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The Ultrapower Axiom

Abstract

The inner model problem for supercompact cardinals, one of the central open prob-

lems in modern set theory, asks whether there is a canonical model of set theory with

a supercompact cardinal. The problem is closely related to the more precise question

of the equiconsistency of strongly compact cardinals and supercompact cardinals. This

dissertation approaches these two problems abstractly by introducing a principle called

the Ultrapower Axiom which is expected to hold in all known canonical models of set

theory. By investigating the consequences of the Ultrapower Axiom under the hypoth-

esis that there is a supercompact cardinal, we provide evidence that the inner model

problem can be solved. Moreover, we establish that under the Ultrapower Axiom,

strong compactness and supercompactness are essentially equivalent.
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7.4 Fréchet cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

7.5 Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

8 Higher Supercompactness 330

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

8.2 The Irreducibility Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

8.3 Resolving the identity crisis . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

8.4 Very large cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Index 407

Bibliography 413

v



Acknowledgements

I want to thank Peter Koellner, who taught my first course in set theory. Since then, Peter

has profoundly shaped my view of the subject. I would not have made it through graduate

school without his support and friendship.

Any reader will see that this work owes a great debt to the mathematics of Hugh Woodin.

I should also acknowledge my personal debt. I could not have asked for a better advisor.

Hugh was incredibly generous with his time, and was a constant source of optimism and

encouragement over the course of this research.

I want to thank Doug Blue for helping me secure housing a week before this school year

began, Akihiro Kanamori for carefully reading this dissertation and pointing out numerous

errors, and John and Colleen Steel for hosting me for three weeks at Berkeley.

vi



Chapter 1

Introduction

The goal of inner model theory is to construct and analyze canonical models of set theory.

The simplest example of such a model is Gödel’s constructible universe L, the smallest model

of set theory that contains every ordinal number. One sense in which L is canonical is that

seemingly every question about the internal structure of L can be answered. For example,

Gödel proved that L satisfies the Generalized Continuum Hypothesis. This stands in stark

contrast with the universe of sets V , many of whose most basic properties (for example,

whether the Continuum Hypothesis holds) cannot be determined in any commonly accepted

axiomatic system.

To what extent does L provide a good approximation to the universe of sets? On the one

hand, the principle that every set belongs to L (or in other words, V = L) cannot be refuted

using the ZFC axioms, since L itself is a model of the theory ZFC + V = L. If V = L,

then L approximates V very well. On the other hand, the model L fails to satisfy relatively

weak large cardinal axioms. If one takes the stance that these large cardinal axioms are

true in the universe of sets, one must conclude that V 6= L. Moreover, it follows from large

cardinal axioms that L constitutes only a tiny fragment of the universe of sets. For example,

assuming large cardinal axioms, the set of real numbers that lie in L is countable.

Are there canonical models generalizing L that yield better approximations to V ? It
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turns out that there is a hierarchy of canonical models beyond L, satisfying stronger and

stronger large cardinal axioms. The program of building such models has met striking

success, reaching large cardinal axioms as strong as a Woodin limit of Woodin cardinals.

Based on the pattern that has emerged so far, it is plausible every large cardinal axiom has

a canonical model.

At present, however, a vast expanse of large cardinal axioms are not yet known to admit

canonical models. A key target problem for inner model theory is the construction of a

canonical model with a supercompact cardinal. Work of Woodin suggests that the solution

to this problem alone will yield an ultimate canonical model that inherits essentially all large

cardinals present in the universe. There is therefore hope that the goal of constructing inner

models for all large cardinal axioms could might be achieved in a single stroke. If this is

possible, the resulting model would be of enormous set theoretic interest, since it would

closely approximate the universe of sets and yet admit an analysis that is as detailed as that

of Gödel’s L.

This dissertation investigates whether there can be a canonical model with a super-

compact cardinal. To do this, we develop an abstract approach to inner model theory. This

is accomplished by introducing a combinatorial principle called the Ultrapower Axiom, which

is expected to hold in all canonical models. If one could show that the Ultrapower Axiom is

inconsistent with a supercompact cardinal, one would arguably have to conclude that there

can be no canonical model with a supercompact cardinal.

Supplemented with large cardinal axioms, the Ultrapower Axiom turns out to have sur-

prisingly strong and coherent consequences for the structure of the upper reaches of the

universe of sets, particularly above the first supercompact cardinal. These consequences are

entirely consistent with what one would expect to hold in a canonical model, yet are proved

by methods that are completely di↵erent from the usual techniques of inner model theory.

The coherence of this theory provides compelling evidence that the Ultrapower Axiom is

consistent with a supercompact cardinal. If this is the case, it seems that the only possible
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explanation is that the canonical model for a supercompact cardinal does indeed exist. Op-

timistically, studying the consequences of the Ultrapower Axiom will shed light on how this

model should be constructed.

Outline

We now describe the main results of this dissertation.

Chapter 2. In this introductory chapter, we introduce UA in the context of the problem

of the linearity of the Mitchell order on normal ultrafilters. We show first that UA holds in

all canonical inner models, a result that is philosophically central to this dissertation. More

precisely, we prove that UA is a consequence of Woodin’s Weak Comparison principle:

Theorem 2.3.10. Assume that V = HOD and there is a ⌃2-correct worldly cardinal. If

Weak Comparison holds, then the Ultrapower Axiom holds.

We then show that UA implies the linearity of the Mitchell order:

Theorem 2.3.11 (UA). The Mitchell order is linear.

Two applications of this result to longstanding problems of Solovay-Reinhardt-Kanamori

[1] are explained in the introduction to Chapter 2.

Chapter 3. This chapter introduces the Ketonen order, a generalization of the Mitchell

order to all countably complete ultrafilters on ordinals. The restriction of this order to

weakly normal ultrafilters was originally introduced by Ketonen. The first proof of the

wellfoundedness of the generalization of this order to countably complete ultrafilters is due

to the author:

Theorem 3.3.8. The Ketonen order is wellfounded.
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The main theorem of this chapter explains the fundamental role of the Ketonen order in

applications of the Ultrapower axiom:

Theorem 3.6.1. The Ultrapower Axiom is equivalent to the linearity of the Ketonen order.

In addition, we analyze the relationship between the Ketonen order and various well-

known orders like the Rudin-Keisler order and the Mitchell order.

Chapter 4. The topic of this chapter is the generalized Mitchell order, which is defined in

exactly the same way as the usual Mitchell order on normal ultrafilters but removing the

requirement that the ultrafilters involved be normal. This order is not linear (assuming there

is a measurable cardinal), and in fact it is quite pathological when considered on ultrafilters

in general. The two main results of this chapter generalize the linearity of the Mitchell order

to nice classes of ultrafilters:

Theorem 4.3.29 (UA). The generalized Mitchell order is linear on Dodd sound ultrafilters.

Dodd soundness is a generalization of normality that was first isolated in the context of

inner model theory by Steel [2]. A uniform ultrafilter U on a cardinal � is Dodd sound if

the map h : P (�) ! MU defined by h(X) = jU(X) \ [id]U belongs to MU . The concept is

discussed at great length in Section 4.3.

A better-known generalization of normality is the concept of a normal fine ultrafilter

(Definition 4.4.7), introduced by Solovay, and underpinning the theory of supercompact

cardinals. The second result of this chapter generalizes the linearity of the Mitchell order to

this class of ultrafilters:

Theorem 4.4.2 (UA). Suppose � is a cardinal such that 2<� = �. Then the generalized

Mitchell order is linear on normal fine ultrafilters on Pbd(�).

Here Pbd(�) denotes the set of bounded subsets of �.
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Chapter 5. We turn to another fundamental order on ultrafilters, the Rudin-Froĺık order.

The structure of the Rudin-Froĺık order on countably complete ultrafilters is intimately

related to the Ultrapower Axiom. For example, we point out the following simple connection:

Corollary 5.2.9. The Ultrapower Axiom holds if and only if the Rudin-Froĺık order is di-

rected on countably complete ultrafilters.

On the other hand, it is well-known that the Rudin-Froĺık order is not directed on ultra-

filters on !.

The chapter is devoted to deriving deeper structural features of the Rudin-Froĺık order

from UA. The most interesting one is that it is locally finite:

Theorem 5.4.23 (UA). A countably complete ultrafilter has at most finitely many prede-

cessors in the Rudin-Froĺık order up to isomorphism.

Given the finiteness of the Rudin-Froĺık order, it turns out to be possible to represent

every ultrafilter as a finite iterated ultrapower consisting of irreducible ultrafilters, ultrafilters

whose ultrapowers cannot be factored as an iterated ultrapower (Theorem 5.3.16). We apply

this to analyze ultrafilters on the least measurable cardinal under UA:

Theorem 5.3.21 (UA). Every countably complete ultrafilter on the least measurable cardinal

 is isomorphic to Un where U is the unique normal ultrafilter on  and n is a natural number.

This generalizes a classic theorem of Kunen [3].

Chapter 6. This chapter exposits two inner model principles that follow abstractly from

UA in the presence of a supercompact cardinal:

Theorem 6.2.8 (UA). Assume there is a supercompact cardinal. Then V is a generic

extension of HOD.

Thus UA almost implies V = HOD. This is best possible in the sense that it is consistent

that UA holds and V is a nontrivial generic extension of HOD.
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The main result of the chapter is that UA implies the Generalized Continuum Hypothesis:

Theorem 6.3.12 (UA). Suppose  is supercompact. Then for all � � , 2� = �+.

Thus UA almost implies the GCH. This is best possible in the sense that it is consistent

that UA holds but CH fails.

Chapter 7. This chapter initiates an analysis of strongly compact and supercompact car-

dinals under UA. In this chapter, we investigate the structure of the least strongly compact

cardinal, introducing the “least ultrafilters” K�, and proving that they witness its super-

compactness:

Theorem 7.4.23 (UA). The least strongly compact cardinal is supercompact.

Chapter 8. The main result of this chapter is the Irreducibility Theorem (Theorem 8.2.18,

Corollary 8.2.20) that relates supercompactness and irreducibility (that is, Rudin-Froĺık

minimality) under UA. The original impetus for proving this theorem was to analyze all

larger strongly compact cardinals:

Theorem 8.3.9 (UA). A cardinal  is strongly compact if and only if it is supercompact or

a measurable limit of supercompact cardinals.

We also analyze various other large cardinals using UA. For example, we consider huge

cardinals (Theorem 8.4.5) and rank-into-rank cardinals (Theorem 8.4.12).
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Chapter 2

The Linearity of the Mitchell Order

2.1 Introduction

Normal ultrafilters and the Mitchell Order

Normal ultrafilters are among the simplest objects that arise from modern large cardinal

axioms, yet despite their apparent simplicity, and despite the past six decades of remarkable

progress in the theory of large cardinals, the class of normal ultrafilters remains mysterious,

its underlying structure inextricably bound up with some of the deepest and most di�cult

problems in set theory. The following questions, posed by Solovay-Reinhardt-Kanamori [1]

in the 1970s, are among the most prominent open questions in this subject:

Question 2.1.1. Assume  is 2-supercompact. Must there be more than one normal

ultrafilter on  concentrating on nonmeasurable cardinals?

Question 2.1.2. Assume  is strongly compact. Must  carry more than one normal

ultrafilter?

These questions turn out to be merely the most concrete instances of a sequence of more

and more general structural questions in the theory of large cardinals. Let us start down

this path by stating a conjecture that would answer both questions at once:
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Conjecture 2.1.3. It is consistent with an extendible cardinal that every measurable cardinal

carries a unique normal ultrafilter concentrating on nonmeasurable cardinals.

This would obviously answer Question 2.1.1 negatively, but what bearing does it have

on Question 2.1.2? Assume  is extendible and every measurable cardinal carries a unique

normal ultrafilter concentrating on nonmeasurable cardinals. Consider the least strongly

compact cardinal  that is a limit of strongly compact cardinals. By a theorem of Menas [4]

(proved here as Theorem 8.1.1), the set of measurable cardinals below  is nonstationary.

It follows that every normal ultrafilter on  concentrates on nonmeasurable cardinals. Since

we assumed there is only one such ultrafilter,  is a strongly compact cardinal that carries

a unique ultrafilter. Conjecture 2.1.3 thus supplies a negative answer to Question 2.1.2 as

well.

Why would someone make Conjecture 2.1.3? To answer this question, we must consider

the broader question of the structure of the Mitchell order under large cardinal hypotheses.

Recall that if U andW are normal ultrafilters, theMitchell order is defined by setting U C W

if U belongs to the ultrapower of the universe by W . It is not hard to see that a normal

ultrafilter U on a cardinal  concentrates on nonmeasurable cardinals if and only if U is a

minimal element in the Mitchell order on normal ultrafilters on . The following conjecture

therefore generalizes Conjecture 2.1.3:

Conjecture 2.1.4. It is consistent with an extendible cardinal that the Mitchell order is

linear.

How could one possibly prove Conjecture 2.1.4? The most general technique for proving

consistency results, namely forcing, seems to be powerless in this instance. To force the

linearity of the Mitchell order, one would in particular have to force that the least measurable

cardinal carries a unique normal ultrafilter, but even this much more basic problem remains

open.
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Kunen [3] famously did prove that it is consistent for the least measurable cardinal to

carry a unique normal ultrafilter, not by forcing but instead by inner model theory. In fact,

he showed that if U is a normal ultrafilter on a cardinal , then the inner model L[U ] satisfies

that U \ L[U ] is the unique normal ultrafilter on . Mitchell [5] then isolated the Mitchell

order in an attempt to generalize Kunen’s results. He proceeded roughly as follows:

• Consider the model M = L[hU↵ : ↵ < �i] built from a coherent sequence hU↵ : ↵ < �i
of normal ultrafilters.1

• Show that in M , hU↵ \M : ↵ < �i is increasing in the Mitchell order and contains all

normal ultrafilters.

In the decades since Mitchell’s result, inner model theory has ascended much farther into

the large cardinal hierarchy. Combining the results of many researchers (especially Neeman

[6] and Schlutzenberg [7]), the following is the best partial result towards Conjecture 2.1.4

to date:

Theorem. If it is consistent that there is a Woodin limit of Woodin cardinals, then the

linearity of the Mitchell order is consistent with a Woodin limit of Woodin cardinals.

The linearity proof, due to Schlutzenberg, is much harder, but the argument still roughly

follows Mitchell’s:

• Consider the model M = L[hE↵ : ↵ < �i] built from a coherent extender sequence

hE↵ : ↵ < �i.

– By the definition of a coherent extender sequence, hE↵ : ↵ < �i is linearly ordered

by the Mitchell order in M .

• Show that in M , every normal ultrafilter appears on the sequence hE↵ : ↵ < �i.
1Coherence is a key technical definition that includes the assumption that hU↵ : ↵ < �i is increasing in

the Mitchell order.
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By now, it may appear that Conjecture 2.1.4 itself is subsumed by the far more important

(but far less precise) Inner Model Problem:

Conjecture 2.1.5. There is a canonical inner model with an extendible cardinal.

The relationship between Conjecture 2.1.4 and Conjecture 2.1.5 is actually not as straight-

forward as one might expect, because if inner model theory can be extended to the level of

extendible cardinals, the models must be significantly di↵erent from the current models.

For example, the Woodin and Neeman-Steel models with long extenders are canonical inner

models designed to accommodate large cardinals at the finite levels of supercompactness.

It is not known whether the constructions actually succeed, but the following conjecture is

plausible:

Conjecture 2.1.6. If for all n < !, there is a cardinal  that is +n-supercompact, then for

all n < !, there is an iterable Woodin model with a cardinal  that is +n-supercompact.

Given the pattern described above, one might expect to generalize Mitchell and Schlutzen-

berg’s results to the Woodin models, and therefore obtain for any n < !, the consistency of

the linearity of the Mitchell order with a cardinal  that is +n-supercompact. But there is

a catch: the proofs of these theorems cannot generalize verbatim to this level.

Proposition 2.1.7. If L[E] is an iterable Woodin model satisfying that  is ++-supercompact,

then in L[E], there is a normal ultrafilter on  that does not lie on the coherent sequence E.

Therefore Mitchell’s proof of the consistency of the linearity of the Mitchell order cannot

extend to the level of a cardinal  that is ++-supercompact. This might have been taken

as a reason for skepticism about Conjecture 2.1.4.

The Ultrapower Axiom

The problem of generalizing the linearity of the Mitchell order to canonical inner models

at the finite levels of supercompactness was the original inspiration for all the work in this
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dissertation. Our initial discovery was a new argument that shows that any canonical inner

model built by the methodology of modern inner model theory must satisfy that the Mitchell

order is linear. The argument is extremely simple and relies on a single fundamental property

of the known canonical inner models: the Comparison Lemma. The Comparison Lemma

roughly states that any two canonical inner models at the same large cardinal level can be

embedded into a common model. The inner model constructions are perhaps best viewed

as an attempt to build models satisfying the Comparison Lemma and accommodating large

cardinals.

Upon further reflection, we realized that this argument relied solely on an abstract com-

binatorial principle that distills abstractly a consequence of the Comparison Lemma. This

principle is called the Ultrapower Axiom and abbreviated by UA. (The definition appears in

Section 2.3.) The Comparison Lemma implies that UA holds in all known canonical inner

models. Since the Comparison Lemma is fundamental to the methodology of inner model

theory, UA is expected to hold in any canonical inner model that will ever be built.

Our theorem on the linearity of the Mitchell order now reads:

Theorem 2.3.11. Assume the Ultrapower Axiom. Then the Mitchell order is linear.

Granting our contention that UA holds in every canonical inner model, we have reduced

Conjecture 2.1.4 to the Inner Model Problem (for example, Conjecture 2.1.5). Moreover,

we can state a perfectly precise test question that seems to capture the essence of the Inner

Model Problem:

Conjecture 2.1.8. The Ultrapower Axiom is consistent with an extendible cardinal.

It is our expectation that neither this conjecture nor even Conjecture 2.1.4 will be proved

without first solving the Inner Model Problem. But what makes Conjecture 2.1.8 much

more interesting than Conjecture 2.1.4 is that UA turns out to have a host of structural

consequences in the theory of large cardinals. By studying UA, one can hope to glean insight

into the inner models that have not yet been built, or perhaps to refute their existence by
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refuting UA from a large cardinal hypothesis. The latter has not happened. Instead a

remarkable theory of large cardinals under UA has emerged which in our opinion provides

evidence for Conjecture 2.1.8 and hence for the existence of inner models for very large

cardinals.

Outline of Chapter 2

We now briefly outline the contents of the rest of this chapter.

Section 2.2. This section contains preliminary definitions most of which are standard or

self-explanatory. The topics we cover are ultrapowers, close embeddings, uniform ultrafilters,

and normal ultrafilters.

Section 2.3. This section contains proofs of the linearity of the Mitchell order and mo-

tivation for the Ultrapower Axiom. We begin in Section 2.3 by introducing and motivating

Woodin’s Weak Comparison axiom. Then in Section 2.3, we give our original argument for

the linearity of the Mitchell order under Weak Comparison (Theorem 2.3.4). In Section 2.3,

we abstract from this argument the Ultrapower Axiom, the central principle in this disserta-

tion and prove UA from Weak Comparison (Theorem 2.3.10). This proof is incomplete in the

sense that several technical lemmas are deferred until the end of the chapter. In Section 2.3,

we give the proof of the linearity of the Mitchell order from UA (Theorem 2.3.11), which is

actually a simplification of the proof in Section 2.3. We also prove a sort of converse: UA

restricted to normal ultrafilters is equivalent to the linearity of the Mitchell order. Finally,

in Section 2.3, we prove the technical lemmas we had set aside in Section 2.3.
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2.2 Preliminary definitions

Ultrapowers

We briefly put down our conventions on ultrapowers. If U is an ultrafilter, we denote by

jU : V ! MU

the ultrapower of the universe by U . If MU is wellfounded, or equivalently if U is countably

complete, our convention is that MU denotes the unique transitive class isomorphic to the

ultrapower of the universe by U . The ultrafilters we consider will almost always be countably

complete.

Many arguments in this dissertation proceed by applying an ultrafilter to a model to

which it does not belong. This involves a taking relativized ultrapower. If N is a transitive

model of ZFC and X 2 N , an N-ultrafilter on X is a set U ✓ P (X)\N such that (N,U) ✏

U is an ultrafilter. Equivalently, U is an ultrafilter on the Boolean algebra P (X) \N . One

can form the ultrapower of N by U , denoted

jNU : N ! MN
U

using a modified ultrapower construction that uses only functions that belong to N . For any

function f 2 N that is defined U -almost everywhere, we denote by [f ]NU the point in MN
U

represented by f . Since the point [id]NU comes up so often, we introduce special notation for

it:

Definition 2.2.1. If U is an N -ultrafilter, aNU denotes the point [id]NU .

We will drop the superscript N when it is convenient and unambiguous.

Derived ultrafilters allow us to extract combinatorial content from elementary embed-

dings:
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Definition 2.2.2. Suppose N and M are transitive models of ZFC and j : N ! M is an

elementary embedding. Suppose X 2 N and a 2 j(X). The N-ultrafilter on X derived from

j using a is the N -ultrafilter {A 2 P (X) \N : a 2 j(A)}.

What is the relationship between an elementary embedding and the ultrapowers by its

derived ultrafilters? The answer is contained in the following lemma:

Lemma 2.2.3. Suppose N and M are transitive models of ZFC and j : N ! M is an

elementary embedding. Suppose X 2 N and a 2 j(X). Let U be the N-ultrafilter on X

derived from j using a. Then there is a unique embedding k : MN
U ! M such that k � jNU = j

and k(aU) = a.

We refer to the embedding k as the factor embedding associated to the derived ultrafilter

U .

Often we will wish to discuss an ultrapower embedding without the need to choose any

particular ultrafilter giving rise to it, so we introduce the following terminology:

Definition 2.2.4. If N and M are transitive models of ZFC, an elementary embedding

j : N ! M is an ultrapower embedding if there is an N -ultrafilter U such that M = MN
U and

j = jNU .

Definition 2.2.5. If N is a transitive model of ZFC, a countably complete ultrafilter of N

is a point U 2 N such that N satisfies that U is a countably complete ultrafilter.

An N -ultrafilter U is a countably complete ultrafilter of N if and only if its corresponding

ultrapower j : N ! M is wellfounded and definable over N .

Definition 2.2.6. An ultrapower embedding j : N ! M is an internal ultrapower embedding

of N if there is a countably complete ultrafilter U of N such that j = jNU .

An important point is that for our purposes, when we speak of ultrapower embeddings,

we only mean ultrapower embeddings between wellfounded models. For example, if U is
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an ultrafilter on !, then the embedding jU : V ! MU does not count as an ultrapower

embedding.

There is a characterization of ultrapower embeddings that does not refer to ultrafilters

at all.

Definition 2.2.7. Suppose N and M are transitive set models of ZFC. An elementary

embedding j : N ! M is cofinal if for all a 2 M , there is some X 2 N such that a 2 j(X).

Equivalently, j is cofinal if j[Ord \N ] is cofinal in Ord \M .

Definition 2.2.8. Suppose N and M are transitive set models of ZFC. An elementary

embedding j : N ! M is a weak ultrapower embedding if there is some a 2 M such that

every element of M is definable in M from parameters in j[N ] [ {a}.

For metamathematical reasons (namely, the undefinability of definability), we cannot

define the concept of a weak ultrapower embeddings when M is a proper class.

Lemma 2.2.9. Suppose N and M are transitive set models of ZFC. An elementary embed-

ding j : N ! M is an ultrapower embedding if and only if j is a cofinal weak ultrapower

embedding.

The following notation will be extremely important in our analysis of elementary embed-

dings:

Definition 2.2.10. Suppose N and M are transitive models of ZFC. Suppose j : N ! M

is a cofinal elementary embedding and S is a subclass of M . Then the hull of S in M over

j[N ] is the class HM(j[N ] [ S) = {j(f)(x1, . . . , xn) : x1, . . . , xn 2 S}.

The fundamental theorem about these hulls, which we use repeatedly and implicitly, is

the following:

Lemma 2.2.11. Suppose N and M are transitive models of ZFC. Suppose j : N ! M is a

cofinal elementary embedding and S is a subclass of M . Then the hull of S in M over j[N ]

is the minimum elementary substructure of M containing j[N ] [ S.
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For more on hulls, see [8] Chapter 1 Lemma 1.1.18. (Larson’s lemma should use a

stronger theory than ZFC � Replacement; ⌃2-Replacement su�ces.) Using hulls, we can

give a metamathematically unproblematic model theoretic characterization of ultrapower

embeddings between transitive models that are not assumed to be sets:

Lemma 2.2.12. Suppose N and M are transitive models of ZFC. A cofinal elementary

embedding j : N ! M is an ultrapower embedding if M = HM(j[N ] [ {a}) for some

a 2 M .

Close embeddings

The property of being an internal ultrapower embedding is a very stringent requirement.

Closeness is a natural weakening that originated in inner model theory:

Definition 2.2.13. Suppose N and M are transitive models of ZFC and j : N ! M is an

elementary embedding. Then j is close to N if j is cofinal and for all X 2 N and a 2 j(X),

the N -ultrafilter on X derived from j using a belongs to N .

Close embeddings have a very natural model theoretic definition that makes no reference

to ultrafilters:

Lemma 2.2.14. Suppose N and P are transitive models of ZFC and j : N ! P is an

elementary embedding. Then the following are equivalent:

(1) j is close to N .

(2) For any a 2 P , j factors as N
i�! M

k�! P where i : N ! M is an internal ultrapower

embedding, k : M ! P is an elementary embedding, and a 2 k[M ].

(3) For any set A 2 P , the inverse image j�1[A] belongs to N .

Proof. (1) implies (2): Immediate from the factor embedding construction Lemma 2.2.3.
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(2) implies (3): Fix A 2 P , and we will show j�1[A] 2 N . Factor j as N
i�! M

k�! P

where i : N ! M is an internal ultrapower embedding, k : M ! N is an elementary

embedding, and A 2 k[M ]. Fix B 2 M such that k(B) = A. Now i�1[B] 2 N since i is an

internal ultrapower embedding of N . We finish by showing i�1[B] = j�1[A]. First, by the

elementarity of k, B = k�1[A]. Therefore i�1[B] = i�1[k�1[A]] = (k � i)�1[A] = j�1[A].

(3) implies (1): We first show that j is cofinal. Assume not, towards a contradiction.

Then there is an ordinal ↵ 2 P that lies above all ordinals in the range of j. Therefore

j�1[↵] = Ord \N /2 N , which is a contradiction.

Finally, fix X 2 N and a 2 P with a 2 j(X). We must show that the N -ultrafilter on X

derived from j using a belongs to N . Let pj(X)
a denote the principal N -ultrafilter on j(X)

concentrated at a. Then the N -ultrafilter on X derived from j using a is precisely j�1[pj(X)
a ],

which belongs to N by assumption.

Most texts on inner model theory define close extenders rather than close embeddings, so

we briefly describe the relationship between these two concepts. If N is a transitive model

of ZFC and E is an N -extender of length �, then E is close to N if Ea 2 M for all a 2 [�]<!.

Lemma 2.2.15. An N-extender E is close to N if and only if the elementary embedding jNE

is close to N .

The fact that the comparison process gives rise to close embeddings is less well-known

than the fact that all extenders applied in a normal iteration tree are close, which for example

is proved in [9]. Given that each of the individual extenders that are applied are close, the

following fact shows that all the embeddings between models of ZFC in a normal iteration

tree are close:

Lemma 2.2.16. (1) If N
i�! M

k�! P are close embeddings, then the composition k � i is
close to N .

(2) Suppose D = {Mp, jpq : p  q 2 I} is a directed system of transitive models of ZFC

and elementary embeddings. Suppose p 2 I is an index such that for all q � p in I,
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jpq : Mp ! Mq is close to Mp. Let N be the direct limit of D, and assume N is transitive.

Then the direct limit embedding jp1 : Mp ! N is close to Mp.

Proof. (1) is immediate from Lemma 2.2.14 (3). (2) is clear from Lemma 2.2.14 (2).

An often useful trivial fact about close embeddings is that their right-factors are close:

Lemma 2.2.17. If j : N ! P is a close embedding and j = k � i where N
i�! M

k�! P

are elementary embeddings. Then i is close to N .

Another fact which is almost tautological is that an ultrapower embedding is internal if

and only if it is close:

Lemma 2.2.18. If j : N ! M is an ultrapower embedding, then j is an internal ultrapower

embedding of N if and only if j is close to N .

Uniform ultrafilters

One of the most basic notions from ultrafilter theory is that of a uniform ultrafilter:

Definition 2.2.19. An ultrafilter U is uniform if every set in U has the same cardinality.

If U is an ultrafilter, the size of U , denoted �U , is the least cardinality of a set in U .

The cardinals �U for U a countably complete ultrafilter will become very important in

Chapter 7.

Equivalently, U is a uniform ultrafilter on X if it extends the Fréchet filter on X, the

collection of A ✓ X such that |X \A| < |X|. It will be important to distinguish between the

notion of a uniform ultrafilter and the similar but distinct notion of a tail uniform ultrafilter

on an ordinal, defined in Section 3.2. These notions are often confused in the literature.

Definition 2.2.20. Suppose U and W are ultrafilters. Then U and W are isomorphic,

denoted U ⇠= W , if there exist X 2 U , Y 2 W , and a bijection f : X ! Y such that for all

A ✓ X, A 2 U if and only if f [A] 2 W .
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Ultrafilter isomorphism is equivalent to the following model theoretic property:

Definition 2.2.21. Suppose j0 : N ! M0 and j1 : N ! M1 are elementary embeddings.

We write (M0, j0) ⇠= (M1, j1) to denote that there is an isomorphism k : M0 ! M1 such that

k � j0 = j1.

The following lemma (due to Rudin-Keisler) is explained in Section 3.4:

Lemma 2.2.22. If U and W are ultrafilters, then U and W are isomorphic if and only if

(MU , jU) ⇠= (MW , jW ).

For countably complete ultrafilters, there is a much simpler model theoretic characteriza-

tion of ultrafilter isomorphism (so we will not really need the notation from Definition 2.2.21):

Corollary 2.2.23. If U and W are countably complete ultrafilters, then U and W are iso-

morphic if and only if jU = jW .

Proof. Since MU and MW are transitive, the only possible isomorphism between MU and

MW is the identity. Hence (MU , jU) ⇠= (MW , jW ) if and only if jU = jW .

Notice that if U ⇠= W then �U = �W . Since we are mostly interested in ultrapower

embeddings and not ultrafilters themselves, the following lemma lets us focus our attention

on uniform ultrafilters that lie on cardinals:

Lemma 2.2.24. Any ultrafilter U is isomorphic to a uniform ultrafilter W on �U .

Proof. Fix X 2 U such that |X| = �U . Let f : X ! �U be a bijection. Let W = {A ✓ �U :

f�1[A] 2 U}. Then U ⇠= W . Moreover W is uniform since �W = �U .

Let us also mention a basic generalization of uniformity to the relativized case:

Definition 2.2.25. SupposeM is a transitive model of ZFC and U is an M -ultrafilter. Then

the size of U is the M -cardinal �U = min{|X|M : X 2 U}.
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Normal ultrafilters and the Mitchell order

Definition 2.2.26. Suppose hX↵ : ↵ < �i is a sequence of subsets of �. The diagonal

intersection of hX↵ : ↵ < �i is the set

4↵<�X↵ = {↵ < � : ↵ 2 T�<↵ X�}

Definition 2.2.27. A uniform ultrafilter on an infinite cardinal  is normal if it is closed

under diagonal intersections.

Lemma 2.2.28. Suppose U is an ultrafilter on an ordinal . The following are equivalent:

(1) U is normal.

(2) U is -complete and aU = .

The Mitchell order was introduced by Mitchell in [5].

Definition 2.2.29. Suppose U and W are normal ultrafilters. The Mitchell order is defined

by setting U C W if U 2 MW .

This definition makes sense by our convention that the ultrapower of the universe by a

countably complete ultrafilter is taken to be transitive.

Lemma 2.2.30. The Mitchell order is a wellfounded partial order.

Actually, the interested reader will find several generalizations of this fact scattered

throughout this dissertation. For example, Theorem 3.3.8 and Theorem 4.2.47 come to

mind.

Definition 2.2.31. If U is a normal ultrafilter on a cardinal , then o(U) denotes the rank

of U in the restriction of the Mitchell order to normal ultrafilters on . For any ordinal ,

o() denotes the rank of the restriction of the Mitchell order to normal ultrafilters on .
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2.3 The linearity of the Mitchell order

Our original proof of the linearity of the Mitchell order did not use the Ultrapower Axiom

as a hypothesis. Instead, it used a principle called Weak Comparison that was introduced

by Woodin [10] in his work on the Inner Model Problem for supercompact cardinals.

Weak Comparison is directly motivated by the Comparison Lemma of inner model theory,

and it is immediately clear that Weak Comparison holds in all known canonical inner models.

On the other hand, although the Ultrapower Axiom is a more elegant principle than Weak

Comparison, the fact that the Ultrapower Axiom holds in all known canonical inner models

is not nearly as obvious. But our proof of the linearity of the Mitchell order from Weak

Comparison actually shows that the Ultrapower Axiom follows from Weak Comparison, and

this is how the Ultrapower Axiom was originally isolated.

In this section, we will introduce Weak Comparison and then prove that Weak Com-

parison implies the linearity of the Mitchell order. We then isolate the Ultrapower Axiom

by remarking that this proof breaks naturally into two implications: first, that Weak Com-

parison implies the Ultrapower Axiom, and second, that the Ultrapower Axiom implies the

linearity of the Mitchell order. We hope that this “genetic approach” will help motivate the

formulation of the Ultrapower Axiom. The reader who does not want to learn about Weak

Comparison can skip ahead to Section 2.3. We emphasize, however, that the fact that Weak

Comparison implies UA is central to the motivation for this work.

Weak Comparison

Stating Weak Comparison requires a number of definitions. The following notational con-

vention will make many of our arguments easier to read:

Definition 2.3.1. Suppose N0, N1, P are transitive models of ZFC. We write

(j0, j1) : (N0, N1) ! P

to mean that j0 : N0 ! P and j1 : N1 ! P are elementary embeddings.
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Weak Comparison is a comparison principle for a class of structures. The next two

definitions specify this class.

Definition 2.3.2. Suppose M is a model of ZFC. Then M is finitely generated if there is

some a 2 M such that every point in M is definable in M using a as a parameter.

Definition 2.3.3. Suppose M is a transitive set that satisfies ZFC. Then M is a ⌃2-hull if

there is a ⌃2-elementary embedding ⇡ : M ! V .

We can now state Weak Comparison:

Weak Comparison. If M0 and M1 are finitely generated ⌃2-hulls such that P (!) \M0 =

P (!) \M1, then there are close embeddings (k0, k1) : (M0,M1) ! N .

We conclude this section by sketching Woodin’s argument that Weak Comparison holds

in all known canonical inner models. Assume that V itself is a canonical inner model, so that

there is some sort of Comparison Lemma for countable su�ciently elementary substructures

of V . Assume M0 and M1 are finitely generated ⌃2-hulls. We will show that there are close

embeddings (k0, k1) : (M0,M1) ! N .

The fact that M0 and M1 are countable ⌃2-hulls implies that the Comparison Lemma

applies to them. The comparison process therefore produces transitive structures N0 and N1

such that one of the following holds:

Case 1. N0 = N1 and there are close embeddings (k0, k1) : (M0,M1) ! N0.

Case 2. N0 2 N1, P (!) \N1 ✓ M1, and there is a close embedding k0 : M0 ! N0.

Case 3. N1 2 N0, P (!) \N0 ✓ M0, and there is a close embedding k1 : M1 ! N1.

Case 1 is the result of “coiteration,” while in Case 2 and Case 3, one of the models has

“outiterated” the other. To obtain weak comparison for the pair M0 and M1, it su�ces to

show that Case 1 holds. To do this we show that Case 2 and Case 3 cannot hold.
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Assume towards a contradiction that Case 2 holds. Since M0 is finitely generated, there is

some a 2 M0 such that every point inM0 is definable in M0 from a. Therefore k0[M0] is equal

to the set of points in N0 that are definable in N0 from k0(a). Since N0 2 N1, it follows that

k0[M0] 2 N1 and k0[M0] is countable in N1. Therefore its transitive collapse, namely M0, is

in N1 and is countable in N1. Let x 2 P (!) \ N1 code M0 in the sense that any transitive

model H of ZFC with x 2 H has M0 2 H. Then x 2 P (!)\N1 ✓ P (!)\M1 = P (!)\M0.

It follows that x 2 M0. Since x codes M0, this implies M0 2 M0, which is a contradiction.

A similar argument shows that Case 3 does not hold. Therefore Case 1 must hold.

This argument actually shows that a slight strengthening of Weak Comparison is true in

all known canonical inner models:

Weak Comparison (Strong Version). If M0 and M1 are finitely generated ⌃2-hulls, either

M0 2 M1, M1 2 M0, or there are close embeddings (k0, k1) : (M0,M1) ! N .

The strong version of Weak Comparison implies the Continuum Hypothesis.2 It is not

clear if it has any other advantages.

Weak Comparison and the Mitchell order

In the interest of full disclosure, we admit that we cannot actually prove the linearity of the

Mitchell order from Weak Comparison. Rather we will need some auxiliary hypotheses:

Theorem 2.3.4. Assume that V = HOD and there is a ⌃2-correct worldly cardinal. Assume

Weak Comparison holds. Then the Mitchell order is linear.

The need for these auxiliary hypotheses is one of the quirks of Weak Comparison, and it

is part of the reason we think the Ultrapower Axiom is a more elegant principle.

Here a cardinal  is worldly if V satisfies ZFC, and ⌃2-correct if V �⌃2 V . This is

a very weak large cardinal hypothesis. For example, if  is inaccessible, then in V there

2Here one must assume in addition to the strong version of Weak Comparison that V = HOD and there
is a ⌃2-correct worldly cardinal. In fact, these hypotheses are necessary for all our consequences of Weak
Comparison.
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is a ⌃2-correct worldly cardinal; indeed, Morse-Kelley set theory implies the existence of a

⌃2-correct worldly cardinal. If  is a strong cardinal, then  itself is a ⌃2-correct worldly

cardinal. The hypothesis is motivated by the following lemma, which we defer to a later

section:

Lemma 2.3.19. The existence of a ⌃2-hull is equivalent to the existence of a ⌃2-correct

worldly cardinal.

If one wants to apply Weak Comparison at all, at the very least, one needs the existence

of a ⌃2-hull, and therefore one needs a ⌃2-correct worldly cardinal. One also needs finitely

generated models, and this is where we use the principle V = HOD:

Definition 2.3.5. Suppose M is a model of ZFC. Then M is pointwise definable if every

point in M is definable in M without parameters.

Lemma 2.3.6. Assume V = HOD. If there is a ⌃2-hull, then there is a pointwise definable

⌃2-hull.

The principle V = HOD arguably does not hold in all canonical inner models. (The stan-

dard counterexample is L[M#
1 ], though one might instead argue that this is not a canonical

inner model.) The proof that the Mitchell order is linear, however, really does work in any

inner model. The fact that we must assume V = HOD is again a quirk of the formulation

of Weak Comparison.

The key technical lemma of Theorem 2.3.4 is the following closure property:

Lemma 2.3.17. The set of finitely generated ⌃2-hulls is closed under internal ultrapowers.

We defer the proof to Section 2.3. We now proceed to the proof of Theorem 2.3.4 granting

the lemmas.

Proof of Theorem 2.3.4. Since there is a ⌃2-correct worldly cardinal and V = HOD, we can

fix a pointwise definable ⌃2-hull H (by Lemma 2.3.6). It su�ces to show that the Mitchell

order is linear in H, since this is a ⇧2-statement and H ⌘⇧2 V .
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Suppose U0 and U1 are normal ultrafilters of H. We must show that in H, either U0 = U1,

U0 C U1, or U0 B U1. We might as well assume that U0 and U1 are normal ultrafilters on

the same cardinal , since otherwise it is immediate that U0 C U1 or U0 B U1.

Let j0 : H ! M0 be the ultrapower of H by U0 and let j1 : H ! M1 be the ultra-

power of H by U1. By the closure of finitely generated ⌃2-hulls under internal ultrapowers

(Lemma 2.3.17), M0 and M1 are finitely generated ⌃2-hulls. Since M0 and M1 are internal

ultrapowers of H, P (!)\M0 = P (!)\M1. Therefore, by Weak Comparison there are close

embeddings

(k0, k1) : (M0,M1) ! N

Since H is pointwise definable,

k0 � j0 = k1 � j1 (2.1)

This is because k0 � j0, k1 � j1 are both elementary embeddings from H to N , and therefore

must shift all parameter-free definable points in the same way.

The proof now splits into three cases.

Case 1. k0() = k1().

Case 2. k0() < k1().

Case 3. k0() > k1().

In Case 1, we will show U0 = U1, in Case 2, we will show U0 C U1, and in Case 3, we will

show U0 B U1. This will complete the proof.
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Proof in Case 1. Suppose A ✓  and A 2 H. We have

A 2 U0 ()  2 j0(A)

() k0() 2 k0(j0(A))

() k0() 2 k1(j1(A)) (2.2)

() k1() 2 k1(j1(A)) (2.3)

()  2 j1(A)

() A 2 U1

To obtain (2.2), we use (2.1) above. To obtain (2.3), we use the case hypothesis that

k0() = k1(). It follows that U0 = U1.

Proof in Case 2. Suppose A ✓  and A 2 H. We have

A 2 U0 ()  2 j0(A)

() k0() 2 k0(j0(A))

() k0() 2 k1(j1(A)) (2.4)

() k0() 2 k1(j1(A)) \ k1() (2.5)

() k0() 2 k1(j1(A) \ )

() k0() 2 k1(A) (2.6)

To obtain (2.4), we use (2.1) above. To obtain (2.5), we use the case hypothesis that

k0() < k1(). To prove (2.6), we use that U1 is -complete, so crt(j1) =  and hence

j1(A) \  = A for any A ✓ .

It follows from this calculation that U0 is the M1-ultrafilter on  derived from k1 using

k0(). (Here we use that P () \ M1 = P () \ H.) Since k1 is close to M1, it follows that

U0 2 M1. Since M1 = MH
U1
, this means that U0 C U1 in H.

Proof in Case 3. The proof in this case is just like the proof in Case 2 but with U0 and U1

swapped.
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This completes the proof of Theorem 2.3.4.

Weak Comparison and the Ultrapower Axiom

We now define the Ultrapower Axiom, which arises naturally from the proof of Theorem 2.3.4.

Notice that the first half of this proof, which justifies our application of Weak Comparison to

the ultrapowers M0 and M1, does not actually require that U0 and U1 are normal ultrafilters.

Instead, it simply requires that they are countably complete.

In order to state UA succinctly, we make the following definitions.

Definition 2.3.7. Suppose N,M0,M1, P are transitive models of ZFC and j0 : N ! M0,

j1 : N ! M1, and (k0, k1) : (M0,M1) ! P are elementary embeddings.

• (k0, k1) is a comparison of (j0, j1) if k0 � j0 = k1 � j1.

• (k0, k1) is an internal ultrapower comparison if k0 is an internal ultrapower embedding

of M0 and k1 is an internal ultrapower embedding of M1.

• (k0, k1) is a close comparison if k0 is close to M0 and k1 is close to M1.

Ultrapower Axiom. Every pair of ultrapower embeddings of the universe of sets has an

internal ultrapower comparison.

On the face of it, the statement that every pair of ultrapowers has a comparison by

internal ultrapowers looks much stronger than the conclusion of Weak Comparison, which

only supplies close comparisons. But this is an illusion.

Lemma 2.3.8. Suppose N,M0,M1 are transitive set models of ZFC and j0 : N ! M0

and j1 : N ! M1 are weak ultrapower embeddings. If (j0, j1) has a comparison by close

embeddings, then (j0, j1) has a comparison by internal ultrapowers.

Proof. Suppose (k0, k1) : (M0,M1) ! P is a comparison by close embeddings. Let H � P

be defined by

H = HP (k0[M0] [ k1[M1])
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Let Q be the transitive collapse of H and let h : Q ! P be the inverse of the transitive

collapse embedding. Let i0 = h�1 � k0 and i1 = h�1 � k1.
Obviously (i0, i1) : (M0,M1) ! Q is a comparison of (j0, j1) and

Q = HQ(i0[M0] [ i1[M1])

We need to show it is a comparison by internal ultrapowers, or in other words that i0 is an

internal ultrapower embedding of M0 and i1 is an internal ultrapower embedding of M1.

We first show that i0 is an ultrapower embedding of M0. Since j1 : N ! M1 is a weak

ultrapower embedding, there is some a 2 M1 such that every element of M1 is definable

in M1 from parameters in j1[N ] [ {a}. It follows easily that Q = HQ(i0[M0] [ {i1(a)}).
Therefore i0 is an ultrapower embedding by Lemma 2.2.12.

Next, we show that i0 is an internal ultrapower embedding. Since h � i0 = k0 and k0 is

close, in fact, i0 is close to M0 (Lemma 2.2.17). Since i0 is a close ultrapower embedding of

M0, in fact, i0 is an internal ultrapower embedding of M0 (Lemma 2.2.18).

A symmetric argument shows that i1 is an internal ultrapower embedding of M1, com-

pleting the proof.

This yields a strengthening of Weak Comparison:

Theorem 2.3.9. Assume Weak Comparison and V = HOD. Suppose M0 and M1 are finitely

generated ⌃2-hulls such that P (!) \ M0 = P (!) \ M1. Then there are internal ultrapower

embeddings (i0, i1) : (M0,M1) ! Q.

Proof. Applying Weak Comparison, fix close embeddings (k0, k1) : (M0,M1) ! P .

Since M0 and M1 are ⌃2-hulls, they satisfy any ⇧3 sentence true in V . Therefore they

both satisfy V = HOD. Let H0 � M0 be the set of points that are definable without

parameters in M0. Let H1 � M1 be the set of points that are definable without parameters

in M1. Then k0[H0] = k1[H1] is the set of points that are definable without parameters in

P . It follows that H0
⇠= H1. Let N be the common transitive collapse of H0 and H1, and let
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j0 : N ! M0 and j1 : N ! M1 be the inverses of the transitive collapse maps. Note that j0

and j1 are weak ultrapower embeddings, and since N is pointwise definable, k0 � j0 = k1 � j1.
The weak ultrapower embeddings (j0, j1) therefore have a comparison by close embed-

dings, namely (k0, k1). It follows from Lemma 2.3.8 that they have a comparison by internal

ultrapower embeddings.

Lemma 2.3.8 also yields a proof of the Ultrapower Axiom from the same hypotheses as

Theorem 2.3.4:

Theorem 2.3.10. Assume that V = HOD and there is a ⌃2-correct worldly cardinal. If

Weak Comparison holds, then the Ultrapower Axiom holds.

Proof. Since there is a ⌃2-correct worldly cardinal and V = HOD, we can fix a pointwise

definable ⌃2-hull H (by Lemma 2.3.6). Since UA is a ⇧2-statement and H ⌘⇧2 V , it su�ces

to show that H satisfies UA.

Suppose j0 : H ! M0 and j1 : H ! M1 are internal ultrapower embeddings of H. We

must show that H satisfies that (j0, j1) has an internal ultrapower comparison.

By the closure of finitely generated ⌃2-hulls under internal ultrapowers (Lemma 2.3.17),

M0 and M1 are finitely generated ⌃2-hulls. Moreover, since M0 and M1 are internal ultra-

powers of H, P (!) \M0 = P (!) \H = P (!) \M1. Therefore by Theorem 2.3.9, there are

internal ultrapower embeddings (i0, i1) : (M0,M1) ! Q. Moreover since H is finitely gener-

ated, i0 � j0 = i1 � j1. It follows that (i0, i1) is an internal ultrapower comparison of (j0, j1).

This is absolute to H, and therefore H satisfies that (j0, j1) has an internal ultrapower

comparison, as desired.

The Ultrapower Axiom and the Mitchell order

In this subsection, we prove the linearity of the Mitchell order from the Ultrapower Axiom.

We include this proof largely for the benefit of the reader who would prefer to skip over our

discussions of Weak Comparison, since the proof is very similar to that of Theorem 2.3.4.
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The reader who has followed Theorem 2.3.4 will no doubt notice that both the statement

and proof of Theorem 2.3.11 below are much simpler and more elegant than those of Theo-

rem 2.3.4. It is a general pattern that UA is easier to use than Weak Comparison. In fact,

almost every known consequence of Weak Comparison is a consequence of UA.

Theorem 2.3.11 (UA). The Mitchell order is linear.

Proof. Suppose U0 and U1 are normal ultrafilters. We must show that either U0 = U1,

U0 C U1, or U0 B U1. We may assume without loss of generality that U0 and U1 are normal

ultrafilters on the same cardinal , since otherwise it is obvious that either U0 C U1 or

U0 B U1.

Let j0 : V ! M0 be the ultrapower of the universe by U0. Let j1 : V ! M1 be the

ultrapower of the universe by U1. Applying UA, there is an internal ultrapower comparison

(i0, i1) : (M0,M1) ! P of (j0, j1).

The proof now breaks into three cases.

Case 1. i0() = i1().

Case 2. i0() < i1().

Case 3. i0() > i1().

In Case 1, we will prove U0 = U1. In Case 2, we will prove U0 C U1. In Case 3, we will

prove U0 B U1.
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Proof in Case 1. Suppose A ✓ . Then

A 2 U0 ()  2 j0(A)

() i0() 2 i0(j0(A))

() i0() 2 i1(j1(A)) (2.7)

() i1() 2 i1(j1(A)) (2.8)

()  2 j1(A)

() A 2 U1

To obtain (2.7), we use the fact that (i0, i1) is a comparison, and in particular that i1 � j1 =
i0 � j0. To obtain (2.8), we use the case hypothesis that i0() = i1(). It follows that

U0 = U1.

Proof in Case 2. Suppose A ✓ . Then

A 2 U0 ()  2 j0(A)

() i0() 2 i0(j0(A))

() i0() 2 i1(j1(A))

() i0() 2 i1(j1(A)) \ i1() (2.9)

() i0() 2 i1(j1(A) \ )

() i0() 2 i1(A) (2.10)

To obtain (2.9), we use the case hypothesis that i0() < i1(). To obtain (2.10), we use that

U1 is -complete; therefore crt(j1) =  so j1(A) \  = A for any A ✓ .

It follows that U0 is the M1-ultrafilter derived from i1 using i0(). (Here we use that

P () ✓ M1.) Since i1 is an internal ultrapower embedding of M1, i1 is definable over M1,

and therefore U0 is definable over M1 from i1 and i0(). It follows that U0 2 M1. Since

M1 = MU1 , this means U0 C U1, as desired.
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Proof in Case 3. The proof in this case is identical to the proof in Case 2 but with U0 and

U1 swapped.

Thus no matter which of the cases hold, either U0 = U1, U0 C U1, or U0 B U1. This

completes the proof.

There is a partial converse to Theorem 2.3.11 that helps explain the motivation for the

proof of Theorem 2.3.11. To state this converse, we first defines a restricted version of the

Ultrapower Axiom for ultrapower embeddings coming from normal ultrafilters:

Definition 2.3.12. The Normal Ultrapower Axiom is the statement that any pair of ultra-

power embeddings of the universe of sets associated to normal ultrafilters have a comparison

by internal ultrapowers.

Proposition 2.3.13. The Normal Ultrapower Axiom is equivalent to the linearity of the

Mitchell order.

Proof. The proof that the Normal Ultrapower Axiom implies the linearity of the Mitchell

order is immediate from the proof of Theorem 2.3.11.

Conversely, assume the Mitchell order is linear. Suppose U0 and U1 are normal ultrafilters,

and let j0 : V ! M0 and j1 : V ! M1 be their ultrapowers. We will show (j0, j1) has a

comparison by internal ultrapowers. Assume without loss of generality that U0 C U1. Let

i0 : M0 ! P0 be the ultrapower of M0 by j0(U1). Let i1 : M1 ! P1 be the ultrapower of

M1 by U0. Then i0 and i1 are internal ultrapowers of M0 and M1 respectively. Moreover

i0 = j0(j1) and i1 = j0 � M1,3 so

i0 � j0 = j0(j1) � j0 = j0 � j1 = i1 � j1

It follows that (i0, i1) is a comparison of (j0, j1) by internal ultrapowers.

3Suppose M,N, and P are transitive models of ZFC. Suppose j : M ! N and i : M ! P are elementary
embeddings. Assume j � x 2 M for all x 2 M . Assume i is a cofinal embedding. Then i(j) =

S

X2M i(j � X).
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The proof of Proposition 2.3.13 is local in the sense that it shows that the comparability

of two normal ultrafilters in the Mitchell order is equivalent to their comparability by internal

ultrapowers. This is a special feature of the Mitchell order on normal ultrafilters. For the

generalized Mitchell order (defined in Chapter 4), neither implication is provable. Motivated

by this issue, we develop in Section 5.5 a variant of the generalized Mitchell order called the

internal relation.

Technical lemmas related to Weak Comparison

In this section, we prove several lemmas promised in Section 2.3.

Lemma 2.3.14. Suppose N is a finitely generated model of ZFC and U is an N-ultrafilter.

Then MN
U is finitely generated.

Proof. Fix b 2 N such that every element of N is definable in N using b as a parameter.

Obviously every element of jU [N ] is definable in MN
U using jU(b) as a parameter. But

MN
U = {jU(f)(aU) : f 2 N} = {g(aU) : g 2 jU [N ]}. Therefore every element of MN

U is

definable using jU(b) and aU as parameters.

The next lemma, standard in the case of fully elementary embeddings, is the key to our

analysis of ⌃2-hulls:

Lemma 2.3.15. Suppose j : N ! M is a ⌃2-elementary embedding between transitive

models of ZFC. Suppose X 2 N , and a 2 j(X). Let U be the N-ultrafilter on X derived

from j using a. Then there is a unique ⌃2-elementary embedding k : MN
U ! M such that

k � jNU = j and k(aU) = a.

Proof. We begin with a simple remark. Suppose '(v1, . . . , vn) is a ⌃2-formula and f1, . . . , fn

are functions in N that are defined U -almost everywhere. The statement S = {x 2 X : N ✏

'(f1(x), . . . , fn(x))} can be written as a Boolean combination of ⌃2 formulas in the variables
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S and f1, . . . , fn. It follows that

j({x 2 X : N ✏ '(f1(x), . . . , fn(x))}) = {x 2 j(X) : M ✏ '(j(f1)(x), . . . , j(fn)(x))}

For any function f 2 N defined U -almost everywhere, set

k([f ]U) = j(f)(a)

Fix a ⌃2-formula '(x1, . . . , xn). The following calculation shows that k is a well-defined

⌃2-elementary embedding from MN
U to M :

MN
U ✏ '([f1]U , . . . , [fn]U) () {x 2 X : N ✏ '(f1(x), . . . , fn(x))} 2 U

() M ✏ a 2 j({x 2 X : N ✏ '(f1(x), . . . , fn(x))})

() M ✏ a 2 {x 2 j(X) : M ✏ '(j(f1)(x), . . . , j(fn)(x))}

() M ✏ '(j(f1)(a), . . . , j(fn)(a))

() M ✏ '(k([f1]U), . . . , k([fn]U))

Lemma 2.3.15 yields a ⌃2-elementary generalization of the standard Realizability Lemma:

Lemma 2.3.16. Suppose N is a countable ⌃2-hull and N ✏ U is a countably complete

ultrafilter. Then MN
U is a ⌃2-hull.

Proof. Let ⇡ : N ! V be a ⌃2-elementary embedding. Let U 0 = ⇡(U), so U 0 is a countably

complete ultrafilter. Since ⇡[U ] ✓ U 0 is countable, there is some a 2 T ⇡[U ]. Note that

U = ⇡�{a}. Therefore by Lemma 2.3.15, there is a ⌃2-elementary embedding k : MN
U ! V ,

so MN
U is a ⌃2-hull.

Lemma 2.3.17. The set of finitely generated ⌃2-hulls is closed under internal ultrapowers.

Proof. Immediate from the conjunction of Lemma 2.3.14 and Lemma 2.3.16.

Lemma 2.3.15 can also be used to prove the following fact:
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Lemma 2.3.18. Suppose N is a set model of ZFC and j : N ! M is a ⌃2-elementary

embedding. Then j factors as a cofinal elementary embedding followed by a ⌃2-elementary

end extension.

Proposition 2.3.19. There is a ⌃2-hull if and only if there is a ⌃2-correct worldly cardinal.

Proof. Suppose N is a ⌃2-hull. Let ⇡ : N ! V be a ⌃2-elementary embedding. By

Lemma 2.3.15, ⇡ factors as a cofinal elementary embedding ⇡ : N ! H followed by a

⌃2-elementary end extension H �⌃2 V . Since H �⌃2 V , H = V for some cardinal . Since

⇡ : N ! V is fully elementary, V satisfies ZFC. Thus  is a ⌃2-correct worldly cardinal.
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Chapter 3

The Ketonen Order

3.1 Introduction

Ketonen’s order

Central to Chapter 2 was an argument that the Mitchell order is linear in all known canonical

inner models. In Section 2.3, we delved deeper into the first half of this proof, extracting

from it a general inner model principle called the Ultrapower Axiom. It turns out that a

closer look at the second half of the proof also yields more information: it shows that the

Ultrapower Axiom implies not only the linearity of the Mitchell order, but also the linearity

of a much more general order on countably complete ultrafilters.

This order dates back to the early 1970s. A remarkable theorem of Ketonen [11] from this

period states that if every regular cardinal � �  carries a -complete uniform ultrafilter, then

 is strongly compact. Ketonen gave two proofs of this theorem. The first is an induction.

The second is not as well-known, but is of much greater interest here. Ketonen introduced a

wellfounded order on countably complete weakly normal ultrafilters, and showed that certain

minimal elements in this order witness the strong compactness of . (We give this proof in

Theorem 7.2.15 since generalizations of the proof form a key component of our analysis of

strong compactness and supercompactness under UA.)
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Independently of Ketonen’s work, and a rather long time after, we extracted from the

proof of the linearity of the Mitchell order under UA (Theorem 2.3.11) a more general

version of Ketonen’s order, which we now call the Ketonen order. The Ketonen order is a

wellfounded partial order on countably complete ultrafilters concentrating on ordinals. The

key realization, which distinguishes our work from Ketonen’s, is that the Ketonen order can

be linear. In fact, the totality of the Ketonen order is an immediate consequence of UA

(Theorem 3.3.6). In fact, the linearity of the Ketonen order is equivalent to the Ultrapower

Axiom. This equivalence is Theorem 3.6.1, which is probably the hardest theorem of this

chapter. The Ketonen order will be our main tools in the investigation of the structure of

countably complete ultrafilters under UA.

Outline of Chapter 3

Let us outline the rest of Chapter 3.

Section 3.2. We introduce some more preliminary definitions that will be used through-

out the rest of this dissertation. Especially important are limits of ultrafilters, which we

introduce both in the traditional ultrafilter theoretic sense and in a generalized setting in

terms of inverse images.

Section 3.3. We introduce the main object of study of this chapter, a fundamental

tool in the theory of the Ultrapower Axiom: a wellfounded partial order on countably com-

plete ultrafilters called the Ketonen order. In Section 3.3, we define the Ketonen order and

give various alternate characterizations. The most important characterization is given by

Lemma 3.3.4, which shows that the Ketonen order can be reformulated in terms of compar-

isons. This immediately leads to the observation that the Ketonen order is linear under the

Ultrapower Axiom. In Section 3.3, we establish the basic order-theoretic properties of the

Ketonen order: it is a preorder on the class of countably complete ultrafilters concentrating

on ordinals. Restricted to tail uniform ultrafilters, it is a partial order. Lemma 3.3.15 shows

that the Ketonen order is graded in the sense that if ↵ < �, then the tail uniform ultrafil-
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ters on ↵ all lie below those on �. In particular, the Ketonen order is setlike. We finally

prove the wellfoundedness of the Ketonen order (Theorem 3.3.8). The general proof of the

wellfoundedness of the Ketonen order is due to the author.

Section 3.4. We explore the relationship between the Ketonen order and two well-

known orders on ultrafilters. Section 3.4 shows that the restriction of the Ketonen order

to normal ultrafilters is precisely the Mitchell order. In this sense the Ketonen order is

a generalized Mitchell order. In Section 3.4 we turn to perhaps the best-known order on

ultrafilters: the Rudin-Keisler order. We take this opportunity to set down some basic facts

about this order, sometimes with proofs. The Ketonen order is not isomorphism invariant,

so it cannot extend the Rudin-Keisler order. To explain these orders’ relationship better,

we define an auxiliary order called the revised Rudin-Keisler order which is contained in the

intersection of the Rudin-Keisler order and the Ketonen order. Moreover we introduce the

concept of an incompressible ultrafilter, an ultrafilter U whose generator aU is as small as

possible (see Lemma 3.4.18). An argument due to Solovay shows that the strict Rudin-Keisler

order and the revised Rudin-Keisler order coincide on incompressible ultrafilters. Thus the

Ketonen order extends the strict Rudin-Keisler order on countably complete incompressible

ultrafilters.

Section 3.5. We study several variants of the Ketonen order. In Section 3.5, we inves-

tigate the relationship between the Ketonen order and notions from inner model theory. We

introduce a model theoretic generalization of the Ketonen order whose domain is the class

of pointed models of ZFC, structures (M, ⇠) where M is a transitive model of ZFC and ⇠

is an ordinal of M . This defines a coarse analog of the Dodd-Jensen order, the canonical

prewellorder on mice. We give a generalized wellfoundedness proof for this order (Theo-

rem 3.5.8) that is closely related to the proof of the wellfoundedness of the Dodd-Jensen

order. We use this to prove an often useful lemma that is a coarse analog of the Dodd-

Jensen lemma: Theorem 3.5.10 shows that definable embeddings are pointwise minimal on

the ordinals.
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In the next subsection, Section 3.5, we introduce the seed order. In early versions of

this work, we mainly used the seed order where we now use the Ketonen order. There is

no substantive di↵erence between these approaches since under UA the two orders coincide.

In ZFC, however, one cannot prove that the seed order is transitive: indeed, we show by

a silly argument that the transitivity of the seed order implies the Ultrapower Axiom. We

also introduce an extension of the seed order to pointed ultrapowers. The next subsection

Section 3.5 is spent relating this order to the structure of the direct limit of all ultrapowers

under UA.

The next two subsections are devoted to combinatorial generalizations of the Ketonen

order. One does not need to read them to understand the rest of this dissertation. In Sec-

tion 3.5, we introduce a generalized version of the Lipschitz order, and show that this order

extends the Ketonen order on countably complete ultrafilters. Therefore under UA, the two

orders coincide, which gives a strange analog of the linearity of the Lipschitz order in deter-

minacy theory. Section 3.5 introduces a combinatorial generalization of the Ketonen order

to filters, which demonstrates a relationship between the Ketonen order and the canonical

order on stationary sets due to Jech [12].

Section 3.6. This section contains Theorem 3.6.1, the most substantive result of the

chapter: the linearity of the Ketonen order is equivalent to the Ultrapower Axiom. The

fact that UA implies the linearity of the Ketonen order is immediate. (The proof appears

in Section 3.3.) The converse, however, is subtle. Since we will mostly work under the

assumption of UA, this equivalence is itself not that important (although it does show that

all of our results can be proved from an a priori weaker premise). More important is the

proof, which identifies a canonical way to compare a pair of ultrafilters assuming the linearity

of the Ketonen order.
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3.2 Preliminary definitions

Tail uniform ultrafilters

A common notational issue we will encounter in this dissertation is that two ultrafilters may

di↵er only in the sense that they have di↵erent underlying sets. The change-of-space relation,

defined below, articulates our tendency to identify such ultrafilters.

Definition 3.2.1. Suppose U is an ultrafilter on X and C is a class. We say U concentrates

on C if C \X 2 U . If C is a set and U concentrates on C, the projection of U on C is the

ultrafilter U | C = {A ✓ C : A \X 2 U}.

Definition 3.2.2. The change-of-space relation is defined on ultrafilters U and W by setting

U =E W if U = W | X where X is the underlying set of U .

Lemma 3.2.3. Suppose U and W are ultrafilters. Then the following are equivalent:

(1) U =E W .

(2) For some set S 2 U \W , U \ P (S) = W \ P (S).

(3) For all sets A, aU 2 jU(A) if and only if aW 2 jW (A).

(4) There is a comparison (k, h) of (jU , jW ) such that k(aU) = h(aW ).

The change-of-space relation is therefore an equivalence relation on ultrafilters.

The Ketonen order will be a partial order on the class of ultrafilters on ordinals. On

such general ultrafilters, however, the (nonstrict) Ketonen order is only a preorder, due to

the existence of =E-equivalent ultrafilters (see Lemma 3.3.16). Thus we sometimes restrict

further to those ultrafilters that are uniform in a slightly nonstandard sense:

Definition 3.2.4. A filter F on an ordinal � is tail uniform if it contains � \ ↵ for every

↵ < �.
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For any ordinal �, the tail filter on � is the filter generated by sets of the form � \ ↵ for

↵ < �. A filter is therefore tail uniform if it extends the tail filter. Equivalently, F is tail

uniform if every element of F+ is cofinal in ↵.

For example, the principal ultrafilter on ↵ + 1 concentrated at ↵ is uniform.

Definition 3.2.5. If U is an ultrafilter that concentrates on ordinals, then �U denotes the

least ordinal � on which U concentrates.

Lemma 3.2.6. If U is an ultrafilter that concentrates on ordinals, then U is tail uniform if

and only if �U is the underlying set of U .

The key property of tail uniform ultrafilters, which is quite obvious, is that they yield

canonical representatives of =E equivalence classes of ultrafilters concentrating on ordinals.

Lemma 3.2.7. For any ultrafilter U that concentrates on ordinals, then U � �U is the unique

tail uniform ultrafilter W such that U =E W . In particular, if U and W are tail uniform

ultrafilters such that U =E W , then U = W .

There is an obvious but useful characterization of �U in terms of elementary embeddings:

Lemma 3.2.8. If U is an ultrafilter that concentrates on ordinals, then �U is the least ordinal

� such that aU < jU(�).

Definition 3.2.9. The class of countably complete tail uniform ultrafilters is denoted by

Un.

Let us just point out that tail uniformity and uniformity are not the same concept, and

moreover neither is a strengthening of the other. The simplest way to separate these concepts

is by considering the Fréchet and tail filters themselves. For any set X, let FX denote the

Fréchet filter on X. For any ordinal ↵, let T↵ denote the tail filter on ↵.

Lemma 3.2.10. Suppose � is an ordinal.

• T� ✓ F� if and only if � is a cardinal.
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• F� ✓ T� if and only if |�| = cf(�).

Thus T� = F� if and only if � is a regular cardinal. If � is a singular cardinal, T� is tail

uniform but not uniform. If � is not a cardinal, then F� is uniform but not tail uniform.

One can easily obtain ultrafilters that are counterexamples to the equivalence of tail

uniformity and true uniformity by combining the previous lemma with the Ultrafilter Lemma.

Limits of ultrafilters

The following definition comes from classical ultrafilter theory:

Definition 3.2.11. SupposeW is an ultrafilter, I is a set inW , and hUi : i 2 Ii is a sequence
of ultrafilters on a set X. The W -limit of hUi : i 2 Ii is the ultrafilter

W - lim
i2I

Ui = {A ✓ X : {i 2 I : A 2 Ui} 2 W}

It is often easier to think about limits in terms of elementary embeddings:

Lemma 3.2.12. Suppose W is an ultrafilter, I is a set in W , and hUi : i 2 Ii is a sequence

of ultrafilters on a fixed set X. Then

W - lim
i2I

Ui = j�1
W [Z]

where Z = [hUi : i 2 Ii]W .

Proof. Suppose A ✓ X. Then

A 2 W - limi2I Ui () A 2 Ui for W -almost all i 2 I

() jW (A) 2 [hUi : i 2 Ii]W
() A 2 j�1

W [Z]

where the middle equivalence follows from  Loś’s Theorem.

Limits generalize the usual derived ultrafilter and pushforward constructions:
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Definition 3.2.13. Suppose X is a set and a 2 X. The principal ultrafilter on X concen-

trated at a is the ultrafilter pX
a = {A ✓ X : a 2 A}.

Definition 3.2.14. Suppose W is an ultrafilter, I is a set in W , and f : I ! X is a function.

Then the pushforward of W by f is the ultrafilter f⇤(W ) = {A ✓ X : f�1[A] 2 W}.

The following lemmas relate the derived ultrafilter construction to inverse images, limits,

and pushforwards.

Lemma 3.2.15. Suppose N and P are transitive models of ZFC, X is a set in N , i : N ! P

is an elementary embedding, and a 2 i(X). Then the N-ultrafilter on X derived from i using

a is simply i�1[pi(X)
a ].

Lemma 3.2.16. Suppose W is an ultrafilter, I is a set in W , and f : I ! X is a function.

Then

f⇤(W ) = W - lim
i2I

pX
f(i) = j�1

W [pj
W

(X)
[f ]

W

]

In other words, f⇤(W ) is the ultrafilter on X derived from jW using [f ]W .

These lemmas are trivial, but it turns out that many calculations are significantly simpler

when one treats limits and derived ultrafilters uniformly as inverse images.

To be really pedantic, the reader might point out that for example in Lemma 3.2.16,

pj
W

(X)
[f ]

W

is not an MW -ultrafilter but a V -ultrafilter. Moreover if MW is not wellfounded, then

the statement [f ]W 2 jW (X) so pj
W

(X)
[f ]

W

is not well-defined. Of course, pj
W

(X)
[f ]

W

really denotes

(pj
W

(X)
[f ]

W

)MW . For the reader’s own sake, we will try to omit all these superscripts in our

notation for principal ultrafilters when they can be guessed from context. For example, in

Lemma 3.2.16, we would usually write:

f⇤(W ) = W - lim
i2I

pf(i) = j�1
W [p[f ]

W

]

The key to understanding derived ultrafilters is to consider the natural factor embeddings

associated to them. There is a generalization of the factor embedding construction to the
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case of limits. In fact, this works somewhat more generally for arbitrary inverse images of

ultrafilters:

Lemma 3.2.17. Suppose N and P are transitive models of ZFC, X is a set in N , i : N ! P

is an elementary embedding, and D is a P -ultrafilter on i(X). Let U = i�1[D]. There is a

unique elementary embedding k : MN
U ! MP

D such that k(aU) = aD and k � jNU = jPD � i.

Proof. For any function f 2 N defined on a set in U , set

k([f ]NU ) = [i(f)]PD

It is immediate from this definiton that k(aU) = aD and k � jNU = jPD � i. We must show that

k is well-defined and elementary. This follows from the usual calculation:

MN
U ✏ '([f1]

N
U , . . . , [fn]

N
U ) () N ✏ '(f1(x), . . . , fn(x)) for U -almost all x

() P ✏ '(i(f1)(x), . . . , i(fn)(x)) for D-almost all x

() MP
U ✏ '([i(f1)]

P
D, . . . , [i(fn)]

P
D)

3.3 The Ketonen order

Characterizations of the Ketonen order

Let us begin our investigation of the Ketonen order with a purely combinatorial definition.

Definition 3.3.1. Suppose X is a set and A is a class. Then B(X) denotes the set of

countably complete ultrafilters on X, and B(X,A) denotes the set of countably complete

ultrafilters on X that concentrate on A.

Definition 3.3.2. Suppose � is an ordinal. The Ketonen order is defined on B(�) as follows.

For U,W 2 B(�):

• U <k W if there is a set I 2 W and a sequence hU↵ : ↵ 2 Ii 2Q↵2I B(�,↵) such that

U = W - limi2I U↵.
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• U k W if there is a set I 2 W and a sequence hU↵ : ↵ 2 Ii 2 Q↵2I B(�,↵ + 1) such

that U = W - limi2I U↵.

We refer to <k and k as the strict and non-strict Ketonen orders.

Of course one could take I = � \ {0} in the first bullet-point and I = � in the second,

but the combinatorics are typically clearer if one does not make this demand.

There is perhaps a potential ambiguity in our notation, since the order <k depends on

the ordinal �, which we suppress in our notation. This dependence is always immaterial,

however, since there are canonical embeddings between the various Ketonen orders. These

embeddings allow us to spin all these orders together into one (Definition 3.3.13).

Let us first explain the straightforward relationship between the strict and nonstrict

Ketonen orders.

Proposition 3.3.3. Suppose � is an ordinal and U,W 2 B(�). Then U k W if and only

if U <k W or U = W .

Proof. Let hU↵ : ↵ 2 Ii 2Q↵2I B(�,↵ + 1) witness U k W . Let

J = {i 2 I : U↵ 2 B(�,↵)}

If J 2 W , then hU↵ : ↵ 2 Ji 2Q↵2J B(�,↵) witnesses U <k W .

Assume therefore that J /2 W . For all ↵ 2 I \ J , U↵ 2 B(�,↵ + 1) \ B(�,↵). Note

that B(�,↵ + 1) \B(�,↵) contains only the principal ultrafilter p�
↵, and hence U↵ = p�

↵ for

↵ 2 I \ J . Thus
U = W - lim

↵2I
U↵ = W - lim

↵2I\J
p↵ = W

where the final equality follows easily from the definitions (or from Lemma 3.2.16).

We therefore focus our attention on the strict Ketonen order <k for now. Before estab-

lishing its basic order-theoretic properties, let us give some fairly obvious alternate char-

acterizations of it. We think the characterization Lemma 3.3.4 (2) is quite elegant in that

it demonstrates a basic relationship between the Ketonen order, the covering properties of
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ultrapowers, and extensions of filter bases to countably complete ultrafilters, foreshadowing

the powerful interactions between strong compactness and the Ultrapower Axiom that we

will see in Chapter 7 and Chapter 8. Lemma 3.3.4 (3) and (4) are more useful, though,

linking the Ketonen order and the Ultrapower Axiom through the concept of a comparison

(Definition 2.3.7).

Lemma 3.3.4. Suppose � is an ordinal and U,W 2 B(�). The following are equivalent:

(1) U <k W .

(2) jW [U ] extends to an MW -ultrafilter Z 2 BM
W (jW (�), aW ).

(3) There is a comparison (k, h) : (MU ,MW ) ! P of (jU , jW ) such that h is an internal

ultrapower embedding of MW and k(aU) < h(aW ).

(4) There is a comparison (k, h) : (MU ,MW ) ! P of (jU , jW ) such that h is close to MW

and k(aU) < h(aW ).

Proof. (1) implies (2): Fix I 2 W and hU↵ : ↵ 2 Ii 2 Q↵2I B(�,↵) witnessing U <k W .

Let Z = [hU↵ : ↵ 2 Ii]W . By  Loś’s Theorem, Z 2 BM
W (jW (�), aW ), and by Lemma 3.2.12,

j�1
W [Z] = W - limi2I Ui = U . This implies jW [U ] ✓ Z.

(2) implies (1): Similar.

(2) implies (3): Fix Z 2 BM
W (jW (�), aW ) such that jW [U ] ✓ Z. Because of the basic

structure of ultrafilters, the fact that jW [U ] ✓ Z implies that j�1
W [Z] = U . Let h : MW ! N

be the ultrapower of MW by Z. Since Z concentrates on aW , aZ < h(aW ). By Lemma 3.2.17,

there is a unique elementary embedding k : MU ! N such that k(aU) = aZ and k � jU =

h � jW . The former equation implies k(aU) < h(aW ), while the latter equation says that

(k, h) is a comparison of (jU , jW ). Therefore (3) holds.

(3) implies (4): Internal ultrapower embeddings are close.

(4) implies (2): Let Z be the MW -ultrafilter on jW (�) derived from h using k(aU). Thus

Z = h�1[pk(a
U

)]. (Here pk(a
U

) denotes the principal ultrafilter on k(jU(�)) concentrated at
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k(aU); see Definition 3.2.13 and the ensuing discussion.) Since h is close, Z belongs to MW ,

and since k(aU) < h(aW ), Z concentrates on aW . Thus Z 2 BM
W (jW (�), aW ). Moreover,

j�1
W [Z] = j�1

W [h�1[pk(a
U

)]] = j�1
U [k�1[pk(a

U

)]] = j�1
U [pa

U

] = U

In particular, jW [U ] ✓ Z, which shows (2).

Of course, there are identical characterizations for the nonstrict Ketonen order as well:

Lemma 3.3.5. Suppose � is an ordinal and U,W 2 B(�). The following are equivalent:

(1) U k W .

(2) jW [U ] extends to an MW -ultrafilter Z 2 BM
W (jW (�), aW + 1).

(3) There is a comparison (k, h) : (MU ,MW ) ! P of (jU , jW ) such that h is an internal

ultrapower embedding of MW and k(aU)  h(aW ).

(4) There is a comparison (k, h) : (MU ,MW ) ! P of (jU , jW ) such that h is close to MW

and k(aU)  h(aW ).

Lemma 3.3.4 and Lemma 3.3.5 lead to the central linearity theorem for the Ketonen

order under UA:

Theorem 3.3.6 (UA). Suppose � is an ordinal and U,W 2 B(�). Either U <k W or

W k U .

Proof. Let (k, h) : (MU ,MW ) ! N be an internal ultrapower comparison of (jU , jW ). If

k(aU) < h(aW ), then Lemma 3.3.4 (3) implies U <k W . Otherwise, h(aW )  k(aU) and so

W k U by Lemma 3.3.5.

This linearity theorem is only interesting, of course, if we know that the Ketonen order

is “well defined”: if U <k W and W <k U held for all U,W 2 B(�), it wouldn’t be very

useful. We now show that in fact the Ketonen order is a wellfounded partial order.
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Basic properties of the Ketonen order

We state the main theorem of this section, which we will prove in pieces:

Theorem. For any ordinal �, (B(�), <k) is a strict wellfounded partial order.

Thus we must show the following facts:

Proposition 3.3.7. For any ordinal �, <k is a transitive relation on B(�).

Theorem 3.3.8. For any ordinal �, <k is a wellfounded relation on B(�).

Let us warm up to this by proving irreflexivity:

Proposition 3.3.9. For any ordinal �, <k is an irreflexive relation on B(�).

Proof. Suppose towards a contradiction that U 2 B(�) satisfies U <k U . Fix I 2 U , and

hU↵ : ↵ 2 Ii 2Q↵2I B(�,↵) such that

U = U - lim
↵2I

U↵

Define A ✓ � by induction: put ↵ 2 A if and only if A \ ↵ /2 U↵. Then

A 2 U () {↵ 2 I : A 2 U↵} 2 U

() {↵ 2 I : A \ ↵ 2 U↵} 2 U

() {↵ 2 I : ↵ /2 A} 2 U

() I \ A 2 U

Since I 2 U and U is an ultrafilter, either A or I \ A must belong to U . Thus both belong

to U , contradicting that U is closed under intersections.

Notice that the proof does not use the wellfoundedness of U . We now give two proofs of

the transitivity of the Ketonen order.

Proof of Proposition 3.3.7. Suppose U <k W k Z. We will show that U <k Z. Fix the

following objects:
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• A set I 2 W and a sequence hU↵ : ↵ 2 Ii 2Q↵2I B(�,↵) such that U = W - lim↵2I U↵.

• A set J 2 Z and a sequence hW� : � 2 Ji 2Q�2J B(�, �) such that W = Z- lim�2J Z�.

Since I 2 W = Z- lim�2J W↵, the set J 0 = {� 2 J : I 2 W�} belongs to Z. For � 2 J 0,

we can define U 0
� = W�- lim↵2I U↵. Thus:

U = W - lim
↵2I

U↵

= (Z- lim
�2J

W↵)- lim
↵2I

U↵

= Z- lim
�2J 0

(W↵- lim
↵2I

U↵)

= Z- lim
�2J 0

U 0
↵

Finally, if � 2 J 0, then {↵ 2 I : U↵ 2 B(�, �)} ◆ I \ (� + 1) 2 W�, so

hU 0
� : � 2 J 0i 2

Y

�2J 0

B(�, �)

Therefore hU 0
� : � 2 J 0i witnesses U <k Z.

We are still just warming up, so let us give another proof of the transitivity of the Ketonen

order that is more diagrammatic:

Alternate Proof of Proposition 3.3.7. Using Lemma 3.3.4, fix the following objects:

• A comparison (k0, h0) : (MU ,MW ) ! N0 of (jU , jW ) such that h0 is an internal ultra-

power embedding of MW and k0(aU) < h0(aW ).

• A comparison (k1, h1) : (MW ,MZ) ! N1 of (jW , jZ) such that h1 is an internal ultra-

power embedding of MZ and k1(aW )  h1(aZ).

The rest of the proof is contained in Fig. 3.1. Consider the embeddings h0 : MW ! N0

and k1 : MW ! N1. There is a very general construction that yields a comparison of

(h0, k1). Since h0 is amenable to MW , one can define k1(h0) : N1 ! k1(N0) by shifting the
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Figure 3.1: The transitivity of the Ketonen order

fragments of h0 using k1. The well-known identity (k1 � N0) � h0 = k1(h0) � k1 implies that

(k1 � N0, k1(h0)) : (N0, N1) ! k1(N0) is a comparison of (h0, k1).

It follows easily that ((k1 � N0) � k0, k1(h0) � h1) is a comparison of (jU , jZ). Easily

k1(h0) � h0 is an internal ultrapower embedding of MZ . Finally

(k1 � N0) � k0(aU) < (k1 � N0) � h0(aW ) = k1(h0) � k1(aW )  k1(h0) � h1(aZ)

Thus U <k Z by Lemma 3.3.4.

We finally turn to wellfoundedness. We will give a combinatorial proof, but the reader can

consult Section 3.5 for a diagrammatic approach in a more general context. The proof pro-

ceeds by iterating the following strong transitivity lemma for the Ketonen order, abstracted

from the proof of Proposition 3.3.7:

50



Lemma 3.3.10. Suppose � is an ordinal, U,W 2 B(�), and U <k W . Suppose Z is an

ultrafilter, J is a set in Z, and {Wx : x 2 J} ✓ B(�) is a sequence such that

W = Z- lim
x2J

Wx

Then there is a set J 0 ✓ J in Z and {Ux : x 2 J 0} ✓ B(�) with Ux <k Wx for all x 2 J 0

such that

U = Z- lim
x2J 0

Ux

Sketch. Fix I 2 W and hU↵ : ↵ 2 Ii 2 Q↵2I B(�,↵) such that U = W - lim↵2I U↵. Let

J 0 = {x 2 J : I 2 Wx}. For x 2 J 0, let Ux = Wx- lim↵2I U↵. Then hU↵ : ↵ 2 Ii witnesses that
Ux <k Wx. Moreover the calculation in Proposition 3.3.7 shows that U = Z- limx2J 0 Ux.

This is more elegantly stated using elementary embeddings:

Lemma 3.3.11. Suppose � is an ordinal, U,W 2 B(�), and U <k W . Suppose j : V ! M is

an elementary embedding and W⇤ 2 j(B(�)) extends j[W ]. Then there is some U⇤ 2 j(B(�))

extending j[U ] such that M ✏ U⇤ <k W⇤.

Recall now the notation U | C from Definition 3.2.1, denoting the projection of an

ultrafilter U to a set C on which it concentrates. We will need the following trivial lemma,

which is also implicit in the proof of Proposition 3.3.7:

Lemma 3.3.12. Suppose ✏ and � are ordinals, U 2 B(�), and W 2 B(�, ✏). If U k W ,

then U 2 B(�, ✏) and U | ✏ k W | ✏ in the Ketonen order on B(✏).

Proof. Fix I 2 W and hU↵ : ↵ 2 Ii 2 QB(�,↵) such that U = W - lim↵2I U↵. Then since

U = W - lim↵2I U↵ = W - lim↵2I\✏ U↵ is a limit of ultrafilters concentrating on ✏, so U itself

concentrates on ✏. Moreover hU↵ | ✏ : ↵ 2 I \ ✏i witnesses that U | ✏ <k W | ✏ in the Ketonen

order on B(✏).

As we prove Theorem 3.3.8, the reader may profit from the observation that the proof

consists of the combinatorial core of the proof of the wellfoundedness of the Mitchell order

on normal ultrafilters, stripped of all applications of normality and  Loś’s Theorem.
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Proof of Theorem 3.3.8. Assume towards a contradiction that there is an ordinal � such that

<k is illfounded on B(�). Fix the least such �. Choose a sequence {Un : n < !} ✓ B(�)

that is <k-descending:

U0 >k U1 >k U2 >k · · ·

For each positive number n, we will define by recursion a set Jn 2 U0 and a sequence of

ultrafilters hUn
↵ : ↵ 2 Jni 2

Q

↵2J
n

B(�,↵) such that for all n < !, the following hold:

• Un = U - lim↵2J
n

Un
↵ .

• If n > 1, then Jn ✓ Jn�1 and for all ↵ 2 Jn, Un
↵ <k U

n�1
↵ .

To start, fix J1 2 U0 and hU1
↵ : ↵ 2 J1i 2

Q

↵2J1 B(�,↵) witnessing that U1 <k U0; that is,

U1 = U0- lim
↵2J1

U1
↵

Suppose n > 1 and Jn�1 2 U0 and hUn�1
↵ : ↵ 2 Jn�1i 2

Q

↵2J
n�1

B(�,↵) have been defined

so that Un�1 = U - lim↵2J
n�1 U

n�1
↵ . Lemma 3.3.10 (with U = Un, W = Un�1, and Z = U0)

yields Jn ✓ Jn�1 and {Un
↵ : ↵ 2 Jn} ✓ B(�) such that the two bullet points above are

satisfied. We must verify that hUn
↵ : ↵ 2 Jni 2 Q

↵2J
n

B(�,↵). But for any ↵ 2 Jn,

Un
↵ <k Un�1

↵ 2 B(�,↵), and therefore Un
↵ 2 B(�,↵) by Lemma 3.3.12, as desired. This

completes the recursive definition.

Now let J =
T

n<! Jn. For any ↵ 2 J , we have

U1
↵ >k U

2
↵ >k U

3
↵ >k · · ·

by the second bullet point above. Since Un
↵ 2 B(�,↵) for all n < !, Lemma 3.3.12 implies

U1
↵ | ↵ >k U

2
↵ | ↵ >k U

3
↵ | ↵ >k · · ·

Thus the restriction of <k to B(↵) is illfounded. This contradicts the minimality of �.

Observe that the proof of Theorem 3.3.8 goes through in ZF + DC. The structure of

countably complete ultrafilters on ordinals is of great interest in the context of the Axiom
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of Determinacy, and so the existence of a combinatorial analog of the Mitchell order in that

context raises a number of very interesting structural questions that we will not pursue

seriously in this dissertation.

The global Ketonen order

Lemma 3.3.12 above suggests extending the Ketonen order to an order on ultrafilters that

is agnostic about the underlying sets of the ultrafilters involved:

Definition 3.3.13. Suppose U and W are countably complete ultrafilters on ordinals. The

(global) Ketonen order is defined as follows:

• U <k W if U | � <k W | �.

• U k W if U | � k W | �.

where � is any ordinal such that U and W both concentrate on �.

By Lemma 3.3.12, this definition does not conflict with our original definition of the Keto-

nen order on B(�). In fact, various characterizations of the Ketonen order from Lemma 3.3.4

translate smoothly to this context:

Lemma 3.3.14. Suppose ✏ and � are ordinals, U 2 B(✏), and W 2 B(�). Then the

following are equivalent:

(1) U <k W .

(2) There exist I 2 W and hU↵ : ↵ 2 Ii 2Q↵2I B(✏,↵) such that U = W - lim↵2I U↵.

(3) jW [U ] ✓ Z extends to an MW -ultrafilter Z 2 BM
W (jW (✏), aW ).

(4) There is a comparison (k, h) : (MU ,MW ) ! P of (jU , jW ) such that h is an internal

ultrapower embedding of MW and k(aU) < h(aW ).
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(5) There is a comparison (k, h) : (MU ,MW ) ! P of (jU , jW ) such that h is close to MW

and k(aU) < h(aW ).

We have the following simple relationship between the space of an ultrafilter and its

position in the Ketonen order:

Lemma 3.3.15. Suppose U and W are countably complete ultrafilters on ordinals.

• If �U < �W , then U <k W .

• If U k W , then �U  �W .

Proof. To see the first bullet point, note that for any ↵ 2 [�U , �W ), ↵ � �U and hence U con-

centrates on ↵. Thus the constant sequence hU : ↵ 2 [�U , �W )i belongs toQ↵2[�
U

,�
W

) B(✏,↵),

and clearly U = W - lim↵2[�
U

,�
W

) U . By Lemma 3.3.14, U <k W .

The second bullet point is immediate from Lemma 3.3.12.

The one issue with the global Ketonen order, which presents only notational di�culties,

is that in this generalized context, k is no longer the irreflexive part of <k. Instead we have

the following fact, where =E is the change-of-space relation defined in Definition 3.2.2:

Lemma 3.3.16. Suppose U and W are countably complete ultrafilters on ordinals. Then

U k W if and only if U <k W or U =E W .

Since the =E-relation convenient to restrict the global Ketonen order to the class of tail

uniform ultrafilters Un:

Lemma 3.3.17. Suppose U,W 2 Un. Then U k W if and only if U <k W or U = W .

Definition 3.3.18. For any ordinal �, let Un(�) denote the set of tail uniform ultrafilters U

such that �U  �.

Lemma 3.3.19. For all ordinals �, the map � : B(�) ! Un(�) defined by �(U) = U | �U is

an isomorphism from (B(�), <k,k) to (Un(�), <k,k). Thus the Ketonen order is a set-like

wellfounded partial order on Un.
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The following easy lemma generalizes our work in this section, showing that not only

do the various Ketonen orders on B(�) cohere, but in fact, order-preserving maps between

ordinals induce order-preserving maps on their associated Ketonen orders:

Lemma 3.3.20. Suppose ✏  � are ordinals and f : ✏ ! � is an increasing function. For

any U,W 2 B(✏), U <k W in the Ketonen order on B(✏) if and only if f⇤(U) <k f⇤(W ) in

the Ketonen order on B(�).

Sketch. Fix I 2 W and hU↵ : ↵ 2 Ii 2 Q↵2I B(✏,↵) such that U = W - lim↵2I U↵. Let

J = f [I], and for ↵ 2 I, let Zf(↵) = f⇤(W↵). Thus J 2 f⇤(W ). Moreover, for all ↵ 2 I,

f(↵) ◆ f [↵] 2 Zf(↵) since f is increasing, so Zf(↵) 2 B(�, f(↵)). Thus hZ� : � 2 Ji 2
Q

�2J B(�, �). Finally

f⇤(U) = W - lim
↵2I

f⇤(W↵) = f⇤(W )- lim
�2f [I]

Z↵

It follows that f⇤(U) <k f⇤(W ). The other direction is similar.

3.4 Orders on ultrafilters

In this section, we discuss some generalizations of the Ketonen order and compare the Ke-

tonen order with other well-known orders.

The Mitchell order

The Ketonen order can be seen as a combinatorial generalization of the Mitchell order on

normal ultrafilters. We will discuss the relationship between the Ketonen order and the

generalization of the Mitchell order to arbitrary countably complete ultrafilters at length in

Chapter 4, but for now, we satisfy ourselves by proving that the Ketonen and Mitchell orders

coincide on normal ultrafilters.

Theorem 3.4.1. Suppose U and W are normal ultrafilters. Then U C W if and only if

U <k W .
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Proof. Suppose first that U and W are normal ultrafilters on distinct cardinals  and �.

Clearly U C W if and only if  < �. Moreover by Lemma 3.3.15, U <k W if and only if

 < �. Thus U C W if and only if U <k W .

Assume instead that U and W lie on the same cardinal . By Lemma 2.2.28, U and

W are -complete and  = aU = aW . The key fact we use is that since crt(jW ) = ,

jW (A) \  = A for all A ✓ .

Suppose first that U C W . Then U 2 MW . Working in MW , consider the projection

Z = U | jW () 2 BM
W (jW (),). For any A ✓ , jW (A) \  = A 2 U , or in other words,

jW (A) 2 Z. In other words, jW [U ] ✓ Z, so by Lemma 3.3.4, U C W .

Conversely, suppose U <k W . Fix Z 2 BM
W (jW (),) such that U = j�1

W [Z]. Suppose

A ✓ . Then A 2 U if and only if jW (A)\ 2 Z if and only if A 2 Z. Therefore U = Z | ,
so U 2 MW . This implies U C W .

Thus the wellfoundedness of the Mitchell order follows from the wellfoundedness of the

Ketonen order. Notice that this theorem gives another proof of the linearity of the Mitchell

order on normal ultrafilters under UA. Finally, the proof has the following consequence:

Corollary 3.4.2. Suppose  is a cardinal, U 2 B(), and W is a normal ultrafilter on .

