
genome-sequencing reads aligning to the region do not show evidence of the variant, both re-mapped 
WGS and RNA-seq data show support for the variant. E) Frameshift variant in the TTN triplicate region in 
patient N22. Although RNA-seq data showed low coverage of the region, the variant was validated by 
genotyping. 
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(Figure 2.3 continued) 
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(Figure 2.3 continued) 

 

 

 

 

 

 

 
 

 

were abandoned after over 2 months of computation had completed analysis on a 

single patient VCF only to chromosome 7. 

We evaluated the strength of the canonical splice site with and without variants, 

defining the impact of a variant as (WTscore - Variantscore). We then identified the number 

of rare, high quality variants (VQSR filter PASS, GQ >10, global allele frequency < 1% 

in ExAC) that would be predicted to be as or more damaging than the evaluated 

extended splice site variant. In addition, we evaluated the total number of rare, high 

quality variants reported to result in gain of splicing on an exome-wide scale. We did not 

evaluate in silico predictions of variants that affect splice factor binding motifs (such as 

those discovered in patients C1 and N25 in the study) as it is estimated that ~75% of 

typical mRNA are spanned by at least one splice motif, indicating that tools querying the 

effect of variants on these motifs often lack specificity52,53. 

For two disruptive extended splice sites identified in the study (in patients E2 and 

C9), several in silico predictions showed a low number of exome-wide variants with a 
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score at or above the score of the variant, indicating that in silico predictions 

successfully prioritized these disruptive variants with high specificity. However, two 

extended splice site variants shown to have no effect on local RNA splicing (patients E1 

and E3) also showed the same low number of variants predicted to be damaging for 

each tool tested, suggesting that use of these predictions alone could result in 

assignment of false pathogenicity. Splice prediction tools also showed poor specificity in 

identifying splice site-creating variants, predicting an average of ~140 rare splice-

creating variants per exome. The low specificity for splice site-creating variants and the 

false positives observed for splice-disrupting variants show that while in silico splice 

predictions tools can be useful to prioritize variants for follow up analysis, they are 

currently insufficient to designate variants as causal for genetic diagnosis based on 

DNA information alone. 

  

RT-PCR validation and Sanger sequencing of cDNA 

The SuperScript® III First Strand Synthesis Kit (ThermoFisher Scientific, 

18080051) was used to make cDNA from 50ng of RNA according to kit instructions. The 

Herculase II Fusion DNA polymerase (Agilent, 600679) was used for PCRs. Control 

cDNA was obtained from RNA extracted from muscle biopsies of other patients with 

splicing effects in unrelated genes. All PCR products were analyzed on a 2% agarose gel 

unless otherwise indicated. 

Sequence determination of the cDNA boundaries of the intron inclusion for C7 was 

performed by PCR purifying the bands from the PCR of exon 55- intron inclusion and exon 

56- intron inclusion. A second identical PCR reaction was performed followed by PCR 
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purification on the PCR product to amplify it enough for Sanger sequencing with the Exon 

55R and Exon 56F primers. Sequence verification of the boundaries exonic splicing for 

C11 was performed by gel extraction and purification of the two bands from a 4% agarose 

gel (Qiagen, QIAEX II Gel Extraction Kit, 20021), a second PCR to further amplify the PCR 

product, PCR purification (Qiagen), and sequenced with the forward and reverse PCR 

primers. 

Patient C1 had patterns of clear nonsense-mediated decay with only the haplotype 

harboring the essential splice site variant being detectable in the RNA-seq data. However, 

it was detectable in patient fibroblasts transdifferentiated into skeletal myotubes via MyoD 

overexpression by RNA-seq and RT-PCR. The RT-PCR was designed to amplify between 

exons 6-8 of POMGNT1. Sequence confirmation of the new exon junction was performed 

by gel purification of the shorter band in C1 fibroblasts trans-differentiated into skeletal 

myotubes via MyoD overexpression from a 4% agarose gel (Qiagen, QIAEX II Gel 

Extraction Kit, 20021), a second PCR to further amplify the PCR product, PCR purification 

(Qiagen), and sequenced with the forward and reverse primers. 

Results 

 

Comparison of patient RNA-seq to a muscle RNA-seq reference panel 

Patient muscle samples were sequenced using the same protocol as in the GTEx 

project28 and analyzed using identical pipelines to minimize technical differences, with 

patients sequenced at or above the same coverage as GTEx controls. From 430 

skeletal  
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Table 2.1 Comparison of quality metrics between patient and GTEx RNA-sequencing samples 
shows correspondence between patients and controls. The outlier (*) observed in the first four 
metrics corresponds to patient N33, who was sequenced at higher depth of 500M reads and thus has 
a higher number of mapped reads. P-values are based on a t-test. 

Quality metric 
 

          Distribution 
 

GTEx mean 
(n=184) 

Patient mean 
(n=64) p-value 

Total purity 
filtered reads 
sequenced 

 

9.81 x 107 12.2 x 107 0.041 

Number of 
uniquely mapped 

reads 

 

5.8 x 107 6.6 x 107 0.085 

Estimated library 
size 

  
 

9.68 x 107 
 
 

9.55 x 107 0.597 

Number of 
 split reads 

 

1.77 x 107 2.39 x 107 0.008 

Proportion of 
duplicate reads 

 

0.37 0.41 0.002 

Exonic rate 

 

0.81 0.80 0.671 

Mean fragment 
length 

 

209.5 232.4 0.0897 

0.0000

0.0005

0.0010

0.0015

0.0020
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GTEx
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* 
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muscle RNA-seq samples available through GTEx, we selected a subset of 184 

samples based on RNA-seq quality metrics including RNA integrity (RIN) score and 

ischemic time, as well as phenotypic features such as age, BMI, and cause of death to 

more closely match our patient samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Experimental design and quality control. A. Overview of the number of samples that 
underwent RNA-seq. We performed RNA-seq on 13 previously genetically diagnosed patients, 4 patients 
in whom previous genetic analysis had identified an extended splice site variant of unknown significance 
(VUS), 12 patients in whom genetic analysis had identified a strong candidate gene, and 34 patients with 
no strong candidates from previous analysis. RNA-seq enabled the diagnosis of 35% of patients overall, 
with the rate, shown above the barplots, varying depending on previous evidence from genetic analysis. 
B. PCA based on gene expression profiles of patient muscle samples passing QC (n=61) and GTEx 
samples of tissues that potentially contaminate muscle biopsies shows that patient samples cluster closely 
with GTEx skeletal muscle. C. Overview of experimental set up and RNA-seq analyses performed. Our 
framework is based on identifying transcriptional aberrations that are present in patients and missing in 
GTEx controls. Upon ensuring that GTEx and patient RNA-seq data were comparable, we validated the 
capacity of RNA-seq to resolve transcriptional aberrations in previously diagnosed patients and performed 
analyses of aberrant splicing, allele imbalance, and variant calling in our remaining cohort of genetically 
undiagnosed muscle disease patients.  
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Comparison between our GTEx reference panel and patient muscle RNA-seq 

samples showed analogous quality metrics (Table 2.1). Principal component analysis 

(PCA) of expression and splicing profiles demonstrated that patient muscle RNA-seq 

closely resembled control muscle when compared to tissues that potentially 

contaminate muscle biopsies, such as skin or fat, despite variation in the site of muscle 

biopsy across patients (Figure 2.4B). Based on this clustering, we removed two 

samples from analysis because their expression patterns clustered more closely with 

GTEx adipose tissue than muscle, consistent with tissue contamination or late-stage 

degenerative muscle pathology. We also performed fingerprinting based on patient 

WES, WGS, and RNA-seq data to ensure the source of DNA sequencing and muscle 

RNA-seq data was the same individual. 

 

 

  

Figure 2.5 Overview of results from expression outlier analysis. A. The method used to identify 
samples that are outliers for gene expression resulted in a median of 207, 37, and 2 genes per sample 
in all genes, OMIM genes, and neuromuscular disease genes, respectively. B. For patients who were 
previously diagnosed via DNA sequencing, only one causative gene had expression outlier status, 
suggesting that our method to detect expression outlier genes was underpowered with 184 GTEx 
controls.      
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Patient Gene Inheritance Variant Class Causative gene3is3an3
expression3outlier

D1 LARGE Recessive missense
deletion No

D2 PYROXD1 Recessive essential3splice3
missense No

D5 TTN Recessive essential3splice3
frameshift No

D7 NEB Recessive essential3splice
frameshift No

D8 NEB Recessive essential3splice3
essential splice No

D9 RYR1 Recessive nonsense
essential3splice Yes

D10 TTN Recessive essential3splice3
essential splice No

D11 COL6A3 De3novo3
dominant essential splice No

D3 DYSF Recessive missense
frameshift No

D4 TOR1AIP1 Recessive frameshift
missense No

D12 PLOD1 Recessive nonsense
missense No

D13 TTN Recessive nonsense
nonsense No

A. B. 
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We explored the utility of analyzing patient RNA-seq data to detect aberrant 

splice events and allele-specific expression and performed variant calling from RNA-seq 

data to identify pathogenic events or to prioritize genes for closer analysis (Figure 2.4C). 

We also identified outlier gene expression status in patients; however, this analysis was 

underpowered to prioritize candidate genes in our study (Figure 2.5). The resulting 

diagnoses were made primarily through detection of aberrant splice events in patients, 

with information on gene-level allele imbalance playing a complementary role 

In previously diagnosed cases, manual evaluation of pathogenic essential splice 

site variants revealed a splice aberration such as exon skipping or extension, 

demonstrating that RNA-seq can help resolve the effect of variants on transcription 

(Figure 2.6). To detect aberrant transcriptional events genome-wide, we developed an 

approach based on identifying high quality exon-exon splice junctions present in 

patients or groups of patients and missing in GTEx controls (code available at 

https://github.com/berylc/MendelianRNA-seq). We performed splice junction discovery 

from split-mapped reads, considering only those that were uniquely aligned and non-

duplicate. To account for library size and stochastic gene expression differences 

between samples, we performed local normalization of read counts based on read 

support for overlapping annotated junctions (Figure 2.2). We then performed filtering of 

splice junctions based on the number of samples in which a splice junction is observed 

and the number of reads and normalized value supporting that junction in each sample. 

Our approach successfully re-identified all known pathogenic events in patients in whom 

manual evaluation had revealed aberrant splicing around splice variants previously 

identified through genomic testing. We defined filtering parameters that selectively  
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Figure 2.6 Evaluation of RNA-seq around pathogenic essential splice site variants previously 
identified via genetic analysis. All essential splice site variants are marked with red asterisks. A. intron 
inclusion and splicing from adjacent intact GT splice sites around one essential splice site variant (left) and 
exon skipping in a second essential splice found in NEB (right) in patient D8. B. Exon skipping caused by 
a de novo essential splice site variant found in COL6A3 in patient D11. C) Exon skipping caused by an 
essential splice site variant in PYROXD1 in patient D2. D. Exon skipping caused by an essential splice 
site variant in RYR1 in patient D9.  E. No effect seen around essential splice site variant in patient D5 due 
to decreased expression of TTN in the patient and insufficient coverage of the region  F. Two exon skipping 
events caused by separate essential splice site variants in TTN in patient D10.  
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(Figure 2.6 continued) 
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identified these previously known aberrant splice events and applied them to our 

remaining cohort of undiagnosed patients. This method resulted in the identification of a 

median of 5, 26, and 190 potentially pathogenic splice events per sample in ~190 

neuromuscular disease associated genes, OMIM genes, and all genes respectively 

(Figure 2.7), which required manual curation to interpret pathogenicity and led to the 

diagnoses made in this study. 

 

Overview of diagnoses made via RNA-seq 

RNA-seq allowed the diagnosis of 17 previously unsolved families, yielding an 

overall diagnosis rate of 35% in this challenging subset of rare disease patients for 

whom extensive prior analysis of DNA sequencing data had failed to return a genetic 

diagnosis. We also identified splice disruption in other known and putatively novel 

disease genes in  

             (figure 2.6 continued)  
F. 
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several patients; however, due to unavailability of additional information, such as 

parental DNA, we could not pursue these cases further. Detection of aberrant splicing 

led to the identification of a broad class of both coding and non-coding pathogenic 

variants resulting in a range of splice defects such as exon skipping, exon extension, 

exonic and intronic splice gain, which were validated by RT-PCR analysis (Figure 2.8, 

Table 2.2). RNA-seq patterns also helped pinpoint three structural variants in DMD that 

were subsequently confirmed by WGS. 

Cases diagnosed in this study highlight several key advantages of RNA-seq in rare 

disease diagnosis to confirm the pathogenicity of variants and to detect previously 

unidentified variation. In four patients with previously detected extended splice site 

variants of unknown significance (VUS), RNA-seq confirmed splice disruption in two 

patients (Figure 2.4A). The variants had no observable effect on local splicing patterns 

  

Figure 2.7 Number of potentially pathogenic splice events identified per patient. A) Median number of 
events identified via splice detection method was 105, 26, and 5 for all genes, OMIM genes and neuromuscular 
disease genes, respectively, allowing for manual inspection of RNA-seq data for a relatively low number of 
events to identify pathogenic splice aberrations. B) The number of identified potentially pathogenic splice 
junctions shows correlation	with library size. This is likely explained by more splice junctions being identified in 
samples with higher coverage (>100 million reads) that are more deeply sequenced than GTEx controls. This 
includes low abundance annotated transcripts that are picked up by deeper sequencing and not identified in 
samples with lower sequencing depth.  

A. B. 

Cor =%.37
P%=%0.0034
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Figure 2.8 Types of pathogenic splice aberrations discovered in patients. RNA-seq identified a range of 
aberrations caused by both coding and non-coding variants such as A) exon skipping caused by an essential splice site 
variant in patient D7, B) exon extension caused by a donor +3 A>C extended splice site variant in nemaline myopathy 
patient C9, where disruption of splicing at the canonical splice site results in splicing from intact GTA motifs from the 
intron, C) exonic splice-gain caused by a C>T donor splice site-creating variant in patient N22 with a donor + 5-G 
sequence context, resulting in a stronger splice motif than the existing canonical splice site, and D) intronic splice gain 
in patient N33 caused by a C>T donor splice site-creating deep intronic variant. Evidence for wild type splicing in addition 
to the inclusion of the pseudo exon in the patient is in line with the milder Becker’s muscular dystrophy phenotype. 
Splice aberrations shown in B, C, and D result in the introduction of a premature stop codon to the transcript. 
 

in the remaining two patients, emphasizing the value of RNA-seq in ruling out non-

pathogenic VUS. 
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RNA-seq also led to the identification of an additional disruptive extended splice 

site variant missed by exome sequencing. In a nemaline myopathy patient with one 

previously detected recessive frameshift variant in the NEB gene, RNA-seq identified an 

exon  

Table 2.2: Diagnoses made in the study via patient muscle RNA-seq 
 
Patient Phenotype Gene Variants Variant Class Effect 

E2 Nemaline 
myopathy NEB chr2:152,544,805 C>T 

chr2:152,520,057 C>T 
essential splice, 
extended splice 

exon skipping + exon 
extension, 

exon extension 

C9 Nemaline 
myopathy NEB chr2:152,581,432  TG>T 

chr2:152,389,953 A>C 
frameshift, 

extended splice exon extension 

E4 Fetal akinesia TTN chr2:179,586,600 CAT>C 
chr2:179,446,219 ATACT>A 

frameshift, 
extended splice exon skipping 

C6 Duchenne muscular 
dystrophy DMD chrX:32,366,860 A>C intronic variant intronic splice-gain 

N33 Myalgia, 
myoglobunuria DMD chrX:32,274,692 G>A intronic variant intronic splice-gain 

C7 Becker muscular 
 dystrophy DMD chrX:31,613,687 G>T intronic variant Intronic splice-gain 

N29 Collagen VI-related 
dystrophy COL6A1 chr21:47,409,881 C>T intronic variant intronic splice-gain 

N30 Collagen VI-related 
dystrophy COL6A1 chr21:47,409,881 C>T intronic variant intronic splice-gain 

N31 Collagen VI-related 
dystrophy COL6A1 chr21:47,409,881 C>T intronic variant intronic splice-gain 

N32 Collagen VI-related 
dystrophy COL6A1 chr21:47,409,881 C>T intronic variant intronic splice-gain 

N25 Nemaline 
myopathy NEB chr2:152,355,017 G>T 

chr2:152,449,646G>A 
intronic variant, 
nonsense intronic splice-gain 

C11 Congenital fiber-type 
disproportion RYR1 chr19:38,958,362 C>T 

chr19:38,958,372 G>A 
synonymous, 
missense exonic splice gain 

N22 Multi/minicore 
congenital myopathy TTN chr2:179,642,185 G>A 

chr2:179,523,240 CTTCT>C 
missense, 
frameshift exonic splice-gain 

C1 Alpha 
dystroglycanopathy POMGNT1 chr1:46,655,129 C>A 

chr1:46,660,532 G>A 
essential splice, 
synonymous 

exonic splice-gain, 
exon skipping 

C3 Duchenne muscular 
dystrophy DMD chrX:31,790,694-31,798,498 inversion-deletion exon skipping 

C2 Duchenne muscular 
dystrophy DMD chrX:31,378,946-

151,194,962 inversion splice disruption 

C4 Duchenne muscular 
dystrophy DMD chrX:32,521,820-35,180,380 inversion splice disruption 
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extension event caused by an underlying variant at the +3 position of the donor site 

which led to the introduction of a premature stop codon to the transcript as the second 

recessive allele (Figure 2.8B). The exon harboring this variant was not captured in the 

exome kit used to screen the patient, underlining the utility of RNA-seq at 

complementing WES to identify previously undetected variants. 

Synonymous and missense variants in large, variation-rich genes such as TTN 

are exceptionally challenging to interpret and are often filtered out in DNA sequencing 

pipelines54,55. With RNA-seq, we were able to assign pathogenicity to a missense 

variant in TTN and two synonymous variants in RYR1 and POMGNT1. In patient N22, 

the identified missense variant created a GT donor splice site for which the consensus 

motif included a G nucleotide in the +5 position, known to contribute to the strength of 

the splice site56–59. The well-conserved donor +5-G motif was missing in the competing 

canonical splice site, thus resulting in a stronger novel splice site and gain of splicing 

from the exon body (Figure 2.8C). A similar mechanism was observed in RYR1, caused 

by a synonymous variant in a patient carrying a second pathogenic allele in the gene. In 

an additional patient carrying an essential splice site variant in POMGNT1, we identified 

a synonymous variant disrupting an exonic splice motif and resulting in exon skipping. 

In eight cases, RNA-seq aided in the identification of non-coding pathogenic 

variants. We identified splice site-creating hemizygous deep intronic variants in DMD 

that resulted in the creation of a pseudo-exon and led to a premature stop codon in the 

coding sequence in three patients.  Although RNA-seq from a patient with severe 

Duchenne muscular dystrophy showed only splicing to the pseudo-exon, wildtype 

splicing between annotated exons was observed in two patients with a milder Becker 
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muscular dystrophy phenotype, indicating the presence of residual functional DMD 

transcripts that explain the milder disease course (see below, under Identification of 

pathogenic noncoding variants with RNA-seq section). Such intronic variants are 

unobservable with WES and too abundant to be interpretable with WGS alone, 

emphasizing the utility of RNA-seq at resolving pathogenicity of these non-coding 

variants 

In two patients with no strong candidates from WES and WGS (N22 and N25) we 

identified heterozygous splice disruption in two commonly disrupted recessive muscle 

disease genes, NEB and TTN 43,44. These genes harbor regions with highly similar 

sequences, the so-called triplicate repeat regions. Due to high sequence similarity, the 

region has poor mapping quality, resulting in low quality variant calls that are filtered by 

most current diagnostic pipelines. To identify possible pathogenic variants in the 

triplicated regions of NEB and TTN in these two patients, we developed a method 

based on remapping the triplicate regions to a de-triplicated pseudo-reference and 

performing hexaploid variant calling (Figure 2.3). This method was applied to available 

WES/WGS and RNA-seq data for all patients and identified one novel nonsense and 

one novel frameshift variant in NEB and TTN in these two patients, which finalized their 

diagnoses (N25 and N22). 

  

Resolving the effect of extended splice site variants with RNA-seq 

In four patients, prior genetic analysis identified extended splice site variants of 

unknown significance (patients E1-E4). In two patients, RNA-seq supported 

pathogenicity for the variants whereas for the remaining two, RNA-seq showed no 
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aberrant splicing caused by the variants, ruling them out as pathogenic. We also 

identified an additional disruptive extended splice site variant in patient C9 (Figure 2.8B) 

that was previously missed by WES. 

In patient E2, exome analysis identified an essential and extended splice site 

variant in trans in NEB, confirmed by segregation analysis. There were 2 individuals in 

ExAC carrying the extended splice site variant and none carrying the essential splice 

site variant (ExAC Allele Count = 2 and 0, respectively). RNA-seq showed exon 

skipping and extension caused by the essential splice site variant and intron inclusion 

around the donor +5 G>A extended splice site variant, leading to a premature stop 

codon (Figure 2.9A) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 77 

  

  

	  

Figure 2.9 Resolving the effect of extended splice site variants with RNA-seq. A) Exon skipping and 
splicing from adjacent intact GT splice sites in patient E2 caused by an essential splice variant indicated by 
red asterisk (left). Intron inclusion and low levels of splicing from intact intronic splice site motifs around the 
extended splice site variant (right). B) Skipping of exon 316 caused by an extended splice variant in TTN in 
Patient E4 (left).  Amplification of cDNA using primers between exons 315 and 319 (lanes 4 and 5) identified 
two amplicons: the upper band was wild-type (WT) sequence, with the lower band confirming skipping of exon 
316 (right). C) No splicing defects were observed around the extended splice site variant identified in patient 
E3. D) No evidence of aberrant splicing around the extended splice site variant in patient E1. The splicing 
pattern in the patient suggests possible isoform switching, however, the same splicing pattern is observed in 
other patients who do not carry the extended splice site variant (Control-2 represents patient N22).  

