
Real Orientations of Lubin--Tate Spectra and 
the Slice Spectral Sequence of a C4-Equivariant 
Height-4 Theory

Citation
Shi, XiaoLin. 2019. Real Orientations of Lubin--Tate Spectra and the Slice Spectral Sequence of 
a C4-Equivariant Height-4 Theory. Doctoral dissertation, Harvard University, Graduate School of 
Arts & Sciences.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029555

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029555
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Real%20Orientations%20of%20Lubin--Tate%20Spectra%20and%20the%20Slice%20Spectral%20Sequence%20of%20a%20C4-Equivariant%20Height-4%20Theory&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=22345592fe93c559521442a1e0ecf890&departmentMathematics
https://dash.harvard.edu/pages/accessibility


Real Orientations of Lubin–Tate Spectra and the Slice Spectral Sequence of a
C4-Equivariant Height-4 Theory

A dissertation presented

by

XiaoLin Danny Shi

to

The Department of Mathematics

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of

Mathematics

Harvard University
Cambridge, Massachusetts

April 2019



© 2019 – XiaoLin Danny Shi
All rights reserved.



Dissertation Advisor: Professor Michael J. Hopkins Author: XiaoLin Danny Shi

Real Orientations of Lubin–Tate Spectra and the Slice Spectral Sequence of a

C4-Equivariant Height-4 Theory

Abstract

In this thesis, we show that Lubin–Tate spectra at the prime 2 are Real oriented and

Real Landweber exact. The proof is by application of the Goerss–Hopkins–Miller theorem

to algebras with involution. For each height n, we compute the entire homotopy fixed

point spectral sequence for En with its C2-action given by the formal inverse. We study,

as the height varies, the Hurewicz images of the stable homotopy groups of spheres in the

homotopy of these C2-fixed points.

We completely compute the slice spectral sequence of the C4-spectrumBP ((C4))〈2〉. After

periodization and K(4)-localization, this spectrum is equivalent to a height-4 Lubin–Tate

theory E4 with C4-action induced from the Goerss–Hopkins–Miller theorem. In particular,

our computation shows that EhC12
4 is 384-periodic.
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1 Real orientations of Lubin–Tate spectra

The first part of this thesis (Sections 1–7) is based on joint work with Jeremy Hahn.

1.1 Motivation and main results

Topological K-theory is a remarkably useful cohomology theory that has produced impor-

tant homotopy-theoretic invariants in topology. Many deep facts in topology have surpris-

ingly simple proofs using topological K-theory. For instance, Adams’s original solution [1]

to the Hopf invariant one problem used ordinary cohomology and secondary cohomology

operations, but, together with Atiyah [3], he later discovered a much simpler solution using

complex K-theory and its Adams operations. He also studied the real K-theory of real

projective spaces [2] and used it to resolve the vector fields on spheres problem.

In 1966, Atiyah [7] formalized the connection between complex K-theory, KU , and

real K-theory, KO. The complex conjugation action on complex vector bundles induces a

natural C2-action on KU . Under this action, the C2-fixed points and the homotopy fixed

points of KU are both KO:

KUC2 ' KUhC2 ' KO.

Furthermore, there is a homotopy fixed point spectral sequence computing the homotopy

groups of KO, starting from the action of C2 on the homotopy groups of KU :

Es,t
2 = Hs(C2; πtKU) =⇒ πt−sKO.

The spectrum KU , equipped with this C2-action and considered as a C2-spectrum, is called

Atiyah’s Real K-theory KR.

The spectrum KU is a complex oriented cohomology theory, which means that there is

1



a map MU −→ KU , where MU is the complex cobordism spectrum. Early work on MU

due to Milnor [55], Novikov [56, 57, 58], and Quillen [60] established the complex cobordism

spectrum as a critical tool in modern stable homotopy theory, with deep connections to

algebraic geometry and number theory through the theory of formal groups [42, 64, 50, 59].

The complex orientation of KU induces a map of rings

π∗MU −→ π∗KU

on the level of homotopy groups. Quillen’s [60] calculation of π∗MU shows that the map

above produces a one dimensional formal group law over π∗KU , which turns out to be the

multiplicative formal group law Gm(x, y) = x+ y − xy.

Analogously as in the case of KU , the complex conjugation action on complex manifolds

induces a natural C2-action on MU . This action produces the Real cobordism spectrum

MUR of Landweber [46], Fujii [25], and Araki [6]. The underlying spectrum of MUR is

MU , with the C2-action given by complex conjugation.

Complex conjugation acts on KU and MU by coherently commutative (E∞) maps,

making KR and MUR commutative C2-spectra. The complex orientation of KU is com-

patible with the complex conjugation action, and it can be refined to a Real orientation

MUR → KR.

Complex K-theory belongs to a more general class of spectra — the Lubin–Tate spectra

— central to the study of chromatic homotopy theory and the stable homotopy groups of

spheres. These spectra are reverse-engineered from algebra as follows. Given a formal

group G of finite height n over a perfect field k of characteristic p, Lubin and Tate [49]
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showed that G admits a universal deformation defined over a complete local ring R with

residue field k. The ring R is non-canonically isomorphic to W (k)[[u1, u2, . . . , un−1]], over

which the formal group law is characterized by a map

MU∗ −→ W (k)[[u1, u2, . . . , un−1]][u±].

This map can be shown to be Landweber exact. Applying the Landweber exact functor

theorem yields a complex oriented homology theory represented by a homotopy commu-

tative ring spectrum E(k,G). When k = Fpn and G is the Honda formal group law, the

resulting Lubin–Tate spectrum is commonly called En, the height n Morava E-theory.

Since the height 1 Morava E-theory is KU∧p , the Lubin–Tate spectra can be thought of as

the higher height analogues of K-theory.

To endow the Lubin–Tate theories E(k,G) with coherent multiplicative structures, Go-

erss, Hopkins, and Miller computed the moduli space of A∞- and E∞-structures on E(k,G).

The group Gn of automorphisms of the formal group G naturally acts on π∗E(k,G), and the

Goerss–Hopkins–Miller computation demonstrates that there is in fact an action of Gn on

E(k,G) by E∞-ring automorphisms.

For any subgroup G ⊆ Gn, one can use the Goerss–Hopkins–Miller action to construct

a homotopy fixed point spectrum EhG
(k,G) := F (EG+, E(k,G))

G. There are homotopy fixed

point spectral sequences of the form

Es,t
2 = Hs(G; πt(E(k,G))) =⇒ πt−s(E

hG
(k,G)).

The spectra EhG
n turn out to be the essential building blocks of the p-local stable

homotopy category. In particular, the homotopy groups π∗E
hG
n assemble to the stable
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homotopy groups of spheres. To be more precise, the chromatic convergence theorem of

Hopkins and Ravenel [64] exhibits the p-local sphere spectrum S(p) as the inverse limit of

the chromatic tower

· · · −→ LEnS −→ LEn−1S −→ · · · −→ LE0S,

where each LEnS is assembled via the chromatic fracture square

LEnS LK(n)S

LEn−1S LEn−1LK(n)S,

where K(n) is the nth Morava K-theory.

Devinatz and Hopkins [23] proved that LK(n)S ' EhGn
n , and, furthermore, that the

Adams–Novikov spectral sequence computing LK(n)S can be identified with the associated

homotopy fixed point spectral sequence for EhGn
n . The fixed point spectrum EhGn

n admits

resolutions by {EhG
n |G ⊂ Gn}, where G ranges over finite subgroups of Gn.

For the rest of the paper, we designate p = 2. When k = F2, and G is the multiplicative

formal group Gm(x, y) = x + y − xy, we find that EhC2

(F2,Gm) = KO∧2 , the 2-adic completion

of real K-theory. For this reason, the spectra EhG
n are commonly called the higher real

K-theories.

At height 2, these homotopy fixed points are known as TMF and TMF with level

structures. Computations of the homotopy groups of these spectra are done by Hopkins–

Mahowald [43], Bauer [11], Mahowald–Rezk [52], Behrens–Ormsby [17], Hill–Hopkins–

Ravenel [40], and Hill–Meier [41].

For higher heights n > 2, the homotopy fixed points EhG
n are notoriously difficult to
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compute. Prior to the present work, essentially no progress had been made. One of the

chief reasons that these homotopy fixed points are so difficult to compute is because the

group actions are constructed purely from obstruction theory. This stands in contrast to

the cases of Atiyah’s Real K-theory KR and Real cobordism MUR, whose actions come from

geometry. The main theorem of this work establishes the first known connection between

the obstruction-theoretic actions on Lubin–Tate theories and the geometry of complex

conjugation:

Theorem 1.1. Let k be a perfect field of characteristic 2, G a height n formal group over

k, and E(k,G) the corresponding Lubin–Tate theory. Suppose G is a finite subgroup of the

Morava stabilizer group that contains the central subgroup C2. Then there is a G-equivariant

map

NG
C2
MUR −→ E(k,G),

where NG
C2

(−) is the Hill–Hopkins–Ravenel norm functor.

In particular, when G = C2, Theorem 1.1 implies that for all height n ≥ 1, the classical

complex orientation MU → En can be refined to a Real orientation

MUR −→ En.

The presence of geometry, aside from its intrinsic interest, has tremendous computa-

tional consequences. Hu and Kriz [44] were able to completely compute the homotopy

fixed point spectral sequence for MUR. Combining our main theorem with the Hu–Kriz

computation, we obtain the first calculations for EhC2
n , valid for arbitrarily large heights n.

Theorem 1.2. The E2-page of the RO(C2)-graded homotopy fixed point spectral sequence
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of En is

Es,t
2 (EhC2

n ) = W (F2n)[[ū1, ū2, . . . , ūn−1]][ū±]⊗ Z[u±2σ, aσ]/(2aσ).

The classes ū1, . . ., ūn−1, ū±, and aσ are permanent cycles. All the differentials in the

spectral sequence are determined by the differentials

d2k+1−1(u2k−1

2σ ) = ūkū
2k−1a2k+1−1

σ , 1 ≤ k ≤ n− 1,

d2n+1−1(u2n−1

2σ ) = ū2n−1a2n+1−1
σ , k = n,

and multiplicative structures.

The existence of equivariant orientations renders computations that rely on the slice

spectral sequence tractable. This observation was first made in the solution of the Kervaire

invariant problem by Hill, Hopkins, and Ravenel in 2009.

In their landmark paper [39], Hill, Hopkins, and Ravenel established that the Kervaire

invariant elements θj do not exist for j ≥ 7 (see also [54, 37, 38] for surveys on the result).

A key construction in their proof is the spectrum Ω, which detects the Kervaire invariant

elements in the sense that if θj ∈ π2j+1−2S is an element of Kervaire invariant 1, then the

Hurewicz image of θj under the map π∗S→ π∗Ω is nonzero.

The detecting spectrum Ω is constructed using equivariant homotopy theory as the C8-

fixed point of a genuine C8-spectrum ΩO, which in turn is an equivariant localization of

MU ((C8)) := NC8
C2
MUR. In particular, there is a C8-equivariant orientation

MU ((C8)) → ΩO.

For G = C2n , the G-spectrum MU ((G)) and its equivariant localizations are amenable to

computations. To analyze the C8-equivariant homotopy groups of ΩO, Hill, Hopkins, and
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Ravenel generalized the C2-equivariant filtration of Hu–Kriz [44] and Dugger [24] to a G-

equivariant Postnikov filtration for all finite groups G. They called this the slice filtration.

Given any G-equivariant spectrum X, the slice filtration produces the slice tower {P ∗X},

whose associated slice spectral sequence strongly converges to the RO(G)-graded homotopy

groups πGFX.

Using the slice spectral sequence, Hill, Hopkins, and Ravenel proved the Gap Theorem

and the Periodicity Theorem, which state, respectively, that πC8
i ΩO = 0 for −4 < i < 0,

and that there is an isomorphism πC8
∗ ΩO ∼= πC8

∗+256ΩO. The two theorems together imply

that

π2j+1−2Ω = πC8

2j+1−2
ΩO = 0

for all j ≥ 7, from which the nonexistence of the corresponding Kervaire invariant elements

follows.

Analogues of the Kervaire invariant elements exist at odd primes. In 1978, Ravenel [61]

computed the Cp-homotopy fixed points of the Lubin–Tate spectrum Ep−1 and proved that

the p-primary Kervaire invariant elements do not exist for all p ≥ 5.

In light of Ravenel’s work, Hill, Hopkins, and Ravenel had hoped that the homotopy

fixed points of a certain Lubin–Tate theory would entail the nonexistence of the bona

fide Kervaire invariant elements. Indeed, they mentioned in [38] that the Detection Theo-

rem held for EhC8
4 , which made it a promising candidate to resolve the Kervaire invariant

problem. However, because of the computational difficulties surrounding the homotopy

fixed point spectral sequence, they could not prove the Gap Theorem and the Periodicity

Theorem for EhC8
4 .

Instead, in [39], they opted to consider ΩC8
O , which serves to mimic EhC8

4 , but benefits

from the geometric rigidity it inherits from MU ((C8)): once the theory of slice filtrations is
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set up, the Gap Theorem and the Periodicity Theorem are immediate.

Despite the computational access granted via MU ((G)), its localizations are unsuitable

for chromatic homotopy theory because the E2-pages of their slice spectral sequences are

too large and contain many unnecessary classes. Thus, one cannot hope to resolve the

K(n)-local sphere by fixed points of the localizations of MU ((G)).

To address this situation, one could hope to quotient MU ((G)) by generators in its

equivariant stable homotopy group in order to cut down the size of its slice spectral sequence

and its coefficient group. This can been done at heights ≤ 2. At higher heights, however,

the quotienting process fails to preserve the higher coherent structure (E∞-ness) of the

spectrum.

For example, even at G = C2, the spectra BPR〈n〉 and the Real Johnson–Wilson theo-

ries ER(n) are not known to be rings when n ≥ 3 (see [45] and [41, Remark 4.19]). They

also have no clear connection to the Lubin–Tate spectra En. Therefore, despite its com-

putability, it is difficult to use ER(n) to obtain information about the higher real K-theories

EhG
n and the K(n)-local sphere.

Theorem 1.1 and Theorem 1.2 combine the computational power of the slice spectral

sequence with the import of the Lubin–Tate spectra. Preponderant in chromatic homo-

topy theory, the Lubin–Tate spectra have smaller coefficient rings than the localizations of

MU ((G)), so they are ideal candidates for resolving the K(n)-local sphere.

It is a consequence of Theorem 1.2 that En is an even C2-spectrum, and, in particular,

has pure and isotropic slice cells. Theorem 1.1 and Theorem 1.2 can be used to compute

the slice filtration of En for all n, considered as a G-spectrum, where G is a cyclic group

of order a power of 2. It will follow that En has pure and isotropic G-slice cells.

Once this is established, the proofs in [39] are applicable to EhG
n . Hence EhG

n satisfies a
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Gap Theorem and a Periodicity Theorem, and, moreover, there is a factorization

MU ((G)) En

D−1MU ((G)) .

In particular, there is a C8-equivariant map from the detection spectrum ΩO −→ E4.

