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Abstract

Statistical models allow us to represent latent structure in data, giving us the ability to wield the power

of the unobserved. At the same time, statistical models can confound and trouble us in at least three ways.

First, the correspondence between model parameters and physical quantities of interest is not always clear.

In the pursuit of causal inference of zero-inflated outcomes, for example, we can employ zero-inflated

generalized linear models to harness covariate information and gain precision. However, matching model

parameters to causal quantities of interest is not as straight-forward as one would think, especially when

involving covariates. I use analysis and simulation to investigate the appropriate use of models here. Sec-

ondly, while complex models can capture equally complex structure in data, fitting these models can be

a burdensome task. For example, to describe the dependence between time-varying covariates and time-

varying outcomes, we might employ latent variable models. The description of these models, however, in-

volve a large number of parameters. I enlist a marginalization strategy that induces a two-stage procedure

which greatly simplifies model fitting. Finally, we are not guaranteed to learn about all model parameters

when combining models with data. Indeed, it is possible that some parameters are not informed by the data

directly at all, but only indirectly through their relationship with other model parameters. I develop strate-

gies for understanding this as the flow of information from data to model parameters using unidentifiable

and orthogonal parameters as building blocks. In this thesis, I describe these situations to highlight the

difficulties of using parametric models to gain scientific knowledge from data.
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A model is a simplification or approximation of

reality and hence will not reflect all of reality. ... Box

(1976) noted that “all models are wrong, but some

are useful.” While a model can never be “truth,” a

model might be ranked from very useful, to useful, to

somewhat useful to, finally, essentially useless.

Burnham & Anderson (2002)

0
Introduction

Sure, some models are useful – but even the useful ones can be confusing, burdensome, and unstable. Sta-

tistical models allow us to represent the underlying structure in data, giving us the ability to wield the

power of the unobserved. This power gives us reason to remain optimistic in the use of statistical mod-

els in scientific applications. However, also important are the difficulties that come from the use of models

in various contexts. Models can be

1. Insightful, yet confounding: They allow us to incorporate multiple sources of information and ex-

plore potential relationships. Yet, the correspondence between model parameters and physical quan-

tities of interest is not always clear.

2. Powerful, yet burdensome: Models can describe complex relationships, yet these models often in-

1



volve burdensome computation.

3. Flexible, yet unstable: We can build models that describe practically any natural phenomenon. Yet,

we are not guaranteed to learn about all model parameters when combining models with data.

In this thesis, we explore these three complications as they arise in the every-day use of statistical models.

Matching parameters with causal estimands

In Chapter 1, we explore how parametric mixture models can help us conduct causal inference analyses.

Though the causal estimands of interest are quite simple, they can be complex functions of the model pa-

rameters. They can, therefore, lead the analyst into confusing one causal quantity for another – we clarify

this. We also explore the potential benefits incorporating covariate information into sophisticated paramet-

ric modeling.

Outcomes with excess zeros are a common occurrence in experiments in Massive Open Online Courses

(MOOCs) due to significant attrition rates and optional participation. The analysis of these experiments is,

therefore, complicated in two ways. Firstly, it is not always clear what estimates derived from models are

targeting. We clarify this for models that account for excess zeros. Secondly, using zero-inflated models to

estimate causal effects, like the average treatment effect (ATE), should be preferred over simple difference

estimates. We show through simulation that model-based and simple difference estimators of ATE exhibit

similar performance for the large samples standard in MOOC experiments. Finally, incorporating covari-

ates into ATE estimation is known to improve precision when the covariate is predictive of outcome and

worsens estimates only marginally otherwise. Models for excess zeros typically incorporate covariates in

non-linear and multifaceted ways. We show that these model-based estimation procedures are only prefer-

able to simple linear regression adjustment when covariate information is strongly predictive of outcomes.

Modeling jointly and computing marginally

In Chapter 2, we use latent variables to model the effect of time-varying covariates on time-varying

outcomes. These models allow us to clearly and compactly describe relationships in data. These models

are, however, difficult to fit because of the large number of parameters needed in the description of the

model. We employ a marginalization strategy that induces a two-stage procedure which greatly simplifies

2



model fitting.

One of the most significant barriers to medication treatment is patients’ non-adherence to a prescribed

medication regimen. The extent of the impact of poor adherence on resulting health measures is often un-

known, and typical analyses ignore the time-varying nature of adherence. We develop a modeling frame-

work for longitudinally recorded health measures modeled as a function of time-varying medication adher-

ence or other time-varying covariates. Our framework, which relies on Normal Bayesian dynamic linear

models (DLMs), accounts for time-varying covariates such as adherence and non-dynamic covariates such

as baseline health characteristics. Standard inferential procedures for DLMs associated with sparse and ir-

regularly recorded response data are inefficient. We develop an approach that relies on factoring the poste-

rior density into a product of two terms: a marginal posterior density for the non-dynamic parameters, and

a multivariate Normal posterior density of the dynamic parameters conditional on the non-dynamic ones.

This factorization leads to a two-stage process for inference in which the non-dynamic parameters can be

inferred separately from the time-varying parameters. We demonstrate the application of this model to

the time-varying effect of anti-hypertensive medication on blood pressure levels from a cohort of patients

diagnosed with hypertension. We compare our model results to ones that incorporate adherence through

non-dynamic summaries.

Understanding information flow in Parametric Models

In chapter 3, I explore information flow in parametric models. When we introduce models to data, there

is no guarantee that the data can inform our model parameters equally, or at all. We use the parametric

structure of models to measure the flow of information from the data to the parameters. We use the cases

of unidentifiable and orthogonal parameters as cornerstones on which to build measures of information

flow from data to parameters. We discuss some nuances of this situation in both likelihood-based inference

and Bayesian inference through two variations of one example.

In the medication adherence problem, we observe adherence daily and outcomes more sparsely, often

monthly. Intuitively, the amount of information for the variance parameters in the DLM should diminish

with this decrease in observation frequency. We can regard the analysis of data using models as extracting

information from the data to inform model parameters. Alternatively, the information from the data flows

3



to model parameters. Clouding this is the fact that information pass not only directly from data to param-

eters but also indirectly among the model parameters. Furthermore, the various parts of the data inform

different parts of the parameter space at different rates. In other words, some parameters may drown in

information while others remain parched. We explore measures of information flow for decision-making

in the model-building process. We focus our efforts on understanding how one might measure this flow

information through analysis of example models and provide guidance for model builders.

4



We must be careful not to confuse data with the

abstractions we use to analyze them.

William James

1
Estimating Causal Effects using Zero-Inflated

Outcome Models

1.1 Introduction

There are several approaches one can take to analyze randomized experiments that focus on the average

treatment effect (ATE) for outcomes exhibiting a large proportion of zeros. For example, one could ignore

the structure of the outcomes and use standard simple-difference estimates. Alternatively, one could ex-

plicitly model the structure of the outcomes and use model-based estimates. Similarly, one could ignore

covariate information or choose to include it in the hopes of increasing precision. A particular challenge

5



in including covariate information in models for data with excess zeros is that they may be predictive in

some ways, suggesting that we include them, but not others, risking precision losses. Deciding to include

covariates is, therefore, less straightforward than usual. In this chapter, we investigate the impact of these

decisions on estimating the ATE through simulation, analysis and in practice.

Outcomes with a large proportion of zeros commonly occur in randomized experiments across many

fields in social science. In education research, for example, we might investigate the causal effect of an

intervention on student engagement during a massive online open course (MOOC). If we use the num-

ber of posts in online discussions as a measure of engagement, the majority of students who initially sign

up for the MOOC will not partake in any online discussions and hence have zero measured engagement.

However, the distribution of engagement levels for those who do participate is typically right-skewed with

a long tail (Lamb et al., 2015). Various statistical models have been developed to handle count data with

excess zeros, for example, zero-inflated Poisson models, hurdle models and other two-part models (like

the Tobit model). These models have different data-generating interpretations and are usually selected to

reflect reality somewhat.

As in many other applications, pre-treatment covariates are available that are predictive of outcomes

and may help increase the precision of estimates. In the previously mentioned example, age correlates with

engagement levels among those who participate, but it is not very predictive of participation. Including

covariates that are predictive of outcome can help us more precisely estimate the overall treatment effect

even if the model is misspecified. See, e.g. Lin (2013) for a discussion on linear regression adjustment.

This advice, however, is linked to simple models like linear regression adjustment. Naturally, we question

whether or not this holds in models for outcome data with excess zeros where the relationship between

covariates and outcomes are typically non-linear and multifaceted.

Despite a plethora of zero-inflated outcome data in real-world applications, there is a scarcity of publi-

cations in the causal inference literature that discuss the special considerations we need to address when

estimating treatment effects for data with excessive zeros. The majority of articles dealing with zero-

inflated outcomes focus either on zero-inflated count models (Bohning et al., 1999; Yau & Lee, 2001)

or on two-part models like the Tobit model (Héroux et al., 2014; DeSantis et al., 2014). Recently, Staub

(2014); Lee (2017) consider extensive and intensive causal effects via principal stratification and model-

6



ing, while Keele & Miratrix (2018) consider randomization-based inference for an assortment of hypoth-

esis tests generally tailored to zero-inflated outcome data. Most previous work is fundamentally rooted in

the zero-inflated Poisson model. Except for a few works (DeSantis et al., 2014; Lee, 2017; Keele & Mira-

trix, 2018), they generally do not define causal effects in terms of the Neyman-Rubin potential outcomes

framework.

We link the causal inference literature with models for data with excess zeros. We show that we can de-

fine these models generically in terms of mixture models that encompass a wide range of models for data

with excess zeros. We also derive the causal estimands of the ATE generically for these models and dis-

cuss model-free and model-based methods for estimation. We conduct a simulation study to compare the

finite sample performance of the confidence intervals resulting from each form of estimation. Finally, we

investigate the use of covariates in modeling outcomes with excess zeros. We derive the causal estimand

of the ATE for mixture models that include covariates and investigate the impact they have on estimator

precision. Throughout, we provide methodological recommendations for how to think about and conduct

causal inference under the scenario of a completely randomized experiment.

The structure of the rest of this chapter is as follows: Section 1.2 gives an overview of the Neyman-

Rubin causal model; Section 1.3 introduces basic models for handling data with excess zeros, and reviews

previous causal work that has been done for zero-inflated data; Section 1.4 defines the ATE estimand and

two ways of defining an estimator for it, along with methods to calculate their sampling variance; Section

1.5 discusses methods for estimating the ATE that include covariate information; Section 1.6 describes

and shows our simulation results, Simulation A investigate simple methods described in Section 1.4 while

simulation B investigates the use of covariate information with methods described in Section 1.5; Section

1.7 investigates an application to an experiment in a MOOC; and finally, in Section 1.8, we end with a

discussion.

7



1.2 Background

1.2.1 Causal Inference Framework

We ground ourselves in the Neyman-Rubin model of potential outcomes (Holland, 1986) as a causal model.

The fundamental idea underlying the Neyman-Rubin causal model is the assertion that causality is tied to

an action (or treatment, intervention, or manipulation), applied to a unit (Imbens & Rubin, 2015). Each

unit has set of potential outcomes that are a priori observable. That is, we can observe any of these out-

comes if the unit were to receive the corresponding treatment level. If there are two possible treatments

for unit i, Ti “ 0, 1, we denote these potential outcomes as pYip0q, Yip1qq. However, once a treatment is

applied, say Ti “ 1, we observe at most one potential outcome, in this case, Yip1q. This motivates the view

that causal inference is, in essence, a missing data problem (Rubin, 1974).

It is necessary to observe multiple units in order to draw causal inferences. If we assume that treatment

assignment for any particular unit does not affect the potential outcomes of any other unit (what Rubin

(1980) calls the “stable unit treatment value assignment” (SUTVA) assumption), then observing multiple

units allows us to impute missing potential outcomes and thereby estimate a causal treatment effect. Fur-

thermore, the treatment assignment mechanism is crucial for inferring causal effects. From a finite sample

population viewpoint the observed outcomes are random, but only because of the treatment randomiza-

tion used. If we wish to draw inference on the larger “super-population” then our observed outcomes are

random due to two sources of variation: the treatment randomization and random sampling from the super-

population.

Because in most real-life situations we are interested in saying something about a broader population,

not just the finite sample we have at hand, we focus here on assessing super-population treatment causal

effects. This view aligns with model-based inferences, which are inherently super-population inferences

because they postulate that the potential outcomes are generated from a specified model, representing the

super-population. Our simulations reflect this idea.
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1.2.2 Average Treatment Effect Causal Estimand

Causal treatment effects come in many different flavors. One of the most common is the average treatment

effect (ATE) estimand. In our setting of a completely randomized experiment, ATE analyses are validated

by the randomization of the assignment to treatment, without the need for additional assumptions beyond

no unit interference (SUTVA). The main critique of ATE analyses is that they only answer questions about

the causal effect of the assignment to treatment and not the causal effect of receipt of treatment. However,

from a high-level policy perspective, when one has no control over compliance with the treatment or inter-

vention, ATE gives a reasonable estimate of a causal effect that policymakers can directly observe.

For units i “ 1, . . . , N , let Ti denote the treatment indicator for the ith unit, and let YipTi “ tq denote

the potential outcome of the ith unit under treatment level t P t0, 1u. For simplicity, we consider only two

treatment levels. Our estimand of interest is then:

τsp “ EsprYip1q ´ Yip0qs (1.1)

where the sp subscript notation indicates taking an expectation over the distribution generated by random

sampling from the super-population as well as the random treatment assignment. Importantly, note that we

defined our estimand of interest without making any model assumptions.

1.3 Models for Excess Zeros

Methodological developments for data with excess zeros have generally occurred in two different settings.

One is in dealing with count data that is not accurately represented by standard count models because of

a large proportion of zeros. For example, Lambert (1992) found it helpful to model the number of defects

in manufacturing as a mixture of a standard count model, here a Poisson distribution, and a point-mass at

zero. The other setting where we use models with excess zeros is in Econometrics where outcomes of in-

terest, e.g., income, spending on classes of items, are truncated at zero. Tobin (1958) consider modeling

the total expenditures on classes of items, e.g., luxury goods, as a mixture of a point mass at zero and a dis-
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tribution (possibly continuous) truncated at zero. Indeed, recognizing that a straight line can not possibly

describe the relationship between income and expenditure on luxury goods inspired the Tobit model. The

two settings described may seem similar but have very different data-generating interpretations that lend

themselves to different applications. Below we introduce notation that describes these scenarios before

discussing a general framework that ties them together.

1.3.1 Zero-Inflated Models

Given some set of discrete counts, Y1, . . . Yn, and a model for those counts, we say the data has zero-

inflation when the proportion of Yi s equaling zero is greater than what we would expect from a standard

count model. For example, with a Poissonpλq distribution, we expect on average e´λ proportion of zeros;

that’s approximately 13.5% when λ “ 2 and about 5% when λ “ 3. Hence, if we expect Y1, . . . , Yn to

come from a Poispλ “ 3q model, but find that much more than 5% of the Y s are zero, then we say we

have zero-inflated data. A complementary notion is that of zero-deflation in which we observe fewer zeros

than would be expected under a count model*.

One representation of data with excess zeros is a mixture model. One set of observations may be zero

according to a random event (these are called sampling zeros) while another set is necessarily zero (termed

structural zeros). The associated distribution is a mixture of an ordinary count model with a degenerate

point mass at zero. For example, the zero-inflated Poisson (ZIP) model (Lambert, 1992) assumes that

Y „

$
’’&

’’%

0 w.p. p

Poispλq w.p. 1´ p

*This notion can be handled with some models, but not others as discussed in the following sections
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The unconditional probability distribution† has

P pY “ 0q “ p` p1´ pq exp´λ

P pY “ kq “ p1´ pqexp
´λ λk

k!
, k “ 1, 2, . . .

Since in this model an instance of zero can come either from the zero distribution with probability p or

from the Poisson distribution with probability p1 ´ pqe´λ, the probability of observing a zero is at least as

high as in the Poisson. One complicating feature of this model is the fact that upon observing a zero, we

do not know if it is a structural or sampling zero.

This definition is given explicitly for Poisson distributions for educational purposes, but the structure

holds for all zero-inflated distributions. Other common zero-inflated distributions include the zero-inflated

negative binomial model to address overdispersion, as well as zero-inflated binomial and zero-inflated

beta-binomial models to handle bounded counts. We generally denote a zero-inflated distribution as Y „

ZIF pp, θq. Here F is a random variable parametrized by θ, hence the parameter set of the distribution

describing our outcome Y is pp, θq. The mean parametrizes the Poisson distribution, θ “ λ, while two

parameters would parametrize the Negative binomial, θ “ pr, qq. We denote the mean and variance of

the sampling distribution, F , as µ and σ2 respectively. For example, the Poisson sampling distribution

has both mean and variance equal to the parameter, µ “ σ2 “ λ, while the Negative binomial has mean

µ “ qr
1´q and variance σ

2 “ qr
p1´qq2 .

We can include covariates into zero-inflated models; these models are called zero-inflated generalized

linear models (ZI-GLMs). As in all GLMs, we relate the conditional mean of the outcome to covariates via

link functions, but here two link functions are needed. One link is needed to relate covariates to the condi-

tional probability of being a structural zero, i.e., relating x to p, and a second link relating covariates to the

conditional mean of the sampling distribution, i.e., relating x to µ. In the zero-inflated Poisson distribu-

tion, we use a logit link for the zero-part and a log link for the non-zero mean part, i.e. logitppq “ xβ and

logpµq “ xγ. We can already see the challenge in including covariates for zero-inflated models as we can

include them in two places.
†IF Z „ Bernppq and Y ˚ „ Poispλq, then in our notation Y “ p1´ Zq Y ˚ „ ZIP pp,λq
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1.3.2 Latent-Variable Models

An alternative way to model excess zeros is through models that incorporate latent-variables. This repre-

sentation is common in Econometrics with models like the Tobit, or two-part models (Heckman, 1979).

The observed outcome Y is modeled as a truncated version of a latent variable Y ‹ where Y is observed as

Y ‹ only if it is positive and zero otherwise, i.e

Y “

$
’’&

’’%

0 if Y ‹ ă 0

Y ‹ o.w.

The latent variable has a distribution that can be related to covariates. For example, the Tobit model sim-

ply relates Y ‹ to covariates x linearly so that with ε „ Np0,σ2q,

Y ‹ “ xβ ` ε and Y “ Y ‹ tY ‹ ą 0u.

This linear relationship implicitly relates covariates to both the zero-probability p and the non-zero mean

µ. It places a linear relationship on the non-zero mean as a function of x, i.e., an identity link, and a Normal-

quantile relationship between x and p, i.e., a probit link. Furthermore, the interpretation of β involves both

changes in the probability of zero and non-zero mean. There are a large number of extensions to Tobit

models that allow for complex relationships between covariates and latent variables, more latent variables

and more censoring (Schnedler, 2005). While the interpretation of these models makes them useful, the

inability to control the links for zero-probability and nonzero-mean separately makes working with them

challenging.

1.3.3 General Mixture Models

The two models discussed Sections 1.3.1 and 1.3.2 evolved in different fields of science with different

requirements in mind, but can both be written as mixture models. Let F pθq represent a random variable
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parameterized by θ, then Y distributed as

Y „

$
’’&

’’%

0 w.p. ppXq

F pθpXqq w.p. 1´ ppXq

is a mixture of a sampling distribution and a point-mass at zero. We can also relate the parameters in the

model to covariates by specifying link functions that relate the covariate to p (signified by ppXq) and the

mean of the sampling distribution (usually written µpθpXqq). If we further restrict F to take strictly non-

negative values, then both models in Sections 1.3.1 and 1.3.2 are special cases.

Taking F pθq ” Poispλq, and ppXq “ p we recover the zero-inflated Poisson model discussed in Section

1.3.1. Again, for this we typically relate the covariates to ppXq through a logit link and to λpXq through a

log link. The Tobit model described in Section 1.3.2 uses F pθpXqq ” N pXβ,σ2q, implying an identity

link for the mean and a probit link to relateX to p. The second link is implicit in the model, but can be

seen easily by denoting Φ as the c.d.f. of a standard Normal distribution and seeing that

ppxq “ PpY “ 0|X “ xq “ Ppxβ ` ε ă 0q “ Φ

ˆ
xβ

σ

˙
.

This general formulation allows us to explore the models discussed under one umbrella. This formula-

tion also pinpoints the general structure of the decisions needed for an analysis of data with excess zeros:

(1) specify an outcome model that describes non-zero outcomes, (2) specify a link function that describes

the relationship between covariates and average of non-zero outcomes and (3) specify a link function that

relates covariates to the probability of zero. For the remainder of the chapter, we will primarily be working

with zero-inflated distributions to derive our estimators and analyze simulation results. However, we will

keep latent-variable models in mind as these models behave similarly.

1.4 Simple Methods for Estimating Average Treatment Effect (ATE)

In this section, we present simple methods for estimating the ATE estimand. In Section 1.4.1 we begin by

presenting the most straightforward method we consider, a simple difference estimator with Neymanian
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confidence intervals. This method assumes that the averages of our outcome within treatment groups are

approximately normal. This assumption begs the question as to whether incorporating population struc-

ture into our estimates improves inference. So, we go on to present our first model-based method for an

estimate and confidence interval of the ATE in Section 1.4.2.

1.4.1 Neymanian Estimation and Confidence Intervals

One simple, intuitive way to estimate τsp is to use a method-of-moments estimator:

τ̂ “ 1

N1

ÿ

i:Ti“1

Yip1q ´
1

N0

ÿ

i:Ti“0

Yip0q (1.2)

where N1 is the number of units assigned to active treatment, N0 is the number of units assigned to con-

trol, and N1 ` N0 “ N . Because τ̂ is a difference of averages, we can use asymptotic approximations

to build confidence intervals by way of the Central Limit Theorem. We can also apply a small-sample

correction using a t-distribution quantile instead of a standard Normal multiplier. Denoting the sampling

variability with

ySE “
d

s21
N1

` s20
N0

, (1.3)

our resulting Neymanian-based p1´ αq ˚ 100% confidence interval (CI) is then:

τ̂ ˘ zα{2 ySE (1.4)

where s21 and s20 are the sample variances for the treatment and control outcomes, respectively. This method

is applied liberally throughout the literature without regard for the underlying data distribution. A goal of

this paper is to justify this naive CI’s use in practice. It may seem sloppy to use such a simple method de-

spite observing zero-inflated outcomes; however, we will see that the Normal approximation works quite

well, even with noticeable zero-inflation. However, even with this strong and general result, it is reason-

able to believe that incorporating information from the data-generating mechanism into the estimation
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process could only help us in terms of inference. With this in mind let us introduce estimation procedures

that incorporate such structure.

1.4.2 Estimation using Zero-Inflated Models

If we describe our data in terms of structural and sampling zeros and think of our data as coming from a

general mixture model (as in Section 1.3.1), we can then write the distribution of our potential outcomes

as, say, Yiptq „ ZIF ppt, θtq. Recalling that the mean and variance of F pθtq are, indeed, functions of θt,

we denote them as µt ” µtpθtq and σ2
t ” σ2

t pθtq respectively. Hence, the super-population ATE under the

this potential outcome model is

τsp “ ErYip1q ´ Yip0qs “ p1´ p1qµ1 ´ p1´ p0qµ0.

We write this explicitly because it is important to note that parameters of interest and model parameters

are not always the same. For example, comparing the sampling means under different treatment regimes,

e.g., µ1 ´ µ0, may be a useful exploratory analysis, but the causal estimand validated by randomization is

the ATE. With these results in hand, we can construct estimates and confidence intervals for the population

average ATE τsp using these mixture models.

We fit our model to the observed data‡ to obtain maximum likelihood (ML) estimates of the model pa-

rameters, (p̂0, p̂1, θ̂0, θ̂1). Since our causal estimand of interest is simply a function of these model parame-

ters, we get a ML point estimate for τsp using

τ̂zif “ p1´ p̂1q µ1pθ̂1q ´ p1´ p̂0q µ0pθ̂0q (1.5)

“ p1´ p̂1qµ̂1 ´ p1´ p̂0qµ̂0

Furthermore, because τ̂zif is the MLE of τsp, we use the Delta Method to derive an approximate distri-

bution of τ̂zif and use this to build a corresponding confidence interval. Let gpp0, p1, θ0, θ1q “ p1 ´

p1q µ1pθ1q´p1´p0q µ0pθ0q and∇ represent the partial derivatives with respect to the parameters. We can

‡The observed data are Y obs
i pTiq “ Ti Yip1q ` p1´ TiqYip0q, for i “ 1, ..., N .
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approximate the sampling variance of τ̂zif as

ySEzif “
b
∇gpp̂0, p̂1, θ̂0, θ̂1qT Σ̂ ∇gpp̂0, p̂1, θ̂0, θ̂1q (1.6)

where Σ̂ is the covariance matrix of our parameters. We can then calculate a model-based confidence in-

terval for τsp as

τ̂zif ˘ zα{2 ySEzif (1.7)

A complete derivation is given in Appendix A.3.

1.5 Methods for Estimating ATE Including Covariate Information

Introducing covariate information into estimation procedures at the analysis stage can increase the preci-

sion of estimates even when they are not used in the design. In essence, covariates that are predictive of

the treatment effect can help increase the precision of estimates built using post-stratification (Miratrix

et al., 2013), linear regression (Lin, 2013), and even high-dimensional regression (Bloniarz et al., 2016).

Consider the following simulated dataset that echoes some of the trends observed in the MOOC example.

This example will help us see how post-stratification and regression might increase precision, but will also

point out some of the difficulties of working with zero-inflated data.

Figure 1.1 shows simulated data (of total size N “ 100) where the covariate is certainly predictive of

the outcome. Subjects with high values of the covariate seem to have large outcomes when not zero, but

the zero outcomes seem to be distributed equally across the covariate. Shown are two possible methods

of analysis, a post-stratification analysis (left) and a linear regression adjustment with interactions (right).

Both methods capture the overall trend that treatment outcomes are higher than control outcomes but fail

to capture relationships for zero-inflated data adequately.

The model implied in a post-stratification analysis withK strata is a piece-wise step function with pre-

determined cut-points (x0, ..., xK) and unknown heights for treatment and control separately (µk1, µk0 for

k “ 1, ...,K). Figure 1.1 (left) shows the model fit to this data for three strata of equal length with sam-
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Figure 1.1: Covariate adjustments in the analysis of randomized experiments is known to provide precision gains. Here
we show two simple methods for covariate adjustment, post-stra fica on (le ) and regression adjustment (right). Here
we use three strata of sizeN1, N2 andN3 respec vely.

ple sizes pN1, N2, N3q and estimated treatment effects τ̂k “ µ̂k1 ´ µ̂k0 for k “ 1, ..., 3. Let µ̂1 and µ̂0

be the overall means for treatment and control outcomes. Typically, there are gains in precision when the

variability within strata is smaller than the overall variability (Miratrix et al., 2013). In other words, when

µ̂k1 and µ̂k0 better describe the data within the group than do µ̂1 and µ̂0. For the first strata, µ̂11 and µ̂10

seem to describe the data better than the overall means and, indeed, the variability is smaller within the

group than overall. The data in the third strata tell a different story. The large fraction of zeros decrease

the overall means, and µ̂31 and µ̂30 no longer seem to describe the structure of the data within the third

strata. Furthermore, the variability within this strata is as wide as the overall variability. Nevertheless, be-

cause some strata exhibit smaller variability within than across strata, post-stratification may help increase

precision.

We can also include covariates with linear regression adjustment, Figure 1.1 (right) shows such an

analysis. A linear regression analysis with interactions models the conditional expectation of the poten-

tial outcomes given a particular value of the covariate, i.e. we are modeling τsp|x “ ErYip1q|X “

xs ´ ErYip0q|X “ xs. Similar to post-stratification, we are considering treatment effect estimates for

subjects with similar values of the covariate. So, if the covariate is related to the outcome, we will gen-
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erally gain precision. If the covariate is not predictive of the outcome, the precision may be hurt in finite

samples but is not a problem asymptotically (Lin, 2013). Similar to post-stratification, the linear model

represents the data well for negative values of the covariate and poorly for positive values around x3.

