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Abstract

This dissertation consists of three independent chapters. Chapter 1 examines the role of

auction design in managing risk exposure for bidders in public procurement and minimizing

costs for the government. I study the mechanism used to procure bridge construction by

the Massachusetts Department of Transportation (DOT). I estimate a structural model of

equilibrium bidding by risk-averse �rms facing uncertainty about the �nal speci�cation

for each project at the time of bidding. I show that the existing mechanism insures risk-

averse contractors against large changes in project scope, thereby reducing risk-premiums

in bidding and ultimately lowering costs incurred by the DOT. Furthermore, while reducing

uncertainty could reduce costs, I �nd that incentivizing additional competition is a more

promising direction for policy intervention.

Chapter 2 examines the extent to which a reference pricing policy could reduce prices

for pharmaceutical drugs in the United States. I estimate a structural model of supply and

demand for pharmaceuticals in the U.S. and in Canada. I then simulate counterfactuals

in which American and Canadian regulators negotiate over prices with pharmaceutical

representatives, but the United States constrains the prices that it is willing to accept by

the prices set in Canada. I �nd that reference pricing results in a slight decrease in U.S.

prices and a substantial increase in Canadian prices. Consequently, I �nd modest consumer

welfare gains in the U.S., substantial consumer welfare losses in Canada, and a net increase

in pharmaceutical �rms' pro�ts.

Chapter 3 examines the impact of a monitoring program in which a large US auto-insurer

offered drivers a discount for good driving performance, as measured by a telematics device

iii



for their �rst contracted period. I demonstrate reduced form evidence of both adverse

selection and moral hazard: drivers who choose to enter the monitoring program have

lower average liability claims, but average claims rates are 23% lower during the monitoring

period than after. I estimate a structural model of driver claims and insurance plan choice

and simulate several counterfactual regimes with respect to the availability of monitoring.

While consumers face a disutility from being monitored, monitoring induces a net social

surplus: both �rm pro�ts and net consumer welfare improve.
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Introduction

This dissertation consists of three independent chapters, all related to empirical industrial

organization. Chapter 1 examines the role of auction design in managing risk exposure for

contractors and minimizing costs for the government in the context of public procurement. I

study the mechanism used to procure bridge construction by the Massachusetts Department

of Transportation (MassDOT). As in many other public procurement settings, the DOT

allocates bridge construction projects via a “scaling auction". Interested contractors submit

unit price bids for each task and material on an itemized design speci�cation prepared

by DOT engineers beforehand. The winner is determined by the lowest total cost—given

DOT estimates of the amount of each item needed—but, critically, they are paid based

on the realized quantities used. This creates an incentive for contractors to skew their

bids—bidding high when they believe the DOT is underestimating an item's quantity and

vice versa—and raises concerns of rent-extraction among policymakers. For risk averse

bidders, however, scaling auctions provide a distinctive way to generate surplus: they

enable �rms to limit their risk exposure by placing lower unit bids on items with greater

uncertainty.

I demonstrate reduced form evidence that contractors participating in MassDOT bridge

auctions are knowledgeable—they are able to predict which items will overrun the DOT

engineers' estimates and vice versa—but are also risk averse. Holding everything else

�xed, the contractors tend to bid lower on items that are historically more variable so as

to mitigate the possibility of a large shock in their ultimate compensation. Motivated by

these empirical facts, I estimate a structural model of equilibrium bidding by risk-averse
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�rms facing uncertainty about the �nal speci�cation for each project at the time of bidding.

I show that the existing mechanism insures risk-averse contractors against large changes in

project scope, thereby reducing risk-premiums in bidding and ultimate costs to the DOT.

Using counterfactual simulations, I show that while reducing uncertainty could reduce costs,

incentivizing additional competition is a more promising direction for policy intervention.

Chapter 2 examines the extent to which a reference pricing policy could reduce prices

for pharmaceutical drugs in the United States. I estimate a structural model of supply and

demand for pharmaceuticals in the U.S. and in Canada. I then simulate counterfactuals

in which American and Canadian regulators negotiate over prices with pharmaceutical

representatives and the United States constrains the prices that it is willing to accept by

the prices set in Canada. I �nd that reference pricing results in a slight decrease in U.S.

prices and a substantial increase in Canadian prices. The magnitude of these effects depends

on the particular structure of the policy. I consider variants of reference pricing policies

in which the US is allowed a premium above the Canadian price, and in which the US

references a larger country with a pharmaceutical market that is comparable to the US

market in size. While referencing a larger market increases savings to US consumers, I �nd

that the overall relative magnitudes are unchanged. Consequently, I �nd modest consumer

welfare gains in the U.S., substantial consumer welfare losses in Canada, and a net increase

in pharmaceutical �rms' pro�ts.

Chapter 3 examines the impact of a monitoring program in which a large US auto-insurer

offered drivers a discount for good driving performance as measured by a telematics device

for their �rst contracted period. I demonstrate reduced form evidence of both adverse

selection and moral hazard: drivers who choose to enter the monitoring program have lower

average liability claims, but average claims rates are 23% lower during the monitoring period

than after. I estimate a structural model of driver claims and insurance plan choice and

simulate several counterfactual regimes with respect to the availability of monitoring. While

consumers face a disutility from being monitored, monitoring induces a net social surplus:

both �rm pro�ts and net consumer welfare improve. However, proprietary ownership of

2



the monitoring data is key to �rm pro�ts: If monitoring results had to be shared with

competitors, price competition would signi�cantly lower the insurer's private bene�t from

offering the monitoring program. Consequently, in equilibrium, the insurer would offer a

signi�cantly lower baseline (opt-in) discount to encourage the uptake of monitoring. Uptake

would drop, and so the social surplus from reducing moral hazard would be drop as well.
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Chapter 1

Scaling Auctions as Insurance: A Case

Study in Infrastructure Procurement 1

1.1 Introduction

Infrastructure investment underlies nearly every part of the American economy and con-

stitutes hundreds of billions of dollars in public spending each year. 2 Infrastructure is

also politically popular: voters and policy-makers alike support increasing spending on

infrastructure projects by as much as 100% over the next decade.3 However, infrastructure

projects are often complex and subject to unexpected changes. Uncertainty can be costly to

the �rms implementing construction—many of whose businesses are centered on public

works. The mechanisms used to procure construction work can play a key role in mitigating

�rms' exposure to risk. Limiting risk makes prospective contracts more lucrative to �rms

1Co-authored with Valentin Bolotnyy

2According to the CBO, infrastructure spending accounts for roughly $416B or 2.4% of GDP annually across
federal, state and local levels. Of this, $165B—40%—is spent on highways and bridges alone.

3Recent polls have consistently shown around 70% of voters in support of increased infrastructure spending
along the lines of the $1.5 trillion plan outlined by the Trump administration. See YouGov and Gallop for
example. A major infrastructure bill is expected to entertain bi-partisan support following the 2018 election
(Nilson (2018)). This is in addition to a 2015 bill passed with bi-partisan support to increase infrastructure
spending by $305 billion over �ve years. ((Berman (2015)).

4

"https://www.cbo.gov/publication/52463"
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"https://www.vox.com/2018/8/9/17603208/house-democrats-infrastructure-bill-2018-midterms"
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and increases competition, thereby reducing tax payer expenditures.

In this paper we study the mechanism by which contracts for construction work are

allocated by the Highway and Bridge Division in the Massachusetts Department of Trans-

portation (MassDOT). As in 36 other states, MassDOT uses ascaling auction, whereby bidders

submit unit price bids for each item in a comprehensive list of tasks and materials required

to complete a project. The winning bidder is determined by the lowest sum of unit bids

multiplied by item quantity estimates produced by DOT project designers. The winner is

then paid based on the quantities ultimately used in completing the project.

A common concern among policy-makers is that bidders may extract rents from the

DOT by “skewing" their bids: placing high unit bids on items that will over-run the DOT

estimates and low unit bids on items that will under-run. Bid-skewing has been documented

as far back as 1935, and referred to as commonplace as recently as 2009 (Skitmore and

Cattell (2013)). Previous work on timber auctions (Athey and Levin (2001)) and highway

construction (Bajari, Houghton and Tadelis (2014)) has demonstrated evidence that bidders

skew correctly on average and that the most competitive bidders skew in a similar way. This

suggests that competitive bidders are similarly able to predict which items will over/under-

run.

As we demonstrate, the markup charged to the DOT depends not only on the level

of competition in the auction, but also on the uncertainty about the ultimate needs of a

project—conditional on the DOT's speci�cation—as well as the degree of risk aversion that

contending bidders face. If bidders are risk neutral and equally informed, bid-skewing

produces no additional cost to the DOT in equilibrium. Contractors choose their bids using

re�ned quantity estimates, and any information rent is competed away. Risk averse bidders,

however, use bid skewing to balance the uncertainty in a project across the different items

involved. As in the risk neutral case, bidders generally submit higher bids for items they

believe will over-run the DOT quantity estimates. However, the incentive to raise bids on

items predicted to over-run is dampened by the level of noise in this prediction. Moreover,

the risk lowers the value of a project to bidders, causing them to bid less aggressively and
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consequently extract higher payments from the DOT.

Notably, risk averse bidders will generally submit interior bids—unit bids that are above

zero—whereas risk neutral bidders will submit “penny" bids—unit bids of essentially

zero—on all but the items that are predicted to overrun by the largest amount, absent an

external force to prevent this. 4 This matches the observations in our data, in which the vast

majority of unit bids are interior, but no signi�cant penalty for penny bidding has ever been

exercised.5

Moreover, taking uncertainty and risk aversion into account has signi�cant implications

for comparisons across auctions. Risk neutral bidders would pro�t identically under a

scaling auction, a lump sum auction—in which bidders bid a total project price and are

responsible for all realized costs—or anything in between. Risk averse bidders, however,

are sensitive to the differences in risk exposure under each of these mechanisms. Scaling

auctions compensate bidders for every unit that is ultimately used. As such, the only risk

that bidders are exposed to (upon winning the auction) is the risk that they “mis-optimized"

in selecting their bid spread across items given the ex-post quantity realizations. Under a

lump sum auction, however, bidders bear the entirety of the cost risk involved in the project.

If the realized quantities are substantially larger than the predicted values used during

bidding, the winning bidder is liable for the differences, with no further compensation. 6 In

equilibrium, bidders will insure themselves against the risk that they face by submitting

higher overall bids. Thus, scaling auctions, in which the level of risk from uncertainty about

the ex-post quantities in a project can be minimized by the bidders, are predicted to produce

substantially lower overall costs to the DOT.

Our contributions are three-fold. First, we construct a parsimonious model of competitive

4See section 1.2 for a discussion of the model predictions under risk neutral and risk averse bidders.

5In a few rare instances, the DOT responded to suspicious bids by scrapping the auction all together and
revising the speci�cation for the project before putting it up for auction again. In these instances, the same
bidders were able to participate, and so any cost incurred was minimal.

6This analysis precludes ex-post hold up problems and the like, in which the bidder might sue the DOT for
additional compensation. Considerations of this sort would further increase the costs to the DOT, and so our
analysis serves as a conservative estimate of the total effect.
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bidding in a scaling auction with risk averse bidders who shoulder uncertainty over the

quantities that will ultimately be used. We show that risk aversion and uncertainty are

suf�cient to explain interior bids, in contrast to previous work, which relies on heuristic

penalties on penny bids. We then provide reduced form evidence that the bidding behavior

observed in our data is consistent with the predictions of our model. Furthermore, we

demonstrate how our model can be used to evaluate the cost that the DOT incurs due

to uncertainty in its project speci�cations. Second, we estimate a structural model for

uncertainty and optimal bidding in our data. We employ a two-stage procedure to estimate

the level of risk in each project, the degree of risk aversion, and the distribution of bidders'

private costs. In the �rst stage, we estimate a model of bidder uncertainty using the history

of predicted and realized item quantities. In the second stage, we use the speci�cation of

equilibrium unit bids implied by our model to construct a GMM estimator for risk aversion

and bidder cost types. Third, we use our structural estimates to simulate counterfactual

auction equilibria in which: (1) the DOT eliminates all uncertainty about item quantities;

(2) the DOT employs a m-risk-sharing auction in which it compensates bidders for mtimes

the prespeci�ed estimated quantity and 1 � mtimes the realized quantity of each item used.

Finally, we calculate bounds on the cost of entry for an additional bidder to each auction, as

well as the cost savings to the DOT from an additional entry.

Using the �rst counterfactual results, we assess the DOT's cost from uncertainty by taking

the difference in the expected amount paid to the winning bidder in the baseline auction

(the auction used in the status quo) and in the counterfactual setting with all uncertainty

removed. We �nd that the DOT's cost in the baseline auction is only $2,145—or 0.70%—

higher, on average, than in the counterfactual auction with no uncertainty. However, this

estimate re�ects the sum of two opposing forces that are shifted by the counterfactual: risk

and prediction. In the baseline, bidders use a best prediction (given available information) of

the ultimate item quantities. These predictions may be inaccurate in-sample, and so the bids

submitted may not be optimal (from the bidders' perspective, after observing the ex-post

quantities). By contrast, in the counterfactual setting with all uncertainty eliminated, bidders
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know the exact quantities that will be used and optimize accordingly. Consequently, the

DOT winds up paying more than in the baseline for some projects. To isolate the effect of

risk itself, we repeat the counterfactual exercise under the assumption that bidders' quantity

predictions are correct (but bidders still interpret these predictions as coming from noisy

signals as before) in the baseline. In this case, there is no bidder mis-optimization in the

baseline, and so the DOT strictly saves money from eliminating risk: $172,513 (13.74%) on

average.

Using the second set of counterfactual results, we assess the extent and direction to which

DOT costs would change if the DOT switched from the scaling auction to an alternative in

which part or all of the amount paid to the winning bidder is �xed at the time of bidding. 7

A mechanism of this sort curbs bidders' ability to skew their bids: in the limiting case of a

lump sum auction, bidders are paid the amount that they bid and so, there is no advantage

to spreading unit bids across items in any particular way. It may also offer bene�ts to the

DOT by reducing its burden in project speci�cation and budgeting �exibility. 8 However,

mechanisms of this sort effectively shift risk from the DOT to the bidders. As such, they

lower the expected value of winning each auction and induce higher, less aggressive bids.

We estimate that switching to a lump sum auction would increase DOT costs by 128%

on average (85% on median). The losses do not scale linearly with the amount of risk

sharing, however. We estimate that if the DOT were to pay the winning bidder her unit bid

multiplied by a 50-50 split of the ex-ante and ex-post quantities for each item, costs would

increase by 6.84% on average (3.47% on median).

Finally, while major improvements to quantity estimation may be dif�cult to achieve

across the board, efforts to increase competition may offer an additional channel to improve

7To highlight the effects of the counterfactual policies themselves, we report the results of all counterfactuals
assuming that bidders have correct quantity estimates (but still interpret these estimates with uncertainty) in
both the baseline and the counterfactual. Results in the case that bidders use the quantity predictions estimated
in our �rst stage are similar. We report them in the appendix for robustness.

8Neither moral hazard nor hold up problems are considered in our model. Moral hazard might make lump
sum auctions more attractive as imposing more risk on bidders would induce more thrifty uses of material.
However, the extent of moral hazard is limited by the contractors' ability to in�uence quantities given DOT
restrictions and supervision. Hold up problems would strengthen our results.
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DOT cost ef�ciency. We estimate that adding an additional bidder to each auction results in

an average DOT savings of $82,583 (8.90%). Furthermore, our estimates of lower bounds on

bidders' cost of entry suggest that an increased (guaranteed) payment of as little as $2,316

(on average) could incentivize an additional entry.

Our analysis is enabled by a rich and detailed data set, provided to us by the Highway

and Bridge division of the Massachusetts Department of Transportation. For each auction

in our study, we observe the full set of items involved in construction, along with ex-ante

estimates and ex-post realizations of the quantity of each item, a blue book DOT estimate of

the market unit rate for the item, and the unit price bid that each bidder who participated

in the auction submitted. Furthermore, our setting is particularly conducive to the study of

risk aversion. Bridge maintenance projects are highly standardized, and so heterogeneity

across projects is well captured by the characteristics observed in our data. The winner of

each auction is determined entirely by the expected cost of the project given the bidder's

unit bids. Participating bidders are all pre-quali�ed by the DOT and neither historical

performance, nor external quality considerations play a role in the allocation of contracts.

In addition, while there is substantial variation between the ex-ante DOT estimates and

the ex-post realizations of item quantities, all changes to the original project speci�cation

must be approved by an on-site DOT project manager or engineer, limiting the scope of

moral hazard. Finally, while previous work on highway procurement auctions has discussed

the role of ex-post renegotiation of unit-prices and a disincentive for bid skewing due to a

possibility of having a winning bid rejected by the DOT, neither of these forces is applicable

in our setting. Unit price renegotiation occurs in a negligible number of cases in our data,

and MassDOT does not reject the winning bidder as a matter of policy. 9

Connections and Contributions to the Related Literature

9In a handful of cases, MassDOT has withdrawn the auction all together after receiving bids, citing internal
mis-estimation in the project speci�cation, and has re-posted the auction anew after making adjustments. The
same bidders were eligible to participate in the revised auction.
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Our paper follows a rich literature on strategic manipulation in scoring auctions, and is

closest in spirit to Athey and Levin (2001) and Bajari, Houghton and Tadelis (2014). 10 Athey

and Levin (2001) �rst established the theoretical framework demonstrating that bid-skewing

arises in equilibrium when bidders are better informed about ex-post quantities than the

auctioneer. Using a general modeling framework, Athey and Levin establish a number of

empirical predictions and test them in the context of US timber auctions. Notably, they test

the hypothesis that bidders have superior information (beyond what is given to them by

the auctioneer) by comparing the direction of bid skews: pro�table skews are indicative

of superior information. They �nd signi�cant evidence of superior information, as well

as evidence that there is little informational differentiation between the top two bidders.

We discuss analogous exercises in our reduced form section and �nd similar results in

our setting as well. Furthermore, Athey and Levin note that the absence of total skewing

(e.g. penny bidding) in their setting is inconsistent with risk neutral bidders in their model,

and suggest risk aversion as a more �tting explanation for what they observe. Using the

Athey and Levin framework, we construct a structural model that allows us to quantify the

costs—realized and hypothetical—of scaling auctions in practice.

Bajari, Houghton and Tadelis (2014) (“BHT") studies a setting similar to ours: the auctions

used to procure highway construction contracts in California. As in our setting, BHT observe

item-level unit bids submitted in a scaling auction in which awards are allocated based on

engineers' quantity estimates, but compensated based on realized quantities.11 However,

the study's main focus is on adaptation costs—costs incurred from disruptions in work-�ow

due to inadequate preliminary planning. BHT propose a structural model for bidding in

10More recently, De Silva, Dunne, Kosmopoulou and Lamarche (2016) apply a framework similar to Bajari,
Houghton and Tadelis (2014) to assess the effects of a DOT's commitment to reducing the scope of project
changes.

11There are several notable differences between the setting in Bajari, Houghton and Tadelis (2014) and ours.
Unlike MassDOT, the California DOT imposes tighter limits on quantity overruns, and does occasionally reject
bidders with mathematically unbalanced bids. Furthermore, while the overall level of bid skewing, as evidenced
by the relationship between quantity overruns and price overruns (as in Figure1.7) across all highway and
bridge projects in Massachusetts is similar to that in California, this relationship is particularly pronounced
among the bridge maintenance projects that our analysis focuses on.
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which bidders are risk-neutral and have correct (on average) expectations over what the

�nal quantity of each item used will be. They then use conditions derived from this model

in conjunction with data on ex-post negotiated change orders, adjustments to unit prices,

extra work-orders, and deductions (due to failures on the part of the contractor) to identify

the expected cost of these adjustments that is paid by the California DOT.

Our paper differs from Bajari, Houghton and Tadelis (2014) in several signi�cant ways.

First, because BHT is primarily concerned with measuring adaptation costs, it does not aim

to predict bids at the item level. By contrast, our paper is focused on predicting bids for

auctions in counterfactual settings. Our approach incorporates risk and risk aversion to

rationalize interior bids, allowing us to capture substitution patterns between items with a

micro-founded generative model of unit bid setting. 12 Our model characterizes equilibrium

bids at the auction-bidder-item level as a function of the item's historical quantity variance,

the bidder's private cost type and distribution of opponent types, and the level of risk

aversion in the auction. Our identi�cation strategy leverages variation in unit bids across

auctions that each bidder participated in, as well as variation across auctions that items

identi�ed by the DOT as “highly skewed" appeared in. 13

Our approach allows us to estimate the distribution of bidder cost types in each auction,

as well as the coef�cient of bidder risk aversion. These parameters, along with those govern-

ing the item quantity distributions, jointly characterize the equilibrium bid distribution in

each setting.14 Using our estimates, we are able to predict the equilibrium bids that would

arise in each counterfactual. We can thus assess policy-relevant outcomes: the expected

12Bajari et al. model bidders as risk neutral, but subject to a heuristic penalty function in bidders' utility that
convexly penalizes deviations of unit bids from the DOT's cost estimates for each item. They estimate that the
penalty coef�cient is small and negative (suggesting bid-skewing is encouraged, rather than penalized), but not
statistically signi�cant. As part of preparing our paper, we replicated their methodology on our data set, and
found our model substantially better in back-predicting item bid spreads.

13By contrast, Bajari et al. use aggregate optimality conditions such that each observation entering their
moment condition is at the bidder-auction level. They then estimate a mean cost type across all bidders and
auctions, as well as mean coef�cients on adaptation costs, etc.

14Note that one cannot evaluate counterfactual outcomes by extrapolating from the empirical score distribu-
tion. Changes to the auction setting will change the equilibrium score distribution, and so it is necessary to
compute the equilibrium from primitives in each counterfactual.
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cost to the DOT, as well as the utility to prospective bidders (which may impact entry). To

our knowledge, no counterfactual analysis of scaling auctions, nor any assessment of their

performance in the context of mechanism design has been done before.

More generally, our paper relates to the literature on multi-dimensional auctions, and

scoring auctions in particular (auctions in which bids on different dimensions of interest

are aggregated into a single-dimensional score to determine the winner). Che (1993)

characterizes the equilibria of auctions that employ a two-dimensional scoring rule (quality

and price) with single-dimensional bidder types. Asker and Cantillon (2008) extend this

to a more general setting, allowing for multi-dimensional bidder types and general quasi-

linear scoring rules, by showing that a mapping of multi-dimensional attributes onto

a single dimensional “pseudo-type" is suf�cient to characterize equilibria up to payoff

equivalence. Both of these papers assume that bidders are risk neutral, and the result on

“pseudo-types" does not extend directly to the risk averse case. In our paper, we model

single-dimensional bidder types, as this is the most parsimonious way to ensure a unique

monotonic equilibrium. 15 However, we plan to extend our approach to a more general type

space in future work. Furthermore, while our identi�cation strategy leverages the particular

properties of scaling auctions, our work may provide methodological insights for estimation

and prediction in more general multi-dimensional auctions as well.

Our paper also relates to a rich literature on the theory and estimation of equilibrium bid-

ding in auctions with risk averse bidders. Maskin and Riley (1984) and Matthews (1987) �rst

characterized the optimal auction in the presence of risk averse bidders with independent

private values (IPV). While we do not relate our results to the optimal mechanism in this

version of the paper, an evaluation of the DOT cost savings under the optimal mechanism,

following Matthews (1987), is under preparation for a future draft. Campo, Guerre, Perrigne

15To see why a multi-dimensional bidder type model is substantially more complicated, note that a monotonic
equilibrium in our setting requires a single-dimensional ranking of bidder types: a bidder with a better type
should have a higher chance of winning (and therefore a lower score). Whereas in the risk neutral case (as
in Bajari et al.(2014)), better bidders are those with lower expected costs for completing a project, risk averse
bidders are compared by the certainty equivalent of their pro�ts from completing a project. As demonstrated in
section 1.2, the certainty equivalent entails an interaction between bidders' item costs and item bids, making
straight-forward comparisons in a general case dif�cult.

12



and Vuong (2011) �rst established semi-parametric identi�cation results for estimating risk

aversion parameters in single-dimensional �rst price auctions in an IPV setting. As in their

approach, we exploit the heterogeneity across items being auctioned and a parameterization

of the bidders' utility function for identi�cation. However, as our identi�cation leverages

the optimal spread of unit bids across items at each bidder's equilibrium score, we do not

require any restrictions on the distribution of the bidders' private value distribution for

estimation.

Our paper is structured as follows. In Section 1.2, we give an overview of how the

players involved with procurement auctions—contractors and DOT managers—have treated

bid skewing in practice. We then present an illustrative example of equilibrium bidding in

our setting to demonstrate how uncertainty, risk aversion, and competition in�uence the

interpretation of bids that we may see in practice. In section 1.3, we discuss our dataset and

present reduced form evidence that the bids we observe in our data support our model. In

section 1.4, we present a full theoretical model of equilibrium bidding. In section 1.5, we

present a structural model for estimating the auction primitives that underlie the bids in our

data. In section 1.6, we present our structural estimates. Finally, in section 1.7, we present

our counterfactual predictions and discuss their implications for policy.

1.2 Bid Skewing and Material Loss to the DOT

1.2.1 Scaling Auctions in Highway and Bridge Procurement

Like most other states, Massachusetts manages the construction and maintenance for its

highways and bridges through its Department of Transportation (DOT). In order to develop

a new project, DOT engineers assemble a detailed speci�cation of what the project will

entail. This speci�cation includes an itemized list of every task and material (item) that is

necessary to complete the project, as well as the engineers' estimates of the quantity with

which each item will be needed, and a market unit rate for its cost. The itemized list of
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quantities is then advertised to prospective bidders. 16

Any contractor who has been pre-quali�ed for a given project can submit a bid for the

contract to implement it. Pre-quali�cation entails that the contractor is able to complete

the work required, given their staff and equipment. Notably, it does not depend on past

performance in any way. In order to submit a bid, a contractor posts a per-unit price for each

of the items speci�ed by the DOT. Since April 2011, all bids have been processed through

an online platform, Bid Express, which is also used by 36 other state DOTs.17 All bids are

private until the completion of the auction.

Once the auction is complete, each contractor is given a score, computed by the sum

of the product of each item's estimated quantity and the contractor's unit-price bid for it.

The bidder with the lowest score is then awarded the rights to implement the project. In the

process of construction, it is common for items to be used in quantities that deviate from the

DOT engineer's speci�cation. All changes, however, must be approved by an on-site DOT

manager. The winning contractor is ultimately paid the sum of her unit price bid multiplied

by the actualquantity of each item used.

While contractors' ability to in�uence the item quantities that are ultimately used is

limited, bidders may be able to predict which items will over/under-run the DOT's estimates.

Consequently, DOT of�cials have expressed concerns that bidders may manipulate unit

prices to take advantage of government inaccuracies and extract rents from the taxpayer till.

1.2.2 Views of Bid Skewing by Contractors and DOT Managers

Bid Skewing Among Contractors

The practice of unbalanced bidding—or bid skewing—in scaling auctions appears, in the words

of one review, “to be ubiquitous" (Skitmore and Cattell (2013)). References to bid skewing

in operations research and construction management journals date as far back as 1935

16The DOT's estimate of market rates are not advertised to prospective bidders, and are used primarily for
internal budgeting purposes.

17Scaling auctions using paper-bids were used for over a decade prior to the introduction of Bid Express.
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and as recently as 2010. A key component of skewing is the bidders' ability to predict

quantity over/under-runs and optimize accordingly. Stark (1974), for instance, characterizes

contemporary accounts of bidding:

Knowledgeable contractors independently assess quantities searching for items
apt to seriously underrun. By setting modest unit bids for these items they can
considerably enhance the competitiveness of their total bid.

Uncertainty regarding the quantities that will ultimately be used presents a challenge to

optimal bid-skewing, however. In an overview of “modern" highway construction planning,

Tait (1971) writes:

...there is a risk in manipulating rates independently of true cost, for the quanti-
ties schedule in the bill of quantities are only estimates and signi�cant differences
may be found in the actual quantities measured in the works and on which
payment would be based.

In order to manage the complexities of bid selection, contractors often employ experts

and software geared for statistical prediction and optimization. Discussing the use of his

algorithm for optimal bidding in consulting for a large construction �rm, Stark (1974)

notes a manager's prediction that such software would soon become widespread—reducing

asymmetries between bidders and increasing allocative ef�ciency in the industry.

...since the model was public and others might �nd it useful as well, it had
the longer term promise of eroding some uncertainties and irrelevancies in
the tendering process. Their elimination...increased the likelihood that fewer
contracts would be awarded by chance and that his �rm would be a bene�ciary.

Since then, an assortment of decision support tools for estimating item quantities and

optimizing bids has become widely available. A search on Capterra, a web platform that

facilitates research for business software buyers, yields 181 distinct results. In a survey on

construction management software trends, Capterra estimates that contractors spend an

average $2,700 annually on software. The top 3 platforms command a market share of 36%

and surveyed �rms report having used their current software for about 2 years—suggesting

a competitive environment. Asked what was most improved by the software, a leading 21%
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of respondents said, “estimating accuracy", while 14% (in third place) said “bidding".

DOT Challenges to Bid Skewing

Concerns that sophisticated bidding strategies may allow contractors to extract excessively

large payments have led to a number of lawsuits about the DOT's right to reject suspicious

bids. The Federal Highway Administration (FHWA) has explicit policies that allow of�cials

to reject bids that are deemed manipulative. However, the legal burden of proof for a

manipulative bid is quite high. In order for a bid to be legally rejected, it must be proven to

be materially unbalanced.18

A bid is materially unbalanced if there is a reasonable doubt that award to the
bidder ... will result in the lowest ultimate cost to the Government. Consequently,
a materially unbalanced bid may not be accepted.19

However, as the de�nition for material unbalancedness is very broad, FHWA statute requires

that a bid be mathematicallyunbalanced as a precondition. A mathematically unbalancedbid

is de�ned as one, “structured on the basis of nominal prices for some work and in�ated

prices for other work." 20 In other words, it is a bid that appears to be strategically skewed.

In order to discourage bid skewing, many regional DOTs use concrete criteria to de�ne

mathematically unbalanced bids. In Massachusetts, a bid is considered mathematically

unbalanced if it contains any line-item for which the unit bid is (1) over (under) the of�ce

cost estimate and (2) over (under) the average unit bid of bidders ranked 2-5 by more than

25%.

In principle, a mathematically unbalanced bid elicits a �ag for DOT of�cials to examine

the possibility of material unbalancedness. However, in practice, such bids are ubiquitous,

and substantial challenges by the DOT are very rare. In our data, only about 20% of projects

do not have a single item breaking MassDOT's overbidding rule, and only about 10% of

18See Federal Acquisition Regulations, Sec. 14.201-6(e)(2) for sealed bids in general and Sec. 36.205(d) for
construction speci�cally (Cohen Seglias Pallas Greenhall and Furman PC (2018)).

19Matter of: Crown Laundry and Dry Cleaners, Comp. Gen. B-208795.2, April 22, 1983.

20Matter of: Howell Construction, Comp. Gen. B-225766 (1987)
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projects do not have a single item breaking the underbidding rule. Indeed, most projects

have a substantial portion of unit bids that should trigger a mathematical unbalancedness

�ag. 21 However, only 2.5% of projects have seen bidders rejected across all justi�cations, a

handful of which were due to unbalanced bids. 22

The Dif�culty of Determining `Materially Unbalanced' Bids

A primary reason that so few mathematically unbalanced bids are penalized is that material

unbalancedness is very hard to prove. In a precedent-setting 1984 case, the Boston Water

and Sewer Commission was sued by the second-lowest bidder for awarding a contract to R.J.

Longo Construction Co., Inc., a contractor who had the lowest total bid along with a penny

bid. The Massachusetts Superior Court ruled that the Commission acted correctly, since the

Commission saw no evidence that the penny bid would generate losses for the state. More

speci�cally, no convincing evidence was presented that if the penny bid did generate losses,

the losses would exceed the premium on construction that the second-lowest bidder wanted

to charge (Mass Superior Court, 1984).23 In January 2017, MassDOT attempted to require a

minimum bid for every unit price item in a various locations contract due to bid skewing

concerns. SPS New England, Inc. protested, arguing that such rules preclude the project

from being awarded to the lowest responsible bidder. The Massachusetts Assistant Attorney

General ruled in favor of the contractor on August 1, 2017.

In fact, there is a theoretical basis to question the relationship between mathematical

and material unbalancedness. As we demonstrate, bid skewing plays dual roles in bidders'

21See �gures A.5a and A.5b in the appendix for more details.

22Note that MassDOT does not reject individual bidders, but rather withdraws the project from auction and
possibly resubmits it for auction after a revision of the project spec.

23In response to this case, MassDOT inserted the following clause into Subsection 4.06 of the MassDOT
Standard Speci�cations for Highways and Bridges: “No adjustment will be made for any item of work identi�ed
as having an unrealistic unit price as described in Subsection 4.04." This clause, inserted in the Supplemental
Speci�cations dated December 11, 2002, made it dif�cult for contractors to renegotiate the unit price of penny
bid items during the course of construction. An internal MassDOT memo from the time shows that Construction
Industries of Massachusetts (CIM) requested that this clause be removed. One MassDOT engineer disagreed,
writing that “if it is determined that MHD should modify Subsection 4.06 as requested by CIM it should be
noted that the Department may not necessarily be awarding the contract to the lowest responsible bidder as
required." The clause was removed from Subsection 4.06 in the June 15, 2012 Supplemental Speci�cations.
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strategic behavior. On the one hand, bidders extract higher ex-post pro�ts by placing higher

bids on items that they predict will overrun in quantity. On the other hand, bidders reduce

ex-ante risk by placing lower bids on items, regarding which they are particularly uncertain.

Moreover, when bidders are similarly informed regarding ex-post quantities, the pro�ts

from predicting overruns are largely competed away in equilibrium, but the reduction in

ex-ante risk is passed on to the DOT in the form of cost-savings.

1.2.3 An Illustrative Example

Consider the following simple example of infrastructure procurement bidding. Two bidders

compete for a project that requires two types of inputs to complete: concrete and traf�c

cones. The DOT estimates that 10 tons of concrete and 20 traf�c cones will be necessary to

complete the project. Upon inspection, the bidders determine that the actual quantities of

each item that will be used – random variables that we will denote qa
c and qa

r for concrete and

traf�c cones, respectively – are normally distributed with means E [qa
c] = 12 and E [qa

r ] = 16

and variances s2
c = 2 and s2

r = 1.24 We assume that the actual quantities are exogenous to

the bidding process, and do not depend on who wins the auction in any way. Furthermore,

we will assume that the bidders' expectations are identical across both bidders. 25

The bidders differ in their private costs for implementing the project. They have access

to the same vendors for the raw materials, but differ in the cost of storing and transporting

the materials to the site of construction as well as the cost of labor, depending on the site's

location, the state of their caseload at the time and �rm-level idiosyncrasies. We therefore

describe each bidder's cost as a multiplicative factor a of market-rate cost estimate for

each item: cc = $8/ton for each ton of Concrete and cr = $12/pack for each pack of 100

24As we discuss in section 1.4, we assume that the distributions of qa
c and qa

r are independent conditional
on available information regarding the auction. This assumption, as well as the assumption that the quantity
distributions are not truncated at 0 (so that quantities cannot be negative) are made for the purpose of
computational traceability in our structural model. Note that if item quantities are correlated, bidders' risk
exposure is higher, and so our results can be seen as a conservative estimate of this case.

25These assumptions align with the characterization of highway and bridge projects in practice: the projects
are highly standardized and all decisions regarding quantity changes must be approved by an on-site DOT
of�cial, thereby limiting contractors' ability to in�uence ex-post quantities.
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traf�c cones. Each bidder i knows her own type ai at the time of bidding, as well as the

distribution (but not realization) of her opponent's type.

To participate in the auction, each bidder i submits a unit bid for each of the items: bi
c

and bi
r . The winner of the auction is then chosen on the basis of her score: the sum of her

unit bids multiplied by the DOT's quantity estimates:

si = 10bi
c + 20bi

r .

Once a winner is selected, she will implement the project and earn net pro�ts of her unit

bids, less the unit costs of each item, multiplied by the realizedquantities of each item that

are ultimately used. At the time of bidding, these quantities are unrealized samples of

random variables.

Bidders are endowed with a standard CARA utility function over their earnings from

the project with a common constant coef�cient of absolute risk aversion g:

u(p ) = 1 � exp(� gp ).

Note that bidders are exposed to two sources of risk: (1) uncertainty over winning the

auction; (2) uncertainty over the pro�ts that they would earn at the realized ex-post quantity

of each item.

The pro�t p that bidder i earns is either 0, if she loses the auction, or

p (b i , ai , c, qa) = qa
c � (bi

c � aicc) + qa
r � (bi

r � aicr ),

if she wins the auction. Bidder i's expected utility at the time of the auction is therefore

given by:

E [u(p (b i , ai , c, qa))] =

0

B
B
@1 � Eqa

h
exp

�
� g � p (b i , ai , c, qa)

�i

| {z }
Expected utility conditional on winning

1

C
C
A � (Prf si < sjg).

| {z }
Probability of winning with si = 10bi

c + 20bi
r

That is, bidder i's expected utility from submitting a set of bids bi
c and bi

r is the product of

the utility that she expects to get (given those bids) if she were to win the auction, and the
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probability that she will win the auction at those bids. Note that the expectation of utility

conditional on winning is with respect to the realizations of the item quantities qa
c and qa

r ,

entirely.

As the ex-post quantities are distributed as independent Gaussians, the expected utility

term above can be rewritten in terms of the certainty equivalent of bidder i's pro�ts

conditional on winning: 26

1 � exp
�

� g � CE(b i , ai , c, qa)
�

,

where the certainty equivalent of pro�ts CE (b i , ai , c, qa) is given by:

E [qa
c] � (bi

c � aicc) + E [qa
r ] � (bi

r � aicr )| {z }
Expection of Pro�ts

�
�

gs 2
c

2
� (bi

c � aicc)2 +
gs 2

r

2
� (bi

r � aicr )2
�

.
| {z }

Variance of Pro�ts

(1.1)

Furthermore, as we discuss in section 1.4, the optimal selection of bids for each bidder i

can be described as the solution to a two-stage problem:

Inner: For each possible scores, choose the bidsbc and br that maximize CE(f bc, brg, ai , c, qa),

subject to the score constraint: 10bc + 20br = s.

Outer: Choose the scores� (ai ) that maximizes expected utility E [u(p (b i (s), ai ))] , where b i (s)

is the solution to the inner step, evaluated at s.

That is, at every possible score that bidder i might consider, she chooses the bids that

sum to s for the purpose of the DOT's evaluation of who will win the auction, and maximize

her certainty equivalent of pro�ts conditional on winning. She then chooses the score that

maximizes her total expected utility.

To see how this decision process can generate bids that appear mathematically unbal-

anced, suppose, for example, that the common CARA coef�cient is g = 0.05, and consider a

bidder in this auction who has type ai = 1.5.27 Suppose, furthermore, that the bidder has

26See section 1.4 and the appendix for a detailed derivation.

27That is, for each ton of concrete that will be used will cost, the bidder incur a cost of ai � cc = 1.5� $8 = $12,
and for each pack of traf�c cones that will be used, she will incur a cost of ai � cr = 1.5� $12= $18.
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decided to submit a total score of $500. There are a number of ways in which the bidder

could construct a score of $500. For instance, she could bid her cost on concrete,bi
c = $12,

and a dollar mark-up on traf�c cones: bi
r = ( $500� $12 � 10)/ 20 = $19. Alternatively, she

could bid her cost on traf�c cones, bi
r = $18, and a two-dollar mark-up on traf�c cones:

bi
c = ( $500� $18 � 20)/ 10 = $14. Both of these bids would result in the same score, and so

give the bidder the same chances of winning the auction. However, they yield very different

expected utilities to the bidder. Plugging each set of bids into equation (1.1), we �nd that

the �rst set of bids produces a certainty equivalent of:

12 � ($0) + 16 � ($1) �
0.05� 2

2
� ($0)2 �

0.05� 1
2

� ($1)2 = $15.98,

whereas the second set of bids produces a certainty equivalent of

12 � ($2) + 16 � ($0) �
0.05� 2

2
� ($2)2 �

0.05� 1
2

� ($0)2 = $23.80.

In fact, further inspection shows that the optimal bids giving a score of $500 are bi
c = $47.78

and bi
r = $1.12, yielding a certainty equivalent of $87.98. The intuition for this is precisely

that described by Athey and Levin (2001), and the contractors cited by Stark (1974): the

bidder predicts that concrete will overrun in quantity – she predicts that 12 tons will be used,

whereas the DOT estimated only 10 – and that traf�c cones will underrun – she predicts that

16 will be used, rather than the DOT's estimate of 20. When the variance terms aren't too

large (relatively), the interpretation is quite simple: every additional dollar bid on concrete

is worth approximately 12/10 in expectation, whereas every additional dollar bid on traf�c

cones is worth only 16/20.

However, the incentive to bid higher on items projected to overrun is dampened when

the variance term is relatively large. This can arise when the coef�cient of risk aversion is

relatively high or when the variance of an item's ex-post quantity distribution is high. More

generally, as demonstrated in equation (1.1), the certainty equivalent of pro�ts is increasing

in the expected quantity of each item, E [qa
c] and E [qa

r ], but decreasing in the variance of

each item s2
c and s2

r .
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(a) Score = $500 (b) Score = $1000

Figure 1.1: Certainty equivalent as a function of her unit bid on traf�c cones, for the example bidder submitting
a score of $500 or $1,000

Moreover, the extent of bid skewing can depend on the level of competition in the

auction. Figure 1.1 plots the bidder's certainty equivalent as a function of her unit bid on

traf�c cones when she chooses to submit a total score of (a) $500, and when she chooses to

submit a score of (b) $1,000. In the �rst case, the bid that optimizes the certainty equivalent

is very small, bi
r = $1.12. In the second case, however, the optimal bid is much higher

at bi
r = $23.33. The reason for this is that a low bid on traf�c cones implies a high bid

on concrete. A high markup on concrete decreases the bidder's certainty equivalent at

a quadratic rate. Thus, as the score gets higher, there is more of an incentive to spread

markups across items, rather than bidding very high on select items, and very low on others.

1.2.4 Bid Skewing in Equilibrium

As we discuss in section 1.4, the auction game described above has a unique Bayes Nash

Equilibrium. This equilibrium is characterized following the two-stage procedure described

on in section 1.4.2: (1) given an equilibrium score s(a), each bidder of type a submits the

vector of unit bids that maximizes her certainty equivalent conditional on winning, and

sums to s(a); (2) The equilibrium score is chosen optimally, such that there does not exist a

type a and an alternative score s̃, so that a bidder of type a can attain a higher expected

utility with the score s̃ than with s(a).
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The optimal selection of bids given an equilibrium score depends on the bidders'

expectations over ex-post quantities and the DOT's posted estimates, as well as on the

coef�cient of risk aversion and the level of uncertainty in the bidders' expectations. High

overruns cause bidders to produce more heavily skewed bids, whereas high risk aversion

and high levels of uncertainty push bidders to produce more balanced bids.

In addition to in�uencing the relative skewness of bids, these factors also have a

level effect on bidder utility. Higher expectations of ex-post quantities raise the certainty

equivalent conditional on winning for every bidder. Higher levels of uncertainty (and a

higher degree of risk aversion), however, induce a cost for bidders that lowers the certainty

equivalent. Consequently, higher levels of uncertainty lower the value of participating for

every bidder and result in less aggressive bidding behavior, and higher costs to the DOT in

equilibrium.

To demonstrate this, we plot the equilibrium score, unit-bid distribution and ex-post

revenue for every bidder type a in our example. To illustrate the effects of risk and risk

aversion on bidder behavior and DOT costs, we compare the equilibria in four cases. First,

we compute the equilibrium in our example laid out on page 11 when bidders are risk

averse with CARA coef�cient g = 0.05, and when bidders are risk neutral (e.g. g = 0). To

hone in on the effects of risk in particular, and not mis-estimation, we will assume that

the bidders' expectations of ex-post quantities are perfectly correct (e.g. the realization of

qa
c is equal to E [qa

c], although the bidders do not know this ex-ante, and still assume their

estimates are noisy with Gaussian error).

Next, we compute the equilibrium in each case under the counterfactual in which

uncertainty regarding quantities is eliminated. In particular, we consider a setting in which

the DOT is able to discern the precise quantities that will be used, and advertise the project

with the ex-post quantities, rather than imprecise estimates. The DOT's accuracy is common

knowledge, and so upon seeing the DOT numbers in this counterfactual, the bidders are

certain of what the ex-post quantities will be (e.g. s2
c = s2

r = 0).

In Table 1.1, we present the expected (ex-post) DOT cost in each case. This is the
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Risk Neutral Bidders Risk Averse Bidders

Noisy Quantity Estimates $326.76 $317.32
Perfect Quantity Estimates $326.76 $296.26

Table 1.1: Comparison of Expected DOT Costs

expectation of the amount that the DOT would pay the winning bidder qa
cbw

c + qa
r bw

r at the

equilibrium bidding strategy in each setting, taken with respect to the distribution of the

type of the lowest (winning) bidder. 28 When bidders are risk neutral ( g = 0), the equilibrium

cost to the DOT does not change when the DOT improves its quantity estimates. The reason

for this is that since g = 0, the variance term in equation (1.1) is zero regardless of the level

of the noise in quantity predictions. As the bidders' quantity expectations E [qa
c] and E [qa

r ]

are unchanged, the expected revenue of the winning bidder (corresponding to the expected

cost to the DOT) is unchanged as well.

(a) Risk Neutral Bidders (b) Risk Averse Bidders:g = 0.05

Figure 1.2: Equilibrium DOT Cost/Bidder Revenue by Bidder Type

In Figure 1.2a, we plot the revenue that each type of bidder expects to get in equilibrium

when bidders are risk neutral. The red line corresponds to the baseline setting, in which

the DOT underestimates the ex-post quantity of concrete, and overestimates the ex-post

quantity of traf�c cones. The black line corresponds to the counterfactual in which both

28In order to simulate equilibria, we need to assume a distribution of bidder types. For this example, we
assume that bidder types are distributed according to a truncated lognormal distribution, a � LogNormal (0, 0.2)
that is bounded from above by 2.5. There is nothing special about this particular choice, and we could easily
have made others with similar results.
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(a) Risk Neutral Bidders (b) Risk Averse Bidders:g = 0.05

Figure 1.3: Equilibrium Score Functions by Bidder Type

quantities are precisely estimated, and bidders have no residual uncertainty about what

the quantities will be. Note that while the ex-post cost to the DOT is the same whether or

not the DOT quantity estimates are correct, the unit bids and resulting scores that bidders

submit are different. In Figure 1.3a, we plot the equilibrium score for each bidder type

when bidders are risk neutral. The score at every bidder type is smaller under the baseline

than under the counterfactual in which the DOT discerns ex-post quantities. This is because

the scores in the counterfactual correspond to the bidders' expected revenues, while the

scores in the baseline multiply bids that are skewed to up-weight overrunning items by their

under-estimated DOT quantities. See the appendix for a full derivation and discussion of

the risk neutral case.

(a) Risk Neutral Bidders (b) Risk Averse Bidders:g = 0.05

Figure 1.4: Equilibrium Unit Bids by Bidder Type

Figure 1.4a plots the unit bid that each type of bidder submits in equilibrium when

bidders are risk neutral. As before, the red lines correspond to the baseline setting in which
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the DOT mis-estimates quantities, whereas the black lines correspond to the counterfactual

setting in which the DOT discerns ex-post quantities perfectly. The solid line in each

case corresponds to the unit bid for concrete bc(a) that each a type of bidder submits in

equilibrium. The dashed line corresponds to the equilibrium unit bid for traf�c cones br (a)

for each bidder type. Notably, in every case, the optimal bid for each bidder puts the

maximum possible amount (conditional on the bidder's equilibrium score) on the item that

is predicted to overrun the most, and $0 on the other item. This is a direct implication

of optimal bidding by risk neutral bidders, absent an external impetus to do otherwise.

As noted by Athey and Levin (2001), this suggests that the observations of interior or

intermediately-skewedbids in our data, as well as in Athey and Levin's, are inconsistent with

a model of risk neutral bidders. Other work, such as Bajari, Houghton and Tadelis (2014)

have rationalized interior bids by modeling a heuristic penalty for extreme skewing that

represents a fear of regulatory rebuke. However, no signi�cant regulatory enforcement

against bid skewing has ever been exercised by MassDOT, and discussions of bidding

incentives in related papers as well as in Athey and Levin (2001) suggest that risk avoidance

is a more likely dominant motive.

In �gures 1.2b, 1.3b and 1.4b, we plot the equilibrium revenue, score and bid for every

bidder type, when bidders are risk averse with the CARA coef�cient g = 0.05. Unlike the

risk-neutral case, the DOT's elimination of uncertainty regarding quantities has a tangible

impact on DOT costs. When the DOT eliminates quantity risk for the bidders, it substantially

increases the value of the project for all of the bidders, causing more competitive bidding

behavior. Seen another way, uncertainty regarding ex-post quantities imposes a cost to

the bidders, on top of the cost of implementing the project upon winning. In equilibrium,

bidders submit bids that allow them to recover all of their costs (plus a mark-up). When

uncertainty is eliminated, the cost of the project decreases, and so the total revenue needed to

recover each bidder's costs decreases as well. Note, also, that the elimination of uncertainty

results in different levels of skewing across the unit bids of different items. Whereas under

the baseline, bidders with types a > 1.6 place increasing interior bids on traf�c cones, when
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risk is eliminated, this is no longer the case. However, this is subject to a tie breaking rule –

when the DOT perfectly predicts ex-post quantities, there are no overruns, and so there is

no meaningful different to over-bid on one item over the other. The analysis of the optimal

bid (conditional on a score) here is analogous to that under risk neutrality, and so we defer

details to the appendix.

CARA Coeff Baseline No Quantity Risk Pct Diff

0 $326.76 $326.76 0%
0.001 $326.04 $325.62 0.13%
0.005 $323.49 $321.41 0.64%
0.01 $321.01 $316.88 1.29%
0.05 $317.32 $296.26 6.64%
0.10 $319.83 $285.57 10.71%

Table 1.2: Comparison of expected DOT costs under different levels of bidder risk aversion

While the general observation that reducing uncertainty may result in meaningful cost

savings to the DOT, the degree of these savings depends on the baseline level of uncertainty

in each project, as well as the degree of bidders' risk aversion and the level of competition in

each auction (constituted by the distribution of cost types and the number of participating

bidders). To illustrate this, we repeat the exercise summarized in Table 1.1 over different

degrees of risk aversion and different levels of uncertainty. In Table 1.2, we present the

expected DOT cost under the baseline example and under the counterfactual in which the

DOT eliminates quantity risk, as well as the percent difference between the two, for a range

of CARA coef�cients. 29 The bolded row with a CARA coef�cient of 0.05corresponds to

the right hand column of Table 1.1. We repeat this exercise across different magnitudes of

prediction noise in Table A.10, in the appendix.

29That is, in the baseline, the DOT posts quantity estimates qe
c = 10 and qe

r = 20, while bidders predict that
E [qa

c] = 12 and E [qa
r ] = 18 with s2

c = 2 and s2
r = 1. In the No Quantity Risk counterfactual, the DOT discerns

that qe
c = qa

c = 12 and qe
r = qa

r = 18, so that s2
c = s2

r = 0.
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1.3 Data and Reduced Form Results

1.3.1 Data

Our data comes from MassDOT and covers highway and bridge construction and main-

tenance projects undertaken by the state from 1998 to 2015. We are limited by the extent

of MassDOT's collection and storage of data on its projects. 4,294 construction and main-

tenance projects are in the DOT's digital records, although the coverage is sparse prior to

the early 2000s. If we keep only the projects for which MassDOT has digital records on 1)

identities of the winning and losing bidders; 2) bids for the winning and losing bidders; and

3) data on the actual quantities used for each item, we are left with 2,513 projects, 440 of

which are related to bridge maintenance. We focus on bridge projects alone for this paper,

as these projects are particularly prone to item quantity adjustments. Coverage is especially

poor in the �rst few years of the available data and is especially good since 2008, when

MassHighway became MassDOT and a push to improve digital records went into effect. 30

MassDOT began using an online procurement service, called Bid Express, in April

2011. Prior to Bid Express, each contractor submitted his bids in paper form and MassDOT

personnel then manually entered the bid data into an internal data set. The shift from a

paper process to an online process thus likely helped data collection efforts and improved

data accuracy.

The rules of the procurement process were the same, however, before and after April

2011. All bidders who participate in an auction have been able to see, ex-post, how everyone

bid on each item. And all contractors have had access to summary statistics on past bids

for each item, across time and location. Of�cially, all interested bidders �nd out about

the speci�cations and expectations of each project at the same time, when the project is

advertised (a short while before it opens up for bidding). Only those contractors who have

been pre-quali�ed at the beginning of the year to do the work required by the project can bid

on the project. Thus, contractors do not have a say in project designs, which are furnished

30See Table A.8 for a breakdown of the number of projects in our data, by year.
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either in-house by MassDOT or by an outside consultant.

Once a winning bidder is selected, project management moves under the purview of

an engineer working in one of 6 MassDOT districts around the state. The Project Manager

assigns a Resident Engineer to monitor work on a particular project out in the �eld and to

be the �rst to decide whether to approve or reject underruns, overruns, and Extra Work

Orders (EWOs).31 Underruns and overruns, as the DOT de�nes them and as we will de�ne

them here, apply to the items speci�ed in the initial project design and refer to the difference

between actual item quantities used and the estimated item quantities. EWOs refer to work

done outside of the scope of the initial contract design and are most often negotiated as

lump sum payments from the DOT to the contractor. For the purposes of our discussion and

analyses, we will focus on underruns and overruns in projects relating to bridge construction

and maintenance, as this is a focal point of interest to the DOT, as well as an area with a fair

amount of uncertainty for the bidders.

Statistic Mean St. Dev. Pctl(25) Median Pctl(75)

Project Length (Estimated) 1.53 years 0.89 years 0.88 years 1.48 years 2.01 years
Project Value (DOT Estimate) $2.72 million $3.89 million $981,281 $1.79 million $3.3 million
# Bidders 6.55 3.04 4 6 9
# Types of Items 67.80 36.64 37 67 92
Net Over-Cost (DOT Quantities) � $286,245 $2.12 million � $480,487 � $119,950 $167,933
Net Over-Cost (Ex-Post Quantities) � $26,990 $1.36 million � $208,554 $15,653 $275,219
Extra Work Orders $298,796 $295,173 $78,775 $195,068 $431,188

Table 1.3: Summary Statistics

Table 1.3 provides summary statistics for the bridge projects in our data set. We measure

the extent to which MassDOT overpays the projected project cost in two ways. First, we

consider the difference between what the DOT ultimately pays the winning bidder (the sum

of the actual quantities used, multiplied the winning bidder's unit bids) and the DOT's

initial estimate (the sum of the DOT's quantity estimates, multiplied by the DOT's estimate

for each item's unit cost). Summary statistics for this measure are presented in the “Net

Over-Cost (DOT Quantities)" row of Table 1.3. While it seems as though the DOT is saving

31The full approval process of changes in the initial project design involves N layers of review.
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money on net, this is a misrepresentation of the costs of bid skewing. As we demonstrated

in section 1.2, the DOT's estimate, which can be thought of the scoreevaluated using the

DOT's unit costs as bids, is not representative of the ex-post amount to be paid at those

bids. Rather, a more appropriate metric is to compare the amount ultimately spent against

the dot product of the the DOT's unit cost estimates and the actual quantities used. This

is presented in the “Net Over-Cost (Ex-Post Quantities)" row of Table 1.3. The median

over-payment by this metric is about $15,000, but the 25th and 75th percentiles are about

-$210,000 and $275,000. Figure 1.5 shows the spread of over-payment across projects. As we

will show in our counterfactual section, the distribution of over-payment corresponds to the

potential savings from the elimination of risk.