1.2 Summary of contents

We now turn to a more detailed summary of the contents. To prove Theorem 1.1, we

first consider a specific Lubin–Tate spectra. Let Ê(n) denote the 2-periodic completed

Johnson–Wilson theory, with

π∗(Ê(n)) = Z2[[v1, v2, ..., vn−1]][u±], |u| = 2.

This spectrum is a version of Morava E-theory. In particular, it is a complex-oriented

E∞-ring spectrum. Work of Goerss, Hopkins, and Miller [28, 65] identifies the space of

E∞-ring automorphisms of Ê(n), and in particular ensures the existence of a central Galois

C2-action by E∞-ring maps. At the level of homotopy groups, C2 acts as the formal inverse

of the canonical formal group law.

There is also a natural C2-action on MU , by complex-conjugation. To this end, we first

prove the following:

Theorem 1.3. The spectrum Ê(n), with its central Galois C2-action, is Real oriented.

That is to say, it receives a C2-equivariant map

MUR −→ Ê(n)

9



from the Real cobordism spectrum MUR.

Leveraging the Hill–Hopkins–Ravenel norm functor [39], Theorem 1.1 is a formal con-

sequence of Theorem 1.3.

To prove Theorem 1.3 it will be helpful to sketch a construction of Ê(n) as a ring

spectrum, not yet worrying about any C2-actions. Recall that there is a periodic version of

complex cobordism, denoted MUP , that is an E∞-ring spectrum. We denote the symmetric

monoidal category of MUP -module spectra by MUP-Mod. The subgroupoid spanned by

the unit and its automorphisms is the space BGL1(MUP ), which is naturally an infinite

loop space. Associated to any map of spaces f : X → BGL1(MUP ) is a Thom MUP -

module Thom(f) [4]. The category of spaces over BGL1(MUP ) is symmetric monoidal,

and an associative algebra object in this category gives rise to an A∞-algebra structure on

its Thom spectrum [5].

Consider now the following diagram of categories:

A∞
(
Spaces/BGL1(MUP )

)
A∞(MUP-Mod) A∞(Spectra)

Spaces/B2GL1(MUP ) A∞(MUP-Mod) A∞(Spectra)

E∞(Spectra).

Thom

LK(n)

Forget

LK(n)Ω

Forget

Forget

(?)

In Section 2, we will construct a certain map of spaces X → B2GL1(MUP ). Applying

Ω and then the Thom spectrum construction, we obtain an A∞-MUP-algebra E(n) that

is a 2-periodic version of Johnson–Wilson theory. The K(n)-localization of E(n) is Ê(n),

equipped with the structure of an A∞-MUP-algebra.

It is a consequence of work of Goerss, Hopkins, and Miller [28, 65] that we may lift
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the A∞-ring spectrum underlying Ê(n) to an E∞-ring spectrum. Indeed, letting C' de-

note the maximal subgroupoid of a category C, they prove that the path-component of

A∞(Spectra)' containing Ê(n) is equivalent to a path component in E∞(Spectra)',

with the equivalence given by the forgetful functor.

Our strategy for the proof of Theorem 1.3 is to produce a Real orientation MUR → E(n)

into some ring spectrum E(n) with C2-action. The E(n) we produce is obviously equivalent

to Ê(n) as a spectrum, and the C2-action is obviously the Galois one up to homotopy.

However, it is not at all obvious that the full, coherent C2-action on E(n) is the Galois

action. To prove it, we must make full use of the Goerss–Hopkins–Miller theorem.

We produce E(n) via a C2-equivariant lift of the above construction of Ê(n):

Construction 1.4. In section 3, each of the categories in the diagram (?) will be equipped

with a C2-action, yielding an equivariant diagram:

A∞
(
Spaces/BGL1(MUP )

)
A∞(MUP -Mod) A∞(Spectra)

Spaces/BρGL1(MUP ) A∞(MUP -Mod) A∞(Spectra)

E∞(Spectra).

Thom

LK(n)

Forget

op

LK(n)Ωσ

Forget
op

trivial

Forget

(??)

The action on E∞(Spectra) will be the trivial C2-action. The action on A∞(Spectra)

will be the non-trivial op action that takes an algebra to its opposite.

Remark 1.5. By a homotopy fixed point in a category C with C2-action we mean an object
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in the category ChC2 . For example, a homotopy fixed point in E∞(Spectra) with its trivial

action is just an E∞-ring spectrum with C2-action by E∞-ring maps. A homotopy fixed

point for the op action on A∞(Spectra) is an A∞-algebra A equipped with an involution,

meaning a coherent algebra map σ : A → Aop. We believe the use of algebras with

involutions to be the most interesting feature of our construction.

In Sections 4 and 5, we will refine our map X → B2GL1(MUP ) to an equivariant map

X → BρGL1(MURP ).Applying Ωσ produces a homotopy fixed point of A∞
(
Spaces/BGL1(MUP )

)
,

which in turn equips E(n) with an A∞-involution. After K(n)-localizing, we obtain a C2-

action on Ê(n) by A∞-involutions. The Goerss–Hopkins–Miller Theorem [28, 65] proves

that any such action on Ê(n) may be lifted to one by E∞-ring maps. Since Goerss, Hop-

kins, and Miller furthermore calculate the entire space of E∞-ring automorphisms of Ê(n),

we may determine any E∞-C2-action on Ê(n) by its effect on homotopy groups.

In Section 6, we look towards computational applications of the above results. For

simplicity, we use a specific Morava E-theory En that is defined via a lift of the height n

Honda formal group law over F2n . Its homotopy groups are

π∗En = W (F2n)[[u1, u2, . . . , un−1]][u±].

Using Theorem 1.1 and leveraging Hu and Kriz’s computation of the homotopy fixed point

spectral sequence for MUR [44], we prove Theorem 1.2. As a corollary, we learn that as a

C2-spectrum, En is strongly even and Real Landweber exact in the sense of Hill–Meier [41].

Theorem 1.6. En is strongly even and Real Landweber exact. More precisely, πkρ−1En = 0

and πkρEn is a constant Mackey functor for all k ∈ Z. The Real orientation MUR → En
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induces a map

MURF(X)⊗MU2∗ (En)2∗ → EnF(X)

which is an isomorphism for every C2-spectrum X.

The second author’s detection theorem for MUhC2
R , joint with Li, Wang, and Xu [47],

allows us to conclude a detection theorem for EhC2
n . Roughly speaking, as the height

grows, an increasing amount of the Kervaire and κ̄-families in the stable homotopy groups

of spheres are detected by π∗E
hC2
n . More precisely, we prove in Section 7 the following:

Theorem 1.7 (Detection theorem for EhC2
n ).

1. For 1 ≤ i, j ≤ n, if the element hi ∈ Ext1,2i

A∗ (F2,F2) or h2
j ∈ Ext2,2j+1

A∗ (F2,F2) survives

to the E∞-page of the Adams spectral sequence, then its image under the Hurewicz

map π∗S→ π∗E
hC2
n is nonzero.

2. For 1 ≤ k ≤ n− 1, if the element gk ∈ Ext4,2k+2+2k+3

A∗ (F2,F2) survives to the E∞-page

of the Adams spectral sequence, then its image under the Hurewicz map π∗S→ π∗E
hC2
n

is nonzero.

Remark 1.8. We freely use the language of ∞-categories throughout this work, and will

refer to an∞-category simply as a category. If C is a symmetric monoidal category, we use

A∞(C) to denote the category of associative algebra objects in C, and similarly use E∞(C)

to denote commutative algebra objects. We will use Spaces to denote the symmetric

monoidal category of pointed spaces under cartesian product.
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2 Thom spectra and Johnson–Wilson theory

In this section we will describe a non-equivariant construction of Ê(n), a Landweber exact

Morava E-theory with

π∗(Ê(n)) ∼= Z2[[v1, v2, · · · , vn−1]][u±].

Our construction is a riff on Theorem 1.4 of [10].

We begin with a brief review of the classical theory of Thom spectra. Useful references,

in the language of ∞-categories we espouse here, include [4] and [5].

If R is an E∞-ring spectrum, then the category of R-modules acquires a symmetric

monoidal structure. The full subcategory consisting of the unit and its automorphisms is de-

noted BGL1(R). The symmetric monoidal structure equips BGL1(R) with an infinite loop

space structure, and we write BGL1(R) ' Ω∞Σgl1(R). The space GL1(R) ' Ω∞gl1(R)

sits in a pullback square

GL1(R) Ω∞R

π0(R)× π0(R),

where π0(R)× is the subset of units of π0(R) under multiplication. From this latter de-

scription of GL1(R), it is clear that

π∗(BGL1(R)) ∼= π∗−1(GL1(R)) ∼= π∗−1(R), for ∗ > 1.

Given a map of spaces X → BGL1(R), we can form the Thom R-module by taking

the colimit of the composite functor X → BGL1(R) ⊂ R-Mod. If X is a loop space and

X → BGL1(R) is a loop map, then the main theorem of [5] shows that the associated Thom
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spectrum is an A∞-R-algebra. Similarly, if X is an infinite loop space and X → BGL1(R)

an infinite loop map, then [5] shows that the associated Thom spectrum is an E∞-R-algebra.

Given two maps f1 : X1 → BGL1(R) and f2 : X2 → BGL1(R), we may use the infinite

loop space structure on BGL1(R) to produce a product map

(f1, f2) : X1 ×X2 → BGL1(R)× BGL1(R)→ BGL1(R).

The Thom R-module Thom(f1, f2) is the R-module smash product Thom(f1)∧R Thom(f2).

We may speak not only of BGL1(R), but also of the infinite loop space Pic(R). As

a symmetric monoidal category, Pic(R) is the full subcategory of R-Mod' spanned by

the invertible R-modules. It is a union of path components each of which is equivalent

to BGL1(R). Again, [5] explains that the colimit of an infinite loop map X → Pic(R) ⊂

R-Mod is an E∞-R-algebra. Our only use of this more general construction is to recall

the following classical example:

Example 2.1. The complex J-homomorphism is an infinite loop map BU × Z→ Pic(S),

obtained via the algebraic K-theory construction on
∐
BU(n) → Pic(S). The resulting

Thom E∞-ring spectrum is the periodic complex cobordism spectrum, denoted MUP . The

2-connective cover of spectra bu→ ku is an infinite loop map BU → BU×Z, which induces

a map of Thom E∞-ring spectra MU →MUP .

The map J : BU × Z → Pic(S) decomposes as a product of the infinite loop map

BU → BGL1(S) and the loop map Z → Pic(S). This yields an equivalence of Thom

A∞-ring spectra

MUP 'MU ∧
(∨
n∈Z

S2n

)
'
∨
n∈Z

Σ2nMU,

which allows us to calculate π∗(MUP ) ∼= π∗(MU)[u±] ∼= Z[x1, x2, · · · ][u±], where |u| = 2

15



and |xi| = 2i. The complex-conjugation action on BU × Z by infinite loop maps yields a

C2-action on MUP by E∞-ring homomorphisms; we will make no use of this action in the

current section, but much use of it in Sections 3 and 4.

We now specialize the discussion and embark on our construction of E(n). Suppose that

we choose a non-zero α ∈ π2(MUP ) ∼= π3(BGL1(MUP )). Then, e.g. by [10, Theorem 5.6]

or [5, Theorem 4.10], there is an equivalence of MUP -module spectra

Thom(α) ' Cofiber(Σ2MUP
α→MUP ) 'MUP/α.

If we choose a sequence of elements (α1, α2, · · · , αn) ∈ π2(MUP ), we may produce a

map

S3 × S3 × · · ·S3 → BGL1(MUP )

and an associated Thom MUP -module

Thom(α1, α2, · · · , αn) ' (MUP/α1)∧MUP (MUP/α2)∧MUP · · · ∧MUP (MUP/αn)

' MUP/(α1, α2, · · · , αn).

If the sequence (α1, α2, · · · , αn) is regular in π∗(MUP ), then the usual cofiber sequences

imply that

π∗(MUP/(α1, α2, · · · , αn)) ∼= π∗(MUP )/(α1, α2, · · · , αn).

Finally, we may even mod out an infinite regular sequence (α1, α2, · · · ) by using the natural

maps

S3 → S3 × S3 → S3 × S3 × S3 → · · ·
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to produce a filtered colimit of MUP -modules

MUP/α1 →MUP/(α1, α2)→MUP/(α1, α2, α3)→ · · · →MUP/(α1, α2, · · · ).

Proposition 2.2. Each map αi : S3 → BGL1(MUP ) can be given the structure of a loop

map. In other words, the above construction of the MUP -module MUP/(α1, α2, · · · ) can

be refined to a construction of an A∞-MUP -algebra.

Proof. It will suffice to construct a map α̃i : BS3 → B2GL1(MUP ) such that Ωα̃i ' αi.

This is equivalent to asking that the precomposition of the map α̃i : BS3 → B2GL1(MUP )

with the inclusion S4 → BS3 be adjoint to the map αi : S3 → BGL1(MUP ). In fact, any

map S4 → B2GL1(MUP ) automatically admits at least one factorization through BS3.

The reason is that BS3 admits an even cell decomposition: there is a filtered colimit

S4 = Y1 → Y2 → Y3 → · · · → BS3

and pushouts

S4n−1 Yn−1

D4n Yn.

This cell decomposition is easily seen from the model BS3 ' HP∞, the infinite dimensional

quaternionic projective space, where it is the canonical cell-decomposition corresponding

to the inclusions of the HP`. The obstructions to factoring a map Yn−1 → B2GL1(MUP )

through Yn therefore live in π4n−1(MUP ). This group is 0, as explained in Example 2.1.

To summarize, if we choose any regular sequence (α1, α2, · · · ) ∈ π∗(MUP ) ∼= Z[x1, x2, · · · ][u±],

each element of which lies in degree 2, then we may construct the quotient MUP -module
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MUP/(α1, α2, · · · ) as an A∞-MUP -algebra. The following standard lemma allows us to

use Proposition 2.2 to build Morava E-theories as A∞ algebras:

Lemma 2.3. Let G denote a formal group of height n over the field F2, and E the associated

Morava E-theory. Then there is a map MUP → E, classifying a universal deformation

of G, which may be described as first taking the quotient of MUP by a regular sequence

(α1, α2, · · · ) of degree 2 classes and then performing K(n)-localization.

Remark 2.4. If the reader prefers, they will lose no intuition by thinking of the regular

sequence

(α1, α2, · · · ) = (x2n−1u
2−2n − u, x2u

−1, x4u
−3, x5u

−4, x6u
−5, x8u

−7, · · · ),

where the classes xiu
−i+1 that are included are those such that either

• i is not one less than a power of 2, or

• i is larger that 2n − 1.

However, since there are non-isomorphic formal groups over F2, not every Morava E-theory

is obtained by quotienting out this particular sequence.

Definition 2.5. We denote by E(n) the quotient ofMUP by the regular sequence (α1, α2, · · · )

of Lemma 2.3, and say that E(n) is a 2-periodic form of Johnson–Wilson theory. Proposi-

tion 2.2 provides a (not necessarily unique) construction of E(n) as an A∞ MUP -algebra.