Including covariates that are predictive of outcomes likely increases precision even when the outcomes

exhibit zero-inflation. However, as discussed in both post-stratification and regression adjustment, in-

cluding covariates that are not useful may hurt precision. One the one hand, we must take extra care when

considering covariate adjustment in zero-inflated models. While it is possible that covariates are predictive

in one part of the model, they may not be predictive in the other. It is, therefore, less apparent when the

potential gains are worth the risks. On the other hand, by using models that do not represent the data, we

may be leaving precision on the table. In this example, it is clear that a linear model for the non-zero out-

comes would provide a much better fit to the data and fit may lead to more precise estimates of the ATE.

In the following sections, we consider not just whether we should include covariates in ATE estimation or

not, but also the additional question of how.

1.5.1 ATE and Zero-Inflated Generalized Linear Models

In this section, we discuss the use of zero-inflated generalized linear models in the process of estimating

the ATE, an extension of Section 1.3.1 to include covariates. When including covariate information, the

model-based conditional ATE estimand for a given value of x under zero-inflated distributions remains

largely the same, i.e.

τsp|x “ p1´ p1pxqqµ1pxq ´ p1´ p0pxqqµ0pxq.

The covariate can change the probability of a structural zero and the mean of the sampling distribution for

treatment and control separately.

If we keep ptpxq constant with x and take p “ p1pxq “ p0pxq, we have that τsp|x “ p1´pq rµ1pxq ´ µ0pxqs.

If µtpxq “ xβt for t “ 0, 1, this quantity is a scaled version of what is typically modeled with linear re-

gression. As previously discussed, Lin (2013) studies this situation in detail§. We will, therefore, focus
§For related discussion on general link functions see Rosenblum & van der Laan (2010)
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our efforts on understanding the impact of covariates on the zero-part. Say, then, that the covariate only

impacts the probability of a structural zero, i.e. µt “ µtpxq. In this case, the unconditional ATE estimand

is

τsp “
ˆ
1´

ż
p1pxqdFXpxq

˙
µ1 ´

ˆ
1´

ż
p0pxqdFXpxq

˙
µ0.

Here, dFXpxq is the distribution of our covariateX . The ATE estimand is a more complex function of the

parameters and covariates. Nevertheless it is still straightforward to calculate an MLE of τsp using zero-

inflated GLMs.

For example, a zero-inflated Poisson distribution with logit-link for the zero-part, i.e. µt “ λt and

logitpptq “ αt ` βtx for t “ 0, 1, the ATE estimand is

τsp “
ˆ
1´

ż
expitpα1 ` β1xqdFXpxq

˙
λ1 ´

ˆ
1´

ż
expitpα1 ` β1xqdFXpxq

˙
λ0

“ p1´ Epα1,β1qqλ1 ´ p1´ Epα0,β0qqλ0.

Here, Epαt,βtq is simply the link function averaged over the distribution of the data. If the covariate is

standard Normal (as in our simulation studies), it is the mean of a logit-Normal distribution¶. The mo-

ments of a logit-Normal distribution are computationally tractable using numerical integration. The GLM

fitting procedure returns parameter estimates and their covariances. The maximum-likelihood estimate of

τsp is

τ̂zif,x “
´
1´ Epα̂1, β̂1q

¯
λ̂1 ´

´
1´ Epα̂0, β̂0q

¯
λ̂0.

The sampling variability ySEzif,x can be approximated using the Delta method (details in Appendix A.3).

The confidence interval takes the familiar form as

τ̂zif,x ˘ zα{2 ySEzif,x. (1.8)

¶A random variable is distributed logit-Normal if it is Normally distributed after taking the logit transformation
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We show these quantities specifically for the logit-link, but the structure holds generally. We use this

example in the simulation studies that follow.

1.6 Simulation Studies

In Section 1.4.1, we introduced the classic Neymanian estimator of the super-population ATE and a cor-

responding confidence interval. We then went on to derive a general model-based estimator and confi-

dence interval using the zero-inflated mixture models in Section 1.4.2 and discussed a covariate-adjusted

model-based estimator in Section 1.5.1. In this section, we investigate the finite-sample properties of these

estimators in the hopes of critically analyzing the necessity of model-based estimators.

The Central Limit Theorem gives us confidence that for large enough samples, we will not need models

more complicated than the Normal distribution for means. Of course, we would hope that incorporating

more information about the nature of the data would improve the efficiency of our inference. Furthermore,

models allow us to incorporate potentially relevant covariates that may also help our inferential proce-

dures. We will run several simulations meant to inspect the performance of methods for estimating the

ATE. We will first study the impact of zero-inflation on the performance of typical Neymanian estimation

procedures compared to the model-based estimation procedures without the use of covariates. This will be

Simulation A. We then study the impact of including covariate information into the estimation procedures

by comparing linear regression adjustment (an extension of Neymanian procedures) to the zero-inflated

generalized linear models. In order to assess the utility of covariates unique to zero-inflated data, we intro-

duce a covariate that helps predict whether or not an observation is a zero. This will be called Simulation

B.

1.6.1 Simulation A

The purpose of our first simulation study is to understand how zero-inflated data impacts ATE estima-

tion. The Neymanian procedures rely heavily on the assumption of Normality of means, so we expect poor

performance for small samples and highly skewed data. Figure 1.2 illustrates two simulation settings for

zero-inflated outcome data. These data are simulated from two zero-inflated Poisson mixtures: one for
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Figure 1.2: Data generated from zero-inflated Poisson distribu ons. (le ) data are simulated with the same frac on of
structural zeros (i.e. p0 “ p1 “ 0.25) and increased sampling means (i.e. λ0 “ 2,λ1 “ 6). (right) data are simulated
under a larger frac on of structural zeros and increased sampling means (i.e. p0 “ p1 “ 0.5 and λ0 “ 5,λ1 “ 9).

control, Yi|Ti “ 0 „ ZIP pp0,λ0q, and another for treatment Yi|Ti “ 1 „ ZIP pp1,λ1q. Figure 1.2 (left)

shows treatment and control groups that look drastically different. The control group seems to exhibit an

extreme amount of zero-inflation; in this example, 35% of control outcomes are zeros while only 27% of

treatment outcomes are zero. However, once we take into account the fraction of zeros due to the sampling

distribution, a Poisp2q in control and Poisp6q in treatment, we find that the fraction of structural zeros to

be similar. Specifically, we expect p1 ´ 0.25qe´2 “ 10.15% and p1 ´ 0.25qe´6 “ 0.18% sampling ze-

ros in the control and treatment groups, respectively. So, approximately 25% and 26.8% of the zeros are

predicted to be structural in the control and treatment groups, respectively.

Figure 1.2 (right) investigates a scenario where we have a large fraction (p1 “ p0 “ 0.5) of zeros and

large Poisson means. We end up, in this case, with minimal overlap between the structural zeros and the

Poisson distribution. We expect about p1´ 0.5qe´5 “ 0.34% and p1´ 0.5qe´9 “ 0.006% sampling zeros

in the control and treatment groups, respectively. Under this setting, it is readily apparent that the data is

coming from some sort of mixture distribution.

Table 1.1 summarizes the simulation settings we implemented. The two sets of simulations highlighted

in blue and red correspond to the settings for the example data shown in Figure 1.2 (left) and (right) re-
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Fraction of structural zeros
p “ 0.25 p “ 0.5

Simulation λ0 λ1 τsp λ0 λ1 τsp
Setting (1) 2 2 0 2 2 0
Setting (2) 5 5 0 5 5 0
Setting (3) 20 20 0 20 20 0
Setting (4) 2 6 3 2 6 2
Setting (5) 5 9 3 5 9 2
Setting (6) 20 24 3 20 24 2

Table 1.1: Se ngs for Simula on A. Example data sets from the se ngs highlighted in blue and red are shown in Figure
1.2 le and right, respec vely

spectively. For each of the 12 simulation settings described in Table 1.1, we generated 2000 replicated

data sets for each level of total sample size (N “ 40, 60, 100, 180, 400, 800, 1000, 2000). We simu-

lated data independently from zero-inflated Poisson models: control units Y obs
i „ ZIPoispp0,λ0q, for

i “ 1, ..., N0, and treated units Y obs
j „ ZIPoispp1,λ1q, for j “ 1, ..., N1, with N0 ` N1 “ N .

To simplify our simulation design, we only considered a balanced randomized experiment, so we had

N0 “ N1 “ N{2. Also, we fixed the expected proportion of structural zeros in the control and treatment

groups to be the same, i.e. p0 “ p1 “ p. The left and right columns of Table 1.1 refer to two simulation

sets with differing values of p. We used these data to construct point estimates and standard errors for the

population ATE τsp “ p1´ p1qλ1 ´ p1´ p0qλ0 using both the Neymanian τ̂ and model-based approaches

τ̂zif .

For each simulation setting pλ0,λ1, p,Nq we will have 2000 replicated data sets. For each data set r “

1, ..., 2000 we will have the following.

1. τ̂ prq and ySE
prq

– the Neymanian estimate and standard error described in Section 1.4.1

2. τ̂ prqzif and ySE
prq
zif – the model-based estimate and standard error described in Section 1.4.2

Specifying a model can improve estimation and inference by reducing bias or increasing precision in esti-

mation (if correctly specified). These, together, can sometimes lead to better coverage. On the other hand,

incorrectly specifying a model can lead to the opposite effects, biased estimates, and worse coverage. As

we will show, assuming a zero-inflated model to estimate the ATE does not tend to help in terms of bias
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and coverage, but it does impact the precision of estimates, sometimes drastically. See Appendix A.4 for a

definition of the terms used in the following analysis.

The Neymanian estimator τ̂ is unbiased, so it is no surprise that the bias is small in relative terms (Fig-

ure 1.3 (left)). The model-based estimator is consistent, so it also shows very little bias. Figure 1.3 (right)

shows the difference in bias between the two methods. The largest deviations occur in for large sampling

means where they still deviate by less than 0.008%. With a Poisson distribution, a large mean implies

a variance. Data with high variability gives more opportunity to over or underestimate the mean. The

model does not seem to decrease bias in our simulations even in the most extreme cases where the data

are severely non-normal (i.e. p “ 0.5,λ0 “ 20,λ1 “ 24). This stability stands as a testament to the power

of simple averages.
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Figure 1.3: The absolute bias and difference in absolute bias for the Neymanian es mate τ̂ and model-based es mate
τ̂zif for the simula on se ngs in Table 1.1 (right column)

The two methods also have similar coverage properties, Figure 1.4 shows the approximate coverage

for the two methods. When samples are small, there is slight under-coverage, but this may be due to noise

since we observe similar amounts of under-coverage for large samples. Similar results hols for the simula-

tion with a smaller fraction of zeros p “ 0.25.
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la on se ngs in Table 1.1 (right column)

We expect the model-based standard error estimate, ySEzif , to be smaller than the Neymanian stan-

dard error estimate ySE on average. Figure 1.5 contains the precision gains for simulation settings in Table

1.1. Correctly assuming a zero-inflated model gains us the most precision when the sampling means are

away from zero (lines (3) and (6)). Indeed, we gain precision regardless of the underlying distribution, but

these gains are modest at best. With small samples, we increase precision by about 2%, and these gains are

quickly lost. The relative precision gain is below 0.24% starting at N “ 400. We can also gain precision

in estimates of the sampling variability; we investigate this next.

Figure 1.6 shows that the estimates for the sampling variability are more precise if we use a model com-

pared to the model-free Neymanian quantity. The gains in precision are most extreme in the low sampling

means cases where the model-based estimates are up to 20% more precise than the Neymanian estimates.

Interestingly, the cases that saw the largest gains in precision of τ estimation saw the smallest gains in pre-

cision for standard error estimates.

Overall, the model-based estimate for the ATE performed slightly better than the simple Neymanian es-

timate for small samples in terms of precision, while both showed little bias in simulations. The primary
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Figure 1.5: Rela ve precision of τ̂ compared to τ̂zif , i.e. averageySE compared to averageySEzif

way that the model-based estimate outperforms the Neymanian estimate is through the precision of the

standard error estimates. Essentially, the Neymanian standard error estimates seem to be sensitive the vari-

ability the data while the model-based estimate not. However, the precision of standard error estimates

does not translate into tangible gains for inference. We will see next whether incorporating covariates into

zero-inflated models changes this.

1.6.2 Simulation B

The purpose of this simulation is to inspect the impact of covariates on our inference procedures. In Sec-

tion 1.5, we discussed that when covariates are predictive of the outcome, incorporating them into the

analysis generally increases precision. The natural next step is to understand whether incorporating co-

variate information in a specialized way, e.g., with zero-inflated generalized linear models, improves our

estimation procedures beyond naively using linear regression adjustment. We focus our efforts on under-

standing the impact of having a covariate that is predictive of zero-inflation.

To focus our study on the effects of covariates, we consider only the underlying distributions described

in Setting (5) in Table 1.1, i.e we fix λ0 “ 5,λ1 “ 9, p0 “ p1 “ 0.25 so that τsp “ 3. For this simulation
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Figure 1.6: Rela ve precision of model-basedySEzif compared to NeymanianySE

our covariate will change the conditional probability of zero, ppxq, but will keep the overall probability of

zero constant at p. For each subject i, covariates and zero-indicators under two potential treatments as

Covariate: Xi „ N p0, 1q

Li “
?
ρ Xi `

a
1´ ρ εi, ρ P r0, 1s, εi „ N p0, 1q

Zero-Indicators: Zip0q “ tLi ă γ0u and Zip1q “ tLi ă γ1u.

Here, γ0 and γ1 control the overall probabilities of being a structural zero the control and treatment groups,

respectively. If we set γ0 ă γ1 a higher fraction of zeros in the treatment group than in the control group

on average. The distribution of Li is standard normal for any value of ρ so that γ0 and γ1 control the

structural-zero probabilities in a straightforward way. If, say, γ0 “ 0, then automatically PpZip0q “ 1q “

0.5. We select γ0 and γ1 so that the overall proportion of zeros is p0 and p1, respectively. For example, in

the control group γ0 “ F´1
N p0,1qpp0q so that PpZip0q “ 1q “ p0.

Here, ρ controls the dependence between the observed covariateXi and the zero indicators pZip1q, Zip0qq.

When ρ “ 0, Zip1q and Zip0q are independent of Xi and the covariate is not predictive of zeros. On the
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Simulation B
Simulation ρ p0 p1 λ0 λ1 τsp
Setting (1) 0 0.25 0.25 5 9 3
Setting (2) 0.2 0.25 0.25 5 9 3
Setting (3) 0.4 0.25 0.25 5 9 3
Setting (4) 0.6 0.25 0.25 5 9 3
Setting (5) 0.8 0.25 0.25 5 9 3

Table 1.2: Se ngs for Simula on B. Example data sets from the se ngs highlighted in blue and red are shown in Figures
1.7 top and bo om, respec vely

other extreme, when ρ “ 1, the covariate is perfectly predictive of zeros. Indeed, in this case, we will have

complete separation and will not be able to estimate the parameters in our model. By focusing our efforts

on understanding the influence of ρ, we will get an understanding of how our estimating procedures might

perform under varying degrees of covariate usefulness. We complete the specification of the zero-inflated

Poisson by generating the potential outcomes

Y ˚
i p0q „ Poispλ0q and Y ˚

i p1q „ Poispλ1q,

Yip0q “ p1´ Zip0qq Y ˚
i p0q and Yip1q “ p1´ Zip1qq Y ˚

i p1q.

Figure 1.7 shows a simulated dataset where ρ “ 0 and ρ “ 0.6, the left panels show the predictive

power of the covariate. When ρ “ 0 (top-left), the proportion of zeros is equal across all x, and hence the

covariate will have no predictive power. On the other hand, when ρ “ 0.6 (bottom-left) the proportion

of zeros varies with Xi. We observe more zeros for smaller values of Xi for both treatment and control,

and hence Xi will be predictive of zero status. The right panels show the relationship between the covari-

ate and outcome directly. The plotted linear regressions suggest that even a simple regression adjustment

might help more precisely estimate the treatment effects when ρ “ 0.6, but may not be helpful when

ρ “ 0.

In what follows, we will consider comparisons between three estimation methods. For benchmark pur-

poses, we consider the typical Neymanian ATE estimator τ̂ . We will also consider two separate methods

that use covariate information in estimation. First, we consider the linear regression ATE estimator with
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treatment indicator interacted with the covariate; we denote that as τ̂lm. We also consider the zero-inflated

generalized linear model discussed in Section 1.5.1, τ̂zif,x.

Our first results are that both linear regression adjustment and model-based covariate adjustment are

approximately unbiased regardless of the strength of the relationship between the covariate and outcome.

Figure 1.8(a) shows the approximate bias for increasing levels of relation between covariate and outcome

ρ “ 0.2, 0.4, 0.8. As expected, the bias decreases with increasing sample size, but even the largest biases

are relatively small with relative bias at around 1%. The coverage, on the other hand, starts to paint a more

interesting picture.

Figure 1.8(b) shows the coverage properties of the different estimators for increasing sample sizes. Both

the standard Neymanian estimate and the linearly adjusted methods tend to have the right coverage. The

covariate-adjusted τ̂zif,x tends to over-cover when the covariate information is not strongly predictive of

the outcome, i.e., when ρ is small. When ρ is large ρ “ 0.8, τ̂zif,x has similar coverage to the other meth-

ods for larger samples. Because the estimators are approximately unbiased, the standard error estimates

ySEzif,x are the likely culprit when ρ is small.
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Figure 1.8: The absolute bias and coverage for the Neymanian es mate τ̂ and two covariate-adjusted es mates: τ̂lm and
τ̂zif,x.
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Figure 1.9(a) shows the relative efficiency of covariate-adjusted models to the Neymanian estimator for

increasing values of ρ. As expected, the linear regression adjustment improves over the typical Neymanian

estimator when the covariate information is useful. This is shown in gold in Figure 1.9(a). For example,

the linear regression adjustment shows a 10% reduction in standard error when ρ “ 0.6. The zero-inflated

regression, on the other hand, has worse precision when the covariate is not useful in predicting the out-

come.

As Lin (2013) discuss, even when covariates do not predict outcomes, as is the case when ρ “ 0, linear

regression estimates are not worse than the Neymanian estimator. However, complex covariate adjust-

ments like τ̂zif,x do not have this property and are only beneficial when covariates are predictive of the

outcome. When ρ “ 0.2, the standard errors ySEzif,x tend to be 11% larger than the Neymanian estimator

ySE. For values of ρ larger than 0.4, the standard errors finally beat out the Neymanian estimator. These

results indicate that we should only adjust for covariates in the zero-inflated generalized linear model if

the covariates are strongly predictive of zero status. However, it is difficult to say what strongly predic-

tive means for the zero-inflated model. It is not clear in what situations can we expect the equivalent to

ρ “ 0.3, or 0.5, muddying the waters in making this decision.

Simulation A showed that assuming a model increased the precision of standard error estimates by up to

20%. Figure 1.9(b) shows the relative efficiency of the standard error estimates for the different methods.

In gold, we see that linear regression adjustment has slightly, but consistently larger relative efficiency (up

to 10%) than the Neymanian ySE. When we use models to incorporate covariate information, the precision

of standard error estimates increases by 15´ 20% over, well in line with the previous results.

Many of the results here are in line with the current literature. If a covariate is predictive of the out-

come, including it in modeling can help improve precision in estimation. Where the current results di-

verge most strikingly is in the opposite situation. If the covariate is not predictive, including it in the model

can hurt precision. Indeed, we see in our results that precision is lost when linearly adjusting for a non-

predictive covariate. However, the losses are minuscule. On the other hand, adjusting for the same covari-

ate with a zero-inflated GLM leads to extreme losses in efficiency. However, it is encouraging to see that

when the covariate is significantly predictive of the outcome ρ “ 0.8, the zero-inflated GLM is indeed the

most precise.
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Figure 1.9: The rela ve efficiency of es mates of τsp and standard error es mates for the simula on se ngs in Table 1.2

1.7 Data Application

Experiments on Massive Open Online Course (MOOC) platforms perfectly exemplify the scenario ex-

plored in this chapter. Typically, researchers are interested in comparing outcomes for engagement like

course completion, forum participation, and scores on exams or quizzes. Zero-inflation in these outcome

measures is certainly present due to attrition. However, even engaged students may not participate in mea-

surable ways. Many course platforms also collect a set of pre-treatment covariates, like age and previous

enrollment in online courses, that may be predictive of participation. In what follows, we explore one such

experiment. We analyze the experiment, excluding details because the experimental results remain unpub-

lished.

The purpose of the intervention we analyze here was to increase engagement in MOOCs through social

support. There is a growing literature that supports the idea that social support impacts increased engage-

ment and participation in MOOCs. One recent study found that even perceived social support was predic-

tive of engagement in online course (Hsu et al., 2018) and another study found that attrition rates among

students who sought help from friends and family than those who did not (Nelimarkka & Hellas, 2018).
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Figure 1.10: Example Data from an experiment on a MOOC. (top le ) Histogram of observed control outcomes, (top
right) histogram of observed treatment outcomes, (bo om le ) distribu on of covariate (age), (bo om right) Rela onship
between covariate and outcome for treatment and control with a simple linear regression
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The intervention was conducted on a popular MOOC platform and involved 986 concurrently-enrolled

students. The intervention was time-intensive and involved contacting members of the student’s social

support network to fortify the network. We assigned students to a treatment or control condition at ran-

dom, 593 were assigned to treatment while 393 were assigned to control. We measure engagement as the

number of forum posts the student made during the length of the course.

Figure 1.10 shows the data distribution for the experiment. The number of forum posts (upper panels)

shows clear signs of zero-inflation and some potential outliers. We will be using the student’s age as a pre-

treatment covariate. The bottom panels show the age distribution and the relationship between age and

number of forum posts. The linear regressions indicate that the covariate may help predict the outcome, so

making covariate adjustment will likely help. It is unclear, however, whether the obvious heteroskedastic-

ity will affect the linear regression adjustment.

The Neymanian estimate of the ATE for our intervention is 0.72, a significant finding (95%CI : p0.07, 1.37q).

The model-based estimate τ̂zif showed the same point-estimate but narrower confidence intervals (95%CI :

p0.38, 1.05q). From the simulations, we know that Neymanian standard error estimates tend to vary more

than the model-based ones. So we would trust the model-based confidence interval here.

Covariate-adjustment gave mixed results. The linear regression adjusted ATE estimate gave much wider

confidence intervals. This loss of precision may be due to sensitivity to heteroskedasticity in the data, but

we did not investigate this in our simulations. The covariate-adjusted zero-inflated estimator, on the other

hand, still provided a reasonable estimate of the ATE. However, including the covariate inflates the stan-

dard error estimates by 14%. The covariate is marginally predictive of the zero-status for the treatment

group and not at all for the control group, so the inflated variance falls in line with our simulations (see

Table 1.4).

Overall, we recommend the model-based τ̂zif for estimating the ATE as the data are highly heteroskedas-

tic. Our simulations showed that this estimator typically performs at least as well as the Neymanian esti-

mator in terms of bias and average precision. We do not recommend covariate adjustment with this co-

variate. However, it may help further increase precision if we adjust for the covariate in for the sampling

mean.
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Estimator Estimate 95% Confidence Interval Interval Length
Neymanian τ̂ 0.72 (0.07 ,1.37) 1.3

Model-based τ̂zif 0.72 (0.38, 1.05) 0.67
Regression Adjusted τ̂lm -2.05 (-3.97, -0.12) 3.85

Adjusted Model-Based τ̂zif,x 0.52 (-0.47, 1.50) 1.97

Table 1.3: ATE Es mates for Example Interven on in MOOC

Sampling Distribution
Parameter Estimate SE p-value
logpλ0q 1.4204 0.0293 0.0000‹
logpλ1q 1.5913 0.0212 0.0000‹

Zero-part
Parameter Estimate SE p-value

α0 -0.7190 0.3592 0.0453‹
α1 -0.7161 0.3290 0.0295‹
β0 -0.0123 0.0091 0.1783
β1 -0.0166 0.0086 0.0525

Table 1.4: Model Output for our model-based covariate-adjusted es mator

1.8 Concluding Remarks

Even in the ideal case of a balanced, completely randomized experiment, there are potentially special is-

sues to consider when estimating a causal treatment effect from zero-inflated count responses. First, as in

any proper causal analysis, we need to define our estimand of interest. Domain knowledge and the scien-

tific questions should motivate this choice, rather the modeling procedure. For this chapter, we focused on

the super-population average treatment effect and considered several ways of estimating it.

We considered two ways of looking at the data: taking it as it is, without making any model assump-

tions, or as a two-part mixture distribution. The former perspective readily justifies a simple method-of-

moments difference-in-means estimator, τ̂ . In contrast, viewing the data as coming from a zero-inflated

model, it makes sense to incorporate this model assumption into our estimator. Exploiting the paramet-

ric model assumption, our estimator τ̂zif is then the difference in maximum likelihood estimates for the

means of two zero-inflated models. The estimates τ̂ and τ̂zif are unbiased and consistent, respectively,

for the super-population average ATE τsp. We were surprised, however, to find that while exploiting a
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model assumption did increase precision in ATE estimation for small samples, these gains were quickly

lost. However, we did find that modeling helped increase the precision of standard error estimates.

Continuing our view of the data as a mixture motivates the use of covariate adjustment via zero-inflated

GLMs. Covariate adjustment is useful when the covariate is predictive of the outcome. Lin (2013) show

that methods like regression adjustment are a particularly stable way of incorporating covariate informa-

tion to increase precision. Furthermore, when covariates are not predictive of outcome, it does not make

estimation much worse than standard Neymanian estimates. Zero-inflated GLMs, on the other hand, are

quite sensitive to non-predictive covariates. Furthermore, the estimators derived from zero-inflated GLMs

can be quite complex, even for simple causal estimands like the ATE. This complexity makes it challeng-

ing to implement estimators and, consequently, decreases their use in practice.

Our findings shows that a strongly predictive covariate still leads to precision gains of ATE estimates,

but there remains much to be explored. We speculated that if the covariate was predictive of the non-zero

mean, ATE estimates based on zero-inflated GLMs would have properties similar to those from regression

adjustments. However, it may be the case that ATE estimates based on zero-inflated GLMs are simply

more unstable when including covariates into the model (especially useless covariates). In which case,

linear adjustment may beat out zero-inflated GLM adjustment.

Furthermore, a quality that makes zero-inflated GLMs attractive is that they allow covariates to affect

outcomes in two ways. It may be the case that this ability can mitigate some of the precision losses suf-

fered here if the covariate is predictive in one part of the model, even if it is not in the other. This requires

further study. Nevertheless, ATE estimates based on zero-inflated GLMs increased the precision of stan-

dard error estimates across the board. This fact encourages us to further study the limits of covariate ad-

justment through complex models.
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To photograph truthfully and effectively is to see be-

neath the surfaces and record the qualities of nature

and humanity which live or are latent in all things.

Ansel Adams

2
Measuring the Effects of Adherence on

Time-Varying Health Outcomes

2.1 Introduction

Over 85 million American adults, or about one third of the population over 20 years old, suffer from hy-

pertension (Benjamin et al., 2018). Approximately 16% of adults in the United States are unaware that

they have hypertension (Benjamin et al., 2018). Left untreated, hypertension can lead to a range of se-

rious and costly health concerns such as cardiovascular disease, stroke, and renal disease (Amery et al.,

1985; Probstfield, 1991). Among the many factors associated with uncontrolled BP, poor adherence to
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prescribed anti-hypertensive medications is of major concern to clinicians, health care systems, and other

stakeholders (Choo et al., 1999; Morisky et al., 1986; Osterberg & Blaschke, 2005). Little doubt exists

that patients who adhere poorly to their prescribed medication are at risk for worse BP outcomes (Vitolins

et al., 2000; Lam & Fresco, 2015). Given the large variation in adherence, both across patients and tem-

porally within a patient’s treatment period, it is an open question how to accurately measure the impact of

varying adherence patterns on BP levels. Furthermore, the variation in adherence patterns creates difficul-

ties in accurately measuring the effects of socio-demographic and health risk factors on BP levels.

This paper develops a Bayesian dynamic linear model (West & Harrison, 1997; Durbin & Koopman,

2001; Petris et al., 2009) for health measures recorded over time as a function of time-varying adherence,

with a particular application to the effects of anti-hypertensive medication on BP levels. Bayesian dynamic

linear models (DLMs) have a long history as a statistical framework for forecasting and measuring tra-

jectories in many domains, including real-time missile tracking and financial securities forecasting, but

are rarely used in healthcare applications. We apply DLMs to describe time-varying health measures (like

blood pressure levels) as a function of detailed adherence (or other time-varying covariates) and individ-

ual demographics and comorbidities measured typically at study baseline. The application of DLMs to

the time-varying adherence on health measures is novel, but fits naturally into the DLM framework be-

cause these measures can be tracked over time as adherence data accumulate in parallel. Because the DLM

framework permits the inclusion of patient-level predictors, the model can be applied to measuring effects

of socio-economic or racial characteristics, or the effects of different comorbid conditions. Our model can

control for differential medication adherence patterns, resulting in more accurate measurement of the ef-

fects of other covariates.