Then U <k W if and only if U C W .

Thus the Ketonen predecessors of a normal ultrafilter W on  are precisely B()\MW .

We will see various nontrivial generalizations of this fact to more general types of ultrafilters

than normal ones.

The Rudin-Keisler order

In this section, we briefly recall the theory of the Rudin-Keisler order and explain its relation-

ship with the Ketonen order. We also introduce the notion of an incompressible ultrafilter,

which will be a useful technical tool.

The Rudin-Keisler order is defined in terms of pushforward ultrafilters (Definition 3.2.14).

56



Definition 3.4.3. Suppose U and W are ultrafilters. The Rudin-Keisler order is defined by

setting U RK W if there is a function f : I ! X such that f⇤(W ) = U where I 2 W and

X is the underlying set of U .

We could of course take I to be the underlying set ofW above. The Rudin-Keisler order is

a (nonstrict) preorder on the class of ultrafilters. For us, the most important characterization

of the Rudin-Keisler order uses elementary embeddings:

Lemma 3.4.4. Suppose U and W are ultrafilters. Then U RK W if and only if there is an

elementary embedding k : MU ! MW such that k � jU = jW .

Proof. Let X be the underlying set of U .

First assume U RK W . Fix I 2 W and f : I ! X such that f⇤(W ) = U . Let a = [f ]W ,

so by Lemma 3.2.16, U is the ultrafilter on X derived from jW using a. Let k : MU ! MW

be the factor embedding, so k(aU) = a and k � jU = jW . Then k witnesses the conclusion of

the lemma.

Conversely, assume there is an elementary embedding k : MU ! MW such that k � jU =

jW . Let b = k(aU). Then b 2 jW (X). On the one hand, U is equal to the ultrafilter on

X derived from jW using b. (Explicitly: U = j�1
U [pa

U

] = j�1
U [k�1[k(pa

U

)]] = j�1
W [pb].) Fix

I 2 W and f : I ! X such that [f ]W = b. Then by Lemma 3.2.16, f⇤(W ) is the ultrafilter

on X derived from jW using b, or in other words f⇤(W ) = U . Thus U RK W as desired.

A second combinatorial formulation of the Rudin-Keisler order is in terms of partitions

which will become relevant when we study indecomposability (especially in Theorem 7.5.24):

Lemma 3.4.5. Suppose U and W are ultrafilters. Let X be the underlying set of U . Then

U RK W if and only if there is a sequence of pairwise disjoint sets hYx : x 2 Xi such that

U =
�

A ✓ X :
S

x2A Yx 2 W
 

.

The following is the fundamental theorem of the Rudin-Keisler order:
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Theorem 3.4.6. Suppose U and W are ultrafilters. Then U ⇠= W if and only if U RK W

and W RK U .

We sketch the proof even though we do not need it in what follows. This involves a very

interesting rigidity theorem for pushforwards:

Lemma 3.4.7. Suppose U is an ultrafilter on X and f : X ! X is a function. If f⇤(U) = U

then f(x) = x for U-almost all x 2 X.

Proof. Assume f : X ! X is such that f(x) 6= x for all x 2 X. We will show that f⇤(U) 6= U .

Claim. There is a partition X = A0 [ A1 [ A2 such that f [An] ✓ X \ An for n = 0, 1, 2.

Sketch. Consider the directed graph G with vertices X and a directed edge from x to f(x) for

each x 2 X. Our claim above amounts to the fact that G is 3-colorable. It su�ces to show

that each connected subgraph H ✓ G is 3-colorable. Therefore suppose H is a connected

subgraph of G. The key point is that H contains at most one cycle (since G is a “functional

graph”), so one obtains an acyclic graph H 0 by removing an edge of H if necessary. Since

H 0 is acyclic, H 0 is 2-colorable. By changing the color of at most one vertex in the coloring

of H 0, one obtains a 3-coloring of H.

Since A0 [A1 [A2 = X 2 U , either A0, A1, or A2 belongs to U . Assume without loss of

generality that A0 2 U . Then X \ A0 ◆ f [A0] 2 f⇤(U), so X \ A0 2 f⇤(U) as desired.

Let us reformulate this in terms of ultrapowers:

Theorem 3.4.8. Suppose U is an ultrafilter and k : MU ! MU is an elementary embedding

such that k � jU = jU . Then k is the identity.

Proof. Let X be the underlying set of U . Fix X 2 U and a function f : X ! X such that

[f ]U = k(aU). Then by Lemma 3.2.16, f⇤(U) is the ultrafilter on X derived from jU using

k(aU), which is easily seen to equal U . (Yet another inverse image calculation: j�1
U [pk(a

U

)] =

(k � jU)�1[pk(a
U

)] = j�1
U [k�1[pk(a

U

)]] = j�1
U [pa

U

] = U .) Therefore by Lemma 3.4.7, f � I = id
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for some I 2 U . Thus k(aU) = [f ]U = aU . It follows that k � jU [V ][ {aU} is the identity, so

k � MU is the identity since MU = HM
U (jU [V ] [ {aU}).

Lemma 3.4.7 immediately implies Theorem 3.4.6:

Proof of Theorem 3.4.6. Let X be the underlying set of U and Y be the underlying set of

W . The trivial direction is to prove that U ⇠= W implies U RK W and W RK U . Fix

I 2 U , J 2 W , and a bijection f : I ! J such that for all A ✓ I, A 2 U if and only if

f [A] 2 W . Viewing f as a function p : I ! Y , we have W = p⇤(U). Viewing f�1 as a

function p : J ! X, we have U = p⇤(W ). This implies implies W RK U and U RK W .

Conversely assume U RK W and W RK U . Fix I 2 U and f : I ! Y such that

f⇤(U) = W . Fix J 2 W and g : J ! X such that g⇤(W ) = U . We claim there is a set

I 0 ✓ I such that I 0 2 U and g � f � I 0 is the identity. To see this, note that (g � f)⇤(U) =

g⇤(f⇤(U)) = g⇤(W ) = U . Therefore by Lemma 3.4.7, there is a set I 0 ✓ I such that I 0 2 U

and g � f is the identity.

Theorem 3.4.6 motivates the following definition:

Definition 3.4.9. The strict Rudin-Keisler order is defined on ultrafilters U and W by

setting U <RK W if U RK W and W 6⇠= U .

We now discuss the structure of the Rudin-Keisler order on countably complete ultrafilters

and its relationship to the Ketonen order. To facilitate this discussion, we introduce a revised

version of the Rudin-Keisler order. Recall that a function f defined on a set of ordinals I is

regressive if f(↵) < ↵ for all ↵ 2 I.

Definition 3.4.10. Suppose U and W are ultrafilters on ordinals. Let X be the underlying

set of U . The revised Rudin-Keisler order is defined by setting U <rk W if there is a set

I 2 W and a regressive function f : I ! X such that f⇤(W ) = U .

Lemma 3.4.11. If U and W are ultrafilters on ordinals, then U <rk W if and only if there

is an elementary embedding k : MU ! MW such that k � jU = jW and k(aU) < aW .
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Corollary 3.4.12. The Ketonen order and the Rudin-Keisler order extend the revised Rudin-

Keisler order.

Lemma 3.4.13. For any ultrafilter U , the collection of tail uniform ultrafilters isomorphic

to U is linearly ordered by the revised Rudin-Keisler order.

Proof. Suppose W0
⇠= U ⇠= W1 are tail uniform ultrafilters. Then W0 <rk W1 if and only if

MU ✏ aW0 < aW1 .

We now introduce a concept that is very useful in the study of countably complete

ultrafilters. (The same concept was considered by Ketonen [13], who called them normalized

ultrafilters.)

Definition 3.4.14. A tail uniform ultrafilter U on an ordinal � is incompressible if for any

set I 2 U , no regressive function on I is one-to-one.

Lemma 3.4.15. Suppose U is tail uniform. The following are equivalent:

(1) U is incompressible.

(2) If W <rk U , then W <RK U .

Lemma 3.4.16. A tail uniform ultrafilter U is incompressible if and only if it is the <rk-

minimum element of C = {U 0 2 Un : U 0 ⇠= U}.

Proof. By Lemma 3.4.15, U is an <rk-minimal element of C. Since <rk linearly orders C by

Lemma 3.4.13, U is the <rk-minimum element of C.

Corollary 3.4.17. An ultrafilter is isomorphic to at most one incompressible ultrafilter.

Lemma 3.4.18. Suppose U is tail uniform ultrafilter on �. Then the following are equivalent:

(1) U is incompressible.

(2) aU is the least ordinal a of MU such that MU = HM
U (jU [V ] [ {a}).
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(3) aU is the largest ordinal a of MU such that a 6= jU(f)(b) for any function f : � ! � and

b < a.

If U is countably complete, then the collection of tail uniform ultrafilters isomorphic to

U is wellordered by <rk, and therefore it has a minimum element. The following is the key

existence theorem for incompressible ultrafilters:

Lemma 3.4.19. Any countably complete ultrafilter U is isomorphic to a unique incompress-

ible ultrafilter W which can be obtained in any of the following ways:

• W is the <rk-minimum element of the isomorphism class of U .

• W = f⇤(U) where f : �U ! �U is the least one-to-one function modulo U .

• W is the tail uniform ultrafilter derived from jU using ↵ where ↵ is the ordinal defined

in either of the following ways:

– ↵ is least such that MU = HM
U (jU [V ] [ {↵}).

– ↵ is largest such that ↵ 6= jU(f)(�) for any � < ↵.

What makes incompressible ultrafilters useful is the following dual to Lemma 3.4.15:

Proposition 3.4.20. Suppose U is incompressible and W is an ultrafilter on an ordinal. If

U <RK W then U <rk W .

Proof. Assume U <RK W . Fix k : MU ! MW such that k � jU = jW . Since U 6⇠= W ,

k is not an isomorphism. It follows that aW /2 k[MU ]: otherwise jW [V ] [ {aW} ✓ k[MU ]

and so MW = HM
W (jW [V ] [ {aW}) ✓ k[MU ], and therefore k is surjective and hence an

isomorphism.

To show that U <rk W , it su�ces by Lemma 3.4.11 to show that k(aU) < aW . Sup-

pose not. Then aW  k(aU), and since aW /2 k[MU ], in fact aW < k(aU). Since MW =
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HM
W (jW [V ] [ {aW}) we can fix a function f : �W ! �W such that jW (f)(aW ) = k(aU).

Since aW < k(aU),

MW ✏ 9⇠ < k(aU) jW (f)(⇠) = k(aU)

Since jW (f) = k(jU(f)), the elementarity of k : MU ! MW implies

MU ✏ 9⇠ < aU jU(f)(⇠) = aU

This contradicts Lemma 3.4.18 (3), which in particular states that aU 6= jU(f)(⇠) for any

⇠ < aU .

Corollary 3.4.21. The strict Rudin-Keisler order and the revised Rudin-Keisler order co-

incide on incompressible ultrafilters.

Corollary 3.4.22. The Ketonen order extends the strict Rudin-Keisler order on countably

complete incompressible ultrafilters.

We remark that given Corollary 3.4.22, one might guess that <rk = RK \ <k, but it is

not hard to construct a counterexample under weak large cardinal assumptions.

Corollary 3.4.23 (Solovay). The strict Rudin-Keisler order is wellfounded on countably

complete ultrafilters.

Proof. Suppose towards a contradiction that

U0 >RK U1 >RK U2 >RK · · ·

is a descending sequence of countably complete ultrafilters in the strict Rudin-Keisler order.

For each n, let Wn be the unique incompressible ultrafilter isomorphic to Un. Then

W0 >RK W1 >RK W2 >RK · · ·

since the strict Rudin-Keisler order is isomorphism invariant. But by Corollary 3.4.22, the

Ketonen order extends the strict Rudin-Keisler order on countably complete incompressible

ultrafilters, and therefore

W0 >k W1 >k W2 >k · · ·
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This contradicts the wellfoundedness of the Ketonen order (Lemma 3.3.19).

Note that this yields another proof of Theorem 3.4.6 in the case that U and W are

countably complete.

3.5 Variants of the Ketonen order

Minimality of internal embeddings

In this subsection, we study an extension of the Ketonen order that provides some insight

into arbitrary extender embeddings (as opposed to just ultrapower embeddings). This order

also clarifies the connection between the Ketonen order and the mouse order from inner

model theory (which is also known as the Dodd-Jensen order). Using these ideas, we prove a

lemma (Theorem 3.5.10) that states that if N and M are transitive models and j : N ! M

is an elementary embedding that is definable over N from parameters, then j(↵)  k(↵) for

any other elementary embedding k : N ! M .

Definition 3.5.1. A pointed model is a structure (M, ⇠) such that M is a transitive model

of ZFC and ⇠ 2 OrdM . If M = (M, ⇠) is a pointed model, then ⇠M = ⇠.

We allow pointed models (M, ⇠) where M is a proper class. We abuse notation by

confusing a pointed model M = (M, ⇠) with its underlying set M . We therefore sometimes

denote ⇠ by ⇠M instead of ⇠M.

When we discuss elementary embeddings of pointed models, we never impose elemen-

tarity in the language of a pointed model (i.e., with a distinguished constant for ⇠), only

elementarity in the language of set theory.

Definition 3.5.2. Suppose N and M are transitive models of ZFC. An elementary embed-

ding j : N ! M is:

• an extender embedding if j is cofinal and M = HM(j[M ] [ S) for some S 2 M .
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• an internal extender embedding if it is furthermore definable over N .

Definition 3.5.3. Suppose M and N are pointed models.

The Ketonen order on models is defined on M and N by setting M <k N if there are

embeddings (k, h) : (M,N) ! P such that k(⇠M) < h(⇠N) and h is an internal extender

embedding of N .

The nonstrict Ketonen order is defined on M and N by setting M k N if there are

embeddings (k, h) : (M,N) ! P such that k(⇠M)  h(⇠N) and h is an internal extender

embedding of N .

Ketonen equivalence is defined on M and N by setting M =E N if M k N and N k M .

The transitivity for the Ketonen order on pointed models uses a trivial “comparison

lemma” that is provable in ZFC.

Lemma 3.5.4. Suppose M , N0, and N1 are transitive models of ZFC. Suppose h : M ! N0

is an internal extender embedding and k : M ! N1 is a cofinal elementary embedding. Then

there is a comparison (`, i) : (N0, N1) ! P of (h, k) such that i is an internal extender

embedding of N1.

Proof. Let ` = k � N0 and i = k(h). Then i is an internal extender embedding and

` � h = k � h = k(h) � k = i � k, so (`, i) is a comparison of (h, k).

Lemma 3.5.5. If M0 <k M1 k M2, then M0 <k M2.

Proof. Suppose M0 <k M1 k M2. Let (k0, h0) : (M0,M1) ! N0 witness M0 <k M1. Let

(k1, h1) : (M1,M2) ! N1 witness M1 k M2. Applying Lemma 3.5.4, let

(`, i) : (N0, N1) ! P

be a comparison of (h0, k1) such that i is an internal extender embedding of N1. Let k = `�k0
and let h = i � h1. Then (k, h) : (M0,M2) ! P and h is an internal extender embedding of

M2 since it is the composition of the internal extender embeddings i and h1. Finally,

k(⇠M0) = ` � k0(⇠M0) < ` � h0(⇠M1) = i � k1(⇠M1)  i � h1(⇠M2) = h(⇠M2)

64



We will prove the wellfoundedness of the Ketonen order on pointed models that satisfy

a very weak form of iterability.

Definition 3.5.6. A transitive model M of ZFC is !-linearly iterable if the following holds.

Suppose

M = M0
h0�! M1

h1�! M2
h2�! · · ·

is such that for all i < !, hi : Mi ! Mi+1 is an internal extender embedding, then its direct

limit is wellfounded.

The following is a well-known fact, versions of which are due to Gaifman, Kunen, and

Mitchell (see [14]):

Lemma 3.5.7. Suppose M is a model of ZFC such that OrdM has uncountable cofinality.

Then M is !-linearly iterable. Similarly, any inner model is !-linearly iterable.

The proof of the wellfoundedness of the Ketonen order on pointed models is based on

the proof of the wellfoundedness of the Dodd-Jensen order.

Theorem 3.5.8. The Ketonen order is wellfounded on !-linearly iterable pointed models.

Proof. To simplify notation, we isolate the main step of the proof as a lemma:

Lemma 3.5.9. Suppose that M0 >k M1 >k M2 >k · · · is a descending sequence of pointed

models. Then there is a descending sequence N0 >k N1 >k N2 >k · · · of pointed models and

an internal extender embedding h : M0 ! N0 with ⇠N0 < h(⇠M0).

Proof. The proof is illustrated by Fig. 3.2. Let (hi, ki) : (Mi,Mi+1) ! Ni witness Mi >k

Mi+1. We endow Ni with the structure of a pointed model by letting ⇠N
i

= ki(⇠M
i+1).

Setting h = h0, particular, h is an internal extender embedding and ⇠N0 < h(⇠M0). It

remains to verify that N0 >k N1 >k N2 >k · · ·. Fix i < !. By Lemma 3.5.4, there is

a comparison (h0
i, k

0
i) : (Ni, Ni+1) ! Pi of (ki, hi+1) such that h0

i is an internal extender
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Figure 3.2: The proof of Lemma 3.5.9

embedding of Ni. As in Lemma 3.5.5,

h0
i(⇠Ni

) = h0
i(ki(⇠Mi+1)) = k0

i(hi+1(⇠M
i+1)) > k0

i(ki+1(⇠M
i+1)) = k0

i(⇠Ni+1)

and hence Ni >k Ni+1.

Now suppose towards a contradiction that M0
0 >k M0

1 >k M0
2 >k · · · is a descending

sequence of !-linearly iterable pointed models. By recursion, using the lemma, one obtains

sequences M i
0 >k M

i
1 >k M

i
2 >k · · · and internal extender embeddings hi : M i

0 ! M i+1
0 with

⇠M i+1
0

< hi(⇠M i

0
) for all i < !. But then the iteration

M0
0

h0�! M1
0

h1�! M2
0

h2�! · · ·

has an illfounded direct limit, which contradicts that M0
0 is !-linearly iterable.

The wellfoundedness of the Ketonen order on pointed models has some useful conse-

quences. Of course, it provides an alternate proof of the wellfoundedness of the Ketonen

order:
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Alternate Proof of Theorem 3.3.8. For U 2 Un, let �(U) = (MU , aU). Then for any U 2 Un,

�(U) is an !-linearly iterable pointed model. Moreover, if U <k W , then �(U) <k �(W )

since internal ultrapower embeddings are internal extender embeddings. Thus the Ketonen

order is wellfounded on Un since by Theorem 3.5.8, the Ketonen order is wellfounded on

!-linearly iterable models.

More interestingly, Theorem 3.5.8 implies a coarse version of the Dodd-Jensen Lemma

(proved for example, [15]):

Theorem 3.5.10. Suppose M is an !-linearly iterable model. Suppose h, k : M ! N

are elementary embeddings and h is an internal extender embedding of M . Then for all

↵ 2 OrdM , h(↵)  k(↵).

Proof. Suppose towards a contradiction that k(↵) < h(↵). Then (k, h) : (M,M) ! N

witnesses (M,↵) <k (M,↵), contradicting Theorem 3.5.8.

The idea of generalizing arguments from inner model theory to prove results like Theo-

rem 3.5.10 is due to Woodin [10], who proved the similar theorem that ifM and N are models

of ZFC and M is finitely generated, then there is at most one close embedding from M to

N . Woodin’s theorem actually follows from the restriction of Theorem 3.5.10 to ultrapower

embeddings.

By tracing through the proof of this theorem, one can prove the following fact, which is

really a theorem scheme:

Theorem 3.5.11. Suppose M and N are inner models, h, k : M ! N are elementary

embeddings. If h is definable over M , then h(↵)  k(↵) for all ordinals ↵.

There are some metamathematical di�culties involving the linear iterability of an inner

model M by an !-sequence of definable embeddings: it is not in general clear that this is

first-order expressible in the language of set theory with a predicate for M . The iterability
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required for the proof of Theorem 3.5.10, however, can be stated and proved. We omit the

proof since we have no applications of this more general theorem.

The seed order

We now define the seed order, a variant of the Ketonen order that uses fully internal ultra-

power comparisons.

Definition 3.5.12. Suppose U and W are countably complete ultrafilters on ordinals.

The seed order is defined by setting U <S W if there is an internal ultrapower comparison

(k, h) of (jU , jW ) such that k(aU) < h(aW ).

The nonstrict seed order is defined by setting U S W if there is an internal ultrapower

comparison (k, h) of (jU , jW ) such that k(aU)  h(aW ).

Seed equivalence is defined by setting U =S W if there is an internal ultrapower compar-

ison (k, h) of (jU , jW ) such that k(aU) = h(aW ).

Lemma 3.5.13. If U and W are countably complete ultrafilters, then U =S W if and only

if U =E W .

Lemma 3.5.14. Suppose U0 and U1 are countably complete ultrafilters concentrating on

ordinals. Then U0 S U1 if and only if U0 <S U1 or U0 =S U1.

By the characterization of the Ketonen order in terms of comparisons (Lemma 3.3.4) we

have the following fact:

Lemma 3.5.15. The Ketonen order extends the seed order.

It follows that the seed order is a strict wellfounded set-like relation. (Transitivity is

another story; see Proposition 3.5.18 below.)

Corollary 3.5.16. Suppose U and W are countably complete ultrafilters on ordinals. Then

U =S W if and only if U S W and W S U .
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Proposition 3.5.17 (UA). The seed order linearly orders Un.

Proof. By the definition of the Ultrapower Axiom, the nonstrict seed order is a total relation

on Un. By Corollary 3.5.16 and the fact that =S restricts to equality on Un, the seed order

is antisymmetric on Un. Thus the seed order linearly orders Un.

The seed order, unlike the Ketonen order, is not provably transitive in ZFC (for mundane

reasons):

Proposition 3.5.18. The seed order is transitive if and only if the Ultrapower Axiom holds.

The proof uses the following trivial variant of Lemma 3.3.15.

Lemma 3.5.19. Suppose ↵ is an ordinal and U is a countably complete ultrafilter that

concentrates on ordinals. Then U and the principal ultrafilter p↵ are comparable in the seed

order:

• U <S p↵ if and only if �U  ↵.

• U =E p↵ if and only if �U = ↵ + 1.

• U >S p↵ if and only if ↵ + 1 < �U .

Proof of Proposition 3.5.18. Suppose j0 : V ! M0 and j1 : V ! M1 are ultrapower em-

beddings. We will show they can be compared. For i = 0, 1, fix ordinals ↵i 2 Mi such

that Mi = HM
i(ji[V ] [ {↵i}) with the further property that letting Ui be the tail uniform

ultrafilter derived from ji using ↵i, �U0 < �U1 .

By Lemma 3.5.19,

U0 <S p�
U0

S U1

Thus if the seed order is transitive, U0 S U1. Since j0 = jU0 and j1 = jU1 the fact that

U0 <S U1 implies in particular that there is an internal ultrapower comparison of (j0, j1).

This verifies the Ultrapower Axiom for the pair (j0, j1).
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We now consider the seed order on pointed models.

Definition 3.5.20. A pointed ultrapower is a pointed model M whose underlying class M

is an ultrapower of the universe V . A pointed ultrapower embedding is a pair (j, ⇠) where j

is an ultrapower embedding and ⇠ is an ordinal.

There is a natural identification of countably complete ultrafilters with a certain class of

pointed ultrapower embeddings:

Definition 3.5.21. Suppose U is a countably complete ultrafilter on an ordinal. Then the

pointed ultrapower embedding representing U is (jU , aU). A pointed ultrapower embedding

(j, ⇠) represents an ultrafilter if it is the pointed ultrapower embedding representing some

ultrafilter.

We apologize for bombarding the reader with definitions. The following definitions extend

the seed order and Ketonen order to pointed ultrapowers and embeddings.

Definition 3.5.22. Suppose M and N are pointed ultrapowers.

The seed order (nonstrict seed order) is defined by setting M <S N (M S N) if there is

an internal ultrapower comparison (k, h) : (M,N) ! P such that k(⇠M) < h(⇠N) (k(⇠M) 
h(⇠N)).

Seed equivalence is defined by setting M S N if there is an internal ultrapower compar-

ison (k, h) : (M,N) ! P such that k(⇠M) = h(⇠N).

Definition 3.5.23. Suppose (i, ⌫) and (j, ⇠) are pointed embeddings.

The seed order (nonstrict seed order) is defined by setting (i, ⌫) <S (j, ⇠) ((i, ⌫) S (j, ⇠))

if there is an internal ultrapower comparison (k, h) of (i, j) such that k(⌫) < h(⇠) (k(⌫) 
h(⇠)).

Seed equivalence is defined on by setting (i, ⌫) =S (j, ⇠) if there is an internal ultrapower

comparison (k, h) of (i, j) such that k(⌫) = h(⇠).
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The Ketonen order (nonstrict Ketonen order) is defined on by setting (i, ⌫) <k (j, ⇠)

((i, ⌫) k (j, ⇠)) if there is a comparison (k, h) of (i, j) such that h is an internal ultrapower

embedding and k(⌫) < h(⇠) (k(⌫)  h(⇠)).

Ketonen equivalence is defined by setting (i, ⌫) =k (j, ⇠) if (i, ⌫) k (j, ⇠) and (j, ⇠) k

(i, ⌫)

The following is in a sense the strongest consequence of UA for these orders:

Proposition 3.5.24 (UA). Suppose (i, ⌫) and (j, ⇠) are pointed ultrapower embeddings.

Then either (i, ⌫) <S (j, ⇠), (i, ⌫) =S (j, ⇠), or (i, ⌫) >S (j, ⇠).

Definition 3.5.25. If (j, ⇠) is a pointed ultrapower embedding, thenM(j) denotes the target

model of j and M(j, ⇠) denotes the pointed ultrapower (M(j), ⇠).

Lemma 3.5.26 (UA). Suppose (i, ⌫) and (j, ⇠) are pointed ultrapower embeddings. Then

the following are equivalent:

(1) (i, ⌫) S (j, ⇠).

(2) (i, ⌫) k (j, ⇠).

(3) M(i, ⌫) S M(j, ⇠).

(4) M(i, ⌫) k M(j, ⇠).

Proof. The implications from (1) to (2) to (3) to (4) are trivial, so to prove the lemma,

it su�ces to show that (4) implies (1). Therefore assume M(i, ⌫) k M(j, ⇠). Assume

(4) fails, towards a contradiction, so that by Proposition 3.5.24, (j, ⇠) <S (i, ⌫). Therefore

M(j, ⇠) <S M(i, ⌫) and hence M(j, ⇠) <k M(i, ⌫). By Lemma 3.5.5, M(i, ⌫) <k M(i, ⌫),

contradicting Theorem 3.5.8.

Unlike their restrictions to ultrafilters, the relations =E and =S are far from trivial

on pointed ultrapowers and embeddings. When one of the pointed ultrapower embeddings

involved represents an ultrafilter, =S is closely related to the Rudin-Froĺık order (Chapter 5):
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Lemma 3.5.27. Suppose (i, ⌫) and (j, ⇠) are pointed ultrapower embeddings such that (i, ⌫)

represents an ultrafilter. Then (i, ⌫) =S (j, ⇠) if and only if there is an internal ultrapower

embedding e : M(i) ! M(j) such that e � i = j and e(⌫) = ⇠.

Proof. We prove the forwards direction, since the converse is trivial. Let M = M(i) and

N = M(j). Fix an internal ultrapower comparison (k, h) : (M,N) ! P of (i, j) with

k(⌫) = h(⇠).

We claim that k[M ] ✓ h[N ]. Since i represents an ultrafilter, M = HM(i[V ] [ {⌫}), and
hence k[M ] = HP (k[i[V ] [ {⌫}]). But k(⌫) = h(⇠) 2 h[N ] and k[i[V ]] = h[j[V ]] ✓ h[N ].

Thus k[i[V ] [ {⌫}] ✓ h[N ], so that k[M ] = HP (k � i[V ] [ {k(⌫)}) ✓ h[N ], as claimed.

Let e = h�1 � k. Then e : M ! N is an elementary embedding and since e � i =

h�1 � k � i = h�1 � h � j, we have e � i = j. It follows that e is an ultrapower embedding

of M . Since h � e = k and k is close to M , e is an internal ultrapower embedding of M by

Lemma 2.2.17. Finally, e(⌫) = h�1(k(⌫)) = h�1(h(⇠)) = ⇠.

Corollary 3.5.28 (UA). Suppose i : V ! M and j : V ! M are ultrapower embeddings

with the same target model. Then i = j.

Proof. Fix ⇠ such that M = HM(i[V ] [ {⇠}). Since M(i, ⇠) = (M, ⇠) = M(j, ⇠), we must

have (i, ⇠) =S (j, ⇠) by Lemma 3.5.26. By Lemma 3.5.27, it follows that there is an internal

ultrapower embedding k : M ! M such that k � i = j and k(⇠) = ⇠. Since k is internal to

M , k is the identity, and therefore i = j.

The structure of the equivalence relation =S on pointed models under UA seems quite

interesting. For example, for all we know, if M =S N then there some H of which both M

and N are ultrapowers such that M =S H =S N .

The width of an embedding

As a brief digression, we make some general remarks about the size of ultrafilters necessary

to realize compositions of ultrapower embeddings. It turns out to be easier to work in a bit
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more generality, using a definition due to Cummings [16]:

Definition 3.5.29. Suppose M and N are transitive models of ZFC and j : M ! N is an

extender embedding. The width of j, denoted width(j), is the least M -ordinal ◆ such that

N = HN(j[M ] [ sup j[◆]).

Note that an embedding is an extender embedding if and only if its width is well-defined.

For ultrapower embeddings, there is a simple relationship between width and size. Recall

from Definition 2.2.25, which generalizes the notion of size (i.e., �U) to M -ultrafilters U .

Proposition 3.5.30. If j : M ! N is the ultrapower embedding associated to an M-

ultrafilter U , then width(j) = �U + 1.

There are really two key facts about width, both of which are generalized by the theory

of generators (Lemma 5.4.25). The first can be summarized that narrow embeddings are

continuous at large regular cardinals � (i.e., j(�) = sup j[�]):

Lemma 3.5.31. Suppose j : M ! N is an extender embedding and � is an ordinal of

M-cofinality at least width(j). Then j(�) = sup j[�].

Proof. Suppose ↵ 2 OrdN and ↵ < j(�). We will show ↵  j(�) for some � < �. Since

N = HN(j[M ] [ sup j[�]), we can find a function f 2 M and an ordinal ⌫ < � such that

↵ = j(f)(⇠) for some ⇠ < j(⌫). Since the M -cofinality of � is above ⌫, f [⌫] \ � is bounded

by some � < �. Hence ↵ = j(f)(⇠)  sup j(f)[j(⌫)] \ j(�) = j(sup f [⌫] \ �) = j(�), as

desired.

This has a useful consequence for ultrapower embeddings (which is essentially equivalent):

Lemma 3.5.32. Suppose M is a transitive model of ZFC and U is an M-ultrafilter on a

set X 2 M . Then for any ordinal � such that cfM(�) > �U , jMU is continuous at �.

It is worth mentioning a related fact here:
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Lemma 3.5.33. If U is an ultrafilter on X, then for any cardinal �, |jU(�)|  �|X|. Thus if �

is a strong limit cardinal above |X|, jU [�] ✓ �. If moreover cf(�) > |X|, then jU(�) = �.

The second provides a computation of the width of a composition in terms of the width

of the factors:

Lemma 3.5.34. Suppose M
i�! N

j�! P are elementary embeddings. Then

width(j � i) = max{width(i), �}

where � is the least ordinal such that width(j)  sup i[�].

Proof. Let ◆ = max{width(i), �}.
We first show width(j � i)  ◆. Since width(i)  ◆, N = HN(i[M ] [ sup i[◆]). Since

width(j)  sup i[◆], P = HP (j[N ] [ sup j[sup i[◆]]) = HP (j[N ] [ sup j � i[◆]). Putting these

calculations together,

P = HP (j[i[M ] [ sup i[◆]] [ sup j � i[◆]) = HP (j � i[M ] [ sup j � i[◆])

It follows that width(j � i)  ◆.

We now show ◆  width(j � i). First, we show �  width(j � i). Fix ⌘ < �, and we will

show ⌘ < width(j � i). This follows from the fact that

HP (j � i[M ] [ sup j � i[⌘]) ✓ HP (j[N ] [ sup j[sup i[⌘]]) ( P

The final inequality uses that sup i[⌘] < width(j).

We finish by showing width(i)  width(j � i). This uses the argument from Proposi-

tion 3.4.20. Suppose ⌘ < width(i) is an M -cardinal, and we will show ⌘ < width(j � i).

Fix a 2 N such that a /2 HN(i[M ] [ sup i[⌘]). Suppose towards a contradiction that

j(a) 2 HP (j � i[M ] [ sup j � i[⌘]). Fix ⇠ < ⌘ and f 2 M such that j(a) = j(i(f))(↵)

for some ↵  j(i(⇠)). Then by the elementarity of j, N satisfies that a = i(f)(↵) for

some ↵  i(⇠). This contradicts our assumption that a /2 HN(i[M ] [ sup i[⌘]). Therefore

j(a) /2 HP (j � i[M ] [ sup j � i[⌘]), so ⌘ < width(j � i), as desired.
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The direct limit of all ultrapowers

Under the Ultrapower Axiom, it is possible to take the direct limit of all ultrapower embed-

dings. The properties of this structure, which is denoted M1, turn out to be closely related

both to the Ketonen order on pointed ultrapowers and to the theory of supercompact car-

dinals.

To save ink, it is convenient to let 1 be a formal symbol such that (by definition) every

ordinal � satisfies � < 1.

Definition 3.5.35. Suppose M is an ultrapower of the universe and � is an ordinal. Then

⌫(M,�) = sup i[�] where i : V ! M is any ultrapower embedding.

By Theorem 3.5.10, ⌫(M,�) does not depend on the choice of i. We also set ⌫(M,1) =

1.

Definition 3.5.36. If � is is a cardinal or � = 1, then D� denotes the following category:

• An inner model M is an object of D� if there is an ultrapower embedding i : V ! M

with width(i)  �.

• If M,N 2 D�, an internal ultrapower embedding j : M ! N is a morphism of D� if

width(j)  ⌫(M,�).

Thus D1 is the category of all ultrapowers of the universe equipped with their internal

ultrapower embeddings. As an immediate consequence of Corollary 3.5.28, UA implies that

D� is a full subcategory of D1; that is, it contains all morphisms between the objects it

sees. It is not clear whether this is the case in ZFC (and it is not even clear whether this

subcategory is locally small in the natural sense).1

1This raises an interesting question in the general theory of elementary embeddings:

Question 3.5.37 (ZFC). Can two ultrapower embeddings of the universe have the same target model but
di↵erent widths?

The question has something to do with uniform ultrafilters on singular cardinals.

75



Definition 3.5.38. A category C is a partial order if every pair of objects a, b 2 C there is

at most one morphism from a to b in C. A category C is directed if for every pair of objects

a, b 2 C, there is a further object c 2 C admitting morphisms a ! c and b ! c.

We have the following equivalences:

Lemma 3.5.39. The following are equivalent:

(1) The Ultrapower Axiom.

(2) For all cardinals �, D� is a directed partial order.

(3) D1 is a directed partial order.

Proof. (1) implies (2): The fact that D� is a partial order follows immediately from Corol-

lary 3.5.28. The directedness of D� follows from an easy localization of UA (Proposi-

tion 5.4.16), which states that if U and W are countably complete ultrafilters on a cardinal �,

then there is a countably complete ultrafilter Z on � such that there are internal ultrapower

embeddings k : MU ! MZ and h : MW ! MZ .

(2) implies (3): Immediate.

(3) implies (1): Immediate.

Definition 3.5.40 (UA). If � is a cardinal or � = 1, let

M� = limD�

For all M 2 D�,

jM,� : M ! M�

denotes the direct limit embedding.

The models M� are wellfounded by a standard application of the linear iterability of

the universe (Lemma 3.5.7). We will see that M1 need not be set-like. By convention we

identify its set-like part with an inner model.

The following lemma is the key to the analysis of the models M� for � a regular cardinal:
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Lemma 3.5.41 (UA). Suppose � is a regular cardinal or � = 1. For any ultrapower

embedding i : V ! N with i 2 D�, i(M�) = M� and i(jV,�) = jN,�.

Proof. The key point is that since � is regular and width(i)  �, i(�) = sup i[�] = ⌫(N,�).

Thus i(D�) = DN
i(�) = DN

⌫(N,�), which is equal to the cone above N in D�. Since D� is a

directed partial order, this cone is cofinal in D�, and thus its direct limit is equal to that of

D�. In other words, i(M�) = lim i(D�) = limD� = M�, and similarly i(jV,�) = jN,�.

In the case � = 1 above, we are heavily abusing notation: when M1 is not set-like

(and so cannot be identified with a transitive class), a more careful statement would involve

isomorphism rather than equality.

We now further explore the set-likeness of M1.

Definition 3.5.42. We say an ordinal  can be mapped arbitrarily high by ultrapower embed-

dings if for all ↵ > , there is an ultrapower embedding j : V ! M such that j() > ↵. The

ultrapower threshold is the least ordinal  that can be mapped arbitrarily high by ultrapower

embeddings.

The existence of the ultrapower threshold is a large cardinal principle closely related to

two recently popularized weakenings of strong compactness: the strongly tall cardinals of

Hamkins [17] and the !1-strongly compact cardinals of Bagaria-Magidor [18]. Certainly a

strongly tall cardinal or an !1-strongly compact cardinal is greater than or equal to the

ultrapower threshold. (By theorems of Gitik [19], it is consistent with ZFC that these

inequalities are strict.) The ultrapower threshold is in a sense a hybrid of these notions in

the sense that it weakens strong compactness in the Hamkins and Bagaria-Magidor directions

simultaneously, producing a super-weakening of strong compactness.

If it exists, the ultrapower threshold is a Beth fixed point, but by the arguments of

Bagaria-Magidor [18], it cannot be proved to be inaccessible in ZFC. The nonexistence of the

ultrapower threshold has the following structural consequence for ultrapower embeddings:
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Lemma 3.5.43. If the ultrapower threshold does not exist, then unboundedly many ordinals

are fixed by all ultrapower embeddings.

Proof. Fix an ordinal ⇠. Let

T⇠ = {j(⇠) : j is an ultrapower embedding of V }

and let C be the class of ordinals fixed by all ultrapower embeddings. Note that if ⇠ is an

ordinal and i : V ! N is an ultrapower embedding,

i(T⇠) = {j(i(⇠)) : j is an ultrapower embedding of N} ✓ T⇠

This is because the composition of ultrapower embeddings is an ultrapower embedding.

Since the ultrapower threshold does not exist, T⇠ is a set for all ordinals ⇠. So assume T⇠

is a set, and we will show C \ ⇠ is nonempty. Let ↵ = sup(T⇠). Obviously ↵ � ⇠. Suppose i

is an ultrapower embedding. Then

i(↵) = sup i(T⇠)  sup(T⇠) = ↵

Thus i(↵) = ↵. It follows that ↵ 2 C \ ⇠, as desired. Thus if T⇠ is a set, then there is an

ordinal above ⇠ fixed by all ultrapower embeddings. It follows that if T⇠ is a set for all ⇠,

then C is a proper class.

The embedding jV,1 actually encodes the class of common fixed points of ultrapower

embeddings by a standard argument:

Lemma 3.5.44. An ordinal belongs to the range of jV,1 if and only if it is fixed by all

ultrapower embeddings.

Proof. Suppose first that � is an ordinal in the range of jV,1. Fix an ordinal ↵ such that

� = jV,1(↵). Suppose i : V ! N is an ultrapower embedding. Then i(�) = i(jV,1(↵)) =

i(jV,1)(i(↵)) = jN,1 � i(↵) = jV,1(↵) = �. Thus � is fixed by all ultrapower embeddings.

Conversely, suppose � is fixed by all ultrapower embeddings. Let ↵ be the least ordinal

such that jV,1(↵) � �. Suppose towards a contradiction that jV,1(↵) > �. Then there is an
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ultrapower embedding i : V ! N and some ordinal ⇠ < i(↵) and jN,1(⇠) � �. But by the

elementarity of i, i(↵) is the least ordinal ↵0 such that i(jV,1)(↵0) � i(�). Since i(�) = �,

this means that i(↵) is the least ordinal ↵0 such that jN,1(↵0) � �. This contradicts the

existence of ⇠ < i(↵) such that jN,1(⇠) � �.

Theorem 3.5.45 (UA). Exactly one of the following holds:

(1) The ultrapower threshold exists.

(2) M1 is set-like.

Proof. Suppose (1) holds. For any ordinal ⇠, the images of ⇠ under ultrapower embeddings

are bounded above by jV,1(⇠), and so ⇠ is not the ultrapower threshold. Thus (2) fails.

Suppose (2) fails. By Lemma 3.5.43, the class C of ordinals fixed by all ultrapower

embeddings is unbounded in the ordinals. By Lemma 3.5.44, C = jV,1[Ord] \ Ord. The

function jV,1 � Ord is therefore equal to the increasing enumeration of C. It follows that for

every ordinal ↵, jV,1(↵) is an ordinal. In other words, M1 is set-like. Thus (1) holds.

The analysis of supercompactness under UA has the following surprising consequence

(Theorem 7.4.26): the ultrapower threshold is supercompact.

Theorem 3.5.46 (UA). Exactly one of the following holds:

(1) M1 is set-like.

(2) There is a supercompact cardinal.

Proof given Theorem 7.4.26. SupposeM1 is not set-like. By Theorem 3.5.45, the ultrapower

threshold exists. By Theorem 7.4.26, the ultrapower threshold is supercompact.

In fact, if the ultrapower threshold  is supercompact, then jV,1() is isomorphic to Ord

while jV,1 � V = (jV,1)V .

We now explain the connection between the modelsM� and the Ketonen order on pointed

ultrapower embeddings.
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Definition 3.5.47. Let P� denote the collection of pointed ultrapowers (M, ⇠) such that

M 2 D�. For any M 2 P�, o�(M) denotes the rank of M in the Ketonen order restricted

to P�. (If � = 1, this rank may not exist.) If W is a countably complete ultrafilter then

o�(W ) = o�(MW , aW ).

The following theorem shows that the ordinals o�(M) are highly structured under UA:

Theorem 3.5.48 (UA). Assume � is regular or � = 1. For any M 2 P�, o�(M) =

jM,�(⇠M).

Proof. Consider the partial function �� : P� ! Ord defined by

��(M) = jM,�(⇠M)

If � = 1, we leave ��(M) undefined if jM,�(⇠M) is not in the set-like part of M1.

For M,N 2 P�, M <k N implies ��(M) <k ��(N) and M =E N implies ��(M) =

��(N). Moreover the image of �� is the set-like initial segment of OrdM
� . Therefore ��

is equal to the rank function of (P�, <k). That is, for all M 2 P�, o�(M) = ��(M) =

jM,�(⇠M).

Combining this with Theorem 3.5.46, we obtain:

Corollary 3.5.49. Exactly one of the following holds:

(1) There is a supercompact cardinal.

(2) For any pointed ultrapower M , o1(M) exists.

In conclusion, the Ketonen order, which is in a sense the simplest structure associated

with the Ultrapower Axiom, bears a deep relationship to supercompactness under UA. This

relationship is one of the topics of Chapter 7 and Chapter 8.
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The Lipschitz order

In this short subsection, we describe a generalization of the Ketonen order that raises an

interesting philosophical question. Throughout the section, we fix an infinite ordinal �.

Definition 3.5.50. Suppose f : P (�) ! P (�). Then f is:

• a reduction if for A ✓ � and ↵ < �, f(A) \ ↵ depends only on A \ ↵.

• a contraction if for A ✓ � and ↵ < �, f(A) \ (↵ + 1) depends only on A \ ↵.

We say X reduces (contracts) to Y if there is a reduction (contraction) f : P (�) ! P (�) such

that f�1[Y ] = X. In this case we say f is a reduction (contraction) from X to Y .

These concepts can be formulated in terms of long games:

Definition 3.5.51. In the Lipschitz game of length � associated to setsX, Y ✓ P (�), denoted

G�(X, Y ), two players I and II alternate playing 0s or 1s. I plays at limit stages. The play

lasts for � · 2 moves, so that I and II produce sequences xI, xII 2 �2. Let AI = {↵ < � :

xI(↵) = 1} and AII = {↵ < � : xII(↵) = 1}. Then II wins if AI 2 X () AII 2 Y .

Player II has a winning strategy if and only if X reduces to Y , and Player I has a winning

strategy if and only if Y contracts to P (�) \X.

Definition 3.5.52. The Lipschitz order is defined on X, Y ✓ P (�) by setting X <L Y if X

and P (�) \ X contract to Y . The nonstrict Lipschitz order is defined on X, Y ✓ P (�) by

setting X L Y if X reduces to Y .

This notation is perhaps misleading since it might suggest that X <L Y if and only if

X L Y and Y 6L X. Under the Axiom of Determinacy, this is true when X and Y are

contained in P (!).

The Lipschitz order is transitive in the following strong sense:
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Lemma 3.5.53. The composition of a contraction and a reduction is a contraction. There-

fore is X contracts to Y and Y reduces to Z, then X contracts to Z. In particular, if

X <L Y L Z then X <L Z.

A generalization of the proof of Proposition 3.3.9 shows that the Lipschitz order is ir-

reflexive:

Lemma 3.5.54. Suppose X ✓ P (�). Then X does not contract to P (�) \X.

Proof. It su�ces to show that every contraction f : P (�) ! P (�) has a fixed point A: then

A 2 X if and only if f(A) 2 X so f is not a contraction from X to P (�) \X.

We define A by recursion. Suppose ↵ < � and we have defined A\↵. We then put ↵ 2 A

if and only if ↵ 2 f(A \ ↵). Then for any ↵ < �,

↵ 2 A () ↵ 2 f(A \ ↵)

() ↵ 2 f(A)

The final equivalence follows from the fact that f is a contraction. Thus f(A) = A, as

desired.

Corollary 3.5.55. The Lipschitz order is a strict partial order.

By the proof of the Martin-Monk theorem (see [20]) descending sequences in the Lipschitz

order give rise to pathological subsets of Cantor space:

Theorem 3.5.56 (ZF + DC). The following are equivalent:

(1) There is a flip set.

(2) The Lipschitz order on P (!) is illfounded.

(3) The Lipschitz order on P (�) is illfounded.
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Proof. To see (1) implies (2), suppose F ✓ 2! is a flip set. Define (En)n<! by recursion,

setting E0 = F and En+1 = {s 2 2! : 0s 2 En}. It is easy to see that En+1 and 2! \ En+1

both contract to En, via the contractions s 7! 0s and s 7! 1s respectively.

(2) trivially implies (3).

We finally show (3) implies (1). Fix X0 >L X1 >L X2 >L · · · a descending sequence

of subsets of P (�). For n < !, fix contractions f 0
n from Xn+1 to Xn and f 1

n from Xn+1 to

P (�) \Xn. For each s 2 2!, we define sets As
n ✓ � such that

As
n = f s(n)

n (As
n+1)

Suppose As
n \ ↵ has been defined for all n < !. Then

As
n \ (↵ + 1) = f s(n)

n (As
n+1 \ ↵) \ (↵ + 1)

Since f i
n is a contraction for all n < ! and i 2 {0, 1}, As

n is well-defined and As
n = f

s(n)
n (As

n+1).

Define Fn ✓ 2! by putting s 2 Fn if and only if As
n 2 Xn. Whether s 2 Fn depends only

on s � (! \ n). Moreover, if s 2 Fn+1 then s 2 Fn if and only if s(n) = 0. It is easy to show

by induction that if s and s0 agree on ! \n and
P

k<n s(k) =
P

k<n s
0(k) mod 2, then s 2 F0

if and only if s0 2 F0. Similarly, if s and s0 agree on ! \ n and
P

k<n s(k) 6= P

k<n s
0(k)

mod 2, then s 2 F0 if and only if s0 /2 F0. It follows that F0 is a flip set.

Of course, (1), (2), and (3) are all provable in ZFC. In the choiceless context of ZF +

DC, however, there may be no flip sets (for example, if every subset of Cantor space has

the Baire property or is Lebesgue measurable). In this case, Theorem 3.5.56 shows that the

Lipschitz order is wellfounded not only on subsets of Cantor space but also on subsets of

P (�).2 The proof also shows that the wellfounded part of the Lipschitz order is equal to the

collection of sets that do not lie above a flip set.

We turn now to the relationship between the Lipschitz order and the Ketonen order.

2Under the same hypotheses, one can show that the Lipschitz order on �
S is wellfounded for any set S

after generalizing the definition of the Lipschitz order in the natural way.
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Definition 3.5.57. A set Z ✓ P (�) concentrates on a set S if for all A,B ✓ � with

A \ S = B \ S, A 2 Z if and only if B 2 Z.

Note that if Z is an ultrafilter that concentrates on a class S in the sense of Defini-

tion 3.2.1, then Z concentrates on S is the sense of Definition 3.5.57.

Lemma 3.5.58. Suppose X ✓ P (�) and W is an ultrafilter on �. Then the following are

equivalent:

(1) X <L W .

(2) X contracts to W .

(3) For some Z 2 MW that concentrates on aW , X = j�1
W [Z].

Proof. (1) implies (2): Trivial.

(2) implies (1): Assume X contracts to W . Since W is an ultrafilter, W reduces to

P (�) \W . Since X contracts to W and W reduces to P (�) \W , X contracts to P (�) \W .

Therefore X <L W .

(1) implies (3): Let f : P (�) ! P (�) be a contraction from X to W . For each ↵,

let X↵ = {A ✓ � : ↵ 2 f(A)}. Since f is a contraction, X↵ concentrates on ↵. Let

Z = [hX↵ : ↵ < �i]W . By  Loś’s Theorem, Z concentrates on aW . Then

A 2 X () f(A) 2 W

() {↵ < � : A 2 X↵} 2 W

() jW (A) 2 Z

Thus j�1
W [Z] = X.

(3) implies (1): Fix Z 2 MW concentrating on aW such that X = j�1
W [Z]. Let hX↵ :

↵ 2 Ii be such that Z = [hX↵ : ↵ 2 Ii]W and X↵ concentrates on ↵ for all ↵ 2 I. Define

f : P (�) ! P (�) by setting f(X) = {↵ 2 I : X 2 X↵}. Then f is a contraction since X↵
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concentrates on ↵ for all ↵ 2 I. Moreover,

A 2 X () jW (A) 2 Z

() {↵ < � : A 2 X↵} 2 W

() f(X) 2 W

Using Lemma 3.3.4, this has the following corollary:

Corollary 3.5.59. The Lipschitz order extends the Ketonen order on B(�).

Under UA, it follows that the two orders coincide:

Corollary 3.5.60 (UA). The Lipschitz order and the Ketonen order coincide on B(�). In

particular, the Lipschitz order linearly orders B(�).

Proof. Since <L is a strict partial order extending the total relation <k (Theorem 3.3.6), the

two orders must be equal.

Another way to state this is as a determinacy consequence of UA:

Corollary 3.5.61 (UA). For all ordinals �, for any U,W 2 B(�), the game G�(U,W ) is

determined.

We conclude this section with a question that is perhaps of some philosophical signifi-

cance:

Question 3.5.62. Assume that for any ordinal �, for any U,W 2 B(�), the game G�(U,W )

is determined. Does the Ultrapower Axiom hold?

If this were true then the Ultrapower Axiom would be a long determinacy principle. In

Section 3.6, we give partial positive answer.
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The Ketonen order on filters

We briefly discuss a generalization of the Ketonen order to a wellfounded partial order on

arbitrary countably complete filters that is suggested by the proof of Theorem 3.3.8. This

order will not appear elsewhere in this dissertation, but it seems potentially quite interesting

since it identifies a connection between the Ketonen order and stationary reflection.

Definition 3.5.63. Suppose F is a filter, I 2 F , and hGi : i 2 Ii is a sequence of filters on

a fixed set Y . The F -limit of hGi : i 2 Ii is the filter

F - lim
i2I

Gi = {A ✓ Y : {i 2 I : A 2 Gi} 2 F}

Definition 3.5.64. If F is a filter on a set X and C is a class, then F concentrates on C if

C \X 2 F .

Definition 3.5.65. Suppose X is a set and C is a class. Let F (X) denote the set of count-

ably complete filters on X and let F (X,C) denote the set of filters on X that concentrate

on C.

Definition 3.5.66. Suppose ✏ and � are ordinals, F 2 F (✏), and G 2 F (�). The Ketonen

order on filters is defined on by setting F <k G if there is a set I 2 G and a sequence

hF↵ : ↵ 2 Ii 2Q↵2I F (✏,↵) such that F ✓ G- lim↵2I F↵.

Under the Ultrapower Axiom, the restriction to ultrafilters of the Ketonen order on filters

coincides with the Ketonen order as it is defined in Section 3.3. We do not know whether

this is provable in ZFC.

Note that the proof of Proposition 3.3.9 breaks down when we consider filters instead of

ultrafilters. In fact, in a sense this simple proof cannot be remedied, since irreflexivity fails if

we allow filters that are countably incomplete, and it is not clear how countable completeness

could come in to the argument of Proposition 3.3.9. It is somewhat surprising that one can

in fact prove the irreflexivity of the Ketonen order by instead using countable completeness

and the argument of Theorem 3.3.8:
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Theorem 3.5.67. The Ketonen order on filters is wellfounded.

We include the proof, which is closely analogous to that of Theorem 3.3.8.

Lemma 3.5.68. Suppose H is a filter and F <k G are countably complete filters on ordinals

✏ and �. Suppose J 2 H and hGx : x 2 Ji is a sequence of countably complete filters such

that G ✓ H- limx2J Gx. Then there is a set J 0 ✓ J in H and a sequence hFx : x 2 J 0i of

countably complete filters such that Fx <k Gx for all x 2 K and F ✓ H- limx2K Fx.

Proof. Since F <k G, we can fix I 2 G and countably complete filters hD↵ : ↵ 2 Ii 2
Q

↵2I F (✏,↵) such that F ✓ G- lim↵2I D↵.

Let J 0 = {b 2 J : I 2 Gx}. Since I 2 G ✓ H- limx2J Gx, we have J 0 2 H by the definition

of a limit. For each x 2 J 0, let

Fx = Gx- lim
↵2I

D↵

Then Fx 2 B(✏), and the sequence hD↵ : ↵ 2 Ii witnesses Fb <k Gb.

Finally,

F ✓ G- lim
↵2I

D↵

✓ (H- lim
x2J

Gx)- lim
↵2I

D↵

= H- lim
x2J 0

(Gx- lim
↵2I

D↵)

= H- lim
x2J 0

Fx

Thus F ✓ H- limx2K Fx, as desired.

Proof of Theorem 3.5.67. Suppose towards a contradiction that � is the least ordinal such

that the Ketonen order is illfounded below a countably complete filter that concentrates on

�. Fix a descending sequence F0 >k F1 >k F2 >k · · · such that F0 concentrates on �.

We will define sets of ordinals I1 ◆ I2 ◆ · · · in F and sequences hFm
↵ : ↵ 2 Imi of

countably complete filters such that

Fm ✓ F - lim
↵2I

m

Fm
↵
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for all 1  m < !. We will have:

• For all ↵ 2 I1, F 1
↵ concentrates on ↵.

• For all 1  m < !, for all ↵ 2 Im+1, Fm+1
↵ <k F

m
↵ .

Since F1 <k F , there is a set of ordinals I1 2 F and a sequence hF 1
↵ : ↵ 2 I1i of countably

complete ultrafilters such that F1 ✓ F - lim↵2I1 F
1
↵ and F 1

↵ concentrates on ↵ for all ↵ 2 I1.

Suppose 1  m < ! and hFm
↵ : ↵ 2 Imi has been defined. We now apply Lemma 3.5.68

with H = F , F = Fm+1, and G = Fm. This yields a set Im+1 ✓ Im in F and a sequence

hFm+1
↵ : ↵ 2 Imi of countably complete filters on � such that Fm+1

↵ <k Fm
↵ for all ↵ 2 Im+1

and

Fm+1 ✓ F - lim
↵2I

m+1

Fm+1
↵

This completes the definition of the sets I1 ◆ I2 ◆ · · · and sequences hFm
↵ : ↵ 2 Imi for

1  m < !.

Now let I =
T

1m<! Im. Since F0 is countably complete, I is nonempty, so we can fix

an ordinal ↵ 2 I. Then since ↵ 2 Im for all 1  m < !,

F 1
↵ >k F

2
↵ >k F

3
↵ >k · · ·

Since F 1
↵ concentrates on ↵ < �, this contradicts the minimality of �.

Recall the following definition, due to Jech [12]:

Definition 3.5.69. Assume � is a regular cardinal. The canonical order on stationary sets

is defined on stationary sets S, T ✓ � by setting S < T if there is a closed unbounded set

C ✓ � such that S \ ↵ is stationary in ↵ for all ↵ 2 C \ T .

Definition 3.5.70. For any ordinal ↵, let C↵ denote the filter of closed cofinal subsets of ↵.

Definition 3.5.71. Suppose F is a filter on a set X and S is a set such that F does not

concentrate on the complement of S. The projection of F on S is the filter defined by

F | S = {A \ S : A 2 F}
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The following proposition connects the canonical order on stationary sets and the Ketonen

order on filters:

Proposition 3.5.72. Suppose � is a regular cardinal and S and T are stationary subsets of

�. Then S < T implies C� � S <k C� � T .

Proof. Fix a closed unbounded set C ✓ � such that S\↵ is stationary in ↵ for all ↵ 2 C\T .

Note that C \ T 2 C� � T , and for all ↵ 2 C \ T , C↵ � S is a countably complete filter

concentrating on ordinals less than ↵.

Claim 1. C� � S ✓ (C� � T )- lim↵2C\T C↵ � S.

Proof. Suppose A 2 C� � S. We will show that A 2 (C� � T )- lim↵2C\T C↵ � S. Fix E 2 C�

such that S \ E ✓ A. Let E 0 be the set of accumulation points of E. Then for any ↵ 2 E 0,

S \ (E \ ↵) ✓ A and E \ ↵ 2 C↵, so A 2 C↵ � S. Thus

E 0 \ C \ T ✓ {↵ 2 C \ T : A 2 C↵ � S}

Since E 0 \C 2 C�, E 0 \C \ T 2 C� � T , and therefore {↵ 2 C \ T : A 2 C↵ � S} 2 C� � T . It
follows that A 2 (C� � T )- lim↵2C\T C↵ � S, as desired.

The claim implies C� � S <k C� � T , as desired.

As a corollary of Theorem 3.5.67 and Proposition 3.5.72, we have the following theorem

of Jech:

Corollary 3.5.73. The canonical order on stationary sets is wellfounded.

3.6 The linearity of the Ketonen order

In this final section, we prove a converse to Proposition 3.5.17, which can also be seen as a

partial positive answer to Question 3.5.62. We say that the Ketonen order is linear if for all

ordinals �, the Ketonen order on B(�) is a linear order. The Ketonen order is linear if and

only if its restriction to Un is a linear order.
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Theorem 3.6.1. The Ketonen order is linear if and only if the Ultrapower Axiom holds.

Given Lemma 3.3.4, the linearity of the Ketonen order would appear to be a much

weaker assumption than UA: the linearity of the Ketonen order only guarantees comparisons

(k, h) : (MU ,MW ) ! N such that h is an internal ultrapower embedding of MW , while UA

asserts the existence of comparisons with both k and h internal. How can one transform

partially internal comparisons into the fully internal comparisons required by UA?

To properly describe it, let us make some definitions:

Definition 3.6.2. Suppose M0, M1, and N are transitive models of ZFC and

(k0, k1) : (M0,M1) ! N

are elementary embeddings.

• (k0, k1) is 0-internal if k0 is definable over M0.

• (k0, k1) is 1-internal if k1 is definable over M1.

• (k0, k1) is internal if it is both 0-internal and 1-internal.

We indicated above that the di�culty in proving Theorem 3.6.1 is that it is not clear

how to transform the 1-internal comparisons given by the linearity of the Ketonen order into

the internal comparisons required to witness UA. In fact, it is simply impossible to do this

in general, since as a consequence of the proof of Lemma 3.5.4, 1-internal comparisons can

be proved to exist in ZFC alone.

Proposition 3.6.3. Any pair of ultrapower embeddings has a 0-internal ultrapower compar-

ison and a 1-internal ultrapower comparison.

Thus the true power of the linearity of the Ketonen order lies not in the mere existence

of 1-internal comparisons (k, h) but rather in the existence of (k, h) witnessing U <k W (or

W k U); that is, with the additional property k(aU) < h(aW ).
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Theorem 3.6.1 is an immediate consequence of our next theorem, which shows how to

explicitly define a comparison of a pair of ultrafilters:

Theorem 3.6.4. Assume the Ketonen order is linear. Suppose ✏ and � are ordinals. Suppose

U 2 B(✏) and W 2 B(�).

• Let W⇤ be the least element of jU(B(�), <k) extending jU [W ].

• Let U⇤ be the least element of jW (B(✏), <k) extending jW [U ].

Then (jMU

W⇤
, jMW

U⇤
) is a comparison of (jU , jW ).

The definitions of W⇤ and U⇤ rely on the fact that jU(B(�), <k) and jW (B(✏), <k) are

wellorders, not only in MU and MW but also by absoluteness in the true universe V . This,

however, is not the main use of the linearity of the Ketonen order in the proof. Indeed,

it is consistent that there is a pair of countably complete ultrafilters U and W such that

the minimum extensions W⇤ and U⇤ are well-defined yet (jU , jW ) admits no comparison.3

Instead we will use the linearity of the Ketonen order to compare (jMU

W⇤
� jU , jMW

U⇤
� jW ):

Lemma 3.6.5. Suppose ✏ and � are ordinals. Suppose U 2 B(✏) and W 2 B(�).

• Let W⇤ be an element of jU(B(�)) extending jU [W ].

• Let U⇤ be a minimal element of jW (B(✏), <k) extending jW [U ].

For any 1-internal ultrapower comparison

(k, h) : (MM
U

W⇤
,MM

W

U⇤
) ! P

of (jMU

W⇤
� jU , jMW

U⇤
� jW ), the following hold:

h(jMW

U⇤
(aW ))  k(aW⇤) (3.1)

h(aU⇤)  k(jMU

W⇤
(aU)) (3.2)
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Figure 3.3: The proof of Lemma 3.6.5.

Proof. Let us direct the reader’s attention to the key diagram, Fig. 3.3.

We first prove (3.1). By Lemma 3.2.17, there is an elementary embedding e : MW ! MM
U

W⇤

such that e � jW = jMU

W⇤
� jU and e(aW ) = aW⇤ . We now apply the minimality of in-

ternal embeddings (Theorem 3.5.10). Note that k � e and h � jMW

U⇤
are both elementary

embeddings from MW to P , but h � jMW

U⇤
is an internal ultrapower embedding. Thus by

Theorem 3.5.10, h(jMW

U⇤
(↵))  k(e(↵)) for all ordinals ↵. It follows in particular that

h(jMW

U⇤
(aW ))  k(e(aW )) = k(aW⇤), proving (3.1).

We now prove (3.2). To reduce subscripts, we define:

↵ = jMU

W⇤
(aU)

Let Z be the MW -ultrafilter on jW (✏) derived from h � jMW

U⇤
using k(↵), so

Z = (h � jMW

U⇤
)�1
⇥

pk(↵)

⇤

3Take U and W to be Mitchell incomparable normal ultrafilters. Apply Theorem 3.4.1 and Lemma 8.2.11
to see that jU (W ) and jW (U) are the only extensions of jU [W ] and jW [U ] in MU and MW respectively.
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Since h � jMW

U⇤
is an internal ultrapower embedding of MW , Z is a countably complete

ultrafilter of MW ; in other words, Z 2 jW (B(✏)). Moreover, it is not hard to compute that

Z extends jW [U ], or equivalently j�1
W [Z] = U :

j�1
W [Z] = j�1

W [(h � jMW

U⇤
)�1[pk(↵)]]

= (h � jMW

U⇤
� jW )�1[pk(↵)]

= (k � jMU

W⇤
� jU)�1[pk(↵)]

= (jMU

W⇤
� jU)�1[k�1[pk(↵)]]

= (jMU

W⇤
� jU)�1[p↵]

= j�1
U [(jMU

W⇤
)�1[p

j
M

U

W⇤ (a
U

)
]]

= j�1
U [pa

U

] = U

Since U⇤ is a minimal element of jW (B(✏), <k) extending jW [U ], MW satisfies Z 6<k U⇤.

Since Z is derived from h� jMW

U⇤
using k(↵), there is a factor embedding i : (MZ)MW ! P

specified by the following properties:

i � jMW

Z = h � jMW

U⇤
(3.3)

i(aZ) = k(↵) (3.4)

Note that these properties define i over MW . Therefore by (3.3), (i, h) is a 1-internal ultra-

power comparison of (jMW

Z , jMW

U⇤
) in MW . The fact that Z 6<k U⇤ in MW implies

h(aU⇤)  i(aZ) = k(↵) = k(jMU

W⇤
(aU))

proving (3.2).

Lemma 3.6.5 can be read as asserting that the natural ultrafilter representing the em-

bedding jMW

U⇤
� jW is not strictly above the one representing jMU

W⇤
� jU in the Ketonen order.

To make this precise, we need to define what these natural ultrafilters. This is related to the

well-known notion of an ultrafilter sum:
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Definition 3.6.6. Suppose U is an ultrafilter on X, I is a set in U , and hWi : i 2 Ii is a

sequence of ultrafilters on Y . The U-sum of hWi : i 2 Ii is the ultrafilter defined by

U -
X

i2I
Wi = {A ✓ X ⇥ Y : {i 2 I : Ai 2 Wi} 2 U}

In the definition above, if A ✓ X ⇥ Y and i 2 X, then Ai = {j 2 Y : (i, j) 2 A}.
There is an obvious connection between sums and limits: the projection of a sum of

ultrafilters onto its second coordinate is precisely equal to the limit of those ultrafilters.

Lemma 3.6.7. Suppose U is an ultrafilter, I is a set in U , and hWi : i 2 Ii is a sequence

of ultrafilters on Y . Let Z = [hWi : i 2 Ii]U and let D = U-
P

i2I Wi. Then MD = MM
U

Z ,

jD = jMU

Z � jU , and aD = (jMU

Z (aU), aZ).

Motivated this lemma, we introduce the following nonstandard notation.

Definition 3.6.8. Suppose U is an ultrafilter on X, and W⇤ is an MU -ultrafilter on jU(Y ).

Then U -
P

W⇤ denotes the ultrafilter on X⇥Y derived from jMU

W⇤
� jU using (jMU

W⇤
(aU), aW⇤).

In this section we will only require sums of ultrafilters where W⇤ 2 MU , but it is just

more convenient not to choose a representative for W⇤.

Lemma 3.6.9. Suppose U is an ultrafilter and W⇤ is an MU -ultrafilter on jU(Y ). Then

jU-
P

W⇤ = jMU

W⇤
� jU , and aU-

P
W⇤ = (jMU

W⇤
(aU), aW⇤).

In the context of Theorem 3.6.4, we would like to use Lemma 3.6.5 to conclude that the

ultrafilters U -
P

W⇤ and W -
P

U⇤ are either equal or incomparable in the Ketonen order,

and thus conclude by the linearity of the Ketonen order that U -
P

W⇤ = W -
P

U⇤. The

only remaining problem is that U -
P

W⇤ and W -
P

U⇤ are not ultrafilters on ordinals. But

obviously we can associate Ketonen orders to an arbitrary wellorder:

Definition 3.6.10. Suppose (X,�) is a wellorder. The Ketonen order associated to (X,�)

is the order (B(X),�k) defined on U,W 2 B(X) by setting U �k W if there exist I 2 W

and hUx : x 2 Ii 2Qx2I B(X,X�x) such that U = W - limx2I Ux.
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If (X,�) and (X 0,�0) are isomorphic wellorders, then the associated Ketonen orders are

also isomorphic, so in particular all the characterizations of the Ketonen order generalize to

arbitrary wellorders:

Lemma 3.6.11. Suppose (X,�) is a wellorder and U,W 2 B(X). Then the following are

equivalent:

(1) U �k W .

(2) There is a 1-internal ultrapower comparison (k, h) : (MU ,MW ) ! N of (jU , jW ) such

that k(aU) �⇤ h(aW ) where �⇤ = k(jU(�)) = h(jW (�)).

It is convenient to introduce some notation for the statement of Lemma 3.6.13:

Definition 3.6.12. Let flip : Ord⇥Ord ! Ord⇥Ord be defined by flip(↵, �) = (�,↵). Let

� denote the Gödel order on Ord⇥Ord.

The only property of the Gödel order that we need is that (↵0, �0) � (↵1, �1) implies that

either ↵0 < ↵1 or �0 < �1.

Lemma 3.6.13. Suppose ✏ and � are ordinals. Suppose U 2 B(✏) and W 2 B(�). Assume

the Ketonen order (B(✏⇥ �),�k) is linear.

• Let W⇤ be the least element of jU(B(�), <k) extending jU [W ].

• Let U⇤ be the least element of jW (B(✏), <k) extending jW [U ].

Then U-
P

W⇤ = flip⇤(W -
P

U⇤).

Proof. Assume towards a contradiction that U -
P

W⇤ �k flip⇤(W -
P

U⇤). The following

identities are easily verified using Lemma 3.6.9:

jU -
P

W⇤ = jMU

W⇤
� jU jflip⇤(W -

P
U⇤) = jMW

U⇤
� jW

aU -
P

W⇤ = (jMU

W⇤
(aU), aW⇤) aflip⇤(W -

P
U⇤) = (aU⇤ , j

M
W

U⇤
(aW ))
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By Lemma 3.6.11, the assumption that U -
P

W⇤ �k flip⇤(W -
P

U⇤) is equivalent to the

existence of a 1-internal comparison

(k, h) : (MM
U

W⇤
,MM

W

U⇤
) ! N

of (jMU

W⇤
� jU , jMW

U⇤
� jW ) such that

k(jMU

W⇤
(aU), aW⇤) � h(aU⇤ , j

M
W

U⇤
(aW ))

Therefore either k(jMU

W⇤
(aU)) < h(aU⇤) or k(aW⇤) < h(jMW

U⇤
(aW )), contradicting Lemma 3.6.5.

A symmetric argument shows that we cannot have flip⇤(W -
P

U⇤) �k U -
P

W⇤ either.

Thus by the linearity of (B(✏ ⇥ �),�k), we must have U -
P

W⇤ = flip⇤(W -
P

U⇤), which

proves the theorem.

As an immediate consequence, we can prove Theorem 3.6.4:

Proof of Theorem 3.6.4. Let ↵ be the ordertype of the Gödel order on ✏ ⇥ �. Since the

Ketonen order is linear on B(↵), the isomorphic order (B(✏ ⇥ �),�k) is also linear. Thus

we can apply Lemma 3.6.13 to conclude that U -
P

W⇤ = flip⇤(W -
P

U⇤). In particular,

U -
P

W⇤ ⇠= W -
P

U⇤, so applying Lemma 3.6.9,

jMU

W⇤
� jU = jU -

P
W⇤ = jW -

P
U⇤ = jMW

U⇤
� jW

Thus (jMU

W⇤
, jMW

U⇤
) is a comparison of (jU , jW ), as desired.

Let us make some comments on this theorem. It is not immediately obvious from the

definition that the linearity of the Ketonen order onB(�) implies the linearity of the Ketonen

order on B(�) for all ordinals � < �+.4

Definition 3.6.14. Suppose � is a cardinal.

4Note that if  is regular, then for any n < !, the collection of subsets of n of ordertype less than 

n

forms a -complete ideal; this is closely related to the Milner-Rado Paradox. Therefore for example if  is
2-strongly compact, there is a -complete ultrafilter on 

n that does not concentrate on a set of ordertype
less than 

n. (It su�ces that  is measurable.) This suggests it may be nontrivial to reduce the linearity of
(B(2), <k) to that of (B(), <k) by a direct combinatorial argument.
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• UA<� is the assertion that any pair of ultrapower embeddings of width less than �

have an internal ultrapower comparison.

• UA� is another way of writing UA<�+ .

Corollary 3.6.15. Suppose � is an infinite cardinal and the Ketonen order is linear on

B(�). Then UA� holds. In particular, the Ketonen order is linear on B(�) for all � < �+.

Proof. Suppose U and W are ultrafilters on �. To see UA�, it su�ces to show that (jU , jW )

has a comparison. Since the Ketonen order (B(�), <k) is linear, so is (B(X),�k) whenever

(X,�) is a wellorder of ordertype �. Since � is an infinite cardinal, the Gödel order on �⇥�

has ordertype �. Thus (B(�⇥ �),�k) is linear, and so we can apply Lemma 3.6.13 and the

proof of Theorem 3.6.4 to conclude that (jU , jW ) has a comparison.

Surely with some extra work one can prove the following conjecture:

Conjecture 3.6.16. If the Ketonen order is linear on countably complete incompressible

ultrafilters, then the Ultrapower Axiom holds.

The proof of Theorem 3.6.1 that we have given here uses  Loś’s Theorem, which makes

significant use of the Axiom of Choice. With care, however, the combinatorial content of

Theorem 3.6.1, namely Lemma 3.6.13, can actually be established in ZF + DC alone. This

makes the following question seem interesting:

Question 3.6.17. Assume AD + V = L(R). Is the Ketonen order linear?
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Chapter 4

The Generalized Mitchell Order

4.1 Introduction

The linearity of the generalized Mitchell order

The topic of this section is the generalized Mitchell order, which is defined by extending the

definition of the Mitchell order to a broader class of objects:

Definition 4.1.1. The generalized Mitchell order is defined on countably complete ultrafil-

ters U and W by setting U C W if U 2 MW .

The main question we investigate here is to what extent this generalized order is linear

assuming the Ultrapower Axiom. Recall that UA implies the linearity of the Mitchell order

on normal ultrafilters (Theorem 2.3.11). On the other hand the generalized Mitchell order is

obviously not a linear order on arbitrary countably complete ultrafilters (Section 4.2). The

main theorem of this chapter is the generalization of the linearity of the Mitchell order on

normal ultrafilters to normal fine ultrafilters:

Definition 4.1.2. For any ordinal �, the bounded powerset of � is the set Pbd(�) =
S

↵<� P (↵).

Theorem 4.4.2 (UA). Suppose � is a cardinal such that 2<� = �. Then the Mitchell order

is linear on normal fine ultrafilters on Pbd(�).
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This amounts to the most general form of the linearity of the Mitchell order on normal fine

ultrafilters that one could hope for (Proposition 4.4.12), except for the cardinal arithmetic

assumption on � (which we dispense with much later in Theorem 7.5.39).

Outline of Chapter 4

We now outline the rest of this chapter.

Section 4.2. This contains various folklore facts about large cardinals and the gen-

eralized Mitchell order. None of the results here are due to the author. We give a brief

exposition of the theory of strong embeddings (Section 4.2) and supercompact embeddings

(Section 4.2) centered around the relationship between these concepts and the generalized

Mitchell order. We also exposit the Kunen Inconsistency Theorem, which is closely related

to the wellfoundedness properties of the Mitchell order. Finally we establish the basic order

theoretic properties of the generalized Mitchell order, especially its transitivity, wellfound-

edness (Theorem 4.2.47), and nonlinearity (Section 4.2).

Section 4.3. This section introduces the notion of Dodd soundness. This concept first

arose in inner model theory, and our exposition is the first to put it into a general context. We

begin by giving a very simple definition of Dodd soundness that will hopefully help the reader

view it as a natural refinement of supercompactness. We then prove the equivalence of this

notion with the definition of Dodd soundness from fine structure theory (Theorem 4.3.22).

A theorem of Schlutzenberg [7] (stated as Theorem 4.3.1 below) shows that the Mitchell

order is linear on Dodd sound ultrafilters in the canonical inner models. We prove this the-

orem (Theorem 4.3.29) here under the much weaker assumption of UA and by a completely

di↵erent and much simpler argument directly generalizing the proof of the linearity of the

Mitchell order on normal ultrafilters.

Section 4.4. We finally turn to the Mitchell order on normal fine ultrafilters, the

natural generalization of normal ultrafilters associated with supercompact cardinals. Our

analysis proceeds by showing that normal fine ultrafilters are isomorphic to Dodd sound
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ultrafilters, and then citing the linearity of the Mitchell order on Dodd sound ultrafilters. To

do this, we introduce the notion of an isonormal ultrafilter and prove that every normal fine

ultrafilter is isomorphic to an isonormal ultrafilter (Theorem 4.4.37). The main di�culty

is the “singular case” (Section 4.4) which amounts to generalizing Solovay’s Lemma [21]

(proved as Theorem 4.4.27) to singular cardinals. Theorem 4.4.25 states that if 2<� = �,

then isonormal ultrafilters on � are Dodd sound. Putting these theorems together, we obtain

that under the Generalized Continuum Hypothesis, normal fine ultrafilters are isomorphic

to Dodd sound ultrafilters, yielding the main theorem of the chapter (Theorem 4.4.2), the

linearity of the Mitchell order on normal fine ultrafilters.

4.2 Folklore of the generalized Mitchell order

Strength and the Mitchell order

The generalized Mitchell order is often viewed as a more finely calibrated generalization of

the concept of the strength of an elementary embedding. In this subsection, we set down

the basic theory of strength and discuss its relationship with the Mitchell order.

Definition 4.2.1. Suppose M is a transitive class and � is a cardinal.

• An elementary embedding j : V ! M is �-strong if P (�) ✓ M .

• An elementary embedding is <�-strong if Pbd(�) ✓ M .

Notice that the property of being �-strong depends only on M . The basic lemmas we

prove about �-strong embeddings almost all apply to arbitrary inner models containing P (�).

(The embedding j just comes along for the ride.)

Most authors define j to be ↵-strong if V↵ ✓ M . The definition used here is arguably

preferable (if one is assuming the Axiom of Choice and not assuming the Generalized Con-

tinuum Hypothesis). This is because it is more expressive:
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Lemma 4.2.2. Suppose j : V ! M is an elementary embedding.

• If ↵ is an ordinal, then V↵+1 ✓ M if and only if j is i↵-strong.

• If � is a limit ordinal, then V� ✓ M if and only if j is <i�-strong.

It would be strange to define strong embeddings without defining strong cardinals, so let

us include the definition even though we will have little to say about the concept:

Definition 4.2.3. Suppose   � are cardinals. Then  is �-strong if there is an inner model

M and a �-strong elementary embedding j : V ! M such that crt(j) =  and j() > �. 

is strong if  is �-strong for all �.

The requirement that j() > � above is not actually necessary as a consequence of

Theorem 4.2.37. We use standard notation for hereditary cardinality:

Definition 4.2.4. If x is a set, tc(x) denotes the smallest transitive set y with x ✓ y. The

hereditary cardinality of x is the cardinality of tc(x). For any cardinal �, H(�) denotes the

collection of sets of hereditary cardinality less than �.

Lemma 4.2.5. For any infinite cardinal �,

• H(�+) is a transitive set.

• H(�+) is bi-interpretable with P (�).

• H(�) is bi-interpretable with Pbd(�).

The bi-interpretability of H(�+) and P (�) yields the following lemma:

Lemma 4.2.6. An embedding j : V ! M is <�-strong if and only if H(�) ✓ M and

�-strong if and only if H(�+) ✓ M .

Definition 4.2.7. The strength of an elementary embedding j : V ! M , denoted str(j),

is the largest cardinal � such that j is <�-strong.

101



The following fact specifies exactly which powersets are contained in the target model of

an elementary embedding in terms of its strength:

Lemma 4.2.8. Suppose j : V ! M is an elementary embedding and � is a cardinal. Then

the following are equivalent:

(1) str(j) = �.

(2) For all X 2 M , P (X) ✓ M if and only if |X|M < �.

The main limitation on the strength of an elementary embedding is known as the Kunen

Inconsistency Theorem [22]:

Theorem 4.2.9 (Kunen). Suppose j : V ! M is a nontrivial elementary embedding and �

is the first fixed point of j above crt(j). Then str(j)  �.

We prove this and other related facts in Section 4.2.

The basic relationship between strength and the Mitchell order is given by the following

two lemmas:

Lemma 4.2.10. Suppose U and W are countably complete ultrafilters and U C W . Then

MW is �-strong where � is the cardinality of the underlying set X of U . In fact, P (X) ✓ MW .

Proof. Clearly X 2 MW since X 2 U 2 MW . It su�ces to show that P (X) ✓ MW . Fix

A ✓ X, and we will show A 2 MW . Since U is an ultrafilter, either A 2 U or X \A 2 U . If

A 2 U , then A 2 U 2 MW , so A 2 MW . If X \A 2 U , then similarly X \A 2 MW , and since

X 2 MW , it follows that A = X \ (X \ A) 2 MW . Therefore in either case, A 2 MW .

Lemma 4.2.11. Suppose W is a countably complete ultrafilter and jW is 2�-strong. Then

for any countably complete ultrafilter U on �, U C W .

Proof. Since U ✓ P (�), U 2 H((2�)+) ✓ MW .
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This strength requirement implicit in the definition of the generalized Mitchell order may

seem somewhat unnatural. What if one modified the Mitchell order, considering for example

the amenability relation defined on countably complete ultrafilters by setting U ^ W if and

only if U concentrates on MW and U \MW 2 MW ? Such modified Mitchell orders are the

subject of Section 5.5.

For the time being, we must point out some irritating properties of the generalized

Mitchell order that suggest that in some sense it may be a little bit too general. The issue is

that the definition of U C W above has a strong dependence on the choice of the underlying

set of U . For example, if W is nonprincipal, then the following hold:

• There is a principal ultrafilter D on an ordinal such that D 6C W .

• There is a set x such that the principal ultrafilter {{x}} 6C W .

For the first bullet point, let � be the strength of jW , and let D be any principal ultrafilter

on �. For the second bullet point, let x be any set that does not belong to MW .

These silly counterexamples suggest that the generalized Mitchell order is only a well-

behaved relation on a restricted class of ultrafilters. Recall that for any ultrafilter U on a

set X, �U is defined to be the least cardinality of a set in U , and U is said to be uniform if

|X| = �U . Hereditary uniformity is a strengthening of uniformity:

Definition 4.2.12. An ultrafilter U on a set X is hereditarily uniform if �U is the hereditary

cardinality of X.

Any ultrafilter U is isomorphic to a hereditarily uniform ultrafilter since in fact U is

isomorphic to an ultrafilter on �U (Lemma 2.2.24). The following lemma argues that the

generalized Mitchell order is a reasonable relation on the class of hereditarily uniform ultra-

filters:
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Lemma 4.2.13. Suppose U 0 RK U C W are countably complete ultrafilters. Let X and

X 0 be the underlying sets of U and U 0, and assume X 0 2 MW and MW satisfies |X 0|  |X|.
Then U 0 C W and MW satisfies U 0 RK U . If U 0 ⇠= U , then MW satisfies U 0 ⇠= U .

Lemma 4.2.14. Suppose U 0 RK U C W are countably complete ultrafilters and U 0 is

hereditarily uniform. Then U 0 C W and MW satisfies U 0 RK U . If U 0 ⇠= U , then MW

satisfies U 0 ⇠= U . In particular, the restriction of the generalized Mitchell order to hereditarily

uniform ultrafilters is isomorphism invariant.

Lemma 4.2.13 and Lemma 4.2.14 follow from a fact that is both more general and easier

to prove:

Lemma 4.2.15. Suppose M is an inner model of ZFC, � is a cardinal, and X 2 M is a

set of cardinality � such that P (X) ✓ M .

• For any set Y 2 M such that M ✏ |Y |  |X|, P (Y ) ✓ M .

• For any set Y 2 M such that M ✏ |Y |  |X|, P (X ⇥ Y ) ✓ M .

• For any set Y 2 M such that M ✏ |Y |  |X|, every function from X to P (Y ) belongs

to M .

• P (�) ✓ M .

• Every set of hereditary cardinality at most � belongs to M and has hereditary cardinality

at most � in M .

The bullet points are arranged in such a way that the reader should have no trouble

proving each one in turn.1

Proof of Lemma 4.2.13. Fix f : X ! X 0 such that f⇤(U) = U 0. By Lemma 4.2.15, f 2 MW ,

and hence U 0 = f⇤(U) 2 MW . Moreover f witnesses U 0 RK U in MW . Finally if U 0 ⇠= U ,

then this is also witnessed by some g 2 MW .
1It is likely, however, that the second bullet-point cannot be established if M is not assumed to satisfy

the Axiom of Choice.
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Proof of Lemma 4.2.14. By Lemma 4.2.15, the underlying set of U 0 belongs to MW and

has hereditary cardinality at most �U 0  �U  |X| in MW , so the lemma follows from

Lemma 4.2.13.

Supercompactness and the Mitchell order

We now turn to a concept that is more pertinent to this dissertation than strength: super-

compactness.

Definition 4.2.16. SupposeM is a transitive class andX is a set. An elementary embedding

j : V ! M is X-supercompact if j[X] 2 M .

The following lemma allows us to focus solely on the case of �-supercompact embeddings

for � a cardinal:

Lemma 4.2.17. Suppose X and Y are sets such that |X| = |Y |. Then an elementary

embedding j : V ! M is X-supercompact if and only if it is Y -supercompact. In particular,

j is X-supercompact if and only if j is |X|-supercompact.

Proof. Suppose j is X-supercompact and f : X ! Y is a surjection. Then

j(f)[j[X]] = j[Y ]

so j is Y -supercompact.

Definition 4.2.18. Suppose   � are cardinals. Then  is �-supercompact if there is a �-

supercompact embedding j : V ! M such that crt(j) =  and j() > �;  is supercompact

if  is �-supercompact for all cardinals � � .

The results of this dissertation (Section 8.4) single out a class of ultrapower embeddings

that are just shy of �-supercompact, so the following is an important definition:

Definition 4.2.19. Suppose � is a cardinal. An elementary embedding j : V ! M is

<�-supercompact if j is �-supercompact for all cardinals � < �.
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The definition of supercompactness is motivated by its relationship with the closure of

M under �-sequences:

Lemma 4.2.20. Suppose j : V ! M is an elementary embedding and � is a cardinal.

(1) j is �-supercompact if and only if j � � 2 M .

(2) If j is �-supercompact, then j is �-strong.

(3) If j is �-supercompact, then j[X] 2 M for all X of cardinality �.

(4) If j is �-supercompact and M = HM(j[V ] [ S) for some S ✓ M such that S� ✓ M ,

then M� ✓ M .

Proof. For (1), note that j � � is the inverse of the transitive collapse of j[�].

For (2), suppose A ✓ �. Then A = (j � �)�1[j(A)], so since j � � and j(A) both belong

to M , so does A.

(3) is immediate from Lemma 4.2.17.

For (4), fix hx↵ : ↵ < �i 2 M�. Fix hf↵ : ↵ < �i and ha↵ : ↵ < �i 2 S� such that

x↵ = j(f↵)(a↵) for all ↵ < �. The function G : j[�] ! M defined by G(j(↵)) = j(f↵)

belongs to M by (3), since

G = j[{(↵, f↵) : ↵ < �}]

Therefore the sequence hj(f↵) : ↵ < �i can be computed from G and j � �:

j(f↵) = G � (j � �)(↵)

Since both G and j � � belong to M by (1), hj(f↵) : ↵ < �i 2 M . Finally,

hx↵ : ↵ < �i = hj(f↵)(a↵) : ↵ < �i

can be computed from hj(f↵) : ↵ < �i and ha↵ : ↵ < �i. Both these sequences belong to M ,

since ha↵ : ↵ < �i 2 S� ✓ M , so hx↵ : ↵ < �i 2 M , as desired.
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For the purposes of this dissertation, the most relevant corollary of Lemma 4.2.20 is its

application to ultrapower embeddings:

Corollary 4.2.21. An ultrapower embedding j : V ! M is �-supercompact if and only if

M� ✓ M .

Proof. Fix a 2 M such that M = HM(j[V ] [ {a}). The corollary follows from applying

Lemma 4.2.20 (4) in the case S = {a}.

We can make good use of Corollary 4.2.21 since it is always possible to derive a �-

supercompact ultrapower embeddings from a �-supercompact embedding:

Lemma 4.2.22. Suppose j : V ! M is an X-supercompact embedding, V
i�! N

k�! M

are elementary embeddings, k � i = j, and j[X] 2 k[N ]. Then i is X-supercompact and

k(i[X]) = j[X]. In particular, letting � = |X|, k � �+ 1 is the identity.

Proof. Fix S 2 M such that k(S) = j[X]. Then

S = k�1[k(S)] = k�1[j[X]] = k�1 � j[X] = i[X]

Thus i[X] = S 2 M , so i is X-supercompact, and moreover, k(i[X]) = k(S) = j[X].

Since k(i[X]) = j[X], the argument of Lemma 4.2.17 shows k(i[�]) = j[�]. But then if

↵  �, k(↵) = k(ot(i[�] \ i(↵))) = ot(k(i[�]) \ k(i(↵))) = ot(j[�] \ j(↵)) = ↵.

Definition 4.2.23. The supercompactness of an elementary embedding j : V ! M is the

least cardinal � such that j is not �-supercompact.

Which cardinals are the supercompactness of an elementary embedding? Which are the

supercompactness of an ultrapower embedding? This turns out to be a major distinction:

Proposition 4.2.24. Suppose � is a singular cardinal and j : V ! M is an elementary

embedding such that M<� ✓ M . Then M� ✓ M .
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Thus the supercompactness of an ultrapower embedding is always regular, while it is

easy to see this must fail for arbitrary embeddings if there is a +!-supercompact cardinal.

An important point is that if the cofinality of � is small, �-supercompactness is equivalent

to �+-supercompactness:

Lemma 4.2.25. Suppose � is a cardinal, j : V ! M is elementary embedding, and  =

crt(j). If j is �-supercompact, then j is �<-supercompact.

Proof. Assume j[�] 2 M , and we will show that j[P(�)] 2 M . Note that for � 2 P(�),

j(�) = j[�]. Thus

j[P(�)] = {j[�] : � 2 P(�)} = P(j[�])

One consequence of this is that P(j[�]) ✓ M , since j[P(�)] ✓ M , and therefore P(j[�]) =

(P(j[�]))M 2 M . It follows that j[P(�)] 2 M , as desired.

It follows for example that the supercompactness of an elementary embedding is never

the successor of a singular cardinal � of countable cofinality, since �! = �+. This is an

important component in the proof of Kunen’s Inconsistency Theorem (Theorem 4.2.37).

We now begin to examine the relationship between supercompactness and the Mitchell

order, which turns out to be central to the rest of this dissertation. The key point is that if

U C W , then the supercompactness of MW determines the extent to which the ultrapower

of MW by U is correctly computed by MW .

Lemma 4.2.26. Suppose U C W are countably complete ultrafilters. Then there is a unique

elementary embedding k : (MU)MW ! jU(MW ) such that k � (jU)MW = jU � MW and

k(aMW

U ) = aU . Let X be the underlying set of U . Then k � jU((2�)MW ) + 1 where � = |X|.

Proof. Since P (X) ✓ MW , U is the ultrafilter derived from jU � MW using aU . Thus there

is a unique factor embedding k : (MU)MW ! jU(MW ) such that k � (jU)MW = jU � MW and

k(aMW

U ) = aU . This establishes the first part of the lemma.
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As for the second part, since U C W , we have P (X) ✓ MW and hence by Lemma 4.2.15,

P (�) ✓ MW and every function from X to P (�) belongs to MW . It follows that jU(P (�)) ✓
ran(k): if A 2 jU(P (�)), then A = jU(f)(aU) for some f : X ! P (�), and therefore

A = k(jMW

U (f)(aMW

U )) 2 ran(k)

Since there is a surjection g : P (�) ! (2�)MW in MW ,

jU(g)[jU(P (�))] = jU((2
�)MW ) ✓ ran(k)

Moreover jU((2�)MW ) 2 jU [MW ] ✓ ran(k). Thus jU((2�)MW )+1 ✓ ran(k), or in other words,

k � jU((2�)MW ) + 1 = id.

We will refer to the embedding of Lemma 4.2.26 as a factor embedding.

Lemma 4.2.27. Suppose U and W are countably complete ultrafilters with U C W . Let X

be the underlying set of U , let � = |X| and let � = ((2�)+)MW . Then

jMW

U � HM
W (�) = jU � HM

W (�)

Proof. Let k : (MU)MW ! jU(MW ) be the factor embedding with k � (jU)MW = jU � MW

and k(aMW

U ) = aU . Then Lemma 4.2.26 implies k � jMW

U (�) is the identity, and therefore

k � jMW

U (HM
W (�)) is the identity. Now

jMW

U � HM
W (�) = (k � jMW

U (HM
W (�))) � (jMW

U � HM
W (�)) = jU � HM

W (�)

Our next proposition, Proposition 4.2.28, suggests that the Mitchell order on ultrafilters

be seen as a generalization of supercompactness that asks for one ultrapower MW how much

it can see of another embedding jU . (On this view supercompactness is the special case in

which we ask how much of jU is seen by MU itself.)