We are deliberately vague about which formal group G defines E(n), so that we may handle

all cases at once.

Proof of Lemma 2.3. The formal group G is classified by some map of (ungraded) rings
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π∗(BP )→ F2. View this map as the solid arrow in the diagram of ring homomorphisms

π∗(BP ) W (k)[[u1, u2, · · · , un−1]]

F2[u1, u2, · · · , un−1]/m2

F2.

L2

L1

According to [65, §5.10], as long as the lift L1 is chosen correctly, any further lift L2 will

classify a universal deformation. Furthermore, we may assume that vi maps to ui for

i ≤ n− 1 under L1, while vn maps to 1. Each vj for j > n then maps to some L1(vj) that

is an F2-linear combination of L1(v1), L1(v2), · · ·L1(vn). Write φ(vj) to denote the element

of π∗(BP ) that is given by the same linear combination of v1, v2, · · · vn. Then the map L2

can be chosen to be the quotient by the regular sequence (vn − 1, vn+1 − φ(vn+1), vn+2 −

φ(vn+2), · · · ).

Using the invertible element u to move elements by even degrees, we may identify

π2(MUP ) with π∗(MU). Inside of π∗(MU) we identify π∗(BP ) by viewing vi as x2i−1.

This allows us to talk about φ(vj) as a class in π2(MUP ).

To obtain the lemma, one mods out by the regular sequence (α1, α2, · · · ) ∈ π2(MUP ),

where one mods out, in order of i ∈ N:

• All xiu
−i+1 with i not one less than a power of 2.

• The class xiu
−i+1 − u where i = 2n − 1.

• The classes xiu
−i+1 − φ(vj) where i = 2j − 1 for j > n.
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3 Categories with involutions

In this section, we will construct a diagram of categories with C2-action and equivariant

functors between them:

A∞
(
Spaces/BGL1(MUP )

)
A∞(MUP -Mod) A∞(Spectra)

Spaces/BρGL1(MUP ) A∞(MUP -Mod) A∞(Spectra)

E∞(Spectra).

Thom

LK(n)

Forget

op

LK(n)Ωσ

Forget
op

trivial

Forget

(??)

Remark 3.1. An equivariant functor F : C1 → C2 between categories with C2-action is

an arrow in the functor category Hom(BC2,Cat∞). Such an arrow contains a substantial

amount of data, and is in particular not determined by its underlying functor Funderlying of

non-equivariant categories. For example, using

σi : Ci → Ci

to denote the C2-action on Ci, part of the data of F is a choice of natural isomorphism

σ2 ◦ Funderlying ' Funderlying ◦ σ1.

Nonetheless, for notational convenience we will be somewhat fast and loose regarding the

distinction between F and Funderlying.
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Let MonCatLax denote the category of monoidal categories and lax monoidal functors.

In the language of [51, §4.1], this is the category of coCartesian fibrations of ∞-operads

C⊗ → Ass⊗, with morphisms maps of ∞-operads C1 → C2 over Ass⊗ that are not required

to preserve coCartesian arrows. Remark 4.1.1.8 in [51] constructs a C2-action rev on

MonCatLax. If (C,⊗) is a monoidal∞-category, then (Crev,⊗rev) has the same underlying

category as C but the opposite ⊗-structure, with X ⊗rev Y in Crev calculated as Y ⊗ X

in C. We call a homotopy fixed point for this rev action a monoidal category (C,⊗) with

involution. Such a category is equipped with a coherent equivalence C '→ Crev.

Remark 4.1.1.8 also constructs an equivalence between A∞-algebra objects A in C and

A∞-algebra objects Arev in Crev. If C is equipped with an involution, then there is an

induced C2-action on A∞(C). In other words, there is an equivariant functor

MonCatLax Cat∞,

rev

A∞(−)

trivial

and so a homotopy fixed point in MonCatLax is sent to one in Cat∞.

Finally, we also consider the category SymMonCatLax of symmetric monoidal cate-

gories and lax functors. The last paragraph of Remark 4.1.1.8 of [51] ensures that the

sequence of forgetful functors

SymMonCatLax MonCatLax Cat∞
Forget Forget

is equivariant, with the trivial C2-action on SymMonCatLax, the rev action on MonCatLax,

and the trivial action on Cat∞.

Example 3.2. Consider the category Set of sets, equipped with the cartesian symmet-

ric monoidal structure. The trivial C2-action on Set by symmetric monoidal identity
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functors allows us to view Set as a homotopy fixed point for the trivial C2-action on

SymMonCatLax. This equips the underlying monoidal category of Set with a canoni-

cal involution, which in turn equips the category of monoids with a C2-action. This is the

classical op action that takes a monoid M to its opposite monoid Mop, which has the same

underlying set but the opposite multiplication.

Example 3.3. More generally, if C is any symmetric monoidal category, then the trivial

action on C by symmetric monoidal identity functors induces an involution, and therefore

an op action on A∞(C). There is an equivariant sequence of categories

E∞(C) A∞(C) C,Forget Forget

where E∞(C) and C are given the trivial C2-actions and A∞(C) is given the op action.

Taking C in Example 3.3 to be the category Spaces of pointed spaces, we obtain the

op action on A∞(Spaces). We call a homotopy fixed point for this action an A∞-space

with involution; such spaces, considered as groupoids, are special cases of categories with

involution. Any spectrum E with C2-action has an underlying A∞-space with involution

Ω∞E.

Example 3.4. Suppose that X is an A∞-space with involution. Then the monoidal category

Spaces/X is equipped with an involution. Concretely, this involution takes an algebra map

A→ X to the natural algebra map Aop → Xop inv−→ X.

Remark 3.5. If a monoid M happens to be a group, then there is a canonical equivalence

M ' Mop defined by the inverse homomorphism m 7→ m−1. Our next few observations

exploit an analogue of this equivalence for grouplike A∞-spaces. We denote by LoopSpaces

the full subcategory of grouplike objects in A∞(Spaces). Notice that the property of being
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grouplike is preserved under the op action on A∞(Spaces), so there is an op action on

LoopSpaces.

Construction 3.6. There is a diagram of equivalences of equivariant categories

ConnectedSpaces

LoopSpaces LoopSpaces

trivial

Ωσ Ω

op trivial

The equivariant functors Ω and Ωσ share the same underlying, non-equivariant functor.

Proof. It is classical that Ω and the bar construction provide inverse equivalences of the

non-equivariant categories ConnectedSpaces and LoopSpaces. This category has a

universal property: it is the initial pointed category with all connected colimits. As such,

any C2-action on it admits an essentially unique equivalence with the trivial C2-action.

Corollary 3.7. Suppose X is a grouplike A∞-space with involution. Then there exists

some connected space with C2-action BσX such that ΩσBσX ' X. There is a natural

C2-equivariant functor

Spaces/BσX
Ωσ−→ A∞

(
Spaces/X

)
,

where the latter object is the category with C2-action underlying the monoidal category with

involution from Example 3.4.

Consider the sequence of right adjoints

Spaces ConnectedSpaces A∞(Spaces) Spaces
(−)0 Ωσ Forget
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By Example 3.3, this is an equivariant functor from Spaces with trivial action to

Spaces with trivial action. As such it sends any space with C2-action X to some other

space with C2-action, which by abuse of notation we denote ΩσX.

Proposition 3.8. Suppose X is a space with C2-action. Then the space with C2-action

ΩσX is the equivariant function space Hom(Sσ, X). In other words, the action on a loop

S1 → X is given by both precomposing with the antipode on S1 and postcomposing with the

action on X.

Proof. By the Yoneda lemma, ΩσX must be the equivariant function space Hom(S1, X)

for some C2-action on S1. To determine that this action is by the antipode, and not the

trivial action, we look at the sequence of equivariant functors

Groups ConnectedSpaces LoopSpaces Groups,Bar Ωσ π0

which connects groups with trivial action to groups with op action. The only natural

isomorphism between a group and its opposite is given by g 7→ g−1, which is non-trivial on

underlying sets.

Specializing the discussion, recall that MUP is the Thom spectrum of the J homo-

morphism BU × Z J−→ BGL1(S). Since the J homomorphism is an infinite loop map,

MUP acquires the structure of an E∞-ring spectrum. The complex-conjugation action

by infinite loop maps on BU × Z gives MUP a C2-action by E∞-ring maps. This in

turn induces C2-actions by symmetric monoidal functors on the categories MUP-Mod and
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Spaces/BGL1(MUP ). There is a diagram of lax symmetric monoidal functors

Spaces/BGL1(MUP ) MUP-Mod Spectra

MUP-Mod Spectra.

Thom

LK(n)

Forget

LK(n)

Forget

Since the C2-action on MUP is unital, the entire diagram becomes C2-equivariant once

we equip Spectra with the trivial C2-action. We may thus view the diagram as one of

morphisms in the category of homotopy fixed points of SymMonCatLax with trivial action.

This in turn induces a diagram in the homotopy fixed point category of MonCatLax with

rev action, which yields a diagram of C2-equivariant categories

A∞
(
Spaces/BGL1(MUP )

)
A∞(MUP-Mod) A∞(Spectra)

A∞(MUP-Mod) A∞(Spectra).

Thom Forget

LK(n) LK(n)

Forget

This is nearly all of our diagram (??). To complete the diagram, we use Corollary 3.7 for

X ' BGL1(MUP ) and Example 3.3 for C the symmetric monoidal category of Spectra.

Remark 3.9. In the sequel, we will denote the space with C2-action BσBGL1(MURP ) by

BρGL1(MURP ).

4 An equivariant map to BρGL1(MURP )

The previous Section 3 constructs a C2-equivariant functor

Spaces/BρGL1(MUP ) → A∞(Spectra),
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which remains C2-equivariant after composing with K(n)-localization. Here, Spaces/BρGL1(MUP )

is granted its C2-action via the one on the space BρGL1(MUP ) = BρGL1(MURP ). The

category A∞(Spectra) is equipped with the op action of Example 3.3.

A homotopy fixed point for Spaces/BρGL1(MUP ) is just a map of spaces with C2-action

X → BρGL1(MUP ), and such a map therefore gives rise to a homotopy fixed point of

A∞(Spectra). In other words, an equivariant map of spaces with C2-action f : X →

BρGL1(MUP ) gives rise to a Thom A∞-algebra with involution (ΩσX)Ωσf .

One can apply the construction to ∗ → BρGL1(MUP ) to obtain MUP itself as an A∞-

algebra with involution. Using the equivariant map ∗ → X, we obtain a map of A∞-rings

with involution MUP → (ΩσX)Ωσf . The canonical Real orientation

Σ−2CP∞ →MUR →MURP

then equips (ΩσX)Ωσf with a Real orientation. If (ΩσX)Ωσf happens to also be a C2-

equivariant homotopy commutative ring, then [44, Theorem 2.25] implies that it receives

an equivariant homotopy commutative ring map from MUR.

In this section we will be concerned with the construction of a particular map of spaces

with C2-action into BρGL1(MURP ); the underlying map of spaces will be the morphism

BS3 × BS3 × · · · → B2GL1(MUP )

constructed in Section 2. Our aim is to construct both 2-periodic Johnson–Wilson theory

and Morava E-theory as A∞-rings with involution.

Remark 4.1. Recall that, among spaces with C2-action, we may identify certain repre-

sentation spheres Sa+bσ as the one-point compactifications of real C2-representations. We
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use σ to denote the sign representation, 1 to denote the trivial representation, and the

shorthand ρ to denote the regular representation 1 + σ. If X is a space or spectrum with

C2-action, then we use πa+bσ(X) to denote π0 of the space of equivariant maps Sa+bσ → X.

Of interest to us, Proposition 3.8 implies that πa+bσ(BσX) ∼= πa+(b−1)σ(X).

In [44], the equivariant homotopy groups of MURP are computed. For each n, πnρ−1(MURP ) ∼=

0. Additionally, there is a ring isomorphism

π∗ρ(MURP ) ∼= Z[x̄1, x̄2, · · · ][ū±],

where x̄i is in degree iρ and ū is in degree ρ. The forgetful map from the equivariant to

ordinary homotopy groups π∗ρ(MURP )→ π2∗(MUP ) takes x̄i to xi and ū to u.

Since GL1(MURP ) is defined via a pullback square of spaces with C2-action

GL1(MURP ) Ω∞MUP

π0(MURP )× π0(MURP ),

we learn that πa+bσ(BρGL1(MURP )) ∼= π(a−1)+(b−1)σ(MURP ) whenever a, b > 1.

Our next task is to understand the C2-equivariant space BσSρ+1. The analogue of the

even cell structure that played a prominent role in Section 2 is the following:

Proposition 4.2. The equivariant space BσSρ+1 arises as a filtered colimit

Y1 = S2ρ → Y2 → Y3 → · · · ,
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where there are homotopy pushout square of spaces with C2-action

S2nρ−1 Yn−1

∗ Yn.

Proof. This cell decomposition is due to Mike Hopkins. Recall that, non-equivariantly, the

cellular filtration on BS3 agrees with the standard filtration

HP1 → HP2 → · · · → HP∞ ' BS3,

where HP∞ is the infinite-dimensional quaternionic projective space. For us, the relevant

C2-action on this space is by conjugation by i. In other words, we act on a point

[z0 : z1 : z2 : · · · ]

by sending it to

[iz0i
−1 : iz1i

−1 : · · · ].

From the expression i(a+ bi+ cj + dk)i−1 = a+ bi− cj− dk we learn both that the action

is well-defined and that the C2-cells attached are multiples of 2ρ. The non-equivariant map

S4 → BS3 ' HP∞ adjoint to the identity is lifted to an equivariant map S2ρ → HP∞, given

by the inclusion HP1 → HP∞ under the described C2-action. This shows in particular that

HP∞ ' BσSρ+1.

As a corollary, exactly as in Section 2, we learn that any map S2ρ → BρGL1(MURP )

factors through BσSρ+1. Using the symmetric monoidal structure on Spaces/BρGL1(MUP ),

which commutes with the C2-action, we may construct from any sequence (α1, α2, · · · ) ∈
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πρMURP a map

Sρ+1 × Sρ+1 × · · · → BGL1(MURP ).

This then factors through at least one equivariant map

BσSρ+1 × BσSρ+1 × · · · → BρGL1(MURP ).

We choose for (α0, α1, · · · ) the same sequence as in Lemma 2.3, with the xi replaced by

x̄i. The reader may prefer to consider the special case in which the sequence is

(x̄2n−1ū
2−2n − ū, x̄2ū

−1, x̄4ū
−3, x̄5ū

−4, x̄6ū
−5, x̄8ū

−7, · · · ),

where the classes x̄iū
−i+1 that are included in the sequence are all those such that either

• i is not one less than a power of 2.

• i is greater than 2n − 1.

In any case, applying Ωσ and then the Thom construction we obtain a homotopy

fixed point of the category A∞(MUP −Mod). The underlying A∞-ring is E(n), the 2-

periodic version of Johnson–Wilson theory constructed in Section 2. Our constructions

produce a coherent A∞-ring map E(n)
'−→ E(n)op lifting the complex-conjugation C2-

action E(n) −→ E(n). We denote this ring with involution by E(n).