Figure 1.5: Net Over-Cost (Ex-Post Quantities) Across Bridge Projects

Description of Bidders

Across our data set, there are 2,883 unique project-bidder pairs (e.g. total bids submitted)

across the 440 projects that were auctioned off. There are 116 unique �rms that participate,

albeit to different degrees. We distinguish �rms that are rare participants by dividing

�rms into two groups: `common' �rms, which participate in at least 30 auctions within

our data set, and `rare �rms`, which participate in less than 30 auctions. We retain the

individual identi�ers for each of the 24 common �rms, but group the 92 rare �rms together

for purposes of estimation. Common �rms constitute 2,263 (78%) of total bids submitted,
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and 351 (80%) of auction victories.

Bidder Name No. Employees No. Auctions Participated

MIG Corporation 80 297
Northern Constr Services LLC 80 286

SPS New England Inc 75 210
ET&L Corp 1 201

B&E Construction Corp 9 118
NEL Corporation 68 116

Construction Dynamics Inc 22 113
S&R Corporation 20 111

New England Infrastructure 35 95
James A Gross Inc 7 78

Table 1.4: Number of employees is drawn from estimates on LinkedIn and Manta

Common Firm Common Firm Rare Firm

Number of Firms 24 92
Total Number of Bid Submitted 2263 620

Mean Number of Bid Submitted Per Firm 94.29 6.74
Median Number of Bid Submitted Per Firm 63.0 2.5

Total Number of Wins 351 89
Mean Number of Wins Per Firm 14.62 0.97

Median Number of Wins Per Firm 10 0

Mean Bid Submitted $2,774,941 $4,535,310
Mean Ex-Post Cost of Bid $2,608,921 $4,159,949

Mean Ex-Post Overrun of Bid 9.7% 21.97%

Proportion of Bids on Projects in the Same District 28.19 15.95
Proportion of Bids by Revenue Dominant Firms 51.67 11.80

Mean Specialization 24.44 2.51
Mean Capacity 10.38 2.75

Mean Utilization Ratio 53.05 25.50

Table 1.5: Comparison of Firms Participating in< 30 vs 30+ Auctions

Table 1.4 presents the number of auctions participated in by each of the top 10 most

common �rms, as well as estimates of the number of full time employees on their payrolls.

While the employee count numbers presented here are estimates, and may not include
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additional labor hired on a project-by-project basis, these �rms are all relatively small,

private, family-owned businesses. 32 Table 1.5 presents summary statistics of the two �rm

groups. The mean (median) common �rm submitted bids to 94.29 (63) auctions and won

14.62 (10) of them. The mean total bid (e.g. the score) submitted is about $2.8 million,

while the mean ex-post DOT cost implied by the �rm's unit bids is $2.6 million. The mean

ex-post cost overrun (the percent difference of the sum of unit bids multiplied by the ex-post

quantities and the sum of blue book costs multiplied by the ex-post quantities) is 9.73%. By

contrast, the mean (median) rare �rm submitted bids to 6.74 (2.5) auctions and won 0.97 (0)

of them. The mean total bid and ex-post scores are quite a bit larger than the common �rms

– $4.5 million and $4.2 million respectively, and this is re�ected in a substantially larger

ex-post overrun: 21.97% on average.

In addition to the �rm's identity, there are a number of factors which may in�uence its

competitiveness in a given auction. One such factor is the �rm's distance from the project.

Although we do not observe precise locations for each project in our data, we observe which

of the 6 geographic districts that MassDOT jurisdiction is broken into each project belongs

to. We then geocode the headquarters of each �rm by district, and compare districts for

each project-bidder pair. Among common �rms, 28.19% of bids were on projects that were

located in the same district as the bidding �rm's headquarters. By contrast, only 15.95% of

bids among rare �rms were in matching districts.

Another measure of competitiveness is specialization—�rms with extensive experience

bidding on and implementing a certain type of project may �nd it cheaper to implement an

additional project of the same sort. Our data involves three distinct project types, according

to the DOT taxonomy: Bridge Reconstruction/Rehabilitation projects, Bridge Replacement

projects, and Structures Maintenance projects. We calculate the specialization of a project-

32All 24 most common �rms in our sample are privately owned, and so there is no publicly available,
veri�able information on their revenues or expenses. The numbers of employees presented here are drawn
from Manta, an online directory of small businesses, and cross-referenced with LinkedIn, on which a subset of
these �rms list a range of their employee counts. Note that there is some ambiguity as to who “counts" as an
employee, as such �rms often hire additional construction laborers on a project-by-project basis. The “family
owned" label is drawn from the �rms' self-descriptions on their websites.
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bidder pair as the share of auctions of the same project type that the bidding �rm has placed

a bid on within our dataset. The mean specialization of a common �rm is 24.44%, while the

mean specialization of a rare �rm is 2.51%. As projects have varying sizes, we compute a

measure of specialization in terms of project revenue as well. We de�ne a revenue-dominant

�rm (within a project-type) as a �rm that has been awarded more than 1% of the total

money spent by the DOT across projects of that project type. Among common �rms, 51.67%

of bids submitted were by �rms that were revenue dominant in the relevant project type;

among rare �rms, the proportion of bids by revenue dominant �rms is 11.8%.

A third factor of competitiveness is each �rm's capacity – the maximum number of

DOT projects that the �rm has ever had open while bidding on another project – and its

utilization – the share of the �rm's capacity that is �lled when she is bidding on the current

project.33 The mean capacity is 10.38 projects among common �rms and 2.75 projects among

rare �rms. This suggests that rare �rms generally have less business with the DOT (either

because they are smaller in size, or because the DOT constitutes a smaller portion of their

operations). The mean utilization ratio, however, is 53.05% for common �rms and 25.5% for

rare �rms. This suggests that �rms in our data are likely to have ongoing business with the

DOT at the time of bidding, and are likely to have spare capacity during adjacent auctions

that they did not participate in. 34

Description of Quantity Estimates and Uncertainty

As we discuss in section 1.2, scaling auctions improve social welfare by enabling risk-

averse bidders to insure themselves against uncertainty about the item quantities that

will ultimately be used for each project. The welfare bene�t is particularly strong if the

uncertainty regarding item ex-post quantities varies across items within a project, and

especially so if there are a few items that have particularly high variance. When this is

33We measure capacity and utilization with respect to all projects with MassDOT recorded in our data – not
just bridge projects.

34Note that while we do not take dynamic considerations of capacity constraints into consideration, we �nd
our measure of capacity to be a useful metric of the extent of a �rm's dealings with the DOT, as well as its size.
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the case, bidders in a scaling auction can greatly reduce the risk that they face by placing

minimal bids on the highly uncertain items (and higher bids on more predictable items). 35

Our data set includes records of 2,985 unique items, as per MassDOT's internal taxonomy.

Spread across 440 projects, these items constitute 29,834 unique item-project pairs. Of the

2,985 unique items, 50% appear in only one project. The 75th, 90th and 95th percentiles of

unique items by number of appearances in our data are 4, 16 and 45 auctions, respectively.36

For each item, in every auction, we observe the quantity with which MassDOT predicted

it would be used at the time of the auction – qe
t in our model – the quantity with which the

item was ultimately used – qa
t – and a blue bookDOT estimate for the market rate for the unit

cost of the item. The DOT quantities are typically inaccurate: 76.7% of item observations in

our data had ex-post quantities that deviated from the DOT estimates. Figure 1.6a presents a

histogram of the percent quantity overrun across observations of items. The percent quantity

overrun is de�ned as the difference of the ex-post quantity of an item observation and its

DOT quantity estimates, normalized by the DOT estimate: qa
t � qe

t
qe

t
. In addition to the 23.3%

item-project observations in which quantity overruns are 0%, another 18% involve items

that aren't used at all (so that the overrun is equal to -100%). The remaining overruns are

distributed, more or less symmetrically, around 0%. Furthermore, quantity overruns vary

across observations of the same item in different auctions. Figure 1.6b plots the mean percent

quantity overrun for each unique item with at least 2 observations against its standard

deviation . While a few items have standard deviations close to 0, the majority of items

have overrun standard deviations that are as large or larger than the absolute value of their

35A number of different factors may in�uence the extent of item over/under-runs in a given project: the type
of maintenance needed, underlying state of the structure, time since assessment and skill of the project designer,
chief among them. While our dataset is insuf�cient to robustly estimate the causal effects of these features on
overruns, we present a brief discussion of the variation observed across DOT designers and project managers in
the appendix.

36Part of the reason that so many unique items appear so rarely in our data is that the DOT taxonomy is very
speci�c. For instance, item 866100 – also known as "100 Mm Re�ect. White Line (Thermoplastic)" – is distinct
from item 867100 – "100 Mm Re�ect. Yellow Line (Thermoplastic)," although clearly there is a relationship
between them. In order to take these similarities into account, we project item-project pairs onto characteristic
space constructed by natural language parsing of the item descriptions, as well as a number of numerical
item-project features. We discuss this at greater length in the estimation section.
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means. That is, the percent overrun of the majority of unique items varies substantially

across observations.37 While this is a coarse approximation of the uncertainty that bidders

face with regard to each item—it does not take item or project characteristics into account,

for example—it is suggestive of the scope of risk in each auction.

(a) Histogram of the percent quantity overrun
across item-project pairs.

(b) Plot of the mean against the standard devi-
ation of percent quantity overruns within each
unique item.

Figure 1.6: Descriptive plots for item quantity overruns

1.3.2 Reduced Form Evidence for Risk Averse Bid Skewing

As in Athey and Levin (2001) and Bajari, Houghton and Tadelis (2014), the bids in our

dataset are consistent with a model of similarly informed bidders who bid strategically to

maximize expected utility. In Figure 1.7, we plot the relationship between quantity overruns

and the percent by which each item was overbid above the blue book cost estimate by

the winning bidder. 38 The binscatter is residualized. In order to obtain it, we �rst regress

37The statement of majority here is with respect to items that appear multiple times.

38The percent overbid of an item is de�ned as bt � ct
ct

� 100 where bt is the bid on item t and ct is the blue

book unit cost estimate of item t. The percent quantity overrun is similarly de�ned as qa
t � qe

t
qe

t
� 100where qa

t is
the amount of item t that was ultimately used and qe

t is the DOT quantity estimate for item t that is used to
calculate bidder scores.
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percent overbid on a range of controls and obtain residuals. We then regress percent overrun

on the same controls and obtain residuals. Finally, to obtain the slope in red, we regress

the residuals from the �rst regression on the residuals from the second. Controls include

the DOT estimate of total project cost, initially stated project length in days, number of

bidders, and �xed effects for the year in which the project was opened for bidding, project

type, resident engineer, project manager, and project designer, as well as item �xed effects.

Speci�cations that exclude item �xed effects or include an array of additional controls

produce a very similar slope. 39 We use a similar procedure for all residualized bin-scatters

in this section.

Figure 1.7: Residualized bin-scatter of item-level percent winner overbid against percent quantity overrun

As Figure 1.7 demonstrates, there is a signi�cant positive relationship between percent

quantity overruns and percent overbids by the winning bidder. A 1% increase in quantity

overruns corresponds to a 0.085% increase in overbids on average.40 This suggests that the

winning bidder is able to correctly predict which items will overrun on average. As in the

example in Section 1.2, items predicted to overrun generally recieve higher bids. Thus, as

higher bids correspond to items that overran in our data, we conclude that bidders are

39For each graph, we truncate observations at the top and bottom 1%. This is done for the purposes of
clarity as outliers can distort the visibility of the general trends. We include untruncated versions in an online
appendix for robustness.

40See the appendix for a full regression report.
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informed beyond the DOT quantity estimates and skewing strategically.

Furthermore, the bid skewing relationship is similar across bidders beside the winner.

Figure 1.8a plots the residualized bin-scatter of percent overbids against percent quantity

overruns for the winning bidder and the second-place bidder in each auction. With the

exception of a few outlying points, the relationship between overbids and overruns is very

similar between the top two bidders. In the appendix, we show that this relationship is even

stronger when we restrict the comparison to projects in which the �rst two bidder submit

similar total scores. Figure 1.8b plots a residualized bin-scatter of the winning bidder's

unit bid for each item against the second place bidder's bid for the same item. Overall, the

direction of skewing corresponds strongly between the top two bidders – a higher overbid

by the winning bidder corresponds to a higher overbid by the second place bidder as well. 41

Together, these �gures suggest that bidders have access to the same information regarding

quantity overruns.

(a) Residualized bin-scatter of item-level percent over-
bid by the rank 1 (winning) and rank 2 bidder, against
percent quantity overrun.

(b) Bin-scatter of item-level percent overbids by the
rank 2 bidder against the rank 1 (winning) bidder.

Figure 1.8: Reduced form evidence that bidders have access to the same information regarding quantity
overruns

41Note that the percent overbids in Figure 1.8b appear to be substantially larger than those in Figure 1.8a.
This is because while large overbids occur in the data, they are relatively rare and so are averaged down in the
percent quantity overrun binning of Figure 1.8a.
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While our data suggests that bidders do engage in bid skewing, there is no evidence of

completebid skewing, in which a few items are given very high unit bids and the rest are

given “penny bids". The average number of unit bids worth $0.10 or less by the winning

bidder is 0.51—or 0.7% of the items in the auction. The average number for unit bids worth

$0.50, $1.00, and $10.00, respectively is 1.68, 2.85 and 13.91, corresponding to 2.8%, 4.73%,

and 23.29% of the items in the auction. This observation is consistent with previous studies

of bidding in scaling auctions. Athey and Levin (2001) argue that the interior bids observed

in their data are suggestive of risk aversion among the bidders. While they acknowledge

that other forces, such as fear of regulatory rebuke, may provide an alternative explanation

for the lack of total bid skewing, they note that risk avoidance was the primary explanation

given to them in interviews with professionals.

In addition to interior bids, risk aversion has several testable theoretical implications.

First, risk averse bidders are predicted to bid more aggressively on projects that are worth

more. A true reduced form test for this would require a ceteris perebis comparison of bid

outcomes on identical auctions that only vary on project size. However, a suggestive proxy

for aggressive bidding is the percent net over-cost: the percent by which the total amount

paid to the winner in each project exceeds the total project value given by the DOT's blue

book unit cost estimates. As shown in Figure 1.9, this relationship is generally negative

in our data. Interpreting percent net over-cost as a proxy for markups, this suggests that

bidders extract less rents (percentage-wise) in auctions with higher stakes, as risk averse

behavior would imply.

Furthermore, as we discuss in section 1.2, risk averse bidders balance the incentive to

bid high on items that are projected to overrun with an incentive to bid lower on items that

are uncertain. As such, we would expect bidders to bid lower on items that – everything

else held �xed – have higher uncertainty. While we do not see observations of the same

item in the same context with identi�ably different uncertainty, we present the following

suggestive evidence. In �gures 1.10a and 1.10b, we plot the relationship between the unit

bid for each item in each auction by the winning bidder, and an estimate of the level of
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Figure 1.9: Bin-scatter of the percent net over-cost against the total DOT estimate for the project cost

Note: DOT estimates are calculated with blue book cost estimates and ex-post quantity realizations.

uncertainty regarding the ex-post quantity of that item (in the context of the particular

auction). To calculate the level of uncertainty for each item, we use the results of our �rst

stage estimation, discussed in section 1.5.42 For every item, in every auction, our �rst stage

gives us an estimate of the variance of the error on the best prediction of what the ex-post

quantity of that item would be, given the information available at the time of bidding.

In Figure 1.10a, we plot a residualized binscatter of the winning bidder's absolute

percent overbid on each item against the item's standard deviation – the square root of the

estimated prediction variance. The relationship is negative, suggesting that holding all else

�xed, bidders bid closer to cost on items with higher variance, limiting their risk exposure. 43

42As we discuss in section 1.5, we �t a model for the distribution of the ex-post quantity of each item in
each auction. The model has two parts: �rst, we model the ex-post quantity of each item observation as a
linear function of the DOT quantity estimate for that item and a vector of item-auction speci�c features, given
a Gaussian error. Second, we model the variance of the Gaussian error in each observation to a lognormal
distribution, the mean of which is also a linear function of the DOT quantity estimate and item-auction features.
We �t this model jointly just Hamiltonian Monte Carlo using the full history of item-auction observations in
our data set. Intuitively this is akin to projecting the ex-post quantity of each item observation onto its DOT
estimate and feature vector, and then parametrically �tting the resulting residuals to a lognormal distribution.

43To account for the impact of quantity expectations, we include %Dqt as a control in the speci�cation when
residualizing. However, the qualitative negative relationship persists even if we exclude it. We present this in
section A.6.4 of the appendix for completeness.
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(a) Residualized bin-scatter of item-level percent
absolute overbid against the square root of esti-
mated item quantity variance.

(b) Residualized bin-scatter of item-level percent
difference in cost contribution, against the square
root of estimated item quantity variance

Figure 1.10: Reduced form evidence of risk aversion in observed bids

Note, however, that this analysis does not directly account for the trade-off between quantity

overruns and uncertainty. As in equation (1.1), a bidder's certainty equivalent increases

in the predicted quantity of each item, but decreases in the item's quantity variance. To

account for this trade-off, we consider the following alternative metric for bidding high on

an item:

%D Cost Contribution from t =

bt qa
t

å
p

bpqa
p

� ct qe
t

å
p

ct qe
p

ct qe
t

å
p

ct qe
p

� 100

This is the percentage difference in the proportion of the total revenue that the winning

bidder earned that was due to item t, and the proportion of the DOT's initial cost estimate

that item t constituted. In Figure 1.10b, we plot the residualized bin scatter of the % D

Cost Contribution due to each item against the item's quantity standard deviation. The

negative relationship here is particularly pronounced, providing further evidence that

bidders allocate proportionally less weight in their expected revenue to items with high

variance, as our model of risk averse bidding predicts.
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1.4 A Structural Model for Bidding With Risk Aversion

1.4.1 Setup

A procurement project is characterized by T items, each of which is needed in a different

quantity. MassDOT (henceforth, “the buyer" or `the DOT") initiates an auction for the project

by posting a list of the T items, along with a vector of estimatedquantities qe = f qe
1, . . . , qe

Tg,

with which it expects each item to be used. Once the auction is complete, the project is

implemented in full by the winning bidder using the actual(ex-post) quantity qa
t for each

item t. The actual quantities qa = f qa
1, . . . , qa

Tg are assumed to be �xed but unknown at the

time of the auction. That is, from the perspective of the buyer and the bidders, the vector of

actual quantities qa is an exogenous random variable. The realization of qa is independent

of which bidder wins the auction, and at what price. 44

The auction is simultaneous with sealed bids, but both the set of m > 1 participating

bidders and the buyer's quantity estimates qe are �xed and common knowledge to all

participants at the start of the auction. In addition, prior to the auction, the bidders receive

a symmetric noisy signal qb = f qb
1, . . . , qb

Tg of what the ex post quantities for the project will

be:

qb
t = qa

t + et where et � N (0,s2
t ). (1.2)

For simplicity, we assume that the signals are common across bidders. Thus, all bidders

have the same expected valueqb
t for the actual quantity of item t, and the same variances2

t ,

with which this estimate is off. 45

Bidders differ in their private cost of production along a single dimensional ef�ciency

multiplier a. At the time of the auction, every item t has a commonly-known market unit cost

44This assumption, which follows Bajari, Houghton and Tadelis (2014) and Athey and Levin (2001), precludes
the possibility of asymmetric moral hazard. In our reduced form section, we argue that the similarity in
projected overruns by the winning bidder and the runner-up suggests that if moral hazard affects bidding,
its effects are anticipated symmetrically by bidders so that this assumption, too, will not harm our estimates
greatly. It also precludes substitutability between items. While we cannot rule substitutions out, we argue that
their scope is limited as only items on the DOT designer's project speci�cation may be used for construction.

45It is not without loss of generality to assume that signals are common across bidders. However, we make
this assumption for the sake of tractability.
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ct . This cost represents that market price of the materials—generally things like concrete,

traf�c cones, etc., which are standard and competitive—at the scale necessary for the project.

However, the bidders vary in their labor and transportation costs, storage capacity, etc.,

yielding a multiplicative (dis)advantage over competitors. In particular, for every item t in

the project, bidder i faces a unit cost of aict where ai is the bidder's ef�ciency (multiplier)

type. The ef�ciency type of each bidder i is drawn independently from a common, publicly

known distribution with a well behaved density f (ai ) over a compact subset [a, a] of R+ .46

Each bidder privately observes only her own ef�ciency type prior to the auction, but the

distribution of competitor types is common knowledge.

To participate, each bidder i submits a vector of unit prices b i = f bi
1, . . . , bi

Tg, setting the

amount per unit that she will be paid for each item if she wins. The winner of the auction is

determined according to a �rst-price scoring rule. Each bidder i is given a scorebased on

her unit bids and the DOT quantity estimates:

si =
T

å
t= 1

bi
tq

e
t .

The bidder with the lowest score wins the contract and implements the project in full. Upon

the completion of the project, the actual (ex-post) quantities qa of the items are realized, and

the winning bidder is paid her unit bid bi
t multiplied by the ex-post quantity qa

t for each

item. The winning bidder is responsible for securing all of the materials and labor for the

project privately, and so she also incurs a cost of aict multiplied by qa
t for each item.47

Finally, we model the bidders as risk averse, with a standard CARA utility function over

their earnings from the project and a common constant coef�cient of absolute risk aversion

46The assumption that the distribution of ef�ciency types is common (e.g. not speci�c to individual bidders)
is not critical to our analysis, and relaxing it would not substantially change our estimation method or results,
although it might impact the counterfactuals.

47Note that only the winner of the auction incurs any costs. All losing bidders receive no further cost nor
revenue from the project at hand, once the auction is complete.
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g:48

u(p ) = 1 � exp(� gp ). (1.3)

The pro�t p that bidder i earns is either 0, if she loses the auction, or

p (b i , ai , c, qa) =
T

å
t

qa
t � (bi

t � aict ),

if she wins the auction. Note that as qa is a random variable from the bidder's perspective

at the time of bidding, her pro�t from winning is stochastic as well.

Bidder i choose her bids so as to maximize her expected utility at the time of the auction:
0

B
B
B
B
@

1 � Eqa

"

exp

 

� g
T

å
t= 1

qa
t � (bi

t � aict )

!#

| {z }
Expected utility conditional on winning

1

C
C
C
C
A

� (Prf si < sj for all j 6= ig)
| {z }

Probability of winning with si = b i � qe

(1.4)

where we suppress the common auction characteristics c, qe, qa as arguments in the utility

and pro�t functions for ease of exposition. This is bidder i's expected utility over her pro�t

if she were to win the auction, multiplied by the probability that her score – at the chosen

unit bids – will be the lowest one offered, so that she will win. Note that the expectation in

the �rst term is with respect to qa.

Bidders form their expectations based on the posterior distribution of each qa
t given by

equation (1.2) at their signals qb
t and s2

t . The expected utility of bidder i can therefore be

rewritten:
 

1 � Ee

"

exp

 

� g
T

å
t= 1

(qb
t � et ) � (bi

t � aict )

!#!

� (Prf si < sj for all j 6= ig)

=

 

1 � exp

 

� g
T

å
t= 1

qb
t (bi

t � aict ) �
gs 2

t

2
(bi

t � aict )2

!!

� (Prf si < sj for all j 6= ig).

where the �rst equality is given by rewriting qa
t = qb

t � et , so that the expectation operator

48Note that equation (1.3) can be thought of as a normalization of the CARA utility function ui (p ) =
exp(� gw) � exp(� gw(w + p )) where w is the bidder's wealth independently of the auction, and gw = g

w is the
unnormalized CARA coef�cient. When w is the same across all of the bidders in the auctions, this normalization
is without loss of generality. While this is a strong assumption, we will maintain it throughout the main part of
this paper for the purpose of tractability in this draft
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in the pro�t term is with respect to the distribution of eee. The second equality follows from

the closed form solution to this expectation. 49

1.4.2 Equilibrium Bidding Behavior

We now characterize the Bayesian Nash Equilibrium of the static �rst-price sealed bid

scoring auction described in the previous section. Our setting is similar to Bajari, Houghton

and Tadelis (2014), which uses a special case of the Asker and Cantillon (2008) model, in

which the project and its value to the buyer are �xed and independent of the winning

bidder. We consider a linear scoring auction game with independent private values that can

be characterized by a uni-dimensional “pseudo-type"— each bidder's ef�ciency multiplier

type a.50 As in Bajari, Houghton and Tadelis (2014) and Asker and Cantillon (2008), the

optimal bidding problem in our setting can be decomposed into two parts: (1) given an

ef�ciency type a, choose the optimal score s; (2) given a scores, choose the optimal bid

vector b subject to the constraint that b � qe = s. As we describe below, the optimal choice of

b conditional on a choice of s, a type a, and the auction characteristics, is deterministic and

independent of competitive considerations. Therefore, at the optimum, the value of winning

the auction to a bidder of type a, submitting a score s – that is, the bidder's expected utility

from winning the auction using the optimal vector of bids b that yield s – is determined

entirely by her choice of s, and is monotonically increasing in s. Following a sub-case of

Lebrun (2006), this game has a unique monotonic equilibrium in pure strategies.

We derive the equilibrium as follows for an arbitrary bidder i with ef�ciency type ai :

1. Given a (winning) score s, we �nd the optimal bid vector b i (s) s.t. å T
t= 1 bi

t (s)qe
t = s.

49E [exp(� gce)] = exp(� gmec+ g2s2
e

2 c2)) when c is a constant and e � N (me, s2
e).

50Another related reference is Che (1993), which employs a uni-dimensional bidder type, referred to as the
bidders' “productive potential".
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To do this, we solve the convex optimization program:

max
b i (s)

"

1 � exp

 

� g
T

å
t= 1

qb
t (bi

t (s) � aict ) �
gs 2

t

2
(bi

t (s) � aict )2

!#

(1.5)

s.t.
T

å
t= 1

bi
t (s)qe

t = s

Note that the objective function is separable in t and concave, and so this optimization

problem will have a unique global maximum. Moreover, applying the monotone transforma-

tion T( f (x)) = � log(� f (x) � 1), we can characterize the solution to (1.5) by the constrained

quadratic program:

max
b i (s)

"

g
T

å
t= 1

qb
t (bi

t (s) � aict ) �
gs 2

t

2
(bi

t (s) � aict )2

#

(1.6)

s.t.
T

å
t= 1

bi
t (s)qe

t = s.

The solution to this program is given by: 51

b�
i ,t (s) = aict +

qb
t

gs 2
t

+
qe

t

s2
t

T
å

p= 1

h
(qe

p)2

s2
p

i

 

s �
T

å
p= 1

"

aicpqe
p +

qb
pqe

p

gs 2
p

#!

. (1.7)

2. Let b �
i (s) be the optimal mapping from score to bid distribution for bidder i, as in

equation (1.7). We �nd the optimal score for bidder i by maximizing her expected

utility given the equilibrium distribution of opponent scores.

Let H j (�) be the CDF of contractor j's score. Then by bidding a score of s, bidder i

51Note that this formulation of the optimal bid program does not explicitly constrain unit bids to be non-
negative. This is not with loss of generality, and we apply the additional non-negativity constraint when
computing counterfactual bids. However, as all observed bids are positive (meaning that the non-negativity
constraint did not bind), this `unconstrained' program serves as a very useful approximation to the solution of
the fully constrained program. In particular, while the fully constrained program does not have a closed form
solution and must be solved with interior point algorithms or the like, the `unconstrained' version has a closed
form solution that is linear in our parameters of interest. As we show in section 1.6, the bids predicted by our
estimated model do quite well at matching the data.
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obtains an expected pro�t of:

E [ui (p i (s)] =

 

1 � exp

 

� g
T

å
t= 1

qb
t (b�

i ,t (s) � aict ) �
gs 2

t

2
(b�

i ,t (s) � aict )2

!!

| {z }
Expected utility conditional on winning

�

 

Õ
k6= i

(1 � Hk(s))

!

| {z }
Prob of win w/ s = b �

i � qe

where the �rst phrase in parentheses is i's expected utility from the total pro�t that she

stands to make from winning the auction, and the second phrase is the probability that s is

the lowest score given the equilibrium score distributions H j (�) for competing contractors

j 6= i .

As is standard in auction theoretic analysis (see Milgrom and Segal (2002), for example),

the optimal strategy is described by the �rst order condition:

g
T

å
t= 1

�
qb

t � gs 2(b�
i ,t (s�

i ) � aict )
� ¶b�

i ,t (s�
i )

¶s
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å
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hj (s� )
1 � H j (s� )
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g
T

å
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qb
t (b�

i ,t (s�
i ) � aict ) �

gs 2
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i ,t (s�
i ) � aict )2

!

� 1

#

, (1.8)

where hj (�) is the pdf of contractor j's score distribution. Note that the exponent on the

RHS is one over the certainty equivalent of the pro�t from winning - we will denote this as

exp(gp̄ ) as shorthand for expositional purposes. Substituting
¶b�

i ,t (s�
i )

¶s by taking the derivative

of equation (1.7) with respect to s and evaluating it at s�
i , we obtain a global optimality �rst

order condition:

g2

T
å

p= 1

h
(qe

p)2

s2
p

i

 
T

å
p= 1

"

aicpqe
p +

qb
pqe

p

gs 2
p

#

� s�
i

!

= å
k6= i

hj (s�
i )

1 � H j (s�
i )

[exp(gp̄ ) � 1] . (1.9)

Note, however, that while equation 1.9 characterizes the equilibrium score s�
i for bidder i,

the equilibrium vector of bids conditionalon s�
i is de�ned entirely by the optimality of the

bids with respect to bidder i's expected utility from winning the auction using s�
i . That is,

conditional on an equilibrium choice of score, the optimal bids for bidder i are given by

equation 1.7, evaluated at the equilibrium score.
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1.5 Econometric Model

We now present a multi-step estimation procedure to estimate the model described in the

previous section. We split our parameters into two categories: (1) statistical/historical

parameters, which we estimate in the �rst stage and (2) economic parameters, which we

estimate in the second stage. The �rst set of parameters characterizes the bidders' beliefs

over the distribution of actual quantities. The estimation procedure for this stage will use

the full history of auctions in our data to build a statistical model of bidder expectations

using publicly available project characteristics. However, it will not take into account

bidding incentives in any particular auction. By contrast, the second stage will estimate

the coef�cient of risk aversion g for each project type, and each bidder's ef�ciency type a

in each auction that she participates in. In this stage, we take the �rst stage estimates as

�xed and construct moments for GMM estimation using the optimality of observed bids

submitted by each bidder i in auction n, given our model, as described in equations (1.7)

and (1.9).

Stage 1a: Estimating the Posterior Distribution of qa
t

In the model presented in section 1.4, we did not take a stance on what the signals in

equation (1.2) are based on. The reason for this was to emphasize the �exibility of our model

with respect to possible signal structures: the only required assumption is that conditional

on all of the information held at the time of bidding, the posterior distribution of each qa
t

can be approximated by a normal distribution with a commonly known mean and variance.

In particular, it allows for correlations between items, as well as complicated forms of

correlation between the bidders' beliefs and the DOT's expectations.

For the purpose of estimation, however, we make an additional assumption. We assume

that the posterior distribution of each qa
t is given by a statistical model that conditions on

qe
t , item characteristics (e.g. the item's type classi�cation), observable project characteristics

(e.g. the project's location, project manager, designer, etc.), and the history of DOT projects.

This assumption can be thought of in several ways. It can be interpreted as an additional
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component of the structural model: the bidders use a statistical estimation procedure to

assess the likelihood of item quantities, and consequently, the value of the project, prior to

bidding. The DOT quantities, item and project characteristics are indeed all publicly known

at the time of bidding, as are historical records of DOT projections and ex-post quantities.

Furthermore, it is likely that �rms do precisely this when forming their bids. There is a

competitive industry of software for procurement bid management that touts sophisticated

estimation of project input quantities and costs. Alternatively, this assumption could be

thought of as the econometrician's model of the signal mean qb
t and variance s2

t for each

item t.

In particular, denote an auction by n and the items involved in auction n by t 2 T (n).

We model the realization of the actual quantity of item t in auction n by:

qa
t,n = cqb

t,n + ht,n where ht,n � N (0,ŝ2
t,n) (1.10)

such that cqb
t,n = b0,qqe

t,n + ~bqX t,n and ŝt,n = exp(b0,sqe
t,n + ~bs X t,n). (1.11)

Here, cqb
t,n is the posterior mean of qa

t,n and ŝt,n is the square root of its posterior variance—

linear and log-linear functions of the DOT estimate for item t, qe
t,n, and a matrix of item-

project characteristics X t,n. We estimate this model with Hamiltonian Monte Carlo as an

ef�cient implementation of a likelihood method optimized for a GLM and use the posterior

mode as a point estimate for the second stage of estimation.52 We demonstrate the goodness

of �t in section 1.6.

Stage 2: Estimating Cost Types and the CARA Coef�cient

We now discuss our econometric model for the estimation of the CARA coef�cient of risk

aversion g and bidder-auction ef�ciency types ai
n. The key to our identi�cation strategy

52Note that it is possible to estimate our �rst and second stage jointly using Hamiltonian Monte Carlo,
adding further �delity to the effect of the �rst stage estimates on the second stage moments along the entire
posterior distribution. However, as we prefer GMM for the second stage for this version, we make do with the
posterior mode. We could also simply run the second stage GMM along the posterior distribution and compute
a full second stage posterior this way, but this would be very computationally burdensome, and so we do not
do so at this time.
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lies in the heterogeneity of unit bids that we observe in our data. Our data set contains

a unit bid for every item, submitted by every participating bidder in every auction that

we see. In particular, we have three main sources of heterogeneity: (1) bids submitted by

different bidders in an auction with the same project characteristics, item, etc.; (2) bids

submitted by the same bidders across different items and different auctions with different

project characteristics, etc.; (3) bids submitted for the same items by bidders across different

auctions with different project characteristics, quantity projections and participating bidders.

Denote auctions by n, the bidders participating in the auction by i and the items involved

in the auction by t. The model of optimal bidding described in section 1.4 predicts that the

optimal unit bid for item t for a bidder of type ai
n in auction n is given by:

b�
t,i,n(s�

i ,n) = ai
nct,n +

qb
t,n

gs 2
t,n

+
qe

t,n
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, (1.12)

where s�
i ,n is the optimal score for this bidder, such that s�

i ,n =
Tn

å
t

qe
t,nb�
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hn(s�
i ,n)
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[exp(gp̄ ) � 1] , (1.13)

where p̄ = å Tn
t= 1 qb

t,n(b�
t,i,n(s�

i ,n) � ai
nct,n) �

gs 2
t,n

2 (b�
t,i,n(s�

i ,n) � aict,n)2.

As discussed above, we identify qb
t,n and s2

t,n with a statistical model of ex-post quantities

conditional on item-project characteristics using the full history of auctions in our data.

To reduce the dimensionality of our parameter space, we model the bidder-auction ef�-

ciency type ai
n onto a bidder-speci�c �xed effect and a regression model of bidder-auction

characteristics:

ai
n = ai + baX i ,n.

Finally, We make the following assumption to connect our �rst stage estimates to our bid

data and close our model:

Assumption 1. Let bd
t,i,n denote the unit bid for itemt submitted by bidderi in auction n, as
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observed in our data. Each observed unit bid is equal to the optimal bidb�
t,i,n, subject to an IID,

mean-zero measurement errornt,i,n:

bd
t,i,n = b�

t,i,n + nt,i,n

where

E [nt,i,n] = 0 andnt,i,n? X t,n, X i ,n

Assumption 1 states that each unit bid observed in our data is given by the optimal

bid implied by our model – at the true underlying parameters – subject to an idiosyncratic

error that is independent across draws, and orthogonal to auction-item and auction-bidder

characteristics. Such an error might come about because of rounding/smudging in the

translation between the bidder's optimal bidding choice and the record that appears to the

DOT (and consequently, to the econometrician). One might alternatively frame this error as

an optimization error: the optimal choice of bids is a numerical solution to a constrained

quadratic program that may not produce numbers that are convenient to report in currency.

To see the need for Assumption 1, note that an auction with T items and I bidders has T � I

unit bids, our model allows for only T quantity predictions, T item variance terms, I bidder

ef�ciency types, and 1 coef�cient of risk aversion as free parameters to explain these bids.

Absent an additional assumption, a model in which all T � I bids must match the bids

in our data would be rejected in most cases. It is not, however, strictly necessary for our

model to assert independence in error within bidder or project. We will therefore examine

relaxations of the independence assumption in an upcoming revision.

Note that Assumption 1 implies that the optimal score s�
i ,n is also observed with error:

s�
i ,n =

Tn

å
t

bd
i,t,nqe

t,n + n̄i ,n = sd
i,n + n̄i ,n,

where n̄i ,n = �
Tn

å
t= 1

nt,i,nqe
t,n is also mean-zero, conditional on the project characteristics of

auction n. Write q2 = ( g, f aig,~bajb0,q,~bq, b0,s ,~bs ,~bs,~ss). By de�nition, the bidder-item-
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auction level error on each unit bid is given by:
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where

ai
n = ai + baX i ,n. (1.15)

Note that ni ,t,n is linear in ai
n and 1

g , as well as in n̄i ,n. Furthermore, under Assumption

1, since E [nt,i,n] = 0 and is orthogonal to the matrix of item-auction features X t,n and

bidder-auction features X i ,n, we have that E [n̄i ,n] = 0 as well.

We therefore de�ne a demeaned bid error

ñt,i,n = ni ,t,n �
qe

t,n

s2
t,n å

p2T (n)

h
(qe

p,n)2

s2
p,n

i n̄i ,n, (1.16)

and form the following moment conditions, under Assumption 1:

E [ñt,i,n � Zt,i,njX t,n, X i ,n] = 0,

where Z is each of the following instruments:

� Indicator for unique �rm IDs 53

� Indicator for being a “top skewed item"

� The bidder-auction feature vectors that comprise X i ,n.

53We include a unique ID for for all �rms involved in at least 10 auctions, and a grouped ID for all �rms
involved in 9 or less auctions. These correspond to unique ai parameters.
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Identi�cation

The three types of instruments above correspond to three types of moments.

The �rst type of moment, constructed by interactions with �rm ID dummies, can be

interpreted as follows: the average bid error that a bidder with unique �rm ID i submitted,

across all auctions that i participated in, is asymptotically zero. There are 25 such moments,

one for each unique bidder id i. These moments inform the �xed effects ai , correspondingly.

The second moment focuses on items that were deemed as “top skew items" according

to the DOT Engineering Of�ce. These items are �agged as frequently being given noticeably

high or low bids. According to our model, the variation in these bids is re�ective of level of

bidders' responses to the uncertainty regarding the quantities of these items (in absolute

terms and relative to the remainder of the project). As such, we focus on this set of items to

identify the coef�cient of risk aversion, g. The moment can be interpreted as follows: the

average bid errors submitted on “top skew items" is asymptotically zero in the number of

auctions in which these items are involved.

The third type of moment, which interacts bid errors with bidder-auction characteristics,

can be interpreted as follows: the average bid error submitted in an auction n is orthogonal

to each of the 14 bidder-auction features X j
i ,n, and asymptotically zero in the number of

auctions. There are 14 such moments, one for each column of the feature matrix X i ,n. Each

of these moments can be thought of as informing the identi�cation of the coef�cient bj
a.

For complete details on the moment construction, see section ??. Note that our moment

conditions use only the optimality of bidders' unit price bids (given the scores that are

observed in equilibrium). 54

54This is conceptually similar to the classical GPV use of the empirical bid distribution to model bidders'
beliefs over the distribution of opponent bids that they face.

52



1.5.1 Bayesian Sampling with Hamiltonian Monte Carlo

In addition to our main GMM approach, we estimate a (fully) parametric version of

our structural model using Hamiltonian Monte Carlo. 55 Bayesian analysis facilitates the

modeling of hierarchical relationships in bidders' ef�ciency types – across auctions for the

same bidders, and across bidders in similar auctions. In our GMM approach, we account

for these relationships in the form of bidder �xed effects, and a regression function of

auction-bidder characteristics. However, a more sophisticated GMM treatment would be

dif�cult, given the high dimensionality of the parameter space and the amount of data

available. As such, we consider both approaches in our paper. We present the details of a

preliminary Bayesian speci�cation for the second stage of our structural estimation along

with results from an HMC �t of the model in section A.5 of the appendix.

1.6 Estimation Results

Our structural estimation procedure consists of two parts. In the �rst stage, we estimate the

distribution of the ex-post quantity of each item conditional on its item-auction character-

istics using Hamiltonian Monte Carlo. We present parameter estimates for the regression

coef�cients on the predicted quantity term bqb
t,n as well as the variance term bs2

t,n in Table

A.2 in the appendix. A histogram of the resulting variance terms themselves are plotted

in Figure 1.11, below. Prior to estimation, all item quantities were scaled so as to be of

comparable value between 0 and 10. As demonstrated in the histogram, the majority of

variance terms are between 0 and 3, with a trailing number of higher values. 56 In addition,

we demonstrate the model �t of our �rst stage in Figure A.1 and Table A.1 in the appendix.

In the second stage, we estimate a common CARA coef�cient g, as well as a bidder-

auction speci�c ef�ciency type ai
n = ai + baX i ,n for every bidder-auction pair in our data

55Hamiltonian Monte Carlo is an ef�cient algorithm for sampling the posterior distribution of a statistical
model. See Betancourt (2017) for an accessible complete explanation.

56Although we do not plot it here, in general, higher variances correspond to higher quantity predictions as
well.
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Figure 1.11: Histogram of standard deviation estimates for each item t in each project n

using the GMM estimator presented in section 1.5. We summarize the results in tables ??,

1.7 and 1.8. The full parameter estimates are presented in Table A.3 in the appendix. The

coef�cient of risk aversion g in our data is estimated to be about 0.046. An individual with

this level of risk aversion would require a certain payment of $23 to accept a 50-50 lottery to

either win or lose $1,000 with indifference, and $2,223 to accept a 50-50 lottery to win or

lose $10,000.57 As we report in Table ??, the 95% con�dence interval around our estimate is

(0.032, 0.264). This interval is generated by a bootstrap, in which the data set of auctions is

sampled (at the auction level) with replacement in each iteration. 58

Parameter Estimate 95Pct CI

bg 0.046 (0.032,0.264)

Table 1.6: Estimate of the coef�cient of risk aversion,g

In Table 1.7, we present summary statistics of our estimates of bidder-auction ef�ciency

57Note that the CARA coef�cient we estimate here is only identi�ed up to a dollar scaling. For numerical
ef�ciency, we scaled all dollar values by $1,000 in estimation and counterfactual simulation. Our results do not
depend on the scaling, however. As we have veri�ed, if we scale by an order of magnitude more (or less), the
estimated CARA coef�cient scales down (or up) by an order of magnitude correspondingly.

58At the moment, the bootstrap is only over the second stage, holding the �rst stage estimates �xed. A full
two-stage bootstrap, which requires substantially more computation time, will be presented in a future draft.
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bai
n

Project Type Mean St Dev 25% Median 75%

All 0.975 0.261 0.822 0.949 1.139
Bridge Reconstruction/Rehab 1.019 0.25 0.85 1.005 1.225

Bridge Replacement 0.996 0.219 0.855 1.009 1.159
Structures Maintenance 0.919 0.312 0.782 0.873 0.978

Table 1.7: Summary statistics ofai
n estimates by project type

types.59 We break down the results by project type to highlight the differences between

different types of construction. An ef�ciency of 1 would suggest that the bidder faces costs

exactly at the rates represented by MassDOT's blue book. Our results show that the median

bidder overall has an ef�ciency type of 0.949, consistent with estimates of bidder costs

by previous papers.60 There is heterogeneity across project types, however. We estimate

that the median bidder in a bridge rehabilitation project has an ef�ciency type of about

1.005, suggesting that she is about 0.5% less ef�cient than the DOT estimates. The median

bidder in structures maintenance projects, however, has an ef�ciency type of about 0.873,

suggesting that she is about 12.7% more ef�cient than the DOT estimates.

In Table 1.8, we present the ex-post markups for each winning bidder given their

ef�ciency type:

Markup =
å t qa

t,n � (bt,i,n � ai
nct,n)

å t qa
t,n � (ai

nct,n)
.

This is the bidder's total ex-post pro�t from the project, normalized by her total cost. The

numerator is given by the sum of the quantity of each item that was ultimately used qa
t,n,

multiplied by the bidder's pro�t from that item – her unit bid bt,i,n minus her private cost for

that item, given by her ef�ciency type ai
n multiplied by the blue book market rate estimate

59There are a few of decisions made by the econometrician in estimation. We considered different thresholds
on the number of auctions in which a �rm must have participated in order to have a separate �rm �xed effect.
We also identi�ed several outlying items: items that constituted large fractions of the project cost and were
always estimated and used in unit quantities. These items might better be represented as lump sum items, over
which uncertainty is poorly captured in our quantity model. The substance of our results is robust to these
considerations, however. We will present the results under different thresholds and when large lump items are
excluded in the appendix as a robustness check.

60See Bajari, Houghton and Tadelis (2014) and Bhattacharya, Roberts and Sweeting (2014), for example.
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ct,n. The denominator is calculated similarly, summing over the bidder's private costs only.

Bidder Markups

Project Type Mean St Dev 25% Median 75%

All 17.03% 60.88% -12.84% 5.74% 27.53%
Bridge Reconstruction/Rehab 11.39% 35.88% -15.61% 7.34% 23.07%

Bridge Replacement 12.8% 67.43% -12.34% 1.43% 23.67%
Structures Maintenance 23.9% 62.12% -9.66% 10.56% 39.13%

Table 1.8: Summary statistics of estimated winning bidders' markups givenâi
n

The median markup for a winning bidder in our data set, overall, is about 5.74%. There

is heterogeneity across project types: the median within bridge replacement projects is

1.43%, for instance, while it is 10.56% for structures maintenance projects. Moreover, there

is substantial variation within project types as well. The mean winner markups for bridge

replacement and structures maintenance projects are 12.8% and 23.9% respectively. This

may be due to the heterogeneity in projects as well as the ex-post accuracy of bidders'

quantity predictions. Furthermore, the 25th percentile of markups is negative for each of the

projects as well. This may be due, in part, to inaccurate prediction of the ex-post quantities.

However, note that the ex-post markup calculation does not take into account extra work

orders. While we do not estimate pro�ts on the extra work orders in our paper, and so

cannot evaluate exactly how extra work orders would affect ex-post pro�ts, this is a key

component of BHT's estimation and likely make up the difference in mark-ups.

Finally, we demonstrate the �t of our structural model in �gures A.3 and A.4, and Table

A.4 in the appendix. Figure A.3 plots the unit bids predicted by our model on the x-axis, and

the unit bids observed in our data on the y-axis. Figure A.4 plots a quantile-quantile plot of

our model predicted bids against the data bids. While bid predictions are not perfect, the

correspondence between predictions and data is quite good. Table A.4 presents a regression

analysis of the predictiveness of our model �t on the observed data. Our model �t predicts

data bids with an R-squared of 0.879.
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1.7 Counterfactual

1.7.1 Perfectly Predicted DOT Quantities

In order to draw conclusions from our results, we return to the discussion in section 1.2.

How much money would the DOT save if it were able to perfectly predict the actual quantities

that will be required for each project?

To answer this question, we solve for the equilibrium in each of the auctions in our

bridge projects dataset, under the counterfactual setting in which the DOT perfectly predicts

the actual quantities. We assume that the DOT's accuracy is common knowledge and so

the bidders believe that the actual quantities will be equal to the DOT's projections with

variance approaching zero when making their bidding decisions. 61

Note that it is not suf�cient to simply invert the econometric model of bidding described

in section 1.5 using our parameter estimates and the counterfactual conditions. The reason

for this is that the distribution of competitors' scores is de�ned in equilibrium. As we

demonstrated in section 1.2, the score that a bidder with ef�ciency type a will submit in

equilibrium depends on the DOT quantity estimates (as well as the bidders' beliefs and

all other auction characteristics). It follows that the equilibrium score distribution itself

depends on the DOT quantities, and so we need to solve for the equilibrium from auction

primitives afresh in each setting.

An equilibrium of an auction in our setting is determined by the following primitives:

the vector of DOT quantity estimates qqqe, the vector of bidder quantity model predictions, qqqb,

the vector of bidder model variances, sss2, the vector of DOT cost estimatesccc, the coef�cient

of risk aversion g, and the distribution of the ef�ciency types of bidders participating in the

auction. To evaluate our counterfactuals, we compute the equilibrium bids twice: �rst in the

baseline setting and second in the counterfactual setting. For the baseline setting, we use

the DOT estimates qqqe and ccc from the data, and the bidder quantity model parameters bqqqb

61In particular, we exclude considerations of short term gains that the DOT might make by accurately
predicting actual quantities while the bidders use noisy signals. As we assume that the bidders form their
beliefs over actual quantities using statistics over historical data, any such gains would be short lived as the
bidders would eventually realize that the DOT's quantities are accurate.
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and bsss2 from the �rst stage of our estimation. For the coef�cient of risk aversion, we use the

estimate ĝ = 0.046from the second stage of our estimation. For the distribution of bidder

ef�ciency types, we use a parametric projection of the empirical distribution of the ef�ciency

type estimates bai
n from our second stage onto auction characteristics.62 The details of the

equilibrium construction are presented in section A.1 of the appendix.

In Figure 1.12, we plot a histogram of the (a) percentage and (b) dollar savings to the

DOT from the perfect quantity prediction counterfactual. To calculate these savings, we

compute the equilibrium bids for every ef�ciency type a twice: �rst under the baseline

setting, and second under the counterfactual setting in which the DOT and bidder quantity

estimates are equal to the true ex-post quantities, qqqe = qqqb = qqqa, and the bidders face no

uncertainty, sss2 � 0.63 In each case, we calculate the expected total amount that the DOT

would pay the winning bidder in equilibrium: the expected value of the sum of the lowest

ef�ciency type's unit bids multiplied by the ex-post item quantities qqqa.64 The dollar gains in

Figure 1.12b are computed by taking the difference between the expected DOT cost under

the baseline setting, and under the counterfactual setting for each auction. The percent

gains in Figure 1.12a are given by dividing the dollar saving amount in each auction by

the expected DOT cost under the baseline. Finally, we present the bidder utility gains

from the counterfactual setting in Figure 1.12c. We calculate bidder utility gains by taking

the difference between the (ex-ante) certainty equivalent of a bidder participating in each

auction under the baseline and the analogous certainty equivalent under the counterfactual

setting.65 We present summary statistics for all three metrics in Table 1.9.

62Our model assumes that bidders in a given auction are ex-ante IID, and so the distribution of bidder types
must be auction, rather than bidder-auction, speci�c.

63We usesss2 � 0 rather than sss2 = 0 in order to avoid numerical over�ow issues.

64More concretely, let g(a) and G(a)by the density and cumulative probability functions of bidders' ef�ciency
types in a given auction. Let g1(a) = Ng(a)(1 � G(a)) N � 1 be the density of the �rst order statistic of
g—the density of the lowest type bidder, when there are N bidders in the auction. Denote b�

t (a) as the
equilibrium bid for item t for a bidder with ef�ciency type a in that auction. The expected DOT cost is given by
Ra

a g1(ã) å
t

qa
t b�

t (ã)dã.

65The certainty equivalent is de�ned as the amount of money that would make a bidder indifferent between
participating in the auction or forgoing the auction to accept that amount with no uncertainty.
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We predict that the median expected saving to the DOT from eliminating uncertainty

about ex-post quantities is about $2,203 or 0.23% of the baseline expected project cost.

However, the standard deviation of savings is about $24,704 (4.25%) and the 25th and 75th

percentiles are -$9,355 (-1.02%) and $13,987 (1.60%) respectively. This is re�ective of the

two opposing forces in effect when the DOT eliminates uncertainty. On the one hand,

eliminating uncertainty drives bidder risk down, thereby increasing the value of the project

to all of the bidders and causing them to bid more aggressively. On the other hand, the

counterfactual allows bidders to optimize their bid choices with regard to the true quantities

qqqa that will be used in the project, whereas in the baseline, bidders optimize on the basis

of quantity projections qqqb, which often differ from the true quantities. That is, whereas in

the baseline, bidders optimize unit bids with regards to quantity predictions that may be

inaccurate (and so, the bids may not be optimal with respect to the realized quantities, which

the winner is ultimately paid for), in the counterfactual with no uncertainty, the bidders

always optimize unit bids with respect to the actual quantities that will be used. As a result,

in the auctions where bidders “mis-optimized" under the baseline, the DOT bears a higher

cost under the counterfactual. Notably, the ex-ante value of the auction to bidders does not

change very much between the baseline and the counterfactual. The median increase in

bidders' ex-ante certainty equivalents under the counterfactual is a mere $17.61, and the

25th and 75th percentiles are $3.76 and $43.35, respectively. This re�ects the degree to which

optimal bid selection in equilibrium allows bidders to insure themselves against risk. The

value of the project rises in equilibrium, adding to the certainty equivalent, but this is offset

by competition and an inability to pro�tably skew. Consequently, the certainty equivalent

rises for some auctions, falls for others, but all in all stays much the same.

The projected expected DOT savings from eliminating risks detailed in Table 1.9 and

Figure 1.12 re�ect the two channels by which eliminating uncertainty changes the bidders'

problem: (1) it eliminates risk, raising the value of the project and encouraging more

aggressive bids; (2) it gives bidders access to the accurate ex-post quantities, allowing

bidders to perfectly optimize their unit bids with respect to ex-post pro�ts. In order to
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(a) DOT % Savings (b) DOT Dollar Savings

(c) Winning Bidder Utility Gains

Figure 1.12: Percent and dollar expected DOT ex-post Savings, and bidder utility gains from a counterfactual
in which risk is eliminated

Note: The median is highlighted in red in each case.
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Table 1.9: Summary of expected DOT percent and dollar savings and bidder utility gains (in dollars) from the
counterfactual setting in which the DOT reports perfectly accurate actual quantity estimates

Statistic Mean St. Dev. 25% Median 75%

Net DOT Savings $2,145.37 $24,704.09 � $9,354.61 $2,203.49 $13,987.89
% DOT Savings 0.70% 4.25% � 1.02% 0.23% 1.60%
Bidder Gains $6.64 $145.87 $3.76 $17.61 $43.35

Note: Results are truncated at the top and bottom 1% to exclude extreme outliers from the mean/SD
calculations.

disentangle these two effects, we repeat the counterfactual exercise under the assumption

that in the baseline, bidders' quantity projections qqqb are equal to the ex-post quantities qqqa

(but that bidders still perceive the projections to be noisy with variance bsss2). In this case,

bidders always optimize correctly with respect to ex-post quantities, and so the second

channel, by which eliminating risk can hurt DOT savings, is shut down. The resulting

expected DOT savings and bidder utility gains are reported in Table 1.10 and Figure 1.13.