Proposition 4.2.28. Suppose U and W are countably complete ultrafilters. Let X be the

underlying set of U , let � = |X| and let � = ((2�)+)MW . Then the following are equivalent:
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(1) U C W .

(2) jU � HM
W (�) 2 MW .

(3) jU � P (�) 2 MW .

(4) jU � P (X) 2 MW .

Proof. (1) implies (2). Immediate from Lemma 4.2.27.

(2) implies (3). Immediate since P (�) ✓ HM
W (�).

(2) implies (3). This is probably clear enough (and in any case, (1) implies (4) is easy),

but let us just make sure. By Lemma 4.2.15, |X|M = �. Let ⇢ : � ! X be a surjection in

MW . For A 2 P (X),

jU(A) = jU(⇢)[jU(⇢
�1[A])]

(3) implies (1). If jU � P (X) belongs to MW , then U = {A ✓ X : aU 2 jU(A)} belongs

to MW as well.

Given Lemma 4.2.27, it is reasonable to wonder whether the whole embedding jU � MW

might be correctly computed by MW as well; that is, perhaps the factor embedding k is

always trivial. We provide a counterexample in Proposition 5.5.5.2 This is equivalent to the

supercompactness of jW , a phenomenon we exploit later:

Proposition 4.2.29. Suppose U C W are countably complete ultrafilters. Then the following

are equivalent:

(1) (jU)MW = jU � MW .

(2) jW is �U -supercompact.

2This counterexample also shows that in the context of Lemma 4.2.26, the lower bound given there on
crt(k) can be tight in the sense that (consistently) one can have

crt(k) = jU

�

(2�)MW
�+(MU )MW
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Proof. (1) implies (2): Let k : (MU)MW ! jU(MW ) be the factor embedding of Lemma 4.2.26,

with k � jMW

U = jU � MW and k(aMW

U ) = aU . Since (jU)MW = jU � MW , we have that

k : jU(MW ) ! jU(MW ) and k � jU � jW = jU � jW . Hence by the basic theory of the

Rudin-Keisler order (Theorem 3.4.8), k is the identity.

It follows in particular that jU(jW )(aU) 2 ran(k). Fix f : X ! MW in MW such that

k(jMW

U (f)(aMW

U )) = jU(jW )(aU)

Thus jU(f)(aU) = jU(jW )(aU), so by  Loś’s Theorem, there is a set A 2 U such that f � A =

jW � A. Since P (X) ✓ MW , A 2 MW , and hence jW � A = f � A 2 MW . In particular,

jW [A] 2 MW , so jW is A-supercompact. By Lemma 4.2.17, jW is |A|-supercompact, and

since �U  |A|, it follows that jW is �U -supercompact.

(2) implies (1): Obvious.

Down the line (Theorem 8.3.26) we will show that under UA, whenever U C W , in fact

jW is �U -supercompact (and in fact it su�ces that P (�U) ✓ MW ), and thus jMU

W = jW � MU .

For now, let us mention a generalization of Proposition 4.2.29, whose proof we omit:

Proposition 4.2.30. Suppose U and W are countably complete ultrafilters such that U

concentrates on a set in MW . The following are equivalent:

(1) jMW

U\M
W

= jU � MW

(2) There is a function f 2 MW such that f � A = jW � A for some A 2 U .

(3) For all f : I ! MW where I 2 U , there is some g 2 MW such that g � A = f � A for

some A 2 U .

We finish this section with a restriction on the supercompactness of an ultrafilter:

Proposition 4.2.31. Suppose U is an ultrafilter and jU is �+
U -supercompact. Then U is

principal.
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We use the following lemma:

Lemma 4.2.32. Suppose j : V ! M is an elementary embedding that is discontinuous at

the infinite cardinal �. Let �⇤ = sup j[�]. Then

�+  �+M
⇤ < j(�)+M = j(�+)

If j is continuous at �+, then j(�+) is a singular ordinal of cofinality �+, so j(�+) < j(�)+.

Proof. We first show that �+  �+M
⇤ . Suppose ↵ < �+. Let � be a wellorder of � such that

ot(�) = ↵. Then �⇤ = j(�) � �⇤ is a wellorder of �⇤ and j restricts to an order-preserving

embedding from (�,�) into (�⇤,�⇤). Therefore

↵  ot(�⇤,�⇤) < �+M
⇤

The final inequality follows from the fact that (�⇤,�⇤) belongs to M . Since ↵ < �+ was

arbitrary, it follows that �+  �+M
⇤ .

To prove �+M
⇤ < j(�)+M , it is of course enough to show �+M

⇤  j(�). But j(�) is a

cardinal of M that is greater than �⇤, and hence �+M
⇤  j(�).

Finally, assume that j is continuous at �+. Obviously j(�+) has cofinality �+, but the

point is that this implies j(�+) is singular, since the inequalities above show �+ < j(�+).

We can therefore conclude j(�)+M < j(�)+: obviously j(�)+M  j(�)+, but the point is

that equality cannot hold since j(�+) is singular and j(�)+ is regular.

Proof of Proposition 4.2.31. Let � = �U . Without loss of generality, we may assume that U

is a uniform ultrafilter on � and � is infinite. Thus jU is discontinuous at �. Assume towards

a contradiction that jU [�+] 2 MU . By Lemma 4.2.32, jU(�+) > �+. But by Lemma 3.5.32,

jU is continuous at �+, and therefore jU [�+] 2 MU is a cofinal subset of jU(�+) of ordertype

�+. Hence cfMU (jU(�)+M
U ) = �+ < jU(�+), and this contradicts that jU(�+) is regular in

MU .
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The Kunen Inconsistency

The story of the Kunen Inconsistency Theorem is often cast as a cautionary tale with the

moral that a large cardinal hypothesis may turn out to be false for nontrivial combinatorial

reasons:

Theorem 4.2.33 (Kunen). There is no nontrivial elementary embedding from the universe

to itself.

A more pragmatic perspective is to view the Kunen Inconsistency is a proof technique,

providing at least some constraint on the elementary embeddings a large cardinal theorist

is bound to analyze. Examples pervade this work, but to pick the closest one, the Kunen

Inconsistency will form a key component of the proof of the wellfoundedness of the Mitchell

order in Section 4.2. Since our applications of Kunen’s theorem will require the basic concepts

from the proof (especially the notion of a critical sequence), we devote this subsection for a

brief exposition of this topic.

We first give a proof of a version of Kunen’s inconsistency Theorem that is due to Harada.

(Another writeup of this proof appears in Kanamori’s textbook [23].) The methods are purely

ultrafilter-theoretic methods and very much in the spirit of this dissertation:

Proposition 4.2.34 (Kunen). Suppose j : V ! M is an elementary embedding and ⌘ is a

strong limit cardinal such that j is ⌘-supercompact and j[⌘] ✓ ⌘. Then j � ⌘ = id.

Proof. Assume the proposition holds for all ⌘̄ < ⌘.

If ⌘ is has uncountable cofinality, then there is an !-closed unbounded set of ⌘̄ < ⌘ such

that j[⌘̄] ✓ ⌘̄. Therefore j � ⌘̄ = id for unboundedly many ⌘̄ < ⌘, so j � ⌘ = id.

Assume instead that ⌘ has countable cofinality. Then j is continuous at ⌘, so since

j[⌘] ✓ ⌘, we have j(⌘) = ⌘. We essentially reduce to the case that j is the ultrapower of the

universe by an ultrafilter U on P (⌘). Let U be the ultrafilter on P (⌘) derived from j using

j[⌘]. Let k : MU ! M be the factor embedding. Then j[⌘] 2 k[MU ], so by our analysis
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of the supercompactness of derived embeddings (Lemma 4.2.22), jU is ⌘-supercompact and

k � ⌘ + 1 = id. If follows that jU(⌘) = ⌘. Moreover, if we show jU � ⌘ = id then we can

conclude j � ⌘ = id. In fact, we will show that U is principal.

By Lemma 4.2.25, jU is actually ⌘!-supercompact. Since ⌘ is a strong limit cardinal of

countable cofinality, ⌘! = 2⌘. Thus jU is 2⌘-supercompact. Recall that Proposition 4.2.31

states that if jU is �+
U -supercompact, then U is principal. Thus to show U is principal, it

su�ces to show that �U < 2⌘.

Since U is an ultrafilter on P (⌘), �U  |P (⌘)|  2⌘, so in fact, we need only show

�U 6= 2⌘. Since U is isomorphic to a uniform ultrafilter on �U , jU is discontinuous at �U ,

and in particular jU(�U) 6= �U . On the other hand, since MU is closed under 2⌘-sequences,

(2⌘)MU = 2⌘, and hence

jU(2
⌘) = (2jU (⌘))MU = (2⌘)MU = 2⌘

Since �U is moved by jU while 2⌘ is fixed, �U 6= 2⌘, and hence �U < 2⌘, as desired.

Suppose j : V ! M is an elementary embedding with critical point . Let � be the first

ordinal above  such that j[�] ✓ �, the first ordinal at which one might be able to apply

the Kunen argument. Proposition 4.2.34 tells us that j[�] /2 M if � is a strong limit; we

would like to see that in fact j[�] never belongs to M . This follows from the critical sequence

analysis of �:

Definition 4.2.35. Suppose N and P are transitive models of ZFC with the same ordinals

and j : N ! P is a nontrivial elementary embedding. The critical sequence of j is the

sequence hn : n < !i defined by recursion: 0 = crt(j) and for all n < !, n+1 = j(n).

In the context of Definition 4.2.35, let � = supn<! n. Clearly � is the least ordinal such

that j[�] ✓ �. If cfM(�) = !, j is continuous at �, so j(�) = �. In particular, if N = V ,

which is the case of interest in this section, then � is the first fixed point of j above crt(j).

In the case n > 1, the conclusion of the following lemma is a considerable understatement:
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Lemma 4.2.36. Suppose j : V ! M is a nontrivial elementary embedding and hn : n < !i
is its critical sequence. For any n < !, if j is n-strong then n is measurable.

Proof. The proof is by induction on n. Certainly 0 = crt(j) is measurable. Assume the

lemma is true for n = m, and we will show it is true for n = m + 1. Therefore assume j is

m+1-strong. In particular, j is m-strong, so by our induction hypothesis, m is measurable.

By elementarity, m+1 = j(m) is measurable in M . Since j is m+1-strong, P (m+1) ✓ M .

Thus the measurability of m+1 in M is upwards absolute to V , so m+1 is measurable.

Theorem 4.2.37 (Kunen). Suppose j : V ! M is a nontrivial elementary embedding and

� is the least ordinal above crt(j) with j[�] ✓ �. Then j[�] /2 M .

Proof. Assume towards a contradiction that j[�] 2 M . By Lemma 4.2.20, j is �-strong.

Therefore n is measurable for all n < ! by Lemma 4.2.36, and so � is a strong limit

cardinal. Since j[�] ✓ � and P (�) ✓ M , j[�] 2 M . Thus � is a strong limit cardinal,

j[�] ✓ �, and j is �-supercompact. From Proposition 4.2.34 we can therefore conclude that

crt(j) � �, contradicting that crt(j) < �.

A useful structural consequence of Kunen’s Inconsistency Theorem is the following lemma:

Lemma 4.2.38. Suppose � is a cardinal, j : V ! M is a nontrivial elementary embedding,

crt(j)  �, and P (�) ✓ M . Then there is a measurable cardinal   � such that j() > �.

Proof. Let hn : n < !i be the critical sequence of j and � = supn<! n. Thus � is the least

ordinal with j[�] ✓ �. By Theorem 4.2.37, P (�) 6✓ M , so since P (�) ✓ M , we have � < �.

Let n < ! be least such that n  � < n+1. Lemma 4.2.36 implies n is measurable, and

j(n) = n+1 > �. Thus taking  = n proves the lemma.

In one instance (Theorem 4.4.36), we will need a strengthening of Lemma 4.2.38 which

has essentially the same proof:
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Lemma 4.2.39. Suppose �  � are cardinals and j : V ! M is a nontrivial �-supercompact

elementary embedding with crt(j)  �. Then there is a �-supercompact cardinal   � such

that j() > �.

The wellfoundedness of the generalized Mitchell order

The main theorem of this subsection states that the generalized Mitchell order is a well-

founded partial order when restricted to a reasonable class of countably complete ultrafilters.

In fact, the wellfoundedness of the generalized Mitchell order on countably complete ultrafil-

ters is a special case of Steel’s wellfoundedness theorem for the Mitchell order on extenders

[24], since countably complete ultrafilters are amenable extenders in the sense of [24], but

we will give a much simpler proof here.

We start with the fundamental fact that the Mitchell order is irreflexive:

Lemma 4.2.40. Suppose U is a countably complete nonprincipal ultrafilter. Then U 6C U .

Proof. Suppose towards a contradiction that U C U . By Lemma 4.2.14, if U 0 ⇠= U is a

uniform ultrafilter on a cardinal (as given by Lemma 2.2.24) then U 0 C U 0 as well. We

can therefore assume without loss of generality that U is a uniform ultrafilter on a cardinal

�. By Proposition 4.2.28, jU � P (�) 2 MU . In particular, jU � � 2 MU , so M�
U ✓ MU

by Lemma 4.2.20. Therefore jMU

U = jU � MU , for example as a consequence of Propo-

sition 4.2.29. Thus jU is �-supercompact for all cardinals �. This contradicts Proposi-

tion 4.2.31.

We now turn to the transitivity and wellfoundedness of the generalized Mitchell order.

The following lemma (which in the language of [24] states that countably complete ultrafilters

are amenable), is the key to the proof.

Lemma 4.2.41. Suppose U is a nonprincipal countably complete ultrafilter on a set X.

Suppose � is a cardinal such that P (�) ✓ MU . Then MU ✏ 2� < jU(|X|).
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Proof. The proof proceeds by finding a measurable cardinal   |X| such that 2� < jU().

If � < crt(jU), then  = crt(jU) works. Therefore assume crt(jU)  �. By

Lemma 4.2.38, there is an measurable cardinal   � such that jU() > �. We claim that

  |X|, which completes the proof. Assume not. Then |X| is smaller than the inaccessible

cardinal , and hence jU() =   � (Lemma 3.5.33), a contradiction.

We really only use the following consequence of Lemma 4.2.41:

Corollary 4.2.42. Suppose U0 C U1 are countably complete nonprincipal hereditarily uni-

form ultrafilters. Then MU1 ✏ 2�U0 < jU1(�U1).

Proof. This is immediate from Lemma 4.2.41, using the fact (Lemma 4.2.10) that if U0 C U1

then P (�U0) ✓ MU1 .

Corollary 4.2.43. Suppose U0 C U1 are countably complete nonprincipal hereditarily uni-

form ultrafilters. Let � = �U1. Then U0 2 jU1(H(�)).

Proof. Since U0 is hereditarily uniform, MU1 ✏ |tc(U0)| = 2�U0 By Corollary 4.2.42, MU1 ✏

2�U0 < jU1(�). Therefore U0 2 HM
U1 (jU1(�)) = jU1(H(�)).

Proposition 4.2.44. Suppose U0 C U1 C U2 are countably complete nonprincipal hereditar-

ily uniform ultrafilters. Then U0 C U2 and MU2 ✏ U0 C U1.

Proof. Let � = �U1 . Then U0 2 jU1(H(�)). By Lemma 4.2.27, MU2 contains jU1(H(�)), so

U0 2 MU2 , which yields U0 C U2. In fact, by Lemma 4.2.27, jU1(H(�)) = j
M

U2
U1

(H(�)), and

so U0 2 j
M

U2
U1

(H(�)) ✓ M
M

U2
U1

. Thus U0 2 M
M

U2
U1

, or other words, MU2 ✏ U0 C U1.

Corollary 4.2.45. The generalized Mitchell order is transitive on countably complete non-

principal hereditarily uniform ultrafilters.

It is worth pointing out that the generalized Mitchell order on extenders is not transitive

if there is a cardinal that is -strong where  is a measurable cardinal. The counterexample
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is described in [24]. (The generalized Mitchell order is not transitive on arbitrary countably

complete ultrafilters either as a consequence of the silly counterexamples in Section 4.2.)

Proposition 4.2.46. The generalized Mitchell order is wellfounded on countably complete

nonprincipal hereditarily uniform ultrafilters.

Proof. Suppose not, and let � be the least cardinal such that there is a descending sequence

U0 B U1 B U2 B · · ·

of countably complete hereditarily uniform ultrafilters with �U0 = �.

By Proposition 4.2.44 and the closure of MU0 under countable sequences, the sequence

hUn : 1  n < !i belongs to MU0 and

MU0 ✏ U1 B U2 B · · ·

Note that in MU0 , U1 is a countably complete nonprincipal hereditarily uniform ultrafilter,

and by Corollary 4.2.42, �U1 < jU0(�).

On the other hand, by the elementarity of jU0 , from the perspective of MU0 , jU0(�) is the

least cardinal �0 such that there is a descending sequence

W0 B W1 B W2 B · · ·

of countably complete hereditarily uniform ultrafilters such that �W0 = �0. This is a contra-

diction.

One can prove a slightly more general result than Proposition 4.2.46 although this gen-

erality is never useful.

Theorem 4.2.47. The generalized Mitchell order is wellfounded on nonprincipal countably

complete ultrafilters.

Proof. Assume towards a contradiction that U0 B U1 B · · · are nonprincipal countably

complete ultrafilters. For each n < !, let U 0
n be a hereditarily uniform ultrafilter such that

U 0
n
⇠= Un. Then by Lemma 4.2.14, U 0

0 B U 0
1 B · · ·. This contradicts Proposition 4.2.46.
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The nonlinearity of the generalized Mitchell order

Before we discuss the extent to which the generalized Mitchell order is linear under UA, it

is worth pointing out:

• the obvious counterexamples to linearity

• the maximal amount of linearity one can reasonably hope for.

The fact is that if there is a measurable cardinal, then the generalized Mitchell order

is not linear, even restricting to uniform countably complete ultrafilters on cardinals. The

known counterexamples to the linearity of the generalized Mitchell order are closely related

to the Rudin-Froĺık order (the subject of Chapter 5):

Definition 4.2.48. The Rudin-Froĺık order is defined on countably complete ultrafilters U

and W by setting U RF W if there is an internal ultrapower embedding i : MD ! MW

such that i � jD = jW .

By Lemma 3.4.4, the Rudin-Keisler order can be defined in exactly the same way except

omitting the requirement that i be internal.

Proposition 4.2.49. If U RF W are nonprincipal countably complete ultrafilters, then U

and W are incomparable in the generalized Mitchell order.

Proof. We first show U 6C W . Since U RF W , MW ✓ MU . Therefore the fact that U /2 MU

implies that U /2 MW , and hence U 6C W .

We now show W 6C U . Assume towards a contradiction that W C U . Assume without

loss of generality that U is a uniform ultrafilter on a cardinal �. (Since the Mitchell order

is isomorphism invariant in its second argument, this does not change our situation.) Since

U RF W , we have U RK W by Lemma 3.4.4. Since U is hereditarily uniform and

U RK W C U , our lemma on the invariance of the Mitchell order (Lemma 4.2.14) yields

that U C U . This contradicts Lemma 4.2.40.
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A similar argument shows the following:

Proposition 4.2.50. Suppose U and W are countably complete ultrafilters and there is a

nonprincipal D RF U,W . Then U and W are incomparable in the generalized Mitchell

order.

Even this does not exhaust the known counterexamples to the linearity of the generalized

Mitchell order:

Proposition 4.2.51. Suppose U0 C U1 C U2. Suppose U0, U2 RF W . Then U1 and W are

incomparable in the Mitchell order.

We omit the proof. The hypotheses of the proposition are satisfied if U0, U1, U2 are normal

ultrafilters on measurable cardinals 0 < 1 < 2 respectively and W = U0 ⇥ U2.

All known examples of nonlinearity in the generalized Mitchell order are accompanied

by nontrivial relations in the Rudin-Froĺık order. A driving question in this work is whether

assuming UA, these are the only counterexamples.

Definition 4.2.52. A nonprincipal countably complete ultrafilter W is irreducible if for all

U RF W , either U is principal or U is isomorphic to W .

The Irreducible Ultrafilter Hypothesis (IUH) essentially states that the sort of counterex-

amples to the linearity of the Mitchell order that we have described are the only ones.

Irreducible Ultrafilter Hypothesis. Suppose U and W are hereditarily uniform irre-

ducible ultrafilters. Either U ⇠= W , U C W , or W C U .

We can now make precise the question of the extent of the linearity of the Mitchell order

under UA:

Question 4.2.53. Does UA imply IUH?

With this in mind, let us turn to the positive results on linearity.

120



4.3 Dodd soundness

Introduction

Dodd soundness is a fine-structural generalization of supercompactness, introduced by Steel

[2] in the context of inner model theory as a strengthening of the initial segment condition.

The following remarkable theorem is due to Schlutzenberg [7]:

Theorem 4.3.1 (Schlutzenberg). Suppose L[E] is an iterable Mitchell-Steel model and U is

a countably complete ultrafilter of L[E]. Then the following are equivalent:

(1) U is irreducible.

(2) U is isomorphic to a Dodd sound ultrafilter.

(3) U is isomorphic to an extender on the sequence E.

Since the total extenders on E are linearly ordered by the Mitchell order, this has the

following consequence:

Theorem 4.3.2 (Schlutzenberg). Suppose L[E] is an iterable Mitchell-Steel model. Then

L[E] satisfies the Irreducible Ultrafilter Hypothesis.

It is open whether this theorem can be extended to the Woodin models at the finite levels

of supercompactness. The main result of this section (Theorem 4.3.29) states that UA alone

su�ces to prove the linearity of the generalized Mitchell order on Dodd sound ultrafilters.

Dodd sound embeddings, extenders, and ultrafilters

In this subsection, we present a definition of Dodd soundness due to the author that is much

simpler than the one given in [2] and [7], and that is easier to use in certain contexts. (The

other definition is also useful.) We then show that the two definitions are equivalent.
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Definition 4.3.3. Suppose M is a transitive class, j : V ! M is an elementary embedding,

and ↵ is an ordinal. Let � be the least ordinal such that j(�) � ↵. Then

j↵ : P (�) ! M

is the function defined by j↵(X) = j(X) \ ↵. The embedding j is said to be ↵-sound if j↵

belongs to M .

Recall that the bounded powerset of an ordinal � is defined by Pbd(�) =
S

⇠<� P (⇠). In

the context of Definition 4.3.3, if ↵ = sup j[�] it have been natural to define j↵ = j � Pbd(�).

With this alternate definition, j↵ 2 M is an a priori weaker requirement. The next lemma

shows that this does not actually make a di↵erence:

Lemma 4.3.4. Suppose M is a transitive class, j : V ! M is an elementary embedding,

and � is an ordinal. Let �⇤ = sup j[�]. Then the following are equivalent:

(1) j is �⇤-sound.

(2) j[Pbd(�)] 2 M or equivalently j is 2<�-supercompact.

(3) j � Pbd(�) 2 M .

(4) j � PM
bd (�) 2 M .

Proof. (1) implies (2): Trivial. (The equivalence of j[Pbd(�)] 2 M with 2<�-supercompactness

is immediate from Lemma 4.2.17.)

(2) implies (3): j � Pbd(�) is the inverse of the transitive collapse of j[Pbd(�)].

(3) implies (4): Trivial.

(4) implies (1): Assume j � PM
bd (�) 2 M . Since � ✓ PM

bd (�),

j � � = (j � PM
bd (�)) � � 2 M

Therefore j is �-supercompact. Since supercompactness implies strength (Lemma 4.2.20),

P (�) ✓ M . In particular j � PM
bd (�) = j � Pbd(�). Finally for X ✓ �, j�⇤(X) =

S

⇠<� j(X\⇠),

so j�⇤ is definable from j � Pbd(�) and hence j�⇤ 2 M , which shows (1).
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Lemma 4.3.5. Suppose M is a transitive class, j : V ! M is an elementary embedding,

and ↵ is an ordinal. Then j is ↵-sound if and only if {j(X) \ ↵ : X 2 V } 2 M .

Proof. The forward direction is immediate since {j(X) \ ↵ : X 2 V } = ran(j↵). The

reverse direction follows from the fact that j↵ is the inverse of the transitive collapse of

{j(X) \ ↵ : X 2 V }.

Our next lemma states that the fragments j↵ “pull back” under elementary embeddings.

Lemma 4.3.6. Suppose V
i�! N

k�! M are elementary embeddings and j = k � i. Suppose
j↵ 2 ran(k). Then k�1(j↵) = ik

�1(↵).

Proof. Let � be the least ordinal such that j(�) � ↵. Note that j↵[Ord] = j[�] 2 ran(k),

so by our analysis of derived embeddings (Lemma 4.2.22), k � � + 1 is the identity and i is

�-supercompact. In particular, Pbd(�) ✓ M and k(Pbd(�)) = Pbd(�).

Let h = k�1(j↵). Then dom(h) = k�1(Pbd(�)) = Pbd(�). Thus for X 2 dom(h),

k(X) = X, and hence

k(h(X)) = k(h)(k(X)) = k(h)(X) = j↵(X) = j(X) \ ↵ = k(i(X)) \ ↵

By the elementarity of k, this implies that h(X) = i(X)\k�1(↵), or in other words k�1(j↵) =

h = ik
�1(↵), as desired.

We now turn to Dodd soundness.

Definition 4.3.7. If j : V ! M is an extender embedding, the Dodd length of j, denoted

↵(j), is the least ordinal ↵ such that every element of M is of the form j(f)(⇠) for some

⇠ < ↵.

On first glance, one might believe that the Dodd length of an elementary embedding j

is the same as its natural length, denoted ⌫(j), the least ⌫ such that M = HM(j[V ] [ ⌫). In

fact, equality may fail: the issue is that ⌫(j) is the least ordinal such that every element of

M is of the form j(f)(p) for a finite set p ✓ ⌫, whereas in the definition of ↵(j), one must
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write every element of M in the form j(f)(⇠) where ⇠ is not a finite set but a single ordinal

below ⌫.

Our main focus, of course, is on ultrafilters, and in this case the Dodd length has an

obvious characterization:3

Lemma 4.3.8. If j : V ! M is an ultrapower embedding, then ↵(j) = ⇠ + 1 where ⇠ is the

least ordinal such that M = HM(j[V ][ {⇠}). Therefore U is incompressible if and only if U

is tail uniform and ↵(jU) = aU + 1.

Our next lemma establishes a limit on the solidity of an extender embedding. (It is

equivalent to the statement that no extender belongs to its own ultrapower.)

Lemma 4.3.9. Suppose j : V ! M is an extender embedding and ↵ = ↵(j). Then j is not

↵-sound.

Proof. Let us first show that if U is a countably complete tail uniform ultrafilter on an

ordinal �, then jU is not aU + 1-sound. Note that

U = {A ✓ � : aU 2 j(A)} = {A ✓ � : aU 2 jaU+1
U (A)}

so since U /2 MU , j
a
U

+1
U /2 M . Thus jU is not aU + 1-sound, as claimed.

We now handle the case where j is an arbitrary extender embedding. By the definition

of Dodd length, there is some ⇠ < ↵ and some function f 2 V such that j↵ = j(f)(⇠).

Let U be the tail uniform ultrafilter derived from j using ⇠, and let k : MU ! M be the

factor embedding. Then ⇠ 2 ran(k) and so j↵ 2 ran(k). Applying our lemma on pullbacks

of the fragments j↵ (Lemma 4.3.6), k�1(j↵) = j
k�1(↵)
U . Therefore jU is k�1(↵)-sound. But

note that aU = k�1(⇠) < k�1(↵). Hence jU is aU + 1-sound, and this contradicts the first

paragraph.

An embedding is Dodd sound if it is as sound as it can possibly be:

3This gives us a counterexample to the equality of Dodd length and natural length. Suppose U is a
normal ultrafilter on . Let W = U

2. Then ⌫(jW ) = jU () + 1 but ↵(jW ) = jU () + + 1.
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Definition 4.3.10. Suppose M is a transitive class and j : V ! M is an elementary

embedding. Then j is said to be Dodd sound if j is �-sound for all � < ↵(j).

We now prove the equivalence between the Dodd soundness of an extender E as it is

defined in [2] and the Dodd soundness of its associated embedding jE as it is defined in

Definition 4.3.3.

Definition 4.3.11. • A parameter is a finite set of ordinals.

• The parameter order is defined on parameters p and q by

p < q () max(p 4 q) 2 q

• If p is a parameter, then hpi : i < |p|i denotes the descending enumeration of p.

• For any k  |p|, p � k denotes the parameter {pi : i < k}.

The point of enumerating parameters in descending order is that the parameter order is

then transformed into the lexicographic order:

Lemma 4.3.12. Suppose p and q are parameters of length n and m respectively. Then p < q

if and only if hp0, . . . , pn�1i <lex hq0, . . . , qm�1i.

Lemma 4.3.13. The parameter order is a set-like wellorder.

Definition 4.3.14. If j : V ! M is an elementary embedding and p is a parameter, then

µj(p) is the least ordinal µ such that p ✓ j(µ).

Definition 4.3.15. Suppose j : V ! M is an elementary embedding, p is a parameter, and

⌫ < min(p) is an ordinal. Let � = µj(p). Then the extender of j below (p, ⌫) is the set

Ej � p [ ⌫ = {(q, A) : q 2 [⌫]<!, A ✓ [�]<!, and p [ q 2 j(A)}
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Figure 4.1: The parameter order

The restriction Ej � p [ ⌫ can be thought of as an extender relativized to the parameter

p. It is possible to axiomatize relativized extenders as directed systems of ultrafilters and

associate to them ultrapower embeddings, namely the direct limit of these systems. Instead

we make the following definition:

Definition 4.3.16. A relativized extender is a set of the form Ej � p[⌫ for some elementary

embedding j. The extender embedding associated to a relativized extender E, denoted

jE : V ! ME

is the unique j : V ! M such that E = Ej � p[ ⌫ for some p, ⌫ and M = HM(j[V ][ p[ ⌫).

If E is a relativized extender, ⌫ is an ordinal, and p is a parameter, then

E � p [ ⌫ = Ej � p [ ⌫

where j = jE.

The Dodd parameter of an extender is the key to the fine-structural proofs of Dodd

soundness, which are motivated by the fundamental solidity proofs from fine structure theory.
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Definition 4.3.17. Suppose j : V ! M is an extender embedding. Then ⌘(j) is the least

ordinal ⌘ such that for some parameter p,

M = HM(j[V ] [ p [ ⌘)

The Dodd parameter of j, denoted p(j), is the least parameter p such that

M = HM(j[V ] [ p [ ⌘(j))

Thus if j is an ultrapower embedding, as it always will be in our applications, then ⌘ = 0.

More generally, ⌘ is obviously always a limit ordinal.

The Dodd parameter can also be defined recursively using the concept of an x-generator

of an elementary embedding:

Definition 4.3.18. Suppose M and N are transitive models of ZFC, j : M ! N is an

elementary embedding, and x 2 N . Then an ordinal ⇠ 2 N is an x-generator of j if

⇠ /2 HN(j[M ] [ ⇠ [ {x}).

Lemma 4.3.19. Suppose j : V ! M is an extender embedding. Let q be the ✓-maximum

parameter with the property that qk is the largest q � k-generator of j for all k < |q|. Then

p(j) = q and ⌘(j) is the strict supremum of the q-generators of j.

Proof. Let p = p(j), n = |p|, and ⌘ = ⌘(j). Fix k < n. We will show pk is the largest

p � k-generator.

Since M = HM(j[V ][ p[ ⌘) ✓ HM(j[V ][ p � k[ (pk +1)), there are no p � k-generators

strictly above pk. It therefore su�ces to show that pk is a p � k-generator. Assume not.

Then pk 2 HM(j[V ] [ p � k [ pk). Fix u ✓ pk such that pk = j(f)(p [ r) for some function

f 2 V . Let r = p \ {pk}[ u. Then r < p in the parameter order, but p ✓ HM(j[V ][ r), and

hence M = HM(j[V ] [ r [ ⌘), contrary to the minimality of the Dodd parameter p.

By the maximality of q, this shows that p = q � n. We now show that ⌘ is the strict

supremum of the p-generators of j. Since M = HM(j[V ] [ p [ ⌘), there are no p-generators
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greater than or equal to ⌘. It therefore su�ces to show that for any ↵ < ⌘, there is a

p-generator of j above ↵. Suppose ↵ < ⌘. By the minimality of ⌘, M 6= HM(j[V ] [ p [ ↵),

and so there is a p-generator of j above ↵, as desired.

Since ⌘ is a limit ordinal, there is no largest p-generator, and hence p = q.

Corollary 4.3.20. Suppose j : V ! M is an extender embedding and p = p(j). Then for

all i < |p|, pi is a {p0, . . . , pi�1}-generator.

The following is Steel’s definition of the Dodd soundness of an extender:

Definition 4.3.21. Suppose E is an extender, p = p(jE), and ⌘ = ⌘(jE).

• E is Dodd solid if

E � {p0, . . . , pi�1} [ pi 2 ME

for all i < |p|.

• E is Dodd sound if E is Dodd solid and

E � p [ ⌫ 2 ME

for all ⌫ < ⌘.

If E is an extender such that jE is an ultrapower embedding, then E is Dodd solid if

and only if E is Dodd sound, simply because ⌘(jE) = 0 (so the extra requirement for Dodd

soundness holds vacuously).

The following fact is essentially a matter of rearranging definitions:

Theorem 4.3.22. Suppose E is an extender. Then E is Dodd sound in the sense of Defi-

nition 4.3.21 if and only if jE is Dodd sound in the sense of Definition 4.3.10.

Proof. Before we prove the equivalence, we prove three preliminary claims.

Let j = jE and M = ME. Let ⌘ = ⌘(j) and let p = p(j) be the Dodd parameter of j.
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Claim 1. p[{⌘} is the least parameter s such that every element of M is of the form j(f)(q)

for some q < s.

Proof. Suppose not. Then fix s < p[{⌘} such that every element of M is of the form j(f)(q)

for some q < s. Fix q < s such that p = j(f)(q) for some f . Then M = HM(j[V ] [ q [ ⌘).

Since p is the least parameter with this property (by the definition of the Dodd parameter),

it follows that p  q. In particular p < s. Since p < s < p[{⌘}, s = p[r for some r 2 [⌘]<!.

Now let ⇠ < ⌘ be a p-generator such that r ✓ ⇠. Then p [ {⇠} = j(f)(u) for some u < s.

Since u generates p, we must have p  u. Since p  u  p [ r, u = p [ t for some t < r. In

particular, since r ✓ ⇠, t ✓ ⇠. Now ⇠ = j(f)(p [ r) where r 2 [⇠]<!, contradicting that ⇠ is

not a p-generator.

Let ' be the function that sends a parameter to its rank in the parameter order.

Claim 2. Suppose x 2 M and q is a parameter. Then x = j(f)(q) for some function f 2 V

if and only if x = j(g)('(q)) for some function g 2 V .

Proof. For the forwards direction, let g = f � '�1, and for the reverse direction, let f =

g � '.

From Claim 1 and Claim 2, we obtain the following key identity:

'(p [ {⌘}) = ↵(j) (4.1)

(Recall that ↵(j) denotes the Dodd length of j, the least ordinal ↵ such that every element

of M is of the form j(f)(⇠) for some ⇠ < ↵.)

Claim 3. Suppose q is a parameter and m = |q|. For i < m, let

Fi = E � {q0, . . . , qi�1} [ qi

Then for any transitive model N of ZFC, the following are equivalent:

(1) F0, . . . , Fm�1 2 N .
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(2) j'(q) 2 N .

Sketch. (1) implies (2): Let µ = µj(q) = µj({q0}). If F0, . . . , Fm�1 2 N , then so is the

function e : P ([µ]<!) ! M defined by e(X) = {r < q : r 2 j(X)}. (e is the parameter

version of jq.) This is because r 2 e(X) if and only if (r,X) 2 Fi where i is such that

max(q4r) = qi.

Let � be least such that j(�) � '(q). Then '[�] ✓ µ and for A ✓ �, j(A) \ '(q) =

'�1[e('[A])]. This shows j'(q) 2 N .

(2) implies (1): Similar.

Having proved the three claims, we finally turn to the equivalence of the two notions of

Dodd soundness. (We will leave some of the parameter order theoretic details to the reader.)

Assume first that E is Dodd sound in the sense of Definition 4.3.21. Suppose � < ↵(j),

and we will show that j is �-sound. It su�ces to show that j is �0-sound for some �0 � �,

which allows us to increase � throughout the argument if necessary. By (4.1), by increasing

�, we may assume '(p)  �. Thus p  '�1(�) < '�1(↵(j)) = p [ {⌘}, as a consequence of

(4.1). Let q = '�1(�). Then p  q < p[ {⌘}, so q = p[ r for some r ✓ ⌘. Since ⌘ is a limit

ordinal, by increasing � if necessary, we may assume |r|  1. By the Dodd soundness of E,

for all i < |q|,
E � {q0, . . . , qi�1} [ qi 2 M

This is because either {q0, . . . , qi�1} [ qi = {p0, . . . , pi�1} [ pi or {q0, . . . , qi�1} [ qi = p [ ⇠

for some ⇠ < ⌘. Therefore by Claim 3, j� 2 M so j is �-sound.

Conversely, assume that j is Dodd sound as an elementary embedding. Let � = '(p).

Since p < p [ {⌘}, by (4.1), � < ↵. Therefore j� 2 M by the Dodd soundness of j. By

Claim 3, it follows that E � {p0, . . . , pi�1} [ pi for all i < |p|, so E is Dodd solid. If ⌘ = 0,

it follows that E is Dodd sound. Assume instead that ⌘ > 0. Fix ⇠ < ⌘, and we will show

E � p [ ⇠ 2 M . Let q = p [ {⇠}. Then q < p [ {⌘}, so '(q) < ↵. Therefore by the Dodd

soundness of j, j'(q) 2 M . Applying Claim 3, it follows that E � p [ ⇠ 2 M .
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It is worth remarking that the proof shows that an extender E is Dodd solid if and only

if jE is �-solid where � is the rank of p(jE) in the canonical wellorder on parameters.

We now define Dodd sound ultrafilters. One could define an ultrafilter to be Dodd sound

if its ultrapower embedding is Dodd sound, but then there would be many isomorphic Dodd

sound ultrafilters all with the same associated embedding, which complicates the statements

of our theorems and adds no real generality. Instead, we ensure that a Dodd sound ultrafilter

is the canonical element of its isomorphism class:

Definition 4.3.23. A countably complete ultrafilter is Dodd sound if it is incompressible

and its ultrapower embedding is Dodd sound.

The following alternate characterization of Dodd soundness for ultrafilters is immediate

from Lemma 4.3.8 and Lemma 4.3.9:

Lemma 4.3.24. A tail uniform ultrafilter U on an ordinal � is Dodd sound if and only if

jU is aU -sound. That is, U is Dodd sound if and only if the function h : P (�) ! MU defined

by h(X) = jU(X) \ aU belongs to MU .

We finally provide a combinatorial characterization of Dodd soundness for ultrafilters:

Definition 4.3.25. Suppose U is an ultrafilter on an ordinal �.

• A sequence hS↵ : ↵ < �i is U-threadable if there is a set S ✓ � such that S \ ↵ = S↵

for U -almost all ↵ < �.

• A soundness sequence for U is a sequence hA↵ : ↵ < �i such that for any sequence

hS↵ : ↵ < �i, the following are equivalent:

(1) hS↵ : ↵ < �i is U -threadable.

(2) S↵ 2 A↵ for U -almost all ↵.

Theorem 4.3.26. A tail uniform ultrafilter U is Dodd sound if and only if it has a soundness

sequence.
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Proof. Note that a sequence hS↵ : ↵ < �i is U -threadable if and only if

[hS↵ : ↵ < �i] = jU(S) \ aU

some S ✓ �. Thus hA↵ : ↵ < �i is a soundness sequence for U if and only if

[hA↵ : ↵ < �i]U = {jU(S) \ aU : S ✓ �}

By Lemma 4.3.5, it follows that U has a soundness sequence if and only if jU is aU -sound,

or in other words (applying Lemma 4.3.24) U is Dodd sound.

The generalized Mitchell order on Dodd sound ultrafilters

In this short section, we prove the linearity of the Mitchell order on Dodd sound ultrafilters.

We first prove a stronger statement that characterizes P (P (�))\MW when W is Dodd solid

in terms of the Lipschitz order on subsets of P (�).

Proposition 4.3.27. Suppose W is a Dodd sound ultrafilter on a cardinal �. Then

P (P (�)) \MW = {X ✓ P (�) : X <L W}

Proof. Suppose X ✓ P (�).

Assume first that X <L W . By our characterization of the Lipschitz order where the

second argument is an ultrafilter (Lemma 3.5.58), this means that there is a set Z 2 MW

such that for all A ✓ �, A 2 X if and only if jW (A) \ aW 2 Z. But then X = (jaW )�1[Z],

so X 2 MW .

Conversely, suppose X 2 MW . Let Z = jaW [X]. Then Z 2 MW and for all A ✓ �,

A 2 X if and only if jW (A) \ aW = jaW (A) 2 Z. It follows that X <L W .

Corollary 4.3.28. Suppose U and W are countably complete ultrafilters on � and W is Dodd

sound. Then U <L W if and only if U C W . In particular, if U k W then U C W . .

In particular, the Lipschitz order is wellfounded on Dodd sound ultrafilters.
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Theorem 4.3.29 (UA). The generalized Mitchell order is linear on Dodd sound ultrafilters.

Proof. Suppose U and W are Dodd sound ultrafilters. By the linearity of the Lipschitz

order on Un, either U <L W , U = W , or U >L W . Therefore by Proposition 4.3.27, either

U C W , U = W , or U B W , as desired.

Notice that the linearity of the Mitchell order on Dodd sound ultrafilters actually follows

from the linearity of the Lipschitz order, which perhaps is weaker than UA.

As a consequence of Corollary 4.3.28, if W is Dodd sound and U <k W , then U C W .

We now prove a strong converse, which is closely related to Proposition 4.2.29:

Proposition 4.3.30. Suppose U is a countably complete ultrafilter on a cardinal � and W is

a nonprincipal uniform ultrafilter on a cardinal � such that jW is �-supercompact. If U C W ,

then U <S W .

Proof. Note that (jU(jW ), jU � MW ) is a 0-internal comparison of (jU , jW ) by the standard

identity:

jU(jW ) � jU = jU � jW

Since jW is �-supercompact, jU � MW = jMW

U , which is definable over MW since U C W .

Since jW is �-supercompact, �  � by Proposition 4.2.31. Therefore for all ↵ < �,

jW (↵) < aW . Applying  Loś’s Theorem,

jU(jW )(aU) = [jW � �]U < jU(aW )

Thus (jU(jW ), jU � MW ) witnesses that U <S W .

This raises the question of whether the Ketonen order extends the generalized Mitchell

order. One should restrict attention here to countably complete uniform ultrafilters on

cardinals, or else there are silly counterexamples. If this were true, it would complete the

picture in which the wellfoundedness of the Ketonen order explains that of all the other

known wellfounded orders. It is consistently false, however (Proposition 5.5.5):
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Proposition 4.3.31. Suppose  is 2-supercompact and 2 = 2
+
. Then there are -

complete uniform ultrafilters U and W on  and + respectively such that W C U .

Thus W C U but U <k W simply because �U < �W . (This is a consequence of

Lemma 3.3.15.) By Proposition 4.3.30, if U and W are uniform ultrafilters on the same

cardinal � and both jU and jW are �-supercompact, then U C W implies U <k W .

Lemma 4.3.32. Suppose � is a cardinal, W is a countably complete ultrafilter on �, and Z is

a countably complete ultrafilter such that W C Z. Assume that for all ↵ < �, B(�,↵) ✓ MZ

and MZ ✏ B(�,↵)  2�. Then for any U <k W , U C Z.

Proof. Since W C Z, P (�) ✓ MZ and in fact P (�)� ✓ MZ . Moreover

MZ ✏
�

�

�

�

�

[

↵<�

B(�,↵)

�

�

�

�

�

 2� = |P (�)|

Hence (
S

↵<� B(�,↵))� ✓ MZ , so
Q

↵2I B(�,↵) 2 MZ for any set I ✓ �.

Now suppose U <k W . Fix I 2 W and hU↵ : ↵ 2 Ii 2 Q

↵2I B(�,↵) such that

U = W - lim↵2I U↵. Then the sequence hU↵ : ↵ 2 Ii 2 MZ , so U 2 MZ , so U C Z, as

desired.

In fact, this lemma yields the somewhat stronger result that for any I 2 W and sequence

hU↵ : ↵ 2 Ii of ultrafilters with �U
↵

< �, W - lim↵2I U↵ C Z.

Corollary 4.3.33 (UA). Assume � is a cardinal such that 2<� = �. If W and Z are

countably complete ultrafilters on � such that W C Z, then W <k Z.

Proof. Given the assumption that 2<� = � and the fact that P (�) ✓ MZ , it is not hard to

show that Un↵ 2 MZ and MZ ✏ |Un↵|  2� for all ↵ < �. Therefore we are in a position to

apply Lemma 4.3.32 to any ultrafilter U <k W . Assume towards a contradiction that W 6<k

Z. By the linearity of the Ketonen order, Z <k W . Now Z <k W C Z, so by Lemma 4.3.32,

Z C Z. This contradicts the strictness of the Mitchell order (Lemma 4.2.40).
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Corollary 4.3.34 (UA + GCH). The Ketonen order extends the generalized Mitchell order

on countably complete uniform ultrafilters on infinite cardinals.

Corollary 8.3.27 shows that the same conclusion can be deduced from UA alone. This

will be achieved by proving from UA that if W C Z, then Z is �W -supercompact. The result

then follows from Proposition 4.3.30.

4.4 Generalizations of normality

In this section, we develop the theory of normal fine ultrafilters, the natural combinatorial

generalization of normal ultrafilters, and a central component of the classical theory of

supercompact cardinals. The main result of the section (Theorem 4.4.2) states roughly

that UA + GCH implies that all these ultrafilters are linearly ordered by the Mitchell order.

Definition 4.4.1. For any infinite cardinal �, let N� be set of normal fine ultrafilters on

Pbd(�). Let N =
S

� N�.

We provide the definitions of normality and fineness in Section 4.4.

Theorem 4.4.2 (UA). Suppose � is a cardinal such that 2<� = �. Then N� is wellordered

by the Mitchell order. Therefore assuming the Generalized Continuum Hypothesis, N is

linearly ordered by the Mitchell order.

We asserted that UA + GCH would roughly imply that the Mitchell order is linear on

the class of all normal fine ultrafilters, but our theorem only mentions the subclass N . In

fact, the class of all normal fine ultrafilters is not literally linearly ordered by the Mitchell

order for a number of reasons: one reason is that distinct normal fine ultrafilters can be

isomorphic and hence Mitchell incomparable. Proposition 4.4.12 below, however, shows that

every normal fine ultrafilter is isomorphic to an element of N , so Theorem 4.4.2 essentially

covers all the bases.
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A key concept in the proof of Theorem 4.4.2, introduced here for the first time, is that

of an isonormal ultrafilter.

Definition 4.4.3. Suppose � is a cardinal. An ultrafilter U on � is isonormal if U is weakly

normal and jU is a �-supercompact embedding.

We define weak normality in Section 4.4. The concept dates back to Solovay and Ketonen

[13]. The other main theorem of this section explains how isonormal ultrafilters get their

name:

Theorem 4.4.37. Suppose U is a nonprincipal ultrafilter. Then U is isonormal if and only

if U is the incompressible ultrafilter isomorphic to a normal fine ultrafilter. In particular,

every normal fine ultrafilter is isomorphic to a unique isonormal ultrafilter.

The proof appears in Section 4.4. The forwards direction is quite easy, but the reverse

implication requires quite a bit of work amounting to a generalization of the theorem of

[21] known as Solovay’s Lemma to singular cardinals. This generalization constitutes a

fundamental and (apparently) new fact about supercompactness whose proof requires some

basic notions from PCF theory.

The investigation of isonormal ultrafilters is related back to the linearity of the Mitchell

order by the following proposition:

Theorem 4.4.25. Suppose 2<� = �. Then every isonormal ultrafilter U on � is Dodd sound.

This is basically just a matter of defining weakly normal ultrafilters on singular cardinals.

We actually prove our main theorem (Theorem 4.4.2) right now. But we will need to assume

Theorem 4.4.25 and Theorem 4.4.37. We also need a lemma that shows N is well-behaved

under the Mitchell order assuming GCH:

Lemma 4.4.4. If 2<� = �, then any U 2 N� is hereditarily uniform and satisfies �U = �.
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Proof. Since Pbd(�) is transitive, |tc(Pbd(�))| = |Pbd(�)| = 2<� = �. On the other hand,

since jU is �-supercompact, Proposition 4.2.31 implies �U � �. Thus |tc(Pbd(�))| = �U , so

U is hereditarily uniform.

We finally prove Theorem 4.4.2 assuming Theorem 4.4.25 and Theorem 4.4.37.

Proof of Theorem 4.4.2. Suppose U andW are elements ofN�. We show that either U C W ,

U = W , or U B W . Applying Theorem 4.4.37, let U be the isonormal ultrafilter isomorphic

to U and let W be the isonormal ultrafilter isomorphic to W . Note that U and W are

uniform ultrafilters on the cardinal �U = �W = � (Lemma 4.4.4). We have 2<� = � by

assumption, so Theorem 4.4.25 yields that U and W are Dodd sound. By the linearity of the

Mitchell order on Dodd sound ultrafilters (Theorem 4.3.29), we are in one of the following

cases:

Case 1. U = W .

Proof in Case 1. Since U ⇠= U = W ⇠= W , Lemma 4.4.11 below implies U = W .

Case 2. U C W .

Proof in Case 2. SinceW ⇠= W , we have U C W . Since U is hereditarily uniform (Lemma 4.4.4)

and isomorphic to U , the isomorphism invariance of the generalized Mitchell order on hered-

itarily uniform ultrafilters (Lemma 4.2.14) implies U C W .

Case 3. U B W .

Proof in Case 3. Proceeding as in Case 2, we obtain U B W .

This shows that either U C W , U = W , or U B W , as desired.

We finally sketch the proof that N is linearly ordered by the Mitchell order assuming

UA + GCH. It su�ces to show the following: suppose U 2 N�, W 2 N�, and 2<� = �.

Then U C W . Let U be the isonormal ultrafilter of U , so by the proof of Lemma 4.4.4, U is
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an ultrafilter on �. Since 2�  2<� = �, U 2 H(2�)+ ✓ H�+ ✓ MW Since P (Pbd(�)) ✓ MW ,

this easily implies that U C W .

Normal fine ultrafilters

In this section, we give the general definition of a normal fine ultrafilter, which is the natural

combinatorial generalization of the notion of a normal ultrafilter on a cardinal. This begins

with the generalized diagonal intersection operation:

Definition 4.4.5. Suppose X is a set and hAx : x 2 Xi is a sequence with Ax ✓ P (X) for

all x 2 X. The diagonal intersection of hAx : x 2 Xi is the set

4x2XAx =
�

� 2 P (X) : � 2 Tx2� Ax

 

Definition 4.4.6. If X is a set, a family over X is a family Y of subsets of X such that

every element of X belongs to some element of Y .

Thus any set Y is a family on a unique set (namely X =
S

Y ).

Definition 4.4.7. Suppose Y is a family over X. A filter F on Y is:

• fine if for any x 2 X, F concentrates on {� : x 2 �}.

• normal if for any {Ax : x 2 X} ✓ F , 4x2XAx 2 F .

Remark 4.4.8. Let us make some remarks regarding this definition.

(1) It makes sense to discuss normal fine filters on Y without mention of X, since X =
S

Y

is determined from Y .

(2) The structure of the underlying set Y is usually not that important since a normal

fine ultrafilter U on Y can always be lifted to a normal fine ultrafilter on P (X) where

X =
S

�2Y �. Therefore it is tempting to restrict consideration to normal fine ultrafilters

on P (X) for some X. It is often important for technical reasons, however, that the

underlying set Y be small; usually we want |Y | = |SY |.
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(3) The structure of the set X is also usually irrelevant, but sometimes it is useful that X

be transitive or that X be a cardinal. Suppose X and X 0 are sets and f : X ! X 0 is a

surjection. If Y is a family over X, then Y 0 = {f [�] : � 2 Y } is a family over X 0 and

g(�) = f [�] defines a surjection from Y to Y 0. If U is an ultrafilter on Y , then g⇤(U)
is an isomorphic ultrafilter on Y 0 and moreover U 0 is normal (fine) if and only if U is

normal (fine). (This is the ultrafilter theoretic analog of Lemma 4.2.17.)

(4) An ultrafilter on an ordinal is fine if and only if it is tail uniform. Thus a normal fine

ultrafilter on  is the same thing as a normal ultrafilter on .

The connection between normality and supercompactness is clear from the following

lemma:

Lemma 4.4.9. Suppose Y is a family over X and U is an ultrafilter on Y .

(1) U is fine if and only if jU [X] ✓ aU .

(2) U is normal if and only if aU ✓ jU [X].

Thus U is a normal fine ultrafilter on Y over X if and only if aU = jU [X], or in other words,

aU witnesses that jU is X-supercompact.

Lemma 4.4.9 yields the main source of normal fine ultrafilters.

Lemma 4.4.10. Suppose j : V ! M is an X-supercompact elementary embedding and

Y ✓ P (X) is such that j[X] 2 j(Y ).

• Y is a family over X.

• The ultrafilter U on Y derived from j using j[X] is a normal fine ultrafilter on Y .

• Let k : MU ! M be the factor embedding. Then k(↵) = ↵ for all ↵  |X|.

Proof. Immediate from Lemma 4.2.22 and Lemma 4.4.9.
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Another consequence of Lemma 4.4.9 is the following fact, which does not seem to have

a simple combinatorial proof:

Lemma 4.4.11. Suppose U and W are normal fine ultrafilters on Y . If U ⇠= W then U = W.

Proof. Let X =
S

Y . Since U ⇠= W , jU = jW . By Lemma 4.4.9, aU = jU [X] = jW [X] = aW .

Thus U = {A ✓ Y : aU 2 jU(A)} = {A ✓ Y : aW 2 jW(A)} = W .

It also follows that any normal fine ultrafilter is countably complete. This is because

the proof that an !-supercompact ultrapower embedding j : V ! M has the property that

M! ✓ M does not really require that M is wellfounded. (The reader will lose nothing by

simply appending countable completeness to the definition of normality, rather than proving

it from the definition we have given.)

Recall the class N defined in the previous section. We finish this section by proving that

every normal fine ultrafilter is isomorphic to a unique element of N .

Proposition 4.4.12. Any nonprincipal normal fine ultrafilter D is isomorphic to a unique

ultrafilter U 2 N .

For this we will use a basic lemma about supercompactness:

Lemma 4.4.13. Suppose j : V ! M is �-supercompact and sup j[�] = j(�). Then j is

�◆-supercompact where ◆ = cf(�). In particular, j is �+-supercompact.

Proof. Let  = crt(j). Lemma 4.2.25 states that j is �<-supercompact. It su�ces to show

that ◆ < : then since j is �<-supercompact, j is �◆-supercompact, and so since �◆ > �, j

is �+-supercompact.

We now show ◆ < . Since sup j[�] = j(�) and j[�] 2 M , cfM(j(�)) = cf(�) = ◆. On the

other hand, by elementarity cfM(j(�)) = j(cf(�)) = j(◆). It follows that j(◆) = ◆. Since j

is ◆-supercompact, the Kunen Inconsistency Theorem (Theorem 4.2.37) implies ◆ <  where

 = crt(j).
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Actually, we always have �+ = �< in the context of Lemma 4.4.13, and this is how SCH

above a supercompact is proved.

Proof of Proposition 4.4.12. Obviously, any normal fine ultrafilter is isomorphic to a normal

fine ultrafilter on P (�) for some cardinal �. Therefore assume D is a normal ultrafilter on

P (�), and we will show that D is isomorphic to a normal fine ultrafilter on Pbd(�0) for some

cardinal �0.

If D concentrates on Pbd(�), we are done, since D is then isomorphic to D | Pbd(�).

So assume D does not concentrate on Pbd(�). By  Loś’s Theorem, aD = jD[�] is un-

bounded in jD(�). In other words, jD is continuous at �. Therefore by Lemma 4.4.13,

jD is �+-supercompact. Note that jD[�+] is not cofinal in jD(�+): otherwise jD(�+) =

cfMD(jD(�+)) = �+, so crt(jD) > �+ by Theorem 4.4.32, which implies that D is princi-

pal. Therefore let U be the normal fine ultrafilter on Pbd(�+) derived from jD using jD[�+].

Then U is isomorphic to D: by construction U RK D, and on the other hand, the map

f : Pbd(�+) ! Y defined by f(�) = � \ � pushes U forward to D so D RK U .

Weakly normal ultrafilters

Another combinatorial generalization of the notion of a normal ultrafilter, due to Solovay

and Ketonen [13], is the notion of a weakly normal ultrafilter.

Definition 4.4.14. A uniform ultrafilter U on a cardinal � is weakly normal if for any set

A 2 U , if f : A ! � is regressive, then there is some B ✓ A such that B 2 U and f [B] has

cardinality less than �.

Solovay’s definition of a weakly normal ultrafilter applied only to regular cardinals �,

asserting that every regressive function on � is bounded on a set of full measure. The

generalization of the concept of weak normality to singular cardinals is due to Ketonen.

Lemma 4.4.15. Suppose U is a uniform ultrafilter on a cardinal �. Then the following are

equivalent:
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(1) U is weakly normal.

(2) Suppose hA↵ : ↵ < �i is a sequence of subsets of � such that
T

↵2� A↵ 2 U for all

nonempty � 2 P�(�). Then 4↵<�A↵ 2 U .

Corollary 4.4.16. A uniform ultrafilter on a regular cardinal is weakly normal if and only

if it is closed under decreasing diagonal intersections.

Weakly normal ultrafilters on regular cardinals have a simple characterization in terms

of their ultrapowers:

Lemma 4.4.17. Suppose � is a regular cardinal. An ultrafilter U on � is weakly normal if

and only if aU = sup jU [�].

Proof. Suppose U is weakly normal. Since U is a tail uniform ultrafilter on �, aU > jU(↵)

for all ↵ < �. We will show that jU [�] is cofinal in aU , which proves aU = sup jU [�]. Suppose

⇠ < aU . Then ⇠ = [f ]U for some f : � ! � that is regressive on a set in U . Since U is weakly

normal, there is a set A 2 U such that |f [A]| < �. Since � is regular, f [A] is bounded below

�. Fix ↵ < � such that f(⇠) < ↵ for all ⇠ 2 A. Then [f ]U < jU(↵).

Conversely suppose aU = sup jU [�]. Since aU > jU(↵) for all ↵ < �, �U � �, and hence

U is tail uniform. Since � is regular, it follows that � is uniform. Next, suppose A 2 U

and f : A ! � is regressive. Then [f ]U < aU . Since jU [�] is cofinal in aU , fix ↵ < � with

[f ]U < jU(↵). Then for a set B 2 U with B ✓ A, f(�) < ↵ for all � 2 B. In particular, f

takes fewer than � values on B.

Lemma 4.4.17 yields the main source of weakly normal ultrafilters on regular cardinals:

Corollary 4.4.18. Suppose j : V ! M is an elementary embedding and � is a regular

cardinal such that sup j[�] < j(�). Then the ultrafilter on � derived from j using sup j[�]

weakly normal.

To help motivate the concept of weak normality on singular cardinals, let us explain its

relationship to an isomorphism invariant notion:
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Definition 4.4.19. Suppose � is an infinite cardinal. An ultrafilter U is �-minimal if �U = �

and for any W <RK U , �W < �.

If 2� = �+, there is a �-minimal (countably incomplete) ultrafilter on �, according to a

result of Comfort-Negrepontis [25]. On the other hand, the existence of a weakly normal

ultrafilter (with no completeness assumptions) implies the existence of an inner model with a

measurable cardinal [26]. Weakly normal ultrafilters, however, are the revised Rudin-Keisler

analog (Definition 3.4.10) of �-minimal ones:

Lemma 4.4.20. An ultrafilter U on a cardinal � is weakly normal if and only if �U = � and

for all W <rk U , �W < �.

Lemma 4.4.20 yields a generalization of Scott’s theorem that every countably complete

ultrafilter has a derived normal ultrafilter:

Corollary 4.4.21. If Z is a countably complete uniform ultrafilter on �, there is a weakly

normal ultrafilter U on � such that U RK Z.

Proof. Since <rk is wellfounded on countably complete ultrafilters, there is a countably

complete ultrafilter U that is <rk-minimal with the property that �U = � and U RK Z.

Then U satisfies the conditions of Lemma 4.4.20: if W <rk U , then W RK Z, so by the

<rk-minimality of U , it must be the case that �W < �

The following theorem shows that every countably complete �-minimal ultrafilter is iso-

morphic to a weakly normal ultrafilter.

Proposition 4.4.22. A countably complete uniform ultrafilter U on a cardinal � is weakly

normal if and only if it is �-minimal and incompressible.

Proof. Suppose U is weakly normal. To see U is incompressible, note that any function

that is regressive on a set in U takes less than �-many values on a set in U , and hence is

not one-to-one. To see U is �-minimal, suppose W <RK U and we will show that �W < �.
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Since W RK U , W is countably complete, and hence W is isomorphic to an incompressible

ultrafilter. We can therefore assume without loss of generality that W is incompressible.

Then by the key lemma about the strict Rudin-Keisler order on incompressible ultrafilters

(Proposition 3.4.20) the fact that W <RK U implies W <rk U . Now by Lemma 4.4.20,

�W < �.

Conversely suppose U is �-minimal and incompressible. Suppose W <rk U , and we will

show �W < �. We can then conclude that U is weakly normal using Lemma 4.4.20. Since U

is incompressible, W <rk U implies W <RK U (Lemma 3.4.15, essentially the definition of

incompressibility). Therefore by the definition of �-minimality, �W < �, as desired.

It is not clear to us whether Proposition 4.4.22 can be proved without the assumption

of countable completeness, though of course countable completeness is not required if � is

regular.

The following characterization of weak normality is the one that is most relevant to our

investigations of supercompactness.

Proposition 4.4.23. Suppose � is an infinite cardinal. A countably complete ultrafilter U

on � is weakly normal if and only if aU is the unique generator of jU that lies above j(�) for

all � < �.

For the proof, we will need an obvious lemma:

Lemma 4.4.24. Suppose � is an infinite cardinal. An ultrafilter U on � is uniform if and

only if aU /2 HM
U (jU [V ] [ jU(�)) for any � < �.

Proof of Proposition 4.4.23. We begin with the forwards direction. Suppose U is weakly

normal.

We first show that for any ordinal ⇠ such that ⇠ < aU , ⇠ 2 HM
U (jU [V ] [ jU(�)) for

some � < �. Assume not, towards a contradiction. Let W be the tail uniform ultrafilter

derived from jU using ⇠. Then W <rk U , as witnessed by the factor embedding k : MW !
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MU . By Lemma 4.4.20, it follows that W is not a uniform ultrafilter on �, and so by

Lemma 4.4.24, there is some � < � such that ⇠ 2 HM
W (jW [V ] [ jW (�)). It follows that

⇠ 2 HM
U (jU [V ] [ jU(�)).

Next we show that aU is a generator of jU . Since U is uniform, Lemma 4.4.24 implies

aU /2 HM
U (jU [V ] [ jU(�)) for any � < �. But by the previous paragraph, for all ⇠ < aU ,

⇠ 2 HM
U (jU [V ] [ jU(�)) for some � < �. Thus aU /2 HM

U (jU [V ] [ ~⇠) for any ~⇠ 2 [aU ]<!. In

other words, aU is a generator of jU . By the previous paragraph, aU is clearly the unique

generator above jU(�) for all � < �.

We now turn to the converse. Assume aU is the unique generator of jU that lies above

j(�) for all � < �. We will show U is weakly normal by verifying the conditions of Proposi-

tion 4.4.22. Since aU is a generator, U is incompressible. Since MU is wellfounded, there is a

least ordinal that does not belong to HM
U (jU [V ] [ jU(�)) for any �, and clearly this ordinal

is a generator of jU that lies above jU(�) for all � < �. Thus it must equal aU . In other

words, for any ⇠ < aU , ⇠ 2 HM
U (jU [V ] [ jU(�)) for some � < �.

Fix an ultrafilter W on � such that W <rk U . We will show �W < �, verifying the second

condition of Proposition 4.4.22. Let k : MW ! MU be an elementary embedding with

k � jW = jU and k(aW ) < aU . Then by the previous paragraph, k(aW ) 2 HM
U (jU [V ][ jU(�))

for some � < �. It follows that aW 2 HM
W (jW [V ] [ jW (�)) (by the proof of Lemma 3.5.34).

By Lemma 4.4.24, this implies W is not uniform on �, or in other words, �W < �.

Using Proposition 4.4.23, we can prove the Dodd soundness of isonormal ultrafilters on

� = 2<�.

Theorem 4.4.25. Suppose 2<� = �. Then every isonormal ultrafilter U on � is Dodd sound.

Proof. Let j : V ! M be the ultrapower of the universe by U . Since j is �-supercompact,

j is 2<�-supercompact. By Lemma 4.3.4, j is �⇤-sound where �⇤ = sup j[�].

We now show that j is ⇠-sound where ⇠ is the least generator of j such that ⇠ � �⇤. Since
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�⇤ is closed under pairing, the �⇤-soundness of j implies that the extender

E = Ej � �⇤ = {(p,X) : p 2 [�⇤]<!, X ✓ [�]<!, and p 2 j(X)}

belongs toMU . Let jE : V ! ME be the associated extender embedding and let k : ME ! M

be the factor embedding. Then

crt(k) = min{↵ : ↵ /2 HM(j[V ] [ �⇤)} = ⇠

by the definition of a generator. Therefore j⇠E = j⇠. Moreover since M is closed under

�-sequences by Corollary 4.2.21, jME = jE � M . Therefore j⇠ = j⇠E = (jME )⇠ 2 M , so j is

⇠-sound.

By Proposition 4.4.23, ⇠ = aU . Therefore j is aU -sound, which implies that U is Dodd

sound.

We should point out that the assumption � = 2<� is necessary:

Lemma 4.4.26. Suppose � is a cardinal that carries a Dodd sound ultrafilter U . Then

2<� = �.

Proof. Since U is Dodd sound, jU is aU -sound. In particular, jU is sup jU [�]-sound since

sup jU [�]  aU . Therefore by Lemma 4.3.4, jU is 2<�-supercompact. By Proposition 4.2.31,

jU is not �+-supercompact. It follows that 2<� < �+, or in other words 2<� = �.

Solovay’s Lemma

A special case of our main theorem, Theorem 4.4.37, was known long before our work.

Theorem 4.4.27 (Solovay’s Lemma). Suppose � is a regular cardinal. Then there is a set

B ✓ P (�) such that the following hold:

• For any family Y over �, any normal fine ultrafilter U on Y concentrates on B.

• If � and ⌧ are elements of B with the same supremum, then � = ⌧ .
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Before proving Solovay’s Lemma, let us explain its relevance to isonormal ultrafilters.

Essentially, Solovay’s Lemma yields the “regular case” of the key isomorphism theorem for

isonormal ultrafilters (Theorem 4.4.37):

Corollary 4.4.28. Suppose � is a regular cardinal, Y is a family over �, and U is a non-

principal normal fine ultrafilter on Y . Then U is isomorphic to the ultrafilter

U = {A ✓ � : {� 2 Y : sup � 2 A} 2 U}

Moreover, U is an isonormal ultrafilter.

Proof. To see U ⇠= U , let f : P (�) ! � + 1 be the function f(�) = sup �. Then f⇤(U) = U

and by Theorem 4.4.27, f is one-to-one on a set in U .
To see U is isonormal, we must verify that U is weakly normal and jU is �-supercompact.

The latter is trivial: jU is �-supercompact by Lemma 4.4.9, and jU = jU since U and U

are isomorphic. As for weak normality, by Lemma 3.2.16, U = f⇤(U) is the ultrafilter on �

derived from jU using [f ]U so U is weakly normal by Corollary 4.4.18.

The proof of Solovay’s lemma uses the observation that if j : V ! M is an elementary

embedding, j[�] is definable from the action of j on a stationary partition:4

Lemma 4.4.29. Suppose � is a cardinal, j : V ! M is an elementary embedding, and

P ✓ P (�) is a partition of S�
! = {↵ < � : cf(↵) = !} into stationary sets. Then

j[P ] = {T 2 j(P) : T is stationary in sup j[�]}

It is worth noting that Lemma 4.4.29 is perfectly general; we really do allow j to be an

arbitrary elementary embedding of V .

Proof. Let �⇤ = sup j[�].

Claim 1. j[P ] ✓ {T 2 j(P) : T is stationary in �⇤}.
4Solovay’s published proof [21] uses the combinatorics of !-Jonsson algebras instead of stationary sets.

Woodin rediscovered the proof using stationary sets, which was already known to Solovay.
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Proof. Fix S 2 P . We will show that j(S) intersects every closed cofinal subset of �⇤.

Suppose C ✓ �⇤ is closed cofinal in �⇤. Then j�1[C] is !-closed cofinal in �. Since S is a

stationary subset of S�
!, S \ j�1[C] 6= ;. But j(S) \ C = j(S) \ C ◆ j[S \ j�1[C]] 6= ;. So

j(S) \ C 6= ;, as desired.

Claim 2. {T 2 j(P) : T is stationary in �⇤} ✓ j[P ].

Proof. Fix T 2 j(P) such that T is stationary in �⇤. We will show that there is some S 2 P
such that j(S) = T . Since j[�] is !-closed cofinal in �⇤, T \ j[�] 6= ;. Take ⇠ < � such that

j(⇠) 2 T . Since j(⇠) 2 T ✓ j(S�
!), ⇠ 2 S�

!. Therefore ⇠ 2 S for some S 2 P , since
SP = S�

!.

Now j(⇠) 2 j(S) \ T . Therefore j(S) and T are not disjoint, so since j(P) is a partition,

j(S) = T , as desired.

Combining the two claims yields the lemma.

Lemma 4.4.29 leads to a characterization of supercompactness that looks surprisingly

weak:

Corollary 4.4.30. Suppose j : V ! M is an elementary embedding and � is a regular

cardinal. The following are equivalent:

(1) j is �-supercompact.

(2) M is correct about stationary subsets of �⇤ = sup j[�].

Proof. (1) implies (2): Assume j is �-supercompact. SupposeM satisfies that S is stationary

in �⇤, and we will show that S is truly stationary in �⇤. Fix a closed cofinal set C ✓ �⇤. We

will show S \C 6= ;. Note that C \ j[�] 2 M by Lemma 4.2.20 (3). Let E be the closure of

C \ j[�] in �⇤. Then E 2 M , E ✓ C, and E is closed cofinal in �⇤. Since E 2 M and S is

stationary from the perspective of M , S \ E 6= ;. In particular, S \ C 6= ;.
(2) implies (1): Since � is regular, there is a partition P of S�

! into stationary sets such

that |P| = �. By Lemma 4.4.29, j[P ] = {T 2 j(P) : T is stationary in �⇤}, which is defin-
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able over M since M is correct about stationary subsets of �⇤. Thus j is P-supercompact,

so by Lemma 4.2.17, j is �-supercompact, as desired.

Of course the implication from (1) to (2) is not very surprising, but it allows us to restate

Lemma 4.4.29 in a useful way:

Corollary 4.4.31. Suppose � is a regular cardinal, j : V ! M is a �-supercompact elemen-

tary embedding, and hS↵ : ↵ < �i is a partition of S�
! into stationary sets. Let hT� : � <

j(�)i = j(hS↵ : ↵ < �i). Then j[�] = {� < j(�) : M ✏ T� is stationary in �⇤}.

We now prove Solovay’s Lemma.

Proof of Theorem 4.4.27. Let hS↵ : ↵ < �i be a partition of S�
! = {↵ < � : cf(↵) = !} into

stationary sets. Let

B = {� ✓ � : � = {� < � : S� is stationary in sup(�)}}

By construction, any two elements of B with the same supremum are equal.

To finish, suppose Y is a family over � and U is a normal fine on Y . We must show that

U concentrates on B, or equivalently, that aU 2 jU(B). Since aU = jU [�] (Lemma 4.4.9),

this amounts to showing

jU [�] = {� < jU(�) : MU ✏ jU(S)� is stationary in supjU [�]}

which is of course a consequence of Corollary 4.4.31.

Another corollary of Solovay’s Lemma is Woodin’s proof of the Kunen Inconsistency

Theorem:

Theorem 4.4.32. Suppose j : V ! M is an elementary embedding, ◆ is a regular cardinal,

j is ◆-supercompact, and j(◆) = sup j[◆]. Then j � ◆+ 1 is the identity.

Proof. Let hS↵ : ↵ < ◆i be a partition of S◆
! into stationary sets. By Corollary 4.4.31, and

using the fact that j(◆) = sup j[◆],

j[◆] = {� < j(◆) : M ✏ j(S)� is stationary in j(◆)} = j(◆)
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But this means j � ◆+ 1 is the identity, as desired.

Applying Theorem 4.4.32 at ◆ = �+ where � is the first fixed point of j above crt(j)

yields a proof of the Kunen Inconsistency (Theorem 4.2.37).

Supercompactness and singular cardinals

In this section, we finish the proof of Theorem 4.4.37. We do this by proving an analog of

Solovay’s Lemma at singular cardinals. One basic issue, however, is that Theorem 4.4.27

itself cannot generalize: in fact, if � is a singular cardinal, Y is a family over �, and U is a

normal fine ultrafilter on Y , then the supremum function is not one-to-one on any set in U .

Proposition 4.4.33. Suppose � is a cardinal of cofinality ◆, Y is a family over �, and U is

a normal fine ultrafilter on Y . Define f : Y ! �+ 1 by

f(�) = sup �

Define g : Y ! ◆+ 1 by

g(�) = sup(� \ ◆)

Then f⇤(U) ⇠= g⇤(U).

It is a bit easier to prove the following equivalent statement first (which in any case turns

out to be more useful):

Proposition 4.4.34. Suppose j : V ! M is an elementary embedding and � is a cardinal

of cofinality ◆. Then sup j[�] and sup j[◆] are interdefinable in M from parameters in j[V ].

Proof. Let h : ◆ ! � be an increasing cofinal function. Then

sup j[�] = sup j[h[◆]] = sup j(h) � j[◆] = sup j(h)[sup j[◆]]

Therefore sup j[�] is definable in M from j(h) and sup j[◆]. Moreover,

sup j[◆] = sup j(h)�1[sup j[�]]

so sup j[◆] is definable in M from j(h) and sup j[�].
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Proof of Proposition 4.4.33. Let j : V ! M be the ultrapower of the universe by U . Then

(by Lemma 3.2.16) f⇤(U) is the ultrafilter on �+ 1 derived from j using [f ]U = sup j[�] and

g⇤(U) is the ultrafilter on ◆+ 1 derived from j using [g]U = sup j[◆]. By Proposition 4.4.34,

HM(j[V ] [ {sup j[�]}) = HM(j[V ] [ {sup j[◆]})

But

(Mf⇤(U), jf⇤(U)) ⇠= (HM(j[V ] [ {sup j[�]}), j) ⇠= (Mg⇤(U), jg⇤(U))

It follows that f⇤(U) ⇠= g⇤(U).

Corollary 4.4.35. Suppose � is a cardinal of cofinality ◆, Y is a family over �, and U is

a normal fine ultrafilter on Y . Then there is a set B 2 U on which the supremum function

takes at most ◆-many values.

Proof. Let f : Y ! � be the supremum function. Since f⇤(U) is isomorphic to an ultrafilter

on ◆+ 1, f takes at most ◆-many values on a set in U .

What we show instead is that an analog of Lemma 4.4.29 holds:

Theorem 4.4.36. Suppose � is a cardinal and j : V ! M is a �-supercompact elementary

embedding. Let ✓ be the least generator of j with ✓ � sup j[�]. Then

j[�] 2 HM(j[V ] [ {✓})

Moreover if sup j[�] < j(�), then ✓ < j(�).

As a corollary, we prove the second of the main theorems of this section:

Theorem 4.4.37. Suppose U is a nonprincipal ultrafilter. Then U is isonormal if and only

if U is the incompressible ultrafilter isomorphic to a normal fine ultrafilter. In particular,

every normal fine ultrafilter is isomorphic to a unique isonormal ultrafilter.

Proof. We begin with the forward direction, which turns out to follow from Proposition 4.4.22.

Suppose U is an isonormal ultrafilter on a cardinal �. We will show that U is incompressible
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and isomorphic to a normal fine ultrafilter on Pbd(�). Since U is weakly normal, Proposi-

tion 4.4.22 implies U is incompressible.

Since U is uniform on �, sup jU [�] < jU(�) and thus jU � � 2 jU(Pbd(�)). Let U be the

ultrafilter on Pbd(�) derived from jU using jU � �. Then U RK U and U is a normal fine

ultrafilter on Pbd(�) by Lemma 4.4.9. It follows that jU is �-supercompact, and therefore

�U � � by Proposition 4.2.31. Since U is weakly normal, Proposition 4.4.22 implies U is

�-minimal and therefore U 6<RK U . Since U RK U and U 6<RK U , we must have U ⇠= U (by

definition).

Conversely, suppose U is incompressible and isomorphic to a normal fine ultrafilter, and

we will show that U is isonormal. Since every normal fine ultrafilter is isomorphic to an

element of N (Proposition 4.4.12), for some cardinal �, U is isomorphic to a normal fine

ultrafilter U on Pbd(�). In particular jU = jU is �-supercompact. To show that U is

isonormal, it therefore su�ces to show that U is a weakly normal ultrafilter on �.

Let j : V ! M be the ultrapower of the universe by U . Let ✓ be the least generator of

j with ✓ � sup j[�]. Since Pbd(�) 2 U , sup j[�] < j(�), and so by Theorem 4.4.36, ✓ < j(�).

Since ✓ is a generator of j = jU , ✓  aU . In fact, we claim aU = ✓. On the other hand, by

Theorem 4.4.36,

M = HM(j[V ] [ {j[�]}) = HM(j[V ] [ {✓})

The ultrapower theoretic characterization of incompressibility (Lemma 3.4.18) implies that

aU is the least ordinal ↵ such that M = HM(j[V ] [ {↵}). Thus aU  ✓. Hence aU = ✓, as

desired.

Since U is tail uniform (by the definition of incompressibility) and aU < jU(�), U is an

ultrafilter on �. Since aU is the least generator of j above sup j[�], the characterization of

weakly normal ultrafilters in terms of generators (Proposition 4.4.23) implies that U is a

weakly normal ultrafilter on �.

We conclude this chapter by proving Theorem 4.4.36. The proof relies on some basic

notions from PCF theory.
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Definition 4.4.38. Suppose ◆ is an ordinal. We denote by J ◆
bd the ideal of bounded subsets

of ◆, omitting the superscript ◆ when it is clear from context. If f and g are functions from

◆ to Ord,

• f <bd g if {↵ < ◆ : f(↵) � g(↵)} 2 Jbd.

• f =bd g if {↵ < ◆ : f(↵) 6= g(↵)} 2 Jbd.

Definition 4.4.39. Suppose C is a set of functions from ◆ to Ord. A function s : ◆ ! Ord

is an exact upper bound of C if the following hold:

• For all f 2 C, f <bd s.

• For all g <bd s, for some f 2 C, g <bd f .

The following trivial fact plays a key role in the proof of Theorem 4.4.36:

Lemma 4.4.40. Suppose C is a set of functions from ◆ to Ord and s and t are exact upper

bounds of C. Then s =bd t.

Proof. Suppose s and t are exact upper bounds of C. Suppose towards a contradiction that

s 6=bd t. Without loss of generality, we can assume that there is an unbounded set A ✓ ◆

such that s(↵) < t(↵) for all ↵ 2 A. Define g : ◆ ! Ord by setting

g(↵) =

8

>

>

<

>

>

:

s(↵) if ↵ 2 A

0 otherwise

Then g < t, so since t is an exact upper bound of C, there is some f 2 C such that

g <bd f . Since s is an upper bound of C, f <bd s. Therefore g <bd s. This contradicts that

A = {↵ < ◆ : g(↵) = s(↵)} is unbounded in ◆.

Definition 4.4.41. If s : ◆ ! Ord is a function and � is an ordinal, a scale of length � in
Q

↵<◆ s(↵) is a <bd-increasing cofinal sequence hf↵ : ↵ < �i ✓Q↵<◆ s(↵).
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Shelah’s Representation Theorem [27] states that if � is a singular cardinal of cofinality

◆, then there is a cofinal continuous sequence u : ◆ ! � such that
Q

↵<◆ u(↵)
+ has a scale of

length �+. This is a deep theorem in the context of ZFC, but since we are assuming large

cardinals, we will have enough SCH to get away with using only the following trivial version

of Shelah’s theorem:

Lemma 4.4.42. Suppose � is a singular cardinal of cofinality ◆ such that �◆ = �+. Suppose

h�↵ : ↵ < ◆i is a sequence of regular cardinals cofinal in �. Then there is a scale of length �+

in
Q

↵<◆ �↵.

Proof. We start by proving the standard fact that P = (
Q

↵<◆ �↵, <bd) is a �-directed

partial order. The proof proceeds in two steps.

First, we prove that P is <�-directed. Suppose � < � and {gi : i < �} ✓ P. We will find

a <bd-upper bound g of {gi : i < �}. Fix ↵0 such that � < �↵0 . For ↵ < ◆, define

g(↵) =

8

>

>

<

>

>

:

supi<� gi(↵) + 1 if ↵0  ↵

0 otherwise

If ↵0  ↵, then �↵ is a regular cardinal greater than �, so supi<� gi(↵) < �↵. Hence g 2
Q

↵<◆ �↵ and g is a <bd-upper bound of {gi : i < �}.
Second, we prove that P is �-directed. Fix {gi : i < �} ✓ P. For ↵ < ◆, let h↵ 2 P be a

<bd-upper bound of {gi : i < �↵}. Finally let g 2 P be a <bd-upper bound of {gi : i < ◆}.
Then g is a <bd-upper bound of {gi : i < �}, as desired.

Enumerate
Q

↵<◆ �↵ as {g⇠ : ⇠ < �+}. We define hf⇠ : ⇠ < �+i recursively. If hf⇠ : ⇠ < ✓i
has been defined, choose a <bd-upper bound f✓ 2 P of {f⇠ : ⇠ < ✓} [ {g⇠}. (Such a function

exists by the �-directedness of P.) By construction hf⇠ : ⇠ < �+i is a scale in
Q

↵<◆ �↵.

This concludes our summary of the basic notions from PCF theory used in the proof of

Theorem 4.4.36, which we now commence.
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Proof of Theorem 4.4.36. For the purposes of the proof, let us say that x is weakly definable

from y (in M) if x is definable in M from parameters in j[V ] [ {y}, or in other words,

x 2 HM(j[V ] [ {y}). Note that weak definability is a transitive relation.

By Lemma 4.4.29, we may assume � is a singular cardinal. Let ◆ be the cofinality of �.

Let �⇤ = sup j[�].

Claim 1. Suppose h�↵ : ↵ < ◆i is an increasing sequence of regular cardinals cofinal in �.

Let e be the equivalence class of hsup j[�↵] : ↵ < ◆i modulo Jbd. Then j[�] is weakly definable

from e and j � ◆ in M .

Proof of Claim 1. Fix a sequence hS↵ : ↵ < ◆i such that S↵ = {S↵
� : � < �↵} is a partition

of S�
↵

! into stationary sets. Note that hj(S↵) : ↵ < ◆i = j(hS↵ : ↵ < ◆i) � j � ◆ is weakly

definable from j � ◆.

Solovay’s Lemma (Corollary 4.4.31) implies that for all ↵ < ◆, j[�↵] is equal to the set

{� < j(�↵) : M ✏ j(S↵)� is stationary in sup j[�↵]}. It follows that

� 2 j[�] () {↵ < ◆ : M ✏ j(S↵)� is stationary in sup j[�↵]} /2 Jbd

() 9s 2 e {↵ < ◆ : M ✏ j(S↵)� is stationary in s(↵)} /2 Jbd

Thus j[�] is weakly definable from e and hj(S↵) : ↵ < ◆i. Since hj(S↵) : ↵ < ◆i is weakly

definable from j � ◆, this proves the claim.

It is not hard to see that j � ◆ is itself weakly definable from e, but we will not need this.

The following observation, however, will be crucial:

Observation 1. j � ◆ and j[◆] are weakly definable from sup j[◆].

This is an immediate consequence of Solovay’s Lemma (Corollary 4.4.31).

Let D be the normal fine ultrafilter on P (◆) derived from j using j[◆] and let k : MD ! M

be the factor embedding. Let �D = sup jD[�].5 By Lemma 4.4.10, crt(k) > ◆ and hence

k(�D) = sup k[�D] = �⇤.
5If ⌘◆ < � for all ⌘ < �, then �D = �, but we do not assume this.
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Observation 2. k[MD] consists of all x 2 M that are weakly definable from sup j[◆].

Observation 2 follows from the fact that k[MD] = HM(j[V ] [ {j[◆]}) combined with the

fact (Observation 1) that j[◆] and sup j[◆] are weakly definable from each other.

Let

✓ = sup k[�+MD
D ]

The ordinal ✓ will turn out to be the least generator of j above �⇤. For now, let us just show

that there is no smaller generator:

Claim 2. ✓ ✓ HM(j[V ] [ �⇤).

Proof. Suppose ↵ < ✓. The claim amounts to showing that ↵ is weakly definable from a

finite set of ordinals below �⇤. By the definition of ✓, ↵ < k(⇠) for some ⇠ < �+MD
D . Fix a

surjection p : �D ! ⇠ with p 2 MD. Observation 2 implies k(p) is weakly definable from

sup j[◆]. Since k(p) is a surjection from �⇤ onto k(⇠), for some ⌫ < �⇤, ↵ = k(p)(⌫). Thus ↵

is weakly definable from sup j[◆] and ⌫, which both lie below �⇤, proving the claim.

Fix a sequence h�↵ : ↵ < ◆i of regular cardinals greater than ◆ that is increasing and

cofinal in �.

Claim 3. In MD, there is a scale ~f = hf↵ : ↵ < �+MD
D i in Q↵<◆ jD(�↵).

Proof. Applying Lemma 4.4.42 in MD, it su�ces to show that MD satisfies �◆
D = �+D

D . By

the critical sequence analysis given by the Kunen Inconsistency Theorem (Lemma 4.2.39),

there is a �-supercompact cardinal   ◆ such that jD() > ◆. Thus ◆ < jD() < �⇤ and

jD() is �+D
D -supercompact in MD. By the local version of Solovay’s theorem [21] (which

appears as Corollary 6.3.2) applied in MD, it follows that in MD, �◆
D  (�+

D)
<jD() = �+MD

D ,

as desired.

Claim 4. hsup j[�↵] : ↵ < ◆i is an exact upper bound of k(~f) � ✓.
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Before proving Claim 4, let us show how it implies the theorem.

Let e be the equivalence class of hsup j[�↵] : ↵ < ◆i modulo the bounded ideal on ◆. Then

Claim 4 and Lemma 4.4.40 imply that e is definable in M from the parameters ✓ and k(~f).

Thus by Claim 1, j[�] is weakly definable from ✓, k(~f), and j � ◆.

Note that �⇤ is definable in M from ✓: �⇤ is the largest M -cardinal below ✓. By Propo-

sition 4.4.34, sup j[◆] is weakly definable from �⇤ and hence from ✓. Thus by Observation 1

j � ◆ is weakly definable from ✓, and by by Observation 2, k(~f) is weakly definable from

✓. Combining this with the previous paragraph, j[�] is weakly definable from ✓ alone. This

yields:

j[�] 2 HM(j[V ] [ {✓})

We now show ✓ is the least generator of j above �⇤. It su�ces by Claim 2 to show

that ✓ is a generator of j. Assume towards a contradiction that this fails. Then ✓ 2
HM(j[V ] [ ✓) = HM(j[V ] [ �⇤) by Claim 2. Thus j[�] 2 HM(j[V ] [ �⇤). Fix ⇠ < �⇤ such

that j[�] 2 HM(j[V ] [ {⇠}). Let W be the ultrafilter derived from j using ⇠. Then by

Lemma 4.2.22, jW is �-supercompact, yet �W < �, and this contradicts Proposition 4.2.31.

Thus our assumption was false, and in fact ✓ is a generator of j.

Thus j[�] 2 HM(j[V ] [ {✓}) where ✓ is the least generator of j greater than or equal to

�⇤. To finish, we must show that if �⇤ < j(�) then ✓ < j(�). But ✓  �+M
⇤ while j(�) is a

limit cardinal of M above �⇤. Hence �+M
⇤ < j(�), as desired.

We now turn to the proof of Claim 4. It will be important here that for any s : ◆ ! Ord,

k(s) = k � s since crt(k) > ◆.

Proof of Claim 4. We first show that for all ⌫ < ✓,

k(~f)⌫ <bd hsup j[�↵] : ↵ < ◆i

For any ⌫ < ✓, there is some ⇠ < �+MD
D such that ⌫ < k(⇠). Therefore

k(~f)⌫ <bd k(~f)k(⇠) = k(f⇠)
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Hence it su�ces to show that for any ⇠ < �+MD
D , k(f⇠) < hsup j[�↵] : ↵ < ◆i. For all ↵ < ◆, we

have that �↵ is a regular cardinal above ◆. By Corollary 4.4.28, �D = ◆, so since ultrapower

embeddings are continuous at regular cardinals above their size (Lemma 3.5.32),

jD(�↵) = sup jD[�↵]

Since f⇠ 2
Q

↵<◆ jD(�↵), we therefore have f⇠(↵) < sup jD[�↵] and hence k(f⇠)(↵) = k(f⇠(↵)) <

sup j[�↵] for all ↵ < ◆, as desired.

We finish by showing that for any g : ◆ ! Ord such that g <bd hsup j[�↵] : ↵ < ◆i,
there is some ⇠ < �+MD

D such that g <bd k(f⇠). For ↵ < ◆, let h(↵) < �↵ be least such that

g(↵)  j(h(↵)). Then jD�h 2 MD (sinceMD is closed under ◆-sequences by Corollary 4.2.21).

Since hf⇠ : ⇠ < �+i is cofinal, inQ↵<◆ jD(�↵), there is some ⇠ < �+MD
D such that jD �h <bd f⇠

. It follows that

g  j � h = k � jD � h = k(jD � h) <bd k(f⇠)

as desired.

This completes the proof of Theorem 4.4.36.
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Chapter 5

The Rudin-Froĺık Order

5.1 Introduction

Ultrafilters on the least measurable cardinal

This chapter is motivated by a single simple question. Chapter 2 established the linearity

of the Mitchell order on normal ultrafilters assuming UA. As a consequence, the least mea-

surable cardinal  carries a unique normal ultrafilter. But what are the other countably

complete ultrafilters on ? The following theorem of Kunen [22] answers this question under

a hypothesis that is much more restrictive than UA:

Theorem 5.1.1 (Kunen). Suppose U is a normal ultrafilter on  and V = L[U ]. Then

every countably complete ultrafilter is isomorphic to Un for some n < !.

Here Un is the ultrafilter on []n generated by sets of the form [A]n where A 2 U . An

even stronger theorem of Kunen characterizes every elementary embedding of the universe

when V = L[U ]:

Theorem 5.1.2 (Kunen). Suppose V = L[U ] for some normal ultrafilter U . Then any

elementary embedding j : V ! M is an iterated ultrapower of U .
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Kunen’s proofs of these theorems rely heavily on the structure of L[U ], so much so that

it might seem unlikely UA alone could imply analogous results. The results of this chapter,

however, show that UA does just as well:

Theorem 5.3.21 (UA). Let  be the least measurable cardinal. Then there is a unique

normal ultrafilter U on , and every countably complete ultrafilter is isomorphic to Un for

some n < !.

Theorem 5.3.23 (UA). Let  be the least measurable cardinal. Let U be the unique normal

ultrafilter on , Then any elementary embedding j : V ! M such that M = HM(j[V ][j())

is an iterated ultrapower of U .