Remark 4.3. From this work, it seems that the natural action on E(n) is by A∞-

involutions rather than A∞-algebra maps. However, we can sketch an approach to pro-

ducing an action by A∞-algebra maps in the spirit of this paper.

Using Theorem 1.4 of [10], E(n) can be built as a Thom spectrum of a map SU →

BGL1(MUP ). Obstruction theory easily lifts this to a map BSU → B2GL1(MUP ),
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which produces the same involution we see above. We may go further though, and note

that B3SU also has an even cell structure. This means that it is easy to produce maps

B3SU → B4GL1(MUP ), but as noted in [22, §6] it is not so easy to know which maps

BSU → B2GL1(MUP ) these lie over. If one could produce E(n) as a Thom E3-MUP -

algebra in this way, non-equivariantly, it seems likely that one could produce an E2σ+1-

structure on the equivariant E(n). In particular, this would mean the C2-action on E(n)

is by A∞-ring homomorphisms.

This may be of interest in light of [45], in which Kitchloo, Lorman, and Wilson provide

a homotopy commutative and associative ring structure up to phantom maps on Real

Johnson-Wilson theory. We thank Kitchloo for pointing out to us that the difficulty with

phantom maps disappears after K(n)-localization.

5 Proof of Theorem 1.1

In the previous section, we constructed an A∞-ring spectrum E(n) with a C2-action by

A∞-involutions. After K(n)-localizing, we obtain a C2-action by involutions on Morava

E-theory Ê(n).

Now, consider the equivariant sequence of forgetful functors

E∞(Spectra)→ A∞(Spectra)→ Spectra,

where both E∞(Spectra) and Spectra are given the trivial C2-action, but A∞(Spectra)

is given the op action. We may restrict this sequence to an equivariant sequence of subcat-

egories

C3 → C2 → C1,
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where

• C1 is the category of all spectra equivalent to Ê(n) and equivalences between them.

• C2 is the category of A∞-ring spectra with underlying spectrum Ê(n), and equiva-

lences between them.

• C3 is the category of E∞-ring spectra with underlying spectrum Ê(n), and equiva-

lences between them.

Note that a map of categories with C2-action is equivalence if and only if the underly-

ing non-equivariant functor is an equivalence of non-equivariant categories. The Goerss–

Hopkins–Miller theorem [28, 65] says that the map C3 → C2 is an equivalence of categories.

It follows that any homotopy fixed point of C2 may uniquely be lifted to one of C3. Thus, the

C2-action on Ê(n) by A∞-involutions has a unique lift to a C2-action by E∞-ring automor-

phisms. According to Goerss–Hopkins–Miller [65], the categories C3 and C2 are equivalent

to BG, where G is the Morava stabilizer group. A C2-action on Ê(n) by E∞-ring maps

is therefore the data of a map BC2 → BG, which is the data of a group homomorphism

C2 → G. It follows by direct calculation that any C2-action by E∞-ring maps is determined

by its effect on homotopy groups. The Real orientation MUR → E(n)→ Ê(n) determines

that the C2-action we have constructed is the central one that acts by the formal inverse,

proving Theorem 1.3.

Remark 5.1. Our discussion of algebras with involution, and our use of the Goerss–

Hopkins–Miller Theorem, may both be entirely avoided if one only wants to know that the

C2-action on Ê(n) is the Galois one in the homotopy category of spectra. It is, however,

not a priori clear that there is a unique lift of this homotopy C2-action on Ê(n) to a fully

coherent C2-action.
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To prove Theorem 1.1, recall that the assignment (k,G) 7→ E(k,G) is a functor to

E∞(Spectra). In particular, for any field extension F2 ⊂ k there are induced C2-equivariant

homotopy ring maps MUR → Ê(n) → E(k,G) involving some version of Ê(n). If G is a

finite subgroup of the E∞-ring automorphisms of E(k,G) containing the central C2, there

then arises a sequence of homotopy ring maps

NG
C2
MUR −→ NG

C2
E(k,G) −→ E(k,G).

The existence of the last homomorphism follows from the fact that the norm is an adjunction

between E∞-rings with C2-action and E∞-rings with G-action (see [41, §2.2]).

6 Real Landweber exactness and proof of Theorem 1.2

In the remainder of the paper, for simplicity, we use a specific Morava E-theory En that is

defined via a lift of the height n Honda formal group law over F2n . Its homotopy groups

are

π∗En = W (F2n)[[u1, u2, . . . , un−1]][u±].

and the 2-typical formal group law over π∗En is determined by the map π∗BP → π∗En

sending

vi 7→


uiu

2i−1 1 ≤ i ≤ n− 1

u2n−1 i = n

0 i > n.

Our results are all easily generalized to other variants of Morava E-theory.

In this section, we will show that En, as a C2-spectrum, is Real Landweber exact in the

sense of [41]. We do so by completely computing the RO(C2)-graded homotopy fixed point
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spectral sequence of En.

6.1 RO(C2)-graded homotopy fixed point spectral sequence of En

So far, we have constructed a C2-equivariant map from

MUR → En.

Here, the C2-action on MUR is by complex conjugation, and the C2-action on En is by the

Goerss–Hopkins–Miller E∞-action. The existence of this equivariant map will help us in

computing the C2-homotopy fixed point spectral sequence of En. In particular, the map

MUR → En induces the map of spectral sequences

C2- HFPSS(MUR)→ C2- HFPSS(En)

of C2-equivariant homotopy fixed point spectral sequences. Since both the complex conju-

gation action on MUR and the Galois C2-action on En are by E∞-ring maps, both spectral

sequences are multiplicative (the map between them is not necessarily a multiplicative map,

but this is perfectly fine). At this point, we will replace MUR by BPR because everything

is 2-local, and argument below is exactly the same regardless of whether we are using MUR

or BPR. Moreover, since MUR splits as a wedge of suspensions of BPR’s, the homotopy

fixed point spectral sequence of BPR has the advantage of having less classes than MUR

but yet still retaining the important 2-local information that we need.

By [41, Corollary 4.7], the E2-pages of the RO(C2)-graded homotopy fixed point spectral
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sequences of BPR and En are

Es,t
2 (BP hC2

R ) = Z[v̄1, v̄2, . . .]⊗ Z[u±2σ, aσ]/(2aσ)

Es,t
2 (EhC2

n ) = W (F2n)[[ū1, ū2, . . . , ūn−1]][ū±]⊗ Z[u±2σ, aσ]/(2aσ).

On the E2-page, the class v̄i is in stem |v̄i| = iρ for i ≥ 1; the class ūi is in stem |ūi| = 0

for 1 ≤ i ≤ n − 1; and the class ū is in stem |ū| = ρ. The classes u2σ and aσ are in stems

2− 2σ and −σ, respectively. They can be defined more generally as follows:

Definition 6.1 (aV and uV ). Let V be a representation of G of dimension d.

1. aV ∈ πG−V S0 is the map corresponding to the inclusion S0 ↪→ SV induced by {0} ⊂ V .

2. If V is oriented, uV ∈ πGd−VHZ is the class of the generator of HG
d (SV ;HZ).

Proof of Theorem 1.2. In [44], Hu and Kriz completely computed the C2-homotopy fixed

point spectral sequence of MUR and BPR. In particular, the classes v̄i for all i ≥ 1 and the

class aσ are permanent cycles. All the differentials are determined by the differentials

d2k+1−1(u2k−1

2σ ) = v̄ka
2k+1−1
σ , k ≥ 1

and multiplicative structures. There are no nontrivial extension problems on the E∞-page.

On the E2-page, the map

C2- HFPSS(BPR)→ C2- HFPSS(En)
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Figure 1: Important d3-differentials and surviving torsion classes on the E3-page.
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Figure 2: Important d7-differentials and surviving torsion classes on the E7-page.
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Figure 3: Important d15-differentials and surviving torsion classes on the E15-page.
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of spectral sequences sends the classes u2σ 7→ u2σ, aσ 7→ aσ, and

v̄i 7→


ūiū

2i−1 1 ≤ i ≤ n− 1

ū2n−1 i = n

0 i > n.

We will first prove that the classes ū1, . . ., ūn−1, ū±, and aσ are permanent cycles in

C2- HFPSS(En). Since the classes v̄i, i ≥ 1, and aσ are permanent cycles in C2- HFPSS(BPR),

their images are also permanent cycles in C2- HFPSS(En). This shows that the classes

ūiū
2i−1, 1 ≤ i ≤ n− 1, ū2n−1, and aσ are permanent cycles in C2- HFPSS(En).

Now, consider the non-equivariant map

u : S2 → i∗eEn.

Applying the Hill–Hopkins–Ravenel norm functor NC2
e (−) ([39]) produces the equivariant

map

NC2
e (u) = ū2 : S2ρ → NC2

e i∗eEn → En,

where the last map is the co-unit map of the norm–restriction adjunction

NC2
e : Commutative C2-spectra� Commutative spectra : i∗e.

Since the element NC2
e (u) = ū2 is an actual element in πC2

F En, it is a permanent cycle. This,

combined with the fact that ū2n−1 is a permanent cycle, shows that ū = ū2n−1 · (ū−2)2n−1

is a permanent cycle. It follows from the previous paragraph that the classes ū1, . . ., ūn−1,

and ū± are all permanent cycles in C2- HFPSS(En).
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It remains to produce the differentials in C2- HFPSS(En). We will show by induction on

k, 1 ≤ k ≤ n, that all the differentials in C2- HFPSS(En) are determined by the differentials

d2k+1−1(u2k−1

2σ ) = ūkū
2k−1a2k+1−1

σ , 1 ≤ k ≤ n− 1,

d2n+1−1(u2n−1

2σ ) = ū2n−1a2n+1−1
σ , k = n

and multiplicative structures.

For the base case, when k = 1, there is a d3-differential

d3(u2σ) = v̄1a
3
σ

in C2- HFPSS(BPR). Under the map

C2- HFPSS(BPR)→ C2- HFPSS(En)

of spectral sequences, the the source is mapped to u2σ and the target is mapped to ū1ūa
3
σ.

It follows that there is a d3-differential

d3(u2σ) = ū1ūa
3
σ

in C2- HFPSS(En). Multiplying this differential by the permanent cycles produced before

determines the rest of the d3-differentials. These are all the d3-differentials because there

are no more room for other d3-differentials after these differentials.

Suppose now that the induction hypothesis holds for all 1 ≤ k ≤ r− 1 < n. For degree

reasons, after the d2r−1-differentials, the next possible differential is of length d2r+1−1. In
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C2- HFPSS(BPR), there is a d2r+1−1-differential

d2r+1−1(u2r−1

2σ ) = v̄ra
2r+1−1
σ .

The map

C2- HFPSS(BPR)→ C2- HFPSS(En)

of spectral sequences sends the source to u2r−1

2σ and the target to

v̄ra
2r+1−1
σ 7→

 ūrū
2r−1a2r+1−1

σ r < n

ū2n−1a2n+1−1
σ r = n.

In particular, both images are not zero. Moreover, the image of the target must be killed

by a differential of length at most 2r+1 − 1. By degree reasons, the image of the target

cannot be killed by a shorter differential. It follows that there is a d2r+1−1-differential

d2r+1−1(u2r−1

2σ ) =

 ūrū
2r−1a2r+1−1

σ r < n

ū2n−1a2n+1−1
σ r = n.

The rest of the d2r+1−1-differentials are produced by multiplying this differential with per-

manent cycles. After these differentials, there are no room for other d2r+1−1-differentials by

degree reasons. This concludes the proof of the theorem. �

Remark 6.2. As an example, Figures 4–7 show the differentials in the integer-graded part

of C2- HFPSS(E3). The spectral sequence converges after the E15-page and we learn that

π∗E
hC2
3 is 32-periodic.
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Figure 4: d3-differentials in the integer graded part of C2- HFPSS(E3).
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F8[[ū2]]

Figure 5: d7-differentials in the integer graded part of C2- HFPSS(E3).
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Figure 6: d15-differentials in the integer graded part of C2- HFPSS(E3).
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Figure 7: E∞-page of the integer graded part of C2- HFPSS(E3).
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6.2 Real Landweber exactness

We will now use the C2-homotopy fixed point spectral sequence of En to show that En is

Real Landweber exact. First, we will recall some definitions and theorems from [41].

Definition 6.3. [[6]]Let E be a C2-equivariant homotopy commutative ring spectrum. A

Real orientation of E is a class x̄ ∈ Ẽρ
C2

(CP∞) whose restriction to

Ẽρ
C2

(CP1) = Ẽρ
C2

(Sρ) ∼= E0
C2

(pt)

is the unit. Here, we are viewing CPn as a C2-space via complex conjugation.

By [44, Theorem 2.25], Real orientations of E are in one-to-one correspondence with

homotopy commutative maps MUR → E of C2-ring spectra.

Definition 6.4. ([41, Definition 3.1]). A C2-spectrum ER is even if πkρ−1ER = 0 for all

k ∈ Z. It is called strongly even if additionally πkρER is a constant Mackey functor for all

k ∈ Z, i.e., if the restriction

πC2
kρER→ πekρER ∼= πe2kER

is an isomorphism.

Even spectra satisfy very nice properties. In particular, Hill–Meier further proved ([41,

Lemma 3.3]) that if a C2-spectrum ER is even, then ER is Real orientable. They proved

this by showing that all the obstructions to having a Real orientation lie in the groups

π2k−1ER and πC2
kρ−1ER, which are all 0 by definition.

Definition 6.5. ([41, Definition 3.5]). Let ER be a strongly even C2-spectrum with un-

derlying spectrum E. Then ER is called Real Landweber exact if for every Real orientation
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MUR → ER the induced map

MURF(X)⊗MU2∗ E2∗ → ERF(X)

is an isomorphism for every C2-spectrum X.

Here, we are treating MURF as a graded MU2∗-module because the restriction map

(MUR)kρ → MU2k is an isomorphism, and it defines a graded ring morphism MU2∗ →

MURF by sending elements of degree 2k to elements of degree kρ.

Theorem 6.6 ([41], Real Landweber exact functor theorem). Let ER be a strongly even

C2-spectrum whose underlying spectrum E is Landweber exact. Then ER is Real Landweber

exact.

For En, its underlying spectrum is clearly Landweber exact. In light of Theorem 6.6,

we prove the following:

Theorem 6.7. En is a Real Landweber exact spectrum.

Proof. By Theorem 6.6, it suffices to show that En is strongly even. By Thereom 1.2, the

classes ū1, . . ., ūn−1, and ū± are permanent cycles in C2- HFPSS(En). The restriction of

these classes to πe2∗En are u1, . . ., un−1, and u±, respectively. Furthermore, there are no

other classes in πC2
∗ρEn. This shows that the restriction map

πC2
∗ρEn → πe2∗En

is an isomorphism, hence πkρEn is a constant Mackey functor for all k ∈ Z.

Classically, we already know that πe2k−1En = 0. The following lemma shows that

πkρ−1En = 0 for all k ∈ Z.
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Lemma 6.8. The groups πC2
kρ−1En = 0 for all k ∈ Z.