Absent bidder mis-optimization due to inaccuracies in their quantity projections, the median

expected saving to the DOT is $125,187 or 11.98% of the (adjusted) baseline expected cost.

This can be thought of as an aggressive estimate of the potential savings from eliminating

risk, whereas the previous estimate is a conservative estimate. Notably, the bidder ex-ante

utility gains remain modest with a median certainty equivalent gain of $4.81 from the

counterfactual. This is because ex-ante utility is evaluated with respect to bidder beliefs –

according to which equilibrium bids are optimized – rather than ex-post quantities. As such,

the difference in baseline quantity predictions has little effect on the ex-ante total certainty

equivalent of each auction (although it does change the particular choices of optimal bids

across items).
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Table 1.10: Summary of expected DOT percent and dollar savings and bidder utility gains (in dollars) from
the counterfactual setting in which the DOT reports perfectly accurate actual quantity estimates, relative to a
baseline in which bidders accurately predict ex-post quantities, but believe their predictions to be noisy

Statistic Mean St. Dev. 25% Median 75%

Net DOT Savings $172,513.80 $165,129.50 $61,569.34 $125,187.10 $226,318.90
% DOT Savings 13.74% 9.05% 7.18% 11.98% 18.25%
Bidder Gains $19.16 $124.55 � $8.48 $4.81 $37.64

Note: Results are truncated at the top and bottom 1% to exclude extreme outliers from the mean/SD
calculations.

(a) DOT % Savings (b) DOT Dollar Savings

Figure 1.13: Percent and dollar expected DOT ex-post Savings, and bidder utility gains from a counterfactual
in which risk is eliminated, relative to a baseline in which bidders accurately predict ex-post quantities, but
believe their predictions to be noisy

Note: The median is highlighted in red in each case.
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1.7.2 Alternative Risk Sharing Mechanisms: Lump Sum and m-sharing Auc-

tions

While highway and bridge procurement around the United States is predominately done

through scaling auctions, public procurement in other departments of American DOTs, as

well as in DOTs around the world, often employs auction mechanisms that place signi�cantly

more risk on contractors. The simplest example of this is a lump sum auction in which

contractors submit a single total bid for completing the project. Subsequently, the winning

contractor is responsible for all project costs incurred, independently of whether or not

they exceed initial projections. Lump sum auctions have several properties that make them

attractive to DOT of�cials. First, they require less detailed speci�cations from DOT engineers

as bidding does not require a comprehensive itemized list of tasks and materials. 66 Second,

they incentivize the winning bidder to minimize costs (as all costs are privately incurred and

not directly compensated), thereby reducing the scope for moral hazard. However, lump

sum auctions have worrisome incentive properties as well. First, because compensation is

�xed at the time of bidding, projects that greatly exceed their scope are more likely to suffer

from hold-up problems in which the winning contractor insists on negotiating additional

payments before completing the project. Moreover, as we note in section 1.2, lump sum

auctions greatly increase contractors' exposure to risk. The increased risk exposure reduces

the value of winning the auction, and causes risk averse bidders to bid less aggressively,

resulting in substantially higher costs to the DOT.

In this section, we evaluate the extent to which shifting risk exposure onto contractors, as

in a lump sum auction, may be costly to the DOT. To hone in on the effect of risk exposure in

particular, we maintain the main assumptions of our baseline model. Bidders are identical

apart from a private, independently drawn, ef�ciency type a. The DOT advertises each

66Around 2007, the MBTA – the segment of MassDOT responsible for construction and maintenance of
the public transportation system in Massachusetts – switched from scaling auctions to lump sum auctions for
the majority of its procurement. We spoke to the chief engineer about the decision for this transition in 2017.
Chief among his reasons was the assertion that the scope of MBTA projects is much more dif�cult to de�ne
(and therefore spec out ex-ante) than of highway and bridge projects. We interpreted this to mean that the
dif�culty/costs of producing a comprehensive list of items for MBTA projects was high. We sought data to
compare costs after the switch, but were unable to obtain bidding or quantity records from before the switch.

63



project with a comprehensive list of items and (often inaccurate) quantity estimates qqqe.

Bidders receive a common signal of what the ex-post quantities will be, which provides

them with a vector of quantity projections qqqb and a vector of variances of the projection

noise sss2.

We de�ne a m-sharing auction for m2 [0, 1], as a scaling auction in which the winning

bidder is paid

å
t

(mqa
t + ( 1 � m)qe

t ) � bt ,

upon completion of the project. That is, for every item t involved in the project, the winning

bidder is paid her bid bt multiplied by mtimes the actual quantity of t used, plus (1 � m)

times the ex-ante DOT estimate for the quantity of t. When m= 0, this is equivalent to a

lump-sum auction, as the bidder is paid entirely based on her score, bbb � qqqe. When m= 1,

this is a standard scaling auction as in the baseline model. In general, the equilibrium bids

for a bidder i with ef�ciency type ai is characterized as in section 1.4.2 with the following

adjustment. The certainty equivalent in the constrained quadratic program to determine

the optimal distribution of bids, conditional on a candidate score (as in in equation 1.6) is

replaced by its m-sharing analog:

g å
t

(1 � m)btqe
t + ( mbt � act )qb

t| {z }
Expected Pro�ts

�
gs 2

t

2
(mbt � act )2

| {z }
Risk Term

.

We defer a detailed derivation of the equilibrium to the appendix. As in the previous section,

we calculate the change in expected DOT costs between a baseline auction in which bidders

are paid according to the ex-post quantities qqqa alone (e.g. m= 1) and a m-sharing auction

for m2 (0, 1]. In each case, we use the DOT estimatesqqqe, ex-post quantities qqqa and blue

book costsccc from the data – as before – as well as our structural estimates for the CARA

coef�cient ĝ and the distribution of ef�ciency types conditional on auction characteristics.

To focus in on the effect of the risk shifting alone, we shut down the bidder mis-optimization

channel and assume that bidders' quantity projections qqqb are equal to the actual ex-post

quantities qqqa, but that bidders still perceive the projections to be noisy with variance bsss2,
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from our �rst stage estimation. We present the percent change in expected DOT costs under

a lump sum auction in Figure 1.14a, and under a 1
2-sharing auction in Figure 1.14b. The

median expected loss from moving to a lump sum auction is 84.84%, while the median

expected loss from a 1
2-sharing auction is 3.47% – both with fat tails. Summary statistics for

each case are presented in Table 1.11.67

(a) DOT % Cost Change
Lump Sum (m= 0)

(b) DOT % Cost Change
m= 1/2

Figure 1.14: Histogram of expected DOT percent cost change from switching to am-sharing auction with
m= 0 (lump sum) andm= 1/2 .

Note: The median is highlighted in red in each case.

1.8 Entry

It is well known that an increase in competition bene�ts an auctioneer. In this section we

evaluate the entry of an additional contractor to each auction in our data. First, we estimate

the expected amount that the DOT would save if an additional contractor were to enter. We

do this by computing the equilibrium bid function in each auction under the baseline (as in

67Note that small increases in risk may in fact reduce the DOT spending ex-post, as they may cause bidders
to place larger bids on items with lower expected overruns (and lower risk) at a competitive score (even if the
score itself rises).
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Table 1.11: Summary of expected DOT percent cost change from switching to am-sharing auction withm= 0
(lump sum) andm= 1/2

DOT % Cost Change Mean St. Dev. 25% Median 75%

Lump Sum � 127.93% 129.70% � 175.11% � 84.84% � 38.08%
m= 1/2 � 6.84% 12.00% � 9.49% � 3.47% 0.39%

Note: Results are truncated at the top and bottom 1% to exclude extreme outliers from the mean/SD
calculations.

the counterfactuals described in Figure 1.12), and then under an extension of the baseline in

which the number of bidders is increased by one. We calculate the expected cost savings

in each auction by taking the difference between the expected amount paid by the DOT

to the winning bidder in the baseline, and in the counterfactual with an additional bidder

participating. Next, we estimate bounds on the cost of entry for a prospective bidder in a

procedure akin to Pakes, Porter, Ho and Ishii (2015), using the assumption that bidders enter

if they anticipate to pro�t more than the cost of entry and total entry is set in equilibrium.

1.8.1 An Equilibrium Model of Entry

Each auction is advertised to a set of prospective (pre-approved) contractors. Upon receiving

an advertisement, each prospective bidder observes the common auction characteristics: the

location of the project, identity of involved DOT employees, the vector of DOT quantity

estimates qqqe and the blue book cost estimates, ccc, as well as the re�ned quantity signals

components qqqb and sss2. Given this information, each bidder is also able to infer the distri-

bution of ef�ciency types of the prospective contractors. 68 However, in order to discover

her own (private) ef�ciency type, each bidder must invest a �xed amount K. For simplicity,

we assume that K is common across bidders. The timeline of each prospective bidder's

interaction with the auction is therefore as follows:

68As before, we assume that this distribution is the same for all prospective bidders conditional on auction
characteristics.
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1. Bidder observes project characteristics and the entry cost

2. Bidder calculates the expected utility of entering and determines whether or not to

participate

3. If she participates:

� Bidder observes her private ef�ciency type a

� Bidder chooses optimal unit bids given a, according to the equilibrium strategy

The expected utility of entry is as follows:

E[u(p )jN � ] =
Z a

a
[E[u(p (s(ã), ã)jN � )] � f (ã)] dã

where N � is the equilibrium number of bidders participating in the auction, and E[u(p (s(ã), ã)jN � )]

is the expected utility from participating in the auction (and paying K) given ef�ciency type

ã. In order for N � to be the equilibrium number of bidders, it must be that the N � th bidder

found it pro�table to enter, whereas the N � + 1st bidder did not. That is:

E[u(p )jN � ] � 0 � E[u(p )jN � + 1].

As such, the certainty equivalent of E[u(p )jN � + 1] (absent an entry cost) provides a lower

bound on K, and the certainty equivalent of E[u(p )jN � ] provides an upper bound on K.69

We plot the distribution of upper and lower bounds on the cost of entry K in each auction

in �gures 1.15a and 1.15b, respectively. In Figure 1.15c, we plot the expected savings to the

DOT from the entry of an additional bidder. Summary statistics are presented in Table 1.12.

The median lower (upper) bound on entry costs is $1,959 ($2,147), while the median DOT

savings amount to $49,335. The distribution of DOT savings is quite fat tailed, however.

While the mean lower (upper) bound on entry costs is $2,316 ($2,567), the mean DOT saving

is $82,583. This suggests that there is substantial potential value to encouraging entry with

a relatively modest guaranteed bonus payment to the winning bidder.

69See Lemma 1 in the appendix for a formal proof.
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(a) Distribution of lower bounds on the cost of entry(b) Distribution of upper bounds on the cost of entry

(c) Distribution of the expected dollar savings to the
DOT from the entry of an additional bidder to each
auction

Figure 1.15: Welfare impacts of an additional entry to each auction

Note: The median is highlighted in red in each case.
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Table 1.12: Summary of the welfare impacts of an additional bidder (not paying an entry cost) to each auction

Statistic Mean St. Dev. 25% Median 75%

Net DOT Savings $82,583.25 $87,568.51 $22,296.89 $49,335.35 $103,379.50
% DOT Savings 8.90% 8.45% 2.06% 5.65% 13.47%
Entry Cost Lower Bound $2,315.80 $1,524.88 $1,264.95 $1,959.42 $3,135.44
Entry Cost Upper Bound $2,567.53 $1,683.76 $1,369.73 $2,147.20 $3,445.23

Note: Results are truncated at the top and bottom 1% to exclude extreme outliers from the mean/SD
calculations.

1.9 Conclusion

This paper studies the bidding behavior of construction �rms that participate in scaling

procurement auctions hosted by the Massachusetts Department of Transportation. In

particular, we analyze the incentives for bidders to strategically skewtheir bids. We show

that while bidders do skew, placing high bids on items they predict will overrun the DOT's

quantity estimates and low bids on items they predict will underrun, this is not necessarily

indicative of rent extraction. For risk averse bidders, skewing facilitates diversifying bidders'

exposure to the risk of items being used in quantities far outside their expectations. In

a competitive environment, such as the one in MassDOT's bridge maintenance auctions,

skewing generates substantial savings to the DOT. If bidders were compensated entirely

based on the DOT's quantity estimates (or equivalently, using a lump sum auction), they

would not be able to skew their bids. However, in this case, bidders would be responsible for

all unanticipated modi�cations to the project speci�cation and raise their bids on the whole

to account for the added risk. Our estimates suggest that the DOT would subsequently pay

nearly 85% more for the median project.

While switching to a lump sum auction would increase DOT expenditures, increasing

bidders' exposure to risk a little bit may not be as harmful. A mixed compensation auction

in which bidders are paid half on the DOT's estimates and half on the realized quantities

only increases the median project's cost to the DOT by 3.5%. For a few projects, this mixed
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auction may even save the DOT a little. This suggests that policies that limit bidders'

ability to fully optimize their bids—such as the minimum bid requirement considered by

MassDOT—may be helpful in reducing DOT expenditures. Examining a counterfactual

with a minimum bid requirement, and other potential mechanism design interventions is

left for future work.
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Chapter 2

Bargaining and International

Reference Pricing in the

Pharmaceutical Industry 1

2.1 Introduction

The pharmaceutical industry represents a signi�cant part of the global economy: global

pharmaceutical sales amounted to $1.1 trillion in 2016, one third of which came from the

US.2 Policymakers around the world face the challenge of balancing the long-term bene�ts

of pharmaceutical R&D incentives against the more immediate bene�ts of regulating or

negotiating lower drug prices (Lakdawalla (2018), Lakdawalla et al. (2009)). Innovating new

drugs is expensive: the Pharmaceutical Research and Manufacturers of America (PhRMA)

estimates that the average cost to develop a drug (including the cost of failure) has increased

from $140 million in the 1970s to $1.2 billion in the early 2000s (both in adjusted 2000 dollars),

and only 2 out of 10 drugs ever achieve suf�cient revenue to cover these R&D costs. 3 DiMasi

1Co-authored with Ashvin Gandhi and Pierre Dubois

2QuintilesIMS Global Pharma Outlook 2016.

3PhRMA 2014 pro�le.
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et al. (1991, 2003, 2016) document a steady evolution in the cost of innovation—�gures

that rise from $230 million (1987) to $500 million (2000) to $1.4 billion (2013).4 Given the

substantial cost of R&D, the pro�ts that a pharmaceutical �rm expects to make off of a

drug play a large role in the �rm's decision to invest in developing it. New drugs are

generally protected from competition by patents in order to ensure adequate pro�tability,

and breakthrough drug prices often greatly exceed their marginal costs of production.

For example, Gilead Sciences recently priced its breakthrough hepatitis C drug, Sovaldi,

at $1,000 per pill—a price that almost certainly exceeds its marginal cost.5 Even in less

extreme cases, margins can be substantial: Dubois and Lasio (2018) �nd margins in the

range of 10-50% in the French anti-ulcer industry—in spite of French price constraints—and

Linnosmaa et al.(2004) estimate Finnish drug margins to be in the range of 59-67%.

The social planner's problem is further complicated by the fact that the bene�ts to

pharmaceutical R&D may spill over to other countries. While there exists a theoretical

literature on this topic—see, for example, Helpman (1993) and Grossman and Lai (2004)—

there is very limited empirical work. One notable exception is ?, which examines quinolone

sales data to determine the effect of TRIPS global patent protection on welfare. Chaudhuri

et. al. �nd substantial welfare losses to the Indian economy, resulting from the enforcement

of foreign pharmaceutical intellectual property rights in India. Moreover, it has been shown

that pharmaceutical industry pro�ts as a whole affect R&D. Acemoglu and Linn (2004)

and Dubois et al. (2015a) demonstrate a positive elasticity of innovation in relation to

market size. Acemoglu et al. (2006) examines whether the introduction of Medicare affected

pharmaceutical innovation and shows a positive effect, as well. Filson (2012) de�nes a

dynamic-stochastic equilibrium model of innovation and �ts it to industry facts in order to

assess counterfactuals in which either the US adopts price controls or other countries drop

theirs. Dynamic models of R&D have also been employed to study other industries, such as

high- and low-tech manufacturing Peters et al.(2017).

4To obtain these numbers, we adjusted the �gures reported in the papers for in�ation.

5“Sales of Sovaldi, New Gilead Hepatitis C Drug, Soar to $10.3 Billion.” Feb. 3, 2015. New York Times.

72



However, as the US spends twice as much as European countries per inhabitant in

pharmaceuticals—not only because of larger consumption but also because of substantially

higher prices—price controls in the US are increasingly being called for in policy circles Salter

(2015); OECD (2017), as well as, recently, by the US administration.6 For example, Salter

(2015) discusses international reference pricing for the US as a way to reduce pharmaceutical

spending, using experience in other developed countries as evidence of price reduction

effects. Weisset al.(2016) say that the US government may reduce the differential pricing

that exists with respect to other markets by using an international reference pricing policy

(though price controls may only be achieved following re-referencing as the US is typically

a �rst-launched market). Such a policy was implemented on a small scale in the 1990s when

the US Federal Government included a Most Favored Customer clause on pharmaceutical

product prices supplied to Medicaid. Scott-Morton (1997) shows that, while �rms had

to provide Medicaid at their lowest price, the rule resulted in higher prices to some non-

Medicaid consumers of pharmaceuticals. Most price control policies base price negotiations

on external reference pricing—pricing of the same drugs in other countries. In the case

of the US, and unlike Canada or most European countries, drug pricing is not currently

negotiated by a centralized regulatory authority that can adopt more or less aggressive

negotiating standards. The advantage of an international reference pricing policy is then

that it only requires an ex post control that US prices should not be higher than prices for

the same drugs in referenced countries.

In this paper, we develop a model that allows us to simulate a counterfactual international

reference pricing policy in which price controls are introduced in the US, in reference to

other countries' prices. Such a policy may imply changes in equilibrium prices, both in the

US and the reference country. Using data from the US and Canada, our paper develops and

estimates a structural model of supply and demand that allows us to assess how prices are

set both in Canada and the US. In Canada, this amounts to estimating the marginal costs

6See New York Times, October 25, 2018: “Trump Proposes to Lower Drug Prices by Basing Them on Other
Countries' Costs”.
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of products and the bargaining weights of �rms that negotiate prices with regulators. In

the US, it entails a Bertrand-Nash equilibrium in prices across competing �rms. This gives

us a setting in which we can evaluate counterfactual prices, demand, and welfare given

different international pricing regimes. In particular, we simulate a policy in which the US

constrains prices offered in its markets by the prices offered in Canada. In equilibrium,

�rms internalize the restrictions imposed by US reference pricing when negotiating with

Canada. They also internalize the effects Canadian price setting when negotiating with

the US.7 Our approach is novel in that we study the equilibrium price setting that results

due to reference pricing—both on prices in the country adopting a price control and in

the reference countries. As such, we determine welfare and pro�t effects in the global

pharmaceutical market equilibrium. 8

We use detailed data on drug quantities and prices from IMS Health to estimate a

random coef�cient logit model of demand with estimated drug class-speci�c market sizes.

We then model the price setting in a country with regulated prices (such as Canada) as the

result of negotiation between pharmaceutical manufacturers and a centralized regulator

under a Nash bargaining equilibrium Horn and Wolinsky (1988); Crawford and Yurukoglu

(2012); Grennan (2013); Gowrisankaranet al.(2015). With these supply side assumptions,

we are able to separately identify costs and bargaining parameters.9 Since Nash bargaining

involves maximizing the weighted log-sum of both parties' transaction utility, we can

interpret the bargaining parameters as the degree to which countries' policymakers choose

to trade off between �rm pro�ts and immediate consumer welfare.

Given our estimates of preferences, marginal costs, and bargaining parameters, we then

assess counterfactual policy simulations in which pharmaceutical prices in the United States

are subject to international reference pricing. Under the assumption that cost and demand

7In counterfactuals in which the US imposes reference pricing, we assume that price setting is set via
negotiations with regulators as is the case in other countries that use reference pricing schemes.

8Danzon and Chao (2000) and Danzon et al. (2005) also study the equilibrium effects of international
reference pricing, examining its effects on delayed entries of new drugs in reference countries.

9Dubois and Lasio (2018) instead chooses to model price setting in France as setting price ceilings that
constrain �rms.
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parameters would not change, we simulate the counterfactual prices that result. In our

counterfactual equilibrium, �rms internalize the constraint that US prices must be lower

than prices in Canada, while simultaneously price negotiations in Canada internalize the

impact of the their result on price setting in the US.

Our results show that such a policy results in a slight decrease in US prices and a

substantial increase in Canadian prices. The magnitude of these effects depends on the

particular structure of the policy. The effect appears to be asymmetric because of the size

differences in pharmaceutical markets across countries, the bargaining parameter value

in Canada, �rms' marginal costs and the shape of demand in each country. Overall, we

�nd modest consumer welfare gains in the US, but substantial consumer welfare losses

in Canada. Moreover, we �nd that pharmaceutical pro�ts increase in net, suggesting that

reference pricing of this form would constitute a net transfer from consumers to �rms. Our

analysis sheds new light on the price effects of reference pricing and shows the costs and

bene�ts of a most favored nation policy in the US.

The effects demonstrated by our analysis are in addition to the negative impacts that

previous work has shown reference pricing to have on entry in referenced countries ( ?,

Danzon et al.(2005), Maini and Pammoli (2017)). Our analysis holds entry/exit �xed and

so it does not internalize such an effect. Moreover, while our analysis shows the effects on

consumer welfare and manufacturing pro�ts, it likely underestimates the long-term welfare

impact as revealed preferences from current consumers and regulators' behavior probably

do not fully internalize the trade-off between current and future generations.

Our paper is structured as follows. Section 2.2 presents the data used for Canada and

the US. Section 2.3 presents the demand model that we use for each market and country, as

well as its identi�cation method. Section 2.4 introduces the supply side models, both for

regulated and unregulated pharmaceutical markets, that we estimate in order to identify

structural supply side parameters. It then presents the supply side identi�cation method

and estimation results. Finally, section ??develops a counterfactual model of international

reference pricing. Section 2.6 concludes.
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2.2 Data and Descriptive Statistics

We use data from IMS Health on revenues and quantities of drugs at the quarter level from

2002 to 2013. Our data spans the United States and Canada—the main markets in our

study—as well as France, Germany, the UK, Italy, and Spain, which we use to construct

instrumental variables for our identi�cation strategy. Observations in our data are at the

product-dosage level by country and quarter, and by hospital, retail or other channel of use.

The data also includes product characteristics and the manufacturer name. We aggregate

drugs across multiple dosage forms and administering methods (e.g., tablets and injections)

using “standard units”, the minimal dosage of a given drug. We use the international

drug name in the data to match drug names across countries. We aggregate sales to the

molecule-corporation-market level and aggregate generics for each molecule. We focus

on prescription drugs and do not study the OTC market. We leave the question of the

consequences of having country-speci�c de�nitions of OTC versus prescription drugs for

future research. We compute quarterly drug prices as the ratio of total revenue and total

quantity in standard units.

Our data details each drug's Anatomical Therapeutic Chemical (ATC) Class. In the

ATC system, all drugs are classi�ed into groups at �ve different (nested) levels. Our

data contains the �fth ATC classi�cation level (ATC-5) for each drug. For example, the

classi�cation of metformin (brand names: Glumetza, Fortamet, Glucophage, Riomet) is at the

1st Level (Anatomical Main Group): (A) Alimentary tract and metabolism; at the 2nd Level

(Therapeutic Subgroup): (A10) Drugs used in diabetes; at the 3rd Level (Pharmacological

Subgroup): (A10B) Blood glucose lowering drugs; at the 4th Level (Chemical Subgroup):

(A10BA) Biguanides; and at the 5th Level (Chemical Substance): (A10BA02) Metformin.

We de�ne markets at the ATC-4 class level. We restrict our focus to the 31 ATC-4 classes

for which we have at least one on-patent molecule both in Canada and in the US. 10 These 31

ATC-4 classes are drawn from a set of 24 ATC-3 classes that covers 93% of total hospital

10That is, we exclude ATC-4 classes in which Canada does not have any on-patent molecules, while the US
does. This typically happens because of the delayed entry of new molecules in Canada.
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drug expenses in the US and 72% in Canada. We describe the treatment types by ATC-3

classes covered in our analysis in table 2.1 below.

ATC 3 Class Treatment Type

A2B Antiulcerants

B1B Heparins

C2A Antihyper- Tensives

C7A Beta-Blocking Agents

C8A Calcium Antagonists

C9A Ace Inhibitors

C10A Cholesterol- And Triglyceride-Regulating Preparations

L1A Alkylating Agents

ATC-2 L1 Antineoplastic Alkylating Agents

L1B Antimetabolites

L1C Plant-Based Antineoplastics

L1D Antineoplastic Antibiotics

L1X Other Antineoplastics

L2B Cytostatic Hormone Antagonists

L4X Other Immunosuppressants

M1A Nonsteroidal Antirheumatics

M5B Bone Calcium Regulators

N1A General Anesthetics

N1B Local Anesthetics

N2A Narcotics

N2B Nonnarcotics And Antipyretics

N3A Antiepileptics

N5A Antipsychotics

N6A Antidepressants And Mood Stabilizers

Table 2.1: ATC-3 Description and Summary Statistics

Table 2.2 shows descriptive statistics on the number of molecules by on-patent/off-

patent branded and generic status within each ATC-4 class, in the US and in Canada. In

addition, Table 2.2 displays the share of expenditures of US and Canadian hospital sector

pharmaceutical spending that each ATC-4 class represents. There is variation across ATC-4

classes in the proportion of drugs with enforceable patents. ATC-4 classes in which most

molecules' patents are expired typically have most drugs available in generic—and so,
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inexpensive—form. In these cases, lowering prices in the US is of less interest.

There is also variation in the share of expenditures that different ATC-4 classes represent

between Canada and the US. In Canada, anti-cancer drugs (L1 class) represent a relatively

larger share of total expenses (around 35%) than the 20% that they represent in the US. By

contrast, the share of US spending on anti-thrombotic agents is much larger (16.8%) than in

Canada (7.9%). The distribution of relative expenses across drug classes is thus different

between the two countries, even though the US spends more in absolute value in every

ATC-4 class and pays higher prices on almost all drugs, as shown in Table B.1 in Appendix

B.1.2. Although the composition of drugs sold within each class in each country is different,

the ATC-4 level average price is much higher in the US in almost every class and quarter. In

fact, there is likely to be a negative correlation between prices and quantities within each

class that makes the average price by ATC-4 class potentially less different across countries,

in addition to the fact that some expensive drugs are sometimes not even sold in the US.

For drugs that are sold in both the US and Canada, it is interesting to verify that prices

are indeed higher in the US than in Canada, as this is one of the motivation for policymakers

to propose price control policies. Figure 2.1 shows a scatter plot of prices in the US against

prices in Canada for the on-patent drugs present in both countries and across different

ranges of prices in $US per standard unit. As shown in the �gure, most drugs are more

expensive in the US than in Canada by a large amount that is increasing in absolute value

with the price of the drug in Canada. The ratio of prices between the US and Canada slightly

decreases, however, so that the most expensive drugs are priced similarly across the two

countries.
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Table 2.2: Number of molecules and expenditure shares by ATC-4

Canada US
Number Number

ATC4 Label
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A10C1 H INSUL+ANG FAST ACT 3 0 0 0.66 4 0 0 1.16
A2B2 ACID PUMP INHIBITORS 1 4 4 3.36 4 4 4 4.12
B1B2 FRACTIONATED HEPARINS 4 0 0 7.98 3 0 0 16.81
C10A1 STATINS (HMG-COA RED 3 1 3 3.19 3 3 3 2.39
C2A2 ANTIHYPER.PL MAINLY PERI 1 2 4 0.32 2 1 4 0.51
C7A0 B-BLOCKING AGENTS,PLAIN 2 3 10 1.22 2 8 12 2.18
C8A0 CALCIUM ANTAGONIST PLAIN 1 4 4 1.90 1 6 7 2.50
C9A0 ACE INHIBITORS PLAIN 9 1 2 1.55 6 3 5 0.58
C9C0 ANGIOTEN-II ANTAG, PLAIN 2 4 5 1.10 5 3 3 0.96
L1A0 ALKYLATING AGENTS 6 2 3 1.75 9 4 5 2.06
L1B0 ANTIMETABOLITES 7 1 3 7.90 5 3 7 6.84
L1C0 VINCA ALKALOIDS 3 3 5 10.84 4 3 5 4.79
L1D0 ANTINEOPLAS. ANTIBIOTICS 3 3 5 4.07 4 4 5 2.17
L1X4 A-NEO PROTEIN KINASE INH 8 0 0 9.31 10 0 0 0.96
L1X9 ALL OTH. ANTINEOPLASTICS 2 1 2 2.67 7 0 3 1.26
L2B2 CYTO ANTI-ANDROGENS 1 2 3 0.91 1 1 2 0.11
L2B3 CYTOSTAT AROMATASE INHIB 3 0 0 1.87 4 0 0 0.14
L4X0 OTHER IMMUNOSUPPRESSANTS 5 1 2 3.72 9 3 4 1.75
M1A1 ANTIRHEUMATICS NON-S PLN 1 4 7 0.38 2 8 12 0.40
M5B3 BISPHOSPH OSTEOPOROSIS 2 2 3 0.59 4 2 2 0.47
N1A1 INHAL GEN ANAESTHETICS 1 2 2 3.68 1 2 2 8.26
N1A2 INJECT GEN ANAESTHETICS 2 4 6 2.27 3 6 8 6.36
N1B1 ANAESTH LOCAL MEDIC INJ 2 3 3 0.98 1 2 5 1.12
N1B3 ANAESTH LOCAL TOPICAL 1 1 2 1.73 3 2 3 1.16
N2A0 NARCOTIC ANALGESICS 1 5 10 5.19 1 4 17 7.06
N2B0 NON-NARCOTIC ANALGESICS 1 6 8 0.56 2 5 15 0.93
N3A0 ANTI-EPILEPTICS 4 5 8 2.71 12 3 7 6.67
N5A1 ATYPICAL ANTIPSYCHOTICS 3 1 1 14.81 5 1 1 13.16
N5A9 CONVNTL ANTIPSYCHOTICS 7 4 8 1.13 3 4 8 0.71
N6A4 SSRI ANTIDEPRESSANTS 1 4 5 1.11 1 3 5 1.70
N6A9 ANTIDEPRESSANTS ALL OTH 3 3 12 0.54 5 9 12 0.71

Note: Average number of molecules (rounded to closest integer) and expenditure shares (in %) within country over 2002-2013, by
ATC-4 classes. Some ATC-4 abbreviated labels have been revised and are not used anymore. See details of classi�cation in European
Pharmaceutical Market Research Association (2018).
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Figure 2.1: Comparisons of Prices of On-Patent Drugs present in both the US and Canada

Note: Graphs for different scales of the price in Canada because of the enormous variation of prices of drugs in $US per standard unit.
Within each graph, the circle size is proportional to the sales value of this drug in the US.

2.3 Demand Model

Pharmaceutical bargaining depends, in large part, on consumers' substitution between

competing drugs at different price levels. Regulators consider how each proposed price

change will impact total consumption (and subsequently welfare), while manufacturers

consider how it will impact pro�ts. In order to take this into account, we estimate a �exible

model of aggregate consumer demand for drugs within each market. We use a standard

random utility discrete choice model in which consumers' utility is a function of prices and

available drug characteristics. We cannot observe data on the behavior of insurers, healthcare

providers and other intermediaries between patients and drug manufacturers, and so we

abstract away from modeling them and do not disentangle their role in aggregate revealed

preferences. We focus on purchases made in the hospital sector. Hospitals typically fully

internalize the prices of drugs that they purchase on behalf on patients, who compensate the

hospitals at a per-diem basis. By contrast, consumers making purchases in the retail sector

often defer to doctors' prescriptions and pay co-pays that do not fully re�ect the differences
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in prices. As such, consumers in the retail sector may not fully internalize differences in

drugs, and so the revealed preference expressed in their observed purchase decisions is

more dif�cult to interpret for the purpose of welfare analysis. Thus, while we do observe

retail sales data, we focus on the hospital sector for our analysis.

2.3.1 Demand Speci�cation

We model the drug choice problem of a representative consumer as follows. A drug market

is de�ned by a level 4 Anatomical Therapeutic Chemical (ATC-4) class, a country (e.g.

Canada and the US), and a �scal quarter. We denote �scal quarters by t, countries by c and

ATC-4 classes bym. Consumer preferences for each drug in a market are de�ned according

to a random coef�cient logit framework for differentiated products, following Berry et al.

(1995) and Nevo (2001).

Within each country c, a representative individual i chooses to purchase a drug j from

the set of choicesj = 0, 1, ..,Jm( j) available in j's market, according to the indirect utility: 11

Ui jt = ui jt + #i jt

where

ui jt = ai ln pjt + bim( j) gj + g i + l m( j) xj + f j + mm( j)t + xjt .

We normalize the utility for the outside good (choosing not to purchase anything), ui0t , to

zero. We denote pjt for the price of drug j at t. Drug characteristics are captured by the

drug's molecule identi�er, patent status and generic status. In our utility speci�cation, gj

is a binary variable indicating whether drug j is generic, xj is a binary variable indicating

whether j's molecule patent has expired by quarter t and f j is a molecule �xed effect. An

unobserved shock at the drug-quarter level is denoted by xjt .

Consumer preferences are captured by three types of random effects. Individual value

11All parameters and variables in the utility function, as well as the choice set within an ATC-4 class, are
country-speci�c. We suppress the country index c for ease of exposition. Since each drug is only available in
one ATC-4 class, we also suppress them subscript in market denotations. That is, we consider the demand
model country by country, and each unique market that a drug j is available in is denoted by t.
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for purchasing an inside good is captured by the random effect g i . Individual disutility

from higher prices is captured by by the random coef�cient ai on log prices.12 Individual

preference for branded drugs is captured by the random coef�cient bim on the branded indi-

cator variable. We assume that random coef�cients are independently normally distributed

with ai � N (a, sa), bim � N (bm, sb), g i � N (0,sg ), and denote the vectors of parameters

q = ( sa, sb, sg ). The mean utility for drug j in quarter j is thus given by

djt = a ln pjt + bm( j) gj + l m( j) xj + f j + mm( j)t + xjt .

Assuming that #i jt is i.i.d. extreme value distributed, the expected market share of product j

in market mt where m = m( j) is given by the aggregate probability that j will be chosen

from the choice set in m:

sjt
�
djt , xjt , q

�
=

Z exp
�
ui jt

�

1 + å Jm
k= 1 exp (uikt )

dF(nim; q) (2.1)

where nim denotes the vector of random coef�cients f (ai � a), (bim � bm), g ig and F (.;q)

denotes their joint c.d.f.

2.3.2 Demand Identi�cation

We estimate our demand model according to the standard BLP method with instrumental

variables for prices Berry et al.(1995). We construct drug-quarter demand shocks xjt (djt , sjt , q)

by inverting a system that matches the theoretical market shares in equation 2.1 to observed

market shares. We then form moment conditions by interacting the inverted demand shocks

with a set of orthogonal instruments Z jt so that

E
�
Z jt xjt (djt , sjt , q)

�
= 0.

The key challenge to estimation is the consistent estimation of the price coef�cient distri-

12We use a log price speci�cation that �ts better the data because we have very heterogeneous prices across
different ATC-4 markets. While widely used in the literature Bjornerstedt and Verboven (2016); Gowrisankaran
and Rysman (2012); Berryet al.(1995), it is known that this speci�cation does not correspond to a closed form
solution for its direct utility function.
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bution. We expect the process of Price-setting to be affected by unobserved demand shocks

xjt , and so observed prices are likely to be correlated with xjt (djt , sjt , q). Our identi�cation

thus depends on the use of instruments that affect prices but are orthogonal to xjt . While

the gold standard would be to collect direct cost-shifters for each drug, this is impractical

for our exercise. In order to assess the effect of an international reference pricing policy on

total hospital drug spending, we examine a large number of drugs across a large number of

therapeutic classes. As such, it is unlikely that we would be able to �nd detailed cost-shifters

that are relevant to all of the classes of drugs that we cover. Similarly, it would be unfeasible

to collect speci�c cost-shifters for each drug or therapeutic class. One possibility would

be to restrict our analysis to a few therapeutic classes, �nd class-speci�c cost shifters and

identify the price coef�cient only off of those therapeutic classes. However, this would limit

the scope of our empirical assessment.

In this version of the paper, we leverage observed differences and changes in consumers'

choice sets from quarter to quarter as our primary source of identi�cation. In particular, we

form instruments by collecting, for each drug j in each quarter t, the number of products in

j's ATC-4 class, its (broader) containing ATC-3 class, the numbers of generics and off-patent

branded drugs, both for j's molecule and in general within j's therapeutic class, and the

number of countries (out of France, Germany, Canada, Spain, Italy, the UK and the US) in

which j is offered in the hospital sector. These variables capture variation in the composition

of drug j's competition that is largely driven by the entry of new drugs, the expiration

of patents, and the exit of outdated drugs. Similarly to BLP instruments, identi�cation is

premised on the assumption that isolation in the product space predicts prices through the

competitive channel. Similar logic may still hold even if prices are set through bargaining:

products that are innovative and without clear substitutes may be able to extract more rent

when bargaining. Moreover, while changes in the competitive landscape for drug j is thus

likely to impact its price, the changes themselves are largely driven by the ascendance of

time and technological progress. Drugs often face delays in entering markets outside the

US due to additional regulatory hurdles. Furthermore, patent protection is determined
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long in advance and entry decisions can take years. Even generic entries often face delays

from regulations, start-up costs, etc. and so they provide an additional source of choice

set variation. As such, it is unlikely that any of these instruments will correlate with the

idiosyncratic demand shocks xjt .

We might still be concerned that such instruments (as well as direct cost shifters and

Hausman instruments) only weakly correlate with marginal cost, yielding a weak instrument

problem. There are a number of reasons why marginal costs and prices may not covary in

the pharmaceutical industry as much as they do in other industries. First, markups can be

very high in the pharmaceutical industry, as marginal costs are typically very small relative

to the �xed cost of R&D. As such, changes in the level of marginal costs may not correspond

to meaningful changes in prices. Second, since drug prices are usually set through some

form of bargaining—either between pharmaceutical companies and the government or

between pharmaceutical companies and insurers—prices may be less responsive or slower

to respond to marginal cost changes. First, given the discrete schedule of negotiations, drug

prices may not be renegotiated suf�ciently frequently to respond to marginal cost variation.

Second, negotiations may constrain the scope of price changes, making small changes in

prices costly and dif�cult. For instance, price increases may be explicitly prohibited by

negotiated contracts, or prices may be tied to benchmarks (other countries' prices, value

contribution, etc.) that lag or weaken prices' correlation with marginal costs.

In addition to checking the power of instrumental variables in a �rst stage regression,

we consider using Hausman style instruments, as in Dubois and Lasio (2018). Identi�cation

using such instruments relies on the correlation between prices across markets due to

common cost shocks rather than common demand shifters. To construct such instrumental

variables, we perform country-level regressions of price on active ingredient dummies and

quarter �xed effects, and we use the residuals as instruments for price. The instruments for

the price of product j in market m( j) are the contemporaneous residuals for the price of

product j in other countries. As an example, we instrument for the price of the drug Sovaldi

in the United States using the price residuals of Sovaldi in France, Germany, Canada, Spain,
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Italy, and the UK. The reason we use residuals as instruments is that these allow us to control

for temporal, regional, and quality components that may contribute to contemporaneous

demand-based variation in prices. We also allow for different relationships across countries

for brand name drugs and generic drugs. We take additional care for producers with

multiple drugs or for the fact that some drugs are available in only a subset of countries.

When a product is not available in all other countries, we use residuals from available

countries. When a product is available in only one country, we use the average residuals of

other products within the same ATC in other countries as instruments. The main possible

concern is that there is insuf�cient variation in these instruments to precisely identify price

sensitivity, but this is again an empirical question of the power of instrumental variables,

and we investigate this in our empirical estimates, to be detailed in an upcoming revision.

Finally, it is important to note that the estimation of BLP-type demand models requires

the de�nition of market shares for products within each market. Quantities of drugs sold

and normalized by standard units allow us to construct market shares but require the

de�nition of a market size. Market sizes across many ATC-4 markets and across countries

for the hospital sector are not obviously de�ned and can change over time and be very

different. However, we do not observe an external estimate of market sizes, nor of the outside

share (which would be equivalent). Instead, we approximate the aggregate yearly market

size denoted by Mmt for each ATC-4 market using a nonlinear least squares calibration

procedure similar to that in Huang and Rojas (2013); Huang, Dongling and Rojas, Christian

(2014). We describe this procedure in detail in Appendix B.1.1. On average, we �nd that the

estimated outside market share is 29% in Canada and 24% in the US with some variation

across ATC-4 classes (see detailed estimates in Appendix B.1.2).

2.3.3 Empirical Results on Demand Estimation

We present key estimated demand parameters for the US and Canada in table 2.4. We

�nd that the random coef�cients on log prices in Canada and the US have similarly

negative means. The standard deviation of the price coef�cient in Canada shows substantial
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heterogeneity. There are a number of reasons that might underlie this. For instance, hospitals

may choose to stock drugs at discrete intervals, and so lag in responding to price changes.

Our estimates aggregate over many hospitals, which may vary in their frequency of decision

making and stickiness of brand preferences.

We also �nd differences in the dimension of preference heterogeneity between Canada

and the US. In the US, our estimate of the random coef�cient on the generic indicator

suggests that there is substantial heterogeneity in preferences for branded drugs. By

contrast, in Canada, much of the heterogeneity in demand is captured in the constant term

and is thus common to all drugs. We account for molecule �xed effects, ATC-4 speci�c year

effects, and ATC-4 speci�c off-patent and generic effects as well, but do not report this in

our main paper for the sake of exposition.

Table 2.4: Demand Estimates for US and Canada

Country US Canada
Log Price a -2.254 (0.146) -2.241 (0.206)

sa 0.024 (0.246) 0.892 (0.224)
Generic Dummy sb 1.628 (0.169) 0.357 (1.195)
Constant sg 0.042 (1.103) 1.562 (0.312)
Molecule dummies Yes Yes
Off patent * ATC-4 dummies Yes Yes
Generic * ATC-4 dummies Yes Yes
Year * ATC-4 dummies Yes Yes
Quarter dummies Yes Yes

Note: Standard error in parenthesis. All dummy coef�cients are not reported.

We present the average own- and cross-price elasticities for hospitals in the US and

Canada in table 2.5. These elasticities are computed using our estimated demand function in

every country, ATC-4 market and quarter. We present the average elasticities across ATC-4

classes and quarters within each country, in aggregate and by branded status. Overall,

average price elasticities are similar between the US and Canada. However, own-price

elasticities are slightly higher for generics than branded drugs in Canada, suggesting that

hospitals in Canada are more responsive to price changes in generic drugs.
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Table 2.5: Average Price Elasticities for Canada and US

US Canada
Own Cross Own Cross

All -2.033 0.124 -2.017 0.158
Branded -2.044 0.155 -1.809 0.185
Generic -2.021 0.147 -2.262 0.163

Note: Average own price elasticities across all products of ATC-4 markets and over quarters.

2.4 Supply Side Modeling and Estimates

2.4.1 Price setting with Bargaining

We model price setting for pharmaceuticals in Canada with a Nash Bargaining model in

which �rms maximize pro�ts, while government regulators maximize consumer welfare.

Nash Bargaining models of this sort (see for instance, Crawford and Yurukoglu (2012);

Grennan (2013); Gowrisankaran et al. (2015); Ho and Lee (2017)) provide a parsimonious

way to characterize the trade-offs facing policy-makers, who must balance producer pro�ts

against consumer welfare. In Canada, this bargaining may be interpreted literally, as the

Canadian Patented Medicine Prices Review Board negotiates prices with drug manufacturers

to ensure that they are not “excessive”. Moreover, this model applies more generally to

price-regulated pharmaceutical markets such as those in most European countries, absent

international reference pricing. We assume that there is no international reference pricing

(in the baseline), and so pricing is determined independently within each country. We thus

exclude a country-speci�c index for exposition.

Firm pro�ts are de�ned as follows. Within a market m at time t, �rm f selling products

j 2 Ff m receives �ow pro�ts:

P f mt = å j2 Ff m
P jmt = å j2 Ff m

(pjt � cjt )qjt (pmt).

Here, cjt and pjmt are the marginal cost and price of drug j, respectively. Their difference

(the �rm's markup) multiplies qjt , the total quantity of drug j demanded in market m, given
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the vector of prices pmt = (p1t , ..,pJmt ) of drugs available in the market. 13 Firm f 's total

pro�t is the sum of its pro�ts across markets:

P f t = å m P f mt.

Government regulators maximize aggregate consumer welfare as revealed by the demand

model in their country. We denote the welfare for consumers in market m at period t by:

Small and Rosen (1981):

Wmt(pmt) = Mmt

Z
Wimt (pmt)dF(nim; q) = Mmt

Z
ln

h
1 + å j exp

�
ui jt

� i
dF(nim; q)

= Mmt

Z
ln

h
1 + å j exp

�
ai ln pjt + bimgj + g i + l mxj + f j + mmt + xjt

� i
dF(nim; q).

That is, consumer welfare is given by the sum of the expected utility produced by each drug

available in market m. We assume that bargaining takes place product-by-product, so that

neither �rms nor regulators are able to bargain jointly over their portfolio of pharmaceutical

drugs. This excludes the possibility of cross-product considerations such as might occur in

bundling arrangements. 14 Thus, at each market m and quarter t, prices are set product-by-

product via Nash bargaining between the producer and the market m regulator, in order to

maximize the Nash product of �rm pro�ts and consumer welfare:

�
DjmP f t

�
pjt , p � jmt

��

| {z }
Pro�t from j in m

r jm (DjWmt(pjt , p � jmt ))
| {z }
Welfare gain from j in m

1� r jm .

Here, r jm 2 [0, 1] is the bargaining parameter that determines the relative weight of the

�rm's (pro�t) objective in determining the Nash bargaining solution. In order to account

for heterogeneity in the bargaining process across drug types, we allow r jm to vary across

ATC-4 markets and by each drug's status as on-patent, branded off-patent or generic. The

13Note that the quantity demanded is given by the size of the market multiplied by drug j's market share:
qjt = Mmtsjt .

14This assumption is made in order to simplify modeling, as joint optimization of prices is a notoriously
dif�cult problem in itself, and different approaches may yield to different equilibria. In the absence of data that
would enable us to distinguish between possible bundling arrangements, we defer to the simplest setting as an
approximation of reality.

88



�rm's objective is de�ned as the equilibrium pro�t generated by offering drug j at price pjt :

DjmP f t (pjt , p � jmt ) � P f t � å j06= j,j02 Ff
P j0m( j0)t = P jmt (pjt , p � jmt ),

where p � jmt denotes the vector of prices for all drugs other than j in market m and quarter t.

Note that this is just the pro�t directly accrued from the sale of drug j, as we have assumed

that �rms do not take into account substitution across different drugs in their portfolios

when setting prices. Similarly, DjWmt(pjt , p � jmt ) denotes the change in consumer welfare

generated by the presence of drug j in market m and quarter t:

DjWmt(pjt , p � jmt ) � Wmt(pjt , p � jmt ) � Wmt(¥ , p � jmt ).

We assume a Nash-in-Nash equilibrium. That is, the vector of competitor prices in the

vector p � jmt in the case of disagreement are assumed to be equal to the equilibrium prices.

Thus, for each drug j = 1, ..,Jm, the equilibrium price is set according to:

pjt = arg max
pjt

n
P jmt (pjt , p � jmt ) r jm (DjWmt(pjt , p � jmt )) 1� r jm

o
. (2.2)

The necessary �rst-order conditions of the Nash bargaining equilibrium de�nition in

equation (2.2) imply that for all j = 1, ..,Jm:

cjt = pjt +
1

¶ ln qjt (pmt)
¶pjt

| {z }
Demand semi-elasticity

+ 1� r jm

r jm

¶ ln DjWmt(pmt)
¶pjt

| {z }
Welfare semi-elasticity

where

¶DjWmt (pmt)
¶pjt

=
¶Wmt (pmt)

¶pjt
= Mmt

Z ¶Wimt (pmt)
¶pjt

dF(nim; q) = Mmt

Z
si jt

¶ui jt

¶pjt
dF(nim; q)

(2.3)

Note that when r jm = 1, pricing is set according to an unrestricted Bertrand-Nash equilib-

rium in prices where �rms maximize pro�ts and (2.4.1)simpli�es to the usual condition:

cjt = pjt +
qjt (pmt)

¶qjt (pmt) / ¶pjt
(2.4)
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In such a case, an estimate ofcjt is straightforward to compute given demand parameter

estimates. In the case of the US, we will use this special case to identify marginal costs, as

we know that there is no central regulation of hospital prices akin to a bargaining game as

in Canada. When r jm = 0, we have price equal to marginal cost pjt = cjt .

2.4.2 Supply Side Parameters Identi�cation and Estimation

The set of �rst-order conditions (2.4.1) relates marginal costs to the shape of demand,

drug prices, and the bargaining parameters r jm. With known bargaining parameters, these

�rst-order conditions allow us to identify the vector of marginal costs cjmt as functions of

r jm.

As we noted before, in the US, we assume that r jm = 1 because prices are freely chosen

and not regulated for the hospital sector. 15 In that case, the �rst-order conditions simplify to

the usual Bertrand-Nash �rst-order conditions (2.4) and allow identifying all marginal costs,

which we denote cjUSt for a product j in a market belonging to the US as in Nevo (2001).

For generics in the US, we impose that prices equal to marginal costs and do not estimate

margins, which is consistent with the typical fact that once many generics have entered,

prices are low and close to marginal costs.

In Canada, prices are set through bargaining and so we must identify the bargaining

parameters r jm in addition to marginal costs using equations (2.4.1). Without any restriction

on marginal costs, we cannot identify marginal costs and bargaining parameters. We could

use sign restrictions on marginal costs and markups in order to obtain lower and upper

bounds on the bargaining parameter. However, it is natural to add restrictions based on

parameterization to marginal costs functions as in Berry et al.(1995). One way to identify

costs and bargaining parameters is to let marginal costs be constant over time, constant

across countries, or both. We assume that marginal costs can be parameterized as additively

15Notable exceptions to unconstrained pricing include pharmaceutical sales to the “Big Four:” Department
of Veteran Affairs ($3.4 billion in 2003), Department of Defense ($4 billion in 2003), Public Health Service, and
the Coast Guard, which receive discounted drug prices negotiated with manufacturers. Medicaid also receives
effective discounts, but these are in the form of ex post rebates paid directly to the state rather than lower prices
paid at the register. Medicare, on the other hand, is prohibited from negotiating prices.

90



separable functions of supply-side covariates and an orthogonal error term as follows:

cjt

�
r jm( j)

�
= z0

jt l + w jt (2.5)

with

E
�
zjt w jt

�
= 0 8j, t (2.6)

and where cjt

�
r jm( j)

�
is solution of (2.4.1). In our application, zjt include a molecule-speci�c

and country-time-speci�c effect as well as the estimated US marginal cost cjUSt from (2.4).

We thus have further identi�cation power by leveraging our assumption that pricing is

known to be set through an unconstrained Bertrand-Nash pricing game for all products

sold in the US (excluding Federal sales).

The orthogonality conditions (2.6) allow to de�ne for any market m in Canada and all j

such that m( j) = m:

w jt
�
r jm

�
=

�
1 � z0

jt

�
z0

jt zjt

� � 1
z0

jt

�
cjt

�
r jm

�

Thus, we solve for any ATC-4 class m in Canada:

f r jmgf j= 1,..,Jg = arg min
f r jmgf j= 1,..,Jg

å j,t w2
jt

�
r jm

�
(2.7)

Table B.3 in Appendix B.1.3 shows the estimated average margins in percentage of the

maximum average price of US and Canada (which is almost always the US) by ATC-4 class

so that we can compare them across countries. The results show relatively large margins—

which is not surprising in the case of pharmaceuticals. We also �nd that the margins are

larger in the US than in Canada for most drugs. Figure 2.2 draws the distribution of the

differences of margins between US and Canada as a percentage of the US price, weighting

the distribution either by quantity sold in the US or in Canada. The difference is most often

positive as very few drugs have higher margins in Canada than in the US. The graph shows

that many of products have margins in the US that are larger than in Canada by an amount

that is more than 25% of the US price and up to 50%, which can mean extremely large

differences in absolute dollars according to the US price level.
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Figure 2.2: Estimated Margins Differences between US and Canada for on Patent Drugs

Note: The left panel shows the distribution of margins differences weighted by the US quantities of the drug. The right panel shows the
distribution of margins differences weighted by the Canadian quantities of the drug. These distribution are for the sample of on-patent
drugs present in both the US and Canada.

The supply model estimates also provide bargaining parameters estimates for Canada,

as shown in Table B.4 in Appendix B.1.3. The parameters vary between 0 and 1.

2.5 Counterfactual Policies

In this section, we use our structural model to evaluate the impact of several counterfactual

reference pricing policies. The primary reference pricing rule we consider prohibits pharma-

ceutical companies from setting higher prices for on-patent drugs in the United States than

in Canada. In other words, this rule requires that for any on-patent drug j sold in both the

United States (US) and Canada (CA):16

pUS
j � pCA

j . (2.8)

This type of policy is often referred to as an “international reference pricing” policy, or

a “most favored nation” clause. The stated objective of such a rule is typically to reduce

prices in the referencing country since they ensure that prices paid in the referencing

16To simplify notation, we exclude the time and drug-class subscripts in this section.
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country (United States) are as least as low as those in the reference country (Canada). In

equilibrium, however, reference pricing rules can also affect the price in the referenced

country. In particular, pro�t-maximizing pharmaceutical companies may set or negotiate

rates in the referenced country taking into account the impact on the price they can set

in the referencing country. We incorporate this interdependence by allowing negotiations

between pharmaceutical companies and Canada to account for the impact of the Canadian

price on potential pro�t in the United States.

We present our primary counterfactual speci�cation in Section 2.5.1. In this counterfac-

tual we allow the Canadian price to act as a price ceilingin the United States. Implicitly, this

assumes that pharmaceutical company cannot commit to a price in the United States prior

to negotiation with Canada. This can be equivalently be seen as a timing assumption that

prices are set in Canada prior to being set in the United States.

Because the implications of reference pricing policy may depend on the speci�c details of

implementation,we also study alternative counterfactual speci�cations. The �rst of these is

to allow the �rm to commit to a price in the United States prior to negotiating with Canada.