In order to estimate the effects of time-varying adherence on health measures, we need access to three

types of data. First, adherence data for each study participant are assumed to be collected through elec-

tronic monitoring devices. These devices electronically time-stamp each time the pill container is opened,

providing an accurate recording of when a patient took their medication. Second, health and socio-demographic

information are typically recorded at the start of medication adherence studies, and are often non-dynamic.

Finally, health measures which might be impacted by differential medication adherence are recorded

longitudinally at intermittent intervals. Such measures are often recorded at clinic visits, the timing of
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which may be determined by the patient. Thus it is quite common for the number of health measures per

study patient to be much smaller than the number of days on which medication adherence information is

recorded.

Inference using the DLM framework is challenging in this case because there are considerably fewer

health measures observed compared to the number of days of adherence measurements. In traditional uses

of DLMs, both time-varying covariates and responses are measured at every time point, and inference for

the time-varying state parameters can be accomplished using standard Bayesian updating algorithms (West

& Harrison, 1997, Chapter 16). With adherence data, when the responses are measured at irregular and

infrequent intervals, the usual updating approaches can be demonstrably inefficient. Instead, we develop

an inferential approach in a Bayesian setting that takes advantage of factoring the posterior density into a

product of two terms. The first term involves the exact marginal likelihood of the DLM, marginalizing out

the dynamic state process. The second is the conditional posterior density for the state process parameters.

The two-stage procedure allows us to determine the posterior distribution for the non-dynamic parameters

using standard Markov chain Monte Carlo (MCMC) techniques and the state process parameters without

resorting to needlessly complex computational tools. With a DLM that has normally distributed responses

and a stochastic process for the latent states that has normal innovations, the factorization is the product of

two multivariate normal densities and a prior. This factored posterior density also easily allows inference

for the non-dynamic parameters, which in the setting of medication adherence is likely of interest because

the researcher may want to understand the effect of baseline health characteristics on the health measures

controlling for differential adherence.

The remainder of this paper is organized as follows. In Section 2.2 we introduce a motivating exam-

ple and details of the study cohort. We specify the DLM for our framework in Section 2.3. The model,

which assumes an autoregressive structure, accounts for possibly multivariate health measures which may

or may not be measured simultaneously. We then develop our computational approach for inference in

Section 2.4. We apply our methods to modeling BP in Section 2.5, where we compare our methods to typ-

ical models used to measure the effects of adherence. We conclude in Section 2.6 with a discussion on the

limitations and potential extensions of our methods.
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2.2 Data

The data we analyzed were obtained from the baseline pre-randomization period of a trial that studied the

effects of a provider-patient communication skill-building intervention on adherence to anti-hypertensive

medication and on BP control (clinicaltrials.gov ID: NCT00201149). Patients were recruited from seven

outpatient primary care clinics at Boston Medical Center, an inner-city safety-net hospital affiliated with

the Boston University School of Medicine. Patients enrolled in the study from August 2004 and June

2006, meeting several eligibility criteria. These included that the patients were of white or black race

(African or Caribbean descent), were at least 21 years old, had an outpatient diagnosis of hypertension

on at least three different occasions prior to study enrollment, and were currently on anti-hypertensive

medication. The cohort size was 869 patients but because the trial was focused on improving adherence,

not all patients had BP measured during this period. So, our final study cohort size was 503 patients. The

study involved measuring anti-hypertensive medication-taking using Medication Event Monitoring Sys-

tem (MEMS) caps, a particular type of electronic pill-top monitoring device. Patients were given their

most frequently taken anti-hypertensive medications in a bottle with a MEMS cap, and were instructed to

open the bottle each time they took a dose. Each MEMS cap contained a microprocessor that recorded the

date and time whenever the bottle was opened, and the timing information was then downloaded through

a wireless receiver after the patient returned the MEMS cap. Our study focused on medication-taking be-

havior during the entire pre-randomization baseline period of the study. A patient was considered adherent

to the prescribed medication on a day if the MEMS cap was opened as many times as the prescribed dos-

ing frequency, and not adherent otherwise. These measurements were recorded on a daily basis, but the

duration over which adherence information was measured varied by patient.

Blood pressure measurements were recorded less frequently, as they were obtained as part of routine

clinical care. The BP readings were measured using manual or electronic devices, and were obtained by

clinical staff including physicians, nurses and medical assistants. In cases where multiple readings were

obtained on a single day (typically at the same clinic visit), the individual values were recorded. Diastolic

and systolic blood pressure values (DBP and SBP respectively) were recorded separately.

In addition to detailed time-varying adherence and BP readings, other patient-specific baseline infor-
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mation was collected. Race (white versus African American), gender, and age at the start of the study

were recorded for each patient. From electronic medical records, the following comorbidities (as binary

variables) were investigated in our study, given their potential impact on overall BP levels: presence of

cerebrovascular disease, congestive heart failure, chronic kidney disease, coronary artery disease, diabetes

mellitus, hyperlipidemia, peripheral vascular disease, and obesity (defined as body mass index greater than

30kg{m2).
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Figure 2.1: Example BP and adherence data for a study pa ent. Blue squares are diastolic BP, red dots are systolic BP, and
the black dots near the horizontal axis indicate whether the pa ent was adherent on a par cular day (filled dots indicate
adherence, open dots indicate non-adherence). Note that the adherence data for the first nine days of the follow-up
period are missing.

To motivate our modeling framework, consider the data from one of the patients in the study cohort dis-

played in Figure 2.1. The figure shows the DBP and SBP measures on the four days the patient had their

blood pressure measured, and daily indications of whether the patient was adherent. This patient was ad-

herent on 29 of 82 days. However, this simple summary masks the time-varying pattern of the patient’s ad-

herence. The patient began the study by being fully adherent to their prescribed medication, during which

time their blood pressure remained under control. After 20 days, the patient started becoming less adher-
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ent, and starting around day 38 the patient discontinued taking their medication altogether. Over this latter

period, the patient’s BP increased, and by the end of the study period the patient had DBP and SBP val-

ues that were not under control. Besides suggesting a potential link between adherence and BP measures,

this example motivates using a dynamic linear model for health measures that accounts for time-varying

adherence.

2.3 A dynamic model for multivariate health measures

We propose a statistical framework for multivariate time-varying health measures as a function of medi-

cation adherence that is a member of the class of Bayesian dynamic linear models. Let yitk be the value

of the kth health measure, with k “ 1, . . . ,K, for patient i at time t, for t “ 1, . . . , Ti. We assume

that time is discretized and equally spaced (e.g., days), and that health measures are observed only at

times t1, t2, . . . , tmi . Let yit¨, generally, indicate a vector collecting all outcomes across the dotted in-

dex into a column vector. Then the vector yit¨ collects the outcomes for patient i at time t, i.e., yit¨ “

pyit1, ...,yitKqT . Similarly, yi¨k collects the kth outcome observed at times pt1, ..., tmiq for patient i, i.e.,

yi¨k “ pyit1k, ...,yitmkqT . Our framework assumes that yit¨ is an observed measurement generated from

a distribution with mean µit¨ which follows a stochastic process. The framework recognizes that observed

health measurements on a given day could vary around a mean level due to various influences including

emotional state, activity level, recent alcohol consumption, ambient temperature, and other unobserved

factors that might affect the outcomes.

The mean process at time t is modeled as the sum of the contributions of a non-dynamic term and a

dynamic term. Specifically, we assume

yit¨ “ µit¨ ` εit “ βxi `αit¨ ` εit (2.1)

where xi is a vector (including intercepts) of p non-dynamic covariates typically measured at baseline and

β are the corresponding linear coefficients. Furthermore, αit¨ is a stochastic process that may depend on

dynamic covariates, such as time-varying adherence. Here yit¨,µit¨,αit¨ and εit are all vectors of length

K corresponding to the observation, mean outcome process, latent state model and sampling error respec-
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tively. The non-dynamic covariate effects β are of dimensionK ˆ p, and we use βk to denote the kth

row of β, i.e., the non-dynamic covariate effects on the kth outcome. The error term for subject i at time t,

εit, accounts for typical sampling variability, measurement error, and possible correlation of the outcomes

within patient and time. We further assume that εit „ Np0, Σεq with possibly non-diagonal covariance

matrix Σε.

If patient i’s adherence is tracked for Ti consecutive days, we indicate this measurement set as t1, ..., Tiu,

and denote the collection of time-varying adherence measures as tcituTi
t“1. We let cit “ 1 if patient i was

adherent on day t and ´1 otherwise. As we describe below, we extend the definition of cit to allow the in-

clusion of other time-varying covariates. We further let Ti “ tt1, ..., tmiu Ă t1, 2, ..., Tiu denote the set of

mi days on which the outcomes were measured for patient i. The set of outcome measurements for patient

i is denoted by yi¨¨ “ tyit¨utPTi . We typically have thatmi ăă Ti for all i.

The latent process αit¨ is assumed to be influenced by whether a patient takes the prescribed medication

along with any other time-varying covariates, so we assume an ARp1q model on the latent states tαit¨u

that depend on cit¨ as time-varying covariates. Other forms of stochastic processes are possible, including

autoregressive processes of higher order. If cit¨ is of dimension r, then we assume a process on αit¨ given

by

αit¨ “ ραi,t´1,¨ ` φcit¨ ` νit (2.2)

where ρ is theK-dimensional diagonal matrix of first-order autoregressive parameters, that is, ρ “

diagpρ1, ρ2, ..., ρKq. We assume |ρk| ă 1 to ensure stationarity. The time-varying outcome effects φ

is aK ˆ r matrix. We let φk denote the kth row of φ, i.e., the time-varying covariate effects on the kth

outcome. We further assume in (2.2) that the innovations νit have zero-mean MVN distributions with di-

agonal covariance matrix Σν “ diagpσ2
ν1,σ

2
ν1, ...,σ

2
νKq. Additionally we assume the initial state αi1 „

NKp0,Σ0q with Σ0 “ diagpσ2
01,σ

2
01, ...,σ

2
0Kq. Let θ denote the non-dynamic parameters θ “ pβ,Σε,ρ,φ,Σν ,Σ0q.

Equations (2.1) and (2.2) define the distributions ppyit¨|αit¨,xi, θq and ppαit¨|αi,t´1,¨, cit¨, θq respectively.

Figure 2.2 contains a simulated example of a patient with a scalar outcome over a 30-day period corre-

sponding to the model in (2.1) and (2.2). As evidenced in Figure 2.2, the mean process generally decreases
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on days when a patient is adherent. However, this is not always the case, and an increase can occur when

the corresponding innovation νt is large and positive, offsetting the impact of the patient taking their med-

ication. The observed health measure is normally distributed around the mean for the day on which the

measure is recorded. On day 1, for example, the health measure is higher than the mean, and on day 15 the

health measure is lower than the mean.
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Figure 2.2: A 30-day trajectory for a simulated pa ent from a DLM with a scalar outcome. The bo om of the figure
displays the adherence indicator simulated independently with a 90% probability of adherence. The adherence effect
is simulated to be large and nega ve (φ “ ´0.5). The contribu on of the non-dynamic covariates is assumed to be
xT
i β “ 130.

This model is attractive for relating health measures to time-varying adherence for several reasons. It

can account for non-dynamic baseline variables as well as time-varying adherence. This allows us to dis-

entangle the effects of detailed adherence from patient-specific socio-demographic and health covariates.

Furthermore, in settings where multiple outcome measures are observed at time t, inference for the sam-

pling variability Σε can be made more precise, and can be separated from the innovation variability Σν .

Additionally, the ARp1q model component has a well-known asymptotic mean under full adherence and

full non-adherence. Specifically, the overall effect of repeated days of adherence on the outcome measure
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converges for increasing values of t as αit¨ Ñ pI ´ ρq´1φ. We can therefore predict that if patient i were

to continue to be fully adherent, their mean outcomes would tend to µit¨ Ñ βxi ` pI ´ ρq´1φ. An analo-

gous calculation can be performed when the patient is fully non-adherent. This property permits estimating

the best-case or worst-case health measure means for perfect adherence or perfect non-adherence, even

when patients’ adherence level is somewhere in between.

2.4 Marginal Dynamic Linear Models

Inference for the model in Section 2.3 is challenging given the large number of parameters, both the non-

dynamic parameters θ as well as the time-varying parameters α. In particular, if the number of recorded

adherence indicators per patient is large, then the size of α is similarly large. Standard Bayesian inferential

methods through posterior simulation approaches for such a highly parameterized model can result in slow

convergence and unreliable inferences.

Advances in Bayesian computation have made highly parameterized dynamic models more tractable.

With recent developments in sequential Monte-Carlo (SMC), including software packages like Libbi

(Murray, 2015), sampling the high-dimensional latent states of the DLM has become computationally

feasible and accessible. The majority of these advances are in situations where the likelihoods can not

be computed directly and are instead approximated. Marginal sampling schemes, like the particle marginal

Metropolis-Hastings (PMMH) algorithm (Andrieu et al., 2010), alternately sample the structural parame-

ters and latent process parameters and accept or reject them with an adjusted Metropolis-Hastings step ac-

counting for the approximation of the likelihood needed in sampling the latent space. Recent work (Bhat-

tacharya & Wilson, 2018) approximates the posterior of the structural parameters on a grid of points, re-

ducing the possible sampling values to a discrete set. SMC has even been adapted to situations where there

is known sequential structure of otherwise intractable likelihoods (Chopin et al., 2012). The setting de-

scribed in Section 2.3, however, contains much more known structure. As we will show in this section, not

only can we compute the marginal likelihood of the data given the structural parameters exactly, but we

can also compute the exact posterior distribution of the latent process parameters conditional on structural

parameters.
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Specifically, our approach takes advantage of factoring the joint posterior density of θ and α as follows

ppα, θ|yq “ ppθ|yqppα|θ,yq. (2.3)

where we omit the dependence on both tcit¨u and xi. The first factor in (2.3) is discussed below, while the

second factor, the conditional posterior density of the latent process parameters, can be derived exactly and

is discussed in Section 2.4.2.

Marginal inference about θ can be accomplished by integrating the left side of (2.3) with respect to α,

yielding the first factor in the expression. This factor can be expanded using Bayes’ Theorem as

ppθ|yq “ ppy|θqppθq
ppyq . (2.4)

The marginal likelihood, ppy|θq, in the numerator is determined from

ppy|θq “
ż
ppy|α, θqppα|θqdα. (2.5)

As we derive in Section 2.4.1, the marginal distribution in (2.5) is multivariate normal (MVN) with a mean

and variance that depend only on the fixed model parameters θ, the adherence measures tcitu, and individ-

ual covariates xi. This marginalization is made possible by the normality of the latent state innovations νit

and sampling error εit. Inference for θ can therefore be obtained directly from this marginal distribution.

2.4.1 Marginal Likelihood of the DLM

The marginalization in Equation (2.5) integrates across both time and outcome dimensions, but for sim-

plicity we explain the marginalization in the case of a DLM with a single outcome variable (k “ 1) and for

one individual, and assume a single baseline covariate (p “ 1) and single time-varying covariate (r “ 1)

which is assumed to be an adherence indicator. The parameters in θ are therefore pβ,σ2
ε , ρ,φ,σ

2
ν ,σ

2
0q. For

now we assume that both adherence indicators and potential time-varying outcomes are measured over T

consecutive days; the outcomes are py1, y2, ..., yT q and the adherence indicators are c “ pc1, c2, ..., cT q.

Later, we will subset the outcomes to the actual observations times. We can write the vector of outcomes
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as the sum of a shared non-time-varying component, a time-varying component and an error term as

¨

˚̊
˚̊
˚̊
˚̋

y1

y2
...

yT

˛

‹‹‹‹‹‹‹‚

“

¨

˚̊
˚̊
˚̊
˚̋

βx

βx
...

βx

˛

‹‹‹‹‹‹‹‚

`

¨

˚̊
˚̊
˚̊
˚̋

α1

α2

...

αT

˛

‹‹‹‹‹‹‹‚

`

¨

˚̊
˚̊
˚̊
˚̋

ε1

ε2
...

εT

˛

‹‹‹‹‹‹‹‚

“ βx 1T `α` ε. (2.6)

where we use the 1T notation to indicate a column vector of length T consisting of all ones. The following

development is conditional on θ and covariates px, cq unless noted otherwise. Thus the first term on the

right hand side of Equation (2.6), βx 1T , is treated as a constant vector. The third term is distributed as

ε „ NT p0,σ2
εIq, where 0 is a column vector of zeros, and I is a T -dimensional identity matrix.

Because the initial latent variable α1 is normally distributed, and each αt conditional on the previous

latent variables is a linear combination of normal random variables, then pα1, ...,αT q is MVN. The AR(1)

structure of the latent states admits a recursive mean and variance calculation

Erαts “ ρErαt´1s ` φ ct and Varrαts “ ρ2Varrαt´1s ` σ2
ν .

This recursion and the initial conditions imply a general formula for the mean and variance of αt

Et “ Erαts “ φ
tÿ

k“2

ρt´kck (2.7)

Vt “ Varrαts “ σ2
ν

tÿ

k“2

ρ2pt´kq ` ρ2pt´1qσ2
0

for t P t2, ..., T u with initial mean E1 “ Erα1s “ 0 and initial variance V1 “ Varrα1s “ σ2
0 . We collect

the mean terms into a vector

E “ pE1, ..., ET q. (2.8)

Applying a similar recursion to the covariance, we obtain that Covpαt,αt´kq “ ρkVt´k for t P t2, ..., T u
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and k P t0, ..., t´ 1u. More compactly, the covariance matrix is

Σ “

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

V1 ρ V1 ρ2 V1 . . . ρT´1 V1

ρ V1 V2 ρ V2 . . . ρT´2 V2

ρ2 V1 ρ V2 V3 . . . ρT´3 V3

...
...

... . . . ...

ρT´1 V1 ρT´2 V2 ρT´3 V3 . . . VT

˛

‹‹‹‹‹‹‹‹‹‹‹‚

. (2.9)

The distribution of the terms in Equation (2.6) can be written explicitly as

py1, y2, ..., yT qT „ NT pβx 1T `E,Σ` σ2
εIq. (2.10)

The distribution in (2.10) is proportional to the marginal likelihood for T sequentially-observed outcomes,

marginalizing out the latent parameters.

Let T “ tt1, t2, ..., tmu be the actual observation times, and let ET “ pEt1 , Et2 , ..., EtmqT . By prop-

erties of the MVN distribution, the outcome vector y¨ “ pyt1 , yt2 , ..., ytmqT is also MVN with mean and

covariance respectively

Ery¨s “ βx 1|T | `ET and Varry¨s “ ΣT ˆT ` σ2
εI|T |. (2.11)

The notation ΣT ˆT indicates subsetting the covariance matrix Σ to the corresponding rows and columns

designated by T . If, for example, T “ t1, 7, 9u the first, seventh and ninth rows and columns are taken

from Σ making ΣT ˆT a 3ˆ 3 matrix. One consequence of the marginalization is that if we observe multi-

ple measurements of the same outcome on a single day, they will only vary according to σ2
ε .

It is worth noting that even though this marginal distribution does not depend on the time-varying pa-

rameters, the autoregressive structure remains in both the mean and covariance. For example, the centered

marginal mean of yt can be shown with simple algebraic manipulation to be

pEryts ´ βxq “ ρ pEryt´1s ´ βxq ` φct.
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This is the same recursive relationship of the dynamic component of our DLM in (2.2). Even though we

marginalize out the time-varying parameters, their sequential structure is retained.

The calculations above were derived for one study participant and a single outcome variable. These

calculations can also be extended to multivariate outcome measurements. The marginal mean and covari-

ance are both individual- and outcome- dependent, as both φk and αitk vary by outcome and individual.

When referring to multiple study participants and multiple outcome variables, we can make the depen-

dence explicit by denoting the quantities in (2.8) and (2.9) for outcome k of individual i as Eik and Σik

respectively.

Because the majority of the structure is contained within each outcome (recall ρ is a diagonal matrix),

we organize the multivariate outcomes as follows. We collect the outcome k observed through time t “

1, ..., Ti into a Ti ˆ 1 vector yi¨k “ pyi1k, yi2k, ..., yiTikqT . The marginal likelihood of a vector of complete

outcome measurements can be written as

¨

˚̊
˚̊
˚̊
˚̋

yi¨1

yi¨2
...

yi¨k

˛

‹‹‹‹‹‹‹‚

| θ „ NkT pEi ` βxi b 1Ti , Σi ` Σε b ITiq (2.12)

where b is the Kronecker product, and where

Ei “

¨

˚̊
˚̊
˚̊
˚̋

Ei1

Ei2

...

Eik

˛

‹‹‹‹‹‹‹‚

and Σi “

¨

˚̊
˚̊
˚̊
˚̋

Σi1 0 ¨ ¨ ¨ 0

0 Σi2 ¨ ¨ ¨ 0
...

... . . . ...

0 0 ¨ ¨ ¨ Σik

˛

‹‹‹‹‹‹‹‚

. (2.13)

As in (2.11), we can derive the marginal distribution of the outcome measures yi¨¨|θ by subsetting the ap-

propriate rows and columns of the quantities in (2.13).

If we assume that outcomes between study participants are independent conditional on θ, the marginal
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distribution of outcomes unconditional on the time-varying parameters is given by

p py1¨¨, ...,yn¨¨|θ,x, cq “
nź

i“1

p pyi¨¨|θ, xi, ci¨¨q . (2.14)

This simple marginalization drastically reduces the number of parameters in the model and simplifies com-

putation. We can conduct inference on our non-dynamic parameters in a Bayesian setting by introducing a

prior distribution for θ and using the marginal likelihood of θ, which is proportional to (2.14). The poste-

rior density for the non-dynamic parameters is given by

p pθ| tyi¨¨uni“1 ,x, cq9ppθq
nź

i“1

p pyi¨¨|θ, xi, ciq . (2.15)

Inference can be performed in a straightforward and efficient way via MCMC, or using Hamiltonian Monte

Carlo (Homan & Gelman, 2014) sampling to obtain draws from the posterior distribution, as implemented

in STAN (Carpenter et al., 2017). Alternatively, posterior samples could be obtained using Sequential

Monte-carlo (SMC) in software packages like Libbi (Murray, 2015). SMC works with the sequential like-

lihoods ppyitj |yit1 , ..., yitj´1 , θq, which are easily available in our framework because they are conditional

distributions of the Multivariate Normal distribution in (2.12).

2.4.2 Inference for the Latent Process

Posterior inference for α can be determined once ppθ|yq has been obtained by exploiting the factorization

of the posterior density in (2.3). To do so, we note that the joint distribution of α and y conditional on θ is

MVN. For our development, we consider the case in which outcomes are observed for T consecutive days.

With a k-dimensional outcome variable, α contains kT elements and y contains kT (scalar) outcomes.
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Using the notation in (2.13), the joint distribution of outcomes and time-varying parameters is

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

αi¨1
...

αi¨k

yi¨1
...

yi¨k

˛

‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

θ „ N2kT

¨

˚̊
˚̊
˝

¨

˚̊
˚̊
˝

Ei

Ei ` βxi b 1Ti

˛

‹‹‹‹‚
,

¨

˚̊
˚̊
˝

Σi Σi

Σi Σi ` Σε b ITi

˛

‹‹‹‹‚

˛

‹‹‹‹‚
. (2.16)

The quantities on the diagonal of the covariance matrix in (2.16) were determined in Section 2.4.1. The

covariance of yi¨k and αi¨ℓ (for k ‰ ℓ), conditional on θ, can be shown to be 0 because of independence

assumptions made in Section 2.3 (with conditioning on θ suppressed).

Covpαi¨l,yi¨kq “ E rCov pαi¨l,yi¨k|αi¨kqs ` Cov pErαi¨l|αi¨ks,Eryi¨k|αi¨ksq

“ E rCov pαi¨l, εi¨kqs ` Cov pαi¨l,αi¨kq “ 0.

We should subset the mean vector and covariance matrix of (2.16) as in (2.11) to account for the sporad-

ically observed outcomes, but in this derivation continue to assume that the response values are observed

at each time period. The conditional posterior distribution of the latent parameters is determined from the

joint distribution in (2.16) by conditioning on y as

¨

˚̊
˚̊
˝

αi¨1
...

αi¨k

˛

‹‹‹‹‚

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
yi¨1, ...,yi¨K , θ „ NkT

´
α̃i, Σ̃i

¯
(2.17)

where

α̃i “ Ei ` Σi pΣi ` Σε b ITiq´1

»

————–

¨

˚̊
˚̊
˝

yi¨1
...

yi¨k

˛

‹‹‹‹‚
´ pEi ` βxi b 1Tiq

fi

ffiffiffiffifl
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and

Σ̃i “ Σi ´ Σi pΣi ` Σε b ITiq´1Σi.

We can use the joint distribution specified in (2.17) along with the posterior distribution on the struc-

tural parameters shown in (2.15) to sample from the latent process parameters by first simulating θ˚ „

p pθ|y1¨¨, ...,yn¨¨,x, cq and then sampling from ppαi¨1, ...,αi¨K |y1¨¨, ...,yn¨¨, θ˚q.

2.5 Application to BP Study

We return to modeling time-varying BP as a function of adherence to anti-hypertensive medication and

baseline comorbidities and demographics described in Section 2.2. We begin with a discussion of models

often used in this task that incorporate adherence as non-dynamic information. We also address missing

adherence measures for some patients.

2.5.1 Non-dynamic models incorporating adherence

Adherence to medication is typically incorporated into outcome models in one of two ways. The average

adherence for the study period is usually either used directly or is used to dichotomize patients into two

groups, those below a certain threshold and those above, indicating “poor” versus “good” adherence (Rose

et al., 2011; Lee et al., 2006; Schroeder et al., 2004). Either of these approaches includes adherence as a

non-dynamic covariate in the model. Repeated outcome measures are modeled with patient-specific ran-

dom effects.

We present these alternative models in the context of BP outcomes, a bivariate measure. We label the

outcomes 1 for Systolic BP and 2 for Diastolic BP. These models take the form

¨

˚̋yit1

yit2

˛

‹‚“

¨

˚̋xiβ1

xiβ2

˛

‹‚`

¨

˚̋δi1

δi2

˛

‹‚`

¨

˚̋c̄iγ1

c̄iγ2

˛

‹‚`

¨

˚̋εit1

εit2

˛

‹‚. (2.18)

We consider two different possible adherence measures, c̄i. We first consider average adherence, c̄i “

T´1
i

řTi
t“1 cit. In this case we would interpret the adherence effect parameters pγ1, γ2q as the differences in
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BP of being fully adherent relative to being fully non-adherent, controlling for the baseline covariates. We

also consider a dichotomized summary

c̄i “ 1

#˜
T´1
i

Tiÿ

t“1

cit

¸
ą 2p´ 1

+
,

an indicator of overall adherence. In this case pγ1, γ2q would be interpreted as the differences in BP for

those with “good” (c̄i “ 1) versus “poor” (c̄i “ 0) adherence. Several values of p were considered to

assess the sensitivity to this choice, but we present results for p “ 0.8 which is a conventional choice

(Schroeder et al., 2004). The model in Equation (2.18) includes patient-specific random effects δi1 „

Np0,σ2
δ1q and δi2 „ Np0,σ2

δ2q.

We compare the fit of the above two non-dynamic models to our dynamic model framework. The non-

dynamic approach has a potential advantage of being more robust to model misspecification relative to our

dynamic model, particularly with the choice of the specific model for the evolution of the health measures

as a function of daily adherence. However, incorporating average adherence may mask important time-

varying effects of detailed adherence. We explore this tradeoff in Section 2.5.3.

2.5.2 Missing adherence indicators

Not all of the patients in our cohort have completely observed adherence indicators. Among the 503 pa-

tients in our analyses, 70 have at least one day of missing adherence. Adherence could be missing due to

MEMS cap malfunctions, hospital inpatient stays in which the MEMS containers were not used, or other

causes. Fifty of the 70 patients had only one or two missing adherence values. In the most extreme case

one patient was missing 48 out of 102 adherence measures.