A. 

B. 

C. D. 
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In patient E4, gene panel testing identified a frameshift and extended splice site 

variant in trans in TTN, confirmed by segregation analysis (ExAC AC = 0 for both 

variants). RNA-seq showed evidence for skipping of exon 316 harboring the extended 

splice site variant, which was subsequently confirmed by RT-PCR (Figure 2.9B). 

In patient E3, carrying a nonsense and a donor +3 G>C extended splice site 

variant in NEB (ExAC AC = 0 for both variants), no splicing defects around the extended 

splice site were observed (Figure 2.9C). We considered the possibility of an aberrant 

splice event at the position causing complete nonsense-mediated decay, which may 

result in failure of RNA-seq to pick up any reads supporting the event. We observed a 

28% mean allele balance in NEB in the patient. Due to unavailability of parental DNA, it 

was not possible to distinguish between the haplotypes resulting in nonsense-mediated 

decay. However, accounting for nonsense-mediated decay resulting from a splice 

aberration would still predict the presence of ~55 reads supporting the splice aberration. 

Therefore, based on a conservative interpretation taking into account allele balance in 

NEB as well as the local splice patterns of the extended splice site, the variant does not 

result in a local splice disruption. 

In patient E1, trio WES identified a nonsense and extended splice site variant in 

trans in NEB (ExAC AC = 0 and 3, respectively). No clear evidence of aberrant splicing 

around the extended splice site variant was observed. Comparison to GTEx controls 

showed decreased splicing to the exon harboring the extended splice site variant, 

suggesting the possible presence of isoform switching. However, this splicing pattern is 

observed in other patients who do not carry the extended splice, indicating the variant is 

not causal for the splicing pattern observed (Figure 2.9D). We also considered the 
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possibility of an aberrant splice event causing complete nonsense-mediated decay and 

being missed by transcriptome sequencing. However, the 22% allele balance observed 

in NEB in the patient was against the paternal haplotype harboring the nonsense 

variant, excluding the possibility that a local splice aberration was missed by RNA-seq. 

 

 

Figure 2.10 Coverage of exon harboring splice-disrupting variant identified in patient C9 in RNA-
seq and WES. While previous exome analysis in the patient resulted in the identification of a frameshift 
variant in NEB, the extended splice site variant was not detected. This is due to the absence of a target 
for the exon harboring the pathogenic extended splice site variant in the exome capture kit used for WES.  
 

 

In patient C9, for whom previous WES analysis had identified a recessive 

frameshift variant in NEB, RNA-seq identified a separate exon extension event in the 

gene (ExAC AC = 0 for both variants). The exon extension led to splicing from intact 

intronic splice motifs (Figure 2.8B), resulting in the introduction of a premature stop 
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codon to the transcript. The donor +3 A>C variant visible in the RNA-seq data was 

missed by WES analysis due to absence of a target probe for the exon in the capture kit 

utilized for the patient (Figure 2.10). We note that while a probe for the exon is included 

in more recent exome capture kits, identification of the variant in WES data would result 

in a VUS designation without further functional validation. Segregation analysis 

confirmed the variants were found in trans in both the proband and an affected sibling. 

  

Assignment of pathogenicity to missense and synonymous variants with RNA-

seq 

In three patients, RNA-seq identified splicing defects caused by missense and 

synonymous variants (patients C11, C1 and N22). 

In patient C11, a pathogenic missense variant in RYR1 was identified through 

WES analysis (ExAC AC=2). RNA-seq identified an exonic splice gain event caused by 

a GC>GT splice site-creating synonymous variant (ExAC AC=0). We evaluated the 

strength of the competing splice sites with MaxEntScan and found that the newly 

created splice site had a 5x greater score, indicating a stronger splice site was created 

(Figure 2.11A). The splice event was confirmed via RT-PCR and sequencing of the 

shorter band corresponding to the exonic splice gain (Figure 2.11B). Segregation 

analysis confirmed the variants were found in trans in the proband. 
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Figure 2.11 Assignment of pathogenicity to missense and synonymous variants with RNA-seq. 
A) Exonic splice gain event in patient C11 caused by a C>T donor splice-site-creating variant. B) 
Confirmation of the exonic splice gain in patient C11. Controls for RT-PCR are muscle RNA from patients 
without pathogenic variants in RYR1 (patients N8, N22, and N33). C) Intron inclusion and splicing to a 
nearby intact splice site in patient C1 caused by an essential splice site variant indicated by red asterisk 
(left) and exon skipping caused by a synonymous variant (right).  D) Confirmation of exon skipping in 
patient C1 by RT-PCR with a reduced level of nonsense-mediated decay observed in transdifferentiated 
myotubes (top). Sequencing of the lower band confirmed skipping of exon 7 (bottom). Controls for RT-
PCR are muscle RNA from patients without pathogenic variants in POMGNT1  (Patients N8, N22, and 
N33) and fibroblasts from healthy samples. E) RT-PCR confirmation of exonic splice gain event in patient 
N22. Controls for RT-PCR are muscle RNA from patients without pathogenic variants in TTN (Patients 
N8 and N33). 
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In patient C1, RNA-seq identified high levels of intron inclusion at an essential 

splice site variant in POMGNT1 as well as splicing to a nearby intact splice site (ExAC 

AC = 13, Figure 2.11C). While the new aberrant splicing is seen on an annotated 

Gencode v.19 transcript, no other samples from our muscle RNA-seq dataset carry this 

splice event. We observed complete allele imbalance in the patient indicating the 

presence of strong nonsense mediated decay in muscle. We thus transdifferentiated 

fibroblasts available from the patient into skeletal myotubes via MyoD overexpression. 

RNA-seq from resulting myotubes showed evidence of exon skipping caused by a 

synonymous variant (ExAC AC  = 2, Figure 2.11C). The exon skipping event was 

confirmed by RT-PCR and sequencing of mutant band corresponding to the exon 

skipping (fig. S11D). Segregation analysis confirmed the variants were found in trans in 

the proband. 

In patient N22, RNA-seq identified an exonic splice gain event in the patient 

caused by a GT donor splice site-creating missense variant (ExAC AC = 0, Fig. 2C). We 

also identified a frameshift variant in the TTN triplicate repeat region in the patient 

(Figure 2.3D).  RT-PCR, designed to amplify the region with primers spanning the wild-

type and mutant exon junctions, confirmed the exonic splice gain event (Figure 2.11D), 

and segregation analysis confirmed the variants were found in trans in the proband.  

 

Identification of pathogenic noncoding variants with RNA-seq 

In 8 patients, we identified deep intronic variants resulting in inclusion of pseudo-

exons into the transcript (patients C6, C7, N25, N33, N29-32). All intronic variants 
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identified were missing from the 1000 Genomes dataset 41 as well as an internal dataset 

of 5,500 WGS samples. 

In patients C6, C7, and N33 we identified hemizygous splice site-creating 

variants in DMD, which resulted in the introduction of a premature stop codon to the 

dystrophin transcript. In Duchenne muscular dystrophy patient C6, the intron inclusion is 

caused by a hemizygous AT>AG acceptor splice site-creating intronic variant that pairs 

with an adjacent GT splice donor motif, defining an exonic boundary (Figure 2.12A). 

RNA-seq shows no evidence of wild type splicing between exons 37 and 38, in line with 

the patient’s severe phenotype. This splicing pattern was confirmed by RT-PCR and 

Sanger sequencing of the mutant band10. 

In patient C7, RNA-seq identified splicing to an intronic region between exons 55 

and 56 of DMD, which resulted in the introduction of premature stop codon to the 

dystrophin transcript (Figure 2.12B). To confirm the inclusion of the pseudo-exon and to 

identify its exact breakpoints, we performed RT-PCR and Sanger sequencing of the 

mutant band (Figure 2.12C). RT-PCR results confirmed the presence of the included 

pseudo-exon caused by a GG>GT donor splice site-creating variant as well as 

canonical splicing between exons 55 and 56, in line with the milder Becker muscular 

dystrophy diagnosis of the patient. 

In patient N33, the inclusion of the pseudo-exon was caused by a GC>GT donor 

splice site-creating variant occurring between exons 43 and 44 (Figure 2.8D). RNA-seq  
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Figure 2.12 Identification of pathogenic noncoding variants with RNA-seq A. Inclusion of a pseudo-
exon identified in DMD in patient C6. RNA-seq shows no evidence of wild type splicing between exons 
37 and 38, in line with the patient’s severe phenotype B. Inclusion of a psuedo-exon in DMD in Becker 
muscular dystrophy patient C7 C. Confirmation of pseudo-exon in patient C7 with RT-PCR (left) and 
Sanger sequencing of mutant band (right). RT-PCR shows the inclusion event is present only in the 
patient along with a fainter band supporting wild type splicing, indicating that full length dystrophin 
transcript without the pseudo-exon is being produced, in line with the milder phenotype of the patient. 
Controls for RT-PCR are patients without the DMD mutation (N8,N22,N33) D. inclusion of a pseudo 
exon in NEB in patient N25. The hexanucleotide context of the variant shows 3 splice enhancer motifs 
with the patient’s allele and none in the reference, suggesting the variant is acting through creation of 
exonic splice enhancer motifs E. RT-PCR confirmation of pseudo-exon created in patient N25 with 
patients N22 and N8 as controls. F. allele balance in RNA-seq at the variant is heavily skewed toward 
the alternate allele (top), with ~50% allele balance in the WGS data from the patient (bottom) 
demonstrating the inclusion event is occurring on the variant haplotype G. RT-PCR confirmation of 
pseudo-exon created by a splice-site-creating variant in patient N33 H) Western blot showing reduced 
dystrophin levels in the patient, in line with a mild Becker muscular dystrophy diagnosis 
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data supported inclusion of the pseudo-exon as well as canonical splicing between 

exons 43 and 44, indicating that full length dystrophin transcript without the pseudo-

exon is being produced, in line with the milder phenotype of the patient. This splicing 
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pattern was confirmed by RT-PCR (Figure 2.12G), and segregation analysis confirmed 

the presence of the variant in the unaffected mother and affected brother. This resulted 

in a genetic diagnosis of previously unidentified mild Becker muscular dystrophy of the 

patient who had presented with myalgia and myoglobinuria. To confirm the Becker 

muscular dystrophy diagnosis, we performed immunoblot of skeletal muscle lysates 

from the patient (male, quadriceps, 21 yrs 11 m) and two age-matched controls (control 

1: quadriceps, male 21 yrs 9 m; control 2: vastus lateralis, female, 23 years). Levels of 

dystrophin were reduced in the patient, relative to controls (Figure 2.12H).  A standard 

curve of muscle lysate from controls estimates the levels of dystrophin in the affected 

individual to be around a quarter of levels observed in control muscle. Levels of beta-

dystroglycan (DGN) were also reduced in the patient, consistent with secondary 

reduction of levels of other members of the dystrophin-dystroglycan complex.  

In patient N25, RNA-seq identified inclusion of a pseudo-exon in NEB. The 

pseudo-exon is flanked by canonical GT/AG splice site motifs but a heterozygous 

variant absent in 1,000 Genomes and an internal dataset of 5,550 WGS samples is 

present in the pseudo-exon. We examined the hexanucleotide context of the position 

with the reference and alternate alleles, querying the RESCUE-ESE database 

(http://genes.mit.edu/burgelab/rescue-ese/) to identify possible splice enhancer or 

silencer motifs.  We found 3 splice enhancer motifs with the patient’s variant allele and 

none in the reference, suggesting the variant is acting through creation of exonic splice 

enhancer motifs for the inclusion of the pseudo-exon (Figure 2.12D). We also confirmed 

this inclusion of the pseudo-exon was missing in GTEx adipose (n=231), skin (n=241), 

and fibroblast (n=156) samples to ensure the event was not observed as a result of 
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contamination of the muscle tissue. Allele balance in RNA-seq at the position is heavily 

skewed toward the alternate allele, whereas allele balance for the variant in the WGS 

data from the patient is ~50%, demonstrating the inclusion event is occurring on the 

variant haplotype (Figure 2.12F). We also identified a nonsense variant in the NEB 

triplicate repeat region in the patient (Figure 2.3C).  The inclusion of the pseudo-exon 

was confirmed with RT-PCR (Figure 2.12E), and segregation analysis confirmed the 

proband carried both variants, with the unaffected father carrying only the intronic 

variant. 

  

Identification of aberrant splicing overlapping structural variants 

In four patients (patients D1,C2-4), we identified aberrant transcriptional 

signatures around structural variants. 

In patient D1, for whom previous WES and array CGH had identified a missense 

variant and a ~446 kb deletion in LARGE, we observed aberrant splicing between the 

exons flanking the deletion (Figure 2.6A). 

In three previously undiagnosed Duchenne muscular dystrophy patients, we 

identified aberrant splicing in DMD that were confirmed to overlap structural variants. In 

patient C3, we identified skipping of exon 51 (Figure 2.13B) with no rare variants in the 

local genomic region  
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Figure 2.13 Identification of aberrant splicing overlapping structural variants with RNA-seq. A) 
Aberrant splicing in patient D1, around a ~450 kb deletion in LARGE. The breakpoints of the deletions 
are represented by gray triangles where deletion of the segment results in splicing between remaining 
exons in the gene. B) Skipping of exon 51 in patient C3 identified via RNA-seq is caused by a complex 
inversion-deletion event in DMD spanning ~7.8 kb, denoted by gray triangles. C,D) Schematic of 
structural rearrangement in patient C3 and design of primers to confirm the inversion-deletion event (C). 
Sanger sequencing of junction breakpoints confirms the event in the patient (D). E) Exon-level expression 
and F) splicing patterns in DMD in patients C2 and C4 show drop in coverage that are not seen in controls 
or other DMD patients such as patient C3, suggesting the presence of a structural variant. G) WGS 
identifies a 2.6 mb inversion in patient C4 and H) a 119 mb inversion in patient C2, with breakpoints 
overlapping the drop in coverage and disruption of splicing in both patients. I,J) Schematic of structural 
rearrangement, design of primers, and confirmation of the inversion through Sanger sequencing of 
junction breakpoints in patient C4 (I) and C2 (J).  
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in WES data to explain the event, prompting us to pursue WGS in the patient. This 

identified an inversion of the region with an accompanying deletion (Figure 2.13C). This 

inversion encompasses exon 51 in DMD, disrupting GT/AG splice site signals and 

resulting in the out-of-frame skipping of the exon. The event was confirmed through 

Sanger sequencing of putative junction breakpoints primed from opposite strands 

(Figure 2.13D). 

In patients C4 and C2, we observed a drop in exon level expression and splicing 

patterns around exons 19 and 62 of DMD, respectively. Similar drops in coverage were 
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missing in other DMD patients such as C3 and GTEx controls (Figure 2.13E,F). With no 

plausible candidate variants identified in the regions with WES, we pursed WGS and 

identified two inversion events. In patient C4, the drop exon expression and splicing 

overlapped the breakpoint of a 2.6 mb inversion around exon 19, whereas in patient C2 

the drop overlapped a 119 mb inversion around exon 62 (Figure 2.13G,H). Sanger 

sequencing of junction breakpoints confirmed the inversion events in both patients 

(Figure 2.13I,J). 

  

Identification of a recurrent splice site-creating variant in collagen VI-related 

dystrophy. 

A notable example of the power of transcriptome sequencing is our discovery of 

a genetic subtype of severe collagen VI-related dystrophy, which is caused by 

mutations in one of three collagen 6 genes (COL6A1, COL6A2, and COL6A3)25. In four 

patients who had previously tested negative with deletion/duplication testing and 

fibroblast cDNA sequencing of the collagen VI genes as well as clinical WES and WGS, 

we identified an intron inclusion event in COL6A1 using RNA-seq (Figure 2.14A). The 

splicing-in of this intronic segment, which is missing in GTEx controls and all other 

patients in our cohort, is caused by a donor splice site-creating GC>GT variant that 

pairs with a cryptic acceptor splice site 72 bp upstream, creating an in-frame pseudo-

exon (Figure 2.14B). This variant is missing in the 1000 Genomes Project dataset  41 as 

well as an in-house dataset of 5,500 control WGS samples. The resulting inclusion of 24 

amino acids occurs within the N-terminal triple-helical collagenous G-X-Y repeat region 
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of the COL6A1 gene, the disruption of which has been well-established to cause 

dominant-negative pathogenicity in a variety of collagen disorders60. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Of note, cDNA analysis shows that the aberrant transcript is observable in muscle but in 

much smaller amounts in cultured dermal fibroblasts, making the event identifiable by 

muscle transcriptome analysis despite being previously missed by fibroblast cDNA 
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B. 

C. 

A. 

Figure 2.14 Identification of a recurrent splice site-creating variant in four collagen VI-related dystrophy 
patients. A. Splicing in of the pseudo-exon was observed in four patients in our cohort (red) and missing in all 
other patients and GTEx samples (blue). B. Inclusion of the 24 amino acid segment is caused by a C>T donor 
splice site-creating variant which pairs with a AG splice acceptor site 72 bp upstream. The variant is found in a 
CpG nucleotide context, which likely explains its recurrent de novo status, and disrupts the Gly-X-Y repeat motifs 
of COL6A1. C. The inclusion event is observable in RT-PCR amplicons from patient muscle but is found at 
comparatively lower levels in cultured dermal fibroblasts derived from the patients, explaining why the pathogenic 
event was missed in all four patients through previous fibroblast cDNA sequencing. 
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sequencing (Figure 2.14C). Using this information, we genotyped the variant in a larger, 

genetically undiagnosed collagen VI-like dystrophy cohort and identified 27 additional 

patients carrying the intronic variant. We confirmed that the variant had occurred as an 

independent de novo mutation in all 16 families for whom trio DNA was available. Based 

on this screening, we estimate that up to a quarter of all cases clinically suggestive of 

collagen VI-related dystrophy but negative by exon-based sequencing are due to this 

recurrent de novo mutation. 

 

Screening of additional collagen VI-related dystrophy patients for the COL6A1 

chr21:47,409,881 mutation 

The COL6A1 chr21:47,409,881 mutation identified by RNA-seq in four patients in 

our study was subsequently screened via genomic sequencing in 637 patients across 

seven diagnostic centers. From the results of this screening, we can begin to estimate 

the frequency of this mutation among patients without previously identified mutations in 

COL6A1, COL6A2, or COL6A3. These estimated frequencies are inclusive of those 

cases identified via RNA-seq and those cases identified via genomic sequencing (out of 

a total of 641 patients). The estimated frequencies (listed below) vary depending on the 

particular diagnostic setting, highlighting the importance of clinicians and scientists with 

disease-specific expertise (in this instance, collagen VI-specific expertise) working 

together to arrive at deeply phenotyped and histotyped patients.  

 

1.    For patients screened by centers with clinical and research expertise in 

collagen VI (n=3), where DNA samples were identified for screening by both 
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clinicians and scientists based on a clinical phenotype suggestive of collagen VI 

deficiency and muscle immunohistochemical findings of decreased or mislocalized 

collagen VI, the COL6A1 mutation was identified in a total of 18/81 (22%) of 

patients (2/10; 15/68; 1/3 across three centers)  

  

2.    For patients screened by laboratories specializing in collagen VI research 

(n=2),  where DNA samples were identified for screening without further input of 

clinicians with expertise in collagen VI, the COL6A1 mutation was identified in 

6/149 (4%) of patients (1/59; 5/90 across two centers)   

  

3.    For patients screened by diagnostic laboratories where all available DNA 

samples (referred for sequencing of the collagen 6 genes and without previously 

identified mutations in COL6A1, COL6A2, or COL6A3) were screened (n=2) 

without further input of clinicians or scientists with expertise in collagen VI, the 

COL6A1 mutation was identified in 7/411 (1.7%) of patients (3/361; 4/50 across 

two centers)  

 

Evaluation of splice prediction algorithms and RNA-seq in alternative tissues 

Exons harboring the pathogenic variants identified in this study show low 

coverage in GTEx whole blood and fibroblast samples, indicating that a majority of 

these diagnoses likely could not have been made using RNA-seq from these tissues 

(Figure 2.15). Furthermore, many of the diagnoses made in this study could not have 

been made on genotype information alone, as splice prediction algorithms alone are  
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Figure 2.15 Comparison of the number of reads aligning to exons harboring pathogenic variants 
identified in the study in GTEx muscle, whole blood, and fibroblast tissues. We assayed the number 
of reads aligning to each exon in which a pathogenic variant was identified in a patient in GTEx muscle 
(n=430, green), whole blood (n=393, red), and fibroblast (n=284, yellow) samples in order to evaluate 
whether diagnoses made in the study could have been made via RNA-seq from these tissues. The data 
illustrate overall low coverage of the affected exons in fibroblasts and whole blood, suggesting that a large 
portion of variants identified in this study may not have been identified based on sequencing of these 
tissues. Numbers under boxplots represent the median number of reads aligning to the exon in each tissue 
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currently insufficient to classify variants as causal12,61. Although existing in silico 

algorithms correctly predicted disruption for the two extended splice site variants of 

unknown significance in our study, they also generated false positive predictions for the 

remaining two extended splice site variants with no effect on splicing. In addition, 

existing algorithms showed poor specificity in identifying splice site-creating coding 

variants, identifying on average over 100 putative splice site-creating rare variants (<1% 

population frequency in ExAC) exome-wide (Figure 2.16). 