Proof. In C2- HFPSS(En), the classes ū± are permanent cycles. Since |ū| = ρ, multiplying

by ūk produces an isomorphism

πC2
F En

∼=→ πC2
F+kρEn.

It follows that in order to show πC2
kρ−1En = 0 for k ∈ Z, it suffices to prove πC2

−1En = 0.

Recall that the E2-page of C2- HFPSS(En) is

Es,t
2 (EhC2

n ) = W (F2n)[[ū1, . . . , ūn−1]][ū±]⊗ Z[u±2σ, aσ]/(2aσ).

As in Figure 7, every class on the 0-line is of the form

W (F2n)[[ū1, . . . , ūn−1]]ūaub2σ,

where a, b ∈ Z, and every class of filtration greater than 0 is of the form

F2n [[ū1, . . . , ūn−1]]ūaub2σa
c
σ,

where a, b ∈ Z, and c > 0. For degree reasons, the classes on the (−1)-stem are all of the

form

F2n [[ū1, . . . , ūn−1]]ū2`−1u−`2σa
4`−1
σ ,

where ` ≥ 1. The relevant differentials that have source or target in the (−1)-stem are all
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generated by

d2r+1−1(u−2r−1

2σ ) = d2r+1−1(u−2r

2σ ·u2r−1

2σ ) = u−2r

2σ ·d2r+1−1(u2r−1

2σ ) =

 ūrū
2r−1u−2r

2σ a2r+1−1
σ 0 < r < n

ū2n−1u−2n

2σ a2n+1−1
σ r = n.

We will analyze these differentials one-by-one:

(1) The relevant d3-differentials are all generated by the differential

d3(u−1
2σ ) = ū1ūu

−2
2σ a

3
σ.

The classes at ū2`−1u−`2σa
4`−1
σ , with ` ≡ 1 (mod 2), are the sources of these differentials, and

hence they die after the E3-page. The classes at ū2`−1u−`2σa
4`−1
σ , with ` ≡ 0 (mod 2), are

the targets. These differentials quotient out the principal ideal (ū1) at these targets. The

remaining classes at these targets are of the form

F2n [[ū2, . . . , ūn−1]]ū2`−1u−`2σa
4`−1
σ ,

with ` ≡ 0 (mod 2).

(2) The relevant d7-differentials are all generated by the differential

d7(u−2
2σ ) = ū2ū

3u−4
2σ a

7
σ.

The classes at ū2`−1u−`2σa
4`−1
σ , with ` ≡ 2 (mod 4), are the sources of these differentials, and

hence they die after the E7-page. The classes at ū2`−1u−`2σa
4`−1
σ , with ` ≡ 0 (mod 4), are
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the targets. These differentials quotient out the principal ideal (ū2) at these targets. The

remaining classes at these targets are of the form

F2n [[ū3, . . . , ūn−1]]ū2`−1u−`2σa
4`−1
σ ,

with ` ≡ 0 (mod 4).

(3) In general, for 0 < r < n, the relevant d2r+1−1-differentials are all generated by the

differential

d2r+1−1(u−2r−1

2σ ) = ūrū
2r−1u−2r

2σ a2r+1−1
σ .

The classes at ū2`−1u−`2σa
4`−1
σ , with ` ≡ 2r−1 (mod 2r), are the sources of these differen-

tials, and hence they die after the E2r+1−1-page. The classes at ū2`−1u−`2σa
4`−1
σ , with ` ≡ 0

(mod 2r), are the targets. These differentials quotient out the principal ideal (ūr) at these

targets. The remaining classes at these targets are of the form

F2n [[ūr+1, . . . , ūn−1]]ū2`−1u−`2σa
4`−1
σ ,

with ` ≡ 0 (mod 2r).

(4) The relevant d2n+1−1-differentials are all generated by the differential

d2n+1−1(u−2n−1

2σ ) = ū2n−1u−2n

2σ a2n+1−1
σ .

The classes at ū2`−1u−`2σa
4`−1
σ , with ` ≡ 2n−1 (mod 2n), are the sources of these differen-

tials, and hence they die after the E2n+1−1-page. The classes at ū2`−1u−`2σa
4`−1
σ , with ` ≡ 0
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(mod 2n), are the targets. They also die after these differentials because the only classes

at these targets now are ū2`−1u−`2σa
4`−1
σ .

It follows that every class at the (−1)-stem vanish after the E2n+1−1-page. This implies

πC2
−1En = 0, as desired.

7 Hurewicz images

In this section, we will prove that π∗E
hC2
n detects the Hopf elements, the Kervaire classes,

and the κ̄-family. The case when n = 1 and n = 2 are previously known. When n = 1,

E1 = KU∧2 and EhC2
1 = KO∧2 . It is well-known that π∗KO

∧
2 detects η ∈ π1S and η2 ∈ π2S

([7]). When n = 2, the Mahowald–Rezk transfer argument ([52]) shows that π∗E
hC2
2 detects

η, η2, ν ∈ π3S, ν2 ∈ π6S, and κ̄ ∈ π20S.

The Hopf elements are represented by the elements

hi ∈ Ext1,2i

A∗ (F2,F2)

on the E2-page of the classical Adams spectral sequence at the prime 2. By Adam’s solution

of the Hopf invariant one problem [1], only h0, h1, h2, and h3 survive to the E∞-page. By

Browder’s work [20], the Kervaire classes θj ∈ π2j+1−2S, if they exist, are represented by

the elements

h2
j ∈ Ext2,2j+1

A∗ (F2,F2)

on the E2-page. For j ≤ 5, h2
j survive. The case θ4 ∈ π30S is due to Barratt–Mahowald–
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Tangora [53, 9], and the case θ5 ∈ π62S is due to Barratt–Jones–Mahowald [8]. The fate

of h2
6 is unknown. Hill–Hopkins–Ravenel’s result [39] shows that the h2

j , for j ≥ 7, do not

survive to the E∞-page.

To introduce the κ̄-family, we appeal to Lin’s complete classification of Ext≤4,t
A∗ (F2,F2) in

[48]. In his classification, Lin showed that there is a family {gk | k ≥ 1} of indecomposable

elements with

gk ∈ Ext4,2k+2+2k+3

A∗ (F2,F2).

The first element of this family, g1, is in bidegree (4, 24). It survives the Adams spectral

sequence to become κ̄ ∈ π20S. It is for this reason that we name this family the κ̄-family.

The element g2 also survives to become the element κ̄2 ∈ π44S. For k ≥ 3, the fate of gk is

unknown.

In [47], the second author, together with Li, Wang, and Xu, proved detection theorems

for the Hurewicz images of MUC2
R ≈MUhC2

R and BPC2
R ≈ BP hC2

R (the equivalences between

the C2-fixed points and the C2-homotopy fixed points for MUR and BPR are due to Hu

and Kriz [44, Theorem 4.1]).

Theorem 7.1. (Li–Shi–Wang–Xu, Detection Theorems for MUR and BPR). The Hopf

elements, the Kervaire classes, and the κ̄-family are detected by the Hurewicz maps π∗S→

π∗MUC2
R
∼= π∗MUhC2

R and π∗S→ π∗BP
C2
R
∼= π∗BP

hC2
R .

Given the discussion above, Theorem 7.1 shows that the elements η, ν, σ, and θj, for

1 ≤ j ≤ 5, are detected by πC2
∗ MUhC2

R and πC2
∗ BP

hC2
R . The last unknown Kervaire class θ6

and the classes gk for k ≥ 3 will also be detected, should they survive the Adams spectral

sequence.

The proof of Theorem 7.1 requires the C2-equivariant Adams spectral sequence devel-
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oped by Greenlees [29, 30, 31] and Hu–Kriz [44]. Since MUR splits as a wedge of suspensions

of BPR 2-locally, we only need to focus on BPR. There is a map of Adams spectral sequences

classical Adams spectral sequence of S (π∗S)∧2

C2-equivariant Adams spectral sequence of S (πC2
F F (EC2+, S))∧2

C2-equivariant Adams spectral sequence of BPR (πC2
F F (EC2+, BPR))∧2 .

It turns out that for degree reasons, the C2-equivariant Adams spectral sequence for

BPR degenerates at the E2-page. From this, Theorem 7.1 follows easily from the following

algebraic statement:

Theorem 7.2 (Li–Shi–Wang–Xu, Algebraic Detection Theorem). The images of the ele-

ments {hi | i ≥ 1}, {h2
j | j ≥ 1}, and {gk | k ≥ 1} on the E2-page of the classical Adams

spectral sequence of S are nonzero on the E2-page of the C2-equivariant Adams spectral

sequence of BPR.

The proof of Theorem 7.2 requires an analysis of the algebraic maps

ExtA∗(F2,F2)→ ExtAccF (Hc
F, H

c
F)→ ExtΛccF

(Hc
F, H

c
F).

These are the maps on the E2-pages of the Adams spectral sequences above. Here, A∗ :=

(HF2 ∧HF2)∗ is the classical dual Steenrod algebra; Hc
F := F (EC2+, HF2)F is the Borel

C2-equivariant Eilenberg–MacLane spectrum; AccF := F (EC2+, HF2 ∧ HF2)F is the Borel

C2-equivariant dual Steenrod algebra; and Λcc
F is a quotient of AccF. Hu and Kriz [44]

studied AccF and completely computed the Hopf algebroid structure of (Hc
F,AccF). Using
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their formulas, it is possible to compute the map

(HF2,A∗)→ (Hc
F,AccF)→ (Hc

F,Λ
cc
F)

of Hopf-algebroids. Filtering these Hopf algebroids compatibly produces maps of May

spectral sequences:

May spectral sequence of S ExtA∗(F2,F2)

C2-equivariant May spectral sequence of S ExtAccF (Hc
F, H

c
F)

C2-equivariant May spectral sequence of BPR ExtΛccF
(Hc
F, H

c
F).

There is a connection between the C2-equivariant May spectral sequence of BPR and

the homotopy fixed point spectral sequence of BPR:

Theorem 7.3 (Li–Shi–Wang–Xu). The C2-equivariant May spectral sequence of BPR is

isomorphic to the associated-graded homotopy fixed point spectral sequence of BPR as RO(C2)-

graded spectral sequences.

By the “associated-graded homotopy fixed point spectral sequence”, we mean that

whenever we see a Z-class on the E2-page, we replace it by a tower of Z/2-classes. Since

the equivariant Adams spectral sequence of BPR degenerates, the E∞-page of the C2-

equivariant May spectral sequence of BPR is an associated-graded of πC2
F F (EC2+, BPR).

The isomorphism in Theorem 7.3 allows us to identify the classes in C2- HFPSS(En) that

detects the Hopf elements, the Kervaire classes, and the κ̄-family. This is crucial for tackling

detection theorems of EhC2
n .

Using Hu–Kriz’s formulas, one can compute the maps on the E2-pages of the May
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spectral sequences above, as well as all the differentials in the C2-equivariant May spectral

sequence of BPR.

Theorem 7.4 (Li–Shi–Wang–Xu). On the E2-page of the map

MaySS(S)→ C2-MaySS(S)→ C2-MaySS(BPR) ∼= C2- HFPSS(BPR),

The classes

hi 7→ v̄ia
2i−1
σ ,

h2
j 7→ v̄2

ja
2(2j−1)
σ ,

h4
2k 7→ v̄4

k+1u
2k+1

2σ a4(2k−1)
σ .

These classes all survive to the E∞-page in C2- HFPSS(BPR).

Since En is Real oriented and everything is 2-local, a Real orientation gives us a C2-

equivariant homotopy commutative map

BPR → En,

which induces a multiplicative map

C2- HFPSS(BPR)→ C2- HFPSS(En)
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of spectral sequences. On the E2-page, this map sends the classes u2σ 7→ u2σ, aσ 7→ aσ, and

v̄i 7→


ūiū

2i−1 1 ≤ i ≤ n− 1

ū2n−1 i = n

0 i > n.

(7.1)

Theorem 7.5 (Detection Theorem for EhC2
n ).

1. For 1 ≤ i, j ≤ n, if the element hi ∈ Ext1,2i

A∗ (F2,F2) or h2
j ∈ Ext2,2j+1

A∗ (F2,F2) survives

to the E∞-page of the Adams spectral sequence, then its image under the Hurewicz

map π∗S→ π∗E
hC2
n is nonzero.

2. For 1 ≤ k ≤ n− 1, if the element gk ∈ Ext4,2k+2+2k+3

A∗ (F2,F2) survives to the E∞-page

of the Adams spectral sequence, then its image under the Hurewicz map π∗S→ π∗E
hC2
n

is nonzero.

Proof. By Theorem 7.4 and (7.1), the composite map

MaySS(S)→ C2-MaySS(BPR) ∼= C2- HFPSS(BPR)→ C2- HFPSS(En)
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on the E2-pages sends the classes

hi 7→ v̄ia
2i−1
σ 7→


ūiū

2i−1a2i−1
σ 1 ≤ i ≤ n− 1

ū2n−1a2n−1
σ i = n

0 i > n,

h2
j 7→ v̄2

ja
2(2j−1)
σ 7→


ū2
j ū

2(2j−1)a
2(2j−1)
σ 1 ≤ j ≤ n− 1

ū2(2n−1)a
2(2n−1)
σ j = n

0 j > n,

h4
2k 7→ v̄4

k+1u
2k+1

2σ a4(2k−1)
σ 7→


ū4
k+1ū

4(2k+1−1)u2k+1

2σ a
4(2k−1)
σ 1 ≤ k ≤ n− 2

ū4(2n−1)u2n

2σa
4(2n−1−1)
σ k = n− 1

0 k > n− 1.

We know all the differentials in C2- HFPSS(En) from Section 6. From these differentials,

it is clear that all the nonzero images on the E2-page survive to the E∞-page to represent

elements in π∗E
hC2
n . The statement of the theorem follows.

Corollary 7.6 (Detection Theorem for EhG
n ). Let G be a finite subgroup of the Morava

stabilizer group Gn containing the centralizer subgroup C2.

1. For 1 ≤ i, j ≤ n, if the element hi ∈ Ext1,2i

A∗ (F2,F2) or h2
j ∈ Ext2,2j+1

A∗ (F2,F2) survives

to the E∞-page of the Adams spectral sequence, then its image under the Hurewicz

map π∗S→ π∗E
hG
n is nonzero.

2. For 1 ≤ k ≤ n− 1, if the element gk ∈ Ext4,2k+2+2k+3

A∗ (F2,F2) survives to the E∞-page

of the Adams spectral sequence, then its image under the Hurewicz map π∗S→ π∗E
hG
n

is nonzero.
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Proof. Consider the following factorization of the unit map S→ EhC2
n :

EhG
n = F (EG+, En)G F (EG+, En)C2 = EhC2

n

S

The claims now follow easily from Theorem 7.5.

8 The slice spectral sequence of a C4-equivariant height-

4 theory

The second part of this thesis (Sections 8–20) is based on joint work with Michael A. Hill,

Guozhen Wang, and Zhouli Xu. The main result of the second part of this thesis is the

following:

Theorem 8.1. There exists a height-4 Lubin–Tate theory E4 such that the C4-equivariant

orientation BP((C4)) −→ E4 factors through BP((C4))〈2〉:

BP((C4)) E4

BP((C4))〈2〉

Furthermore, after inverting a certain element D2 ∈ πC4
24ρ4

BP((C4))〈2〉 and applying K(4)-

localization, there is an equivalence

(LK(4)D
−1
2 BP((C4))〈2〉)C4 ' E

hGal(F24/F2)nC12

4 .