For patient i, let cobsi “ tcitutPTobs be the set of observed adherence values and cmis
i “ tcitutPTmis be

the set of missing adherence values. Letting ηi represent the parameters describing a potential adherence
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model for patient i, the posterior density in (2.15) conditional on the observed adherence data only is

p
`
θ|yi¨¨, xi, cobsi

˘
“

ż
p
`
θ, cmis

i , ηi|yi¨¨, xi, cobsi

˘
dcmis

i dηi

“
ż
p
`
θ|yi¨¨, xi, cobsi , cmis

i , ηi
˘
p
`
cmis
i |yi¨¨, xi, cobsi , ηi

˘
ppηi|yi¨¨, xi, cobsi q dcmis

i dηi

paq“
ż
p
`
θ|yi¨¨, xi, cobsi , cmis

i , ηi
˘
p
`
cmis
i |ηi

˘
ppηi|cobsi q dcmis

i dηi. (2.19)

The last line in (2.19) labeled paq involves a set of modeling choices. First, we assume that the adher-

ence model parameters do not depend on other covariates or the outcomes (conditional on the adherence

values), and this is reflected by assuming ppηi|yi¨¨, xi, cobsi q “ ppηi|cobsi q. Other approaches, such as

those described by Naranjo et al. (2013), provide a framework for modeling missing time-varying co-

variates in DLMs with complex models. Our assumption is more conservative since it does not use ad-

ditional potentially informative data, but it is also likely more robust to model misspecification. Second,

p
`
cmis
i |yi¨¨, xi, cobsi , ηi

˘
“ p

`
cmis
i |ηi

˘
implies that the missing adherence values can be simulated directly

from our adherence model, represented by ηi, without regard to individual-level characteristics. Again,

this is a conservative choice because adding information to the imputation model could help improve pre-

dictions if properly modeled.

We simulate the missing adherence measures from Beta-Bernoulli distributions that depend only on

adherence measures for each patient separately. Letting ηi represent patient i’s average adherence, the

unobserved adherence values are drawn from a Bernoulli distribution

tc˚itutPT |ηi i.i.d.„ Bernoullipηiq

where the cit “ 2c˚it´1 take on values t´1, 1u. Under a uniform prior distribution on patient i’s adherence

rate, the posterior distribution for ηi is given by

ηi|tcitutPTobs „ Betapni,1 ` 1, ni,´1 ` 1q

when they were observed to be adherent ni,1 days and non-adherent ni,´1 days.
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We repeated the simulation process 20 times and combined the posterior samples for a Bayesian multiple-

imputation analysis (Little & Rubin, 2002) for our non-dynamic models. For our fully Bayesian model, the

simulated adherence values were incorporated into our posterior simulation analyses. We found that in

both cases inference of our non-dynamic parameters θ was not sensitive to the missing adherence values.

2.5.3 Analysis of BP measures

Table 2.1 displays the number of BP measurements among our 503 patients during the study period. While

a 351 patients had either one or two BP readings, a substantial number of patients had 3 or more. The

number of BP readings totalled 1152, averaging 2.29 readings per patient.

Number of BP Readings 1 2 3 4 5 6 7 8`
Number of Patients 226 125 72 28 16 12 15 9
Percent of Patients 44.90 24.90 14.30 5.60 3.20 2.40 3.00 1.79

Table 2.1: Number of BP readings during the study period.

For the period of the study, the proportion of days that patients took their medication varied widely. The

proportions ranged from 8.9% to 100%, with a median of 95.1% and a mean of 88.9%. These adherence

rates on average were high, with many patients being fully adherent throughout the study period. Only

19.1% of patients had below 80% adherence. The high degree of adherence is consistent with recruiting

patients for the study who were continual users of anti-hypertensive medication. The average number of

days for which adherence was recorded was 98 days per patient (minimum and maximum of 21 and 395

days, respectively, with an inter-quartile range of 14), with 75% of patients followed between 84 and 112

days.

Baseline summaries of the non-dynamic covariates appear in Table 2.2. A majority of the cohort con-

sisted of women, more patients of black race (African or Caribbean descent) than white, and a large frac-

tion of low-income patients. The cohort also consisted of mostly obese patients, and had a moderately high

comorbidity burden (89% had at least one comorbidity). Based on 503 patients with BP readings within

14 days of enrollment, the cohort on average had relatively well-controlled hypertension at baseline, as all

patients were prescribed anti-hypertensive medication (though adherent to varying extents). The cohort

54



Mean (Std Dev)
Age (y) 60.3p11.1q

DBP at Enrollment 79.7p11.5q
SBP at Enrollment 133.5p19.6q

Percent
Female 67.5

African-American 54.9
Income below $20, 000 44.3

Obese 60.6
Cerebral Vascular Disease 5.6
Congestive Heart Failure 3.8

Renal Insufficiency 6.8
Coronary Artery Disease 14.9

Diabetes 36.2
Hyperlypidemia 57.1

Peripheral Vascular Disease 6.2

Table 2.2: Baseline socio-demographic and health characteris cs of the pa ents in the study cohort.

consisted of 26.2% having DBPą80 mm Hg and SBPą130 mm Hg, and 7.8% having DBPą90 mm Hg

and SBPą140 mm Hg.

We assume the same prior distributions for all models when possible. For k “ 1, 2, indicating systolic

and diastolic BP measures separately, we assume the following.

ρk „ Up´1, 1q,φk „ Np0, 25q, γk „ Np0, 25q

σεk „ Up0, 30q, ρε „ Up´1, 1q

σνk „ Up0, 10q,σ0k „ Up0, 30q

β11 „ Np120, 400q,β12 „ Np80, 400q

βjk „ Np0, 400q, j “ 2, ..., p

σUk „ Up0, 30q

The prior components were selected to be vague but proper. The intercepts β1k had distributions centered

near the typical systolic and diastolic BPs, but had variances that were sufficiently large to acknowledge

the uncertainty in the effects. We assumed uniform prior components with compact support for the stan-
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dard deviation parameters, as recommended by Gelman et al. (2006). The correlation and autocorrelation

parameters were assumed to have uniform priors as in the dynamic model parametrization. Convergence

of the MCMC simulated values was inspected with trace plots of multiple chains, and using the Gelman-

Rubin convergence statistic (Gelman & Rubin, 1992).

Table 2.3 presents posterior means and 90% central posterior intervals for the non-dynamic covariate

effects using the DLM. The point estimates and intervals are reported for the DLM only; the effects in

Variable Systolic (90% CI) Diastolic (90% CI)
Intercept 132.97 p129.46, 136.51q‹:; 85.68 p83.65, 87.72q‹:;
Sex (male) ´1.1 p´3.59, 1.38q 0.53 p´0.88, 1.94q
Age (group 1) ´0.01 p´3.3, 3.27q ´1.5 p´3.4, 0.4q
Age (group 2) 1.87 p´1.45, 5.19q ´3.54 p´5.45,´1.63q‹:;
Age (group 3) 5.22 p1.57, 8.89q‹:; ´6.73 p´8.83,´4.62q‹:;
White ´3.31 p´5.61,´1.01q‹:; ´1.58 p´2.88,´0.26q‹
Obese 3.07 p0.76, 5.38q‹:; 1.68 p0.35, 3.01q‹:;
Nicotine dependence ´0.9 p´5.22, 3.42q 1.3 p´1.17, 3.76q
Hyperlipidemia ´1.44 p´3.71, 0.83q ´1.34 p´2.64,´0.04q‹
Diabetes 1.44 p´0.96, 3.85q ´2.98 p´4.34,´1.61q‹:;
Peripheral vascular disease ´1.28 p´5.75, 3.17q ´2.6 p´5.13,´0.06q‹:
Renal insufficiency ´0.67 p´4.88, 3.52q ´2.73 p´5.14,´0.33q‹:;
Benign prostatic hypertrophy 2.82 p´3.66, 9.3q ´1.59 p´5.34, 2.15q
Coronary artery disease ´1.66 p´4.77, 1.45q ´2.76 p´4.54,´0.98q‹:;
Congestive heart failure ´0.78 p´6.05, 4.46q 0.59 p´2.44, 3.59q
Cerebral vascular disease 2.45 p´2.19, 7.06q ´0.17 p´2.82, 2.48q

Table 2.3: Summaries of covariate effects for the bivariate dynamic linear model. ‹Effect with 90% posterior interval not
containing 0 in DLM, :Significant effect at the 0.1 level in average adherence model, ;Significant effect at the 0.1 level in
dichotomized adherence model.

the alternative models that were significant at the 0.1 level are indicated with a : (for the average adher-

ence model) or a ; (for the dichotomized adherence model). Effects with 90% central posterior intervals

not containing 0 are marked with an asterisk (‹). Based on the model fits, the estimated covariate effects

tend to be similar across all models with the point estimates tending to agree in magnitude and sign. Even

though the DLM covariate effects tended to have narrower intervals on average (3% reduction), the sig-

nificance of the findings tended to agree as well. In particular, the effect of race (white versus non-white)

was significantly negative, indicating that whites tended to have lower blood pressure controlling for all

other variables and time-varying adherence. Patients who were obese at the beginning of the study tended
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to have significantly higher DBP and SBP. These findings are consistent with the results of previous stud-

ies (Kressin et al., 2010; Rose et al., 2011) in their significance and direction of the effects. Both of these,

except for the effect of being white on mean diastolic BP, agreed with the alternative models in terms of

significance and directionality of the effect.

Table 2.4 reports inferences for the standard error and correlations of pεitq for all three models. Com-

Dynamic linear model
Variable Systolic (90% CI) Diastolic (90% CI)
Standard Errors: 13.37 p12.46, 14.25q 8.11 p7.68, 8.54q
Correlation: 0.62 p0.57, 0.67q

Average Adherence Model
Variable Systolic (90% CI) Diastolic (90% CI)
Standard Errors: 14.53 (13.87, 15.21) 8.34 (7.97, 8.72)
Correlation: 0.58 (0.54, 0.62)

Dichotomized Adherence Model
Variable Systolic (90% CI) Diastolic (90% CI)
Standard Errors: 14.5 (13.86, 15.18) 8.34 (7.96, 8.72)
Correlation: 0.58 (0.54, 0.62)

Table 2.4: Measurement error es mates for three models.

paring the sampling standard deviation estimates across models provides an indication of the gains in mod-

eling the adherence effects as time-varying. The standard error estimates for the alternative adherence

models tend to be slightly larger than those given by the DLM, which is consistent with previous work

(Rose et al., 2011). The time-varying adherence explicitly captured in the DLM may account for the extra

variation in the outcomes of the alternative adherence models through a reduction in the estimated mea-

surement error variance.

Table 2.5 contains the adherence effects estimated from our models. The adherence effects across the

three models are not directly comparable, given the different approaches to incorporating adherence. The

average adherence model indicates that the difference between those who were fully adherent and those

who were fully non-adherent, controlling for other covariates, is about ´9.2 and ´9.5 for systolic and di-

astolic, respectively. This implies, for example, that a 10% additive increase in adherence corresponds to

a 0.92 and 0.95 reduction in systolic and diastolic blood pressure, respectively. However, this effect size

assumes that the relationship between average adherence and blood pressure is linear and holds through-
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State Space Model
Variable Systolic (90% CI) Diastolic (90% CI)
Adherence effect: -0.48 (-0.84, -0.2)‹ -0.24 (-0.43, -0.09)‹
Asymptotic Adherence effect: -3.87 (-5.98, -1.83)‹ -3.15 (-4.38, -1.94)‹

Alternative Adherence Model: Average Adherence
Variable Systolic (90% CI) Diastolic (90% CI)
Adherence effect: -9.24 (-16.03, -2.22)‹ -9.46 (-13.55, -5.52)‹

Alternative Adherence Model: Dichotomized Adherence (p “ 0.8)
Variable Systolic (90% CI) Diastolic (90% CI)
Adherence effect: -5.49 (-8.26, -2.75)‹ -3.78 (-5.27, -2.2)‹

Table 2.5: Adherence effects for the models considered

out the entire range of adherence. Given the limited range of average adherence observed in the data (90%

of patients have average adherence above 70.5%), interpreting this effect beyond this range is not recom-

mended because it involves extrapolating beyond the data. The dichotomized adherence model shows sim-

ilar results. In particular this approach involves comparing those with relatively good overall adherence

(above 80% adherent) to everyone else. Based on the dichotomized adherence model, the benefit of being

in the former group is indicated by a lower blood pressure of ´5.49 and ´3.78 on average for systolic and

diastolic blood pressure.

The DLM gives similar results. The effect of taking medication can be inferred on a daily basis. The

results of the model fit suggest a small but significant reduction of blood-pressure from taking the medi-

cation on a daily basis, ´0.24 mm Hg and ´0.12 mm Hg on average for systolic and diastolic BP, respec-

tively. These estimates imply that, accounting for the correlation estimate, a patient who is adherent over

consecutive days would experience a long-term reduction in systolic BP by ´3.9 mm Hg, and a long-term

reduction in diastolic BP by ´3.15 mm Hg. The magnitudes of an increase in long-term BP for contin-

ued non-adherence is the same but in the opposite direction. Overall, the adherence effects tend to agree

in terms of the significance and direction for the different models. However, the DLM provides a clearer

interpretation of these parameters that is consistent with the time-varying nature of the data.

Another benefit of the DLM is our ability to infer the latent BP for unobserved days using the procedure

discussed in Section 2.4.2. Figure 2.4 contains an example of posterior draws of the mean process µit¨ “

βxi `αit¨ for the patient presented in Figure 2.1.
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Figure 2.3: 90% central posterior intervals for the overall mean blood pressure as a func on of only covariates
pxiβ1, xiβ2q for one study subject. The solid lines are the es mated mean DBP and SBP, and envelopes are posterior
intervals.
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Figure 2.4: 90% central posterior intervals for the mean blood pressure tµit¨u for one study subject. The solid lines are
the es mated mean DBP and SBP, and the dashed lines and shading are the point-wise posterior credible intervals. Hori-
zontal do ed lines are drawn at the baseline-es mated mean DBP and SBP.
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The solid line indicates the posterior mean of the latent process while the dashed lines indicate a 90%

credible envelope across time. That is, for each time t, a 90% credible interval of αit1,αit2| tyi¨¨uni“1 is

shown. The estimated mean DBP and SBP processes vary gradually over time, with shifts in direction

influenced by medication adherence variation.

2.6 Discussion

In this article we propose a multivariate DLM that can be used for modeling time-varying outcome mea-

sures as a function of detailed medication adherence or other time-varying covariates. While DLMs are of

common use, our particular setting is unique in that it benefits from a two-stage computational approach

made possible by factorizing the posterior density into the dynamic and non-dynamic parameters. Typical

analyses in this setting ignore the time-varying structure of medication adherence and instead examine

this relationship between adherence and outcomes via correlations with non-dynamic adherence mea-

sures (e.g., time-averaged adherence). Our framework explicitly provides a measure of daily impact of

medication-taking and meaningful bounds for mean BP while controlling for baseline covariates.

Our modeling approach is sufficiently flexible to permit a wide range of assumptions distinct from those

we included in our hypertension application. For example, we assumed an AR(1) modeling structure for

the mean outcome process, and this assumption can be justified based on the pharmacokinetic proper-

ties of the medications. In other settings, alternative mean processes can be considered, including higher

order AR processes, growth curves, and so on. Our baseline covariates were modeled linearly, but our

framework permits non-linear inclusion of covariate information for both baseline non-dynamic covari-

ates, as well as the dynamic predictors in the mean process component of our model. A crucial assumption

of our framework is that the outcome distribution is multivariate normal, as this assumption allows for

the marginalization strategy that leads to an efficient computational procedure. However, with some non-

normal outcome distributions, various strategies can be employed that can potentially take advantage of

the marginalization idea. For example, non-normal outcome densities can be approximated by normal dis-

tributions after which the marginalization can be performed; then a Metropolis-Hastings algorithm would

be incorporated into the posterior sampling procedure that would account for the non-normality of the
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original sampling distribution. Such a procedure is likely to be far more efficient than sampling the dy-

namic parameters directly as part of model fitting.

The proposed modeling framework also permits other extensions that are straightforward to incorporate.

First, multivariate outcomes recorded at staggered intervals can be accommodated by marginalizing the

distribution in (2.12) appropriately. Second, if we believe that the effect of adherence to medication varies

from person to person we can use a hierarchical prior on patient-specific adherence effects to share infor-

mation across individuals. Third, our analyses did not acknowledge differences among anti-hypertensive

medications, but our framework easily permits distinguishing differential medication effects. The effects

of different medications, perhaps grouped by relevant characteristics such as whether the medication is

short-acting or long-lasting, or by medication type (e.g., for hypertension, diuretics, ACE inhibitors, etc.),

can be included as separate time-varying effects in the dynamic component of our model. Dosages and

dosing frequencies can serve as covariates for the effects of particular medications.

The framework we developed can help establish answers to questions of interest to clinicians and med-

ical researchers that have been difficult to assess through simpler models. In particular, our model can

determine the effects of different socio-demographic or health factors on health outcomes that control for

detailed time-varying adherence to medication by allowing medication-taking behaviors to change over

time. From our framework, we can estimate the daily improvement in being adherent to one’s medica-

tion, controlling for socio-demographic and health characteristics, but also the likely long-range achievable

mean outcomes. We can also use the model to forecast health outcomes as a function of specified patterns

of adherence, potentially serving as a tool for medical decision-making by clinicians. Our approach pro-

vides a robust framework for understanding the impacts of poor medication adherence as clinicians and

patients work together to improve their medication treatment.
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Water is so fine that it is impossible to grasp a hand-

ful of it. It has no shape of its own but molds itself

to the receptacle that contains it. When frozen it

crystallizes into a mighty rock. When heated to the

state of steam it is invisible but has enough power to

split the earth itself.

Bruce Lee

3
A Guided Meditation on the Flow of

Information for Model-based Inference

When analyzing data using models, we are extracting information from the data that we hope will in-

form model parameters. Alternatively, information flows like water to thirsty model parameters. For a

fixed model and a set of observed data, the amount of information in the data is a limited resource that dis-

tributes among the parameters. Statisticians are routinely involved with scientists to help them build mod-

els to answer questions of scientific interest. Domain experts have great intuition about what parameters in

their models are most (or least) informed by their data, but formalizing this intuition is not always trivial.

In this chapter, we build tools that allow us to formalize this intuition. We do this in the hope that it will
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sharpen our intuition and allow us to help scientists make more informed model-building decisions. We

might remove parameters that are not well-informed by the data, or decide to collect new data that better

inform those parameters.

To this end, we seek to understand how the model uses the information in the data to inform model pa-

rameters: which parameters are parched and which are sufficiently satiated. The notion that there is lim-

ited information in data is not new. Ronald A. Fisher said as much.

Modern statisticians are familiar with the notion that any finite body of data contains only a

limited amount of information on any point under examination; that this limit is set by the

nature of the data themselves, and cannot be increased by any amount of ingenuity expended

in their statistical examination: that the statistician’s task, in fact, is limited to the extraction

of the whole of the available information on any particular issue. (Fisher, 1971, D.o.E. pg 40)

This quote was a response to what he saw as an erroneous belief that one could rearrange data in order to

gain more information for certain questions. Beyond pointing out this error, Fisher went on to proclaim

what a statistician ought to do when tasked to answer a question with data. The statistician ought to extract

as much information as possible from the data to answer said question. Of equal importance, the statisti-

cian should understand the flow of information from data to model parameters.

This flow, however, is clouded by the fact that information pass not only directly from data to parame-

ters but also indirectly among the parameters. It is only in special cases that parameters do not have both

of these sources of information. For example, unidentifiable parameters (to be made precise later) do not

receive direct information from data, only indirect information from other parameters. Orthogonal param-

eters, on the other hand, receive only direct information from the data and do not pass indirect information

among themselves.

Beyond different sources of information, varying amounts of information further complicates model-

building decisions. The various parts of the data may more or less inform different parts of the parameter

space. It is possible that a parameter, though identifiable, receives very little direct information relative

to other parameters. However, even when extracting very little direct information from the data, this pa-

rameter may provide considerable indirect information to other model parameters. In this case, the model
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builder may rethink including this parameter in their model because it is not being informed well by the

data and affects the performance of estimating other parameters.

In this chapter, we explore measures of information flow with an eye on decision-making in the model-

building process. We focus our efforts through analysis of examples we introduce in Section 3.1. We pro-

vide background information and introduce our two cornerstones of unidentifiable and orthogonal parame-

ters in Sections 3.2.1 and 3.2.2 respectively. In Section 3.3 we discuss measures of information flow based

on the Fisher Information matrix. In Section 3.4 we discuss measures based on prior-posterior compar-

isons for Bayesian analysis. We conclude with a brief discussion in Section 3.5.

3.1 A Normal Example in Double Variation

We begin our exploration of the flow of information by considering two examples that use the Normal

distribution. In the first example, we are interested in measuring the correlation coefficient ρ of a Normal

bivariate distribution using both bivariate and marginal observations. We refer to this as the correlation

variation. Specifically, consider observations generated as

Bivariate Observations :

¨

˚̋Xi

Yi

˛

‹‚„ N

¨

˚̋

¨

˚̋0

0

˛

‹‚,σ2

¨

˚̋1 ρ

ρ 1

˛

‹‚

˛

‹‚, i “ 1, ...,m;

Marginal Observations : Xi „ N p0,σ2q, i “ m` 1, ...,m` k;

Yi „ N p0,σ2q, i “ m` k ` 1, ...,m` 2k.

We also take the convention thatm “ 0 represents no paired observations and k “ 0 represents no

marginal observations. The paired observations contain direct information about ρ, while the marginal

data contain information about σ2 which in turn indirectly informs the estimation of ρ. As we will see in

the coming sections, estimating σ2 well helps increase the precision in estimating ρ. The observations are

collected into one dataset as

Dm,k “
!
tpXi, Yiqumi“1 , tXium`k

i“m`1 , , tYium`2k
i“m`k`1

)
. (3.1)
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In our simulations and analysis we will fix n “ m` k and varym between 0 and n. In our formulation,

going fromm “ m1 tom “ m1 ` 1 introduces one paired observation and removes one observation from

each marginal. We, therefore define the fraction of paired data as α “ m{pm ` kq, we can also denote

the dataset as Dm`k,α. When α “ 0 the correlation parameter can not be estimated because ρ is no longer

part of the likelihood. As we increase α, i.e. introduce more paired data, estimates of ρ should become

more precise. In this sense we can treat α as a proxy for the amount of information for ρ. Increasing α also

changes the information for σ2, in fact it decreases it. Consider the extreme case of ρ “ 1, the paired data

is completely redundant. when α “ 1 we effectively havem` k observations to estimate σ2, when α “ 0,

we effectively have 2pm ` kq observations. This is true to some extent for any ρ ‰ 0. So, increasing α

should also affect our ability to estimate σ2.

In a second example, we are interested in measuring the means of two Normal distributions. We refer to

this as the mean variation. Specifically, the observations are generated as

Xi „ Npθ1 ` θ2, 1q, i “ 1, ..., nX ;

Yj „ Npθ2, γq, j “ 1, ..., nY

where pθ1, θ2q are unknown model parameters and γ is known. The parameters are related to one another,

estimating one helps estimate the other. The quantity γ controls the quality of the data that informs θ2. If

γ is small we can learn θ2 with fewer samples, but would need more if γ is large. In either case, because

our observations tXiu involve both θ1 and θ2, γ also affects the estimation of θ1. At the extreme γ “ 8,

even with an infinite number of samples we can not estimate both θ1 and θ2. Here, a case can be made for

focusing on the parameterization pη,λq “ pθ1 ` θ2, θ2q, an orthogonal parametrization, and dropping λ all

together.

Throughout this exposition we consider one parameter to be of primary interest so that there is no am-

biguity between direct and indirect information. In the correlation variation, the correlation ρ will be of

primary interest so that α balances the amount of direct and indirect information the data provide for ρ. In

the mean variation, the parameter θ1 will be of primary interest, clarifying that γ controls the amount of

indirect information for estimating θ1 and nX controls the amount of direct information. We will use these
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two variations to shed light on both direct and indirect flows of information. In the coming sections, we

explore how parameter unidentifiability and orthogonality can be used to understand the direct and indirect

information, respectively.

3.2 Background Information

To understand the direct and indirect flow of information, we can use extremes to anchor ourselves. One

extreme is the lack of flow of direct information. That is, the data provide no information for the parameter

of interest and any information it may contain is necessarily through its relation to other parameters. This

is often described as non-identifiability or unidentifiability and is discussed in Section 3.2.1. Another ex-

treme is the lack of flow of indirect information. Here, a parameter is unaffected by the (potentially poor)

estimation of other parameters. This is typically seen as a desirable quality of model parameters, one for-

malization is parameter orthogonality. We explore this in Section 3.2.2.

3.2.1 Direct Information Flow and Identifiability

A statistical model tppDn|θq : θ P Θu is said to be identifiable if distinct parameter values correspond to

distinct probability distributions, i.e.

ppDn|θ1q “ ppDn|θ2q a.e. Dn ñ θ1 “ θ2

The parameter θ is said to identify this model. Identifiability ensures that the mapping between the parameter-

space and model-space is invertible so that learning the model ensures our ability to learn parameters. If a

model lacks this property, it is said to be non-identifiable or unidentifiable.

Even if a model is non-identifiable, it may still be possible to learn about some parameters. Poirier

(1998) consider a particular subset of non-identifiable models called Partially Identifiable Models (PIM).

Incidentally, the Econometric literature also uses the term PIMs to refer to models whose parameters can

be set-identified but not point identified (Christ, 2001; Manski, 2003; Geweke, 2010a; Moon & Schorfheide,

2012), they are also known as Incomplete models (Geweke, 2010b). In other words, parameters can be

known up to a range, but can never be precisely learned. This notion is of course related, but we will use
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the language of Poirier (1998) and, later, Gustafson (2015) to describe parameter non-identifiability.

Following Gustafson (2015), non-identifiability can be defined on the level of parameters by consider-

ing two distinct parameterizations. We first define the original parameterization θ as the scientific parame-

terization to distinguish it from a secondary parameterization pη,λq “ gpθq. The parameterization pη,λq is

said to be transparent with identifiable parameter η and unidentifiable parameter λ if (1) the likelihood of

the data can be written as a function of of η alone,

fpDn|θq “ fpDn|η,λq “ fpDn|ηq.

Moreover, (2) the likelihood fpDn|ηq has the properties that ensure regular parametric asymptotic theory

apply. This ensures that the likelihood behaves well enough for conventional inference tools to be used.

The above definition is the product of various lines of research in the use of non-identifiable models

in Bayesian analysis (Poirier, 1998; Gustafson, 2009). The primary reason this research occurred in the

Bayesian domain is that even when faced with an unidentifiable likelihood, Bayesian parameter inference

can proceed. If the analyst uses a proper prior distribution on the scientific parameterization θ, the poste-

rior distribution will also be proper (proof given in Appendix B.1).

Theorem 3.2.1. Given a proper prior and a likelihood that is integrable over the sample space Dn P Dn,

the posterior distribution will be proper for almost every Dn, i.e.
ş
Θ ppθqdθ ă 8 and

ş
Dn

ppDn|θqdDn ă

8 imply
ż
ppDn|θqppθqdθ ă 8, a.e. Dn P Dn

The role of identifiability in Bayesian modeling has a rich history. Because identifiability is a property

of the likelihood, it should be regarded equally whether the inference procedure is classical or Bayesian

(Kadane, 1974). This seemingly innocuous thought is common among many statisticians, but a deeper ex-

ploration begins to show some cracks. The inferential procedures have radically different consequences. If

a model is unidentifiable, we cannot apply classical inference like maximum likelihood without first dras-

tically altering the model to make it identifiable. Bayesian inference with proper priors, on the other hand,

can proceed without much trouble as seen in Theorem 3.2.1. In fact, introducing information thorough the

prior can be seen as a solution to working with unidentifiable models Gustafson (2005). Regardless, the
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Bayesian exploration of identifiability was fruitful in increasing our understanding of identifiability.