 

Discussion  

Our results show that RNA-seq is valuable for the interpretation of coding as well 

as non-coding variants, and can provide a substantial increase in diagnosis rate in 

patients for whom exome or whole genome analysis has not yielded a molecular 

diagnosis. In our cohort, RNA-seq led to the diagnosis of 66% of patients where clinical 

phenotyping and DNA sequencing prioritized a strong candidate gene. In comparison, 

through identifying aberrant splice events found in patients and missing in GTEx 

controls, we were able to diagnose 21% of patients with no strong candidates from 

WGS or WES.  

Our work illustrates the value of large multi-tissue transcriptome data sets such 

as GTEx to serve as a reference to facilitate the identification of extreme splicing or 

allele balance outlier events in patients. In the case of muscle disorders, our diagnoses 

were made primarily through direct identification of aberrations in splicing using the 

GTEx skeletal-muscle RNA-seq dataset as a reference panel. Our present work 

focused on identifying such  
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Figure 2.16 Evaluation of splice prediction algorithms. A. The number of rare (ExAC AF <1%, GQ>10) and all 
variants predicted to be disrupting at or above the threshold of the extended splice site variants evaluated with RNA-
seq for patients E1, E2, E3, and C9. Few rare variants are predicted to be as damaging as the pathogenic extended 
splice site variants confirmed to disrupt splicing with RNA-seq in patients E2 and C9, indicating that these variants 
would likely be identified based on in silico predictions. However, extended splice site variants that do not disrupt local 
splicing patterns in patients E3 and E1 also show this pattern, illustrating that use of in silico predictions could lead to 
false pathogenciity assignments. B.  An average of 140 rare (ExAC AF <1%, GQ>10) and ~2000 total variants per 
patient are predicted to result in gain of splicing, indicating that in silico predictions currently lack the specificity to 
make pathogenicity assignment on DNA sequence information alone. 

 A. 

B. 

0

10

20

30

40

50

E3
chr2:152389953

E2
chr2:152544805

C9
chr2:152506896

E1
chr2:152389953

N
um

be
r o

f v
ar

ia
nt

s 
pr

ed
ic

te
d 

to
 b

e 
sp

lic
e−

di
sr

up
tin

g 
 a

t t
he

 th
re

sh
ol

d 
of

 th
e 

ex
te

nd
ed

 s
pl

ic
e 

si
te

 v
ar

ia
nt

0

300

600

900

E3
chr2:152389953

E2
chr2:152544805

C9
chr2:152506896

E1
chr2:152389953

N
um

be
r o

f v
ar

ia
nt

s 
pr

ed
ic

te
d 

to
 b

e 
sp

lic
e−

di
sr

up
tin

g 
 a

t t
he

 th
re

sh
ol

d 
of

 th
e 

ex
te

nd
ed

 s
pl

ic
e 

si
te

 v
ar

ia
nt

Rare variants All variants 

Rare variants All variants 

0

10

20

30

40

50

E3
chr2:152389953

E2
chr2:152544805

C9
chr2:152506896

E1
chr2:152389953

N
um

be
r o

f v
ar

ia
nt

s 
pr

ed
ic

te
d 

to
 b

e 
sp

lic
e−

di
sr

up
tin

g 
 a

t t
he

 th
re

sh
ol

d 
of

 th
e 

ex
te

nd
ed

 s
pl

ic
e 

si
te

 v
ar

ia
nt

0

10

20

30

40

50

E3
chr2:152389953

E2
chr2:152544805

C9
chr2:152506896

E1
chr2:152389953

N
um

be
r o

f v
ar

ia
nt

s 
pr

ed
ic

te
d 

to
 b

e 
sp

lic
e−

di
sr

up
tin

g 
 a

t t
he

 th
re

sh
ol

d 
of

 th
e 

ex
te

nd
ed

 s
pl

ic
e 

si
te

 v
ar

ia
nt

0

30

60

90

120

150

180

N22 E3 E2 C9 E1 C11

N
um

be
r o

f p
re

di
ct

ed
 s

pl
ic

e 
si

te
 c

re
at

in
g 

va
ria

nt
s

0

1000

2000

3000

4000

5000

N22 C9 E2 E3 E1 C11

N
um

be
r o

f p
re

di
ct

ed
 s

pl
ic

e 
si

te
 c

re
at

in
g 

va
ria

nt
s



 101 

aberrations in known muscle disease genes, and the considerably lower number of 

putatively pathogenic events identified in neuromuscular disease genes versus all 

genes underlines the advantage of a candidate gene list for this analysis Further 

improvements in filtering identified splice junctions to obtain a smaller list of candidate 

events will be useful to expand this work for new disease gene discovery. In addition, 

with increasing sample sizes and improvements in methods, RNA-seq can also be used 

to identify somatic variants and to detect regulatory variants upstream, through analysis 

of expression status and allelic imbalance. 

Access to the disease-relevant tissue for many Mendelian disorders remains a 

major barrier for the use of transcriptome sequencing in genetic diagnosis. The RNA-

seq framework developed in this study can be adapted for rare diseases where biopsies 

are available, such as Mendelian disorders affecting heart, kidney, liver, skin, and other 

tissues. For disorders where biopsy of the disease-relevant tissue is unattainable, 

analyses are possible through identification of proxy tissues using databases such as 

GTEx and careful consideration of the expression status of the relevant genes in the 

proxy tissue. Alternatively, the framework developed in this study can also enable 

diagnoses through reprogramming patient cells into induced pluripotent stem cells and 

differentiation into disease-relevant tissues of interest.  

Evaluation of existing splice prediction algorithms for the splice-disrupting 

variants identified in the study highlights that information on DNA sequence alone does 

not currently match the ability of RNA-seq to identify the transcriptional consequences 

of variants on a genome-wide scale. The diagnoses made in our study with RNA-seq, 

particularly the discovery of the highly recurrent mutation in COL6A1, demonstrates that 



 102 

other such cryptic splice-affecting variants may contribute substantially to undiagnosed 

diseases that have evaded prior detection with exome or whole genome analysis.  

Overall, this work suggests that RNA-seq is a valuable component of the 

diagnostic toolkit for rare diseases and can aid in the identification of new pathogenic 

variants in known genes as well as new mechanisms for Mendelian disease.  

 

Significance 

Our ability to turn the dizzying rate of WES data into practical clinical knowledge 

has relied on careful pipelines of data processing, annotation, and interpretation. 

Several tools have been developed for processing DNA sequencing data for Mendelian 

diagnosis including tools for quality controlling data, aligning sequences to the reference 

and efficient identification of polymorphisms in a genome. Guidelines have also been 

developed to aid interpretation of variant-level pathogenicity 62. At the time of the project 

the Exome Aggregation Consortium had release a dataset of over 60,000 ostensibly 

healthy indivdiuals as a population reference40, a number which has now increased to 

over 120,000 with the Genome Aggregation Database Consortium (gnomAD)63. 

Previously, no reference panels or pipelines existed for the purpose of Mendelian 

disease diagnosis using RNA sequencing. This project has built such frameworks by 

using existing RNA-seq processing tools as well as building novel methods for detection 

of pathogenic transcription events. 

The integration of patient transcriptome data to improve diagnosis is now being 

widely adopted by the rare disease research community, evidenced by several 

publications in the past year64–68 as well as increase of poster abstracts that mention the 
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use of RNA-seq in genetic diagnosis in conferences such as Genomics of Rare 

Disease. In fact, the 2018 American Society of Human Genetics meeting featured a 

platform session entitled “Using RNA-seq to prioritize Mendelian variants” featuring talks 

from the Emory University Clinical Sequencing platform and the Undiagnosed Disease 

Network and the 2019 meeting will feature a workshop “RNA-seq for Mendelian disease 

diagnostics: A hands-on tutorial through bioinformatic tools and workflows”, 

emphasizing the growing interest in using transcriptome sequencing methods to 

improve variant interpretation. This workshop will be co-host by me and representatives 

from the labs of Stephen Montgomery and Julien Gagneur.  

 Our group is also scaling the use of transcriptome sequencing for genetic 

diagnosis where tissue is available-as part of the Broad Center for Mendelian Genomics 

and the Rare Genomes Project, with a combined goal of DNA sequencing for over 

5,000 rare disease families in the next few years, combined with RNA-seq in hundreds 

cases where appropriate tissue can be obtained.  

We have taken care to ensure the methods in our study can be adopted and 

improved upon by other groups. This included the publication of a blog post 

accompanying our manuscript available at macarthurlab.org/blog that discusses study 

design considerations for cohort-level RNA-seq as well as the commands to run to 

reproduce our analyses (blog post is attached in the Appendix). As of April 2019, this 

post had been viewed over 4,000 times. 

Lastly, while our focus has been to improve genetic diagnosis, our discovery of the 

unexpectedly common COL6A1 intronic variant is now under consideration for 

therapeutic development. Our collaborators at the NIH have developed antisense 
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oligonucleotides targeting the pseudo-exon and have shown successful repression in 

patient-derived fibroblasts without affecting COL6A1 expression69. Further development 

has the potential to lead to an FDA fast-tracked therapy and benefit the collagen 

dystrophy patient community.  Importantly, this emphasizes the utility of RNA-seq to 

identify treatable splice-defects. 
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Abstract  
 

The acceleration of DNA sequencing in patients and population samples has 

resulted in unprecedented catalogues of human genetic variation, but the interpretation 

of rare genetic variants discovered using such technologies remains extremely 

challenging. A striking example of this challenge is the existence of disruptive variants in 

dosage-sensitive disease genes, even in apparently healthy individuals. Through 

manual curation of putative loss of function (pLoF) variants in haploinsufficient disease 

genes in the Genome Aggregation Database (gnomAD) 1, we show that one 

explanation for this paradox involves alternative mRNA splicing, which allows exons of a 

gene to be expressed at varying levels across cell types. Currently, no existing 

annotation tool systematically incorporates this exon expression information into variant 

interpretation. Here, we develop a transcript-level annotation metric, the proportion 

expressed across transcripts (pext), which summarizes isoform quantifications for 

variants. We calculate this metric using 11,706 tissue samples from the Genotype 

Tissue Expression project 2 (GTEx) and show that it clearly differentiates between 

weakly and highly evolutionarily conserved exons, a proxy for functional importance. We 

demonstrate that expression-based annotation selectively filters 22.4% of falsely 

annotated pLoF variants found in haploinsufficient disease genes in gnomAD, while 

removing less than 4% of high-confidence pathogenic variants in the same genes. 

Finally, we apply our expression filter to the analysis of de novo variants in patients with 

autism spectrum disorder (ASD) and developmental disorders and intellectual disability 

(DD/ID) to show that pLoF variants in weakly expressed regions have effect sizes 

similar to those of synonymous variants, while pLoF variants in highly expressed exons 
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are most strongly enriched among cases versus controls. Our annotation is fast, 

flexible, and generalizable, making it possible for any variant file to be annotated with 

any isoform expression dataset, and will be valuable for rare disease diagnosis, rare 

variant burden analyses in complex disorders, and curation and prioritization of variants 

in recall-by-genotype studies. 

 

 
Introduction 
 
 
Alternative splicing as a source of variability for variant interpretation 
 

A primary challenge in the use of genome and exome sequencing to predict 

human phenotypes is that our capacity to identify genetic variation exceeds our ability to 

interpret their functional impact 3,4. One underappreciated source of variability for variant 

interpretation involves differences in alternative mRNA splicing, which enables exons to 

be expressed at different levels across tissues. These expression differences mean that 

variants in different regions of a gene can have different phenotypic outcomes 

depending on the isoforms they affect. For example, variants occurring in an exon 

differentially included in two isoforms of CACNA1C with diverse tissue expression 

patterns result in distinct types of Timothy syndrome 5. Pathogenic variants in the 

isoform that exhibits multi-tissue expression result in a multi-system disorder 5–7, 

whereas those on the isoform predominantly expressed in heart result in more severe 

and specific cardiac defects 8. In addition, Mendelian variants have been found on 

tissue-specific isoforms 9,10 and isoform expression levels in TTN have been used to 

show that pLoF variants found in healthy controls occur in exons that are absent from 
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dominantly expressed isoforms, whereas those in dilated cardiomyopathy patients occur 

on constitutive exons 11 , emphasizing the utility of exon expression information for 

variant interpretation. 

 

3’ bias prevents the use of read-pileup at exons as a proxy for expression 
 

The advent of large-scale transcriptome sequencing datasets, such as GTEx 2, 

provides an opportunity to incorporate cross-tissue exon expression into variant 

interpretation. However, the current formats of these databases do not readily allow for 

unbiased estimation of exon expression. The GTEx web browser offers information on 

exon-level read pileup across tissues, but this approach is confounded by technical 

artifacts such as 3’ bias 12 (preferential coverage of bases close to the 3’ end of a 

transcript; Figure 3.1A). Such systematic biases mean that simple exon-level coverage 

in a transcriptome dataset cannot be used as a reliable proxy for exon expression, 

especially in longer genes (Figure 3.1B). In contrast, isoform quantification tools provide 

estimates of isoform expression levels that correct, albeit imperfectly 13,14, for 

confounding by 3’ bias as well as other technical artifacts such as isoform length, 

isoform GC content, and transcript sequence complexity 14–16. 
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Figure 3.1 Technical artifacts in transcriptome sequencing experiments prevent the use of read pileup at 
exons as an unbiased proxy for expression A. Example of exon expression information on the GTEx web 
browser (gtexportal.org) for LAMA2, which has 3 annotated transcripts. Blue-gray gradient represents median 
read count per base. For example, while exons 5 and 55 are annotated on a single transcript, the mean read 
count for the exons are 0.8 and 3.25 in GTEx ovary, respectively, reflecting the confounding effect of 3’ bias B. 
Examples of 3’ bias in genes of varying lengths and expression levels shows 3’ bias is pervasive. Base-level 
coverage of uniquely mapped reads were calculated in 10 random GTEx samples per tissue using samtools depth 
in tissues where the genes are highly expressed. Plots show (1) LAMA2 in tibial nerve (2) BRCA1 in mammary 
tissue (breast) (3) NEB in skeletal muscle and (4) PCSK9 in liver, all of which display 3’ bias. 

A.

B.

Supplementary Figure 2: Technical artifacts in transcriptome sequencing experiments prevent the use of read
pileup at exons as an unbiased proxy for expression A. Example of exon expression information on the GTEx web
browser (gtexportal.org) for LAMA2, which has 3 annotated transcripts. Blue-gray gradient represents median read count
per base. For example, while exons 5 and 55 are annotated on a single transcript, the mean read count for the exons are
0.8 and 3.25 in GTEx ovary, respectively, reflecting the confounding effect of 3’ bias B. Examples of 3’ bias in genes of
varying lengths and expression levels shows 3’ bias is pervasive. Base-level coverage of uniquely mapped reads were
calculated in 10 random GTEx samples per tissue using samtools depth in tissues where the genes are highly expressed.
Plots show (1) LAMA2 in tibial nerve (2) BRCA1 in mammary tissue (breast) (3) NEB in skeletal muscle and (4) PCSK9 in
liver, all of which display 3’ bias.
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Presence of pLoF variants in dosage sensitive disease genes in public datasets 
 

Genome-based diagnostics offer unprecedented catalogues of human genetic 

variation, but the interpretation of rare genetic variants discovered using such 

technologies remains extremely challenging 3,4. As the human genetics community 

continues to amass human sequence data, an emerging paradoxical finding is the 

presence disruptive variants in dosage-sensitive disease genes in ostensibly healthy 

individuals. In the gnomAD database, we identify 401 high-quality pLoF variants that 

pass both sequencing and annotation quality filters, in 61 haploinsufficient disease 

genes where heterozygous pLoF variants are established to cause severe 

developmental delay phenotypes with high penetrance. Given the severity of these 

phenotypes and their extremely low worldwide prevalence, ranging from 1 in 10,000 to 

less than 1 in a million, very few, if any true pLoF variants would be expected to be 

found in the gnomAD population. As such, most or all of these observed pLoF variants 

are likely to be errors 17. However, to the extent that current quality filters are able to aid 

the interpretation of such variants, they appear to be high quality.  

 
 
Materials and Methods  
 
 
Datasets and code used in the study 
 

We utilized the gnomAD v.2.1.1 sites Hail 0.2 (https://hail.is)  table which is 

accessible publicly at gs://gnomad-public/release/2.1.1 and at 

https://gnomad.broadinstitute.org. The GTEx v7 gene and isoform expression data were 

downloaded from dbGaP (http://www.ncbi.nlm.nih.gov/gap) under accession 
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phs000424.v6.p1. The GTEx pipeline for isoform quantification is available publicly 

(https://github.com/broadinstitute/gtex-pipeline/) and briefly involves 2-pass alignment 

with STAR v2.4.2a 18, gene expression quantification with RNA-SeQC v1.1.8 19, and 

isoform quantification with RSEM v1.2.22 14. The LOEUF constraint file was 

downloaded from gs://gnomad-resources/lof_paper/. Variants used in all gnomAD 

analyses in the manuscript passed random forest filtering, and all pLoF variants were 

annotated as high confidence (HC) by LOFTEE v.1.0, which is described in 1. All files 

used in the analyses in the manuscript are available in gs://gnomad-public/papers/2019-

tx-annotation/. Scripts to QC the gnomAD dataset are available at 

https://github.com/macarthur-lab/gnomad_qc and the scripts to generate files for the 

analyses are available at https://github.com/macarthur-lab/tx_annotation. 

 
 
Curation of pLoF variants in haploinsufficient developmental disease genes  
 

For identification of haploinsufficient developmental delay genes, we selected 

genes curated by the ClinGen Dosage Sensitivity Working Group 20; 58 of the 61 genes 

had a score of 3 with sufficient evidence for pathogenicity, while two genes (CHAMP1, 

CTCF) had a score of 2 (some evidence) and one gene (RERE) was not yet scored. 

The penetrance of pathogenic variants in each gene was reviewed in the literature, and 

only genes with >75% reported penetrance were included. These conditions are those 

too severe to expect to see an individual in gnomAD (likely unable to consent for a 

study without guardianship). The 61 genes include 50 autosomal genes of high severity 

and high penetrance and 11 genes on chromosome X where the phenotype is expected 
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to be severe or lethal in males and moderate to severe in females. The resulting gene 

list is available at 

 gs://gnomad-public/papers/2019-tx-annotation/data/HI_genes_100417.tsv. 

  

We extracted pLoF variants, defined as essential splice acceptor, essential splice 

donor, stop gained, and frameshift variants, identified in the 61 haploinsufficient disease 

genes from the gnomAD v2.1.1 1 exome and genome sites tables, and considered only 

those pLoF variants that passed random forest filtering in the gnomAD dataset, and 

were annotated as high confidence (HC) by LOFTEE v1.0 1. We then performed manual 

curation of 401 pLoF variants using a web-based curation portal to identify any reason a 

pLoF may have been a variant calling or annotation error, and categorized the likelihood 

of each variant being a true LoF. 

For manual curation, evidence to refute a true LoF variant was categorized into 

the following groups: mapping error, strand bias, reference error, genotyping error, 

homopolymer sequence, in-frame multi-nucleotide variant or frame-restoring indel, 

essential splice site rescue, minority of transcripts, weak exon conservation, last exon, 

and other annotation error. All possible reasons to reject a LoF consequence were 

flagged, even when a single criterion would categorize the variant as not LoF. Variants 

were then categorized as LoF, likely LoF, likely not LoF, and not LoF based on criteria 

outlined in Table 3.1.  

 
 
 
 
 
 
 



 119 

 
Table 3.1 Summary of criteria for LoF verdicts of 401 pLoF in 61 haploinsufficient disease genes 
identified in gnomAD  

 

A summary of the manual curation flags for the variants are available in Table 

3.2. Technical errors comprised genotyping errors, strand biases, reference errors, and 

repetitive regions that could be detected by visual inspection of reads in the Integrative 

Genomics Viewer 21 (IGV) and from the UCSC genome browser 22. Genotyping errors 

comprised skewed allele balances (conservative cutoff of ≤35%), low complexity 

sequences, GC rich regions, homopolymer tracts (≥ 6 base pairs or ≥ 6 trinucleotide 

repeats) and low quality metrics (genotype quality, or GQ, < 20). Strand bias was 

flagged when a variant was skewed preferentially on the forward or reverse strand, or 

when the majority (>90%) of a given strand covered a region; this was often observed 
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around intron/exon boundaries. Strand biases despite balanced coverage of the forward 

and reverse strands were weighted towards likely not LoF, whereas a strand bias due to  

skewed strand coverage was weighted alongside other genotyping errors. Reference 

errors were uncommon, but typically presented as by a small deletion in a coding exon, 

curated by GENCODE as a <5 base pair intron, which is biologically impossible used by 

GENCODE curators to restore and open reading frame. Most genotyping errors and 

strand biases in isolation were not deemed critical in deciding whether a variant was 

likely not LoF or not LoF, with the exception of allele balance ≤25%. Mapping errors 

were often identified by an enrichment of complex variation surrounding a variant of 

interest. Furthermore, the UCSC browser 22 was used to highlight mapping 

discrepancies, such as self-chain alignments, segmental duplications, simple tandem 

repeats, and microsatellite regions. 