The requirement that M = HM(j[V ] [ j()) is necessary because for example there

could be two measurable cardinals. (Actually one could make do with the requirement that

M = HM(j[V ] [ j(↵)) and there are no measurable cardinals in the interval (,↵].)

Thus there is an abstract generalization of Kunen’s analysis of L[U ] to arbitrary models

of UA. Far more interesting, however, is that this generalization leads to the discovery of

new structure high above the least measurable cardinal.

Definition 5.1.3. A nonprincipal countably complete ultrafilter U is irreducible if its ultra-

power embedding cannot be written nontrivially as a linear iterated ultrapower.

Irreducible ultrafilters arise in the generalization of Kunen’s theorem, which really factors

into the following two theorems:

Theorem 5.3.14 (UA). Every irreducible ultrafilter on the least measurable cardinal  is

isomorphic to the unique normal ultrafilter on .

Theorem 5.3.16 (UA). Every ultrapower embedding can be written as a finite linear iterated

ultrapower of irreducible ultrafilters.

The first of these theorems is highly specific to the least measurable cardinal, but the

second is a perfectly general fact: under UA, the structure of countably complete ultrafilters
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in general can be reduced to the structure of irreducible ultrafilters. The nature of irreducible

ultrafilters in general is arguably the most interesting problem raised by this dissertation,

intimately related to the theory of supercompactness and strong compactness under UA.

Outline of Chapter 5

We now outline the rest of this chapter.

Section 5.2. We introduce the fundamental Rudin-Froĺık order, which measures how

an ultrapower embedding can be factored as a finite iterated ultrapower. We explain how

the topological definition of the Rudin-Froĺık order is related to the concept of an internal

ultrapower embedding (Corollary 5.2.7). We show that the Ultrapower Axiom is equivalent

to the directedness of the Rudin-Froĺık order on countably complete ultrafilters, and we show

that the Rudin-Froĺık order is not directed on ultrafilters on !.

Section 5.3. In this section, we answer the basic question, characterizing the ultrafilters

on the least measurable cardinal up to isomorphism. It turns out that this can be done

for all ultrafilters below the least µ-measurable cardinal. (In fact, the analysis extends

quite a bit further, but we have omitted this work from this dissertation.) Towards this,

in Section 5.3, we introduce irreducible ultrafilters and analyze the irreducible ultrafilters

up to isomorphism. We then prove that every ultrafilter can be factored into finitely many

irreducible ultrafilters in Section 5.3.

Section 5.4. In this section, we investigate the deeper structural properties of the

Rudin-Froĺık order assuming UA. We show that the Rudin-Froĺık order satisfies the local

ascending chain condition (Theorem 5.3.17), which was actually required as a step in the

irreducible factorization theorem. We show that the Rudin-Froĺık order induces a lattice

on the isomorphism types of countably complete ultrafilters. This involves showing that

every pair of ultrapower embeddings has a minimum comparison, which we call a pushout.

In Section 5.4, we use pushouts to prove the local finiteness of the Rudin-Froĺık order: a

countably complete ultrafilter has at most finitely many Rudin-Froĺık predecessors assuming
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UA. Finally, in Section 5.4, we study the structure of pushouts and their relationship to the

minimal covers of Section 3.6. This involves the key notion of a translation of ultrafilters.

Section 5.5. In this section, we use the theory of comparisons developed in Section 5.4

to investigate a variant of the generalized Mitchell order called the internal relation.

5.2 The Rudin-Froĺık order

Irreducible ultrafilters are most naturally studied in the setting of the Rudin-Froĺık order, an

order on ultrafilters due to Rudin and Froĺık [28] that dates back to the study of ultrafilters

by Mary Ellen Rudin’s school in the late 1960s. The structure of the Rudin-Froĺık order on

countably complete ultrafilters turns out to encapsulate many of the phenomena we have

been studying so far. For example, the Ultrapower Axiom is equivalent to the statement

that the Rudin-Froĺık order is directed, while irreducible ultrafilters are simply the minimal

elements of the Rudin-Froĺık order. The deeper properties of this order developed in this

chapter (especially the existence of least upper bounds) will provide some of the key tools

of the supercompactness analysis.

In this section, we discuss the theory of the Rudin-Froĺık order without yet restricting

to countably complete ultrafilters. For this reason, this subsection is a bit out of step with

the rest of this dissertation, and the only fact that will be truly essential going forward is

the characterization of the Rudin-Froĺık order on countably complete ultrafilters given by

Corollary 5.2.8, which the reader who is not interested in ultrafilter combinatorics can take

as the definition of the Rudin-Froĺık order on countably complete ultrafilters.

Definition 5.2.1. A sequence of ultrafilters hWi : i 2 Ii is discrete if there is a sequence of

pairwise disjoint sets hYi : i 2 Ii such that Yi 2 Wi for all i 2 I.

Typically (for example, in Definition 5.2.2) we will consider discrete sequences of ul-

trafilters that all lie on the same set X. Then discreteness says these ultrafilters can be

simultaneously separated from each other.
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Definition 5.2.2. Suppose U is an ultrafilter on X and W is an ultrafilter on Y . The

Rudin-Froĺık order is defined by setting U RF W if there is a set I 2 U and a discrete

sequence of ultrafilters hWi : i 2 Ii on Y such that W = U - limi2I Wi.

Recall that if U is an ultrafilter on X, I is a set in U , and hWi : i 2 Ii is a sequence of

ultrafilters on Y , then the U -sum of hWi : i 2 Ii is defined by

U -
X

i2I
Wi = {A ✓ X ⇥ Y : {i 2 I : Ai 2 Wi} 2 U}

The projection ⇡0 : X ⇥ Y ! X defined by ⇡0(i, j) = i satisfies ⇡0
⇤
�

U -
P

i2I Wi

�

= U , and

the projection ⇡1 : X ⇥ Y ! Y defined by ⇡1(i, j) = j satisfies

⇡1
⇤

 

U -
X

i2I
Wi

!

= U - lim
i2I

Wi

The model-theoretic characterization of the Rudin-Froĺık order uses the following lemma:

Lemma 5.2.3. Suppose U is an ultrafilter, I 2 U , and hWi : i 2 Ii is a sequence of

ultrafilters on Y . Then the following are equivalent:

(1) There is a U-large set J ✓ I such that hWi : i 2 Ji is discrete.

(2) ⇡1 is one-to-one on a set in U-
P

i2I Wi.

(3) U-
P

i2I Wi
⇠= U- limi2I Wi.

Proof. (1) implies (2): Fix J 2 U contained in I and pairwise disjoint sets hYi : i 2 Ji with
Yi 2 Wi for all i 2 J . We will show ⇡1 is one-to-one on a set in U -

P

i2I Wi. Let

A = {(i, j) : i 2 J and j 2 Yi}

Then A 2 U -
P

i2I Wi and ⇡1 is one-to-one on A.

(2) implies (1): Fix A 2 U -
P

i2I Wi on which ⇡1 is one-to-one. For each i 2 I, let

Yi = {j 2 Y : (i, j) 2 A}. Since ⇡1 is one-to-one on A, the sets Yi are disjoint. Since

A 2 U -
P

i2I Wi, the set J = {i 2 I : Yi 2 Wi} belongs to U . Thus J 2 U , J ✓ I, and

hWi : i 2 Ji is witnessed to be discrete by hYi : i 2 Ji, as desired.
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(2) implies (3): Trivial.

(3) implies (2): By Theorem 3.4.8, if Z ⇠= Z 0 and f is such that f⇤(Z) = Z 0, then f is

one-to-one on a set in Z. Therefore since ⇡1
⇤(U -

P

i2I Wi) = U - limi2I Wi, ⇡1 is one-to-one

on a set in U -
P

i2I Wi.

Corollary 5.2.4. If U and W are ultrafilters, the following are equivalent:

(1) U RF W .

(2) There exist I 2 U and ultrafilters hWi : i 2 Ii on a set Y such that W ⇠= U-
P

i2I Wi.

Proof. (1) implies (2): Obvious from Lemma 5.2.3.

(2) implies (1): The proof uses the fact that the Rudin-Froĺık order is isomorphism

invariant, which should be easy enough to see from the definition.

Let Y 0 = I ⇥ Y . Let f i : Y ! Y 0 be the embedding defined by f i(y) = (i, y), and let

W 0
i = f i

⇤(Wi). Then W 0
i
⇠= Wi and hW 0

i : i 2 Ii is discrete. We have

W ⇠= U -
X

i2I
Wi

⇠= U -
X

i2I
W 0

i
⇠= U - lim

i2I
W 0

i

where the last isomorphism follows from Lemma 5.2.3. By the definition of the Rudin-Froĺık

order U RF U - limi2I W 0
i , so by the isomorphism invariance of the Rudin-Froĺık order,

U RF W .

The following generalization of closeness to possibly illfounded models in our view sim-

plifies the theory of the Rudin-Froĺık order on countably incomplete ultrafilters:

Definition 5.2.5. Suppose N and M are models of ZFC. A cofinal elementary embedding

h : N ! M is close to N if for all X 2 N and all a 2 M such that M ✏ a 2 h(X), the

N -ultrafilter on X derived from h using a belongs to N .

It is really not quite accurate to say that this N -ultrafilter belongs to N ; we really mean

that it is the extension of a point in N .
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Lemma 5.2.6. If h : N ! M is close and M = HM(h[N ] [ {a}) for some a 2 M , then

there is an ultrafilter Z of N and an isomorphism k : MN
Z ! M such that k � jNZ = h.

Corollary 5.2.7. If U and W are ultrafilters, the following are equivalent:

(1) U RF W .

(2) There is a close embedding h : MU ! MW such that h � jU = jW .

Sketch. (1) implies (2): By Corollary 5.2.4, fix I 2 U and a sequence of ultrafilters hWi : i 2
Ii such that W ⇠= U -

P

i2I Wi. Let D = U -
P

i2I Wi and let Z = [hWi : i 2 Ii]U . We have

(MM
U

Z , jMU

Z � jU) ⇠= (MD, jD) ⇠= (MW , jW ), so fix an isomorphism k : MM
U

Z ! MW such that

k � jMU

Z � jU = jW . It is easy to see that k � jMU

Z is close to MU .

(2) implies (1): Let Y be the underlying set of W and let Z be the MU -ultrafilter on

jU(Y ) derived from h using aW . Let k : MM
U

Z ! MW be the factor embedding. It is easy

to see that k is surjective. Thus k is an isomorphism. It follows that U -
P

Z ⇠= W , so by

Corollary 5.2.4, U RF W .

Note that the close embedding given by Corollary 5.2.7 is “isomorphic to” a (possibly

illfounded) internal ultrapower embedding of MU . But the language of close embeddings

makes it possible to work with the Rudin-Froĺık order in fairly simple model theoretic terms

while keeping our language precise.

In the countably complete case, Corollary 5.2.7 really does imply that there is an internal

ultrapower embedding from MU to MW :

Corollary 5.2.8. If U and W are countably complete ultrafilters, then U RF W if and only

if there is an internal ultrapower embedding h : MU ! MW such that h � jU = jW .

Corollary 5.2.9. The Ultrapower Axiom holds if and only if the Rudin-Froĺık order is di-

rected on countably complete ultrafilters.

Proof. Assume the Ultrapower Axiom. Suppose U and W are countably complete ultrafil-

ters. Let j : V ! M and i : V ! N be their respective ultrapower embeddings. Using
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UA, fix an internal ultrapower comparison (k, h) : (M,N) ! P . Then the composition

k � j = h � i is an ultrapower embedding of V , associated say to the countably complete

ultrafilter D. Then U RF D since k : MU ! MD is an internal ultrapower embedding such

that k � jU = k � j = jD. Similarly, W RF D. Thus the Rudin-Froĺık order is directed on

countably complete ultrafilters. The converse is similar.

Corollary 5.2.7 makes the relationship between the Rudin-Froĺık order and the Rudin-

Keisler order clear:

Corollary 5.2.10. The Rudin-Keisler order extends the Rudin-Froĺık order.

Proof. Suppose U RF W . Then by Corollary 5.2.7, there is an elementary embedding

h : MU ! MW such that h � jU = jW . By Lemma 3.4.4, U RK W .

Thus by Theorem 3.4.6, if U RF W and W RF U , then U ⇠= W . This motivates the

following definition:

Definition 5.2.11. The strict Rudin-Froĺık order is defined on ultrafilters U and W by

setting U <RF W if U RF W but U 6⇠= W .

Lemma 5.2.12. The strict Rudin-Froĺık order is wellfounded on countably complete ultra-

filters.

Proof. This follows from the fact that the strict Rudin-Keisler order extends the strict Rudin-

Froĺık order (Corollary 5.2.10) and is wellfounded on countably complete ultrafilters (Corol-

lary 3.4.23).

The Rudin-Froĺık order is not directed on arbitrary ultrafilters. In fact, the Rudin-Froĺık

order restricted to ultrafilters on ! already fails to be directed. We sketch a proof of this fact

that bears a striking resemblance to many of the comparison arguments used throughout

this dissertation, especially Theorem 5.3.11 below. We hope it demonstrates that the close

embedding approach to the Rudin-Froĺık order really yields some simplifications.
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Theorem 5.2.13 (Rudin). If U and W are ultrafilters on ! that have an upper bound in

the Rudin-Froĺık order, then either U RF W or W RF U .

Sketch. By Corollary 5.2.7 (3), the existence of an RF-upper bound of U and W implies

the existence of close embeddings (k, h) : (MU ,MW ) ! N such that k � jU = h� jW . Assume

without loss of generality that k(aU) < h(aW ). Let Z be the MW -ultrafilter on jW (!) derived

from h using k(aU). Then Z concentrates on aW < jW (!). Since Z belongs to MW and

concentrates on an MW -finite set, Z is principal. Since Z is derived from h using k(aU), we

must in fact have h(aZ) = k(aU).

We now follow the argument of Lemma 3.5.27. Since k(aU) 2 h[MW ], it is easy to see

that k[MU ] = HN(k � jU [V ] [ {k(aU)}) ✓ h[MW ]. Define e : MU ! MW by e = h�1 � k.

Then e is an elementary embedding and h � e = k, so since k is close to MU , e is close to

MU . Thus there is a close embedding e : MU ! MW , and it follows that U RF W .

This theorem is often summarized by the statement that “the Rudin-Froĺık order forms

a tree,” but this is only true of the Rudin-Froĺık order on !. The reader should note that

this proof is very similar to the proof of the linearity of the Mitchell order from UA. The

argument shows that natural generalization of the seed order to �(!) is equal to the Rudin-

Froĺık order, while the natural generalization of the Ketonen order is equal to the revised

Rudin-Keisler order.

Corollary 5.2.14. The Rudin-Froĺık order on �(!) is not directed.

Proof. Assume towards a contradiction that the Rudin-Froĺık order on �(!) is directed. Then

it is linear. This contradicts the well-known theorem of Kunen [29] that the Rudin-Keisler

order is not linear on ultrafilters on !.

Thus, unsurprisingly, the analog of the Ultrapower Axiom for countably incomplete ul-

trafilters is false.

We conclude this section with a basic rigidity lemma for the Rudin-Froĺık order on count-

ably complete ultrafilters that apparently had not been noticed:
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Theorem 5.2.15. Suppose U is a countably complete ultrafilter. Suppose I 2 U and hWi :

i 2 Ii and hW 0
i : i 2 Ii are discrete sequences of countably complete ultrafilters such that

U- lim
i2I

Wi = U- lim
i2I

W 0
i

Then for U-almost all i 2 I, Wi = W 0
i .

In other words, there is at most one way to realize one countably complete ultrafilter as

a discrete limit with respect to another.

Lemma 5.2.16. Suppose U and W are countably complete ultrafilters. Then there is at

most one internal ultrapower embedding h : MU ! MW such that h � jU = jW .

Proof. Suppose h, k : MU ! MW are internal ultrapower embeddings such that h�jU = k�jU .
In other words, h � jU [V ] = k � jU [V ]. Moreover h � Ord = k � Ord by Theorem 3.5.10.

Since MU = HM
U (jU [V ] [Ord), it follows that h = k.

Proof of Theorem 5.2.15. Let Z = [hWi : i 2 Ii]U and let Z 0 = [hW 0
i : i 2 Ii]U . By

Lemma 5.2.3, U -
P

i2I Zi
⇠= U -

P

i2I Z
0
i and their projections to the second coordinate are

equal. Using the ultrapower theoretic characterization of sums (Lemma 3.6.9), this means:

jMU

Z � jU = jMU

Z0 � jU
aZ = aZ0

Lemma 5.2.16 now implies jMU

Z = jMU

Z0 . But Z and Z 0 are derived from jMU

Z = jMU

Z0 using

aZ = aZ0 . Thus Z = Z 0. Finally, by  Loś’s Theorem we have that Wi = W 0
i for U -almost all

i 2 I.

The author’s intuition is that Theorem 5.2.15 should be true for countably incomplete

ultrafilters as well, and the fact that the proof does not just generalize is a bit of a subtle

point.
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5.3 Below the first µ-measurable cardinal

Introduction

In a sense, the first large cardinal axiom that is significantly beyond any “normal ultrafilter

axiom” is the existence of a µ-measurable cardinal:

Definition 5.3.1. A cardinal  is said to be µ-measurable if there is an elementary embed-

ding j : V ! M with critical point  such that the ultrafilter on  derived from j using 

belongs to M .

The existence of a µ-measurable cardinal is a large cardinal axiom that is stronger than

the existence of a measurable cardinal  such that o() = 22


, but weaker than the existence

of a cardinal  that is 2-strong.

As an example of the strength of µ-measurable cardinals, let us show the following fact:

Proposition 5.3.2. Suppose  is a µ-measurable cardinal. Then there is a normal ultrafilter

on  that concentrates on cardinals � such that for any A ✓ P (�), there is a normal ultrafilter

D on � such that A 2 MD.

Proof. Let j : V ! M witness that  is µ-measurable and let U be the normal ultrafilter on

 derived from j using . Thus U 2 M .

Claim 1. MU satisfies the statement that for all A ✓ P (), there is a normal ultrafilter D

on  such that A 2 MD.

Proof. Suppose not, and fix A ✓ P () such that MU satisfies that there is no normal

ultrafilter D on  with A 2 (MD)MU . Let k : MU ! M be the factor embedding. By

Lemma 4.4.10, crt(k) >  and P () \MU = P () = P () \M , so k(A) = A. Therefore

since k is elementary, M satisfies that there is no normal ultrafilter D on  with A 2 (MD)M .

But A 2 jU(V) ✓ (MU)M , and U 2 M is a normal ultrafilter. This is a contradiction.
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By  Loś’s Theorem, U concentrates on cardinals � such that for all A ✓ P (�), there is a

normal ultrafilter D on � such that A 2 MD.

Thus a µ-measurable cardinal is a limit of cardinals � such that o(�) = 22
�

.

Irreducible ultrafilters and µ-measurability

The goal of the next few subsections is to analyze the countably complete ultrafilters in

V where  is the least µ-measurable cardinal. We first analyze simpler ultrafilters called

irreducible ultrafilters and then we reduce the general case to the irreducible case.

Definition 5.3.3. An a nonprincipal countably complete ultrafilter U is irreducible if every

ultrafilter D <RF U is principal.

Let us give some examples of irreducible ultrafilters.

Proposition 5.3.4. If U is a normal ultrafilter on a cardinal , then U is irreducible.

Proof. Suppose D <RF U . By Corollary 5.2.10, D <RK U , and therefore by Proposi-

tion 4.4.22, �D < . But since D RK U , D is -complete. Since D is -complete and

�D < , D is principal.

A direct generalization of this yields:

Proposition 5.3.5. Normal fine ultrafilters are irreducible.

Proof. Suppose U is a normal fine ultrafilter. By Theorem 4.4.37, U is isomorphic to an

isonormal ultrafilter U on a cardinal �. It su�ces to show that U is irreducible. Suppose

D <RF U , and we will show D is principal. By Corollary 5.2.10, D <RK U , and therefore

by Proposition 4.4.22, �D < . Since D RF U , MU is contained in MD, and so because

jU is �-supercompact, using Corollary 4.2.21, Ord� ✓ MU ✓ MD. In particular, jD � � 2
MD, so jD is �-supercompact. Since �D < � and jD is �-supercompact, D is principal by

Proposition 4.2.31.
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Dodd sound ultrafilters are also irreducible:

Proposition 5.3.6. If U is a Dodd sound ultrafilter, then U is irreducible.

Proof. Suppose D <RF U , and we will show D is principal. We may assume without loss

of generality that D is incompressible. Then since D <RK U , in fact D <k U by Corol-

lary 3.4.22. Since the Lipschitz order extends the Ketonen order, D <L U , so by Corol-

lary 4.3.28, D C U . But then D 2 MU ✓ MD, so D C D, which implies D is principal by

Lemma 4.2.40.

Finally returning to µ-measurable cardinals, we have the following fact:

Proposition 5.3.7. Suppose j : V ! M is such that crt(j) =  and U0 2 M where U0

is the normal ultrafilter on  derived from j. Let U1 be the ultrafilter on V derived from j

using U0. Then U1 is irreducible and U1 is not isomorphic to a normal ultrafilter.

Proof. Let j1 : V ! M1 be the ultrapower of V by U1. The key point, which is easily

verified, is that aU1 = U0. Also note that

M1 = HM1(j1[V ] [ (22


)M1)

since aU1 = U0 2 HM1(j1[V ] [ (22


)M1), U0 being a subset of P ().

We now show that U1 is irreducible. Suppose D RF U1 and D is nonprincipal. We must

show D ⇠= U1. Since �D = , we have crt(jD) = . Let k : MD ! M1 be the unique internal

ultrapower embedding with k � jD = j1. We claim k() = . Supposing the contrary, we

have that k() >  is an inaccessible cardinal that is a generator of j1, contradicting that

M1 = HM1(j1[V ][ (22


)M1). Thus k() = . Since M1 ✓ MD, U0 2 MD, and since k() = ,

k(U0) = U0. Since U0 = aU1 , it follows that k is surjective. Thus k is an isomorphism, and

it follows that D ⇠= U1.

Finally we show that U1 is not isomorphic to a normal ultrafilter. Suppose towards a

contradiction that it is. Then in fact, U1 is isomorphic to the ultrafilter on  derived from
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jU1 using , namely U0. In particular, MU0 = MU1 , so since U0 2 MU1 , in fact U0 2 MU0 .

This contradicts the fact that the Mitchell order is irreflexive (Lemma 4.2.40).

Under UA, Proposition 5.3.7 has a converse:

Theorem 5.3.8 (UA). Suppose  is a measurable cardinal. Exactly one of the following

holds:

(1)  is µ-measurable.

(2) Every irreducible ultrafilter U of completeness  is isomorphic to a normal ultrafilter.

The proof will use some of the machinery from Chapter 3. Recall that a pointed ultrapower

embedding is a pair (j,↵) such that j : V ! M is an ultrapower embedding and ↵ is an

ordinal. For the reader’s convenience we restate here the definition of the Ketonen order and

the seed order to pointed ultrapower embeddings:

Definition 5.3.9. Suppose (j,↵) and (i, �) are pointed ultrapower embeddings.

• (j,↵) k (i, �) (resp. (j,↵) <k (i, �)) if there is a 1-internal comparison (k, h) of (j, i)

such that k(↵)  h(�) (resp. k(↵) < h(�)).

• (j,↵) =E (i, �) if (j,↵) k (i, �) and (i, �) k (j,↵).

• (j,↵) S (i, �) (resp. (j,↵) <S (i, �)) if there is an internal comparison (k, h) of (j, i)

such that k(↵)  h(�) (resp. k(↵) < h(�)).

• (j,↵) =S (i, �) if (j,↵) S (i, �) and (i, �) S (j,↵).

Equivalently (j,↵) =S (i, �) if there is an internal comparison (k, h) of (j, i) such that

k(↵) = h(�). Two fundamental consequences of UA are that k and S coincide on pointed

ultrapower embeddings (Lemma 3.5.26) and are prewellorders (Proposition 3.5.24).

The following lemma is an immediate consequence of Lemma 3.5.27:
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Lemma 5.3.10. Suppose U and W are countably complete ultrafilters concentrating on

ordinals. Then U RF W if and only if for some ordinal ↵, (jU , aU) =S (jW ,↵).

The following theorem can be viewed as yet another generalization of the proof that the

Mitchell order is linear under UA.

Theorem 5.3.11 (UA). Suppose U is a countably complete ultrafilter. Let D be the normal

ultrafilter on  = crt(jU) derived from jU using . Then either D RF U or D C U .

Proof. Let i : MD ! MU be the factor embedding. Then (i, id) : (MD,MU) ! MU witnesses

that (jD,) k (jU ,). Thus (jD,) S (jU ,), so let (k, h) : (MD,MU) ! N be an internal

ultrapower comparison of (jD, jU) witnessing this. In other words, k()  h(). The proof

now breaks into two cases:

Case 1. k() = h()

Proof in Case 1. Then (k, h) witnesses (jD,) =S (jU ,). Lemma 5.3.10 therefore implies

that D RF U .

Case 2. k() < h()

Proof in Case 2. We will show that D 2 MU . The key point is that for any A ✓ ,

h(jU(A)) \ h() = h(A) \ h()

and therefore

A 2 D () aD 2 jD(A)

() k(aD) 2 k(jD(A))

() k(aD) 2 h(jU(A))

() k(aD) 2 h(A)

Since h is definable over MU and P () ✓ MU , it follows that D is a definable over MU , and

hence D 2 MU .
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Thus in Case 1, D RF U , and in Case 2, D C U . This proves the theorem.

A more abstract perspective on this argument is that it generalizes the linearity of the

Mitchell order on Dodd sound ultrafilters (Theorem 4.3.29):

Proposition 5.3.12. Suppose ↵ is an ordinal and i : V ! N is an ↵-sound elementary

embedding. Suppose U is a countably complete tail uniform ultrafilter on an ordinal ⌘ such

that

(jU , aU) <k (i,↵)

Then U 2 N .

Sketch. Recall that i↵ : P (�) ! N is the function i↵(A) = i(A) \ ↵ where � is least such

that i(�) � ↵. The ↵-soundness of i amounts to the fact that i↵ 2 N .

Fix a 1-internal comparison (k, h) : (MU , N) ! P . We have U = i�1[h�1[ph(i(⌘))
k(a

U

) ]] by the

usual argument, so since k(aU) < h(↵),

U = (i↵)�1[h�1[ph(↵)
k(a

U

)]] \ P (⌘)

Since i↵ 2 N and h is definable over N , it follows that U 2 N .

Theorem 5.3.11 leads to the proof of Theorem 5.3.8.

Proof of Theorem 5.3.8. Assume (1) fails, and we will show (2) holds. Let U be an irreducible

ultrafilter such that crt(jU) =  but U is not isomorphic to a normal ultrafilter. Let D be

the normal ultrafilter on  derived from jU using . By Theorem 5.3.11, either D RF U

or D C U . If D RF U then since D is nonprincipal and U is irreducible, D ⇠= U , contrary

to our hypothesis that U is not isomorphic to a normal ultrafilter. Therefore D C U . Then

jU : V ! MU has critical point  and the normal ultrafilter on  derived from jU using 

belongs to MU , so  is a µ-measurable cardinal. Therefore (2) holds.

If (2) holds, then (1) fails as a consequence of Proposition 5.3.7.
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Corollary 5.3.13 (UA). Suppose  is the least µ-measurable cardinal. Then every irre-

ducible ultrafilter in V is isomorphic to a normal ultrafilter.

Proof. This follows from Theorem 5.3.8 applied in V, which is a model of ZFC + UA that

also satisfies the statement that there are no µ-measurable cardinals.

Corollary 5.3.14 (UA). Let  be the least measurable cardinal. Then  carries a unique

irreducible ultrafilter up to isomorphism.

Factorization into irreducibles

The results of the previous section motivate understanding how arbitrary countably complete

ultrafilters relate to irreducible ultrafilters. The main theorem of this subsection answers the

question in complete generality: every ultrapower embedding can be written as a finite

iterated ultrapower of irreducible ultrafilters. To be perfectly precise, let us introduce some

notation for iterated ultrapowers.

Definition 5.3.15. Suppose ⌫ is an ordinal. An iterated ultrapower of length ⌫ is a sequence

hM�, U↵, j↵,� : ↵ < � < ⌫i such that the following hold:

• For all ↵ with ↵ + 1 < ⌫, U↵ is a countably complete ultrafilter of M↵ and j↵,↵+1 :

M↵ ! M↵+1 is the ultrapower of M↵ by U↵.

• For all ↵ < � < � < ⌫, j↵,� = j�,� � j↵,�.

• For all limit ordinals � < ⌫, M� is the direct limit of hM↵, j↵,� : ↵ < � < �i and for all

↵ < �, j↵,� : M↵ ! M� is the direct limit embedding.

Note that the iterated ultrapower hM�, U↵, j↵,� : ↵ < � < ⌫i is actually completely

determined by the sequence hU↵ : ↵ + 1 < ⌫i. We make the convention that for � < ⌫, j�,�

is the identity function on M�.

175



Theorem 5.3.16 (UA). Suppose W is a countably complete ultrafilter. Then there is a

finite linear iterated ultrapower hMn, Um, jm,n : m < n  `i such that M0 = V , M` = MW ,

Um is an irreducible ultrafilter of Mm for all m < `, and jW = j0,`.

The proof of this theorem relies on a stronger structural property of the Rudin-Froĺık

order:

Theorem 5.3.17 (UA). Suppose W is a countably complete ultrafilter. Then there is no

ascending chain D0 <RF D1 <RF D2 <RF · · · such that Dn RF W for all n < !.

More succinctly, the Rudin-Froĺık order satisfies the local ascending chain condition.

Later we will give a deeper explanation of why this is true (Theorem 5.4.23): a countably

complete ultrafilter has only finitely many Rudin-Froĺık predecessors up to isomorphism.

We defer the proof of Theorem 5.3.17 to the next section. In this section we will derive

Theorem 5.3.16 from Theorem 5.3.17, and show how this can be used to analyze ultrafilters

on the least measurable cardinal.

Before we can proceed, we need a simple lemma about the pervasiveness of irreducible

ultrafilters:

Lemma 5.3.18. Suppose D <RF W are countably complete ultrafilters. Then there is a

countably complete ultrafilter F with D <RF F RF W and an irreducible ultrafilter U of

MD such that jF = jMD

U � jD.

Proof. By the wellfoundedness of the Rudin-Froĺık order on countably complete ultrafilters

(Lemma 5.2.12), let F be <RF-minimal among ultrafilters Z such that D <RF Z RF W .

By Corollary 5.2.8, fix a countably complete ultrafilter U of MZ such that jF = jMZ

U � jD.
We claim U is an irreducible ultrafilter ofMD. Suppose Ū <RF U inMD, and we will show

that Ū is principal in MD. Let F̄ be a countably complete ultrafilter such that jF̄ = jMD

Ū
�jD.

One easily computes:

D RF F̄ <RF F RF W
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Assume towards a contradiction D <RF F̄ ; then D <RF F̄ RF W and F̄ <RF F , contra-

dicting that F is <RF-minimal among ultrafilters Z such that D <RF Z RF W . Therefore

D 6<RF F̄ , or in other words D ⇠= F̄ . Now

MD = MF̄ = MM
D

Ū

It follows that Ū is principal in MD.

We now deduce Theorem 5.3.16 from Theorem 5.3.17.

Proof of Theorem 5.3.16 assuming Theorem 5.3.17. By recursion, we construct a finite se-

quence of countably complete ultrafilters D0 <RF D1 <RF · · · <RF D`
⇠= W and an iterated

ultrapower hMn, Um, jm,n : m < n  `i such that M0 = V , Um is an irreducible ultrafilter of

Mm for all m < `, and j0,n = jD
n

for all n  `.

To begin, let M0 = V and let D0 be principal.

Suppose D0 RF D1 RF · · · RF Dk RF W and hMn, Um, jm,n : m < n  ki have

been constructed. If Dk
⇠= W , we set ` = k and terminate the construction. Otherwise,

Dk <RF W . Using Lemma 5.3.18, fix Dk+1 with Dk <RF Dk+1 RF W and an irreducible

ultrafilter Uk of MD
k

= Mk such that jD
k+1

= jMk

U
k

� jD
k

. Let hMn, Um, jm,n : m < n  k+ 1i
be the iterated ultrapower given by the sequence hUm : m  ki.

This recursion must terminate in finitely many steps, since otherwise we will produce

D0 <RF D1 <RF · · · with Dn RF W for all n < !, contradicting the local ascending chain

condition (Theorem 5.3.17). When the process terminates, we have D`
⇠= W . This yields

the objects promised in the first paragraph.

In particular, we have produced an iterated ultrapower hMn, Um, jm,n : m < n  `i such
that Um is an irreducible ultrafilter of Mm for all m < ` and j0,` = jD

`

= jW , as desired.

We now turn our sights back to the countably complete ultrafilters below the least µ-

measurable cardinal.
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Theorem 5.3.19 (UA). Assume that there are no µ-measurable cardinals. Suppose W is a

countably complete ultrafilter. Then there is a finite iterated ultrapower hMn, Um, jm,n : m <

n  `i such that M0 = V , M` = MW , Um is a normal ultrafilter of Mm for all m < `, and

jW = j0,`.

Proof. This is immediate from Theorem 5.3.8 and Theorem 5.3.16.

Stated more succinctly, if there are no µ-measurable cardinals and the Ultrapower Axiom

holds, then every ultrapower embedding is given by a finite iteration of normal ultrafilters.

Combining this with the linearity of the Mitchell order on normal ultrafilters, Theorem 5.3.19

comes very close to a complete analysis of all countably complete ultrafilters below the least

µ-measurable cardinal on the assumption of the Ultrapower Axiom alone. In any case, it

gives as complete an analysis as the Ultrapower Axiom ever will:

Proposition 5.3.20. The following are equivalent:

(1) The Mitchell order is linear and every ultrapower embedding is given by a finite iteration

of normal ultrafilters.

(2) The Ultrapower Axiom holds and there are no µ-measurable cardinals.

The proof is as obvious as it is tedious, and it is omitted.

We now derive the analog of Kunen’s theorem (Theorem 5.1.1 above):

Theorem 5.3.21 (UA). Suppose  is the least measurable cardinal. Let U be the unique

normal ultrafilter on . Then every countably complete ultrafilter on  is isomorphic to Un

for some n < !.

Proof. We first prove the theorem assuming  is the only measurable cardinal. Then U is

the only normal ultrafilter. Thus by Theorem 5.3.16, every ultrapower embedding is given

by a finite iterated ultrapower of U . In other words, every countably complete ultrafilter is

isomorphic to Un for some n < !.
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We now prove the theorem assuming there are two measurable cardinals. Let � be the

second one. Since V� is a model of UA and satisfies that  is the only measurable cardinal, by

the previous paragraph V� satisfies that every countably complete ultrafilter is isomorphic

to Un for some n < !. Since every countably complete ultrafilter on  belongs to V�, it

follows that (in V ) every countably complete ultrafilter on  is isomorphic to Un for some

n < !.

We sketch how this implies the transfinite version of Kunen’s theorem.

Definition 5.3.22. Suppose U is a countably complete ultrafilter and ⌫ is an ordinal. Then

jU⌫ : V ! MU⌫ denotes the elementary embedding j0,⌫ : V ! M⌫ where hM�, U↵, j↵,� : ↵ <

�  ⌫i is the iterated ultrapower given by setting U↵ = j0,↵(U) for all ↵ < ⌫.

Theorem 5.3.23 (UA). Let  be the least measurable cardinal. Let U be the unique normal

ultrafilter on . Suppose M is an inner model and j : V ! M is an elementary embedding

such that M = HM(j[V ] [ j()). Then j = jU⌫ for some ordinal ⌫.

Lemma 5.3.24. Suppose M is an inner model, j : V ! M is an elementary embedding,

and h⇠↵ : ↵ < ⌫i is the increasing enumeration of the generators of j. For any p 2 [⌫]<!,

let Up be the ultrafilter on [µj(p)]|p| derived from j using {⇠↵ : ↵ 2 p}. Then j is uniquely

determined by the sequence hUp : p 2 [⌫]<!i.

Sketch. This follows from the usual extender ultrapower construction. This proof is not

intended as an exposition of this construction; we are merely checking, for the sake of the

reader already familiar with this construction, that a slightly modified version (i.e., using

only generators) works just as well.

For p 2 [⌫]<!, let jp : V ! Mp be the ultrapower of the universe by Up and let kp : Mp !
M be the unique elementary embedding such that kp � jp = j and kp(aU

p

) = {⇠↵ : ↵ 2 p}.
For p ✓ q 2 [⌫]<!, define kp,q : Mp ! Mq by setting

kp,q([f ]U
p

) = [f 0]U
q
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where, letting e : |p| ! |q| be the unique function such that qe(n) = pn, f 0 is defined for

Uq-almost every s by

f 0(s) = f({se(n) : n < |p|})

Then

hMU
q

, kp,q : p ✓ q 2 [⌫]<!i

is a directed system. Let N be its direct limit and let jp,1 : Mp ! N be the direct limit

map.

For any p ✓ q 2 [⌫]<!, it is easy to check that kq � kp,q = kp. Therefore by the universal

property of the direct limit, there is a map k : N ! M such that k � jp,1 is equal to

kp : Mp ! M .

We claim k is the identity. Towards a contradiction, suppose not. Let ⇠ = crt(k).

Then ⇠ is a generator of j, so ⇠ = ⇠↵ for some ↵ < ⌫. But then letting a = aU{↵} , we have

{⇠} = k{↵}(a) = k � jp,1(a) 2 ran(k), so ⇠ 2 ran(k), contradicting that ⇠ = crt(k).

Since k is the identity, j0,1 = j. Since the directed system hMU
q

, kp,q : p ✓ q 2 [⌫]<!i, and
thus the embedding j0,1, were defined only with reference to the sequence hUp : p 2 [⌫]<!i,
the lemma follows.

Lemma 5.3.25. Suppose U is a normal ultrafilter, M is an inner model, and j : V ! M is

an elementary embedding such that for any a 2 M , the ultrafilter derived from j using a is

isomorphic to Un for some n < !. Then M = MU⌫ and j = jU⌫ for some ordinal ⌫.

Sketch. For all m < !, let m = jUm(), so m is the m-th generator of jUn for any n > m.

Let Wn be the ultrafilter on []n derived from jUn using {n�1, . . . ,0}. Thus Wn is the

unique ultrafilter with the following properties:

• Wn
⇠= Um for some m < !.

• The underlying set of Wn is []n.

• Every element of aW
m

is a generator of jW
m

.
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Since every ultrafilter Z derived from j is isomorphic to an ultrafilter on , the class

of generators of j is contained in j(), and in particular it forms a set. Let h⇠↵ : ↵ < ⌫i
enumerate this set in increasing order. For any finite set p ✓ ⌫, the ultrafilter on []n derived

from j using {⇠↵ : ↵ 2 p} has the properties enumerated above, and hence is equal to Wn.

Let h⇠0↵ : ↵ < ⌫i denote the sequence of generators of jU⌫ . Then for any finite set p ✓ ⌫,

the ultrafilter on []n derived from jU⌫ using {⇠0↵ : ↵ 2 p} is equal to Wn.

By Lemma 5.3.24, it follows that j = jU⌫ .

Proof of Theorem 5.3.23. The assumption that M = HM(j[V ] [ j()) implies that every

ultrafilter derived from j is isomorphic to an ultrafilter on . By Theorem 5.1.1, it follows

that every ultrafilter derived from j is isomorphic to Un for some n. By Lemma 5.3.25,

j = jU⌫ for some ordinal ⌫.

5.4 The structure of the Rudin-Froĺık order

The local ascending chain condition

The goal of this subsection is to prove Theorem 5.3.17, the local ascending chain condition

for the Rudin-Froĺık order. This uses two lemmas, the first of which is often useful in the

context of UA. The approach taken here uses the following concept:

Definition 5.4.1. Suppose Y is a set, W 2 B(Y ), and U RF W . Then the translation of U

by W , denoted tU(W ), is the unique MU -ultrafilter Z 2 jU(B(Y )) such that jMU

Z � jU = jW

and aZ = aW .

The uniqueness of Z follows from the fact (Lemma 5.2.16) that there is at most one

internal ultrapower embedding k : MU ! MW such that k � jU = jW . Then tU(W ) must

be the MU -ultrafilter on jU(Y ) derived from k using aW . We view tU(W ) as a version of W

inside MU .
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A more elegant, less comprehensible characterization of tU(W ) is immediate from the

proof of Theorem 5.2.15:

Lemma 5.4.2. Suppose U and W are countably complete ultrafilters. Suppose I is a set in

U and hWi : i 2 Ii is a discrete sequence of ultrafilters such that W = U- limi2I Wi. Then

tU(W ) = [hWi : i 2 Ii]U .

The following lemma links translations to the minimal covers from the proof of Theo-

rem 3.6.1:

Lemma 5.4.3. Suppose � is an ordinal, W 2 B(�), and U RF W is a countably complete

ultrafilter. Then tU(W ) is <M
U

k -minimal among all Z 2 jU(B(�)) such that jU [W ] ✓ Z.

Proof. Fix Z 2 jU(B(�)) with jU [W ] ✓ Z. For ease of notation, let N = MM
U

Z . Then by

Lemma 3.2.17, there is a unique embedding e : MW ! N such that e � jW = jMU

Z � jU and

e(aW ) = aZ . Thus the 1-internal comparison (e, id) : (MW , N) ! N witnesses

(MW , aW ) k (N, aZ)

Suppose now towards a contradiction that Z <k tU(W ) in MU . Let (k, h) be a 1-internal

comparison of (jMU

Z , jMU

t
U

(W )) such that k(aZ) < h(at
U

(W )). Since MM
U

Z = N , MM
U

t
U

(W ) = MW ,

and at
U

(W ) = aW , (k, h) : (N,MW ) ! P is a 1-internal comparison witnessing

(N, aZ) <k (MW , aW )

This contradicts the wellfoundedness of the Ketonen order on pointed ultrapowers (Theo-

rem 3.5.8).

Lemma 5.4.4. Suppose U RF W are countably complete ultrafilters. If U is nonprincipal,

then tU(W ) 6= jU(W ).

Proof. Assume tU(W ) = jU(W ), and we will show that U is principal. By Lemma 5.4.2, fix

a set I 2 U and a discrete sequence hWi : i 2 Ii such that [hWi : i 2 Ii]U = tU(W ). Since
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hWi : i 2 Ii is discrete, in particular the Wi are pairwise distinct. Since tU(W ) = jU(W ),

 Loś’s Theorem implies that there is a U -large set J ✓ I such that Wi = W for all i 2 J .

Since the Wi are pairwise distinct, it follows that |J | = 1. Thus U contains a set of size 1,

so U is principal.

Proposition 5.4.5 (UA). Suppose � is an ordinal, W 2 B(�), and U RF W is a nonprin-

cipal ultrafilter. Then tU(W ) <k jU(W ) in MU .

Proof. By Lemma 5.4.3 and the linearity of the Ketonen order, tU(W ) k jU(W ). By

Lemma 5.4.4, tU(W ) 6= jU(W ). It follows that tU(W ) <k jU(W ).

The following simple lemma on the preservation of the Rudin-Froĺık order under trans-

lation functions will be used in the proof of Theorem 5.3.17:

Lemma 5.4.6. Suppose U , W , and Z are countably complete ultrafilters with U RF W,Z.

• W RF Z if and only if tU(W ) RF tU(Z) in MU .

• W <RF Z if and only if tU(W ) <RF tU(Z) in MU .

We finally prove the local ascending chain condition.

Proof of Theorem 5.3.17. Assume towards a contradiction that the theorem is false. Let C

be the class of countably complete tail uniform ultrafilters Z such that there is an infinite

<RF-ascending sequence hUn : n < !i sequence RF-bounded above by Z. Let W be a

<k-minimal element of C, and fix U0 <RF U1 <RF · · · such that Un RF W for all n < !.

We may assume without loss of generality that U0 is nonprincipal. By elementarity, jU0(W )

is a <
M

U0
k -minimal element of jU0(C).

Since translation functions preserve the Rudin-Froĺık order (Lemma 5.4.6), MU0 satisfies

tU0(U0) <RF tU0(U1) <RF tU0(U2) <RF · · · and tU0(Un) RF tU0(W ) for all n  !. SinceMU0 is

closed under countable sequences, it follows that tU0(W ) 2 jU0(C). But by Proposition 5.4.5,

tU0(W ) <k jU0(W ). This contradicts that jU0(W ) is a <
M

U0
k -minimal element of jU0(C).
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Pushouts and the Rudin-Froĺık lattice

In this section we establish that the Rudin-Froĺık order is a lattice:

Theorem (UA). The Rudin-Froĺık order is a lattice in the following sense:

• If U0 and U1 are countably complete ultrafilters, there is an RF-minimum countably

complete ultrafilter W �RF U0, U1.

• If U0 and U1 are countably complete ultrafilters, there is an RF-maximum countably

complete ultrafilter D RF U0, U1.

The Rudin-Froĺık order is not literally a lattice because it is only a preorder, but the

theorem above shows that it induces a lattice structure on isomorphism types of countably

complete ultrafilters. The two parts will be proved as Corollary 5.4.15 and Proposition 5.4.17

below.

We begin by establishing the existence of least upper bounds in the Rudin-Froĺık order,

which is by far the most important part of the theorem. Here it is cleaner to work with the

elementary embeddings rather than the ultrafilters:

Definition 5.4.7. Suppose j0 : V ! M0 and j1 : V ! M1 are ultrapower embeddings.

An internal ultrapower comparison (i0, i1) : (M0,M1) ! N is a pushout of (j0, j1) if for

any internal ultrapower comparison (k0, k1) : (M0,M1) ! P , there is a unique internal

ultrapower embedding h : N ! P such that h � i0 = k0 and h � i1 = k1.

Pushout comparisons are simply the model theoretic manifestation of least upper bounds

in the Rudin-Froĺık order. We will prove:

Theorem 5.4.8 (UA). Every pair of ultrapower embeddings has a unique pushout.

The uniqueness of pushouts is a standard category theoretic fact: the pushout of a pair

of embeddings is what a category theorist would call the pushout of these morphisms in the

category D1 of all ultrapower embeddings. In general, if two morphisms in a category have
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Figure 5.1: The pushout of (j0, j1).

a pushout, it is unique up to isomorphism. Since the only isomorphisms in D1 are identity

functions, this implies the uniqueness of ultrapower pushouts up to equality.

We now begin the proof of Theorem 5.4.8. The proof involves the following auxiliary

concept:

Definition 5.4.9. Suppose M0 and M1 are transitive models of ZFC. A pair of elementary

embeddings (i0, i1) : (M0,M1) ! N to a transitive model N is minimal if N = HN(i0[M0][
i1[M1]).

In the context of ultrapower embeddings, minimality has the following alternate charac-

terization:

Lemma 5.4.10. Suppose j0 : V ! M0 and j1 : V ! M1 are elementary embeddings

and (i0, i1) : (M0,M1) ! N is a comparison of (j0, j1). Suppose a 2 M1 is such that

M1 = HM1(j1[V ][{a}). Then (i0, i1) is minimal if and only if N = HN(i0[M0][{i1(a)}).
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Embedded in any pair (k0, k1) : (M0,M1) ! P , there is a unique minimal pair (i0, i1) :

(M0,M1) ! N . This follows from a trivial hull argument:

Lemma 5.4.11. Suppose (k0, k1) : (M0,M1) ! P is a pair of elementary embeddings. Then

there exists a unique minimal (i0, i1) : (M0,M1) ! N admitting an elementary embedding

h : N ! P such that h � i0 = k0 and h � i1 = k1.

Proof. Let H = HP (k0[M0][k1[M1]). Let N be the transitive collapse of H. Let h : N ! P

be the inverse of the transitive collapse. Let i0 = h�1 � k0 and i1 = h�1 � k1. Then

(i0, i1) : (M0,M1) ! N and h � i0 = k0 and h � i1 = k1. Moreover

h[HN(i0[M0] [ i1[M1])] = HP (k0[M0] [ k1[M1]) = h[N ]

which implies HN(i0[M0] [ i1[M1]) = N since h is injective. Thus (i0, i1) is minimal.

Uniqueness is obvious; we omit the proof.

Corollary 5.4.12 (UA). Every pair of ultrapower embeddings of V has a minimal internal

ultrapower comparison.

Proof. Suppose j0 : V ! M0 and j1 : V ! M1 are ultrapower embeddings. Fix an internal

ultrapower comparison (k0, k1) : (M0,M1) ! P of (j0, j1). By Lemma 5.4.11, there is a

minimal pair (i0, i1) : (M0,M1) ! N and an elementary h : N ! P with h � i0 = k0 and

h � i1 = k1. It follows immediately that (i0, i1) is a comparison of (j0, j1). By Lemma 5.4.10,

i0 is an ultrapower embedding of M0. Since k0 is close to M0 and h�i0 = k0, i0 is close to M0.

Thus i0 is a close ultrapower embedding of M0, so i0 is an internal ultrapower embedding

of M0. Similarly i1 is an internal ultrapower embedding of M1. Thus (i0, i1) is a minimal

internal ultrapower comparison of (j0, j1).

Lemma 5.4.13. Suppose (k0, k1) : (M0,M1) ! P is a pair of elementary embeddings and

(i0, i1) : (M0,M1) ! N is a minimal pair. Then there is at most one elementary embedding

h : N ! P such that h � i0 = k0 and h � i1 = k1.
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Proof. Suppose h, h0 : N ! P satisfy h � i0 = h0 � i0 = k0 and h � i1 = h0 � i1 = k1. Then

h � i0[M0] = h0 � i0[M0] and h � i1[M1] = h0 � i1[M1]. Since N = HN(i0[M0] [ i1[M1]), it

follows that h = h0.

Lemma 5.4.14 (UA). Suppose j0 : V ! M0 and j1 : V ! M1 are ultrapower embeddings

and (i0, i1) : (M0,M1) ! N is a minimal comparison of (j0, j1). Then (i0, i1) is the pushout

of (j0, j1).

Proof. Suppose j0 : V ! M0 and j1 : V ! M1 are ultrapower embeddings. Suppose

(k0, k1) : (M0,M1) ! P is a comparison of (j0, j1). It su�ces to find an internal ultrapower

embedding h : N ! P such that h � i0 = k0 and h � i1 = k1; uniqueness is then immediate

from Lemma 5.4.13.

Fix a 2 M1 such that M1 = HM1(j1[V ] [ {a}). By Lemma 5.4.10,

N = HN(i0[M0] [ i1(a))

By the definition of =S, we have:

(N, i1(a)) =S (M1, a) =S (P, k1(a))

Thus by the transitivity of the seed order, (N, i1(a)) =S (P, k1(a)). Since the objects wit-

nessing (N, i1(a)) =S (P, k1(a)) are internal ultrapower embeddings of N and P , which are

themselves internal ultrapowers of M0, it follows that M0 satisfies (N, i1(a)) =S (P, k1(a)).

By the equivalence between the seed order on models and the seed order on embeddings

(Lemma 3.5.26), M0 satisfies (i0, i1(a)) =S (k0, k1(a)). Applying Lemma 5.3.10 in M0, it

follows that there is an internal ultrapower embedding h : N ! P such that h � i0 = k0 and

h(i1(a)) = k1(a).

We claim h � i1 = k1. Note that h � i1 � j1 = h � i0 � j0 = k0 � j0 = k1 � j1, so

h � i1 � j1[V ] = k1 � j1[V ]. Moreover h(i1(a)) = k1(a). Thus

h � i1 � j1[V ] [ {a} = k1 � j1[V ] [ {a}
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Since M1 = HM1(j1[V ] [ {a}), it follows that h � i1 = k1, as desired.

Thus h : N ! P is an internal ultrapower embedding with h� i0 = k0 and h� i1 = k1.

Proof of Theorem 5.4.8. The existence of pushouts is an immediate consequence of Corol-

lary 5.4.12 and Lemma 5.4.14.

The existence of least upper bounds in the Rudin-Froĺık order is a trivial restatement of

Theorem 5.4.8:

Corollary 5.4.15. Suppose U0 and U1 are countably complete ultrafilters. Suppose (i0, i1) :

(MU0 ,MU1) ! N is the pushout of (jU0 , jU1). Suppose W is a countably complete ultrafilter

such that jW = i0 � j0 = i1 � j1. Then W is the RF-minimum countably complete ultrafilter

W �RF U0, U1.

Proof. The internal ultrapower embeddings i0 and i1 witness that U0 RF W and U1 RF W .

Suppose U0 RF Z and U1 RF Z. We will show W RF Z. Let k0 : MU0 ! MZ and

k1 : MU1 ! MZ witness U0 RF Z and U1 RF Z. Then since (i0, i1) is a pushout and

(k0, k1) : (MU0 ,MU1) ! MZ , there is an internal ultrapower embedding h : MW ! MZ such

that h � i0 = k0 and h � i1 = k1. In particular h � jW = h � i0 � jU0 = k0 � jU0 = jZ , so h

witnesses that W RF Z.

It is worth noting the following bound here:

Proposition 5.4.16. Suppose U0 and U1 are countably complete ultrafilters. If W is a

minimal upper bound of U0 and U1 in the Rudin-Froĺık order, then �W = max{�U0 ,�U1}.

Proof. Let � = max{�U0 ,�U1}. Let j0 : V ! M0 and j1 : V ! M1 be the ultrapowers by U0

and U1 respectively. There is a minimal comparison (i0, i1) : (M0,M1) ! N of (j0, j1) such

that i0�j0 = i1�j1 = jW . Fix ↵ < j0(�) such thatM0 = HM0(j0[V ][{↵}). By Lemma 5.4.10,

N = HN(i1[M1][ {i0(↵)}) ✓ HN(i1[M1][ i1(j1(�))). It follows that width(i1)  j1(�) + 1.

Therefore by our lemma on the width of the composition of two elementary embeddings

(Lemma 3.5.34), width(jW ) = width(i1 � j1) = �+ 1. In other words, �W = �.
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We now show the existence of greatest lower bounds in the Rudin-Froĺık order. In fact

we do a bit better:

Proposition 5.4.17. Suppose A is a nonempty class of countably complete ultrafilters. Then

A has a greatest lower bound in the Rudin-Froĺık order.

This follows purely abstractly from what we have proved so far. Recall that a partial

order (P,) has the local ascending chain condition if for any p 2 P , there is no ascending

sequence a0 < a1 < · · · in P with an  p for all n < !.

Lemma 5.4.18. Suppose (P,) is a join semi-lattice with a minimum element that satisfies

the local ascending chain condition. For any nonempty set A ✓ P , A has a greatest lower

bound in P .

Proof. Consider the set B ✓ P of lower bounds of A. In other words,

B = {b 2 P : 8a 2 A b  a}

Since P has a minimum element, B is nonempty. Since A is nonempty, fixing p 2 A,

every element of B lies below p. Therefore by the local ascending chain condition, B has a

maximal element b0. (The ascending chain condition says that the relation > is wellfounded

on {c 2 P : c  p}, so the nonempty set B has a >-minimal element, or equivalently a

<-maximal element.)

We claim B is a directed subset of (P,). Suppose b, c 2 B. For any a 2 A, by the

definition of B, b, c  a, and therefore their least upper bound b _ c  a. In other words,

b _ c  a for all a 2 A, so b _ c 2 B. This shows that B is directed.

Finally since b0 is a maximal element of the directed set B, in fact b0 is its maximum

element.

Proof of Proposition 5.4.17. The Rudin-Froĺık order induces a partial order on the isomor-

phism types of countably complete ultrafilters. This partial order is a join semi-lattice by

Corollary 5.4.15, and it has the local ascending chain condition by Theorem 5.3.17. It has a
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minimum element, namely the isomorphism type of the principal ultrafilters. Therefore the

conditions of Lemma 5.4.18 are met (except that we are considering a set-like partial order

instead of a set, which makes no di↵erence). This implies the proposition.

Let us give another application of pushouts to the Rudin-Froĺık order. The following

characterization of the internal ultrapower embeddings of a pushout is remarkably easy to

prove:

Theorem 5.4.19. Suppose j0 : V ! M0 and j1 : V ! M1 are ultrapower embeddings and

(i0, i1) : (M0,M1) ! N is their pushout. Suppose h : N ! P is an ultrapower embedding.

Then the following are equivalent:

(1) h is amenable to both M0 and M1.

(2) h is an internal ultrapower embedding of N .

Proof. (1) implies (2): Let k0 = h� i0 and k1 = h� i1. Since h is an ultrapower embedding of

N , k0 is an ultrapower embedding of M0. Since h is amenable to M0, k0 is amenable to M0,

and hence k0 is close to M0. Since k0 is a close ultrapower embedding of M0, in fact k0 is an

internal ultrapower embedding of M0. Similarly k1 is an internal ultrapower embedding of

M1. Thus (k0, k1) is an internal ultrapower comparison of (j0, j1). Since (i0, i1) is a pushout,

there is an internal ultrapower embedding h0 : N ! P such that h0 � i0 = k0 and h0 � i1 = k1.

By Lemma 5.4.13, however, h is the unique elementary embedding from N to P such that

h� i0 = k0 and h� i1 = k1. Thus h = h0, so h is an internal ultrapower embedding, as desired.

(2) implies (1): Trivial.

An elegant way to restate this is in terms of the ultrafilters amenable to a pushout:

Corollary 5.4.20. Suppose j0 : V ! M0 and j1 : V ! M1 are ultrapower embeddings and

(i0, i1) : (M0,M1) ! N is their pushout. Suppose W is a countably complete N-ultrafilter.

Then W 2 N if and only if W 2 M0 \M1.
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Theorem 5.4.19 permits an interesting generalization of the uniqueness of ultrapower

embeddings:

Corollary 5.4.21 (UA). Suppose U and W are countably complete ultrafilters. Then the

following are equivalent:

(1) U RF W .

(2) MW ✓ MU .

Proof. (1) implies (2): Trivial.

(2) implies (1): Let (h.k) : (MU ,MW ) ! N be the pushout of (jU , jW ). Since MW ✓ MU

and k is an internal ultrapower of MU , k is amenable to MU . In particular, k � N is

amenable to both MU and MW . Therefore k � N is an internal ultrapower of N . Thus

k is �-supercompact for all ordinals �. It follows from Proposition 4.2.31 that k is the

identity. Hence h : MU ! MW is an internal ultrapower embedding with h � jU = jW , so

U RF W .

The finiteness of the Rudin-Froĺık order

The goal of this subsection is to prove the central structural fact about the Rudin-Froĺık

order under UA: any countably complete ultrafilter has at most finitely many predecessors

in the Rudin-Froĺık order up to isomorphism. The following terminology allows us to state

this more precisely:

Definition 5.4.22. The type of an ultrafilter U is the class {U 0 : U 0 ⇠= U}.

Theorem 5.4.23 (UA). If W is a countably complete ultrafilter, then {U : U RF W} is

the union of finitely many types.

The proof heavily uses the concept of a Dodd parameter, introduced in Section 4.3 in

a slightly more general context. Let us just remind the reader what this is in the special
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case of ultrapower embeddings. We identify finite sets of ordinals with their decreasing

enumerations: if p ✓ Ord and |p| = `, then hpn : n < `i denotes the unique decreasing

sequence such that p = {p0, . . . , p`�1}. The canonical order on finite sets of ordinals is then

the lexicographic order on their decreasing enumerations.

Definition 5.4.24. Suppose j : V ! M is an ultrapower embedding. The Dodd parameter

of j, denoted p(j), is the least finite set of ordinals p such that HM(j[V ] [ p) = M .

Note that since j is an ultrapower embedding, M = HM(j[V ][ {↵}) for some ordinal ↵,

so p(j) certainly exists.

Recall the notion of an x-generator of an elementary embedding: if j : M ! N is an

elementary embedding between transitive models of ZFC and x 2 N , then an ordinal ⇠ 2 N

is an x-generator of j if ⇠ /2 HN(j[V ][ ⇠ [ {x}). We need a basic but not completely trivial

lemma about x-generators:

Lemma 5.4.25. Suppose M
j�! N

i�! P are elementary embeddings between transitive

models and ⇠ is an x-generator of j. Then i(⇠) is an i(x)-generator of i � j.

Proof. Suppose not, and fix a function f and a finite set p ✓ i(⇠) such that

i(⇠) = i(j(f))(p, i(x))

Then P satisfies the statement that for some finite set q ✓ i(⇠), i(⇠) = i(j(f))(q, i(x)). Since

i is elementary, N satisfies that for some finite set q ✓ ⇠, ⇠ = j(f)(q, x), and this contradicts

that ⇠ is an x-generator of j.

The key lemma regarding the Dodd parameter is that each of its elements is a generator

in a strong sense:

Lemma 5.4.26. Suppose j : V ! M is an ultrapower embedding. Let p = p(j). Let ` = |p|.
Then for any n < `, pn is the largest p � n-generator of j.
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Proof. We first show that pn is a p � n-generator of j. Suppose not, towards a contradiction.

Fix a finite set q ✓ pn such that pn 2 HM(j[V ] [ p � n [ q). Let r = (p \ {pn}) [ q. Then

r < p but p 2 HM(j[V ] [ r). Therefore

M = HM(j[V ] [ p) ✓ HM(j[V ] [ r)

so HM(j[V ] [ r) = M , contrary to the minimality of the Dodd parameter p.

Now let ⇠ be the largest p � n-generator of j. Suppose towards a contradiction that pn < ⇠.

Then p ✓ ⇠ [ {p0, . . . , pn�1}, so since ⇠ /2 HM(j[V ] [ ⇠ [ p � n), in fact ⇠ /2 HM(j[V ] [ p).

This contradicts the definition of p(j).

The key to the proof of the finiteness of the Rudin-Froĺık order is to partition the Rudin-

Froĺık predecessors of a countably complete ultrafilter according to their relationship with

its Dodd parameter.

Definition 5.4.27. Suppose U <RF W are countably complete ultrafilters. Let p = p(jW ).

Let i : MU ! MW be the unique internal ultrapower embedding such that i�jU = jW . Then

n(U,W ) is the least number n such that pn /2 i[MU ].

Note that n(U,W ) depends only on the types of U and W . Note moreover that n(U,W )

exists whenever U <RF W : otherwise p ✓ i[MU ], so MW = HM
W (jW [V ][ p) ✓ i[MU ], which

implies that i is surjective; thus i is an isomorphism, so U ⇠= W , contrary to the assumption

that U <RF W .

Lemma 5.4.28. Suppose U <RF W are countably complete ultrafilters. Let p = p(jW ). Let

i : MU ! MW be the unique internal ultrapower embedding such that i � jU = jW . Let

n = n(U,W ). Then

i[MU ] ✓ HM
W (jW [V ] [ p � n [ pn)

Proof. Suppose towards a contradiction that the lemma fails. Let ⇠ be the least ordinal such

that i(⇠) /2 HM
W (jW [V ] [ p � n [ pn). Then i[⇠] ✓ HM

W (jW [V ] [ p � n [ pn).
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By the minimality of n, p � n 2 i[MU ]. Therefore let q 2 MU be such that i(q) = p � n.

We claim ⇠ is a q-generator of jU . Supposing the contrary, we have ⇠ 2 HM
U (jU [V ][ ⇠ [ q),

so

i(⇠) 2 i[HM
U (jU [V ] [ ⇠ [ q)] ✓ HM

W (jW [V ] [ p � n [ pn)

which contradicts the definition of ⇠.

Since ⇠ is a q generator of jU , i(⇠) is an i(q)-generator of i�jU by Lemma 5.4.25. In other

words, i(⇠) is a p � n-generator of jW . By Lemma 5.4.26, pn is the largest p � n-generator of

jW , so i(⇠)  pn. This contradicts that i(⇠) /2 HM
W (jW [V ] [ p � n [ pn).

Definition 5.4.29. Suppose W is a countably complete ultrafilter and p = p(jW ). For any

n < |p|, Dn(W ) = {U <RF W : n(U,W ) = n}.

Lemma 5.4.30. For any countably complete ultrafilter W ,

{U : U <RF W} =
[

n<|p(j
W

)|
Dn(W )

Proof. See the remarks following Definition 5.4.27.

The following fact is the key to the proof of the finiteness of the Rudin-Froĺık order:

Lemma 5.4.31. Suppose U0, U1 2 Dn(W ) and D is the RF-minimum countably complete

ultrafilter such that U0, U1 RF D. Then D 2 Dn(W ).

Proof. Let M0 = MU0 and let M1 = MU1 . Let (i0, i1) : (M0,M1) ! MD be internal

ultrapower embeddings witnessing that U0, U1 RF D and let (k0, k1) : (M0,M1) ! MW be

internal ultrapower embeddings witnessing that U0, U1 RF W .

Since D is the RF-minimum countably complete ultrafilter with U0, U1 RF D, in fact

D RF W . Let h : MD ! MW be the unique internal ultrapower embedding such that

h � jD = jW . Notice that

h � i0 = k0

h � i1 = k1
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by Lemma 5.2.16.

Since D is the RF-minimum ultrafilter with U0, U1 RF D, (i0, i1) : (M0,M1) ! MD

must be minimal in the sense of Definition 5.4.9:

MD = HM
D(i0[M0] [ i1[M1])

(The proof is a trivial diagram chase. Let (̄i0, ī1) : (M0,M1) ! N be the unique minimal pair

admitting e : N ! MD such that e � ī0 = i0 and e � ī1 = i1. By the proof of Corollary 5.4.12,

N is an internal ultrapower of M0 and M1, so since D is a least upper bound of U0, U1, there

is an internal ultrapower embedding d : MD ! N such that d � i0 = ī0 and d � i1 = ī1. Then

d � e : N ! N satisfies d � e � ī0 = ī0 and d � e � ī1 = ī1, and hence by Lemma 5.4.13, d � e
must be the identity map. Hence d and e are inverses, so by transitivity N = MD and e is

the identity. Now ī0 = e � ī0 = i0 and ī1 = e � ī1 = i1 so (̄i0, ī1) = (i0, i1). Since (̄i0, ī1) is

minimal, so is (i0, i1).) Therefore

h[MD] = h[HM
D(i0[M0] [ i1[M1])] = HM

W (k0[M0] [ k1[M1])

Let p = p(jW ). Since U0 2 Dn(W ), k0[M0] ✓ HM
W (jW [V ][ p � n[ pn) by Lemma 5.4.28.

Similarly, k1[M1] ✓ HM
W (jW [V ] [ p � n [ pn). Thus

k0[M0] [ k1[M1] ✓ HM
W (jW [V ] [ p � n [ pn)

It follows that h[MD] = HM
W (k0[M0] [ k1[M1]) ✓ HM

W (jW [V ] [ p � n [ pn). In particular,

since pn is a p � n-generator of jW by Lemma 5.4.26, pn /2 h[MD]. Clearly

p � n 2 k0[M0] ✓ h[MD]

so n is the least number such that pn /2 h[MD]. It follows that n(D,W ) = n. In other words,

D 2 Dn(W ).

The point now is that by Theorem 5.3.17 and Corollary 5.4.15, we can find a maximum

element of Dn:
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Proposition 5.4.32 (UA). Suppose W is a countably complete ultrafilter and n < |p(jW )|.
If Dn(W ) is nonempty, then Dn(W ) has a RF-maximum element.

Proof. By Corollary 5.4.15, every pair of countably complete ultrafilters has a least upper

bound in the Rudin-Froĺık order. Combining this with Lemma 5.4.31, the class Dn(W ) is

directed under RF. Moreover it is bounded below W in RF. Therefore by Theorem 5.3.17,

it has a maximal element U . By the RF-directedness of Dn(W ), this maximal element is a

maximum element.

We finally prove Theorem 5.4.23.

Proof of Theorem 5.4.23. The proof is by induction on the wellfounded relation <RF. (See

Lemma 5.2.12.) Assume W is a countably complete ultrafilter. Our induction hypothesis is

that for all U <RF W , {D : D RF U} is the union of finitely many types. We aim to show

that {U : U RF W} is the union of finitely many types.

Let p = p(jW ) and let ` = |p(jW )|. By Lemma 5.4.30,

{U : U <RF W} =
[

n<`

Dn(W )

We claim that for any n < `, Dn(W ) is the union of finitely many types. If Dn(W ) is empty,

this is certainly true. If Dn(W ) is nonempty, then by Proposition 5.4.32, there is a RF-

maximum element U of Dn(W ). Since U 2 Dn(W ), U <RF W so by our induction hypothesis

{D : D RF U} is the union of finitely many types. But since U is a RF-maximum element

of Dn(W ), Dn(W ) ✓ {D : D RF U}. Thus Dn(W ) is the union of finitely many types.

Since {U : U <RF W} =
S

n<`Dn(W ) is a finite union of classes Dn(W ) each of which

is itself the union of finitely many types, {U : U <RF W} is the union of finitely many

types. The collection {U : U RF W} contains just one more type than {U : U <RF W},
namely that of W . So {U : U RF W} is the union of finitely many types, completing the

induction.
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Translations and limits

In this section we explain the relationship between pushouts, ultrafilter translations, and

the minimal covers defined for the proof of UA from the linearity of the Ketonen order in

Section 3.6.

Recall Definition 5.4.1, which defined for any countably complete ultrafilters U RF W

the translation of W by U , the canonical countably complete ultrafilter of MU that leads

from MU into MW . It turns out that there is a natural generalization of tU(W ) for any

ultrafilters that admit a pushout:

Definition 5.4.33. Suppose U and W 2 B(Y ) are countably complete ultrafilters. Suppose

(k, h) : (MU ,MW ) ! N is the pushout of (jU , jW ). Then tU(W ) denotes the MU -ultrafilter

on jU(Y ) derived from k using h(aW ).

The point of this definition is that tU(W ) is the canonical ultrafilter of MU giving rise to

the MU -side of the pushout of (jU , jW ):

Lemma 5.4.34. Suppose U and W 2 B(Y ) are countably complete ultrafilters. Suppose

(k, h) : (MU ,MW ) ! N is the pushout of (jU , jW ). Then tU(W ) is the unique ultrafilter

Z 2 jU(B(Y )) such that jMU

Z = k and aZ = h(aW ).

We will try to omit superscripts when we can:

Corollary 5.4.35. If U and W are countably complete ultrafilters, then (jt
U

(W ), jt
W

(U)) is

the pushout of (jU , jW ) if it exists.

The notation tU(W ) generalizes the notation tU(W ) introduced in Definition 5.4.1 when

U RF W . To see this, assume U RF W and let k : MU ! MW be the unique internal

ultrapower embedding of MU such that k � jU = jW . Then (k, id) : (MU ,MW ) ! MW is the

pushout of (jU , jW ), and hence tU(W ) as we have defined it here is just the MU -ultrafilter

derived from k using aW , which is precisely tU(W ) as defined in Definition 5.4.1.
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Figure 5.2: The proof of Lemma 5.4.38.

It turns out that in the definition of a translation, one does not need to use the pushout

(as long as the pushout exists):

Lemma 5.4.36. Suppose U and W 2 B(Y ) are countably complete ultrafilters such that the

pair (jU , jW ) has a pushout. Let (k, h) : (MU ,MW ) ! P be a close comparison of (jU , jW ).

Then tU(W ) is the MU -ultrafilter on jU(Y ) derived from k using h(aW ).

It is not hard to see that translations are isomorphism invariant:

Lemma 5.4.37. Suppose U ⇠= U 0 and W ⇠= W 0. Then tU(W ) ⇠= tU 0(W 0) in MU .

In fact, we can do quite a bit better than this: translation functions preserve the Rudin-

Froĺık order.

Lemma 5.4.38. Suppose U , W , and Z are countably complete ultrafilters. If W RF Z,

then tU(W ) RF tU(Z) in MU .

Proof. Let N = MM
U

t
U

(W ) and let P = MM
U

t
U

(Z). The proof is contained in Fig. 5.2. By

Corollary 5.4.35:

• (jt
U

(W ), jt
W

(U)) : (MU ,MW ) ! N is the pushout of (jU , jW ).
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• (jt
U

(Z), jt
Z

(U) � jt
W

(Z)) : (MU ,MW ) ! P is an internal ultrapower comparison of

(jU , jW ).

Since (jt
U

(W ), jt
W

(U)) is a pushout, there is an internal ultrapower embedding h : N ! P

such that h � jt
U

(W ) = jt
U

(Z) and h � jt
W

(U) = jt
Z

(U) � jt
W

(Z). In particular, the first of these

equations says that h witnesses tU(W ) RF tU(Z) in MU .

We occasionally use the following fact, which is an immediate consequence of Lemma 5.4.34:

Lemma 5.4.39. Suppose U and W are countably complete ultrafilters on X and Y . Then

the following are equivalent:

(1) U RF W .

(2) For some I 2 U and some discrete sequence hWi : i 2 Ii of countably complete ultrafilters

on Y , tU(W ) = [hWi : i 2 Ii]U .

(3) jt
U

(W ) � jU = jW .

(4) tW (U) is a principal ultrafilter of MW .

(5) tW (U) = pj
W

(X)
h(a

U

) where h : MU ! MW is the unique internal ultrapower embedding such

that h � jU = jW .

The following fundamental fact connects translations back to the minimal covers of Sec-

tion 3.6:

Theorem 5.4.40 (UA). Suppose � is an ordinal, U is a countably complete ultrafilter, and

W 2 B(�). Then tU(W ) is the least element of jU(B(�), <k) that extends jU [W ].

Proof. By replacing U with an isomorphic ultrafilter, we may assume that for some ordinal

✏, U 2 B(✏), putting us in a position to apply the results of Section 3.6.
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Let W⇤ be the least element of jU(B(�), <k) that extends jU [W ] and let U⇤ be the least

element of jW (B(✏), <k) that extends jW [U ]. By Theorem 3.6.4,

(jMU

W⇤
, jMW

U⇤
) : (MU ,MW ) ! N

is a comparison of (jU , jW ). Moreover, as a consequence of Lemma 3.6.13, aW⇤ = jMW

U⇤
(aW ).

In particular,

N = HN(jMU

W⇤
[MU ] [ {aW⇤}) = HN(jMU

W⇤
[MU ] [ {jMW

U⇤
(aW )})

It follows from Lemma 5.4.10 that (jMU

W⇤
, jMW

U⇤
) is minimal. Therefore by Lemma 5.4.14,

(jMU

W⇤
, jMW

U⇤
) is the pushout of (jU , jW ). Since W⇤ is the MU -ultrafilter on jU(�) derived from

jMU

W⇤
using jMW

U⇤
(aW ), by definition W⇤ = tU(W ).

This yields the following bound on tU(W ) that is not a priori obvious:

Corollary 5.4.41 (UA). Suppose U is a countably complete ultrafilter and W is a countably

complete ultrafilter on an ordinal. Then tU(W ) k jU(W ) in MU .

Proof. Let � be the underlying ordinal of W . Then jU(W ) 2 jU(B(�)) and jU [W ] ✓ jU(W ).

Thus tU(W ) k jU(W ) in MU by Theorem 5.4.40.

We finally show that translation functions preserve the Ketonen order:

Theorem 5.4.42 (UA). Translation functions preserve the Ketonen order. More precisely,

suppose Z is a countably complete ultrafilter and U and W are countably complete ultrafilters

on ordinals. Then U <k W if and only if MZ ✏ tZ(U) <k tZ(W ).

For this we need the strong transitivity of the Ketonen order (Lemma 3.3.10). We actually

use the following immediate corollary of Lemma 3.3.10 and the characterization of limits in

terms of inverse images (Lemma 3.2.12):

Lemma 5.4.43. Suppose Z is an ultrafilter, � is an ordinal, and U,W 2 B(�) satisfy

U <k W . For any W⇤ 2 jZ(B(�)) with jZ [W ] ✓ W⇤, there is some U⇤ 2 jZ(B(�)) with

U⇤ <
M

Z

k W⇤ and jZ [U ] ✓ U⇤.
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With Theorem 5.4.40 and Lemma 5.4.43 in hand, we can prove Theorem 5.4.42.

Proof of Theorem 5.4.42. Assume that U <k W are countably complete ultrafilters on ordi-

nals. We will show tZ(U) <M
Z

k tZ(W ). For ease of notation, we will assume (without real

loss of generality) that U,W 2 B(�) for a fixed ordinal �.

LetW⇤ = tZ(W ). Theorem 5.4.40 implies that jZ [W ] ✓ W⇤. (This is actually much easier

to prove that Theorem 5.4.40.) By Lemma 5.4.43, it follows that there is some U⇤ 2 jZ(B(�))

with

U⇤ <
M

Z

k W⇤

and jZ [U ] ✓ U⇤. Since tZ(U) is the minimal extension of jZ [U ] by Theorem 5.4.40, we have

tZ(U) M
Z

k U⇤

By the transitivity of the Ketonen order, tZ(U) M
Z

k tZ(W ), as desired.

5.5 The internal relation

A generalized Mitchell order

In this section, we introduce a variant of the generalized Mitchell order that will serve as a

powerful tool in the theory of countably complete ultrafilters. The trouble with using the

Mitchell order itself to prove general theorems about countably complete ultrafilters is that

the Mitchell order is only meaningful for ultrafilters that have a certain amount of strength:

a precondition for U C W is that P (�U) ✓ MW . In order to analyze a more general class

of ultrafilters, we need a way to talk about the Mitchell order on ultrafilters that are not

assumed to be strong.

There are a number of possible approaches, but the one that has proved most successful

is called the internal relation:

Definition 5.5.1. The internal relation is defined on countably complete ultrafilters U and

W by setting U @ W if jU � MW is an internal ultrapower embedding of MW .
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The topic of this section is the theory of the internal relation under UA. The reason that

we have saved it for this chapter is that it is closely related to the theory of pushouts from

Section 5.4.

Before we proceed through the basic theory below, let us mention that the supercompact-

ness analysis of Chapter 7 and Chapter 8 yields a set theoretically simpler description of the

internal relation on a very large class of ultrafilters. In fact, the internal relation and the

Mitchell order are essentially one and the same:

Theorem 8.3.30 (UA). Suppose U and W are hereditarily uniform irreducible ultrafilters.

Then the following are equivalent:

(1) U @ W .

(2) Either U C W or W 2 V where  = crt(jU).

The second part of condition (2) should be compared with Kunen’s commuting ultra-

powers lemma (Theorem 5.5.20).

The Mitchell order versus the internal relation

To understand the nature of the internal relation, it helps to consider its relationship with

the Mitchell order.

Proposition 5.5.2. Suppose U is a countably complete ultrafilter on a set X and W is a

countably complete ultrafilter such that X 2 MW and U @ W . Then the MW -ultrafilter

U \MW belongs to MW . In particular, if P (X) ✓ MW , then U C W .

In general, however, U @ W does not imply U C W . This is a consequence of Kunen’s

commuting ultrapowers lemma (Theorem 5.5.20):

Proposition 5.5.3. Suppose  is a measurable cardinal, U 2 V is a countably complete

ultrafilter and W is a -complete ultrafilter. Then W @ U .
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Note that in the situation above, if W is nonprincipal, then �W � , and in particular

W 6C U since P () * MU .

Whether U C W always implies U @ W is a considerably subtler question. This impli-

cation is consistently false. (This is closely related to Proposition 4.2.29.) We begin with

the following fact:

Proposition 5.5.4. Suppose  is 2-supercompact and 2 = 2(
+). Then there is a normal

ultrafilter D on  and a -complete normal fine ultrafilter U on P(+) such that U C D.

Sketch. Since  is +-supercompact, there is a -complete normal fine ultrafilter U on

P(+). By Solovay’s theorem on SCH above a strongly compact cardinal (Theorem 7.2.16),

|P(+)| = +. By Solovay’s ultrafilter-capturing theorem (Theorem 6.3.3), for any set A of

hereditary cardinality at most 2, there is a normal ultrafilter D on  such that A 2 MD.

But U ✓ P (P(+)) has hereditary cardinality 2
+
= 2. Thus there is a normal ultrafilter

D on  such that U 2 MD, or in other words, U C D.

Thus given a failure of the weak GCH at a supercompact, one must have a rather unusual

situation in which U C D even though �U > �D. On the other hand, the internal relation

does not hold between these ultrafilters:

Proposition 5.5.5. Assume D is a -complete uniform ultrafilter on  and U is a -complete

normal fine ultrafilter on P(+).1 Then U 6@ D.

Proof. Suppose towards a contradiction that U @ D. Then jU(MD) ✓ MD since jU � MD

is an internal ultrapower embedding of MD. But jU(MD) = (MjU (D))MU . Since jU(D) is

jU()-complete in MU ,

Ord(+) ✓ Ordj
D

() \MU ✓ MjU (D))
MU = jU(MD) ✓ MD

It follows that jD is +-supercompact, and this contradicts the bound on the supercompact-

ness of the ultrapower by an ultrafilter on  (Proposition 4.2.31).

1The proof only requires that U is a -complete fine ultrafilter on P(+).
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We have not checked that the implication from U C W to U @ W can fail under the

Generalized Continuum Hypothesis, but we are confident that it can. Under UA, however,

this implication is a theorem:

Theorem 8.3.26 (UA). Suppose U and W are countably complete ultrafilters. If U C W ,

then U @ W .

Basic theory of the internal relation

The true motivation for the definition of the internal relation comes from the theory of

ultrapower comparisons:

Lemma 5.5.6. Suppose U and W are countably complete ultrafilters. Then

(jU(jW ), jU � MW ) : (MU ,MW ) ! jU(MW )

is a 0-internal minimal comparison of (jU , jW ). It is an internal ultrapower comparison if

and only if U @ W .

Proof. The fact that (jU(jW ), jU � MW ) is a comparison of (jU , jW ) is immediate from the

standard application-composition identity:

jU(jW ) � jU = (jU � MW ) � jW

Since jW is an internal ultrapower embedding of V , jU(jW ) is an internal ultrapower em-

bedding of MU by the elementarity of jU . In particular, (jU(jW ), jU � MW ) is 0-internal.

Moreover, if U @ W then jU � MW is an internal ultrapower embedding of MW , and hence

(jU(jW ), jU � MW ) is an internal ultrapower comparison.

Let us finally show that (jU(jW ), jU � MW ) is a minimal comparison of (jU , jW ), or in

other words that

jU(MW ) = Hj
U

(M
W

)(jU(jW )[MU ] [ jU [MW ])
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The proof begins with the standard fact that MW = HM
W (jW [V ] [ {aW}). Applying jU to

both sides of the equation, we obtain:

jU(MW ) = Hj
U

(M
W

)(jU(jW )[MU ] [ {jU(aW )})

Since jU(aW ) 2 jU [MW ],

Hj
U

(M
W

)(jU(jW )[MU ] [ {jU(aW )}) ✓ Hj
U

(M
W

)(jU(jW )[MU ] [ jU [MW ])

This yields that jU(MW ) ✓ Hj
U

(M
W

)(jU(jW )[MU ] [ jU [MW ]), which of course implies that

equality holds, as desired.

Combining Lemma 5.5.6 with the fact that minimal comparisons of ultrapowers are

ultrapower comparisons (Lemma 5.4.10), we obtain the following lemma:

Lemma 5.5.7. Suppose U and W are countably complete ultrafilters. Then jU � MW is an

ultrapower embedding of MW .

Of course, we do not mean that jU � MW is necessarily an internal ultrapower embedding

of MW , just that there is a point a 2 jU(MW ) such that jU(MW ) = Hj
U

(M
W (jU [MW ][ {a}).

An important point is that this point a need not be aU itself.

Applying the proof of Lemma 5.4.10 in to the minimal comparison (jU(jW ), jU � MW )

identifies a specific MW -ultrafilter giving rise to the embedding jU � MW :

Definition 5.5.8. Suppose U and W are countably complete ultrafilters. Let X be the

underlying set of U . Then the pushforward of U into MW is the MW -ultrafilter sW (U) on

jW (X) defined as follows: if A ✓ jW (X) and A 2 MW ,

A 2 sW (U) () j�1
W [A] 2 U

The reason we call sW (U) a pushforward is that it is literally equal to the pushforward

f⇤(U) \MW where f : X ! jW (X) is the restriction f = jW � X.

For the reader’s convenience, let us chase through all the lemmas and prove that sW (U)

behaves as it should:
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Lemma 5.5.9. Suppose U and W are countably complete ultrafilters on X and Y Then

sW (U) is the MW -ultrafilter on jW (X) derived from jU � MW using jU(jW )(aU). Moreover,

jMW

s
W

(U) = jU � MW

Thus U @ W if and only if sW (U) 2 MW .

Proof. Let f = jW � X. Then f⇤(U) is the ultrafilter derived from jU using jU(f)(aU) by

the basic theory of the Rudin-Keisler order (Lemma 3.2.16). Thus f⇤(U) \MW is the MW -

ultrafilter derived from jU � MW using jU(f)(aU) = jU(jW )(aU). But f⇤(U)\MW = sW (U),

so sW (U) is the MW -ultrafilter on jW (X) derived from jU � MW using jU(jW )(aU).

We finish by proving jMW

s
W

(U) = jU � MW . Since sU(W ) is derived from jU � MW using

jU(jW )(aU), there is a factor embedding k : MM
W

s
W

(U) ! jU(MW ) with k � jMW

s
W

(U) = jU � MW

and k(as
W

(U)) = jU(jW )(aU). Since (jU(jW ), jU � MW ) : (MU ,MW ) ! jU(MW ) is a minimal

comparison of (jU , jW ), Lemma 5.4.10 yields:

jU(MW ) = Hj
U

(M
W

)(jU [MW ] [ {jU(jW )(aU)})

But Hj
U

(M
W

)(jU [MW ] [ {jU(jW )(aU)}) ✓ k[MM
W

s
W

(U)]. In other words, k is a surjection. It

follows thatMM
W

s
W

(U) = jU(MW ) and k is the identity. Therefore jMW

s
W

(U) = k�jMW

s
W

(U) = jU � MW

as desired.

As a corollary, one can characterize the internal relation in terms of amenability of ul-

trafilters.

Lemma 5.5.10. Suppose U and W are countably complete ultrafilters. Then the following

are equivalent:

(1) U @ W .

(2) For all U 0 RK U , U 0 \MW 2 MW .

(3) For all U 0 ⇠= U , U 0 \MW 2 MW .
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Proof. (1) implies (2): Suppose U 0 RK U @ W . Fix a set X and a point a 2 MU such that

U 0 is the ultrafilter on X derived from jU using a. If X \ MW /2 U 0, then U 0 \ MW = ;,
and so U 0 \ MW 2 MW vacuously. Therefore assume X \ MW 2 U 0. In other words,

a 2 jU(X \MW ), so a 2 jU(MW ). Then U 0 \MW is the ultrafilter derived from jU � MW

using a, so since jU � MW is an internal ultrapower embedding of MW , U 0 \MW 2 MW .

(2) implies (3): Trivial.

(3) implies (1): Let X be the underlying set of U . Let f : X ! jW (X) be the restriction

f = jW � X. Since jW is injective, f⇤(U) ⇠= U . Moreover f⇤(U) \ MW = sW (U), so if

f⇤(U) \MW 2 MW , then U @ W by Lemma 5.5.9.

This has the following corollary, which is perhaps not immediately obvious:

Corollary 5.5.11. Suppose U , W , and Z are countably complete ultrafilters and

Z RK U @ W

Then Z @ W .

Proof. By Lemma 5.5.10, for all U 0 RK U , U 0 @ W . In particular (by the transitivity of the

Rudin-Keisler order), for all U 0 RK Z, U 0 @ W . Applying Lemma 5.5.10 again, Z @ W , as

desired.

There is also an obvious relationship in the other direction between the Rudin-Froĺık

order and the internal relation:

Proposition 5.5.12. Suppose U , W , and Z are countably complete ultrafilters and

U RF W A Z

Then Z @ U .

Proof. Since Z @ W , Lemma 5.5.9 implies sW (Z) 2 MW . Since U RF W , there is an

internal ultrapower embedding h : MU ! MW . We claim that h�1[sW (Z)] = sU(Z). Let X
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be the underlying set of Z. If A 2 jU(P (X)),

A 2 h�1[sW (Z)] () h(A) 2 sW (Z)

() j�1
W [h(A)] 2 Z

() (h � jU)�1[h(A)] 2 Z

() j�1
U [A] 2 Z

() A 2 sU(Z)

Since h is definable over MU and sW (Z) 2 MW ✓ MU , sU(Z) = h�1[sW (Z)] 2 MU . Hence

Z @ U by Lemma 5.5.9, as desired.

The key to understanding the internal relation under UA is the following theorem, which

takes advantage of the theory of pushouts and translations (Section 5.4 and Section 5.4):

Lemma 5.5.13 (UA). Suppose U and W are countably complete ultrafilters. Then the

following are equivalent:

(1) U @ W .

(2) (jU(jW ), jU � MW ) is the pushout of (jW , jU).

(3) tU(W ) = jU(W ).

(4) tW (U) = sW (U).

If the underlying set of W is an ordinal, we can add to the list:

(5) MU ✏ jU(W ) k tU(W ).

Proof. (1) implies (2): Since U @ W , (jU(jW ), jU � MW ) is a minimal internal ultrapower

comparison of (jU , jW ). Therefore by Lemma 5.4.14, (jU(jW ), jU � MW ) is the pushout of

(jU , jW ), so (2) holds.

(2) implies (3): Let X be the underlying set of W . By the definition of tU(W ), tU(W )

is the MU -ultrafilter on jU(X) derived from k using h(aW ) where (k, h) : (MU ,MW ) ! N
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is the pushout of (jU , jW ). By (2), (k, h) = (jU(jW ), jU � MW ), and hence tU(W ) is the

MU -ultrafilter on jU(X) derived from jU(jW ) using jU(aW ). Since W is the ultrafilter on

X derived from jW using aW , by the elementarity of jU , jU(W ) is the ultrafilter on jU(X)

derived from jU(jW ) using jU(aW ). This yields that tU(W ) = jU(W ), so (3) holds.

(3) implies (4): Let (k, h) : (MU ,MW ) ! N be the pushout of (jU , jW ). Since tU(W ) =

jU(W ), Lemma 5.4.34 implies k = jU(jW ) and h(aW ) = aj
U

(W ) = jU(aW ).

We claim that h = jU � MW . Note that h � jW [V ] = jU � jW [V ] since h � jW = k � jU =

jU(jW ) � jU = jU � jW . Moreover h(aW ) = jU(aW ), so

h � jW [V ] [ {aW} = jU � jW [V ] [ {aW}

Since MW = HM
W (jW [V ] [ {aW}) it follows that h = jU � MW , as claimed.

Now tW (U) is the MW -ultrafilter derived from h = jU � MW using k(aU) = jU(jW )(aU).

By Lemma 5.5.9, tW (U) = sW (U).

(4) implies (1): Since tW (U) = sW (U), sW (U) 2 MW . By Lemma 5.5.9, U @ W .

Finally, assume that the underlying set of W is an ordinal �, and we will show the

equivalence of (3) and (5). Clearly (3) implies (5), so let us prove the converse. Assume

(5) holds. By Corollary 5.4.41, tU(W ) k jU(W ) in MU . Thus tU(W ) k jU(W ) and

jU(W ) k tU(W ) in MU , so jU(W ) = tU(W ) since the Ketonen order is antisymmetric.

Commuting ultrapowers and wellfoundedness

The comparison characterization of the internal relation (Lemma 5.5.6) leads to a connection

between the internal relation and the seed order on pointed ultrapower embeddings, which

will give us some insight into the wellfoundedness of the internal relation:

Lemma 5.5.14. Suppose � is a limit ordinal and U @ W are countably complete ultrafilters.

Then for any ↵ < jU(�), (jU ,↵) <S (jW , sup jW [�]).

Proof. Since U @ W , (jU(jW ), jU � MW ) is an internal ultrapower comparison of (jU , jW )

by Lemma 5.5.6. To show that (jU ,↵) <S (jW , sup jW [�]), it therefore su�ces to show that
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jU(jW )(↵) < (jU � MW )(sup jW [�]). Note however that

(jU � MW )(sup jW [�]) = jU(sup jW [�]) = sup jU(jW )[jU(�)] > jU(jW )(↵)

since ↵ < jU(�).

As an immediate corollary, we have that the seed order extends the internal relation in

many cases:

Theorem 5.5.15. Suppose U @ W are ultrafilters concentrating on ordinals. Then U <S W

if and only if �U  �W .

We also obtain a wellfoundedness theorem for the internal relation, which becomes more

interesting when one realizes that the internal relation is not in fact wellfounded.

Theorem 5.5.16. Suppose � is an ordinal. Then the internal relation is wellfounded on the

class of countably complete ultrafilters whose ultrapowers are discontinuous at �.

Proof. Suppose towards a contradiction U0 A U1 A U2 A · · · are all discontinuous at �. For

n < !, let jn : V ! Mn denote the ultrapower of the universe by Un, and let �n = sup jn[�].