In the Bayesian context, both parameters and data are both treated as random quantities. One idea that

applied to the likelihood was seamlessly transferred parameters to bring insight on identifiability. In an

exploration of the role of conditional independence in statistical theory, Dawid (1979) defined a notion of

sufficiency in the context of parameters. If the distribution of Dn is determined by parameters pη,λq, but

we also have that Dn and λ are independent given η, i.e. Dn KK λ | η, then λ is not identified and η is said

to be a sufficient parameter. In other words, the parameter λ is redundant when η is known. In the same

treatise, Dawid (1979) describes the practical consequence of having redundant parameters on posterior

inference.

If η is a sufficient parameter, so that Dn KK λ | η, and the parameters have a prior distribution,

then λ KK Dn | η so that ppλ|Dn, ηq “ ppλ|ηq. We see that the conditional distribution for

the redundant part λ of the parameter, given the sufficient parameter η, is the same in the

posterior distribution as in the prior: once we have learned about η from the data, we can

learn nothing about λ, over and above what we knew already.* Dawid (1979)

Even in the unidentifiable model case, we will be able to learn about the parameters that matter, but not

about others beyond what we believe them to be apriori. The tension here is that the Bayesian analysis,

as opposed to classical analysis, seems to retain the ability to make parameter inference, if somewhat hin-

dered, even in situations where we cannot learn about some parameters from the data. We summarize the

lack of desire to address this tension with a quote from Lindley (1987)

In passing it might be noted that underidentifiability causes no real difficulty in the Bayesian

approach. If the likelihood does not involve a particular parameter, λ say, when written in the

natural form, then the conditional distribution of λ, given the remaining parameters, will be

the same before and after the data.†

As Poirier (1998) describe, this seems like a “Bayesian free lunch.” The distribution of the unidentifiable

*Dn, η and λ here replace Y , Θ and Φ in the original text for clarity.
†η and λ here replace λ and Ψ in the original text for clarity.
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parameter still benefits from data. The marginal posterior distribution of the unidentifiable parameter is

ppλ|Dnq “
ż
ppλ, η|Dnq dη “

ż
ppλ|η,Dnq ppη|Dnq dη (3.2)

“
ż
ppλ|ηq ppη|Dnq dη.

The marginal posterior distribution here is an average of the prior distribution weighted by the posterior

of the identifiable parameter. In other words, the structure of the prior helps provide indirect information

from identifiable to unidentifiable parameters. Even when the likelihood is unidentifiable, we can conduct

parameter inference, even for the non-identifiable parameters.

Surely then, the Bayesian framework must assume something beyond what the likelihood provides if it

is able to retain the ability to conduct parameter inference when classical inference cannot. Poirier (1998)

resolve this tension by showing that there are quantities for which the data are uninformative and that the

cost of the “free lunch” is the need to specify the prior distribution. The prior distribution wholly deter-

mines the inference on the unidentifiable parameters. Modern Bayesian analysts do not place sufficient

importance on the prior construction raising the cost of the lunch.

The practical difficulty here, of course, is deciding whether or not a particular parameter is unidentifi-

able. This is not always clear from typical posterior diagnostics. In fact, marginal prior-posterior compar-

isons can be misleading as shown in Equation (3.2). When the parameters are unidentifiable, the marginal

prior-posterior comparison will show no change when prior distributions are independent, ppλ|ηq “ ppλq,

or the marginal posterior of η shows no change, ppη|yq “ ppηq. The latter case occurs when the parameter

η is also unidentifiable.

Gustafson developed an asymptotic theory of Bayesian analysis with PIMs in a series of papers (Gustafson,

2005, 2009, 2014, 2015). In PIMs, certain measures of information flow are theoretically justified. Com-

paring the prior to posterior conditional distributions of non-identifiable parameters (conditional on iden-

tifiable parameters) should indeed show no direct flow of information. Hence, comparing these distribu-

tions leads to a natural measure of direct information. Any measure of difference will yield zero for non-

identifiable parameters and non-zero for identifiable parameters (Lindley, 1956; Xie & Carlin, 2006; Raue

et al., 2009, 2012). In particular, Xie & Carlin (2006) give measures of identifiability for hierarchical mod-

70



els that are quite general. We consider measures of this sort for the Bayesian setting, but we also discuss

likelihood-based measures in the next section.

3.2.2 Indirect Information Flow and Orthogonality

Orthogonal parameters, like unidentifiable parameters in Section 3.2.1, are defined in terms of the likeli-

hood function. In fact, they are typically defined in terms of the Fisher Information matrix. Following Cox

& Reid (1987), if the parameter θ of length p is split into two vectors θ1, θ2 of lengths p1 and p2. These

parameters are said to be orthogonal if

ist “ EDn

„ˆ B
Bθs

log ppDn|θq
˙ˆ B

Bθt
log ppDn|θq

˙ȷ
“ 0 (3.3)

for s “ 1, ..., p1 and t “ p1 ` 1, ..., p1 ` p2. This orthogonality is called global if this holds for every value

of θ and local at θ0 if it holds for θ “ θ0. If we consider the situation when p1 “ p2 “ 1 and θ “ pη,λq for

simplicity, there are several elementary consequences that follow from the orthogonality of these parame-

ters as outlined in Cox & Reid (1987). For example, determining these parameters numerically is greatly

simplified and the MLEs, pη and pλ, are asymptotically independent. There is one particular property that

relates to the flow of information, property (iv) in Section 2.2 of Cox & Reid (1987): pηλ, the maximum

likelihood estimate for η when λ is given, varies only slowly with λ. If we were to, say, estimate λ poorly,

the effect of that on estimating η will be minimal. In other words, the indirect information for η is small,

and zero asymptotically. This leads naturally to measures of indirect information where we inspect the

relative Fisher information, either given η or not.

Meng & Xie (2013) explore Fisher Information-based measures to study the difference in how proce-

dures incorporate information from data and model assumptions. One of the guiding questions there was

to understand how principled estimation procedures, like maximum likelihood, accrue information differ-

ently than less principled procedures, like the method of moments. In particular, they show that principled

estimation procedures incorporate information from data and modeling assumptions appropriately. They

use a variant of our correlation variation to study how maximum likelihood estimation incorporates infor-

mation from data, in the form of new bivariate observations, and from a modeling assumption, in the form
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of model restriction (assuming σ2 as known). Here, the addition of new data contributes to the estimation

of the variance σ2 as well as the correlation ρ. Moreover, making a modeling assumption that σ2 is known

also impacts the estimation of ρ. They separate this by investigating the gains in asymptotic precision for

the MLE of ρ under two situations: when σ2 is known and when it has to be estimated.

Here, a “model assumption” encompasses quite generally the constraining of the model space. For ex-

ample, adding the assumption of Normality to that of independent and identically distributed (i.i.d.) con-

strains the model space from all models where the data are i.i.d. to only models where the data are i.i.d

and Normal. Of course, much freedom remains in this situation because the model parameters can cover a

wide range of data. Similarly, assuming σ2 to be known constrains the model space.

We can use this framework to study how information flows to different parts of the model. When we

assume the secondary parameter to be known, we are essentially injecting information into the system that

allows us to see the full impact of the data on the primary parameter. If the parameters are orthogonal, or

nearly orthogonal, we should see that the information for the primary parameter should not change. If, on

the other hand, the parameters are far from orthogonal, we should see a radical change in information for

the primary parameter if given the secondary parameter.

The asymptotic precision of the MLE, the basis of comparison in Meng & Xie (2013) is defined in

terms of the Fisher Information matrix. Consider, for now, a family of distributions whose likelihood is

indexed by two parameters pθ1, θ2q and whose Fisher information matrix is

Ipθ1, θ2q “

¨

˚̋i11 i12

i21 i22

˛

‹‚.

A measure of marginal information for θ1 and information for θ1 given θ2 can be defined in terms of these

quantities via the asymptotic precision of the MLE. In the case of the 2-dimensional parameter, these are

simply

Ipθ1q “ i11 ´
i12i21
i22

and Ipθ1|θ2q “ i11. (3.4)

These quantities measure the amount of information contained in the data for θ1 in two situations. First,
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Ipθ1q measures the total amount of information that is passed from the data Dn to θ1 both directly, and

indirectly. This is captured in Figure 3.1 (left). Second, Ipθ1|θ2q captures the total information for θ1
plus the additional information from assuming a known θ2. Figure 3.1 (right) indicates assuming θ2 is

known with grey shading. Ipθ1|θ2q can be interpreted as how well we might estimate θ1 in an ideal set-

ting where we put the full weight of the data to the task without needing to estimate θ2. Ipθ1q, on the other

hand, shows us the information in our actual case. We can also see the loss of precision when needing to

estimate θ2 in addition to θ1, i.e. i12i21
i22

.

Dn

θ2 θ1

Ipθ1q

Dn

θ2 θ1

Ipθ1|θ2q

Figure 3.1: A representa on of the flow of informa on from the data to the primary parameter θ1 when the secondary
parameter must be es mated (le ) and the secondary parameter is assumed (right).

Following Meng & Xie (2013), the absolute and relative gain in information for θ1 by conditioning on

θ2 are

Gpθ1|θ2q “ Ipθ1|θ2q ´ Ipθ1q “
i12i21
i22

and Rpθ1|θ2q “
Gpθ1|θ2q
Ipθ1q

“ Ipθ1|θ2q ´ Ipθ1q
Ipθ1q

.

These measure the gain in information that θ1 receives from making a modeling assumption that assumes

away θ2 in absolute and relative terms respectively. An alternative interpretation of Gpθ1|θ2q is that it mea-

sures the drain in information incurred by needing to estimate θ2 in addition to θ1. If Gpθ1|θ2q “ 0, the ac-

tual precision for estimating θ1 is the same as the precision in the ideal case. There are two ways Gpθ1|θ2q

is zero. If the parameters are orthogonal, i.e. i12 “ i21 “ 0. More precisely estimating one neither helps

nor hurts the estimation of the other. Alternatively, if we are able to estimate θ2 with infinite precision, i.e.

i22 “ 8. In either case, Ipθ1q and Ipθ1|θ2q measure the same quantity.

We will use these quantities in Section 3.3 to construct likelihood-based measures on information flow.

In particular we will factor the information in the ideal setting Ipθ1|θ2q into the sum of information in the
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actual information Ipθ1q and the penalty of diverting some information to estimating θ2, Gpθ1|θ2q. This

breakdown will provide a way of understanding the flow of information from the data to the parameter of

interest.

3.3 Likelihood-Based Measures of Information Flow

In this section we introduce measures of information flow by considering the Fisher Information structure.

In Section 3.2.2 we introduced measures of information gain, or information drain, as the relative losses

in precision of primary parameters when needing to estimate secondary parameters. We build upon those

ideas to describe measures of flow of information and use our two examples to build our intuition about

these measures.

When considering measures of flow of information from data to a primary parameter θ1, we can com-

pare the information available in the dataset under two scenarios: if only the primary parameter needs es-

timation and if both parameters need estimation. If only one parameter, θ1, needs estimation then the full

force of the data is used for estimating θ1 – the information should be higher. For this we use Ipθ1|θ2q in

Equation (3.4). If both parameters need to be estimated, information available is Ipθ1q in Equation (3.4).

The difference between these two, Gpθ1|θ2q, was described in Section 3.2.2 as the relative gain of being in

the ideal situation. Putting these together we have that the

Ideal Information “ Actual Information` Redirection Penalty (3.5)

Ipθ1|θ2q “ Ipθ1q ` Gpθ1|θ2q

i11 “ i11 ´
i12i21
i22

` i12i21
i22

.

The ideal information measures the amount of information available for estimating θ1 in the ideal setting

where no other parameters need be estimated. It makes sense, then, that the actual information is only a

fraction of this. The redirection penalty measures the cost that occurs from needing to estimate θ2 in ad-

dition to θ1, the cost of redirecting some of the information to estimate θ2. The relationship between the

different elements of the Fisher information matrix can be complex. Increasing one will often change the
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others in order to retain positive-definiteness of the matrix. These quantities are related to one another via

0 ď i11 ´
i12i21
i22

ď i11 (3.6)

The first inequality holds because the Fisher information matrix is semi-definite and the second inequality

holds because i12 “ i21. When i11 is small, the redirection penalty is also small. This means that the

information for θ1 that gets passed though θ2 will never exceed the total information available for θ1.

If the actual information is close to 0, there is a large amount of information being passed through θ2.

This occurs when ε ą i11i22 ´ i12i21 ě 0 for a small ε. Equality would occur if either i11 “ 0 and i12 “ 0

or if i22 “ 0 and i21 “ 0, that is, if the likelihood was not a function of either θ1 or θ2. Equality would

also hold if the matrix was degenerate because the parameters were perfectly correlated to one another, i.e.

i12 “ i21 “
?
i11i22. That is, either of both parameters are unidentifiable.

We can also study the relative contribution of each form of information by defining the relative actual

information and redirection penalty with

RAIpθ1q “
Ipθ1q

Ipθ1|θ2q
“ i11 ´ i12i21{i22

i11
“ 1´ i12i21

i11i22
and RRP pθ1q “

Gpθ1|θ2q
Ipθ1|θ2q

“ i12i21
i11i22

(3.7)

By constructionRAIpθ1q ` RRP pθ1q “ 1 andRAIpθ1q P r0, 1s as long as the Fisher Information matrix

is positive definite, i.e. i11i22 ´ i12i21 ą 0. Practically speaking, the relative information measures do not

apply the cases explored in Section 3.2.1, when the likelihood is unidentified since the Fisher Information

matrix is not invertible in that case. However, the ideal and actual information as well as the redirection

penalty can all be investigated even when i11 “ 0. The interpretation of these quantities as asymptotic

precision, however, no longer hold.

We can already gain some intuition for the measures of flow in Equation (3.7) by considering the be-

havior as a function of its component quantities. If we vary the marginal information i11, keeping all else

fixed, the relative penalty increases when i11 is small, a quality not directly evident in Equation (3.6). In

other words, the greatest loss for estimating θ1 occurs when we already have very little information for

it. This also occurs when i22 is small, when there is not much information in the data marginally for θ2,

much of the information that would have been used to estimate θ1 is redirected. The co-information i12
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has, of course, the opposite effect. When it is small the penalty incurred is small and when it is large the

the penalty is equally large. Essentially when i12 is large, there is much more shared information between

θ1 and θ2, the channel where information can potentially flow is wide.

3.3.1 Exploring a Frequentist Analysis of the Correlation Variation

In Section 3.1 we introduced two variations on a Normal distribution, we first consider the correlation

variation. The Fisher Information matrix for ρ and σ2 is

Ipρ,σ2q “

¨

˚̋i11 i21

i12 i22

˛

‹‚“

¨

˚̋ m 1`ρ2

p1´ρ2q2 ´m ρ
σ2p1´ρ2q

´m ρ
σ2p1´ρ2q

m`k
σ4

˛

‹‚. (3.8)

The number of marginal observations k is only affects the marginal Fisher information for σ2 while the

number of paired observations affects all of the information measures. From this we can calculate the

marginal and conditional information for estimating ρ as described in Equation (3.4) to respectively be
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Ipρq “ i11 ´
i221
i22

“ m
m` kp1` ρ2q

pm` kq p1´ ρ2q2 and Ipρ|σ2q “ i11 “ m
1` ρ2

p1´ ρ2q2 . (3.9)

Immediately, we have that ifm “ 0, we observe no paired observations, the data themselves contain no

information for ρ. The conditional information Ipρ|σ2q grows with the number of pairsm observed and is

unaffected by the number of marginal observations k. The information when σ2 is unknown on the other

hand is very much impacted by the number of marginal observations. To explore this further, consider the

relative actual information and redirection penalty, respectively

RAIpρq “
1` ρ2 ´ αρ2

1` ρ2
and RRP pρq “

m

m` k

ρ2

1` ρ2
“ α

ρ2

1` ρ2
(3.10)

It can be easily verified that in factRAIpρq `RRP pρq “ 1. While ρ and σ2 are not globally orthogonal,

they are locally orthogonal at ρ “ 0 soRRP p0q “ 0. The penalty also increases as ρ moves away from

zero, indicating a stronger dependence between the parameters and more information lost for estimating ρ.

Marginal observations help estimate ρ. The redirection penalty for ρ in Equation 3.10 is a decreasing

function of k. That is, as k increases the precision for estimating ρ increases. When k “ 0, the redirection

penalty is high, especially for larger values of |ρ|, this is because them pairs are used to estimate both ρ

and σ2. Any additional k marginal observations reduce this penalty. Each observation for the marginal

helps improve estimation of σ2, and the paired observations can better estimate ρ. This is a because i22

increases with k while all else remains the same.

BecauseRRP pρq measures information relative to the ideal information, interpreting increasing pairs is

difficult. Indeed, with each new observed pair we can better estimate ρ whether or not we know σ2 – both

Ipρq and Ipρ|σ2q increase withm. However,RRP pρq is also an increasing function ofm. Each additional

paired observation provides an opportunity for σ2 to skim some information from what would have been

available for ρ alone. However, this relative loss of efficiency does asymptote. The difference in penalty

whenm “ 50 andm “ 200 are negligible.

To understand the trade-off between paired and marginal observations, consider instead a fixedm ` k

and we vary α “ m{pm ` kq. Figure 3.3 plots Equations 3.10 for several values of α. Recall that the
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Figure 3.3: The rela ve actual informa on and redirec on penalty for es ma ng ρ in the correla on varia on example
for differing frac ons of paired observa ons α “ 0.1, 0.25, 0.5, 0.75, 1 and for a range of underlying correla on ρ P
p´1, 1q.

quantities are undefined when α “ 0, so we consider α “ 0.1, 0.25, 0.5, 0.75, 1. When the true underlying

correlation ρ « 0,RAIpρq « 1 whileRRP pρq « 0 regardless of α. This is because the parameters are

locally orthogonal at ρ “ 0. On the other hand, when |ρ| is near 1, the parameters are far from orthogonal

andRAIpρq ranges between 0.5 and 0.95, depending on α. This indicates greater losses in efficiency for

larger values of ρ, a fact we saw in Figure 3.2 as well.

Figure 3.3(b) shows the redirection penalty, decreasing the fraction of paired observations leads to

smaller penalties. The paired observations are the only observations that can directly inform the estimate

of ρ while the marginal observations can only indirectly inform ρ through σ2. Eventually when we have

no bivariate observations, or very few, relative to marginal observations, α « 0, the penalty decreases.

This reduction in penalty occurs because there is not much information to be had by either parameter. The

extreme case when α “ 0 is the case of an unidentifiable likelihood with unidentifiable parameter ρ.

Now that we have built some intuition to how these measures are affected by the fraction of informative

data, through α, we move to an example where the impact of the quality of the data might be more easily

detectable – the mean variation of our two cases.
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3.3.2 Exploring a Frequentist Analysis of the Mean Variation

In the mean variation, we are interested in conducting inference for the related means of two normally

distributed random variables. One parameter θ2 is directly informed by the data tYjunY
j“1. This data is of

questionable quality controlled by the known variance γ. If γ is large we expect poor estimates of θ2, es-

pecially when nY is small. The other parameter θ1, on the other hand, is informed directly by the data

tXiunX
i“1, but also indirectly by tYjunY

j“1. Figure 3.4 (left) contains a diagram of the flow of information for

this example. The data tXiunX
i“1 informs both parameters while the data tYjunY

j“1 informs θ2 directly and θ1

indirectly through θ2. In addition to helping us understand how information of questionable quality flows

models, we study this example to explore a topic introduced in Section 3.2.2, parameter orthogonality. Un-

derstanding (and finding) orthogonal parameterization is simpler with location parameters than with scale

parameters.

The Fisher Information matrix for the nX ` nY observations tXiunX
i“1, tYjunY

j“1 is

Ipθ1, θ2q “

¨

˚̋i11 i21

i12 i22

˛

‹‚“

¨

˚̋nX nX

nX nX ` nY
γ

˛

‹‚ (3.11)

and has determinant detpIpθ1, θ2qq “ nXnY
γ . The dependence on γ is clear, if γ is large relative to nY

or nX , the matrix will be nearly singular. Furthermore, as is typical, the identifiability of the likelihood is

dependent on the number of observations and the quality of the data. If either of nX , nY is zero, or γ “ 8,

we can not possibly learn about both parameters and this matrix is non-invertible. Yet, for any finite γ,

even extremely large, and any nX , ny ą 0, even nX “ ny “ 1, this matrix will be invertible and the

likelihood is identifiable. Because of the Normality of our observations, this information matrix describes

the precision of the MLE estimates of θ1 and θ2 exactly, and not just asymptotically.

The information measures described in Equation (3.4) are, for this example,

Ipθ1q “ i11 ´
i221
i22

“ nX ´ n2
X

nX ` nY {γ
“ nXnY {γ

nX ` nY {γ
and Ipθ1|θ2q “ i11 “ nX . (3.12)

When θ2 is known, the variance of the MLE for estimating θ1 will be 1{nX . In other words, knowing θ2
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implies that Xi ´ θ2 „ Npθ1, 1q and we can use this quantity to estimate θ1 directly. The effective sample

size for estimating θ1 is nX if θ2 is known. However, when examining Ipθ1q, the cost of needing to esti-

mate θ2 becomes clear – the information accumulates more slowly. The variance of the MLE of θ1 in this

case will be nX`nY {γ
nXnY {γ “ 1{nX ` γ{nY . The effective sample size for estimating θ1 is less than nX . The

loss of efficiency is γ{nY , rather large when γ is large or when nY is small.

The relative actual information and redirection penalties for estimating θ1 are

RAIpθ1q “
Ipθ1q

Ipθ1|θ2q
“ nY {γ

nX ` nY {γ
and RRP pθ1q “

nX

nX ` nY {γ
(3.13)

When the quality of the data for estimating θ2 increases, i.e. as γ approaches 0, the redirection penalty also

approaches zero. This is because γ influences these quantities only through i22 and i22 Ñ 8 as γ Ñ 0.

The information for estimating θ1 need not be redirected though θ2 since θ2 is being adequately estimated

by the high-quality data tYjunY
j“1. On the other hand, for low quality data (large γ), the redirection penalty

is close to 1, reaching 1 only as γ Ñ 8. Care must be taken with this limit because the Fisher Information

matrix in Equation (3.11) will be singular. So, instead of taking limits of γ directly, consider the limit of

worsening data quality but more of it, i.e. nY , γ Ñ 8 with nY {γ Ñ c. Here, c represents a re-scaled data

quality for tYju, making c and nX directly comparable. We can inspect the quantities in Equations (3.11)

and (3.13) assuredly since the matrix will be positive definite, even in the limit: detpIpθ1, θ2qq Ñ nXc. If

c “ nX , the quantity and and quantity of tYju is equivalent to tXiu and is worse if c ă nX .

The quality of tYju plays a major role in estimation of θ1. The loss of precision in estimating θ1 that

comes from needing to estimate θ2 is
n2
X

nX`nY {γ . Taking this loss of precision to the extreme, we have

n2
X

nX ` nY {γ
“ nX

1` nY {pnXγq
nY {γÑcÝÑ nX

1` c{nX
.

If the quality of data is equal for both sets tYju and tXiu, i.e. c “ nX , the loss of precision will still be

nX{2. This is also reflected in the redirection penalty: in this caseRRP pθ1q “ 1{2.

Thinking of γ as an index for data quality sheds light on the link between data quality and sample size.

The worse our data, the more samples we will need to achieve the same precision. Consider, for simplicity,

the situation where nX “ nY “ n. Say we observe n “ n1 samples from the model with data quality
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γ “ γ1, the variances of the MLEs of pθ1, θ2q will be pp1 ` γ1q{n1, γ1{n1q. Now if we have instead a

situation with reduced data quality, γ2 ą γ1, we would need

n2 “
1` γ2
1` γ1

n1

samples to achieve the same level of accuracy for estimating θ1. Under these conditions the multiplier of

n1 is strictly greater than 1. The worse the data quality is for estimating θ2, the more samples you will

need in order to precisely estimate θ1 because these parameters are dependent.

X Y γ

θ1 θ2

X Y γ

η λ

Figure 3.4: The flow of informa on from the data to parameters under the two parameteriza ons discussed: (le ) original
parameteriza on where we’re interested in es ma ng pθ1, θ2q and (right) the orthogonal parameteriza on pη “ θ1 `
θ2,λ “ θ2q

Orthogonalization and the Mean Variation

We can see that the fate of the quality of estimates for θ1 and θ2 are entangled. The information avail-

able for estimating θ2 will directly impact the estimates of θ1. In recognizing this, it may help to change

our perspective on the model. In some sense, if the value of γ is large, we should give up on estimating

θ2. The data relevant for estimating θ2 is of poor quality. In the extreme case, when γ “ 8, the likeli-

hood is unidentifiable. The prevailing dogma for dealing with unidentifiable models is that one should not.

However, in this example, and others, some parameters can still be estimated with precision. In particular

η “ θ1 ` θ2 could be precisely estimated (based on intuition) and estimation this quantity should not be

tainted by the quality of the data tYjunY
j“1.

Consider the parameter transformation pη,λq “ pθ1 ` θ2, θ2q. In this case we can calculate the Fisher
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Information matrix as

Ipη,λq “

¨

˚̋1 ´1

0 1

˛

‹‚

T ¨

˚̋nX nX

nX nX ` nY
γ

˛

‹‚

¨

˚̋1 ´1

0 1

˛

‹‚“

¨

˚̋nX 0

0 nY {γ

˛

‹‚.

Because the parameters are orthogonal,

Ipηq “ i11 ´
i221
i22

“ nX and Ipη|λq “ i11 “ nX . (3.14)

So the relative actual information and redirection penalty are

RAIpηq “
Ipη|λq
Ipηq “ 1 and RRP pηq “ 0 (3.15)

The relative actual information does not depend on γ nor nY as didRAIpθ1q in Equation (3.13). The

redirection penalty is zero; the estimation of η is no longer affected by the estimation of λ, or the quality

of the data that estimates it. The inference for η is untainted by poor-quality information from the observa-

tions tYiu – essentially, by removing the dependence on the nuisance parameter λ. In other words, because

the parameters are orthogonal the flow of poor-quality information Y is blocked from affecting other pa-

rameters besides λ. Figure 3.4 (right) shows that this parameterization not only removed the flow of infor-

mation from γ to the primary parameter η, it also removed the link between the dataX and the secondary

parameter λ.

3.4 Measures of Information Flow in Bayesian Analysis

In Section 3.3, we use orthogonality as the cornerstone for our measures of information flow. If two pa-

rameters were orthogonal, the redirection penalty is zero, and the information in the ideal case and actual

case were the same. Likewise, in this section, we use non-identifiability as the cornerstone for our mea-

sures. We use Bayes’ Theorem as a framework for information transfer from data to model parameters.

We show that there is no direct information from the data to non-identifiable parameters. We then use our

two examples, where we can move our models toward and away from the non-identifiable case, to study
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nearly non-identifiable parameters. We also inspect how prior structure influences non-identifiable (or

nearly non-identifiable) parameters.

A recurring theme in the measures of information we consider in Section 3.3 is that they are not always

defined. Because we are using the Fisher Information matrix as the basis for understanding the flow of in-

formation, we need this matrix to be defined. We also need it to be invertible if we want to interpret the

measures, like the relative redirection penalty, in terms of precision loss. However, a non-invertible Fisher

Information matrix gives a clear indication that the likelihood is not identifiable, implying no direct infor-

mation for some parameter. The measures of information considered in Section 3.3 do not reflect this; in

this section, we explore measures that do.

To discuss measures of information flow in the Bayesian setting, we first set some notation. Consider

a scientific parametrization θ P Θ and an invertible reparametrization pη,λq “ gpθq. The parameter η is

the primary parameter and λ is the secondary parameter. We also consider a proper prior distribution ppθq

with support Θ. We consider proper prior distributions because we want to study unidentifiable likelihoods

and posterior inference is possible in this case, but only with proper priors. The transformation g induces a

prior distribution ppη,λq, which we assume is also proper, with induced support gpΘq.

Care must be taken when considering the transformed parameter space. The induced support and prior

distribution may have a complex structure, even if Θ and ppθq do not. For this reason, we denote the sup-

port of η and λ respectively

N “ tη1 : pη1,λq “ gpΘq for some λu and Λ “ tλ1 : pη,λ1q “ gpΘq for some ηu.

We also denote the conditional support for η given λ and λ given η respectively

Npλq “ tη1 : pη1,λq “ gpΘqu and Λpηq “ tλ1 : pη,λ1q “ gpΘqu.

We further assume that the induced prior distributions are well-defined and proper on these spaces, e.g.

ppλ|ηq ą 0 for λ P Λpηq and ş
Λpηq ppλ|ηqdλ ă 8.