 
Table 3.2 Summary of manual curation flags for 401 pLoF in 61 haploinsufficient disease genes identified in 
gnomAD  
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In-frame multi-nucleotide variants (MNVs), essential splice site rescue, and 

frame-restoring insertion-deletions are rescue events that are predicted to restore gene 

function. MNVs were visualized in IGV and cross checked with codons from the UCSC 

browser; in-frame MNVs that rescued stop codons were scored as not LoF. Essential 

splice site rescue occurs when an in frame alternative donor or acceptor site is present 

nearby, predicted to result in only a small loss or gain of sequence from the transcript. 

Thirty-six base pairs upstream and downstream of the splice variant were assessed for 

splice site rescue. Cryptic splice sites within 6 base pairs of the splice variant were 

considered a complete rescue, rendering the variant not LoF. Rescue sites > 6 base 

pairs away but within +/- 20 base pairs were weighted with less confidence, scoring as 

likely not LoF. All potential splice site rescues were validated using Alamut v.2.11 

(https://www.interactive-biosoftware.com/alamut-visual/). Frame-restoring indels were 

identified by scanning approximately +/- 80 base pairs from the annotated indel and 

counting any insertions/deletions to assess if the frame would be restored. 

  Transcript errors encompass issues surrounding alternative transcripts, variants 

within a terminal coding exon, poorly conserved exons, and re-initiation events. Coding 

variants that occupied the minority (<50%) of NCBI coding RefSeq transcripts23 for a 

given gene were considered not LoF. These variants often affected poorly conserved 

exons, as determined by PhyloP 24, PhyloCSF 25, and visualization in the UCSC 

browser 22. The only exception to the minority of transcript criteria were cases where the 

exon was well conserved, which relegated the categorization to likely not LoF. Variants 

within the last coding exon, or within 50 base pairs of the penultimate coding exon were 

also considered not LoF, unless 25% < x <50% of the coding sequence was affected, in 
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which case the variant was deemed likely not LoF. If >50% of the coding sequence was 

disrupted by a variant in the last exon, this was deemed likely LoF. Other transcript 

errors included: re-initiation errors; upstream stop codons of a given LoF variant; 

variants that fell on exactly 50% of coding RefSeq23 transcripts; and/or partial exon 

conservation. Re-initiation events were flagged when a methionine downstream of the 

variant in the first coding exon was predicted to restart transcription, and were predicted 

to be likely not LoF. Variants occurring after a stop codon in the last coding exon were 

considered not LoF, particularly across the region of the exon or transcript in question. 

Error categories were grouped for a summarized figure as follows: Minority of 

transcripts and weak exon conservation were grouped as transcript errors, genotyping 

errors and homopolymers as sequencing errors, essential splice rescue and MNV 

grouped as rescue and strand bias was included in other annotation errors. 

The criteria above were strictly adhered throughout and manual curation was 

performed by two independent reviewers to ensure maximum consistency and minimize 

human error. Any discordance in curation was re-curated by both curators together and 

resolved. Full results of manual curation are available in gs://gnomad-

public/papers/2019-tx-annotation/results. 

 

Calculation of transcript-expression aware annotation 

We first imported the GTEx v7 isoform quantifications into Hail (hail.is) and 

calculated the median expression of every transcript per tissue. This precomputed 

summary isoform expression matrix is available for GTEx v7 in gs://gnomad-

public/papers/2019-tx-annotation/data/. We also import and annotate a variant file with 
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the Variant Effect Predictor (VEP) version 85 26 against Gencode v19 27, implemented in 

Hail with the LOFTEE v1.0 plugin. 

We use the transcript consequences VEP field to calculate the sum of isoform 

expression for variant annotations, i.e. the annotation-level expression across 

transcripts (ext). For variants that have multiple consequences for one transcript (for 

example, a SNV that is both a missense and a splice region variant on one transcript) 

we use the worst consequence, ordered by VEP (in this example, missense takes 

precedence over splice region).  We filter the consequences to those only occurring on 

protein coding transcripts. Full ordering of the VEP consequences is available at: 

https://useast.ensembl.org/info/genome/variation/prediction/predicted_data.html). 

  We then sum the expression of every transcript per variant, for every 

combination of consequence, LOFTEE filter, and LOFTEE flag for every tissue (Figure 

3.2A). For example, if a SNV is synonymous on ENST1, a LOFTEE HC stop-gained on 

ENST3 and ENST4, and LOFTEE low-confidence (LC) stop gained variant on ENST 5 

and ENST6, the ext values will be synonymous: ENST1, stop-gained HC: ENST 3 + 

ENST4, and stop-gained LC: ENST5 + ENST6 per tissue. This can be computed with 

the tx_annotate() function by setting the tx_annotation_type to “expression”. We foresee 

the non-normalized ext values to be useful when only considering one tissue of interest. 

  To allow for taking average expression values across tissues of interest, we 

normalize the expression value for a given value to the total expression of the gene on 

which the variant is found. This is carried out by dividing the ext value with the median 

gene expression value per tissue in transcripts-per-million (TPM) from RNASEQC 

v1.1.8 19 (Figure 3.2B), which is publicly available via gtexportal.org. The resulting  
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Figure 3.2 Details of calculating transcript-expression annotation. A. A SNV can have different 
consequences across annotate transcripts. For example, an SNV on a region with three annotated transcripts, 
can have a missense effect on two transcripts and a nonsense effect on one transcript. The base-level 
expression, mainly to be utilized for quick visualization of variant expression in genes, is calculated as the sum 
of the three transcripts. The annotation level expression across transcript (ext) metric defines the expression of 
a variant as the sum of the expression of transcripts on which an annotation exists. In this example, the 
expression value for the missense variant will be the sum of the expression on transcripts where the variant is a 
missense (ENST1 and ENST2) and the value for the nonsense will the the sum of the expression of transcripts 
where the variant is a nonsense (ENST3). B. To account for gene expression differences between tissues, we 
normalize the ext value by the gene TPM in the tissue to calculate the proportion expressed across transcript 
(pext) value used in the manuscript. This allows for combining pext values across tissues to for example, get the 
mean pext value across GTEx.  
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pext (proportion expression across transcript) value can be interpreted as the proportion 

of the total transcriptional output from a gene that would be affected by the variant 

annotation in question. If the gene expression value (and thus the denominator) in a 

given tissue is 0, the pext value will not be available for that tissue. When taking 

averages across tissues, such unavailable pext values are not considered (ie. when 

taking the mean across tissues, we remove NAs). This value can be computed with the 

tx_annotate() function by setting the tx_annotation_type to “proportion”. For the 

analyses in this manuscript, we remove reproduction-associated GTEx tissues 

(endocervix, ectocervix, fallopian tube, prostate, uterus, ovary, testes, vagina), cell lines 

(transformed fibroblasts, transformed lymphocytes) and any tissue with less than one 

hundred samples (bladder, brain Cervicalc-1 spinal cord, brain substantia nigra, kidney 

cortex, minor salivary gland) resulting in the use of 38 GTEx tissues. 

The full transcript-expression aware annotation pipeline, implemented in Hail 0.2, 

is fully available at https://github.com/macarthur-lab/tx_annotation with commands laid 

out for analyses in the manuscript. Passing a Hail table through the tx_annotate() 

function returns the same table with a new field entitled “tx_annotation” which provides 

either the ext or pext value per variant-annotation pair, depending on parameter choice. 

We provide a helper function to extract the worst consequence and the associated 

expression values for these annotations. All analyses in the manuscript are based on 

the worst consequence of variant, ordered by VEP 26. 
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Functional validation of transcript-expression aware annotation 

Conservation analysis was performed using phyloCSF 25 scores using the same 

file utilized for the LOFTEE plugin, available publically in gs://gnomad-

public/papers/2019-tx-annotation/data/phylocsf_data.tsv.gz . We denoted exons with a 

phyloCSF max open reading frame (ORF) score > 1000 as highly conserved and those 

with phyloCSF max ORF score < -100 as lowly conserved and evaluated their average 

usage in GTEx. 

  Using the base-level pext values that are used in the gnomAD browser, we 

filtered to intervals with high or low conservation, and calculated the average pext value 

in the interval. To evaluate regions with low conservation but high expression, we 

identified genes harboring unconserved regions with the pext value > 0.9 for pathway 

enrichment analysis and used the web browser for FUMA GENE2FUNC feature 28, 

which incorporates Reactome 29, KEGG 30, Gene Ontology 31 (GO) as well as other 

ontologies. 

Analysis of pext values for LOFTEE flags and the MAPS calculation were 

performed utilizing the gnomAD v2.1.1 exome dataset. Calculation of MAPS scores was 

previously described in Lek et al. 2016 32 and is implemented as a Hail module, as 

described in Karczewski et al. 2019 1. MAPS is a relative metric, and so cannot be 

compared across datasets, but is a useful summary metric for the frequency spectrum, 

indicating deleteriousness as inferred from rarity of variation (high values of MAPS 

correspond to lower frequency, suggesting the action of negative selection at more 

deleterious sites). The MAPS scores were calculated on the gnomAD v.2.1.1 dataset 
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partitioning upon the LOEUF score and expression bin. The script for generating MAPS 

scores is available at 

https://github.com/macarthur-

lab/tx_annotation/blob/master/analyses/maps_submit_per_class.py 

 

Manual evaluation of unexpressed regions in haploinsufficient developmental 

delay genes using the GENCODE workflow 

As an orthogonal evaluation of regions flagged as unexpressed with the pext 

metric, we identified any region in 61 haploinsufficient disease genes with a pext value < 

0.1 in all GTEx tissues and in GTEx brain samples, due to the relevance of brain tissues 

for these disorders, regardless of mutational burden in gnomAD. The resulting list of 

128 regions was evaluated by the HAVANA manual annotation group of the GENCODE 

project 27. 

The manual evaluation first established whether the transcript model 

corresponding to the region in question was correct in terms of structure, comparing 

exon / intron combinations, and the accuracy of splice sites against the RNA evidence 

supporting the model. Second, the functional biotype of each model was reassessed; in 

particular, whether the decision to annotate the model as protein-coding in GENCODE 

v19 was appropriate. Note that GENCODE models that incorporate alternative exons or 

exon combinations in comparison to the ‘canonical’ isoform are likely to be annotated as 

coding if they contain a prospective CDS that is considered biologically plausible, based 

on a mechanistic view of translation.  
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We binned cases into three main categories, according to confidence in both the 

accuracy and potential functional relevance of the overlapping models: (1) ‘error’, where 

the model was seen to have an incorrect transcript structure and/or a CDS that 

conflicted with updated GENCODE annotation criteria (these annotations had been or 

will be changed in future GENCODE releases based on this evaluation); (2) ‘putative’, 

where the model structure and CDS satisfied our current annotation criteria, although 

we judged the potential of the transcript represented to encode a protein with a 

functional role in cellular physiology to be nonetheless speculative (these have been 

maintained as putative protein-coding transcripts in GENCODE); (3) ‘validated’, where 

we believe it is highly probable that the model represents a true protein-coding isoform. 

High confidence in the validity of the CDS was based on comparative annotation, i.e. 

the observation of CDS conservation and also the existence of equivalent transcript 

models in other species. GENCODE also annotates transcript models as ‘nonsense-

mediated decay (NMD) and ‘non-stop decay’ (NSD), where a translation is found that is 

predicted to direct the RNA molecule into cellular degradation programs. While it has 

been established that such ‘non-productive’ transcription events can play a role in gene 

regulation and thus disease, the interpretation of variants within NMD and NSD CDS 

remains challenging 33. These models were therefore classed in a separate category.  

  

Gene list comparisons 

To evaluate the filtering power of the pext metric for Mendelian variants, we 

evaluated the number of variants that would be filtered with an average GTEx pext 

cutoff of 0.1 (low expression) in the ClinVar34 and gnomAD datasets. We downloaded 
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the ClinVar VCF from the ClinVar FTP (version dated 10/28/2018), imported it into Hail, 

annotated it with VEP v85 against Gencode v19, and added pext annotations with the 

tx_annotate() function. All evaluated variants were annotated as HC by LOFTEE v1.0, 

and ClinVar variants were filtered to those marked as pathogenic, with no conflicts, and 

reviewed with at least one star status. 

For variants in 61 haploinsufficient genes, we identified any variant identified in at 

least one individual with any zygosity in both datasets. For variants identified in 

autosomal recessive disease genes, we used a list of 1,183 OMIM disease genes 

deemed to follow a recessive inheritance pattern by Blekhman et al. 35 and Berg et al. 36 

(available as https://github.com/macarthur-lab/gene_lists/blob/master/lists/all_ar.tsv). 

We compared the pext value for all pLoF variants identified in ClinVar versus any 

variant in a homozygous state in at least one individual in the gnomAD exome or 

genome datasets. Finally, we used a LOEUF cutoff of 0.35 to denote constrained 

genes, and compared any synonymous or pLoF variant in these genes in the gnomAD 

exome or genome datasets. 

 

De novo and rare variant analysis 

De novo variants were collated from previously published studies. We collected 

de novo mutations identified in 5,305 probands from trio studies of intellectual 

disability/developmental disorders (Hamdam et al 37: n = 41, de Ligt et al 38: N = 100, 

Rauch et al 39: N = 51, Deciphering Development Delay Study 40 : n = 4,293, Lelieveld 

et al 41: n = 820), 1,073 probands with congenital heart disease with co-morbid 

developmental delay (Sifrim et al 42: n = 512, Chih Jin et al 43: 561), 6,430 ASD 
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probands, and 2,179 unaffected controls from the Autism Sequencing Consortium44. We 

also utilized a previously published dataset of variants in 8,437 cases with ASD and/or 

attention-deficit/hyperactivity disorder and 5,214 controls from the Danish Neonatal 

Screening Biobank 45. In this analysis, we analyzed pLoF variants identified in highly 

constrained genes (first LOEUF decile) with a combined total allele count of ≤10 in 

cases and controls. 

We annotated both de novo and rare variants with VEP v85 against Gencode 

v19 and added pext annotations with the tx_annotate() function. We then calculated the 

average pext metric across 11 GTEx brain samples and binned them as low (pext < 

0.1), medium (0.1 ≤ pext ≤ 0.9) or high (pext > 0.9) expression. We then calculated the 

number of pLoF, missense, and synonymous variants per pext expression bin. To 

obtain case-control rate ratios and the 95% confidence intervals for de novo variant 

analyses, we used a two-sided Poisson exact test on counts 46. To obtain the odds ratio 

for the rare variant analysis in ASD/ADHD, we used the Fisher’s exact test for count 

data. 

  

Isoform quantifications via salmon 

To evaluate whether use of a different isoform quantification tool would affect 

results, we compared the results of TCF4 base-level expression, MAPS and 

comparison of the number of variants filtered in haploinsufficient developmental disease 

genes in ClinVar vs gnomAD using RSEM quantifications used in this study with 

quantifications using salmon v.0.12 16. Due to the intractability of re-quantifying the 

entire GTEx dataset, we downloaded and requantified 151 GTEx brain – cortex CRAM 
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files from the V7 dataset. We first converted CRAMs to fastq files using Picard 2.18.20 

and ran salmon with the “salmon quant –i index -fastq1 – fastq2 –minAssignedFrag1 –

validateMappings” command. The index was created with the “salmon index –t 

transcript.fa –type quasi –k 31” command using the GENCODE v19 protein-coding and 

lncRNA transcripts FASTA files.  The existing GTEx RSEM isoform quantifications were 

filtered to the same GTEx brain – cortex samples. The WDL script for the quantification 

pipeline is available at : gs://gnomad-public/papers/2019-tx-

annotation/results/salmon_rsem/salmon.wdl and the commands to obtain results for 

each individual analysis at https://github.com/macarthur-

lab/tx_annotation/blob/master/analyses/rsem_vs_salmon.py. 

  

Transcript expression aware annotation with a fetal isoform expression dataset 

While our analyses were based on transcript expression aware annotation from 

the GTEx v7 dataset, we provide necessary files for pext annotation with the Human 

Brain Development Resource (HBDR) fetal brain dataset 47 in gs://gnomad-

public/papers/2019-tx-annotation/data/. HBDR includes 558 samples from varying brain 

subregions across developmental time points. We downloaded HDBR sample fastq files 

from European Nucleotide Archive (study accession PRJEB14594) and obtained RSEM 

isoform quantification on HBDR fastqs using the GTEx v7 quantification pipeline, 

publicly available at https://github.com/broadinstitute/gtex-pipeline/) which briefly 

involves 2-pass alignment with STAR v2.4.2a 18 and and isoform quantification with 

RSEM v1.2.22 14. The dataset was used for the analysis of baselevel expression values 

in SCN2A in Figure 3.9D (see below). The commands to obtain the results is available 
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in https://github.com/macarthur-

lab/tx_annotation/blob/master/analyses/get_scn2a_baselevel_fetal.py 

 

Results 

 

Contribution of alternative splicing to pLoF annotation  

We find that isoform diversity is a contributor to the paradoxical finding of 

disruptive variants in dosage-sensitive disease genes in ostensibly healthy individuals. 

Manual curation of these 401 pLoF variants in severe haploinsufficient disease genes 

reveals common error modes that result in likely misannotation of pLoFs, with diversity 

of transcript structure, mediated by alternative mRNA splicing, emerging as a major 

consideration (Figure 3.3 and Figure 3.4). Specifically, we curate 240 out of 401 pLoF 

variants in haploinsufficient genes as not LoF, followed by 66 variants as likely not LoF. 

The remaining 95 variants were broken down as 41 being likely LoF and 43 as LoF. We 

further analyzed the flags in the 306 variants categorized as not LoF or likely not LoF. 

Allowing for multiple flags per variants, we find that variants found on weakly conserved 

exons, which are often enriched for false exon annotations, and those occurring on a 

minority of transcripts (see Methods) to be the most common error mode, with 190 of 

the variants carrying the flags.  This was followed by 142 variants flagged as a 

genotyping error, and 104 as mapping error (Figure 3.4). This indicates that correct 

transcript annotation can be vital for correct interpretation of variant functional effect. 

However, no existing tools systematically incorporate information on transcript 

expression into variant interpretation. 
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Figure 3.3 Curation of pLoF variants in haloinsufficient disease genes found in gnomAD reveals 
transcript errors as a major confounding error mode in variant annotation. We identified and manually 
curated 401 pLoF variants in the gnomAD dataset in 61 haploinsufficient severe developmental delay genes 
and flagged any reason the pLoF may not be a true LoF variant. Top plot shows the frequency of each error 
mode present in the 306 variants classified as unlikely to be a true LoF. Transcript errors emerge as a major 
putative error mode in the annotation of these pLoF variants. Beeswarm plot on bottom shows the average 
pext score across GTEx tissues presented in the manuscript for each variant in the error categories. This 
shows that pext values are discriminately lower for variants that are annotated as possible transcript errors. 
 

Development of transcript-expression aware annotation 

We utilized isoform-level quantifications from 11,706 tissue samples from the 

GTEx v7 dataset to derive an annotation-specific expression metric. For each tissue, we 

annotate each variant with the expression of every possible consequence across all 

transcripts, which can be used to summarize expression in any combination of tissues 

of interest. We first compute the median expression of a transcript across tissue 

samples, and define the expression of a given variant as the sum of the expression of 

all transcripts for which the  
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Figure 3.4 Details of manual curation of 401 pLoF variants in 61 haploinsufficient developmental 
disease genes A. Distribution of curation verdicts for the 401 pLoF variants. We categorized 240 variants 
(76%) as not being LoF, 66 as likely not LoF, 52 as likely LoF and 43 as LoF B. Full distribution of the 
flags refuting true LoF status for 306 not LoF and likely not LoF variants (top) and their corresponding 
pext score in GTEx (bottom). A variant with multiple flags is assigned to each flag as in Figure 1 (ie. 
double counted). Minority of transcripts and weak exon conservation were grouped as transcript errors, 
genotyping errors and homopolymers grouped as sequencing errors, essential splice rescue and MNVs 
grouped as rescue and strand bias was included in other annotation errors. While the pext values are 
randomly distributed for other error modes, they are enriched for lower values in transcript errors. Criteria 
for curation for each verdict and flag in Tables 3.1, 3.2, respectively.  
 

 

A.

B.

Supplementary Figure 1: Details of manual curation of 401 pLoF variants in 61 haploinsufficient developmental
disease genes A. Distribution of curation verdicts for the 401 pLoF variants. We categorized 240 variants (76%) as not
being LoF, 66 as likely not LoF, 52 as likely LoF and 43 as LoF B. Full distribution of the flags refuting true LoF status for
306 not LoF and likely not LoF variants (top) and their corresponding pext score in GTEx (bottom). A variant with multiple
flags is assigned to each flag as in Figure 1 (ie. double counted). Minority of transcripts and weak exon conservation were
grouped as transcript errors, genotyping errors and homopolymers grouped as sequencing errors, essential splice rescue
and MNVs grouped as rescue and strand bias was included in other annotation errors. While the pext values are randomly
distributed for other error modes, they are enriched for lower values in transcript errors. Criteria for curation for each flag and
verdict, and full curation results are available in Supplementary Tables 1, 2, and 3, respectively.
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variant has the same annotation (Figure 3.2A, Figure 3.5). By normalizing the 

expression of the annotation to the total gene expression, we define a metric (proportion 

expression across transcripts, or pext), which can be interpreted as a measure of the 

proportion of the total transcriptional output from a gene that would be affected by the 

variant annotation in question (Figure 3.2B). 