In this case, the price in the United States behaves as aprice �oor in the �rm's negotiations

with Canada. We include simulations for this counterfactual in Section 2.5.2. In future

iterations of this paper, we hope to include two additional counterfactual speci�cations that

are described in Appendix B.1.6. In the �rst of these additional speci�cation, the United

States regulator requires that the pharmaceutical company provide a comparison price in

Canada. In particular, this rules out the possibility that the �rm can serve only the United

States and thereby weakens its negotiating power against Canada. Lastly, we will simulate

the impact of a counterfactual in which the United States regulator references the average

of an index of prices in other countries. This index reference rule resembles Health and

Human Services' “International Pricing Index” proposal. 17

17Seehttps://www.cms.gov/sites/drupal/files/2018-10/10-25-2018%20CMS-5528-ANPRM.
PDF
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2.5.1 Counterfactual: Price Ceiling

When the negotiated price in Canada acts as a price-ceiling, pharmaceutical companies set

prices in the United States to maximize pro�ts subject to that ceiling: 18

pUS
j (pCA

j , pUS
� j ) � arg max

p2 [0,pCA
j ][f ¥ g

P US
j

�
p, pUS

� j

�
1f p� pCA

j g. (2.9)

This de�nes a correspondence giving the �rm's optimal price in the United States given its

price in Canada and other products' prices in the United states.

We allow negotiations between pharmaceutical companies and the Canadian regulator

to account for the impact of the Canadian price on pro�tability in the United States. Given

negotiated price pCA
j in Canada, the pharmaceutical company expects to earn P CA

j (pCA
j , pCA

� j )

in Canada and P US
j (pUS

j (pCA
j , pUS

� j ), pUS
� j ) in the United States, where pUS

j (pCA
j , pUS

� j ) is from

(2.9). The agreement surplus for the �rm in negotiation is therefore:

DP j (pCA
j , pUS

� j , pCA
� j ) =

P US
j (pUS

j (pCA
j , pUS

� j ), pUS
� j ) + P CA

j (pCA
j , pCA

� j )
| {z }

global pro�t under agreement

� P US
j (pUS

j (¥ , pUS
� j ), pUS

� j )
| {z }

pro�t if in US only

. (2.10)

Following Horn and Wolinsky (1988), the negotiated price in Canada maximizes the Nash

product:

pCA
j (pUS

� j , pCA
� j ) �

arg max
p

0

B
B
@ DP j (p, pUS

� j , pCA
� j )

| {z }
pro�t gain from agreement

1

C
C
A

r j
0

B
B
@ DjWCA(p, pCA

� j )
| {z }

welfare gain in CA from agreement

1

C
C
A

1� r j

. (2.11)

In equilibrium, the prices for on-patent drugs sold in both the United States and Canada

satisfy (2.9) and (2.11), respectively.19 In other words, equilibrium prices f (pUS�
j , pCA�

j )gj are

18We again use pUS
j = ¥ to denote exit from the United States market. This occurs when pCA

j < cUS
j . This is

most plausible as an equilibrium outcome when the Canadian market is large, Canadian consumers are price
sensitive, and marginal cost is very low, while the US market is small, US consumers are price sensitive, and
marginal cost is very high in the United States.

19The usual pro�t maximization and Nash bargaining conditions must also be satis�ed for all other products
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characterized by:

pUS�
j = pUS

j (pCA�
j , pUS�

� j ),

pCA�
j = pCA

j (pUS�
� j , pCA�

� j ),
(2.12)

for all j. We expect that under this counterfactual simulation that prices in the United States

will decrease while those in Canada will increase. We prove this in Appendix B.1.5 given

simplifying assumptions.

Using our estimates for the parameters governing supply and demand from sections

??and ??, we simulate price setting in the US and Canada without reference pricing. In

each therapeutic class, we simulate equilibrium bargaining in Canada, drug by drug, and

Bertrand price-setting in the US, subject to the reference pricing policy detailed in Section

2.5.1. Although the reference constraint applies only to patented drugs, we also simulate

the pricing decisions for generic and branded off-patent drugs since their optimal pricing

decisions are likely to change as their on-patent competitors change prices. The graphs

in this section therefore include off-patent drugs in addition to on-patent drugs unless

otherwise stated.

in the US and Canada.
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Figure 2.3: Counterfactual Prices under Price Ceiling (Log Scale)

Note: Each blue bar indicates the log of average prices in each ATC-4 class in the baseline without reference pricing. The red bar indicates
the change in log average prices resulting from imposing reference pricing. A red bar to the right of the blue bar indicates that prices
increased by the length of the red bar. A red bar to the left of the blue bar indicates that prices decreased by the length of the red bar.

To evaluate the effects of our counterfactual, we consider several measures of impact.

First, we consider the impact of counterfactuals on the prices of pharmaceuticals in both

the United States and Canada. Figure 2.3 compares average prices by therapeutic class in

the baseline to those that result from the introduction of reference pricing. We �nd that

while the reference pricing policy leads only to a slight reduction in US prices, it leads to

signi�cant increases in Canadian prices. Figure 2.4 gives the price changes for nine drugs

with large revenues in the United States. In all of these cases, the reference pricing rule

results in a binding price constraint (i.e., pUS
j = pCA

j ) and equilibrium prices very close to

the baseline United States prices. As such, they illustrate the dominant mechanism through

which prices change when reference pricing is imposed: US prices decrease slightly, while

Canadian prices rise to match them. As most Canadian prices are substantially lower than

US prices in the baseline, rising to near baseline US levels constitutes a large increase. As

we show next, this increase in Canadian prices dominates the quantity response, so that

expenditure and pro�ts both increase.
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Figure 2.4: Example Counterfactual Price Changes

To illustrate the impact of reference pricing, we �rst present our counterfactual pre-

dictions for a few signi�cant therapeutic classes. As a �rst case, we examine the Atypical

Antipsychotics class (N5A1), which constitutes 14.8% of expenditures in the United States

and 13.1% of expenditures in Canada, among the therapeutic classes we analyze. The

impact of introducing the reference pricing rule on Canada is substantial: expenditures and

pro�ts increase by 85.8% and 91.1%, respectively. By comparison, these �gures decrease by

just 0.5% and 1.2% in the United States. Similarly, welfare decreases by 24.1% in Canada,

and increases by only .7% in the US. Driving these results, the equilibrium prices in the

both markets under the reference pricing rule are much closer to the baseline prices in the

United States. Figure 2.4 shows that the prices of on-patent drugs Apriprazole, Olanzapine,

Quetiapine, and Risperidone—all part of the N5A1 ATC-4 class—increase by hundreds of

percent in Canada to near-parity with the baseline United States price.

Another key example is the Vinca Aklaloid class (L1C0), a class of chemotherapy drugs

which constitutes 4.79% of expenditures in the US and 10.8% of expenditures in Canada.

This class has a large concentration of patented drugs—4 out of 12 in the US and 3 out of

11 in Canada. Figure 2.4 shows the price changes of one such drug, Docetaxel, that result

from the introduction of reference pricing. While the Canadian price is approximately half
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of the US price in the baseline, the prices are equal, at a level slightly below the baseline US

price in the counterfactual. This is true on aggregate for patented drugs in L1C0: average

drug prices increase in Canada by 66.1% but decrease in the US by 4.6%.20 However, total

expenses increase both in Canada (13.7%) and in the US (3.2%), re�ecting a slight increase

in US prices for branded off-patent drugs. Aggregate average pro�ts and welfare follow the

general pattern found across therapeutic classes: pro�ts increase substantially (44.7%) in

Canada, but decrease slightly (1.5%) in the US, while welfare decreases substantially (9.6%)

and increases slightly (1.4%) in the US.

Figure 2.5: Counterfactual Expenditure under Price Ceiling

Note: Each blue bar indicates the average annual expenditure in each ATC-4 class in the baseline without reference pricing. The red
bar indicates the change in average annual expenditure resulting from imposing reference pricing. A red bar to the right of the blue bar
indicates that expenditure increased by the length of the red bar. A red bar to the left of the blue bar indicates that expenditure decreased
by the length of the red bar.

Figures 2.5, 2.6, and 2.7 depict the effect of the reference pricing rule on expenditures,

pro�ts, and welfare by therapeutic class. Tables of numerical values are given in Appendix

B.1.7. While there is signi�cant variation across ATC-4 classes, our results show that

expenditures and pro�ts overwhelmingly increase (60.6% and 65.6%, respectively) in Canada

while Canadian consumer welfare decreases (12.3%). The impacts are signi�cantly smaller

20See table B.9 for a breakdown of price changes by ATC-4 and drug status.
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but generally reversed for the United States.21 (Expenditure and pro�ts in the United States

decrease by 0.75% and 1.9%, respectively, while welfare increases .2%.) In our simulations,

four on-patent drugs from four ATC-4 classes choose to exit from the United States market. 22

However, these products represent small market shares and small expenditure, suggesting

that reference pricing does not generate large market distortions by incentivizing drug

exits.23 The results in the class of statins (C10A1) that Rosuvastatin belongs to, and the class

of beta-blockers (C9C0) that Valsartan belongs to are similar.

Figure 2.6: Counterfactual Pro�t Changes on All Drugs with Canada as Price Ceiling for the US

Note: Each blue bar indicates the average annual pro�ts in it ATC-4 class in the baseline without reference pricing. The red bar indicates
the change in average annual pro�ts resulting from imposing reference pricing. A red bar to the right of the blue bar indicates that pro�ts
increased by the length of the red bar. A red bar to the left of the blue bar indicates that pro�ts decreased by the length of the red bar.

21It is worth noting that expenditure increases in the United States for a few ATC-4s, suggesting that
substitution patterns may dominate small price decreases in these markets.

22Firms never choose to exit the Canadian market since given the �rm's US price, a suf�ciently high Canadian
price always exists that generates positive pro�t and allows the reference price constraint to be satis�ed.

23The largest is in the anti-rheumatics therapeutic class (M1A1) and combines Diclofenac with Misoprostol.
This product represents 4.8% of average expenses in the class, and exits between 2008 and 2011. The other drugs
that exit are the ATC-4 classes A10C1, B1B2, and C9A0, and have expenditure shares between 0.1% and 1.5%.
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Figure 2.7: Counterfactual Welfare Changes on All Drugs with Canada as Price Ceiling for the US

Note: Each blue bar indicates the average annual welfare in it ATC-4 class in the baseline without reference pricing. The red bar indicates
the change in average annual welfare resulting from imposing reference pricing. A red bar to the right of the blue bar indicates that
welfare increased by the length of the red bar. A red bar to the left of the blue bar indicates that welfare decreased by the length of the red
bar.

Analogously to Figure 2.2, Figure 2.8 shows the difference in patented drug margins

in the United States and Canada both in the baseline and under the reference pricing

counterfactual. This �gure shows that the international reference pricing policy results in

generally higher margins in Canada than in the United States, the reverse of what we �nd

in the baseline without reference pricing. 24

24The left graph of Figure 2.8 shows that when weighting the distribution by the US quantities of each drug,
a signi�cant number on-patent drugs will exhibit higher margins in Canada by an amount around 40% of
the price of the drug. The right graph of Figure 2.8 shows that the share of drugs with substantially higher
Canadian margins is ampli�ed when weighting by Canadian quantities.
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Figure 2.8: Counterfactual Margins Differences between US and Canada for on Patent Drugs

Note: The empirical distribution of the difference between margins in Canada and the US,(pCA � cCA) � (pUS � cUS), normalized by
each drug's US price and weighted by the quantity of the drug sold in the US (left) and in Canada (right).

These graphs show that if the status quo margins are larger in the US, such that the

distribution of differences is largely on the positive, then international reference pricing will

not make the distribution of differences centered on zero,. Rather, margins will be higher

in Canada for a substantial quantity of on-patent drugs. This occurs despite the fact that

prices become close because marginal costs are typically higher in the US than in Canada.

That is, international reference pricing policy makes prices more equal across countries

but makes margins lower in the US and thus makes the US contribute less than Canada to

pharmaceutical pro�ts by unit of consumption.

Finally, �gure 2.9 shows the net effect of imposing international reference pricing on

global (that is, the US and Canada combined) expenses and pro�ts. Overall, total expenses

in the US and Canada increase by 2.7%, while total pro�ts increase by 5.1%. Most of the

changes occur in Canada, whose scale is much smaller than the US. However, the price

increases in Canada are so large that on net expenses increase. In summary, an international

reference pricing policy in the US has globally negative effects on the referenced country, but

is not able to substantially decrease either prices or expenses on drugs in the US. Detailed

results are presented in table B.11 in appendix B.1.7.
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Figure 2.9: Net Global Percent Changes in Expenses, Pro�ts and Welfare from Reference Pricing

Note: Each bar represents the net percent change in global expenses (red), pro�ts (green) and welfare (blue) in each ATC-4 that results
from moving from the baseline without reference pricing to our main counterfactual. For scale, on the left, we present the percent of
baseline US expenditures that each ATC-4 represents.

Variations on Market Size and MFN Rule

As demonstrated in our counterfactual simulations, the international reference pricing

policy is likely to have small effects in most ATC-4 classes in the US, with a few notable

exceptions. However, it would have generally very large effects in the reference country—in

our case, Canada. Our simulation results show that, in general, it would be too costly

for pharmaceutical �rms to decrease prices in the US. Rather, �rms would respond to the

policy by increasing prices in Canada—even if regulations in Canada can impose some

downward pressure on price-setting in Canada. In the 31 ATC-4 classes of drugs, total

spending in Canada is $472 million on average annually, while it is $ 6,946 million in the US.

This difference is explained by both the fact that prices are much higher in the US than in

Canada, and also because Canada is a much smaller country than the US in population.

Given these results, we investigate several variants of the international reference pricing.

The �rst variant that we consider is a Most Favored Nation clause in which the United States

allows pharmaceutical companies to set prices in the US so long as the price in the United
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States does not exceed a maximum allowed premium above the price in Canada. In other

words, in order for an on-patent drug to be sold in both the United States and Canada:

pUS
j � (1 + h)pCA

j , (2.13)

where h is the maximum allowable premium. Given that Canadian prices are typically

lower than in the US, we consider premiums set at 33% and 50%.25 A policy of this sort

would be a priori less stringent on price-setting in the US and Canada, and could result in

smaller price changes than when the allowed premiumis 0%.

The second policy variant that we consider is reference pricing with respect to a different

country, especially one with a larger market. To approximate the implications of referencing

a larger country without re-estimating our model for other countries, we simulate the

international reference pricing policy in our main counterfactual section with a scaled up

market size for Canada, such that it represents half of the US market, or is of the same size

as the US market.

Figures 2.10 and 2.11 shows the results of this counterfactual simulation for a subset of

ATC-4 classes that each represent more than 3% of pharmaceutical expenditures in the US.

Table B.12 in Appendix B.1.7 presents the detailed results. We present the counterfactual

expenses in the benchmark case (e.g. referencing Canadian prices), as well as for simulations

with marked-up reference pricing (but keeping the Canadian market as is), and simulations

with an in�ated Canadian reference market (but the baseline reference pricing rule). In this

table, the column “MFN", which takes values 0, 33 and 50, refers to simulations in which

pricing in the US is referenced with respect to Canadian prices plus a markup of 0%, + 33%,

and + 50%respectively. The column “Share US market”, which takes values 0, 50 and 100,

refers to simulations in which either the baseline Canadian market size (0), or a Canadian

market size that is scaled up to represent 50%or being 100%of the US market, respectively.

We �nd that allowing for a + 33%or + 50%markup on reference prices in the US would

25While we only examine weakly positive h, many settings with most favored nation contracts involve
negative h. Such contracts guarantee the referencing country (or �rm) a better price than others by at least a
�xed percentage. These contracts are often referred to as “MFN-plus” contracts.
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Figure 2.10: Counterfactual Expenses Changes in Large ATC-4s with A Varying MFN rule (0, +33%, +50%)

Note: Each blue bar indicates the average annual expenditure in it ATC-4 class in the baseline without reference pricing. The red bar
indicates the change in average annual expenditure resulting from imposing reference pricing. A red bar to the right of the blue bar
indicates that expenditure increased by the length of the red bar. A red bar to the left of the blue bar indicates that expenditure decreased
by the length of the red bar.

Figure 2.11: Counterfactual Expenses Changes in Large ATC-4s with a Larger Reference Market

Note: Each blue bar indicates the average annual expenditure in it ATC-4 class in the baseline without reference pricing. The red bar
indicates the change in average annual expenditure resulting from imposing reference pricing. A red bar to the right of the blue bar
indicates that expenditure increased by the length of the red bar. A red bar to the left of the blue bar indicates that expenditure decreased
by the length of the red bar. There is some variation in convergence for different US sizes.
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lead to smaller price increases in Canada as well as similarly small changes in expenses in

the US. Again, the simulations demonstrate that when the reference country's market size

is relatively small, the reference pricing policy would mostly affect the referenced country,

without bene�ting the US to a large degree. Our results show that increasing the market

size of the referenced country to be comparable to the US—half of or comparable to the US

market—implies greater reduction in the US price and a decrease in the Canadian price. In

the ATC-4 class B1B2, which covers fractionated heparins (an anticoagulant), for instance,

US expenses decrease by 13% and 21% when referencing a Canadian market that is scaled

up to be half the size of the US market, and the same size as the US respectively. This

suggests that reference pricing may be more effective when referencing larger countries.

Nonetheless, expenses in the US do not decrease substantially across ATC-4s, and the large

asymmetry in effect size between the US and Canada remains.

2.5.2 Alternative Speci�cations

Price Floor

In this section, we simulate the impacts of a reference pricing counterfactual in which the

pharmaceutical company is able to commit to a price pUS
j in the United States prior to

negotiating a price pCA
j with the Canadian regulator. The �rm's chosen United States price

behaves effectively as a price �oor in negotiations with Canada: if the negotiated rate in

Canada is lower than the price �oor, then the �rm is forced to exit the United States market.

Negotiations between the pharmaceutical company and the Canadian regulator take this

into account so that the �rm's agreement surplus and negotiated rate in Canada are:

DP j (pCA
j , pUS

j , pCA
� j , pUS

� j ) � P US
j (pUS

j , pUS
� j )1f pCA

j � pUS
j g + P CA

j (pCA
j , pCA

� j )
| {z }

total pro�t of j if agrees in CA

� P US
j (pUS

j , pUS
� j )

| {z }
pro�t of j if only in the US

,

(2.14)
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Figure 2.12: Counterfactual Prices with US as Price Floor in Canada

Note: Each blue bar indicates the log of average prices in each ATC-4 class in the baseline without reference pricing. The red bar indicates
the change in log average prices resulting from imposing reference pricing. A red bar to the right of the blue bar indicates that prices
increased by the length of the red bar. A red bar to the left of the blue bar indicates that prices decreased by the length of the red bar.
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Strategic pharmaceutical companies will account for the correspondence in (2.15)and set

their price in the United States to maximize their global pro�t: 26

pUS
j (pCA

� j , pUS
� j ) = arg max

p
P US

j

�
p, pUS

� j

�
+ P CA

j (pCA
j (p, pCA

� j , pUS
� j ), pCA

� j ) (2.16)

In equilibrium, the prices f (pUS�
j , pCA�

j )gj will satisfy (2.9) and (2.11) for each j:

pUS�
j = pUS

j (pCA�
� j , pUS�

� j ),

pCA�
j = pCA

j (pUS�
j , pCA�

� j , pUS�
� j ).

(2.17)

26It is also possible that the �rm prefers to exit the United States market. We additionally allow the �rm to
exit the United States when the pro�t from unrestricted sales in Canada exceed the �rm's maximum global
pro�t when serving both markets under the reference pricing rule.
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Figure 2.13: Net Global Percent Changes in Expenses, Pro�ts and Welfare from Reference Pricing with US as
Price Floor for Canada

Note: Each bar represents the net percent change in global expenses (red) and pro�ts (green) in each ATC-4 that results from moving
from the baseline without reference pricing to our main counterfactual. For scale, on the left, we present the percent of baseline US
expenditures that each ATC-4 represents.

Using our model estimates, we simulate the impact of such a reference pricing rule in

which the pharmaceutical company �rst commits to a price in the United States and then

negotiates a price in Canada. We show some of the �ndings from these simulations in in

Figures 2.12 and 2.13. Additional �gures and tables can be found in Appendix B.1.7. As

in our previous counterfactuals, Figure 2.12 indicates that prices increase when the United

States. However, unlike in the previous counterfactuals, it is sometimes the case that prices

in the United States increase. Intuitively, this is because the pro�t maximizing price in

Canada may be higher than in the United States. This incentivizes facilities to raise the price

in the United States in order to create a price �oor in Canada that moves the negotiated rate

in Canada closer to the pro�t maximizing price in Canada. Comparing Figure 2.13 to Figure

2.9 shows that allowing �rms to commit to a price in the United States leads to changes in

global expenditure amd pro�ts that are larger in magnitude (5.3% and 11.7% versus 2.7%

and 5.1% without commitment).
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2.6 Conclusion

We employ detailed quantity and price data from IMS Health in our analysis to estimate

a random coef�cients logit demand model with a structural quality metric for each drug.

Under the assumption that prices are set according to Nash bargaining between the coun-

try and �rm (Horn and Wolinsky, 1988; Crawford and Yurukoglu, 2012; Grennan, 2013;

Gowrisankaran et al., 2015) in a regulated price country such as Canada, we are able to sepa-

rately identify costs and bargaining parameters. Since Nash bargaining involves maximizing

the weighted log-sum of both parties' transaction utility, we can interpret the bargaining

parameters as the degree to which countries' policymakers choose to trade off between �rm

pro�ts and immediate consumer welfare. We then perform counterfactual simulations of a

most favored nation policy in the US involving international reference pricing constraints

from other markets. We develop two possible models of international reference pricing that

differ according to which degree of ax ante commitment the international reference pricing

can have. Without ex ante commitment of the international reference pricing rule in the US,

the Canadian prices would serve as price ceilings for the same drugs sold in the US. With

ex ante commitment, the US prices would serve as the price �oor for the prices of the same

drugs in Canada. In both cases, although with some slight and interesting variations across

drug classes, we �nd that such policy would decrease prices slightly in the US but increase

them dramatically in Canada because �rms will internalize the across-country restrictions

involved by the US reference pricing. We �nd that expenses on pharmaceuticals would

increase considerably in Canada but not change signi�cantly in the US. When comparing

margins of on-patent drugs present in Canada and the US, we �nd that while the distribu-

tion of margins differences between the US and Canada is currently skewed towards higher

margins in the US, the international reference pricing policy would skew this difference

towards higher margins in Canada, while prices would be close because the US would

not pay over Canada for it higher marginal costs. The effects on pro�t and welfare show

that pro�ts of �rms would increase signi�cantly in Canada while consumer welfare would

decrease, and the effects in the US remain small. Overall, we �nd modest consumer welfare
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gains in the US, but substantial consumer welfare losses in Canada. Moreover, we �nd that

pharmaceutical pro�ts increase in net, suggesting that reference pricing of this form would

constitute a net transfer from consumers to �rms. Some variants of the simulations show

that one would need a much larger reference market for this policy to have signi�cant price

reduction effects in the US.
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Chapter 3

Buying Data from Consumers: The

Impact of Monitoring Programs in

U.S. Auto Insurance 1

Introduction

Innovations in technology and regulation have facilitated the collection, analysis and com-

mercialization of data consumer behavior led to a proliferation of direct transactions of

consumer data. Firms directly incentivize consumers to voluntarily reveal information,

while keeping the collected data as proprietary. How does this type of data collection

in�uence social surplus and its division among �rms and different types of consumers?

In this paper, we develop an empirical framework to quantify the welfare and pro�t

impact of an auto-insurance monitoring program(“pay-how-you-drive”) in the U.S., a promi-

nent example of direct transactions of consumer data. New customers are invited to plug a

simple device into their cars, which tracks and reports their driving behavior for up to six

1Co-authored with Yizhou Jin
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months.2,3 In exchange, the insurer uses the data to better assess accident risk and adjusts

future premiums accordingly. Unlike most traditional pricing factors such as age or claim

history, monitoring data is not shared with other �rms.

In 2017, insurers serving over 60% of the $267 billion U.S. auto insurance industry

offered monitoring programs. 4 Similar programs have been introduced in other industries,

such as life insurance and lending.5 Despite this growing relevance, empirical evidence

on the economic impact of monitoring programs or other types of direct transactions of

consumer data is sparse.

We acquire proprietary datasets from a major U.S. auto insurer that detail drivers'

characteristics, the price menu they face, insurance contracts purchased, and realized

insurance claims. A monitoring program is introduced during our research window. For

each driver who opts in, we observe a monitoring score that the �rm uses in determining

premium adjustments. To understand competition, we further match each observation with

price menus of the �rm's main competitors in each state. Taken together, our analysis uses

a panel dataset of over 1 million drivers and 50 million insurance quotes.

Our analysis overcomes three main challenges. First, we quantify the degree to which

monitoring can both incentivize safer driving and reveal drivers' risk types, and in doing so,

the ability for the monitoring program to improve social surplus Akerlof (1970); Fudenberg

and Villas-Boas (2006); Einav, Liran and Finkelstein, Amy and Schrimpf, Paul (2010). Second,

we estimate a model of consumer demand to capture complex correlations between drivers'

choices of monitoring, insurance coverage, and insurer, as well as the cost to insure them.

Third, as the data is proprietary, �rms can raise markups and their share of the social

surplus. But they also incur costs to “produce the data in the �rst place” Posner (1978). We

2See Figure C.1 in the appendix.

3See Bordhoff and Noel (2008); Reimers and Shiller (2018) for analyses of monitoring using aggregate data.

4According to 2017 data published by the National Association of Insurance Commissioners.

5The Vitality program from life insurer John Hancock tracks and rewards exercise and health-related
behaviors. Ant Financial incentivizes users to conduct more personal �nance transactions in exchange for
borrowing discounts.
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model dynamic and multi-product considerations in �rm pricing that underpin both factors.

This allows us to simulate counterfactual equilibria that endogenize the �rm's information

set and offer new insights into regulatory proposals that curb proprietary data. 6

We �nd three main results: (i) Data collection changes consumer behavior. Drivers

become 30% safer when monitored, which boosts total surplus and alters the informa-

tiveness of the data. (ii) Safer drivers are more likely to opt in. But monitoring take-up

is low due to both consumers' innate preference against being monitored and attractive

outside options from other insurers. Nonetheless, compared to a counterfactual with no

monitoring, consumer welfare and total surplus both increase. (iii) Proprietary data facilitate

higher markups and raise the �rm's share of the surplus created by monitoring. But they

also protect the �rm's incentives to produce the data in the �rst place. A counterfactual

equilibrium in which the �rm must share monitoring data with competitors harms both

pro�t and consumer welfare. This is because the �rm offers smaller upfront incentives for

monitoring opt-in, so that fewer drivers are monitored in equilibrium.

Our empirical analysis starts with a pair of reduced-form facts. The �rst one shows that

drivers become safer when monitored – an incentive effect. The monitoring program is

only offered to new customers and ends within the �rst six-month period. We therefore

directly compare claim rates of the same monitored drivers during and after monitoring. A

difference-in-differences estimator is used in which the control group consists of unmon-

itored drivers. Taking into account additional variation in monitoring duration, we �nd

that the average opt-in driver becomes30% safer when monitored. Our estimates are robust

to various control speci�cations. We also conduct a test for parallel trends in periods after

monitoring ends.

Despite the behavioral distortion, we document that monitoring data still captures

substantial differences in drivers' risk types that are previously unobserved. This may

6The General Data Protection Regulation (2016) in the EU aims to curb the accumulation of proprietary
data by allowing consumers to rescind consent and take their data to other �rms, and by requiring �rms to
be transparent about how consumer data is used in pricing (see here). The National Telecommunications and
Information Administration in the U.S. is considering similar regulatory proposals (see press release here).
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lead to adverse selection into higher insurance coverage and advantageous selection into

monitoring. We look at cost differences across monitoring groups conditional on observables.

Monitored drivers who score one standard deviation above the mean are 29% riskier in the

subsequent (unmonitored) period. Further, the within-driver risk reduction we measured

above only explains 64% of the risk difference across monitored and unmonitored groups in

the �rst period. 7

With the reduced-form facts in mind, we develop a cost model for consumer (claim) risk

and the monitoring program. Each driver has a latent risk type that partially depends on

his or her observables. This risk type can change when the driver is monitored. Meanwhile,

new customers can choose to be monitored during the �rst period. Doing so sends an

informative signal of their risk types exclusively to the monitoring �rm.

Consumers' monitoring opt-in choice is more complex and captures the following

intuition. First, drivers may anticipate risk reduction during monitoring. Second, drivers

form expectations over potential renewal discount (from monitoring) based on their risk

types. Safer drivers may therefore be more likely to opt in. But the monitoring signal is noisy,

which adds to drivers' uncertainty over their future premiums and deter risk-averse drivers

from opting in (reclassi�cation risk). Lastly, drivers need to actively opt into monitoring

and may incur privacy or effort costs. They therefore suffer disutility from being monitored.

We develop a demand model that features key parameters that drive the intuition above

and link consumers' monitoring opt-in decision with their choices of insurer and insurance

coverage as well as the cost of insuring them. We start from an insurance framework Einav

et al. (2010) that features risk preference, heterogeneous inertia costs, expected renewal

premium, as well as the latent risk type from the cost model. We then parameterize

consumers' disutility from being monitored as a random effect that varies based on both

observables and unobserved latent risk type. Parameters in the cost and monitoring

models are identi�ed based on variance and covariance of claims and monitoring scores

7Opt-in drivers are only monitored for fractions of the �rst six-month period, so the incentive effect (within-
driver risk changes across periods) is only 23% in the data as opposed to the full 30% outlined in the above
paragraph.
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conditional on observables. Identi�cation of demand parameters relies on rich variation

in prices and contract space conditional on observables used in the �rm's pricing rules.

For example, attrition rates under different competitive pricing environments allow us to

estimate consumers' inertia in switching �rms. Eligibility for monitoring also depends on

location and time. This, in addition to variation in the monitoring opt-in discounts, helps us

pin down consumers' monitoring disutility.

To facilitate estimation, we augment the demand model to admit a mixed logit structure

and use a simulated maximum likelihood approach Train (2009). Our estimates produce

a close �t to the empirical distribution of monitoring scores among monitored drivers,

which is endogenously generated based on drivers' monitoring opt-in choices. We further

cross-validate our demand model on a hold-out dataset in which the mandatory minimum

coverage changed in one (U.S.) state. The model accurately predicts changes in monitoring

opt-in rate, coverage share, and attrition rate from the �rm.

Our demand estimates show that the average driver suffers a $93 disutility from being

monitored. However, monitoring disutility is lower for safer drivers (lower risk type).

This means that conditional on the objective �nancial rewards and risk from monitoring,

safer drivers are yet more likely to opt in, which exacerbates advantageous selection into

monitoring. Meanwhile, the average driver forgoes $284 �nancial gain per year from

not exploiting outside options from competitors. Further, drivers are only modestly risk-

averse in their auto insurance choices. Improving the monitoring score's signal precision

therefore has little impact on monitoring demand. Our cost estimates are consistent with

the reduced-form �ndings above.

We then conduct several counterfactual simulations. The �rst one compares the current

regime with a counterfactual with no monitoring, holding �xed baseline prices. 8 Introduc-

ing monitoring raises both �rm pro�t (by $7.9 per driver annually, a 23.6% increase) and

consumer welfare (by $11.6, in certainty equivalent, or 1.5% of premium). Total surplus

increases by $13.3 (1.7% of premium), 64% of which can be attributed to the risk reduction

8The �rm did not raise prices for unmonitored drivers when introducing monitoring (Appendix C.0.2).
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during monitoring. In contrast, although monitoring strongly mitigates information asym-

metry, allocative ef�ciency gain is suppressed due to mandatory purchase of auto insurance

and large preexisting competitive price variation. 9

Next, we propose a pricing model that endogenizes the production of monitoring data

and therefore the �rm's information set. This is used to derive market equilibrium (i)

when the �rm optimizes prices without constraint, and (ii) when the �rm must share its

proprietary data with competitors. In the data, �rm prices are likely to be sub-optimal due to

regulatory constraints. But the pricing levers used imply that optimal pricing balances two

motives: “investing” in data production and “harvesting” from the collected data. The latter

receives far more attention from the literature: proprietary data facilitate higher markups

and raise the �rm's share of the surplus created by monitoring. 10 In our equilibrium

simulation, we �nd that the �rm reaches optimal pricing by reducing rent-sharing with

consumers by 19.6%. This creates a �atter discount-surcharge schedule, representing more

aggressive price discrimination. But the �rm must �rst produce monitoring data. To do so,

it can offer opt-in discounts or surcharge the unmonitored pool. Without competition, the

�rm can use the latter to force drivers into monitoring because auto insurance is mandatory.

In contrast, the optimal pricing includes a surcharge of only 2.7% on the unmonitored

pool. Price competition therefore effectively limits the �rm's ability to coerce drivers into

monitoring. Instead, the �rm should raise the monitoring opt-in discount to 22.1% from 5%.

This bene�ts the �rm by producing monitoring data and simultaneously reducing risk. But

it also represents a signi�cant “investment” in the production of monitoring data.

Lastly, we endogenize competitor prices and explore the equilibrium implications of

a regulation that requires the �rm to share monitoring data with competitors. This turns

monitoring into a public good. However, monitoring can still bene�t the �rm through

risk reduction (the incentive effect) and high �rm-switching costs (imperfect competition).

9A large literature focuses on the impact of risk classi�cation on insurance allocation and consumer welfare.
Examples include Crocker and Snow (1986); Finkelstein et al.(2009); Handel et al.(2015).

10If a driver is priced at $100 by all insurers but is revealed to be 30% safer through monitoring, then the
�rm can offer a discount far lower than $30 and still be con�dent about retaining her.
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Nonetheless, we �nd that the �rm signi�cantly scales back investment in the program

by reducing the incentives it offers for monitoring opt-in. Compared to the equilibrium

without the information sharing mandate, this leads to a large drop in the opt-in rate for

monitoring. Although the �rm charges lower markups on monitored drivers and thus takes

a lower share of the surplus created by monitoring, consumer welfare and total surplus both

decrease.

Related Literature Our research contributes to several literatures. First, we extend the

empirical literature on information asymmetry and selection markets. We investigate �rms'

strategy to acquire – and consumers' willingness to reveal – risk information. In doing so,

we establish a novel channel through which �rms can unilaterally improve the information

environment it faces while enhancing its market power. Many studies have quanti�ed the

impact of regulations that exogenously change the availability of public information. 11 In

fact, �rms' information set is often assumed to be exogenous when considering �rm strategy

and competition. Mahoney and Weyl (2017) posit that market power may further depress

quantity under adverse selection, reducing total surplus. 12 Our paper expands this point by

endogenizing the production of proprietary consumer data that creates market power but

mitigates adverse selection. Meanwhile, our study is among the �rst to link demand factors

driving consumers' willingness to reveal information to those driving product demand as

well as price competition. 13

11Government mandates on community-rating (limits to risk categorization) are most common. See Finkel-
stein et al. (2009); Einav, Liran and Finkelstein, Amy and Schrimpf, Paul (2010); Agarwal et al. (2015); Cox (2017);
Nelson (2018).

12Crawford et al.(2018) provide empirical evidence in the Italian small-business lending market. See also
Einav, Liran and Levin, Jonathan and Jenkins, Mark (2012); Hendren (2013); Veiga and Weyl (2016) for how
�rms screen consumers using pricing, rejection, and contract levers. Endogenous product differentiation and
vertical restraints are well studied in the U.S. health insurance setting Dafny (2010); Ho, Kate and Pakes, Ariel
(2014); Shepard (2014); Ho and Lee (2017); Tebaldi (2017).

13See Cohen, Alma and Einav, Liran (2007); Fanget al.(2008); Barseghyanet al.(2013); Bai (2018); Handel
(2013); Handel, Benjamin R and Kolstad, Jonathan T and Spinnewijn, Johannes (forthcoming); Handel, Benjamin
R and Kolstad, Jonathan T (2015) for various product market demand factors that can be relevant for monitoring
opt-in. We also show that consumers are forward-looking. See Hendel, Igal and Lizzeri, Alessandro (2003);
Handel et al.(2015); Aron Dine et al.(2015) for studies on reclassi�cation risk in health insurance.
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Second, we contribute to the literature on dynamic contracting. Monitoring facilitates

asymmetric learningon consumer risk type for the �rm Cohen (2012); Hendel (2017), 14 in

which the monitoring discount (or surcharge) is a form of voluntary renegotiation after

the �rm–and not its competitors–learns more about consumers' risk type Hart (1983);

Dewatripont and Maskin (1990). We demonstrate that this contract structure has important

implications on incentive provision (reducing consumer risk) and markups. A related theory

literature focuses on price discrimination enabled by consumers' online purchase histories. 15

Most studies point out incentive distortion and ambiguous impact on market ef�ciency.

Empirically, Hubbard (2000) studies required monitoring in labor contracts for truck drivers.

He �nds evidence that effort is highly modi�able. Managers can also allocate jobs more

ef�ciently. Auto insurance is much less valuable than labor contracts. Yet drivers still

respond to expected future incentives. We also account for additional forces associated with

a voluntary mechanism and price competition. In general, empirical studies on dynamic

contracting (without commitment) are sparse but relevant in many real-world settings. For

example, Nevo et al.(2016) study usage-based pricing in the residential broadband market.

Our framework can be easily modi�ed to account for the three-part tariff in their setting.

Third, our research directly relates to the literature on the economics of privacy. Here,

privacy concerns the ef�cient ownership of socially valuable information Posner, Richard A

(1981); Stigler (1980); Hermalin and Katz (2006). We �rst estimate consumers' willingness

to be monitored in an opt-in mechanism. In particular, although safer drivers are more

likely to opt into monitoring, this advantageous selection does not lead to unraveling. 16

Second, we point out that product market competition strongly in�uences consumers'

outside options when deciding whether to reveal their information. Furthermore, we

emphasize and empirically validate an argument in the literature that has received little

14See also Rajan (1992)Nilssen2000Thadden2004DeGaridelThoron2012.

15See Taylor (2004); Acquisti, Alessandro and Varian, Hal R (2005); Fudenberg and Villas-Boas (2006); Stole
(2007).

16This is similar to quality disclosure by �rms as studied by Jin, Ginger Zhe and Leslie, Phillip (2003); Jin
(2005); Dranove and Jin (2010).
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attention: proprietary data is a form of privacy (or ownership) given to the data-collecting

�rm. Posner (1978), in particular, points out the importance for the government to protect

�rms' property right to their data and be mindful of �rms' incentives to produce socially

valuable information. Similarly, our study also extends a growing empirical literature on

information technology and privacy regulation. 17

The rest of the paper proceeds as follows. Section I describes the data and provides

background information on auto insurance and the monitoring program we study. Section

II conducts reduced-form tests that measure monitoring's ability to reduce risk and miti-

gate information asymmetry. Section III presents our structural model and identi�cation

arguments as well as the estimation procedure to recover key demand and cost parameters.

Section VI discusses estimation results and counterfactual simulation procedures for welfare

analyses. Section V proposes a model of monitoring pricing and investigates equilibrium

implications of optimal pricing and information sharing. Section VI concludes.

3.1 Background and Data

In this section, we provide background information on U.S. auto insurance and the monitor-

ing program we study. We also describe our datasets.

3.1.1 Auto Insurance

Auto insurers in the U.S. collected $267 billion dollars of premiums in 2017. 18 There are

two main categories of insurance: liability and property. Property insurance covers damage

to one's own car in an accident, regardless of fault. Liability insurance covers injury

and property liability associated with an at-fault accident. In all states we study, liability

17Goldfarb and Tucker (2011) study ef�ciency impact. Acquisti et al. (2013); Acquisti, Alessandro and Taylor,
Curtis and Wagman, Liad (2016a); Jin, Ginger Zhe (2018) study factors that drive consumers' willingness to
reveal information.

18This is according to the National Association of Insurance Commissioners. This number is calculated as
premiums from property annual statements plus state funds.
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insurance is mandatory, the required coverage ranging from $25,000 to $100,000.19

Insurance prices are heavily regulated. Major insurers collect large amount of consumer

information in risk-rating, most of which is public or shared across �rms. Firms are

required to publish �lings that detail their pricing algorithms. In most states, the insurance

commissioner needs to approve such �lings. 20 An important focus of the regulator is

deterring excessive price discrimination based on demand elasticity. 21 In general, a pricing

rule can be summarized by the following structure, where price p for a (single-driver-single-

vehicle) policy choosing certain liability coverage (limit) is: 22

p = base rate� driver factor � vehicle factor � location factor

� tier factor � coverage factor+ markups and fees (3.1)

Within each �rm, price variation is based on observable characteristics and choices. Base

rates vary only by state and calendar time. Driver, vehicle, and location factors include age,

vehicle model, and zipcode-level population density, etc. This information is often veri�ed

and cross-referenced among various public or industry databases. Tier factors incorporate

information from claim and credit databases, which include accident, traf�c violation (DUI,

speeding, etc.), or �nancial (delinquency, bankruptcy, etc.) records in the past 23. Conditional

on the factors above, choosing a higher coverage (liability limits) scales prices by a positive

factor. Lastly, �rms charge a fee that includes markups and overhead for operational and

marketing expenditures. 24

19All states that we study follow an “at-fault” tort system and mandate liability insurance. In reality, liability
insurance is speci�ed by three coverage limits. For example, 20/40/10 means that, in an accident, the insurer
covers liability for bodily injuries up to $40,000 overall, but no more than $20,000 per victim; it also covers
liability for property damage (cars or other infrastructure) for up to $10,000. We quote the highest number here.

20Some states follow a “use-and-�le” system, which means that insurers can seek pricing approval ex-post as
long as any price changes are re�ected in public �lings.

21“Price optimization” on top of risk rating is typically not allowed by state insurance commissioners.

22See Appendix C.0.4, e.g. Figure C.14.

23See Appendix Figures C.20 and C.21)

24The latter is often referred to as the loading factor in the literature.
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(a) (b)

(c) (d)

Figure 3.1: Auto Insurance and Monitoring

A typical period for new customers is summarized in 3.1a. At time t = 0, new customers

arriving at the �rm are required to report observable characteristics. This information facili-

tates risk rating, based on which the �rm generates individualized price menu. Consumers

can take one of the coverage options offered or go to other �rms.

There is no long-term commitment in U.S. auto insurance. In our setting, each period

lasts for six months. At the end of month �ve, �rms provide their customers with renewal

quotes. Drivers decide whether to renew at the end of month six. During the policy

(six-month) period, if an auto accident occurs (3.1b), the insured �les a claim immediately

and, depending on the claim type, pays some costs out-of-pocket. Insurance adjusters will

then evaluate the accident and determine reimbursement and pay-out. As soon as a claim is

�led, this information is recorded in industry databases in real time. As a result, the driver

will likely face a claim surcharge renewing at the current �rm or switching to other �rms.
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Dataset 1 - Panel data from an auto insurer Our �rst dataset comes from a national

auto insurer in the U.S. that offers a large monitoring program. It is a panel that spans

2012 to 2016, and covers 22 states. For tractability, we narrow the scope of our analyses

to single-driver-single-vehicleinsurance policies sold online or via phone. Nonetheless, we

observe more than 1 million drivers, for an average duration of 1.86 years (3.73 periods) 25.

The date range spans periods pre- and post-introduction of monitoring.

At the beginning of each period, we observe each driver's observable characteristics as

well as the price menu offered, which includes all available options offered by the �rm and

their prices. We also see the driver's coverage choice. For simplicity, we limit our attention

to liability coverage(limits). Not only is liability the most expensive type of coverage (for the

average driver), but its mandatory nature also strongly in�uences �rms' competitive strategy

and consequently, the allocative bene�t that monitoring provides. Moreover, liability covers

auto accidents involving two or more parties, in which the policy holder is at least partially

at-fault. As such, our focus also mitigates concerns about under-reporting. 26 At renewal,

drivers who have �led a claim experience a surcharge on their premium that ranges from

10% to 50%.27 Absent a claim, however, the average driver experiences close to no price

change in a typical renewal period. Overall, around 5% to 20% of drivers leave the �rm

after each period.28 Table 3.1 presents summary statistics of prices, coverage levels, and

claims. It also lists key observable variables. The average driver is 33 years old, drives a 2006

vehicle, lives in a zipcode area with average annual income of $142,000, and had 0.3 at-fault

accidents in the past 5 years. Per six-month period, he pays $380 in liability premium and

�les 0.05 liability claims. We also observe his assigned risk class, which is the premium

25The panel is right-censored, but the censoring is plausibly uninformative.

26In contrast, claim �ling for single-car accidents is almost entirely discretionary.

27See Figure C.12 in the appendix for the empirical distribution of surcharges added after the occurrence
of an at-fault claim. Variation in the level of the surcharge depends only on drivers' existing claim and traf�c
violation records, which is summarized in points.

28The �rst renewal is somewhat different, as some one-time discounts are removed. These are mostly
cost-based discounts, such as e-signature or online quoting discounts. It therefore sees a higher attrition than
subsequent ones.
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calculated for him before coverage factor and markups and fees.

Statistic Mean St. Dev. Min Median Max

Total Premium (6-month) 631.50 364.02 69 548 22,544
Liability Premium 379.95 208.23 32.00 335.88 10,177
Risk Class 254.73 172.22 50.00 212.23 9,724

Liability Coverage ( 0000) 126.16 118.86 25 60 500
Mandatory Minimum Ind. 0.36 0.48 0 0 1
Liability Coverage Ranking 2.10 1.15 1 2 8

Renewal Count 1.76 2.01 0 1 9
Calendar Month 6.25 3.43 1 6 12
Calendar Year 2.66 1.38 0 3 5
Number of Drivers 1 0 1 1 1
Number of Vehicles 1 0 1 1 1

Claim (6-month) 323.47 2,821.78 0 0 544,814
Liability Claim 164.49 2,209.17 0 0 513,311
Claim Count 0.18 0.67 0 0 12
Liability Claim Count 0.05 0.32 0 0 7

Note: This table reports summary statistics of our main panel data. Risk class is de�ned as the net
premium calculated for each policy's liability coverage before markups and fees. Main observable

characteristics include indicators for gender, age thresholds of 18, 25 and 60, a college degree, a
post-graduate degree, credit and credit report availability, home-ownership, garage veri�cation,

having an out-of-state license, having a leased vehicle, having a “Class C" vehicle, having an BAS,
having a safe device installed, having a clean record, and having (some) prior insurance. In addition,
observables includes driver age, years of education, years of license, years of prior insurance, credit
tier, local population density, vehicle age, vehicle replacement value, length of vehicle ownership,

number of accident “points", number of at-fault accidents and number of DUIs. See Table C.2 for a
list of observables used in our estimation procedure.

Table 3.1: Summary Statistics of Observables, Premium, Coverage and Claims

Dataset 2 - Price menus of competitors based on price �lings To understand competition,

we need to account for drivers' outside options. To do this, we complement our main dataset

with competitors' price menus that drivers face when making insurance and monitoring

choices. This additional dataset includes quotes from all liability coverage options offered by

the �rm's top �ve competitors in each state. As noted above, this information is contained

in publicly available price �lings, and we retrieve it using Quadrant Information Services'

reputable proprietary software. Each observation in our �rst dataset is matched with the

122



competitive price menu the driver faces at the time of choice. We are able to achieve precise

matches based on main observable characteristics, including state and calendar time.29

In Table 3.2, we compare the quotes for the �ve most common liability coverage options

across competitors for all drivers from our main dataset in one large U.S. state. We report

average quotes because different states have different sets of coverage options. In this state,

the mandatory minimum changed from $40,000 to $50,000 within our dataset.The NA ratio

calculated the portion of plan that cannot be rated. This is mostly due to the mandatory

minimum increase, as well as location-based rejection. The bottom panel reports summary

statistics of claim variables. While claim coverage is similar, there is substantial variation

in premiums across competitors, stemming from differences in overhead costs, company

strategy, and estimated loss ratios.

Looking ahead, observing competitor prices is instrumental to identifying parameters

such as consumers' inertia to switch �rms based on observed attrition choices in renewal

periods. In counterfactual analyses, competitive prices can also help us enumerate our

sample of new customers of the �rm to the full market. Our ability to do so is further

enhanced by prior insurance records.30 On average, 48% new customers switched from

another �rm, about half from one of the top �ve competitors. We default the other switchers

into the largest insurer of each state. 33% of new customers are previously uninsured

(including new drivers), and 19% have a rewritten policy (by far the most common reason

being an out-of-state move).

3.1.2 Monitoring Program

Our research focuses on the �rm's one-time monitoring program for new customers. 31 The

monitoring process is summarized in Figures 3.1c and 3.1d. When customers arrive, they

29We match based on variables in Table 3.1, as well as other traf�c violation records, zip-code, vehicle make
and model.

30This is part of tier information and is veri�ed by the �rm. It carries signi�cant pricing weight.

31The �rm has also offered a continuous monitoring program, but not during our research period.
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Liability Coverage Limits 40 50 100 300 500
Quotes 335.14 343.43 382.03 422.13 500.48
- Competitor 1 482.68 506.11 564.34 626.81 730.56
- Competitor 2 263.14 279.15 314.46 347.69 405.22
- Competitor 3 319.42 348.97 388.48 428.64 464.36
- Competitor 4 511.24 567.58 613.74 682.87 790.83
- Competitor 5 421.84 363.96 403.64 433.17 497.79

NA Ratio 0.61 0.00 0.00 0.00 0.00
- Competitor 1 0.62 0.00 0.00 0.00 0.00
- Competitor 2 0.62 0.00 0.00 0.00 0.00
- Competitor 3 0.62 0.00 0.00 0.00 0.00
- Competitor 4 0.61 0.01 0.01 0.01 0.01
- Competitor 5 0.62 0.00 0.00 0.00 0.00

Claim 256.87 285.27 306.68 297.73 293.96
(9.15) (7.10) (11.72) (15.04) (46.80)

Liability Claim 154.98 155.54 154.16 143.43 107.54
(7.31) (5.31) (8.89) (12.56) (23.83)

Claim Count 0.09 0.10 0.10 0.10 0.09
(0.00) (0.00) (0.00) (0.00) (0.00)

Liability Claim Count 0.05 0.05 0.04 0.03 0.03
(0.00) (0.00) (0.00) (0.00) (0.00)

Share within Firm 0.19 0.39 0.20 0.19 0.03

Note: This table reports summary statistics of average quotes by liability coverage for our our �rm as
well as the top 5 competitors in one US state.

Table 3.2: Summary Statistics by Coverage

choose whether to opt into monitoring right before seeing their price menu. Before doing

so, customers are provided with information on the kinds of driving behavior that are

tracked and rewarded. Speci�cally, high mileage driven, driving at night, high speed, and

hard braking are highlighted as monitored behaviors, through which good performance is

promised to yield discounts. However, the exact discount schedule is opaque. Across several

monitoring programs offered by large U.S. auto insurers, drivers can expect a renewal

discount of up to 20-50%. They can also receive a surcharge of up to 5-20% for poor

performance. In some states and calendar times, drivers are given an up-front discount for

opting into monitoring, ranging from 1 to 20%.

Should a driver opt into monitoring, a monitoring device is mailed within the next
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week. She then has until the end of month �ve to accumulate around 100-150 days of

monitored driving. If completed, the �rm will evaluate her performance and include an

appropriate renewal discount when giving out renewal quotes. In the case of an accident,

monitoring data is not used in claim adjustment or reporting. Monitoring continues after

any disruptions from the accident.

27% of drivers who start monitoring do not �nish. Our main analysis ignores these

drivers and focuses on analyzing consumers' decision to start and �nish monitoring. Non-

�nishers likely have incorrect beliefs about the potential discounts they get or the costs they

incur from monitoring. Most drop out during a two-month grace period in which they are

allowed learn about the monitoring program and their own risk, without penalty. 32 Our

analysis therefore does not account for the costs and bene�ts associated with this learning

process.

During the monitoring period, monitored drivers receive real-time feedback on their

performance. Different monitoring programs have different methods of communication.

Insurers often post daily summaries of key statistics on recorded trips online and via mobile

apps, particularly on the highlighted behaviors mentioned above. Insurers may also offer

more active reminders: some send text messages or mobile app noti�cations, while others

design their monitoring devices to beep whenever they record a hard brake.

Nevertheless, monitoring data is proprietaryinformation to the �rm that administers the

program. Firms face both practical and regulatory hurdles in rating monitoring information

from another �rm. First, it is hard to verify a customer's claim that she has gotten certain

monitoring results from another �rm. Even if veri�ed, each �rm's monitoring program and

preexisting risk algorithm are idiosyncratic. Therefore, it is very dif�cult for an insurer to

determine and publicly �le a discount for a driver who has received a monitoring score

in nominal terms from a competitor's program. 33 Furthermore, according to the privacy

32Drivers can drop out of the monitoring program for the �rst two months without penalty. Afterwards,
dropping out results in the maximum amount of renewal surcharge.

33See Figure C.22 in the appendix for an example of an insurer's rate �ling, including monitoring. Discerning
the monetary value of a monitoring score using this type of �ling is near impossible.
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policy and usage terms agreed to when opting into monitoring, no personally identi�able

data can be resold. It is no surprise, therefore, that each �rm only prices based on its own

monitoring information according to price �lings.

For the same reason, we are not able to empirically account for competitive monitoring

programs in our analyses. Public �lings contain very limited information on these programs;

even monitoring start dates often do not coincide with the proposed dates in public �lings.

However, during our research window, monitoring in general takes up a small fraction

of the market, especially around its introduction. We therefore do not consider this as a

signi�cant factor that may in�uence our empirical results. In addition, our �rm is the only

one offering monitoring in some states and time periods. We replicate our empirical results

in these subsamples for robustness.

Dataset 3 - Monitoring Our data on the �rm's monitoring program includes its pricing

schedule, drivers' opt-in choices, and monitoring scores and renewal discounts for �nishers.

The �rm's monitoring pricing is discussed in section 3.6 as well as in Appendix C.0.2. Across

calendar time and states, the average monitoring �nish rates are around 10 � 20%.

Monitored drivers' performance is summarized by a score, the distribution of which is

plotted in Figure 3.2. The more punishable behavior recorded for a given driver, the higher

her score. Drivers who received a zero score plugged in the device continuously for enough

days but did not drive. We ignore these drivers in all subsequent analyses.

We treat this score as the output of the monitoring technology. It represents the �rm's

belief about future accident risk, based on a monitored driver's performance in the �rst (and

monitoring) period. To see this, Figure 3.3 plots the average claim count in period two ( t = 1,

after monitoring) across monitoring groups. Compared to unmonitored drivers, those who

�nished monitoring are 22% safer. Among �nishers, the quintile of their monitoring score

strongly predicts their second-period risk, which ranges from 60% better to 40% worse than

the opt-out pool.

Monitoring �nishers face the same renewal choices as other drivers, except that their

renewal quotes include appropriate monitoring discounts or surcharge. Figure 3.4 compares
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Note: This graph plots the density of the (natural) log of monitoring score for all monitoring
�nishers. The lower the score the better. Drivers that received zero score plugged in the device
continuously for enough days but did not drive. We ignore these drivers in all subsequent tests.