Since �n+1 < jn+1(�) and Un+1 @ Un, Lemma 5.5.14 implies (jn+1, �n+1) <S (jn, �n). Writing

this a di↵erent way, we have:

(j0, �0) >S (j1, �1) >S (j2, �2) >S · · ·

This immediately contradicts the wellfoundedness of the Ketonen order on pointed models

(Theorem 3.5.8).

Corollary 5.5.17. If U is a nonprincipal countably complete ultrafilter, then U 6@ U .

Unlike the Mitchell order, the internal relation is not strict. In fact, it has 2-cycles, which

typically come from the phenomenon of commuting ultrafilters:

Definition 5.5.18. Suppose U and W are countably complete ultrafilters. Then U and W

commute if jU(jW ) = jW � MU and jW (jU) = jU � MW .
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Clearly if U and W commute, then U @ W and W @ U . Let us provide some obvious

combinatorial characterizations of commuting ultrafilters:

Lemma 5.5.19. Suppose U and W are countably complete ultrafilters on sets X and Y .

The following are equivalent:

(1) U and W commute.

(2) For all A ✓ X ⇥ Y , 8Ux 8Wy (x, y) 2 A () 8Wy 8Ux (x, y) 2 A.

(3) The function flip(x, y) = (y, x) satisfies flip⇤(U ⇥W ) = W ⇥ U .

Somewhat surprisingly, there are nontrivial examples of commuting ultrafilters:

Theorem 5.5.20 (Kunen). Suppose U and W are countably complete ultrafilters and U 2 V

where  = crt(jW ). Then jW (jU) = jU � MW and jU(jW ) = jW � MU .

Let us give our pet proof of Theorem 5.5.20, which uses the following somewhat surprising

reformulation of commutativity:

Proposition 5.5.21. Suppose U and W are countably complete ultrafilters such that jW (jU) =

jU � MW . Then U and W commute.

Proof. To show U andW commute, we must show that jW � MU = jU(jW ). By Lemma 5.5.6,

(jW � MU , jW (jU)) and (jU(jW ), jU � MW ) are 0-internal and 1-internal minimal comparisons

of (jU , jW ). Since jW (jU) = jU � MW , we can conclude that

(jW � MU) � jU = jU(jW ) � jU

In particular, jW � MU and jU(jW ) are elementary embeddings of MU with the same

target model, which we will denote by

N = jW (MU) = jU(jW )(MU) = jU(MW ) = jW (jU)(MW )

so since jU(jW ) is an internal ultrapower embedding of MU , jU(jW )(↵)  jW (↵) for all

ordinals ↵.
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Let ⇠ be the least ordinal such that MU = HM
U (jU [V ] [ {⇠}). We claim that

jW (⇠) = jU(jW )(⇠)

By the previous paragraph, we have jU(jW )(⇠)  jW (⇠), so it su�ces to prove the reverse

inequality.

By elementarity, jW (⇠) is the least ordinal ↵ with N = HN(jW (jU)[MW ][ {↵}). On the

other hand, since (jU(jW ), jU � MW ) is a minimal comparison of (jU , jW ) (Lemma 5.5.6),

N = HN(jU [MW ] [ {jU(jW )(⇠)}) (Lemma 5.4.10). Since jU � MW = jW (jU) � MW , this

yields

N = HN(jW (jU)[MW ] [ {jU(jW )(⇠)})

By the minimality of jW (⇠), jW (⇠)  jU(jW )(⇠), as desired.

Thus jU(jW ) and jW � MU coincide on jU [V ] [ {⇠}. Since MU = HM
U (jU [V ] [ {⇠}), it

follows that jU(jW ) = jW � MU , as desired.

Proof of Theorem 5.5.20. It is trivial to see that jW (jU) = jU � MW . Hence by Proposi-

tion 5.5.21, U and W commute.

Under UA, the only counterexamples to the strictness of the internal relation are com-

muting ultrafilters:

Theorem 5.5.22 (UA). Suppose U @ W and W @ U . Then U and W commute.

Proof. Since U @ W , tU(W ) = jU(W ). Since W @ U , tU(W ) = sU(W ). Therefore jU(W ) =

sU(W ). It follows that jU(jW ) = jMU

j
U

(W ) = jMU

s
U

(W ) = jW � MU by Lemma 5.5.9. Similarly,

jW (jU) = jU � MW . In other words, U and W commute, as desired.

This raises an interesting technical question:

Question 5.5.23 (ZFC). Suppose U and W are countably complete ultrafilters such that

U @ W and W @ U . Do U and W commute?

Theorem 5.5.16 gives some information regarding this question:
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Proposition 5.5.24. If U @ W and W @ U , then U and W have no common points of

discontinuity.

The supercompactness analysis of Chapter 7 occasionally requires a partial converse to

Theorem 5.5.20: the only way certain nice pairs of ultrafilters can commute is if one lies

below the completeness of the other.

Definition 5.5.25. Suppose � is a cardinal. A countably complete ultrafilterW is �-internal

if U @ W for all U such that �U < �.

Proposition 5.5.26. Suppose U and W are countably complete hereditarily uniform ultrafil-

ters such that U is �U -internal and W is �W -internal. Let U = crt(jU) and W = crt(jW ).

Then the following are equivalent:

(1) U and W commute.

(2) Either U 2 V
W

or W 2 V
U

.

One can also state Proposition 5.5.26 avoiding the notion of hereditary uniformity: if U

is �U -internal and W is �W -internal, then U and W commute if and only if �U < W or

�W < U .

The proof of Proposition 5.5.26 requires a number of lemmas. The first allows us to

approximate an arbitrary ultrapower embedding by a small ultrafilter:

Lemma 5.5.27. Suppose j : V ! M is an ultrapower embedding. Then for any cardinal

�, there is a countably complete ultrafilter D with �D  2� such that there is an elementary

embedding k : MD ! M with k � jD = j and crt(k) > �.

Proof. Suppose � is an ordinal. We will find an ultrafilter D on �� such that there is an

elementary embedding k : MD ! M with k � jD = j and crt(k) � �. Taking � = � + 1

proves the lemma.
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Fix a 2 M such that M = HM(j[V ] [ {a}) and X such that a 2 j(X). Fix functions

hf↵ : ↵ < �i on X such that ↵ = j(f↵)(a). Define a function g : X ! �� by letting g(x) be

the function with g(x)(↵) = f↵(x) for all ↵ < �.

Let D be the ultrafilter on �� derived from j using j(g)(a). Let k : MD ! M be the

factor embedding such that k � jD = j and k(aD) = j(g)(a).

We claim that crt(k) � �. It su�ces to show that � ✓ k[MD] = HM(j[V ] [ {j(g)(a)}).
Fix ↵ < �. Then

↵ = j(f↵)(a) = j(f)j(↵)(a) = j(g)(a)(j(↵))

Thus ↵ is definable in M from j(g)(a) and j(↵). Thus ↵ 2 HM(j[V ] [ {j(g)(a)}), as

desired.

The coarseness of the bound 2� actually causes a number of problems down the line. An

argument due to Silver (which appears as Theorem 7.5.24) provides a major improvement

in a special case, and is instrumental in our analysis of the linearity of the Mitchell order on

normal fine ultrafilters under UA without GCH assumptions. Further improvements could

potentially solve the problems concerning so-called isolated cardinals discussed in Section 7.5.

Using Lemma 5.5.27, we prove the following lemma, which can be seen as a version of

the Kunen Inconsistency Theorem (Theorem 4.2.37) that replaces the strength requirement

of that theorem with a requirement involving the internal relation:

Lemma 5.5.28. Suppose U is a countably complete ultrafilter and  is a strong limit cardinal.

Then the following are equivalent:

(1) U is -internal and sup jU [] ✓ .

(2) U is -complete.

Proof. (1) implies (2). Let j : V ! M be the ultrapower of the universe by U . We first show

that j is <-supercompact. Fix � < , and we will prove that j � � 2 M . Let � = j(�),

so � <  by the assumption that j[] ✓ . By Lemma 5.5.27, one can find a countably
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complete ultrafilter D with �D  2� <  and an elementary embedding k : MD ! M with

k � jD = j and crt(k) > � = j(�). In particular jD � � = j � �. Moreover since �D < ,

D @ U . Therefore j � � = jD � � 2 M , as desired.

Now j is <-supercompact and j[] ✓ . Since j is an ultrapower embedding, if  is

singular, then j is -supercompact. Therefore the Kunen Inconsistency Theorem (Theo-

rem 4.2.37 or Theorem 4.4.32) implies crt(j) � , so U is -complete.

(2) implies (1). Trivial.

Lemma 5.5.29. Suppose U and W are nonprincipal countably complete ultrafilters. Let

U = crt(jU) and W = crt(jW ). Assume U is W -internal and W is U -internal. Then

either jU(W ) > W or jW (U) > U .

Proof. Assume towards a contradiction that jU(W ) = W and jW (U) = U . Since U is

W -internal and jU [W ] ✓ W , U is W -complete. Therefore U � W . By symmetry,

W � U . Thus U = W . This contradicts that jU(W ) = W while jU(U) > U by the

definition of a critical point.

We can finally prove Proposition 5.5.26:

Proof of Proposition 5.5.26. (1) implies (2): Since U and W commute, jU(W ) = W and

jW (U) = U . By Lemma 5.5.29, either U is not W -internal or W is not U -internal.

Therefore either �U < W or �W < U .

Assume first that �U < W . Since U is hereditarily uniform, the underlying set of U has

hereditary cardinality �U , and hence U 2 V
W

since W is inaccessible.

If instead �W < U , then W 2 V
U

by a similar argument.

(2) implies (1): Immediate from Theorem 5.5.20.

j on the ordinals

In this section, we briefly survey some results that tie the structure of the internal relation

under UA to the behavior of elementary embeddings on the ordinals. We only sketch most
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of the proofs since the material is a bit of a detour from the main line of this dissertation.

Recall the notion of the rank of a pointed ultrapower in the Ketonen order (Defini-

tion 3.5.47): if � is a cardinal, then P� denotes the collection of pointed ultrapowers (M, ⇠)

such that M is the ultrapower by an ultrafilter U with �U < � and ⇠ is an ordinal; o�(M, ⇠)

denotes the rank of (M, ⇠) in the prewellorder (P�, <k).

Lemma 5.5.30 (UA). Suppose � is a regular cardinal, j : V ! M is an ultrapower of width

less than �, i : M ! N is an ultrapower embedding such that i � j has width less than �, and

⇠ is an ordinal such that M = HM(j[V ] [ {⇠}). Then the following are equivalent:

(1) i is an internal ultrapower embedding.

(2) (M, ⇠) =S (N, i(⇠)).

(3) i(o�(M, ⇠)) = o�(N, i(⇠)).

Proof. The equivalence of (1) and (2) is an immediate consequence of Lemma 3.5.27. The

equivalence of (2) and (3) follows from the fact that (M, ⇠), (N, i(⇠)) 2 P� (and does not

require the assumption that M = HM(j[V ] [ {⇠})).

A surprising consequence of this is that under UA, the ultrafilters to which a countably

complete ultrafilter U is internal are determined solely by the class of fixed points of jU .

Recall here that if W is a countably complete ultrafilter on an ordinal with �W < �, then

o�(W ) = o�(MW , aW ).

Theorem 5.5.31 (UA). Suppose U is a countably complete ultrafilter and W is a countably

complete ultrafilter on an ordinal. Then the following are equivalent:

(1) U @ W

(2) jU(o�(W )) = o�(W ) for all regular cardinals � > �U ,�W .

(3) jU(o�(W )) = o�(W ) for some regular cardinal � > �U ,�W .
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In particular, if jU � Ord = jU 0 � Ord, then U and U 0 are internal to exactly the same

ultrafilters. The following observation shows that this is not vacuous, in that there are many

nonisomorphic ultrafilters that have the same action on the ordinals:

Theorem 5.5.32. Suppose U is a countably complete ultrafilter and Z is a countably com-

plete ultrafilter of MU such that jU(Z) and jU(jU)(Z) commute in jU(MU). Then jMU

Z fixes

every ordinal in the range of jU .

The proof uses a lemma due to Kunen (which should be compared with Theorem 5.5.16):

Lemma 5.5.33 (Kunen). Suppose ↵ is an ordinal and S is a set of pairwise commuting

countably complete ultrafilters such that jW (↵) > ↵ for all W 2 S. Then S is finite.

Proof. Suppose towards a contradiction that ↵ is the least ordinal such that there is an

infinite set S of pairwise commuting countably complete ultrafilters such that for all W 2 S,

jW (↵) > ↵. Fix W 2 S. Let T be a countably infinite subset of S such that W /2 T . Then

in MW , jW (T ) is an infinite set of pairwise commuting countably complete ultrafilters. For

any U 2 T , since U and W commute,

jW (jU)(↵) = jU(↵) > ↵

Thus for any Z 2 jW (T ), jMW

Z (↵) > ↵. Here we use that T is countable so jW (T ) = jW [T ].

In particular, in MW there is an infinite set of pairwise commuting ultrafilters all of

whose associated embeddings move ↵. But by the elementarity of jW and the definition of

↵, MW satisfies that jW (↵) is the least ordinal ⇠ such that there is an infinite set of pairwise

commuting ultrafilters all of whose associated embeddings move ⇠. Since jW (↵) > ↵, this is

a contradiction.

Proof of Theorem 5.5.32. Let X be the underlying set of U . Choose countably complete

ultrafilters hZx : x 2 Xi such that

Z = [hZx : x 2 Xi]U
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The assumption that jU(Z) and jU(jU)(Z) commute can be reformulated as follows:

{(x, y) 2 X ⇥X : Zx and Zy commute} 2 U ⇥ U (5.1)

Fix an ordinal ↵. We must show that jMU

Z (jU(↵)) = jU(↵). By  Loś’s Theorem, it su�ces

to show that for almost all x 2 X, {x 2 X : jZ
x

(↵) = ↵} 2 U . Let

A = {x 2 X : jZ
x

(↵) > ↵}

and assume towards a contradiction that A 2 U .

Fix i < !. If n < m < i, the function f : X i ! X2 defined by f(x0, . . . , xi�1) = (xn, xm)

pushes U i forward onto U2, so by (5.1),

{(x0, . . . , xi�1) : Zx
n

and Zx
m

commute} 2 U i

Thus Ci 2 U i where

Ci = {(x0, . . . , xi�1) 2 X i : for all n,m < i, Zx
n

and Zx
m

commute}

Letting Bi = Ai \ Ci, since A 2 U by assumption, we have Bi 2 U i.

Since hU i : i < !i is a countably complete tower of ultrafilters with Bi 2 U i for all i < !,

there is a sequence hxn : n < !i such that (x0, . . . , xi�1) 2 Bi for all i < !. Now {Zx
i

: i < !}
is an infinite set of pairwise commuting ultrafilters whose associated embeddings all move ↵,

contradicting Lemma 5.5.33. Thus our assumption was false, so in fact jMU

Z (jU(↵)) = jU(↵),

as desired.

A corollary of the proof of Corollary 5.5.35 is the following more general fact about

extenders.

Definition 5.5.34. A pair of extenders E and F commute if jE(jF ) = jF � ME and jF (jE) =

jE � MF .

Corollary 5.5.35. Suppose E is an extender. Suppose F is an ME-extender such that jE(F )

and jE(jE)(F ) commute in jE(ME). Then jME

F fixes every ordinal in the range of jE.
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Sketch. The first step is to reduce to the case that E is an ultrafilter. Let U be the ultrafilter

derived from jE using F . Let F̄ = aU . A simple diagram chase shows that U2 is the ultrafilter

derived from jE(jE) � jE using (jE(jE)(F ), jE(F )). As a consequence of this, jU(F̄ ) and

jU(jU)(F̄ ) commute in jU(MU). It su�ces to show that jMU

F̄
fixes every ordinal in the range

of jU , since then by the elementarity of the factor embedding k : MU ! ME, j
M

E

F fixes every

ordinal in the range of jE.

Now one generalizes the proof of Theorem 5.5.32 to the case where Z is an extender F

rather than an ultrafilter. This presents no real di�culties.

Another interesting corollary regards the relationship between the Mitchell order and

pointwise domination of elementary embeddings on the ordinals.

Theorem 5.5.36. Suppose F C E are extenders. Let  = crt(F ) and ◆ = width(F ).

Assume that the following hold:

• (MF )< ✓ MF and (ME)<◆ ✓ ME.

• jE(jE)(F ) 2 jE(V).

Then for all ordinals ↵, jF (↵)  jE(↵) with equality if and only if jE(↵) = ↵.

Sketch. Since (ME)<◆ ✓ ME, we have jME

F = jF � ME. Since jE(jE)(F ) 2 jE(V) and

M<
F ✓ MF , jE(jE)(F ) and jE(F ) commute in jE(ME) by a generalization of the proof of

Theorem 5.5.20. Therefore applying Corollary 5.5.35 yields that jF (jE(↵)) = jE(↵) for all

ordinals ↵, which easily implies the conclusion of the theorem.

The requirement that jE(jE)(F ) 2 jE(V) may seem ad hoc, but in fact it is necessary.

For example, suppose  < � are cardinals, F is a (,�)-extender that witnesses that  is

�-strong, and U is a normal ultrafilter on �. Trivially F C U , (MU)< ✓ MU , (MF )< ✓ MF ,

and yet jF () > jU().

Theorem 5.5.31 above implies that under UA, the question of whether U @ W depends

only on jU � Ord and MW . The following theorem explains why:
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Theorem 5.5.37 (UA). Suppose U and W are countably complete ultrafilters such that

jU � � 2 MW for all cardinals �. Then U @ W .

Sketch. For the proof, we need the following weak consequence of the analysis of directed

systems of internal ultrapower embeddings (Lemma 3.5.41): there is an inner model N such

that the following hold:2

• jU(N) ✓ MW .

• There is an elementary embedding k : MW ! N that is amenable to MW .

We claim that the embedding jU � N is amenable to MW . To see this, suppose X 2 N

is a transitive set. We will show jU � X 2 MW . Since X is transitive, it su�ces to show

that jU [X] 2 MW . Let � be a cardinal and p : � ! X be a surjection with p 2 N . Then

jU(p) 2 jU(N) ✓ MW , so jU [X] = jU(p)[jU [�]] 2 MW , as desired.

Let U⇤ = (k � jW )⇤(U) \ N . In other words, by the basic theory of the Rudin-Keisler

order (Lemma 3.2.16), U⇤ is the N -ultrafilter derived from jU � N using jU(k � jW )(aU).

Since jU � N is amenable to MW , it follows that U⇤ 2 MW . Since k is amenable to MW ,

k�1[U⇤] 2 MW , but

k�1[U⇤] = k�1[(k � jW )⇤(U) \N ] = (jW )⇤(U) \MW = sW (U)

Thus sW (U) 2 MW , so U @ W by Lemma 5.5.9.

2The inner model N can be taken to be the direct limit M� of all ultrapowers of width less than �

for some su�ciently large regular cardinal �. Then by Lemma 3.5.41, N = jU (N) = jW (N) ✓ MW , as
desired. The embedding k is obtained by setting k = jW (j�) = jMW ,� (by Lemma 3.5.41 again). Then k is
an elementary embedding from jW (V ) = MW to jW (N) = N , as desired. Note that we cannot assume that
k is an ultrapower embedding.
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Chapter 6

Ordinal Definability and Cardinal

Arithmetic under UA

6.1 Introduction

The universe above a supercompact cardinal

In this short chapter, we exposit two results that show that something remarkable hap-

pens when UA is combined with very large cardinal hypotheses: instead of simply proving

structural results for countably complete ultrafilters, the axiom now begins to resolve major

questions independent from the usual axioms of set theory.

Let us describe the main results of this section. Since UA is preserved by forcing to add

a Cohen real, UA does not imply V = HOD, no matter what large cardinals one assumes in

addition to UA. But it turns out it is possible to prove that forcing is the only obstruction:

Theorem 6.2.8 (UA). Assume there is a supercompact cardinal. Then V is a generic

extension of HOD.

Similarly, UA is preserving by forcing to change the value of the continuum, so UA does

not imply the Continuum Hypothesis. But UA for su�ciently large cardinals �, UA implies
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2� = �+:

Theorem 6.1.1 (UA). Assume  is supercompact. Then for all cardinals � � , 2� = �+.

It seems that above a supercompact cardinal, UA imposes incredible structure on the

universe of sets. This is explored further in Chapter 7 and Chapter 8.

Outline of Chapter 6

We now outline the rest of the chapter.

Section 6.2. We prove the results on ordinal definability under UA and large cardinals.

This is quite straightforward, but many open questions remain. For example, we prove that

if  is supercompact and UA holds, then V is a generic extension of HOD. How small is the

forcing? The best upper bound we know is ++, which comes from Section 6.3 below.

Section 6.3. We prove the results on GCH under UA and large cardinals. We begin by

discussing related results in ZFC, especially Solovay’s theorem on SCH above a supercompact

cardinal. In Section 6.3, we prove a result regarding the Mitchell order and supercompactness

that shows that under UA, if D and U are ultrafilters with �D below the supercompactness

of U , then D C U . This is immediate given GCH, but proving this using UA alone is a

little bit subtle. In Section 6.3, we use this result to conclude that GCH holds above a

supercompact.

6.2 Ordinal definability

Theorem 6.2.8 is quite easy given what we have shown so far, ultimately relying on the

following simple fact:

Proposition 6.2.1 (UA). Every countably complete ultrafilter on an ordinal is ordinal de-

finable.
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Proof. Suppose � is an ordinal. Then the set B(�) of all countably complete ultrafilters on

� is wellordered by the Ketonen order. Thus every element of B(�) is ordinal definable from

its rank in the Ketonen order.

Corollary 6.2.2 (UA). For any set of ordinals X and any ultrapower embedding j : V ! M :

(1) j(ODX) ✓ ODX .

(2) j(HODX) ✓ HODX .

(3) For any Y 2 HODX , j � Y 2 HODX .

Proof. We first prove (1). We have j(ODX) = ODM
j(X). Fix a countably complete ultrafilter

U on an ordinal such that j = jU . Then since M is definable from U and U 2 OD by

Proposition 6.2.1, ODM
j(X) ✓ ODj(X). Moreover j(X) = jU(X) is definable from X and U ,

so j(X) 2 ODX . Hence ODM
j(X) ✓ ODj(X) ✓ ODX .

For (2), note that j(HODX) is the class of sets that are hereditarily j(ODX), and this is

contained in the class of sets that are hereditarily ODX by (1).

For (3), clearly j � Y 2 ODY ✓ ODX . But moreover by (2), j � Y ✓ HODX . Therefore

j � Y 2 HODX .

The following lemma should be compared with the theorem of Shelah that if � is a singular

strong limit cardinal of uncountable cofinality, then for any X such that P (↵) ✓ HODX for

all ↵ < �, in fact P (�) ✓ HODX .

Lemma 6.2.3 (UA). Suppose  is �-supercompact and X ✓  is such that V ✓ HODX .

Then P (�) ✓ HODX .

Proof. Fix a �-supercompact ultrapower embedding j : V ! M such that crt(j) =  and

j() > �. Then

P (�) ✓ j(V) ✓ j(HODX) ✓ HODX

The final inclusion follows from Corollary 6.2.2.
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Theorem 6.2.4 (UA). Suppose  is supercompact. Then V = HODX for some X ✓ .

Proof. Fix X ✓  such that V ✓ HODX .1 Since  is supercompact, Lemma 6.2.3 implies

that for all � � , P (�) ✓ HODX , and therefore V = HODX .

To connect this to generic extensions of HOD, we use Vopěnka’s Theorem.

Definition 6.2.5. Suppose X is a set such that and X [{X} ✓ OD. The OD-cardinality of

X, denoted |X|OD, is the least ordinal � such that there is an OD bijection between � and

X.

The OD cardinality of X is defined for all X with X [ {X} ✓ OD. It is always a HOD-

cardinal. In fact OD cardinality satisfies all the usual properties of cardinality; for example,

|X|OD is the least ordinal that ordinal definably surjects onto X and the least ordinal into

which X ordinal definably injects.

Definition 6.2.6. Suppose  is an ordinal. Let A be the Boolean algebra P (P ()) \ OD

and let � = |A|OD. Fix an OD bijection ⇡ : � ! A. Then V is the Boolean algebra on �

given by pulling back the operations on A under ⇡.

Note that V 2 HOD. The Boolean algebra V is called the Vopěnka algebra at .

Theorem 6.2.7 (Vopěnka). If  is an ordinal, then V is a complete Boolean algebra and

for any X ✓ , there is a HOD-generic ultrafilter G ✓ V such that HODX ✓ HOD[G].

This yields a proof of our main theorem on HOD:

Theorem 6.2.8 (UA). Assume there is a supercompact cardinal. Then V is a generic

extension of HOD.

Proof. Let  be the least supercompact cardinal. By Theorem 6.2.4, V = HODX for some

X ✓ , so by Theorem 6.2.7, V = HOD[G] for some generic G ✓ V.

1To obtain such a set X, let E be a binary relation on  such that (V,2) ⇠= (, E) using the fact that
|V| = . Code E as a subset of  using a pairing function  ! ⇥ .
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Question 6.2.9 (UA). Let  be the least supercompact cardinal.

• Is V = HOD[X] for some X ✓ ?

• Is V = HOD[G] for G ✓  generic for a partial order P 2 HOD such that |P|  ?

What about a -cc Boolean algebra?

• Is V = HODV


?

Assuming UA, one can actually calculate the cardinality of V precisely. For example,

in the next section, we will obtain:

Theorem 6.3.24 (UA). If  is ++-supercompact then |V|HOD = ++.

Thus if  is supercompact, then V = HOD[A] for some A ✓ ++. As an immediate

consequence, we have that HOD is very close to V :

Corollary 6.2.10 (UA). Let  be the least supercompact cardinal. Then for all cardinals

� � ++:

(1) �+HOD = �+.

(2) (2�)HOD = 2�.

Moreover if � > ++ is regular, then HOD is correct about stationary subsets of �.

Of course by the Levy-Solovay Theorem [30], HOD is also close to V in the sense that it

absorbs large cardinals above . The structure of HOD at  itself becomes a key question:

Question 6.2.11 (UA). Assume  is supercompact. Is +HOD = +?

Another question in this vein is whether  is supercompact in HOD. Here the answer

turns out to be yes:

Definition 6.2.12. If N is an inner model and S is a set, we say S is amenable to N if

S \N 2 N .
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Definition 6.2.13. Suppose  is supercompact. An inner model N is a weak extender

model at  if for all ordinals � � , there is a normal fine -complete ultrafilter on P(�)

that concentrates on N and is amenable to N .

Lemma 6.2.14. Suppose N is an inner model and  is supercompact. Then the following

are equivalent:

(1) N is a weak extender model at .

(2) For arbitrarily large � � , there is a normal fine -complete ultrafilter on P(�) that

concentrates on N and is amenable to N .

Proof. (1) implies (2): Trivial.

(2) implies (1): Fix � � . We will show that there is a normal fine -complete ultrafilter

on P(�) that concentrates on N and is amenable to N . By (2), there is some � � � such

that there is a normal fine -complete ultrafilter U on P(�) that concentrates on N and

is amenable to N . Let W = f⇤(U) where f : P(�) ! P(�) is defined by f(�) = � \ �.

Easily W is a normal fine ultrafilter. Moreover f�1[P(�) \ M ] = P(�) \ M 2 U , so

P(�) \ M 2 W . Thus W concentrates on M . Finally, letting g = f � M , clearly g 2 M

and hence W \M = f⇤(U) \M = g⇤(U \M) 2 M since U \M 2 M . Thus W is amenable

to M .

Theorem 6.2.15 (UA). Let  be the least supercompact cardinal. Then HOD is a weak

extender model at .

Proof. First note that every normal fine ultrafilter on an ordinal definable set is ordinal

definable. We will prove this using the fact that isomorphic normal fine ultrafilters on the

same set are equal (Lemma 4.4.11). Suppose U is a normal fine ultrafilter on Y 2 OD, and let

U be a countably complete ultrafilter on an ordinal isomorphic to U ; then by Lemma 4.4.11,

U is the unique normal fine ultrafilter on Y isomorphic to U , and hence U 2 ODZ,U = ODU =

OD, with the final equality coming from Proposition 6.2.1.
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In particular, for all � � , every normal fine ultrafilter U on P(�) is amenable to HOD.

The issue is to show that there are such U concentrating on HOD.

Fix a regular cardinal � > ++. Then by Corollary 6.2.10, HOD is correct about sta-

tionary subsets of �. Let hS↵ : ↵ < �i 2 HOD be a partition of S�
! into stationary subsets.

Let j : V ! M be an elementary embedding with critical point  such that j() > � and

j[�] 2 M . We claim that j[�] 2 HODM .

By Corollary 4.4.31,

j[�] = {↵ < j(�) : M ✏ j(S)↵ is stationary in sup j[�]}

Thus

j[�] 2 HODM
j(hS

↵

:↵<�i)

But since hS↵ : ↵ < �i is in HOD, j(hS↵ : ↵ < �i) 2 HODM . Thus j[�] 2 HODM .

Let U be the ultrafilter on P(�) derived from j using j[�]. Since j[�] 2 HODM = j(HOD),

U concentrates on HOD by  Loś’s Theorem. Thus U is a normal fine -complete ultrafilter

on P(�) that concentrates on HOD and is amenable to HOD.

This shows that for unboundedly many cardinals �, there is a normal fine -complete

ultrafilter on P(�) that concentrates on HOD and is amenable to HOD. Therefore by

Lemma 6.2.14, HOD is a weak extender model at .

As a consequence of theorems of Woodin [10], this implies that a version of Jensen’s

Covering Lemma is true for HOD:

Corollary 6.2.16 (UA). Any set A ✓ HOD is contained in a set B 2 HOD such that

|B|  |A|+ � for some � < .

We omit the proof. Of course one has a much stronger covering results above +++ as a

consequence of Theorem 6.3.24.
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6.3 The Generalized Continuum Hypothesis

Introduction

In this section, we prove that GCH holds above the least supercompact assuming UA. We

actually prove a more local version of this theorem. We stress that proving this local version

requires some far from obvious tricks that are not actually necessary for the global result.

We need the local result at various points in Chapter 7 and Chapter 8.

Two theorems of Solovay

Let us begin by explaining the intuition that led to the expectation that UA might imply the

eventual Generalized Continuum Hypothesis. This begins with two remarkable theorems of

Solovay. First, of course, is his theorem on the Singular Cardinals Hypothesis:

Theorem 6.3.1 (Solovay). Suppose  and � are cardinals with cf(�) � . Suppose  is

�-strongly compact. Then �< = �.

We will give a proof in Corollary 6.3.2. As a corollary, the Singular Cardinals Hypothesis

holds above a strongly compact cardinal:

Corollary 6.3.2. Suppose   � are cardinals, � is a strong limit singular cardinal, and 

is �-strongly compact. Then 2� = �+.

Proof. Note that 2� = �cf(�) since � is a strong limit cardinal and in general 2� = (2<�)cf(�).

First assume cf(�) < . Then

2� = �cf(�)  �<  (�+)< = �+

by Theorem 6.3.1.

Assume instead that   cf(�).Assume by induction that 2� = �+ for all strong limit

singular cardinals in the interval (,�). Let ◆ = cf(�). Let j : V ! M be an elementary
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embedding such that cfM(sup j[◆]) < j(), which exists since  is cf(�)-strongly compact.

Then �⇤ = sup j[�] is a strong limit singular cardinal of M and

cfM(�⇤) = cfM(sup j[◆]) < j()

Therefore (2�⇤)M = �+M
⇤ . But there is an injection from P (�) to PM(�⇤), namely the map

A 7! j(A) \ �⇤. Therefore

2�  |�+M
⇤ |

By the usual computations of cardinalities of ultrapowers (Lemma 3.5.33), the fact that

�⇤ is a strong limit implies �⇤ = �. Thus 2�  �+M
⇤ = �+M  �+, as desired.

The second of Solovay’s theorems regards the number of normal fine ultrafilters generated

by supercompactness assumptions:

Theorem 6.3.3 (Solovay). Suppose  and � are cardinals,   cf(�), and  is 2�-supercompact.

Then for all A ✓ P (�), there is a normal fine -complete ultrafilter U on P(�) such that

A 2 MU .

Since this argument will be used repeatedly, it is worth working in a slightly more general

context.

Lemma 6.3.4. Suppose � is a cardinal and j : V ! M is a �-supercompact elementary

embedding. Suppose Y ✓ P (�) is a set such that j[�] 2 j(Y ). Let U be the normal fine

ultrafilter on Y derived from j using j[�]. Assume Y 2 MU and U 2 M . Then both MU and

M satisfy the following statement: for any A ✓ P (�), there is a normal fine ultrafilter W
on Y such that A 2 MW .

Proof. Let k : MU ! M be the factor embedding with k(aU) = j[�] and k � jU = j. Then

by Lemma 4.4.10, crt(k) > � if k is nontrivial. In particular, k(�) = � and k(Y ) = Y .

Therefore by the elementarity of k, if MU satisfies the statement that for any A ✓ P (�),

there is a normal fine ultrafilter W on Y such that A 2 MW , then so does M . Therefore it

su�ces to show that this statement is true in MU .
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Let D be the ultrafilter derived from j using hU , j[�]i. Note that jD : V ! MD is a

�-supercompact elementary embedding, U is the normal fine ultrafilter on Y derived from

jD using j[�], and U 2 MD. By replacing j with jD, we may therefore assume that j is an

ultrapower embedding. In particular, by Corollary 4.2.21, M� ✓ M .

We claim that P (P (�))\(MU)M = P (P (�))\MU . (This is a consequence of Lemma 4.2.27,

but we give a proof here.) Since M is closed under �-sequences, (MU)M = jU(M) by Propo-

sition 4.2.29. In particular, (MU)M ✓ MU , so P (P (�)) \ (MU)M ✓ P (P (�)) \ MU . We

now show the reverse inclusion. By Lemma 4.2.38, there is an inaccessible cardinal   �

such that j() > �. Since j is �-supercompact, j is �-strong, and so in particular V ✓ M .

Therefore

P (P (�)) \ (MU)M ✓ VjU () \MU = jU(V) ✓ jU(M) = (MU)M

as desired.

Suppose A ✓ P (�) and A 2 MU . Note that k(A) = A 2 P (P (�)) \MU ✓ (MU)M . Thus

M satisfies that k(A) belongs to MW for some normal fine ultrafilter on k(Y ). (Namely, take

W = U .) By the elementarity of k, it follows that MU satisfies that A belongs to MW for

some normal fine ultrafilter on Y .

This shows that MU satisfies the statement that for any A ✓ P (�), there is a normal fine

ultrafilter W on Y such that A 2 MW , completing the proof.

Proof of Theorem 6.3.3. By our large cardinal assumption, there is an elementary embedding

j : V ! M such that the following hold:

• crt(j) =  and j() > �.

• j is �-supercompact.

• j is 2�-strong.

Let D be the normal fine -complete ultrafilter on P(�) derived from j using j[�], and let

k : MD ! M be the factor embedding.
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Claim 1. D 2 M .

Proof. Since j is 2�-strong, H2�+ ✓ M . Since |P(�)| = � by Corollary 6.3.2, P (P(�)) 2
H2�+ . Therefore since D 2 P (P(�)), D 2 M .

Therefore applying Lemma 6.3.4 yields that M satisfies that for all A ✓ P (�), there is

a normal fine ultrafilter W on P(�) such that A 2 MW . But every A ✓ P (�) belongs to

M . Moreover, if M satisfies that W is a normal fine ultrafilter on P(�), then W actually is

a normal fine ultrafilter on P(�) and moreover P (P (�)) \ (MW)M = P (P (�)) \MW . Thus

we can conclude that V satisfies that every A ✓ P (�) belongs to MW for some normal fine

ultrafilter W on P(�). This proves the theorem.

As a corollary, Solovay observed that instances of GCH follow from the linearity of the

Mitchell order:

Theorem 6.3.5 (Solovay). Suppose  is 2-supercompact and the set of normal ultrafilters

on  is linearly ordered by the Mitchell order. Then 22


= (2)+.

Proof. First note that for any normal ultrafilter U on ,

|P (P ()) \MU |  |jU(V)|  |(V)
| = 2

The first inequality follows from the inclusion P (P ())\MU ✓ jU(V), and the second from

the existence of a surjection ⇡ : (V) ! jU(V), defined by ⇡(f) = jU(f)().

Let N be the set of normal ultrafilters on . The result will follow from counting N in

two di↵erent ways.

First, note that a normal ultrafilter U has at most 2 predecessors in the Mitchell order.

We are assuming the Mitchell order on N is a wellorder, and therefore the ordertype of

(N ,C) is at most (2)+: any proper initial segment of (N ,C) has cardinality 2. In particular

|N |  (2)+.

Second, note that

P (P ()) =
[

U2N
P (P ()) \MU

231



Thus

22


= |P (P ())| = |N | · sup
U2N

|P (P ()) \MU | = |N | · 2

It follows that |N | = 22


.

Thus we have shown 22


= |N |  (2)+. It follows that 22


= (2)+, as desired.

More generally, and by exactly the same argument, one can show:

Proposition 6.3.6 (UA). Assume � is a cardinal such that 2<� = � and every A ✓ P (�)

belongs to MW for some normal fine ultrafilter W on Pbd(�). Then 22
�

= (2�)+.

Proof. Recall that N� denotes the set of normal fine ultrafilters on Pbd(�).

We claim that for any W 2 N�, P (P (�)) \ MW has cardinality at most 2�. By Theo-

rem 4.4.37, �W = �. By Lemma 4.2.38, there is an inaccessible cardinal   � such that

jW() > �. Thus P (P (�))\MW ✓ jW(V). But |jW(V)|  |V|�W = � = 2�. In particular

|P (P (�)) \MW |  2�.

This bound has two consequences.

First, it follows that any W 2 N� has at most 2� predecessors in the Mitchell order. This

is because if U C W , then U 2 P (P (Pbd(�))) \MW , and

|P (P (Pbd(�))) \MW | = |P (P (�)) \MW |

since |Pbd(�)|MW = (2<�)MW = �. (One does not actually need to use 2<� = � here, but it

is convenient.) Hence (N�,C) is a wellfounded partial order of rank at most (2�)+. Since

2<� = �, Theorem 4.4.2 implies that (N�,C) is a wellorder, and hence |N�|  (2�)+.

Second, it follows that |N�| = 22
�

: by our assumption that every A ✓ P (�) belongs to

MW for some W 2 N�,

P (P (�)) =
[

W2N
�

P (P (�)) \MW

Thus

22
�

= |P (P (�))| = |N�| · sup
W2N

�

|P (P (�)) \MW | = |N�| · 2� = |N�|

Putting everything together, 22
�

= |N�|  (2�)+, which proves the theorem.
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Regarding this lemma, a much more complicated argument (Theorem 7.4.28) shows that

under UA, a set X carries at most (2|X|)+ countably complete ultrafilters.

Let us mention a little fact, proved very early on in this work, that gave the first indication

that GCH above a supercompact cardinal might be provable from UA:

Proposition 6.3.7 (UA). Suppose  is supercompact. Let � = i(). Then 2� = �+ for all

cardinals � 2 [�,�+!].

Proof. Since � is a singular strong limit cardinal, Corollary 6.3.2 implies 2� = �+. Since

2<� = �, Proposition 6.3.6 implies 22
�

= (2�)+. In other words, 2(�
+) = �++. Since

2<�+
= 2� = �+, Proposition 6.3.6 implies 22

(�+)
= (2(�

+))+. In other words, 2(�
++) = �+++.

Continuing this way yields the result for cardinals � such that �  � < �+!. Then �+! is a

strong limit cardinal, so 2(�
+!) = �+!+1 by Corollary 6.3.2.

This proof breaks down completely at �+!+1, and it gives no hint of whether 2 = +

should hold when  is supercompact. But the fact that one gets GCH at ! + 1 cardinals in

a row strongly suggests that one should be able to prove the eventual GCH. To handle the

case � = �+!+1 and the case � =  turns out to require a completely di↵erent argument,

which we turn to now.

More on the Mitchell order

Definition 6.3.8. A countably complete ultrafilter U is �-Mitchell if for all hereditarily

uniform ultrafilters D such that �D < �, D C U .

If � = 2<� and U is a countably complete ultrafilter such that jU is �-strong, then U

is �-Mitchell. The first step in the proof of GCH we will give is to prove the same result

without assuming that 2<� = �, and instead using UA and a supercompactness hypothesis.

Proposition 6.3.9 (UA). Suppose � is an infinite cardinal and U is a countably complete

ultrafilter such that jU is �-supercompact. Then U is �-Mitchell.
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In order to prove Proposition 6.3.9, we need two preliminary lemmas. The first is the ob-

vious attempt to extend the proof of the linearity of the Mitchell order on normal ultrafilters

from Chapter 2 to normal fine ultrafilters. (This was in fact the first proof we attempted in

the very early days of UA, before realizing that the generalization was related to cardinal

arithmetic.)

Lemma 6.3.10. Suppose � is a cardinal, U is a countably complete ultrafilter, and jU is

�-supercompact. Suppose D is a countably complete ultrafilter on an ordinal �  �. Suppose

(k, i) : (MD,MU) ! N is a 1-internal comparison of (jD, jU) such that k([id]D) 2 i(jU [�]).

Then D C U .

Proof. Note that for any A ✓ �,

A 2 D () [id]D 2 jD(A)

() k([id]D) 2 k(jD(A))

() k([id]D) 2 i(jU(A))

() k([id]D) 2 i(jU(A)) \ i(jU [�])

() k([id]D) 2 i(jU(A) \ jU [�])

() k([id]D) 2 i(jU [A])

Therefore

D = {A ✓ � : k([id]D) 2 i(j[A])} (6.1)

Since j � � 2 MU , the function defined on P (�) by A 7! j[A] belongs to MU . Moreover i

is an internal ultrapower embedding of MU . Therefore (6.1) shows that D is definable over

MU from parameters in MU , and hence D C U .

Incidentally, this lemma suggests considering the following generalized Ketonen order: for

D 2 B(X) and U 2 B(Y ), set D 2k U if there exist I 2 U and hD� : � 2 Ii 2Q�2I B(X, �)

such that D = U - lim�2I D�. Lemma 6.3.10 can be restated as follows: if � is a cardinal,
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D is a countably complete ultrafilter on �, and U is a normal fine ultrafilter on P (�), then

D 2k U if and only if D C U .
Our next lemma puts us in a position to apply Lemma 6.3.10. For the proof of Propo-

sition 6.3.9, we will only need the case A = jU [�], but the general statement is used in the

proof of level-by-level equivalence at singular cardinals (Theorem 8.3.22).

Lemma 6.3.11. Suppose � is a cardinal, U is a countably complete ultrafilter, and A ✓ jU(�)

is a nonempty set that is closed under jU(f) for every f : � ! �. Suppose D is a countably

complete ultrafilter on an ordinal � < �. Suppose (k, i) : (MD,MU) ! N is a 0-internal

comparison of (jD, jU). Then k([id]D) 2 i(A).

Proof. Let B = k�1[i(A)]. By the definition of a 1-internal comparison, k : MD ! N is an

internal ultrapower embedding, and therefore B 2 MD. We must show that [id]D 2 B.

We first show that jD[�] ✓ B. Note that jU [�] ✓ A since A is nonempty and closed

under j(c↵) for any ↵ < �, where c↵ : � ! � is the constant function with value ↵. Thus

i � jU [�] ✓ i(A). Since (i, k) is a 1-internal comparison, k � jD[�] = i � jU [�] ✓ i(A). So

jD[�] ✓ k�1[i(A)] = B.

We now show that B is closed under jD(f) for any f : � ! �. Fix ⇠ 2 B and f : � ! �;

we will show jD(f)(⇠) 2 B. By assumption A is closed under jU(f), and so by elementarity

i(A) is closed under i(jU(f)). In particular, since k(⇠) 2 i(A), i(jU(f))(k(⇠)) 2 i(A). But

i(jU(f))(k(⇠)) = k(jD(f)(⇠)). Now k(jD(f)(⇠)) 2 i(A) so jD(f)(⇠) 2 k�1(i(A)) = B, as

desired.

Since � < � and jD[�] ✓ B, in particular jD[�+] ✓ B. Thus B is cofinal in the MD-

regular cardinal jD(�+) = sup jD[�+]. In particular, |B|MD � jD(�+). Fix hB⇠ : ⇠ < �i with
B = jD(hB⇠ : ⇠ < �i)[id]

D

. By  Loś’s Theorem, we may assume without loss of generality that

B⇠ ✓ � and |B⇠| � �+ for all ⇠ < �. Therefore there is an injective function g : � ! � such

that g(⇠) 2 B⇠ for all ⇠ < �. By  Loś’s Theorem, jD(g)([id]D) 2 B. Since g is injective, there

is a function f : � ! � be a function satisfying f(g(⇠)) = ⇠ for all ⇠ < �. But B is closed

under jD(f), and jD(f)(jD(g)([id]D)) = [id]D, so [id]D 2 B, as desired.
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Proposition 6.3.9 now follows easily.

Proof of Proposition 6.3.9. Fix a countably complete hereditarily uniform ultrafilter D with

�D < �. We must show D C U . By the isomorphism invariance of the Mitchell order on

hereditarily uniform ultrafilters (Lemma 4.2.14), we may assume D lies on an ordinal � < �.

By UA, there is an internal ultrapower comparison (k, i) : (MD,MU) ! N of (jD, jU). By

Lemma 6.3.11 with A = j[�], k([id]D) 2 i(j[�]). Therefore the hypotheses of Lemma 6.3.10

are satisfied, so D C U , as desired.

It is natural to hope that the proof of Proposition 6.3.9 can be generalized to show the

linearity of the Mitchell order on normal fine ultrafilters without assuming GCH. The trouble

of course is removing the assumption � < � in Lemma 6.3.11. If � is regular (which turns

out to be the hard case), the proof of Lemma 6.3.11 goes through under the assumption that

k[jD(�)] = sup i�jU [�]. We know how to prove the lower bound k[jD(�)]  sup i�jU [�] (using
Lemma 8.2.11), but we do not know how to prove k[jD(�)] � sup i � jU [�] directly. The only
proof we know of the linearity of the Mitchell order that does not require a GCH assumption

(Theorem 7.5.39) requires a good deal of the supercompactness analysis of Chapter 7.

The proof of GCH

Theorem 6.1.1 above follows immediately from the following statement, which is much more

local (and much harder to prove):

Theorem 6.3.12 (UA). Suppose   � are cardinals with   cf(�). If  is �++-supercompact,

then for any cardinal � with   �  �++, 2� = �+.

Combining Theorem 6.3.12 with the results of Chapter 7, the hypothesis that  is �++-

supercompact can be weakened to the assumption that  is �++-strongly compact.

The hard part of the proof is contained in the following theorem:
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Theorem 6.3.13 (UA). Suppose  and � are cardinals such that cf(�) � . Suppose  is

�++-supercompact. Then 2� = �+.

Proof. Assume towards a contradiction that 2� > �+. We use this assumption to prove the

following claim, following the proof of Theorem 6.3.3:

Claim 1. Every subset of �++ belongs to the ultrapower of the universe by a normal fine

-complete ultrafilter on P(�).

Proof. Let j : V ! M be a �++-supercompact ultrapower embedding with crt(j) =  and

j() > �++. Since P (�++) ✓ M , it su�ces to show the claim is true in M . Let U be the

normal fine ultrafilter on P(�) derived from j using j[�]. By Proposition 6.3.9, U 2 M (since

in fact every countably complete ultrafilter on P(�) is in M). Therefore by Lemma 6.3.4,

M satisfies that every subset of P (�) belongs to the ultrapower of the universe by a normal

fine -complete ultrafilter on P(�). Since �++  (2�)M , it follows that M satisfies that

every subset of �++ belongs to the ultrapower of the universe by a normal fine -complete

ultrafilter on P(�), as desired.

LetW be a �+-supercompact ultrafilter on �+ with jW () > �+. We claim P (�++) ✓ MW .

Suppose A ✓ �++. For some normal fine -complete ultrafilter U on P(�), A 2 MU .

But since |P(�)| = � (by Solovay’s Theorem on SCH above a strongly compact cardinal,

Theorem 6.3.1), Proposition 6.3.9 implies U 2 MW . It is easy to see that this implies

A 2 MW .

Let Z be a �++-supercompact ultrafilter on �++ with jZ() > �++. Let k : MW ! N

be the ultrapower of MW by Z using functions in MW . We have width(jW ) = �++ and

width(k) = �++ < jW (�++), so by the lemma on the width of compositions (Lemma 3.5.34),

width(k � jW ) = �++. In other words, there is an ultrafilter D on �+ such that MD = N

and jD = k � jW .

Since P (�++) ✓ MW , (V)�
++ ✓ MW . Therefore letting 0 = jZ() = k(), we have

V0 \ N = V0 \MZ . By Proposition 6.3.9, D C Z, and so since 0 > �+, D 2 V0 \MZ ✓
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N . It follows that D 2 N = MD, contradicting the irreflexivity of the Mitchell order

(Lemma 4.2.40).

Proof of Theorem 6.3.12. Suppose � is a cardinal with   �  �++.

Case 1. �  �

If � is regular then by Theorem 6.3.13, 2� = �+. If � is singular then 2<� = � by

Theorem 6.3.13, so 2� = �+ by the local version of Solovay’s theorem [21].

Case 2. � = �+.

Since  is �+-supercompact and 2� = �+,  is 2�-supercompact. Therefore by Proposi-

tion 6.3.6, 22
�

= (2�)+. In other words, 2(�
+) = �++.

Case 3. � = �++

Given that 2(�
+) = �++ by Case 2, the case that � = �++ can be handled in the same

way as Case 2.

Corollary 6.3.14 (UA). Suppose   � and  is 2�-supercompact. Then 2� = �+.

Proof. Assume first that � is singular. Since  is <�-supercompact, 2<� = � by Theo-

rem 6.3.12. Now 2� = �+ by Corollary 6.3.2.

Assume instead that � is regular. Assume towards a contradiction that 2� � �++. Then

 is �++-supercompact, so by Theorem 6.3.12, 2� = �+, a contradiction.

Let us point out another consequence that one can obtain using a result in Chapter 7:

Theorem 6.3.15 (UA). Suppose ⌫ is a cardinal and ⌫+ carries a countably complete uniform

ultrafilter. Then 2<⌫ = ⌫.

Proof. By Corollary 7.4.10 below, some cardinal   ⌫ is ⌫+-supercompact. If  = ⌫ then

obviously 2<⌫ = ⌫. So assume  < ⌫. If ⌫ is a limit cardinal, then the hypotheses of

Theorem 6.3.12 hold for all su�ciently large � < ⌫ and hence GCH holds on a tail below ⌫,
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so 2<⌫ = ⌫. So assume ⌫ = �+ is a successor cardinal. If � is singular, then � is a strong

limit singular cardinal by Theorem 6.3.12, so 2� = �+ by Solovay’s theorem Corollary 6.3.2,

and hence 2<⌫ = ⌫. Finally if � is regular, we can apply Theorem 6.3.12 directly to conclude

that 2� = �+, so again 2<⌫ = ⌫.

This leaves open some questions about further localizations of the GCH proof.

Question 6.3.16 (UA). Suppose  is �-supercompact. Must 2� = �+?

We conjecture that it is consistent with UA that  is measurable but 2 > +, which

would give a negative answer in the case  = �. In certain cases, the question has a positive

answer as an essentially immediate consequence of our main theorem:

Proposition 6.3.17 (UA). Suppose   �, cf(�) = !, and  is �-supercompact. Then

2� = �+.

Suppose   �, !1  cf(�) < �, and  is <�-supercompact. Then 2� = �+.

Suppose   �, � is the double successor of a cardinal of cofinality at least , and  is

�-supercompact. Then 2� = �+.

Another interesting localization question is the following:

Question 6.3.18 (UA). Suppose  is the least ordinal ↵ such that there is an ultrapower

embedding j : V ! M with j(↵) > (2)+. Must 2 = +?

} on the critical cofinality

We conclude with the observation that stronger combinatorial principles than GCH follow

from UA.

Theorem 6.3.19 (UA). Suppose  is �++-supercompact where cf(�) � . Then }(S�++

�+ )

holds.

For the proof, we need a theorem of Kunen.
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Definition 6.3.20. Suppose � is a regular uncountable cardinal and S ✓ � is a stationary

set. Suppose hA↵ : ↵ 2 Si is a sequence of sets with A↵ ✓ P (↵) and |A↵|  ↵ for all ↵ < �.

Then hA↵ : ↵ 2 Si is a }�(S)-sequence if for all X ✓ �, {↵ 2 S : X \↵ 2 A↵} is stationary.

Definition 6.3.21. }�(S) is the assertion that there is a }�(S)-sequence.

Theorem 6.3.22 (Kunen, [31]). Suppose � is a regular uncountable cardinal and S ✓ � is

a stationary set. Then }�(S) is equivalent to }(S).

Proof of Theorem 6.3.19. By Theorem 6.3.12, GCH holds on the interval [, �++], and we

will use this without further comment.

For each ↵ < �++, let U↵ be the unique ultrafilter of rank ↵ in the Mitchell order on

normal fine -complete ultrafilters on P(�). The uniqueness of U↵ follows from the linearity

of the Mitchell order on normal fine ultrafilters on P(�), a consequence of Theorem 4.4.2

which applies in this context since 2<� = �. LetA↵ = P (↵)\MU
↵

. Note that |A↵|  � = �+.

Let

~A = hA↵ : ↵ < �++i

Note that ~A is definable in H�++ without parameters.

Claim 1. ~A is a }�(S�++

�+ )-sequence.

Proof. Suppose towards a contradiction that ~A is not a }�(S�++

�+ )-sequence. Let W be a

-complete normal fine ultrafilter on P(�++). Then in MW , ~A is not a }�(S�++

�+ )-sequence.

Let U be the -complete normal fine ultrafilter on � derived from W and let k : MU ! MW

be the factor embedding. Let � = crt(k) = �++MU .

Since ~A is definable in H�++ without parameters, ~A 2 ran(k). Therefore k�1( ~A) = ~A � �

is not a }�(S�
�+)-sequence in MU . Fix a witness A 2 P (�) \ MU and a closed unbounded

set C 2 P (�) \ MU such that for all ↵ 2 C \ S�
�+ , A \ ↵ /2 A↵. By elementarity, for all

↵ 2 k(C)\S�++

�+ , k(A)\↵ /2 A↵. Since U is �-supercompact, cf(�) = �+, and so in particular

k(A) \ � /2 A�. Since � = crt(k), this means A /2 A�.

240



Note however that U has Mitchell rank �++MU = �, so U = U�. Therefore A� = P (�) \
MU , so A 2 A� by choice of A. This is a contradiction.

By Theorem 6.3.22, this completes the proof.

The size of the Vopěnka algebra

Theorem 6.3.23 (UA). Suppose  is an inaccessible cardinal such that every A ✓ P ()

belongs to MU for some countably complete ultrafilter U on . Then |V|HOD = (2)+.

Proof. Let � = |V|HOD. Note that � = |P (P ()) \OD|OD.

Recall that B() denotes the set of countably complete ultrafilters on . As in Theo-

rem 6.3.5, |B()| = 22


.

We claim that in fact |B()| = (2)+. It su�ces to show the upper bound B()  22


.

For this, we show that every initial segment of the Ketonen order has cardinality 2.

Since  is inaccessible, for any ↵ < , the set B(,↵) of countably complete ultrafilters

on  that concentrate on ↵ has cardinality less than . Thus for any U 2 B(), U has at

most 2 ·Q↵< |S↵| = 2 predecessors in the Ketonen order, since if W <k U , then

W = U - lim
↵2I

W↵

for some I 2 U and some sequence hW↵ : ↵ 2 Ii 2Q↵2I B(,↵).

Therefore let hU↵ : ↵ < (2)+i be the <k-increasing enumeration of B().

For the lower bound (2)+  �, we apply the fact that every countably complete ultrafilter

on an ordinal is OD (Proposition 6.2.1) to obtain B() ✓ P (P ()) \ OD, so in fact � �
|B()| = 22



= (2)+.

We now turn to the upper bound.

Suppose U 2 B(). Then |P (P ()) \MU |  |jU(V)|  |(V)| = 2. Let

AU = P (P ()) \MU \OD

241



Note that P (P () \MU \OD is an ordinal definable subset of OD, so let �U = |AU |OD and

let ⇡U : �U ! AU be the OD-least bijection. Note that |AU |  2 so �U < (2)+.

Let �0 = sup{�U : U 2 S}, so �0  (2)+. Define ⇡ : (2)+ ⇥ �0 ! P (P ()) \OD by

⇡(↵, �) = ⇡f(↵)(�)

Then our large cardinal assumption on  implies that ⇡ is a surjection and ⇡ is ordinal

definable, so �  (2)+ · �0 = (2)+.

We finally prove Theorem 6.3.24, the fact that under UA, if  is supercompact then V

is a generic extension of HOD for a forcing of size ++.

Theorem 6.3.24 (UA). If  is ++-supercompact then |V|HOD = ++.

Proof. Note that since  is ++-supercompact, by Theorem 6.3.12, (2)+ = ++. In par-

ticular,  is 2-supercompact, so the hypotheses of Theorem 6.3.23 hold by Theorem 6.3.3.

Thus |V|HOD = (2)+ = ++.
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Chapter 7

The Least Supercompact Cardinal

7.1 Introduction

The identity crisis

How large is the least strongly compact cardinal? This question was first posed by Tarski in

a precise form shortly after his discovery of strong compactness: is the least strongly compact

cardinal larger than the least measurable cardinal? About a decade later, Solovay mounted

the first serious attack on this problem. He fused the Scott’s elementary embedding analysis

of measurability with the combinatorial properties of strongly compact cardinals to produce

what has become the central large cardinal concept: supercompactness. He then conjectured

that every strongly compact cardinal is supercompact. This is certainly a natural conjecture

to make since supercompact cardinals and strongly compact cardinals share some rather

deep structural similarities. (See Section 7.2 and especially Section 7.2.) But unlike the

least strongly compact cardinal, the size of the least supercompact cardinal is no mystery at

all: it is upon first glance a staggeringly large object, much larger than the least measurable

cardinal. Thus Solovay’s conjecture implies a positive answer to Tarski’s question.

Telis Menas, then a graduate student under Solovay at UC Berkeley, was the first to realize

that Solovay’s conjecture is false. Menas climbed up far beyond the least strongly compact
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cardinal, and up there he discovered a strongly compact cardinal that is not supercompact.

Theorem 8.1.1 (Menas). The least strongly compact limit of strongly compact cardinals is

not supercompact.

This theorem closed o↵ Solovay’s approach to Tarski’s question while leaving the ques-

tion itself wide open. The fundamental breakthrough occurred mere months after Menas’s

discovery on the other side of the world, with Magidor’s landmark independence result [32]:

Theorem (Magidor). Suppose  is a cardinal.

• If  is strongly compact, then there is a forcing extension in which  remains strongly

compact but becomes the least measurable cardinal.

• If  is supercompact, then there is a forcing extension in which  remains supercompact

but becomes the least strongly compact cardinal.

Thus the ZFC axioms are insu�cient to answer Tarski’s question. Magidor described

this peculiar situation as an “identity crisis” for the least strongly compact cardinal. The

main result of this chapter is that the Ultrapower Axiom resolves this crisis:

Theorem 7.4.23 (UA). The least strongly compact cardinal is supercompact.

We will prove much stronger results than this that explain exactly why the least strongly

compact cardinal is supercompact, and that identify much weaker properties that are suf-

ficient (under UA) for supercompactness. We defer until the final chapter the analysis of

larger strongly compact cardinals.

Outline of Chapter 7

We now outline the rest of the chapter.

Section 7.2. We exposit the basic theory of strong compactness. We use the theory of

the Ketonen order to prove Ketonen’s Theorem [11] that  is strongly compact if and only
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if every regular cardinal carries a -complete ultrafilter (Theorem 7.2.15). This argument is

the basis for much of the theory of this chapter. We use Ketonen’s Theorem to prove the

local version of Solovay’s Theorem [21] on SCH above a strongly compact that we have by

now cited several times (Theorem 7.2.16).

Section 7.3. In this section, we introduce the notion of a Fréchet cardinal and its

associated Ketonen ultrafilters. Under UA, each Fréchet cardinal � carries a unique Ketonen

ultrafilter K�. For regular �, we analyze K� under the assumption that some   � is �-

strongly compact, showing that its associated embedding is <�-supercompact and �-tight

(Proposition 7.4.11).

Section 7.4. Given the analysis ofK� in the previous section, we would like to show that

if � is a regular Fréchet cardinal, then some cardinal   � is �-strongly compact. In this

section, we prove our best result towards this, showing that this is true unless � is isolated

(Theorem 7.4.9). Isolated cardinals are rare enough that this implies the supercompactness

of the least strongly compact cardinal (Theorem 7.4.23).

Section 7.5. In this section we study the structure of isolated cardinals, which arose

in Section 7.4 as a pathological case in our analysis of Fréchet cardinals. We rule out

pathological isolated cardinals assuming GCH (Proposition 7.5.4). Without GCH, assuming

just UA, we are still able to fully analyze ultrafilters on an isolated cardinal (Section 7.5),

which turn out to look just like ultrafilters on the least measurable cardinal. We prove that

nonmeasurable isolated cardinals are associated with serious failures of GCH (Theorem 7.5.21

and Theorem 7.5.23). We leverage these results to prove the linearity of the Mitchell order

on normal fine ultrafilters without assuming GCH (Theorem 7.5.39).
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7.2 Strong compactness

Some characterizations of strong compactness

After almost 70 years of research, strong compactness remains one of the most important and

mysterious large cardinal notions. Strongly compact cardinals were first isolated by Tarski

in the context of infinitary logic:  is strongly compact if the logic L, satisfies a generalized

version of the Compactness Theorem. In keeping with modern large cardinal theory, we will

introduce strongly compact cardinals in terms of elementary embeddings of the universe of

sets into inner models with closure properties. The closure property we have in mind is a

two-cardinal version of the covering property:

Definition 7.2.1. Suppose M is an inner model, � is a cardinal, and � is an M -cardinal.

Then M has the (�, �)-covering property if every set A ✓ M such that |A| < � is contained

in a set B 2 M such that |B|M < �.

Definition 7.2.2. A cardinal  is strongly compact if for any cardinal � � , there is an

elementary embedding j : V ! M such that crt(j) =  and M has the (�, j())-covering

property.

Definition 7.2.3. We make the following abbreviations:

• The (�, �)-covering property is the (�+, �)-covering property.

• The (�,�)-covering property is the (�, �+M)-covering property.

• The (�,�)-covering property is the (�+, �+M)-covering property.

• The �-covering property is the (�,�)-covering property.

• The �-covering property is the (�,�)-covering property.
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This notation is chosen so that, for example, an inner model M has the (�,�)-covering

property if every subset A ✓ M such that |A|  � is contained in a set B 2 M such that

|B|M  �.

We will be particularly interested in the following local version of strong compactness

(especially when � is regular):

Definition 7.2.4. Suppose   � are cardinals. Then  is �-strongly compact if there is an

inner model M and an elementary embedding j : V ! M with crt(j) =  such that M has

the (�, j())-covering property.

Note that if j : V ! M and M has the (�, j())-covering property, then j() > �.

Theorem 7.2.10 puts down several equivalent reformulations of strong compactness. These

involve the notions of tightness and filter bases, which we now define.

The concept of tightness had not been given a name before this dissertation, but it plays

a role analogous to that of supercompactness in the theory of supercompact cardinals:

Definition 7.2.5. Suppose M is an inner model, � is a cardinal, and � is an M -cardinal.

An elementary embedding j : V ! M is (�, �)-tight if there is a set A 2 M with |A|M  �

such that j[�] ✓ A. An elementary embedding is said to be �-tight if it is (�,�)-tight.

Thus (�, �)-tightness is a weakening of �-supercompactness. Any j : V ! M such that

M has the (�, j())-covering property is (�, j())-tight. Moreover, many of the general

theorems about supercompact embeddings generalize to the context of (�, �)-tight ones. For

example, Lemma 4.2.17 generalizes:

Lemma 7.2.6. Suppose j : V ! M is an elementary embedding. The following are equiva-

lent:

(1) j is (�, �)-tight.

(2) For some X with |X| = �, there is some Y 2 M with |Y |M  � such that j[X] ✓ Y .
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(3) For any A such that |A|  �, there is some B 2 M with |B|M  � such that j[A] ✓ B.

Proof. (1) implies (2): Trivial.

(2) implies (3): Suppose |A|  �. We will find B 2 M with |B|M  � such that j[A] ✓ B.

Using (2), fix X with |X| = � such that for some Y 2 M with |Y |M  � such that j[X] ✓ Y .

Let p : X ! A be a surjection. Then

j[A] = j(p)[j[X]] ✓ j(p)[Y ]

Let B = j(p)[Y ]. Then j[A] ✓ B, B 2 M , and |B|M  |Y |M  �.

(3) implies (1): Trivial.

The relationship between the �-supercompactness of an embedding and the closure of its

target model under �-sequences is analogous to the relationship between the (�, �)-tightness

of an elementary embedding and the (�,�)-covering property of its target model. For

example, there is an analog of Corollary 4.2.21:

Lemma 7.2.7. Suppose j : V ! M is a (�, �)-tight ultrapower embedding. Then M has the

(�,�)-covering property.

Proof. Suppose A ✓ M with |A|  �, and we will find B 2 M such that |B|M  � and

A ✓ B. Fix a 2 M such that M = HM(j[V ] [ {a}). Fix a set of functions F of cardinality

� such that A = {j(f)(a) : f 2 F}. By Lemma 7.2.6, fix G 2 M with |G|M  � and such

that j[F ] ✓ G. Let B = {g(a) : g 2 G}. Then B 2 M , A ✓ B, and |B|M  |G|M  �, as

desired.

Many filters are most naturally presented in terms of a smaller family of sets that “gen-

erates” the filter. The notion of a filter base makes this precise:

Definition 7.2.8. A filter base on X is a family B of subsets of X with the finite intersection

property: for all A0, A1 2 B, A0 \ A1 6= ;. If  is a cardinal, a filter base B is said to be

-complete if for all ⌫ < , for all {A↵ : ↵ < ⌫} ✓ B, T↵<⌫ A↵ 6= ;.
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The term “filter base” is motivated by the fact that every filter base B on X generates a

filter.

Definition 7.2.9. Suppose B is a filter base. The filter generated by B is the filter F (B) =
{A ✓ X : 9A0, . . . , An�1 2 B A0 \ · · · \ An�1 ✓ A}. If B is a -complete filter base, the

-complete filter generated by B is the filter

F(B) = {A ✓ X : 9S 2 P(B)
T

S ✓ A}

We finally prove our equivalences with strong compactness:

Theorem 7.2.10. Suppose   � are uncountable cardinals. Then the following are equiv-

alent:

(1)  is �-strongly compact.

(2) There is an elementary embedding j : V ! M with critical point  that is (�, �)-tight

for some M-cardinal � < j().

(3) Every -complete filter base of cardinality � extends to a -complete ultrafilter.

(4) There is a -complete fine ultrafilter on P(�).

(5) There is an ultrapower embedding j : V ! M with critical point  that is (�, �)-tight for

some M-cardinal � < j().

(6) There is an elementary embedding j : V ! M with critical point  such that M has the

(�, �)-covering property for some M-cardinal � < j().

Proof. (1) implies (2): Trivial.

(2) implies (3): Let j : V ! M be an elementary embedding such that crt(j) =  and

j is (�, �)-tight for some M -cardinal � < j(). Suppose B is a -complete filter base on X of

cardinality �. By Lemma 7.2.6, there is a set S 2 M such that j[B] ✓ S and |S|M < j().

By replacing S with S \ j(B), we may assume without loss of generality that S ✓ j(B). By
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the elementarity of j, since j(B) is j()-complete, the intersection
T

j(S) is nonempty. Fix

a 2 T j(S). Since j[B] ✓ S, it follows that a 2 j(A) for all A 2 B. Let U be the ultrafilter

on X derived from j using a. Then U extends B and U is -complete since crt(j) = .

(3) implies (4): For any ↵ < �, let A↵ = {� 2 P(�) : ↵ 2 �}, and let B = {A↵ : ↵ < �}.
Then B a -complete filter base on P(�), and any filter on P(�) that extends B is fine. By

(3), there is a -complete ultrafilter extending B. Thus there is a -complete fine ultrafilter

on P(�), as desired.

(4) implies (5): Suppose U is a -complete fine ultrafilter on P(�). Let j : V ! M

be the ultrapower of the universe by U . The -completeness of U implies that crt(j) � .

By Lemma 4.4.9, j[�] ✓ aU . Moreover aU 2 j(P(�)), so letting � = |aU |M , � < j().

Therefore j is an ultrapower embedding that is (�, �)-tight for some � < j(). Since   �

and �  ot(j[�])  �+M < j(), it follows that j() > �. In particular, crt(j) = .

(5) implies (6): This is an immediate consequence of the fact that tight ultrapowers have

the covering property (Lemma 7.2.7).

(6) implies (1): Trivial.

Ketonen’s Theorem

The main theorem of this subsection is a famous theorem of Ketonen [11] that amounts to

a deeper ultrafilter theoretic characterization of strong compactness:

Theorem 7.2.11 (Ketonen). A cardinal  is strongly compact if and only if every regular

cardinal � �  carries a uniform -complete ultrafilter.

Part of what is surprising about this theorem is that it does not even require that the

ultrafilters in the hypothesis be +-incomplete. Beyond this, it is not even obvious at the

outset that the existence of -complete ultrafilters on, say,  and + implies that  is +-

strongly compact.
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We begin, however, with a less famous but no less important theorem of Ketonen, which

is also a key step in the proof of Theorem 7.2.11. This theorem is in a sense the strongly

compact generalization of Solovay’s Lemma [21]. Suppose j : V ! M is an elementary

embedding. For regular cardinals �, Solovay’s Lemma (or more specifically Corollary 4.4.30)

yields a simple criterion for whether j is �-supercompact solely in terms of the inner model

M and the ordinal sup j[�]:

Theorem 4.4.30 (Solovay). Suppose j : V ! M is an elementary embedding and � is

a regular cardinal. Then j is �-supercompact if and only if M is correct about stationary

subsets of sup j[�].

Ketonen proved a remarkable analog of this theorem for strongly compact embeddings:

Theorem 7.2.12 (Ketonen). Suppose j : V ! M is an elementary embedding, � is a

regular uncountable cardinal, and � is an M-cardinal. Then j is (�, �)-tight if and only if

cfM(sup j[�])  �.

For example, suppose j : V ! M is an ultrapower embedding. Theorem 7.2.12 implies

that all that is required for M to have the �-covering property is that M correctly compute

the cofinality of sup j[�].

The proof of Theorem 7.2.12 we give is due to Woodin, and is a bit di↵erent from

Ketonen’s original proof. The trick is to choose the cover first, and then choose the set

whose image is being covered:

Proof of Theorem 7.2.12. First assume j is (�, �)-tight. Fix A 2 M with j[�] ✓ A such that

|A|M  �. Then A \ sup j[�] is cofinal in sup j[�], so sup j[�] has cofinality at most |A|M in

M .

Now we prove the converse. Assume cfM(sup j[�])  �. Let Y 2 M be an !-closed cofinal

subset of sup j[�] of order type at most �. Note that j[�] is itself an !-closed cofinal subset

of sup j[�], so since sup j[�] has uncountable cofinality, Y \ j[�] is an !-closed cofinal subset

251



of �. In particular, since cf(sup j[�]) = �, Y \j[�] has order type at least �. Let X = j�1[Y ].

Then j[X] = Y \ j[�], so

ot(X) = ot(j[X]) = ot(Y \ j[�]) � �

Thus |X| = �. Since |X| = �, Y 2 M , j[X] ✓ Y , and |Y |M  �, Lemma 7.2.6 implies that

j is (�, �)-tight.

With Theorem 7.2.12 in hand, we turn to the proof of Ketonen’s characterization of strong

compactness. The key point is that the strong compactness of an elementary embedding is

equivalent to an ultrafilter theoretic property:

Proposition 7.2.13. Suppose   � are uncountable cardinals and � is regular. Suppose

M is an inner model and j : V ! M is an elementary embedding. Suppose every regular

cardinal in the interval [,�] carries a uniform -complete ultrafilter. Then the following are

equivalent:

(1) j is (�, �)-tight for some M-cardinal � < j().

(2) sup j[�] carries no j()-complete tail uniform ultrafilter.

Proof. (1) implies (2): Assume (1). By Theorem 7.2.12, cfM(sup j[�]) < j(). Therefore the

tail filter on sup j[�] is not j()-complete in M , so sup j[�] does not carry a j()-complete

tail uniform ultrafilter in M .

(2) implies (1): Assume (2). Then in particular cfM(sup j[�]) carries no uniform j()-

complete ultrafilter in M . By elementarity, every M -regular cardinal in the interval j([,�])

carries a uniform -complete ultrafilter. Therefore cfM(sup j[�]) does not lie in the interval

j([,�]). Clearly cfM(sup j[�])  j(�), so it follows that cfM(sup j[�]) < j().

Ketonen introduced the Ketonen order as a tool to prove the following theorem, gen-

eralizing a theorem of Solovay that states that any measurable cardinal carries a normal

ultrafilter that concentrates on nonmeasurable cardinals.
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Theorem 7.2.14 (Ketonen). Suppose � is a regular cardinal. If � carries a -complete

uniform ultrafilter, then � carries a -complete uniform ultrafilter U such that sup jU [�]

carries no tail uniform -complete ultrafilter in MU . Indeed, any <k-minimal -complete

uniform ultrafilter on � has this property.

Proof. Let U be a <k-minimal element of the set of uniform -complete ultrafilters on �.

Suppose towards a contradiction that in MU , sup jU [�] carries a tail uniform -complete

ultrafilter. Equivalently, there is a -complete ultrafilter Z on jU(�) such that �Z = sup jU [�].

Let W = j�1
U [Z]. Then crt(jW ) � crt(jMU

Z � jU) (by Lemma 3.2.17), so W is -complete.

Moreover since �Z = sup jU [�], �W = �. Thus W is a -complete uniform ultrafilter on �.

Since Z concentrates on sup jU [�]  aU , W <k U by the definition of the Ketonen order

(Lemma 3.3.4). This contradicts the <k-minimality of U .

We can now prove a local version of Ketonen’s theorem, which fits into the list of refor-

mulations of �-strong compactness from Theorem 7.2.10:

Theorem 7.2.15 (Ketonen). Suppose   � are regular uncountable cardinals. Then the

following are equivalent:

(1)  is �-strongly compact.

(2) Every regular cardinal in the interval [,�] carries a uniform -complete ultrafilter.

(3) � carries a -complete ultrafilter U such that jU is (�, �)-tight for some � < jU().

Proof. (1) implies (2): Note that the Fréchet filter on a regular cardinal � is �-complete.

Thus (2) follows from (1) as an immediate consequence of the filter extension property of

strongly compact cardinals (Theorem 7.2.10 (3)).

(2) implies (3): Assume (2). By Theorem 7.2.14, there is a -complete ultrafilter U

on � such that sup jU [�] carries no tail uniform -complete ultrafilter in MU . Therefore by

Proposition 7.2.13, jU is (�, �)-tight for some � < jU().

(3) implies (1): See Theorem 7.2.10 (5).
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Solovay’s Theorem

In this section we give a proof of a local version of Solovay’s theorem that we use throughout

this dissertation.

Theorem 7.2.16 (Solovay). Suppose   � are uncountable cardinals, � is regular, and 

is �-strongly compact. Then �< = �.

We need the following lemma, which is in a sense an analog of Proposition 4.2.31, though

much easier:

Lemma 7.2.17. Suppose U is a countably complete ultrafilter. Let j : V ! M be the

ultrapower of the universe by U . Then for any ⌘ � �+
U , j is not (⌘, �)-tight for any M-

cardinal � < j(⌘).

Proof. We may assume by induction that ⌘ is a successor cardinal. In particular, ⌘ is regular,

so by Lemma 3.5.32, j(⌘) = sup j[⌘]. Suppose towards a contradiction that � < j(⌘) is an M -

cardinal such that j is (⌘, �)-tight. By Theorem 7.2.12, cfM(j(⌘)) = cfM(sup j[⌘])  � < j(⌘).

This contradicts that ⌘ is regular in M by elementarity.

Lemma 7.2.18. Suppose   � are cardinals. Suppose � is singular and

sup
⌘<�

⌘<  � (7.1)

Suppose �+ carries a uniform -complete ultrafilter U . Then �<  �+.

Proof. Let � = �+. We will prove the equivalent statement that �< = �.

Let j : V ! M be the ultrapower of the universe by U . Let � = cfM(sup j[�]). Note that

� < j(�), so �  j(�). In fact, since j(�) is singular in M , � < j(�). Therefore by (7.1) and

the elementarity of j:

(�<)M  (�<j())M  j(�) (7.2)
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By Theorem 7.2.12, j is (�, �)-tight, so we can fix B 2 M with j[�] ✓ B. Now j[P(�)] ✓
B<, and since M is closed under -sequences, B< 2 M . Lemma 7.2.6 now implies that j

is (�<, (�<)M)-tight.

Assume towards a contradiction that �< � �+. Then j is (�+, (�<)M)-tight. Since

�U = �, it follows from Lemma 7.2.17 that (�<)M � j(�+), contradicting (7.2).

We now prove Solovay’s theorem:

Proof of Theorem 7.2.16. Suppose  is �-strongly compact. Assume by induction that for

all regular ◆ < �, ◆< = ◆. Since � is regular, every element of P(�) is bounded below �, so

P(�) =
S

⌘<� P(⌘). Thus computing cardinalities:

�< = sup
⌘<�

⌘<

If � is a limit cardinal, it follows immediately from our induction hypothesis that �< = �.

Therefore assume � is a successor cardinal. If the cardinal predecessor of � is a regular

cardinal ◆, then applying our induction hypothesis we obtain:

�< = sup
⌘<�

⌘< = � · ◆< = �

Therefore assume the cardinal predecessor of � is a singular cardinal �. Then sup⌘<� ⌘
<  �.

In this case, by Lemma 7.2.18, �< = �.

7.3 Fréchet cardinals and the least ultrafilter K�

Fréchet cardinals

In this section, we begin our systematic study of strong compactness assuming UA. We will

ultimately prove that UA implies that strong compactness and supercompactness coincide

to the extent that this is possible. (A theorem of Menas shows that assuming su�ciently

large cardinals, not all strongly compact cardinals are supercompact; see Section 8.1.) An
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oddity of the proof is that it requires a preliminary analysis of the first strongly compact

cardinal. Indeed, to obtain the strongest results, one must enact a hyperlocal analysis of

essentially the weakest ultrafilter-theoretic forms of strong compactness.

With this in mind, we introduce the following central concept:

Definition 7.3.1. An uncountable cardinal � is Fréchet if � carries a countably complete

uniform ultrafilter.

Fréchet cardinals almost certainly do not appear in the work of Fréchet. Their name

derives from the fact that � is Fréchet if and only if the Fréchet filter on � extends to a

countably complete ultrafilter.

The following proposition is almost tautological:

Proposition 7.3.2. A cardinal � is Fréchet if and only if � = �U for some countably

complete ultrafilter U .

For regular cardinals �, we have the following obvious characterizations of Fréchetness:

Proposition 7.3.3. Suppose � is a regular uncountable cardinal. The following are equiva-

lent:

(1) � is Fréchet.

(2) There is a countably complete tail uniform ultrafilter on �.

(3) Some ordinal of cofinality � carries a tail uniform ultrafilter.

(4) Every ordinal of cofinality � carries a tail uniform ultrafilter.

(5) There is an elementary embedding j : V ! M that is discontinuous at �.

Proof. (1) implies (2): Since � is a cardinal, any uniform ultrafilter on � is tail uniform. Thus

since there is a countably complete uniform ultrafilter on �, there is a countably complete

tail uniform ultrafilter on �.
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(2) implies (3): Trivial.

(3) implies (4): Recall that two ordinals ↵ and � have the same cofinality if and only

if there is a weakly order preserving cofinal function f : (↵,) ! (�,). In particular,

f⇤(T↵) = T� where T↵ is the tail filter on ↵. Thus if ↵ carries a countably complete tail

uniform ultrafilter U , then so does �, namely f⇤(U).

(4) implies (5): Suppose U is a countably complete tail uniform ultrafilter on �. Let

j : V ! M be the ultrapower of the universe by U . Note that for any ↵ < �, j(↵) < aU

since ↵ < �U . Thus sup j[�]  aU < j(�). In other words, j is discontinuous at �.

Singular Fréchet cardinals are more subtle, especially when one does not assume the

Generalized Continuum Hypothesis. The following fact gives a sense of how singular Fréchet

cardinals should arise:

Proposition 7.3.4. Suppose � is a singular limit of Fréchet cardinals. Let ◆ be the cofinality

of �. Then � is Fréchet if and only if ◆ is Fréchet.

Proof. If � is Fréchet, then ◆ is Fréchet by Proposition 7.3.3 (4), and this does not require

that � is a limit of Fréchet cardinals.

We now turn to the converse. Let h�↵ : ↵ < ◆i be an increasing cofinal sequence of Fréchet

cardinals less than �. Let U↵ be a countably complete ultrafilter on � with �U
↵

= �↵. Let

D be a countably complete uniform ultrafilter on ◆. Let

U = D- lim
↵<◆

U↵

Clearly U is a countably complete ultrafilter on �. We claim that U is uniform, or in

other words that every set X 2 U has cardinality �. Suppose X ✓ � is such a set. By the

definition of ultrafilter limits, {↵ < ◆ : X 2 U↵} 2 D. Since D is a uniform ultrafilter, the set

{↵ < ◆ : X 2 U↵} is unbounded in ◆. Therefore X 2 U↵ for unboundedly many ↵ < ◆, and

in particular |X| � �U
↵

= �↵ for unboundedly many ↵ < ◆. Thus |X| � sup↵<◆ �↵ = �, as

desired. Since � carries a countably complete uniform ultrafilter, follows that � is a Fréchet

cardinal.
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Proposition 7.3.4 tells us that when � is a singular limit of Fréchet cardinals, whether � is

Fréchet depends only on whether the regular cardinal cf(�) is Fréchet. One might therefore

hope to reduce problems about Fréchet cardinals in general to the regular case, where we

have a bit more information. It is not provable in ZFC, however, that a singular Fréchet

cardinal must be a limit of Fréchet cardinals. The Fréchet cardinals where this fails are

called isolated cardinals, and arise as a major issue in our analysis of strong compactness

under UA. Isolated cardinals are studied in Section 7.4 and especially Section 7.5.

Ketonen ultrafilters

The following definition is inspired by the proof of Theorem 7.2.15, which turned on the

existence of a -complete ultrafilter U on � such that sup jU [�] carries no -complete tail

uniform ultrafilter in MU .

Recall from Lemma 4.4.17 that a uniform ultrafilter U on a regular cardinal � is weakly

normal if and only if letting j : V ! M be the ultrapower of the universe by U , aU = sup j[�].

Equivalently, U is weakly normal if it is closed under decreasing diagonal intersections.

Definition 7.3.5. If � is a regular cardinal, an ultrafilter U on � is a Ketonen ultrafilter if

the following hold:

• U is countably complete and weakly normal.

• U concentrates on ordinals that carry no countably complete tail uniform ultrafilter.

By Lemma 4.4.17 and Proposition 7.3.3, we have the following characterization of Keto-

nen ultrafilters on regular cardinals:

Lemma 7.3.6. Suppose � is a regular cardinal and U is a countably complete ultrafilter on

�. Then U is Ketonen if and only if aU = sup jU [�] and either of the following equivalent

statements holds:

• sup jU [�] carries no countably complete tail uniform ultrafilter in MU .
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• cfMU (sup jU [�]) is not Fréchet in MU .

In this way the key ordinal cfMU (sup jU [�]) from Theorem 7.2.12 arises immediately in

the study of Ketonen ultrafilters on regular cardinals.

The following theorem asserts that Ketonen ultrafilters are analogous to �-minimal ul-

trafilters of Section 4.4, except that Ketonen ultrafilters are minimal in the Ketonen order

rather than merely being minimal in the Rudin-Keisler order.

Lemma 7.3.7. Suppose � is a regular cardinal. Then U is a Ketonen ultrafilter on � if and

only if U is a <k-minimal element of the set of countably complete uniform ultrafilters on �.

Proof. Suppose first that U is a Ketonen ultrafilter. Let

↵ = aU = sup jU [�]

Suppose W <k U . We will show that �W < �. By the definition of the Ketonen order

(Lemma 3.3.4), there is some Z 2 BM
U (jU(�), sup jU [�]) such that j�1

U [Z] = W . Since

sup jU [�] does not carry a countably complete tail uniform ultrafilter in MU , there is some

� < sup jU [�] such that Z concentrates on �. Fix ↵ < � such that jU(↵) � �. Then

jU(↵) 2 Z, so ↵ 2 W . Thus �W < � as desired.

Conversely, assume U is a <k-minimal element of the set of uniform ultrafilters on �.

In particular, U is an <rk-minimal element of the set of uniform ultrafilters on �, which by

Lemma 4.4.20 is equivalent to being weakly normal.

Finally, fix Z 2 BM
U (jU(�)), and we will show that �Z < sup jU [�]. Let W = j�1

U [Z].

Then W <k U by the definition of the Ketonen order. It from the minimality of U that

�W < �, so for some ↵ < �, ↵ 2 W . Now jU(↵) 2 Z, so �Z  jU(↵) < sup jU [�], as desired.

It follows that sup jU [�] does not carry a countably complete tail uniform ultrafilter in

MU , so U is Ketonen by Lemma 7.3.6.

Reflecting on Lemma 7.3.7, we obtain a definition of Ketonen ultrafilters on arbitrary

cardinals:
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Definition 7.3.8. Suppose � is a Fréchet cardinal. An ultrafilter U on � is Ketonen if U is

a <k-minimal element of the set of countably complete uniform ultrafilters on �.

The wellfoundedness of the Ketonen order (Theorem 3.3.8) immediately yields the exis-

tence of Ketonen ultrafilters:

Theorem 7.3.9. Every Fréchet cardinal carries a Ketonen ultrafilter.

When � is singular, it is important that the definition of a Ketonen ultrafilter demands

minimality only among uniform ultrafilters and not among the broader class of tail uniform

ultrafilters, since an ultrafilter on � that is minimal in this stronger sense is essentially the

same thing as a Ketonen ultrafilter on cf(�):

Lemma 7.3.10. Suppose � is an ordinal and U is a <k-minimal among countably complete

ultrafilters W with �W = �. Let � = cf(�) and let f : � ! � be a continuous cofinal function.

Then U = f⇤(D) for some Ketonen ultrafilter D on �.

Proof. Since U is <k-minimal among countably complete ultrafilters W with �W = �, in

particular U is <rk-minimal, so every function g : � ! � that is regressive on a set in U

is bounded on a set in U . It follows that U contains every closed cofinal C ✓ �: letting

A = � \C and g(↵) = sup(C \↵), g is regressive on A and unbounded on any cofinal subset

of A.

Let C = f [�]. Then C 2 U . Let g : C ! � be the inverse of f . Let D = g⇤(U). Clearly

U = f⇤(D). We must show that D is Ketonen. Suppose W <k D. We claim f⇤(W ) <k U .

Given this, it follows that �f⇤(W ) < � and hence �W < �. It follows that D is a <k-minimal

element of the set of countably complete uniform ultrafilters on �, so D is Ketonen.

We finally verify f⇤(W ) <k U . (The proof will show that if f : � ! � is an order

preserving function, then the pushforward map f⇤ is Ketonen order preserving.) Fix I 2 D

and hW↵ : ↵ 2 Ii such that W = D- lim↵2I W↵ and �↵  ↵ for all ↵ 2 I. Let J = f [I], so
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J 2 U and moreover:

f⇤(W ) = U - lim
�2J

f⇤(Wg(�))

Moreover �f⇤(W
g(�))  sup f [�W

g(�)
]  sup f [g(�)]  �. Thus the sequence hf⇤(Wg(�)) : � 2 Ji

witnesses f⇤(W ) <k U , as desired.

Introducing K
�

Under the Ultrapower Axiom, the Ketonen order is linear, so there is a canonical Ketonen

ultrafilter on each Fréchet cardinal �:

Definition 7.3.11 (UA). For any Fréchet cardinal �, the least ultrafilter on �, denoted by

K�, is the unique Ketonen ultrafilter on �.

The analysis of supercompactness under UA proceeds by first completely analyzing the

ultrafilters K� and then propagating the structure of K� to all ultrafilters.

Let us begin with some simple examples. Let 0 be the least measurable cardinal. Then

without assuming UA, it is easy to prove that an ultrafilter on 0 is Ketonen if and only if

it is normal. Assuming UA, K0 is the unique normal ultrafilter on 0.

Moving up to the second measurable cardinal 1, it is not provable in ZFC that the

Ketonen ultrafilters on 1 are normal, or even that there is a normal Ketonen ultrafilter on 1.

This is because it is consistent that 0 is 1-strongly compact. Under this assumption, if U

is a normal ultrafilter on 1, 0 is jU(1)-strongly compact in MU , and hence U concentrates

on ordinals that carry 0-complete uniform ultrafilters. In fact, under this hypothesis, if

W is a Ketonen ultrafilter on 1, then jW is (1, �)-tight for some � < jW (), and hence

witnesses the 1-strong compactness of 0.

Of course, under UA, 0 is not 1-strongly compact, since by Theorem 5.3.21, every

countably complete ultrafilter in V1 is isomorphic to K n
0

for some n < !. In fact, once

again K1 is the unique normal ultrafilter on 1. To see this, one can apply Theorem 5.3.8

and the following lemma:
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Lemma 7.3.12 (UA). For any regular cardinal �, K� is an irreducible ultrafilter.

Proof. Suppose D <RF K�. Then since D <RK K� and K� is weakly normal, �D < �.

Therefore by Lemma 3.5.32,

jD(�) = sup jD[�]

Assume towards a contradiction thatD is nonprincipal. Then by Proposition 5.4.5, tD(K�) <k

jD(K�), so �t
D

(K
�

) < jD(�) by Lemma 7.3.7 applied in MD. But K� = j�1
D [tD(K�)], so

�K
�

= min{� : jD(�) > �t
D

(K
�

)} < �

This contradicts that K� is a uniform ultrafilter on �.

We do not know whether this lemma is provable in ZFC, although it does follow from

Theorem 5.3.17.

If � is singular, then K� is not necessarily irreducible. (In fact, we will show under UA

that for strong limit singular cardinals �, K� is never irreducible.) For example, suppose �0

is the least singular cardinal that carries a uniform countably complete ultrafilter. Of course,

assuming just ZFC, one cannot prove much about �0: it is consistent that �0 = +0
0 , or that

�0 is not a limit of regular cardinals that carry uniform countably complete ultrafilters.

Assuming UA, it is not hard to give a complete analysis of �0 and K�0 . Let h↵ : ↵ < 0i
enumerate the first 0 measurable cardinals in increasing order. Then �0 = sup↵<0

↵, and

K�0 = K0- lim
↵<0

K
↵

� �0

The sets A↵ = ↵ \ sup�<↵ � witness that the sequence hK
↵

� �0 : ↵ < 0i is discrete, so
K0 <RF K�0 . In other words, K�0 is produced by the iterated ultrapower hK,K

MK


�0
i.

Of course all this is closely related to Proposition 7.3.4. For singular cardinals �, K� is

of greatest interest if � is not a limit of Fréchet cardinals, since in this case K� cannot be

represented in terms of ultrafilters on smaller cardinals.
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The universal property of K
�

The main result of this section is a universal property of the least ultrafilter K� on a regular

Fréchet cardinal:

Theorem 7.3.13 (UA). Suppose � is a regular Fréchet cardinal. Let j : V ! M be the

ultrapower of the universe by K�. Suppose i : V ! N is an ultrapower embedding. Then the

following are equivalent:

(1) There is an internal ultrapower embedding k : M ! N such that k � j = i.

(2) sup i[�] carries no tail uniform ultrafilter in N .

(3) cfN(sup i[�]) is not Fréchet in N .

While the proof is quite simple, the result has profound consequences for the structure

of the ultrafilters K�. In fact, this universal property is ultimately responsible for all of our

results on supercompactness under UA.

Before proving Theorem 7.3.13 (which is not that di�cult), let us show how it can be

used to give a complete analysis of the internal ultrapower embeddings of MK
�

when � is

regular.

Theorem 7.3.14 (UA). Suppose � is a regular Fréchet cardinal. Let j : V ! M be the

ultrapower of the universe by K�. Suppose k : M ! N is an ultrapower embedding. Then

the following are equivalent:

(1) k is an internal ultrapower embedding.