 

Gene-based visualization of the pext score 

The pext metric allows for quick visualization of the expression of exons across a 

gene. Figure 3.5B shows TCF4, a haploinsufficient gene in which heterozygous variants 

result in Pitt-Hopkins syndrome 48 a highly penetrant disorder associated with severe 

developmental delay. This gene harbors 20 unique high quality pLoF mutations across 

56 individuals in the gnomAD database. All 20 variants lie on exons with no evidence of 

expression across the GTEx dataset (Figure 3.5B) indicating that functional TCF4 

protein can be made in the presence of these variants. This visualization is now 

available for all genes in the gnomAD browser (gnomad.broadinstitute.org), and can aid 

in rapid identification of variants occurring on exons with little to no evidence of 

expression in GTEx. 
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Figure 3.5 Summary of transcript-expression based annotation method A. Overview of transcript aware 
annotation. Most genes have many annotated isoforms, which can have varying expression patterns across tissues. 
Utilizing number of reads aligning to exonic regions in transcriptome datasets as a proxy for exon expression (top 
panel black) has confounding effects, due to 3’ bias. In this example, while exon 3 and 8 have markedly different 
expression levels in Brain – Cortex, the number of reads aligning to the two exons are similar, masking exon usage 
differences. Transcript-aware annotation defines the expression of every variant as the sum of transcripts that have 
the same annotation. The resulting transcript-level expression plots do not exhibit 3’ bias, and reveal exon usage 
differences, such as those in exons 3 and 8, across tissues. B. Example of utility of transcript-expression based 
annotation. There are 20 high quality pLoF variants in the haploinsufficient developmental delay gene TCF4 in 
gnomAD, annotated as dashed lines and arrows. All 20 variants have no evidence of expression in the GTEx 
dataset, suggesting functional TCF4 protein can be made in the presence of these variants. 
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Functional validation of pext with conservation  

To explore whether expression-based annotation marks functionally important 

regions, we compared the distribution of the pext metric in evolutionarily conserved and 

unconserved regions using phyloCSF 25. Exons with patterns of multi-species 

conservation consistent with coding regions have higher phyloCSF scores, and should 

exhibit detectable expression patterns, whereas regions with lower scores will be 

enriched for incorrect exon annotations, which are expected to have little evidence of 

expression in a population transcriptome dataset. As expected, we observe significantly 

lower expression for unconserved regions, and near-constitutive expression in highly 

conserved regions (Figure 3.6A and Figure 3.7A). This difference remains statistically 

significant after correcting for exon length (logistic regression p < 1.0 x 10-100), which 

can influence both phyloCSF scores and isoform quantifications, indicating that 

transcript expression-aware annotation marks functionally relevant exonic regions. 

While the metrics are associated, we find that pext provides orthogonal 

information to conservation for variant interpretation. For example, regions with low 

evidence of conservation but high expression (in Figure 3.6A) are enriched for genes in 

immune-related pathways (Figure 3.8), which are selected for diversity but represent 

true coding regions. In addition, the pext value is higher for pLoF variants annotated as 

high confidence (HC) by the Loss of Function Transcript Effect Estimator 1 (LOFTEE) 

with no additional flags than those flagged as having found on unlikely open reading 

frames or weakly conserved regions (Figure 3.6B, Figure 3.7B). However, LOFTEE-HC 

variants with no flags can also have low pext values, suggesting transcript-expression 
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aware annotation adds additional information to the currently available interpretation 

toolkit. 

 

Figure 3.6 Functional validation of transcript-expression based annotation A. We define highly 
conserved and unconserved regions and compared the expression status of these regions across GTEx. 
Highly conserved regions are enriched for having near-constitutive expression whereas unconserved 
regions are enriched for having little to no usage across GTEx. This difference is significant after correcting 
for gene length (logistic regression p value < 1 x 10-100). We note that unconserved regions with high levels 
of expression (pext > 0.9) are enriched for immune-related genes, which are selected for diversity and thus 
have low conservation, but represent true coding regions. B. Transcript-expression based annotation 
recapitulates, and adds information to, existing interpretation tools. LOFTEE-HC pLoF variants in gnomAD 
with no flags are enriched for higher pext values, whereas HC pLoF variants falling on low phyloCSF or 
unlikely ORF regions are enriched for low expression. However HC-pLoF variants can also be filtered based 
on a low pext score. Red dots represent median pext value across GTEx C. Nonsynonymous variants found 
on near-constitutive regions tend to be more deleterious. We compared the mutability adjusted proportion 
singleton (MAPS) score for variants with low (<0.1), medium (0.1 ≤ pext ≤ 0.9) and high (pext > 0.9) 
expression. Variants with near-constitutive expression have a higher MAPS score, indicating higher 
deleteriousness than those with little to no evidence of expression. Dashed grey and orange line represent 
MAPS values for all gnomAD missense and all synonymous variants, respectively. 
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Figure 3.7 Functional validation of pext A. Distribution of max ORF scores from phyloCSF across the 
genome. We denoted exons with a maximum phyloCSF open reading frame (ORF) score > 1000 as highly 
conserved and those with maximum phyloCSF ORF score < -100 as unconserved. Max ORF scores were 
capped at -1000 and 2000 for plotting. B. Sina plots of pext distribution in all gnomAD exome variants, 
partitioned on LOFTEE flags and filters (filters denoted as gray bars above plots). Red dots denote median 
average pext value per category C. MAPS score for pLoF variants broken down by specific pLoF consequence 
shows consistent differences in MAPS for each pLoF category between high, medium and low pext expression 
bins. D. MAPS score including missense variants shows consistent skew between variants found on high (>0.9) 
, medium (0.1≤ x ≤ 0.9 ) and low (<0.1) average GTEx pext expression bins.  
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Supplementary Figure 5: Functional validation of pext A. Distribution of max ORF scores from phyloCSF across the
genome. We denoted exons with a maximum phyloCSF open reading frame (ORF) score > 1000 as highly conserved and
those with maximum phyloCSF ORF score < -100 as unconserved. Max ORF scores were capped at -1000 and 2000 for
plotting. B. Sina plots of pext distribution in all gnomAD exome variants, partitioned on LOFTEE flags and filters (filters
denoted as gray bars above plots). Red dots denote median average pext value per category C. MAPS score for pLoF variants
broken down by specific pLoF consequence shows consistent differences in MAPS for each pLoF category between high,
medium and low pext expression bins. D. MAPS score including missense variants shows consistent skew between variants
found on high (>0.9) , medium (0.1≤ x ≤ 0.9 ) and low (<0.1) average GTEx pext expression bins.
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Figure 3.8 Results from FUMA GENE2FUNC analysis in unconserved regions with high expression 
values We ran pathway analysis on 1,310 genes harboring 2,414 regions with low conservation (phyloCSF < -
100) but high expression (pext > 0.9) shown in Figure 3A using the FUMA GENE2FUNC web browser. Results 
from A) Gene Ontology Biological Processes B) Reactome pathways and C) KEGG pathways show that these 
regions are enriched for immune pathways, which are selected for diversity but represent true coding regions, 
emphasizing the orthogonal information provided by pext over conservation alone.  

A.

B.

Supplementary Figure 9: Results from FUMA GENE2FUNC analysis in unconserved regions with high expression
values We ran pathway analysis on 1,310 genes harboring 2,414 regions with low conservation (phyloCSF < -100) but
high expression (pext > 0.9) shown in Figure 3A using the FUMA GENE2FUNC web browser. Results from A) Gene
Ontology Biological Processes B) Reactome pathways and C) KEGG pathways show that these regions are enriched for
immune pathways, which are selected for diversity but represent true coding regions, emphasizing the orthogonal
information provided by pext over conservation alone. Full results from FUMA analysis are available in Supplementary
Table 5
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Manual evaluation of low pext regions in haploinsufficient genes using GENCODE 

standards 

We undertook manual evaluation of 128 regions marked as unexpressed (pext < 

0.1 in all tissues and in GTEx brain) in 61 haploinsufficient genes following the 

GENCODE manual annotation workflow 27 to evaluate the annotation quality in these 

coding sequence (CDS) regions. A third of flagged regions were associated with low 

quality models that have been removed or switched to non-coding biotypes in 

subsequent GENCODE releases (Figure 3.9A-C) while 70% of the remaining regions 

correspond to models that satisfy only minimum criteria for inclusion in the gene set, 

corresponding to ‘putative’ annotations that lack markers for CDS functionality. 

Nonetheless, we find support for some highly conserved CDS’, several of which show 

evidence of transcription in fetal tissues, underlining the importance of incorporating 

multiple isoform expression datasets for interpretation (Figure 3.9D).  

 

Stratifying the mutability adjusted proportion singleton (MAPS) score with pext 

Nonsynonymous variants found on constitutively expressed regions would be 

expected to be more deleterious than those on regions with no evidence of expression. 

To test this, we defined expression bins based on the average pext value across GTEx 

tissues where an average pext value less than 0.1 was defined as low (or 

unexpressed), above 0.9 as high (or near-constitutive) and intermediate values as 

medium expression. We compared the mutability-adjusted proportion singleton (MAPS), 

a measure of negative selection on variant classes 32, partitioned on the LoF Observed 

Upper-bound Fraction (LOEUF) decile, a measure of constraint against pLoF variants in  
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Figure 3.9 Results of GENCODE of 128 unexpressed regions in haploinsufficient disease genes. A. 
Summary of confidence in the CDS models tagged as unexpressed in GTEx based on expert manual 
evaluation. The major curation mode was putative annotation, where regions meet minimal annotation criteria 
but the coding potential of the region remains speculative. This was followed by regions that were marked as 
errors and non-coding regions, and have since been removed or are marked for removal based on this 
analysis. B. Summary of current annotation status of the regions in GENCODE v29. While some regions have 
been removed, or have been switched to a noncoding biotype, a majority remain in subsequent annotation 
sets C. An example of two erroneous gencode v19 CDS’ in RAI1 (chr17:17712481-17712483 and 
chr17:17714069-17714194, highlighted in blue) flagged by pext as unexpressed. The regions exhibit poor 
conservation and represents an incorrectly computationally predicted microexon and it’s downsteam CDS, 
likely due to a poor quality cDNA alignment D. An example of a likely-coding CDS in SCN2A (chr2:166165675- 
166165766) which is well-conserved (gene model on top). While the region is unexpressed in GTEx, it exhibits 
considerable expression in fetal tissues from the Human Brain Developmental Resource (shown on bottom), 
highlighting the importance of incorporating multiple isoform datasets for accurate interpretation.  
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Supplementary Figure 6: Results of GENCODE of 128 unexpressed regions in haploinsufficient disease genes.
A. Summary of confidence in the CDS models tagged as unexpressed in GTEx based on expert manual evaluation. The
major curation mode was putative annotation, where regions meet minimal annotation criteria but the coding potential of
the region remains speculative. This was followed by regions that were marked as errors and non-coding regions, and
have since been removed or are marked for removal based on this analysis. B. Summary of current annotation status of
the regions in GENCODE v29. While some regions have been removed, or have been switched to a noncoding biotype, a
majority remain in subsequent annotation sets C. An example of two erroneous gencode v19 CDS’ in RAI1
(chr17:17712481-17712483 and chr17:17714069-17714194, highlighted in blue) flagged by pext as unexpressed. The
regions exhibit poor conservation and represents an incorrectly computationally predicted microexon and it’s downsteam
CDS, likely due to a poor quality cDNA alignment D. An example of a likely-coding CDS in SCN2A (chr2:166165675-
166165766) which is well-conserved (gene model on top). While the region is unexpressed in GTEx, it exhibits
considerable expression in fetal tissues from the Human Brain Developmental Resource (shown on bottom), highlighting
the importance of incorporating multiple isoform datasets for accurate interpretation.
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the gnomAD dataset 1 in each of these expression bins. MAPS scores differed 

substantially between pLoF variants found on low-expressed and high-expressed 

regions in genes intolerant to pLoF variation (Figure 3.6C and Figure 3.7C, D). This 

skew of nonsynonymous variation in high-expressed regions suggests that variation 

arising in such exons tends be more deleterious, whereas nonsynonymous variants on 

regions with low expression are similar to missense variants in their inferred 

deleteriousness. 

 

Use of pext can aid Mendelian variant interpretation  

To evaluate the utility of transcript expression-based annotation in Mendelian 

variant interpretation, we assessed the number of variants that would be filtered based 

on a pext cutoff of <0.1 (low expression) across GTEx tissues for three gene sets. 

Firstly, we evaluated high-quality pLoF variants in the 61 manually curated 

haploinsufficient genes in gnomAD and ClinVar 34. The low pext expression bin resulted 

in filtering of 22.4% of pLoF variants in haploinsufficient developmental delay genes in 

gnomAD, but only 3.8% of high quality pathogenic variants in ClinVar (Figure 3.10A; p = 

5.2 x 10-34; Methods). We next compared pLoF variants in autosomal recessive disease 

genes found in a homozygous state in at least one individual in gnomAD and any pLoF 

variant in these genes in ClinVar and observed similar results: expression-based 

annotation filters 35% of variants in gnomAD while only filtering 3.8% of variants in 

ClinVar (Figure 3.10B; p = 2.3 x 10-81). 

Finally, we evaluated gnomAD pLoF variants in genes that are constrained 

against pLoF variation 1 (LOEUF score < 0.35). Given that these genes are depleted for 
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loss-of-function variation in the general population, we expect the observed pLoF 

variants in these genes to be enriched for annotation errors. We compared the 

proportion filtered to synonymous variants in the same genes, which we expect to be 

neutrally distributed. Our metric removes 17.2% of pLoF variants in high pLI genes, but 

only 5.6% of synonymous variants (Figure 3.10C; p < 1.0 x 10-100). 

 

 
Figure 3.10 Transcript-expression based annotation aids Mendelian variant interpretation. A. Comparison of the 
proportion of high quality pLoF variants filtered in a curated list of 61 haploinsufficient developmental delays genes in 
gnomAD vs ClinVar with a cutoff of average pext across GTEx ≤ 0.1 (low expression). Expression-based filtering results 
in removal of 22.4% of gnomAD pLoFs and less than 3.8% of a curated high-confidence set of pLoFs in ClinVar. B. 
Expression-based annotation filters 35% of pLoF variants found in gnomAD in a homozygous state in at least one 
individual, and 3.8% of any pLoF variants found in the same genes in ClinVar. C. We extended this filtering approach 
to pLoF and synonymous variants in gnomAD pLoF-intolerant genes (defined by LOEF < 0.35). This filters 17.2% LoF 
and 5.6% of synonymous variants. Numbers below bar plots indicate the total number of high quality variants 
considered in each group. For pLoFs only LOFTEE-HC variants were considered, p-values calculated from fisher’s 
exact test for counts.  
 

Use of pext can improve power in gene burden testing analyses  

To explore the benefits of this approach for rare variant analyses, we applied 

pext binning to burden testing of de novo variants in patients with developmental delay / 

intellectual disability or autism spectrum disorder using a set of 23,970 de novo variants 

collated from several studies including the Deciphering Developmental Disorders (DDD)  
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Figure 4: Transcript-expression based annotation aids Mendelian variant interpretation. A. Comparison of proportion of high quality pLoF variants filtered in a
curated list of 61 haploinsufficient developmental delays genes in gnomAD vs ClinVar with a cutoff of average pext across GTEx ≤ 0.1 (low expression). Expression-
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35% of pLoF variants found in gnomAD in a homozygous state in at least one individual, and 3.8% of any pLoF variants found in the same genes in ClinVar. C. We
extended this filtering approach to pLoF and synonymous variants in gnomAD pLoF-intolerant genes (defined by LOEF < 0.35). This filters 17.2% LoF and 5.6% of
synonymous variants. Numbers below bar plots indicate the total number of high quality variants considered in each group. For pLoFs only LOFTEE-HC variants were
considered, p-values calculated from fisher’s exact test for counts.
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Figure 3.11 Application of transcript-expression based annotation to de novo variant analyses in A. 
developmental delay and/or intellectual disability (DD/ID) and B. autism spectrum disorder (ASD). We find 
that de novo pLoF variants found on constitutively expressed regions in GTEx brain tissues have larger 
effect sizes than de novo LoF variants in weakly expressed regions in both disorders. Strikingly, de novo 
pLoF variants found on regions with little evidence for expression are as equally distributed in cases vs 
controls as de novo synonymous variants, suggesting such variants can be removed from gene burden 
testing analyses to boost discovery power. The high pext expression bin contains 45.6% and 40.7%, and 
the low expression bin contains 4.5% and 8.2% of  de novo pLoF variants found in DD/ID and ASD cohorts, 
respectively. Rate ratio represents estimate from the Poisson exact test. 

 

project and the Autism Sequencing Consortium (ASC) 37–41,44. We find that de novo 

pLoF variants in DD/ID patients in low-expressed regions have effect sizes similar to 

those of synonymous variants (rate ratio, denoted as RR, of low-expressed pLoFs = 

0.94, p = 0.81) whereas pLoF variants in highly expressed regions have much larger 

effect sizes (RR = 4.63, p = 3.6 x 10-38; Figure 3.11A). This observation is consistent for 

de novo variants in autism (RR for low-expressed pLoFs = 0.87, p = 0.54; RR for high-

expressed pLoFs = 2.12, p = 8.2 x 10-8; Figure 3.11B) and congenital heart disease with 

co-morbid neurodevelopmental delay 42,43 (Figure 3.12A) as well as rare variants (AC ≤ 

10) identified in highly constrained genes in the large iPSCYH case/control study of 

Danish patients with autism spectrum disorder and attention-deficit/hyperactivity 

disorder 45 (Figure 3.12B). Overall, we consistently observe low-expressed pLoF 
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Figure 3.12 Application of transcript-expression based annotation to de novo and rare variant 
analysis in additional datasets A. Using de novo variants identified in probands with congenital heart 
disease and co- morbid developmental delay we find a consistent effect of de novo pLoF variants found on 
high expressed regions in GTEx brain having larger effect sizes than de novo LoF variants in weakly 
expressed regions. Once again, de novo pLoF variants found on regions with little evidence for expression 
are similarly distributed in cases and controls as de novo synonymous variants, suggesting such variants 
can be removed from gene burden testing analyses to boost discovery power. Rate ratio represents 
estimate from the poisson test. B. Rare pLoF variants (combined AC in cases and controls ≤ 10) identified 
in highly constrained genes (first decile in LOEUF) portioned upon pext expression bins show that those 
with high expression in GTEx brain have higher effect sizes than those identified in low-expressed regions, 
which are equally distributed in cases and controls. Odds ratio represents estimate from Fisher’s exact text 
on counts.  

Supplementary Figure 7: Application of transcript-expression based annotation to de novo and rare variant
analysis in additional datasets A. Using de novo variants identified in probands with congenital heart disease and co-
morbid developmental delay we find a consistent effect of de novo pLoF variants found on high expressed regions in
GTEx brain having larger effect sizes than de novo LoF variants in weakly expressed regions. Once again, de novo pLoF
variants found on regions with little evidence for expression are similarly distributed in cases and controls as de novo
synonymous variants, suggesting such variants can be removed from gene burden testing analyses to boost discovery
power. Rate ratio represents estimate from the poisson test. B. Rare pLoF variants (combined AC in cases and controls ≤
10) identified in highly constrained genes (first decile in LOEUF) portioned upon pext expression bins show that those with
high expression in GTEx brain have higher effect sizes than those identified in low-expressed regions, which are equally
distributed in cases and controls. Odds ratio represents estimate from Fisher’s exact text on counts.
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variants exhibiting effect sizes similar to those of synonymous variants, and pLoF 

variants in constitutive regions having larger effect sizes, suggesting that incorporating 

transcript expression-aware annotation in rare variant studies can boost power for gene 

discovery. 

 

Discussion 

We have described the development and validation of a transcript expression-

based annotation framework to integrate results from transcriptome sequencing 

experiments into clinical variant interpretation. While our initial analysis utilizes GTEx, 

our method can be used with any isoform expression dataset to annotate any variant file 

rapidly in the scalable software framework Hail (https://hail.is). For example, annotation 

of >120,000 gnomAD individuals with GTEx takes under an hour using 60 cores, at a 

cost of about $5 on public cloud compute, which can be further scaled to larger 

datasets. In addition, the annotations we provide are flexible: while we have described 

the use of average transcript-level expression across many tissues, alternative 

approaches such as using minimum expression across any tissue, may prove useful 

depending on variant interpretation goals. 