Recalling the discussion in Section 3.2.1, when a model is partially identifiable, the likelihood can be

written as a function of the identifiable parameter, say η, alone: ppDn|θq “ ppDn|ηq. Even in this case,
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Theorem 3.2.1 ensures that the posterior distribution for pη,λq is typically defined. This posterior distribu-

tion, however, takes on a particular form when the likelihood is unidentifiable. It can be factores as

ppλ, η | Dnq “ ppλ | η,Dnqppη | Dnq “ ppλ | ηqppη | Dnq (3.16)

In other words, the posterior distribution for η is affected by the data and may even desirable properties

like posterior convergence. The posterior conditional for λ, on the other hand is fully determined the prior

distribution. It is not updated by the data. If the prior distribution for η and λ are also independent, i.e.

ppλ|ηq “ ppλq, then

ppλ | η,Dnq “ ppλ | Dnq “ ppλ | ηq “ ppλq. (3.17)

There is no information transferred to λ. Neither from the data nor the identifiable parameter η.

The parameter transformations will typically create dependencies in prior distributions, so the prior for

η and λ can be complex. Nevertheless, we can still understand the marginal posterior of the unidentifiable

parameter as a weighted average of the conditional prior.

Theorem 3.4.1. (Proposition 2 in Poirier (1998)) Let tppDn|θq, θ P Θu be a family of distributions for

the data Dn P Dn indexed by θ. Let pη,λq “ gpθq be an transparent parameterization with identifiable

parameter η and unidentifiable parameter λ. Let η0 denote the parameter that generates Dn. Denote the

proper prior distribution ppθq and induced prior ppη,λq “ ppλ|ηqppηq. Then

ppλ | Dnq “ Eη|Dn
rppλ|ηqs nÑ8ÝÑ ppλ|η0q.

This follows immediately from Equation 3.16 and the assumption of a “well-behaved” posterior ppη|Dnq.

Even as we gather an infinite amount of information, prior dependencies strongly influence the inference

for λ. Intuitively then, in this extreme situation, the information in the data can not inform λ directly, only

indirectly through prior relationships. However, what happens when we move away from this extreme.

Consider the general conditional posterior for λ P Λpηq, so that ppλ | ηq ą 0, we can invert the typical
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Bayesian formulation as

ppλ | η,Dnq “
ppDn | λ, ηqppλ | ηq

ppDn | ηq .

ppλ | η,Dnq
ppλ | ηq “ ppDn | λ, ηq

ppDn | ηq . (3.18)

Clearly, if the likelihood is unidentifiable, then the quantity on the right hand side of Equation (3.18) will

be one, implying that the conditional posterior for λ will be the same as the prior. Equally, however, if

the quantity on the left hand side of Equation (3.18) is one, this would imply the quantity on the right

hand side would be one. If this prior-posterior comparison shows no change then it may be possible to

rewrite the likelihood as a function of η alone. This simple observation gives rise to another way of defin-

ing PIMs.

A model ppDn|θq is partially identifiable with identifiable parameter η and unidentifiable parameter λ if

KL pppλ | η,Dnq||ppλ | ηqq “ 0, for η P N and a.e. Dn P Dn. (3.19)

That is, if the relationship in Equation 3.18 holds for every η and almost every dataset Dn then the model

is partially identifiable. Comparing these distributions, either through KL-divergence or visually, will give

us a measure direct information flow. If ppλ | η,Dnq and ppλ | ηq are the same, the data are not informing

λ, and there is no direct flow of information.

Direct Information for λ: KL pppλ | η,Dnq||ppλ | ηqq (3.20)

If these distributions are drastically different, then the data is informing the parameter beyond the prior

structure, and it is receiving information directly from the data. The difference between marginal posterior

and conditional posterior distribution provide a measure of the indirect flow of information among param-

eters.

Indirect Information for λ: KL pppλ | η,Dnq||ppλ | Dnqq (3.21)
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If these distributions are drastically different, this would indicate a strong dependence between the param-

eters and hence much shared information. The difference between the marginal and conditional posterior

speaks to the indirect information provided by, or the conditional independence of, the conditioning pa-

rameter. Indeed, ppλ|Dnq “ ppλ|η,Dnq is the definition of conditionally independent.

When λ is unidentifiable, the direct information measure is zero for all values of η; otherwise, it is a

function of η. Seeing these as a function of η provides some sense of the relative information provided

by the parameter, either through the prior in the direct information or through the posterior in the indirect

information. It also makes sense to consider these at a point estimate of η. For example, we can evaluate

them at the maximum a-posteriori estimate, ηMAP , of η. Doing this adds to our interpretation of the KL

measures. The direct information measures the additional information the data provide for λ beyond that

which other parameters provide. Conversely, the indirect information measures the additional information

η provides for λ beyond that which is provided by the data. Similarly, in simulations we can evaluate them

at the true data-generating parameters. Compared to evaluating them at MAP estimates, this provides a

more concrete definition of information flow. It separates the information provided by conditioning on

the parameter from the information provided by the data. These interpretations are useful, but divergence

measures are arguably flimsy.

The KL-divergence is a one-number summary. It is necessarily an oversimplification that does not cap-

ture all meaningful differences. When comparing prior and posterior densities, however, first and second

order differences are relevant, and the KL divergence does capture these. Location shifts indicate poor ini-

tial first guesses and decreases in scale indicate precise inference. Take, for example, the KL-divergence

between two univariate Normal distributions N pµ̃, σ̃2q and N pµ‹,σ2
‹q; it is

KL
`
N pµ̃, σ̃2q||N pµ‹,σ2

‹q
˘
“ ´1

2
log

σ̃2

σ2‹
` σ̃2 ` pµ̃´ µ‹q2

2σ2‹
´ 1

2
. (3.22)

Assuming no location shifts and setting σ̃2 “ νσ2
‹ the KL-divergence simplifies to 0.5pν ´ log ν ´ 1q;

positive for ν ‰ 1. Values of ν ă 1 indicate posterior contraction, in fact a posterior contraction of half

(ν “ 0.5) corresponds to a KL-divergence of 0.097. A KL-divergence would be 1 corresponds to a vari-

ance reduction of about 95% (ν “ 0.05). On the other hand, assuming no posterior contraction (σ̃ “ σ‹)
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and denoting δ “ pµ̃ ´ µ‹q{σ̃ the KL-divergence would be 0.5δ2. So, if the posterior mean is 1 stan-

dard deviation away from the prior mean, the KL-divergence would be 0.5. Again, a KL-divergence of 1

would correspond to a location shift of about 1.4 standard deviations. Therein lies one difficulty of using

a one-dimensional summary to compare distributions. There is no one-to-one map between distributional

differences and KL-measures. Still, these measures are useful in giving some clue as to the changes from

prior to posterior. We recommend using visual inspection along with these measures to gain a clear under-

standing of the changes.

This exercise may seem frivolous, but the Normal distribution is as distinctive in Bayesian statistics

as it is in classical inference. Indeed, the Bernstein-von Mises Theorem ensures that posterior distribu-

tions typically behave like a Normal distribution asymptotically (van der Vaart, 1998). Furthermore, the

Normal distribution is a popular choice for approximating posteriors with Variational Inference methods

(Blei et al., 2017). Having established the connection between prior-posterior comparisons and informa-

tion flow, we now explore a Bayesian analysis of the mean variation and correlation variation.

3.4.1 Exploring a Bayesian Analysis of the Mean Variation

One feature of prior-posterior comparisons, like the one seen Equations 3.21 and 3.21, is that the prior

structure matters. In particular, prior dependence dictates the appropriate comparison. For the mean vari-

ation example, consider the following prior distribution on the transformed parameters space pη,λq “

pθ1 ` θ2, θ2q ¨

˚̋η

λ

˛

‹‚„ N

¨

˚̋
µ0 “

¨

˚̋0

0

˛

‹‚, Σ0 “

¨

˚̋ σ2
1 φσ1σ2

φσ1σ2 σ2
2

˛

‹‚

˛

‹‚.

Take pη0,λ0q as underlying data generating values. If φ “ 0, the parameters are a-priori independent.

Otherwise, the parameters will be dependent. We will be primarily interested in how γ changes the amount

of information η and λ receive through the Bayesian updating process. We will also be interested in how φ

changes different prior-posterior comparisons. We will compare the prior and posterior distributions for η,
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λ and λ|η. These prior distributions are

η „ N p0,σ2
1q, λ „ N p0,σ2

2q and λ|η „ N
ˆ
φ
σ2
σ2

η, p1´ φ2qσ2
2

˙
,

which we use as the basis of comparison.

If we take equal observations of each data type (nY “ nX “ n), we can further simplify our likelihood

to the likelihood of the sufficient statistics, sXn “ n´1 řn
i“1Xi and sYn “ n´1 řn

j“1 Yj . The likelihood

can be simplified to ¨

˚̋ sXn

sYn

˛

‹‚„ N

¨

˚̋

¨

˚̋η

λ

˛

‹‚, Σ “ 1

n

¨

˚̋1 0

0 γ

˛

‹‚

˛

‹‚.

Because the covarinace matrix in the likelihood is treated as known, we have that the posterior distribution

for pη,λq is also bivariate Normal. We can calculate the mean vector and variance-covariance matrix of

the bivariate normal distribution.

¨

˚̋η

λ

˛

‹‚
ˇ̌
ˇDn „ N pµ‹,Σ‹q . (3.23)

Denoting the determinant of the Σ0 to be |Σ0| “ σ2
1σ

2
2p1 ´ φ2q and letting c “ cpφ,σ2

1,σ
2
2, γ, nq “

`
n|Σ0| ` σ2

2

˘
n{γ `

`
nσ2

1 ` 1
˘
, the posterior mean is

µ‹ “

¨

˚̋µ‹
η

µ‹
λ

˛

‹‚“ 1

c

¨

˚̋n sXnp|Σ0|n{γ ` σ2
1q ` n

γ
sYnφσ1σ2

n sXnφσ1σ2 ` n
γ
sYnp|Σ0|n` σ2

2q

˛

‹‚. (3.24)

The posterior variance-covariance matrix is similarly

Σ‹ “

¨

˚̋σ‹
η
2 σ‹

ηλ

σ‹
ηλ σ‹

λ
2

˛

‹‚“ 1

c

¨

˚̋|Σ0|n{γ ` σ2
1 φσ1σ2

φσ1σ2 |Σ0|n` σ2
2

˛

‹‚ (3.25)

The prior correlation φ plays an important role in the posterior distribution. As evident in Equation

(3.24), the posterior mean is a function of both sXn and sYn. However, the contribution of sYn for estimat-

ing the posterior mean of η is weighted by nφσ1σ2
cγ . So if φ is small, the contribution of sYn to estimating the
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mean of η is equally small. Likewise, the contribution of sXn to estimating λ is controlled by φ. In fact, if

φ “ 0, the posterior distribution simplifies

¨

˚̋η

λ

˛

‹‚
ˇ̌
ˇDn „ N

¨

˚̋

¨

˚̋
nσ2

1
nσ2

1`1
sXn

nσ2
2{γ

nσ2
2{γ`1

sYn

˛

‹‚,

¨

˚̋
σ2
1

nσ2
1`1

0

0
σ2
2

nσ2
2{γ`1

˛

‹‚

˛

‹‚. (3.26)

In Section 3.3 we discussed how pη,λq are orthogonalized versions of pθ1, θ2q. In this example, the

posterior correlation is fully driven by prior correlations since the parameters are uncorrelated in the likeli-

hood. Equation (3.26) contains hints at prior posterior comparisons as γ gets large. Recall that γ controls

the informativeness of sYn for estimating λ. If γ “ 8, our model is a PIM with identifiable parameter η

and unidentifiable parameter λ. With independent priors, φ “ 0, we expect the posterior marginal distribu-

tion ppλ| sXn, sYnq and prior marginal distribution ppλq to be the same. Indeed, setting γ “ 8 yields that the

posterior marginal distribution

λ| sXn, sYn „ N p0,σ2
2q

is equal to the prior marginal distribution. We can, however, learn more about how the prior structure

plays a role in this prior-posterior comparison by inspecting this comparison for varying levels of prior

dependence.

If we allow the data quality index to increase so that we get poorer and poorer data quality γ Ñ 8, the

posterior mean vector and variance-covariance matrix converge to

µ‹ γÑ8ÝÝÝÑ

¨

˚̋
nσ2

1
nσ2

1`1
sXn

nφσ1σ2

nσ2
1`1

sXn

˛

‹‚ and Σ‹ γÑ8ÝÝÝÑ 1

nσ2
1 ` 1

¨

˚̋ σ2
1 φσ1σ2

φσ1σ2 |Σ0|n` σ2
2

˛

‹‚. (3.27)

This is the posterior distribution when the likelihood is unidentifiable, nevertheless, as stated in Theorem

3.2.1, this distribution is defined and proper. While this posterior may be defined, the tension discussed

in Section 3.2.1 begins to show itself. It is tempting to boast that the Bayesian framework allows for the

estimation of parameters even when it is unidentifiable. It is important to note, however, that the marginal
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posterior for λ when γ “ 8 is

λ|Dn „ N
ˆ
φ

nσ1σ2
nσ2

1 ` 1
sXn,σ

2
2
pnσ2

1p1´ φ2q ` 1q
nσ2

1 ` 1

˙
.

The prior correlation, φ, influences how much information transfers between the two parameters. For

example, if we select φ “ σ1{σ2, the posterior means of λ and η will be the same. This quantity also

controls the amount of “shrinkage” when comparing the prior variance to the posterior variance for λ. The

posterior variance will always be smaller than the prior variance

σ2
2
pnσ2

1p1´ φ2q ` 1q
nσ2

1 ` 1
ď σ2

2.

Equality occurs when we have independent priors. Indeed, simply comparing marginal prior and posterior

variances to detect the amount of learning can mislead us when the priors are dependent.

The accumulation of information for η occurs as typical, while it is much slower for λ. The posterior

marginal variance of η is σ2
1

nσ2
1`1

and vanishes regardless of φ, as n grows to8. The accumulation of in-

formation for λ, on the other hand, is slower. The variance of the posterior converges but does not vanish,

and it instead converges to σ2
2p1´ φ2q. Similarly, the mean converges in expectation to η0φσ2{σ1, a scaled

version of the generating parameters η0. These quantities look familiar; they are the mean and variance of

the conditional distribution of λ|η evaluated at η0. As stated in Theorem 3.4.1, the limiting posterior dis-

tribution of the unidentifiable parameter λ is the prior distribution evaluated at the true value of the iden-

tifiable parameter. To further study the impact of prior-dependence, data quality and sample size on these

prior-posterior comparisons we can inspect a global measure of similarity, the KL-divergence.

We can compare the marginal prior and posterior distributions for λ, as

KL pppλ|Dnq||ppλqq “ ´1

2
logAλ ` Aλ

2
` Bλ

2
´ 1

2
. (3.28)
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where

Aλ “ σ‹
λ
2

σ2
2

“ |Σ0|n` σ2
2

cσ2
2

“ nσ2
1p1´ φ2q ` 1

n2|Σ0|{γ ` nσ2
2{γ ` nσ2

1 ` 1
(3.29)

Bλ “ µ‹
λ
2

σ2
2

“ 1

c2σ2
2

ˆ
n sXnφσ1σ2 `

n

γ
sYnp|Σ0|n` σ2

2q
˙2

(3.30)

If this quantity is zero, the two distributions are the same for almost every λ. In this case, that only occurs

only if both Aλ “ 1 and Bλ “ 0. We know from Equation 3.19 that when γ “ 8, this comparison will be

zero under independent priors (φ “ 0). Surely enough, Aλ “ 1 and Bλ “ 0 only when both γ “ 8 and

φ “ 0. There is no direct information from the data for estimating λ, but because φ “ 0 there is also no

indirect information being passed from η.

The KL-divergence in Equation (3.28) measures the total information the data contains for λ both di-

rectly and indirectly for any data quality measure γ and prior correlation φ. We can take advantage of that

by inspecting these separately. The KL divergence measure in Equation (3.28) in the case where γ Ñ 8

provides a measure of indirect information for λ provided by η. In this case Aλ Ñ nσ2
1p1´φ2q`1
nσ2

1`1
and

Bλ Ñ n2φ2σ2
1

pnσ2
1`1q2

sX2
n. The KL divergence is then

KL pppλ|Dnq||ppλqq “ ´1

2
log

nσ2
1p1´ φ2q ` 1

nσ2
1 ` 1

` nσ2
1p1´ φ2q ` 1

2pnσ2
1 ` 1q ` n2φ2σ2

1

2pnσ2
1 ` 1q2

sX2
n ´ 1

2
. (3.31)

Because λ is unidentifiable, the change in marginal prior to marginal posterior is fully determined by the

prior structure. In fact, this quantity is driven by the prior correlation φ and the prior variance for η. This

quantity is also random and an increasing function of sX2
n, so samples with extreme means will yield large

KL-divergences.

If we take expectations over the data distribution Dn|η,λ, the KL-divergence above simplifies to

EDn|η,λ rKL pppλ|Dnq||ppλqqs “ ´1

2
log

nσ2
1p1´ φ2q ` 1

nσ2
1 ` 1

` nσ2
1p1´ φ2q ` 1

2pnσ2
1 ` 1q ` n2φ2σ2

1p 1n ` η2q
2pnσ2

1 ` 1q2 ´ 1

2

“ ´1

2
log

σ2
1p1´ φ2q ` 1{n

σ2
1 ` 1{n ` n2φ2σ2

1pη2 ´ σ2
1q

2pnσ2
1 ` 1q2

This quantity is zero when φ “ 0 for every η. The posterior inference for λ will not change (from
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the prior), even if η is learned perfectly from the data. That is, the posterior marginal distribution for this

unidentifiable parameter will be different from the prior, but the prior structure partially determines that

difference.

Even when accumulating an infinite number of observations, the marginal posterior for λ will retain

uncertainty. Take σ2
1 “ 1 for simplicity. This quantity converges to ´1

2 logp1 ´ φ2q ` φ2
`
η2 ´ 1

˘
{2

as n Ñ 8. The prior dependence structure remains because the information is useless for estimating

λ, even if infinite. It also shows that the prior correlation determines the amount of indirect information

that λ receives from η. If the prior is moderately dependent, say φ “ 0.5 then the KL-divergence will be

0.14 ` 0.25pη2 ´ 1q for large n, an increasing function of η. Changing η will greatly impact the inference

for λ since the data is not able to anchor it. Indeed, this is a perfect illustration of the need for checking

sensitivity to the prior. Here, changing the prior mean of η will greatly influence the posterior inference of

λ.

The above comparison of marginal prior and posterior distributions for λ displays a complex rela-

tionship between direct and indirect information. As discussed above, no direct information is passed to

unidentifiable parameters if we measure direct information by comparing prior and posterior conditional

distributions as in Equation (3.19). The conditional distribution for λ|η,Dn are available from standard

manipulations

λ|Dn, η „ N
´
µ‹
λ|η,σ

‹
λ|η

2
¯

where

µ‹
λ|η “ µ‹

λ ` φσ1σ2
|Σ0|n{γ ` σ2

1

`
η ´ µ‹

η

˘

σ‹
λ|η

2 “ σ‹
λ
2 ´ φ2σ2

1σ
2
2

c
`
|Σ0|n{γ ` σ2

1

˘

The KL-divergence between this conditional and the prior conditional ppλ|ηq is

KL pppλ|Dn, ηq||ppλ|ηqq “ ´1

2
logAλ|η `

Aλ|η
2

` Bλ|η
2

´ 1

2
(3.32)
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where

Aλ|η “ 1

nσ2
2p1´ φ2q{γ ` 1

and Bλ|η “ 1

σ2
2p1´ φ2q

ˆ |Σ0|n{γ
|Σ0|n{γ ` σ2

1

sYn ´ φ
σ2
σ1

|Σ0|n{γ
|Σ0|n{γ ` σ2

1

η

˙2

.

The relationship between data quality and this prior-posterior comparison is much simpler than the

marginal comparison in Equation (3.28). Taking γ Ñ 8 we have that

µ‹
λ|η Ñ η

φσ2
σ1

, and σ‹
λ|η

2 Ñ σ2
2p1´ φ2q,

so that

KL pppλ|Dn, ηq||ppλ|ηqq Ñ 0. (3.33)

This measure of direct information λ behaves as expected, it indicates no direct information for it. To

understand the behavior for a finite γ, consider the independent prior case φ “ 0. The KL-divergence

takes a similar form to the marginal comparison in Equation (3.31),

KL pppλ|Dn, ηq||ppλ|ηqq “ ´1

2
log

1

nσ2
2{γ ` 1

` 1

2pnσ2
2{γ ` 1q `

n2σ2
2{γ2

2pnσ2
2{γ ` 1q2

sY 2
n ´ 1

2

Taking expectations over the data distribution Dn|η,λ, we can simplify this to

EDn|η,λ rKL pppλ|Dn, ηq||ppλ|ηqqs “ ´1

2
log

1
n
γσ

2
2 ` 1

` n2σ2
2{γ2

`
λ2 ´ σ2

2

˘

2pnσ2
2{γ ` 1q2 (3.34)

Because we are inspecting the conditional distribution of λ given η, we can interpret this as the amount

of direct information for λ. A balance between data quality γ, sample size n, and prior marginal variance

σ2
2 determine the KL. Note that this is still a function of λ since we take expectations of the KL over the

likelihood, which is indeed a function of parameters. The quantity, n{γ, represents a measure of effective

sample size. The higher the effective sample size, the more direct information for λ. Similarly, 1{σ2
2 rep-

resents a prior sample size; a smaller prior variance corresponds to more prior information. The underlying

parameter λ plays a similar role here as in the marginal comparisons. Large values of λ lead to greater

deviations from the prior. Indeed, the KL grows as pλ ´ 0q2 following the intuition we discussed from
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Equation 3.22.

Prior-posterior comparisons help shed light on the information available to parameters from data. This

example helped us shed light on how potential measures of information flow in the Bayesian context help

disentangle direct from indirect information in a situation where the prior distribution induces both types.

We inspected the measures precisely in a few special cases, but we discovered some general trends. One

helpful feature of this example was that the indirect information flow was wholly attributable to the prior

distribution because the parameters are orthogonal. In the following section, we inspect the correlation

variation where the model parameters are not orthogonal, adding interest to our interpretations.

3.4.2 Exploring a Bayesian Analysis of the Correlation Variation

In this section, we analyze the prior-posterior measures of information flow in a situation where the param-

eters in our model are not orthogonal. We simplify the job by placing independent priors to understand the

impact of the dependence of the model parameters in the likelihood. We analyze one dataset in detail and

conduct a simulation study to understand how the data change

Recalling the formulation in Section 3.1, we observem paired observations and k from each marginal

and let α “ m{pm`kq and n “ m`k. The likelihood for a dataset Dn “
!
tpXi, Yiqumi“1, tXium`k

i“m`1, tYium`2k
i“m`k`1

)

can be written as

Lpρ,σ2;Dnq “
1

p2πqnσ2np1´ ρ2qm{2 exp

˜
´ 1

2p1´ ρ2qσ2

˜
mÿ

i“1

X2
i `

mÿ

i“1

Y 2
i ´ 2ρ

mÿ

i“1

XiYi

¸

´ 1

2σ2

˜
nÿ

i“m`1

X2
i `

m`2kÿ

i“m`k`1

Y 2
i

¸¸

In our simulations we vary α, equivalently we holdm ` k fixed and varym. In order to retain a rela-

tionship between increasing values of α we keep our paired data and sequentially add new pairs. In other

words, going from a dataset withm pairs tom` 1 pairs looks like this:

!
tpxi, yiqumi“1, txium`k

i“m`1, tyium`2k
i“m`k`1

)
Ñ

!
tpxi, yiqumi“1, pXm`1, Ym`1q, txium`k

i“m`2, tyium`2k
i“m`k`2

)
.

We, essentially, replace one set of independent marginal observations with a new paired observation (shown
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in blue) generated from the model. This allows us to study the data sets sequentially, but retain the inde-

pendence structure of the unpaired data.

In the previous example, we studied how the prior correlation shows through in prior-posterior compar-

isons in a case when the parameters were orthogonal in the likelihood. This correlation variation certainly

does not have orthogonal parameters. The parameters ρ and σ2 share a complex relationship in the likeli-

hood that we wish to explore directly, so we place priors on ρ and σ2 independent with marginals

ρ „ Betap´1,1qpa, aq and σ2 „ Gammap3, 1q. (3.35)

The prior distribution for σ2 is selected so that σ2 has a mode of 2 a-priori, far from what the true gen-

erating value will be. The prior distribution for ρ is a Beta distribution shifted and scaled to support ρ P

p´1, 1q. The hyper-parameter a controls the information for ρ contained in the prior. The priors consid-

ered will be symmetric so that the prior mode for ρ is zero with precision increasing with a.

We generate data from our model with true underlying parameters ρ0 “ 0.5 and σ2
0 “ 1. Figure 3.5

shows contour plots of a posterior distribution for pρ,σ2q given a random sample of n “ 20 data points.

The prior distributions are given in Equation 3.35 and a “ 2 is used. The true parameter values are shown

in white cross hairs. Figure 3.5 (top-left) shows the posterior distribution when all 20 points are unpaired,

i.e. there is no direct information for ρ. Instead, the curvature in the ρ direction is due to the prior. By

increasing α we add more pairs, introducing curvature in the ρ direction. Maximum a-posteriori (MAP)

estimates for ρ show a compromise between prior and likelihood information. When α “ 0, no informa-

tion for ρ is available in the likelihood and the MAP estimate of ρ is appropriately 0. As we increase α to

0.25, 0.75 and 1, the MAP estimates approach the MLE for ρ (when α “ 1) of 0.66 and are respectively

0.355, 0.625 and 0.615.

Changing α also changes our inference for σ2. When α “ 0, the MAP estimate of σ2 is 0.90, close to

the true generating value σ2
0 “ 1. When α “ 1, however, the MAP estimate is 1.27, closer to the prior

mode of 2. The impact of α on the estimates of σ2 are noticeable. Intuitively, adding paired observations

removes information from σ2, since the paired observation is replacing two independent marginals capable

of independently contributing to the inference on σ2. Recall our thought experiment: when ρ “ 1, α “ 1
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Figure 3.5: Posterior distribu on for ρ and σ2 under dataD20 generated with with ρ0 “ 0.5 and σ2
0 “ 1. Yellow corre-

sponds to high posterior density.

gives us effectively n points for inferring σ2, while α “ 0 gives us effectively 2n such points. In the same

experiment, even two paired observations provide the same amount of information for inferring ρ than do

any more pairs. Still, it is unclear whether the changes in the inference for ρ and σ2 are due to (1) noise,

(2) the interdependence between ρ and σ2, or (3) the changing information contained in the data. We con-

tinue dissecting this example to analyze (2) and (3) before providing a simulation study that addresses (1).

We can use unidentifiability to focus our conversation on information. When α “ 0, the likelihood

is unidentifiable and is indeed partially identifiable with unidentifiable parameter ρ. Because of this, and
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Figure 3.6: The two posteriors distribu on ppσ2|Dn,αq (le ) and ppσ2|ρ0,Dn,αq (right) when the true underlying gener-
a ng values are ρ0 “ 0.5, σ2

0 “ 1, n “ 20 and α P t0, 0.25, 0.5, 0.75, 1u

because the priors are independent, the following hold in this situation:

ppσ2|Dn,αq “ ppσ2|ρ,Dn,αq, (3.36)

and

ppρ|Dn,αq “ ppρ|σ2,Dn,αq “ ppρq. (3.37)

Equation 3.36 indicates that when α “ 0, the correlation parameter does not change our inference for σ2.

We have a similar conclusion for ρ. But the second equality in Equation 3.37 reminds us that the data con-

tain zero information for ρ. Using Equations 3.36 and 3.37 as anchors, we begin by exploring the inference

for σ2 and then ρ in our example.

Changing α changes both the marginal and conditional inference for σ2 – see Figure 3.6. When α “ 0,

we effectively have 40 independent marginal observations to infer σ2 most precisely. Adding more paired

data reduces the number of independent marginals and changes the inference, reducing the information.