We completely compute the slice spectral sequence of BP((C4))〈2〉 (see Figure 8). The spectral
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sequence degenerates after the E61-page and has a horizontal vanishing line of filtration 61.

Furthermore, the C4-fixed points of the C4-spectrum D−1
2 BP((C4))〈2〉 is 384-periodic.

Roughly speaking, the C4-spectrum BP((C4))〈2〉 encodes the universal example of a

height-4 formal group law with a C4-action extending the formal inversion action.

At height 2, Hill, Hopkins, and Ravenel [40] studied the slice spectral sequence of the

spectrum D−1
1 BP((C4))〈1〉. They showed that D−1

1 BP((C4))〈1〉 is 32-periodic and is closely

related to a height-2 Lubin–Tate theory, which has also been studied by Behrens–Ormsby

[17] as TMF0(5).

The spectrum D−1
2 BP((C4))〈2〉, which is 384-periodic, is a height-4 generalization of

D−1
1 BP((C4))〈1〉. This can be viewed as a different perspective than that of Behrens and

Lawson [16] to generalizing TMF with level structures to higher heights.

8.1 Motivation and main results

In 2009, Hill, Hopkins, and Ravenel [39] proved that the Kervaire invariant elements θj do

not exist for j ≥ 7. A key construction in their proof is the spectrum Ω, which detects all

the Kervaire invariant elements in the sense that if θj ∈ π2j+1−2S is an element of Kervaire

invariant 1, then the Hurewicz image of θj under the map π∗S→ π∗Ω is nonzero (see also

[54, 37, 38] for surveys on the result).

The detecting spectrum Ω is constructed using equivariant homotopy theory as the fixed

points of a C8-spectrum ΩO, which in turn is a chromatic-type localization of MU((C8)) :=

NC8
C2

MUR. Here, NC8
C2

(−) is the Hill–Hopkins–Ravenel norm functor and MUR is the Real

cobordism spectrum of Landweber [46], Fujii [25], and Araki [6]. The underlying spectrum

of MUR is MU, with the C2-action coming from the complex conjugation action on complex

manifolds.

58



To analyze the G-equivariant homotopy groups of MU((G)), Hill, Hopkins, and Ravenel

generalized the C2-equivariant filtration of Hu–Kriz [44] and Dugger [24] to a G-equivariant

Postnikov filtration for all finite groups G. They called this the slice filtration. Given

any G-equivariant spectrum X, the slice filtration produces the slice tower {P ∗X}, whose

associated slice spectral sequence strongly converges to the RO(G)-graded homotopy groups

πGFX.

For G = C2n , the G-spectrum MU((G)) are amenable to computations. Hill, Hopkins,

and Ravenel proved that the slice spectral sequences for MU((G)) and its equivariant local-

izations have especially simple E2-terms. Furthermore, they proved the Gap Theorem and

the Periodicity Theorem, which state, respectively, that πC8
i ΩO = 0 for −4 < i < 0, and

that there is an isomorphism πC8
∗ ΩO ∼= πC8

∗+256ΩO. The two theorems together imply that

π2j+1−2Ω = πC8

2j+1−2
ΩO = 0

for all j ≥ 7, from which the nonexistence of the corresponding Kervaire invariant elements

follows.

The solution of the Kervaire Invariant One problem gives us a motivating slogan:

Slogan. The homotopy groups of the fixed points of MU((G)) as |G| grows are increasingly

good approximations to the stable homotopy groups of spheres.

To explain the slogan some, we unpack some of the algebraic geometry around MU((G))

when G = C2n . The spectrum underlying MU((G)) is the smash product of 2n−1-copies of

MU, and so the underlying homotopy ring co-represents the functor which associates to a

(graded) commutative ring a formal group law and a sequence of (2n−1− 1) isomorphisms:

F1
f1−→ F2

f2−→ . . .
f2n−1−1−−−−−→ F2n−1 .
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The underlying homotopy ring has an action of C2n , and by canonically enlarging our

moduli problem, we can record this as well. We extend our sequence of isomorphisms

by one final isomorphism from the final formal group law back to the first, composing

the inverses to the isomorphism already given with the formal inversion. This gives us our

moduli problem: maps from the underlying homotopy of MU((C2n )) to a graded commutative

C2n-equivariant ring R are given by a formal group law F together with isomorphisms

fi+1 : γi
∗
F → γ(i+1)∗F, 0 ≤ i ≤ 2n−1 − 1

such that the composite of all of the fi is the formal inversion on F .

If F is a formal group law over a ring R that has an action of C2k extending the action

of C2 given by formal inversion, then F canonically defines a sequence of formal groups as

above. Simply take all of the maps fi to be the identity unless we pass a multiple of 2n−k,

in which case, take the corresponding element of C2k . In this way, we see that the stack

Spec(πe∗MU((C2n )))//C2n provides a cover of the moduli stack of formal groups in a way that

reflects the automorphisms groups which extend the formal inversion action and which are

isomorphic to subgroups of C2n .

As an immediate, important example, we consider the universal deformation Γm of a

fixed height-m formal group law Fm over an algebraically closed field k of characteristic

p. Lubin and Tate [49] showed that the space of deformations is Ind-representable by a

pro-ring abstractly isomorphic to

W(k)[[u1, . . . , um−1]][u±1] =: Em∗,

over which Γm is defined. Here, W(k) is the p-typical Witt vectors of k, |ui| = 0, and
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|u| = 2.

By naturality, the ring Em∗ is acted on by the Morava stabilizer group Sm, the automor-

phism group of Fm. Hewett [34] showed that if m = 2n−1(2r+ 1), then there is a subgroup

of the Morava stabilizer group isomorphic to C2n . In particular, associated to Γm and the

action of a generator of C2n , we have a C2n-equivariant map

πe∗MU((C2n )) −→ Em∗.

Topologically, this entire story can be lifted. The formal group law Γm is Landweber

exact, and hence there is a complex orientable spectrum Em which carries the universal

deformation Γm. The Goerss–Hopkins–Miller Theorem [65, 28] says that Em is a commu-

tative ring spectrum and that automorphism group of Em as a commutative ring spectrum

is homotopy equivalent to the Morava stabilizer group. In particular, we may view Em as

a commutative ring object in naive G-spectra. The functor

X 7−→ F (EG+, X)

takes naive equivalences to genuine equivariant equivalences, and hence allows us to view

Em as a genuine G-equivariant spectrum. The commutative ring spectrum structure on

Em gives an action of a trivial E∞-operad on F (EG+, Em). Work of Blumberg–Hill [18]

shows that this is sufficient to ensure that F (EG+, Em) is actually a genuine equivariant

commutative ring spectrum, and hence it has norm maps.

The spectra EhG
m turn out to be the essential building blocks of the p-local stable

homotopy category. In particular, the homotopy groups π∗E
hG
m assemble to the stable

homotopy groups of spheres. To be more precise, the chromatic convergence theorem [63]
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exhibits the p-local sphere spectrum S(p) as the inverse limit of the chromatic tower

· · · −→ LEmS −→ LEm−1S −→ · · · −→ LE0S,

where each LEmS is assembled via the chromatic fracture square

LEmS LK(m)S

LEm−1S LEm−1LK(m)S.

Here, K(m) is the mth Morava K-theory.

Devinatz and Hopkins [23] proved that LK(m)S ' EhGm
m , and, furthermore, that the

Adams–Novikov spectral sequence computing LK(m)S can be identified with the associated

homotopy fixed point spectral sequence for EhGm
m . The fixed point spectrum EhGm

m admits

resolutions by {EhG
m |G ⊂ Gm}, where G ranges over finite subgroups of Gm.

At height 1, EhC2
1 = KO∧2 , the 2-adic completion of real K-theory. For this reason,

the spectra EhG
m are commonly called the higher real K-theories. The Morava stabilizer

group G1 is isomorphic to Z×2 . Adams, Baird, and Ravenel [62] showed that there is a fiber

sequence

LK(1)S
0 = EhG1

1 −→ EhC2
1

ψ3−1−−−→ EhC2
1 ,

where ψ3 is a topological generator of Z×2 /{±1} ∼= Z2.

At height 2, these homotopy fixed points are known as TMF and TMF with level

structures. Computations of the homotopy groups of these spectra are done by Hopkins–

Mahowald [43], Bauer [11], Mahowald–Rezk [52], Behrens–Ormsby [17], Hill–Hopkins–

Ravenel [40], and Hill–Meier [41]. For works on the resolution of the K(2)-local sphere,

see papers of Goerss–Henn–Mahowald [26], Goerss–Henn–Mahowald–Rezk [27], Behrens

62



[15], Henn–Karamanov–Mahowald [33], Behrens–Ormsby [17], Beaudry [12, 13], Bobkova–

Goerss [19], and Beaudry–Goerss–Henn [14].

For higher heights m > 2, the homotopy fixed points EhG
m are notoriously difficult to

compute. One of the chief reasons that these homotopy fixed points are so difficult to

compute is because the group actions are constructed purely from obstruction theory. This

stands in contrast to the norms of MUR, whose actions are induced from geometry.

Recent work of Hahn–Shi [32] establishes the first known connection between the

obstruction-theoretic actions on Lubin–Tate theories and the geometry of complex con-

jugation. More specifically, there is a Real orientation for any of the Em: there are C2-

equivariant maps

MUR −→ i∗C2
Em.

Using the norm-forget adjunction, such a map can be promoted to a G-equivariant map

MU((G)) −→ NG
C2
i∗C2
Em −→ Em.

By construction, since the original map MUR → Em classified Γm as a Real formal group

law, this G-equivariant map exactly recovers the algebraic map.

As a consequence of the Real orientation theorem, the fixed point spectra (MU((C2n )))C2n

and EhC2n

2n−1m can be assembled into the following diagram:
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...

(MU((C2n )))C2n EhC2n

2n−1m

...

S (MU((C8)))C8 EhC8
4m

(MU((C4)))C4 EhC4
2m

(MUR)C2 EhC2
m .

(8.1)

The existence of equivariant orientations renders computations that rely on the slice

spectral sequence tractable. Using differentials in the slice spectral sequence of MUR and

the Real orientation MUR → Em, Hahn–Shi computed EhC2
m , valid for arbitrarily large

heights m.

An example of a Real orientable theory that was previously known is Atiyah’s Real

K-theory. In 1966, Atiyah [7] formalized the connection between complex K-theory (KU)

and real K-theory (KO). Analogous as in the case of MUR, the complex conjugation

action on complex vector bundles induces a natural C2-action on KU , and this produces

a C2-spectrum KR called Atiyah’s Real K-theory. The theory KR interpolates between

complex and real K-theory in the sense that the underlying spectrum of KR is KU , and its

C2-fixed points is KO. The RO(C2)-graded homotopy groups πC2
F KR has two periodicities:

a ρ2-periodicity that corresponds to the complex Bott-periodicity, and a 8-periodicity that

corresponds to the real Bott-periodicity.

In [40], Hill, Hopkins, and Ravenel computed the slice spectral sequence of a C4-
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equivariant height-2 theory that is analogous to KR. To introduce this theory, note that

the height of the formal group law Γm is at most m and the ring Em∗ is 2-local. We can

therefore pass to 2-typical formal group laws (and hence BP), and our map

BP −→ Em

classifying the formal group law descends to a map

E(m) −→ Em,

where E(m) is the height-m Johnson–Wilson theory. Equivariantly, we have a similar

construction, which we review in more detail in Section 9. The C2n-equivariant map

BP((C2n )) −→ Em

will factor through a localization of a quotient of BP((C2n )). To study the Hurewicz image, it

therefore suffices to study these localizations of quotients, and for these, it suffices to study

the quotients. Hill–Hopkins–Ravenel restricted their attention to computing the homotopy

Mackey functors of

BP((C4))〈1〉.

There exists a height-2 Lubin–Tate theory E2 such that the C4-equivariant orientation

BP((C4)) → E2 factors through BP((C4))〈1〉:

BP((C4)) E2

BP((C4))〈1〉

65



Furthermore, after inverting the element

D1 := N(v̄2)N(r̄1) ∈ π4ρ4BP((C4))〈1〉

and applying K(2)-localization, there is an equivalence

(LK(2)D
−1
1 BP((C4))〈1〉)C4 ' E

hGal(F22/F2)nC4

2 .

The slice spectral sequence of BP((C4))〈1〉 degenerates after the E13-page and has a horizontal

vanishing line of filtration 13.

The C4-spectrum D−1
1 BP((C4))〈1〉 has three periodicities:

1. Sρ4 ∧D−1
1 BP((C4))〈1〉 ' D−1

1 BP((C4))〈1〉;

2. S4−4σ ∧D−1
1 BP((C4))〈1〉 ' D−1

1 BP((C4))〈1〉;

3. S8+8σ−8λ ∧D−1
1 BP((C4))〈1〉 ' D−1

1 BP((C4))〈1〉.

These three periodicities combine to imply that D−1
1 BP((C4))〈1〉 and EhC4

2 are 32-periodic

theories.

To this end, the goal of this paper is to give a complete computation of the slice spectral

sequence of the C4-fixed points of BP((C4))〈2〉.

Theorem 8.2 (Theorem 9.12). There exists a height-4 Lubin–Tate theory E4 such that the

C4-equivariant orientation BP((C4)) −→ E4 factors through BP((C4))〈2〉:

BP((C4)) E4

BP((C4))〈2〉
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Furthermore, after inverting the element

D2 := N(v̄4)N(r̄3)N(r̄2
3 + r̄3(γr̄3) + (γr̄3)2) ∈ π24ρ4BP((C4))〈2〉

and applying K(4)-localization, there is an equivalence

(LK(4)D
−1
2 BP((C4))〈2〉)C4 ' E

hGal(F24/F2)nC12

4 .

Theorem 8.3. We completely compute the slice spectral sequence of BP((C4))〈2〉 (see Fig-

ure 8). The slice spectral sequence degenerates after the E61-page and has a horizontal

vanishing line of filtration 61.

Theorem 8.4. After inverting the element D2 ∈ π24ρ4BP((C4))〈2〉, the C4-spectrum D−1
2 BP((C4))〈2〉

has three periodicities:

1. S3ρ4 ∧D−1
2 BP((C4))〈2〉 ' D−1

2 BP((C4))〈2〉;

2. S24−24σ ∧D−1
2 BP((C4))〈2〉 ' D−1

2 BP((C4))〈2〉;

3. S32+32σ−32λ ∧D−1
2 BP((C4))〈2〉 ' D−1

2 BP((C4))〈2〉.

Together, these three periodicities imply that (D−1
2 BP((C4))〈2〉)C4 and EhC12

4 are 384-periodic

theories.

When G = C2, Li–Shi–Wang–Xu [47] analyzed the bottom layer of tower (8.1) and

showed that the Hopf-, Kervaire-, and κ̄-families in the stable homotopy groups of spheres

are detected by the map

S −→ (MUR)C2 .