We note that while this metric successfully discriminates between near-

constitutive and low expression levels, which are useful for prioritizing and filtering 

variants respectively, regions with intermediate expression levels are more challenging 

to interpret. Regions tagged as low expression are often corroborated by expert opinion 

of CDS curation, but domain knowledge of a gene will outperform this summary metric. 
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Figure 3.13 Comparison of key results using Salmon vs RSEM. Using isoform quantifications on 151 GTEx 
Brain – Cortex samples, we compared the results from analyses in the manuscript using quantifications from 
salmon and RSEM. Results from the analyses were consistent, underlining that the pext calculation is robust to 
isoform quantification tool used. A. The baselevel pext metric in TCF4 using the two quantification tools. The 20 
pLoF variants identified in gnomAD in TCF4, denoted by dashed lines, lie on unexpressed regions in Brain – Cortex 
samples using salmon or RSEM B. No significant difference in the MAPs score is seen for pLoF variants in pext 
expression bins with RSEM and salmon quantifications. C. The number of pLoF variants filtered with a Brain – 
Cortex pext cutoff of 0.1 in gnomAD vs ClinVar was similar, with results from quantification from salmon filtering 
52 fewer ClinVar variants (out of 3,056 variants).  
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Supplementary Figure 8 : Comparison of key results using Salmon vs RSEM. Using isoform quantifications on 151
GTEx Brain – Cortex samples, we compared the results from analyses in the manuscript using quantifications from
salmon and RSEM. Results from the analyses were consistent, underlining that the pext calculation is robust to isoform
quantification tool used. A. The baselevel pext metric in TCF4 using the two quantification tools. The 20 pLoF variants
identified in gnomAD in TCF4, denoted by dashed lines, lie on unexpressed regions in Brain – Cortex samples using
salmon or RSEM B. No significant difference in the MAPs score is seen for pLoF variants in pext expression bins with
RSEM and salmon quantifications. C. The number of pLoF variants filtered with a Brain – Cortex pext cutoff of 0.1 in
gnomAD vs ClinVar was similar, with results from quantification from salmon filtering 52 fewer ClinVar variants (out of
3,056 variants).
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An important caveat in our approach is the imprecision of isoform quantification 

methods using short-read transcriptome data. However we note that repeating key 

analyses in the manuscript with a different isoform quantification tool showed consistent 

results (Methods, Figure 3.13), suggesting robustness to the precise pipeline used. The 

utility of this framework will increase as our ability to quantify isoform expression across 

tissues improves, including refinement of methods and gene models, as well as 

availability of long-read RNA-seq data from human tissues. In addition, improvement of 

single-cell RNA-seq technologies and generation of data across human tissues will 

provide insight into cell type-specific exon usage for incorporation into variant 

interpretation 49. 

 

Significance  

 The development and validation of the pext score allows for quick and practical 

integration of population transcriptome datasets into interpretation of both variants in 

rare diseases, as well as statistical analyses in disorders with complex genetic 

architecture. Prior to our work, assessing the expression status of a region harboring a 

variant has been based on visual inspection of expression statuses of exons, and 

mental recalculation and correction of 3’bias. For gene burden testing in complex 

diseases such as schizophrenia, type 2 diabetes and others, choosing a variant 

annotation to include in a statistical test has often relied on selecting the consequence 

on the canonical transcript or to identify the worst consequence across all transcripts. 

Our method allows for a data-driven approach to selecting consequences for such 

statistical tests, which we show can improve power in analyses.  
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 The generic and flexible method we developed allows for integration of any 

isoform expression dataset of interest with any variant file. The code used to generate 

pext scores is available as open source software and we have written detailed 

instructions on applying the method (Appendix 3.1). In addition, we provide a 

precomputed file of the transcript-expression value for every possible single nucleotide 

variant in the human genome.  This allows for the integration of any combination of over 

70,000 human RNA-seq samples that have been deposited into public repositories, a 

continuously growing number 50.  

The pext metric has already proven useful in variant curation for drug target 

identification 51 and for filtering variants for identification of human knockouts 1. Overall, 

we foresee this metric to be incorporated into variant interpretation in a Mendelian 

disease pipelines, rare variant burden analyses, and the prioritization of variants for 

recall-by-genotype studies.  
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Summary of results 

As stated in the introduction, a main goal of human genetics research is 

accurately predicting the functional and clinical consequences of variation in the 

genome. While DNA sequencing technologies have had a remarkable impact on linking 

genetic variation to both common and rare disease, an emerging issue has been the 

fact that our ability to discover genetic variation outstrips our ability to interpret its 

functional impact 1,2. In this thesis, we employed a functional genomic tool, 

transcriptome sequencing, in a practical and accessible way to aid in the interpretation 

of genetic variation in disease. To that aim, we first use RNA-seq directly on affected 

tissue samples from patients with Mendelian neuromuscular disease to aid in the 

interpretation of effect variants identified by prior WES/WGS on transcription. We 

developed tools and frameworks to identify splice aberrations, allelic imbalance and 

expression outlier status unique to a patient or groups of patients, and performed 

variant calling on patient RNA-seq data. Our results established RNA-seq as a useful 

complementary approach to DNA sequencing, with the diagnosis of 17 patients in our 

initial cohort of 50. This study was among the first of its kind to establish the utility of a 

functional genomics tool in rare disease diagnosis, and was published in April 2017 in 

Science Translational Medicine 3. To date, it has received 122 citations. 

Upon establishing the utility of RNA-seq for rare variant interpretation in rare 

disease, we considered the use of RNA-seq in cases where patient tissue was 

unavailable, as would be the case for Mendelian neurological disorders. We 

hypothesized that population transcriptome datasets would be greatly valuable to 

interpret genetic variants identified in rare disease patients, however the state of such 
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large-scale functional datasets were not in a format to allow analysts and clinicians to 

seamlessly integrate this information into variant interpretation. This was further 

motivated by the surprising observation of a large number of disrupting variants in the 

gnomAD database in dosage sensitive disease genes. Our hypothesis was based on 

the assumption that these variants were likely enriched for annotation errors but our 

current toolkit for systematic interpretation failed to filter them. We therefore 

hypothesized that these variants were likely enriched in regions of misannotated exons, 

or due to alternative mRNA splicing, were not acting in the relevant tissues. To test this 

hypothesis, we developed a summarized metric of isoform expression using data from 

the largest cross-tissue transcriptome sequencing inventory, GTEx. Starting from 

isoform quantifications in this dataset, we developed the proportion expressed across 

transcript (pext) metric, that represents the proportion of expression from a gene that is 

attributable to the given variant annotation. We tested pext using orthogonal functional 

metrics such as conservation, and established its utility for selectively filtering variants 

that are enriched for annotation errors. We integrated the pext score into the gnomAD 

browser, which receives an average of 70,000 page views per week. In addition, the 

transcript expression-aware annotation metric is available as an open source tool for 

scientists to integrate any isoform expression matrix of interest with any variant file. The 

resulting manuscript is currently available on biorXiV and has in review at a peer-

reviewed journal as part of the gnomAD project manuscript bundle 4.  

Overall, the two chapters of this thesis represent a practical way to integrate one 

type of functional genomics information into rare variant interpretation both in Mendelian 

and common disorders. Taken together, this allows scientists, clinicians and analysts 
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access to information that was previously unavailable and the development of the 

projects offer a few lessons that are discussed below.  

 

Emerging concepts 

 

The importance of splice variants in undiagnosed rare disease patients  

 In chapter 2, we set out to explore transcriptional aberrations in genetically 

undiagnosed Mendelian disease patients. We evaluated splicing, allele imbalance, 

expression outlier status and performed variant calling to identify putative pathogenic 

somatic variation. The diagnoses made in the study were all based on identification of 

variants affecting splicing. This was an unexpected result. While it may be possible that 

splice-affecting variants were prioritized due to the ease of interpreting their loss-of-

function impact, versus for example, disruptive variants in the untranslated regions that 

may result in allele imbalance but are difficult to pinpoint in the DNA sequence even 

when allele imbalance is observed, this observation highlighted the importance of 

variants that affect splicing in undiagnosed cases.  

 In a parallel effort, Kremer et al. performed RNA-seq on fibroblast samples in 

patients with rare mitochondriopathies 5. They focused on the identification of aberrant 

expression, aberrant splicing and ASE and were able to genetically diagnose 5 out 48 

patients in their cohort with prior negative WES.  Interestingly, the authors note that a 

majority of the newly diagnosed cases arose from identification of defective splicing. In 

one case, the authors identified a possible novel disease gene, TIMMDC1, with an 

intronic mutation causing inclusion of a pseudo-exon, similar to the COL6A1 example in 
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this thesis. In total they identified the mutation in three unrelated families, highlighting 

that other previously underappreciated diagnosis may be accessible through 

considering splicing.  

 To assess the contribution of noncanonical splice aberrations to genetic 

diagnosis of developmental delay,  which represent the largest single class of 

monogenic disorders, Lord et al. evaluated mutational constraint and pathogenicity of 

variants affecting the extended splice junction, defined as up to 30 bases around the 

exon-intron junction 6. They identified important positions outside of the essential 2 base 

intronic region that were constrained against variation. Specifically, they estimate a 

variant at the G nucleotide of the donor + 5 position has an approximately 80% chance 

of being deleterious. Similarly, the donor -1 G nucleotide positions was shown to be 

constrained against variation, and these results were replicated in a parallel study by 

Zhang et al. 7. The authors then evaluated de novo variants in their patient cohort of 

7,833 probands, 5,907 of which had been previously undiagnosed following trio WES. 

They identified a diagnostic de novo mutation in the extended splice site region in 18 

patients. Comparing this number to the number of patients diagnosed with pathogenic 

variants at the essential splice site, they observe that 27% of splice disrupting mutations 

in this cohort fall in the non-canonical positions. An analysis of pathogenic or likely 

pathogenic variants in ClinVar reveals that while 83.5% of variants fall in the essential 

splice site region, only 16.5% fall in the non-canonical splice region with high constraint. 

Taken together, the authors calculate that there is a 35-40% under ascertainment of 

disruptive non-canonical splice variants. It is important to note that this analysis focuses 

only on this extended splice region, and does not include exonic mutations that may 
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disrupt splicing, or those occurring at the branchpoint or splice-site creating deep 

intronic mutations, and the authors note that the 35-40% under-ascertainment estimate 

is likely conservative. 

 In a comprehensive analysis of the genetic architecture of Diamond Blackfan 

Anemia, Ulirsch et al. identified aberrant splicing caused by non-canonical splice 

mutations in 6 subjects in a cohort of 472 individuals. While the absolute number of 

diagnoses made via extended splice mutations is not high, the proportional diagnosis 

rate after standard diagnostic methods evaluating nonsense, essential splice and 

frameshift mutations is high, leading the authors to conclude that probands lacking 

typical gene mutations may harbor such cryptic mutations in known genes.  

 An observation made in this thesis, and which is echoed in Hurles et al. and 

Kremer et al. as well as the previously existing ACMG guidelines for variant 

interpretation 8, is that existing tools to predict splice-disrupting variants from DNA 

sequence lack specificity. However, based in part on our work, the work discussed 

above, and many other studies now evaluating the importance of splice-disrupting 

mutations in Mendelian disease, new tools for splice-prediction have been published. In 

one case, Jaganathan et al. used a deep learning approach to predict the splice-

disrupting effect of any class of variant including exonic and deep intronic variation 9. 

They report that 75% of predicted splice-disrupting variants do have an effect on 

splicing, with the score provided by the algorithm tracking with the rate of disruption. 

They observe a 71% sensitivity for near-exonic variation, and 41% for deep intronic 

mutation, highlighting that deep intronic variants with splice effects are more challenging 

to predict. The authors do identify a subset of intronic and synonymous mutations with 
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high scores, that are comparable in deleteriousness to frameshift, stop gain and 

essential splice site variants. By analyzing the gnomAD database, they predict that the 

average human carries ~5 rare functional cryptic splice mutations, compared to ~11 

rare loss of function variants. Finally, the authors use a set of de novo variants identified 

in patients with developmental delay and autism to estimate that splice-affecting 

variants are estimated to account for 9% of developmental delay diagnoses and 11% of 

autism. In summary, the authors develop an improved splice affecting variant prediction 

algorithm with a high rate of validation. However, the rate of sensitivity, especially for 

certain classes of genetic variation has room for improvement and validation via manual 

cDNA analysis or RNA-seq is still recommended before concluding pathogenicity. As 

such tools continue to improve, estimates of the contribution of splice-affecting 

mutations in Mendelian disease will be available will gain precision.  

 

The use of RNA-seq in genetic diagnosis and gene discovery 

 Several questions emerge from ours and Kremer et al.’s work on using RNA-seq 

for genetic diagnosis: What is the approximate diagnostic rate we can expect with RNA-

seq in a given rare disease cohort? Do results indicate RNA-seq should be routinely 

used in diagnosis? In which cases will this approach be most useful? What are the 

study design considerations to maximize diagnostic yield? Will RNA-seq be useful for 

gene discovery? 

 The diagnostic rate in our cohort of 50 exome and/or genome undiagnosed 

individuals was 35%. Kremer et al reported a 10% diagnosis rate. In an additional study, 

Fresard et al employed RNA-seq in a cohort of 56 patients with a variety of severe 
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undiagnosed cases. Through performing RNA-seq on blood, they reported an 8.5% 

diagnosis rate 10. Both Kremer et al. and this study acknowledged the higher yield in our 

study was likely due to the better genetic characterization of neuromuscular disorders 

versus mitochondrial disorders. However, it is important to note that all three studies 

employed various analysis strategies. While our work was primarily focused on 

evaluating splicing, Kremer et al. and Fresard et al. emphasized using RNA-seq for the 

identification of expression outliers. The three studies also differed significantly in their 

approaches within the same analysis strategy. The two studies that highlighted 

expression outlier status employed differing techniques, and while we developed our 

own analysis pipelines for splice aberrations, Kremer et al. used a previously published 

algorithm called Leafcutter for splice aberration detection 11. Currently, these three 

studies are the main systematic uses of RNA-seq for diagnosis; however given the 

inherently different genetic architecture of the rare diseases studied, and the varying 

analysis strategies and tools employed, it is difficult to compare the diagnosis rates and 

conclude what are over and underestimates. However, we believe the success of these 

studies will prompt more systematic uses of RNA-seq in rare disease cohorts and such 

estimates will improve.  

 It is important to emphasize the use of RNA-seq as a complementary diagnostic 

tool for interpretation and not a replacement of WES or WGS. RNA-seq only allows for 

the assessment of expressed genes in a given tissue at a particular time point, and is 

subject to artifacts such as ischemic time 12. This prevents the reliable identification of 

germline genetic variants with RNA-seq, and overall variant calling from RNA-seq 

carries approximately 80% sensitivity 13–15. Other subtler effects can also result in false 
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negatives with RNA-seq: Consider a case in which a basally expressed gene carries 

two disease-causing loss-of-function variants in trans in a patient. If both variants result 

in nonsense mediated decay, the expression of the gene should expectedly be 

depleted. Therefore RNA-seq may fail to capture any molecules for this gene. In this 

case, RNA-seq analysis may identify the gene as an expression outlier, but without 

paired DNA sequencing, there will not be enough data to evaluate the gene in RNA-seq 

for diagnosis. Therefore, we again highlight RNA-seq as a useful complementary tool 

for cases for which standard diagnostic tools including WES and/or WGS has not 

yielded a molecular diagnosis.  

 A critical consideration to employ RNA-seq is which tissues are obtainable from 

patients. Again, in our study, due to the availability of muscle tissue from patients based 

on routine biopsies for diagnosis, the affected tissue was available. We do note 

however, that our study involved the collection of a variety of muscle subtypes such as 

biceps and deltoid. Fresard et al. employed RNA-seq on blood 10, Kremer et al on 

patient fibroblasts 5, Sankaran et al on lymphoblastoid cell lines 16. In additional studies 

of single cases or smaller cohorts, Oliver et al. employed blood RNA-seq in a patient 

with multiple osteochondromas 17, and Hamanaka et al. employed muscle RNA-seq in a 

cohort of 10 patients with nemaline myopathy 18. Both our manuscript and that of 

Hamanaka et al. evaluated alternative tissues as a proxy of the muscle transcriptome 

and found that many of the most important muscle diseases genes were not expressed 

in blood or fibroblasts 3,18. In contrast, Kremer et al. showed that mitochondrial disease 

genes were expressed in fibroblasts, and Sankaran et al. reasoned that the ubiquitously 

expressed nature of the genes involved in Diamond Blackfan anemia would enable 
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analysis in cell lines. Because Fresard et al. analyzed a cohort of patients with severe 

syndromic diseases, they showed that blood can be useful as a proxy. All studies 

discussed share a simple strategy which is the careful evaluation of available tissues. In 

other words, the proxy tissue used will depend on the disease of interest, the 

expression status of commonly disrupted genes of the disorder across tissues, and 

(critically) the clinical availability of that tissue from patients. 

 It is important to highlight that only considering the expression status of a set of 

previously established disease genes in a candidate proxy tissue may not be sufficient. 

Our understanding of tissue-specific splicing patterns and their effect on diagnosis rates 

in proxy tissues is limited. While studies have suggested the splicing is secondary to 

gene expression for cellular identity 19 we hypothesize firstly that this is likely an 

underestimate brought on by short-read RNA-seq and secondly that tissue-specific 

effects of splice disrupting variants will need more consideration. One useful resource 

that would be much anticipated would be a proxy tissue database based on the GTEx 

project. In such a case, evaluation of co-expression and co-splicing networks across 

GTEx tissues could greatly informed proxy tissue decisions in Mendelian diagnosis.  

 For a variety of Mendelian disorders, the affected tissue will never be attainable, 

such as for neurodevelopmental diseases. Even in the case of neuromuscular 

disorders, as WES or WGS continue to rise as frontline diagnostic strategies, muscle 

biopsies will become more infrequent 20,21. In addition to considering proxy tissues, in 

vitro strategies may be useful in such cases. Recently, Gonorazky et al. generated 

myotubes from transdifferentiated patient fibroblasts and employed RNA-seq in a cohort 

of 25 patients, yielding a diagnosis rate of 36% 22. For retinal diseases, Buskin et al. 
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generated patient-specific retinal organoids and retinal pigment epithelium from induced 

pluripotent stem cells 23. Such in vitro approaches can be low throughput, but alleviate 

the necessity of invasive access to patient tissue. 

 

The use of transcript-expression aware annotation 

 Given how recently our transcript-expression aware annotation work was 

published, it is difficult to predict its adoption in the community. However, we believe our 

method allows access to tissue-specific exon expression patterns, and based on our 

work, is useful for filtering falsely annotated variants. It also aids in the choice of 

annotation for a given variant in rare variant analyses for complex disorders. So far, this 

method has been employed to filter homozygous loss-of-function variants in the 

gnomAD cohort, and has removed approximately 30% of such variants 24. This means 

that analysts are able to curate approximately 1,000 fewer putative loss-of-function 

variants, as our metric tracks closely with conservation. In an additional example, 

Minikel et al. have used the pext score to deeply curate loss-of-function variants 

identified in potential drug targets in the gnomAD dataset. They have found in one 

example, using transcript-expression aware annotation, filters almost all loss-of-function 

variants in MAPT which has important implications of using inhibitory drugs against the 

gene product 25. 
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Future directions and improvements  

 Much work is needed to continue to assess the utility of functional genomics in 

Mendelian disease diagnosis. For example, what is the role of other functional 

genomics approaches for variant interpretation? In Kremer et al., metabolomics was 

used in conjunction with RNA-seq to identify metabolites that were completely depleted 

in patient samples 5. A recent study by Aref-Eshghi et al. employs genome-wide DNA 

methylation analysis in peripheral blood in a cohort of neurodevelopmental disease and 

congenital anomalies to show it aids variant interpretation 26. Such functional tools are 

going to be integral to evaluate the contribution of noncoding variation to the diagnostic 

gap in Mendelian disease.  

 Transcriptome sequencing will be useful to address the diagnostic gap by 

offering insight into mechanisms of variable penetrance. By employing RNA-seq and 

allele specific expression analysis, Castel et al. have shown the effect of in cis genetic 

variants on the expression of coding variants. Employed more broadly in Mendelian 

patients, this approach will offer insight into the molecular underpinnings of penetrance 

and variable expressivity 27. 

 One caveat in our transcript-expression aware annotation pipeline is the 

shortcoming of short-read RNA-seq data at isoform quantification. A fundamental 

drawback of this approach is that it cannot assess full length isoforms. Instead, isoform 

expression measures from short read data are probabilistic and not directly quantified. 

Long read RNA-seq is an emerging technology that allows capture of full-length 

isoforms, thus bypassing many of the flaws associated with short read RNA-seq. This 

technology has just recently reached the brink of scalable application to larger sample 
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sets and has not yet been applied at scale to human tissues or used for the analysis of 

functional genetic variants. We believe generating long read RNA-seq data will be 

invaluable towards characterizing isoform diversity across human tissues, which can 

inform proxy tissues for genetic diagnosis, and to improve our understanding of the 

tissue-specific effects of variants, and their link to human disease.  

 While our focus in the application of transcriptome sequencing has been on 

tissues, single-cell technologies have gained massive traction over the last few years 28. 