Figure 3.2: Distribution of monitoring scores

the distribution of �rst-renewal pricing change across monitoring groups. We benchmark

the baseline price change to center around one. On average, monitored drivers received a

7% discount. Moreover, the monitoring discount is persistent after monitoring ends. 34 This

is consistent with the �rm's upfront communication with consumers during their opt-in

decision.

3.2 Reduced-form Evidence

This section documents two reduced-form facts. First, drivers that opt into monitoring

becomes safer when they are monitored. Despite this change in behavior, monitoring still

reveals previously unobserved risk differences across drivers, which can lead to selection in

consumer demand for monitoring and for insurance.

34See Figure C.11 in the appendix for a plot of the average progression of monitoring discounts across
renewal periods for monitoring �nishers in our sample.
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Note: This is a binned-scatter plot comparing average claim count of the �rst renewal period ( t = 1,
after monitoring ends) across various monitoring groups. The benchmark is the unmonitored pool,

which is the “opt-out” group. Group “opt-in” includes all monitored drivers that �nished the
program per de�nition in section 3.1.2. Groups “1” to “5” breaks down the “�nish” group based on

the quartile of the drivers' monitoring score. Lower monitoring score means better performance.

Figure 3.3: Comparison of subsequent claim cost across monitoring groups

3.2.1 Risk Reduction and the Incentive Effect

If monitoring technology is effective, drivers may want to appear safer when monitored. 35

If this incentive effect is important and if drivers' risk is modi�able, then we should expect

the samedrivers to be riskier in unmonitored periods than in the monitored one.

Since monitoring is temporary, we can directly measure this effect by comparing claim

outcome for the samemonitored drivers before and after monitoring ends. This exercise

requires us to balance our panel. We focus on the �rst three periods (18 months). 36 There

may be spurious trends in claim rate across periods that are irrelevant to monitoring. We

35This effect is studied in Fama (1980); Holmström (1999). A similar setting is online tracking of consumers'
purchase history Taylor (2004); Fudenberg and Villas-Boas (2006). If consumers know that buying expensive
items online may label them as inelastic shoppers and lead to higher prices in the future, they may refrain from
purchasing those items online.

36In our robustness check, we show results with only two periods. Attrition is about 10 � 15%per period
and our data is right-censored, so balancing the panel eliminates 46% of our data.
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Note: This graph plots the benchmarked (per �rm request) distribution of renewal price change
during the �rst renewal, by monitoring group. 1x represents mean renewal price change factor for
the unmonitored group. Initial/upfront monitoring discount is not counted towards this. So that

monitoring price change is discounted monitored price divided by undiscounted new business price.
“Mon” and “UnMon” are monitored and unmonitored groups, while “Mon (pre-disc)” represents

the renewal price change for monitored drivers without the monitoring discount.

Figure 3.4: First Renewal Price Factor by Monitoring Group

account for this effect with exhaustive observable controls and a difference-in-differences

approach. Among monitored drivers, we take the �rst difference in claim counts 37 between

post-monitoring and monitored periods. This difference is then benchmarked against its

counterpart among unmonitored drivers (control group).

Cit = a + t mi + w1post,t + qmhmi � 1post,t + x0
it � + eit (3.2)

Here, i, t index driver and period in our panel dataset. C denotes claim count, and mi is a

driver-speci�c indicator for whether i has �nished monitoring. x is a rich set of observable

characteristics that the �rm uses in pricing. 38

37Throughout our reduced-form analyses, we use claim count as our cost proxy. This is because claim
severity is extremely noisy and skewed. This is also common practice in the industry, where many risk-rating
algorithms are set to predict risk occurrence only. We therefore present our estimates mostly in percentage
comparison terms.

38See Table 3.1 for a list of main observable characteristics. We also include controls for trends and seasonality
including third-order polynomials of the calendar year and the month when each driver i starts period t with
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Our main speci�cation includes only monitored drivers who �nish monitoring in the �rst

period. To test for parallel trends of the monitored and unmonitored groups, we conduct

the same test in subsequent periods after monitoring. In reality, some monitored drivers do

not �nish monitoring until subsequent periods. 39 To make use of this plausibly exogenous

variation in monitoring duration and timing across the �rst and subsequent periods, we

introduce another speci�cation, adding additional variation in relative monitoring duration

in the pre-period, zi . It is calculated as the fraction of days monitored in the �rst period

minus the same fraction in post periods. 40

Results are reported in Table 3.3. We �nd a large and robust incentive effect. Column (3)

corresponds to the speci�cation in equation 3.2, with the addition of insurance coverage

�xed effects. 41 It shows that monitored drivers' average claim count is 0.009 or 23% lower

during the monitoring period, compared to after it. Adjusting for the average monitoring

duration of �rst-period monitoring �nishers (142 days), a fully-monitored period would

be 29.5% less costly to insure for the same driver. Incorporating additional variations in

monitoring duration generates similar results (Column (6)). We test for parallel trends

between the monitored and unmonitored groups by repeating the baseline speci�cation

in subsequent (unmonitored) periods. As shown in Columns (7-10), no differential claim

change across periods can be detected between the two groups.

We discuss two important caveats of our results. First, monitoring provides a way for

drivers to build a reputation for their risk (but only to the monitoring �rm) Fama (1980);

Holmström (1999). Moral hazard is therefore mitigated by drivers' concern over their future

the �rm.

39Based on interviews with managers, among �nishers, delays in �nishing is predominantly caused by
device malfunction or delayed start of monitoring due to mailing issues, etc.

40As discussed above, some drivers started monitoring but dropped out without �nishing. This would bias
our results if claims itself leads to non-�nish. Out of more than 10,000 claims we observe among monitored
drivers, only 13 occurs within 7 days before or after monitoring drop-out. In Table C.4, we further test the
robustness of our results by repeating our main analyses on all drivers who started monitoring. This implies
larger moral hazard effect adjusting for monitoring duration. However, if some monitored drivers drop out as
they discover that they cannot change their risk, the incentive effect estimate would be contaminated by this
selection effect.

41This soaks up any coverage adjustments between periods.
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reputation as opposed to by directly contracting on effort as in a continuous monitoring

setting. The magnitude of risk reduction can be different in the latter setting. 42 On the

�ip side, our result provides evidence that at least some drivers are forward-looking and

respond greatly to future incentives. This means that uncertainty in dynamic premium

(reclassi�cation risk) may be nontrivial.

Second, our estimate measures a treatment-on-treated effect. If signi�cant heterogeneity

in the incentive effect exists across drivers and that it in�uences consumers' opt-in decision,

then we would face external validity concerns in counterfactual simulations. In equilibrium,

the �rm assesses the signal monitored drivers send based on future claim records when

drivers are no longer monitored, which corresponds to the renewal discount it gives.

Therefore, risk reduction is compensated only to the extent to which it is correlated with

drivers' future risk type. If safer drivers' risk levels are also more responsive to incentives,

as suggested by a pure effort cost model for example, selection on the incentive effect can

be important. 43 In this case, the effect we �nd will be larger than the population average (or

the average treatment effect) Einav, Liran and Finkelstein, Amy and Ryan, Stephen P. and

Schrimpf, Paul and Cullen, Mark R. (2013). In our counterfactual analyses, we therefore

maintain the opt-in structure of the monitoring program and do not extrapolate to scenarios

where the market monitoring rate is high.

3.2.2 Private Risk and the Selection Effect

Are drivers who choose monitoring safer than those who do not? Table 3.4 reports the results

of regressing claim count in the �rst period ( t = 0) on monitoring indicator, controlling for

the same variables as in Column (3) of Table 3.3. The incentive effect only accounts for64%

42We are also unable to disentangle the “Hawthrone effect” from drivers' responsiveness to �nancial
incentives in our estimate. Since consumers must be aware of the data collection to be incentivized for it, we
consider this effect as part of the incentive effect.

43Perfect revelation of a continuum of risk types is possible, as characterized in Mailath (1987), with a mono-
tonicity condition similar to the single-crossing condition. However, consumers likely have multidimensional
heterogeneity in reality, so drivers' performance during monitoring may not perfectly reveal their risk types
Frankel and Kartik (2016).
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of the risk differences across the two group. Had the monitored drivers not been monitored

in the �rst semester, they would still be safer than the average unmonitored driver. It thus

suggests that drivers possess private information on their own risk. Therefore, there may be

strong advantageous selection into monitoring.

Dependent variable:

Claim Count ( t = 0)

constant � 0.004��

(0.009)

monitoring indicator � 0.014���

(0.001)

observable controls Y

Note: This table reports results of a regression where the dependent variable is �rst period claim
count, and the independent variables are the monitoring indicator and observable controls. This is
done within all �rst-period �nishers of the monitoring program. This variable is consistent with the
monitoring indicator in the incentive effect regression 3.2 (Table 3.3), so as to facilitate comparison

and decomposition.

Table 3.4: First Period Claim Comparison

Selection into monitoring suggests that the technology is effective at capturing previously

unobserved differences in drivers' risk types, further allowing the �rm to dynamically select

safer drivers. The following regression examines both factors. It shows how average costs in

future (unmonitored) periods vary based on monitoring choice and score among all drivers.

Cit = at + qm,tmi + qs,tsi + x0
it � t + eit (3.3)

Again, m = 1 for monitored drivers who �nished within the �rst period. s denotes

monitoring score, which is normalized among monitored drivers and set to 0 for others.

Figure 3.6 reports q̂t for renewal periods t = 1 to 5 (three years), translated into percentage

difference terms.44 Looking at the main speci�cation (left grey series), the estimate for qs,t

implies that a monitored driver who scores one standard deviation above the mean has a

44Regression on a balanced panel of drivers (who stayed till the end of period 5) produces similar results.
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29% higher average claim count in the �rst renewal (after monitoring ends). However, this

informativeness diminishes dynamically, and disappears after 3 years. Further, controlling

for claims does not alter our estimate much. This suggests that although claim realization is

a direct measure of risk, its sparsity may signi�cantly limit how informative it is of risk in

the short run. In Figure 3.5, our results also show that the monitored pool is persistently

safer in periods after monitoring ends.

These results are shaped not only by the selection into monitoring, but also by selective

attrition due to more accurate risk rating. We may see the monitored pool becoming safer

as risky drivers receive higher prices and leave the �rm at higher rates. Regardless, both

effects suggest that monitoring technology is effective at capturing previously unobserved

driver risk.

In reduced-form analyses, it is dif�cult to disentangle these two effects or to detect

coverage-level adverse selection. In general, exogenous andunilateral variation in the pricing

of policies and monitoring is rare in our setting. As shown in equation 3.1, price revisions

often trigger changes in various inter-dependent prices that activate several demand margins

at once. Therefore, in the next section, we propose a structural model to jointly account for

several demand margins, including �rm, coverage, and monitoring choices.

3.3 Cost and Demand Models of Auto Insurance and Monitoring

This section develops a structural model for consumers' monitoring opt-in choice in relations

to their choices of insurer and insurance coverage as well as the cost of insuring them. We

start from the canonical insurance framework, which consists of models for consumer

preference and how their choices in�uence insurer costs. We then introduce additional

features to incorporate drivers' opt-in decision and how monitoring technology can reveal

driver risk. This allows us to link consumer demand in the information market with product

(insurance) market fundamentals.

We describe our model in two parts. First, we outline a choice model conditional on the
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Figure 3.5: Regression results - dynamic informativeness of monitoring participation

Figure 3.6: Regression results - dynamic informativeness of monitoring score

Note: 3.5 and 3.6 report the estimate for qt and gt from regression (3.3), translated into percent
increase terms. Monitoring participation is de�ned as an indicator for �nishing monitoring. For each
t > 0, we take all drivers who stayed with the �rm till at least the end of period t. qt is the coef�cient
of claim count of driver i in period t on monitoring score of i, and gt is that on monitoring �nish
indicator of i. Monitoring score is normalized, and defaulted as 0 for unmonitored drivers. So qt
measures the effect of getting a score one standard deviation above the mean during the monitoring
period ( t = 0). gt compares unmonitored drivers with the average monitoring �nisher. To further
translate these effects into percent increase terms, we divide the estimate of qt and gt by the average
claim count in period tof all monitoreddrivers. The horizontal axis represents different regressions
for different renewal period t > 0.
Different colors and positions within each t value represent different speci�cations of control variables
(xit ). The grey (left-most) series represents estimates from regressions with the full set of xit ; the
orange (middle) one includes only claim records revealed since t = 0; the blue (right) series includes
no control.
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realization of claim and monitoring score. It captures customers' considerations regarding

risk aversion, out-of-pocket expenditure, �rm-switching inertia, as well as disutility from

being monitored and expected price renewals. We then describe the data generating

processes for claims and for monitoring scores in a cost model that features risk heterogeneity,

the incentive effect, and monitoring score's signaling precision. This uni�es the cost and

demand factors under an rational expectation expected utility framework and introduces

selection effects. Finally, we provide an informal discussion of model identi�cation.

3.3.1 Choice model

In our setting, consumers make �rm, coverage, and monitoring participation choices.

Drivers, periods, 45 and choice options are indexed by i, t, and d, respectively. Conditional

on the realization of claims C and monitoring score s, the choice model speci�es realized

utilities uidt (C, s).46

Besides consumers' risk type, our choice model highlights three factors. (i) Risk aversion

governs both preference for insurance and disutility from price �uctuations. (ii) Demand

frictions: �rm-switching inertia leads to imperfect competition among insurers. Consumers'

disutility from being monitored accounts for factors such as privacy or effort cost associated

with monitoring. They also sustain partial pooling equilibrium, in which only a fraction of

the population is monitored. (iii) Future prices contain most of the bene�t of monitoring

and depends on claims and monitoring score.

Drivers have standard von Neumann-Morgenstern preferences u(�). We assume that

they are twice continuously differentiable and globally increasing and concave, which pin

down drivers' absolute risk aversion, denoted by g. Each driver-period i, t starts with

annual income wit . Different choice options are denoted by d = f f , y, mg, where f , y,

45Monitoring takes place in the �rst period ( t = 0).

46We model u structurally for two reasons. First, key structural quantities outlined below are of interest.
Second, the model must explain consumers' choice to be monitored consistently with their insurance choice. As
monitoring introduces additional uncertainty in future prices, we need to understand the micro-structure of
how consumers handle risk.
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and m 2 f 0, 1g index �rm, coverage, and monitoring choices, respectively. For the same

driver-period, differentiation in choice options is purely �nancial and impact utility through

the consumption term hidt .

uidt (C, s) = ug (wit + hidt (C, s)) (3.4)

hidt (C, s) = � pidt � 1d,t � 1 � y idt| {z }
friction

� e(C, yd)
| {z }

oop

� pidt � Ridt (C, s)
| {z }

renewal price

(3.5)

where y idt = 1d,t � 1 � h0| {z }
baseline inertia

+ 1fd,t � 1 � h(xit ; �â)
| {z }
�rm-switching inertia

+ 1md � 1t= 0 � x(xit , l ; � ¸)| {z }
monitoring disutility

(3.6)

Consumption h includes four main components. Drivers pay prices p and friction costs y

up front. The latter is broadly de�ned as a cost to change choices compared to the previous

period ( 1d,t � 1 = 1). Drivers also form expectations over the realization of claims and of

monitoring score. These in�uence out-of-pocket expenditures, e, and changes in renewal

prices, R. Like prices, the out-of-pocket expenditure (oop) covers two periods, so that the

overall consumption term h is of a one-year horizon.47

Demand friction ( y idt) includes heterogeneous disutility consumers experience from

being monitored, x(xit , l ), since monitoring is only offered to new customers of the �rm. We

allow it to vary across both observable characteristics and risk l . Including the latent risk

type l is important in �tting selection into monitoring well. In its absence, the differential

bene�t of monitoring across safe and risky drivers is deterministic conditional on expected

renewal prices. This may not accurately capture both the popularity of monitoring and the

(risk) selection pattern into monitoring.

Demand friction also includes consumers' inertia associated with adjusting choices.

We model them as implied monetary costs. The baseline inertia h0 prevents consumers

from making any choice adjustments. Heterogeneous �rm-switching inertia h(xit ) further

47We assume that consumers are myopic but have a one-year (two-period) horizon, during which they do
not consider changing choices after the �rst period. This is the simplest model that captures different types of
costs and bene�ts of monitoring programs to consumers. In particular, dynamic premium risk (reclassi�cation)
is incorporated, as higher uncertainty in renewal prices diminishes ex-ante utility. It is unclear whether a two-
period or fully dynamic model can be separately identi�ed. Our model can also be interpreted as approximating
a two-period dynamic model with in�nite adjustment costs.
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deters consumers from exploiting �nancially lucrative outside options. These terms capture

imperfect competition that supports the observed attrition rate given price dispersion in the

data. They capture the effect of search and switching costs consumers face when adjusting

�rms across periods as well as potential brand differentiation Farrell and Klemperer (2007);

Honka (2012); Handel (2013).

Renewal prices are in�uenced by a baseline price change factor (R0) that can be in�uenced

by monitoring results, as well as by claim surcharges ( R1). We separately model the two

components to capture the correlation between out-of-pocket expenditures and renewal

prices.48

Ridt (C, s) = R0,idt (s) � RC
1 (3.7)

Monitored drivers gets a renewal price discount based on score s. We use a Gamma

distribution to model renewal price change R0.49 It is in�uenced by observables x and,

if monitored, the monitoring score. 50 Notice that monitoring only impact own �rm ( f ?)

options.

R0,idt (s) � Gamma(aR,m(xit , s; �R), bR) (3.8)

By de�nition, out-of-pocket expenditure e is non-decreasing in claim, but non-increasing

in the amount of coverage y.51 Similarly, renewal price R is non-decreasingin both of its

arguments. The choice-speci�c utility vidt is simply the expectation of u over C and s.

vidt = EC,s [uidt (C, s)] (3.9)

48Notice that R1 changesRidt for all d, including those at other �rms. In reality, it is between 1.1 and 1.5 (see
Figure C.12 in the appendix for details). In contrast, monitored drivers are reclassi�ed within the monitoring
�rm only. However, our myopia assumption diminishes this difference. We consider it as a realistic assumption
because, as we will show later, the average switching cost is much larger than the potential surcharge that a
monitored driver can receive.

49Figure 3.4 shows the actual distribution of the �rst-renewal price-change factor.

50In subsequent renewals, prices are very stable. We therefore assume thataR = bR in those periods so that,
in expectation, prices do not change without claims.

51We abstract away from strategic reporting behavior.
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Lastly, we adopt a mixed logit structure Train (2009) to model discrete choice.

dit = arg max
d2 D it

f vidt + #idtg (3.10)

where D it =

8
>><

>>:

F it � YF ,it t > 0 or i ineligible

F it �
�

Y� f ?,it ,Yf ,it � f 0, 1gm
	

t = 0 and i eligible
(3.11)

The choice spaceD can vary based on driver-period i, t, but always includes �rm space F and

the corresponding coverage spaceY. It covers all �rms we observe, including the monitoring

�rm f ?. As discussed in Section 2, we assume that no other �rms offer monitoring, for

which only new customers that come to the �rm after monitoring introduction are eligible.

In addition, we abstract away from monitored drivers that drop out; the opt-in indicator m

therefore represents drivers' decision to �nish monitoring. Lastly, # follows a type 1 extreme

value distribution with scale s.

Our demand parametersinclude risk aversion, baseline inertia, intercept and slope parame-

ters for heterogeneous �rm-switching inertia, monitoring disutility, as well as the (expected)

renewal pricing rule:

Qd = f g, h0, �â, � ¸, �R, bR, sg.

3.3.2 Cost model

Let l be de�ned as the expected claim count (C) per period. We model l as follows:

l imt = ml (xit , m; � � ) + el ,i (3.12)

ln el ,i � N (0,sl ) (3.13)

C � Poisson( l ) (3.14)

We interpret el ,i as the persistent private risk of driver i that can be captured by monitoring.

We further assume that it is distributed i.i.d. log-normally. 52 Let M denote the set of

52Risk parameters are non-negative. Cohen, Alma and Einav, Liran (2007); Barseghyanet al.(2013) use the
same distributional assumption. We also investigate a robustness check with normally distributed l .
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monitored drivers. Then advantageous selection into monitoring implies that:

E [el ,i j i 2 M ] < E [el ,i j i 62M ] (3.15)

The incentive effect may reduce monitored drivers' risk during the monitoring period.

We adopt a reduced-form approach towards modeling this effect to avoid making further

assumptions about the underlying structure of effort provision and risk determination. We

assume that the incentive effect is homogeneous across drivers and that it enter risk in an

mechanical and additive-separable fashion:53

ml (xit , m = 1) = ml (xit , m = 0;� � ,0) + ql ,m � 1t= 0 (3.16)

In order to get out-of-pocket expenditure, we need to model not only the severity of

claims, but also that of accident loss conditional on occurrence. Let ` denote the latter

quantity, which is assumed to be independent from claim count arrival and drawn from a

Pareto distribution:

` idt
i.i.d.� Pareto(`0, a` ) (3.17)

a` is the main (shape) parameter. In the primary speci�cation, we assume that a` is homo-

geneous across drivers. Importantly, we assume that there is no unobserved heterogeneity

in the conditional loss severity.

Monitoring Technology (Score) We model monitoring score s as an informative signal of

private risk ei . Monitoring score is driver-speci�c and is revealed once for monitored drivers

after the �rst semester ( t = 0).

ln si � N (ms(xi , ln l ; �s), ss) (3.18)

We assume that the signal noise has a log-normal distribution with mean ms and and

precision ss, similar to the latent risk type l that it tries to capture. When ¶ms
¶l 6= 0 and ss

53For more careful treatment of moral hazard and risk determination, see Jeziorski et al.(2014).
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is �nite, the realization of s is informative of l conditional on observable x. On the other

hand, s perfectly reveals l as ss ! 0.

Overall, we can de�ne the cost parametersas the intercept and slope parameters for

unmonitored latent risk type l , the incentive effect parameter, the spread of latent risk type

conditional on observables, intercept and slope parameters for conditional accident loss, the

intercept and slope parameters for monitoring score, and montioring score precision.

Qc = f � � ,0, ql ,m, sl , ff ` , �s, ssg

3.3.3 Identi�cation

We now provide an informal discussion of the data variation and model structure that allow

us to identify cost and demand parameters.

Cost parameters All parameters contained in Qc can be identi�ed with cost data alone.

Variations in average claim count and monitoring scores across observable groups identify

� � and �s (slope parameters). ql ,m is identi�ed with the same data variation outlined in the

reduced-form section in equation 3.2. As in Cohen, Alma and Einav, Liran (2007), sl is

identi�ed when suf�cient number of drivers �le for multiple claims per period, conditional

on observables. In addition, the monitoring score brings additional restrictions to the

distribution of private risk, conditional on signal precision ss. Therefore, ss and sl are

jointly identi�ed in our setting by the variance of claim counts and monitoring score

conditional on observables and on one another.

In modeling and identifying loss severity, we attempt to accurately capture both insurer

cost, which we observe, and out-of-pocket expenditure in consumers' expectation, which is

unobserved. The Pareto distribution does a good job balancing these two objectives. With

appropriate location parameter, it �ts the average claim amount well. At the same time, it is

suf�ciently long-tailed so that loss events signi�cantly larger than coverage limits still have

non-degenerate support in consumer's expectation. This is important in �tting the share of

large coverage limits.
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Demand parameters Our demand identi�cation largely relies on price and contract space

variation. Controlling for the observable characteristics used in �rms' pricing rules, the

remaining price variation depends on location and calendar time. We speci�cally model

consumers' risk differences across these dimensions by including each consumers' assigned

risk class in the cost model. We further include controls for yearly trend, seasonality, and

zipcode characteristics including income and population density in our demand parameters.

Therefore, we are left with price changes associated with the �rm's and its competitors' rate

revisions (back-end changes in pricing rules) as well as cross-location differences that are

plausibly exogenous from consumer demand. Speci�cally, the �rm also changed monitoring

opt-in discount over time.

We also observe variation in consumers' contract space conditional on observables.

Speci�cally, monitoring eligibility differs based on state, time, speci�c vehicle models, and

renewal period. For instance, drivers arriving before monitoring introduction in their states

or with vehicles older than 1995 are not eligible. Monitoring is also only available to new

customers. Meanwhile, mandatory minimum coverage also changed in two states within

our research window. We use one of these states in our demand estimation and reserve the

other for cross-validation. 54

Our primary concern is in identifying monitoring disutility ( x) well. Given cost parame-

ters and risk aversion, we can determine the relative attractiveness of the same coverage

option with and without monitoring based on objective �nancial risk and rewards. How-

ever, just because a driver can �nancially bene�t from monitoring does not mean that she

will opt in. The monitoring disutility is pinned down by the observed monitoring share

(under different pricing environments) given cost parameters and risk aversion. The slope

parameter on risk type ( qx,l ) further turns the monitoring disutility term into a risk-speci�c

shifter that �exibly controls the share of each risk type opting into monitoring. It therefore

helps us �t both the share of monitoring and selection based on risk. 55

54See Table 3.2 for summary statistics on quotes and coverage for the state in our main sample. Table C.1 in
the appendix summarizes the cross-validation results.

55Simply raising baseline monitoring cost for all risk types (conditional on observables) enhances selection
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Another parameter of interest is risk aversion g. For a given i, t, different g values

imply different gradient of Dvidt across the multiple coverage options we observe in the

data.56 Therefore, conditional on risk parameters, risk aversion can be identi�ed by how

the empirical coverage share changes given contract space and pricing environment.57 In

our demand estimation, the Pareto severity parameters can also affect changes in coverage

attractiveness. However, we restrict the Pareto distribution to approximate the actual

(truncated) claim severity that we observe.

We also need to separately identify baseline inertia (h0) and consumers' �rm-switching

inertia ( h). Conditional on observables, different levels of these parameters imply unique

combinations of the share of drivers who adjust coverage versus leaving the �rm at re-

newals. We also observe rich variation in competitive pricing environments conditional on

observables. Under a given pricing environment, these parameters imply a corresponding

threshold under which drivers would stay with the �rm, and another one under which

drivers would not adjust choices at all.

3.4 Estimation

In this section, we propose econometric speci�cations in order to take our model above

to the data. We also discuss identi�cation, our estimation procedure, the model �t, and

cross-validation results.

but also necessarily reduces monitoring share.

56This is conditional on the �xed effect for the mandatory minimum plan ( y 1). The �xed effect adds an
additional degree of freedom to more �exibly �t the gradient of willingness-to-pay across coverage options.

57Speci�cally, based on the company's pricing rule in Equation 3.1, the price gradient across coverage options
only depends on the actuarial risk class assigned to each consumer and the coverage factor. The latter is heavily
regulated. Each state offers an of�cial guidance on the coverage options that auto insurers should offer and the
corresponding coverage factors. Firms need to provide actuarial support to deviate from the guidance in order
to avoid regulatory scrutiny. Empirically, coverage factor is rarely changed in our demand estimation states
based on rate revision �lings.
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3.4.1 Econometric Speci�cations

Intercept and slope parameters We parameterize heterogeneous latent parameters lin-

early:

h(xit ) = (1,xit )
0�â

x(xit ) = (1,xit , ln l )0� ¸

aR,m(xit ) =

8
>><

>>:

xR
it

0
�R,0 md = 0

�
xR

it , s
� 0

�R,1 md = 1

ml (xit , m = 0) = (1,xit )
0� � ,0

ms(xi , l ) = (1, ln l i , xs
i )

0�s

Broadly consistent with actual �rm pricing rules, xR
it and xs

i only include a polynomial

and the log of risk class, which represents �rm's risk assessment without monitoring

information.

Nest structure Incorporating additional alternative-level random effects can further enrich

our model. In our primary speci�cation, we add a random coef�cient, z, on all choices

within f ?. This allows us to capture correlations between choices within the �rm. Here, we

assumez is an independently normally distributed with mean zero and standard deviation

sz Train (2009). This allows us to escape the Independence of Irrelevant Alternatives

property of a simple logit model. The model can therefore achieve better �t on attrition

rate differences across consumers facing different contract spaces across states or when

mandatory minimum changes.

Taylor approximation approach for nonlinear utility Next, following the literature on

auto insurance choices Cohen, Alma and Einav, Liran (2007); Barseghyanet al.(2013), we

start with an approximation approach to model the utility function described in equation

3.4. Assuming that third- or higher-order derivatives are negligible, the utility function
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can be expressed by a second-order Taylor approximation of the utility function around

income w. Normalizing by marginal utility evaluated at w, we get the following expression,

in which g is the absolute-risk-aversion term:

vidt ( l , z) = E [hidt j l , z] �
g
2

E
�
h2

idt j l , z
�

(3.19)

This further simpli�es product differentiation into consumption bundles with different mean

and variance pro�les. It also allows us to interpret v in monetary values, as the second term

of equation 3.19 is exactly the risk premium, while the �rst is expected consumption. We

are currently running robustness checks for alternative utility assumptions such as CARA

and CRRA, as well as to allow for richer heterogeneity in risk preference.

3.4.2 Estimation

Our model includes random coef�cients that enter utility non-linearly. Private risk, in

particular interacts with various observed monitoring and coverage characteristics (renewal

price, out-of-pocket expenditure), as well as unobserved demand parameters (risk aversion

and monitoring cost). Therefore, we use a simulated maximum likelihood approach (Train

2002; Handel 2013). In particular, the mix logit structure implies that the choice probability

is numerically integrated as follows:

Pr(dit j l ) = Pr(eidt � eid0t > [vidt ( l ) � vid0t ( l )] 8d0 6= d

=
exp [vidt ( l )/ s ]

å d0exp [vid0t ( l )/ s ]
(3.20)

Pr(dit ) =
Z

Pr(dit j l ) fl ( l )dl (3.21)

In general, for each parameter proposal Qd, we simulate 50 independent draws of

private risk ( el ) and the zero-mean �rm dummy ( z).58 Then, we compute the likelihood

for observed choices, claim count and severity, monitoring score, and renewal price change.

58We test the effect of increasing the number of draws in estimation on a 10,000 sub-sample. The effect of
going from 50 to 200 draws is minimal.

145



These are averaged over to get the simulated log likelihood. The estimator q? maximizes

the log likelihood. Notice that the Taylor approximation allows us to derive closed-form

solutions for the �rst two moments of out-of-pocket expenditures and renewal prices. 59 We

therefore do not simulate claim losses or monitoring scores within each draw of random

coef�cients.

As discussed above, our cost model is easier to estimate but requires a large amount

of data to estimate precisely. Our demand model faces the opposite challenge, being

computationally demanding but also making use of rich variations in choice environment

and outcome. Therefore, we adopt a two-step estimation procedure. First, risk and

monitoring score parameters (ql , sl , qs, ss) are estimated in the full dataset (except the

loss severity parameter, per the discussion above). We then feed the estimates into the

demand models as truth. 60 We lose precision by doing so, but both models are identi�ed

standalone.

3.4.3 Fit and cross-validation

We demonstrate that our demand model is �exible enough to produce accurate �t for four

critical moments of the data in Table 3.5 and Figure 3.7. We present two speci�cations: a

basic one that excludes a �rm dummy ( z random coef�cients) or private monitoring cost

(qx,l ), and a comprehensive one that includes these variables. As Table 3.5 demonstrates, we

match monitoring and coverage shares within our �rm well. Further, �rst-renewal attrition

rates – the share of outside option – is also broadly consistent. More importantly, the primary

speci�cation is able to accurately �t the expected monitoring score. This demonstrates that

the model is capable of capturing selection as well as the effectiveness of the monitoring

59Further, we restrict a` to be larger than 2 so that the mean and variance of the distribution are both
�nite, as both moments enter consumers' utility. The mean of the Pareto distribution is thus no more than 2`0.
Therefore, to �t the average cost to the �rm well, we set `0 = 3000, roughly half the empirical mean of the
claim distribution. This parameter is selected in cross-validation, om which we compare model performance in
a hold-out dataset by directly calculating the likelihood. In a robustness check, we are also �tting a Gamma
model for calculating the �rm's cost only.

60Standard errors for the demand estimates are current not adjusted for two-step estimation. In a robustness
check, we are correcting those standard errors and implementing a joint estimation.

146



score. Figure 3.7 con�rms this graphically: we calculate the expected monitoring score

for each driver over all random-coef�cient draws. The red line plots the simulated score

weighted by the corresponding monitoring choice probability in each draw. The orange line

plots the full distribution of expected monitoring scores, had everyone in the data �nished

monitoring.

Basic Speci�cation Primary Speci�cation Data

Monitoring share (if eligible) 17.7% 15.6% 15.3%
Expected score 5.46 4.25 4.30
Selection effect (risk) 6.7% 21.2% -

Coverage share
30K 13.7% 12.5% 12.7%
40K 9.1% 8.2% 8.5%
50K 53.2% 49.8% 47.1%
100K 13.0% 15.4% 17.0%
300K 9.3% 11.9% 12.3%
500K 1.8% 2.3% 2.4%

First renewal attrition (indexed) 133.0% 102.9% 100.0%

Note: This table reports the �t of our demand model. The basic speci�cation does not include
�rm-level random coef�cient ( z) or private monitoring cost ( qx,l ). The primary speci�cation is
outlined in our econometric model section. Monitoring share is conditional on eligibility. For

coverage shares, our demand estimation data pools across three states with different mandatory
minimum. One state changed mandatory minimum from 30K to 50K; estimation data is drawn from
only the pre-period of that state to capture monitoring introduction. First renewal attrition rate is
benchmarked to data per the �rm's request (reporting percent differences, not percentage point

differences). Expected score is calculated as the monitoring score weighted by monitoring
probability in each simulation, normalized by overall monitoring share. Similarly, selection effect is

calculated as the unmonitored risk type ( l i ,m= 0,t= 0) weighted by monitoring probability in each
simulation, compared to the same quantity but weighted by the inverse of monitoring probability.

Table 3.5: Demand Model Fit

Using these estimates, we can calculate the expected unmonitored risk type (no incentive

effect) of monitoreddrivers in the �rst period. Speci�cally, when we numerically integrate

over private risk el , we simply weight it by the choice probability of monitoring. This

gives us the expected (unmonitored) risk type in the monitored pool. Vice versa for the
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Note: The green histogram is the empirical distribution of monitoring score for monitoring �nishers
in our demand estimation data. The red line plots the �tted distribution as outlined above. The
orange dotted line plots the density of the extrapolated distribution of monitoring scores had all

drivers �nished monitoring.

Figure 3.7: Monitoring Score - Fit and Extrapolation

unmonitored pool. The selection effect is therefore a ratio between the two. The 21% ratio

between the two pools is similar to the 17% back-of-the-envelope calculation we did in the

reduced-form section.

The availability of un-used demand data allows us to perform cross-validation. In

particular, one state in our dataset increased its mandatory minimum from $30,000 to

$50,000. In our demand estimation, we draw from only the pre-change period for this state.

The hold-out sample, however, contains all drivers in that state arriving in the post-period.

Our model performs well out of sample, as demonstrated in Table C.1 in the appendix.

3.5 Estimation Results and Welfare Calculations

We present the raw estimates for homogeneous parameters in our models in Table 3.6

below. The heterogeneous latent parameters are reported in Table C.2 in the appendix. In

this section, we highlight some key results and provide intuition. In particular, we use a
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simulation exercise to demonstrate the relative importance of different demand factors. We

also conduct welfare calculations. Importantly, all simulation exercises in this section hold

observed prices as �xed.

Cost

ln g � 9.235���

(0.089)

ln sl ,new driver � 0.266���

(0.060)

ln sl ,old driver � 0.840���

(0.070)

ln ss � 0.081���

(0.007)

ln a` � 1.480���

(0.063)

Demand

h0 134.262���

(2.228)

bR,new 66.953���

(0.403)

bR,monitoring 59.680���

(0.902)

bR,renw 78.571���

(0.315)

sz 98.989���

(2.303)

s 39.213���

(0.632)

Note: � p< 0.1; �� p< 0.05; ��� p< 0.01

Note: This table reports estimates for homogeneous parameters in our structural model,
including the absolute risk aversion coef�cient g, the spread of private risk sl ,new driver and

sl ,old driver . New drivers are de�ned as those licensed in the past three years. ss is the
monitoring score's signal precision. Claim severity follows a Pareto distribution with

parameters `0 and a` , where `0 is set at $3,000 per discussion in the text. On the demand
side, we have the baseline inertia term h0. bR's are the rate parameters for the renewal price

change Gamma distribution ( R0). Lastly, sz is the variance of the independent random
coef�cients on own �rm dummy. s is the scale of the logit error.

Table 3.6: Homogeneous Parameters

The magnitude of private risk and the monitoring score's signal precision are presented

in the left panel of Table 3.6. Compared to Cohen, Alma and Einav, Liran (2007), we

�nd signi�cantly more unobserved heterogeneity in driving. 61 This can be attributed to

61Our private risk spread is 0.43 (exp( ln sl )) for non-new drivers, compared to Cohen, Alma and Einav,
Liran (2007)'s estimate of 0.15.
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our ability to capture information contained in an additional signal of private risk – the

monitoring score. New drivers who do not have past claim records see particularly high

spread of private risk. Our estimates also capture the ef�cacy of the monitoring technology

and the �rm's renewal prices as well. In particular, we �nd that monitoring scores rise with

driver risk, as do renewal prices for monitored drivers. 62

Note: This �gure benchmarks our risk aversion parameter estimate to the literature. Risk aversion is
interpreted as the indifference value between inaction and taking a 50-50 bet on gaining $1000

versus losing that value. Heterogeneity indicator means that the author allows risk aversion to vary
across people, in which case we plot the range of risk aversion parameters in the population.
Otherwise we plot the 95% con�dence interval of the homogeneous risk aversion parameter.

Figure 3.8: Risk Aversion Parameter Estimates - Benchmark

Figure 3.8 benchmarks our risk-aversion parameter against the literature. Our primary

speci�cation assumes homogeneous risk aversion and the estimate is broadly consistent

with the literature. 63As in the prior literature, we �nd that demand frictions are empirically

important: many drivers who would bene�t from monitoring choose not to participate. In

Table 3.7, we present the empirical distribution of both �rm-switching and monitoring costs

in the population. The average driver foregoes $283—44% of annual premium—of gain by

62See Table C.3 in the appendix for details.

63Barseghyan et al.(2013), in particular, differentiate between probability distortion (wrong belief about one's
own risk) and risk aversion.
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not choosing an outside option from other �rms. Disutility from monitoring is also large

and heterogeneous across drivers. We estimate that the average driver needs to expect a

gain of $93 to participate in monitoring, with a standard deviation of $19.21.

Statistic Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Firm-switching Inertia h(x) 283.63 35.39 157.71 264.85 286.46 307.11 406.56
(/ annual premium) 0.44 0.17 0.11 0.31 0.41 0.55 0.55

Monitoring Disutility x(x, l ) 92.83 19.21 9.52 79.97 92.54 105.21 187.20
(/ annual premium) 0.14 0.06 0.01 0.10 0.13 0.18 0.25

Claim Risk l 0.05 0.05 0.001 0.02 0.03 0.06 1.48

Note: This table reports the distribution of heterogeneous latent parameters in our dataset. We
simulate a distribution of private risk and calculate these parameters based on our demand estimates.

Table 3.7: Latent Parameters

Moreover, monitoring disutility increases with private risk. 64 This further accelerates

advantageous selection into monitoring, while suggesting that observed renewal prices

alone are not enough to explain the empirical selection pattern. At the same time, we see

that older and more educated drivers tend to have lower monitoring costs, as well as those

with newer cars, better prior insurance records and less traf�c violation points.

As shown in the right panel of Table 3.6, the �xed inertia cost that drivers need to

overcome when adjusting choices is $134. This adds to �rm-switching and monitoring costs

and further prevents safe drivers from being monitored. All else equal, the average driver

only prefers the mandatory minimum coverage by $26, which seems low given that the plan

commands almost 50% market share. This suggests that the rational amount of coverage for

many drivers may be below the mandatory minimum, which restricts how monitoring can

affect allocative changes across coverage.

64Column (2) of Table C.2 in the appendix reports the slope parameter for private risk.
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3.5.1 Fixed-price Counterfactuals and Welfare Calculations

In this section, we use several simulation exercises to understand the demand and pro�t

impact of removing different elements of the demand model as well as the welfare impact

of introducing monitoring. We hold prices �xed here, and study equilibrium implication in

the next section.

Simulation methodology Consistent with our demand model, we take a one-year hori-

zon. The following procedure is used to calculate ex-ante and expected realized (ex-post)

quantities.

1. For each driver i, simulate random coef�cients (private risk and �rm dummy) L 2 N +

times.

2. For each draw l 2 f 1, ...,Lg, calculate ex-ante utility directly and the corresponding

certainty equivalent. 65 First-period choice probabilities are also calculated, which gives

us the monitoring share. Expected cost of the �rst semester can be calculated directly.

But we also need to form an expectation of the second-period cost (and prices) in

order to calculate total surplus (and pro�t):

3. Simulate K 2 N + draws of �rst-period claim occurrence and monitoring score based

on private risk. 66 Each draw pins down the renewal price change that driver i would

face in the second period. All other prices remain constant. For each �rst-period choice

d, we can then calculate the second period choice probability and the corresponding

expected cost.

Sample enumeration Since we observe new customers' origins, as well as the competitive

prices they face when coming to the �rm, we can use our model to enumerate a full sample

65Due to our Taylor approximation, this should be the negative root of the polynomial.

66For simplicity, we assume that R0 is deterministic conditional on C and s. In reality, the spread of baseline
R0 without claims and monitoring may have subtle nonlinear effects on consumer choice, which we assume
away.
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of potential new customers Train (2009). To do so, we �rst calculate the probability of each

new customer arriving at the �rm. We then follow the same procedure as outlined above,

but weight each driver by the inverse of the calculated probability. The simulation is carried

out assuming that monitoring is available for all new customers. 67 Overall, our simulated

dataset is expanded by a factor of 4.03, which gives us a market share (among the top six

�rms for which we have data) close to the reality in the states we study. 68 This also allows

us to derive a realistic proxy for competitor pro�t under a symmetric cost assumption; that

is, the distribution of risk that we estimate in our dataset is valid when extrapolated to the

simulated market.

In order to enumerate the market, we need to extrapolate the estimated attrition elasticity

the �rm faces to understand how the �rm competes with other �rms in the �rst period. To

do so, we make a no-brand-differentiation assumption: liability insurance contracts offered by

different �rms only differ �nancially. This means that our �rm-switching inertia estimate

consists only of search and switching costs that are state-dependent (on consumers' preex-

isting �rm choice) and that consumers have no unobserved preference for our �rm, which

is not state-dependent. In the context of our counterfactual simulations, this assumption

essentially maintains that the price elasticity the �rm's competitors face when the �rm tries

to poach customers away from them (in the �rst period) is the same as the price elasticity

the �rm faces when trying to retain existing customers.

This assumption follows naturally from our data limitation: we do not observe com-

prehensive micro-level choice or quantity data for the �rm's competitors. But it is also

supported by empirical evidence. Honka (2012) uses a survey dataset that includes indi-

vidual consumer choices across auto insurers. She is then able to tease out switching cost

from �rm-speci�c preferences. She �nds that the mean �rm preferences are not signi�cantly

different from 0 for all companies. 69

67Part of the estimation data is pre-monitoring introduction. We use the average opt-in discount for these
drivers.

68We winzorize the re-weighting scaling factor to be between 1 and 20 to deal with outliers.

69Her estimate of search and switching cost is lower than our estimate. However, for the �rm from which
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Counterfactual demand models In this section, we show simulation results of removing

key components of the demand model, as an illustration of their relative importance in

determining monitoring share and the �rm's pro�tability.

First, compared to the baseline model, the "No Safer" model assumes that drivers do

not take into account the incentive effect of monitoring on reducing their risk. As shown in

Figure 3.9, monitoring share drops by 6.3pp. 70 Drivers substitute to the unmonitored pool

and to competitors, leading to a 1.3pp drop in unconditional monitoring share but only a

0.6pp drop in market share. 71

Second, the "Perfect Sig." model assumes that the monitoring signal is perfect in con-

sumers' expectation by setting ss to zero. The market share, unconditional and conditional

monitoring shares increase by 0.4pp, 0.6pp, and 2.6pp, respectively. In reality, our speci�-

cation is consistent with a dynamic framework in which �rm-switching is in�nitely costly

within a year. This will likely overstate the effect of reclassi�cation risk. Nevertheless, the

impact of a perfect signal on demand is small compared to that of other forces. 72

Demand frictions are the most important deterrent against monitoring participation.

The third model removes �rm-switching inertia, which dramatically lowers the barrier for

drivers with good private risk to participate in monitoring. However, It also clears the way

for drivers to explore attractive outside options. We �nd that the �rm is able to gain market

share by 12.6pp, while increasing its monitoring share by 12.1pp so that 5.9% of drivers in

the market has monitoring. Lastly, we remove monitoring cost. This generates the biggest

impact on monitoring by far. In particular, any driver with good private risk would prefer

monitoring with any coverage within the �rm. The monitoring share rises to 61.3%, with

our administrative dataset comes from, the reported attrition rate in her dataset is more than three times as
large as what we observe. Her estimate is therefore likely biased downwards.

70"pp" denotes percentage points.

71Market share here is calculated as the average choice probability for the monitoring �rm f ? in the
simulation.

72A caveat is that we assume rational expectation in our model. This means that the effect of a systematic
over- or under-estimation of the monitoring signal's noise would show up in drivers' monitoring cost instead of
be attributed to reclassi�cation risk.
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Note: These �gures correspond to our analyses in section 3.5.1. The top graph plots the
counterfactual market share of the �rm, as well as the unconditional share of monitored drivers in

the market, when prices are �xed but the demand model changes. The bottom graph plots the
conditional monitoring share within the �rm. See main text for de�nitions of each model -

importantly, changes in model features are not cumulative from left to right. We also enumerate our
sample of new customers to the full market with model-predicted likelihood of each new customer

being in our dataset.

Figure 3.9: Demand Share Simulation Across Demand Model Assumptions
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Note: Corresponding to the �gure above, these graphs plot �rm pro�t and competitor pro�t, holding
prices �xed. The top graph plots the expected private risk among the �rm's customers. Notice that
private risk has mean zero in the population. It is numerically integrated over in the counterfactual
simulations. With each draw, we weight each person's private risk with her probability of arriving at

the �rm to get the number shown above. It therefore represents both the monitored and the
unmonitored pools of the �rm.

Figure 3.10: Simulation - Pro�t Under Different Demand Model Assumptions
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16.2% of the market opting in the �rm's monitoring program.

Firm pro�t is in�uenced not only by its market share, but also by risk selection. To

directly visualize this, we isolate the risk selection effect from the overall pro�t impact

in Figure 3.10. It plots the expected private risk parameter ( el ,i , mean 0) for the �rm's

customers, both monitored and unmonitored. This clari�es the changes in the private risk

of the marginal customers that come to the �rm as we relax demand factors, which is crucial

in understanding competition in selection markets. As the �rm cream-skims better drivers

in its monitored pool, the unmonitored pool in and outside of the �rm deteriorates. These

pool may therefore eventually unravel as �rms adjust prices.

Welfare calculation We evaluate the welfare and total surplus of introducing monitoring

by comparing the current monitoring regime to a simulated counterfactual where no

monitoring is offered. As mentioned above, we take a certainty equivalent approach

in calculating ex-ante welfare. Total surplus is the difference between welfare and total

expected cost over two periods. Pro�ts are given by observed prices (and renewal pricing

parameters) minus the same expected cost. We also take into account the resource cost

for the �rm to administer monitoring. It is unobserved and is dif�cult to estimate since

actual prices may be suboptimal. In our simulations, it is set at $35 per monitored period,

based on interviews with the program manager and on industry estimates. It includes

manufacturing, wireless data transmission, depreciation, inventory, and mailing costs as

well as R&D, marketing, and other overheads.

Figure 3.11 plots the results in per-capita per-year terms. The average consumer gains

$11.6 in certainty equivalent, or 1.5% of premium. Pro�t increases by $7.9 per capita, a 23.6%

increase. Under our symmetric cost and no-brand-preference assumptions, competitors

see a pro�t decline of $6.2. This isolates the impact of cream skimming by the monitoring

�rm because the �rm can offer lower prices to some monitored drivers despite charging

higher markups. The combined total surplus increases by $13.3 (1.7% of premium) over the

no-monitoring scenario.

To disentangle the welfare consequence of the incentive effect (risk reduction) and
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Note: These �gures plot results from our welfare exercise outlined in Section 3.5.1. The amount
denotes the change moving from a regime where no monitoring is offered to one we observe in the
data. We plot the differences in ex-ante certainty equivalent, expected pro�t (across two-periods) for
both the monitoring �rm and its competitors, as well as total surplus (welfare minus expected cost).
The top graph is a waterfall graph decomposing how the components of total surplus changes. The
color green indicates an increase while red indicates a decrease. The box plot show 10/25/50/75/90

percentiles.

Figure 3.11: Welfare Calculations
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allocative changes from mechanical monetary transfers across drivers, we �rst redo the

welfare calculation without the incentive effect. Consumers' expected utility from monitoring

and �rms' expected cost for monitored drivers will both suffer, reducing the total surplus to

$4.8 per capita. The top panel of Figure 3.12 plots this effect. This attributes almost 64% of

total surplus gain to better driving, implying small allocative ef�ciency gains. To investigate

this further, we look at changes in the quantity of insurance purchased, comparing the

observed regime with the no-monitoring one. Because liability insurance is mandatory, the

result we �nd here is entirely due to changes in coverage levels. Overall, insurance coverage

increases, but only by 0.28%. Looking across various observable pools, the safer risk classes

stand out despite the fact that they already pay lower premiums. Meanwhile, without risk

reduction, overall pro�t in the industry falls as the monitoring �rm offers lower prices to

good monitored drivers at the expense of its competitors' pro�t.

Importantly, our simulation in this section do not consider how the introduction of

monitoring may have changed baseline �rm prices for unmonitored drivers. This is because,

as shown in Appendix C.0.2, the �rm did not raise prices on the unmonitored pool during

the introduction of monitoring. Therefore, any cream-skimming effect in our simulation

would reduce pro�t in the unmonitored pool as opposed to reduce welfare of unmonitored

drivers. In the next section, we propose a model for pricing where the �rm can freely

surcharge unmonitored drivers.

3.6 Firm Pricing Model and Equilibrium Implications

In this section, we propose a dynamic multi-product model of �rm pricing that links

together �rm's ex-ante incentive to produce information (monitoring data) and its ex-post

incentive to extract rent from the data. The model endogenizes the �rm's information set

and allows us to simulate two counterfactual equilibria. First, we allow the monitoring �rm

to optimize prices without constraints, holding competitor pricing �xed. This highlights

that pro�t maximization implies an "invest-and-harvest" pricing dynamic. Second, we

endognize competitor prices and simulate an equilibrium in which the �rm is required to
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Note: The top �gure plots the same welfare calculation assuming away risk reduction during
monitoring based on the incentive effect, per our discussion in the main text. The bottom �gure

plots average change in coverage amount in percentage across observable groups. “rc-q1” means risk
class being in the �rst quartile at time of choice.

Figure 3.12: Incentive Effect and Coverage Reallocation
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disclose monitoring data to competitors. This helps us understand the impact of regulatory

proposals that aim to curb markups by restricting proprietary data.

3.6.1 Firm Pricing

In our data, the �rm uses two pricing levers for the monitoring program. First, it uses

upfront discounts to encourage monitoring opt-in. Second, it uses non-uniform markups in

giving monitoring discounts. 73 However, actual prices for monitoring may be suboptimal for

pro�t maximization, largely because prices are heavily regulated in the insurance industry.

In order to understand the broader equilibrium implications for an unregulated market, we

propose the following two-period, two-productmodel for the �rm's pricing of the monitoring

program.

Suppose the �rm's pricing rule is driven by a vector of parameters ~k that maximizes

pro�t P , which depends on aggregate demand, heterogeneous costs, and competitor prices.

For illustrative simplicity, we suppress coverage choice below. 74 The �rm therefore has two

products: insurance with and without monitoring. Further, since all prices already takes

observablesx into account, we suppress that notation.
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(3.22)

The �rm jointly optimizes two-period pro�t for all potential customers i whose latent

risk types l are distributed according to the distribution g( l ). It forms expectations over the

realization of stochastic claims C and monitoring scores s. In each period, it faces demand

73See Appendix C.0.3 for more details. In particular, we conduct an event study around monitoring
introduction to show that the �rm did not raise prices for the unmonitored pool. Meanwhile, we show that the
retention elasticity drops as the �rm gives more discounts.

74Coverage choice is incorporated in our simulation exercises and results.
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and incur cost to insure drivers ( c( l , m)) and cost to monitored drivers that choose to opt in

(cm = 35).

Our main focus is the pricing adjustments related to monitoring, pm = f pm,0, pm,1g,

which can change the �rm's information set as they in�uence demand for monitoring. In the

�rst period, the �rm's information set consists of observables x and consumers' monitoring

choice m. In the second period, the �rm gains additional signal about drivers by observing

claim realization and, for monitored drivers, the monitoring score. Competitors' information

sets do not include monitoring information.

I 0,i = f xi , mg I � f ?,0,i = f xig

I 1,m,i (C, s) = f xi , C, m � sg I � f ?,1,i (C) = f xi , Cg

Next, we need to specify the pricing rule pm (~kjI ) given the information set. The �rm's

complete pricing rule is extremely complex in reality. The price �lings we obstain are

frequently thousands of pages long. To make the pricing problem tractable, we start from

the �rm's existing price rule p(�) observed in the data and parameterize ~(k) as simple

adjustments related to the monitoring program.

In the �rst period, the �rm faces price competition while aiming to produce valuable

information. Based on its information set, on top of the existing price schedule p(x), it

can surcharge the unmonitored pool by k0 and discount the monitored pool by k1. Both of

which can potentially nudge drivers towards monitoring, which intuitively represent the

�rm's "investment" in information production.

pm,0(~kjI = xi , m) =

8
>><

>>:

k0 � p(xi ) m = 0

k1 � p(xi ) m = 1
(3.23)

In the second period, the �rm continues to face competition, but among monitored drivers,

it gains an information advantageous by observing the monitoring score s. For a monitored

driver that is 30% safer than previously expected, the �rm may be able to offer a discount

much less than 30% and still be con�dent that she would not leave the �rm. The �rm
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essentially solves an optimal rent-sharingproblem with the monitored drivers in order to

"harvest" the value of the collect data.

Firm's monitoring price schedule becomes continuous with the revelation of monitoring

score s, which is captured by our renewal price change model R(C, s). For any given score

s, conditional on observables x, the wedge between this and the unmonitored price change

R(C) represents the �rm's rent-sharing schedule observed in the data. We use a single

parameter ks to represent linear deviations from this rent-sharing schedule.

pm,1(~kjI = f xi , C, sg) =

8
>><

>>:

p(xi ) � Rm= 0(C) m = 0

p(xi ) � [ks � Rm= 1(C, s) + (1 � ks) � Rm= 0(C)] m = 1
(3.24)

When ks = 0, the �rm keeps all the rent and performance in monitoring has no impact on

monitored drivers' renewal pricing. On the other hand ks > 1 means that the �rm is sharing

more rent with consumers than it does in the current regime.