67



0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

1

Figure 8: The slice spectral sequence of BP ((C4))〈2〉.
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As we increase the height m, an increasing subset of the elements in these families is

detected by the map

S −→ EhC2
m .

Since (BP((C4))〈1〉)C4 is closely related to TMF0(5), one can study its Hurewicz images

via the Hurewicz images of TMF (see [17, 40]). In particular, there are elements detected

by the C4-fixed points (BP((C4))〈1〉)C4 that are not detected by (MUR)C2 .

In general, it is difficult to determine all the Hurewicz images of (BP((G)))G. Computa-

tions of Hill [35] have shown that the class η3 ∈ π3S is not detected by (BP((C2n )))C2n for

any n ≥ 1. However, this element is detected by (BP((Q8)))Q8 , where Q8 is the quaternion

group. It is a current project to understand the Hurewicz images of the G-fixed points

of BP((G)) and its various quotients when G = C2n and Q8. In particular, since we have

completely computed the slice spectral sequence of (BP((C4))〈2〉)C4 , the following question

is of immediate interest:

Question 8.5. What are the Hurewicz images of (BP((C4))〈2〉)C4?

8.2 Summary of the contents

We now turn to a summary of the contents for the second part of the thesis. Section 9

provides the necessary background on MU((G)). In particular, we define the Hill–Hopkins–

Ravenel theories BP((G))〈m〉 (Defintion 9.1) and describe the E2-pages of their slice spectral

sequences. Theorem 9.12 shows that after periodization and completion, the C4-fixed points

of BP((C4))〈2〉 is equivalent to the C12-fixed points of a height-4 Lubin–Tate theory E4.

In Section 10, we review Hill–Hopkins–Ravenel’s computation of SliceSS(BP((C4))〈1〉).

Our proofs for some of the differentials are slightly different than those appearing in [40].

The computation is presented in a way that will resemble our subsequent computation for
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SliceSS(BP((C4))〈2〉).

Section 11 describes the slice filtration of BP((C4))〈2〉. We organize the slice cells of

BP((C4))〈2〉 into collections called BP((C4))〈1〉-truncations and i∗C2
BP((C4))〈1〉-truncations. This

is done to facilitate later computations. In Section 12, we compute the C2-slice spectral

sequence of i∗C2
BP((C4))〈2〉.

From Section 13 foward, we focus our attention on computing the C4-slice spectral se-

quence of BP((C4))〈2〉. Section 13 proves that all the differentials in C4-SliceSS(BP((C4))〈2〉) of

length≤ 12, as well as some of the d13-differentials, can be induced from C4-SliceSS(BP((C4))〈1〉)

via the quotient map BP((C4))〈2〉 → BP((C4))〈1〉. In Section 14 we prove all the d13 and d15

differentials by using the restriction map, the transfer map, and multiplicative structures.

In Section 15, we prove differentials on the classes u2λaσ, u4λaσ, u8λaσ, and u16λaσ by

norming up C2-equivariant differentials in C2-SliceSS(BP((C4))〈2〉). Using these differentials,

we prove the Vanishing Theorem (Theorem 18.1), which states that a large portion of the

classes that are above filtration 96 on the E2-page must die on or before the E61-page. The

Vanishing Theorem is of great importance for us because it establishes a bound on the

differentials that can possibly occur on a class.

Sections 17, 18, and 19 prove all of the the remaining differentials in the slice spectral

sequence. The slice spectral sequence degenerates after the E61-page and has a horizontal

vanishing line of filtration 61 at the E∞-page. Section 20 gives a summary of all the

differentials.
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9 Preliminaries

9.1 The slice spectral sequence of MU((G))

Let MUR be the Real cobordism spectrum, and G be the cyclic group of order 2n. The

spectrum MU((G)) is defined as

MU((G)) := NG
C2

MUR,

where NG
H (−) is the Hill–Hopkins–Ravenel norm functor [39]. The underlying spectrum of

MU((G)) is the smash product of 2n−1-copies of MU .

Hill, Hopkins, and Ravenel [39, Section 5] constructed generators

r̄i ∈ πC2
iρ2

MU((G))

such that

πC2
∗ρ2

MU((G)) ∼= Z(2)[r̄1, γr̄1, . . . , γ
2n−1−1r̄1, r̄2, . . . ].

Here γ is a generator of C2n , and the Weyl action is given by

γ · γj r̄i =


γj+1r̄i 0 ≤ j ≤ 2n−1 − 2

(−1)ir̄i j = 2n−1 − 1.

Adjoint to the maps

r̄i : S
iρ2 → i∗C2

MU((G))
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are associative algebra maps from free associative algebras

S0[r̄i] =
∨
j≥0

(
Siρ2

)∧j → i∗C2
MU((G)),

and hence G-equivariant associative algebra maps

S0[G · r̄i] = NG
C2
S0[r̄i]→ MU((G)).

Smashing these all together gives an associative algebra map

A := S0[G · r̄1, . . . ] =
∞∧
i=1

S0[G · r̄i]→ MU((G)).

For MU((G)) and the quotients below, the slice filtration is the filtration associated to

the powers of the augmentation ideal of A, by the Slice Theorem of [39].

The classical Quillen idempotent map MU −→ BP can be lifted to a C2-equivariant

map

MUR −→ BPR,

where BPR is the Real Brown–Peterson spectrum. Taking the norm NG
C2

(−) of this map

produces a G-equivariant map

MU((G)) → BP((G)) =: NG
C2

BPR.

Using the techniques developed in [39], it follows that BP((G)) has refinement

S0[G · r̄1, G · r̄3, G · r̄7, . . .] −→ BP((G)).
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We can also produce truncated versions of these norms of BPR, wherein we form quotients

by all of the r̄2m−1 for all m sufficiently large. For each m ≥ 0, let

Am =
∞∧
j=m

S0[G · r̄2j−1].

Definition 9.1 (Hill–Hopkins–Ravenel theories). For each m ≥ 0, let

BP((G))〈m〉 = BP((G)) ∧Am S0.

The Reduction Theorem of [39] says that for all G, BP((G))〈0〉 = HZ, and [40] studied

the spectrum BP((C4))〈1〉 (a computation we review below).

Remark 9.2. Although the underlying homotopy groups of BP((G))〈m〉 is a polynomial ring:

πe∗BP((G))〈m〉 ∼= Z(2)[r1, γr1, . . . , γ
2n−1−1r1, . . . , γ

2n−1−1r2m−1],

we do not know that BP((G))〈m〉 has even an associative multiplication. It is, however,

canonically an MU((G))-module, and hence the slice spectral sequence will be a spectral se-

quence of modules over the slice spectral sequence for MU((G)).

The same arguments as for BP((G)) allow us to determine the slice associated graded for

BP((G))〈m〉 for any m.

Theorem 9.3. The slice associated graded for BP((G))〈m〉 is the graded spectrum

S0[G · r̄1, . . . , G · r̄2m−1] ∧HZ,

where the degree of a summand corresponding to a polynomial in the r̄i and their conjugates
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is just the underlying degree.

Corollary 9.4. The slice spectral sequence for the RO(G)-graded homotopy of BP((G))〈m〉

has E2-term the RO(G)-graded homology of S0[G · r̄1, . . . , G · r̄2m−1] with coefficients in Z,

the constant Mackey functor Z.

Since the slice filtration is an equivariant filtration, the slice spectral sequence is a spec-

tral sequence of RO(G)-graded Mackey functors. Moreover, the slice spectral sequence for

MU((G)) is a multiplicative spectral sequence, and the slice spectral sequence for BP((G))〈m〉

is a spectral sequence of modules over it in Mackey functors.

9.2 The slice spectral sequence for BP((C4))〈2〉

From now on, we restrict attention to the case G = C4 and BP((C4))〈2〉. We will use the slice

spectral sequence to compute the integer graded homotopy Mackey functors of BP((C4))〈2〉.

To describe this, we describe in more detail the E2-term of the slice spectral sequence.

Notation 9.5. Let σ denote the 1-dimensional sign representation of C4, and let λ denote

the 2-dimensional irreducible representation of C4 given by rotation by π/2. Let σ2 denote

the 1-dimensional sign representation of C2. Finally, let 1 denote the trivial representation

of dimension 1.

The homology groups of a representation sphere with coefficients in Z are generated by

certain products of Euler classes and orientation classes for irreducible representations.

Definition 9.6. For any representation V for which V G = {0}, let aV : S0 → SV denote

the Euler class of the representation V . Let aV also denote the corresponding Hurewicz

image in π−VHZ.
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Definition 9.7. If V is an orientable representation of G, then let

uV ∈ HdimV (SV ;Z) ∼= Z

be the generator which restricts to the element 1 under the suspension isomorphism

HdimV (SdimV ;Z) ∼= H̃0(S0;Z).

For the group C4, these elements satisfy a number of relations:

1. 2aσ = 2aσ2 = 4aλ = 0;

2. resC4
C2

(aσ) = 0, resC4
C2

(aλ) = a2σ2 , resC4
C2

(u2σ) = 1, resC4
C2

(uλ) = u2σ2 ;

3. uλa2σ = 2aλu2σ (gold relation);

These allow us to identify all of the elements in the homology groups of representation

spheres.

9.3 Tambara structure

A multiplicative spectral sequence of Mackey functors can equivalently be thought of a a

kind of Mackey functor object in spectral sequences. In particular, we can view this as

being 3 spectral sequences:

1. a multiplicative spectral sequence computing the C4-fixed points,

2. a multiplicative spectral sequence computing the C2-fixed points, and

3. a (collapsing) multiplicative spectral sequence computing the underlying homotopy.
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The restriction and transfer maps in the Mackey functors can then be viewed as maps of

spectral sequences connecting these, with the restriction maps being maps of DGAs, and

the transfer maps being maps of DGMs over these DGAs.

For commutative ring spectra like MU((G)), we have additional structure on the RO(G)-

graded homotopy groups given by the norms. If R is a G-equivariant commutative ring

spectrum, then we have a multiplicative map

NG
H : πHV (R)→ πGIndGHV

(R)

which takes a map

SV → i∗HR

to the composite

SInd
G
HV ∼= NG

H (SV )→ NG
H i
∗
HR→ R,

where the final map is the counit of the norm-forget adjunction. The norm maps are not

additive, but they do satisfy certain explicitly describable formulae which encode the norms

of sums and of transfers. At the level of π0, this data is traditionally called a “Tambara

functor”, studied by Brun for equivariant commutative ring spectra, and more generally,

this RO(G)-graded version was used by Hill, Hopkins, and Ravenel in their analysis of the

slice spectral sequence [21, 39, 40].

In the slice spectral sequence, the norms play a more subtle role. The norm from H

to G scales slice filtration by |G/H|, just as multiplication scales degree. In particular,

it will not simply commute with the differentials. We have a formula, however, for the

differentials on key multiples of norms.

Theorem 9.8. Let dr(x) = y be a dr-differential in the C2-slice spectral sequence. If both
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aσN
C4
C2
x and NC4

C2
y survive to the E2r−1-page, then d2r−1(aσN

C4
C2
x) = NC4

C2
y in C4-SliceSS(X)

(see [40, Corollary 4.8]).

Proof. The dr-differential can be represented by the diagram

SV D(1 + V ) S1+V

PC2
s+rX PC2

s X PC2
s X/PC2

s+rX.

y x

Applying the norm functor NC4
C2

(−) yields the new diagram

SW D(1 + σ +W ) S1+σ+W

NC4
C2
PC2
s+rX NC4

C2
PH
s X NC4

C2
(PC2

s X/PH
s+rX).

N
C4
C2
y N

C4
C2
x

Both rows of the this diagram are no longer cofiber sequences. We can enlarge this diagram

so that both the top and the bottom rows are cofiber sequences:

SW D(1 +W ) S1+W

SW D(1 + σ +W ) S1+σ+W

NC4
C2
PC2
s+rX NC4

C2
PC2
s X NC4

C2
(PC2

s X/PC2
s+rX)

NC4
C2
PC2
s+rX NC4

C2
PC2
s X NC4

C2
(PC2

s X)/NC4
C2

(PC2
s+rX) PC4

2s X/P
C4
2s+rX

PC4
2s+2rX PC4

2s X PC4
2s X/P

C4
2s+2rX

= aσ aσ

N
C4
C2
y N

C4
C2
x

id id

The first, fourth, and fifth rows are cofiber sequences. The third vertical map from the

77



fourth row to the third row is induced by the first two vertical maps. The third long vertical

map from the first row to the fourth row is induced from the first two long vertical maps.

The composite map from the first row to the fifth row predicts a d2r−1-differential in

the C4-slice spectral sequence. The predicted target is NC4
C2
y. Therefore, this class must

die on or before the E2r−1-page. If both this class and aσN
C4
C2
x survive to the E2r−1-page,

then

d2r−1(aσN
C4
C2
x) = NC4

C2
y.

Remark 9.9. The slice spectral sequence is actually a spectral sequence of graded Tambara

functors in the sense that the differentials are actually genuine equivariant differentials in

the sense of [36]. We will not need this in what follows, however.

9.4 Formal group law formulas

Consider the C2-equivariant map

BPR −→ i∗C2
NC4
C2

BPR = i∗C2
BP((C4))

coming from the norm-restriction adjunction. Post-composing with the quotient map

BP((C4)) → BP((C4))〈2〉 produces the C2-equivariant map

BPR → i∗C2
BP((C4))〈2〉,

which, after taking πC2
∗ρ2

(−), is a map

Z[v̄1, v̄2, . . .] −→ Z[r̄1, γr̄1, r̄3, γr̄3]
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of polynomial algebras.

Let S := πC2
∗ρ2

BP((C4))〈2〉 = Z[r̄1, γr̄1, r̄3, γr̄3]. By an abuse of notation, let v̄i ∈ S denote

the image of v̄i ∈ πC2

(2i−1)ρ2
BPR under the map above. Our next goal is to relate the v̄i-

generators to the r̄i-generators.

Let F̄ be the C2-equivariant formal group law corresponding to the map πC2
∗ρ2

BPR →

πC2
∗ρ2

BP((C4))〈2〉. By definition, its 2-series is

[2]F̄ (x̄) = 2x̄+F̄ v̄1x̄
2 +F̄ v̄2x̄

4 +F̄ v̄3x̄
8 +F̄ v̄4x̄

16 + · · · .

Let m̄i ∈ 2−1S be the coefficients of the logarithm of F̄ :

logF̄ (x̄) = x̄+ m̄1x̄
2 + m̄2x̄

4 + m̄3x̄
8 + m̄4x̄

16 + · · · .

Taking the logarithm of both sides of the 2-series produces the equation

2 logF̄ (x̄) = logF̄ (2x̄) + logF̄ (v̄1x̄
2) + logF̄ (v̄2x̄

4) + logF̄ (v̄3x̄
8) + · · · .