While many of these technologies rely on sequencing 3’ ends of transcripts 29, full length 

isoform capture in single cells 30 would allow the evaluation of the cell-type specific 

effects of genetic variation.  
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Explanation of the appendix  
 
 In the publication of our work on improving genetic diagnosis in Mendelian 

disease with transcriptome sequencing, we published an accompanying blog post for 

those who would like to apply our methods in their own work. This blog post is 

presented as Appendix 2.1. Similarly, in our publication of a transcript expression aware 

annotation tool, we made the method available as open source, wrote a detailed Github 

repository on using the tool, and detailed the analyses in the manuscript. This work is 

presented as Appendix 3.1   
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Improving genetic diagnosis in Mendelian disease with transcriptome sequencing 
– a walk through 

 
This post summarizes our recent manuscript on the application of transcriptome 

sequencing (RNA-seq) to the diagnosis of patients with Mendelian diseases, and 

provides a practical walk-through of our framework, methods and the Github code 

accompanying the paper). 

Why RNA-seq for genetic diagnosis? 

The current rate of genetic diagnoses across a variety of Mendelian disorders is 

approximately 25-50%. This means that more than half the families that come into the 

clinic searching for a genetic cause for their disease fail to receive a diagnosis. 

There are a variety of reasons current diagnostic rates for Mendelian disorders 

are far from perfect. In some cases, the pathogenic variants are in genes that have not 

yet been established in the literature to cause the particular disorder, and with a single 

case, there isn’t enough evidence to make the diagnosis. There may also be complex 

inheritance patterns, such as digenic causes, to disorders that we have so far been 

underpowered to uncover. In addition, there are some key classes of variants where 

improvements in methods are still needed, such as calling structural variants from 

exome data or somatic variant discovery. 

However, perhaps the most common driver for missed diagnoses is our inability 

to successfully functionally interpret the variants we see in patient DNA. This is 

especially true for variants we identify in whole genome sequencing (WGS) since our 

understanding of the non-coding genome remains limited, and the sheer number of 

these variants is overwhelming: in the gnomAD WGS database, every European 
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carries an average of 7,067 variants that are not found in anyone else. This means 

that even frequency filtering with gnomAD leaves us with too many candidate variants 

for which the functional impact is unknown. 

This is where RNA-seq comes in. RNA-seq offers a layer of functional 

information on top of what we know from the genetic analysis, and can help us begin to 

interpret some of the variants we identify with exome or whole genome sequencing, or 

identify new variants that may elude these technologies. 

In our project we set about using RNA-seq to improve the diagnosis of a cohort 

of patients with a variety of severe, undiagnosed muscle diseases. We set out to look 

for splicing defects, allele imbalance, expression outlier status and to do variant calling 

directly on RNA-seq data. Our goal was to identify variants that may not have been 

captured with DNA-sequencing or to identify non-coding variants with functional impact 

that we may not have been properly interpreted. In the end, we were able to genetically 

diagnose 17 out of 50 undiagnosed patients, primarily through discovery of splice 

aberrations. 

Some considerations for study design 

Before applying RNA-seq to cohorts of undiagnosed Mendelian disease patients 

there are some critical questions to inform study design including i. what tissue to 

sequence ii. how many patients and controls to begin with and iii. what protocol and 

read depth to use for patient RNA-seq. 

Based on multi-tissue transcriptome studies like GTEx, it is becoming 

increasingly clear that gene expression and splicing profiles can vary widely between 
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tissues. Therefore to identify aberrations in these profiles, it is ideal to go after the 

disease-relevant tissue. 

Consider the comparison below, showing the expression of ~190 Mendelian 

neuromuscular disease genes in GTEx blood and muscle, which suggests that almost 

half of these genes are below 1 RPKM in blood, a cutoff below which it is difficult to see 

enough reads in 50 million-paired end RNA-seq dataset to identify splice aberrations. 

This suggests that blood RNA-seq is a poor proxy for muscle for the purposes of 

diagnosis. We highly recommend performing a similar analysis based on your genes of 

interest in order to choose a proxy tissue for RNA-seq, if the disease-relevant tissue is 

unavailable. 
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Secondly, increasing the number of controls will increase your power to filter out 

non-deleterious junctions. We applied the framework laid out in the manuscript to 

identify “potentially pathogenic junctions” in 5 patients while increasing the number of 

GTEx controls. This shows that having few controls results in identifying more events 

that are seemingly unique to the patient. It also underlines the greater filtering power of 

having a specific gene list for the disorder of interest. Here, we recommend leveraging 

GTEx by choosing a proxy tissue represented in the dataset. If this is not possible, we 

would definitely recommend sequencing your own set of controls, and starting with at 

least ~20-30 samples. 
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Lastly, the protocol and read depth is dependent on whether you will be able to 

incorporate GTEx data into your analysis, in which case we recommend staying close to 

the GTEx protocol. Our patient samples were sequenced with 50 or 100 million paired-

end reads and at a minimum, we recommend 50M paired-end reads. However, the 

precise impact of read depth will be dependent on the expression of your genes of 

interest, considering that expression of the disrupted gene in the patient may be 

decreased (for a gene in which recessive LOF mutations result in disease) and that 

larger genes will be more dramatically impacted by 3’ bias, which will lower your ability 

to have enough reads at the 3’ end of a gene to look for splice aberrations. 

A reference panel of control tissue RNA-seq 

Mendelian muscle disorders are a major disease focus in our lab. They are also 

a very practical place to test the value of RNA-seq for diagnosis: the collection and 

storage of frozen muscle biopsies is currently routine clinical practice for undiagnosed 

patients as they are used in protein studies, meaning that high-quality RNA from a 

disease-relevant tissue is available for a very large proportion of undiagnosed patients 

with these diseases. 

One of the most powerful tools in Mendelian disease diagnosis are large-scale 

reference databases to look up the population frequency of a variant of interest 

(*cough gnomAD). This allows for filtering out events that are too common in the 

population to plausibly result in a Mendelian phenotype. We needed similar reference 

databases to filter events we identified in our patient muscle RNA-seq, so we turned to 

the Genotype Expression Project (GTEx) dataset, which is a large multi-tissue 

transcriptome sequencing effort that has sequenced across ~50 tissue types in ~600 
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individuals.  The GTEx inventory includes skeletal-muscle RNA-seq, so we integrated 

their data into our framework, which eliminated a need to obtain and sequence muscle 

tissue from healthy controls. 

At the offset of the project, just over 400 skeletal-muscle RNA-seq samples were 

available from GTEx. We sub-selected 184 controls from GTEx that had high quality 

RNA-seq as well as phenotypic features that more closely matched our patient samples 

(see Methods section of the manuscript for more details). 

Quality controlling patient RNA-seq data 

We performed three main quality controls: i. technical QC ii. comparing gene 

expression profiles to GTEx samples to assess tissue quality iii. sample matching to 

ensure the source of RNA-seq was the proband for which we had prior information. This 

included fingerprinting comparison for WES/WGS /RNA-seq from the proband as well 

as checking to see if the sex entered for the patient validated in the RNA-seq, to ensure 

there were no sample mix-ups. 

For technical QC, we obtained metrics by running RNA-seQC with gencode 

annotations obtained from the GTEx project. 

For the tissue check, we used GTEx skeletal-muscle samples as well as tissues 

that potentially contaminate muscle biopsies such as skin or adipose to run principal 

component analysis (PCA) with our patient samples. Initially, we ran the PCA by using 

all genes, but now to QC each batch that comes in, we use tissue-preferentially 

expressed genes identified by GTEx, which produces similar results, but runs faster. A 

list of tissue-preferentially expressed genes are available in supplementary table S5 

of this GTEx manuscript. 
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To validate the sex of the individual, we compared the average chrY and XIST 

expression and also clustered samples based on sex-preferentially expressed genes 

from the same GTEx paper as above. 

There is example code and data in the Github page to check the clustering 

pattern of a randomly selected patient sample. You can see and run the code by cloning 

the repo https://github.com/berylc/MendelianRNA-seq. 

in MendelianRNA-seq/QC  

For the muscle check: 

$ Rscript MuscleCheck.R -patient_rpkm ../example/genes.rpkm.gct    

-out_file walkthrough.tissue  

  

and for the Sex Check: 

$ Rscript SexCheck.R -patient_rpkm ../example/genes.rpkm.gct  

-out_file walkthrough.sex 

Both commands create PDF files with plots for manual inspection and output text 

to indicate whether the samples cluster with muscle as well as their respective sex. In 

MuscleCheck.R, adding -writePCADat outputs the PC coordinates of all samples, in 

order to identify samples that may look like outliers by manual inspection. 
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Running these commands produces the plots below, which validate the RNA-seq 

sample is muscle and that the sample is male: 
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Default GTEx files to run this code for muscle RNA-seq are stored in Github. For 

the tissue check, you need an expression matrix of control tissues of interest and 

relevant tissue-preferentially expressed genes (ie. 

tissue_preferential_genes_fibs.msck.skn.adbp.txt and 

gtex_expression_tissue_preferential_fibs.msck.skn.adbp.txt in MendelianRNA-

seq/data). For the sex check you need an expression matrix with sex-preferentially 

expressed genes (gtex_expression_sex_biased.txt).  

If you’d like to build a similar QC framework for a different set of tissues of 

interest, you can follow the code to create the GTEx expression matrices for sex and 

tissue-preferential genes: 

in MendelianRNA-seq/data  

Get the required GTEx files: 

$ wget -i gtex_file_urls 

  

>Go through make_gtex_files.R and change the tissue names to create the files for your 
own tissues of interest. 

Lastly, to ensure the sample for WES/WGS and RNA-seq are the same, we used 

PLINK to look at IBD estimates from ~5,800 common SNPs collated by Purcell et al. 

This code can be used to check relatedness within family WES/WGS/RNA-seq data as 

well 
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in MendelianRNA-seq/QC  

-Note that to genotype RNA-seq files, you will need to split your BAMs first. You can do 
this by using GATK SplitNCigarReads.  

-You will also need to have GATK and PLINK installed, and point the scripts to a human 
genome reference fasta file. 

1)Generate GVCFs from all bams you’re interested in checking 

For a single BAM: 

$ sh MakeGVCF.sh \ 

/path/to/gatk.jar \ 

/path/to/Homo_sapiens_assembly19.fasta \ 

/path/to/your.bam 

2)Make a list of all output GVCFs and joint genotype for ~5,800k common SNPs 

$ls -1 *vcf.gz > gvcfs.list 

$ sh JointGenotype.sh \ 

/path/to/gatk.jar \ 

/path/to/Homo_sapiens_assembly19.fasta \ 

gvcfs.list 

3)Make PLINK TFAM and TPED files for PLINK 

$ zcat out.joint.vcf.gz | ./MakeTPED.pl > out.tped 

$ zcat out.joint.vcf.gz | ./MakeTFAM.pl > out.tfam 

4)Run PLINK 

$ plink --noweb --tfile out --genome  

>This will produce a plink.genome file, which has IBD values for your samples. We 
assessed the PI_HAT column to check relatedness. In our cohort the PI_HAT value for 



 186 

WES, WGS, and RNA-seq data from the same individuals ranged from 0.67-1.00 (mean 
= 0.9), compared to a range of 0-0.18 (mean= 0.001) for non-matching individuals. 

(Re)processing patient and GTEx data 

We downloaded and decrypted Tophat aligned BAM files from the GTEx dbGAP 

and realigned them with STAR 2-pass. We were specifically interested in unannotated 

splice events (ie. splice aberrations like exon skipping or intron inclusion) so we decided 

to align with STAR which we reasoned would be more sensitive to detect such events 

(relevant paper comparing several alignment methods found here). 

In order to be as sensitive as possible to detect splice events with low-level read 

support, we concatenated 1st pass junctions identified across all samples and fed these 

junctions into the Star 2nd Pass alignment.  Please note that these steps are also laid 

out in the STAR manual for 2-pass alignment. 

-You will need to have Picard and STAR installed for realignment 

-You will also need to have created a STAR genome file for your RNA-seq protocol (see 
“Generating genome indices” in the STAR manual)  

In MendelianRNA-seq/Reprocessing 

1)If you’re starting off with Tophat BAMs, turn them into fastqs 

$ sh BamToFastq.sh /path/to/picard.jar /path/to/your.tophat.bam 

2)Run STAR 1st pass to identify junctions 

> 1stPassScript.sh is a wrapper around GeneralAlignment.sh which includes pre-
specified alignment parameters for differing read lengths/sequencing types 
(stranded/unstranded, single-end/paired-end) etc. You can modify this script to specify 
the read length in your samples. It’s currently set up to align 76 bp unstranded paired-
end RNA-seq (ie. GTEx RNA-seq) 
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$ sh ./1stPassScript.sh \ 

/path/to/your.tophat.bam \ 

/path/to/directory/containing/sample/fastq/directory \ 

/path/to/STAR/executable \  

/path/to/STAR/genome 

3)Concatenate all your junctions from the first pass alignment and filter the 
junctions to remove splice junctions on the mitochondrial genomes and 
unannotated junctions with less than 5 reads 

$ cat *tab > all.SJout.tab 

$ awk '$1!="MT"' all.SJout.tab | awk '$6~1' > final.filtered.SJout.tab 

$ awk '$1!="MT"' all.SJout.tab | awk '$6~0' | awk 'int($7)>5' >> final.filtered.SJout.tab 

4)Create a new STAR genome by aligning one sample.  

> This is the same as 1stPassScript.sh except now we add the junction file we created 
final.filtered.SJout.tab. This will align the one sample, and create a new genome file, 
which you will feed into the next step: 

$ sh 2ndPassScript_CreateGenome.sh \ 

/path/to/your.tophat.bam \ 

/path/to/directory/containing/sample/fastq/ \ 

/path/to/STAR/executable \  

/path/to/STAR/genome \ 

final.filtered.SJout.tab 

5)Align all other samples using the new genome file created by the last step 

$ sh 2ndPassScript_AllOthers.sh \ 

/path/to/your.tophat.bam \ 

/path/to/directory/containing/sample/fastq/ \ 

/path/to/STAR/executable  

/path/to/STAR/newly/created/STAR/genome 
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6)Mark Duplicates with Picard  

$ sh MarkDuplicates.sh /path/to/picard.jar /path/to/your.new.star.bam 

>Note that if you have only a handful of samples, you can simply run (4) for all your 
samples, instead of doing a 2-step approach. This will create identical STAR genome 
for each samples, which you can delete. 

Splice junction discovery and filtering 

Our primary goal with splice junction analysis was to be able to identify splicing 

events that were found in one patient or groups of patients, and largely missing in GTEx 

controls. When we started the project, there were no easily adaptable tools that served 

this purpose. For example, DEXSEQ is a tool used for differential expression analysis, 

but it performs differential exon usage analysis to find global differences between 

experimental groups. Our goal was not to identify general exon-usage differences 

between diseased and healthy skeletal-muscle but to identify specific aberrations in 

specific individuals and look for the underlying genetic variants. 

A year or so after we started the project, a software called Leafcutter was 

published, which can be used to identify sample-specific splice junctions. This 

paper used Leafcutter to identify sample-specific splice junctions, and was able to 

identify one sample with aberrant splicing out of 48 patients. 

We developed our own pipeline that is composed of three steps i. Splice junction 

discovery from split reads ii. Normalization of read support for junctions based on local 

canonical splicing iii. Filtering splice junctions and spot-checking. 
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1- Splice junction discovery 

We identified splice junctions supported by uniquely mapped split reads. This approach 
takes a gene annotation file and a list of BAM files as input, and identifies all the 
junctions in the samples. 

>We’ll run a mini-example of this using a subsetted bams from some patients in the 
manuscript (we use the subset so the data are unidentifiable) While the code is set up 
to run across many genes and bam files, we will run it on bams subsetted down to three 
exons in NEB, where one patient carries an essential splice site variant, to get a sense 
of how the scripts work.  

 

In MendelianRNA-seq/Analysis 

 

$ sh SpliceJunctionDiscovery.sh ../example/example.gene.NEB.list 
../example/patient.bam.list 

  

$ head All.example.gene.NEB.list.splicing.txt 

  

Gene Type Chrom Start End NTimesSeen NSamplesSeen Samples:NSeen 

NEB protein_coding 2 152518855 152520062 1 1 Patient.D1.small:1 

NEB protein_coding 2 152355006 152782552 1 1 Patient.D1.small:1 

NEB protein_coding 2 152544892 152544894*1D17 1 1 Patient.E2.small:1 

  

>The first three column names are self-explanatory; Start and End refer to the 
boundaries of the splice junction (ie Start and End are both exon-intron junctions), 
NTimesSeen is the total number of reads in the dataset that support that junction, 
NSamplesSeen is the number of samples the junction is seen in and the final column 
lays out the number of reads supporting the junction in each sample (sorted by read 
support so the sample with the highest read support is at the end).  
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>Note that if you are doing this on bams you’ve aligned with a different method, you 
must assign unique mapping quality to be 60 (vs. the default 255). You can do this while 
you’re aligning with STAR using --outSAMmapqUnique 60 or you can use the GATK 
tool ReassignOneMappingQuality 

1- Splice junction normalization 

To identify potentially pathogenic splice evente, we may want to identify junctions 

that are unique to one individual. However, a pathogenic splice junction that only occurs 

in one sample in the whole dataset may still have read support in other samples, due to 

mapping noise. If a gene is highly expressed and/or if some samples have more reads 

sequenced, this may result in junctions that are present at very low levels in a sample to 

still to have high read support. 

 

Here is a real example of a splice junction that is present in two individuals: 

Gene Splice junction Total Read 

Support 

Number of 

Samples 

Sample : Read 

Support 

TTN 2:179505357-

179509275 

78 2 Patient D10: 8, 

Patient N: 69 

There are 69 reads in Patient N and 8 reads in Patient D10 that support this splice 

junction. It’s present in only two individuals and is in a known muscle disease gene, so it 

may be potentially interesting. From the read support data alone, it looks like it may be a 

real junction in Patient N and possibly mapping noise in Patient D10. 
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Here is a Sashimi plot of the local region in the two samples: 

 
In fact, while there is higher read support for the junction in Patient N, the read 

support for the junction is only 1.5-4% of that of the canonical junctions. In contrast, the 

junction has 8 reads supporting it in Patient D10 but this constitutes ~50% of the read 

support for canonical reads, more in line with this being a heterozygous event. Patient 

D10 carries a heterozygous essential splice site variant (denoted by the red asterisk) 

which is causing exon skipping and this is more likely to be a low-level event or 

mapping noise in Patient N. The difference in read support between the two samples 

can be explained by the fact that Patient N was sequenced at 100M read depth 
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compared to 50M in Patient D10, and that Patient D10 carries two LOF variants in TTN, 

which is decreasing expression of the gene. 

In order to be able to access information on the relative support for a junction in 

the context of library size and gene expression, we normalize the splice junctions by the 

overlapping canonical junctions. This is explained in detail in the manuscript, specifically 

in Supplementary Figure 5. Note that you don’t have to run this normalization to be able 

to do filtering in the next step, but it does increase your filtering power. 

in MendelianRNA-seq/Analysis  

$ python NormalizeSpliceJunctionValues.py -splice_file 
All.example.gene.NEB.list.splicing.txt --normalize > All.NEB.normalized.splicing.txt 

This modifies the splice junction file in a few ways: it adds a column indicating the 

proportion of read support for the junction compared to the read support of the 

overlapping junction (ie. it would return  0.57 for Patient D10 and 0.04 for Patient N 

above). It also adds a column indicating whether both, one or neither exon-intron 

junctions are annotated. Both junctions being annotated can indicate a canonical splice 

event or exon skipping, one junction being annotated can indicate an exon extension, 

intronic splice-gain or exonic splice gain, and neither being annotated can indicate a 

structural variant 
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3- Splice junction filtering and visualization 

The final step is to filter the file of junctions to identify potentially deleterious 

splice events. There are several different ways to do this filtering, such as looking for 

events that are only seen in one sample, with high read support. Alternatively you can 

look for splice junctions seen in many individuals, but only seen in one individual with 

read support higher than say, 20 reads (this would be one way to filter out mapping 

noise). You can also look for splice events that have over 100 reads supporting in the 

entire dataset, but seen in less than 5 individuals (to potentially identify groups of 

patients that have the splice event).  You can also utilize the normalization scheme 

developed above and only look for splice events that are seen at a level of 30% of the 

overlapping canonical junctions. 

In other words, there are many way to look at the data to identify putatively 

pathogenic events, and the junctions you’d like to pull out will depend on your 

experimental design. Below we give a few examples that recover the exon skipping 

event in Patient E2. 
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in MendelianRNA-seq/Analysis  

$ python FilterSpliceJunctions.py -h 

Should give you all the currently built in parameters to splice junction filtering along with 
their description 

>Identify splice junctions that have at least 10 reads supporting the event: 

$ python FilterSpliceJunctions.py -splice_file All.NEB.normalized.splicing.txt -
n_read_support 10 

 

>The coloring scheme will highlight the samples with the highest read support. This 
requires colorama and if you have Anaconda installed, it should run. If not, you can 
comment out “from colorama import.. “ at the beginning of the script. In this case, you 
can add the -print_simple argument, which will print without coloring.  

>Notice that the command above did not recover information about the normalized 
values of junction read support. This is set up so you can filter junctions without having 
to run NormalizeSpliceJunctionValues.py  

>To include the normalized values run:  

$ python FilterSpliceJunctions.py -splice_file All.NEB.normalized.splicing.txt -
include_normalized  

 

 

>In some cases, you may want to filter out junctions where a samples have less than x 
number of reads. While in this case because we are only dealing with a 3-exon region, 
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we don’t have much noise, generally this helps reduce the number of non-deleterious 
events you identify.  