(2) k is continuous at sup j[�].

(3) k is continuous at cfM(sup j[�]).

Proof. (1) implies (2): Since sup j[�] carries no tail uniform countably complete ultrafilter

in M , every elementary embedding of M that is close to M is continuous at sup j[�]. In

particularly, every internal ultrapower embedding of M is continuous at sup j[�].
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(2) implies (1): Let i = k � j. Then sup i[�] = sup k[sup j[�]] = k(sup j[�]) since k is

continuous at sup j[�]. It follows that sup i[�] carries no tail uniform countably complete

ultrafilter in N . Therefore by Theorem 7.3.13, there is an internal ultrapower embedding

k0 : M ! N such that k0 � j = i.

We claim k0 = k. First of all, k0�j = k�j. In other words, k0 � j[V ] = k � j[V ]. Moreover

since k0 is M -internal k0(sup j[�]) = sup i[�] = k(sup j[�]). But M = HM(j[V ] [ {aK
�

}) =
HM(j[V ][{sup j[�]}) sinceK� is weakly normal. Since we have shown k0 � j[V ][{sup j[�]} =

k � j[V ] [ {sup j[�]}, it follows that k0 = k.

Since k0 is an internal ultrapower embedding, so is k, as desired.

The equivalence of (2) and (3) is trivial (and does not require UA).

The notion of indecomposable ultrafilters is an important part of infinite combinatorics.

We will need the following relativized version of this concept:

Definition 7.3.15. Suppose M is a transitive model of ZFC and U is an M -ultrafilter on

X. Suppose � is an M -cardinal. Then U is �-indecomposable if for any partition hX↵ : ↵ <

�i 2 M of X, there is some S ✓ � in M with |S|M < � and
S

↵2S X↵ 2 U .

As a corollary of Theorem 7.3.14, every �-indecomposable ultrafilter is internal to K�:

Corollary 7.3.16 (UA). Suppose � is a regular Fréchet cardinal. Suppose D is a countably

complete �-indecomposable ultrafilter, then D @ K�. In particular, if D is a countably

complete ultrafilter such that �D < �, then D @ K�.

Proof. Let j : V ! M be the ultrapower of the universe by K�. To show D @ K�, we need

to show that jD � M is an internal ultrapower embedding of MU . By Lemma 5.5.9, jD � M

is an ultrapower embedding. Since D is �-indecomposable, jD is continuous at all ordinals

of cofinality �, and in particular, jD is continuous at sup j[�]. Thus jD � M is an ultrapower

embedding of M that is continuous at sup j[�], and it follows from Theorem 7.3.14 that

jD � M is an internal ultrapower embedding of M , as desired.
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This fact is highly reminiscent of Corollary 4.3.28, the theorem that analyzes which ul-

trafilters lie Mitchell below a Dodd solid ultrafilter. In fact, we will show that K� gives rise

to a supercompact ultrapower precisely by leveraging the fact that so many ultrapower em-

beddings are internal to it. (See Section 7.3, Section 7.3, and especially Proposition 7.3.32.)

If M is a transitive model of ZFC and � is an M -regular cardinal, then an M -ultrafilter U

is �-indecomposable if and only if jMU is continuous at �, and we therefore obtain the following

combinatorial characterization of the countably complete M -ultrafilters that belong to M

when M is the ultrapower of the universe by a Ketonen ultrafilter on a regular cardinal:

Theorem 7.3.17 (UA). Suppose � is a regular Fréchet cardinal. Let j : V ! M be the

ultrapower of the universe by K�. Let � = cfM(sup j[�]). Suppose U is a countably complete

M-ultrafilter. Then the following are equivalent:

(1) U is �-indecomposable.

(2) U 2 M .

In particular, if U is a countably complete M-ultrafilter on a cardinal � < �, then U 2 M .

In summary, the universal property of K� is a powerful tool for analyzing the model

MK
�

. Let us therefore prove it:

Proof of Theorem 7.3.13. (1) implies (2): First, k(sup j[�]) carries no tail uniform countably

complete ultrafilter in N by elementarity, since sup j[�] carries no tail uniform countably

complete ultrafilter in M . Note also that k : M ! N is continuous at sup j[�] since

sup j[�] carries no tail uniform countably complete ultrafilter in M . Therefore k(sup j[�]) =

sup k � j[�] = sup i[�]. Hence sup i[�] carries no tail uniform countably complete ultrafilter

in N .

(2) implies (1): Let (e, h) : (M,N) ! P be an internal ultrapower comparison of (j, i).

Then

e(sup j[�]) = sup e � j[�] = suph � i[�] = h(sup i[�])
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The theorem is now an immediate consequence of Lemma 3.5.27: M = HM(j[V ][{sup j[�]})
and (e, h) witnesses (j, sup j[�]) =S (i, sup i[�]), so there is an internal ultrapower embedding

k : M ! N such that k � j = i.

The equivalence of (2) and (3) is trivial (and does not require UA).

Independent families and the Hamkins properties

A key intuition in the theory of forcing is that forcing does not create new large cardinals.

The Levy-Solovay Theorem [30] establishes this for small forcing, but various counterintuitive

forcing constructions of the next few decades demonstrate that in general, the intuition is

just not correct. The earliest example, due to Kunen, shows that it is consistent that there is

a forcing that makes a measurable cardinal out of a cardinal that is not even weakly compact.

Woodin’s ⌃2-Resurrection Theorem ([8], Theorem 2.5.10) yields even more striking examples:

for example, if there is a proper class of Woodin cardinals and there is a huge cardinal, then

arbitrarily large cardinals can be forced to be huge cardinals.

Hamkins isolated two closure properties of inner models: the approximation and covering

properties, or collectively the Hamkins properties. If an inner model M has the Hamkins

properties, then many of the large cardinal properties of the ambient universe of sets are

downwards absolute to M . For many forcing extensions V [G], the universe V satisfies the

Hamkins properties inside V [G], and therefore the large cardinals of V [G] “already exist” in

V .

Somewhat unexpectedly, the Hamkins properties have turned out to be relevant outside

of the domain of forcing, in the provenance of inner model theory. Woodin has shown that

inherits a supercompact cardinal  from the ambient universe in a natural way necessarily

satisfies the Hamkins properties at , and therefore inherits all large cardinals from the

ambient universe. Such models are called weak extender models for the supercompactness of

. A canonical inner model with a supercompact cardinal is expected to be a weak extender

model, and therefore Woodin conjectures that if there is a canonical inner model with a
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supercompact cardinal, in fact this is the ultimate inner model, a canonical inner model that

satisfies all true large cardinal axioms.

In our work on UA, the Hamkins properties rear their heads once again. Here they arise

in relation with (generalizations of) the Mitchell order, which can be seen as yet another

instantiation of the downwards absoluteness of large cardinal properties to inner models.

Recall that we are trying to show that the ultrapower of the universe by K� has closure

properties. All we know so far is that this ultrapower absorbs many countably complete

ultrafilters (Theorem 7.3.17). To transform this into a model theoretic closure property of

the ultrapower, for example closure under �-sequences, we prove a converse to Hamkins and

Woodin’s absoluteness theorems for models with the Hamkins properties. This converse says

that any inner model that inherits enough ultrafilters from the ambient universe must satisfy

the Hamkins properties. In our context, this will lead to a proof that the ultrapower K� is

(roughly) closed under �-sequences.

The ultrapowers we consider do not satisfy the (relevant) Hamkins properties in full, but

rather satisfy local versions of these properties, introduced here for the first time:

Definition 7.3.18. Suppose M is an inner model,  is a cardinal, and � is an ordinal.

• M has the -covering property at � if every � 2 P(�) there is some ⌧ 2 P(�) \ M

with � ✓ ⌧ .

• M has the -approximation property at � if any A ✓ � with A \ � 2 M for all

� 2 P(�) \M is an element of M .

We say M has the -covering property if M has the -covering property at all M -cardinals,

and M has the -approximation property if M has the -approximation property at all M

cardinals.

In this section, we identify necessary and su�cient conditions for the -covering and

approximation properties that involve the absorption of filters. We are working in slightly
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more generality than we will need, but we think the results are quite interesting and hopefully

lead to a clearer exposition than would arise by working in a more specific case.

The condition equivalent to the covering property essentially comes from Woodin’s proof

of the covering property for weak extender models:

Proposition 7.3.19. Suppose M is an inner model. Then M has the -covering property

at � if and only if there is a -complete fine filter on P(�) that concentrates on M .

Proof. First assume there is a -complete fine filter F on P(�) that concentrates on M .

Fix � 2 P(�), and we will find ⌧ 2 P(�) \ M such that � ✓ ⌧ . For each ↵ < �, let

A↵ = {⌧ 2 P(�) : ↵ 2 ⌧}, so that A↵ 2 F by the definition of a fine filter. Then suppose

� 2 P(�). The set

{⌧ 2 P(�) : � ✓ ⌧} =
\

↵2�
{A↵ : ↵ 2 �} 2 F

since F is -complete. Since F concentrates on M , {⌧ 2 P(�) : � ✓ ⌧} \M 2 F , and in

particular this set is nonempty. Any ⌧ that belongs to this set satisfies ⌧ 2 P(�) \M and

� ✓ ⌧ , as desired.

Conversely, assumeM has the -covering property at �. Let B = {A↵\M : ↵ < �}. Then
B is a -complete filter base: for any S ✓ B with |S| < , we have S = {A↵ \M : ↵ 2 �}
for some � 2 P(�), and so fixing ⌧ 2 P(�) \ M such that � ✓ ⌧ , we have ⌧ 2 T↵2� A↵.

Therefore B extends to a -complete filter G. Let

F = G � P(�) = {A ✓ P(�) : A \M 2 G}

be the canonical extension of G to an filter on P(�). Then F is -complete and concentrates

on M . Moreover, A↵ 2 F for all ↵ < �, so F is fine. Thus we have produced a -complete

fine filter on P(�) that concentrates on M , as desired.

One ultrafilter theoretic characterization of the approximation property is given by the

following theorem:
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Theorem 7.3.20. Suppose  is strongly compact and M is an inner model with the -

covering property. Then M has the -approximation property if and only if every -complete

M-ultrafilter belongs to M .

We will actually prove a local version of this theorem that requires no large cardinal

assumptions. The locality of this theorem is important in our analysis of the ultrafilters K�.

For the statement, we need use the following definition:

Definition 7.3.21. Suppose X is a set and ⌃ is an algebra of subsets of X. A set U ✓ ⌃ is

said to be an ultrafilter over ⌃ if U is closed under intersections and for any A 2 ⌃, A 2 U if

and only if X \A /2 U . An ultrafilter U over ⌃ is said to be -complete if for any � 2 P(U),
T

� 6= ;.

What we call an ultrafilter over ⌃ is commonly referred to as an ultrafilter on the Boolean

algebra ⌃, but we are being a bit pedantic: we do not want to confuse this with an ultrafilter

with underlying set ⌃, which in our terminology is a family of subsets of ⌃ rather than

a subset of ⌃. Notice that for us a -complete ultrafilter over ⌃ is the same thing as an

ultrafilter over ⌃ that is a -complete filter base. (It is not the same thing as being -complete

ultrafilter on the Boolean algebra ⌃.)

Theorem 7.3.22. Suppose M is an inner model,  is a cardinal, � is an M-cardinal, and

M has the -covering property at �. Then the following are equivalent:

(1) M has the -approximation property at �.

(2) Suppose ⌃ 2 M is an algebra of sets of M-cardinality �. Then every -complete ultra-

filter over ⌃ belongs to M .

To simplify notation, we use the following lemma (analogous in flavor to Lemma 7.2.6)

characterizing the approximation property at �:

Lemma 7.3.23. Suppose M is an inner model,  is a cardinal, and � is an M-cardinal.

Then the following are equivalent:
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(1) M has the -approximation property at �

(2) For all ⌃ 2 M such that |⌃|M  �, for all B ✓ ⌃ such that B \ � 2 M for all

� 2 P(⌃) \M , B 2 M .

(3) For some ⌃ 2 M such that |⌃|M = �, for all B ✓ ⌃ such that B \ � 2 M for all

� 2 P(⌃) \M , B 2 M .

The following notation will be convenient (although of course it is a bit ambiguous):

Definition 7.3.24. Suppose X is a set and � is a family of subsets of X. Then the dual of

� in X is the family �⇤ = {X \ A : A 2 �}.

We point out that the dualizing operation depends implicitly on the underlying set X.

Definition 7.3.25. Suppose  is a cardinal and X is a set. A family � of subsets of X is

-independent if for any disjoint sets ⌧0, ⌧1 2 P(�),
T

⌧0 \
T

⌧ ⇤1 6= ;.

Equivalently, � is -independent if for any disjoint sets X, Y ✓ �, the collection X [ Y ⇤

is a -complete filter base. Note that a -complete family of subsets of X is never an algebra

of sets, since if A 2 �, then X \ A /2 �.

Theorem 7.3.26 (Hausdor↵). Suppose  and � are cardinals. Then there is a -independent

family of subsets of X = {(�, s) : � 2 P(�) and s 2 P(P (�))} of cardinality 2�.

Proof. Define f : P (�) ! P (X) by

f(A) = {(�, s) 2 X : � \ S 2 s}

Let � = ran(f). Suppose ⌧0, ⌧1 2 P(P (�)) are disjoint. We claim that the set

S =
\

f [⌧0] \
\

f [⌧1]
⇤

is nonempty. This simultaneously shows that f is injective and � is -independent. Therefore

� is a -independent family of cardinality 2�.
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Let � 2 P(�) be large enough that � \ A0 6= � \ A1 for any A0 2 ⌧0 and A1 2 ⌧1. Let

s = {� \ A : A 2 ⌧0}

We claim that (�, s) 2 S.

First we show that (�, s) 2 T f [⌧0]. Suppose A 2 ⌧0. We will show that (�, s) 2 f(A). By

the definition of s, since A 2 ⌧0, � \ A 2 s. Therefore by the definition of f , (�, s) 2 f(A),

as desired. This shows (�, s) 2 T f [⌧0].

Next we show that (�, s) 2 T f [⌧1]⇤. Suppose B 2 ⌧1, and we will show that (�, s) 2 X\B.

By the choice of �, �\B 6= �\A for any A 2 ⌧0. Therefore by the definition of s, �\B /2 s.

Finally, by the definition of f , it follows that (�, s) /2 f(B), or in other words, (�, s) 2 X \B.

Hence (�, s) 2 T f [⌧1]⇤.

Since (�, s) 2 T f [⌧0] and (�, s) 2 T f [⌧1]⇤, it follows that (�, s) 2 S. Thus S is nonempty,

which completes the proof.

Computing cardinalities, Hausdor↵’s theorem implies the existence of -independent sets

that are as large as possible:

Corollary 7.3.27 (Hausdor↵). Suppose  and � are cardinals such that �< = �. Then

there is a -independent family of subsets of � of cardinality 2�.

Proof. Let X = {(�, s) : � 2 P(�) and s 2 P(P (�))}. In other words,

X =
a

�2P


(�)

P(P (�))

Thus

|X| = |P(�)| · sup
�2P



(�)
|P(P (�))| = �< · (2<)< = �< = �

By Theorem 7.3.26, there is a -independent family of subsets of X of cardinality 2�, and

therefore there is a -independent family of subsets of � of cardinality 2�.

We now establish our characterization of the approximation property.
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Proof of Theorem 7.3.22. (1) implies (2): Assume (1), and we will prove (2). Suppose

⌃ 2 M is an algebra of subsets of X of M -cardinality � and U is a -complete ultrafilter

over ⌃. Fix � 2 P(⌃) \M and we will show that � \ U 2 M . Since U is -complete,

S =
\

{A : A 2 � \ U} \
\

{X \ A : A 2 � \ U}

is nonempty. Therefore fix a 2 X with a 2 S. By the choice of a, � \ U = {A 2 � : a 2 A}.
Thus � \ U 2 M .

By the -approximation property at � (using Lemma 7.3.23), it follows that U 2 M .

(2) implies (1): Fix � 2 M such that M satisfies that � is a -independent family of

subsets of some set X and |�|M = �. Suppose C ✓ � is such that C \ � 2 M for all

� 2 P(�)\M . We will show that C 2 M . This verifies the condition of Lemma 7.3.23 (3),

and so implies that M satisfies the -approximation property at �.

Let

B = C [ (� \ C)⇤

We claim that B is a -complete filter base on X. Suppose � 2 P(B). We must show that
T

� 6= ;. Using the -covering property at �, fix ⌧ 2 P(�) \M such that � ✓ ⌧ [ ⌧ ⇤.

By our assumption on C, ⌧ \ C 2 M . Let ⌧0 = ⌧ \ C and let ⌧1 = ⌧ \ C = ⌧ \ ⌧0 2 M .

Since � ✓ B = C [ (⌃ \ C)⇤, we have � ✓ ⌧0 [ ⌧ ⇤1 . Since � is -independent in M ,

T

⌧0 \
T

⌧ ⇤1 6= ;

But
T

⌧0 \
T

⌧ ⇤1 =
T

(⌧0 [ ⌧1) ✓ T

�, and hence
T

� 6= ;, as desired. This shows B is a

-complete filter base.

Let ⌃ be the algebra on X generated by � and let U be the ultrafilter over ⌃ generated

by B. Then U is -complete because B is -complete. Therefore U 2 M by our assumption

on M . But C = � \ B = � \ U , so C 2 M , as desired. Thus M has the -approximation

property at �.

The proof of Theorem 7.3.22 has the following corollary, which will be important going

forward:
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Proposition 7.3.28. Suppose M is an inner model,  is a cardinal, � is an M-cardinal,

and M has the -covering property at �. Then the following are equivalent:

(1) M has the -approximation property at �.

(2) There is a -independent family � of M with M-cardinality � such that every -complete

ultrafilter over the algebra generated by � belongs to M .

The strength and supercompactness of K
�

Definition 7.3.29. For any Fréchet cardinal �, � denotes the completeness of K�.

In other words, � = crt(jK
�

). In Section 7.4, we will prove the following theorem:

Theorem 7.3.30 (UA). Suppose � is a Fréchet cardinal that is either a successor cardinal

or a strongly inaccessible cardinal. Then � is �-strongly compact.

This is one of the harder theorems of this chapter, so we will just work under this

hypothesis for a while. The following theorem begins to show why it is a useful assumption:

Theorem 7.3.31 (UA). Suppose � is a regular Fréchet cardinal and � is �-strongly com-

pact. Let j : V ! M be the ultrapower of the universe by K�. Then P (�) ✓ M for all

� < �.

Because we will occasionally need to use this argument in a more general context, let us

instead prove the following:

Proposition 7.3.32. Suppose   � are cardinals,  is �-strongly compact, and M is an

inner model that is closed under <-sequences. Assume every -complete ultrafilter on � is

amenable to M . Then P (�) ✓ M . Moreover if cf(�) �  then P (⌘) ✓ M for all ⌘  2� such

that  is ⌘-strongly compact.

Proof. We may assume by induction that P (↵) ✓ M for all ordinals ↵ < �. Let ⌫ = cf(�).
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Assume first that ⌫ < . Let h�↵ : ↵ < ⌫i 2 M be an increasing sequence cofinal

in �. Suppose A ✓ �. Let A↵ = A \ �↵, so A↵ 2 M for all ↵ < ⌫ by our inductive

assumption. Then hA↵ : ↵ < ⌫i 2 M since M is closed under <-sequences. Therefore

A =
S

↵<⌫ A↵ 2 M . It follows that P (�) ✓ M , which finishes the proof in this case.

Therefore we may assume that ⌫ � . We claim that  is �-strongly compact in M .

Fix an ordinal ↵ 2 [, �] such that cfM(↵) � . Then cf(↵) �  since M is closed under

-sequences. Since  is �-strongly compact, there is a -complete tail uniform ultrafilter U

on ↵. But U \ M 2 M , so in M there is a tail uniform -complete ultrafilter on ↵. In

particular, every M -regular cardinal ◆ 2 [,�] carries a -complete ultrafilter in M , so by

Theorem 7.2.15,  is �-strongly compact in M .

Therefore by Corollary 6.3.2, (�<)M = �, so by Corollary 7.3.27, M satisfies that there

is a -independent family of subsets of � of cardinality (2�)M .

Let � 2 M be such that M satisfies that � is a -independent family of subsets of � of

cardinality �. Let ⌃ be the algebra of subsets of � generated by �. If U0 is a -complete

ultrafilter over ⌃, then U0 extends to a -complete ultrafilter U on � by Theorem 7.2.10,

since  is �-strongly compact and U0 is a -complete filter base of cardinality �. It follows

from Proposition 7.3.28 that M has the -approximation property at �. Since M is closed

under <-sequences, it follows from this that P (�) ✓ M .

We can now find larger independent families: since P (�) ✓ M , (2�)M � 2�, and in

particular, M satisfies that there is a -independent family of subsets of � of cardinality

(2�)V .

Assume finally that �  2� is a cardinal and  is �-strongly compact. Then let � 2 M be

a -independent family of subsets of � inM with cardinality �. As in the previous paragraph,

any -complete ultrafilter over the algebra generated by � belongs to M , so M has the -

approximation property at � by Proposition 7.3.28. Since M is closed under <-sequences,

it follows from this that P (�) ✓ M .

Proof of Theorem 7.3.31. By Theorem 7.3.17, every countably complete M -ultrafilter U on
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� < � belongs to M . Therefore if � < �, our strong compactness assumption on � implies

the hypotheses of Proposition 7.3.32 hold at �, and so P (�) ✓ M .

Having proved that K� has some strength, let us now turn to the supercompactness

properties of K�.

Theorem 7.3.33. Suppose � is a regular Fréchet cardinal and � is �-strongly compact. Let

j : V ! M be the ultrapower of the universe by K�. Then

• j is �-tight.

• j is �-supercompact for all � < �.

In other words, M� ✓ M for all � < � and M has the �-covering property.

Proof. Suppose towards a contradiction that j is not �-tight. By Theorem 7.2.12, it follows

that � = cfM(sup j[�]) > �. By Theorem 7.3.17, any countably complete M -ultrafilter U

on � belongs to M . But then by Proposition 7.3.32, P (�) ✓ M . But then K� itself is a

countably complete M -ultrafilter on �, so K� 2 M . This contradicts the irreflexivity of the

Mitchell order (Lemma 4.2.40).

Now that we know j is �-tight, let us show that j is �-supercompact for all � < �. We

may assume by induction that j is <�-supercompact. Then if � is singular, it is easy to

see that j is �-supercompact. Therefore assume � is regular. Let �0 = cfM(sup j[�]). Then

�0  � since j is �-tight and hence j is (�,�)-tight. Since � < �, in fact �0 < �. Thus

P (�0) ✓ M by Theorem 7.3.31. By Theorem 7.2.12, j is (�, �0)-tight, so fix A 2 M with

|A|M = �0 and j[�] ✓ A. Note that since |A|M = �0, P (A) ✓ M . Therefore j[�] ✓ M .

Therefore j is �-supercompact, as desired.

That M� ✓ M for all � < � is an immediate consequence of Corollary 4.2.21. That M

has the �-covering property is an immediate consequence of Lemma 7.2.7.

Finally, if � is not a strongly inaccessible cardinal, we can show that jK
�

is precisely as

supercompact as it should be:
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Theorem 7.3.34 (UA). Suppose � is a regular Fréchet cardinal and � is �-strongly com-

pact. Let j : V ! M be the ultrapower of the universe by K�. If � is not strongly inaccessible

then j is �-supercompact.

Proof. Let  = � for ease of notation. We split into two cases:

Case 1. For some � < � with cf(�) � , 2� � �.

Proof in Case 1. Since � < �, by Theorem 7.3.17 every countably complete M -ultrafilter on

� belongs to M . Since cf(�) � , �  2�, and  is �-strongly compact, we can therefore

apply the second part of Proposition 7.3.32 to conclude that P (�) ✓ M .

Given that j is �-tight by Theorem 7.3.33, it now follows easily that j is �-supercompact:

fix A 2 M with |A|M = � and j[�] ✓ A; then P (A) ✓ M so j[�] 2 M , as desired.

Case 2. For all � < � with cf(�) � , 2� < �.

Proof in Case 2. Since � is not inaccessible, there is some ⌘ < � such that 2⌘ � �. Let

� = ⌘<. Then cf(�) �  and 2� � 2⌘ � �. Therefore by our case hypothesis, �  �. By

Theorem 7.3.33, j is ⌘-supercompact. By Lemma 4.2.25, j is ⌘<-supercompact. Therefore

j is �-supercompact as desired.

Thus in either case j is �-supercompact, which completes the proof.

7.4 Fréchet cardinals

The Fréchet successor

Given the results of Section 7.3, to analyze K� when � is a regular Fréchet cardinal, it

would be enough to show that its completeness � is �-strongly compact. The following

easy generalization of Ketonen’s Theorem (Theorem 7.2.15) reduces this to the analysis of

Fréchet cardinals in the interval [�,�]:
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Figure 7.1: Types of Fréchet cardinals.

Proposition 7.4.1. Suppose � is a regular Fréchet cardinal. Suppose j : V ! M is the

ultrapower of the universe by a Ketonen ultrafilter U on �. Suppose   � is a cardinal

and every regular cardinal in the interval [,�] is Fréchet. Then j is (�, �)-tight for some

� < j(). In particular, if  = crt(j) then  is �-strongly compact.

Proof. Since U is Ketonen, the M -cardinal � = cfM(sup j[�]) is not Fréchet in M . Therefore

by elementarity � /2 j([,�]). Since � < j(�), we must have � < j(). Theorem 7.2.12

implies that j is (�, �)-tight, proving the proposition.

Suppose � is a regular Fréchet cardinal. To obtain that every regular cardinal in the

interval [�,�) is Fréchet, it actually su�ces to show that every successor cardinal in the

interval (�,�] is Fréchet. (See Corollary 7.4.5.) Our approach to this problem is as follows.

Fix an ordinal � 2 [�,�). We consider the Fréchet successor of �:

Definition 7.4.2. Suppose � is an ordinal. Then the Fréchet successor of �, denoted ��, is

the least Fréchet cardinal strictly greater than �.
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We will attempt to use the fact that � lies in the interval [�,�) to show that �� = �+.

Since �� is Fréchet by definition, this would show �+ is Fréchet. In this way, we we would

establish that every successor cardinal in the interval (�,�] is Fréchet, as desired.

The following classic result of Prikry [33] shows in particular that there is nontrivial

structure to the Fréchet cardinals even if we do not assume UA:

Theorem 7.4.3 (Prikry). Suppose � is a cardinal and U is a �+-decomposable ultrafilter.

Then U is cf(�)-decomposable.

A key part of our analysis of Fréchet cardinals is the following generalization of Theo-

rem 7.4.3:

Proposition 7.4.4. Suppose ⌘ is a cardinal such that ⌘+ is Fréchet. Either ⌘ is Fréchet or

⌘ is a singular cardinal and all su�ciently large regular cardinals below ⌘ are Fréchet.

Proof. Suppose �� = ⌘+. We will show that either ⌘ is Fréchet or ⌘ is a limit of Fréchet

cardinals. Fix a countably complete uniform ultrafilter U on ⌘+, and let j : V ! M be the

ultrapower of the universe by U . Let

U⇤ = {A 2 j(P (⌘+)) : j�1[A] 2 U}

Thus U⇤ is an M -ultrafilter. Note that �U⇤ < j(⌘+) since for example sup j[⌘+] 2 U⇤. Thus

�U⇤  j(⌘).

The proof now splits into two cases:

Case 1. �U⇤ � sup j[⌘].

Proof in Case 1. Let � = �U⇤ . Then sup j[⌘]  �  j(⌘). Let W⇤ be an M -ultrafilter on

j(⌘) that concentrates on � and is isomorphic to U⇤. In other words, there is a set X 2 U⇤

and a bijection f : � ! X with f 2 M such that W⇤ = {f�1[A] : A 2 U⇤}. All we need

about W⇤ is that �W⇤ = � � sup j[⌘]. Let

W = j�1[W⇤]
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Then W is a countably complete ultrafilter on ⌘.

We claim that W is uniform. Suppose A 2 W . Then j(A) 2 W⇤ so |j(A)|M = �. In

particular, since � � sup j[⌘], for any cardinal  < ⌘, |j(A)|M > j(), and therefore |A| > .

It follows that |A| � ⌘. Thus W is uniform.

Case 2. �U⇤ < sup j[⌘].

Proof in Case 2. Fix  < ⌘ and B 2 U⇤ such that letting � = |B|M , we have � < j(). Let

A = j�1[B]. Then A 2 U so |A| = ⌘+ since U is a uniform ultrafilter on ⌘+. Since j[A] ✓ B,

it follows that j is (⌘+, �)-tight.

We claim that j is discontinuous at every regular cardinal ◆ in the interval [, ⌘+]. To see

this, note that j(◆) > � is a regular cardinal of M . On the other hand, j[◆] is contained in a

set C 2 M such that |C|M  � since j is (◆, �)-tight. Therefore C is not cofinal in j(◆), and

hence neither is j[◆]. It follows that j is discontinuous at ◆.

Since j is discontinuous at every regular cardinal in the interval [, ⌘+], which contains

⌘, it follows that either ⌘ is a regular Fréchet cardinal or ⌘ is a singular cardinal and all

su�ciently large regular cardinals below ⌘ are Fréchet.

Thus in either case, the conclusion of the proposition holds.

An interesting feature of Proposition 7.4.4 is that it does not seem to show that every

⌘+-decomposable ultrafilter U is either ⌘-decomposable or ◆-decomposable for all su�ciently

large ◆ < ⌘. Instead the proof shows that this is true of U2. (Under UA, we can in fact

prove that every ⌘+-decomposable countably complete ultrafilter U is either ⌘-decomposable

or ◆-decomposable for all su�ciently large ◆ < ⌘.)

Proposition 7.4.4 has two important consequences. The first is our claim above that one

need only show that all successor cardinals in [�,�] are Fréchet to conclude that all regular

cardinals in [�,�] are. (This is really just a consequence of Theorem 7.4.3.)

Corollary 7.4.5. Suppose   � are cardinals and every successor cardinal in the interval

(,�] is Fréchet. Then every regular cardinal in the interval [,�) is Fréchet.
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Proof. Suppose ◆ is a regular cardinal in the interval [,�). Then ◆+ 2 (,�], so ◆+ is a

Fréchet cardinal. Therefore ◆ is a Fréchet cardinal by Proposition 7.4.4.

The consequence of Proposition 7.4.4 that is ultimately most important here is a con-

straint on the Fréchet successor operation:

Corollary 7.4.6. Suppose � is an ordinal and �� is a successor cardinal. Then �� = �+.

Proof. Suppose towards a contradiction that �� = ⌘+ for some cardinal ⌘ > �. Since ⌘+ is

Fréchet, by Proposition 7.4.4, ⌘ is either Fréchet or a limit of Fréchet cardinals. Either way,

there is a Fréchet cardinal in the interval (�, ⌘+). But the definition of �� implies that there

are no Fréchet cardinals in (�, ��). This is a contradiction.

Thus �� = ⌘+ for some cardinal ⌘  �. In other words, �� = �+.

The problematic cases in the analysis of the Fréchet successor function therefore occur

when �� is a limit cardinal:

Definition 7.4.7. A cardinal � is isolated if the following hold:

• � is Fréchet.

• � is a limit cardinal.

• � is not a limit of Fréchet cardinals.

By Proposition 7.4.4, � is isolated if and only if � = �� for some ordinal � such that

�+ < �. Our analysis of Fréchet cardinals would be essentially complete if we could prove

the following conjecture:

Conjecture 7.4.8 (UA). A cardinal � is isolated if and only if � is a measurable cardinal,

� is not a limit of measurable cardinals, and no cardinal  < � is �-supercompact.

Proposition 7.5.4 below shows that Conjecture 7.4.8 is a consequence of UA + GCH, so

to some extent this problem is solved in the most important case. But assuming UA alone,
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we do not know how to rule out, for example, the existence of singular isolated cardinals.

Enacting an analysis of isolated cardinals under UA that is as complete as possible allows

us to prove our main results without cardinal arithmetic assumptions.

The strong compactness of 
�

In this section we will prove the following theorem:

Theorem 7.4.9 (UA). Suppose � is a nonisolated regular Fréchet cardinal. Then � is

�-strongly compact.

This yields the following corollary, which gives a complete analysis of Fréchet successor

cardinals:

Corollary 7.4.10 (UA). Suppose � is a Fréchet successor cardinal. Then � is �-supercompact

and in fact the ultrapower embedding associated to K� is �-supercompact.

Proof. This is an immediate consequence of Theorem 7.4.9 and Theorem 7.3.34.

In general, we only obtain

Proposition 7.4.11 (UA). Suppose � is a nonisolated regular Fréchet cardinal. Then �

is <�-supercompact and �-strongly compact. In fact, the ultrapower embedding associated to

K� is <�-supercompact and �-tight.

Proof. This is an immediate consequence of Theorem 7.4.9 and Theorem 7.3.33.

As we have sketched above, the proof of Theorem 7.4.9 will follow from an analysis of

Fréchet cardinals in the interval [�,�]:

Lemma 7.4.12. Suppose   � are cardinals and there are no isolated cardinals in the

interval (,�]. Suppose that for all � 2 [,�), there is a Fréchet cardinal in the interval

(�,�]. Then every regular cardinal in the interval [,�) is Fréchet.
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Proof. Since � is Fréchet, we need only show that every regular cardinal in the interval [,�)

is Fréchet. By Corollary 7.4.5, for this it is enough to show that every successor cardinal in

the interval (,�] is Fréchet. In other words, it su�ces to show that for any ordinal � 2 [,�),

�+ is Fréchet. Therefore fix � 2 [,�). By assumption, �� 2 (�,�], so in particular �� is not

isolated. Therefore �� is not a limit cardinal. It follows that �� is a successor cardinal, so

by Proposition 7.4.4, �� = �+, as desired.

Our goal now it to prove the following lemma:

Lemma 7.4.13 (UA). Suppose � is a Fréchet cardinal that is either regular or isolated.

Then there are no isolated cardinals in the interval [�,�).

Given this, we could complete the proof of Theorem 7.4.9 as follows:

Proof of Theorem 7.4.9 assuming Lemma 7.4.13. By Lemma 7.4.13, there are no isolated

cardinals in the interval [�,�). Since � is not isolated, there are no isolated cardinals in

the interval [�,�]. Therefore applying Lemma 7.4.12, every regular cardinal in the interval

[�,�] is Fréchet. By Proposition 7.4.1, it follows that � is �-strongly compact.

We now proceed to the proof of Lemma 7.4.13. We will first need to improve our un-

derstanding of isolated cardinals. The first step is to provide some criteria that guarantee a

cardinal’s nonisolation:

Lemma 7.4.14. Suppose ⌘ is a limit cardinal. Suppose U is a countably complete uniform

ultrafilter on ⌘. Suppose W is a countably complete ultrafilter such that jW is discontinuous

at ⌘ and U @ W . Then ⌘ is a limit of Fréchet cardinals.

Proof. Let i : V ! N be the ultrapower of the universe by W . Let

U⇤ = sW (U) = {B 2 i(P (�)) : i�1[B] 2 U}

By Lemma 5.5.9, U⇤ 2 N .

Case 1. �U⇤ � sup i[⌘]
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Proof in Case 1. Working in N , �U⇤ is a Fréchet cardinal � with sup i[⌘]  � < i(⌘). It

follows that for any  < ⌘, N satisfies that there is a Fréchet cardinal strictly between i()

and i(⌘), and so by elementarity there is a Fréchet cardinal strictly between  and ⌘. It

follows that ⌘ is a limit of Fréchet cardinals.

Case 2. �U⇤ < sup i[⌘]

Proof in Case 2. Fix  < ⌘ and B 2 U⇤ such that letting � = |B|N , � < i(). Let A = i�1[B].

Then A 2 U , so |A| = ⌘ by the uniformity of U . Since |A| = ⌘ and i[A] ✓ B, i is (⌘, �)-tight

by Theorem 7.2.12. It follows that i is discontinuous at every regular cardinal in the interval

[, ⌘]. (See the proof of Proposition 7.4.4.) In particular, ⌘ is a limit of Fréchet cardinals.

In either case, ⌘ is a limit of Fréchet cardinals, as desired.

The second nonisolation lemma brings in a bit more of the theory of the internal relation:

Lemma 7.4.15 (UA). Suppose ⌘ is a Fréchet limit cardinal. Suppose there is a countably

complete ultrafilter W such that K⌘ @ W but W 6@ K⌘. Then ⌘ is a limit of Fréchet

cardinals.

Proof. By Lemma 7.4.14, if jW is discontinuous at ⌘, then ⌘ is a limit of Fréchet cardinals.

Therefore assume without loss of generality that jW is continuous at ⌘.

By the basic theory of the internal relation (Lemma 5.5.13), since K⌘ @ W , the transla-

tion tW (K⌘) is equal to the pushforward sW (K⌘).

Since W 6@ K⌘, the theory of the internal relation (Lemma 5.5.13) implies that in MW ,

tW (K⌘) <k jW (K⌘). Since MW satisfies that jW (K⌘) is the <k-least uniform ultrafilter on

jW (⌘), it follows that

�t
W

(K
⌘

) < jW (⌘)

But tW (K⌘) = sW (K⌘) and jW (⌘) = sup jW [⌘] by our assumption that jW is continuous at

⌘. Thus

�s
W

(K
⌘

) < sup jW [⌘]
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Fix  < ⌘ and B 2 sW (K⌘) such that � = |B|MW < jW (). Let A = j�1
W [B]. Then

A 2 K⌘, so |A| = ⌘. Moreover jW [A] ✓ B 2 MW , so jW is (⌘, �)-tight. In particular, jW

is discontinuous at every regular cardinal in the interval [, ⌘]. (See the proof of Proposi-

tion 7.4.4.) Therefore ⌘ is a limit of Fréchet cardinals.

Finally, we need a version of Theorem 7.3.14 that applies at singular cardinals.

We use a lemma that follows immediately from the ultrafilter sum construction:

Lemma 7.4.16. Suppose U is a countably complete ultrafilter on a cardinal � and U 0 is

a countably complete MU -ultrafilter with �U 0  jU(�). Then there is a countably complete

ultrafilter W on � such that jW = jMU

U 0 � jU .

Proposition 7.4.17 (UA). Suppose � is an isolated cardinal. Then K� is �-internal.

Proof. Suppose D is a countably complete ultrafilter on a cardinal � < �. We will show

D @ K�. Since � is isolated, by increasing �, we may assume � = ��.

Assume towards a contradiction that in MD,

tD(K�) <k jD(K�)

Then �t
D

(K
�

) < jD(�), and so since �t
D

(K
�

) is a Fréchet cardinal of MD, �t
D

(K
�

)  jD(�).

Therefore, there is an ultrafilter W on � such that

jW = jMD

t
D

(K
�

) � jD = j
MK

�

tK
�

(D) � jK�

It follows from the basic theory of the Rudin-Keisler order (Lemma 3.4.4) that K� RK W ,

which contradicts that �K
�

= � > � � �W .

Thus our assumption was false, and in fact, jD(K�) k tD(K�) in MD. By the theory of

the internal relation (Lemma 5.5.13), this implies that D @ K�.

In Section 7.5, we prove a much stronger version of this theorem that constitutes a

complete generalization of Theorem 7.3.13 to isolated cardinals.
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Lemma 7.4.18 (UA). Suppose ⌘ < � is are Fréchet cardinals that are regular or isolated.

Then either ⌘ < � or K� 6@ K⌘.

Proof. By Theorem 7.3.14 or Proposition 7.4.17, K⌘ and K� are �-internal.

Assume K� @ K⌘. Note that we also have K⌘ @ K� since K� is �-uniform. By

Proposition 5.5.26, ⌘ < �.

We can finally prove Lemma 7.4.13.

Proof of Lemma 7.4.13. Suppose towards a contradiction that ⌘ 2 [�,�) is isolated. Then

by Lemma 7.4.18, K� 6@ K⌘. Therefore by Lemma 7.4.15, ⌘ is a limit of Fréchet cardinals,

contrary to the assumption that ⌘ is isolated.

Since we will use it repeatedly, it is worth noting that � can be characterized in terms

of isolated cardinals:

Lemma 7.4.19 (UA). Suppose � is a nonisolated regular Fréchet cardinal. Then � is the

supremum of the isolated cardinals less than �.

Proof. Let  be the supremum of the isolated cardinals less than �. By Lemma 7.4.13, there

are no isolated cardinals in the interval [�,�), so   �.

Since there are no isolated cardinals in the interval (,�], Lemma 7.4.12 implies that

every regular cardinal in the interval [,�] is Fréchet. By Proposition 7.4.1, it follows that

�  . Thus � = , as desired.

The first supercompact cardinal

In this subsection, we show how the theory of the internal relation can be used to characterize

the least supercompact cardinal (and its local instantiations).

Theorem 7.4.20 (UA). Suppose � is a successor cardinal and  is the least (!1,�)-strongly

compact cardinal. Then  is �-supercompact. In fact,  = �.
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Proof. Since  is (!1,�)-strongly compact, every regular cardinal in the interval [,�] is

Fréchet. By Proposition 7.4.1, �  . By Corollary 7.4.10, � is �-supercompact. In

particular, � is (!1,�)-strongly compact. Therefore   �, and hence  = �. Thus  is

�-supercompact, as desired.

Corollary 7.4.21 (UA). Suppose � is a successor cardinal and  is the least �-strongly

compact cardinal. Then  is �-supercompact. In fact,  = �.

Corollary 7.4.22 (UA). The least (!1,Ord)-strongly compact cardinal  is supercompact.

Proof. No cardinal � <  is (!1,)-strongly compact. In particular, for any successor cardinal

� > ,  is the least (!1,�)-strongly compact cardinal. Therefore  is �-supercompact by

Theorem 7.4.20.

Theorem 7.4.23 (UA). The least strongly compact cardinal is supercompact.

Lemma 3.5.43 identifies the following ordinals as key thresholds in the structure theory

of countably complete ultrafilters:

Definition 7.4.24. The ultrapower threshold is the least cardinal  such that for all ↵, there

is an ultrapower embedding j : V ! M such that j() > ↵.

Suppose � is an ordinal. The �-threshold is the least ordinal   � such that for all ↵ < �

is an ultrapower embedding j : V ! M such that j() > ↵.

The ultrapower threshold cannot be proved to exist without large cardinal assumptions,

but for any ordinal �, the �-threshold exists and is less than or equal to �.

Lemma 7.4.25. Suppose  is a cardinal. If  is the �-threshold for some ordinal � then 

is the -threshold.

Proof. We may assume without loss of generality that  < �. Let ⌫   be the -threshold.

286



We claim that for any ↵ < �, there is an ultrapower embedding h : V ! N such that

h(⌫) > ↵. Fix ↵ < �. Let j : V ! M be such that j() > ↵. In M , j(⌫) is the j()-

threshold, so since ↵ < j(), there is an internal ultrapower embedding i : M ! N such

that i(j(⌫)) > ↵. Let h = i � j. Then h : V ! N is an ultrapower embedding such that

h(⌫) > ↵, as desired.

By the minimality of the �-threshold,   ⌫. Hence  = ⌫ as desired.

Theorem 7.4.26 (UA). Suppose � is a strong limit cardinal and  < � is the �-threshold.

Then  is �-supercompact for all � < �.

The proof uses the following lemma, an often-useful approximation to Conjecture 7.4.8:

Lemma 7.4.27 (UA). Suppose �0 is an isolated cardinal and �1 = (�0)�. Then �1 is

measurable.

Proof. Note that �1 > �0: otherwise �0 2 [�1 ,�1) contrary to the fact that there are no

isolated cardinals in the interval [�1 ,�1) by Lemma 7.4.13. Since �1 is measurable, �1

is Fréchet. Hence �1 = (�0)�  �1 . Obviously �1  �1, so �1 = �1. Therefore �1 is

measurable.

Proof of Theorem 7.4.26. By induction, we may assume that the theorem holds for all strong

limit cardinals �̄ < �.

Suppose ↵ < �. We claim that there is a countably complete ultrafilter D with �D < �

such that jD() > ↵. To see this, fix an ultrapower embedding j : V ! M such that

jD() > ↵. Then by Lemma 5.5.27, one can find a countably complete ultrafilter D such

that �D  2|↵| < � and an elementary embedding k : MD ! M such that k � jD = j and

crt(k) > ↵. Since k(jD()) = j() > ↵ = k(↵), by the elementarity of k, jD() > ↵.

Next, we show that � is a limit of Fréchet cardinals. Suppose � is a cardinal with

  � < �. We will find a Fréchet cardinal in the interval (�,�). By the previous paragraph,

there is a countably complete ultrafilter D such that jD() � (2�)+ and �D < �. On the
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other hand � < �D since 2� < |jD()|  �
D = 2�D . Thus �D is a Fréchet cardinal in the

interval (�,�), as desired.

We claim that every regular cardinal in the interval [,�) is Fréchet. By Lemma 7.4.12, it

su�ces to show that there are no isolated cardinals in the interval [,�). Suppose �0 2 [,�)

is isolated. Let �1 = (�0)�. Lemma 7.4.27 implies that �1 is measurable. Since � is a limit

of Fréchet cardinals, �1 < �. Note that for all ↵ < �1, there is an ultrapower embedding

j : V ! M such that j() > ↵, so the �1-threshold 0 is less than �1. By our induction

hypothesis, 0 is �-supercompact for all � < �1. This contradicts that �1 = (�0)� is not a

limit of Fréchet cardinals.

We finally claim that  is �-supercompact for any successor cardinal � 2 (,�), which

proves the theorem. Suppose � 2 (,�) is a successor cardinal. Then � is �-supercompact

by Corollary 7.4.10. Since � is the limit of the isolated cardinals below � (Lemma 7.4.19),

�  . On the other hand, by Lemma 7.4.25,  is the -threshold, so in particular, no

⌫ <  is -supercompact. Hence � 6< . It follows that  = �, as desired.

The number of countably complete ultrafilters

We close this section with a result that just barely uses the analysis of K� given by Theo-

rem 7.3.14 and Proposition 7.4.17. Recall that B(X) denotes the set of countably complete

ultrafilters on X. The main result is a bound on the cardinality of B(X):

Theorem 7.4.28 (UA). For any set X, |B(X)|  (2|X|)+.

The theorem is proved by a generalizing Solovay’s Proposition 6.3.6. To do this, we need

to generalize the notion of the Mitchell rank of an ultrafilter:

Definition 7.4.29. Suppose � is an ordinal and W is a countably complete ultrafilter on �.

• BW (�) denotes the set of countably complete ultrafilters U on � such that U <k W .

• �(W ) denotes the rank of (BW (�), <k).
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• �(�) denotes the rank of (B(�), <k).

• �(<�) = sup↵<� �(↵) + 1.

Since the Ultrapower Axiom implies that the Ketonen order is linear, the rank of an

ultrafilter completely determines its position in the Ketonen order:

Lemma 7.4.30 (UA). Suppose U and W are countably complete ultrafilters on ordinals.

Then U k W if and only if �(U)  �(W ).

The following lemma relates �V to �M
U :

Lemma 7.4.31 (UA). Suppose U is a countably complete ultrafilter and W is a countably

complete ultrafilter on an ordinal �. Then �(W )  �M
U (tU(W )).

Proof. It su�ces to show that there is a Ketonen order preserving embedding from BW (�) to

BM
U

t
U

(W )(jU(�)). By Theorem 5.4.42, the translation function tU restricts to such a function.

We briefly mention that a version of Lemma 7.4.31 is provable in ZFC. Suppose Z is a

countably complete ultrafilter and W is an ultrafilter on an ordinal �. If hWi : i 2 Ii is

sequence of countably complete ultrafilters on � such that W = Z- limi2I Wi, then

�(W )  [h�(Wi) : i 2 Ii]Z

We omit the proof, which is an application of Lemma 3.3.10.

Corollary 7.4.32 (UA). Suppose U is a countably complete ultrafilter and W is a countably

complete ultrafilter on an ordinal. If jU(�(W )) = �(W ) then U @ W .

Proof. Assume jU(�(W )) = �(W ). Then

�M
U (jU(W )) = jU(�(W )) = �(W )  �M

U (tU(W ))

For the final inequality, we use Lemma 7.4.31. By Lemma 7.4.30, it follows that jU(W ) k

tU(W ) inMU . By the theory of the internal relation (Lemma 5.5.13), this implies U @ W .
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Lemma 7.4.33 (UA). Suppose � is an ordinal. Then for any ordinal ⇠ 2 [�(<�), �(�)),

there is a countably complete tail uniform ultrafilter U on � with jU(⇠) > ⇠.

Proof. Let U be unique element of B(�) with �(U) = ⇠. Since ⇠ � ⌘, U does not concentrate

on ↵ for any ↵ < ⌘. Therefore U is a nonprincipal tail uniform ultrafilter on �. Since U

is nonprincipal, U 6@ U . Therefore jU(�(U)) > �(U) by Corollary 7.4.32. In other words,

jU(⇠) > ⇠.

The following fact is ultimately equivalent to Theorem 7.5.44 below:

Lemma 7.4.34 (UA). Suppose ⇠ and � are ordinals and U is the <k-minimum countably

complete ultrafilter on � such that jU(⇠) > ⇠. Then for any countably complete ultrafilter D

such that jD(⇠) = ⇠, D @ U .

Proof. Since jD is elementary and jD(⇠) = ⇠, jD(U) is the <M
D

k -minimum countably complete

ultrafilter Z of MD on jD(�) such that jMD

Z (⇠) > ⇠. On the other hand, tD(U) is a countably

complete ultrafilter of MD on jD(�) such that

jMD

t
D

(U)(⇠) = jMD

t
D

(U)(jD(⇠)) = jMU

t
U

(D)(jU(⇠)) � jU(⇠) > ⇠

Hence by the linearity of the Ketonen order, jD(U) k tD(U) in MD. Now the basic theory

of the internal relation (Lemma 5.5.13) implies that D @ U .

The central combinatorial argument of Theorem 7.4.28 appears in the following proposi-

tion:

Proposition 7.4.35 (UA). Suppose � is a Fréchet cardinal. Then for any ordinal � < �,

|B(�)|  2�.

Proof. Assume towards a contradiction that � is the least Fréchet cardinal at which the

theorem fails. In particular, � is not a limit of Fréchet cardinals, so by Theorem 7.3.14 or

Proposition 7.4.17, K� is �-internal. Let � < � be the least ordinal such that |B(�)| > 2�.

Then in particular, � is the least ordinal such that �(�) � (2�)+, so �(<�) < (2�)+.
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Let ⇠ be an ordinal with the following properties:

• �(<�)  ⇠ < (2�)+.

• For all ↵ < �, for all D 2 B(↵), jD(⇠) = ⇠.

• jK
�

(⇠) = ⇠.

To see that such an ordinal ⇠ exists, let S =
S

↵<� B(↵) [ {K�}. Note that |S|  2� by the

minimality of �. For each D 2 S, the collection of fixed points of jD is !-closed unbounded

in (2�)+. Therefore the intersection of the fixed points of jD for all D 2 S is !-closed

unbounded in (2�)+.

Since ⇠ 2 [�(<�), �(�)), Lemma 7.4.33 implies that there is a countably complete tail

uniform ultrafilter U on � with jU(⇠) > ⇠. Let U be the <k-least countably complete

ultrafilter on � such that jU(⇠) > ⇠. By Lemma 7.4.34, U is �-internal, and moreover

K� @ U .

Since �U < �, U @ K�. Thus U @ K� and K� @ U , so by Theorem 5.5.22, U and K�

commute. Since U is �U -internal and K� is �-internal, we can apply the converse to Kunen’s

commuting ultrapowers lemma (Proposition 5.5.26) to obtain U 2 V
�

. (Obviously K� is

not in V where  is the completeness of U .) In particular � < �. But then |B(�)|+ < �

since � is inaccessible. This contradicts that �  � < (2�)+  �(�) < |B(�)|+.

The proof above is a bit mysterious, and the situation can be clarified by doing a bit

more work than the bare minimum required to prove the theorem. In fact one can prove the

following. Suppose � is a Fréchet cardinal that is either regular or isolated. Let ⇠ be the first

fixed point of jK
�

above �. Then for any D <k K�, jD(⇠) = ⇠. The <k-minimum countably

complete ultrafilter U on � such that jU(⇠) > ⇠, if it exists, is isomorphic the C-least normal

fine ultrafilter U on P
�

(�) such that K� C U . This is related to Proposition 8.4.19.

Incidentally, Proposition 7.4.35 yields an alternate proof of instances of GCH from UA

plus large cardinals. For example, assume |B()| = 22


, |B(+)| > 2(
+), and ++ is Fréchet.
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Then

22


= |B()|  2(
+) < |B(+)|  2(

++)

Thus 22


< 2(
++), and in particular 2 < ++. In other words, 2 = +. (This result is not

as strong as Theorem 6.3.15.)

Proposition 7.4.35 admits the following self-improvement:

Theorem 7.4.36 (UA). For any Fréchet cardinal �, for any W 2 B(�), |BW (�)|  2�.

Hence �(�)  (2�)+.

Proof. For ↵  �, let B(�,↵) = {Z 2 B(�) : �Z  ↵}. By the definition of the Ketonen

order, every element of BW (�) is of the form W - lim↵2I U↵ for some I 2 W and hU↵ : ↵ 2
Ii 2 Q↵2I B(�,↵). Thus |BW (�)|  |`I✓�

Q

↵2I B(�,↵)|. It therefore su�ces show that

the cardinality of
`

I✓�

Q

↵2I B(�,↵) is at most 2�. Since

�

�

`

I✓�

Q

↵2I B(�,↵)
�

� = 2� · supI✓�

Q

↵2I |B(�,↵)|

it su�ces to show that |B(�,↵)|  2� for all ↵ < �. But there is a one-to-one correspondence

between B(�,↵) and B(↵), and by Proposition 7.4.35, |B(↵)|  �(↵) < (2�)+. Thus

|B(�,↵)|  2�, which completes the proof.

We finally prove |B(X)|  (2|X|)+:

Proof of Theorem 7.4.28. For A ✓ X, let

B(X,A) = {U 2 B(X) : A 2 U}

For any A ✓ X of cardinality �, |B(X,A)| = |B(A)| = |B(�)|. Since every ultrafilter U

concentrates on a set whose cardinality is a Fréchet cardinal, we have

B(X) =
[

{B(X,A) : A ✓ X and |A| is Fréchet}

Hence

|B(X)|  2|X| · sup{|B(�)| : �  |X| is Fréchet} (7.3)
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By Theorem 7.4.36, for any Fréchet cardinal � such that �  |X|, |B(�)|  (2�)+  (2|X|)+.

Hence by (7.3), |B(X)|  2|X| · (2|X|)+ = (2|X|)+, as desired.

7.5 Isolation

In this section, we study isolated cardinals more deeply. The main objects of study are

nonmeasurable isolated cardinals, yet we have the feeling that a clever argument might prove

that these objects simply do not exist. (See Conjecture 7.4.8.) So far, however, we have been

unable to rule them out. In this section, we show that there are significant constraints on

their structure, and this allows us to prove the linearity of the Mitchell order on normal fine

ultrafilters from UA without using any cardinal arithmetic assumptions (Theorem 7.5.39).

Isolated measurable cardinals

Recall that isolated cardinals are Fréchet limit cardinals that are not limits of Fréchet car-

dinals. We begin by giving a full analysis of cardinals that are limits of Fréchet cardinals.

This will lead us to a proof of Conjecture 7.4.8 for strong limit isolated cardinals.

Lemma 7.5.1 (UA). Suppose � is a limit of Fréchet cardinals. Let  be the supremum of the

isolated cardinals less than �, and assume  < �. Then  is �-supercompact for all � < �.

In fact,  = ◆ for all regular cardinals ◆ 2 [,�).

Proof. Since there are no isolated cardinals in the interval [,�), Lemma 7.4.12 implies that

every regular cardinal in the interval [,�) is Fréchet. Assume ◆ 2 [,�) is a regular cardinal.

Then ◆ is a nonisolated Fréchet cardinal. Since  is the supremum of the isolated cardinals

below ◆,  = ◆ by Lemma 7.4.19. Now by Proposition 7.4.11,  is �-supercompact for all

� < ◆. Since ◆ was an arbitrary regular cardinal in [,�) and � is a limit cardinal,  is

�-supercompact for all � < �.

Corollary 7.5.2 (UA). Suppose � is a cardinal. Then the following are equivalent:
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Figure 7.2: The interval of nonisolated cardinals below a Fréchet cardinal.

(1) � is a limit of Fréchet cardinals.

(2) Either � is a limit of isolated measurable cardinals or some  < � is �-supercompact for

all � < �.

Proof. (1) implies (2): First assume � is a limit of isolated cardinals. Then by Lemma 7.4.27,

� is a limit of isolated measurable cardinals.

Assume instead that � is not a limit of isolated cardinals and let  < � be the supremum

of the isolated cardinals below �. By Lemma 7.5.1,  is �-supercompact for all � < �.

(2) implies (1): Trivial.
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In particular, it follows that every limit of Fréchet cardinals is a strong limit cardinal: if

� is a limit of measurable cardinals, this is immediate; on the other hand, if some  < � is

�-supercompact for all � < �, then Theorem 6.3.12 implies that for all � 2 [,�), 2� = �+.

Lemma 7.5.3 (UA). Suppose � is a strong limit cardinal such that no cardinal  < � is

�-supercompact for all � < �. Then for all ultrapower embeddings j : V ! M , j[�] ✓ �. In

fact, no ordinal  < � can be mapped arbitrarily high below � by ultrapower embeddings.

Proof. This is immediate from Theorem 7.4.26.

The following proposition shows that all the mystery of isolated cardinals falls away if

one assumes the Generalized Continuum Hypothesis.

Proposition 7.5.4 (UA). Suppose � is cardinal. Then the following are equivalent:

(1) � is a strong limit isolated cardinal.

(2) � is a measurable cardinal, � is not a limit of measurable cardinals, and no cardinal

 < � is �-supercompact.

Proof. (1) implies (2): Since � is not a limit of Fréchet cardinals, clearly � is not a limit

of measurable cardinals and no  < � is �-supercompact. It remains to show that � is

measurable. Let j : V ! M be the ultrapower of the universe by K�. Note that j[�] ✓ �

by Lemma 7.5.3. By Proposition 7.4.17, D @ K� for all D with �D < �. Therefore by

Lemma 5.5.28, K� is �-complete. Since there is a �-complete uniform ultrafilter on �, � is

measurable.

(2) implies (1): Since � is measurable, � is a strong limit cardinal. It remains to show

that � is isolated. Note that no cardinal  < � is �-supercompact for all � < �: since � is

measurable, this would imply  is �-supercompact, contrary to assumption. Corollary 7.5.2

now implies that � is not a limit of Fréchet cardinals. Therefore � is isolated.

The main application of isolated measurable cardinals is factoring ultrapower embed-

dings:
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Theorem 7.5.5 (UA). Suppose  is a strong limit cardinal that is not a limit of Fréchet

cardinals. Suppose U is a countably complete ultrafilter. Then there is a countably complete

ultrafilter D such that �D <  admitting an internal ultrapower embedding h : MD ! MU

such that h � jD = jU and crt(h) �  if h is nontrivial.

Proof. Fix � <  such that  = ��. By Lemma 5.5.27, one can find a countably complete

ultrafilter D such that �D <  and there is an elementary embedding e : MD ! MU such

that crt(e) > i10(�) and e � jD = jU . Let � = �D. We may assume without loss of

generality that � is the underlying set of D. Since � <  is a Fréchet cardinal, �  �. Let

�0 = jD(�). Then �0 < (2�)+, so 22
�

0
< i10(�). Since e : MD ! MU has critical point above

22
�

0
,

P (P (�0)) \MD = P (P (�0)) \MU

Thus the following hold where B(X) denotes the set of countably complete ultrafilters on

X:

• �0 = jD(�) = e(�0) = jU(�).

• BM
D(�0) = BM

U (�0).

• M
D

k � BM
D(�0) = M

U

k � BM
U (�0)

• jD � P (�) = jU � P (�).

By Theorem 5.4.40, tD(D) is the M
D

k -least element D0 2 BM
D(�0) such that j�1

D [D0] =

D. By Theorem 5.4.40, tU(D) is theM
U

k -least elementD0 2 BM
U (�0) such that j�1

U [D0] = D.

By the agreement set out in the bullet points above, it therefore follows that tD(D) = tU(D).

On the other hand, by Lemma 5.4.39, tD(D) is principal in MD. Thus tU(D) is principal in

MU . Therefore by Lemma 5.4.39, D RF U .

Let h : MD ! MU be the internal ultrapower embedding with h � jD = jU . By Theo-

rem 3.5.10, h(↵)  e(↵) for all ↵ 2 Ord, so crt(h) � crt(e) > i10(�) > jD(�). Since h

is an internal ultrapower embedding of MD, if h is nontrivial then crt(h) is a measurable
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cardinal of MD above jD(�). Since there are no measurable cardinals in the interval (�,),

there are no measurable cardinals of MD in the interval (jD(�), jD()). Therefore if h is

nontrivial, then crt(h) � .

Ultrafilters on an isolated cardinal

In this subsection, which is perhaps the most technical of this dissertation, we enact a very

detailed analysis of the countably complete ultrafilters on an isolated cardinal �. One of the

goals is to prove the following theorem:

Lemma 7.5.6. Suppose � is an isolated cardina and W is a countably complete ultrafilter.

Then K� RF W if and only if W is �-decomposable and W @ K� is and only if W is

�-indecomposable.

This should be seen as a generalization of the universal property for K� when � is regular

to isolated cardinals �.

We begin with the following fact:

Theorem 7.5.7 (UA). Suppose � is an isolated cardinal. Then K� is the unique countably

complete weakly normal ultrafilter on �.

It turns out to be easier to prove something that is a priori slightly stronger. Recall the

notion of the Dodd parameter p(j) of an elementary embedding j, defined in Definition 4.3.17

in the general context of elementary embeddings, and once again in Definition 5.4.24 in the

more relevant special case of ultrapower embeddings.

Proposition 7.5.8 (UA). Suppose � is an isolated cardinal. Then K� is the unique count-

ably complete incompressible ultrafilter U on � such that |p(jU)| = 1.

Proof. Suppose towards a contradiction that the proposition fails. Let U be the <k-least

countably complete incompressible ultrafilter on � such that p(jU) = 1 and U 6= K�. Since

K� is the <k-least uniform ultrafilter on �, K� <k U .

297



Let j : V ! M be the ultrapower of the universe by K� and let ⌫ = aK
�

. Let i : V ! N

be the ultrapower of the universe by U and let ⇠ = aU . By the incompressibility of U ,

p(jU) = {⇠}.
Let (k, h) : (M,N) ! P be the pushout of (j, i). Since K� <k U ,

k(⌫) < h(⇠) (7.4)

We claim that h(⇠) is a generator of k : M ! P , or in other words that

h(⇠) /2 HP (k[M ] [ h(⇠))

Since ⇠ is a generator of i, h(⇠) is a generator of h � i by Lemma 5.4.25. Since k � j = h � i,
h(⇠) is a generator of k � j. Since M = HM(j[V ] [ {⌫}),

HP (k[M ] [ h(⇠)) = HP (k � j[V ] [ {k(⌫)} [ h(⇠)) = HP (k � j[V ] [ h(⇠))

The final equality follows from (7.4). Therefore since h(⇠) /2 HP (k � j[V ] [ h(⇠)), h(⇠) /2
HP (k[M ] [ h(⇠)), as desired.

Let Z = tK
�

(U), so Z is the M -ultrafilter on j(�) derived from k using h(⇠). Then Z is

a countably complete ultrafilter on j(�) and aZ = h(⇠) is a generator of jMZ = k.

We claim that Z is an incompressible ultrafilter on j(�) in M . Since aZ = h(⇠) is a

generator of jMZ , it su�ces to show that Z is tail uniform, or in other words, �Z = j(�). Since

aZ is a generator of jMZ , �Z = �Z is a Fréchet cardinal in M . By (7.4), �Z > aK
�

. Since U is

on �, ⇠ < i(�), so h(⇠) < h(i(�)) = k(j(�)), which implies �Z  j(�). Thus �Z 2 (aK
�

, j(�)].

Since � is isolated, no Fréchet cardinal of M lies in the interval [sup j[�], j(�)). Therefore

�Z = j(�), as desired.

It follows that in M , Z is a countably complete incompressible ultrafilter on j(�). More-

over p(jMZ ) = {h(⇠)} by Lemma 5.4.26, so p(jMZ ) has cardinality 1.

We claim that Z 6= j(K�). The reason is that j�1[Z] = U (since Z = tK
�

(U)) while

j�1[j(K�)] = K�.
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Thus we have shown that in M , Z is a countably complete incompressible ultrafilter on

j(�) such that |p(jMZ )| = 1 and Z 6= j(K�). By the definition of U and the elementarity

of j, it follows that j(U) k Z in M . Lemma 5.5.13 now implies that K� @ U . But jU

is discontinuous at � since �U = �. Thus by Lemma 7.4.14, � is not isolated. This is a

contradiction.

Proof of Theorem 7.5.7. If U is a countably complete weakly normal ultrafilter on �, then

U is incompressible and p(jU) = {aU} by Proposition 4.4.23. Therefore we can apply Propo-

sition 7.5.8.

We now investigate the iterated ultrapowers of K�.

Definition 7.5.9. If � is an isolated cardinal, then the iterated ultrapower of K� is the

iterated ultrapower

I� = hM�
n , j

�
mn, U

�
m : m  n < !i

formed by setting U�
m = j�0m(K�) for all m < !. For n < !, let pn� = p(j�0n), and let K n

� be

the ultrafilter on [�]` derived from j�0n using pn� where ` = |pn�|.

Thus j�0,n : V ! M�
n is the ultrapower of the universe by K n

� . We now analyze the

parameters pn:

Lemma 7.5.10. Suppose � is an isolated cardinal. Let hMn, jm,n, Um : m  n < !i be the

iterated ultrapower of K�. For n < !, let pn = pn�. Then for all n < !, |pn| = n and

pn+1 � n = j01(p(j0n)) (7.5)

pn+1
n = j01(j0n)(aK

�

)

Proof. Note that the conclusion of the lemma holds when n = 0. Assume m � 1 and that

the conclusion of the lemma holds when n = m � 1. We will prove that the conclusion of

the lemma holds when n = m.

Note that

j0m+1 = j1m+1 � j01 = j01(j0m) � j01 = j01 � j0m

299



Figure 7.3: The iterated ultrapower of K�.

Since pm is the Dodd parameter of j0m, pm+1 is the Dodd parameter of j0m+1, and

j0m+1 = j01 � j0m, j01(pm) < pm+1 in the parameter order, and hence j01(pm)  pm+1 � m.

Let W be the Mm-ultrafilter derived from j01 using j01(j0m)(aK
�

). Then by the basic

theory of the internal relation (Lemma 5.5.9),

W = sK m

�

(K�)

jMm

W = j01 � Mn, aW = j01(j0m)(aK
�

), and

Mn+1 = HM
n+1(j0n+1[V ] [ j01(p

m) [ {j01(j0m)(aK
�

)})

It follows from the minimality of the Dodd parameter that

pm+1  j01(p
m) [ {j01(j0m)(aK

�

)} (7.6)
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By our induction hypothesis,

min pm = j01(j0m�1)(aK
�

) = j1m(aK
�

) � sup j1m[sup j01[�]] = sup j0m[�]

Therefore j0m(⇠) < min pm for all ⇠ < �, so by  Loś’s Theorem,

j01(j0m)(aK
�

) < min j01(p
m)

Combining this with (7.6), we can conclude that pm+1 � m  j01(pm).

Putting these two inequalities together, we have shown pm+1 � m = j01(pm).

By Lemma 5.4.26, to show (7.5), it su�ces to show that j01(j0m)(aK
�

) is the largest

j01(pm)-generator of j0m+1. By (7.6), it in fact su�ces to show that j01(j0m)(aK
�

) is a

j01(pm)-generator of j0m+1.

We claim that an ordinal ⇠ is a j01(pm)-generator of j0m+1 if and only if ⇠ is a generator

of j01 � Mm. This follows immediately from the fact that

HM
m+1(j0m+1[V ] [ j01(p

m) [ ⇠) = HM
m+1(j01[j0m[V ] [ pm] [ ⇠) = HM

m+1(j1m[Mm] [ ⇠)

for any ordinal ⇠.

Thus to finish, we must show that j01(j0m)(aK
�

) is a generator of j01 � Mm.

Let �0 = sup j0m[�]. We first show that �W = �0. By the definition of sK n

�

(K�), �0 2 W :

note that j�1
0m[�

0] = � 2 K�. It follows that �W  �0. Thus we are left to show that �0  �W .

Assume to the contrary that there is a set B 2 W such that for some  < �, letting

� = |B|Mm , � < j0m(). Then j0m is (�, �)-tight, and it follows that j0m is discontinuous at

all regular cardinals in the interval [,�]. (See the proof of Proposition 7.4.4.) Therefore �

is a limit of Fréchet cardinals, which contradicts that � is isolated.

Since �W = �0, j01 � Mm must have a generator in the interval [sup j01[�0], j01(�0)). Let ⇠

be the least such generator. Then

⇠  j01(j0m)(aK
�

)

by (7.6). Let U be the ultrafilter derived from j0m+1 using ⇠ and let k : MU ! Mm+1 be the

factor embedding with k � jU = j0m+1 and k(aU) = ⇠. Clearly ⇠ is a generator of j0m+1, so
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aU is a generator of jU . Therefore �U = �U = �, since sup j0m+1[�] = sup j01[�0]  ⇠. Thus U

is a uniform countably complete ultrafilter on � and p(jU) = {aU}, so by Proposition 7.5.8,

U = K�.

Thus k and j01(j0m) are elementary embeddings from M1 to Mm+1. Since j01(j0m) is an

internal ultrapower embedding of M1, it follows from Theorem 3.5.10 that

j01(j0m)(aK
�

)  k(aK
�

) = k(aU) = ⇠

Putting these inequalities together, ⇠ = j01(j0m)(aK
�

), and therefore j01(j0m)(aK
�

) is a gen-

erator of j01 � Mm, as desired.

A key parameter in the theory of Fréchet cardinals is the strict cardinal supremum of a

cardinal’s Fréchet predecessors:

Definition 7.5.11. For any cardinal �, �� = sup{⌘+ : ⌘ < � and ⌘ is Fréchet}.

If � is a Fréchet cardinal, then � is isolated if and only if �� < �.

We have the following immediate corollary:

Lemma 7.5.12 (UA). Suppose � is an isolated cardinal. Let hMn, jm,n, Um : m  n < !i be
the iterated ultrapower of K�. Suppose i : V ! N is an ultrapower embedding of the form

i = d � j0n where d : Mn ! N is the ultrapower of Mn by a countably complete ultrafilter D

of Mn with �D < j0n(��). Then p(i) \ i(��) = d(pn,�).

The following theorem amounts to a complete analysis of the ultrafilters on an isolated

cardinal:

Theorem 7.5.13 (UA). Suppose � is an isolated cardinal. Let hMn, jm,n, Um : m  n < !i
be the iterated ultrapower of K�. Suppose i : V ! N is the ultrapower by a countably

complete ultrafilter on �. Then for some n < !, i = d � j0n where d : Mn ! N is the

ultrapower of Mn by a countably complete ultrafilter D of Mn with �D < j0n(��).
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Proof. Suppose U is a countably complete ultrafilter on �. Assume by induction that the

proposition holds when i = jW for an ultrafilter W <k U .

Let i : V ! N be the ultrapower of the universe by U , and we will show that the theorem

is true for i.

If �U < �, then the theorem is vacuously true. Therefore we may assume �U = �.

Let j : V ! M be the ultrapower of the universe by K�. Let ⌫ = aK
�

.

Let (k, h) : (M,N) ! P be the pushout of (j, i). Since (k, h) is the pushout of (j, i), k

is the ultrapower embedding of M associated to tK
�

(U). Since �U = �, jU is discontinuous

at �. Hence by Lemma 7.4.14, K� 6@ U . Therefore by Lemma 5.5.13, tK
�

(U) <k j(U) in M .

We can now apply our induction hypothesis, shifted by j to M , to the ultrafilter tK
�

(U) of

M . We conclude that for some ` < !, k = d � j(j0`) where d : j(M`) ! P is the ultrapower

of j(M`) by a countably complete ultrafilter D of j(M`) such that �D < j(j0`)(j(��)). Let

n = `+ 1

Then j(j0`) = j1n, j(M`) = Mn, and j(j0`)(j(��)) = j1n(j(��)) = j0n(��). Thus

k = d � j1n

where d : Mn ! P is the ultrapower of Mn by a countably complete ultrafilter D of Mn such

that �D < j0n(��). Note that

k � j = d � j0n

has the form we want to show that i has.

Let p` = p`,� and let pn = pn,�, so that

pn = j(p`) [ {j1n(⌫)} (7.7)

by Lemma 7.5.10 and the fact that j1n = j01(j0`).
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Let q0 = p(k)\k(j(��)). By Lemma 7.5.12 applied inM , q0 = d(j(p`)). Since k�j = d�j0n,

p(k � j) \ k(j(��)) = p(d � j0n) \ d(j0n(��))

= d(pn) (7.8)

= d(j(p`) [ {j1n(⌫)}) (7.9)

= q0 [ {k(⌫)} (7.10)

Here (7.8) follows from Lemma 7.5.12; (7.9) follows from (7.7); (7.10) follows from the fact

that d(j(p`)) = q0 and d � j1n = k.

Let ⇠ be the least generator of i such that sup i[�]  ⇠ < i(�).

Claim 1. k(⌫) = h(⇠).

Proof of Claim 1. By Proposition 4.4.23, the ultrafilter derived from i using ⇠ is a countably

complete weakly normal ultrafilter on �, and hence is equal to K�. Let e : M ! N be the

factor embedding with e(⌫) = ⇠ and e�j = i. The comparison (e, id) witnesses (j, ⌫) k (i, ⇠).

Since (j, ⌫) k (i, ⇠), we must have k(⌫)  h(⇠).

Assume towards a contradiction that k(⌫) 6= h(⇠), so k(⌫) < h(⇠).

Let q = p(i)\sup i[�]. We claim that h(q) = p(k) � |q|. The proof is by induction. Assume

m < |q| and h(q) � m = p(k) � m. By Lemma 5.4.26, qm is the largest q � m-generator of

i. Hence h(qm) is the largest h(q � m)-generator of h � i. Replacing like terms, h(qm) is the

largest p(k) � m-generator of k � j. Since qm is a generator of i above sup i[�], qm � ⇠. Hence

h(qm) � h(⇠) > k(⌫) by our assumption that h(⇠) > k(⌫). Therefore h(qm) is not only a

p(k) � m-generator of k � j but also a p(k) � m [ {k(⌫)}-generator of k � j. In other words,

h(qm) is a p(k) � m-generator of k, and it must therefore be the largest p(k) � m-generator

of k. By Lemma 5.4.26, h(qm) = p(k)m.

Since q has no elements below sup i[�], in particular, q has no elements below i(��).

Therefore h(q) has no elements below h(i(��)) = k(j(��)). Since h(q) ✓ p(k) by the previous

paragraph, it follows that h(q) ✓ p(k) \ k(j(��)) = q0.
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We now claim that k(⌫) is a generator of h. To show this, it su�ces to show that k(⌫)

is a h(p(i))-generator of h � i. Let r = p(i) \ sup i[�]. Thus p(i) = q [ r. Note that

h(r) ✓ suph � i[�] = sup k � j[�]  k(⌫), since sup j[�]  ⌫. Hence h(r) ✓ k(⌫). Thus to

show that k(⌫) is a k(p(i))-generator of h � i, it su�ces to show that k(⌫) is a h(q)-generator

of h � i. Since h(q) ✓ q0, it su�ces to show that k(⌫) is a q0-generator of k � j. This is an

immediate consequence of (7.10): by Lemma 5.4.26, k(⌫) is the largest q0-generator of k � j.
Thus k(⌫) is a generator of h. LetW be the tail uniformN -ultrafilter derived from h using

k(⌫). Then W is an incompressible ultrafilter. We have sup i[�]  �W since suph[sup i[�]] =

sup k�j[�]  k(⌫). Moreover �W  ⇠ since k(⌫) < h(⇠). SinceW is incompressible, �W = �W .

But �W is a Fréchet cardinal of N and sup i[�]  �W  ⇠ < i(�). This contradicts that � is

isolated.

It follows that our assumption that k(⌫) 6= h(⇠) was false. This proves Claim 1.

Since k(⌫) = h(⇠), it follows from Lemma 5.3.10 that K� RF U . Let k0 : M ! N be

an internal ultrapower embedding. Then (k0, id) is a pushout of (j, i). By the uniqueness of

pushouts, k = k0 and h = id. Hence k : M ! N is the unique internal ultrapower embedding

such that k � j = i. Thus i = k � j = d � j0n. Since d : Mn ! N is the ultrapower of Mn by

a countably complete ultrafilter D of Mn with �D < j0n(�), this proves the proposition.

Corollary 7.5.14 (UA). Suppose � is an isolated cardinal. Let hMn, jm,n, Um : m  n < !i
be the iterated ultrapower of K�. Then for any ultrapower embedding k : V ! P , there is

some n < ! such that

k = h � d � j0n

where Mn
d�! N

h�! P are ultrapower embeddings with the following properties:

• d : Mn ! N is the ultrapower of Mn by a countably complete ultrafilter D of Mn with

�D < j0n(��).

• h : N ! P is an internal ultrapower embedding of N with crt(h) > d(j0n(�)) if h is

nontrivial.
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Proof. We claim there is a strong limit cardinal  > � such that there are no Fréchet cardinals

in the interval (�,). If there are no Fréchet cardinals above �, let  = i!(�). Otherwise,

let  = ��. By Lemma 7.4.27,  is measurable, and in particular,  is a strong limit cardinal.

By Theorem 7.5.5, there is a countably complete ultrafilter U with �U <  such that

there is an internal ultrapower embedding h : MU ! P with h � jU = j and crt(h) � .

Since �U <  is Fréchet and there are no Fréchet cardinals in the interval [�,], �U  �.

Therefore we may assume that U is a countably complete ultrafilter on �. In particular

crt(h) �  > jU(�).

Let i = jU . By Theorem 7.5.13, for some n < !, i = d � j0n where d : Mn ! N is the

ultrapower of Mn be a countably complete ultrafilter D of Mn with �D < j0n(��). Putting

everything together,

j = h � d � j0n

and this proves the corollary.

It is not a priori obvious that pn contains all the generators ⇠ of K n
� with ⇠ � sup j0n[�].

In fact this is true:

Proposition 7.5.15 (UA). Suppose � is an isolated cardinal and n < !. Then K n
� is the

unique countably complete ultrafilter W on [�]n such that aW is the set of generators ⇠ of jW

with ⇠ � sup jW [�].

Proof. Assume by induction that the corollary is true when n = m, and we will prove it

when n = m+ 1.

Therefore assumeW is a countably complete ultrafilter on [�]m+1 such that aW is the set of

generators ⇠ of jW with ⇠ � sup jW [�]. Let q be the first m generators of jW above sup jW [�].

Let U be the ultrafilter derived from jW using q. Then by our induction hypothesis, U = K m
� .

Let d : Mm ! MW be the factor embedding with d � j0m = jW and d(pm) = q. By

Theorem 7.5.13, there is an internal ultrapower embedding d0 : Mm ! MW . Note that

d0(pm) is a set of generators of d0 � j0m = d � j0m, so d0(pm) � d(pm). On the other hand,
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d0(pm)  d(pm) by Theorem 3.5.10. Thus d0(pm) = d(pm). Since d0 � j0m = d � j0m, we have

d0 = d. Thus d is an internal ultrapower embedding.

Let ⇠ be the largest generator of jW . Thus d(q) ✓ ⇠, so ⇠ is a d(q)-generator of jW and

hence ⇠ is a generator of d. Let Z be the tail uniform Mm-ultrafilter derived from d using ⇠.

Then Z is an incompressible ultrafilter of Mm and �Z 2 [sup j0m[�], j0m(�)]. Since �Z = �Z

is a Fréchet cardinal of Mm, it follows that �Z = j0m(�). Therefore by Theorem 7.5.7,

Z = j0m(K�).

Since MW = HM
W (jW [V ] [ q [ {⇠}) = HM

W (d[Mm] [ {⇠}), we have d = jMm

Z = jmm+1.

Thus d � j0m = j0m+1. Thus jW = j0m+1.

Since pm+1 consists solely of generators of j0m+1 above sup j0m+1[�], pm+1 ✓ aW . Since

|aW | = |pm+1|, it follows that pm+1 = aW . Therefore W = K m+1
� , as desired.

Proposition 7.5.16 (UA). Suppose � is an isolated cardinal. Then K n
� is the unique

countably complete ultrafilter W on [�]n such that aW is a set of generators of jW disjoint

from sup jW [�].

Proof. Suppose W is such an ultrafilter. Let p be the set of all generators of ⇠ of jW with

⇠ � sup jW [�]. Let m = |p|. By Proposition 7.5.15, the ultrafilter derived from jW using p

is K m
� . It follows that jW = j0m and p = pm. Therefore p  aW by the minimality of the

Dodd parameter. On the other hand, aW ✓ p since p consists of all the generators of jW

above sup jW [�]. Therefore aW = p. Hence m = n and W = K n
� , as desired.

We also have an analog of Theorem 7.3.17 at isolated cardinals:

Theorem 7.5.17 (UA). Suppose � is an isolated cardinal. Let j : V ! M be the ultrapower

of the universe by K� and let ⌫ = aK
�

. Suppose Z is a countably complete M-ultrafilter that

is �-indecomposable for all M-cardinals � 2 [sup j[�], ⌫]. Then Z 2 M .

Proof. Let e : M ! P be the ultrapower of M by Z. Then e(⌫) is a generator of e � j by

Lemma 5.4.25. Since Z is �-indecomposable for all � 2 [sup j[�], ⌫], e has no generators in
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the interval [sup e � j[�], e(⌫)]. In other words, e � j has no e(⌫)-generators in the interval

[sup e � j[�], e(⌫)].
Let k = e � j. Applying Corollary 7.5.14, there is some n < ! such that

k = h � d � j0n

where Mn
d�! N

h�! P are ultrapower embeddings with the following properties:

• d : Mn ! N is the ultrapower of Mn by a countably complete ultrafilter D of Mn with

�D < j0n(��).

• h : N ! P is an internal ultrapower embedding of N with crt(h) > d(j0n(�)) if h is

nontrivial.

Let e0 = h � d � j1n, so that e0 : M ! P is an internal ultrapower embedding with

e0 � j = k = e � j. We claim e0(⌫) = e(⌫). By Theorem 3.5.10, e0(⌫)  e(⌫).

Suppose towards a contradiction e0(⌫) < e(⌫). Then e0(⌫) is not an e(⌫)-generator of

e � j = e0 � j. Note that h(d(j1n(⌫))) = e0(⌫) and h(e(⌫)) = e(⌫), so d(j1n(⌫)) is not an

e(⌫)-generator of d � j0n. But consider the ultrafilter U on [�]2 derived from d � j0n using

{d(j1n(⌫)), e(⌫)}. Since d(j1n(⌫)) and e(⌫) are generators ⇠ of d�j0n with ⇠ � sup d�j0n[�], aU
consists of generators ⇠ of jU with ⇠ � sup jU [�]. Thus U = K 2

� . But then by Lemma 7.5.10,

min(aU) is a jU -generator. This contradicts that d(j1n(⌫)) is not an e(⌫)-generator.

The main application of Theorem 7.5.17 is the following fact:

Lemma 7.5.18 (UA). Assume � is isolated and let j : V ! M be the ultrapower of the

universe by K�. Either j[�] ✓ � or K� \M 2 M .

Proof. Assume sup j[�] > �. Then K� \ M is not �-decomposable for any M -cardinal

� 2 [sup j[�], j(�)). Therefore K� \M 2 M .

Theorem 7.5.17 gives a coarse bound on the strength of K� when � is isolated.
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Proposition 7.5.19 (UA). Suppose � is isolated and let j : V ! M be the ultrapower of

the universe by K�. Then P (�) ✓ M if and only if K� is �-complete.

Proof. Assume P (�) ✓ M . Since K� /2 M , K�\M /2 M , so by Lemma 7.5.18, sup j[�] ✓ �.

By the Kunen Inconsistency Theorem (Theorem 4.2.37), this implies crt(j) � �. In other

words, K� is �-complete.

Assume � is a nonmeasurable isolated cardinal. One would expect to get a much better

bound on the strength of K� than �. When �� is a successor cardinal, one can in fact

prove that P (��) 6✓ MK
�

, which determines the strength of jK
�

exactly (since jK
�

is <��-

supercompact by Proposition 7.5.20 below). When �� is inaccessible, however, we do not

know whether P (��) ✓ MK
�

is possible.

Isolated cardinals and the GCH

By Proposition 7.5.4, the existence of isolated cardinals that are not measurable is paired

with failures of the Generalized Continuum Hypothesis. In this section, we study precisely

how GCH fails below a nonmeasurable isolated cardinal. Here the cardinal �� (see Defini-

tion 7.5.11) takes the center stage.

Proposition 7.5.20 (UA). Suppose � is an isolated cardinal that is not measurable. Let

j : V ! M be the ultrapower of the universe by K�. Let  = � and � = ��. Then the

following hold:

(1) Every regular cardinal ◆ 2 [, �) is Fréchet.

(2) j is <�-supercompact.

(3) If � is a limit cardinal then � is strongly inaccessible.

(4) Otherwise � is the successor of a cardinal � of cofinality at least �. In fact, no cardinal

in the interval (cf(�), �) is �-strongly compact.
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Proof. We first prove (1). Let ⌘ 2 [◆, �) be a Fréchet cardinal. Then for any � 2 [, ⌘), then

there is a Fréchet cardinal in (�, ⌘]. By Lemma 7.4.13, there are no isolated cardinals in

[,�). Lemma 7.4.12 implies that every regular cardinal in [, ⌘) is Fréchet. In particular, ◆

is Fréchet.

We now prove (2). Fix a regular cardinal ◆ 2 [, �), and we will show that j is ◆-

supercompact. (This su�ces since the Recall that there are no isolated cardinals in [,�)

(Lemma 7.4.13). Thus ◆   as a consequence of Lemma 7.4.19. Moreover, by Theo-

rem 7.4.9, ◆ is ◆-strongly compact. We can therefore apply our technique for converting

amenability of ultrafilters into strength (Proposition 7.3.32) to conclude that P (◆) ✓ M :

◆ is ◆-strongly compact, M is closed under ◆-sequences, and every countably complete

ultrafilter on ◆ is amenable to M (Proposition 7.4.17), so P (◆) ✓ M .

By Theorem 7.3.33, jK
◆

is ◆-tight. Moreover jK
◆

() � jK
◆

(◆) > ◆. By Proposition 7.4.17,

K◆ @ K�. We now use the following fact:

Lemma. Suppose   ◆ are cardinals, U and W are countably complete ultrafilters, U is

◆-tight, jU() > ◆, W is -complete, and U @ W . Then jW is ◆-tight.

Proof. Since jU(W ) is ◆-complete in MU , Ord◆ \ MU ✓ MM
U

j
U

(W ) = jU(MW ) ✓ MW . (The

final containment uses U @ W .) Therefore since MU has the ◆-covering property, so does

MW . Thus jW is ◆-tight.

We can apply the fact to U = K◆ and W = K�. It follows that j is ◆-tight. Since j is

◆-tight and P (◆) ✓ M , j is ◆-supercompact.

We now prove (3). Suppose towards a contradiction that � is singular. Then by (2), j is

�-supercompact. If cf(�) � �, it follows that � is Fréchet, contrary to the definition of ��.

Therefore cf(�) < �. But then by Lemma 4.2.25, j is �+-supercompact. Then �+ is Fréchet.

The definition of � implies that no cardinal in [�,�) is Fréchet, so it must be that �+ = �.

This contradicts that � is isolated (and in particular is a limit cardinal).
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For (4), assume towards a contradiction that some cardinal ⌫ in the interval (cf(�), �) is

�-strongly compact. Then ⌫ it is �+-strongly compact by Lemma 4.2.25. But �+ = � is not

Fréchet, and this is contradiction.

Suppose � is an isolated cardinal, and let � = ��. Must 2<� = �? By Proposition 7.5.20

(3), this is true if � is a limit cardinal, but we are unable to answer the question when � is

a successor. The following bound is su�cient for most applications:

Theorem 7.5.21. Suppose � is isolated and � = ��. Then 2<� < �.

Proof. Assume by induction that the theorem holds for all isolated cardinals below �. Let

j : V ! M be the ultrapower of the universe by K�. Then j is <�-supercompact (Proposi-

tion 7.5.20). Thus 2<�  (2<�)M , so it su�ces to show that (2<�)M < �.

Claim 1. (��)M  �.

Proof of Claim 1. There are two cases.

First assume sup j[�] = �. Since j is <�-supercompact, Kunen’s Inconsistency Theorem

(Lemma 4.2.38) implies that there is a measurable cardinal ◆ < � such that j(◆) > �. Now

j(◆) < � is a measurable cardinal of M , so (��)M  j(◆) < �, as desired.

Assume instead that � < sup j[�]. Then K� \ M 2 M by Theorem 7.5.17. Thus � is

Fréchet in M , so (��)M  �.

If �+M is Fréchet in M , then (2<�)M = � by Theorem 6.3.15. Assume therefore that

�+M is not Fréchet in M . Let ⌘ = (��)M . Then ⌘ is isolated in M by Proposition 7.4.4.

Moreover ⌘  � < j(�), so our induction hypothesis shifted to M applies at ⌘. Notice that

�  (�⌘)M : indeed, by Proposition 7.5.20, M is correct about cardinals below �, and by

Proposition 7.4.17, all su�ciently large cardinals below � are Fréchet in M . Thus

(2<�)M  (2<�M
⌘ )M < ⌘  �

In particular (2<�)M < �, as desired.
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The following closely related fact can be seen as an ultrafilter-theoretic version of SCH:

Proposition 7.5.22 (UA). Suppose � is a regular isolated cardinal. Suppose D is a countably

complete ultrafilter such that �D < �. Then jD(�) = �.

Proof. Suppose towards a contradiction that the theorem fails, and let � be the least coun-

terexample. Let j : V ! M be the ultrapower by K�. Let � = �� be the strict supremum of

the Fréchet cardinals below �. By Proposition 7.5.20, M<� ✓ M , and by Proposition 7.4.17,

M satisfies that there is a countably complete ultrafilter D is �D < � such that jD(�) 6= �.

Suppose first that � < sup j[�]. Then K� \M 2 M by Theorem 7.5.17. Therefore � is a

regular Fréchet cardinal in M . Clearly � is a limit cardinal in M . Since � < j(�), � is not a

counterexample to the proposition in M . Therefore � is not isolated in M , so � is strongly

inaccessible in M by Corollary 7.5.2. But this contradicts that there is a countably complete

ultrafilter D is �D < � such that jD(�) 6= �.

Suppose instead that � = sup j[�]. Let  = �. We claim that for any countably complete

ultrafilter U 2 V, jU(�) = �. Fix such an ultrafilter U . Since 2<� < �, jU(�) < �. By

elementarity there are no Fréchet cardinals of MU in the interval [jU(�), jU(�)). But K� @ U

(by Kunen’s commuting ultrapowers lemma, Theorem 5.5.20), so K�\MU 2 MU , and hence

� is Fréchet in MU . Thus � is a Fréchet cardinal of MU in the interval [jU(�), jU(�)], so we

must have jU(�) = �, as claimed.

Let ⌘ be the least ordinal such that for some ultrafilter D with �D < �, jZ(⌘) > �.

(Note that ⌘ exists since � is regular.) We claim j(⌘) = ⌘. To see this, note that if D is an

ultrafilter with �, then jD[⌘] ✓ ⌘. (Otherwise we would contradict the minimality of ⌘ as

in Lemma 7.4.25.) If j(⌘) > ⌘, however, then since j(⌘) < �, there is an ultrafilter D on �

such that jD(⌘) > j(⌘). Since Z @ K�, this contradicts that M thinks j(⌘) is closed under

ultrapower embeddings associated to ultrafilters on j(�).

Suppose ⇠ is a fixed point of j. Let � be the least cardinal that carries a countably

complete ultrafilter U such that jU(⌘) > ⇠. Then � < � by assumption. We claim j(�) = �.

The reason is that M is closed under � sequences and contains every ultrafilter on �, so M
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satisfies that there is an ultrafilter U on � such that jU(⌘) > ⇠. Since j(⌘) = ⌘ and j(⇠) = ⇠,

it follows that j(�) is the least M cardinal carrying such an ultrafilter U , and hence j(�) = �.