Indeed, comparing ppσ2|ρ,Dn,αq to ppσ2|ρq provides a natural measure of direct information when eval-

uated at ρ0. In Figure 3.6 (left), α is sequentially 0, 0.25, 0.5, 0.75 and 1 the KL-divergence measure of
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Figure 3.7: The two posteriors distribu on ppρ|Dn,αq (le ) and ppρ|σ2
0 ,Dn,αq (right) when the true underlying generat-

ing values are ρ0 “ 0.5, σ2
0 “ 1, n “ 20 and α P t0, 0.25, 0.5, 0.75, 1u

direct information are 1.82, 1.39, 1.40, 1.13 and 1.3. These distributions seem to get closer to the prior

distribution (whose mode is 2) as we add more pairs. This could, however simply be due to noise.

On the flip side, observing more pairs changes the inference ρ which should, as a consequence, change

the inference for σ2. Indeed, the conditional distributions shown in Figure 3.6 (right) differ from the marginal

distributions (left). By conditioning on ρ0 we are injecting information into the system, similar to our ap-

proach in Section 3.3. If the parameters were orthogonal, this additional conditioning would make no dif-

ference (because our priors are independent). The bigger the difference, then, the stronger the dependence.

In this example the KL-divergence measures of indirect information for σ2 are 0, 0.0005, 0.0030, 0.0376

and 0.074 for α equal to 0, 0.25, 0.5, 0.75 and 1 respectively. The influence of α on ρ is, by construction,

more dramatic.

Figure 3.7 shows how marginal and conditional inferences for ρ vary with α. When α “ 0, we ob-

serve no paired observations and recover the prior distribution of ρ. As we increase the fraction of paired

observations, our inference becomes sequentially more peaked and centered around the true underlying

generating value. That the KL-divergence measure of direct information should increase with alpha from

zero is obvious. However, the comparison between the marginal and conditional, the measure of indirect

98



0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

KL(p(σ2 | ρo, Dn, α) || p(σ2 | ρo))

α

D
ire

ct
 In

fo
rm

at
io
n 
fo
r σ

2

●

●

●

● ●

●
●

●

●
●

●
●

●

●

● ●

●

●
● ●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

● ●
●

●
●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

● ●

●

●

● ●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ● ●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

● ●
●

●

●

●

● ●

●

●
●

●

●
●

●

● ●

●
● ●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●
● ●

●

● ●

●

●
●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

● ●

● ●
●

●

●
●

●

●

●

●
● ●

●

●

●

●

● ●

●

●
●

●

●

●
●

●
●

●

●

● ●

●
●

● ● ●

● ●

●
●

●

●

●

●

●

●

●
● ●

●

● ●

●

●
●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●
● ● ●

●
●

●

●

● ●

●
●

●

●

●
●

●

● ●●

● ●
● ●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

● ●

● ●
● ●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

● ●
●

● ● ●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●
●

●

●
● ●

● ●

●

●

●

●

●

●
● ● ● ●

● ●

●

●

●

●

●

● ●
● ●

●

●

●

●
●

●

●

● ●

● ●
●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

● ●

● ●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●
●

●
●

● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ● ●
●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ● ●

● ●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
● ●

● ●

●

●

●

● ●
●

●

●

●

●

●

●
● ●

●
●●

●

● ●

●

●
● ● ●

●
●

●

● ●
● ●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

● ●
●

●

●

●

●

● ● ●

●
●

●

●
●

●
●

●

● ● ●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

● ●

●
●

● ●

●
●

● ●

● ●

●

●

●

●
●

● ●

● ●

●

●
●

●

●

●

●

●

● ●
● ●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

●

●
●

●

●

● ●

● ●

●

●

● ● ●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

● ●
●

● ●
●

●

●

●

●

● ●
●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

● ●

●

●

● ● ●

●

●

● ●

●

● ● ●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

●
●

●

●

●

●

● ●
●

● ●

●

● ●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

● ●

●
●

● ●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●
● ● ●

●

●
●

●

●

● ●
● ●

●

●

● ●
●

●

● ●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

● ●

●
●

●

● ●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ● ●
●

● ●

●
●

● ●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ● ●
● ●

● ●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●
●

● ●

●

●
● ●

● ●

●

●

●

● ●

●
● ●

●
●

●

●

●

●

● ●

● ●

●

●
●

●
●

●
●

● ●

●

●
●

● ●
●

●

●

● ●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

● ●
●

●

●

●

● ● ●

●

●

●
●

● ●
●

●
● ●

●

●
●

●

●

● ●

●
●

● ●

●

● ●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
● ● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

● ●

●

●
●

●

●

●

●

● ●

● ●

●

●
●

●

●
●

●

●
●

●

●

●
● ●

●

●

● ●

● ●
● ●

● ● ●

●

●

●

●

●

●

● ● ●
● ●

● ● ●

● ●
● ●

●

● ●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

● ● ●

●
●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

● ● ●

●

●

●

●
● ●

●
● ●

● ● ●

●

● ●

●

●

● ●

●
●

●

● ●
● ● ● ● ● ●

●
●

●

●

●

●

● ●

●
● ●

●

●

●

●
● ●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

● ● ● ●
●

●
● ●

●

● ● ● ●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

● ● ●
●

● ●

●
● ● ●

●
●

●

●
●

●

● ●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●
●

● ●

●

● ●

●

●
●

●

●

●
●

●
●

● ●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

● ●
●

● ●
●

●

●

●

●

●
● ●

●

●

●
●

●

● ● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

● ●
●

●

●

●

● ● ●

●

●

●

●

●

●
●

● ●

●

●

●

●
● ●

●

●
●

● ●
●

●
● ● ● ● ●

●

● ● ●

●
●

●

● ● ●

●
●

●

●

●● ● ●

●
●

●

●
●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●
●

●

●

● ●

●

●
● ●

●

●

●

KL(rep)
median(KL(rep))
quartiles(KL(rep))

KL(example)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

KL(p(σ2 | ρo, Dn, α) || p(σ2 | Dn, α))

α

In
di
re
ct

 In
fo
rm

at
io
n 
fo
r σ

2

● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ●
●

●

●

●
●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●

●

●

●

●

●

● ●
● ● ●

● ● ● ●
●

●

● ● ●

●
●

● ●

●

●

●

● ● ●

●

● ●
● ● ● ● ● ● ● ● ● ●

● ●
● ● ●

● ● ● ●
●

●
●

● ●

●
● ● ●

●
● ●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●
● ●

●
●

● ●

● ● ● ● ●
● ● ● ● ● ●

●

●

●
●

● ● ● ● ● ● ● ●

●

● ●

● ● ● ● ● ●
● ●

● ● ● ●
●

● ● ● ●
● ● ● ●

● ● ● ● ● ● ●
● ●

●
●

●
●

● ●

●
●

●

●

●
●

● ● ● ●

●

●

●

● ● ●

●
●

● ●

● ●
●

●

●

● ●

● ● ● ● ● ● ●
●

● ● ●
●

●

● ●

●
●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

●
● ● ●

● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ●

● ●
●

●

● ● ● ● ● ● ●
●

●
●

● ●

●
●

●
● ● ●

●

●

●

● ● ● ● ● ● ● ● ●
●

●

●
●

● ●
●

● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●
●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ●

●
●

●

●

●

● ● ● ● ● ●
●

● ● ● ● ●

●

●

●

●

●

●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
●

●

●
●

●

● ●

● ●
● ● ●

● ● ● ● ● ●
●

● ●
●

●
● ●

●
●

● ●

●

● ● ● ● ● ● ●
●

●
●

●

●
●

●
●

●

●

● ● ● ●
● ● ●

● ● ● ● ● ● ●
●

● ●

●
● ●

●

●
●

●
●

● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●
●

●

●
●

●

●

●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

● ●

●

●

● ● ● ● ●

●

●

● ● ● ● ● ●
● ●

● ● ●
●

● ●

● ● ● ● ● ● ● ● ● ●
● ● ●

●
●

● ● ●

●

●

●

● ● ● ● ● ● ●
● ● ● ●

●
● ● ● ●

● ● ● ●
●

● ●
●

●
● ●

● ●
● ●

● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ●
●

●

●

●

● ●
●

●

●

●

● ● ●

● ● ● ● ● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ●

●

● ● ● ●
● ● ● ● ● ● ● ●

●
●

●
●

●

●

●

●
●

● ● ● ● ● ● ● ● ●
●

● ●
● ●

● ●

● ● ●
● ●

● ● ● ● ● ● ●

●
●

●

● ●
●

●

●
●

●
● ●

●

●

● ● ● ● ● ● ● ●
● ●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ●
● ●

●

●
●

●
●

●

● ● ● ● ● ● ●

●

●

●

●

●

●

●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
●

● ●

●
●

●

●
●

●

●

●

● ●

● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

● ●

●

●

●

● ●

●

●
●

●
●

●

●

●

● ●
● ●

●
●

●

●
●

●
●

● ● ● ● ● ● ● ● ●

● ● ● ● ●
●

● ● ●
● ●

●

● ● ● ● ● ● ●
● ● ●

●
● ●

●
●

●
●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ●
● ●

●

●

●

● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●
● ● ● ● ●

● ● ● ● ● ●
●

●
●

● ●

●
●

● ●

●

●

●

●

● ●

●

●
●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●
●

●
●

●
●

● ●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

● ● ● ● ● ● ●
● ●

● ● ●

●

●

●

●
●

●

●

●

●

● ● ● ● ● ●
● ● ●

● ● ●
● ● ●

●
● ●

●

●
●

● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

● ● ● ●

● ●
● ● ● ● ● ● ●

● ● ● ● ●
● ● ●

● ●
●

●

●
● ● ●

●
●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●

● ● ●
●

●
● ●

●

●
●

●

● ●
● ●

●

●

●

●

●

●

● ● ●
● ●

● ●
● ● ● ● ●

●

●

●
● ●

●
●

●
●

● ● ● ● ● ● ●
●

● ● ● ● ● ●
● ●

●

●
● ● ●

● ● ● ● ● ● ●
● ● ● ● ●

● ●
● ● ● ●

● ● ●

● ● ● ● ● ● ● ● ●
●

● ● ●
●

●

●

●
●

●

● ●

● ●

●

●

●

● ●

●
● ●

●
● ●

●

●

●
●

●

●

● ●

● ● ● ● ● ● ● ● ● ● ●
● ● ●

●
●

● ●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ●
●

● ● ●
●

●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ●

●

●

●

●
●

●
●

●

●
●

●

●

● ●
● ● ●

● ● ● ● ●
●

●
● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

● ● ● ● ● ●
●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●

●

●

●

●

● ● ● ● ● ●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ●

● ●

● ●

●

●
● ●

●

●

●
●

● ● ● ● ● ● ●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ●

●
●

● ●
●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

● ●

● ● ● ● ● ●
●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

● ● ●

●

● ● ● ●

●
●

● ●

●

●

●
●

●

●

●

●

● ● ●

●
●

● ● ● ● ● ● ●

●
●

● ●
●

●

●

● ●

●

● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ●
● ● ● ●

● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

● ● ● ●
●

●

●
●

●

●

●

● ● ● ● ● ●
● ●

●
● ●

● ● ● ● ● ●
● ● ●

●

● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ●
● ● ●

●
●

●

●

●

● ● ● ● ● ● ● ● ●

●

●
●

●

●

●

●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●
●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ●

●
●

●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●
●

●

●
● ● ● ● ● ● ●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●

●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ●
●

●

●

●
●

●

●

KL(rep)
median(KL(rep))
quartiles(KL(rep))

KL(example)

Figure 3.8: Measures of direct and indirect informa on for σ2 with replicates shown in colored dots. The mean and two
quar les shown in lines.

information, is more subtle.

If ppρ|σ2
0,Dn,αq is equal to ppρ|Dn,αq, then injecting complete information for σ2 does not add to the

inference of ρ beyond what the data already tells us. Indeed, Figure 3.7 shows that ppρ|σ2
0,Dn,αq is more

peaked than ppρ|Dn,αq for these data, so the additional information does help. In fact, this comparison is

the measure of indirect information information for ρ. In our example dataset, they are 0, 0.02, 0.04, 0.3

and 0.32 for increasing α. These differences are not large, but they are not zero. This means that the infer-

ence on σ2 indeed changes the inference for ρ. Larger differences occur for the measure of direct informa-

tion for ρ.

The equality of the distributions in Equation 3.37 anchor the direct information. When α “ 0, the con-

ditional posterior and conditional prior are equal. A difference would indicate that the data provide infor-

mation beyond that which is explained by the other parameter. Indeed, for the increasing values of α the

KL divergence between ppρ|σ2
0,Dn,αq and ppρ|σ2

0q are 0, 0.48, 0.72, 1.2 and 1.3. These differences are

much larger than the measures of indirect information for ρ. It is unclear whether these trends of increas-

ing information are systematic of simply due to noise.

Simulation Study
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In order to understand whether the trends observed in our example dataset are systematic, we simulate

100 replicated data sets and analyze them for increasing values of α. We keep our sample size at n “ 20

but vary α to include one new pair at a time. That is, we study our information measures for α at incre-

ments of 1{20.

Figure 3.8 shows our measures of direct and indirect information for σ2. This variance parameter is

always identifiable; the inference for σ2 should differ from the prior. Indeed, Figure 3.8 (left) shows that

the large amount of direct information the data contain for estimating σ2 is stable across α. The median

KL measure is around 1.5, but values above 2 occur frequently. In our first example (shown in black) we

observed a decreasing amount of information for σ2.

This extreme change in information content for σ2 is atypical. Indeed the median KL divergence among

replicates does not noticeably decrease with α. Upon further inspection, we found that both the paired and

marginal observations contained several outliers that inflate the inference on σ2 when α is large. To give

a rough idea: when α “ 0.7, the MLEs are 0.67 for ρ and 1.48 for σ2, but when α “ 0.3 the MLEs were

instead 0.47 and 1.1 respectively. Because we purposefully selected a prior for σ2 with a mode of 2, the

posterior distributions for higher α were close to the prior. Our measures are sensitive to atypical data, an

issue we discuss further below.

The indirect information for σ2 tells a different study – it is shown in 3.8 (right). Knowing ρ will change

our inference for σ2. The impact is minimal, but for some samples it can be large. This difference is largest

when α “ 1. At this point, the data can most precisely estimate ρ, and that additional information changes

the inference for σ2 most drastically. These observations are interesting, but let us inspect the information

content for ρ, our primary parameter.

These measures of information flow are not calculable in practice as we do not know the actual underly-

ing parameter values pρ0,σ2
0q. In practice, we can either inspect these quantities as we vary the condition-

ing parameter or can use a plug-in estimate. One option would be to the MAP estimate of the conditioning

parameter, we do this and shown in Appendix B.4. Using a plug-in estimate will, however, underestimate

the indirect information. When we condition on the true underlying parameters, we are injecting infor-

mation from two independent sources: the data and the independent knowledge of the actual parameter.

However, conditioning on the MAP estimate injects information from the data into the posterior twice: by
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Figure 3.9: Measures of direct and indirect informa on for ρ with replicates shown in colored dots. The mean and two
quar les shown in lines.

conditioning on the data directly and, again, by conditioning on a data-driven estimate of the parameter.

This leads to an underestimation of the indirect information.

The indirect information for ρ shown in Figure 3.9 (right) increases with α, and is relatively small. Our

example dataset, shown in black, is typical in the sense that it follows the general trend of other data sets

but atypical in that it shows relatively large measures when we introduce more pairs. The measures of

indirect information do vary across simulations in our setting, but the majority stay below 0.2 for nearly

every value of α. However, because this quantity is positive, the inference for ρ is affected indirectly by

σ2 on average, if slightly. However, as expected, the inference for ρ is more sensitive to the data structure

as measured by the direct information.

Figure 3.9 (left) shows our measure of direct information for ρ. The lines and dots in black show the di-

rect information measure for the example analyzed in detail above. Indeed, the information systematically

grows as we increase α, but the variability is extreme. Our example showed a KL of 1.2 for α “ 1. This

KL is near the 75th percentile but nowhere near the largest values. Relative to the measures of indirect in-

formation, the measures of direct information are large. When α “ 1, the conditional posterior distribution

for ρ tends to be at a KL-divergence of 1 from the prior. To give a rough idea of what this means, we use
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KL-divergence formula for two univariate Normal distributions in Equation 3.22. The prior distribution

on ρ, if approximated by a Normal, would have mean µ‹ “ 0 and standard deviation roughly σ‹ “ 0.45.

When α “ 1 the posterior modes for ρ|σ2
0 tend to be roughly around the true generating value of 0.5. If the

posterior mode is µ̃ “ 0.5, the posterior standard deviations would roughly tend to be σ̃ “ 0.18 (since the

KL-divergence tends to be 1); that is, the posterior distributions tend to be 2.5 times more precise than the

prior.

Several simulated data sets exhibit spikes in direct information for ρ at α around 0.2 and 0.3 (corre-

sponding to 4 and 6 observed pairs), but then decrease and return to typical values. The first several pairs

in these data fall nearly perfectly in line. The conditional posterior distributions for ρ|σ2
0 , therefore, con-

centrate near one, creating a spike in the KL-divergence when compared to the prior. After observing a

few more pairs, the correlation begins to decrease and so the KL divergence between the prior and poste-

rior return to average levels.

This points to the issue of atypical data discussed earlier. We measure changes in the information as

changes in inference. In comparing prior and posterior distributions, we are comparing prior inference for

ρ versus posterior inference for ρ. If we observe one new data point that drastically changes our posterior,

we say that point contains lots of information for the parameter of interest. This issue is troubling because

it gives undue weight to atypical data, like outliers. In the correlation variation observing a high leverage

point (one that does not fall into the typical trend of the data), we would say that that point contains a large

amount of information for ρ. While this is indeed worrisome, the promise of measures of information may

still be worth the trouble. Being able to separate information gained by introducing new data from the

information gained from other model parameters is a useful tool in the model building process.

3.5 Discussion

In this chapter, we explored measures of the flow of information from a Bayesian and a classical inference

perspective. We used unidentifiable and orthogonal parameters as the cornerstone on which we built our

measures of information flow. We discussed the connection between the direct flow of information and

unidentifiable parameters. When a parameter is unidentifiable, the data provide no direct information for
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that parameter. We also discussed the connection between the indirect flow of information and orthogonal

parameters. Parameters are orthogonal if their Fisher co-information is zero; in this case, no information

passes between them.

We introduced measures of information flow in the context of both likelihood and Bayesian analysis.

In the likelihood analysis framework, we use the Fisher information matrix to measure the impact non-

orthogonality through what we called the redirection penaltyRRP pθq, a quantity between 0 and 1. This

quantity measures the impact redirecting part of the information available in the data for estimating θ to

aid in the estimation of other model parameters. If the redirection penalty is zero, the inference on θ is

as-if it were the only parameter in the model. That is, the precision for estimating θ does not get worse

because of the presence of other model parameters. As the redirection penalty increases, the amount of

information that flows directly to θ decreases. The precision for estimating θ gets worse precisely because

we need to distribute the information available for it to other model parameters.

In the Bayesian analysis framework, we consider prior-posterior comparisons to measure direct and

indirect information for model parameters. In the Bayesian setting, model parameters can inform one an-

other through their dependence in the likelihood (as in the likelihood analysis framework), but also their

prior relationship. To study the potential flow of information we considered marginal prior-posterior com-

parisons to measure overall information, conditional prior-posterior comparisons to measure direct in-

formation and these two together to measure indirect information. When parameters are orthogonal, and

priors are independent, there is no indirect information passed between model parameters. The marginal

prior-posterior comparison would show no change. If parameters are orthogonal, but we have dependent

priors the correct comparison would, instead, be the difference between the conditional prior and condi-

tional posterior. When model parameters are unidentifiable, there is no direct information available for

them in the data. We would observe no change in conditional prior-posterior comparisons, regardless of

the prior is structure.

Measures of information flow follow naturally in the Bayesian inference paradigm, the concerns of

unidentifiable parameters are of no concern and indeed help anchor our measures. However, the KL-

divergence measures we provide are difficult to interpret and do not fully characterize the nature of chang-

ing information. The likelihood-based measures, on the other hand, had intuitive and straightforward in-
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terpretations. Still, other measures of distributional differences may be more interpretable. de Carvalho

et al. (2017) discuss a bounded measure of distributional similarity similar to the Pearson correlation while

Xie & Carlin (2006) discuss measuring prior and posterior precision directly, a compromise between our

likelihood and Bayesian measures of information.

Our explorations involved the simple case where we have two parameters and consider the flow of

information either directly from the data or indirectly through a second parameter. Some explorations

can be extended immediately to the case of three or more parameters. For example, with the redirection

penalty, we can study the penalty for redirecting the information available for θ1 through both θ2 and θ3,

RRP pθ1|θ2, θ3q or for each θ2 and θ3 in turn,RRP pθ1|θ2q andRRP pθ1|θ3q. If θ1 and θ2 are informed

by the same data, but θ1 is orthogonal to θ3 then we would expectRRP pθ1|θ2q to be rather large and

RRP pθ1|θ3q to be 0. This knowledge would allow the model-builder to inspect θ3 and decide its impor-

tance in the model and potentially choose to remove it.

Information, like water, can be elusive. It is difficult to know how it behaves when passed through the

intricate channels of a model. However, we can learn about this process by studying how satiated each

parameter is and how extensive the channels are between parameters to allow for information to pass. In-

formation is also powerful. It can inform model parameters that validate and cement scientific knowledge

like a river leaving the Grand Canyon in its tracks.

104



A
Technical Details for Chapter 1

A.1 Intensive and Extensive Marginal Effects for Two-Part Models

Another causal analysis relevant when discussing data with excess zero are known as intensive and ex-

tensive marginal estimands – the marginal analysis. This causal analysis can be made precise in zero-

truncated models by removing the ambiguity of zero-observations, we call subjects with non-zero out-

comes “participants” and subjects with zero outcomes “non-participants”. Roughly, the marginal effects

measure the impact of a treatment on participation amounts for two separate subgroups of interest, those

who would participate regardless of treatment and those who would participate only with treatment. See

Heckman (1979) for an overview of Hurdle models and Staub (2014) for a review of intensive and ex-
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tensive marginal effects for these models. We give a brief overview here to make the marginal analysis

precise. Recall that the data generating mechanism for a Hurdle model is as a mixture of zeros and a zero-

truncated distribution, taking this as the data generating mechanism of potential outcomes we have that

Yip0q „ ZTPoispp0,λ0q and Yip1q „ ZTPoispp1,λ1q

Letting Ti P t0, 1u be the treatment indicator for subject i, we can write the principal strata of interest

for the marginal analysis. Following Staub (2014), the principal strata are shown in Table A.1. Because

these strata are defined by both potential outcomes, we can never observe these principal strata directly.

However, because the hurdle model provides the group labels marginally, we can notice that

p0 “PrpYi “ 0|Ti “ 0q “ πNP ` πS1, p1 “PrpYi “ 0|Ti “ 1q “ πNP ` πS2,

p1´ p0q “PrpYi ą 0|Ti “ 0q “ πP ` πS2 and p1´ p1q “PrpYi ą 0|Ti “ 1q “ πP ` πS1.

If we are willing to assume there are no Switchers (2), i.e. πS2 “ 0, we can identify these proportions

because we can estimate both p0 and p1 from the data and our model. This is essentially assuming that

the intervention doesn’t make matters worse and is known as the Monotonicity Assumption (Imbens &

Rubin, 2015). Given this assumption, we can break down the ATE causal estimand described above into a

weighted average of the intensive marginal effect, τI , and the extensive marginal effect, τE as

ErYip1q ´ Yip0qs “ τI Pr pYip0q “ 0, Yip1q ą 0q ` τE Pr pYip0q ą 0, Yip1q ą 0q

“ πS1τI ` πP τE

where τI “ E
“
Yip1q

ˇ̌
Yip0q “ 0, Yip1q ą 0

‰
and τE “ E

“
pYip1q ´ Yip0qq

ˇ̌
Yip0q ą 0, Yip1q ą 0

‰
.

The Extensive Marginal Effect can be interpreted as the overall treatment effect on the subgroup of sub-

jects who would participate regardless of the treatment while the Intensive marginal effect measures the

overall treatment effect only among those who are encouraged to participate with treatment. These effects

can typically be bounded from observed data, see Staub (2014) for a complete overview on the procedures.
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Label Subgroup Potential Outcomes Proportion
NP Nonparticipants pYip0q “ 0, Yip1q “ 0q πNP

S1 Switchers (1) pYip0q “ 0, Yip1q ą 0q πS1

S2 Switchers (2) pYip0q ą 0, Yip1q “ 0q πS2

P Participants pYip0q ą 0, Yip1q ą 0q πP

Table A.1: Four principal strata defined by poten al outcomes from a Hurdle model

A.2 Mean and Variance of zero-inflated distributions

In this section we derive the mean and variance of a general zero-inflated distribution. For the following,

let F pθq represent a general distribution with finite mean µpθq and variance σ2pθq. We can define a zero-

inflated random variable as

Yi „

$
’’&

’’%

0 w.p. p

F pθq w.p. 1´ p.

For example, for F “ Poispλq we have the parameters µ “ σ2 “ λ. If Yi is a zero-inflated Poisson we

say Yi „ ZIPoispp,λq, but more generally we could say Yi „ ZIF pp, θq.

We express the ZIF random variable as the product of two random variables. Let

(1) Zi „ Bernppq

(2) Xi „ F pθq

(3) Xi KK Zi

Our zero-inflated random variable is then Yi „ p1´ ZiqXi, with mean and variance:

ErYis “ Erp1´ ZiqXis “ E rErp1´ ZiqXi|Ziss “ E rp1´ ZiqErXi|Ziss

“ E rp1´ ZiqErXiss “ E rµp1´ Ziqs

“ µ p1´ ErZisq “ µp1´ pq
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varpYiq “ ErvarpYi|Ziqs ` varpErYi|Zisq

“ Erp1´ Ziq2varpXi|Ziqs ` varpµp1´ Ziqq

“ Erp1´ ZiqvarpXiqs ` µ2varp1´ Ziq

“ Erp1´ Ziqσ2s ` µ2varpZiq

“ σ2Erp1´ Ziqs ` µ2pp1´ pq

“ σ2p1´ pq ` µ2pp1´ pq “ p1´ pqpσ2 ` pµ2q

where for the variance calculation we made use of the fact that since Zi is either 0 or 1, p1 ´ Ziq “ p1 ´

Ziq2.

A.3 Derivations for model-based Confidence Intervals

ATE estimation using Zero-Inflated Models

In Sections 1.4.2 we introduced a procedure for using zero-inflated models for estimating ATE. The

approximation of the model parameters (p̂0, p̂1, µ̂0, µ̂1) is rarely done directly, instead it is usually fit with

a two part model. In the first part, a binary regression (typically logistic) is fit to a latent mixture indicator

with parameters pα0,α1q. Then, as a second stage, a generalized linear model (with an F -specific link)

is fit to the sampling distribution with parameters pθ0, θ1q. For example, if we fit a zero-inflated Poisson

distribution with a logit link for the zero part, and a log link for the sampling distribution then

pt “ expitpαtq and µt “ exppθtq for t “ 0, 1.

In order to construct confidence intervals for τ̂zif we need to consider a Delta Method that accounts for

two things. (1) the link functions connecting the parameters pα̂t, θ̂tq to p̂t and µ̂t and (2) the combination

of these parameters into the estimate τ̂zif . To be specific, consider the common case of the zero-inflated

Poisson. If we fit out outcomes using dummy variables for treatment* we get estimates of pα̂0, α̂1, θ̂0, θ̂1q
*Two-group comparisons using models is most cleanly done using dummy variables: T0=1*(T==0) and

T1=1*(T==1)
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directly with default log link for the sampling distribution and logit link for the zero part as well as a co-

variance matrix, Σ̂, of these estimates.†. The first set of transformations invert the link functions for the

two parts of the model separately,

¨

˚̊
˚̊
˚̊
˚̋

p̂0

p̂1

λ̂0

λ̂1

˛

‹‹‹‹‹‹‹‚

“ g1pα̂0, α̂1, θ̂0, θ̂1q “

¨

˚̊
˚̊
˚̊
˚̋

expitpα̂0q

expitpα̂1q

exppθ̂0q

exppθ̂1q,

˛

‹‹‹‹‹‹‹‚

while the second transformation converts these parameter estimates to the effect estimate of interest,

τ̂zif “ g2pp̂0, p̂1, λ̂0, λ̂1q “ p1´ p̂1qλ̂1 ´ p1´ p̂0qλ̂0.