3.6.2 Equilibrium Implication

Optimal pricing With the proposed model above, we can �nd the optimal pricing rule

~k?, taking demand and cost estimates as given. In particular, pro�t is simulated using the

procedures outlined in Section 5.3.

Our results show that, in the �rst period, the �rm should optimally surcharge the unmon-

itored pool by 2.7%, while offering a 22.1% upfront discount for opting into monitoring. 75

Without competition, our model contains no outside option for consumers, given that

auto insurance is mandatory. The �rm can therefore arbitrarily surcharge prices for the

unmonitored drivers. In contrast, our dataset only includes �ve competitors, yet the

optimal pricing only includes a modest surcharge of 2.7% for the unmonitored pool. Price

competition in the industry therefore signi�cantly limits the �rm's ability to coerce drivers

into monitoring and to extract excessive rent. Instead, the large monitoring opt-in discount

suggests that the �rm can bene�t from more investment in eliciting (producing) monitoring

75Consistent with our model, this discount is given for all drivers that �nish monitoring.
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data, which not only enhances ex-post competitive advantage, but it also directly reduces

the cost to insure drivers in the �rst period.

In the renewal period, we show that optimal pricing implies 19.6% less rent-sharing

than observed in the data. This means less discount for good drivers and less surcharge for

bad ones, which coincidentally implies more aggressive price discrimination: good drivers

receive a discount only from the monitoring �rm, and are therefore less likely to leave the

�rm; bad ones, however, face competitive pricing without a monitoring surcharge and are

therefore more price-sensitive. This pattern is documented descriptively in Appendix C.0.2.

Overall, monitoring opt-in rate increases to 4.4% (unconditional for coming to the �rm).

Consumer welfare and market surplus both increase. Intuitively, although the �rm is taking

a larger share of the surplus, it also creates more surplus in the �rst place by eliciting more

monitoring data.

Information sharing Building on the optimal pricing regime, we now endogenize com-

petitor prices and impose a regulation requires the �rm to share its monitoring data with

competitors. This turns the monitoring program into a public good. However, signi�cant

�rm-switching inertia may form an effective barrier against other �rms “cream-skimming”

monitored drivers. In addition, the �rm also directly bene�ts from the risk reduction during

monitoring. In this section, we endogenize competitor prices and simulate an equilibrium

in which competitors do not offer monitoring but can set alternative rent-sharing schedules

to entice drivers who have �nished monitoring.

This is similar to the patent dynamic studied in a typical innovation setting.

We make two important assumptions to facilitate this exercise. First, information sharing

is complete and credible. Therefore, �rms have symmetric knowledge about the expected

cost of monitored drivers, given observables and monitoring score. Second, competitors

do not adjust baseline prices. Instead, the focus is solely on competitors' cream-skimming

motive, given the monitoring information revealed in the second period. 76 As a result, for

76Consumers face higher reclassi�cation risk when their monitoring information is made public. However,
due to our myopia assumption, this does not in�uence the attractiveness of monitoring. We see this as a fairly
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this exercise, competitors need only determine a competing rent-sharing schedule k� f ?,s.

The overall equilibrium is achieved when ~k optimizes the �rm's own pro�t while k� f ?,s

optimizes competitor pro�t. We use a best-response algorithm to compute Nash equilibrium.

We start with the optimal pricing ~k(0) we derived above and calculate the optimal competitor

responsek(0)
� f ?,s. Taking the latter as given, we update the monitoring �rm's optimal pricing

to ~k(1) , which is conditioned upon in calculating k(1)
� f ?,s. The algorithm converges after 16

iterations with a tolerance of a total of 1-percentage-point adjustment on all four markup

parameters.

Results are presented in Table 3.8. We �nd that competitors offer an 81% "steeper"

rent-sharing schedule than what the �rm offers in the current regime. The �rm is then

forced to share more rent with monitored drivers, by 14% compared to the current regime

and by 43% compared to the optimal pricing regime. In response, the �rm also signi�cantly

scales back investment in the monitoring program, offering only 8.3% opt-in discount and

surcharging the unmonitored pool by 0.8%. Overall, as pro�t reallocates across �rms,

consumer welfare and total surplus decreases slightly compared to the equilibrium without

the information sharing mandate (optimal pricing regime). This implies that the positive

impact of information sharing on curbing ex-post markups is outweighed by the �rm's

adjustments in investment level, which lowers monitoring participation. This suggests that

existing price competition and consumer demand frictions already signi�cantly limit the

�rm's pricing power. Data regulation on proprietary data should jointly consider their

markup implications and �rms' incentive to produce information in the �rst place.

Limitations There are several important limitations to our equilibrium simulations. First,

our simplistic pricing framework may not fully capture the �rm's pricing structure for the

monitoring program. The latter can vary nonlinearly and interact with baseline prices in

complex ways. Moreover, we maintain our assumption of symmetric cost across �rms for

monitored drivers. In reality, however, competitors have different preexisting belief about

innocuous omission given large �rm-switching inertia and our demand simulations in section 3.5.1.
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Current Regime Optimal Pricing Data Sharing

Firm Pro�t 46.5 61.2 49.3

Competitor Pro�t 149.2 138.2 147.1

Consumer Welfare (CE) - +4.7 +2.2

Total Surplus - +8.4 +2.9

Monitoring Market Share 3.0% 4.4% 3.4%

Invest
Unmonitored surcharge 0.0% 2.7% 1.6%
Opt-in discount 4.6% 22.1% 8.3%
Harvest
Rent-sharing (ks) 1 0.80 1.14
Competitor rent-sharing ( ks,� f ) - - 1.81

Note: This table reports results from our counterfactual equilibrium simulations in section 3.6. The
simulation procedure to calculate welfare, pro�ts, and total surplus is outlined in section 3.5.1. These

quantities are reported in dollar per driver per year terms as we translate utility with a certainty
equivalent approach. We further enumerate our sample of new customers to the full market by

calculating driver weight as in section 3.5.1. The time frame we report is one year (two-period). The
level of consumer welfare and total surplus is not identi�ed, so we report only the change in those
values in counterfactual regimes compared to the current regime. “Optimal Pricing” represents our

equilibrium simulation in section 3.6.2. “Data Sharing” represents the equilibrium simulation in
section 3.6.2, where the monitoring �rms is required to share monitoring data to competitors. The

“Current Regime” uses monitoring pricing we observe in the data. The rent-sharing parameter ( ks) is
indexed against the one observed in the “Current Regime”. Empirically, it is a scalar on top of the
�rm's existing monitoring renewal schedule. ks = 0 means no rent sharing with consumers (�at

pricing schedule regardless of monitoring outcome). ks > 1 means a steeper monitoring discount
schedule than observed. This represents more rent-sharing with the consumers.

Table 3.8: Counterfactual Equilibrium Simulations
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these drivers' risk based on their observables. Further, due to our utility assumptions, differ-

ent regimes in�uence consumers' ex-ante welfare only by changing the prices and expected

renewal prices they face at the monitoring �rm. This is because they do not anticipate

potential adjustments after the �rst period in our model; baseline competitor prices are

also held �xed in the simulations. Therefore, our simulations will likely underestimate the

changes in welfare and surplus across different regimes. In addition, �rms' pro�t function

do not take into account loading factor (overhead and administrative expenses unrelated to

monitoring) on top of claim costs because we cannot separate loading factor from markups

charged in our micro data. We therefore will overestimate the �rm's pro�tability from

attracting customers. Lastly, we restrict our simulation to two periods, as we �nd that the

value of monitoring data diminishes dynamically (see Figure 3.6).

3.7 Conclusion

Firms are increasingly collecting consumer data in direct transactions. This in�uences

social surplus and its division in complex ways. Beyond testing for the presence of various

economic forces, it is important to quantify the underlying primitives and incentives to

understand their interactions and joint effects.

In this paper, we acquire novel datasets that give us direct visibility into how valuable

proprietary data are collected and used by �rms. We also develop an empirical framework

that links together the information market in which data transactions occur with the

underlying product market. We conclude by revisiting three main results and discussing

their real-world implications and caveats.

First, data collection changes consumer behavior. Drivers become 30% safer when

monitored. We show that this is the primary reason why the monitoring program boosts

social surplus in the short run. In other settings, consumer behavior may be distorted in

a way that harms social surplus. For example, if consumers know that buying expensive

items may label them as inelastic shoppers and lead to higher prices in the future, they may

delay or refrain from purchasing those items. In general, �rms learning about consumers
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can change consumer incentives and behavior, but the direction and magnitude of such

distortion depends on how consumers perceive their information will be used by �rms in

the future.

Especially for selection markets such as insurance and lending, additional data on

consumers cause differential price changes across consumers that alter allocation in the

product market. In our setting, almost half of the drivers are in the state mandatory

minimum plan, price adjustments therefore lead to only modest gain in allocative ef�ciency.

This effect can be much greater in other selection markets that do not mandate participation,

such as life insurance and student loans.

Second, we �nd that even though safer drivers are more likely to opt into monitoring,

most drivers who would receive a monitoring discount (in expectation) do not. This low

take-up rate is primarily driven by two factors. First, consumers suffer large disutility

from being monitored. Our data does not allow us to identify the micro foundation of

this disutility term. It may include "real" costs like privacy and effort costs. It can also

incorporate the effect of systematic misconceptions of monitoring's bene�t. In addition, it

might also include the effect of salience issues related to an opt-in system. When considering

a government mandate for monitoring or an opt-out mechanism, these costs will disappear.

Nonetheless, our results show that in the context of direct transactions of consumer data,

�rms may face inelastic demand when incentivizing consumers to reveal information.

Competition in the product market also strongly in�uences the number of drivers

choosing monitoring in equilibrium. Drivers have attractive outside options from other auto

insurers due to �erce price competition. This limits the �rm's ability to coerce drivers into

monitoring by raising baseline prices. In many online settings, large �rms hold signi�cant

market power and can afford to make their service contingent upon data collection without

losing too many customers. For instance, after the EU's sweeping privacy regulation GDPR

went into effect in 2018, the Wall Street Journalreports that large �rms such as Google and

Facebook achieved far higher consent rate for targeted ads than most competing online-ad
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services.77 This further reinforces large �rms' competitive advantage. In light of our results,

the reason for their high opt-in rates is perhaps not only the value of their services but also

the poor outside options consumers face.78 More generally, our study shows that adding

an additional informational demand margin can further amplify preexisting market power

large �rms have in the product market. Regulators should be cautious about this trade-off

between consumer privacy and imperfect competition.

Lastly, the notion of privacy pertains not only to consumers' ownership of their data

but also to �rms' ownership of valuable proprietary data that they have collected. Our

research develops a framework to jointly consider �rms' incentives to “invest” in producing

proprietary data and to “harvest” its value through higher markups. Our counterfactual

simulation demonstrates that, in the short run, the government should protect the �rm's

ownership to the monitoring data in order to preserve its investment incentives to produce

the data. In the long run, however, markup implications will likely dominate. The optimal

regulation for proprietary data may therefore resemble a patent mechanism when the

product market is suf�ciently competitive and when data collection is costly but socially

valuable.

77https://www.wsj.com/articles/eus-strict-new-privacy-law-is-sending-more-ad-money-to-google-
1527759001.

78Seethis report for the opt-in process used by large multinational �rms following the implementation of
the GDPR.
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Appendix A

Appendix to Chapter 1

A.1 Scaling Equilibrium Construction

We construct the unique pure-strategy, monotonic equilibrium of a DOT procurement

auction with DOT quantities qqqe, bidder quantity signals qqqb and variances sss2, DOT cost

estimatesccc, and I participating bidders. Each bidder has a privately observed ef�ciency type

ai , that is publicly known to have been drawn from a well-behaved probability distribution

over a bounded domain [a, a]. We denote the CDF and pdf of this distribution by F(a) and

f (a), respectively.

In particular, for our counterfactual simulations, we assume that ai is distributed accord-

ing to a bounded log-normal distribution with a mean that depends on project characteristics,

and a project-type-speci�c variance:

ai
n � LogNormal (ma

n, sa
n

2) (A.1)

where ma
n = Xnba and sa

n is project-type speci�c. We estimate ~ba and ~sa
n from the estimated

distribution of a types, using Hamiltonian Monte Carlo with MC Stan. We continue to use

F(�) and f (�) to refer to the CDF/PDF of this distribution for the remainder the derivation

for notational convenience.

The equilibrium assigns a unique equilibrium score s(a) to each ef�ciency type a. It is

182



monotonic in the sense that s(�) is strictly increasing in a:

a > a0 () s(a) > s(a0), for each pair a, a0 2 [a, a] .

Under this condition, the probability that s(ai ) is smaller than s(aj ) in equilibrium is equal

to the probability that ai is smaller than aj , for any ai and aj . We can therefore write the

equilibrium expected utility of an arbitrary bidder i, using the distribution of a:

E[u(p (s(a), a))] =

 

1 � exp

 

� g
T

å
t= 1

qb
t (b�

t (s(a)) � act ) �
gs 2

t

2
(b�

t (s(a)) � act )2

!!

| {z }
Expected utility conditional on winning

� (1 � F(a))N � 1 ,
| {z }

Prob of win w/ s(a) = b � (s(a)) � qe

where N is the number of bidders participating in the auction. In order for s(�) to hold in

equilibrium, it must be optimal for every bidder of ef�ciency type a to submit s(a) as her

score. By the envelope theorem, this is ensured when the �rst order condition of expected

utility with respect to s(a) holds:

¶E [u(p ( s̃, a))]
¶s̃

j s̃= s(a) = 0.

Evaluating the derivative and rearranging, we characterize the equilibrium score function

by the solution to the Ordinary Differential Equation:

s0(a)
T

å
t= 1

� �
gqb

t � g2s2(b�
t (s(a)) � act )

� ¶b�
t (s(a))

¶s

�
= [exp(gp̄ (a)) � 1]

N � 1

å
k= 1

f (a)
1 � F(a)

,

(A.2)

where p̄ (a) = å T
t= 1 qb

t (b�
t (s(a)) � act ) � gs 2

t
2 (b�

t (s(a)) � aict )2 and the bidding function

b(s(a)) is optimal (given a). That is, given an equilibrium score s(a), the bidding function

solves:

max
b(s(a))

"

1 � exp

 

� g
T

å
t= 1

qb
t (bt (s(a)) � act ) �

gs 2
t

2
(bt (s(a)) � act )2

!#

(A.3)

s.t.
T

å
t= 1

bt (s(a))qe
t = s

bt (s(a)) � 0 for each item t.
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Note that for the counterfactual, we add the further restriction that the optimal bid vector

be non-negative. In principle, this restriction should always hold, but we ignored it for the

purpose of estimation as all observed bids are positive. For the counterfactual however, it

is possible that the optimal unrestricted bids would be negative, and so it is important to

include the restriction explicitly. With the additional non-negativity constraint, the convex

programming problem in A.3 has no closed form solution and must be solved numerically.

However, given a solution that determines which of the items have interior bids (rather than

zero bids) at the optimum, the solution can be characterized as follows:

b�
t (�) = max

8
>>><

>>>:

act + qb
t

gs 2
t

+ qe
t

s2
t å

t:b�
t (�)> 0

�
(qe

t )2

s2
t

�

 

s(a) � å
t:b�

t (�)> 0

h
actqe

t + qb
t

gs 2
t
qe

t

i
!

0

(A.4)

Note that when all items have interior bids, this is equivalent to equation 1.7. We solve

the ODE in (A.2) numerically using a state-of-the-art stiff ODE solver using the Differen-

tialEquations library in Julia. 1 At every evaluation of equation (A.4) in the ODE solver, we

compute the optimal bid vector at every score by numerically solving the program in (A.3)

using the IPOPT optimization suite through JuMP framework. We then compute the partial

derivative db�
t (�)
s using the (analytical) derivative of equation (A.4), evaluated at the optimal

bids found with the numerical solver.

Note that this ODE is unique up to a boundary condition. As such, to ensure that this

indeed characterizes an equilibrium, we require that the highest possible ef�ciency type a

submits a score s(a), that provides zero pro�t at the optimal bidding strategy. We compute

s(a) numerically using this critereon directly, and use this to initialize the ODE solver.

1We would like to particularly thank the lead developer of DifferentialEquations.jl for helping us work
through numerical issues in getting this to work.
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A.2 Entry Cost Proofs

Lemma 1. Consider an auction in whichN � bidders enter in equilibrium given an entry costK.

The cost of entryK is bounded from below by the certainty equivalent of participating in the auction,

absent an entry cost, whenN � + 1 bidders participate.K is bounded from above by the certainty

equivalent of participating in the auction absent an entry cost when N� bidders participate.

Proof. We break our proof into two steps. First, we argue that if a bidder of type a prefers

to enter an auction at a cost of K, then:

(1 � exp(� gp̄ (a))) � (1 � F(a)) N � � 1 � 1 � exp(� gK) (A.5)

where

p̄ (a) =
T

å
t= 1

qb
t (b�

t (s(a)) � act ) �
gs 2

t

2
(b�

t (s(a)) � aict )2

is the bidder's certainty equivalent of pro�ts conditional on winning the auction. This

condition states that the bidder's expected utility of participating in the auction absent the

entry cost K is at least as large as her utility of “keeping" K and not participating.

To see this, consider a bidder of type a and knows her type, but must still pay an entry

fee of K in order to enter a given scaling auction, in which there are N � � 1 opposing bidders.

In order for the bidder to prefer to enter the auction, she must expect that her utility upon

entering will be higher than her utility otherwise:

E [u(p (s(a), a))] � 0, (A.6)

E [u(p (s(a), a))] = (1 � exp(gK))
| {z }

Utility on entering and losing

�
h
1 � (1 � F(a))N � � 1

i

| {z }
Prob of losing

+

 

1 � exp

 

gK � g
T

å
t= 1

qb
t (b�

t (s(a)) � act ) �
gs 2

t

2
(b�

t (s(a)) � aict )2

!!

| {z }
Expected utility conditional on entering and winning

� (1 � F(a))N � � 1

| {z }
Prob of win w/ s(a)

.

Substituting and rearranging inequality A.6, we obtain that the bidder prefers to enter if
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and only if:

[1 � exp(gK) � exp(� gp̄ (a)) ] � (1 � F(a)) N � � 1 + [1 � exp(gK)] � [1 � exp(gK)] � (1 � F(a)) N � � 1

Rearranging once more, we obtain:

1 � exp(gK)
h
1 � [1 � exp(� gp̄ (a)) ] � (1 � F(a)) N � � 1

i
� 0

and so,

exp(� gK) � 1 � [1 � exp(� gp̄ (a)) ] � (1 � F(a)) N � � 1

from which we obtain

[1 � exp(� gp̄ (a)) ] � (1 � F(a)) N � � 1 � 1 � exp(� gK).

as in equation A.5.

Lower Bound

We now derive a lower bound on K by considering the entry of the N � + 1st bidder, where

N � is the equilibrium number of entrants to the auction given the entry cost K. By de�nition

of N � , it is unpro�table (in expectation) for the N � + 1st bidder to enter. That is,

Z a

a
[E [u(p (s(ã), ã)) jN � + 1] � f (ã)] dã � 0,

where E [u(p (s(ã), ã)) jN ] is the bidder's expected utility from entering given N total

entrants (including her) if she turns out to have type ã, as de�ned above.

We proceed as follows. Let Ea[�] denote the integral over a:
Ra

a [�] f (ã)dã.

Ea[E [u(p (s(ã), ã)) jN � + 1]] =

Ea

h
(1 � exp(gK)) �

�
1 � (1 � F(a)) N �

�i
+ Ea

h
(1 � exp(gK) exp(� gp̄ (a))) � (1 � F(a)) N �

i

= 1 � exp(gK) �
�

1 � Ea

h
(1 � F(a)) N �

i
+ Ea

h
exp(� gp̄ (a)) � (1 � F(a)) N �

i�
. (A.7)
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Rearranging equation (A.7), we have that if Ea[E [u(p (s(ã), ã))] jN � + 1] � 0, then:

1 � exp(� gK) � Ea

h
(1 � exp(� gp̄ (a))) � (1 � F(a)) N �

i
. (A.8)

That is, the utility of having K dollars is greater than a bidder's expected utility of entering

the auction at zero cost when there are N � + 1 total entrants. Solving inequality (A.8) for

K, we obtain that the certainty equivalent of entering the auction at zero cost given N + 1

bidders provides a lower bound on the cost of entry.

Upper Bound

We now derive an upper bound on K by considering the entry of the N � th bidder. By

de�nition of N � as the equilibrium number of entrants, it is pro�table in expectation for this

bidder to enter.
Z a

a
[E [u(p (s(ã), ã)) jN � ] � f (ã)] dã � 0.

Writing Ea[�] for the integral over a:
Ra

a [�] f (ã)dã as before, and rearranging as before, we

obtain that we have that if Ea[E [u(p (s(ã), ã))] jN � ] � 0, then:

1 � exp(� gK) � Ea

h
(1 � exp(� gp̄ (a))) � (1 � F(a)) N � � 1

i
. (A.9)

That is, the utility of having K dollars is lower than a bidder's expected utility of entering

the auction at zero cost when there are N � total entrants. Solving inequality (A.9) for K,

we obtain that the certainty equivalent of entering the auction at zero cost given N bidders

provides an upper bound on the cost of entry.

A.3 Technical Details

A.3.1 Econometric Details

Let bd
t,i,n denote the unit bid observed by the econometrician for item t, by bidder i in auction

n. Let q = ( q1, q2) be the vector of variables that parameterize the model prediction for each
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bid b�
t,i,n(q), as de�ned by equation 1.12. The subvector q1 refers to parameters estimated in

the �rst stage, as detailed in section A.3.1. The subvector q2 refers to parameters estimated

in the second stage, as detailed in section A.3.1. By Assumption 1, the residual of the

optimal bid for each item-bidder-auction tuple with respect to its noisily observed bid:

nt,i,n = bd
t,i,n � b�

t,i,n(q), is distributed identically and independently with a mean of zero

across items, bidders and auctions. Furthermore, nt,i,n is orthogonal to the identity and

characteristics of each item, bidder and auction.2

Our estimation procedure treats each auction n as a random sample from some unknown

distribution. As such, auctions are exchangeable. Each auction n has an associated set

of bidders who participate in the auction, I (n), as well as an associated set of items that

receive bids in the auction, T (n). I (n) and T (n) are characteristics of auction n and so

are drawn according to the underlying distribution over auctions themselves. For each

bidder i 2 I (n) and item t 2 T (n), our model assigns a unique true bid b�
t,i,n(q) at the true

parameter vector q.

Items t 2 T (n) are characterized by a P � 1 vector, X t,n, of features. Bidders i 2 I (n)

are characterized by a J � 1 vector, X i ,n, of features. The construction of X t,n and X i ,n is

discussed in detail in section A.3.2. Estimation proceeds in two stages. In the �rst stage,

we estimate q1, the subvector of parameters that governs bidders' beliefs over ex-post item

quantities, using a best-predictor model estimated with Hamiltonian Monte Carlo. In the

second stage, we estimateq2, which characterizes bidders' risk aversion and cost types,

using a GMM estimator.

First Stage

In the �rst stage, we use the full dataset of auctions available to us in order to estimate a best-

predictor model of expected item quantities conditional on DOT estimates and project-item

characteristics, as well as the level of uncertainty that characterizes each projection.

2It is not strictly necessary to assume IIDness across bidders and items. However, allowing for further
heterogeneity complicates estimation substantially and so we defer this to a robustness check using Bayesian
methods in a future revision.
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Each observation is an instance of a type of item t, being used in an auctioned project n.

Each observation (t, n) is associated with a vector of item-auction characteristic features X t,n,

the construction of which is discussed in section A.3.2 below. For simplicity, we employ

a linear model for the expected quantity of item t in auction n, cqb
t,n as a function of the

the DOT quantity estimate qe
t,n and X t,n.3 In order to model the level of uncertainty in the

projection cqb
t,n, we model the distribution of the quantity model �t residuals ( ht,n = qa

t,n � cqb
t,n)

with a lognormal regression function of qe
t,n and X t,n as well. The full model speci�cation

is below. While we could �t this in two stages (�rst, �t the expected quantity and then �t

the distribution of the residuals), we do this jointly using Hamiltonian Monte Carlo (HMC)

with the MC Stan probabilistic programming language. We then take the posterior modes

of the estimated distributions and use them as point estimates for the second stage.

qa
t,n = cqb

t,n + ht,n where ht,n � N (0,ŝ2
t,n) (A.10)

such that cqb
t,n = b0,qqe

t,n + ~bqX t,n and ŝt,n = exp(b0,sqe
t,n + ~bs X t,n). (A.11)

Denote q1 = ( b0,q,~bq, b0,s ,~bs ,~bs,~ss) for the vector of �rst stage parameters, and let q̂1 be the

posterior modes of q1, produced by the �rst stage HMC estimation. Thus, q̂1 speci�es, for

each item t 2 T (n) in each auction n, the model estimate of bidders' predictions for the

item's quantity: cqb
t,n as well as the variance of that prediction, bs2

t,n.

Second Stage

Denote q2 = ( g, a1, . . . , aI , b1
a, . . . , bJ

a) for the vector of second stage parameters, where I is

the number of unique �rm IDs and J is the number of auction-bidder features. Note that q2

is (1 + I + J)-dimensional.

We estimate q2 in the second stage, using a GMM framework, evaluated at the �rst stage

3In principle, any statistical model (not necessarily a linear one) would be sound, and we intend to discuss
robustness tests to the �nal results using different machine learning algorithms for the �rst stage in a future
version of this paper.
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estimates q̂1:

q2 = arg min En
�
g(q2, q̂1)0Wg(q2, q̂1)

�

where g(q2jq̂1) is a vector of moments, as a function of q2, evaluated at the estimates of q1

obtained in the �rst stage, and W is a weighting matrix. We make use of the following 3

types of moments, asymptotic in the number of auctions N. The �rst type of moment states

that the average residual of a unit bid submitted by each (unique) bidder i is zero across

auctions. There are I such moments, where I is the number of unique bidders. 4 The second

type of moment states that the average residual of a unit bid submitted for a an item labeled

as a“top skew item" by the DOT chief engineer's of�ce is zero across auctions. There is

one such moment. The third type of moment states that the average residual on a unit bid

submitted in each auction is zero, independently of the auction-bidder characteristics of the

bidder submitting the bid. There are J such moments—one for each of the auction-bidder

characteristics. In total, there are (1 + I + J) moments, so that the GMM estimator is just

identi�ed. As such, the choice of W does not affect ef�ciency, and we weight each moment

equally as a default.

m1
i (q2jq̂1) = En

"
1

jT (n)j å
t2T (n)

ñt,i,n(q2jq̂1) � 1i2I (n)

#

m2
s(q2jq̂1) = En

"
1

jI (n)j � jTsj
å

i2I (n)
å

t2T (n)

ñt,i,n(q2jq̂1) � 1i2I (n) � 1t2Ts

#

m3
j (q2jq̂1) = En

"
1

jI (n)j � jT (n)j å
i2I (n)

å
t2T (n)

ñt,i,n(q2jq̂1) � 1i2I (n) � X j
i ,n

#

For each auction n, we denote I (n) as the set of bidders involved in n, T (n) as the set of

items used in n, and Ts as the subset of items that were labeled as “top skew items" by the

DOT chief engineer's of�ce. All moments are formed with respect to the de-meanedbid

4To simplify notation, we do not distinguish between `unique' bidders—e.g. bidders who appear in 30+
auctions—and rare bidders, whom we group into a single unique bidder ID for the purposes of this econometrics
section. For the latter group, we treat all observations of rare bidders as observations of the same single bidder,
who may enter a given auction more than once, with a different draw of auction-bidder characteristics, but the
same bidder �xed effect determining his ef�ciency type.
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residual:

ñt,i,n(q2jq̂1) = bd
t,i,n� ai

n(q2)ai
n(q2)ai
n(q2)

0

B
B
@ct,n �

qe
t,n

bs2
t,n å

p2T (n)

h
(qe

p,n)2

bs2
p,n

i

2

4 å
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cp,nqe
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3
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C
C
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�
1

g(q2)g(q2)g(q2)

0
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B
@
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qe

t,n

bs2
t,n å
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h
(qe
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bs2
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4 å
p2T (n)

dqb
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p2T (n)

h
(qe
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bs2
p,n

i
h
sd
i,n

i
.

The residual terms in the moments are de-meanedin the sense that they use the observed

score sd
i,n in the formulation of the optimal bid for (t, i, n), rather than the true optimal score,

s�
i ,n. That is, since sd

i,n is composed of noisily observed unit bids, the de-meaned residual

ñt,i,n(q2jq̂1) omits an unobserved score error term:

ñt,i,n = ni ,t,n �
qe

t,n

s2
t,n å

p2T (n)

h
(qe

p,n)2

s2
p,n

i n̄i ,n, (A.12)

where

n̄i ,n = �
Tn

å
t= 1

nt,i,nqe
t,n. (A.13)

However, as bid residuals nt,i,n are assumed to be mean zero and independent of auction

and item characteristics, En[n̄i ,n], and the unobserved score error term is mean zero as well.

Thus, the use of demeaned bid residuals does not pose a bias for our GMM estimation

procedure.

In this draft, we compute standard errors for q2 at the point estimates of q1, without

accounting for the uncertainty in the point estimates themselves. In this case, the asymptotic

variance of q2 follows the standard just-identi�ed GMM form:

p
n(q̂2 � q0

2) d�! N (0,V )
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where V = ( GDG)0, for

G= E
�

¶g
¶q2

(q0
2, q0

1)
�

and D = E
�
g(q0

2, q0
1)g(q0

2, q0
1)0� .

In an upcoming draft, we will revise the standard error computations to account for the

uncertainty in the estimation of q1. In this case, the asymptotic variance will be given by the

standard two-step GMM sandwich formula (see Chamberlain (1987) for reference). However,

as we detail below, we compute the standard errors presented in the text by bootstrap, rather

than in-sample asymptotic approximation.

Estimation Procedure

To summarize, we estimate our parameters in a two-stage procedure. In the �rst stage, we

estimate the informational parameters that model bidders' expectations over item quantities

and competing scores. In the second stage, we use a two-step optimal GMM estimator to

estimate the economic parameters:

1. Estimate q̂1 = ( b̂0,q,
~̂bq, b̂0,s ,~̂bs ,~̂bs,~̂ss) and initialize q2

2. Solve:

q̂2 = min
q2

(
1
I å

i

m1
i (q2jq̂1)2 + m2

s(q2jq̂1)2 +
1
J

J

å
j= 1

m3
j (q2jq̂1)2

)

where I is the set of unique �rm IDs, and J is the number of columns in X i ,n. This

optimization problem is solved subject to the constraint that ai
n(q2) be non-negative

for every i and n.5

We calculate standard errors by a bootstrap procedure. In the current version, we

only bootstrap over step 2 (however, in an upcoming version, we will draw samples from

the posterior distribution in step 1 so as to account for the uncertainty in the �rst stage

5This is a computationally ef�cient approach to impose the theoretical restriction that bidder costs are
positive (so that bidders do not gain money from using materials). One could alternatively impose this through
an additional moment condition. However, this would add a substantial computational burden as indicators for
non-negativity are non-differentiable functions. We provide estimates without the non-negativity constraint as a
robustness check. The results do not differ to an economically signi�cant degree.
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estimation). In particular, we draw auctions at random with replacement from the total set

of auctions in our sample, and repeat the step 2 optimization procedure. We repeat this

1000 times. The con�dence interval presented in the results section corresponds to the 5%th

and 95%th percentile of the parameter estimates across the bootstrap draws.

A.3.2 Projecting Items and Bidder-Auction Pairs onto Characteristic Space

Our dataset consists of 440 bridge projects with a total of 218,110 unit bid observations.

Of these, there are 2,883 unique bidder-project pairs and 29,834 unique item-project pairs.

Each auction has an average of 6.55 bidders and 67.8 items. Of these, there are 116 unique

bidders and 2,985 unique items (as per the DOT's internal taxonomy). In order to keep

the computational burden of our estimator within manageable range, while still capturing

heterogeneity across bidders and items within and across projects, we project item-project

and bidder-project pairs onto characteristic space.

We �rst build a characteristic-space model of items as follows. The DOT codes each item

observation in two ways: a 6-digit item id, and a text description of what the item is. Each

item id comprises a hierarchical taxonomy of item classi�cation. That is, the more digits

two items have in common (from left to right), the closer the two items are. For example,

item 866100 – also known as "100 Mm Re�ect. White Line (Thermoplastic)" – is much closer

to item 867100 – "100 Mm Re�ect. Yellow Line (Thermoplastic)", than it is to item 853100

– "Portable Breakaway Barricade Type Iii", and even farther from item 701000 – "Concrete

Sidewalk". To leverage the information in both the item ids and the description, we break

the ids into digits, and tokenize the item description. 6 We then add summary statistics for

each item: the relative commonness with which the item is used in projects, the average

DOT cost estimate for that item, and dummies that indicate whether or not the item is

frequently used in a single unit quantity, and whether the item is often ultimately not used

at all.

6That is, we split each description up by words, clean them up and remove common “stop" words. Then we
create a large dummy matrix in which entry i, j is 1 if the unique item indexed at i contains the word indexed
by j in its description. We owe a big thanks to Jim Savage for suggesting this approach.
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We create an item-project level characteristic matrix by combining the item characteristic

matrix with project-level characteristics: the project category, the identities of the project

manager, designer and engineer, the district in which the project is located, the project

duration, the number of items in the project spec that the engineer has �agged for us as

"commonly skewed", and the share of projects administered by the manager and engineer

that over/under-ran. 7 The resulting matrix is very high dimensional, and so we project

the matrix onto its principle components, and use the �rst 15. 8 In addition, we added 3

stand-alone project features: a dummy variable indicating whether the item is often given a

single unit quantity (indicating that its quantity is particularly discrete), the historical share

of observations of that item in which it was not used at all, and an indicator for whether or

not the item itself is a “commonly skewed" item. The result is the matrix X t,n, used in the

estimation in equation (1.11).

To estimate the ef�ciency type ai ,n for each bidder-auction pair, we combine each bidder's

unique �rm ID with the matrix of project characteristics described above, and a matrix of

project-bidder speci�c features. As a number of bidders only participate in a few auctions,

we combine all bidders who appear in less than 10 auctions in our data set into a single

�rm ID. This results in 52 unique bidder IDs: 51 unique �rms and one aggregate group.

For project-bidder characteristics, we compute the bidder's specializationin each project

type – the share of projects of the same type as the current project that the bidder has bid

on – the bidder's capacity– the maximum number of DOT projects that the DOT has ever

had open while bidding on another project – and the bidder's utilization – the share of the

bidder's capacity that is �lled when she is bidding on the current project. We also include

dummies for whether or not the bidder is a fringe bidder, and whether or not the bidder's

7There are 11 items that have been �agged at our request by the cheif engineer: 120100: Unclassi�ed
Excavation;129600: Bridge Pavement Excavation; 220000: Drainage Structure Adjusted; 450900: Contractor
Quality Control; 464000: Bitumen For Tack Coat; 472000: Hot Mix Asphalt For Miscellaneous Work; 624100:
Steel Thrie Beam Highway Guard (Double Faced); 851000: Safety Controls For Construction Operations (Traf�c
Cones For Traf�c Management); 853200: Temporary Concrete Barrier; 853403: Movable Impact Attenuator;
853800: Temporary Illumination For Work Zone (Temporary Illumination For Night Work)

8We have tried replicating this using more/less principle components and the results are very stable.
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headquarters is located in the same district as the project at hand.9 Our X i ,n matrix has a

total of 14 columns, and so we have a total of 66 ef�ciency-type parameters to identify. We

use X i ,n and the unique bidder ideas to model ai
n in equation 1.15.

Finally, we make use of a project-level characteristic matrix Xn in our counterfactuals, in

order to parametrize the distribution of ef�ciency types in each auction. In principle, we

could use the bidder-auction matrix X i ,n here. However, this would require each bidder

to know the identities of her competitors. For the purpose of our main counterfactuals,

we focus on the simpler case in which the distribution of scores is homogenous across the

bidders participating in a given auction. Therefore, we construct Xn by taking an average of

Xn with respect to the bidders in auction n.

9We de�ne "fringe" similarly to BHT, as a �rm that receives less than 1% of the total funds spent by the
DOT on projects within the same project type as the auction being considered, within the scope of our dataset.
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A.4 Estimation Results Tables

First Stage Model Fit

Figure A.2: A bin scatter of actual quantities vs
model predictions

Dependent variable:

Actual Quantity

Predicted Quantity 0.812���

(0.005)

Constant 0.291���

(0.015)

Observations 29,834
R2 0.476

Table A.1: Regression report for �gure A.1
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First Stage Parameter Estimates

Parameter Rhat n_eff mean sd 2.5% 50% 97.5%

b0,s 1.00 4000 -0.67 0.00 -0.67 -0.67 -0.66
bs [1] 1.00 1655 -0.05 0.01 -0.06 -0.05 -0.04
bs [2] 1.00 2120 0.02 0.00 0.01 0.02 0.03
bs [3] 1.00 3275 -0.02 0.00 -0.03 -0.02 -0.01
bs [4] 1.00 3516 0.00 0.00 -0.01 0.00 0.01
bs [5] 1.00 4000 0.02 0.00 0.01 0.02 0.03
bs [6] 1.00 3131 0.08 0.01 0.07 0.08 0.09
bs [7] 1.00 2275 0.03 0.01 0.02 0.03 0.04
bs [8] 1.00 1766 0.00 0.01 -0.01 0.00 0.01
bs [9] 1.00 1917 -0.01 0.01 -0.02 -0.01 0.00
bs [10] 1.00 1466 0.03 0.01 0.02 0.03 0.05
bs [11] 1.00 1952 -0.03 0.01 -0.04 -0.03 -0.02
bs [12] 1.00 2153 0.02 0.01 0.01 0.02 0.03
bs [13] 1.00 2590 0.04 0.01 0.03 0.04 0.05
bs [14] 1.00 2156 0.02 0.01 0.01 0.02 0.03
bs [15] 1.00 2992 0.00 0.00 -0.01 0.00 0.01
bs [16] 1.00 1856 -0.16 0.01 -0.18 -0.16 -0.15
bs [17] 1.00 4000 0.07 0.00 0.06 0.07 0.08
bs [18] 1.00 4000 0.02 0.00 0.02 0.02 0.03
b0,q 1.00 4000 0.82 0.00 0.82 0.82 0.83
bq[1] 1.00 3260 -0.02 0.00 -0.03 -0.02 -0.01
bq[2] 1.00 4000 -0.01 0.00 -0.02 -0.01 -0.01
bq[3] 1.00 4000 -0.03 0.00 -0.04 -0.03 -0.02
bq[4] 1.00 4000 0.02 0.00 0.01 0.01 0.02
bq[5] 1.00 4000 -0.02 0.00 -0.03 -0.02 -0.01
bq[6] 1.00 4000 0.01 0.00 0.00 0.01 0.01
bq[7] 1.00 4000 0.01 0.00 0.00 0.01 0.02
bq[8] 1.00 2744 -0.03 0.00 -0.04 -0.03 -0.02
bq[9] 1.00 4000 -0.03 0.00 -0.03 -0.03 -0.02
bq[10] 1.00 2374 -0.02 0.00 -0.03 -0.02 -0.01
bq[11] 1.00 4000 0.01 0.00 -0.00 0.01 0.01
bq[12] 1.00 4000 -0.00 0.00 -0.01 -0.00 0.00
bq[13] 1.00 4000 0.01 0.00 -0.00 0.01 0.01
bq[14] 1.00 3366 0.03 0.00 0.02 0.03 0.03
bq[15] 1.00 4000 0.01 0.00 0.00 0.01 0.02
bq[16] 1.00 2890 0.01 0.00 0.01 0.01 0.02
bq[17] 1.00 4000 -0.18 0.00 -0.19 -0.18 -0.17
bq[18] 1.00 4000 -0.01 0.00 -0.02 -0.01 -0.00

Table A.2: First Stage Parameter Estimates
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Second Stage Parameter Estimates

Parameter Estimate 95Pct CI

bg 0.046 (0.032,0.264)
bb[1] -0.011 (-0.167,0.137)
bb[2] -0.003 (-0.105,0.084)
bb[3] 0.027 (-0.138,0.063)
bb[4] 0.017 (-0.142,0.106)
bb[5] -0.055 (-0.014,0.214)
bb[6] 0.021 (-0.014,0.175)
bb[7] 0.017 (-0.153,0.259)
bb[8] 0.051 (-0.025,0.079)
bb[9] -0.060 (-0.022,0.063)
bb[10] -0.006 (-0.151,0.037)
bb[11] -0.040 (-0.027,0.107)
bb[12] -0.023 (-0.161,0.152)
bb[13] 0.097 (-0.09,0.233)
bb[14] 0.085 (-0.242,0.176)

Table A.3: Parameter estimates for the Second Stage GMM estimation

Second Stage Model Fit

Figure A.3: A scatter plot of actual quantities vs
model predictions.
Note: Unit bids are scaled so as to standardize quanti-
ties so exact dollar values are not representative.

Table A.4: Regression report for �gure A.3

Dependent variable:

Data Bid

Predicted Bid 0.992���

(0.001)

Constant 251.170
(163.912)

Observations 215,332
R2 0.879

Note: � p< 0.1; �� p< 0.05; ��� p< 0.01
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Figure A.4: Quantile-Quantile plot of predicted bids against data bids

Note: Quantiles are presented at the 0.0001 level and truncated at the top and bottom 0.01% for clarity. The
45-degree line is dashed in red for reference. Unit bids are scaled so as to standardize quantities so exact dollar
values are not representative.

A.5 Bayesian Sampling

We make the following additional assumptions for a Bayesian approach.

First, we choose priors on the structural parameters. Note that the particular choice of

priors has/is being experimented with and results do not appear to be very sensitive to it

thus far.10

g =
1

graw
where graw � N + (10, 3)

ai
n � N + (1, 0.5)

The key additional assumption is the modeling of the measurement error on observed bids.

For GMM, we assumed only that bd
t,i,n = b�

t,i,n + nt,i,n with E [nt,i,n] = 0. For the Bayesian

approach, we model the distribution of IID draws:

nt,i,n � N (0,s2
b),

where sb is given a prior distribution and estimated. 11

10We model g as an exponential transformation to allow for higher �exibility in its level estimate while
keeping the raw parameters on a similar scale for computational ef�ciency.

11We use the prior sb � N (0, 3) at the moment.

199



Note, however, that by the formula for b�
i ,t,n, the optimal bid (given the auction data and

structural parameters), the optimal bid for each item is a function of the optimal total score

s�
i ,n. We do not observe the optimal score, however - we observe only an "observed" score

sd
i,n = å

t2T (n)

bd
i,t,nqe

t,n � s�
i ,n � å

t2T (n)

ni ,t,nqe
t,n.

Note that by construction, the distribution of the error on the observed score is known

given the assumptions above:

å
t2T (n)

ni ,t,nqe
t,n � N

 

0,

 

s2
b å

t2T (n)

�
(qe

t,n)2�
!!

given qe
t,n and X t,n

Putting these together, we model:

s�
i ,n � N

 

sd
i,n,

 

s2
b å

t2T (n)

�
(qe

t,n)2�
!!

and bd
i,t,n � N

�
b�

i ,t,n(s�
i ,n), s2

b

�

Posterior Mode Results for Bridge Auctions The following are summary statistics of

the posterior mode of the HMC samples, analogous to those in section 1.6. Note that while

the estimated CARA coef�cient here is higher than the GMM estimate, this is in part due

to the level of aggregation in the GMM estimate. While we aggregate bidders who appear

in less than 10 auctions together for GMM – assigning them the same bidder-speci�c �xed

effect – we treat each bidder-auction pair as an independent draw from the distribution

of ef�ciency types in this estimation procedure. In an upcoming revision, we will present

results for an extended Bayesian analysis in which relationships between bidder-auction

draws are modeled in a hierarchical fashion, and correlations between bid errors are allowed.

1/ bg SE

2.097 0.165

Table A.5: Estimates for the CARA coef�cient. Note that the modalbg here is 1/2.097� 0.48.
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Table A.6: Summary statistics ofai
n estimates by project type

Project Type Mean Sd Q1 Median Q3

Bridge Reconstruction/Rehab 1.149 0.354 0.89 1.083 1.389
Bridge Replacement 1.137 0.319 0.89 1.091 1.326

Structures Maintenance 1.041 0.32 0.84 1.005 1.228

Note: Estimated̂ai
n are truncated at 1% before summarizing so that means do not re�ect outliers.

Table A.7: Summary statistics of estimated winning bidders' markups given alphaâi
n

Project Type Mean Sd Q1 Median Q3

Bridge Reconstruction/Rehab 9.85% 27.17% -5.74% 3.23% 14.54%
Bridge Replacement 2.32% 19.26% -10.83% -0.55% 13.64%

Structures Maintenance 20.12% 47.42% -6.56% 5.87% 30.85%

Note: Estimated̂ai
n are truncated at 1% before summarizing so that means do not re�ect outliers.

A.6 Additional Tables and Figures

A.6.1 Distribution of Projects by Year in Our Data

A.6.2 Shares of Projects with “Unbalanced" Bids

Most projects have a substantial portion of unit bids that should trigger a mathematical

unbalancedness �ag.

A.6.3 Discussion of Quantity Uncertainty vis-a-vis Designer and Project Man-

ager Identities

Although many factors could in�uence the percent overrun for each item, one factor of note

is the identity of the designer, resident engineer and project manager in charge. A designer

who is less experienced, for example, might be more prone to mis-estimates in the project

speci�cation. A project manager who is less experienced might be more prone to making

mistakes that necessitate changes. Figures A.6a and A.6b show the average absolute value
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Year Num Projects Percent Cumul Percent

1 1998 1 0.227 0.227
2 1999 5 1.136 1.364
3 2000 5 1.136 2.500
4 2001 20 4.545 7.045
5 2002 27 6.136 13.182
6 2003 26 5.909 19.091
7 2004 25 5.682 24.773
8 2005 37 8.409 33.182
9 2006 21 4.773 37.955
10 2007 32 7.273 45.227
11 2008 53 12.045 57.273
12 2009 46 10.455 67.727
13 2010 61 13.864 81.591
14 2011 32 7.273 88.864
15 2012 24 5.455 94.318
16 2013 19 4.318 98.636
17 2014 6 1.364 100

Table A.8: Distribution of projects by year in our data

(a) Share of projects (x-axis) that have a
particular share of their items breaking the
MassDOT overbidding rule (y-axis)

(b) Share of projects (x-axis) that have a
particular share of their items breaking the
MassDOT underbidding rule (y-axis)

Figure A.5: Plot of proportion of projects with mathematically unbalanced bids
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of percent quantity overruns across items in projects managed by each project manager

or designed by each designer, respectively. There are 53 unique project managers and 57

unique designers. The median project manager worked on 6 projects in our data set, with

a mean of 8.4 and a maximum of 38. The median designer worked on 3 projects, with

a mean of 7.8 and a maximum of 147 (this is the in-house MassDOT designer team, in

contrast to the others, who are consultants). While there is not a clear relationship between

absolute overruns and experience, and it is possible that the variation in overruns stems

from differences in the projects that each project manager/designer is involved with, the

heterogeneity in overruns across project managers and designers suggests that the choice

or training of the staff employed by MassDOT could be an avenue for reducing levels of

uncertainty. 12

(a) Project Managers (b) Designers

Figure A.6: Average absolute value of percent quantity overruns across items managed by each project
manager (a) and each designer (b)

A.6.4 Robustness Checks for Figure 1.10a

For robustness, we replicate �gure 1.10a, without controlling for % Dqt :

12The full distributions of the number of auctions that each project manager and designer participated in, as
well as a plot of average absolute overruns against the number of auctions are included in the appendix, for
reference.
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Figure A.7: Residualized bin-scatter of item-level percent absolute overbid against the square root of estimated
item quantity variance—without controlling for %Dqt

A.7 Additional Discussion of the Toy Model

A.7.1 Savings from Eliminating Risk by Risk and Risk Aversion

In this section, we present additional simulation results for the toy model discussed in

section 1.2. The parameters of the example are described in Table A.9 below. In Table A.10,

DOT Estimates Bidders Expect Noise Var Bidder Cost
qe E [qa] s2 a � c

Concrete 10 12 2 12

Traf�c Cones 20 16 1 18

Table A.9: Auction parameters from the toy model

we present the percent difference between the baseline and the counterfactual across CARA

coef�cients and the magnitude of the quantity noise variance. Each column corresponds

to the percent savings to the DOT from the No Quantity Risk counterfactual when the

baseline quantity variance term for each item is multiplied by the factor heading the

column. For example, in the column labeled 0.5, the baseline equilibrium is computed with

s2
c = 0.5� 2 = 1 and s2

r = 0.5� 1 = 0.5. Similarly, the bolded column corresponds to the

last column of Table 1.2, and in the column labeled 2, the baseline equilibrium is computed
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with s2
c = 2 � 2 = 4 and s2

r = 2 � 1 = 2.13

Magnitude of Prediction Noise
CARA Coeff 0.1 0.5 1 2

0 0% 0% 0% 0%
0.001 0.01% 0.06% 0.13% 0.26%
0.005 0.06% 0.32% 0.64% 1.30%
0.01 0.13% 0.63% 1.29% 2.62%
0.05 0.60% 3.17% 6.64% 10.38%
0.10 1.19% 6.42% 10.71% 5.65%

Table A.10: Percent DOT savings from eliminating quantity uncertainty under different levels of baseline
uncertainty and bidder risk aversion

A.7.2 Worked Out Example of Risk Neutral Bidding

Two risk-neutral bidders compete for a project that requires two types of inputs to complete:

concrete and traf�c cones. The DOT estimates that 10 tons of concrete and 20 traf�c cones

will be necessary to complete the project. However, the bidders (both) anticipate that

the actual quantities that will be used – random variables that we will denote qa
c and qa

r

for concrete and traf�c cones, respectively – are distributed with means E [qa
c] = 12 and

E [qa
r ] = 10. We will assume that the actual quantities are exogenous to the bidding process,

and do not depend on who wins the auction in any way.

The bidders differ in their private costs for the materials (including overhead, etc.): each

bidder i incurs a privately known �at unit cost ci
c for each unit of concrete and ci

r for each

traf�c cone used. Thus, at the time of bidding, each bidder i expects to incur a total cost

qi � E
h
qa

cci
c + qa

r ci
r

i
= 12ci

c + 10ci
r ,

if she were to win the auction. Each bidder i submits a unit bid for each of the items: bi
c and

13Note that while the savings from eliminating risk are generally higher as prediction noise and risk aversion
get higher, the relationship may not always be monotonic. This is because when risk and risk aversion in an
auction is very high, bidders are incentivized to bid close to their costs across items so as to minimize their
exposure. That is, the variance term overwhelms the prediction term. Note that this is, in part, a result of the
CARA functional form.
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bi
r . The winner of the auction is then chosen on the basis of her score: the sum of her unit

bids multiplied the DOT's quantity estimates:

si = 10bi
c + 20bi

r .

Once a winner is selected, she will implement the project and earn net pro�ts of her unit

bids, less the unit costs of each item, multiplied by the realizedquantities of each item that

are ultimately used. At the time of bidding, these quantities are unrealized samples of

random variables. However, as the bidders are risk-neutral, they consider the expected

value of pro�ts to make their bidding decisions:

E[p (bi
c, bi

r )jc
i
c, ci

r ] = E
h
(qa

cbi
c + qa

r bi
r ) � (qa

cci
c + qa

r ci
r )

i

| {z }
Expected pro�ts conditional on winning

� Prob(si < sj )
| {z }

Probability of winning

=
�

(12bi
c + 10bi

r ) � qi
�

� Prob
�

(10bi
c + 20bi

r ) < (10bj
c + 20bj

r )
�

.

The key intuition for bid skewing is as follows. Suppose that the bidders' expectations

of the actual quantities to be used are accurate. Then for any scores that bidder i deems

competitive, she can construct unit bids that maximize her ex-post pro�ts if she wins the

auction. For example, suppose that bidder i has unit costs ci
c = $70 and ci

r = $3, and she has

decided to submit a score of $1000. She could bid her costs with a $5 markup on concrete

and a $9.50 markup on traf�c cones: bi
c = $75 and bi

r = $12.50, yielding a net pro�t of $155.

However, if instead, she bids bi
c = $99.98and bi

r = $0.01, bidder i could submit the same

score, but earn a pro�t of nearly $330 if she wins.

This logic suggests that the DOT's inaccurate estimates of item quantities enable bidders

to extract surplus pro�ts without ceding a competitive edge. If the DOT were able to predict

the actual quantities correctly, it would eliminate the possibility of bid skewing. In order for

bidder i to submit a score of $1000in this case, she would need to choose unit bids such that

12bi
c + 20bi

r = $1000—the exact revenue that she would earn upon winning the auction. She

could still bid bi
r = $0.01, for example, but then she would need to bid bi

c = $83.33, resulting

in a revenue of $1000 and a pro�t of $130 if she wins the auction. A quick inspection shows
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that no choice of bi
c and bi

r could improve her expected revenue at the same score.

It would follow that when bidders have more accurate assessments of what the actual

item quantities will be – as is generally considered to be the case – bids with apparent

skewing are materiallymore costly to the DOT. If the bidders were to share their expectations

truthfully with the DOT, it appears that a lower total cost might be incurred without affecting

the level of competition.

However, this intuition does not take into account the equilibrium effect that a change in

DOT quantity estimates would have on the competitive choice of score. It is not true that if

a score of $1000 is optimal for bidder i under inaccurate DOT quantity estimates, then it

will remain optimal under accurate DOT estimates as well. As we demonstrate below, when

equilibrium score selection is taken into consideration, the apparent possibility of extracting

higher revenues by skewing unit bids is shut down entirely.

To illustrate this point, we derive the equilibrium bidding strategy for each bidder in our

example. In order to close the model, we need to make an assumption about the bidders'

beliefs over their opponents' costs. Note that bidder i's expected total cost for the project qi

is �xed at the time of bidding, and does not depend on her unit bids. For simplicity, we will

assume that these expected total costs are distributed according to some commonly known

distribution: q � F[q, q].

By application of Asker and Cantillon (2010), there is a unique (up to payoff equivalence)

monotonic equilibrium in which each bidder of type q submits a unique equilibrium score

s(q), using unit bids that maximize her expected pro�ts conditional on winning, and add

up to s(q). That is, in equilibrium, each bidder i submits a vector of bids f bc(qi ), br (qi )g

such that:

f bc(qi ), br (qi )g = arg max
f bc,br g

n
12bc + 40br � qi

o
s.t. 10bc + 50br = s(qi ).

Solving this, we quickly see that at the optimum, br (qi ) = 0 and bc(qi ) = s(qi )/ 10 (to see

this, note that if br = 0, then the bidder earns a revenue of 12
10 � s(qi ) whereas if bc = 0, then

the bidder earns a revenue of 40
50 � s(qi ).)
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The equilibrium can therefore be charcterized by the optimality of s(q) with respect to

the expected pro�ts of a bidder with expected total cost q:

E[p (s(qi )) jqi ] =
�

12
10

� s(qi ) � qi
�

� Prob
�

s(qi ) < s(qj )
�

(A.14)

=
�

12
10

� s(qi ) � qi
�

�
�

1 � F(qi )
�

, (A.15)

where the second equality follows from the strict monotonicity of the equilibrium. 14

As in a standard �rst price auction, the optimality of the score mapping is characterized

by the �rst order condition of expected pro�ts with respect to s(q):

¶E [p ( s̃, q)]
¶s̃

j s̃= s(q) = 0.