Since � is a fixed point of j below its supercompactness, � <  by the Kunen inconsistency

theorem.

It follows that ⌘ is mapped arbitrarily high below � by ultrafilters in V. Since � is

regular, there must be a single ultrafilter U 2 V such that jU(⌘) � �. This contradicts that

for all U 2 V, jU(�) = �.

Our next theorem shows that the problematic isolated cardinals � su↵er a massive failure

of GCH precisely at ��:

Theorem 7.5.23. Suppose � is a nonmeasurable isolated cardinal and � = ��. Then 2� � �.

It is not clear whether it is possible that 2� = �. This of course implies that � is regular

and hence weakly Mahlo by Theorem 7.5.36 below.

This theorem requires an analysis of indecomposable ultrafilters due to Silver. His anal-

ysis can be seen as an improvement of Lemma 5.5.27 in a the key special case of indecom-

posable ultrafilters.

Theorem 7.5.24 (Silver). indexIndecomposable ultrafilter!Silver’s Theorem Suppose � is a

regular cardinal and U is a countably complete ultrafilter that is �-indecomposable for all

� 2 [�, 2�]. Then there is an ultrafilter D with �D < � such that there is an elementary

embedding k : MD ! MU with jU = k � jD and crt(k) > jD((2�)+) if k is nontrivial.

The proof does not really use that U is countably complete, and this was important in

Silver’s original work. Since we only need the theorem when U is countably complete, we

make this assumption. (This is for notational convenience: the notion of the critical point

of k does not really make sense if MD is illfounded.)

We begin by describing a correspondence between partitions of ultrafilters and points in

the ultrapower embedding that is implicit in Silver’s proof.
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Definition 7.5.25. Suppose P is a partition of a set X and A is a subset of X. Then the

restriction of P to A is the partition P � A defined by

P � A = {A \ S : S 2 P and A \ S 6= ;}

Definition 7.5.26. Suppose U is an ultrafilter on a set X and � is a cardinal.

• QU denotes the preorder on the collection of partitions of X defined by setting P  Q

if there exists some A 2 U such that Q � A refines P � A.

• Q�
U ✓ QU consists of those P such that |P � A| < � for some A 2 U .

• PU denotes the preorder on MU defined by setting x  y if x is definable in M from y

and parameters in jU [V ].

• P�
U ✓ PU is the restriction of PU to HM

U (jU [V ] [ sup jU [�]).

The following lemma, which is ultimately just an instance of the correspondence between

partitions of X and surjective functions on X, shows that the preorders QU and PU are

equivalent preorders:

Lemma 7.5.27. Suppose U is an ultrafilter on a set X. For P 2 QU , let �(P ) be the unique

S 2 jU(P ) such that aU 2 S. Then the following hold:

(1) � is order-preserving: for any P,Q 2 QU , P  Q if and only if �(P )  �(Q).

(2) � is surjective on equivalence classes: for any x 2 PU , there is some P 2 QU such that

x and �(P ) are equivalent in PU .

(3) For any cardinal �, �[Q�
U ] ✓ P�

U .

(4) Suppose P 2 QU . Let D = {A ✓ P :
S

A 2 U}. Then there is a unique elementary

embedding k : MD ! MU such that k � jD = jU and k(aD) = �(D).
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Proof. Proof of (1): Suppose P,Q 2 QU and P  Q. Fix A 2 U such that Q � A refines

P � A. Then �(P ) is definable in MU from the parameters �(Q), jU(P ), jU(A) as the unique

S 2 jU(P ) such that �(Q) \ jU(A) ✓ S \ jU(A). In other words, �(P )  �(Q).

Conversely suppose �(P )  �(Q), so that �(P ) = jU(f)(�(Q)) for some f : Q ! P .

Let A ✓ X consist of those x 2 X such that x 2 f(S) where S is the unique element of Q

with x 2 S. Then A 2 U since aU 2 jU(f)(S) where S = �(Q) is the unique S 2 jU(Q)

such that aU 2 S. Moreover for any S 2 Q, S \ A ✓ f(S) \ A, so Q � A refines P � A. In

other words, P  Q.

Proof of (2): Fix x 2 PU . Fix f : X ! V such that x = jU(f)(aU). Let

P = {f�1[{y}] : y 2 ran(f)}

Then �(P ) is interdefinable with x over MU using parameters in jU [V ]: �(P ) is the unique

S 2 jU(P ) such that x 2 jU(f)[S]; and since jU(f)[�(P )] = {x}, x =
S

jU(f)[�(P )].

Proof of (3): Suppose P 2 Q�
U . Fix � < � and a surjection f : � ! P . Then �(P ) =

jU(f)(⇠) for some ⇠ < jU(�)  sup jU [�]. Hence �(P ) 2 HM
U (jU [V ] [ sup jU [�]), as desired.

Proof of (4): Define g : X ! P by setting g(a) equal to the unique S 2 P such that

a 2 S. Then g⇤(U) = D and jU(g)(aU) = �(P ). Therefore by the basic theory of the Rudin-

Keisler order (Corollary 5.2.8), there is a unique elementary embedding k : MD ! MU with

k � jD = jU and k(aD) = �(P ).

For Silver’s theorem, it is useful to reformulate indecomposability in terms of QU :

Lemma 7.5.28. Suppose U is an ultrafilter on X and � is a cardinal. Then U is �-

indecomposable if every partition of X into � pieces is equivalent in QU to a partition of

X into fewer than � pieces.

We now prove Silver’s theorem.

Proof of Theorem 7.5.24. Let (Q,) = Q(2�)+

U be the preorder of U -refinement on the set of

partitions of X of size at most 2�. Let � be the preorder of refinement on Q, so P � Q

implies Q refines P . Thus (Q,) extends (Q,�).
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Note that � is �-directed. Indeed, suppose S ✓ Q has cardinality �. Then

P =
n

\

C : C meets each element of S and
\

C 6= ;
o

refines every partition in S, and |P |  |QS|  2�. The partition P is called the least

common refinement of S.
We claim that (Q,) has a maximum element (up to equivalence). Since (Q,�) is

directed, (Q,) is directed, and thus it su�ces to show that (Q,) has a maximal element.

Assume the contrary, towards a contradiction. Then since (Q,�) is �-directed, we can

produce a sequence hP↵ : ↵  �i of elements of Q such that for all ↵ < �  �, P↵ � P� and

P� 6 P↵.

Since U is �-indecomposable for all � 2 [�, 2�], there is some A 2 U such that |P� � A| < �.

For each ↵  �, let Q↵ = P↵ � A. We use the following general fact:

Claim. Suppose � is a regular cardinal, A is a set of size less than �, and hQ↵ : ↵ < �i
is a sequence of partitions of A such that for all ↵ < � < �, Q� refines Q↵. Then for all

su�ciently large ↵ < � < �, Q↵ = Q�.

Proof. Let Q be the least common refinement of {Q↵ : ↵ < �}. Suppose S 2 Q. We claim

that S 2 Q↵ for some ↵ < �. Consider the sequence hS↵ : ↵ < �i where S↵ 2 Q↵ is

the unique element of Q↵ containing S. Thus S =
T

↵<� S↵. Note that hS↵ : ↵ < �i is a

decreasing sequence of sets, each of cardinality less than �. Thus for all su�ciently large

↵ < �, S↵ = S, and in particular, S 2 Q↵.

For each S 2 Q, fix ↵S < � such that S 2 Q↵
S

. Let � = supS2Q ↵S. Then � < � since

|Q| < � and � is regular. By definition, Q ✓ Q�, so Q� = Q, If ↵ 2 [�, �), then Q refines Q↵

which refines Q� = Q, and hence Q = Q↵. This proves the claim.

Thus for all su�ciently large ↵ < � < �, Q↵ = Q�, or in other words, P↵ � A = P� � A.

It follows that P�  P↵, and this contradicts our choice of P�. Thus our assumption that

(Q,) has no maximum element was false.
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Let P be a maximum element of (Q,). By the indecomposability of U , we may assume

|P | < � by replacing P with an equivalent element of (Q,). We now apply Lemma 7.5.27.

Let D be the ultrafilter corresponding to P as in Lemma 7.5.27 (4):

D = {A ✓ P :
SA 2 U}

Let k : MD ! MU be unique elementary embedding with k � jD = jU and k(aD) = �(P ).

We have �D < � since |P | < �.

Let ⌘ = (2�)+. We will show crt(k) > jU(⌘) if k is nontrivial, or in other words, that

jU(⌘) ✓ k[MD]. Since P is a maximum element of Q⌘
U , Lemma 7.5.27 (1), (2), and (3) imply

that �(P ) is a maximum element of P⌘
U . In other words, if x 2 HM

U (jU [V ][ sup jU [⌘]), then

x is definable in MU from �(P ) and parameters in jU [V ], or in other words x 2 k[MD]. In

particular, sup jU [⌘] ✓ k[MD].

We finish by showing that sup jU [⌘] = jU(⌘). Suppose not. Then since ⌘ is regular, U is

⌘-decomposable. Since ⌘ = (2�)+, Theorem 7.4.3 implies that U is �-decomposable where

� = cf(2�). But by König’s Theorem, � 2 [�, 2�], and this is a contradiction.

We can finally prove Theorem 7.5.23:

Proof of Theorem 7.5.23. Let j : V ! M be the ultrapower of the universe by K�. Assume

2� < �. We will show that crt(j) � �, so K� is a �-complete uniform ultrafilter on �, and

hence � is measurable.

Since � is isolated and 2� < �, K� is �-indecomposable for all cardinals in the interval

[�, 2�]. By Proposition 7.5.20, � is regular. Therefore we can apply Theorem 7.5.24. Fix D

with �D < � such that there is an elementary embedding embedding k : MD ! MK
�

with

k � jD = j and crt(k) > jD(�) if k is nontrivial.

By Proposition 7.4.17, D @ K�. Therefore jD � � 2 M . But jD � � = j � � since

crt(k) > jD(�). It follows that j is �-supercompact. Since � is regular and K� is �-

indecomposable, j(�) = sup j[�]. Since j is �-supercompact and j(�) = sup j[�], the Kunen

Inconsistency (Theorem 4.4.32) implies that crt(j) � �. There are no measurable cardinals
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in the interval [�,�) since in fact there are no Fréchet cardinals in [�,�). The fact that

crt(j) � � therefore implies crt(j) � �, as desired.

Theorem 7.5.24 can be combined with Theorem 7.4.28 to prove a strengthening of The-

orem 7.5.5:

Theorem 7.5.29 (UA). Suppose � is a regular cardinal and U is a countably complete

ultrafilter that is �-indecomposable for all � 2 [�, 2�]. Then there is an ultrafilter D with

�D < � such that there is an internal ultrapower embedding h : MD ! MU with h � jD = jU

and crt(h) > jD(�) if h is nontrivial.

Proof. Using Silver’s theorem, fix a uniform countably complete ultrafilter D on a cardinal

⌘ < � such that there is an elementary embedding k : MD ! MU with k � jD = jU and

crt(k) > jD((2�)+) if k is nontrivial.

Recall thatB(X) denotes the set of countably complete ultrafilters onX. Theorem 7.4.28

implies that |B(⌘)|  (2⌘)+. Thus jD(B(⌘)) has cardinality less than or equal to jD((2⌘)+)

in MU . Since crt(k) > jD((2⌘)+), k restricts to an isomorphism from jD(B(⌘), <k) to

jU(B(⌘), <k). Moreover, for any Z 2 jD(B(⌘)),

j�1
D [Z] = j�1

U [k(Z)]

We now use the fact that k is an isomorphism conjugating j�1
D to j�1

U to conclude that

k(tD(D)) = tU(D). By Theorem 5.4.40, tD(D) is the least element of jD(B(⌘), <k) with

j�1
D [Z] = D. Therefore since k is an order-isomorphism that conjugates j�1

D to j�1
U , k(tD(D))

is the least element Z of jU(B(⌘), <k) with j�1
U [Z] = D. But by Theorem 5.4.40, the least

such Z is equal to tU(D). Thus k(tD(D)) = tU(D).

Recall the characterization of the Rudin-Froĺık order in terms of translation functions

(Lemma 5.4.39): if W and Z are countably complete ultrafilters, then W RF Z if and only

if tZ(W ) is principal in MZ . Applying this characterization in one direction to D RF D,

tD(D) is principal in MD. Therefore tU(D) = k(tD(D)) is principal in MU , so applying the

characterization in the other direction, it follows that D RF U .
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Let h : MD ! MU be the unique internal ultrapower embedding such that h � jD = jU .

By Lemma 5.4.39, tD(D) is the principal ultrafilter concentrated at aD and tU(D) is the

principal ultrafilter concentrated at h(aD). Since k(tD(D)) = tU(D), it follows that k(aD) =

h(aD). Since k � jD = jU , in fact k � jD[V ] [ {aD} = h � jD[V ] [ {aD}. Thus k = h,

since MD = HM
D(jD[V ] [ {aD}). It follows that h : MD ! MU is an internal ultrapower

embedding with h � jD = jU and crt(h) > jD(�) if h is nontrivial.

Our work on isolated cardinals leads to some relatively simple criteria for the completeness

of an ultrafilter in terms of a local version of irreducibility that will become important when

we analyze larger supercompact cardinals:

Definition 7.5.30. Suppose � is a cardinal and U is a countably complete ultrafilter.

• U is �-irreducible if for all D RF U with �D < �, D is principal.

• U is �-irreducible if U is �+-irreducible.

Note that U is �-irreducible if and only if U is ��-irreducible.

At isolated cardinals, we have the following fact which is often useful:

Theorem 7.5.31 (UA). Suppose � is a cardinal and U is a countably complete ultrafilter.

(1) If � is a strong limit cardinal that is not a limit of Fréchet cardinals, then U is �-

irreducible if and only if U is �-complete.

(2) If � is a strong limit cardinal and no cardinal  < � is �-supercompact for all � < �,

then U is �-irreducible if and only if U is �-complete.

(3) If � is isolated, then U is �+-irreducible if and only if U is �+-complete.

Proof. (1) is immediate from Theorem 7.5.5.

(2) follows from (1). By Corollary 7.5.2, either � is not a limit of Fréchet cardinals or �

is a limit of isolated cardinals. The former case is precisely (1). In the latter case, we can
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apply (1) at each isolated cardinal below �. Thus we conclude that U is �̄-complete for all

isolated cardinals �̄ < �. It follows that U is �-complete as desired.

(3) also follows from (1). Since U is �+-irreducible, U is ��-irreducible, and by Lemma 7.4.27,

�� is measurable. Thus U is ��-complete by (1) and in particular, U is �+-complete.

Working in a bit more generality but with a stronger irreducibility assumption, we have

the following completeness result:

Theorem 7.5.32 (UA). Suppose � is a regular cardinal such that no cardinal   � is

�-supercompact. Then a countably complete ultrafilter U is �+-complete if and only if it is

2�-irreducible.

Proof. The forward direction is trivial, so let us prove the converse.

Suppose that U is 2�-irreducible. We claim that U is �-irreducible where � > � is a

strong limit cardinal that is not a limit of Fréchet cardinals. An immediate consequence

of the factorization theorem for isolated measurable cardinal (Theorem 7.5.5) is that any

�-irreducible ultrafilter is �-complete, and this proves the theorem.

If �� does not exist, then the �-irreducibility of U implies that U itself is principal, so

U is �-irreducible and �-complete for any cardinal �. Thus assume �� exists.

There are two cases. Suppose first that � is a Fréchet cardinal. Let � = ��. Since U

is �-irreducible, U is �-irreducible. We claim that � is an isolated measurable cardinal.

First note that � > �+ since otherwise �+ is �-supercompact by Corollary 7.4.10. Thus by

Proposition 7.4.4, � is isolated. Assume towards a contradiction that � is not measurable.

Then by Proposition 7.5.20, � is <��-supercompact. But � < �� since � < � is Fréchet, and

hence � is �-supercompact, a contradiction. Hence � is measurable.

Suppose instead that � is not a Fréchet cardinal. If �� is measurable, let � = ��. Suppose

�� is not measurable. By Theorem 7.5.23, ��  2�, so in particular U is ��-irreducible.

Let � = ���. (If ��� does not exist, then again since U ��-irreducible, U is principal.)
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By Lemma 7.4.27, � is measurable; here, one must check that �� is isolated. Since U is

2�-irreducible, U is ��-irreducible, so U is <�-irreducible.

One might expect a strengthening of this theorem to be true: if U is just �-irreducible

and no   � is �-supercompact, then U should be �+-complete. The main issue is that if

� = �� is an isolated nonmeasurable cardinal, then U = K� is a counterexample. If instead

� is measurable, then �-irreducibility indeed su�ces. What about �-irreducibility? If � is

the least cardinal such that K� exists and does not have a �-supercompact ultrapower, then

U = K� is a counterexample.

A similar theorem is true for singular cardinals:

Theorem 7.5.33 (UA). Suppose U is a countably complete ultrafilter and � is a singular

cardinal such that no   � is �+-supercompact. Then U is �+-complete if and only if U is

2�-irreducible for all � < �.

Proof. Let � = sup{�+ : � < � is a Fréchet cardinal}.
Suppose first that � is regular. Since � is not Fréchet, no cardinal   � is �-supercompact.

Since U is 2�-irreducible, we are in a position to apply Theorem 7.5.32. We can conclude

that U is �+-complete. Since there are no measurable cardinals in the interval (�, �), it

follows that U is �+-complete.

Suppose instead that � is singular. If �� does not exist, then it is easy to see that U

is principal, and thus we are done. Therefore assume �� exists, and let � = ��. Note that

� > �+: if � < � this follows from the fact that �+ is not Fréchet, while if � = �, this follows

from the fact that no cardinal is �+-supercompact. Thus � is isolated. Note that �� = � is

singular. Therefore by Proposition 7.5.20, � is measurable. Since U is �-irreducible, U is

<�-irreducible, and therefore as an immediate consequence of the factorization theorem for

isolated measurable cardinal (Theorem 7.5.5), U is �-complete.

Let us close this subsection with a remark about the size of regular isolated cardinals.
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Definition 7.5.34. A regular cardinal  is �-Mahlo if there is a countably complete weakly

normal ultrafilter on  that concentrates on regular cardinals.

Proposition 7.5.35. If  is �-Mahlo then  is weakly Mahlo.

In fact, �-Mahlo cardinals are “greatly weakly Mahlo.” A theorem of Gitik shows that it

is consistent that there is a �-Mahlo cardinal that does not have the tree property.

Theorem 7.5.36 (UA). Suppose  is a regular isolated cardinal. Then  is �-Mahlo. In

fact, K concentrates on regular cardinals.

Proof. Let j : V ! M be the ultrapower of the universe by K. Let ⇤ = sup j[]. Let

� = cfM(⇤). By Theorem 7.3.33, j is (, �)-tight, so j is discontinuous at any regular

cardinal ◆   such that � < j(◆). Since  is isolated, j is continuous at all su�ciently

large cardinals less than . Putting these observations together, it follows that there are no

regular cardinals ◆ <  such that j(◆) > �. In other words, sup j[]  �. Thus ⇤ = �, so ⇤

is regular. Since K is weakly normal, ⇤ = aK


, so by  Loś’s Theorem, K concentrates on

regular cardinals.

This fact has a converse: assuming UA, any �-Mahlo cardinal that is not measurable is

isolated. It is not clear that singular Fréchet cardinals must be very large. For example, we

do not know how to rule out that the least Fréchet cardinal � that is neither measurable nor

a limit of measurables is in fact equal to + for some measurable  < �.

The linearity of the Mitchell order without GCH

Theorem 4.4.2 states that assuming UA + GCH, the Mitchell order is linear on normal fine

ultrafilters on Pbd(�), the collection of bounded subsets of �. Here we prove essentially the

same theorem using UA alone. Instead of using Pbd(�) as our underlying set, we use the

following variant:

Definition 7.5.37. For any cardinal �, let P⇤(�) = {� 2 Pbd(�) : |�|+ < �}.
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The following obvious characterization of P⇤(�) is often more useful than the definition

above:

P⇤(�) =

8

>

>

<

>

>

:

Pbd(�) if � is a limit cardinal

P�(�) if � is a successor cardinal and � is its cardinal predecessor

Definition 7.5.38. For any cardinal �, let U� denote the set of normal fine ultrafilters on

P⇤(�). Let U =
S

�2CardU�.

The main theorem of this subsection is the following:

Theorem 7.5.39 (UA). The class U is linearly ordered by the Mitchell order.

Due to the following fact, Theorem 7.5.39 can be seen as a precise formulation of the

(literally false) statement that the Mitchell order is linear on normal fine ultrafilters:

Proposition 7.5.40. Every normal fine ultrafilter is isomorphic to a unique element of U .

Proof. Recall that for any cardinal �, N� denotes the set of normal fine ultrafilters on Pbd(�)

and N =
S

�2CardN�. Also recall Proposition 4.4.12, which states that every normal fine

ultrafilter is isomorphic to a unique element of N . Therefore to prove the proposition, it

su�ces to show that there is a bijection � : N ! U such that �(U) ⇠= U for all U 2 N .

In fact, if U 2 N�, we will just set �(U) = U � P⇤(�). It is clear that � is as desired as

long as P⇤(�) 2 U . We now establish that this holds. Let j : V ! M be the ultrapower

of the universe by U . Then aU = j[�] by Lemma 4.4.9. Of course |j[�]|M = �, but note

also that �+M < j(�): by Lemma 4.2.38, there is an inaccessible cardinal   � such that

� < j(), so �+M < j()  j(�). Thus |j[�]|+M < j(�). By  Loś’s Theorem, it follows that

{� 2 Pbd(�) : |�|+ < �} 2 U . That is, P⇤(�) 2 U .

The reason we use P⇤(�) as an underlying set rather than sticking with Pbd(�) is that

without assuming GCH, we cannot prove |Pbd(�)| = �. Therefore Pbd(�) may be too large

to use as an underlying set. On the other hand, we can prove |P⇤(�)| = � in the relevant

cases:
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Proposition 7.5.41 (UA). Suppose � is a cardinal such that U� is nonempty. Then

|P⇤(�)| = �.

Proof. Since U� is nonempty, there is a normal fine ultrafilter on P⇤(�), and hence there is

a cardinal   � that is �-supercompact.

There are now two cases.

Suppose first that � is a limit cardinal. Then P⇤(�) = Pbd(�). Moreover by Theo-

rem 6.3.12, 2<� = �. Thus |P⇤(�)| = |Pbd(�)| = 2<� = �.

Suppose instead that � is a successor cardinal. Let � be the cardinal predecessor of �.

Then P⇤(�) = P�(�), so |P⇤(�)| = �<�. Since � is regular, �<� = � · �<�. To finish, it

therefore su�ces to show �<�  �. By Theorem 6.3.15, 2<� = �. If � is singular, then � is

a singular strong limit cardinal, so by Solovay’s Theorem on SCH above a strongly compact

cardinal (Corollary 6.3.2), �<�  �� = �+ = �. Otherwise, �<� = 2<� = �.

Recall that an ultrafilter U on a setX is hereditarily uniform if |tc(X)| = �U . We observed

that the generalized Mitchell order is well-behaved on hereditarily uniform ultrafilters: for

example it is isomorphism invariant (Lemma 4.2.14) and transitive (Proposition 4.2.44).

Under UA, it follows that the Mitchell order is well-behaved on U :

Lemma 7.5.42 (UA). Every ultrafilter in U is hereditarily uniform.

Proof. Suppose U 2 U . Fix a cardinal � with U 2 U�. Since P⇤(�) is the underlying

set of U , to show that U is hereditarily transitive, we must show that |tc(P⇤(�))|  �U .

Of course, tc(P⇤(�)) = P⇤(�) [ �, which has cardinality � by Proposition 7.5.41. Since

jU is �-supercompact, Proposition 4.2.31 implies that �  �U . Thus |tc(P⇤(�))|  �U , as

desired.

Recall that an ultrafilter U on a cardinal � is isonormal if U is weakly normal and jU

is �-supercompact. Recall Theorem 4.4.37, which states that every normal fine ultrafilter

is isomorphic to an isonormal ultrafilter. Combined with the isomorphism invariance of the
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Mitchell order on hereditarily uniform ultrafilters, the following theorem therefore easily

implies Theorem 7.5.39:

Theorem 7.5.43 (UA). Suppose U is an isonormal ultrafilter. Then for any D <k U ,

D C U . In particular, the Mitchell order is linear on isonormal ultrafilters.

Note that a strong version of this theorem (Corollary 4.3.28) follows from GCH. Let us

explain in full detail how to prove the linearity of the Mitchell order on U (Theorem 7.5.39)

from Theorem 7.5.43:

Proof of Theorem 7.5.39. Suppose U0 and U1 are elements of U . We must show that either

U0 C U1, U0 = U1, or U0 B U1. Since every normal fine ultrafilter is isomorphic to an

isonormal ultrafilter (Theorem 4.4.37), there are isonormal ultrafilters U0 and U1 such that

U0
⇠= U0 and U1

⇠= U1. By Theorem 7.5.43, either U0 = U1, U0 C U1, or U0 B U1. If

U0 = U1, then U0
⇠= U1. Therefore by the uniqueness clause of Proposition 7.5.40, U0 = U1.

If U0 C U1, then since the Mitchell order is isomorphism invariant on hereditarily uniform

ultrafilters (Lemma 4.2.14), U0 C U1. (All the ultrafilters we are considering are hereditarily

uniform; the nontrivial part of this is Lemma 7.5.42.) Similarly, if U0 B U1, then U0 B U1.

We therefore proceed to the proof of Theorem 7.5.43. This requires a general fact from

the theory of the internal relation which is of independent interest. Here is the idea. Since no

nonprincipal ultrafilter U satisfies U C U , under UA there is a least W in the Ketonen order

such that W 6C U . What is the relationship between U and W? Perhaps W RF U , but this

is an open question. It turns out that one can make some headway if one considers instead

the <k-least W such that W 6@ U . (Proposition 8.3.36 shows that this actually defines the

same ultrafilter.)

Theorem 7.5.44 (UA). Suppose U is a nonprincipal countably complete ultrafilter and W

is the <k-least countably complete uniform ultrafilter on an ordinal such that W 6@ U . Then

for any D @ U , D @ W .
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To prove Theorem 7.5.44, we use the following closure property of the internal relation:

Lemma 7.5.45. Suppose D @ U is an ultrafilter on a set X and hWi : i 2 Xi is a sequence

of ultrafilters on a set Y such that Wi @ U for all i 2 X. Then D-
P

i2X Wi @ U and

D- limi2X Wi @ U .

Proof. Since D- limi2X Wi RK D-
P

i2X Wi, if we show show that D-
P

i2X Wi @ U , we

obtain D- limi2X Wi @ U as a consequence of Corollary 5.5.11.

Let j : V ! N be the ultrapower of the universe by D. Let W = [hWi : i 2 Xi]D and

let k : N ! P be the ultrapower of M by W . Thus k � j is the ultrapower embedding

associated to D-
P

i2X Wi, so to prove the lemma, we must show that k � j � MU is an

internal ultrapower embedding of MU .

Since D @ U , j is an internal ultrapower embedding of MU . Therefore to show k�j � MU

is an internal ultrapower embedding of MU , it su�ces to show that k � j(MU) is an internal

ultrapower embedding of j(MU). Note that by the elementarity of j : V ! N , j(MU) =

(Mj(U))N . Since k = (jW )N , to show that k � j(MU) is an internal ultrapower embedding of

j(MU), it su�ces to show that W @ j(U) in N . But Wi @ U for all i 2 X, so W @ j(U) in

N by  Loś’s Theorem.

Proof of Theorem 7.5.44. Suppose D @ U . By Lemma 5.5.13, tD(U) = jD(U). We claim

jD(W ) M
D

k tD(W ). Suppose towards a contradiction that this fails, so tD(W ) <M
D

k jD(W ).

Let X be the underlying set of D, and fix hWi : i 2 Ii such that tD(W ) = [hWi : i 2 Xi]D.
Then since Wi <k W for all i 2 X, in fact Wi @ U for all i 2 X. Thus D- limi2X Wi @ U by

Lemma 7.5.45. But W = D- limi2I Wi, and this contradicts the definition of W .

Proof of Theorem 7.5.43. Let � = �U . If 2<� = �, then U is Dodd sound (Theorem 4.4.25),

so for all D <k U , we have D C U (Corollary 4.3.28), and thus we are done. We therefore

assume that 2<� > �. (It is not clear whether this assumption is consistent. We will not

try to reach a contradiction, however, but rather to prove that the theorem is true even if

2<� > �.)
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Since jU witnesses that some cardinal   � is �-supercompact, the local version of the

theorem that GCH holds above a supercompact under UA (Theorem 6.3.12) implies that

2<� = � if � is a limit cardinal. Therefore by our assumption that 2<� > �, � is a successor

cardinal.

Let � be the cardinal predecessor of �. To simplify notation, we will from now on refer

to � only as �+. We therefore reformulate our assumption that 2<� > �:

2� > �+ (7.11)

Since �+ is Fréchet, our local result on GCH (Theorem 6.3.15) yields that 2<� = �. If � is

singular, then since 2<� = �, � is a singular strong limit cardinal, so the fact that 2� > �+

contradicts the local version of Solovay’s Theorem that SCH holds above a strongly compact

cardinal (Corollary 6.3.2). Therefore � is regular.

Claim 1. MU satisfies that 22
�

= (2�)+

Proof. Let D be the normal fine ultrafilter on Pbd(�) derived from jU using jU [�]. Since

MU is closed under �+-sequences, every ultrafilter on � belongs to MU (Proposition 6.3.9).

Therefore since Pbd(�) has hereditary cardinality 2<� = �, we have D 2 MU . Therefore by

a generalization of Solovay’s argument that a 2-supercompact cardinal carries 22


normal

ultrafilters (Lemma 6.3.4), MU satisfies that every subset of P (�) belongs to MW for some

normal fine ultrafilter W on Pbd(�). By Proposition 6.3.6 applied in MU , MU satisfies that

22
�

= (2�)+. (Alternately one can use Theorem 7.4.28.)

Now let ⌘ = ((�+)�)MU be the least Fréchet cardinal above �+ as computed in MU . The

following claim is a consequence of our analysis of isolated cardinals:

Claim 2. ⌘ is a measurable cardinal of MU .

Proof. Since P (�) ✓ MU , (2�)MU � (2�)V > �+, and therefore MU satisfies that 2� > �+.
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We now work in MU to avoid a profusion of superscripts. We cannot have ⌘ = �++:

otherwise �++ is Fréchet and hence 2� = �+ by Theorem 6.3.15, contradicting that 2� > �+.

Therefore ⌘ > �+ and so by Proposition 7.4.4, ⌘ is isolated.

Let � = �⌘. Then since ⌘ = (�+)�, �  �++  2�. The final inequality uses the fact

that 2� > �+. Thus 2�  22
�

= (2�)+ by Claim 1. But 2� < ⌘ by our results on the

continuum function below an isolated cardinal (Theorem 7.5.21). Therefore (2�)+ < ⌘ since

⌘ is isolated (and therefore is a limit cardinal). It follows that 2� < ⌘. Therefore ⌘ is

measurable by Theorem 7.5.23.

Let W be the <k-least countably complete ultrafilter on an ordinal such that W 6@ U .

Then W k U . To prove the theorem, we must show U = W .

Since every countably complete ultrafilter on � belongs to MU and hence is internal to

U , we have �W = �+. Let

(k, h) : (MW ,MU) ! N

be the pushout of (jW , jU).

Claim 3. If h is nontrivial, then crt(h) � ⌘.

Proof. Let W 0 = tU(W ), so h : MU ! N is the ultrapower of MU by W 0.

Suppose D is a countably complete ultrafilter of MU with �D < ⌘. We claim that

D @ W 0 in MU . Since �D is a Fréchet cardinal of MU below ⌘ = ((�+)�)MU , �D  �+.

We may therefore assume that the underlying set of D is �+. Since jU is �+-supercompact,

P (�+) ✓ MU . Thus D is an ultrafilter on �+ (in V ). Since MU is closed under �+-sequences,

jD � MU = jMU

D , so in fact D @ U . By Theorem 7.5.44, D @ W . Thus jD � N is amenable

to both MU and MW . By our characterization of the internal ultrapower embeddings of a

pushout (Theorem 5.4.19), jD � N is an internal ultrapower embedding of N . Equivalently

jMU

D � N is an internal ultrapower embedding of N , or in other words, D @ W 0 in MU .

By Lemma 7.5.3, h[⌘] ✓ ⌘. Working in MU , ⌘ is a strong limit cardinal, h[⌘] ✓ ⌘, and

for all D with �D < ⌘, D @ W 0. Applying in MU our criterion for the completeness of an
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ultrafilter in terms of the internal relation (Lemma 5.5.28), it follows that W 0 is ⌘-complete.

Since h is the ultrapower of MU by W 0, if h is nontrivial then crt(h) � ⌘.

Since U is a weakly normal ultrafilter on �+, aU = sup jU [�+] (Lemma 4.4.17). Since h

is the identity or crt(h) � ⌘ > �+, h is continuous at ordinals of MU -cofinality �+. Since

MU is closed under �+-sequences, sup jU [�+] is on ordinal of MU -cofinality �+. Therefore

h(aU) = h(sup jU [�
+]) = suph � jU [�+]  sup k � jW [�+]  k(aW )

The final inequality follows from the fact that �W = �+ and hence sup jW [�+]  aW .

Therefore (k, h) witnesses that U k W . Since U k W and W k U , U = W , as

desired.
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Chapter 8

Higher Supercompactness

8.1 Introduction

Obstructions to the supercompactness analysis

The main result of Chapter 7 is that under UA, the first strongly compact is supercompact.

What about the second? What about all of the other strongly compact cardinals? This

chapter answers all these questions and more. In this introductory section, we explain in

broad strokes the obstructions to generalizing the theory of Chapter 7 and the technique

that ultimately overcomes them.

Menas’s Theorem

The first obstruction to generalizing the results of Chapter 7 is that not every strongly

compact cardinal is supercompact. This is a consequence of the following theorem of Menas:

Theorem 8.1.1 (Menas). The least strongly compact limit of strongly compact cardinals is

not supercompact.

In order to explain the proof, we introduce an auxiliary notion:

330



Definition 8.1.2. Suppose  and � are cardinals. A cardinal  is almost �-strongly compact

if for any ↵ < , there is an elementary embedding j : V ! M such that crt(j) > ↵ and M

has the (�, <j())-covering property;  is almost strongly compact if  is almost �-strongly

compact for all cardinals �.

As in Theorem 7.2.10, there is a characterization of almost strong compactness in terms

of fine ultrafilters:

Lemma 8.1.3. A cardinal  is almost �-strongly compact if and only if for every ↵ < ,

there is an ↵+-complete fine ultrafilter on P(�).

Unlike strongly compact cardinals, it is easy to see that almost strongly compact cardinals

form a closed class:

Lemma 8.1.4. Any limit of almost �-strongly compact cardinals is almost strongly compact.

In particular, every limit of strongly compact cardinals is almost strongly compact.

The following proposition shows that almost strongly compact cardinals really almost

are strongly compact:

Proposition 8.1.5. A cardinal  is �-strongly compact if and only if  is measurable and

almost �-strongly compact.

Proof. Since  is measurable, there is a -complete uniform ultrafilter U on . Since  is

almost strongly compact, for each ↵ < , there is an ↵+-complete fine ultrafilter W↵ on

P(�). Let

W = U - lim
�<

W�

It is immediate that W is a fine ultrafilter on P(�).

We claim that W is -complete. Suppose ⌫ <  and {Ai : i < ⌫} ✓ W . For each i < ⌫,

let Si = {↵ <  : Ai 2 W↵}. Since Ai 2 W , Si 2 U by the definition of an ultrafilter

limit. Since U is -complete,
T

i<⌫ Si belongs to U . Since U is uniform,
T

i<⌫ Si \ ⌫ 2 U .
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Suppose ↵ 2 Ti<⌫ Si \ ⌫. Then {Ai : i < ⌫} 2 W↵. Therefore since W↵ is ↵+-complete,
T

i<⌫ Ai 2 W↵. Thus
\

i<⌫

Si \ ⌫ ✓
(

↵ <  :
\

i<⌫

Ai 2 W↵

)

It follows that {↵ <  :
T

i<⌫ Ai 2 W↵} 2 U . In other words,
T

i<⌫ Ai 2 W .

Corollary 8.1.6 (Menas). Every measurable limit of strongly compact cardinals is strongly

compact.

The least strongly compact limit of strongly compact cardinals is therefore in a sense

accessible from below:

Lemma 8.1.7 (Menas). Let  be the least strongly compact limit of strongly compact car-

dinals. Then the set of measurable cardinals below  is nonstationary in . Therefore 

has Mitchell rank 1. In particular,  is not µ-measurable, let alone 2-strong, let alone

2-supercompact.

Proof. Let C be the set of limits of strongly compact cardinals less than . Since  is a

regular limit of strongly compact cardinals, C is unbounded in . Moreover, C is closed by

definition. We claim that C contains no measurable cardinals. Suppose � 2 C is measurable.

Then by Corollary 8.1.6, � is strongly compact. This contradicts that  is the least strongly

compact limit of strongly compact cardinals. It follows that the class of measurable cardinals

is nonstationary in .

A strongly compact cardinal  always carries 22


-many -complete ultrafilters. But

Menas’s theorem shows that the Mitchell order may be trivial on . Under UA, this has the

following surprising consequence:

Theorem 8.1.8 (UA). The least strongly compact limit of strongly compact cardinals carries

a unique normal ultrafilter.

Proof. Let  be the least strongly compact limit of strongly compact cardinals. By Menas’s

Theorem (Lemma 8.1.7), the rank of the Mitchell order on normal ultrafilters on  is 1.
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By Theorem 2.3.11, the Mitchell order linearly orders these ultrafilters. Therefore  carries

exactly one normal ultrafilter.

Complete UA

The second obstruction to generalizing the results of Chapter 7 is much more subtle: UA

alone does not seem to su�ce to enact a direct generalization of the structure of the least

supercompact cardinal to the higher ones. In order to shed light on the underlying issue, we

introduce a principle called the Complete Ultrapower Axiom (CUA), which does su�ce.

Definition 8.1.9. Suppose  is an uncountable cardinal. Then UA() denotes the following

statement. Suppose j0 : V ! M0 and j1 : V ! M1 are ultrapower embeddings with

crt(j0) �  and crt(j1) � . Then there is a comparison (i0, i1) : (M0,M1) ! N of (j0, j1)

such that crt(i0) �  and crt(i1) � .

Thus the usual Ultrapower Axiom is equivalent to UA(!1). Notice that UA() is equiv-

alent to the assertion that the Rudin-Froĺık order is directed on -complete ultrafilters.

Complete Ultrapower Axiom. UA() holds for all uncountable cardinals .

Assuming CUA, one can generalize all the proofs in the previous section to obtain results

about the higher supercompact cardinals. In fact, one does not even need to dig into the

details to see that this is possible:

Proposition 8.1.10 (CUA). Suppose  is strongly compact. Either  is supercompact or 

is a limit of supercompact cardinals.

Sketch. Suppose first that  is not a limit of strongly compact cardinals. We will show that

 is supercompact. Let � <  be the supremum of the strongly compact cardinals below .

Let G ✓ Col(!, �) be V -generic. Then in V [G],  is the least strongly compact cardinal.

Moreover, since UA(�+) holds in V , UA holds in V [G]. Therefore by the analysis of the
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least strongly compact cardinal under UA (Theorem 7.4.23),  is supercompact in V [G]. It

follows that  is supercompact in V , as desired.

Suppose instead  is a limit of strongly compact cardinals. Then by the result of the

previous paragraph, every successor strongly compact cardinal below  is supercompact, so

 is a limit of supercompact cardinals.

The issue now is that there is no inner model theoretic reason whatsoever to believe that

CUA is consistent with very large cardinals, but it cannot be that easy to refute:

Proposition 8.1.11 (UA). Suppose j0 : V ! M0 and j1 : V ! M1 witness that CUA is

false and � = min{crt(j0),crt(j1)}. Then some cardinal  < � is �-supercompact.

Sketch. Since � is measurable, it su�ces to show that some  < � is �-supercompact for all

� < �. Assume towards a contradiction that no cardinal below � has this property. Then

by Corollary 7.5.2, for any ultrapower embedding i : V ! N , i[�] ✓ �. Let

(i0, i1) : (M0,M1) ! N

be the pushout of (j0, j1). Let W be a countably complete ultrafilter such that MW = N and

jW = i0 � j0 = i1 � j1. By the analysis of ultrafilters internal to a pushout (Theorem 5.4.19),

W is �-internal. Thus jW [�] ✓ � and W is �-internal, so the internal relation theoretic

criterion for completeness (Lemma 5.5.28) implies that W is �-complete. Thus crt(i0) �
crt(i0 � j0) = crt(jW ) = , and similarly crt(i1) � . This contradicts that j0 and j1

witness the failure of CUA.

One can do a bit better using the following fact, whose proof we omit:

Proposition 8.1.12 (UA). Suppose CUA fails. Then there are irreducible ultrafilters U0

and U1 such that jU0 and jU1 witness the failure of CUA.

Since UA implies the linearity of the Mitchell order on normal ultrafilters (Theorem 2.3.11),

CUA cannot fail for a pair of normal ultrafilters, and hence the analysis of normality and irre-

ducible ultrafilters (Theorem 5.3.11) implies that min{crt(jU0),crt(jU1)} is a µ-measurable
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cardinal. One can push this quite a bit further, but not far enough to answer the following

question:

Question 8.1.13. Is CUA consistent with the existence of cardinals  < � that are both

�+-supercompact?

The most interesting possibility is that large cardinals refute CUA. In any case, unless one

can prove CUA from UA (or Weak Comparison), it is far from well-justified. The analysis

of the second strongly compact cardinal therefore requires a di↵erent approach.

Irreducible ultrafilters and supercompactness

Given the techniques of the previous chapter, the obvious approach is to study the -complete

generalizations of Fréchet cardinals and the ultrafilters K�.

Definition 8.1.14. Suppose   � are uncountable cardinals. Then � is -Fréchet if there

is a -complete uniform ultrafilter on �.

Definition 8.1.15 (UA). Suppose � is a -Fréchet cardinal. ThenK 
� denotes the minimum

-complete uniform ultrafilter on � in the Ketonen order.

Most of the key properties of K� do not directly generalize to K 
� : the proofs seem to

require UA(). Essentially the only nontrivial UA result that lifts is Lemma 7.3.12, the fact

that K� is irreducible for regular �.

Lemma 8.1.16 (UA). Suppose   � and � is -Fréchet. Then K 
� is weakly normal.

Proof. Recall Lemma 4.4.20, which asserts that a uniform ultrafilter U on a cardinal � is

weakly normal if and only if for all W <rk U , �W < �. We will show that this holds for

U = K 
� . Suppose W <rk K 

� . Since W RK K 
� , W is -complete, and since W <rk K 

� ,

W <k K 
� . By the minimality of K 

� , �W < �.
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Proposition 8.1.17 (UA). Suppose ⌫ < � and � is a ⌫+-Fréchet regular cardinal.1 Then

K ⌫+

� is irreducible.

Proof. Let K = K ⌫+

� . Suppose D <RF K . We must show that D is principal. Since

K is ⌫+-complete and D RK K , D is ⌫+-complete, and in particular jD(⌫) = ⌫. Since

K is weakly normal and D <RK K , �D < � by Proposition 4.4.22. Let j : V ! M

be the ultrapower of the universe by K and let h : MD ! M be the unique internal

ultrapower embedding such that h� jD = j. Then h is the ultrapower of MD by tD(K ), and

crt(h) � crt(j) > ⌫ = jD(⌫). Thus tD(K ) is jD(⌫+)-complete in MD.

Assume towards a contradiction that D is nonprincipal. By Proposition 5.4.5, tD(K ) <k

jD(K ) in MD. Since tD(K ) is jD(⌫+)-complete, the <M
D

k -minimality of jD(K ) among

jD(⌫+)-complete uniform ultrafilters on jD(�) implies that �t
D

(K ) < jD(�). Since jD(�) is

MD-regular, it follows that �t
D

(K ) < jD(�). Since �D < � and � is regular, jD(�) = sup jD[�]

by Lemma 3.5.32. Therefore there is some ordinal ↵ < � such that �t
D

(K ) < jD(↵). But

↵ 2 j�1
D [tD(K )] = K , contradicting that K is uniform. Thus our assumption was false,

and in fact D is principal. This shows that K is irreducible, as desired.

Beyond Proposition 8.1.17, the ultrafilters K 
� turn out to be a bit of a red herring.

The analysis of higher supercompact cardinals does not proceed by generalizing the theory

of K� to the ultrafilters K 
� but instead by propagating the �-supercompactness of K�

itself to arbitrary irreducible ultrafilters. Recall that an ultrafilter U is �-irreducible if every

ultrafilter D RF U such that �D < � is principal. The main theorems of this chapter, to

which we refer collectively as the Irreducibility Theorem, show that supercompactness and

irreducibility are equivalent:

Theorem 8.2.21 (UA). Suppose � is a successor cardinal or a strong limit singular cardinal

and U is a countably complete uniform ultrafilter on �. Then the following are equivalent:

1It is necessary here to restrict to consideration of K ⌫+

� , rather than considering K 
� in general. In

fact, K 
� is irreducible if and only if there is some ⌫ <  such that K 

� = K ⌫+

� . This is closely related to
Menas’s Theorem (Theorem 8.1.1).
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(1) jU is �-irreducible.

(2) jU is �-supercompact.

It does not seem to be possible to generalize this to the case that � is inaccessible, and

instead we obtain the following theorem:

Theorem 8.2.22 (UA). Suppose � is an inaccessible cardinal and U is a countably complete

ultrafilter on �. Then the following are equivalent:

(1) jU is �-irreducible.

(2) jU is <�-supercompact and �-tight.

We will use these two theorems to give a complete characterization of strongly compact

cardinals assuming UA:

Theorem 8.3.9 (UA). Suppose  is a strongly compact cardinal. Either  is a supercompact

cardinal or  is a measurable limit of supercompact cardinals

Outline of Chapter 8

We now outline the rest of this chapter.

Section 8.2. We prove the main structural result of the section, called the Irreducibility

Theorem, from which all the other theorems flow. The Irreducibility Theorem refers to a

cluster of results (especially Theorem 8.2.18 and Corollary 8.2.20) that show an equivalence

between irreducibility and supercompactness.

Section 8.3. We use the Irreducibility Theorem to resolve the Identity Crisis for strongly

compact cardinals under UA. We also use it in Section 8.3 to completely characterize the

internal relation in terms of the Mitchell order.

Section 8.4. We discuss the relationship between UA and very large cardinals. We

begin by (partially) analyzing the relationship between hugeness and non-regular ultrafilters
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under UA (Theorem 8.4.5). We then turn to the topic of cardinal preserving embeddings.

We show that UA rules out such embeddings (Lemma 8.4.10), and more generally that

local cardinal preservation hypotheses are equivalent to rank-into-rank large cardinal large

cardinal axioms under UA (Theorem 8.4.12). Finally in Section 8.4, we discuss the structure

of supercompactness at inaccessible cardinals, and in particular the prospect that the local

equivalence of strong compactness and supercompactness breaks down there.

8.2 The Irreducibility Theorem

In this section, we prove the central Irreducibility Theorem (Theorem 8.2.21 and Theo-

rem 8.2.22). We begin in Section 8.2 by proving the forward implication from supercompact-

ness to irreducibility. This raises a central open question (Question 8.2.4) that will be dis-

cussed at greater length in Section 8.4. The next two sections are devoted to proving the

preliminary lemmas necessary for the proof of the Irreducibility Theorem. In Section 8.2, we

prove two key lemmas regarding the comparison of K� with an arbitrary ultrafilter. In the

very short Section 8.2, we prove two theorems on the combinatorics of normal ultrafilters

that show up in the proof of the Irreducibility Theorem. Finally, Section 8.2 contains the

proof of the Irreducibility Theorem as well as some slightly more general theorems.

Pseudocompactness and irreducibility

In this short subsection, we prove the easy direction of the irreducibility theorem: �-

supercompactness implies �-irreducibility. In fact, we will prove something slightly stronger.

The following property is a priori somewhat weaker than �-supercompactness, but already

implies �-irreducibility.

Definition 8.2.1. Suppose � is a cardinal. An elementary embedding j : V ! M is said to

be �-pseudocompact if j is �-tight for every cardinal �  �.
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Lemma 8.2.2. An ultrapower embedding j : V ! M is �-pseudocompact if and only if M

has the �-covering property for all �  �.

Proof. This is an immediate consequence of the self-strengthening of tightness that holds for

ultrapower embeddings (Lemma 7.2.7).

Proposition 8.2.3. Suppose � is a cardinal and U is a countably complete ultrafilter. If jU

is �-pseudocompact, then U is �-irreducible.

Proof. Suppose D RF U and �D < �. We must show that D is principal. We first show that

jD is �-pseudocompact. Since jU is �-pseudocompact, MU has the �-covering property for

all �  �. Since D RF U , MU ✓ MD. It follows that MD has the �-covering property for

all �  �: suppose �  � and A is a set of ordinals of cardinality �; then A is contained in

a set B 2 MU such that |B|MU  �, and since MU ✓ MD, we have B 2 MD and |B|MD  �,

as desired. Thus jD is �-pseudocompact.

In particular, since �D < �, D is �+
D-tight. Assume towards a contradiction that D is

nonprincipal. By Lemma 4.2.32, jD(�D) > �+
D. Thus D is (�+

D, �)-tight where � = �+
D <

jD(�D). This contradicts Lemma 7.2.17, which states that if ⌘ is a cardinal and Z is a

nonprincipal countably complete ultrafilter such that �Z < ⌘, then Z is not (⌘, �)-tight for

any � < jZ(⌘). Thus D is principal, as desired.

The only known instances of �-pseudocompact elementary embeddings that are not �-

supercompact come from large cardinal axioms at the level of rank-into-rank cardinals.

Specifically, assume the axiom I2. Thus there is a cardinal � and an elementary embed-

ding j : V ! M such that crt(j) < �, j(�) = �, and V� ✓ M . The embedding j is not

�-supercompact by the Kunen Inconsistency Theorem, but j is trivially �-pseudocompact

since j[�] ✓ �. In fact, j is �+↵-pseudocompact for all ↵ < crt(j). On the other hand,

there are no known examples of ultrapower embeddings that are �-pseudocompact but not

�-supercompact. In fact, it is not known whether it is consistent that such an example exists:
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Question 8.2.4 (ZFC). Suppose � is a cardinal and j : V ! M is a �-pseudocompact

ultrapower embedding. Must j be �-supercompact?

The natural inclination is to conjecture that the answer is no: typically large cardinal

properties formulated in terms of covering do not imply supercompactness in ZFC. But the

problem turns out to be much more subtle than one might expect.

We highlight below the most basic instance of this problem (in simple English):

Question 8.2.5. Suppose j : V ! M is an elementary embedding with critical point  such

that cfM(sup j[+]) = +. Must j[+] belong to M?

We devote the final section of this dissertation (Section 8.4) to the relationship between

Question 8.2.4 and the Inner Model Problem.

On this topic, let us mention an interesting way in which tightness can act as a stand-in

for strength:

Lemma 8.2.6. Suppose j : V ! M is an elementary embedding, � is a cardinal, � is an

M-cardinal, and j is (�, �)-tight. Then 2�  (2�)M .

Proof. Fix B 2 M such that |B|M = � and j[�] ✓ B. Then the map f : P (�) ! P (B) \M

defined by f(S) = j(S) \ B is an injection: if S 6= T , then fix ↵ 2 S 4 T , and note that

since j[�] ✓ B, j(↵) 2 (j(S) 4 j(T )) \ B = f(S) 4 f(T ). Since |P (B) \M |M = (2�)M it

follows that 2�  |(2�)M |  (2�)M .

As a sample application (and a brief diversion), suppose  is a cardinal such that for all

cardinals � � , there is a �-tight embedding j : V ! M such that j() > �. Then the

Generalized Continuum Hypothesis cannot fail first above . To see this, assume that for all

cardinals � < , 2� = �+. Fix � � . Let j : V ! M be a �-tight embedding with j() > �.

Then in M , 2� = �+. Therefore 2�  (2�)M  (�+)M  �+, so 2� = �+.
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Translations of K
�

Suppose U is a �-irreducible uniform ultrafilter on a successor cardinal �. The Irreducibility

Theorem asserts that jU is �-supercompact. The proof proceeds by analyzing the pushout

comparison of (jK
�

, jU) where � is a Fréchet successor cardinal. In this section, we will prove

a number of lemmas regarding this pushout that amount to pieces of this analysis.

The universal property of K� (Theorem 7.3.13) identifies the pushout of (jK
�

, jU) when

cfMU (sup jU [�]) is not Fréchet in MU : in fact, K� RF U , so the pushout is given by the

unique internal ultrapower embedding h : MK
�

! MU . It turns out that the universal

property is powerful enough to yield an analysis of this comparison even when cfMU (sup jU [�])

is a Fréchet cardinal of MU . The following lemma tells us which ultrafilter is hit on the MU -

side of the comparison:

Lemma 8.2.7 (UA). Suppose � is a regular Fréchet cardinal and U is a countably complete

ultrafilter. Let � = cfMU (sup jU [�]).

• Suppose � is not Fréchet in MU . Then tU(K�) is principal in MU .

• Suppose � is Fréchet in MU . Then tU(K�) ⇠= (K�)M .

Proof. The first bullet point is immediate from the universal property ofK� (Theorem 7.3.13):

we have K� RF U , so by Lemma 5.4.39, tU(K�) is principal in MU . Therefore assume in-

stead that � is Fréchet in MU .

Let Z = tU(K�). We claim that in MU , Z is a <k-minimal element of the set of countably

complete ultrafiltersW on jU(�) with �W � sup jU [�]. Clearly �Z � sup jU [�], since otherwise

�j�1
U

[Z] < � contradicting that j�1
U [Z] = K�. Suppose W 2 jU(B(�)) and W <k Z in MU ,

and we will show �W < sup jU [�]. Let W̄ = j�1
U [W ]. Then tU(W̄ ) k W <k Z = tU(K�).

By Theorem 5.4.42, it follows that W̄ <k K�. Since K� is the <k-least uniform ultrafilter

on the regular cardinal �, �W̄ < �. But jU(�W̄ ) 2 W , so �W  jU(�W̄ ) < sup jU [�].
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Applying the analysis of <k-minimal tail uniform ultrafilters (Lemma 7.3.10) in MU , it

follows that in MU , there is a Ketonen ultrafilter D on cfMU (sup jU [�]) = � that is isomorphic

to Z. Applying UA in MU , D = K�, the unique Ketonen ultrafilter on �.

The analysis of the MK
�

-side of the comparison is much more subtle, and uses the fol-

lowing fact:

Lemma 8.2.8 (UA). Suppose � is a nonisolated regular Fréchet cardinal. Let M = MK
�

.

Suppose i : M ! N is an internal ultrapower embedding. Then there is a countably complete

ultrafilter D of M with �D < � such that there is an internal ultrapower embedding h :

(MD)M ! N with h � jD = i and crt(h) > jD(�).

The proof uses an analysis of �� in MK
�

which is similar to Claim 2 of Theorem 7.5.43:

Lemma 8.2.9 (UA). Suppose � is a nonisolated regular Fréchet cardinal. Let j : V ! M

be the ultrapower of the universe by K�. Then (��)M is a measurable cardinal of M .

Proof. By Theorem 7.3.33 and Theorem 7.4.9, j is �-tight and therefore cfM(sup j[�]) = �.

Therefore by the definition of K� (or more precisely, Lemma 7.3.6), � is not Fréchet in M .

Let ⌘ = (��)M . Assume towards a contradiction that ⌘ is not measurable. Let i : M ! N

be the ultrapower of M by (K⌘)M and let a = a(K
⌘

)M .

We claim that every countably complete N -ultrafilter D on � belongs to M . For any

such D, jND � i is continuous at �: i is continuous at � because i is internal to M and � is

not Fréchet in M , while jND is continuous at i(�) since i(�) is an N -regular cardinal with

i(�) > � � �D, and combining these observations:

jND (i(�)) = sup jND [i(�)] = sup jND [sup i[�]] = sup jND � i[�]

Thus by the characterization of internal ultrapower embeddings of MK
�

(Theorem 7.3.14),

jND � i an internal ultrapower embedding of M . Since jND can be defined at a typical element

of N by setting

jND ([f ](K
⌘

)M ) = jND � i(f)(jND (a))
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it follows that jND is definable over M . Thus D 2 M . Applying inside M the characterization

of countably complete ultrafilters amenable to an isolated ultrapower (Theorem 7.5.17), we

have that D 2 N .

Proposition 7.3.32 states that if  is �-strongly compact and Q is a <-closed inner

model such that every -complete ultrafilter U on � is amenable to Q, then P (�) ✓ Q. By

Theorem 7.4.9, � is �-strongly compact. Moreover N is a <�-closed (indeed <�-closed

by Proposition 7.5.20) inner model such that every countably complete N -ultrafilter on �

belongs to �. It therefore follows that P (�) ✓ N . But then K� itself is an N -ultrafilter,

so K� 2 N . Since N ✓ M , this implies K� 2 M = MK
�

, so K� C K�, contradicting the

irreflexivity of the Mitchell order (Lemma 4.2.40).

Proof of Lemma 8.2.8. By Lemma 8.2.9, ⌘ = (��)M is a measurable cardinal that is not a

limit of Fréchet cardinals. The theorem follows by applying in M the fact that ultrapower

embeddings can be factored across strong limit cardinals that are not limits of Fréchet

cardinals (Theorem 7.5.5).

Lemma 8.2.8 has the following curious and sometimes useful corollary:

Lemma 8.2.10 (UA). Suppose � is a strongly inaccessible cardinal such that one of the

following holds:

• � is Fréchet.

• �� is measurable.

Then every ultrapower embedding is �-tight.

Proof. Suppose U is a countably complete ultrafilter. We will show that jU is �-tight.

Assume first that � is not Fréchet. Then by assumption ⌘ = �� is measurable. By

Theorem 7.5.5, there is a countably complete ultrafilter D with �D < ⌘ such that there is an

elementary embedding k : MD ! MU with k�jD = jU and crt(k) � ⌘. Since �D < ⌘, in fact
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�D < �, so jD(�) = � since � is inaccessible. But since crt(k) > jD(�), jU(�) = jD(�) = �.

Therefore jD is vacuously �-tight.

Assume instead that � is Fréchet. Let (h, i) : (MU ,MK
�

) ! N be the pushout of

(jU , jK
�

). Applying Lemma 8.2.8, i factors in such a way that we can conclude that i(�) = �

by the argument of the previous paragraph. Since K� is �-tight by Proposition 7.4.11 and

i is vacuously �-tight, i � jK
�

is �-tight. In other words, N has the �-covering property.

Since N ✓ MU and N has the �-covering property, MU has the �-covering property.

Therefore jU is �-tight, as desired.

Elementary embeddings and normal filters

In this short subsection, we prove some combinatorial constraints on comparisons involving

normal filters. Suppose U and W are countably complete ultrafilters on a cardinal . A

question that often arises in the context of UA is what sort of MW -ultrafilters Z on jW ()

pull back to U in the sense that U = j�1
W [Z]. Such MW -ultrafilters arise from any comparison

of (jU , jW ). Focusing on a more specific question, assume U is normal, and suppose Z is a

tail uniform MW -ultrafilter on jW () with j�1
W [Z] = U . Must Z = jW (U)? The following

lemma, which has almost certainly been discovered before, tells us that the answer is yes:

Lemma 8.2.11. Suppose F is a normal fine filter on a set Y , and W is an ultrafilter on

X =
S

Y . Then jW (F) is the unique M-filter on jW (Y ) that extends jW [F ] and concentrates

on {� 2 jW (Y ) : aW 2 �}. In particular, jW (F) is the unique fine M-filter on jW (Y )

extending jW [F ].

Proof. Suppose A 2 jW (F). We will find B 2 F such that

jW (B) \ {� 2 jW (Y ) : aW 2 �} ✓ A

Fix a function G : X ! F such that A = jW (G)(aW ). Let

B = 4x2XG(x)
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Suppose ⌧ 2 jW (B) \ {� 2 jW (Y ) : aW 2 �}. We will show that ⌧ 2 A. Since ⌧ belongs

to jW (B) = 4x2j
W

(X)jW (G)(x), the definition of the diagonal intersection operation implies

that ⌧ 2 jW (G)(x) for all x 2 ⌧ . But aW 2 ⌧ , and hence ⌧ 2 jW (G)(aW ) = A.

In general, one must adjoin the set {� 2 j(Y ) : aW 2 �} in order to generate all of F .

Suppose F is a normal fine ultrafilter on Y and W is an ultrafilter on X =
S

Y . Then jW [F ]

generates jW (F) if and only if there is some ⌧ 2 Y such that W concentrates on ⌧ and F
concentrates on {� 2 Y : ⌧ ✓ �}.

To better explain how this lemma is related to UA, we o↵er a sample corollary:

Corollary 8.2.12 (UA). Suppose F is a normal filter on a cardinal . Let U be the <k-least

countably complete ultrafilter on  that extends F . Then for all D <k U , D @ U .

Proof. Suppose D <k U . We claim jD(U) k tD(U) in MD, which implies D @ U by the

theory of the internal relation (Lemma 5.5.13). Since jD(U) is the <M
D

k -least countably

complete ultrafilter of MD that extends jD(F ), it su�ces to show that jD(F ) ✓ tD(U). Of

course jD[F ] ✓ tD(U) since j�1
D [tD(U)] = U . Moreover since D <k U , we must have that

tD(U) concentrates on ordinals greater than aD (since otherwise tD(U) witnesses U k D).

In other words, {↵ < jD() : aD 2 ↵} 2 tD(U). Therefore by Lemma 8.2.11, jD(F ) ✓ tD(U),

as desired.

Here is an intriguing consequence of Corollary 8.2.12. Suppose  is a regular cardinal

and F is the !-club filter on . Suppose F extends to a countably complete ultrafilter.

Mitchell [34] showed that this hypothesis is equiconsistent with a measurable cardinal of

Mitchell order !, but assuming UA, it implies that there is a µ-measurable cardinal and

quite a bit more. The reason is that Corollary 8.2.12 shows that the <k-least extension of

F is irreducible; clearly it is not normal, so we can apply the dichotomy between normal

ultrafilters and µ-measurability (Theorem 5.3.8). But how strong is this hypothesis? (Inner

model theory suggests that it is beyond a superstrong cardinal.)
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As a corollary of Lemma 8.2.11, we have a similar unique extension theorem for isonor-

mal ultrafilters on regular cardinals. We begin with a corollary of Solovay’s Lemma (Theo-

rem 4.4.27) that explains the statement of Lemma 8.2.14:

Lemma 8.2.13. Suppose � is a regular cardinal and W is a countably complete weakly

normal ultrafilter on �. Suppose hS⇠ : ⇠ < �i is a partition of S�
! into stationary sets. Then

for any ⇠ < �, W concentrates on the set of ↵ < � such that S⇠ is stationary in ↵.

Proof. Let j : V ! M be the ultrapower of the universe by W . Then since W is weakly

normal, aW = sup j[�]. Let hT⇠ : ⇠ < j(�)i = j(hS↵ : ↵ < �i). By Solovay’s Lemma

(Lemma 4.4.29),

j[�] = {⇠ < j(�) : T⇠ is stationary in sup j[�]}

In particular, if ⇠ < �, then M satisfies that Tj(⇠) is stationary in aW , and so by  Loś’s

Theorem, W concentrates on the set of ↵ < � such that S⇠ is stationary in ↵.

Lemma 8.2.14. Suppose � is a regular cardinal, W is an isonormal ultrafilter on �, and D

is a countably complete ultrafilter on �. Let hS⇠ : ⇠ < �i be a partition of S�
! into stationary

sets, and let hT⇠ : ⇠ < jD(�)i = jD(hS⇠ : ⇠ < �i). Let

A = {↵ < jD(�) : MD ✏ Ta
D

is stationary in ↵}

Then jD(W ) is the unique MD-filter on jD(�) that extends jD[W ] and concentrates on A.

Proof. Let U be the normal fine ultrafilter on P (�) isomorphic to W . Let g : P (�) ! �+ 1

be the sup function

g(�) = sup �

By Solovay’s Lemma (Corollary 4.4.28), g⇤(U) = W . Let f : � ! P (�) be the function

defined by

f(↵) = {⇠ < � : S⇠ is stationary in ↵}
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By the proof of Solovay’s Lemma, for any A ✓ �, f [A] and g�1[A] are equal modulo U . Thus
since W = g⇤(U),

W = {A ✓ � : f [A] 2 U}

By Lemma 8.2.11, jD(U) is the unique MD-filter on jD(Y ) that extends jD[U ] and con-

centrates on {� 2 jD(P (�)) : aD 2 �}. Since jD(W ) = {A ✓ � : jD(f)[A] 2 jD(U)}, it
follows that jD(W ) is the unique MD-filter on jD(�) that extends {A : jD(f)[A] 2 jD[U ]}
and concentrates on

{↵ < � : aD 2 jD(f)(↵)} = {↵ < � : MD ✏ Ta
D

is stationary in ↵}

In other words, jD(W ) is the unique MD-filter on jD(�) that extends jD[W ] and concentrates

on A, as desired.

Let us include one more useful combinatorial fact, this time about pullbacks of weakly

normal ultrafilters. To state the lemma in the generality we will need, we introduce a

relativized version of the notion of a weakly normal ultrafilter.

Definition 8.2.15. Suppose M is a transitive model of ZFC, � is an M -regular cardinal,

and F is an M -filter on �. Then F is weakly normal if for all sequences hA↵ : ↵ < �i 2 M

of subsets of � such that A↵ 2 F for all ↵ < � and A↵ ◆ A� for all ↵  � < �, the diagonal

intersection 4↵<�A↵ belongs to F .

We will really only need this notion for M -ultrafilters, in which case it has the following

familiar formulation:

Lemma 8.2.16. If M is a transitive model of ZFC, � is an M-regular cardinal, and U is

an M-ultrafilter on �, then U is weakly normal if and only if aU = sup jMU [�].

Lemma 8.2.17. Suppose � is a regular cardinal and j : V ! M is an elementary embedding

that is continuous at �. Suppose F is a weakly normal M-filter on j(�). Then j�1[F ] is a

weakly normal filter on �.
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Proof. Suppose hA↵ : ↵ < �i is a decreasing sequence of subsets of � such that A↵ 2 j�1[F ]

for all ↵ < �. We must show that 4↵<�A↵ 2 j�1[F ]. Let hB� : � < j(�)i = j(hA↵ : ↵ < �i).
Since j(4↵<�A↵) = 4�<j(�)B�, it su�ces to show that 4�<j(�)B� 2 F .

By the elementarity of j, hB� : � < j(�)i is a decreasing sequence of subsets of j(�). We

claim that for all � < j(�), B� 2 F . To see this, fix � < j(�). Since j is continuous at �,

there is some ↵ < � such that �  j(↵). Now Bj(↵) = j(A↵) 2 F since A↵ 2 j�1[F ]. But

Bj(↵) ✓ B� since �  j(↵) and hB� : � < j(�)i is a decreasing sequence. Therefore B� 2 F ,

as claimed. Since F is weakly normal, it follows that 4�<j(�)B� 2 F .

Proof of the Irreducibility Theorem

We will obtain the Irreducibility Theorem as an immediate consequence of the following

slightly more general fact:

Theorem 8.2.18 (UA). Suppose U is a countably complete ultrafilter and � is a Fréchet

successor cardinal. Then there is a countably complete ultrafilter D with �D < � and an

internal ultrapower embedding e : MD ! MU that is jD(�)-supercompact in MD.

Proof. Let j : V ! M be the ultrapower of the universe by K� and let i : V ! N be the

ultrapower of the universe of by U . Let

(i⇤, j⇤) : (M,N) ! P

be the pushout of (j, i). Note that i⇤ denotes the embedding on the M-side of the comparison

and j⇤ denotes the embedding on the N-side of the comparison. The proof amounts to an

analysis of (i⇤, j⇤).

We first characterize j⇤. By definition (Lemma 5.4.34), j⇤ is the ultrapower of N by

tU(K�). Let

� = cfN(sup i[�])

By the analysis of translations of K� (Lemma 8.2.7), one of the following holds in N :
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Figure 8.1: Diagram of the Irreducibility Theorem.

• � is not Fréchet and tU(K�) is principal.

• � is Fréchet and tU(K�) is isomorphic to (K�)N .

The hard part of the proof is the analysis of i⇤, the embedding on the M -side of the com-

parison of (j, i). Let ⌘ be the least measurable cardinal ofM above �. Applying Lemma 8.2.8,

let D be a countably complete ultrafilter of M with �D < � such that there is an internal

ultrapower embedding h : (MD)M ! P with crt(h) � ⌘ and i⇤ = h � jMD . We may as-

sume without loss of generality that the underlying set of D is the cardinal �D. Recall

Corollary 7.4.10, which states that M� ✓ M . In particular, P (�) ✓ M , so D truly is an

ultrafilter.

The following are the two key claims:

Claim 1. � = jD(�) and Ordj
D

(�) \N = Ordj
D

(�) \ P = Ordj
D

(�) \MD.

Claim 2. D RF U .

Assuming these claims, the conclusion of the theorem is immediate: by Claim 2, let

e : MD ! N be the unique internal ultrapower embedding such that e � jD = i; then e is

jD(�)-supercompact in MD since Ordj
D

(�) \N = Ordj
D

(�) \MD by Claim 1.
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We therefore focus on proving these two claims.

Proof of Claim 1. We begin by showing Ordj
D

(�) \MD = Ordj
D

(�) \ P . Since j : V ! M is

a �-supercompact ultrapower embedding, Ord� = Ord� \M . By the elementarity of jD,

Ordj
D

(�) \MD = Ordj
D

(�) \ jD(M) = Ordj
D

(�) \ (MD)
M

The final equality follows from the fact that M is closed under �-sequences and hence cor-

rectly computes the ultrapower of M by D. But h : (MD)M ! P is an internal ultrapower

embedding such that crt(h) � ⌘ > jD(�). Hence Ordj
D

(�)\(MD)M = Ordj
D

(�)\P . Putting

all this together, we have shown

Ordj
D

(�) \MD = Ordj
D

(�) \ P

One consequence of the agreement between MD and P , which we set down now for future

use, is that jD(�) is a successor cardinal of P : � is a successor cardinal, so by elementarity,

jD(�) is a successor cardinal of MD, and therefore since Ordj
D

(�)\MD = Ordj
D

(�)\P , jD(�)

is a successor cardinal of P .

Next, we show that � = jD(�). To do this, we calculate the P -cofinality of the ordinal

sup j⇤ � i[�] in two di↵erent ways.

On the one hand, we claim

cfP (sup j⇤ � i[�]) = jD(�) (8.1)

We have that j⇤ � i = h � jD � j = h � jD(j) � jD. Since �D < �, and � is regular,

jD(�) = sup jD[�] (Lemma 3.5.32). Now we calculate:

cfP (suph � jD(j) � jD[�]) = cfP (suph � jD(j)[sup jD[�]])

= cfP (suph � jD(j)[jD(�)])

= cfMD(suph � jD(j)[jD(�)])

= jD(�)
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The second-to-last equality uses the fact that OrdjD(�) \ P = Ordj
D

(�) \ MD. The final

equality uses the fact that h� jD(j) is increasing and definable over MD and jD(�) is regular

in MD. Putting everything together yields that cfP (sup j⇤ � i[�]) = jD(�), as claimed.

On the other hand, we claim

cfP (sup j⇤ � i[�]) = cfP (sup j⇤[�]) (8.2)

Since � = cfN(sup i[�]), there is an increasing cofinal function f : � ! sup i[�] with f 2 N .

Now sup j⇤ � i[�] = sup j⇤[sup f [�]] = sup j⇤(f)[sup j⇤[�]]. Thus j⇤(f) 2 P restricts to an

increasing cofinal function from sup j⇤[�] to sup j⇤ � i[�]. It follows that cfP (sup j⇤ � i[�]) =
cfP (sup j⇤[�]), as desired.

Combining (8.1) and (8.2), we have shown cfP (sup j⇤[�]) = jD(�). To show � = jD(�), we

must show cfP (sup j⇤[�]) = �. In other words (applying the easy direction of Theorem 7.3.33),

we must show j⇤ is �-tight.

Recall that j⇤ is the ultrapower of N by tU(K�). If tU(K�) is principal, then trivially j⇤

is �-tight. Therefore assume tU(K�) is nonprincipal. By the second paragraph of this proof,

N satisfies that � is Fréchet and tU(K�) is isomorphic to (K�)N .

It su�ces to show that � is not isolated in N . Then applying in N the analysis of K� at

nonisolated cardinals � (Proposition 7.4.11), j⇤ is �-tight.

Thus assume towards a contradiction that � is isolated in N . In particular, � is a

regular limit cardinal in N . Moreover, by Theorem 7.5.36, (K�)N concentrates on N -

regular cardinals, so by  Loś’s Theorem, a(K
�

)N = sup j⇤[�] is regular in P . Thus by (8.2),

cfP (sup j⇤ � i[�]) = sup j⇤[�], and so by (8.1), sup j⇤[�] = jD(�). Since � is a limit cardinal of

N , sup j⇤[�] is a limit cardinal of P . This contradicts the fact (set down earlier) that jD(�) is

a successor cardinal of P . Thus our assumption that � is isolated in N was false. It follows

that � is not isolated and hence j⇤ is �-tight, and hence cfP (sup j⇤[�]) = �, and hence by (8.1)

and (8.2), jD(�) = �.

We finally show that Ord� \N = Ord� \ P . If tU(K�) is principal then P = N , so this

is obvious. If not, then j⇤ : N ! P is the ultrapower embedding associated to (K�)N . Note
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that � = jD(�) is a successor cardinal of P , and so since P ✓ N , � is a successor cardinal

of N . Thus by the analysis of Ketonen ultrafilters on successor cardinals (Corollary 7.4.10)

applied in N , j⇤ is �-supercompact. In particular, Ord� \N = Ord� \ P .

We now turn to the proof that D RF U .

Proof of Claim 2. To show D RF U , it su�ces (by the definition of translation functions,

or Lemma 5.4.39) to show that tU(D) is principal in N .

Let us first show that

tU(D) RF tU(K�)

in N . Note that

(h � jD(j), j⇤) : (MD, N) ! P

is an internal ultrapower comparison of (jD, i). Since

(jMD

t
D

(U), j
M

U

t
U

(D)) : (MD, N) ! (Mt
U

(D))
N

is the pushout of (jD, i) (by Lemma 5.4.34), it follows that there is an internal ultrapower

embedding k : (Mt
U

(D))N ! P such that k � jMD

t
D

(U) = h � jD(j) and k � jMU

t
U

(D) = j⇤ = jNt
U

(K
�

).

The latter equation is equivalent to the statement that tU(D) RF tU(K�) in N .

Since tU(K�) is either principal or isomorphic to the ultrafilter (Kj
D

(�))N , which is irre-

ducible by Lemma 7.3.12, one of the following must hold:

(1) jD(�) is Fréchet in N and N ✏ tU(D) ⇠= (Kj
D

(�))N .

(2) tU(D) is principal in N .

Our goal is to show that (2) holds, so to finish the proof of the claim, it su�ces to show that

(1) fails. Towards this, we will prove the following subclaim:

Subclaim 1. Assume jD(�) is Fréchet in N . Then (Kj
D

(�))N = jD(K�).
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Proof of Subclaim 1. We plan to prove the claim by applying our unique extension lemma

for isonormal ultrafilters. By Corollary 7.4.10, K� is an isonormal ultrafilter on �. By

Claim 1, (Kj
D

(�))N is an MD-filter on jD(�). Let hS⇠ : ⇠ < �i be a partition of S�
! into

stationary sets. Let hT⇠ : ⇠ < jD(�)i = jD(hS⇠ : ⇠ < �i). By Lemma 8.2.14, to show that

jD(K�) = (Kj
D

(�))N , it su�ces to show that the following hold:

(i) {↵ < jD(�) : MD ✏ Ta
D

is stationary in ↵} 2 (Kj
D

(�))N .

(ii) jD[K�] ✓ (Kj
D

(�))N .

(i) will be proved by applying Lemma 8.2.13. Note that hT⇠ : ⇠ < jD(�)i belongs to

N and N satisfies that hT⇠ : ⇠ < jD(�)i is a stationary partition of Sj
D

(�)
! : this follows

from the fact that P (jD(�)) \ N = P (jD(�)) \ MD by Claim 1 and hT⇠ : ⇠ < jD(�)i is

a stationary partition of Sj
D

(�)
! in MD. Since (Kj

D

(�))N is a countably complete weakly

normal ultrafilter of N , Lemma 8.2.13 implies that (Kj
D

(�))N concentrates on {↵ < jD(�) :

MD ✏ T⇠ is stationary in ↵} for any ⇠ < jD(�), and in particular {↵ < jD(�) : MD ✏

Ta
D

is stationary in ↵} 2 (Kj
D

(�))N , as desired.

Towards (ii), let W = j�1
D [(Kj

D

(�))N ]. It su�ces to show that W = K�. It is clear that

W is a countably complete uniform ultrafilter on �. Recall that K� is the unique Ketonen

ultrafilter on �. Let A be the set of ordinals below � that carry no countably complete

tail uniform ultrafilter. By the definition of a Ketonen ultrafilter on a regular cardinal

(Definition 7.3.5), to show W = K�, it su�ces to show that the following hold:

• A 2 W .

• W is weakly normal.

Let us show that A 2 W . In other words, we must show that jD(A) 2 (K�)N . Note

that jD(A) is the set of ordinals less than jD(�) = � that carry no countably complete tail

uniform ultrafilter in MD. By the definition of a Ketonen ultrafilter on a regular cardinal

(Definition 7.3.5) applied in N , (K�)N concentrates on the set of ordinals less than � that
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carry no countably complete tail uniform ultrafilter in N . Thus to show that jD(A) 2 (K�)N ,

it su�ces to show that if an ordinal less than � carries no countably complete tail uniform

ultrafilter in N , then it carries no countably complete tail uniform ultrafilter in MD. In fact

we will show that for any ordinal ↵ < �,

BM
D(↵) = BN(↵)

where B(X) denotes the set of countably complete ultrafilters on X.

This is an application Proposition 6.3.9, which asserts that if � is a cardinal and Q is

an ultrapower of the universe that is closed under �-sequences, then for any ordinal ↵ < �,

B(↵) = BQ(↵). Fix an ordinal ↵ < �. Applying Proposition 6.3.9 in MD to the ultrapower

P of MD, which satisfies Ord� \ P = Ord� \MD by Claim 1,

BM
D(↵) = BP (↵)

Similarly, applying Proposition 6.3.9 and Claim 1 in N to P ,

BN(↵) = BP (↵)

Hence BM
D(↵) = BN(↵), as desired. This shows A 2 W .

We now show that W is weakly normal. We do this by applying Lemma 8.2.17. Note

that (Kj
D

(�))N is a weakly normal MD-ultrafilter since it is a weakly normal ultrafilter of

N and P (jD(�)) \ MD = P (jD(�)) \ N . Therefore since jD : V ! MD is continuous at

�, Lemma 8.2.17 implies that j�1
D [(Kj

D

(�))] is weakly normal. In other words, W is weakly

normal.

Thus we have shown that W is a Ketonen ultrafilter on �, so W = K�. This implies (ii).

As we explained above, (i), (ii), and Lemma 8.2.14 together imply (Kj
D

(�))N = jD(K�),

which proves the subclaim.

Using Subclaim 1, we show that (1) above does not hold. If jD(�) is not Fréchet in

N , then obviously (1) does not hold, so assume instead that jD(�) is Fréchet in N . Let

K = (Kj
D

(�))N = jD(K�). Thus K 2 MD \N .
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Recall that MN
t
U

(D) is the target model of the pushout of (jD, i). Thus by the analysis of

ultrafilters amenable to a pushout (Theorem 5.4.19), K \MN
t
U

(D) 2 MN
t
U

(D). On the other

hand, we will show that K \P /2 P . By the strictness of the Mitchell order on nonprincipal

ultrafilters (Lemma 4.2.40),

K /2 MM
D

K = jD(MK
�

) = jD(M)

Recall that h : jD(M) ! P is an internal ultrapower embedding, so in particular P ✓ jD(M),

and hence K /2 P since K /2 jD(M). Since P (jD(�)) \ N = P (jD(�)) \ P by Claim 1, it

follows that K = K \ P , and so K \ P /2 P .

We have K \ MN
t
U

(D) 2 MN
t
U

(D) and K \ P /2 P , so MN
t
U

(D) 6= P . Since P = MN
K , it

follows that tU(D) and K are not isomorphic in N : they have di↵erent ultrapowers. In

other words, (1) above fails.

Thus (2) holds, which proves D RF U , establishing the claim.

Having proved Claim 1 and Claim 2, the theorem follows, as we explained after the

statement of Claim 2.

An immediate corollary of Theorem 8.2.18 is the following fact, which will imply the

Irreducibility Theorem:

Corollary 8.2.19 (UA). Suppose � is a Fréchet successor cardinal and U is a �-irreducible

ultrafilter. Then jU is �-supercompact.

Proof. We begin with the case that � is a successor cardinal. By Theorem 8.2.18, there is an

ultrafilter D with �D < � such that there is an internal ultrapower embedding e : MD ! MU

with e � jD = jU that is jD(�)-supercompact in MD. Since U is �-irreducible, D is principal,

and hence jU = e � jD = e is �-supercompact as desired.

Corollary 8.2.20 (UA). Suppose � is a strong limit cardinal and U is a �-irreducible ul-

trafilter. Then jU is <�-supercompact. If � is singular, then jU is �-supercompact. If � is

regular and Fréchet, then jU is �-tight.
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Proof. We start by showing that jU is <�-supercompact. Fix a successor cardinal � < �. If

� is Fréchet, then jU is �-supercompact by Corollary 8.2.19. If � is not Fréchet, then we can

apply Theorem 7.5.32: no cardinal   � is �-supercompact and U is 2�-irreducible, so U

is �+-complete and jU is vacuously �-supercompact. Thus jU is <�-supercompact.

Since jU is a <�-supercompact ultrapower embedding, (MU)<� ✓ MU . If � is singular,

this immediately implies (MU)� ✓ MU . Therefore jU is �-supercompact.

If � is regular and Fréchet, we can apply Lemma 8.2.10 to conclude that jU is �-tight.

As a corollary, we can finally prove the Irreducibility Theorem.

Theorem 8.2.21 (UA). Suppose � is a successor cardinal or a strong limit singular cardinal

and U is a countably complete uniform ultrafilter on �. Then the following are equivalent:

(1) jU is �-irreducible.

(2) jU is �-supercompact.

Proof. (1) implies (2): Follows from Theorem 8.2.18 and Corollary 8.2.20.

(2) implies (1): Follows from Proposition 8.2.3.

Theorem 8.2.22 (UA). Suppose � is an inaccessible cardinal and U is a countably complete

ultrafilter on �. Then the following are equivalent:

(1) jU is �-irreducible.

(2) jU is <�-supercompact and �-tight.

Proof. (1) implies (2): Follows from Corollary 8.2.20 and Lemma 8.2.10.

(2) implies (1): Follows from Proposition 8.2.3.

It is sometimes easier to use a version of the Irreducibility Theorem in the form of

Theorem 8.2.18. This follows from Corollary 8.2.20 using the structure of the Rudin-Froĺık

order (Theorem 5.3.17).
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Lemma 8.2.23 (UA). Suppose U is a countably complete ultrafilter and � is a cardinal.

Then there is a countably complete ultrafilter D RF U with �D < � such that tD(U) is

�⇤-irreducible in MD where �⇤ = sup jD[�].

Proof. By the local ascending chain condition for the Rudin-Froĺık order (Theorem 5.3.17),

there is an RF-maximal D RF U such that �D < �. Let i : MD ! MU be the unique

internal ultrapower embedding such that i � jD = jU . Then i is the ultrapower of MD by

tD(U).

Suppose towards a contradiction that tD(U) is not �⇤-irreducible in MD. Fix a cardinal

� < � and a countably complete ultrafilter Z of MD on jD(�) such that Z RF tD(U). Then

the iteration hD,W i is given by an ultrafilter D0 on �D · �. Now �D0  �D · � < � but

D <RF D0 RF U . This contradicts the maximality of D.

Combining this with the Irreducibility Theorem immediately yields the following fact:

Corollary 8.2.24 (UA). Suppose U is a countably complete ultrafilter.

• If � is a Fréchet successor cardinal, then there is an ultrafilter D RF U with �D < �

such that the unique internal ultrapower embedding h : MD ! MU with h � jD = jU is

jD(�)-supercompact in MD.

• If � is a Fréchet inaccessible cardinal, then there is an ultrafilter D RF U with �D < �

such that the unique internal ultrapower embedding h : MD ! MU with h � jD = jU is

<�-supercompact and �-tight in MD.

• If � is a strong limit singular cardinal, then there is an ultrafilter D RF U with �D < �

such that the unique internal ultrapower embedding h : MD ! MU with h � jD = jU is

�⇤-supercompact in MD where �⇤ = sup jD[�].
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8.3 Resolving the identity crisis

In this section, we characterize all strongly compact cardinals assuming UA. This begins

with an analysis of the -complete analog of K�, denoted K 
� .

The equivalence of strong compactness and supercompactness

Recall that if � is -Fréchet, then K 
� is the <k-least -complete uniform ultrafilter on

�. Applying the Irreducibility Theorem, Proposition 8.1.17 yields a generalization of our

analysis of K� for successor � (Corollary 7.4.10) to these more complete ultrafilters:

Corollary 8.3.1 (UA). Suppose  < � and � is a +-Fréchet successor cardinal. Let

j : V ! M be the ultrapower of the universe by K +

� . Then M� ✓ M .

Proof. By Proposition 8.1.17, K = K +

� is irreducible. Since �K = �, K is �-irreducible.

Therefore by the Irreducibility Theorem (Corollary 8.2.19), M� ✓ M .

Corollary 8.3.2 (UA). Suppose  < � and � is a +-Fréchet successor cardinal. Then there

is a �-supercompact cardinal � such that  < � < �.

As in the case of the first supercompact cardinal, if � is strongly inaccessible, it is not

clear whether K +

� witnesses full �-supercompactness:

Corollary 8.3.3 (UA). Suppose  < � and � is a +-Fréchet inaccessible cardinal. Let

j : V ! M be the ultrapower of the universe by K +

� . Then M<� ✓ M and M has the

�-covering property.

Proof. By Proposition 8.1.17, K = K +

� is irreducible. Since �K = �, K is �-irreducible.

Therefore by the Irreducibility Theorem (Corollary 8.2.20), M<� ✓ M and M has the �-

covering property.

Let us now analyze K 
� for general :

Theorem 8.3.4 (UA). Suppose   � and � is a -Fréchet regular cardinal. Let K = K 
� .
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(1) Suppose  is not a measurable limit of �-strongly compact cardinals. Then K is irre-

ducible.

(2) Suppose  is a measurable limit of �-strongly compact cardinals. Let D be the C-least

normal ultrafilter on . Then D RF K .

Proof. Proof of (1): Assume first that  is not measurable. Since K is -complete, it is

+-complete. Hence K = K +

� is irreducible by Proposition 8.1.17.

Assume instead that  is not a limit of �-strongly compact cardinals. Let ⌫ <  be the

supremum of the �-strongly compact cardinals below . Note that � is ⌫+-Fréchet since � is

-Fréchet and ⌫  . Moreover, K is ⌫+-complete since ⌫+  . Since K ⌫+

� is the <k-least

⌫+-complete uniform ultrafilter on �, K ⌫+

� k K 
� . On the other hand, K ⌫+

� is -complete:

by Corollary 8.3.1 and Corollary 8.3.3, the completeness of K ⌫+

� is a �-strongly compact

cardinal in the interval (⌫,�), and by choice of ⌫, the completeness is at least . Since

K ⌫+

� is a -complete uniform ultrafilter on � and K = K 
� is the <k-least such ultrafilter,

K k K ⌫+

� . By the antisymmetry of the Ketonen order, K = K ⌫+

� , and in particular K

is irreducible by Proposition 8.1.17.

Proof of (2): Let j : V ! M be the ultrapower of the universe by K .

We first claim that  is not measurable in M . Since K is -complete, crt(j) � .

Therefore if � <  is �-strongly compact, then � is j(�)-strongly compact in M . Suppose

towards a contradiction that  is measurable in M . Then  is a measurable limit of j(�)-

strongly compact cardinals in M , so  is j(�)-strongly compact in M by Menas’s Theorem

(Corollary 8.1.6). But by the minimality of K 
� (see Theorem 7.2.14), cfM(sup j[�]) is not

-Fréchet in M , contradicting that  is cfM(sup j[�])-strongly compact in M . Thus our

assumption was false and so  is not measurable in M .

Since  is measurable in V but not in M , it follows that crt(j)  , so crt(j) = . Let

D be the ultrafilter on  derived from j using . Since D is a normal ultrafilter and  is not

measurable in MD, D is the C-least ultrafilter on  (by the linearity of the Mitchell order,

Theorem 2.3.11). Recall that our analysis of derived normal ultrafilters (Theorem 5.3.11)
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implies that either D C K or D RF K . Since  is not measurable in M = MK , it cannot

be that D C K , and therefore we can conclude that D RF K .

It is not hard to show that in the situation of Theorem 8.3.4 (2), in fact K �
 is one of

the ultrafilters defined in the proof of Menas’s Theorem (Corollary 8.1.6):

K �
 = D- lim

↵<
K ↵+

�

Moreover, there is a set I 2 D such that the sequence hK ↵+

� : ↵ 2 Ii is discrete, which

explains why D RF K �
 .

We now characterize the critical point of K ⌫
� .

Definition 8.3.5. Suppose ⌫  � are uncountable cardinals and � is ⌫-Fréchet. Then ⌫
�

denotes the completeness of K ⌫
� .

To analyze ⌫
�, we use the following generalization of Proposition 7.4.1:

Lemma 8.3.6. Suppose ⌫  � are cardinals and � is regular. Suppose   � is the least

(⌫,�)-strongly compact cardinal. Suppose j : V ! M is an elementary embedding such that

cfM(sup j[�]) is not j(⌫)-Fréchet in M . Then j is (�, �)-tight for some M-cardinal � < j().

Proof. Since  is (⌫,�)-strongly compact, every cardinal in the interval [,�] is ⌫-Fréchet.

Thus in M , every cardinal in the interval j([,�]) is j(⌫)-Fréchet. Let � = cfM(sup j[�]). By

Theorem 7.2.12, j is (�, �)-tight. Moreover �  sup j[�]  j(�) and � /2 j([,�]) since � is

not j(⌫)-Fréchet. Thus � < j(). This proves the lemma.

The following proposition shows that under UA, all the ultrafilter-theoretic generaliza-

tions of strong compactness collapse to a single concept:

Proposition 8.3.7 (UA). Suppose ⌫    � are cardinals, � is a regular cardinal, and 

is the least (⌫,�)-strongly compact cardinal. Then  = ⌫
� and  is �-strongly compact.

Proof. Since there is a (⌫,�)-strongly compact cardinal   �, there is some cardinal below

� that is �-supercompact. Thus if � is a limit cardinal then � is strongly inaccessible by
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our results on GCH (Theorem 6.3.12). In particular, we are in a position to apply the

Irreducibility Theorem.

By Theorem 8.3.4, either ⌫
� is a measurable limit of �-strongly compact cardinals or K ⌫

�

is irreducible. In the former case ⌫
� is �-strongly compact by Theorem 8.1.1. In the latter

case, K ⌫
� witnesses that ⌫

� is <�-supercompact and �-strongly compact by the Irreducibility

Theorem (Corollary 8.2.19 and Corollary 8.2.20).

In particular, ⌫
� is (⌫,�)-strongly compact, so   ⌫

�.

On the other hand, by Lemma 8.3.6,   ⌫
�.

Thus  = ⌫
�, and in particular  is �-strongly compact.

Corollary 8.3.8 (UA). Suppose   � are cardinals, � is a successor cardinal, and 

is �-strongly compact. Then either  is �-supercompact or  is a measurable limit of �-

supercompact cardinals.

Proof. Assume by induction that the theorem is true for ̄ < . By Proposition 8.3.7,  = 
�.

By Theorem 8.3.4, either  is a measurable limit of �-strongly compact cardinals or K 
� is

irreducible. If  is a limit of �-strongly compact cardinals, then by our induction hypothesis,

 is a measurable limit of �-supercompact cardinals. If instead K 
� is irreducible, then by

Theorem 8.2.18, K 
� witnesses that  is �-supercompact.