$ python FilterSpliceJunctions.py -splice_file All.NEB.normalized.splicing.txt -
n_read_support 10 -include_normalized -filter_n_reads 5  

 

> Notice that sample N27 only had 3 reads aligning to junction 2:152544910-152547241 
(total read support for the junction : 493). When we filtered samples with less than 5 
reads, this removed N27 from the line, and also decreased the number of samples the 
junction is seen in from 3 to 2, and subtracted the read support for the sample (total 
read support for the junction became 490). We usually only set filter_n_reads to 2 or 3, 
to filter out very low-level events.  

 

>Identify splice junctions where the highest normalized read support is seen in a 
specific sample:  

$ python FilterSpliceJunctions.py -splice_file All.NEB.normalized.splicing.txt -
n_read_support 10 -include_normalized -
sample_with_highest_normalized_read_support Patient.E2.small  

 

>Or simply identify junctions that are only seen in one sample  

$python FilterSpliceJunctions.py -splice_file All.NEB.normalized.splicing.txt -
n_read_support 10 -include_normalized -n_samples 1  

 

> You can also add OMIM information to the junction file:   

$ python FilterSpliceJunctions.py -splice_file All.NEB.normalized.splicing.txt -
n_read_support 10 -include_normalized -filter_n_reads 5 -add_OMIM  
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> To only show junctions occurring in OMIM genes you can add -only_OMIM. You can 
also only show junctions in specific genes of interest by adding say, -genes 
NEB,TTN,CAPN3.  

 

 

 

In this example, searching for junctions that are present in one sample leads us 

to the essential splice site in this patient. In fact, all four splice junctions that we identify 

as only being present in Patient E2 are due to this single variant, which is abolishing 

splicing at the canonical junction, resulting in both exon skipping as well as splicing from 

intact motifs within the intron. 
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Future plans 

We hope that the steps described above will give those interested a start to 

applying splice junction analysis to their own patient cohorts. 

However, what’s needed long-term is a fully functional (and largely automated) 

tool for RNA-seq-guided diagnosis that is usable by non-bioinformaticians. To that end, 

we are currently working on the development of a web-based tool to perform such 

analyses and visualize splice junctions, without requiring any command-line experience. 

We’ll announce that tool here as soon as it’s ready. 

We are also continuing to apply RNA-seq as part of the Broad Center for 

Mendelian Disease Genetics, with a focus on novel disease gene discovery. In this 

effort, we have expanded RNA-seq out to other areas and tissue types such kidney 

biopsy RNA-seq from patients with Mendelian forms of kidney disease. We are also 

interested in exploring the use of proxy tissues and are performing fibroblast RNA-seq 

for a variety of Mendelian disorders. If you are interested in submitting genetically 

undiagnosed patients for RNA-seq as part of the CMG, please 

visit https://cmg.broadinstitute.org/Apply. 
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Transcript expression-aware annotation 
Welcome to the repository for the "Transcript expression-aware annotation 

improves rare variant discovery and interpretation" manuscript. Here we'll outline how to 

get transcript expression values for your variant file and isoform expression expression 

matrix of interest, and outline the commands and code to recreate analyses in the pre-

print. 

Applying transcript expression aware annotation to 
your own dataset 
You will need 

1. A variant file that has columns for chrom, pos, ref and alt 
2. An isoform expression matrix 
3. The ability to use Hail locally or on a cloud platform 

 

You can have additional columns in your variant file, which will be maintained, and 

only new columns of transcript-expression annotation will be added. Your isoform 

expression matrix must start with two columns : 1. transcript_id and 2. gene_id. The 

remaining columns can be any samples or tissues. If you have biological replicates, 

they should be numbered with a '.' delimiter (e.g. MuscleSkeletal.1, MuscleSkeletal.2, 

MuscleSkeletal.3). 

 

Instructions to set up Hail can be found in the Hail docs 
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If you're unable to set up Hail in your local environment, we have released the 

pext values for every possible SNV in the genome: gs://gnomad-public/papers/2019-tx-

annotation/pre_computed/all.possible.snvs.tx_annotated.021819.tsv.bgz 

Please be aware that while we don't expect any issues, the files may be iterated 

upon until publication of the manuscript! 

We will walk through an example of annotating de novo variants in autism and 

developmental delay / intellectual disability with the GTEx v7 dataset. 

0) Start a cluster and a Hail environment 

We recommend using cloud tools from Neale lab for Google Cloud. 

You will need the gnomAD and tx-annotation init scripts, which are both publically 

available. To start a cluster: 

cluster start tutorial --worker-machine-type n1-highmem-8 --spark 2.2.0 --version 0.2 

--init gs://gnomad-public/tools/inits/master-init.sh,gs://gnomad-public/papers/2019-

tx-annotation/tx-annotation-init.sh --num-preemptible-workers 8 

 
At the top of your script specify from tx_annotation import * which will start a Hail 

environment, and import necessary parts of the gnomAD repository. 
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1) Prepare the variant file 

The variant file we'll be using for the tutorial is available at : gs://gnomad-
public/papers/2019-tx-annotation/data/asd_ddid_de_novos.txt 

This is what the first line of the file looks like : 

DataSet CHROM POSITION REF ALT GENE 
NAME 

VEP_functional_class 

ASC_v15_VCF 1 94049574 C A BCAR3 splice_donor_variant 

 
 

Again, we will only use the chrom, pos, ref, alt columns, and will add additional 

columns. The VEP columns in the file are based on the canonical transcript, so we will 

re-VEP. 

In order to add pext values, you must annotate with VEP. This is how to import 

the file into Hail, define the variant field, vep, and write the MT. Note that this VEP 

configuration will also annotate with LOFTEE v.1.0 

1 - Import file as a table 

rt = hl.import_table("gs://gnomad-public/papers/2019-tx-

annotation/data/asd_ddid_de_novos.txt") 

 

2 - Define the variant in terms of chrom:pos:ref:alt and have Hail parse it, which will 
create locus and alleles fields 

rt = rt.annotate(variant=rt.CHROM + ':' + rt.POSITION + ":" + rt.REF + ":" + rt.ALT) 

rt = rt.annotate(** hl.parse_variant(rt.variant)) 

rt = rt.key_by(rt.locus, rt.alleles) 

 

3 - Make a MT from the Table, and repartition for speed (rule of thumb is ~2k variants 
per partition) 
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mt = hl.MatrixTable.from_rows_table(rt) 

mt = mt.repartition(10) 

 

4 - VEP and write out the MT 

annotated_mt = hl.vep(mt, vep_config) 

annotated_mt.write("gs://gnomad-public/papers/2019-tx-

annotation/results/de_novo_variant/asd_ddid_de_novos.vepped.021819.mt") 

2) Prepare the isoform expression file 

We'll use the GTEx v7 isoform expression file. Here is what the header of the file looks 
like 

transcript_id gene_id GTEX-
1117F-
0226-SM-
5GZZ7 

GTEX-
1117F-
0426-SM-
5EGHI 

GTEX-
1117F-
0526-SM-
5EGHJ 

ENST00000373020.4 ENSG00000000003.10 26.84 4.13 13.54 

 

 

We've replaced the sample names with unique tissue names, so that samples with the 
same tissue are labelled as WholeBlood.1, WholeBlood.2, WholeBlood.3 etc: 

transcript_id gene_id Adipose-Subcutaneous.1 Muscle-Skeletal.2 Artery-Tibial.3 
ENST00000373020.8 ENSG00000000003.14 26.32 3.95 13.23 
 
transcript_id gene_id Adipose-

Subcutaneous
1 

Muscle-
Skeletal.
2 

Artery-
Tibial.
3 

ENST00000373020.
4 

ENSG00000000003.1
0 

26.84 4.13 13.54 
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We first need to get the median expression of all transcripts per tissue. This can be 

carried out using the get_gtex_summary() function (the function name is a misnomer, as it 

can work on non-GTEx files). 

 
gtex_isoform_expression_file = /path/to/text/file/with/isoform/quantifications 

gtex_median_isoform_expression_mt = /path/to/matrix_table/file/you/want/to/create 

get_gtex_summary(gtex_isoform_expression_file,gtex_median_isoform_expression_mt ) 

 

If you'd like to get mean isoform expression accross tissues and not median, add 

get_medians = False to the command. If you want to also export the median isoform 

expression per tissue file as a tsv, add make_per_tissue_file = True 

Unfortunately, we can't share the per-sample GTEx RSEM file as it requires 

dbGAP approval. However, running this on the GTEx v7 dataset creates: gs://gnomad-

public/papers/2019-tx-annotation/data/GTEx.V7.tx_medians.110818.mt which is the file 

used for the analyses in the manuscript and the file you can use for your annotation 

GTEx v7 annotation. 

At this point, you'll also need a separate file with gene expression values per 

tissue, with the tissue names matching the median isoform expression file. For the 

manuscript, we directly imported gene expression values provided by GTEx, which were 

created using RNASeQC, from the GTEx portal website. They are available here: 

gs://gnomad-public/papers/2019-tx-

annotation/data/GTEx.v7.gene_expression_per_gene_per_tissue.120518.kt 
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3) Add pext values 

All you have to do at this point is import your VEP'd variant matrix table, and run the 

tx_annotate() function! 

1 - Import VEP'd variant MT, and median isoform expression MT: 

mt, gtex = read_tx_annotation_tables(ddid_asd_de_novos, gtex_v7_tx_summary_mt_path, 

"mt") 

 

2 - Run tx_annotation 

ddid_asd = tx_annotate_mt(mt, gtex, 

                          tx_annotation_type = "proportion", 

                          filter_to_csqs=all_coding_csqs) 

 
This command by default will remove certain GTEx tissues with <100 samples, 

reproductive tissues, or cell lines (specified in tx_annotation_resources and in the 

manuscript). 

• If you don't want to remove these tissues (or if you are not working with GTEx) 

specify tissues_to_filter = None. 

• If you'd like to get the non-normalized ext values instead of pext, 

specify tx_annotation_type = "expression". 

• Not specifying filter_to_csqs=all_coding_csqs will add pext values to non-coding 

variants (which may be desired behavior based on your goals). Note that splice 

variants are considered coding variants here. The description of coding csqs is 

available in tx_annotation_resources as all_coding_csqs. 
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• If you're only interested in getting pext for a certain group of genes, you can 

specify that with filter_to_genes. This will return the same file, but will only add 

the pext values to the genes of interest. An example of adding pext while 

specifying genes is below (under the ClinVar - gnomAD comparison section) 

The function returns your variant MT with a new field 

called tx_annotation (ddid_asd_de_novos_with_pext above). 

At this point, you can choose what annotation you want to use for a given variant 

(for example, you may be interested in any pLoF variant, or variants found on certain 

set of transcripts, or just variants found on the canonical transcript - the last of which 

sort of defeats the point of using this method). In the manuscript we used the worst 

consequence accross transcripts, which is the context for which we see this method 

being most powerful. If you'd also like to use the worst consequence, and pull out pext 

values for the worst consequence, we have helper functions available: 

4) Optional post-processing to pull out pext values for the worst consequence 
annotation 

At this point you will remove all variants that did not receive a pext value (e.g. if 

you specific filter_to_csqs = all_coding_csqs this will remove noncoding variants). At 

this point, we don't support the OS annotation in LOFTEE, which add pLoF annotations 

to missense and synonymous variants (for example, a synonymous variant can be 

called LOFTEE HC in the latest LOFTEE release if it's predicted to affect splicing). We 

therefore replace OS annotations with the original annotation (ie. we replace the HC for 
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a synonymous variant with ""). Finally, we extract the worst consequence, and create 

one column per tissue. 

 

1 - Remove variants that did not receive a pext annotation (ie. noncoding variants) 

ddid_asd = ddid_asd.filter_rows(~hl.is_missing(ddid_asd.tx_annotation)) 
 

2 - Overwrite LOFTEE OS variants with original variant annotation 

ddid_asd = 

ddid_asd.annotate_rows(tx_annotation=ddid_asd.tx_annotation.map(fix_loftee_beta_nonlo

fs)) 

 

3 - Pull out worst consequence 

ddid_asd = pull_out_worst_from_tx_annotate(ddid_asd) 
 

At this point you can write out the file with ddid_asd.rows().export("out_file") 
 

This will create the transcript annotated de novo variant file used in Figure 4 of 

the manuscript. We've exported the result of this code snippet here:  

gs://gnomad-public/papers/2019-tx-

annotation/results/de_novo_variant/asd_ddid_de_novos.tx_annotated.proprotion.02181

9.tsv.bgz 
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Analyses in manuscript 
Here we'll detail the commands for obtaining pext values for some of the analyses in 

manuscript. This will go over the analysis of: 

• Getting baselevel expression values for a gene (Figure 2B) 

• Comparison of highly conserved and unconserved regions (Figure 3A) 

• Comparison of % variant filtered with pext < 0.1 in haploinsufficient disease 

genes (Figure 4A) 

Note that scripts for these and other analyses are availabel in /analyses/ folder in 

this repository. The paths to the files are available in tx_annotation_resources.py If you 

find something is missing, please e-mail me at berylc@broadinstitute.org 

Getting baselevel expression values 

The idea here is that you annotate the expression of a given position as opposed 

to a variant consequence pair. The baselevel pext value will always be higher than any 

of the variant annotation pext values, because the base value is just the sum of the 

expression of protein coding transcripts that overlap the coding base. This baselevel 

value is what we show in the gnomAD browser. Just because a position has a high 

baselevel value though, does not mean that say, a pLoF at that position has a high 

pLoF value. 
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We get these baselevel values by using the sites table of all possible variant in the 

genome. We sum of the expression of all transcripts overlapping that base, where 

there's a coding consequence. 

• TCF4 

from tx_annotation import *  

mt, gtex = read_tx_annotation_tables(context_ht_path, gtex_v7_tx_summary_mt_path, 

"ht") 

gene_baselevel= get_baselevel_expression_for_genes(mt, gtex, gene_list = {'TCF4'}) 

gene_baselevel.export("gs://gnomad-public/papers/2019-tx-

annotation/results/TCF4.baselevel.ext.021319.tsv.bgz") 

 

The resulting file is used in Fig2B and Supp Fig 4. 

You can specify any number of genes you want in gene_list. If you don't specify any 
genes, it will annotate all positions in the exome. 
 

• SCN2A using fetal isoform expression 

hbdr_fetal_path = "gs://gnomad-public/papers/2019-tx-

annotation/data/HBDR.RSEM.sample_specific.tx_medians.021719.mt" 

mt, hbdr_fetal = read_tx_annotation_tables(context_ht_path, hbdr_fetal_path, "ht") 

gene_baselevel= get_baselevel_expression_for_genes(mt, hbdr_fetal, gene_list = 

{'SCN2A'}) 

This file was used in Supp Fig 6D. 

Comparison of pext in highly conserved and unconserved regions 

1 - Read in baselevel expresison and phyloCSF files 

phylocsf = hl.import_table(phylocsf_file_path, impute = True) 

all_baselevel_ht = hl.read_table(all_baselevel_ht_path) 

phylocsf = phylocsf.annotate(chrom = phylocsf.chromosome_name.replace("chr","")) 
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Note that all_baselevel_ht_path is the file used to create the tx_annotation tracks in 

the gnomAD browser 

2 - Define regions of high and low conservation, and filter remaning regions 

 

phylocsf = phylocsf.annotate(conservation_type = hl.case(missing_false=True) 

                             .when(phylocsf.max_score > 1000, "high") 

                             .when(phylocsf.max_score < -100, "low") 

                             .default('filter')) 

phylocsf = phylocsf.filter(phylocsf.conservation_type != "filter") 

 

3 - Make intervals in the phyloCSF file phylocsf = phylocsf.annotate(chrom = 
phylocsf.chromosome_name.replace("chr","")) 

phylocsf = phylocsf.annotate( 

    interval = hl.interval(hl.locus(phylocsf.chrom, phylocsf.start_coordinate), 

hl.locus(phylocsf.chrom, phylocsf.end_coordinate)), 

    interval_name = phylocsf.chrom + ":" + hl.str(phylocsf.start_coordinate) + "-" + 

hl.str(phylocsf.end_coordinate) ) 

phylocsf = phylocsf.key_by(phylocsf.interval) 

 

4 - Filter the baselevel expression file to the intervals of high or low conservation in the 
phyloCSF file 

all_baselevel_ht = all_baselevel_ht.annotate(**phylocsf[all_baselevel_ht.locus]) 

all_baselevel_ht= 

all_baselevel_ht.filter(hl.is_defined(all_baselevel_ht.conservation_type), keep=True) 
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5- Get mean pext in these intervals 

mean_proportion_in_interval = (all_baselevel_ht.group_by( 

symbol = all_baselevel_ht.symbol, 

 ensg = all_baselevel_ht.ensg, 

 enst = all_baselevel_ht.transcript_id, 

 = all_baselevel_ht.interval_name, 

 conservation_type = all_baselevel_ht.conservation_type). 

                               aggregate(mean_of_mean_pext = 

                                   

hl.agg.filter(~hl.is_nan(all_baselevel_ht.mean_prop_conservation),                                                   

hl.agg.mean(all_baselevel_ht.mean_prop_conservation)))) 

 

6 - Export the file for plotting 

mean_proportion_in_interval.export("gs://gnomad-public/papers/2019-tx-

annotation/results/conservation.phylocsf.vs.pext.021219.tsv.bgz") 

Comparison of % variant filtered with pext < 0.1 in haploinsufficient disease 
genes (Figure 4A) 

This also serves as an example of annotating only a subset of genes in a variant table. 

Here we will annotate variants in HI genes in the gnomAD exomes sites HT, the 

gnomAD genomes sites HT, and the ClinVar HT with pext values. 

out_dir = "gs://gnomad-public/papers/2019-tx-
annotation/results/gene_list_comparisons/" 
 

1 - Import HI genes 

hi_genes = import_gene_list(curated_haploinsufficient_genes, gene_column="ENSGID", 

ensg=True) 

 
There are two options for importing gene lists, either importing ENSG IDs, or importing 

gene symbols. gene_columnrefers to the column in the file that contains your gene 
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names, if the values are ENSGs, specify ensg = True. You can specify peek = True if 

you'd like to just like to import the gene list file and take a peek without doing anything. 

 

2 - Annotate gnomAD exomes 

mt, gtex = read_tx_annotation_tables(gnomad_release_mt_path, 

gtex_v7_tx_summary_mt_path, "ht") 

mt = mt.filter_rows(hl.len(mt.filters) == 0) 

mt_gnomad_hi = tx_annotate_mt(mt, gtex,"proportion", 

                              filter_to_csqs=lof_csqs, 

                              filter_to_genes=hi_genes, gene_column_in_mt="gene_id") 

mt_gnomad_hi = mt_gnomad_hi.filter_rows(~hl.is_missing(mt_gnomad_hi.tx_annotation)) 

mt_gnomad_hi = pull_out_worst_from_tx_annotate(mt_gnomad_hi) 

mt_gnomad_hi.rows().export("%sHI_genes.gnomad.exomes.r2.1.tx_annotated.021519.tsv.bgz

" %out_dir) 

 

- `gene_column_in_mt` is one of either `gene_id` (ENSG) or `gene_symbol` and tells 

the function which VEP field to look to filter to genes. 

 

- `mt = mt.filter_rows(hl.len(mt.filters) == 0)` filters variants to only those that 

are RF PASS. 

 

3 - Annotate gnomAD genomes 

mt_genomes, gtex = read_tx_annotation_tables(gnomad_genomes_release_mt_path, 

gtex_v7_tx_summary_mt_path, "ht") 

mt_genomes = mt_genomes.filter_rows(hl.len(mt_genomes.filters) == 0) 

mt_gnomad_genomes_hi = tx_annotate_mt(mt_genomes, gtex,"proportion", 

                              filter_to_csqs=lof_csqs, 

                              filter_to_genes=hi_genes, gene_column_in_mt="gene_id") 

mt_gnomad_genomes_hi = 

mt_gnomad_genomes_hi.filter_rows(~hl.is_missing(mt_gnomad_genomes_hi.tx_annotation)) 

mt_gnomad_genomes_hi = pull_out_worst_from_tx_annotate(mt_gnomad_genomes_hi) 

mt_gnomad_genomes_hi.rows().export("%sHI_genes.gnomad.genomes.r2.1.tx_annotated.02161

9.tsv.bgz" %out_dir) 
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4 - Annotate ClinVar 

clinvar_mt, gtex = read_tx_annotation_tables(clinvar_ht_path, 

gtex_v7_tx_summary_mt_path, "ht") 

mt_clinvar_hi = tx_annotate_mt(clinvar_mt, gtex,"proportion", 

                               filter_to_csqs=lof_csqs, filter_to_genes=hi_genes, 

                               gene_column_in_mt="gene_id") 

mt_clinvar_hi = 

mt_clinvar_hi.filter_rows(~hl.is_missing(mt_clinvar_hi.tx_annotation)) 

mt_clinvar_hi = pull_out_worst_from_tx_annotate(mt_clinvar_hi) 

mt_clinvar_hi = mt_clinvar_hi.annotate_rows(**mt_clinvar_hi.info) 

mt_clinvar_hi = mt_clinvar_hi.drop("vep", "tx_annotation","info")  

mt_clinvar_hi.rows().export("%sHI_genes.clinvar.alleles.single.b37.tx_annotated.02151

9.tsv.bgz" %out_dir) 

The fields are dropped to save space 