Solving the resulting differential equation, we obtain:

s(q) =
10
12

2

4q+

Rq
q

�
1 � F(q̃)

�
dq̃

1 � F(q)

3

5 .

Thus, each bidder i will bid bc(qi ) = s(qi )
10 and br (q) = 0. If bidder i wins the auction, she

expects to earn a markup of:

E[p (qi )] = 12 �
s(qi )
10

� qi (A.16)

=

Rq
qi

�
1 � F(q̃)

�
dq̃

1 � F(qi )
. (A.17)

More generally, no matter what the quantities projected by the DOT are – entirely correct

or wildly inaccurate – the winner of the auction and the markup that she will earn in

equilibrium will be the same.

In particular, writing qe
c and qe

r for the DOT's quantity projections (so that a bidder's

score is given by s = bcqe
c + brqe

r ) and qb
c and qb

r for the bidders' expectations for the actual

14More concretely, a monotonic equilibrium requires that for any q0 > q, s(q0) > s(q). Therefore, the
probability that s(qi ) is lower than s(qj ) is equal to the probability that qi is lower than qj .
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quantities, the equilibrium score function can be written:

s(q) = min
n qe

c

qb
c
,

qe
r

qb
r

o
�

2

4q+

Rq
q

�
1 � F(q̃)

�
dq̃

1 � F(q)

3

5 . (A.18)

Suppose that qe
r

qb
r

� qe
c

qb
c
. Then bidder i will bid b�

r (qi ) = s(qi )
qe

r
and b�

c(qi ) = 0. Consequently, if

bidder i wins, she will be paid qb
r � b�

r (qi ) =
�
qi +

Rq
qi [1� F(q̃)]dq̃

1� F(qi )

�
as in our example.

Note that the probability of winning is determined by the probability of having the lowest

cost type, in equilibrium, and so this too is unaffected by the DOT's quantity estimates.

That is, the level of competition and the degree of markups extracted by the bidders is

determined entirely by the density of the distribution of expected total costs among the

competitors. The more likely it is that bidders have similar costs, the lower the markups that

the bidders can extract. However, regardless of whether the DOT posts accurate quantity

estimates – in which case, bidders cannot bene�t from skewing their unit bids at any score –

or not, the expected cost of the project to the DOT will be the same in equilibrium. Therefore,

a mathematically unbalanced bid, while indicative of a discrepancy in the quantity estimates

made by the bidders and the DOT, is not indicative of a material loss to the government.
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Appendix B

Appendix to Chapter 2

B.1 Appendix

B.1.1 Market Size Approximation

Method

We use Huang and Rojas (2013); Huang, Dongling and Rojas, Christian (2014) to calibrate

the potential market size using a simpler logit demand model. With a logit speci�cation, we

have:

ln qjt � ln q0mt = am( j) ln pjt + bm( j) gj + l m( j) xj + f j + mm( j)t + xjt

with Mmt = q0t + å Jm
j= 1 qjt .

As q0mt or Mmt are not observed, we can use the difference across inside goods to identify

some of the parameters of the model:

ln qjt � ln qj0t = am( j)
�
ln pjt � ln pj0t

�
+ bm( j)

�
gj � gj0

�
+

�
f j � f j0

�
+

�
xjt � xj0t

�

which does not depend on unobserved q0mt or Mmt in order to identify am and bm that are

denoted âm, b̂m from these last speci�cations. For a given Mmt we have

ln qjt � ln
�

Mmt � å Jm
j= 1 qjt

�
= am ln pjt + bmgj + l mxj + f j + mmt + xjt
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whose estimation with two stage least squares using the same instruments as with our BLP

demand model leads to the estimates âm (Mmt), b̂m (Mmt), l̂ m (Mmt).

Then, we look for Mmt that solves the following minimization problem:

min
Mmt � å Jm

j= 1 qjt

å T
t= 1 (âm (Mmt) � âm)2 +

�
b̂m (M t ) � b̂m

� 2
+

�
l̂ m (M t ) � l̂ m

� 2
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B.1.2 Descriptive Statistics

Table B.1: Average Prices in the US and Canada

All Patented Branded Off Generic

ATC4 CA US CA US CA US CA US

A10C1 H INSUL+ANG FAST ACT 12.05 37.13 12.05 37.13 0.00 0.00 0.00 0.00

A2B2 ACID PUMP INHIBITORS 0.76 2.44 0.83 2.75 0.67 3.43 0.59 0.63

B1B2 FRACTIONATED HEPARINS 15.65 37.61 15.65 38.01 0.00 30.42 0.00 28.47

C10A1 STATINS (HMG-COA RED 1.32 2.23 1.77 3.43 1.99 2.32 0.49 0.50

C2A2 ANTIHYPER.PL MAINLY PERI 0.60 1.35 46.08 13.16 2.79 2.09 0.16 1.06

C7A0 B-BLOCKING AGENTS,PLAIN 0.22 0.87 0.30 3.37 1.11 2.14 0.18 0.60

C8A0 CALCIUM ANTAGONIST PLAIN 0.93 3.40 1.30 2.32 0.83 25.38 0.49 1.17

C9A0 ACE INHIBITORS PLAIN 0.52 0.51 0.68 1.68 0.51 1.70 0.26 0.30

C9C0 ANGIOTEN-II ANTAG, PLAIN 0.97 2.31 1.10 2.72 1.19 2.64 0.25 0.47

L1A0 ALKYLATING AGENTS 17.69 135.17 24.69 229.55 1.53 109.79 14.51 48.55

L1B0 ANTIMETABOLITES 16.27 124.41 18.00 382.37 17.90 209.39 11.15 17.12

L1C0 VINCA ALKALOIDS 270.87 443.02 468.30 999.85 110.03 350.44 86.50 73.89

L1D0 ANTINEOPLAS. ANTIBIOTICS 164.08 322.95 250.68 1350.26 360.70 998.83 77.61 108.92

L1X4 A-NEO PROTEIN KINASE INH 66.23 112.85 66.35 112.77 65.16 0.00 25.55 146.05

L1X9 ALL OTH. ANTINEOPLASTICS 20.64 138.60 642.79 741.55 0.94 0.00 1.64 15.12

L2B2 CYTO ANTI-ANDROGENS 2.19 10.08 10.43 30.28 1.45 9.63 0.69 1.31

L2B3 CYTOSTAT AROMATASE INHIB 4.81 11.29 4.88 11.75 3.80 17.52 2.23 0.52

L4X0 OTHER IMMUNOSUPPRESSANTS 3.07 23.46 3.01 18.79 0.75 5.92 5.29 59.29

M1A1 ANTIRHEUMATICS NON-S PLN 0.19 0.27 0.67 3.68 0.50 0.95 0.13 0.23

M5B3 BISPHOSPH OSTEOPOROSIS 2.11 18.17 2.43 27.81 3.21 19.98 1.40 2.49

N1A1 INHAL GEN ANAESTHETICS 0.81 0.82 0.79 0.92 0.92 0.76 0.26 0.54

N1A2 INJECT GEN ANAESTHETICS 5.00 9.03 11.73 76.79 5.43 18.96 4.53 5.96

N1B1 ANAESTH LOCAL MEDIC INJ 4.48 4.35 10.97 15.64 4.63 6.76 3.19 2.84

N1B3 ANAESTH LOCAL TOPICAL 0.92 1.11 6.68 23.42 1.04 3.90 0.39 0.85

N2A0 NARCOTIC ANALGESICS 0.59 1.36 0.77 3.20 1.18 3.86 0.48 1.14

N2B0 NON-NARCOTIC ANALGESICS 0.31 0.53 0.56 14.59 0.34 1.34 0.30 0.39

N3A0 ANTI-EPILEPTICS 0.26 1.49 1.36 4.30 0.20 5.65 0.20 0.79

N5A1 ATYPICAL ANTIPSYCHOTICS 1.77 9.09 1.82 10.36 3.09 4.92 0.43 3.43

N5A9 CONVNTL ANTIPSYCHOTICS 0.46 1.27 2.90 2.76 1.17 16.30 0.25 1.11

N6A4 SSRI ANTIDEPRESSANTS 0.48 1.61 1.35 3.61 1.44 4.22 0.28 0.48

N6A9 ANTIDEPRESSANTS ALL OTH 0.19 0.63 0.40 2.95 0.58 3.47 0.13 0.32

Note: Average price by ATC-4, country, in US$ per std. unit.
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Estimates

B.1.3 Supply sides estimates

Table B.2: Outside Good Market Share Estimates by country and ATC-4

s0mt

ATC4 US Canada
A10C1 H INSUL+ANG FAST ACT 0.11 0.34
A2B2 ACID PUMP INHIBITORS 0.44 0.19
B1B2 FRACTIONATED HEPARINS 0.09 0.10
C10A1 STATINS (HMG-COA RED 0.27 0.10
C2A2 ANTIHYPER.PL MAINLY PERI 0.31 0.21
C7A0 B-BLOCKING AGENTS,PLAIN 0.10 0.25
C8A0 CALCIUM ANTAGONIST PLAIN 0.18 0.09
C9A0 ACE INHIBITORS PLAIN 0.65 0.60
C9C0 ANGIOTEN-II ANTAG, PLAIN 0.44 0.10
L1A0 ALKYLATING AGENTS 0.11 0.17
L1B0 ANTIMETABOLITES 0.13 0.27
L1C0 VINCA ALKALOIDS 0.59 0.39
L1D0 ANTINEOPLAS. ANTIBIOTICS 0.09 0.21
L1X4 A-NEO PROTEIN KINASE INH 0.17 0.54
L1X9 ALL OTH. ANTINEOPLASTICS 0.14 0.14
L2B2 CYTO ANTI-ANDROGENS 0.46 0.12
L2B3 CYTOSTAT AROMATASE INHIB 0.35 0.17
L4X0 OTHER IMMUNOSUPPRESSANTS 0.47 0.20
M1A1 ANTIRHEUMATICS NON-S PLN 0.12 0.14
M5B3 BISPHOSPH OSTEOPOROSIS 0.17 0.44
N1A1 INHAL GEN ANAESTHETICS 0.10 0.27
N1A2 INJECT GEN ANAESTHETICS 0.11 0.66
N1B1 ANAESTH LOCAL MEDIC INJ 0.10 0.26
N1B3 ANAESTH LOCAL TOPICAL 0.84 0.51
N2A0 NARCOTIC ANALGESICS 0.22 0.18
N2B0 NON-NARCOTIC ANALGESICS 0.09 0.09
N3A0 ANTI-EPILEPTICS 0.48 0.12
N5A1 ATYPICAL ANTIPSYCHOTICS 0.18 0.14
N5A9 CONVNTL ANTIPSYCHOTICS 0.19 0.63
N6A4 SSRI ANTIDEPRESSANTS 0.11 0.92
N6A9 ANTIDEPRESSANTS ALL OTH 0.21 0.39

Note: Estimated outside good market shares obtained form the market size estimates by ATC-4 , country and quarter. Table presents
average across quarters.
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Table B.3: Margins Estimates by ATC-4

Margins Canada US

ATC4 Label

A
ll

O
n

P
at

en
t

B
ra

nd
ed

O
ff

P
at

en
t

G
en

er
ic

s

A
ll

O
n

P
at

en
t

B
ra

nd
ed

O
ff

P
at

en
t

A10C1 H INSUL+ANG FAST ACT 18.46 18.46 85.71 85.71

A2B2 ACID PUMP INHIBITORS 37.81 38.58 28.47 83.87 54.04 53.87 63.67

B1B2 FRACTIONATED HEPARINS 38.61 40.25 0.00 0.00 96.56 96.95 100.00

C10A1 STATINS (HMG-COA RED 60.64 59.13 43.99 82.24 54.01 58.66 62.88

C2A2 ANTIHYPER.PL MAINLY PERI 49.10 96.35 96.62 16.52 11.30 37.65 11.83

C7A0 B-BLOCKING AGENTS,PLAIN 19.68 4.64 16.35 25.92 19.62 48.86 47.56

C8A0 CALCIUM ANTAGONIST PLAIN 25.12 73.56 10.69 21.73 39.46 66.31 45.52

C9A0 ACE INHIBITORS PLAIN 62.75 46.83 93.93 36.20 20.56 23.31 29.53

C9C0 ANGIOTEN-II ANTAG, PLAIN 47.54 44.63 96.05 43.82 51.47 53.49 10.64

L1A0 ALKYLATING AGENTS 11.69 13.03 1.41 10.95 39.69 47.46 46.62

L1B0 ANTIMETABOLITES 8.10 6.93 5.70 19.50 42.26 46.80 45.23

L1C0 VINCA ALKALOIDS 50.78 45.88 50.09 88.92 42.84 47.19 37.88

L1D0 ANTINEOPLAS. ANTIBIOTICS 31.08 45.37 20.93 25.08 35.24 46.35 49.96

L1X4 A-NEO PROTEIN KINASE INH 32.23 31.83 55.66 3.73 52.71 52.90 0.00

L1X9 ALL OTH. ANTINEOPLASTICS 13.40 14.06 76.78 3.61 42.34 46.55 0.00

L2B2 CYTO ANTI-ANDROGENS 35.18 29.57 50.79 77.99 49.43 54.39 48.54

L2B3 CYTOSTAT AROMATASE INHIB 50.67 50.58 29.19 73.32 63.92 64.26 47.59

L4X0 OTHER IMMUNOSUPPRESSANTS 19.66 33.59 0.65 2.73 28.20 47.87 48.10

M1A1 ANTIRHEUMATICS NON-S PLN 55.06 42.59 88.46 47.57 9.52 25.50 45.53

M5B3 BISPHOSPH OSTEOPOROSIS 6.78 4.27 17.31 27.39 57.62 62.06 48.38

N1A1 INHAL GEN ANAESTHETICS 62.35 41.64 94.54 17.15 64.71 73.89 45.85

N1A2 INJECT GEN ANAESTHETICS 20.27 13.40 16.56 24.06 25.12 47.01 58.07

N1B1 ANAESTH LOCAL MEDIC INJ 79.76 67.59 99.11 63.82 23.45 51.97 24.55

N1B3 ANAESTH LOCAL TOPICAL 68.36 47.28 71.38 28.14 5.34 1.82 6.54

N2A0 NARCOTIC ANALGESICS 40.15 49.76 47.88 37.55 10.30 11.35 46.03

N2B0 NON-NARCOTIC ANALGESICS 56.38 6.47 93.59 70.32 13.78 46.96 43.05

N3A0 ANTI-EPILEPTICS 29.69 20.77 23.32 40.51 25.82 45.45 44.93

N5A1 ATYPICAL ANTIPSYCHOTICS 18.67 9.06 92.70 20.99 50.42 53.94 4.12

N5A9 CONVNTL ANTIPSYCHOTICS 12.59 60.06 15.83 8.27 6.64 18.12 45.48

N6A4 SSRI ANTIDEPRESSANTS 2.35 1.37 2.15 6.29 46.86 58.64 47.95

N6A9 ANTIDEPRESSANTS ALL OTH 18.77 12.00 9.91 28.85 27.27 48.15 50.76

Note: Average margins in percentage of US average price by ATC-4 across all quarters. Average across drugs within category is weighted
by market share. For generics in the US we impose price equal to marginal costs and do not estimate margins but they are taken into
account in the average margin for all drugs in the US.
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Table B.4: Estimates ofr jm by ATC-4

On Branded
ATC4 Patent Off Generic
A10C1 H INSUL+ANG FAST ACT 0.62
A2B2 ACID PUMP INHIBITORS 0.55 0.90 0.87
B1B2 FRACTIONATED HEPARINS 0.70
C10A1 STATINS (HMG-COA RED 0.54 1.00 0.77
C2A2 ANTIHYPER.PL MAINLY PERI 1.00 1.00 0.94
C7A0 B-BLOCKING AGENTS,PLAIN 0.72 1.00 1.00
C8A0 CALCIUM ANTAGONIST PLAIN 0.56 0.89 0.86
C9A0 ACE INHIBITORS PLAIN 0.47 0.95 1.00
C9C0 ANGIOTEN-II ANTAG, PLAIN 0.60 0.94 0.50
L1A0 ALKYLATING AGENTS 0.91 0.50 1.00
L1B0 ANTIMETABOLITES 0.64 0.50 1.00
L1C0 VINCA ALKALOIDS 0.50 0.50 0.98
L1D0 ANTINEOPLAS. ANTIBIOTICS 0.99 0.50 0.50
L1X4 A-NEO PROTEIN KINASE INH 1.00 0.50 0.50
L1X9 ALL OTH. ANTINEOPLASTICS 0.92 0.50 0.57
L2B2 CYTO ANTI-ANDROGENS 0.83 0.94 0.61
L2B3 CYTOSTAT AROMATASE INHIB 0.70 0.79 0.58
L4X0 OTHER IMMUNOSUPPRESSANTS 0.95 0.91 1.00
M1A1 ANTIRHEUMATICS NON-S PLN 0.44 0.91 1.00
M5B3 BISPHOSPH OSTEOPOROSIS 0.93 0.95 0.54
N1A1 INHAL GEN ANAESTHETICS 0.45 0.57 1.00
N1A2 INJECT GEN ANAESTHETICS 1.00 1.00 0.92
N1B1 ANAESTH LOCAL MEDIC INJ 0.96 1.00 0.75
N1B3 ANAESTH LOCAL TOPICAL 0.50 0.50 0.58
N2A0 NARCOTIC ANALGESICS 0.51 0.78 0.89
N2B0 NON-NARCOTIC ANALGESICS 0.50 0.96 0.88
N3A0 ANTI-EPILEPTICS 0.87 0.93 1.00
N5A1 ATYPICAL ANTIPSYCHOTICS 0.86 0.86 0.94
N5A9 CONVNTL ANTIPSYCHOTICS 0.64 0.97 0.94
N6A4 SSRI ANTIDEPRESSANTS 0.80 0.99 0.91
N6A9 ANTIDEPRESSANTS ALL OTH 0.27 0.89 0.99
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B.1.4 Theoretical Result

B.1.5 Theoretical Result

This section is meant to show that an international reference pricing policy can only increase

price in the referenced country and decrease it in the referencing country. We show it under

"regularity" conditions of the pro�t function and conditions where the same drugs are

present in the referencing and referenced country. We start by showing it when we have a

monopoly drug in each country, then when we have a duopoly. It is straightforward from

the proof in duopoly that it extends to markets with N �rms.

Monopoly case

Let's start with monopoly �rms in each country A and B.

Consider one �rm producing a product, at marginal costs c. Denote DA (pA ) and DB (pB)

the demands in countries A and B, respectively, when their prices are pA and pB. We assume

that each pro�t function P A (pA ) � (pA � c) DA (pA ) and P B (pB) � (pB � c) DB (pB) is

strictly concave in price and have a �nite maximum above marginal cost.

Under regulation, we suppose that a governmental agency negotiates price by engaging

in Nash bargaining with the �rm. The governmental's objective function takes the general

form W (pB) in country B, where W (.) is decreasing over [c, + ¥ ). For instance, W (pB)

could be consumer surplus, social welfare or coverage.

Thus, the unregulated price in country A solves

p�
A = arg max

c� pA

P A (pA )

and the price in country B under regulation solves the following maximization program:

p�
B = arg max

pB� c
P B (pB)1� a DW (pB)a

where DW (pB) � W (pB) � W (¥ ) is decreasing in pB and a 2 (0, 1] captures the bargaining

power of the governmental agency.
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Now with international reference pricing imposing that the �rm can sell in country A

only if pA � pB, the new price equilibrium (p��
A , p��

B ) simultaneously solves:
8
>>><

>>>:

p��
A = p̃A (p��

B ) � arg max
c� pA � p��

B

P A (pA )

p��
B = arg max

pB� c
[P A ( p̃A (pB)) + P B (pB) � P A (p�

A )]1� a DW (pB)a

where P A ( p̃A (pB)) + P B (pB) is the �rm pro�t in A and B if selling if both countries and

P A (p�
A ) is the �rm pro�t in A only if disagreeing with B.

Proposition The international reference pricing policy implies that the price in country

A decreases and the price in country B increases:

p��
A � p�

A and p��
B � p�

B

Proof Let's start with proving that p��A � p�
A :

From its de�nition, p��
A � p̃A (p��

B ) = p�
A if p�

A � p��
B . If p�

A > p��
B , then p��

A � p̃A (p��
B ) �

p��
B becausep̃A (p) � p for all p and thus p��

A < p�
A . This proves that in all cases p��

A � p�
A .

Let's prove now that p��B � p�
B:

Let's de�ne

DP A (p�
A , pB)) � P A ( p̃A (pB)) � P A (p�

A )

DP A (p�
A , pB)) is negative increasing in pB and equal to zero when pB � p�

A :

It is negative becausep�
A = arg max

pA � c
P A (pA ) and thus P A ( p̃A (pB)) � P A (p�

A ). By concavity

of P A (.), it is increasing on [0, p�
A ], p̃A (pB) is also weakly increasing in pB, thus P A ( p̃A (pB))

is increasing in pB becausep̃A (pB) � p̃A (p�
A ) � p�

A .

Then, using

p��
B = arg max

pB� c
[P B (pB) + DP A (p�

A , pB)] DW (pB)
a

1� a ,

p�
B = arg max

pB� c
P B (pB) DW (pB)

a
1� a ,
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we have

P B (p��
B ) DW (p��

B )
a

1� a + DP A (p�
A , p��

B ) DW (p��
B )

a
1� a

= [P B (p��
B ) + DP A (p�

A , p��
B )] DW (p��

B )
a

1� a

� [P B (p�
B) + DP A (p�

A , p�
B)] DW (p�

B)
a

1� a because of the de�nition of p��
B

= P B (p�
B) DW (p�

B)
a

1� a + DP A (p�
A , p�

B) DW (p�
B)

a
1� a

� P B (p��
B ) DW (p��

B )
a

1� a + DP A (p�
A , p�

B) DW (p�
B)

a
1� a because of the de�nition of p�

B

Thus

DP A (p�
A , p��

B ) DW (p��
B )

a
1� a � DP A (p�

A , p�
B) DW (p�

B)
a

1� a .

If p�
B � p��

B then

DP A (p�
A , p�

B)) DW (p�
B)

a
1� a � DP A (p�

A , p�
B)) DW (p��

B )
a

1� a

becauseDP A (p�
A , p�

B)) � 0 and DW (.) is positive decreasing. Using the above inequality, it

implies

DP A (p�
A , p��

B ) � DP A (p�
A , p�

B)

and thus p��
B � p�

B becauseDP A (p�
A , pB) is increasing in pB, which contradicts p�

B � p��
B

implying that it must be that p��
B � p�

B.

Duopoly case

Consider two �rms competing against each other and producing two differentiated products,

1 and 2, at marginal costs c, respectively. Denote D1c (p1c, p2c) and D2c (p1c, p2c) as demands

for products 1 and 2 in country c, respectively, when their prices are given by p1c and p2c.

We assume that each �rm i's pro�t function P ic � (pic � c) D ic (pic, p� ic) is strictly concave

in its own price, weakly increasing in the rival's price, and that its best-response price is

increasing in its rival's price (i.e., prices are strategic complements). We suppose further

that a Nash equilibrium (p�
1c, p�

2c) to the Bertrand game exists and is unique.

Under regulation, we suppose that a governmental agency negotiates prices by engaging
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in simultaneous Nash bargaining with both �rms. We assume that the governmental

agency's objective function of country B takes the general form W (p1B, p2B), where W (., .)

is decreasing over [c, + ¥ ) � [c, + ¥ ). For instance,W (p1B, p2B) could be consumer surplus,

social welfare or coverage.

The prices that arise in country A solve the Bertrand-Nash equilibrium
8
>>><

>>>:

p�
1A = arg max

p1A � c
P 1A (p1A , p�

2A )

p�
2A = arg max

p2A � c
P 2A (p�

1A , p2A )

and in country B, the regulation solves the following system of maximization programs:
8
>>><

>>>:

p�
1B = arg max

p1B� c
P 1B (p1B, p�

2B)1� a1 DW1 (p1B, p�
2B)a1

p�
2B = arg max

p2B� c
P 2B (p�

1B, p2B)1� a2 DW2 (p�
1B, p2B)a2

(B.1)

where

DW1 (p1B, p�
2B) � W (p1B, p�

2B) � W (¥ , p�
2B) ,

DW2 (p�
1B, p2B) � W (p�

1B, p2B) � W (p�
1B, ¥ )

a1, a2 2 (0, 1]

capture the bargaining power of the governmental agency in its negotiation with �rms 1 and

2, respectively. We assume that the pair (p�
1B, p�

2B) solving the system exists and is unique.

We now consider the international reference pricing equilibrium that satis�es

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

p��
1A = p̃1A (p��

1B, p��
2A ) � arg max

p1A � p��
1B

P 1A (p1A , p��
2A )

p��
2A = p̃2A (p��

1A , p��
2B) � arg max

p2A � p��
2B

P 2A (p��
1A , p2A )

p��
1B = arg max

p1B� c
[P 1A ( p̃1A (p1B, p��

2A ) , p��
2A ) + P 1B (p1B, p��

2B)

� P 1A (p�
1A , p��

2A )]1� a1 DW1 (p1B, p��
2B)a1

p��
2B = arg max

p2B� c
[P 2A (p��

1A , p̃2A (p��
1A , p2B)) + P 2B (p��

1B, p2B)

� P 2A (p��
1A , p�

2A )]1� a2 DW2 (p��
1B, p2B)a2

219



Remark that imposing the reference pricing constraint on one product only would

generate the same proposition, but for simplicity of exposition we consider the symmetric

case.

Proposition The international reference pricing policy implies that the prices in country A

decrease and the prices in country B increase:

p��
iA � p�

iA and p��
iB � p�

iB for i = 1, 2

Proof Let's start with proving that p��iA � p�
iA for i = 1, 2:

By de�nition of the solution of

8
>><

>>:

p�
1A = p̃1A (¥ , p�

2A ) = arg max
p1A

P 1A (p1A , p�
2A )

p�
2A = p̃2A (p�

1A , ¥ ) = arg max
p2A

P 2A (p�
1A , p2A )

and 8
>>><

>>>:

p��
1A = p̃1A (p��

1B, p��
2A ) � arg max

p1A � p��
1B

P 1A (p1A , p��
2A )

p��
2A = p̃2A (p��

1A , p��
2B) � arg max

p2A � p��
2B

P 2A (p��
1A , p2A )

Then

p��
1A = p̃1A (p��

1B, p��
2A ) � p̃1A (¥ , p��

2A ) � p̃1A (¥ , p�
2A ) = p�

1A if p��
2A � p�

2A

p��
2A = p̃2A (p��

1A , p��
2B) � p̃2A (p��

1A , ¥ ) � p̃2A (p�
1A , ¥ ) = p�

2A if p��
1A � p�

1A

If p��
1A > p�

1A then p��
2A = p̃2A (p��

1A , p��
2B) � p̃2A (p�

1A , p��
2B) = p�

2A if p��
2B � p�

2A . Thus p��
1A > p�

1A

implies p��
2A > p�

2A if p��
2B � p�

2A , but both prices increasing is not possible by de�nition of

the unconstrained Nash equilibrium. Thus, it must be that if p��
1A > p�

1A then p��
2B < p�

2A , but

then p��
2A � p��

2B < p�
2A . But we have shown that if p��

2A � p�
2A then p��

1A � p�
1A which proves

that we must have both p��
iA � p�

iA for i = 1, 2.

Let's prove now that p��iB � p�
iB for i = 1, 2:

Remark that p̃1A (p1B, p2A ) is weakly increasing in the second argument p2A because of

strategic complementarity in pro�t, and symmetrically for p̃2A (., .).
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Moreover, p̃1A (p1B, p2A ) is weakly increasing in the �rst argument p1B because of the

concavity of the pro�t function in its own price.

Moreover, p̃1A (p1B, p��
2A ) � p̃1A (p1B, p�

2A ) and p̃2A (p��
1A , p2B) � p̃2A (p�

1A , p2B) since p��
iA �

p�
iA .

Then, p̃1A (p1B, p�
2A ) � p�

1A and thus p̃1A (p1B, p��
2A ) � p�

1A which implies that

DP 1A (p1B, p�
1A , p��

2A ) � P 1A ( p̃1A (p1B, p��
2A ) , p��

2A ) � P 1A (p�
1A , p��

2A ) � 0

because the reaction function of �rm 2 is increasing in the price of �rm 1. Similarly

P 2A (p��
1A , p̃2A (p��

1A , p2B)) � P 2A (p��
1A , p�

2A ) � 0.

Moreover, P 1A ( p̃1A (p1B, p��
2A ) , p��

2A ) � P 1A (p�
1A , p��

2A ) is then weakly increasing in p1B as

well as P 2A (p��
1A , p̃2A (p��

1A , p2B)) � P 2A (p��
1A , p�

2A ) in p2B.

DW1 (p1B, p�
2B) � W (p1B, p�

2B) � W (¥ , p�
2B) � 0 is decreasing in p1B and DW2 (p�

1B, p2B) �

W (p�
1B, p2B) � W (p�

1B, ¥ ) � 0 is decreasing in p2B.

De�ne

P̃ 1B (p1B, p�
1A , p��

2A , p��
2B) = P 1A ( p̃1A (p1B, p��

2A ) , p��
2A ) + P 1B (p1B, p��

2B) � P 1A (p�
1A , p��

2A )

and

P̃ 2B (p2B, p�
2A , p��

1A , p��
1B) = P 2A (p��

1A , p̃2A (p��
1A , p2B)) + P 2B (p��

1B, p2B) � P 2A (p��
1A , p�

2A )

As P 1B (p1B, p2B) is increasing in p1B for p1B � p̄1B (p2B) and increasing in p2B, we have

that P̃ 1B (p1B, p�
1A , p��

2A , p��
2B) is increasing in p1B for p1B � p̄1B (p2B) and increasing in p��

2B.

Symmetrically, P̃ 2B (p2B, p�
2A , p��

1A , p��
1B) is increasing in p2B for p2B � p̄2B (p1B) and increasing

in p��
1B.

Moreover, because of the previous inequalities, P̃ 1B (p1B, p�
1A , p��

2A , p��
2B) � P 1B (p1B, p��

2B)

and P̃ 2B (p2B, p�
2A , p��

1A , p��
1B) � P 2B (p��

1B, p2B).
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Then

[P 1A ( p̃1A (p��
1B, p��

2A ) , p��
2A ) � P 1A (p�

1A , p��
2A )] DW1 (p��

1B, p��
2B)

a1
1� a1

+ P 1B (p��
1B, p��

2B) DW1 (p��
1B, p��

2B)
a1

1� a1

= [P 1A ( p̃1A (p��
1B, p��

2A ) , p��
2A ) + P 1B (p��

1B, p��
2B) � P 1A (p�

1A , p��
2A )] DW1 (p��

1B, p��
2B)

a1
1� a1

� [P 1A ( p̃1A (p�
1B, p��

2A ) , p��
2A ) + P 1B (p�

1B, p��
2B) � P 1A (p�

1A , p��
2A )] DW1 (p�

1B, p��
2B)

a1
1� a1

because of the de�nition of p��
1B

= [P 1A ( p̃1A (p�
1B, p��

2A ) , p��
2A ) � P 1A (p�

1A , p��
2A )] DW1 (p�

1B, p��
2B)

a1
1� a1

+ P 1B (p�
1B, p��

2B) DW1 (p�
1B, p��

2B)
a1

1� a1

� [P 1A ( p̃1A (p�
1B, p��

2A ) , p��
2A ) � P 1A (p�

1A , p��
2A )] DW1 (p�

1B, p��
2B)

a1
1� a1

+ P 1B (p��
1B, p��

2B) DW1 (p��
1B, p��

2B)
a1

1� a1

because of the de�nition of p�
1B

then, using the fact that DP 1A (p��
1B, p�

1A , p��
2A ) = P 1A ( p̃1A (p��

1B, p��
2A ) , p��

2A ) � P 1A (p�
1A , p��

2A )

and DP 1A (p�
1B, p�

1A , p��
2A ) = P 1A ( p̃1A (p�

1B, p��
2A ) , p��

2A ) � P 1A (p�
1A , p��

2A ) the previous inequal-

ity implies that

DP 1A (p��
1B, p�

1A , p��
2A ) DW1 (p��

1B, p��
2B)

a1
1� a1 � DP 1A (p�

1B, p�
1A , p��

2A ) DW1 (p�
1B, p��

2B)
a1

1� a1

thus  
DW1 (p��

1B, p��
2B)

DW1
�
p�

1B, p��
2B

�

! a1
1� a1

�
DP 1A (p�

1B, p�
1A , p��

2A )
DP 1A

�
p��

1B, p�
1A , p��

2A

�

becauseDP 1A (p��
1B, p�

1A , p��
2A ) � 0.

This inequality if not possible if p��
1B < p�

1B because in such caseDW1(p��
1B,p��

2B)
DW1(p�

1B,p��
2B)

> 1 because

DW1 (p1B, p2B) is decreasing in p1B, and
DP 1A(p�

1B,p�
1A ,p��

2A)
DP 1A(p��

1B,p�
1A ,p��

2A) � 1 becauseDP 1A (p1B, p�
1A , p��

2A )

is increasing in p1B but negative. This implies that necessarily p��
1B � p�

1B. Symmetrically

p��
2B � p�

2B.
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B.1.6 Additional Counterfactual Variations

Required Comparison

In this section, we consider a case where the United States regulator additionally requires

that any on-patent drug sold in the United States must also be sold in Canada in order to

provide a reference price.1 This eliminates the potential for pharmaceutical companies to

exit the Canadian market and set an unrestricted price in the United States. While it is never

an equilibrium outcome for the �rm to exit the Canadian market and only supply in the

United States, the prohibition on doing so improves the bargaining position of the Canadian

regulator.

As in Section 2.5.1, we consider the case in which prices are negotiated �rst in Canada

and then chosen in the US subject to the price ceiling constraint. Negotiations between the

�rm and the Canadian regulator account for the impact that the Canadian price ( pCA
j ) has

on US pro�ts. The sole difference from Section 2.5.1 is that the disagreement pro�t is now

zero:

DP j (pCA
j , pUS

� j , pCA
� j ) = P US

j (pUS
j (pCA

j , pUS
� j ), pUS

� j ) + P CA
j (pCA

j , pCA
� j )

| {z }
global pro�t under agreement

. (B.2)

After substituting (B.2) for (2.10) in Section 2.5.1,(2.12)yields the analogous equilibrium

conditions when the regulator requires comparisons.

Index Pricing

In this section, we consider the case in which the United States implements a reference

pricing rule requiring the price of on-patent drugs sold in the United States to be lower than

its average price in all other countries in which the product is sold:

pUS
j � pC

j �
1

jCj åc2C
pc

j , (B.3)

1In our simulations, we apply this rule only to on-patent drugs that are empirically sold in both markets.
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where C denotes the set of other countries in which j is sold. Analogously to Section 2.5.1,

we model �rms as �rst simultaneously negotiating prices abroad and then setting prices in

the United States.2 Given its own negotiated prices abroad ( f pc
j gc2C) and its competitors'

prices in the United States (pUS
� j ), the �rm chooses its price in the United States ( pUS

j ) to

maximize its pro�tability in the United States subject to the reference index constraint (B.3):

pUS
j (pC

j , pUS
� j ) � arg max

p2 [0,pC
j ][f ¥ g

P US
j

�
p, pUS

� j

�
1

f pC
j � pg

. (B.4)

Negotiations between the pharmaceutical company and the regulator in country c

account for the impact that the price pc
j has on US pro�ts through the index price constraint

(B.3).

DP c
j (pc

j , f pc0

j gc02Cnc, pc
� j , pUS

� j ) � P US
j (pUS

j (pC
j (pc

j ), pUS
� j ), pUS

� j ) + å
c02C

P c0

j (pc
j , pc0

� j )

| {z }
global pro�t under agreement

� max

8
>>>>><

>>>>>:

P US
j (pUS

j (¥ , pUS
� j ), pUS

� j )
| {z }

pro�t if only in US

, P US
j (pUS

j (pCnc
j , pUS

� j ), pUS
� j ) + å

c02Cnc

P c0

j (pc
j , pc0

� j )

| {z }
global pro�t if in US and Cnc

9
>>>>>=

>>>>>;

,

(B.5)

where the notation pC
j (pc

j ) emphasizes that pC
j is a function of pc

j . Negotiations with each

country c results in a price pc
j that maximizes the Nash product:

pc
j (f pc0

j gc02Cnc, pc
� j , pUS

� j ) � arg max
p

0

B
B
@DP c

j (p, f pc0

j gc02Cnc, pc
� j , pUS

� j )
| {z }

pro�t gain from agreement

1

C
C
A

r j
0

B
B
@ DjWc(p, pc

� j )
| {z }

welfare gain in c if agrees

1

C
C
A

1� r j

2Also as in Section 2.5.1, it is equivalent to say that �rms cannot commit not to decrease prices as the result
of negotiations with other countries' regulators.
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B.1.7 Additional Tables of counterfactuals

Counterfactuals with Canada as Price Ceiling for the US

Table B.5: Counterfactual Quantity Changes on All Drugs when Canada as Price Ceiling for the US

r jm Canada US

ATC4

O
n

P
at

en
t

B
ra

nd
ed

O
ff

G
en

er
ic Before After D (%) Before After D (%)

A10C1 0.62 349 249 -28.6 3302 3317 0.5
A2B2 0.55 0.90 0.87 19362 16020 -17.3 113244 114653 1.2
B1B2 0.70 2598 2306 -11.2 35354 35556 0.6
C10A1 0.54 1.00 0.77 11349 10431 -8.1 79186 80203 1.3
C2A2 1.00 1.00 0.94 2384 2384 0.0 26882 26882 -0.0
C7A0 0.72 1.00 1.00 23492 23401 -0.4 167276 167278 0.0
C8A0 0.56 0.89 0.86 12760 12477 -2.2 73390 73697 0.4
C9A0 0.47 0.95 1.00 18050 14721 -18.4 101954 103864 1.9
C9C0 0.60 0.94 0.50 4801 4458 -7.1 27227 27982 2.8
L1A0 0.91 0.50 1.00 795 675 -15.1 1793 1795 0.1
L1B0 0.64 0.50 1.00 2320 1591 -31.4 3737 3791 1.4
L1C0 0.50 0.50 0.98 332 299 -10.2 1424 1460 2.5
L1D0 0.99 0.50 0.50 123 116 -5.2 522 522 0.0
L1X4 1.00 0.50 0.50 785 556 -29.3 722 723 0.1
L1X9 0.92 0.50 0.57 755 753 -0.3 994 994 0.0
L2B2 0.83 0.94 0.61 1791 1739 -2.9 677 690 2.0
L2B3 0.70 0.79 0.58 1928 1648 -14.6 917 1033 12.7
L4X0 0.95 0.91 1.00 12181 8232 -32.4 11599 11666 0.6
M1A1 0.44 0.91 1.00 8374 5944 -29.0 99443 99592 0.1
M5B3 0.93 0.95 0.54 1225 1079 -11.9 1823 1826 0.2
N1A1 0.45 0.57 1.00 19107 17776 -7.0 665328 665934 0.1
N1A2 1.00 1.00 0.92 2865 2828 -1.3 69548 69548 0.0
N1B1 0.96 1.00 0.75 1096 1080 -1.4 20315 20315 0.0
N1B3 0.50 0.50 0.58 16254 16254 0.0 145882 145882 -0.0
N2A0 0.51 0.78 0.89 36395 36395 -0.0 343829 343829 0.0
N2B0 0.50 0.96 0.88 10159 9870 -2.8 153266 153266 -0.0
N3A0 0.87 0.93 1.00 42619 39004 -8.5 274813 275012 0.1
N5A1 0.86 0.86 0.94 41625 32705 -21.4 115139 115470 0.3
N5A9 0.64 0.97 0.94 9269 9267 -0.0 36694 36694 0.0
N6A4 0.80 0.99 0.91 13805 12720 -7.9 89527 89578 0.1
N6A9 0.27 0.89 0.99 11944 11890 -0.4 72854 72876 0.0

Total 330892 298869 -9.6 2738661 2745930 .2

Note: Quantity are average yearly standard units (on period 2002-2013).D stands for the change of quantity between after and before
in percentage of initial quantity. The parameterr jm is the one estimated from the supply model in Canada and used for counterfactual
simulations.
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Table B.6: Counterfactual Pro�ts on All Drugs with Canada as Price Ceiling for the US

r jm Canada US

ATC4

O
n

P
at

en
t

B
ra

nd
ed

O
ff

G
en

er
ic Before After D (%) Before After D (%)

A10C1 0.62 3147 5123 62.8 97767 95925 -1.9
A2B2 0.55 0.90 0.87 11212 23988 114.0 143282 142252 -0.7
B1B2 0.70 37401 75708 102.4 1279709 1243295 -2.8
C10A1 0.54 1.00 0.77 12037 21953 82.4 89953 88070 -2.1
C2A2 1.00 1.00 0.94 1439 1439 -0.0 4260 4260 0.0
C7A0 0.72 1.00 1.00 4853 4905 1.1 27738 27734 -0.0
C8A0 0.56 0.89 0.86 9790 12714 29.9 97479 96582 -0.9
C9A0 0.47 0.95 1.00 5921 7716 30.3 14233 13947 -2.0
C9C0 0.60 0.94 0.50 3139 6715 113.9 32509 31673 -2.6
L1A0 0.91 0.50 1.00 12000 21508 79.2 91496 90799 -0.8
L1B0 0.64 0.50 1.00 24193 51007 110.8 190112 170679 -10.2
L1C0 0.50 0.50 0.98 50263 72748 44.7 269879 265900 -1.5
L1D0 0.99 0.50 0.50 14564 17221 18.2 61282 61162 -0.2
L1X4 1.00 0.50 0.50 50602 64535 27.5 43552 43253 -0.7
L1X9 0.92 0.50 0.57 17276 17571 1.7 60304 60223 -0.1
L2B2 0.83 0.94 0.61 3468 4594 32.5 3503 3462 -1.2
L2B3 0.70 0.79 0.58 8559 15482 80.9 6585 5623 -14.6
L4X0 0.95 0.91 1.00 36855 102785 178.9 77871 77508 -0.5
M1A1 0.44 0.91 1.00 1319 4670 254.1 2592 2519 -2.8
M5B3 0.93 0.95 0.54 2151 2532 17.7 19601 19477 -0.6
N1A1 0.45 0.57 1.00 12530 16762 33.8 349549 347992 -0.4
N1A2 1.00 1.00 0.92 13656 13792 1.0 157280 157277 -0.0
N1B1 0.96 1.00 0.75 4678 4904 4.8 20696 20695 -0.0
N1B3 0.50 0.50 0.58 9221 9221 0.0 20075 20075 0.0
N2A0 0.51 0.78 0.89 19276 19278 0.0 45855 45855 0.0
N2B0 0.50 0.96 0.88 2984 3842 28.8 10947 10948 0.0
N3A0 0.87 0.93 1.00 10688 21015 96.6 116621 116554 -0.1
N5A1 0.86 0.86 0.94 69988 133776 91.1 526368 520215 -1.2
N5A9 0.64 0.97 0.94 3851 3852 0.0 3148 3147 -0.0
N6A4 0.80 0.99 0.91 5084 5371 5.6 70404 70171 -0.3
N6A9 0.27 0.89 0.99 1878 1913 1.9 13149 13123 -0.2

Total 464022 768639 65.59 3947799 3870395 -1.9

Note: Pro�ts are average yearly expenses in 1000 US$ (from the period 2002-2013).D stands for the change in pro�ts between after and
before in percentage of initial pro�ts. The parameterr j is the one estimated from the supply model in Canada and used for counterfactual
simulations.
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Figure B.1: Changes in quantity by ATC-4 in counterfactual against log quantity observed

Note: Each point corresponds to one ATC-4 labeled with its code. Percentage changes on vertical axis (not
drawing if change larger than 200%). Log quantity on horizontal axis. Both US and Canada on same graph.
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Table B.7: Counterfactual Expenses on Patented Drugs when Canada as Price Ceiling for the US

i Canada US
r jm

ATC4

O
n

P
at

en
t

B
ra

nd
ed

O
ff

G
en

er
ic Before After D (%) Before After D (%)

A10C1 0.62 4161 5777 38.8 113984 112471 -1.3
A2B2 0.55 0.90 0.87 9018 17984 99.4 182955 184476 0.8
B1B2 0.70 40084 78711 96.4 1261933 1228934 -2.6
C10A1 0.54 1.00 0.77 11938 19425 62.7 139298 141079 1.3
C2A2 1.00 1.00 0.94 761 761 -0.0 8330 8330 0.0
C7A0 0.72 1.00 1.00 311 319 2.9 27376 27387 0.0
C8A0 0.56 0.89 0.86 7317 8807 20.4 47992 48490 1.0
C9A0 0.47 0.95 1.00 6881 7465 8.5 23967 26246 9.5
C9C0 0.60 0.94 0.50 4056 7452 83.7 61146 61340 0.3
L1A0 0.91 0.50 1.00 10281 18019 75.3 170467 169746 -0.4
L1B0 0.64 0.50 1.00 25159 45386 80.4 392044 364805 -6.9
L1C0 0.50 0.50 0.98 74104 84637 14.2 524380 545884 4.1
L1D0 0.99 0.50 0.50 8457 10106 19.5 65298 65527 0.4
L1X4 1.00 0.50 0.50 49887 63476 27.2 83505 83278 -0.3
L1X9 0.92 0.50 0.57 18322 18545 1.2 129433 129361 -0.1
L2B2 0.83 0.94 0.61 2638 3473 31.7 6229 6442 3.4
L2B3 0.70 0.79 0.58 9158 15905 73.7 10671 10439 -2.2
L4X0 0.95 0.91 1.00 35121 95430 171.7 152335 152260 -0.0
M1A1 0.44 0.91 1.00 438 1476 237.0 2867 3268 14.0
M5B3 0.93 0.95 0.54 1238 1413 14.1 27912 27806 -0.4
N1A1 0.45 0.57 1.00 6900 8619 24.9 350707 350088 -0.2
N1A2 1.00 1.00 0.92 1192 1171 -1.8 70722 70740 0.0
N1B1 0.96 1.00 0.75 1456 1508 3.5 31019 31035 0.0
N1B3 0.50 0.50 0.58 923 923 -0.0 1362 1362 -0.0
N2A0 0.51 0.78 0.89 346 346 -0.0 870 871 0.1
N2B0 0.50 0.96 0.88 180 273 51.3 18975 18976 0.0
N3A0 0.87 0.93 1.00 3541 6502 83.6 195096 195655 0.3
N5A1 0.86 0.86 0.94 32795 67883 107.0 966832 962088 -0.5
N5A9 0.64 0.97 0.94 1716 1716 0.0 1153 1154 0.1
N6A4 0.80 0.99 0.91 2473 2371 -4.1 113105 113115 0.0
N6A9 0.27 0.89 0.99 341 344 0.8 4674 4738 1.4

Total 371191 596221 60.62 5186638 5147393 -.75

Note: Expenses are average yearly expenses in 1000 US$ (on period 2002-2013). Patented drugs only.
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Table B.8: Counterfactual Price Changes by ATC-4 when Canada as Price Ceiling for the US

Price Change Price Change Price Change Price Change
r jm All drugs Patented Branded Off Generic

ATC4

O
n

P
at

en
t

B
ra

nd
ed

O
ff

G
en

er
ic CA

(%)

US

(%)

CA

(%)

US

(%)

CA

(%)

US

(%)

CA

(%)

US

(%)

A10C1 0.62 81.1 -1.7 81.1 -1.7
A2B2 0.55 0.90 0.87 132.1 -0.7 197.6 -1.3 88.2 -0.1 23.9 -0.1
B1B2 0.70 122.1 -3.1 122.1 -3.2 -2.1 0.0
C10A1 0.54 1.00 0.77 78.5 -0.8 117.8 -2.6 166.8 -1.7 36.0 -0.2
C2A2 1.00 1.00 0.94 -0.0 0.0 -0.0 0.0 0.0 0.0 -0.0 0.0
C7A0 0.72 1.00 1.00 1.5 0.0 3.3 -0.1 0.5 0.0 1.1 0.0
C8A0 0.56 0.89 0.86 25.9 -1.1 43.0 -2.8 16.3 0.4 17.7 -0.2
C9A0 0.47 0.95 1.00 29.1 1.9 66.1 -6.5 1.8 0.0 5.4 -0.1
C9C0 0.60 0.94 0.50 92.6 -2.3 104.9 -2.9 19.5 0.4 1.7 -0.8
L1A0 0.91 0.50 1.00 111.6 -0.6 212.7 -1.3 16.8 -0.6 133.9 0.0
L1B0 0.64 0.50 1.00 156.4 -8.5 199.3 -21.7 -0.5 -3.0 118.4 -0.4
L1C0 0.50 0.50 0.98 26.8 0.6 66.9 -4.6 -1.5 0.2 6.6 -0.1
L1D0 0.99 0.50 0.50 21.0 0.1 173.6 -0.5 -3.0 -0.0 2.3 -0.0
L1X4 1.00 0.50 0.50 81.6 -0.4 85.4 -0.4 3.8 0.0 0.0
L1X9 0.92 0.50 0.57 1.6 -0.1 52.8 -0.5 1.5 2.2 0.0
L2B2 0.83 0.94 0.61 31.3 1.6 245.1 -3.9 15.5 0.3 10.1 0.1
L2B3 0.70 0.79 0.58 101.7 -13.4 104.6 -14.0 19.0 -0.4 11.2 -0.0
L4X0 0.95 0.91 1.00 312.0 -0.9 329.7 -1.2 5.2 -0.1 126.9 0.0
M1A1 0.44 0.91 1.00 358.0 1.1 104.4 -17.1 63.6 -0.1 494.4 -0.0
M5B3 0.93 0.95 0.54 24.8 -0.5 56.6 -0.8 21.1 0.3 2.4 -0.1
N1A1 0.45 0.57 1.00 35.4 -0.4 48.1 -0.7 23.0 -0.1 25.0 0.0
N1A2 1.00 1.00 0.92 2.3 0.0 41.4 -0.1 1.8 -0.0 1.4 0.0
N1B1 0.96 1.00 0.75 6.7 0.0 16.2 -0.0 10.1 -0.0 4.3 0.0
N1B3 0.50 0.50 0.58 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N2A0 0.51 0.78 0.89 0.0 0.0 0.1 -0.1 -0.0 -0.0 0.0 0.0
N2B0 0.50 0.96 0.88 29.0 0.0 4.5 0.0 22.8 0.0 30.3 0.0
N3A0 0.87 0.93 1.00 116.5 0.0 128.8 -0.5 79.2 -0.0 132.3 0.0
N5A1 0.86 0.86 0.94 136.5 -0.7 374.2 -1.0 52.3 0.2 49.1 0.4
N5A9 0.64 0.97 0.94 0.0 -0.0 0.5 -0.3 -0.0 0.0 0.0 0.0
N6A4 0.80 0.99 0.91 9.5 -0.1 146.8 -0.4 0.4 -0.1 0.4 0.0
N6A9 0.27 0.89 0.99 1.1 0.0 6.4 -3.1 -0.1 -0.0 0.8 0.0

Note: Changes in % of initial price using market shares weighted average prices.
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Table B.9: Counterfactual Prices of Drugs on Patent present in both US and Canada when Canada as Price
Ceiling for the US

Before After
Canada US Canada US

ATC4 Price Price Price D (%) Price D (%)

A10C1 12.8661 36.95631 28.68712 122.97 36.33642 -1.68
A2B2 .8079825 2.675094 2.697367 233.84 2.638698 -1.36
B1B2 15.55126 38.01187 37.48726 141.06 36.81441 -3.15
C10A1 1.770697 3.82358 3.857452 117.85 3.676275 -3.85
C2A2 54.75095 13.18811 54.74297 -0.01 13.18826 0.00
C7A0 1.244643 7.688396 2.174808 74.73 7.643762 -0.58
C8A0 1.268361 2.297664 2.244284 76.94 2.229781 -2.95
C9A0 .5956708 1.685162 1.66685 179.83 1.553767 -7.80
C9C0 1.094559 2.528681 2.301818 110.30 2.441019 -3.47
L1A0 24.69844 198.238 77.59502 214.17 195.6298 -1.32
L1B0 17.69059 248.5182 67.17113 279.70 191.2764 -23.03
L1C0 471.2581 1033.659 941.1678 99.71 978.6742 -5.32
L1D0 292.0294 780.7533 1259.364 331.25 778.822 -0.25
L1X4 66.59953 99.22975 125.9008 89.04 98.87067 -0.36
L1X9 647.0916 745.1591 993.0546 53.46 737.4075 -1.04
L2B2 10.43049 32.88236 35.99053 245.05 30.63242 -6.84
L2B3 4.868706 11.67673 10.1707 108.90 9.953807 -14.76
L4X0 3.17295 9.958714 14.10345 344.49 9.872184 -0.87
M1A1 .6490896 2.914528 2.132971 228.61 2.231462 -23.44
M5B3 6.017537 14.48667 17.12974 184.66 14.33339 -1.06
N1A1 .662663 .919805 1.02603 54.83 .9137184 -0.66
N1A2 12.79765 75.2755 31.65229 147.33 75.17899 -0.13
N1B1 13.03696 16.28716 16.25504 24.68 16.27825 -0.05
N1B3
N2A0 1.003563 3.317234 3.377676 236.57 3.313498 -0.11
N2B0
N3A0 1.384019 3.735585 3.399423 145.62 3.694843 -1.09
N5A1 1.760912 8.886744 8.998435 411.01 8.755308 -1.48
N5A9 .8207119 1.356838 1.303776 58.86 1.313062 -3.23
N6A4 1.334195 3.653124 3.66085 174.39 3.634008 -0.52
N6A9 .6356424 3.21982 1.843886 190.08 3.059738 -4.97

Note: Market shares weighted average price of patented drugs by ATC-4, country for drugs present in both only. Percentage changes are
changes with respect to the initial situation.
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Table B.10: Counterfactual Consumer Welfare Changes on All Drugs when Canada as Price Ceiling for the
US

r jm Canada US

ATC4

O
n

P
at

en
t

B
ra

nd
ed

O
ff

G
en

er
ic Before After D (%) Before After D (%)