This implies our converse to Menas’s Theorem, stating that under UA, a strongly compact

cardinal is either a supercompact cardinal or a measurable limit of supercompact cardinals:

Theorem 8.3.9 (UA). Suppose  is a strongly compact cardinal. Either  is a supercompact

cardinal or  is a measurable limit of supercompact cardinals

Proof. Suppose  is strongly compact. By the Pigeonhole Principle, there is a cardinal � � 

such that a cardinal ̄   is supercompact if and only if ̄ is �-supercompact. Since  is

�+-strongly compact, Corollary 8.3.8 implies that either  is �+-supercompact or  is a limit

of �+-supercompact cardinals. By our choice of �, it follows that either  is supercompact

or  is a limit of supercompact cardinals, as desired.
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The use of the Pigeonhole Principle is unnecessary here, since the cardinal � turns out

to equal ; a more careful argument appears in the proof of Corollary 8.3.15.

Before generalizing our results on ultrapower thresholds (Theorem 7.4.26), it is worth

noting that our large cardinal assumptions now put us in a local GCH context. For example,

we have the following lemma:

Lemma 8.3.10 (UA). Suppose � is a regular Fréchet cardinal. Suppose � is also +
� -

Fréchet.2 Then for all cardinals � 2 [�,�], 2� = �+.

Proof. Let  = �. Let K0 = K� and K1 = K +

� . Then K1 is �-decomposable yet since

K1 is +-complete, K0 6RF K1. Therefore Theorem 7.5.13 implies that � is not isolated.

It follows that  is <�-supercompact. In particular, applying our results on GCH (namely

Theorem 6.3.12), either � is a successor cardinal or � is a strongly inaccessible cardinal.

Thus we are in a position to apply Corollary 8.3.1 and Corollary 8.3.3.

A weak consequence of the conjunction of these two theorems is that there is an elemen-

tary embedding j : V ! M such that crt(j) > , j(�) > �++M , and j is �-pseudocompact

(or in other words, j is �-tight for all �  �). Since j() =  and j(�) > �++M ,  is

�++M -supercompact in M . Thus by our results on GCH (Theorem 6.3.12) applied in M , M

satisfies that for all � 2 [,�], 2� = �+. But for all �  �, the �-tightness of j implies that

2�  (2�)M (by Lemma 8.2.6), and hence

2�  (2�)M  �+M  �+

as desired.

Definition 8.3.11. Suppose ⌫  � are uncountable cardinals. The (⌫,�)-threshold is the

least ordinal  such that for all ↵ < �, there is an ultrapower embedding j : V ! M such

that crt(j) � ⌫ and j() > ↵.

The following theorem is proved in ZFC and has nothing to do with UA.
2By the proof of the lemma, this hypothesis can be reformulated as the statement that there are distinct

�-strongly compact cardinals.
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Theorem 8.3.12. Suppose   � are cardinals, � is regular, and  is the (⌫,�+)-threshold.

Assume 2� = �+ for all cardinals � 2 [,�]. Then  is (⌫,�)-strongly compact.

Proof. Let U be a ⌫-complete ultrafilter such that jU() � �+. Suppose � is a regular

cardinal in the interval [,�]. Suppose towards a contradiction that U is �-indecomposable

and �+-indecomposable. Since 2� = �+, we can apply Silver’s Theorem (Theorem 7.5.24).

This yields an ultrafilter D with �D < � such that there is an elementary embedding k :

MD ! MU with k � jD = jU and crt(k) > jD(�+). Since jD()  jD(�+),

jD() = k(jD()) = jU() � �+

But jD() < (�
D)+  (�<�)+ = �+  �+, which is a contradiction.

Therefore U is either �-decomposable or �+-decomposable. But if U is �+-decomposable,

then since � is regular, in fact, U is �-decomposable (by Prikry’s Theorem [33], or the proof

of Proposition 7.4.4). In particular, every regular cardinal in the interval [,�] carries a

⌫-complete uniform ultrafilter, which implies that  is (⌫,�)-strongly compact.

Let us point out that this answers a question of Hamkins [17] assuming GCH. Hamkins

defines a cardinal  to be strongly tall if  is the (,Ord)-threshold, and asks about the

relationship between strongly tall and strongly compact cardinals:

Theorem 8.3.13 (GCH). If  is strongly tall, then  is strongly compact.

Theorem 8.3.14 (UA). Suppose � is a regular Fréchet cardinal. Suppose   � is the

(⌫,�+)-threshold for some ⌫ > �. Then  is �-strongly compact.

Proof. The following is the main claim:

Claim. � is ⌫-Fréchet.

Sketch. We first claim that there is some ⌫-Fréchet cardinal in the interval [�, 2�]. Assume

towards a contradiction that this fails. Fix U such that jU() � �+. By Silver’s Theorem

(Theorem 7.5.24), there is an ultrafilter D with �D < � such that there is an elementary

363



embedding k : MD ! MU with crt(k) > jD((2�)+). In particular, jD() � �+. In

particular, it follows that � is not isolated by Proposition 7.5.22. Let � = �D. We claim

that 2� = �+. If � is singular, this follows from Theorem 6.3.12: note that � 2 [�,�] so

some cardinal is �-supercompact by Theorem 7.4.9, and hence 2� = �+ by Theorem 6.3.12.

If � is regular, then this follows from Lemma 8.3.10 since by Lemma 7.4.19, �  �  ⌫.

Thus 2� = �+ in either case. From this (and Theorem 6.3.12) it follows that �� = �. This

contradicts that jD(�) � �+. Thus our assumption was false, so there is a ⌫-Fréchet cardinal

in the interval [�, 2�].

Now let �0 be the least ⌫-Fréchet cardinal greater than or equal to �. Suppose towards

a contradiction that �0 > �.

We claim �0 is an isolated cardinal. Clearly �0 is Fréchet. By the proof of Proposi-

tion 7.4.4, �0 is a limit cardinal. Finally, �0 is not a limit of Fréchet cardinals: otherwise

by Corollary 7.5.2, �0 is a strong limit cardinal, contradicting that � < �0  2�. Thus �0 is

isolated, as claimed.

Theorem 7.5.13 implies K�0 RF K ⌫
�0 , which implies that K�0 is ⌫-complete, or in other

words �0 � ⌫. Since � � �0 , Lemma 7.4.18 implies K�0 6@ K�. By the characterization of

internal ultrapower embeddings of MK
�

(Theorem 7.3.14), K�0 must be discontinuous at �.

But this implies � is �0-Fréchet, and hence � is ⌫-Fréchet. This contradicts our assumption

that �0 > � is the least ⌫-Fréchet cardinal greater than or equal to �.

Since � is ⌫-Fréchet and ⌫ > �, we are in the situation of Lemma 8.3.10. Therefore

for all cardinals � 2 [�,�], 2� = �+. This yields the cardinal arithmetic hypothesis of

Theorem 8.3.12, so we can conclude that  is the least (⌫,�)-strongly compact cardinal. By

Proposition 8.3.7, it follows that  is �-strongly compact.

Of course, if one works below a strong limit cardinal, one obtains the complete general-

ization of Theorem 7.4.26:
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Corollary 8.3.15 (UA). If � is a strong limit cardinal and  < � is the (⌫,�)-threshold,

then  is �-strongly compact for all � < �. Therefore one of the following holds:

•  is �-supercompact for all � < �.

•  is a measurable limit of cardinals that are �-supercompact for all � < �.

Proof. Let 0 be the �-threshold. By Theorem 7.4.26, 0 is <�-supercompact. If ⌫  0,

then 0 is the (⌫,�)-threshold, so  = 0, which proves the corollary.

Therefore assume ⌫ > . Suppose � 2 [,�] is a regular cardinal. By the proof of

Theorem 7.4.26, 0 = �. Moreover  is the (⌫, �+)-threshold by Lemma 7.4.25. Therefore

we can apply Theorem 8.3.14 to obtain that  is �-strongly compact.

The final two bullet points are immediate from Corollary 8.3.8. Suppose  is not �-

supercompact for some � < �. By Corollary 8.3.8,  is a measurable limit of �-supercompact

cardinals for all � 2 [�,�). Now suppose 0 <  is -supercompact. We claim 0 is �-

supercompact for all � < �. Fix � < �. There is some 1 2 (0,] that is �-supercompact.

But 0 is 1-supercompact, so in fact, 0 is �-supercompact, as desired.

Level-by-level equivalence at singular cardinals

A well-known theorem of Apter-Shelah [35] shows the consistency of level-by-level equivalence

of strong compactness and supercompactness: it is consistent with very large cardinals that

for all regular �, a cardinal  is �-strongly compact if and only if it is �-supercompact or a

measurable limit of �-supercompact cardinals. (By Corollary 8.1.6, this is best possible.) We

showed this is a consequence of UA assuming � is a successor cardinal; when � is inaccessible,

we ran into the usual problems.

When � is singular, level-by-level equivalence is in general false. This is a consequence

of the following observation:

Lemma 8.3.16. Suppose   � are cardinals.
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• If cf(�) < , then  is �-strongly compact if and only if  is �+-strongly compact.

• If   cf(�) < �, then  is �-strongly compact if and only if  is <�-strongly compact.

The first bullet point shows that if level-by-level equivalence holds at successor cardinals,

it also holds at singular cardinals of small cofinality. But by the second bullet point, it need

not hold at singular cardinals of larger cofinality:

Proposition 8.3.17. Suppose  is the least cardinal � that i�(�)-strongly compact. Then 

is not i()-supercompact.

Proof. In fact, if � is i�(�)-supercompact, then � is a limit of cardinals �̄ < � that are

i�̄(�̄)-strongly compact. To see this, let j : V ! M be an elementary embedding such that

crt(j) = �, j(�) > i�(�), and Mi
�

(�) ✓ M . Then � is <i�(�)-supercompact in M . It follows

from Lemma 8.3.16 that � is i�(�)-strongly compact in M . Therefore by the usual reflection

argument, � is a limit of cardinals �̄ < � that are i�̄(�̄)-strongly compact.

Upon further thought, however, Proposition 8.3.17 does not rule out that a version of

level-by-level equivalence that holds at singular cardinals, but rather shows that the conven-

tional localization of strong compactness degenerates at singular cardinals of large cofinality.

We therefore introduce an alternate localization of strong compactness:

Definition 8.3.18. A cardinal  is �-club compact if there is a -complete ultrafilter on

P(�) that extends the closed unbounded filter.

If  is �-supercompact, then  is �-club compact: a normal fine ultrafilter always extends

the closed unbounded filter. On the other hand, if every -complete filter on P(�) extends

to a -complete ultrafilter, then in particular, the closed unbounded filter on P(�) extends

to a -complete ultrafilter, so  is �-club compact.

Question 8.3.19 (ZFC). Suppose � is a regular cardinal and  is �-strongly compact. Must

 be �-club compact?
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To state stronger results, we introduce the Bagaria-Magidor versions of club compactness

as well:

Definition 8.3.20. A cardinal  is (⌫,�)-club compact if there is a ⌫-complete ultrafilter on

P(�) that extends the closed unbounded filter.  is almost �-club compact if  is (⌫,�)-club

compact for all ⌫ < .

As is typical in the Bagaria-Magidor notation, if  is (⌫,�)-club compact, then every

cardinal greater than  is (⌫,�)-club compact.

Menas’s Theorem (Corollary 8.1.6) carries over to club compactness:

Lemma 8.3.21. Suppose � is a cardinal. Any limit of �-club compact cardinals is almost

�-club compact. An almost �-club compact cardinal is �-club compact if and only if it is

measurable. Thus every measurable limit of �-club compact cardinals is �-club compact.

The main theorem of this section is that under UA, level-by-level equivalence holds for

club compactness at singular cardinals.

Theorem 8.3.22 (UA). Suppose   � are cardinals and � is singular. Then the following

are equivalent:

(1)  is �-club compact.

(2)  is the least (⌫,�)-club compact cardinal for some ⌫  .

(3)  is �-supercompact or a measurable limit of �-supercompact cardinals.

For the proof, we use the following much more general lemma:

Definition 8.3.23. The Katětov order is defined on filters F and G by setting F Kat G if

there is a function f on a set in G such that F ✓ f⇤(G).

Thus F Kat G if and only if there is an extension F 0 of F below G in the Rudin-Keisler

order.
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Lemma 8.3.24 (UA). Suppose ⌫ < � are cardinals. Suppose F is a normal fine filter on

a set Y such that � ✓ Y ✓ P (�). Suppose A is a set of ordinals and U is the <k-least

⌫+-complete ultrafilter on A such that F Kat U . Then U is �-irreducible.

Proof. Suppose D RF U and �D < �. We must show that D is principal. To do this, we will

show that jD(U) k tD(U) in MD. By Proposition 5.4.5, it then follows that D is principal.

As usual, to show jD(U) k tD(U) in MD, we verify that tD(U) satisfies the properties for

which U was minimized hold for tD(U) with the parameters shifted by jD. In other words,

we show that MD satisfies the following:

• tD(U) is a jD(⌫+)-complete ultrafilter on jD(A).

• jD(F) Kat tD(U).

The first bullet point is rather easy. By definition, tD(U) is an ultrafilter on jD(A). Moreover,

tD(U) is jD(⌫+)-complete in MD since

crt(k) � crt(j) > ⌫ = j(⌫) � jD(⌫)

The second bullet point is a bit more subtle. Since F Kat U , there is some B 2 MU

such that F is contained in the ultrafilter derived from jU using B. In other words, for all

S 2 F , B 2 jU(S). Note that for any f : � ! �, B is closed under jU(f): by normality,

{� 2 Y : � is closed under f} 2 F , and hence B 2 jU({� 2 Y : � is closed under f}), or in
other words, B is closed under jU(f). We will use this fact in an application of Lemma 6.3.11.

Let k : MD ! M be the unique internal ultrapower embedding with k � jD = jU . Thus

k is the ultrapower of MD by tD(U). Let

W = {S 2 jD(P (Y )) : B 2 k(S)}

Thus W is the MD-ultrafilter on jD(Y ) derived from k using B. In particular, W RK

tD(U) by the characterization of the Rudin-Keisler order in terms of derived embeddings
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(Lemma 3.4.4). We claim that jD(F) ✓ W . Clearly jD[F ] ✓ W . The key point is that by

Lemma 6.3.11, k(aD) 2 B. In other words,

{� 2 jD(Y ) : aD 2 �} 2 W

Therefore by our unique extension lemma for normal filters (Lemma 8.2.11), jD(F) ✓ W ,

as desired.

Now jD(F) ✓ W RK tD(U), or in other words jD(F) Kat tD(U).

Proof of Theorem 8.3.22. (1) implies (2): Trivial.

(2) implies (3): Clearly � is a limit of Fréchet cardinals, so by Corollary 7.5.2, � is a

strong limit cardinal.

We first handle the case in which there is some ⌫ <  such that  is the least (⌫,�)-

club compact cardinal. Note that ⌫ is either not measurable or not almost �-club compact,

since otherwise ⌫ would be the least (⌫,�)-club compact cardinal. If ⌫ is not almost �-club

compact, then there is some ⌫̄ < ⌫ such that  is the least (⌫̄+,�)-club compact cardinal.

If ⌫ is not measurable, then  is the least (⌫+,�)-club compact cardinal. In either case, we

can fix ⌘ <  such that  is the least (⌘+,�)-club compact cardinal.

Let F be the closed unbounded filter on P(�). Let U be the least ⌘+-complete ultrafilter

on an ordinal such that F Kat U . Then U is �-irreducible. Since � is a singular strong limit

cardinal, by Corollary 8.2.20, (MU)� ✓ MU . Thus crt(jU) is �-supercompact. Note that

crt(jU)   since F Kat U and F is not +-complete. On the other hand crt(jU) > ⌘, so

crt(jU) is an (⌘+,�)-club compact cardinal, and hence crt(jU)  . Thus  = crt(jU) is

�-supercompact.

We now handle the case in which  is (,�)-club compact but there is no ⌫ <  such that

 is the least (⌫,�)-club compact cardinal. Since  is (⌫,�)-club compact for all ⌫ < , it

follows that for each ⌫ < �, the least (⌫,�)-club compact cardinal lies strictly below . Thus

by the previous case,  is a limit of �-supercompact cardinals. Moreover,  is measurable
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since  is (,�)-club compact. Thus  is a measurable limit of �-club compact cardinals, as

desired.

(3) implies (1): This follows from Lemma 8.3.21.

The Mitchell order, the internal relation, and coherence

Assume UA and suppose U is a normal ultrafilter on . Can P (+) ✓ MU? The question

remains open in general, but the following theorem shows that if + is Fréchet, this cannot

occur:

Theorem 8.3.25 (UA). Suppose � is a Fréchet cardinal. Suppose U is a countably complete

ultrafilter such that P (�) ✓ MU . Then (MU)� ✓ MU .

Proof. Assume by induction that the theorem holds for cardinals below �. If � is a limit

of Fréchet cardinals, we then have (MU)<� ✓ MU . In particular, if � is a singular limit

of Fréchet cardinals, then (MU)� ✓ MU . Thus we may assume that � is either regular or

isolated. This puts the analysis of K� (especially Theorem 7.3.14 and Proposition 7.4.17) at

our disposal.

We first show that U is �-irreducible. Suppose towards a contradiction that there is a

uniform ultrafilter D RF U on an infinite cardinal � < �. Since MU ✓ MD, so in particular

P (�) ✓ MD. A general bound on the strength of ultrapowers (Lemma 4.2.41) implies that

� < jD(�)

Assume first that � is isolated. By Proposition 7.4.17, D @ K�, and by Proposi-

tion 7.5.20, P (�) ✓ MK
�

. Thus

P (�) ✓ jD(P (�D)) ✓ MK
�

Therefore by our bound on the strength of jK
�

for nonmeasurable isolated cardinals � (Propo-

sition 7.5.19), � is measurable. Since � is a strong limit, D 2 H(�) ✓ MD, and this is a

contradiction.
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Assume instead that � is a nonisolated regular cardinal. We use an argument similar to

the one from the local proof of GCH (Theorem 6.3.12). Let M = MK
�

and let N = (MD)M .

Consider the embedding jNK
�

� jMD . (Note: jNK
�

denotes the ultrapower formed by using

functions in N modulo the N -ultrafilter K�, not the ultrafilter (K�)N , which we have not

proved to exist.) This is an ultrapower embedding fromM , and we claim that it is internal to

M . By our analysis of internal ultrapower embeddings of M (Theorem 7.3.14), it su�ces to

show that jNK
�

� jMD is continuous at cfM(sup j[�]) = �. (To compute the cofinality of sup j[�]

in M , we use Proposition 7.4.11.) Clearly jMD (�) = sup jMD [�] since � is regular and D lies

on � < �. Moreover jMD (�) is regular in N and is larger than � since jMD (�) = jD(�) > �.

Thus jNK
�

(jMD (�)) = sup jNK
�

[jMD (�)]. Putting it all together,

jNK
�

� jMD (�) = sup jNK
�

[jMD (�)] = sup jNK
�

[sup jMD [�]] = sup jNK
�

� jMD [�]

Thus jNK
�

� jMD is an internal ultrapower embedding of M .

In fact, jNK
�

itself is definable over M : for any f 2 M�,

jNK
�

([f ]MD ) = jNK
�

� jMD (f)(aNK
�

)

Thus jNK
�

is definable over M . Since P (�) ✓ N , we have K� = {A ✓ � : aNK
�

2 jNK
�

(A)}.
Thus K� is definable over M , and it follows that K� 2 M , or in other words, K� C K�.

This is a contradiction.

Thus our assumption was false, and in fact U is �-irreducible.

To finish the proof, we break once again into cases.

Suppose first that � is a nonmeasurable isolated cardinal. We will show that U is �+-

complete. We claim that K� 6RF U : otherwise, P (�) ✓ MU ✓ MK
�

, and hence K� is

�-complete by Proposition 7.5.19, contradicting that � is not measurable. Since K� 6RF U ,

our factorization theorem for isolated cardinals (Theorem 7.5.13) implies that U is �+-

irreducible. Therefore by Theorem 7.5.31, U is �+-complete, as claimed.

If � is not a nonmeasurable isolated cardinal, then � is either a Fréchet successor cardi-

nal or a Fréchet inaccessible cardinal. Since U is �-irreducible, the Irreducibility Theorem
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(Corollary 8.2.19 and Corollary 8.2.20) implies that jU [�] is contained in a set A 2 MU such

that |A|MU = �. Since P (�) ✓ MU and |A|MU = �, in fact P (A) ✓ MU . In particular, the

subset jU [�] ✓ A belongs to MU , so jU is �-supercompact, and hence (MU)� ✓ MU .

A consequence of the coincidence of strength and supercompactness at Fréchet cardinals

is that under UA, the generalized Mitchell order is very well-behaved.

Theorem 8.3.26 (UA). Suppose U and W are countably complete ultrafilters such that

U C W . Then (jU)MW = jU � MW . In fact, (MW )�U ✓ MW .

Proof. Let � = �U . Fix A 2 U with |A| = �. Since U 2 MW , P (A) ✓ MW , and hence

P (�) ✓ MW . Since � = �U , � is Fréchet. Hence (MW )� ✓ MW by Theorem 8.3.25. By

Proposition 4.2.29, this implies (jU)MW = jU � MW .

As a consequence, UA implies that the internal relation and the seed order extend the

Mitchell order:

Corollary 8.3.27 (UA). Suppose U and W are countably complete ultrafilters such that

U C W . Then U @ W . Assume moreover that �U is the underlying set of U and W

concentrates on ordinals. Then U <S W .

Proof. By Theorem 8.3.26, U @ W . Moreover, jW is �U -supercompact, so by Proposi-

tion 4.2.31, �U  �W . Thus if �U is the underlying set of U and W concentrates on ordinals,

then

�U = �U  �W  �W

Therefore by Theorem 5.5.15, we have U <S W .

Using the Irreducibility Theorem, we prove some converses of Corollary 8.3.27 that de-

mystify the internal relation. This requires an argument we have seen before but which we

now make explicit:
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Lemma 8.3.28. Suppose W is a countably complete ultrafilter such that jW is <�-strong

and �-tight.3 Suppose that there is a countably complete ultrafilter U on � such that U @ W

and sup jU [�] < jU(�). Then jW is �-supercompact.

Proof. We first show that P (�) ✓ MW . Since W is <�-strong, P (↵) ✓ MW for all ↵ <

�. Therefore by the elementarity of jU , MU satisfies that P (sup jU [�]) ✓ jU(MW ). In

other words, PM
U (sup jU [�]) ✓ jW (MU). Since U @ W , jU(MW ) ✓ MW , and therefore

PM
U (sup jU [�]) ✓ MW . Now fix A ✓ �. We have jU(A)\sup jU [�] 2 PM

U (sup jU [�]) ✓ MW .

Moreover jU � � 2 MW since U @ W . Hence

A = j�1
U [jU(A) \ sup jU [�]] 2 MW

This shows that P (�) ✓ MW , as claimed.

Now suppose B is a subset of MW of cardinality at most �. Since jW is �-tight, there

is a set C 2 MW of MW -cardinality at most � such that B ✓ C. Since P (�) ✓ MW and

|C|MW  �, P (C) ✓ MW . Thus B 2 MW . It follows that jW is �-supercompact.

Theorem 8.3.29 (UA). Suppose W is a countably complete ultrafilter and U is a countably

complete uniform ultrafilter on a set X ✓ MW . Then the following are equivalent:

(1) U C W .

(2) U @ W and W is |X|-irreducible.

Proof. Let � = �U = |X|.
(1) implies (2): Suppose U C W . Then jW is �-supercompact by Theorem 8.3.25, so

W is �-irreducible by Proposition 8.2.3. Moreover by Corollary 8.3.27, U @ W . This shows

that (2) holds.

(2) implies (1): Suppose U @ W and W is �-irreducible.

Suppose first that � is an isolated cardinal. We claim that W is �+-complete. Note that

jW must be continuous at � by Lemma 7.4.14. It follows that W is �+-irreducible. Hence W

3Equivalently, jW is <�-supercompact and �-tight.
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is ��-irreducible. But �� is measurable (by Lemma 7.4.27), so by Theorem 7.5.32 it follows

that W is �+-complete. As an immediate consequence, U C W .

Suppose instead that � is not isolated. We can then apply the Irreducibility Theorem

(Corollary 8.2.19 and Corollary 8.2.20) to conclude that W is <�-supercompact and �-tight.

Since U @ W , Lemma 8.3.28 yields that jW is �-supercompact. In particular, P (�) ✓ MW ,

so U C W , as desired.

We can reformulate Theorem 8.3.29 slightly to characterize the internal relation in terms

of the Mitchell order:

Theorem 8.3.30 (UA). Suppose U and W are hereditarily uniform irreducible ultrafilters.

Then the following are equivalent:

(1) U @ W .

(2) Either U C W or W 2 V where  = crt(jU).

For this, we need the following theorem, which shows that the notions of �-irreducible,

�-Mitchell, and �-internal ultrafilters (Definition 7.5.30, Definition 6.3.8, Definition 5.5.25

respectively) coincide under UA:

Theorem 8.3.31 (UA). Suppose U is an ultrafilter and � is a cardinal. Then the following

are equivalent:

(1) U is �-irreducible.

(2) U is �-Mitchell.

(3) U is �-internal.

Proof. (1) implies (2): Assume U is �-irreducible. We may assume by induction that for all

U 0 k U and �0  � with U 0 <k U or �0 < �, if U 0 is �0-irreducible then U 0 is �0-Mitchell.

Thus U is �0-Mitchell for all �0 < �. In particular, U is automatically �-Mitchell unless � is
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a successor cardinal and and the cardinal predecessor � of � is Fréchet. Therefore we can

assume � = �+ where � is a Fréchet cardinal.

We may also assume that �� exists, since otherwise the �-irreducibility of U implies U is

principal, so (2) holds automatically. Let ⌘ = ��.

Assume first that ⌘ = �+. Then �+ is Fréchet, so by the Irreducibility Theorem (Corol-

lary 8.2.19), U is �+-supercompact. Therefore every countably complete ultrafilter on �

belongs to MU by Proposition 6.3.9. In other words, U is �+-Mitchell.

This leaves us with the case that ⌘ > �+. In other words, by Proposition 7.4.4, ⌘ is

isolated.

Assume first that K⌘ 6RF U . Then by Theorem 7.5.13, U is ⌘-indecomposable, and so

in particular U is ⌘+-irreducible. By Theorem 7.5.31 (3), U is ⌘+-complete, which easily

implies that U is �+-Mitchell.

Assume finally that K⌘ RF U . Let j : V ! M be the ultrapower of the universe by K⌘.

Let h : M ! MU be the unique internal ultrapower embedding with h � j = jU .

Recall that tK
⌘

(U) is the canonical ultrafilter Z of M such that jMZ = h. We claim

that tK
⌘

(U) is �+-irreducible in M . Suppose M satisfies that D is an ultrafilter on � with

D RF tK
⌘

(U). Let i : (MD)M ! MU be the unique internal ultrapower embedding such

that

i � jMD = h

We will show D is principal by showing that D RF U . By Proposition 7.5.20, M is

closed under �-sequences. In particular, P (�) ✓ M , so D really is an ultrafilter on �, and

hence the question of whether D RF U makes sense. Moreover jD � M = jMD , and so

jMD � j = jD(j) � jD. Now

i � jD(j) � jD = i � jMD � j = h � j = jU

Thus i � jD(j) : MD ! MU is an internal ultrapower embedding witnessing D RF U . It

follows that D is principal since U is �+-irreducible.
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Thus tK
⌘

(U) is �+-irreducible in M . Moreover by Proposition 5.4.5, tK
⌘

(U) <k j(U)

in M . Our induction hypothesis yields that for all U 0 <k U and all �0  �+, if U 0 is �0-

irreducible then U 0 is �0-Mitchell. Shifting this hypothesis by the elementary embedding

j : V ! M , we have that for all U 0 <k j(U) and all �0  j(�+), if U 0 is �0-irreducible in M

then U 0 is �0-Mitchell in M . Applying this with U 0 = tK
�

(U) and �0 = �+, it follows that

tK
�

(U) is �+-Mitchell in M . Thus every countably complete ultrafilter of M on � belongs

to (MtK
⌘

(U))M = MU . But by Proposition 7.4.17 and Proposition 7.5.20, every countably

complete ultrafilter on � belongs to M . Hence every countably complete ultrafilter on �

belongs to MU . In other words, U is �+-Mitchell as desired.

(2) implies (3): Immediate from Corollary 8.3.27.

(3) implies (4): Assume U is �-internal. Suppose D RF U and �D < �. We will show D

is principal. Since �D < �, D @ U . Thus D RF U A D, so D @ D by Proposition 5.5.12.

Since the internal relation is irreflexive on nonprincipal ultrafilters, D is principal.

Proof of Theorem 8.3.30. (1) implies (2): Suppose U @ W .

Assume first that �U  �W . Then since W is irreducible, W is �U -irreducible. By

Theorem 8.3.29, U C W .

Assume instead that �W < �U . Then by Theorem 8.3.31, W @ U . Since U @ W

and W @ U , Theorem 5.5.22 implies that U and W are commuting ultrafilters in the

sense of Kunen’s commuting ultrapowers lemma (Theorem 5.5.20). Moreover, again by

Theorem 8.3.31, U is �U -internal and W is �W -internal. We can therefore apply our converse

to Kunen’s commuting ultrapowers lemma, from which it follows that W 2 V where  =

crt(jU).

(2) implies (1): If U C W , then U @ W by Corollary 8.3.27. If W 2 V where  =

crt(jU), then U @ W by Kunen’s commuting ultrapowers lemma (Theorem 5.5.20).

We now reformulate UA in terms of a form of coherence:

Definition 8.3.32. Suppose C is a class of countably complete ultrafilters.
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• Suppose I = hMn, jnm, Un : n < m  `i is a finite iterated ultrapower.

– A countably complete ultrafilter U is given by I if jU = j0`.

– I is a C-iteration if Un 2 j0n(C) for all n < `.

• C is cofinal if the class of ultrafilters given by C-iterations is Rudin-Froĺık cofinal.

• C is coherent if for any distinct ultrafilters U and W of C, either U 2 jW (C) and

(MW )�U ✓ MW , or W 2 jU(C) and (MU)�W ✓ MU .

Theorem 8.3.33. The following are equivalent:

(1) There is a coherent cofinal class of countably complete ultrafilters.

(2) The Ultrapower Axiom holds.

For one direction of the theorem, we show that under UA, there is a canonical coherent

cofinal class of ultrafilters:

Definition 8.3.34. An ultrafilter D is a Mitchell point if for all uniform countably complete

ultrafilters U , if U <k D, then U C D.

Dodd sound ultrafilters are Mitchell points by Corollary 4.3.28. Under UA, isonormal

ultrafilters are Mitchell points by Theorem 7.5.43. The following fact is trivial:

Lemma 8.3.35 (UA). The Mitchell points form a coherent class of ultrafilters.

Proof. Let C be the class of Mitchell points. Since the Ketonen order is linear, C is linearly

ordered by <k, and hence by the definition of a Mitchell point, C is linearly ordered by

the Mitchell order. The property of being a Mitchell point is absolute, so if U C W are

Mitchell points, then U 2 jW (C). Moreover Theorem 8.3.26, (MW )�U ✓ MW . Thus C is

coherent.

We next show that under UA, the Mitchell points form a cofinal class. The first step is

to give an alternate characterization in terms of the internal relation:
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Proposition 8.3.36 (UA). Suppose U is a nonprincipal countably complete tail uniform

ultrafilter on an ordinal �. The following are equivalent:

(1) For all countably complete uniform ultrafilters U , if U <k D, then U @ D.

(2) D is a Mitchell point

(3) For all Mitchell points D0, if D0 <k D, then D0 C D.

Proof. (1) implies (2): Note that (1) implies in particular that U is �-internal. Thus U

is a uniform ultrafilter on �. There are two cases. Suppose first that D = K�. Then

Theorem 8.3.31, D is �-Mitchell, which is what (2) asserts. Assume instead that D 6= K�, so

K� <k D since K� is the least uniform ultrafilter on �. By (1), K� @ U , and in particular by

Lemma 7.4.14, � is not isolated. By Theorem 8.3.31, U is �-irreducible, and therefore by the

Irreducibility Theorem, U is <�-supercompact and �-tight. Since K� @ D, Lemma 8.3.28

yields that jD is �-supercompact. In particular, P (�) ✓ MD, and so for any countably

complete ultrafilter U on � with U @ D, U C D. Given (1), this implies (2).

(2) implies (3): Immediate.

(3) implies (1): Let D0 be the <k-least tail uniform ultrafilter that is not internal to

D. To show that (1) holds, we must show D0 = D. Clearly D0 k D (since a nonprincipal

ultrafilter is never internal to itself). By Corollary 8.3.27, the internal relation extends the

Mitchell order, so D0 6C D. Theorem 7.5.44 asserts that D0 has the following property: for

any U @ D, in fact U @ D0. In particular, for any U <k D0, by the minimality of D0, we

have U @ D, and so we can conclude that U @ D0. Since we have shown that (1) implies

(3), we can conclude that D0 is a Mitchell point. Since D0 is a Mitchell point and D0 6C D,

(3) implies that D0 6<k D. Since D0 k D, it follows that D = D0, as desired.

Definition 8.3.37. For any countably complete ultrafilter W , the Mitchell point of W ,

denoted D(W ), is the <k-least tail uniform ultrafilter D such that D 6C W .

The proof of Proposition 8.3.36 yields the following fact:
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Theorem 8.3.38 (UA). Suppose W is a nonprincipal countably complete ultrafilter and

D = D(W ). Then the following hold:

• D is a Mitchell point.

• {U : U C W} = {U : U C D}.

• If U is a countably complete ultrafilter such that U @ W , then U @ D.

• D 6@ W .

Theorem 8.3.39 (UA). The Mitchell points form a cofinal class of ultrafilters.

Sketch. Suppose U is a countably complete ultrafilter. We will show that there is an ultrafil-

ter U 0 given by a Mitchell point iteration such that U RF U 0. By induction, we may assume

that this statement is true for all Ū <k U . Let D = D(U). Since D 6@ U , tD(U) <k jD(U) in

MD. Therefore by our induction hypothesis, MD satisfies that there is an ultrafilter W 0 given

by a Mitchell point iteration of such that tD(U) RF W 0. Let U 0 be such that jU 0 = jMD

W 0 �jD.
It is easy to see that U 0 is given by a Mitchell point iteration and U RF U 0.

We now turn to the other direction of Theorem 8.3.33. It would be enough to prove the

following fact:

Proposition 8.3.40. Suppose C is a coherent class of countably complete ultrafilters. Then

the restriction of the Rudin-Froĺık order to the class of ultrafilters given by C-iterations is

directed.

Proof. The idea of the proof is that the ultrafilters in C can be compared by the comparisons

given by the internal relation Lemma 5.5.6, and then this can be propagated to compare

arbitrary C-iterations by recursion. This is quite easy to see (given the right definition of a

coherent class), but we nevertheless include a very detailed proof.4

4We caution, however, that as usual it may be easier for the reader work out the details than to read
them.
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We use the following convention: if I is an iterated ultrapower of length `, then jI = jI0`.

We begin with a one-step claim:

Claim 1. Suppose D 2 C. For any C-iteration I, there is a C-iteration J such that UJ
0 = D

and a C-iteration I 0 extending I such that jI
0
= jJ .

Proof of Claim 1. The proof is by induction on the length of I.
If UI

0 = D, then we can take I = J .

Therefore assume UI
0 6= D. Since C is coherent, either D C UI

0 or UI
0 C D. Define

D⇤ =

8

>

>

<

>

>

:

jI01(D) if UI
0 C D

D if D C UI
0

and

U⇤
1 =

8

>

>

<

>

>

:

UI
0 if UI

0 C D

jD(UI
0 ) if D C UI

0

The key point is that by the definition of a coherent class of ultrafilters, D⇤ 2 jI01(C),

U⇤
1 2 jD(C), and

jMD

U⇤
1

� jD = j
MI

1
D⇤

� jI01

Let I⇤ = I � [1,1), which is a jI01(C)-iteration of MI
1 . By our induction hypothesis

applied in MI
1 to the and the ultrafilter D⇤ 2 jI01(C), there is a jI01(C)-iteration J⇤ with

UJ⇤
0 = D⇤ and a jI01(C)-iteration I 0

⇤ extending I⇤ such that jI
0
⇤ = jJ⇤ .

Let I 0 be the iterated ultrapower of V given by UI
0 followed by I 0

⇤. Clearly I 0 is a C-

iteration extending I. Let ` = lth(J⇤), and define a C-iteration J of length ` + 1 in terms

of the ultrafilters UJ
n :

UJ
0 = D

UJ
1 = U⇤

1

UJ
n = UJ⇤

n�1
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Then

jJ = jJ⇤
1`�1 � jMD

U⇤
1

� jD = jJ⇤
1`�1 � jM

I
1

D⇤
� jI01 = jJ⇤ � jI01 = jI

0
⇤ � jI01 = jI

0

This verifies the induction step, and proves the claim.

We now turn to the multi-step claim:

Claim 2. For any C-iteration H, for any C-iteration I, there are C-iterations H⇤ and I⇤

extending H and I respectively such that jH
⇤
= jI

⇤
.

Proof of Claim 2. The proof is by induction on the length ` ofH: thus our induction hypoth-

esis is that for any C-iteration H̄ of length less `, for any C-iteration I, there are C-iterations

H̄⇤ and I 0 extending H̄ and I respectively such that jH̄
⇤
= jI

0
.

Let D = UH
0 . By our first claim, there is a C-iteration J such that UJ

0 = D and a

C-iteration I 0 extending I such that jI
0
= jJ . Now we work in MD. Let H̄ = H � [1,1).

Thus H̄ is a jD(C)-iteration of MD of length less than `. Let J̄ = J � [1,1), so that J̄ is

also a jD(C)-iteration of MD.

By our induction hypothesis applied in MD, there are jD(C)-iterations H̄⇤ and J̄ ⇤ of MD

extending H̄ and J̄ respectively such that jH̄
⇤
= jJ̄

⇤
. Define

H⇤ = D_H̄⇤

I⇤ = I 0_K

where K is the iteration such that J̄ ⇤ = J̄_K.

Obviously H⇤ and I⇤ are C-iterations extending H and I respectively. Moreover

jH
0
= jH̄

0 � jD = jJ̄
0 � jD = jK � jJ̄ � jD = jK � jJ = jK � jI0

= jI
0

This proves the claim

It follows easily from Claim 2 that the restriction of the Rudin-Froĺık order to the class

of ultrafilters given by C-iterations is directed.

We finally prove our characterization of UA in terms of coherent cofinal sequences.
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Proof of Theorem 8.3.33. (1) implies (2): This is immediate from Lemma 8.3.35 and Theo-

rem 8.3.39.

(2) implies (1): Let C be a coherent cofinal class of ultrafilters. Since C is coherent,

Proposition 8.3.40 implies that the restriction of the Rudin-Froĺık order to the class of ultra-

filters C 0 given by C-iterations is directed. Since C is cofinal, C 0 is cofinal in the Rudin-Froĺık

order. Since the Rudin-Froĺık order has a cofinal directed subset, the Rudin-Froĺık order is

itself directed. This implies that the Ultrapower Axiom holds (by Corollary 5.2.9).

8.4 Very large cardinals

Huge cardinals

The notion of (,�)-regularity is a two cardinal generalization of +-incompleteness that has

already shown up implicitly in this dissertation:

Definition 8.4.1. Suppose   � are cardinals. An ultrafilter U is (,�)-regular if there is

a set F ✓ U of cardinality � such that
T

� /2 U for any � ✓ F of cardinality at least .

The combinatorial definition of (,�)-regularity defined above obscures its true signifi-

cance:

Lemma 8.4.2. Suppose   � are cardinals and U is an ultrafilter. Then the following are

equivalent:

(1) U is (,�)-regular.

(2) For some fine ultrafilter U on P(�), U RK U .

(3) jU is (�, �)-tight for some MU -cardinal � < jU().

Proof. (1) implies (2): Fix a set F ✓ U of cardinality � such that
T

� /2 U for any � ✓ F of

cardinality at least . Let X be the underlying set of U . Define f : X ! P(F ) by setting
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f(x) = {A 2 F : x 2 A}. Let U = f⇤(U). We claim U is a fine ultrafilter on P(F ). Suppose

A 2 F . We must show {� 2 P(F ) : A 2 �} 2 U . But by the definition of f , A 2 f(x) if

and only if x 2 A. Thus

f�1[{� 2 P(F ) : A 2 �}] = A 2 U

and so {� 2 P(F ) : A 2 �} 2 U .
(2) implies (3): Fix a fine ultrafilter U on P(�) such that U RK U . Let A = aU .

Then jU [�] ✓ A by Lemma 4.4.9, and |A|MU < jU() by  Loś’s Theorem. Let k : MU ! MU

be an elementary embedding such that k � jU = jU . Then jU [�] = k[jU [�]] ✓ k(A) and

|k(A)|MU < k(jU()) = jU(). Let � = |k(A)|MU . Then k(A) witnesses that jU is (�, �)-

tight, as desired.

(3) implies (1): Fix A 2 MU such that |A|MU < jU() and jU [�] ✓ A. Let f be a function

such that A = [f ]U . By  Loś’s Theorem, there is a set X 2 U such that f [X] ✓ P(�). Let

S↵ = {x 2 X : ↵ 2 f(x)}. Let F = {S↵ : ↵ < �}. We claim that
T

↵2� S↵ = ; for any

� ✓ � of cardinality at least . Suppose towards a contradiction that x 2 T↵2� S↵. Then

� ✓ f(x), so |f(x)| � , contradicting that f(x) 2 P(�). Thus F witnesses that U is

(,�)-regular.

Another way of stating (2) above is to say that the minimum fine filter on P(�) lies

below U in the Katětov order.

Definition 8.4.3. If   � are cardinals, then P (�) denotes the collection of subsets of �

of cardinality exactly .

Thus P (�) = P+(�) \ P(�).

Definition 8.4.4. A cardinal  is huge if there is an elementary embedding j : V ! M with

critical point  such that M j() ✓ M .

A question raised in [11] is the relationship between nonregular ultrafilters and huge

cardinals. Assuming UA, we can almost show an equivalence:
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Theorem 8.4.5 (UA). Suppose  < � are cardinals and � is regular. The following are

equivalent:

(1) There is a countably complete fine ultrafilter on P (�) that cannot be pushed forward to

a fine ultrafilter on P(�).

(2) There is a countably complete ultrafilter that is (+,�)-regular but not (,�)-regular.

(3) There is an elementary embedding j : V ! M such that j() = �, M<� ✓ M , and M

has the �-covering property.

If � is a successor cardinal, then we can add to the list:

(4) There is an elementary embedding j : V ! M such that j() = � and M� ✓ M .

(5) There is a normal fine ultrafilter on P (�).

Proof. The equivalence of (1) and (2) is immediate from Lemma 8.4.2. We now turn to

the equivalence of (2) and (3). Before we begin, we point out that the property of being

(+,�)-regular but not (,�)-regular can be reformulated in terms of ultrapowers:

U is (+,�)-regular but not (,�)-regular if and only if cfMU (sup jU [�]) = jU().

This is an immediate consequence of Lemma 8.4.2 (3) and Ketonen’s analysis of tight em-

beddings in terms of cofinality (Theorem 7.2.12).

(2) implies (3): Let U be the <k-least countably complete ultrafilter concentrating on

ordinals that is (+,�)-regular but not (,�)-regular.

We claim that U is �-irreducible. (In fact, U is an irreducible weakly normal ultrafilter

on �, but this is not relevant to the proof.) Suppose D RF U and �D < �. We must

show that D is principal. We claim tD(U) is (jD(+), jD(�))-regular but not (jD(), jD(�))-

regular. Let i : MD ! MU be the unique internal ultrapower embedding with i � jD = jU .

Thus i : MD ! MU is the ultrapower of MD by tD(U). Therefore to show that tD(U) is
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(jD(), jD(�))-regular it su�ces (by our remark at the beginning of the proof) to show that

cfMU (sup i[jD(�)]) = i(jD()). Since �D < �, by Lemma 3.5.32,

sup i[jD(�)] = sup i � jD[�] = sup jU [�]

Furthermore, since U is (jD(+), jD(�))-regular but not (jD(), jD(�))-regular, applying our

remark at the beginning of the proof again,

cfMU (sup jU [�]) = jU() = i(jD())

Thus cfMU (sup i[jD(�)]) = i(jD()), as desired.

By elementarity jD(U) is the <k-least ultrafilter that is (jD(+), jD(�))-regular but not

(jD(), jD(�))-regular. Hence jD(U) k tD(U). Recall Proposition 5.4.5, which states that

if D is nonprincipal and D RF U , then tD(U) <k jD(U). It follows that D is principal.

Since U is �-irreducible, and now we would like to apply the Irreducibility Theorem. For

this, we need that � is either a successor cardinal or an inaccessible cardinal. Assume � is

a limit cardinal, and we will show that � is a strong limit cardinal. Since  < �, we have

+ < �. Since U is (+,�)-regular, U is �-decomposable for all regular cardinals � 2 [+,�].

Therefore � is a limit of Fréchet cardinals, and hence by Corollary 7.5.2, � is a strong limit

cardinal, as desired.

To summarize, jU : V ! MU is an elementary embedding such that jU() = �, M<�
U ✓

MU and MU has the �-covering property. This shows that (3) holds.

(3) implies (2): Let U be the ultrafilter on � derived from j using sup j[�], and let

k : MU ! M be the factor embedding with k � jU = j and k(aU) = sup j[�]. Then

aU = sup jU [�], and k(cfMU (a)) = cfM(sup j[�]) = � = j() = k(jU()). By the elementarity

of k,

cfMU (sup jU [�]) = cfMU (aU) = jU()

Thus by our remark at the beginning of the proof, U is (+,�)-regular but not (,�)-regular.

This shows that (1) holds.
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Assuming � is a successor cardinal, the argument that (2) implies (3) shows that in fact

(2) implies (4), since the Irreducibility Theorem leads to full �-supercompactness in the case

that � is a successor cardinal.

Finally, (4) and (5) are equivalent (in general) by an easy argument using derived ultra-

filters and ultrapowers (Lemma 4.4.10).

We cannot show that M� ✓ M in the key case that � is inaccessible, which blocks proving

the equivalence between huge cardinals and nonregular countably complete ultrafilters.

Cardinal preserving elementary embeddings

In this section, we turn to even larger large cardinal axioms.

Definition 8.4.6. An elementary embedding j : V ! M is weakly cardinal preserving if

whenever  is a cardinal, j() is also a cardinal.

The following question, due to Caicedo, essentially asks whether the Kunen Inconsistency

Theorem can be strengthened to rule out cardinal preserving elementary embeddings:

Question 8.4.7. Is it consistent that there is a nontrivial weakly cardinal preserving ele-

mentary embedding?

Under UA, we will show that there are no nontrivial weakly cardinal preserving embed-

dings.

Lemma 8.4.8 (UA). Suppose U is a countably complete uniform ultrafilter on + such that

jU [] ✓ . Either  is +-supercompact or  is a limit of +-supercompact cardinals.

Proof. By Corollary 8.2.24, there is some D RF U with �D < + such that there is an

internal ultrapower embedding i : MD ! MU with i � jD = jU that is jD(+)-supercompact

in MD. Note that sup jD[] ✓  and sup i[] ✓ , since both i and jD are bounded on the

ordinals by jU .
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We claim that crt(i) 2 [, jD()]. To see this, note that sup i[] ✓  and i is -

supercompact, so by the Kunen Inconsistency Theorem (Theorem 4.2.37), crt(i) � . On

the other hand, i is given by an ultrafilter on jD(+), so crt(i)  jD().

Now i witnesses that crt(i) is jD(+)-supercompact in MD. If crt(i) = jD(), then 

is +-supercompact by elementarity. Otherwise sup jD[] =   crt(i) < jD(), so  is a

limit of +-supercompact cardinals by a standard reflection argument.

The following observation is due to Caicedo:

Lemma 8.4.9. Suppose j : V ! M and � is a cardinal. If j(�+) 6= �+ and j is continuous

at �+, then j(�+) is not a cardinal.

Proof. Note that j(�+) is a singular ordinal since j[�+] is cofinal in j(�+). Moreover j(�) <

j(�+) = j(�)+M  j(�)+. There are no singular cardinals between j(�) and j(�)+, so j(�+)

is not a cardinal.

Lemma 8.4.10 (UA). Suppose j : V ! M is a nontrivial elementary embedding with

critical point . Let � be a cardinal above  with j(�) = �. Then j is continuous at �++1

and therefore j(�++1) is not a cardinal.

Proof. We begin the proof by making some general observations about the action of j on

cardinals in the vicinity of �. First, for all ↵ < , j(�+↵) = (�+↵)M  �+↵. It follows that

j(�+↵) = �+↵. Hence sup j[�+] = �+.

Next, we claim that (�++1)M = �++1. This is proved by following the argument of

Lemma 4.2.32: fix ↵ < �++1, and we will show that ↵ < (�++1)M . Let (�+,�) be a

wellorder of order type ↵. Then (�+, j(�)) is a wellorder of �+ that belongs to M . Since

j[�+] ✓ �+, j embeds (�+,�) into (�+, j(�)), so

↵  ot(�+,�)  ot(�+, j(�)) < (�++1)M

as desired.
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It follows that

j(�++1) > j(�+) = (�+j())M > (�++1)M = �++1

Thus to prove j(�++1) is not a cardinal, by Lemma 8.4.9 it su�ces to show j is continuous

at �++1.

Suppose towards a contradiction that j is discontinuous at �++1. Let U be the ultra-

filter on �++1 derived from j using sup j[�++1]. Then U is a countably complete uniform

ultrafilter on �++1. Moreover,

sup jU [�
+]  sup j[�+] = �+

Therefore by Lemma 8.4.8, �+ is either �++1-supercompact or else a limit of �++1-

supercompact cardinals. This is impossible since there are no inaccessible cardinals in the

interval (�, �+]. Thus our assumption was false, and in fact j is continuous at �++1.

Now j is continuous at �++1 and j(�++1) > �++1. Therefore by Lemma 8.4.9, j(�++1)

is not a cardinal.

Corollary 8.4.11 (UA). Any weakly cardinal preserving elementary embedding of the uni-

verse is the identity.

We now investigate the relationship between cardinal preservation and rank-into-rank

axioms.

Theorem 8.4.12 (UA). Assume � is an ordinal, M ✓ V� is a transitive set, and j : V� ! M

is an elementary embedding with critical point  that has no fixed points above . Suppose

that CardM \ � = Card \ �. Then M = V�.

If the assumption that CardM \ � = Card \ � is weakened to the assumption that j is

weakly cardinal preserving below � (or in other words that j[Card \ �] ✓ Card \ �), then

the resulting statement is false. Let us provide a counterexample. Suppose j : V ! M is an

elementary embedding with critical point . Let � be the first cardinal fixed point of j above
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. Assume V� ✓ M , so j witnesses the axiom I2. Suppose U is a -complete ultrafilter on .

Then by Corollary 5.5.35, jMU �j : V ! (MU)M has the property that jMU �j � Ord = j � Ord,

so in particular jMU � j[Card \ �] = j[Card \ �] ✓ Card \ �. But of course (MU)M does not

contain V�.

One of the key lemmas is the following curiosity, a close cousin of Lemma 8.2.10:

Lemma 8.4.13 (UA). Suppose U is a countably complete ultrafilter and � is a successor

cardinal. Then cfMU (sup jU [�]) is a successor cardinal of MU .

Proof. If sup jU [�] = jU(�), then sup jU [�] is itself a successor cardinal of MU , so of course

its MU -cofinality (which is again sup jU [�]) is a successor cardinal of MU . We may therefore

assume that sup jU [�] < jU(�).

Hence � is Fréchet, and so we are in a position to apply Theorem 8.2.18. By Theo-

rem 8.2.18, there is an ultrafilter D with �D < � such that there is an internal ultrapower

embedding h : MD ! MU such that h is jD(�)-supercompact in MD. Since �D < �,

jD(�) = sup jD[�] by Lemma 3.5.32. Thus

cfMU (sup jU [�]) = cfMU (suph[jD(�)]) = cfMD(jD(�)) = jD(�)

Since jD(�) is a successor cardinal of MD, and Ordj
D

(�) \ MD ✓ MU , jD(�) is a successor

cardinal of MU .

We now turn to the proof of Theorem 8.4.12.

Proof of Theorem 8.4.12. For n < !, let n = j
n be the nth element of the critical sequence

of j (Definition 4.2.35), and note that � = supn<! n since j has no fixed points above .

Let us make some preliminary remarks about the interaction between ultrapowers and

the structure V�. Suppose that U is a countably complete ultrafilter on a set X 2 V�. Then

any function f : X ! V� is bounded on a set in U . In particular,

jU(V�) = {[f ]U : f 2 V� and dom(f) = X}
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In other words, V� correctly computes the ultrapower by U . We will go to great lengths,

however, not to work inside V�, which we have not yet proved to be a model of ZFC.

Suppose X 2 V�, a 2 j(X), and U is the ultrafilter on X derived from j using a. Then U

is countably complete, so the remark of the previous paragraph applies. Thus we can define

a factor embedding k : jU(V�) ! M by setting k([f ]U) = j(f)(a) whenever f 2 V� is a

function on X. The usual argument shows that k is well-defined and elementary. Moreover,

k � (jU � V�) = j and k(aU) = a.

Suppose � < � is a successor cardinal. Let U be the uniform ultrafilter derived from j

using sup j[�], and let k : jU(V�) ! M be the factor embedding. We claim:

• cfM(sup j[�]) = �.

• jU is �-tight.

• k(�) = �.

By Lemma 8.4.13, sup jU [�] is a successor cardinal of MU . Thus sup jU [�] is a successor

cardinal of jU(V�), so k(sup jU [�]) = cfM(sup j[�]) is a successor cardinal of M . Since M is

correct about cardinals below �, cfM(sup j[�]) is a successor cardinal (in V ). In particular,

cfM(sup j[�]) is regular. Thus cfM(sup j[�]) = cf(cfM(sup j[�])) = cf(sup j[�]) = �, as desired.

It follows that jU is �-tight:

cfMU (sup jU [�]) = cfjU (V
�

)(sup jU [�])  k(cfjU (V
�

)(sup jU [�])) = cfM(sup j[�]) = �

so cfMU (sup jU [�]) = �, and hence jU is �-tight by Theorem 7.2.12.

Repeating the same argument, it now follows that k(�) = �:

k(�) = k(cfMU (sup jU [�])) = k(cfjU (V
�

)(sup jU [�])) = cfM(sup j[�]) = �

We recall an argument due to Caicedo-Woodin ([36]) that shows that n is strongly

inaccessible for all n < !. Suppose by induction that n is strongly inaccessible, and we will

show that n+1 is strongly inaccessible. Since n is strongly inaccessible and j(n) = n+1, M
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satisfies that n+1 is strongly inaccessible. Since M is cardinal correct below � and satisfies

that n+1 is a limit cardinal, n+1 is a limit cardinal (in V ). It therefore su�ces to show

that for all successor cardinals � < n+1, 2� < n+1. Let U be the ultrafilter on derived

from j using sup j[�], and let k : jU(V�) ! M be the factor embedding. Since jU is �-tight,

2�  (2�)MU by Lemma 8.2.6. Since � < n+1 and n+1 is strongly inaccessible in M , M

satisfies that 2� exists, and (2�)M < n+1. Since k(�) = �, by elementarity jU(V�) satisfies

that 2� exists, and hence (2�)jU (V
�

) = (2�)MU . Thus

2�  (2�)MU = (2�)jU (V
�

)  k((2�)jU (V
�

)) = (2�)M < n+1

Thus � = supn<! n is a limit of strongly inaccessible cardinals.

Suppose ⌘ 2 [,�] is a strongly inaccessible cardinal. We will show V⌘ ✓ M .

Let U be the ultrafilter on ⌘ derived from j using sup j[⌘]. Let k : jU(V�) ! M be the

factor embedding.

By Corollary 8.2.24, there is an ultrafilter D with �D < ⌘ such that there is an internal

ultrapower embedding h : MD ! MU with h � jD = jU that is <jD(⌘)-supercompact in MD.

Since �D < ⌘ and ⌘ is strongly inaccessible, jD(⌘) = ⌘.

In particular, we have that V⌘ \MD = V⌘ \MU . We can therefore define an elementary

embedding i : V⌘ ! V⌘\M : for x 2 V⌘, set i(x) = k(jD(x)). Note that i is a weakly cardinal

preserving embedding of V⌘:

CardV
⌘

\M = CardM \ ⌘ = Card \ ⌘

The second-order structure (V⌘, V⌘+1) is a model of NBG + UA, so we can apply Lemma 8.4.10

in (V⌘, V⌘+1) to conclude that i is the identity. In particular, V⌘ \ M = V⌘, and therefore

V⌘ ✓ M , as desired.

Since ⌘ < � was an arbitrary inaccessible cardinal and � is a limit of inaccessible cardinals,

V� ✓ M . Hence M = V�, as desired.

The following question remains open:

391



Question 8.4.14. Suppose there is a weakly cardinal preserving elementary embedding from

V� into a transitive set M ✓ V�. Must there be an elementary embedding j : V� ! V�?

This cannot be entirely trivial: an application of Corollary 5.5.35 shows that a weakly

cardinal preserving embedding itself need not have target model V�. Suppose  < � are

cardinals, j : V ! M is an elementary embedding with critical point , j(�) = �, and

V� ✓ M . Let U a -complete ultrafilter on . Then jU � j � Ord = j by Corollary 5.5.35,

and it follows that jU � j � V� is weakly cardinal preserving, even though its target model is

MU \ V� and not V�.

Supercompactness at inaccessible cardinals

The following are probably the most interesting questions left open by our work:

Question 8.4.15 (UA). Suppose � is an inaccessible cardinal and  is the least �-strongly

compact cardinal. Must  be �-supercompact? More generally, if  is �-strongly compact,

must  be �-supercompact or a measurable limit of �-supercompact cardinals?

This final chapter consists of some inconclusive observations regarding this problem.

The whole question, it turns out, reduces to the analysis of K�:

Lemma 8.4.16 (UA). Assume � is an inaccessible Fréchet cardinal. Let j : V ! M be the

ultrapower of the universe by K�, and let  be the least measurable cardinal of M above �.

Then for any �-irreducible ultrafilter U , Ord \M ✓ MU .

Proof. Let (k, h) : (M,MU) ! P be the pushout of (j, jU), and let W be such that P = MW .

By the analysis of ultrafilters internal to a pushout, for any D with �D < �, since D @ U

and D @ K�, in fact, D @ W . In particular, W is �-irreducible, so V� ✓ MW = P by

Corollary 8.2.20. By our factorization lemma for embeddings of M (Lemma 8.2.8), it follows

that crt(k) � . (Otherwise k would factor through an ultrapower by an ultrafilter in V�,

contrary to the fact that V� ✓ P .) Therefore Ord \M ✓ P ✓ MU , as desired.
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Corollary 8.4.17 (UA). Suppose � is a Fréchet inaccessible cardinal. Let M be the ul-

trapower of the universe by K�, and assume M is closed under �-sequences. Then for any

�-irreducible ultrafilter U , MU is closed under �-sequences.

Proof. By Lemma 8.4.16, Ord� = Ord� \M ✓ MU , so MU is closed under �-sequences.

We now show that the <k-second irreducible ultrafilter on an inaccessible cardinal �

always witnesses �-supercompactness. This is a bit surprising given that we cannot prove

the supercompactness of K�.

We use the following lemma, extracted from Ketonen’s proof that the Ketonen order is

wellfounded on weakly normal ultrafilters.

Lemma 8.4.18. Suppose � is a regular cardinal. Suppose W is a countably complete ultra-

filter on � that extends the closed unbounded filter. Suppose U <k W . Then �t
U

(W ) = jU(�).

In fact, tU(W ) extends the closed unbounded filter on jU(�).

Proof. Let F be the closed unbounded filter on �. Clearly jU [F ] ✓ tU(W ). Moreover

{↵ < jU(�) : aU 2 ↵} 2 tU(W ) since

jMU

t
U

(W )(aU) < jMW

t
W

(U)(aW ) = at
U

(W )

Thus by Lemma 8.2.11, jU(F ) ✓ tU(W ), as claimed.

We choose not to cite the Irreducibility Theorem in the proof of the following proposition

since it predates the Irreducibility Theorem and is really much easier:

Proposition 8.4.19 (UA). Suppose � is a regular cardinal. The following are equivalent:

(1) � carries distinct uniform irreducible ultrafilters.

(2) There is a countably complete uniform ultrafilter U such that K� 6RF U and U 6@ K�.

(3) � carries a countably complete weakly normal ultrafilter that concentrates on ordinals

that carry countably complete tail uniform ultrafilters.
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(4) � carries distinct countably complete weakly normal ultrafilters.

(5) � carries distinct countably complete ultrafilters extending the closed unbounded filter.

(6) There is a a normal fine �-complete ultrafilter U on P
�

(�) such that K� C U .

Proof. (1) implies (2): Suppose U 6= K� is an irreducible ultrafilter on �. By irreducibility,

K� 6RF U . Since sup jK
�

[�] carries no countably complete tail uniform ultrafilter in MK
�

,

jU � MK
�

is not internal to MK
�

, since it is discontinuous at sup jK
�

[�]. In other words

U 6@ K�.

(2) implies (3): Suppose U is a countably complete ultrafilter such that K� 6RF U and

U 6@ K�. Since U 6@ K�, by the characterization of internal ultrapower embeddings of

MK
�

(Theorem 7.3.14), jU must be discontinuous at �. Since K� 6RF U , by the universal

property of K�, sup jU [�] carries a countably complete tail uniform ultrafilter in MU . Let

W be the ultrafilter on � derived from jU using sup jU [�]. Then W is weakly normal (by

Corollary 4.4.18) and W concentrates on ordinals carrying countably complete tail uniform

ultrafilters by the definition of a derived ultrafilter.

(3) implies (4): If � carries a countably complete uniform ultrafilter, then � carries a

countably complete weakly normal ultrafilter that does not concentrate on ordinals carrying

countably complete tail uniform ultrafilters (by Theorem 7.2.14); in the context of UA, this

is K�. Thus if (3) holds, � carries distinct countably complete weakly normal ultrafilters.

(4) implies (5): Immediate given the fact that weakly normal ultrafilters extend the

closed unbounded filter.

(5) implies (6): Assume (5) holds. Let U be the <k-least countably complete ultrafilter

that extends the closed unbounded filter on � and is not equal to K�. We claim that for all

D <k U , D @ U . We will verify the criterion for showing D @ U given by Lemma 5.5.13 by

showing that jD(U) k tD(U) in MD.

Let U 0 = tD(U). By Lemma 8.4.18, U 0 extends the closed unbounded filter on jD(�).
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Moreover we claim that jD(K�) 6= U 0. To see this, note that

j�1
D [jD(K�)] = K� 6= U = j�1

D [U 0]

Thus jD(K�) 6= U 0, as claimed.

By elementarity, in MD, jD(U) is the k-least countably complete ultrafilter that extends

the closed unbounded filter on jD(�) and is not equal to jD(K�). It follows that jD(U) k U
0

in MD. Lemma 5.5.13 now implies that D @ U , as claimed.

Let  = �. Since � is not isolated, by Lemma 7.4.19,  is a limit of isolated cardinals. By

Lemma 7.5.3, for all isolated cardinals � < , jU [�] ✓ �, and hence jU [] ✓ . Lemma 5.5.28

states that if  is a strong limit cardinal such that jU [] ✓  and D @ U for all countably

complete ultrafilters D with �D < , then U is -complete. Thus U is -complete. In

particular, Ord ✓ MU . Since K� @ U , jK
�

(Ord) = OrdjK
�

()\MK
�

✓ MU . As jK
�

() > �

by Proposition 7.4.1, it follows that Ord� \MK
�

✓ MU .

Now suppose A 2 Ord�. Then jK
�

[A] is contained in a set B 2 [Ord]� \ MK
�

. Hence

B 2 MU . We may assume B ✓ jK
�

(A), so that j�1
K

�

[B] = A. Since K� @ U , jK
�

� ↵ 2 MU

for all ordinals ↵. Hence A = j�1
K

�

[B] 2 MU . Thus Ord� ✓ MU .

If Z is a countably complete ultrafilter extending the closed unbounded filter on � such

that Z C U0, then Z @ U so Z <k U by Lemma 5.5.14 and consequently by the minimality

of U , Z = K�. In particular, no cardinal less than or equal to � can be 2�-supercompact

in MU . It follows that jU() > �: otherwise jU() < � is jU(�)-supercompact and since

2� < jU(�), we contradict the previous sentence.

Thus U is  complete and jU() > �. Let U be the normal fine -complete ultrafilter on

P(�) derived from jU using jU [�]. It is easy to see that K� C U (and in fact U ⇠= U). This
completes the proof.

We now turn to the question of pseudocompact cardinals first raised in Section 8.2.

Recall that an elementary embedding is �-pseudocompact if it is �-tight for all �  �. Our

main question asked whether �-pseudocompactness and �-supercompactness coincide below
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rank-into-rank cardinals. If � is the least cardinal where this fails, then it has the following

property:

Definition 8.4.20. A cardinal � is said to be pathological if there is an elementary embedding

j : V ! M that is <�-supercompact and �-tight but not �-supercompact. The embedding

j is said to witness the pathology of �.

Equivalently, j : V ! M witnesses the pathology of � if H(�) ✓ M and j[�] can be

covered by a set of size � in M , yet j[�] /2 M . The axiom I2(�) asserts that there is an

elementary embedding j : V ! M with critical point less than � such that j(�) = � and

V� ✓ M . By the Kunen Inconsistency Theorem (Theorem 4.2.37), j[�] /2 M . Thus if I2(�)

holds, then � is pathological.

Question 8.4.21. Suppose � is pathological. Must cf(�) = !? Must I2(�)?

Our guess is that the answer is no.

We begin by establishing a dichotomy: pathological cardinals are either regular or of

countable cofinality. For the proof we use the following fact, a generalization of the Kunen

inconsistency theorem that is based on an observation due to Foreman [37].

Theorem 8.4.22 (Foreman). Suppose � is a cardinal. Suppose Q is a transitive structure

that is closed under countable sequences. Suppose k : Q ! H(�) is a nontrivial elementary

embedding. Suppose k has a fixed point above its critical point. Let � be the supremum of

the critical sequence of k. Then � = �+.

Proof. Suppose k has a fixed point above its critical point, and let � be the least. Let

hn : n < !i be the critical sequence of j. By a standard argument (which uses the closure

of Q under countable sequences) � = supn<! n. In particular, � has countable cofinality.

Assume towards a contradiction that �+ < �.

We will show �+Q = �+. Shelah’s Representation Theorem [27] yields a sequence h�n :

n < !i of regular cardinals less than � and a sequence hf↵ : ↵ < �+i that is cofinal in the
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preorder (
Q

n<! �n,bd) where bd is the relation of eventual domination. Since �+ < �,

hf↵ : ↵ < �+i 2 H(�). By elementarity, Q satisfies that there is a sequence hg↵ : ↵ < �+Qi
cofinal in (

Q

n<! �n,bd). Since Q is closed under countable sequences, hg↵ : ↵ < �+Qi
really is cofinal. (This is where we make substantial use of the hypothesis that Q is closed

under countable sequences.) But the cofinality of (
Q

n<! �n,bd) is �+, and so it follows that

�+Q = �+.

We now follow Woodin’s proof of Kunen’s inconsistency theorem. The structure Q satis-

fies that there is a partition of S�+

! into stationary sets hS↵ : ↵ < �+i. Let hT↵ : ↵ < �+i =
k(hS↵ : ↵ < �+i) (since H(�) does and k is elementary). Note that k[�+] is an !-club in

�+. The fact that k[�+] is !-closed follows from the fact that Q is closed under countable

sequences, which implies that k is continuous at ordinals of countable cofinality.

Let  be the critical point of k. Then k[�+] \ T 6= ; since T is stationary in �+.

Therefore fix ⇠ < �+ such that k(⇠) 2 T. Since k(⇠) 2 T, ⇠ 2 S�+

! . Hence for some ↵ < �+,

⇠ 2 S↵. Therefore k(⇠) 2 k(S↵) = Tk(↵). In particular, Tk(↵) \ T 6= ;. Since hT↵ : ↵ < �+i
is a partition, it follows that k(↵) = . This contradicts that  is the critical point of k.

Thus our assumption that �+ < � was false. Hence � = �+, so � is the largest cardinal

fixed by k.

Lemma 8.4.23. Suppose � is a pathological cardinal of uncountable cofinality and j : V !
M witnesses the pathology of �. Let A 2 M be a cover of j[�] of M-cardinality �, and let

U be the fine ultrafilter on P (�) derived from j using A. Let k : MU ! M be the factor

embedding. Then crt(k) > � and therefore jU witnesses the pathology of �.

Proof. Let k : MU ! M be the factor embedding. We must show that crt(k) > �. Let

Ā = aU , so k(Ā) = A. Clearly jU [�] ✓ Ā, so |Ā|MU � |Ā| � �. On the other hand,

|Ā|MU  k(|Ā|MU ) = |A|M = �. Thus |Ā|MU = �, so

k(�) = k(|Ā|MU ) = |A|M = �
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Assume towards a contradiction that crt(k) < �. Since j is <�-supercompact, j is

<�-strong, and therefore H(�)\M = H(�). Thus k restricts to a nontrivial elementary em-

bedding k : H(�)\MU ! H(�). Since MU is closed under countable sequences, we can apply

Foreman’s inconsistency theorem. Since � has uncountable cofinality and k(�) = �, k has a

fixed point in the interval (crt(k),�). Therefore by Foreman’s theorem (Theorem 8.4.22),

� = �+ where � is the supremum of the critical sequence of k. But j is �-supercompact

and j is continuous at �, so by Lemma 4.2.25, j is �+-supercompact. Since j witnesses the

pathology of �, j is not �-supercompact. This contradicts that � = �+.

Thus our assumption was false, and in fact crt(k) � �. Since k(�) = �, it follows that

crt(k) > �. We finally show that this implies jU witnesses the pathology of �.

The set Ā witnesses that jU is �-tight.

Assume towards a contradiction that jU is �-supercompact. Since crt(k) > �, k(jU [�]) =

k � jU [�] = j[�], so j is �-supercompact, which is a contradiction.

We finally show that jU is <�-supercompact. Since jU is an ultrapower embedding,

it su�ces to show that jU is �-supercompact for all regular cardinals � < �. To do this,

it is enough to show that j[�] 2 k[MU ], since then k�1(j[�]) = jU [�] belongs to MU . By

Solovay’s Lemma (Lemma 4.4.29), j[�] is definable in M from sup j[�] and parameters in

j[V ]. Since j[V ] ✓ k[MU ] and k[MU ] is closed under definability in M , to show j[�] 2 k[MU ],

it su�es to show that sup j[�] 2 k[MU ]. To finish, we show that k(sup jU [�]) = sup j[�], or

in other words that k is continuous at sup jU [�]. Since crt(k) > �, it is enough to show

that cfMU (sup jU [�])  �. Since jU is �-tight, jU is (�,�)-tight, so by the easy direction of

Theorem 7.2.12, cfMU (sup jU [�])  �, as desired.

As a corollary, we eliminate many pathologies which a priori might have seemed plausible:

Corollary 8.4.24. Suppose � is a pathological cardinal. Either � is regular or � has count-

able cofinality.

Proof. Assume � has uncountable cofinality, and we will show that � is regular. By Lemma 8.4.23,
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the pathology of � is witnessed by an ultrapower embedding i : V ! N . Since i is a <�-

supercompact ultrapower embedding, N is closed under <�-sequences. If � is singular,

it follows that N is closed under �-sequences, contradicting that i is not �-supercompact.

Therefore � is regular.

Corollary 8.4.25. Suppose � is a regular pathological cardinal. Suppose j : V ! M wit-

nesses the pathology of �. Let U be the ultrafilter on � derived from j using sup j[�], and let

k : MU ! M be the factor embedding. Then crt(k) > � and jU witnesses the pathology of

�.

Proof. Since � is regular and j is �-tight, cfM(sup j[�]) = �. Note that aU = sup jU [�],

so k(sup jU [�]) = sup j[�]. We have cfMU (sup jU [�]) � cf(sup jU [�]) = � on the one

hand, and cfMU (sup jU [�])  k(cfMU (sup jU [�])) = cfM(sup j[�]) = � on the other. Thus

cfMU (sup jU [�]) = �. It follows that k(�) = k(cfMU (sup jU [�])) = cfM(sup j[�]) = �.

Given that k(�) = �, one can finish the proof as in Lemma 8.4.23. Instead of redoing

this proof, however, we note that the corollary follows from an application of Lemma 8.4.23.

Using Theorem 7.2.12, fix a cover Ā ✓ sup jU [�] of jU [�] of MU -cardinality �. Let A = k(Ā).

Thus |A|M = k(�) = �. Moreover, it is easy to see that

HM(j[V ] [ {sup j[�]}) = HM(j[V ] [ {A})

The left-to-right inclusion follows from the fact that sup j[�] = supA is definable from A

in M , while the right-to-left inclusion follows from the fact that A = k(Ā) and k[MU ] =

HM(j[V ] [ {sup j[�]}). Therefore jU = jU and the factor embeddings from MU into M is

equal to k. Therefore by Lemma 8.4.23, crt(k) > � and jU witnesses the pathology of �.

Pathological cardinals of countable cofinality, on the other hand, have a property that is

a lot like I2(�):

Proposition 8.4.26. Suppose � is a pathological cardinal of countable cofinality. Then there

is a countably complete fine ultrafilter U on P (�) such that there is a nontrivial elementary
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embedding k : MU ! M such that k � jU = j and � is the supremum of the critical sequence

of k.

Proof. Immediate from the proof of Lemma 8.4.23.

If the ultrafilter U of the previous lemma is principal, then I2(�) holds. Under UA, there

is a way to make this conclusion:

Theorem 8.4.27 (UA). Suppose � is a pathological cardinal of countable cofinality. Then

I2(�).

Proof. Let j : V ! M witness the pathology of �. Then j witnesses that some cardinal  < �

is �-supercompact for all � < �. In particular, by our results on GCH (Theorem 6.3.12), �

is a strong limit cardinal.

Applying Proposition 8.4.26, fix a countably complete fine ultrafilter U on P (�) and a

nontrivial elementary embedding k : MU ! M such that k � jU = j and � is the supremum

of the critical sequence of k.

By Corollary 8.2.24, fix a countably complete ultrafilterD with �D < � and an elementary

embedding k : MD ! MU such that k is jD(�)-supercompact in MD. Since � is a strong

limit cardinal of countable cofinality, jD(�) = �. In particular, V� \MD = V� \MU . Since

(jD � V�) : V� ! V� \MD and (k � V� \MD) : V� \MD ! V� are elementary embeddings,

i = (k � V� \MD) � (jD � V�)

is an elementary embedding from V� to V�. Moreover, suppose A ✓ V� is a wellfounded

relation. Then i(A) =
S

↵<� i(A \ V↵) is also wellfounded since i(A) = k(jD(A)), and k and

jD preserve wellfoundedness. Thus i extends to an elementary embedding i⇤ : V ! N where

N is wellfounded, and it follows that I2(�) holds.

Under UA, regular pathological cardinals are inaccessible:

Proposition 8.4.28 (UA). Suppose � is a regular pathological cardinal. Then � is strongly

inaccessible and K� witnesses the pathology of �.
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Proof. By Lemma 8.4.23, there is a countably complete ultrafilter U such that jU witnesses

the pathology of �. In particular, jU is <�-supercompact and �-tight. It follows that jU is

�-pseudocompact, since this just means jU is �-tight for all cardinals �  �. In particular,

U is �-irreducible by Proposition 8.2.3.

Note that jU witnesses that � is Fréchet. Suppose towards a contradiction that � is a suc-

cessor cardinal. Then by the Irreducibility Theorem (Corollary 8.2.19), jU is �-supercompact,

contradicting that U witnesses the pathology of �.

Thus � is a limit cardinal. But jU is <�-supercompact, so by our results on GCH

(Theorem 6.3.12), � is a strong limit cardinal. Therefore � is strongly inaccessible.

Finally we show that K� witnesses the pathology of �. Let j : V ! M be the ultra-

power of the universe by K�. It su�ces to show that j is not �-supercompact, since by

Theorem 7.3.33, j is <�-supercompact and �-tight. Suppose towards a contradiction that j

is �-supercompact. Then by Corollary 8.4.17, every ultrapower by a �-irreducible ultrafilter

is �-supercompact, contradicting that jU is not �-supercompact. Thus K� witnesses the

pathology of �.

To summarize, under UA, if a cardinal is pathological, it is pathological for good reason:

Theorem 8.4.29 (UA). If � is a pathological cardinal, then one of the following holds:

• � is a strong limit singular cardinal of countable cofinality and I2(�) holds.

• � is a strongly inaccessible cardinal and K� witnesses the pathology of �.

We now turn to the question of whether regular pathological cardinals can exist at all

(without assuming UA). This is equivalent to the existence of pseudocompact embeddings

that are not supercompact:

Proposition 8.4.30. Suppose j : V ! M is an elementary embedding such that M has the

�-covering property for all �  �. Then one of the following holds:

• M� ✓ M .
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• j witnesses the pathology of a regular cardinal �  �.

Proof. We claim that if �  � and j is �-supercompact, then M� ✓ M . (In fact, it su�ces

that P (�) ✓ M which follows from �-supercompactness by Lemma 4.2.20.) To see this,

suppose A ✓ M and |A|  �. Using the �-covering property, fix B 2 M with A ✓ B and

|B|M  �. Then since P (�) ✓ M , P (B) ✓ M , and hence A 2 M , as desired.

Therefore let � be the least cardinal such that j is not �-supercompact. Note that � is

the least cardinal such that M � 6✓ M , and therefore � is regular. If �  �, then j witnesses

that � is pathological. Otherwise � > �, and hence j is �-supercompact, so M� ✓ M by the

previous paragraph.

Recall Woodin’s Ultimate L Conjecture, which in a weak form states that if � is extendible

then there is an inner model with the �-approximation and �-covering properties that satisfies

the axiom V = Ultimate L. The motivation is that the canonical inner model with a

supercompact cardinal should give rise to such an inner model. The same intuition motivates

the UA Conjecture, which we now define.

Definition 8.4.31. We say that the UA Hypothesis holds at a cardinal � if there is a inner

model of UA with the �-cover and �-approximation properties.

Conjecture 8.4.32 (UA Conjecture). ZFC proves that if � is an extendible cardinal, then

the UA Hypothesis holds at �.

It is a plausible conjecture that the axiom V = Ultimate L implies UA. If this is the

case, then the Ultimate L Conjecture implies the UA Conjecture. On the other hand, the

UA Conjecture implies the HOD Conjecture.

Our next theorem, due to Woodin in the case that � is strongly inaccessible, shows that

the pathologies we are studying are in a sense absolute.

Definition 8.4.33. Suppose  < � are cardinals. Then � is -pathological if there is an

elementary embedding j : V ! M with critical point  that witnesses the pathology of �.
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Theorem 8.4.34. Suppose � <  < � are cardinals and � is regular. Suppose N is an inner

model with the �-cover and �-approximation properties. Suppose � is -pathological. Then �

is -pathological in N .

The proof uses several facts from the remarkable theory of models with the approximation

and covering properties. First, we will need Hamkins’s uniqueness theorem for models with

the approximation and covering properties:

Theorem 8.4.35 (Hamkins). Suppose � is a cardinal and N0 and N1 are inner models of

ZFC with the �-approximation and �-covering properties at an ordinal ↵. If N0 \H(�+) =

N1 \H(�+) then N0 \ P (↵) = N1 \ P (↵).

Second we need the Hamkins-Reitz theorem on the propagation of the covering property:

Theorem 8.4.36 (Hamkins-Reitz). Suppose � is a cardinal and N is an inner model of ZFC

with the �-approximation and �-covering properties. Then N has the �-covering property for

every cardinal � � �.

With these tools in hand, we can prove Theorem 8.4.34.

Proof of Theorem 8.4.34. Applying Corollary 8.4.25, let U be a -complete weakly normal

ultrafilter on � such that jU witnesses the pathology of �. Let W = U \ N . By Theo-

rem 7.3.22, W belongs to N (and in fact every �-complete N -ultrafilter belongs to N).

Let j : V ! M be the ultrapower of the universe by U . Let i : N ! P be the ultrapower

of N by W . Let k : P ! j(N) be the factor embedding, defined by

k(i(f)(sup i[�])) = j(f)(sup j[�])

Thus k � i = j � N and k(sup i[�]) = sup j[�].

We now show that

cfj(N)(sup j[�]) = �

403



Since j is �-tight, cfM(sup j[�]) = �. Since j(N) has the �-approximation and �-covering

properties in M , in fact j(N) has the �-covering property in M (by Theorem 8.4.36).

Therefore j(N) correctly computes the cofinality of sup j[�] in M , and it follows that

cfj(N)(sup j[�]) = �.

We now claim that k(�) = � and cfN(sup i[�]) = �. The argument is by now familiar.

Since k(sup i[�]) = sup j[�],

k(cfN(sup i[�])) = cfj(N)(sup j[�]) = �

Since �  cfN(sup i[�]), �  k(�)  k(cfN(sup i[�])) = �. Thus k(�) = �. Similarly

�  cfN(sup i[�])  k(cfN(sup i[�]))  �, so cfN(sup i[�]) = �.

We claim j(N) \ P (↵) = N \ P (↵) for all ↵ < �. The argument is due to Hamkins

[17]. Fix ↵ < �. Since j is <�-supercompact, M \ P (↵) = P (↵). By elementarity, j(N)

has the �-approximation and �-covering properties in M , and in particular j(N) has the

�-approximation and �-covering properties at ↵. Similarly, N has the �-approximation and

�-covering properties at ↵. But N \ H(�+) = j(N) \ H(�+) since crt(j) > �. Thus

j(N) \ P (↵) = N \ P (↵) by the uniqueness theorem (Theorem 8.4.35).

We claim j[↵] 2 j(N) for all ↵ < �. This follows from the �-approximation property

for j(N) in M and the �-covering property for N in V . Let ↵⇤ = sup j[↵]. Suppose � 2
P�(↵⇤)\j(N). Fix ⌧ 2 P�(↵) such that j�1[�] ✓ ⌧ . Then �\j[↵] = �\j[⌧ ] = �\j(⌧) 2 j(N).

Since P (↵)\N = P (↵)\ j(N) for all ↵ < �, we have that H(�)\N = H(�)\ j(N). Let

H = H(�)\N and let Q = H(�)\P . We claim that k � Q 2 N . The proof is a generalization

of the proof of Woodin’s Universality Theorem for models with the approximation property.

Since Q is transitive, k � Q is the inverse of the transitive collapse of k[Q], and therefore it

su�ces to show that k[Q] 2 N . Since N satisfies the �-approximation property, it su�ces

to show that k[Q] \ � 2 N for any � 2 P�(H) \ N . Fix such a �. Since N has the �-cover

property, there is some ⌧ 2 P�(Q) \ N with k�1[�] ✓ ⌧ . Since P � \ N ✓ P , ⌧ 2 P , and
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hence ⌧ 2 Q. Since crt(k) � �, k(⌧) = k[⌧ ]. Thus

k[Q] \ � = k[⌧ ] \ � = k(⌧) \ � 2 N

Thus k[Q] \ � 2 N . By the �-approximation property, k[Q] 2 N , and hence k � Q 2 N .

We now apply Foreman’s inconsistency result in N . Assume towards a contradiction

that crt(k) < �. Note that k restricts to an elementary embedding from Q to H(�) \ N

that belongs to N . Moreover Q is closed under !-sequences in N . Then it follows from

Theorem 8.4.22 applied in N that � = �+ where � is the supremum of the critical sequence

of k. It follows that � is the successor of a singular cardinal � of countable cofinality in N .

Recall that j[�] 2 j(N) since j[↵] 2 j(N) for all ↵ < �. Note that

j[PN
 (�)] = {j[�] : � 2 PN

 (�)} = P j(N)
 (j[�])

In particular, j[PN
 (�)] 2 j(N) since it is definable over j(N) from j[�] 2 j(N). Recall that

� = �+N . Therefore by König’s theorem, there is a surjection f : PN
 (�) ! � in N . Then

j(f)[j[PN
 (�)]] = j[�]. Thus j[�] 2 j(N). In particular, j[�] 2 M . This contradicts the fact

that j is not �-supercompact.

Thus our assumption that crt(k) < � was false. Moreover since k(�) = �, it follows

that crt(k) > �.

We established the following:

• k : P ! j(N) is an elementary embedding with critical point above �

• j[↵] 2 j(N) for all ↵ < �.

• j[�] /2 j(N).

Since crt(k) > �, crt(i) = . The proof that i[↵] 2 P for all ↵ < �, and i[�] /2 P now

proceeds exactly as in Lemma 8.4.23. Thus i witnesses that � is -pathological in N .

The UA Conjecture rules out certain kinds of pathological cardinals that are not obviously

ruled out in ZFC alone:
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Theorem 8.4.37. Suppose � is a cardinal and the UA Hypothesis holds at �. If � is a

singular cardinal, then �+ is not -pathological for any  > �.

Proof. Let N be an inner model of UA with the �-covering and �-approximation properties.

Assume towards a contradiction that �+ is -pathological for some  > �. By Theorem 8.4.34,

�+ is pathological in N . But by Theorem 8.4.36, �+ is a successor cardinal in N : this follows

from the fact that every ordinal in the interval [�, �+] has cofinality less than � in N by the

�-covering property. Since N satisfies UA, by Proposition 8.4.28, no successor cardinal is

pathological in N . This is a contradiction.

Question 8.4.38 (ZFC). Can the successor of a singular cardinal be pathological?

Finally let us tie this all back up with the question of whether UA implies that �-

irreducible ultrafilters are �-supercompact.

Theorem 8.4.39. Suppose � is a cardinal and assume there is an inner model N with the

�-approximation and �-covering properties that has no regular pathological cardinals above �.

Suppose � > � is a cardinal. Suppose j : V ! M is an elementary embedding with critical

point above � such that M has the �-covering property for all �  �. Then M� ✓ M .

Proof. Suppose not. Then by Proposition 8.4.30, j witnesses that some regular cardinal

�  � is crt(j)-pathological. By Theorem 8.4.34, � is crt(j)-pathological in N , contrary

to our assumption that N has no regular pathological cardinals above �.

Thus granting the UA Conjecture, either pseudocompactness principles are (eventually)

equivalent to supercompactness or else UA is consistent with regular pathological cardinals.

it seems more reasonable to make the following conjecture:

Conjecture 8.4.40. UA is consistent with the existence of a regular pathological cardinal.

406



Index

<bd (domination mod bounded), 153
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pushout, 184
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Extender embedding, 63
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Fréchet filter, 18

Generalized Continuum Hypothesis, 222

local proof, 236

Generalized Mitchell order, 98

linearity, 233
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on Dodd sound ultrafilters, 133

on normal fine ultrafilters, 135, 323

vs. the internal relation, 372

wellfoundedness, 118

Generator, 127

Hamkins Properties, 266

Hereditarily uniform ultrafilter, 103

Huge cardinal, 384

Identity crisis, 244, 286, 358

Incompressible ultrafilter, 60

Indecomposable ultrafilter, 264

Prikry’s Theorem, 278

Independent family, 270

Inner Model Problem, 10

Internal relation, 201

sW (U), 205

and ultrafilter translations, 208

fixed points, 216

Irreflexivity, 210

vs. the generalized Mitchell order, 202,

372

vs. the seed order, 209

Internal ultrapower comparison, 27

Irreducibility Theorem, 336, 348, 355–357

Irreducible ultrafilter, 120, 160, 170

Factorization Theorem, 176

Irreducible Ultrafilter Hypothesis, 120, 121

Isolated cardinal, 280

strong limit, 295

Isomorphism of ultrafilters, 18

Isonormal ultrafilter, 136

Dodd soundness, 145

Iterated ultrapower, 175

Ketonen, 36

Ketonen order, 44

associated to a wellorder, 94

global, 53

Ketonen equivalence, 71

linearity, 47, 90

on filters, 86

on models, 64

wellfoundedness, 65

on pointed ultrapowers

rank (o�(M)), 80, 216

strong transitivity, 50

vs. the generalized Mitchell order, 133,

135, 372

vs. the Lipschitz order, 85

vs. the Mitchell order, 55

vs. the Rudin-Keisler order, 62

vs. the seed order, 71

wellfoundedness, 52

Ketonen ultrafilter, 260

K�, 261
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internal ultrapowers, 263

irreducibility, 262

supercompactness, 273, 281

tightness, 275

universal property, 263

mathscrK
� , 335

on a regular cardinal, 258

Ketonen’s Theorem on strongly compact

cardinals, 250

Kunen Inconsistency Theorem, 113

Foreman’s Theorem, 396

Woodin’s proof, 149

Kunen’s commuting ultrapowers lemma, 211

converse, 213

Level-by-level equivalence, 365

Limit, 42

Lipschitz game, 81

Lipschitz order, 81

Menas’s Theorem, 330

Minimal pair of embeddings, 185

Minimal ultrafilter, 143

Minimality of definable embeddings, 67

Mitchell order, see also Generalized Mitchell

order

generalized, 98

linearity, 8, 30

rank (o(U)), 20

Mitchell point, 377

Normal fine ultrafilter, 138

Normal ultrafilter, 20, see also Normal fine

ultrafilter

Parameter, 125

parameter order, 125

Pathological cardinal, 396

Pointed model, 63

Pointed ultrapower, 70

Pointed ultrapower embedding, 70

representing an ultrafilter, 70

Pointwise definable model, 24

Prikry’s Theorem, 278

Principal ultrafilter, 43

Projection of an ultrafilter, 40

Pseudocompact embedding, 338

Pushforward, 43

Pushforward of an ultrafilter into an ultra-

power sW (U), 205

Pushout, 184

internal ultrapower embeddings, 190

Rank-into-rank cardinal, 388

Regular ultrafilter, 382

Rudin-Froĺık order, 119, 163

as a lattice, 184

directedness, 5, 165, 167
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local ascending chain condition, 176,

183

local finiteness, 191

vs. inclusion of ultrapowers, 191

vs. the Rudin-Keisler order, 166

Rudin-Keisler order, 57

revised, 59

strict, 59

Wellfoundedness, 62

Scale, 153

Schlutzenberg, 121

Seed order, 68

on pointed ultrapowers, 70

vs. the internal relation, 209

seed equivalence, 70

vs. the Rudin-Froĺık order, 72

transitivity, 69

vs. the generalized Mitchell order, 133

vs. the Ketonen order, 71

Singular Cardinals Hypothesis

above a strongly compact cardinal, 228,

254

Size of an ultrafilter (�U), 18

Solovay’s Lemma, 146

at singular cardinals, 150, 154

Solovay-Reinhardt-Kanamori questions, 7

Soundness of an embedding, 122

Strength

�-strong embedding, 100

of an embedding, 101

Strongly compact cardinal, 246, 249

equivalence with supercompactness, 286,

337, 361

Strongly tall cardinal, 363

Sum of ultrafilters, 94

Supercompact cardinal, 105

Supercompactness

X-supercompact embedding, 105

�-supercompact cardinal, 105

<�-supercompact embedding, 105

at inaccessible cardinals, 392

vs. stationary correctness, 148

Tail filter, 41

Tail uniform, 40

Tightness of an elementary embedding, 247

and cfM(sup j[�]), 251

at inaccessible cardinals, 343

vs. the covering property, 248

Translation of an ultrafilter (tU(W ))

as the minimum extension of jU [W ],

199

and the internal relation, 208

associated to the pushout, 197

when U RF W , 181
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Ultrafilter

�-Mitchell, 233, 374

�-internal, 213, 374

�-irreducible, 319, 374

concentrating on a class, 40

derived, 13

normal, 20

of an inner model, 14

uniform, 18

Ultrapower, 13

category of, 75

internal ultrapower embedding, 14

iterated ultrapower, 175

relativized ultrapower, 13

ultrapower embedding, 14

uniqueness, 72

weak ultrapower embedding, 15

Ultrapower Axiom, 27

and coherence, 377

Complete Ultrapower Axiom, 333

UA Conjecture, 402

UA Hypothesis, 402

vs. long determinacy, 85

Ultrapower threshold, 77, 286

(⌫,�-threshold, 362

Vopenka algebra, 224

Weak Comparison, 22

Weak extender model, 226

Weakly normal ultrafilter, 141

on a regular cardinal, 142

Width of an elementary embedding, 73

Worldly cardinal, 23
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