We lay these out separately because it is important to keep in mind the potential sources of variance

inflation/compression. If the transformation changes the space drastically, as the expit function would for

α̂t far from zero, the variance associated to p̂t would also be large as a consequence. If, on the other hand,

we consider a transformation to the mean involving the reciprocal of a parameter θ̂t as we might observe in

the mean of a Beta-Binomial distribution, we would observe variance compression for large values of θ̂t.

Simply joining these transformations will simplify the Delta method calculation since

τ̂zif “ gpα̂0, α̂1, θ̂0, θ̂1q “ p1´ expitpα̂1qqexppθ̂1q ´ p1´ expitpα̂0qqexppθ̂0q.

Recall that our estimand of interest can be written as a function of a four-dimensional parameter pθ0, θ1,α0,α1q,

that is

τsp “ p1´ expitpα1qq exppθ1q ´ p1´ expitpα0qq exppθ0q.

†We can fit the zero inflated Poisson distribution with zeroinfl(Y„0+T0+T1|0+T0+T1,dist=”poisson”) and
covariance matrix can be extracted using the vcov function
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The standard error of τ̂zif is obtained using the Delta method. For this, we need the partial derivatives

of this function with respect to the original parameter space. This is

∇τsppθ0, θ1,α0,α1q “

¨

˚̊
˚̊
˚̊
˚̋

´p1´ expitpα0qq exppθ0q

p1´ expitpα1qq exppθ1q

expitpα0q p1´ expitpα0qq exppθ0q

´expitpα1q p1´ expitpα1qq exppθ1q

˛

‹‹‹‹‹‹‹‚

.

The standard error estimate of τ̂zif as

ySEzif “
b
∇gpα̂0, α̂1, θ̂0, θ̂1qT Σ̂ ∇gpα̂0, α̂1, θ̂0, θ̂1q.

Again, using ML plug-in estimates to approximate our estimator’s sampling variance, we obtain a Normal

approximation and Delta method-based confidence interval,

τ̂zif ˘ zα{2 ySEzif .

ATE estimation using Zero-Inflated Models with Covariate Information

In Section 1.5.1 we introduced a method for deriving confidence intervals for the ATE from fitting

Zero-Inflated generalized linear models. The unconditional ATE estimand is a function of the 6-dimensional

parameter space as well as the covariate distribution FXp¨q,

τsp “ p1´ Epα1,β1qq exppθ1q ´ p1´ Epα0,β0qq exppθ0q.

When using the typical logistic regression setup, we have Epα,βq “ ş
expit pα` βxq dFXpxq. This is

the expectation of a logit-Normal distribution with parameters α and β which can be calculate through

numerical integration when the covariates are (even approximately) Normally distributed.

The maximum likelihood estimate of this quantity is obtained using the plug-in principle. However, the

standard error of the estimate shown in Equation (1.8) is obtained using the Delta method. For this, we
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need the partial derivatives of τsp with respect to the original parameter space. These are

∇τsppθ0, θ1,α0,α1,β0,β1q “

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

´p1´ Epα0,β0qq exppθ0q

p1´ Epα1,β1qq exppθ1q
B

Bα0
Epα0,β0q exppθ0q

´ B
Bα1

Epα1,β1q exppθ1q
B

Bβ0
Epα0,β0q exppθ0q

´ B
Bβ1

Epα1,β1q exppθ1q

˛

‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

.

The partial derivatives have a complex form, we derive these generically as

B
BαEpα,βq “ B

Bα

ż
expit pα` βxq dFXpxq

“
ż B

Bαexpit pα` βxq dFXpxq

“
ż
expit pα` βxq p1´ expit pα` βxqq dFXpxq

“
ż
expit pα` βxq dFXpxq ´

ż
pexpit pα` βxqq2 dFXpxq

“ Epα,βq ´
ż
pexpit pα` βxqq2 dFXpxq.

The second term is the second moment of a logit-Normal distribution and can be easily calculated via nu-

merical integration. Similarly, the derivative with respect to the covariate effect β is

B
BβEpα,βq “ B

Bβ

ż
expit pα` βxq dFXpxq

“
ż B

Bβ expit pα` βxq dFXpxq

“
ż
x expit pα` βxq p1´ expit pα` βxqq dFXpxq

“
ż
x expit pα` βxq dFXpxq ´

ż
x pexpit pα` βxqq2 dFXpxq.

These two terms are also tractable using numerical integration. We can now evaluate the gradient at the
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MLE and obtain the confidence intervals for τ̂zip,x specified in Equation (1.8).

A.4 Definitions of Quantities used in Simulation Analysis

We define some quantities of interest to our different estimates. For each simulation setting we can ap-

proximate the the bias and variance of our estimators and standard error estimators with R “ 2000 repli-

cated data sets. For each dataset we will have four estimators and corresponding standard error estimates,

we denote the estimates for the rth with a superscript prq, for the Neymanian, linearly-adjusted, model-

based and model-based with covariate adjustment we have

pτ̂ prq, τ̂ prqlm , τ̂ prqzif , τ̂
prq
zif,xq and pySEprq

,ySE
prq
lm ,ySE

prq
zif ,ySE

prq
zif,xq.

The bias for the Neymanian estimate is

|Biaspτ̂q| “
ˇ̌
ˇ̌
ˇ
1

B

Rÿ

r“1

τ̂ prq ´ τsp

ˇ̌
ˇ̌
ˇ .

We can similarly estimate the absolute bias for the other estimators.

We also investigate the the possibility of precision gains, for this we investigate the average standard

error estimates for the methods across the replicated data sets. For the Neymanian estimate we have,

AvepySEq “ 1

B

Rÿ

r“1

ySE
piq
.

We can similarly estimate the precision gains for the other estimators.

Finally, we inspect how modeling assumptions might change the precision of standard error estimates.
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For this we inspect the precision of SE estimates, it can be approximated with

sdpySEq “ 1

B

Rÿ

r“1

ˆ
ySE

prq ´AvepySEq
˙2

.
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B
Technical Details for Chapter 3

B.1 Proofs

Proof of Theorem 3.2.1.

Proof. Given
ş
Θ ppθqdθ “ c1 ă 8 and

ş
Y ppy|θqdy “ c2 ă 8 we can show

ż

Θ
ppy|θqppθqdθ ă 8, a.e. y P Y.
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Because ppθq ą 0, θ P Θ and ppy|θq ą 0 for θ P Θ and y P Y , the Fubini–Tonelli theorem gives us

ż

Y

ż

Θ
ppy|θqppθqdθdy “

ż

Θ

ż

Y
ppy|θqppθqdydθ “

ż

Θ
ppθq

ż

Y
ppy|θqdydθ

“
ż

Θ
ppθqc2dθ “ c2

ż

Θ
ppθqdθ “ c1c2 ă 8

Therefore,
ş
Y

ş
Θ ppy|θqppθqdθdy ă 8, hence

ş
Θ ppy|θqppθqdθ ă 8 for almost every y P Y .

B.2 Calculations for Section 3.3

Here we provide the calculations for the quantities discussed in Section 3.3.

Fisher Information of the Correlation Variation

In this example we observe a total ofm observations from a bivariate Normal distribution and k “

n ´ m observations from both corresponding marginals of the bivariate Normal. The likelihood function

for ρ,σ2
X ,σ2

Y is

Lpρ,σ2
X ,σ2

Y q “ LXLXY LY “
kź

i“1

1b
2πσ2

X

exp
ˆ
´ x2i
2σ2

X

˙

k`mź

i“k`1

1

2π
b
p1´ ρ2qσ2

Xσ2
Y

exp
ˆ
´ 1

2p1´ ρ2q

ˆ
x2i
σ2
X

` y2i
σ2
Y

´ 2ρxiyi
σXσY

˙˙

2k`mź

i“k`m`1

1b
2πσ2

Y

exp
ˆ
´ y2i
2σ2

Y

˙

We later simplify things but in order to reuse some of these keep different marginal variances forX and

Y . Consider one observation from each of the three types of data. The second and third type (marginal

data) will provide zero Fisher information toward estimating ρ and the second type will only contribute to

estimating σX and not σY and vise-versa.

X Marginal observation
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ℓX “ ´ x2i
2σ2

X

´ 1

2
logpσ2

Xq ` c

BℓX
Bpσ2

Xq “ x2i
2σ4

X

´ 1

2σ2
X

B2ℓX
Bpσ2

Xq2 “ ´ x2i
σ6
X

` 1

2σ4
X

So the Fisher Information for σ2
X is

´E
„ B2ℓX
Bpσ2

Xq2
ȷ
“ 1

σ4
X

´ 1

2σ4
X

“ 1

2σ4
X

The likelihood here does not involve the correlation or σY .

Y Marginal observation

ℓY “ ´ y2i
2σ2

Y

´ 1

2
logpσ2

Y q ` c

BℓY
Bpσ2

Y q
“ y2i

2σ4
Y

´ 1

2σ2
Y

B2ℓY
Bpσ2

Y q2
“ ´ y2i

σ6
Y

` 1

2σ4
Y

So the Fisher Information is

´E
„ B2ℓY
Bpσ2

Y q2
ȷ
“ 1

σ4
Y

´ 1

2σ4
Y

“ 1

2σ4
Y

Bivariate Observation The likelihood for one bivariate observation pxi, yiq is

ℓXY “ ´ 1

2p1´ ρ2q

ˆ
x2i
σ2
X

` y2i
σ2
Y

´ 2ρxiyi
σXσY

˙
´ 1

2
logpσ2

Xq ´ 1

2
logpσ2

Y q ´
1

2
logp1´ ρ2q ` c
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Consider the special case where σX “ σY “ σ, then the likelihood becomes

ℓXY “ ´ 1

2p1´ ρ2q

ˆ
x2i
σ2

` y2i
σ2

´ 2ρxiyi
σ2

˙
´ 1

2
logpσ2q ´ 1

2
logpσ2q ´ 1

2
logp1´ ρ2q ` c

“ ´ 1

2p1´ ρ2qσ2

`
x2i ` y2i ´ 2ρxiyi

˘
´ logpσ2q ´ 1

2
logp1´ ρ2q ` c

“ ´ x2i ` y2i
2p1´ ρ2qσ2

` ρxiyi
p1´ ρ2qσ2

´ logpσ2q ´ 1

2
logp1´ ρ2q ` c

The Fisher Information matrix for ρ,σ2 under the bivariate observations is

IXY pρ,σ2q “ m

¨

˚̋
1`ρ2

p1´ρ2q2 ´ ρ
σ2p1´ρ2q

´ ρ
σ2p1´ρ2q

1
σ4

˛

‹‚.

The Marginal observations give us the additional information

IXpρ,σ2q “ k

¨

˚̋0 0

0 1
2σ4

˛

‹‚ and IY pρ,σ2q “ k

¨

˚̋0 0

0 1
2σ4

˛

‹‚.

The total Fisher Information matrix for ρ and σ2 is therefore

Ipρ,σ2q “

¨

˚̋ m 1`ρ2

p1´ρ2q2 ´m ρ
σ2p1´ρ2q

´m ρ
σ2p1´ρ2q

m`k
σ4

˛

‹‚.

Fisher Information of the Mean Variation

The log likelihood of the mean variation example is

ℓpθ1, θ2q “ ´
nXÿ

i“1

pxi ´ pθ1 ` θ2qq2
2

´
nYÿ

j“1

pyi ´ θ2q2
2γ

` c.

The Fisher Information matrix is then

Ipθ1, θ2q “

¨

˚̋nX nX

nX nX ` nY
γ

˛

‹‚
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B.3 Calculations for Section 3.4

A Bayesian Analysis of the Mean Variation

Here we calculate the posterior distribution for the mean variation with prior distribution

¨

˚̋η

λ

˛

‹‚„ N

¨

˚̋
µ0 “

¨

˚̋0

0

˛

‹‚, Σ0 “

¨

˚̋ σ2
1 φσ1σ2

φσ1σ2 σ2
2

˛

‹‚

˛

‹‚.

and likelihood ¨

˚̋ sXn

sYn

˛

‹‚„ N

¨

˚̋

¨

˚̋η

λ

˛

‹‚, Σ “ 1

n

¨

˚̋1 0

0 γ

˛

‹‚

˛

‹‚.

The marginal and conditional prior distributions are

η „ N p0,σ2
1q, λ „ N p0,σ2

2q and λ|η „ N
ˆ
φ
σ2
σ2

η, p1´ φ2qσ2
2

˙

The Posterior Variance-covariance matrix is

Σ‹ “
`
Σ´1
0 ` Σ´1

˘´1

“

¨

˚̋

¨

˚̋ σ2
1 φσ1σ2

φσ1σ2 σ2
2

˛

‹‚

´1

`

¨

˚̋1{n 0

0 γ{n

˛

‹‚

´1˛

‹‚

´1

“

¨

˚̋ 1

|Σ0|

¨

˚̋ σ2
2 ´φσ1σ2

´φσ1σ2 σ2
1

˛

‹‚`

¨

˚̋n 0

0 n{γ

˛

‹‚

˛

‹‚

´1

“

¨

˚̋ 1

|Σ0|

¨

˚̋|Σ0|n` σ2
2 ´φσ1σ2

´φσ1σ2 |Σ0|n{γ ` σ2
1

˛

‹‚

˛

‹‚

´1

“
ˆ

1

|Σ0|
Σ1

˙´1

Denoting Σ1 as the matrix on the interior of the parentheses, we continue

Σ‹ “ |Σ0|
|Σ1|

¨

˚̋|Σ0|n{γ ` σ2
1 φσ1σ2

φσ1σ2 |Σ0|n` σ2
2

˛

‹‚
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The determinant of the matrix Σ1 simplifies as follows,

|Σ1| “
`
|Σ0|n` σ2

2

˘ `
|Σ0|n{γ ` σ2

1

˘
´ φ2σ2

1σ
2
2

“ n2|Σ0|2
γ

` n|Σ0|σ2
1 `

n|Σ0|σ2
2

γ
` σ2

1σ
2
2 ´ φ2σ2

1σ
2
2

“ n|Σ0|
γ

`
n|Σ0| ` σ2

2

˘
` |Σ0|nσ2

1 ` |Σ0|

“ n|Σ0|
γ

`
n|Σ0| ` σ2

2

˘
` |Σ0|

`
nσ2

1 ` 1
˘

Letting c “ cpφ,σ2
1,σ

2
2, γ, nq “

`
n|Σ0| ` σ2

2

˘
n{γ `

`
nσ2

1 ` 1
˘
, the posterior variance-covariance matrix

is

Σ‹ “ 1

c

¨

˚̋|Σ0|n{γ ` σ2
1 φσ1σ2

φσ1σ2 |Σ0|n` σ2
2

˛

‹‚

The posterior mean is similarly

µ‹ “ Σ‹Σ´1

¨

˚̋ sXn

sYn

˛

‹‚“ Σ‹

¨

˚̋n 0

0 n{γ

˛

‹‚

¨

˚̋ sXn

sYn

˛

‹‚“ Σ‹

¨

˚̋n sXn

n
γ
sYn

˛

‹‚

“ 1

c

¨

˚̋n sXnp|Σ0|n{γ ` σ2
1q ` n

γ
sYnφσ1σ2

n sXnφσ1σ2 ` n
γ
sYnp|Σ0|n` σ2

2q

˛

‹‚

The Effect of Independent Priors on the Bivariate Distributions

For the special case of independent priors, i.e. φ “ 0, we have that

|Σ0| “ σ2
1σ

2
2

c0 “ cpφ “ 0,σ2
1,σ

2
2, γ, nq “

`
n2σ2

1σ
2
2 ` nσ2

1

˘
{γ `

`
nσ2

2 ` 1
˘

“
`
nσ2

2{γ ` 1
˘ `

nσ2
1 ` 1

˘
,
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so the posterior variance shows that the parameters are also a-posteriori independent:

Σ‹ “ 1`
nσ2

2{γ ` 1
˘ `

nσ2
1 ` 1

˘

¨

˚̋σ2
1σ

2
2n{γ ` σ2

1 0

0 σ2
1σ

2
2n` σ2

2

˛

‹‚

“ 1`
nσ2

2{γ ` 1
˘ `

nσ2
1 ` 1

˘

¨

˚̋σ2
1pnσ2

2{γ ` 1q 0

0 σ2
2pnσ2

1 ` 1q

˛

‹‚

“

¨

˚̋
σ2
1

nσ2
1`1

0

0
σ2
2

nσ2
2{γ`1

˛

‹‚.

The posterior means show that the margins no longer depend on one another, e.g. the posterior mean of η

no longer depends on sYn,

µ‹ “

¨

˚̋
nσ2

1
nσ2

1`1
sXn

nσ2
2{γ

nσ2
2{γ`1

sYn

˛

‹‚

The Effect of Uninformative Data on the Bivariate Distribution

If we allow the data quality index to increase so that we get poorer and poorer data quality γ Ñ 8 first

have that

c Ñ nσ2
1 ` 1

So the posterior variance-covariance matrix converges to

Σ‹ Ñ 1

nσ2
1 ` 1

¨

˚̋ σ2
1 φσ1σ2

φσ1σ2 |Σ0|n` σ2
2

˛

‹‚

and the posterior mean converges to

µ‹ Ñ

¨

˚̋
nσ2

1
nσ2

1`1
sXn

nφσ1σ2

nσ2
1`1

sXn

˛

‹‚
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Marginal Distributions of η and λ

The marginal distributions of η and λ are directly available here. In particular,

η|Dn „ N
´
µ‹
η,σ

‹
η
2
¯

and λ|Dn „ N
´
µ‹
λ,σ

‹
λ
2
¯

with means and variances

µ‹
η “ c´1

ˆ
n sXnp|Σ0|n{γ ` σ2

1q `
n

γ
sYnφσ1σ2

˙

σ‹
η
2 “ c´1

`
|Σ0|n{γ ` σ2

1

˘

µ‹
λ “ c´1

ˆ
n sXnφσ1σ2 `

n

γ
sYnp|Σ0|n` σ2

2q
˙

σ‹
λ
2 “ c´1

`
|Σ0|n` σ2

2

˘

Generally, the Kullback–Leibler divergence (KL-divergence) between two univariate Normal distribu-

tions N pµ‹,σ2
‹q and N pµ0,σ2

0q is

KL
`
N pµ‹,σ2

‹q||N pµ0,σ
2
0q
˘
“ ´1

2
log

σ2
‹

σ2
0

` σ2
‹ ` pµ‹ ´ µ0q2

2σ2
0

´ 1

2
.

We use this result to compare the marginal prior and posterior distributions for η and λ, but first we calcu-

late some of the quantities needed.

Aη “ σ‹
η
2

σ2
1

“ |Σ0|n{γ ` σ2
1

cσ2
1

“ |Σ0|n
cσ2

1γ
` 1

c

Bη “ σ‹
η
2 ` µ‹

η
2 “ 1

c

˜
|Σ0|n{γ ` σ2

1 `
1

c

ˆ
n sXnp|Σ0|n{γ ` σ2

1q `
n

γ
sYnφσ1σ2

˙2
¸

Aλ “ σ‹
λ
2

σ2
2

“ |Σ0|n` σ2
2

cσ2
2

“ nσ2
1p1´ φ2q ` 1

n2|Σ0|{γ ` nσ2
2{γ ` nσ2

1 ` 1

Bλ “ σ‹
λ
2 ` µ‹

λ
2 “ 1

c

˜
|Σ0|n` σ2

2 `
1

c

ˆ
n sXnφσ1σ2 `

n

γ
sYnp|Σ0|n` σ2

2q
˙2

¸
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The KL-divergence for the change from marginal prior to posterior for η and λ are therefore

KL pppη|Dnq||ppηqq “ ´1

2
logAη `

Bη

2σ2
1

´ 1

2

KL pppλ|Dnq||ppλqq “ ´1

2
logAλ ` Bλ

2σ2
2

´ 1

2

The Effect of Independent Priors on Marginal Distributions

The mean and variance of the marginal distributions are

µ‹
η “ nσ2

1

nσ2
1 ` 1

sXn

σ‹
η
2 “ σ2

1

nσ2
1 ` 1

µ‹
λ “ nσ2

2{γ
nσ2

2{γ ` 1
sYn

σ‹
λ
2 “ σ2

2

nσ2
2{γ ` 1

.

The KL-divergences of the marginal prior-posterior comparisons in this special case is

KL pppη|Dnq||ppηqq “
1

2
logpnσ2

1 ` 1q ` 1

2pnσ2
1 ` 1q `

n2σ2
1

2pnσ2
1 ` 1q2

sX2
n ´ 1

2

KL pppλ|Dnq||ppλqq “
1

2
logpnσ2

2{γ ` 1q ` 1

2pnσ2
2{γ ` 1q `

n2σ2
1{γ2

2pnσ2
2{γ ` 1q2

sY 2
n ´ 1

2

The Effect of Uninformative Data on Marginal Distributions

If we allow the data quality index to increase so that we get poorer and poorer data quality γ Ñ 8 first

have that

c Ñ nσ2
1 ` 1
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so that

µ‹
η Ñ nσ2

1

nσ2
1 ` 1

sXn, σ‹
η
2 Ñ σ2

1

nσ2
1 ` 1

µ‹
λ Ñ nφσ1σ2

nσ2
1 ` 1

sXn, and σ‹
λ
2 Ñ σ2

2
nσ2

1p1´ φ2q ` 1

nσ2
1 ` 1

Here, φ controls the amount of marginal shrinkage. The KL-divergence is then

KL pppη|Dnq||ppηqq Ñ ´1

2
log

1

nσ2
1 ` 1

` 1

2
`
nσ2

1 ` 1
˘

` n2σ2
1

2pnσ2
1 ` 1q2

sX2
n ´ 1

2

KL pppλ|Dnq||ppλqq Ñ ´1

2
log

ˆ
nσ2

1p1´ φ2q ` 1

nσ2
1 ` 1

˙
` nσ2

1p1´ φ2q ` 1

2
`
nσ2

1 ` 1
˘

` n2φ2σ2
1

2pnσ2
1 ` 1q2

sX2
n ´ 1

2

Conditional Distribution of η|λ

We derive the conditional posterior distribution for λ|η since this is be examined in detail

λ|Dn, η „ N
´
µ‹
λ|η,σ

‹
λ|η

2
¯

this has mean and variance

µ‹
λ|η “ µ‹

λ ` φσ1σ2
|Σ0|n{γ ` σ2

1

`
η ´ µ‹

η

˘

σ‹
λ|η

2 “ σ‹
λ
2 ´ φ2σ2

1σ
2
2

c
`
|Σ0|n{γ ` σ2

1

˘
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We examine the KL divergence result to understand the evolution of the posterior when

Aλ|η “
σ‹
λ|η

2

σ2
λ|η

“ |Σ0|n` σ2
2

cp1´ φ2qσ2
2

´ φ2σ2
1σ

2
2

c
`
|Σ0|n{γ ` σ2

1

˘
p1´ φ2qσ2

2

“ |Σ0|`
|Σ0|n{γ ` σ2

1

˘
p1´ φ2qσ2

2

“ σ2
1σ

2
2p1´ φ2q`

|Σ0|n{γ ` σ2
1

˘
p1´ φ2qσ2

2

“ σ2
1

|Σ0|n{γ ` σ2
1

“ 1

nσ2
2p1´ φ2q{γ ` 1

Bλ|η “ 1

σ2
λ|η

´
µ‹
λ|η ´ µλ|η

¯2
“

ˆ
µ‹
λ ` φσ1σ2

|Σ0|n{γ ` σ2
1

`
η ´ µ‹

η

˘
´ φ

σ2
σ1

η

˙2

“ 1

σ2
2p1´ φ2q

ˆ
µ‹
λ ´ φσ1σ2

|Σ0|n{γ ` σ2
1

µ‹
η `

ˆ
φσ1σ2

|Σ0|n{γ ` σ2
1

´ φ
σ2
σ1

˙
η

˙2

“ 1

σ2
2p1´ φ2q

ˆ |Σ0|n{γ
|Σ0|n{γ ` σ2

1

sYn ´ φ
σ2
σ1

|Σ0|n{γ
|Σ0|n{γ ` σ2

1

η

˙2

The KL-divergence can then be calculated as

KL pppλ|Dn, ηq||ppλ|ηqq “ ´1

2
logAλ|η `

Aλ|η
2

` Bλ|η
2

´ 1

2
.

The Effect of Independent Priors on the Conditional Distribution

When the priors are independent, φ “ 0, the conditional projections no longer have an effect, see formula

for µ‹
λ|η and σ

‹
λ|η

2 above. Furthermore, the marginal mean and variance formulas were calculated previ-

ously, so we have

µ‹
λ|η “ µ‹

λ “ nσ2
2{γ

nσ2
2{γ ` 1

sYn

σ‹
λ|η

2 “ σ‹
λ
2 “ σ2

2

nσ2
2{γ ` 1

The KL Divergence is the same as in the marginal case,
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KL pppλ|Dn, ηq||ppλ|ηqq “ KL pppλ|Dnq||ppλqq

“ 1

2
logpnσ2

2{γ ` 1q ` 1

2pnσ2
2{γ ` 1q `

n2σ2
2{γ2

2pnσ2
2{γ ` 1q2

sY 2
n ´ 1

2

The Effect of Uninformative Data on the Conditional Distribution

If we allow the data quality index to increase so that we get poorer and poorer data quality γ Ñ 8 we

see that

µ‹
λ|η Ñ n sXnφσ1σ2

nσ2
1 ` 1

` φσ2
σ1

ˆ
η ´ n sXnσ2

1

nσ2
1 ` 1

˙

“ η
φσ2
σ1

` n sXnφσ1σ2
nσ2

1 ` 1
´ n sXnφσ1σ2

nσ2
1 ` 1

“ η
φσ2
σ1

σ‹
λ|η

2 Ñ |Σ0|n` σ2
2

nσ2
1 ` 1

´ φ2σ2
1σ

2
2

σ2
1pnσ2

1 ` 1q

“ nσ2
1σ

2
2p1´ φ2q ` σ2

2

nσ2
1 ` 1

´ φ2σ2
2

nσ2
1 ` 1

“ nσ2
1σ

2
2p1´ φ2q ` σ2

2p1´ φ2q
nσ2

1 ` 1

“ σ2
2p1´ φ2qnσ

2
1 ` 1

nσ2
1 ` 1

“ σ2
2p1´ φ2q

Taking γ Ñ 8, we have that Aλ|η Ñ 1 and Bλ|η Ñ 0 so that

KL pppλ|Dn, ηq||ppλ|ηqq Ñ ´1

2
log 1` 1

2
` 1

2σ2
λ|η

0´ 1

2
“ 0

A Bayesian Analysis of the Correlation Variation

Letting n “ m ` k where we observem paired observations and k from each marginal, the likelihood for
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a dataset Dn “
␣
tpXi, Yiqumi“1, tXiuni“m`1, tYiuni“m`1

(
can be written simply as

Lpρ,σ2;Dnq “
mź

i“1

1

2πσ2
a
p1´ ρ2q

exp

˜
´
`
X2

i ` Y 2
i ´ 2ρXiYi

˘

2p1´ ρ2qσ2

¸

nź

i“m`1

1

2πσ2
exp

ˆ
´X2

i

2σ2
´ Y 2

i

2σ2

˙

“ 1

p2πqnσ2np1´ ρ2qm{2 exp

˜
´ 1

2p1´ ρ2qσ2

˜
mÿ

i“1

X2
i `

mÿ

i“1

Y 2
i ´ 2ρ

mÿ

i“1

XiYi

¸

´ 1

2σ2

˜
nÿ

i“m`1

X2
i `

nÿ

i“m`1

Y 2
i

¸¸

After setting a prior for ρ and σ2, we can conduct posterior analysis via numerical integration.

B.4 Measure of Information Conditioning on MAP estimate

In Section 3.4.2 we conciser measures of information in the Bayesian context where we condition on the

true underlying data-generating parameter, something we cannot do in practice. Here, we show the same

simulation results when conditioning on the MAP estimates. Figures B.1 and B.2 show the measures of

information for ρ and σ2 respectively when conditioning on the MAP estimates. The measures of direct

information are the same, however the measures of indirect information are very different. Indeed, when

conditioning on MAP point-estimates we severely underestimate the amount of indirect information. That

is because we’re injecting information information from the data twice, once for by conditioning on the

data directly and again by conditioning on a data-driven estimate of the parameter.
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Figure B.1: Measures of direct and indirect informa on for ρ with replicates shown in colored dots. The mean and two
quar les shown in lines.
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Figure B.2: Measures of direct and indirect informa on for σ2 with replicates shown in colored dots. The mean and two
quar les shown in lines.
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