A10C1 0.62 885 984 11.3 11159 11317 1.4
A2B2 0.55 0.90 0.87 56646 42825 -24.4 337119 339633 0.7
B1B2 0.70 8804 6711 -23.8 120918 123494 2.1
C10A1 0.54 1.00 0.77 37661 30663 -18.6 242072 245518 1.4
C2A2 1.00 1.00 0.94 7111 7111 0.0 88937 88936 -0.0
C7A0 0.72 1.00 1.00 62951 62610 -0.5 675640 675647 0.0
C8A0 0.56 0.89 0.86 44044 40952 -7.0 230677 232046 0.6
C9A0 0.47 0.95 1.00 51194 46325 -9.5 335249 337842 0.8
C9C0 0.60 0.94 0.50 16875 14186 -15.9 72193 73773 2.2
L1A0 0.91 0.50 1.00 2395 1835 -23.4 6204 6220 0.3
L1B0 0.64 0.50 1.00 6643 4688 -29.4 12862 13171 2.4
L1C0 0.50 0.50 0.98 855 773 -9.6 4061 4119 1.4
L1D0 0.99 0.50 0.50 363 336 -7.5 2161 2162 0.0
L1X4 1.00 0.50 0.50 2126 1725 -18.9 2109 2116 0.3
L1X9 0.92 0.50 0.57 2431 2413 -0.8 3561 3562 0.0
L2B2 0.83 0.94 0.61 6150 5700 -7.3 2158 2181 1.1
L2B3 0.70 0.79 0.58 5894 4575 -22.4 2478 2806 13.3
L4X0 0.95 0.91 1.00 35194 20803 -40.9 29593 29734 0.5
M1A1 0.44 0.91 1.00 27343 16265 -40.5 389901 390104 0.1
M5B3 0.93 0.95 0.54 3244 2908 -10.4 5887 5913 0.4
N1A1 0.45 0.57 1.00 55089 49074 -10.9 2307142 2313437 0.3
N1A2 1.00 1.00 0.92 9216 9144 -0.8 260259 260260 0.0
N1B1 0.96 1.00 0.75 2969 2898 -2.4 76524 76527 0.0
N1B3 0.50 0.50 0.58 48316 48316 0.0 736051 736050 -0.0
N2A0 0.51 0.78 0.89 108236 108233 -0.0 1145022 1145022 0.0
N2B0 0.50 0.96 0.88 34712 31972 -7.9 618698 618692 -0.0
N3A0 0.87 0.93 1.00 138685 109393 -21.1 830380 830730 0.0
N5A1 0.86 0.86 0.94 128719 97672 -24.1 335035 337240 0.7
N5A9 0.64 0.97 0.94 31051 31047 -0.0 128193 128195 0.0
N6A4 0.80 0.99 0.91 124721 123535 -1.0 327380 327671 0.1
N6A9 0.27 0.89 0.99 31311 31172 -0.4 240522 240599 0.0

Total 1091834 956844 -12.3 9580145 9604719 .2

Note: Welfare values are average yearly on period 2002-2013 scaled by market size.D stands for the change of welfare between after
and before in percentage of initial welfare. The parameterr jm is the one estimated from the supply model in Canada and used for
counterfactual simulations.
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Table B.11: Counterfactual Expenses, pro�ts and Consumer Welfare Global Changes on All Drugs when
Canada as Price Ceiling for the US

Expenses Pro�ts
ATC4 Before After D (%) Before After D (%)
A10C1 118145 118248 0.1 100914 101048 0.1
A2B2 284788 298546 4.8 154494 166240 7.6
B1B2 1366755 1371139 0.3 1317110 1319003 0.1
C10A1 186216 196756 5.7 101991 110023 7.9
C2A2 38062 38063 0.0 5699 5699 0.0
C7A0 148647 148697 0.0 32590 32639 0.1
C8A0 259058 259921 0.3 107268 109296 1.9
C9A0 66957 69790 4.2 20155 21663 7.5
C9C0 68047 71655 5.3 35648 38387 7.7
L1A0 244904 253235 3.4 103496 112307 8.5
L1B0 482675 479282 -0.7 214305 221685 3.4
L1C0 720750 753126 4.5 320143 338649 5.8
L1D0 192101 195651 1.8 75846 78384 3.3
L1X4 135841 149569 10.1 94154 107787 14.5
L1X9 160825 160989 0.1 77580 77794 0.3
L2B2 10886 12162 11.7 6970 8056 15.6
L2B3 20259 26822 32.4 15144 21106 39.4
L4X0 313040 378839 21.0 114726 180293 57.2
M1A1 28109 32044 14.0 3911 7189 83.8
M5B3 33507 33770 0.8 21752 22009 1.2
N1A1 558890 561233 0.4 362079 364754 0.7
N1A2 642266 642396 0.0 170936 171068 0.1
N1B1 93051 93285 0.3 25374 25599 0.9
N1B3 167484 167484 -0.0 29296 29296 0.0
N2A0 486180 486182 0.0 65131 65133 0.0
N2B0 84433 85358 1.1 13931 14791 6.2
N3A0 450060 460845 2.4 127309 137569 8.1
N5A1 1113479 1172218 5.3 596356 653992 9.7
N5A9 51146 51144 -0.0 6999 6999 0.0
N6A4 155712 155563 -0.1 75488 75542 0.1
N6A9 48988 49026 0.1 15027 15036 0.1
Total 8731260 8973041 2.7 4411821 4639034 5.1

Note: All values are average yearly on period 2002-2013, summing US and Canada.D stands for the change between after and before in
percentage of initial value.
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Table B.12: Counterfactual Expenses by ATC-4 with varying MFN rule (0, +33%, +50%) and Larger
Reference Market (without ex ante commitment)

r jm Canada US

ATC4 MFN

S
ha

re
U

S
m

ar
ke

t

O
n

P
at

en
t

B
ra

nd
ed

O
ff

G
en

er
ic Before After D (%) Before After D (%)

A2B2 0 0 0.55 0.90 0.87 14057 26529 88.7 270730 272016 0.5
A2B2 0 50 0.55 0.90 0.87 87651 156990 79.1 263927 271068 2.7
A2B2 0 100 0.55 0.90 0.87 185358 311647 68.1 268488 278951 3.9
A2B2 33 0 0.55 0.90 0.87 14057 23928 70.2 270730 271609 0.3
A2B2 50 0 0.55 0.90 0.87 14057 22349 59.0 270730 271328 0.2
B1B2 0 0 0.70 40084 78711 96.4 1326672 1292428 -2.6
B1B2 0 50 0.70 273470 462709 69.2 1324179 1152193 -13.0
B1B2 0 100 0.70 485702 767729 58.1 1176227 930594 -20.9
B1B2 33 0 0.70 40084 62512 56.0 1326889 1310894 -1.2
B1B2 50 0 0.70 38563 50214 30.2 1284627 1277971 -0.5
L1B0 0 0 0.64 0.50 1.00 33075 60786 83.8 449600 418495 -6.9
L1B0 0 50 0.64 0.50 1.00 27299 52851 93.6 481761 459276 -4.7
L1B0 0 100 0.64 0.50 1.00 42581 74518 75.0 365435 337062 -7.8
L1B0 33 0 0.64 0.50 1.00 31638 54254 71.5 426957 404204 -5.3
L1B0 50 0 0.64 0.50 1.00 29628 45343 53.0 396918 381692 -3.8
N1A1 0 0 0.45 0.57 1.00 15417 19358 25.6 543474 541875 -0.3
N1A1 0 50 0.45 0.57 1.00 220806 267795 21.3 543474 520339 -4.3
N1A1 0 100 0.45 0.57 1.00 441612 523748 18.6 543474 503817 -7.3
N1A1 33 0 0.45 0.57 1.00 15417 16602 7.7 543474 543058 -0.1
N1A1 50 0 0.45 0.57 1.00 15417 15634 1.4 543474 543459 -0.0
N1A2 0 0 1.00 1.00 0.92 14275 14395 0.8 627990 628001 0.0
N1A2 0 50 1.00 1.00 0.92 65445 66059 0.9 627990 628042 0.0
N1A2 0 100 1.00 1.00 0.92 130890 132107 0.9 627990 628091 0.0
N1A2 33 0 1.00 1.00 0.92 14275 14354 0.6 627990 627998 0.0
N1A2 50 0 1.00 1.00 0.92 14275 14308 0.2 627990 627994 0.0
N2A0 0 0 0.51 0.78 0.89 21736 21737 0.0 464444 464445 0.0
N2A0 0 50 0.51 0.78 0.89 108392 108398 0.0 464444 464446 0.0
N2A0 0 100 0.51 0.78 0.89 216785 216799 0.0 464444 464448 0.0
N2A0 33 0 0.51 0.78 0.89 21736 21737 0.0 464444 464445 0.0
N2A0 50 0 0.51 0.78 0.89 21736 21737 0.0 464444 464445 0.0
N3A0 0 0 0.87 0.93 1.00 11366 21739 91.3 438695 439107 0.1
N3A0 0 50 0.87 0.93 1.00 70808 154260 117.9 438695 441048 0.5
N3A0 0 100 0.87 0.93 1.00 141617 305398 115.7 438695 442809 0.9
N3A0 33 0 0.87 0.93 1.00 11366 19879 74.9 438695 438915 0.1
N3A0 50 0 0.87 0.93 1.00 11366 17628 55.1 438695 438772 0.0
N5A1 0 0 0.86 0.86 0.94 74422 138244 85.8 1039056 1033974 -0.5
N5A1 0 50 0.86 0.86 0.94 104691 197505 88.7 1039056 1031817 -0.7
N5A1 0 100 0.86 0.86 0.94 212643 399326 87.8 1064367 1049939 -1.4
N5A1 33 0 0.86 0.86 0.94 74422 125483 68.6 1039056 1035314 -0.4
N5A1 50 0 0.86 0.86 0.94 74422 114947 54.5 1039056 1036307 -0.3
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Table B.13: Counterfactual Prices when US is using Canada as Maximum Reference Price
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Figure B.2: Counterfactual Expenditure under Price Ceiling

Note: Each blue bar indicates the average annual expenditure in each ATC-4 class in the baseline without reference pricing. The red
bar indicates the change in average annual expenditure resulting from imposing reference pricing. A red bar to the right of the blue bar
indicates that expenditure increased by the length of the red bar. A red bar to the left of the blue bar indicates that expenditure decreased
by the length of the red bar.

Figure B.3: Counterfactual Pro�t Changes on All Drugs with US as Price Floor for Canada

Note: Each blue bar indicates the average annual pro�ts in it ATC-4 class in the baseline without reference pricing. The red bar indicates
the change in average annual pro�ts resulting from imposing reference pricing. A red bar to the right of the blue bar indicates that pro�ts
increased by the length of the red bar. A red bar to the left of the blue bar indicates that pro�ts decreased by the length of the red bar.
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Figure B.4: Counterfactual Welfare Changes on All Drugs with US as Price Floor for Canada

Note: Each blue bar indicates the average annual welfare in it ATC-4 class in the baseline without reference pricing. The red bar indicates
the change in average annual welfare resulting from imposing reference pricing. A red bar to the right of the blue bar indicates that
welfare increased by the length of the red bar. A red bar to the left of the blue bar indicates that welfare decreased by the length of the red
bar.

Counterfactuals with US as Price Floor for the Canada

Figure B.5: Counterfactual Margins Differences between US and Canada for on Patent Drugs when US is
Price Floor for Canada

Note: This distribution of margins differences by drug is weighted by the US quantities of the drug. This distribution is for the sample
of on patent drugs present in both the US and Canada.
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Table B.14: Counterfactual Quantity on All Drugs when US as Price Floor for Canada

r jm Canada US

ATC4

O
n

P
at

en
t

B
ra

nd
ed

O
ff

G
en

er
ic Before After D (%) Before After D (%)

A10C1 0.62 349 152 -56.5 3304 3275 -0.9
A2B2 0.55 0.90 0.87 19362 15912 -17.8 113244 111835 -1.2
B1B2 0.70 1356 1068 -21.3 16922 16763 -0.9
C10A1 0.54 1.00 0.77 11349 10290 -9.3 79186 78021 -1.5
C2A2 1.00 1.00 0.94 2384 2384 0.0 26882 26882 -0.0
C7A0 0.72 1.00 1.00 23492 23400 -0.4 167276 167274 -0.0
C8A0 0.56 0.89 0.86 12760 12441 -2.5 73390 73001 -0.5
C9A0 0.47 0.95 1.00 18050 14289 -20.8 101961 101544 -0.4
C9C0 0.60 0.94 0.50 4801 4391 -8.5 27227 26413 -3.0
L1A0 0.91 0.50 1.00 680 572 -15.9 1521 1515 -0.4
L1B0 0.64 0.50 1.00 3855 2910 -24.5 4578 4543 -0.8
L1D0 0.99 0.50 0.50 123 116 -5.2 522 522 0.0
L1X4 1.00 0.50 0.50 785 556 -29.3 722 723 0.1
L1X9 0.92 0.50 0.57 799 796 -0.3 1039 1039 -0.0
L2B2 0.83 0.94 0.61 1791 1735 -3.1 677 673 -0.6
L2B3 0.70 0.79 0.58 1838 1012 -44.9 866 484 -44.1
L4X0 0.95 0.91 1.00 15038 10061 -33.1 13925 13868 -0.4
M1A1 0.44 0.91 1.00 8560 5585 -34.8 101620 101592 -0.0
M5B3 0.93 0.95 0.54 1096 993 -9.4 1614 1614 0.0
N1A1 0.45 0.57 1.00 19107 17729 -7.2 665328 664659 -0.1
N1A2 1.00 1.00 0.92 2865 2828 -1.3 69548 69548 0.0
N1B1 0.96 1.00 0.75 1096 1080 -1.5 20315 20314 -0.0
N1B3 0.50 0.50 0.58 16254 16254 0.0 145882 145882 -0.0
N2A0 0.51 0.78 0.89 36395 36395 -0.0 343829 343829 -0.0
N2B0 0.50 0.96 0.88 10159 9870 -2.8 153266 153266 -0.0
N3A0 0.87 0.93 1.00 42619 38975 -8.5 274813 274734 -0.0
N5A1 0.86 0.86 0.94 42666 34843 -18.3 112308 112259 -0.0
N5A9 0.64 0.97 0.94 9269 9267 -0.0 36694 36693 -0.0
N6A4 0.80 0.99 0.91 13805 12712 -7.9 89527 89520 -0.0
N6A9 0.27 0.89 0.99 11944 11888 -0.5 72854 72851 -0.0

Total 334645 300503 -10.2 2720842 2715136 -.2

Note: Quantity are average yearly standard units (on period 2002-2013).D stands for the change of quantity between after and before
in percentage of initial quantity. The parameterr jm is the one estimated from the supply model in Canada and used for counterfactual
simulations.
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Figure B.6: Changes in quantity by ATC-4 in counterfactual against log quantity observed

Note: Each point corresponds to one ATC-4 labeled with its code. Percentage changes on vertical axis (not
drawing if change larger than 200%). Log quantity on horizontal axis. Both US and Canada on same graph.
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Table B.15: Counterfactual Expenses on Patented Drugs when US as Price Floor for Canada

Canada US
r jm

ATC4

O
n

P
at

en
t

B
ra

nd
ed

O
ff

G
en

er
ic Before After D (%) Before After D (%)

A10C1 0.62 4161 7698 85.0 114540 118714 3.6
A2B2 0.55 0.90 0.87 9018 18401 104.0 182955 181462 -0.8
B1B2 0.70 20119 39542 96.5 478597 495483 3.5
C10A1 0.54 1.00 0.77 11938 20641 72.9 139298 136735 -1.8
C2A2 1.00 1.00 0.94 761 761 -0.0 8330 8330 0.0
C7A0 0.72 1.00 1.00 311 320 2.9 27376 27375 -0.0
C8A0 0.56 0.89 0.86 7317 9002 23.0 47992 47297 -1.4
C9A0 0.47 0.95 1.00 6881 7511 9.1 23987 23454 -2.2
C9C0 0.60 0.94 0.50 4056 8191 102.0 61146 60823 -0.5
L1A0 0.91 0.50 1.00 9394 18724 99.3 152325 155363 2.0
L1B0 0.64 0.50 1.00 31685 70195 121.5 496763 508524 2.4
L1D0 0.99 0.50 0.50 8457 10107 19.5 65298 65493 0.3
L1X4 1.00 0.50 0.50 49887 63475 27.2 83505 83278 -0.3
L1X9 0.92 0.50 0.57 23506 23767 1.1 156957 155799 -0.7
L2B2 0.83 0.94 0.61 2638 3668 39.1 6229 6064 -2.6
L2B3 0.70 0.79 0.58 8706 35275 305.2 10127 7450 -26.4
L4X0 0.95 0.91 1.00 45041 143863 219.4 182953 183078 0.1
M1A1 0.44 0.91 1.00 450 2518 459.9 3195 2979 -6.8
M5B3 0.93 0.95 0.54 1077 1212 12.6 25993 25994 0.0
N1A1 0.45 0.57 1.00 6900 8686 25.9 350707 351757 0.3
N1A2 1.00 1.00 0.92 1192 1171 -1.8 70722 70740 0.0
N1B1 0.96 1.00 0.75 1456 1508 3.6 31019 30997 -0.1
N1B3 0.50 0.50 0.58 923 923 -0.0 1362 1362 -0.0
N2A0 0.51 0.78 0.89 346 346 -0.0 870 870 -0.0
N2B0 0.50 0.96 0.88 180 273 51.3 18975 18976 0.0
N3A0 0.87 0.93 1.00 3541 6527 84.3 195096 194883 -0.1
N5A1 0.86 0.86 0.94 29323 59479 102.8 865930 866139 0.0
N5A9 0.64 0.97 0.94 1716 1716 0.0 1153 1152 -0.1
N6A4 0.80 0.99 0.91 2473 2370 -4.2 113105 113095 -0.0
N6A9 0.27 0.89 0.99 341 344 0.8 4674 4668 -0.1

Total 293793 568212 93.40 3921179 3948336 .69

Note: Expenses are average yearly expenses in 1000 US$ (on period 2002-2013). Patented drugs only.
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Table B.16: Counterfactual Prices by ATC-4 when US as Price Floor for Canada

Price Change Price Change Price Change Price Change
r jm All drugs Patented Branded Off Generic

ATC4

O
n

P
at

en
t

B
ra

nd
ed

O
ff

G
en

er
ic CA

(%)

US

(%)

CA

(%)

US

(%)

CA

(%)

US

(%)

CA

(%)

US

(%)

A10C1 0.62 328.3 5.2 328.3 5.2
A2B2 0.55 0.90 0.87 138.8 0.6 209.4 1.2 92.1 0.0 24.2 0.1
B1B2 0.70 149.5 4.2 149.5 4.7 2.7 -0.0
C10A1 0.54 1.00 0.77 91.0 0.7 141.9 2.6 184.1 1.7 40.0 0.4
C2A2 1.00 1.00 0.94 -0.0 0.0 -0.0 0.0 0.0 0.0 -0.0 0.0
C7A0 0.72 1.00 1.00 1.5 0.0 3.3 0.1 0.5 -0.0 1.1 0.0
C8A0 0.56 0.89 0.86 29.3 1.5 49.3 3.6 18.4 -0.2 19.9 0.2
C9A0 0.47 0.95 1.00 34.3 -0.5 80.1 1.5 2.1 -0.0 8.3 0.0
C9C0 0.60 0.94 0.50 112.7 2.3 128.2 3.0 23.0 -0.2 1.8 0.5
L1A0 0.91 0.50 1.00 147.1 2.5 262.0 5.7 15.5 0.1 160.3 -0.0
L1B0 0.64 0.50 1.00 214.8 3.2 289.8 12.4 -1.4 0.0 164.9 -0.1
L1D0 0.99 0.50 0.50 21.0 0.0 174.1 -0.5 -3.0 -0.0 2.3 -0.0
L1X4 1.00 0.50 0.50 81.6 -0.4 85.4 -0.4 3.8 0.0 0.0
L1X9 0.92 0.50 0.57 1.5 -0.6 48.9 0.1 1.4 2.1 -0.0
L2B2 0.83 0.94 0.61 37.9 -2.7 320.5 0.5 16.9 0.2 11.1 -0.2
L2B3 0.70 0.79 0.58 612.1 29.2 648.0 33.1 24.4 0.1 15.5 0.0
L4X0 0.95 0.91 1.00 392.3 0.6 414.7 0.8 5.6 0.0 158.4 -0.0
M1A1 0.44 0.91 1.00 769.3 -0.7 607.0 6.0 186.8 0.0 936.3 -0.0
M5B3 0.93 0.95 0.54 22.4 -0.0 53.8 -0.0 21.3 0.0 2.4 0.0
N1A1 0.45 0.57 1.00 36.7 0.4 50.1 0.8 23.5 -0.0 26.2 -0.1
N1A2 1.00 1.00 0.92 2.3 0.0 41.4 -0.1 1.8 -0.0 1.4 0.0
N1B1 0.96 1.00 0.75 6.7 -0.0 16.4 0.1 10.1 -0.0 4.3 -0.0
N1B3 0.50 0.50 0.58 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N2A0 0.51 0.78 0.89 0.0 0.0 0.1 0.0 -0.0 0.0 0.0 0.0
N2B0 0.50 0.96 0.88 29.0 0.0 4.5 0.0 22.8 0.0 30.3 0.0
N3A0 0.87 0.93 1.00 117.4 -0.0 132.8 0.2 79.6 0.0 133.3 -0.0
N5A1 0.86 0.86 0.94 121.3 0.1 372.1 0.1 47.8 -0.1 51.4 -0.0
N5A9 0.64 0.97 0.94 0.0 0.0 0.5 0.3 -0.0 -0.0 0.0 0.0
N6A4 0.80 0.99 0.91 9.5 0.0 149.6 0.1 0.5 0.0 0.4 -0.0
N6A9 0.27 0.89 0.99 1.2 0.0 6.7 0.5 -0.1 0.0 0.8 0.0

Note: Changes in % of initial price using market shares weighted average prices.
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Table B.17: Counterfactual Prices of Drugs on Patent present in both US and Canada when US as Price
Floor for Canada

Before After
Canada US Canada US

ATC4 Price Price Price D (%) Price D (%)

A10C1 12.14421 37.09733 61.24129 404.28 39.06341 5.30
A2B2 .8079825 2.675094 2.821949 249.26 2.70827 1.24
B1B2 15.36494 37.85803 41.56478 170.52 39.64621 4.72
C10A1 1.770697 3.82358 4.284205 141.95 3.982836 4.17
C2A2 54.75095 13.18811 54.72902 -0.04 13.18826 0.00
C7A0 1.244643 7.688396 2.185894 75.62 7.714972 0.35
C8A0 1.268361 2.297664 2.40667 89.75 2.385341 3.82
C9A0 .5887031 1.685948 2.012465 241.85 1.717792 1.89
C9C0 1.094559 2.528681 2.574439 135.20 2.621561 3.67
L1A0 25.97724 205.1478 95.36224 267.10 216.579 5.57
L1B0 17.3866 268.2582 97.04 458.13 306.8802 14.40
L1D0 292.0294 780.7533 1263.382 332.62 779.0521 -0.22
L1X4 66.59953 99.22975 125.893 89.03 98.87096 -0.36
L1X9 753.4308 886.57 1125.542 49.39 887.5515 0.11
L2B2 10.43049 32.88236 43.86275 320.52 33.14288 0.79
L2B3 4.865076 11.75005 39.00875 701.81 16.18691 37.76
L4X0 3.320533 10.59573 17.55219 428.60 10.66112 0.62
M1A1 .6708143 2.973108 6.520396 872.01 3.234343 8.79
M5B3 6.807281 16.13616 18.41846 170.57 16.13214 -0.02
N1A1 .662663 .919805 1.044167 57.57 .9271347 0.80
N1A2 12.79765 75.2755 31.65223 147.33 75.17893 -0.13
N1B1 13.03696 16.28716 16.27862 24.87 16.30099 0.08
N1B3
N2A0 1.003563 3.317234 3.382701 237.07 3.317749 0.02
N2B0
N3A0 1.384019 3.735585 3.464821 150.34 3.752379 0.45
N5A1 1.869504 9.782676 9.571216 411.97 9.7985 0.16
N5A9 .8207119 1.356838 1.388645 69.20 1.396926 2.95
N6A4 1.334195 3.653124 3.710609 178.12 3.656124 0.08
N6A9 .6356424 3.21982 2.009834 216.19 3.244288 0.76

Note: Market shares weighted average price of patented drugs by ATC-4, country for drugs present in both only. Percentage changes are
changes with respect to the initial situation.
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Table B.18: Counterfactual Consumer Welfare Changes on All Drugs when US as Price Floor for Canada

r jm Canada US

ATC4

O
n

P
at

en
t

B
ra

nd
ed

O
ff

G
en

er
ic Before After D (%) Before After D (%)

A10C1 0.62 885 820 -7.3 11159 10912 -2.2
A2B2 0.55 0.90 0.87 56646 42488 -25.0 337119 335034 -0.6
B1B2 0.70 3914 2712 -30.7 55450 53879 -2.8
C10A1 0.54 1.00 0.77 37661 29862 -20.7 242072 238483 -1.5
C2A2 1.00 1.00 0.94 7111 7112 0.0 88937 88936 -0.0
C7A0 0.72 1.00 1.00 62951 62608 -0.5 675640 675626 -0.0
C8A0 0.56 0.89 0.86 44044 40615 -7.8 230677 229045 -0.7
C9A0 0.47 0.95 1.00 51194 45660 -10.8 335249 334683 -0.2
C9C0 0.60 0.94 0.50 16875 13793 -18.3 72193 70600 -2.2
L1A0 0.91 0.50 1.00 2092 1570 -24.9 5245 5204 -0.8
L1B0 0.64 0.50 1.00 10952 8058 -26.4 15958 15786 -1.1
L1D0 0.99 0.50 0.50 363 336 -7.5 2161 2162 0.0
L1X4 1.00 0.50 0.50 2126 1725 -18.9 2109 2116 0.3
L1X9 0.92 0.50 0.57 2486 2467 -0.8 3771 3769 -0.1
L2B2 0.83 0.94 0.61 6150 5665 -7.9 2158 2149 -0.4
L2B3 0.70 0.79 0.58 5427 2814 -48.1 2336 1665 -28.7
L4X0 0.95 0.91 1.00 45075 25378 -43.7 35499 35382 -0.3
M1A1 0.44 0.91 1.00 27881 14616 -47.6 397633 397520 -0.0
M5B3 0.93 0.95 0.54 2917 2656 -9.0 5131 5131 0.0
N1A1 0.45 0.57 1.00 55089 48904 -11.2 2307142 2299762 -0.3
N1A2 1.00 1.00 0.92 9216 9144 -0.8 260259 260260 0.0
N1B1 0.96 1.00 0.75 2969 2897 -2.4 76524 76521 -0.0
N1B3 0.50 0.50 0.58 48316 48316 0.0 736051 736050 -0.0
N2A0 0.51 0.78 0.89 108236 108233 -0.0 1145022 1145022 -0.0
N2B0 0.50 0.96 0.88 34712 31972 -7.9 618698 618692 -0.0
N3A0 0.87 0.93 1.00 138685 109231 -21.2 830380 830237 -0.0
N5A1 0.86 0.86 0.94 133543 104407 -21.8 333726 333418 -0.1
N5A9 0.64 0.97 0.94 31051 31046 -0.0 128193 128192 -0.0
N6A4 0.80 0.99 0.91 124721 123527 -1.0 327380 327334 -0.0
N6A9 0.27 0.89 0.99 31311 31166 -0.5 240522 240506 -0.0

Total 1104596 959797 -13.1 9524394 9504077 -.2

Note: Welfare values are average yearly on period 2002-2013 scaled by market size.D stands for the change of welfare between after
and before in percentage of initial welfare. The parameterr jm is the one estimated from the supply model in Canada and used for
counterfactual simulations.
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Table B.19: Counterfactual Expenses, pro�ts and Consumer Welfare Global Changes on All Drugs when US
as Price Floor for Canada

Expenses Pro�ts
ATC4 Before After D (%) Before After D (%)
A10C1 118701 126412 6.5 101159 108738 7.5
A2B2 284788 296368 4.1 154494 168190 8.9
B1B2 628192 667698 6.3 589713 630485 6.9
C10A1 186216 195399 4.9 101991 114855 12.6
C2A2 38062 38063 0.0 5699 5699 0.0
C7A0 148647 148695 0.0 32590 32648 0.2
C8A0 259058 264450 2.1 107268 111676 4.1
C9A0 66978 67364 0.6 20164 22164 9.9
C9C0 68047 71946 5.7 35648 40708 14.2
L1A0 219964 235239 6.9 91762 105201 14.6
L1B0 610474 679005 11.2 272135 333723 22.6
L1D0 192101 195639 1.8 75846 78404 3.4
L1X4 135841 149569 10.1 94154 107787 14.5
L1X9 194257 193392 -0.4 95351 95906 0.6
L2B2 10886 12016 10.4 6970 8310 19.2
L2B3 19263 43231 124.4 14346 40579 182.9
L4X0 384207 494727 28.8 140623 249700 77.6
M1A1 28816 36290 25.9 4139 11752 183.9
M5B3 31274 31617 1.1 19780 20121 1.7
N1A1 558890 564717 1.0 362079 368412 1.7
N1A2 642266 642396 0.0 170936 171068 0.1
N1B1 93051 93261 0.2 25374 25602 0.9
N1B3 167484 167484 -0.0 29296 29296 0.0
N2A0 486180 486182 0.0 65131 65133 0.0
N2B0 84433 85358 1.1 13931 14791 6.2
N3A0 450060 460358 2.3 127309 137743 8.2
N5A1 1055035 1112993 5.5 546149 604642 10.7
N5A9 51146 51148 0.0 6999 7001 0.0
N6A4 155712 155639 -0.0 75488 75805 0.4
N6A9 48988 49002 0.0 15027 15067 0.3
Total 7419016 7815658 5.3 3401549 3801205 11.7

Note: All values are average yearly on period 2002-2013, summing US and Canada.D stands for the change between after and before in
percentage of initial value.
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Table B.20: Counterfactual Prices when US is using Canada as Maximum Reference Price and ex ante
commitment
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Table B.21: Counterfactual Expenses by ATC-4 with varying MFN rule (0, +33%, +50%) and Larger
Reference Market (with ex ante commitment)

r jm Canada US

ATC4 MFN

S
ha

re
U

S
m

ar
ke

t

O
n

P
at

en
t

B
ra

nd
ed

O
ff

G
en

er
ic Before After D (%) Before After D (%)

A2B2 0 0 0.55 0.90 0.87 14057 27056 92.5 270730 269312 -0.5
A2B2 0 50 0.55 0.90 0.87 92679 415627 348.5 270730 229192 -15.3
A2B2 0 100 0.55 0.90 0.87 185358 860600 364.3 270730 218992 -19.1
A2B2 33 0 0.55 0.90 0.87 14057 24039 71.0 270730 270848 0.0
A2B2 50 0 0.55 0.90 0.87 14057 22464 59.8 270730 271066 0.1
B1B2 0 0 0.70 20119 39542 96.5 608073 628156 3.3
B1B2 0 50 0.70 135563 279338 106.1 678039 770136 13.6
B1B2 0 100 0.70 238686 620087 159.8 608073 741229 21.9
B1B2 33 0 0.70 20119 29369 46.0 608073 599771 -1.4
B1B2 50 0 0.70 20119 26030 29.4 608073 620713 2.1
L4X0 0 0 0.95 0.91 1.00 48328 158193 227.3 335879 336534 0.2
L4X0 0 50 0.95 0.91 1.00 36593 120167 228.4 346961 347399 0.1
L4X0 0 100 0.95 0.91 1.00 73186 241375 229.8 346961 347999 0.3
L4X0 33 0 0.95 0.91 1.00 53661 128286 139.1 366193 353273 -3.5
L4X0 50 0 0.95 0.91 1.00 53661 98516 83.6 366193 359094 -1.9
N1A1 0 0 0.45 0.57 1.00 15417 19477 26.3 543474 545239 0.3
N1A1 0 50 0.45 0.57 1.00 220806 290984 31.8 543474 569227 4.7
N1A1 0 100 0.45 0.57 1.00 441612 616921 39.7 543474 578469 6.4
N1A1 33 0 0.45 0.57 1.00 15417 16624 7.8 543474 543661 0.0
N1A1 50 0 0.45 0.57 1.00 15417 15631 1.4 543474 543431 -0.0
N1A2 0 0 1.00 1.00 0.92 14275 14395 0.8 627990 628001 0.0
N1A2 0 50 1.00 1.00 0.92 65445 66059 0.9 627990 628042 0.0
N1A2 0 100 1.00 1.00 0.92 130890 132107 0.9 627990 628091 0.0
N1A2 33 0 1.00 1.00 0.92 14275 14345 0.5 627990 628235 0.0
N1A2 50 0 1.00 1.00 0.92 14275 14306 0.2 627990 628182 0.0
N2A0 0 0 0.51 0.78 0.89 21736 21737 0.0 464444 464445 0.0
N2A0 0 50 0.51 0.78 0.89 108392 108398 0.0 464444 464444 -0.0
N2A0 0 100 0.51 0.78 0.89 216785 216796 0.0 464444 464444 -0.0
N2A0 33 0 0.51 0.78 0.89 21736 21737 0.0 464444 464445 0.0
N2A0 50 0 0.51 0.78 0.89 21736 21737 0.0 464444 464445 0.0
N3A0 0 0 0.87 0.93 1.00 11366 21817 91.9 438695 438541 -0.0
N3A0 0 50 0.87 0.93 1.00 70808 158094 123.3 438695 437694 -0.2
N3A0 0 100 0.87 0.93 1.00 141617 318854 125.2 438695 436773 -0.4
N3A0 33 0 0.87 0.93 1.00 11366 19574 72.2 438695 440600 0.4
N3A0 50 0 0.87 0.93 1.00 11056 17313 56.6 432920 432944 0.0
N5A1 0 0 0.86 0.86 0.94 72065 129771 80.1 982970 983222 0.0
N5A1 0 50 0.86 0.86 0.94 98298 181237 84.4 982970 983347 0.0
N5A1 0 100 0.86 0.86 0.94 196596 362947 84.6 982970 983687 0.1
N5A1 33 0 0.86 0.86 0.94 72065 116842 62.1 982970 968099 -1.5
N5A1 50 0 0.86 0.86 0.94 72065 106353 47.6 982970 945020 -3.9
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Appendix C

Appendix to Chapter 3

C.0.1 Additional Tables and Figures

Figure C.1: Examples of Telematics Devices in Auto Insurance
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Basic Speci�cation Primary Speci�cation Hold-Out Data

Monitoring share (if eligible) 21.2% 17.9% 17.6%
Expected score 5.23 3.97 4.17
Selection effect (risk) 5.2% 23.7% -

Coverage share
30K - - -
40K 9.4% 7.6% 7.2%
50K 66.3% 60.5% 58.1%
100K 13.4% 17.5% 19.6%
300K 9.7% 10.9% 12.8%
500K 1.3% 3.6% 2.4%

First renewal attrition 132.2% 104.2% 100.0%

Note: This table reports our cross-validation result. All measures are calculated analogously as table
3.5. For the state that changed mandatory minimum, the hold-out data include all post-period data.

For the other two states, the hold-out data include all observations that are not in our demand
estimation data.

Table C.1: Cross Validation

Table C.2: Model Estimate - Heterogeneous Latent Parameters

Log Claim Risk ( ml ) Monitoring Disutility ( x, $) Firm-switching Inertia ( h, $)

(1) (2) (3)

Intercept � 3.294��� 96.773��� 228.559���

(0.080) (2.813) (6.213)
Private Risk 25.238���

(1.657)
Monitoring Ind. 0.404 ���

(0.063)
Monitoring Duration � 0.796���

(0.081)
Driver
Driver Age � 0.240��� � 1.049�� 4.526���

(0.053) (0.437) (1.641)
– Square 0.156��� � 1.047��� 3.816��

(0.055) (0.309) (0.742)
Age < 25 0.081�� 0.326 � 0.500

(0.032) (0.339) (0.922)
Age > 21 � 0.064 � 0.059 3.195���

(0.053) (0.403) (0.449)
Age > 60 � 0.046 � 0.139 � 0.275

(0.068) (1.689) (0.340)
Year of Education 0.001 � 2.452��� � 7.526���

(0.025) (0.331) (0.915)
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College Ind. � 0.00001 � 0.952��� 0.234
(0.038) (0.339) (0.237)

Post Grad Ind. 0.005 � 0.728 � 1.547
(0.039) (1.644) (1.686)

Female Ind. 0.099��� � 0.261 1.007
(0.021) (1.643) (1.686)

Driver License Year � 0.018 � 0.016 16.776���

(0.019) (0.905) (0.338)
Home Ownership � 0.020 � 0.039 0.058

(0.038) (0.447) (1.653)
Out-of-State License � 0.104��� � 0.380 � 0.406

(0.030) (0.339) (0.922)
Location
Garage Veri�ed Ind. � 0.069� 0.008 1.847��

(0.036) (0.521) (0.922)
Population Density 0.076��� 0.359 � 4.902���

(0.015) (0.419) (0.445)
Zipcode Income � 0.058��� 0.610 � 2.936�

(0.017) (1.615) (1.677)
Log Zipcode Income 0.031��� 0.284 � 0.808

(0.008) (2.949) (1.850)
Vehicle
Length of Ownership 0.017 � 0.918 � 0.084

(0.012) (0.887) (0.338)
Vehicle on Lease Ind. 0.092��� � 1.058 4.789���

(0.024) (1.677) (0.343)
Model Year � 0.026� � 1.621��� 3.211���

(0.014) (0.421) (0.445)
ABS Ind. � 0.058� 0.034 � 1.626���

(0.035) (0.741) (0.422)
Airbag Ind. 0.014 0.199 1.225

(0.021) (1.644) (1.686)
Class C Ind. 0.023 0.079 3.843��

(0.053) (0.448) (1.655)
Tier
Credit Report Ind. 0.044 0.414 1.832���

(0.035) (0.429) (0.448)
Delinq. Score � 0.016 2.114��� 10.959���

(0.014) (0.331) (0.917)
Prior Ins. Length � 0.038�� � 2.293 � 3.993���

(0.017) (1.648) (0.338)
Has Prior Ins. � 0.067� � 1.183��� � 0.759�

(0.035) (0.427) (0.448)
– w/ Lapse � 0.050 0.204 0.001

(0.043) (1.686) (0.620)
Violation Points � 0.032 1.084��� 4.333���

(0.030) (0.337) (0.429)
Clean Record Ind. � 0.097��� � 0.909 � 1.392���

(0.035) (0.916) (0.342)
Total Accident Count 0.115��� 0.470 � 0.139
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(0.029) (1.638) (1.690)
Total DUI Count � 0.233��� 0.031 0.326

(0.065) (0.922) (0.536)
Log Risk Class 0.275���

(0.046)
Risk Class 0.042

(0.074)
– Square � 0.124�

(0.073)
– Cube 0.0002

(0.046)
Seasonality 0.026�� � 0.764�� � 1.585���

(0.011) (0.331) (0.427)
– Square 0.063 � 0.364 � 0.519

(0.046) (0.340) (0.430)
Trend Year 0.083� � 1.570 7.417���

(0.043) (1.660) (0.338)
– Square � 0.102��� � 1.413 6.199���

(0.039) (1.830) (1.674)

� p< 0.1; �� p< 0.05; ��� p< 0.01

Note: This table reports intercept and slope estimates for heterogeneous latent parameters of our structural
model. The latent parameters are risk occurrence (l ), �rm-switching inertia ( h), and monitoring disutility ( x).
Continuous covariate variables are normalized (except l and monitoring duration). Discrete variables with
more than two values are normalized so that the minimum is zero. Deliq. Score is a measure of �nancial
responsibility from the credit bureaus. The higher the score and worse the record.

C.0.2 Analysis of Actual Firm Pricing

Cream skimming effect Advantageous selection into monitoring may cream skim from

the �rm's unmonitored pool. As a result, �rms may choose to raise prices in the unmonitored

pool. In addition, they may also want to surcharge the unmonitored pool to indirectly

encourage monitoring participation. To test the effect of monitoring introduction on the

unmonitored pool more formally, we take advantage of the staggered introduction of

monitoring across states. This gives rise to a regression discontinuity strategy that evaluates

how prices and average cost changed in the unmonitoredpool. We focus on a year before

and after monitoring introduction; our observable characteristics also include state �xed

effects and �exible controls for trends and seasonality. We only focus on the �rst semester
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E [R0,m= 0,t= 0] ms E [R0,m= 0,t= 1]
(1) (2) (3)

Intercept � 0.362��� 11.367��� � 1.131���
(0.001) (0.506) (0.132)

Log Risk Class � 0.413��� � 0.384�� � 0.080���
(0.018) (0.155) (0.018)

Risk Class 0.367��� � 0.077 0.063
(0.051) (0.304) (0.034)

– Square � 0.290��� 0.245 � 0.155���
(0.054) (0.308) (0.036)

– Cube � 0.229��� � 0.039 0.031
(0.022) (0.140) (0.019)

ln l 1.859���
(0.094)

log(Monitoring Score ) 0.150���
(0.005)

� p< 0.1; �� p< 0.05; ��� p< 0.01

Note: This table reports estimates for the renewal pricing and monitoring score model.
Instead of modeling the Gamma shape parameters (a), we use a change-of-variables

technique to directly estimate the expected renewal rate. It is modeled with a Sigmoid
function between 0.5 (50% cheaper) and 2 (twice as expensive). That is,

E [R0] = s(x0qR) � 1.5+ 0.5. We include the appropriate Jacobian adjustments in estimation,
and winsorize away extremely large or small renewal price change.

Table C.3: Estimation Results - Renewal Pricing and Monitoring Score
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(t = 0) to avoid contamination from attrition 1. We therefore drop the t subscript, and run

the following regression

dep. var.i = a + gQtr i + k1post,i + q � Qtr i � 1post,i + x0
i b + xy,i + ei (C.1)

We use price pi and claim count Ci as our dependent variable. Qtr is the running variable,

which denotes the calendar quarter when driver i arrived at the �rm 2. 1post is an indicator

for whether i arrived at the �rm after the introduction of monitoring. x and a coverage �xed

effect xy soak up compositional changes in observable risk class and coverage plans. The

coef�cient q reveals treatment effect of monitoring introduction on prices and claims in the

unmonitored pool.

Estimates for q̂ across various speci�cations are reported in C.3. The �rm did not raise

prices around monitoring introduction. We also �nd no evidence that the average cost of

the unmonitored pool deteriorated by more than 2%.

In reality, monitoring is only a small fraction of the market. As our demand estimates

will reveal in the next section, even when monitored drivers are signi�cantly better, its

in�uence on the unmonitored pool is signi�cantly limited by its small size. Further, the �rm

does not make follow-up offers to customers who initially opted out monitoring, which

is necessary for unraveling to occur empirically. Lastly, monitoring programs are subject

to approval by state commissioners. And a new program that affects baseline pricing may

be subject to more regulatory scrutiny. On the �ip side, this suggests that the current

monitoring regime is largely welfare-neutral for unmonitored drivers.

Dynamic and non-uniform pricing The �rm is not required to offer monitoring, it there-

fore must bene�t from it to justify administrative and R&D costs. Indeed, monitored

drivers have 35%higher pro�tability overall, controlling for observables. On top of reduced

moral hazard (during monitoring) and better risk rating (going forward), this can also be a

1This regression does not include monitored drivers, so there is no contamination from moral hazard.

2It is normalized so that the quarter immediately after monitoring introduction is indexed as 0.
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result of higher pro�t margin and retention rate when information is revealed. We provide

descriptive evidence on pricing and dynamic retention in this section.

First, the �rm faces a dynamic pricing problem as information is revealed at the end

of the �rst period. It offers a opt-in discount to encourage all drivers to participate in

monitoring. This averages to around 5% across states and time.

When monitoring information is revealed, the �rm can use it to set non-uniform prices.

Here, the �rm's pricing schedule is based on a monitoring tier that measures how “sur-

prising” a given driver's monitoring score is to the �rm. In C.13, we plot the empirical

distribution of monitoring tier, which is realized monitoring score divided by �rm's expected

score given observables3. Consistent with our �ndings above, the average monitored driver

performed much better than expected 4.

C.4 presents the discount schedule the �rm uses given the percentile of monitoring tier

as de�ned above. Surprisingly good drivers are on the left, who are offered the highest

renewal discount, while around 25% of drivers that performed poorly (compared to �rm's

expectation) received a surcharge.

C.5 plots the corresponding retention rate. It is clear that as discounts approach zero or

negative, retention rate drops signi�cantly. In fact, we can regress renewal choice (binary)

on prices with monitoring discount, controlling for observables and price level without the

discount. q then measures the slope of the residual (retention) demand.

1renew,i = a + dpi + qdisci + x0
i � + ei (C.2)

The estimates for q̂ are reported in C.6. Without monitoring discount, a $1 increase in price

(decrease in discount given) causes the retention rate to drop by 0.07percentage points (7

basis points). When �rms give discounts, however, the slope of the demand decreases, and

3For monitored driver i, the expected score is derived based on the average driver in i's observable (xi )
group. It also does not take into account the fact that i has selected into monitoring. The graph has a long right
tail and is truncated at 200%.

4It is important to note that a driver with a monitoring tier of 30% is not necessarily 70% safer than the
average person in her pool, especially in renewal period. This is because monitoring score does not capture risk
perfectly, and it is also stochastic. Our structural model quanti�es these effects more formally.

253



by 56% when the discount given is larger than 10%.
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Figure C.2: Monthly monitoring �nish rate around monitoring introduction

Figure C.3: Event Study: treatment effect of monitoring introduction on the unmonitored pool

Note: C.2 the progression of monthly monitoring �nish rate around the introduction of monitoring.
The monthly �nish rate are below 0.1%in all months before monitoring introduction. The reason why
it is not exactly zero before monitoring introduction is due to small-scale trial and experimentation.
We throw out states that introduced monitoring in the �rst three months or the last 12 months of our
research window. This ensures that the trend we see do not pick up changes in state composition.
C.3 reports regression-discontinuity estimate q of (??), where the horizontal axis distinguishes
dependent variable used. These effects are translated in percentage terms by dividing the average of
the dependent variable in the period immediately before monitoring introduction. We look at only
�rst period outcomes, and include all unmonitoreddrivers arriving at the �rm a year before or after
the �rm. States that introduced monitoring within a year after the beginning or a year before the end
of our research window are excluded. The running variable is quarter since monitoring introduction.
Different colors and positions represent different speci�cations of control variables ( xit ). The grey
(left-most) series represents estimates from regressions with the full set of xit ; the orange (middle)
one includes a full set of observables, including �exible controls for trend and seasonality.255



Figure C.4: Monitoring Discount Schedule

Figure C.5: Indexed Retention Rate

Note: C.4 plots the �rm's pricing schedule for giving monitoring discount. On the horizontal axis,
we plot the percentile of monitoring tier, which is monitoring score divided by that expected by the
�rm given observables. 74% of people received a discount. The vertical axis is scaled by a factor
between 0.5 and 1.5. This is to protect the �rm's identity while demonstrating the scale and shape of
the pricing algorithm. The �rm went through two pricing schedules. This graph plots the second
pricing schedule. The �rst one is similar, except that no surcharge was given.
C.5 uses the same horizontal axis, and non-parametrically plots the retention rate for the semester
immediately after drivers �nish monitoring (and thus when they �rst got monitoring discounts).
Bandwidth is set as 5, and all numbers are benchmarked/normalized against the mean retention
rate of the lowest 5 monitoring tiers. For 93% of monitored drivers, this is the �rst renewal period.
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Note: This �gure plots the estimate of q from ( ??) in various subsamples. These subsamples are
represented on the horizontal axis. Notice that although we segment the data using discount

percentage, we use the actual discount amount in the regression to measure demand elasticity. The
results are scaled to percentage point terms. Therefore,� 0.05 means that the slope of retention
demand is such that a one dollar increase in price would lead to a 0.05 percentage point drop in

retention rate.

Figure C.6: Comparison of subsequent claim cost across monitoring groups
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C.0.3 Simulation Analysis of the Informativeness of Monitoring Signal

We can conduct a simple simulation exercise to quantify the spread of private risk and

monitoring's effectiveness. To do so, we �rst simulate a large risk pool by taking the mean

of all observable characteristics and simulating each driver's private risk. Figure C.7 plots

the density of simulated true risk. 5 Next, Figure C.8 plots the �rm's prior mean for all

drivers in the risk pool. The �rm has a �at prior for all drivers in the �rst period, which

is far from the perfect belief (represented by the dotted and zoomed in 45-degree line). In

Figure C.9, we calculate the evolution of �rm belief (posterior mean) in subsequent periods

as the �rm observes potential claim realization. The �rm's belief evolves towards the truth

as claim is a direct measure of risk. However, the sparsity of claims, especially among safe

drivers, dramatically slows down the �rm's belief updating.

Monitoring score provides an immediate signal for driver risk after the �rst period. In

Figure C.10, we plot, in orange, how the �rm's belief updates after observing a one-time

monitoring score. It is clear that monitoring is far more informative than observing a

period of potential claim realization (dark grey line). Monitoring is especially useful in

distinguishing the large mass of safe drivers, in which claims are even rarer. To quantify

this measure, we can calculate the absolute deviation of �rm belief from the true risk in our

simulated risk pool. Overall, observing the monitoring score gets the �rm 12.3% closer to

the perfect belief (45-degree line).

5Our �gures use private risk spread among new drivers for illustrative clarity.
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Note: This �gure plots the distribution of a simulated mean risk pool given our cost estimates.

Figure C.7: A simulated mean risk pool given our cost estimate

Note: This �gure plots �rm's belief (prior mean / risk rating) for drivers in our simulated pool. In
the �rst period, they are by de�nition pooled together. Therefore, �rm has a �at prior for all drivers

in the pool. The dotted line is the 45 degree line, which represents perfect belief.

Figure C.8: Firm's prior on simulated risk pool
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Note: This �gure plots the evolution of �rm belief (posterior mean) for drivers in our simulated pool
based on liability claims alone. To make the updating analytically feasible, we �rst �t a gamma
distribution on our risk pool by matching the mean and variance. Since gamma distribution is a

conjugate prior for poisson updating, we are able to analytically derive the posterior mean.

Figure C.9: Firm's posterior updating based on claims

Note: This �gure plots the evolution of �rm belief (posterior mean) for drivers in our simulated pool
based on claims versus monitoring. Since lognormal distribution is a conjugate prior for lognormal

updating, we are able to analytically derive the posterior mean.

Figure C.10: Firm's posterior updating based on monitoring vs. claims
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C.0.4 Additional Data Descriptive Graphs

Note: This graph plots the empirical progression of monitoring discount for all monitoring �nishers
in one state that stayed with the �rm till at least the end of the 5th periods (so we observe

monitoring discount in the renewal quote for the 6th period). The benchmark is monitoring discount
in the �rst renewal quote ( t = 0). Fluctuations and noises are due to ex-post adjustments. Firm may
change their discount schedule slightly. Monitored drivers can also report mistakes in their records

and have their discount adjusted.

Figure C.11: Persistence of Monitoring Discount
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Note: This graph plots the empirical claim surcharge function for at-fault accidents. Claim surcharge
varies with existing violation points and calendar time. 0.1 means 10% surcharge. This differs from
the �led factors because the latter is applied on the base rate only, while this function represents the
surcharge percentage on top of overall premium. This is done by regressing renewal price change on
violation point last period and current period at-fault claim, controlling for all other observables.

Figure C.12: Renewal Price Claim Surcharge

C.0.5 Additional Robustness Checks
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Note: This �gure plots the empirical density of monitoring tier for all monitored drivers who
�nished monitoring. It is calculated as the quotient of realized monitoring score over ex-ante
expected monitoring score. For monitored driver i, the expected score is derived based on the

average driver in i's observable (xi ) group. It does not take into account the fact that i has selected
into monitoring. The graph has a long right tail and is truncated at 200%.

Figure C.13: Distribution of monitoring tier

C.0.6 Estimation and Simulation Details

Our model includes unobserved state variables (random coef�cients) that enter utility non-

linearly. Therefore, we use a random coef�cient simulated maximum likelihood approach

Train (2009); Handel (2013) to estimate the model.

For each parameter proposal q, we simulate the model 50 times using Halton draws

and compute the likelihood for all observations in the data. We then average over these to

get the “simulated log likelihood”, denoted as L̂ sim(q). The estimator q? maximizes the log

likelihood. Simulated maximum likelihood suffer from simulation bias

Likelihood Function The log likelihood are sample analogs of four types of data likeli-

hoods (denoted as L ) - claims, monitoring score, choices (of �rm, coverage and monitoring

participation), as well as renewal price. Utilities are history-dependent in our model. There-

fore, we need to simulate choice sequence for each driver i. For notational simplicity, we
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suppress �rm-dummy random effect z as in our baseline speci�cation. The log likelihood

function can then be expressed as follows.

L i � å
t � Ti

Z

l
L (Rit , si , Cit , dit j l , y , xit , p it , D it , di ,t � 1; Q

| {z }
(A):obs. stoc outcome

) � gl ( l jxit ; ql , sl )
| {z }

(B):latent var.

dl

The simulation procedure allows us to numerically integrate over l given parameter

proposals ql and sl . We follow the timing of the model to decompose the likelihood

component A as follows.

(A) = ln Pr (dit j l , xit , p it , D it , di ,t � 1; a, y 0, y 1, �â, � ¸, a, qb) +

+ ln Pr (Cit j l , xit ) + ln g(` it jdit , xit ; a, � � )

+ ln gs(si j l , xit ; qs, ss) + ln gR(Ridt jCit , si , l , xit , p it ; �R, �R,m , sR)

Each component of (A) is modeled in the main text and given distributional assumptions.

Choice probability Our choice probability requires integration over all possible C, ` , R0

and s. In our model, we assume away uncertainty in s, and our Poisson-Gamma model

gives analytical solutions for expectation over C and ` .

For simplicity, in people's expectation, we only consider the possibility of one claim

occurrence per term (Cohen and Einav 2007; Barseghyan et al. 2013). We can then capitalize

on the attractive analytical property of gamma distributions and avoid numerical integration

over C, ` , R0 and s.

C.0.7 Filings
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Note: This page is taken from an insurer's Ohio rate �ling, which demonstrates their pricing
algorithm.

Figure C.14: Pricing Algorithm - Insurer 1 OH
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Note: These pages are taken from a an insurer's rate �ling in Ohio, which demonstrate their pricing
algorithm.

Figure C.15: Pricing Algorithm - Insurer 2 OH 1/2
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Note: These pages are taken from an insurer's rate �ling in Ohio, which demonstrate their pricing
algorithm.

Figure C.16: Pricing Algorithm - Insurer 2 OH 2/2
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Note: These pages are taken from an insurer's rate �ling in Ohio, which demonstrate their pricing
algorithm.

Figure C.17: Pricing Algorithm - Insurer 3 OH
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Note: This is an excerpt from an insurer's rate �ling on how observable information is used and
interacted.

Figure C.18: Variable De�nition and Interactions
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Note: This is an excerpt from an insurer's rate �ling on how observable information is translated
into pricing factors.

Figure C.19: Rating Factors based on Observables
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Note: This is an excerpt from an insurer's rate �ling on the kinds of violations recorded in tier rating
in Ohio.

Figure C.20: Violation Captured in OH
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Note: This is an excerpt from an insurer's rate �ling on how tier information is rated.

Figure C.21: Tier Factors

273



Note: This is an excerpt from an insurer's rate �ling on how monitoring pricing is �led.

Figure C.22: Violation Captured in OH
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Note: This is an excerpt from an insurer's rate �ling on how limit choices in�uence pricing.

Figure C.23: Tier Factors
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