Expanding both sides of the equation using the power series expansion of the logarithm

and comparing coefficients, we obtain the equations

2m̄1 = 4m̄1 + v̄1 (9.1)

2m̄2 = 16m̄2 + m̄1v̄
2
1 + v̄2

2m̄3 = 28m̄3 + m̄2v̄
4
1 + m̄1v̄

2
2 + v̄3

2m̄4 = 216m̄4 + m̄3v̄
8
1 + m̄2v̄

4
2 + m̄1v̄

2
3 + v̄4

...
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Rearranging, we obtain the relation

v̄i = 2m̄i (mod Mi) (9.2)

for all i ≥ 1. Here, Mi is the S-submodule of 2−1S (regarded as a S-module) that is

generated by the elements 2, m̄1, m̄2, . . ., m̄i−1. In other words, an element in Mi is of the

form

s0 · 2 + s1 · m̄1 + · · ·+ si−1m̄i−1

where sj ∈ S for all 0 ≤ j ≤ i− 1.

Lemma 9.10. Let Ii ∈ S denote the ideal (2, v̄1, · · · v̄i−1). Then

Mi ∩ S = Ii.

Proof. We will prove the claim by using induction on i. The base case when i ≥ 1 is straight

forward: an element in M1 is of the form s0 ·2, where s0 ∈ S. Therefore M1∩S = (2) = I1.

Now, suppose that Mi−1 ∩ S = Ii−1. Furthermore, suppose that the element

m = s0 · 2 + s1 · m̄1 + · · ·+ si−1m̄i−1 ∈Mi

is also in S. From the equations in (9.1), it is straightforward to see that m̄k has denom-

inator exactly 2k for all k ≥ 1. In the expression for m, only the last term si−1m̄i−1 has

denominator 2i−1. All the other terms have denominators at most 2i−2. Since m ∈ S, si−1

must be divisible by 2. In other words, si−1 = 2s′i−1 for some s′i−1 ∈ S. Using equation (9.2),
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m can be rewritten as

m = s0 · 2 + s1 · m̄1 + · · ·+ si−2m̄i−2 + 2s′i−1m̄i−1

= s0 · 2 + s1 · m̄1 + · · ·+ si−2m̄i−2 + s′i−1(2m̄i−1)

∈ s0 · 2 + s1 · m̄1 + · · ·+ si−2m̄i−2 + s′i−1(vi−1 +Mi−1)

∈ Mi−1 + s′i−1(vi−1 +Mi−1)

= Mi−1 + s′i−1vi−1.

Therefore, m = x + s′i−1vi−1 for some x ∈ Mi−1. Since m ∈ S and s′i−1vi−1 ∈ S, x ∈ S as

well. The induction hypothesis now implies that x ∈ Ii−1. It follows from this that m ∈ Ii,

as desired.

Theorem 9.11. We have the following relations:

v̄1 = r̄1 + γr̄1 (mod 2),

v̄2 = r̄3
1 + r̄3 + γr̄3 (mod 2, v̄1),

v̄3 = r̄1(r̄2
3 + r̄3(γr̄3) + (γr̄3)2) (mod 2, v̄1, v̄2),

v̄4 = r̄4
3(γr̄3) (mod 2, v̄1, v̄2, v̄3).

Proof. To obtain the formulas in the statement of the theorem, we need to establish rela-

tions between the generators {r̄1, γr̄1, r̄3, γr̄3} and the m̄i-generators. The r̄i generators, by

definition, are the coefficients of the strict isomorphism from F̄ to F̄ γ (see [39, Section 5]):

F̄ add

F̄ F̄ γ

logF̄

x̄+F̄ γ r̄1x̄
2+F̄ γ r̄3x̄

4

logF̄ γ
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Here, logF̄ γ is the logarithm for the formal group law F̄ γ, and its power-series expansion is

logF̄ γ (x) = x̄+ (γm̄1)x̄2 + (γm̄2)x̄4 + (γm̄3)x̄8 + (γm̄4)x̄16 + · · · .

The commutativity of the diagram implies that

logF̄ (x̄) = logF̄ γ (x̄+F̄ γ r̄1x̄
2 +F̄ γ r̄3x̄

4)

= logF̄ γ (x̄) + logF̄ γ (r̄1x̄
2) + logF̄ γ (r̄3x̄

4)

Expanding both sides according to the logarithm formulas, we get

x̄+ m̄1x̄
2 + m̄2x̄

4 + m̄3x̄
8 + m̄4x̄

16 + · · · = x̄+ (γm̄1 + r̄1)x̄2 + (γm̄2 + (γm̄1)r̄2
1 + r̄3)x̄4

+ (γm̄3 + (γm̄2)r̄4
1 + (γm̄1)r̄2

3)x̄8

+ (γm̄4 + (γm̄3)r̄8
1 + (γm̄2)r̄4

3)x̄16 + · · ·

Comparing coefficients, we obtain the relations

m̄1 − γm̄1 = r̄1

m̄2 − γm̄2 = (γm̄1)r̄2
1 + r̄3

m̄3 − γm̄3 = (γm̄2)r̄4
1 + (γm̄1)r̄2

3

m̄4 − γm̄4 = (γm̄3)r̄8
1 + (γm̄2)r̄4

3
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We can also apply γ to the relations above to obtain more relations

γm̄1 + m̄1 = γr̄1

γm̄2 + m̄2 = −m̄1(γr̄1)2 + γr̄3

γm̄3 + m̄3 = −m̄2(γr̄1)4 − m̄1(γr̄3)2

γm̄4 + m̄4 = −m̄3(γr̄1)8 − m̄2(γr̄3)4.
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These relations together produce the following formulas:

v̄1 = 2m̄1 (mod M1)

= r̄1 + γr̄1 (mod M1);

v̄2 = 2m̄2 (mod M2)

= (γm̄1)r̄2
1 + r̄3 + γr̄3 (mod M2)

= (γm̄1 − m̄1)r̄2
1 + r̄3 + γr̄3 (mod M2)

= −r̄3
1 + r̄3 + γr̄3 (mod M2)

= r̄3
1 + r̄3 + γr̄3 (mod M2);

v̄3 = 2m̄3 (mod M3)

= (γm̄2)r̄4
1 + (γm̄1)r̄2

3 − m̄2(γr̄1)4 − m̄1(γr̄3)2 (mod M3)

= (γm̄2)r̄4
1 + (γm̄1)r̄2

3 (mod M3)

= (γm̄2 + m̄2)r̄4
1 + (γm̄1 + m̄1)r̄2

3 (mod M3)

= (γr̄3)r̄4
1 + (γr̄1)r̄2

3 (mod M3)

= r̄1

(
(γr̄3)(r̄3 + γr̄3) + r̄2

3

)
(mod 2M3)

= r̄1(r̄2
3 + r̄3(γr̄3) + (γr̄3)2) (mod M3);

v̄4 = 2m̄4 (mod M4)

= (γm̄3)r̄8
1 + (γm̄2)r̄4

3 − m̄3(γr̄1)8 − m̄2(γr̄3)4 (mod M4)

= (γm̄3)r̄8
1 + (γm̄2)r̄4

3 (mod M4)

= (γm̄3 + m̄3)r̄8
1 + (γm̄2 + m̄2)r̄4

3 (mod M4)

= (γr̄3)r̄4
3 (mod M4).

These formulas, combined with Lemma 9.10, give the desired formulas.
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9.5 Lubin–Tate Theories

We will now establish the relationship between BP((C4))〈2〉 and a specific height-4 Lubin–

Tate theory.

Theorem 9.12. There exists a height-4 Lubin–Tate theory E4 such that the C4-equivariant

orientation BP((C4)) −→ E4 factors through BP((C4))〈2〉:

BP((C4)) E4

BP((C4))〈2〉

Furthermore, after inverting the element

D2 := N(v̄4)N(r̄3)N(r̄2
3 + r̄3(γr̄3) + (γr̄3)2) ∈ π24ρ4BP((C4))〈2〉

and applying K(4)-localization, there is an equivalence

(LK(4)D
−1
2 BP((C4))〈2〉)C4 = E

hGal(F24/F2)nC12

4 .

Proof. Recall that the underlying homotopy group of BP((C4))〈2〉 is

πu∗BP((C4))〈2〉 = Z[r1, γr1, r3, γr3].

Consider the map

π∗BP −→ πu∗BP((C4))〈2〉
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that is induced by taking πu∗ (−) of the composite map

BPR −→ i∗C2
BP((C4)) −→ i∗C2

BP((C4))〈2〉.

Using the formulas in Theorem 9.11, we see that (2, v1, v2, v3) forms a regular sequence in

πu∗BP((C4))〈2〉. Furthermore, after inverting the element D2,

πu∗D
−1
2 BP((C4))〈2〉/(2, v1, v2, v3) = F2[r̄±3 ].

After applying the K(4)-localization functor LK(4)(−) := F (EC4+, LK(4)i
∗
e(−)), the under-

lying coefficient ring of LK(4)D
−1
2 BP((C4))〈2〉 is

πu∗ (LK(4)D
−1
2 BP((C4))〈2〉) = Z2[[r1, γr1, r3 + γr3]][r±3 ].

Let E4 be the height-4 Lubin–Tate theory with coefficient ring

π∗E4 = W (F24)[[r1, γr1, r3 + γr3]][u±]/(u3 = r3).

The previous discussion shows that the C4-equivariant orientation

BP((C4))〈2〉 −→ E4
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factors through LK(4)D
−1
2 BP((C4))〈2〉:

BP((C4)) E4

BP((C4))〈2〉

D−1
2 BP((C4))〈2〉

LK(4)D
−1
2 BP((C4))〈2〉

There is a C3-action on E4. The effect of this C3-action on the homotopy groups π∗E4 is

as follows:

ω(u) = ωu

ω(r1) = r1

ω(γr1) = γr1

ω(r3) = r3

ω(γr3) = γr3.

The spectra EhC3
4 has coefficient ring

π∗E
hC3
4 = W (F24)[[r1, γr1, r3 + γr3]][r±3 ].

Therefore, it follows from this and our discussions above that

LK(4)D
−1
2 BP((C4))〈2〉 ' E

hGal(F24/F2)nC3

4 .
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In particular, since the spectrum LK(4)D
−1
2 BP((C4))〈2〉 is cofree [39, Theorem 10.8], there is

an equivalence

(LK(4)D
−1
2 BP((C4))〈2〉)C4 ' (LK(4)D

−1
2 BP((C4))〈2〉)hC4

'
(
E
hGal(F24/F2)nC3

4

)hC4

' E
hGal(F24/F2)nC12

4 .

Theorem 9.13. The spectrum D−1
2 BP((C4))〈2〉 is 384-periodic.

Proof. This is a direct consequence of the discussion in [39, Section 9]. There are three

periodicities for D−1
2 BP((C4))〈2〉:

1. S3ρ4 ∧D−1
2 BP((C4))〈2〉 ' D−1

2 BP((C4))〈2〉.

2. S24−24σ ∧D−1
2 BP((C4))〈2〉 ' D−1

2 BP((C4))〈2〉.

3. S32+32σ−32λ ∧D−1
2 BP((C4))〈2〉 ' D−1

2 BP((C4))〈2〉.

The first periodicity is induced from N(r̄3), which has been inverted. The second periodicity

follows from the fact that u8σ is a permanent cycle in the slice spectral sequence of BP((C4))〈2〉

(see [39, Theorem 9.9]). For the third periodicity, note that that class u32σ2 is a permanent

cycle in the C2-slice spectral sequence of BP((C4))〈2〉. Therefore, the norm

N(u32σ2) =
u32λ

u32σ

is a permanent cycle in the C4-slice spectral sequence. Combining these three periodicities
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produces the desired 384-periodicity:

32 · (3ρ4) + 8 · (24− 24σ) + 3 · (32 + 32σ − 32λ)

= 32 · (3 + 3σ + 3λ) + 24 · (8− 8σ) + 3 · (32 + 32σ − 32λ)

= 384.

Remark 9.14. The careful reader may worry about the choices present in the construction

of BP((C4))〈2〉 or the more general quotients of BP((G)). The terse answer is that the slice

spectral sequence only cares about the indecomposables in the underlying homotopy ring of

BP((G)), not the particular lifts. As a dramatic example of this, consider the class r̄3 for

C2n. This is only well-defined modulo the ideal generated by r̄1 and its conjugates and the

element 2. Consider now the differential on the class u2
2σ:

u2
2σ 7→ NC2n

C2
r̄3a

4
σa3ρ̄.

Since multiplication by aσ annihilates the transfer, the norm is additive after being mul-

tiplied by aσ. Moreover, the norm of 2 is killed by aσ and the norm of r̄1 is killed by a3
σ,

so any possible indeterminacy in the definition of r̄3 results in the exact same differentials.

Our computation applies to any form of BP((C4))〈2〉.
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10 The slice spectral sequence of BP((C4))〈1〉

The C4-equivariant refinement of BP((C4))〈1〉 is

S0[r̄1, γr̄1] −→ BP((C4))〈1〉.

(See [39, Section 5.3] for the definition of a refinement.) The proofs of the slice theorem

and the reduction theorem in [39] apply to BP((C4))〈1〉 as well, from which we deduce its

slices: r̄i1γr̄
i
1 : Siρ4 ∧HZ, i ≥ 0 (4i-slice),

r̄i1γr̄
i
1(r̄j1, γr̄

j
1) : C4+ ∧C2 S

(2i+j)ρ2 ∧HZ, i ≥ 0, j ≥ 1 (induced (4i+ 2j)-slice).

10.1 The C2-slice spectral sequence

The C2-spectrum i∗C2
BP((C4))〈1〉 has no odd slice cells, and its (2k)-slice cells are indexed by

the monomials

{r̄i1γr̄j1 | i, j ≥ 0, i+ j = k}.

Let v̄i ∈ πC2
iρ2

BPR be the C2-equivariant lifts of the classical vi-generators for π∗BP . We

can also regard them as elements in πC2
iρ2

BP((C4))〈1〉 via the map

BPR
iL−→ i∗C2

BP((C4)) −→ i∗C2
BP((C4))〈1〉.
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In [40, Section 7], Hill, Hopkins, and Ravenel proved

v̄1 (mod 2) = r̄1 + γr̄1,

v̄2 (mod 2, v̄1) = r̄3
1,

v̄i (mod 2, v̄1, . . . , v̄i−1) = 0, i ≥ 3.

In C2-SliceSS(BPR), all the differentials are known. They are determined by the differ-

entials

d2i+1−1(u2iσ2
) = v̄ia

2i+1−1
σ2

, i ≥ 1,

and multiplicative structures. This, combined with the formulas above, implies that in

C2-SliceSS(i∗C2
BP((C4))〈1〉), all the differentials are determined by

d3(u2σ2) = v̄1a
3
σ2

= (r̄1 + γr̄1)a3
σ2
,

d7(u4σ2) = v̄2a
7
σ2

= r̄3
1a

7
σ2
,

and multiplicative structures. The class u8σ2 is a permanent cycle.
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Figure 9: The C2-slice spectral sequence for i∗C2
BP((C4))〈1〉.
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10.2 Organizing the slices, d3-differentials

We can organize the slices into the following table

d̄0
1 d̄1

1 d̄2
1 · · ·

d̄0
1s̄

1
1 d̄1

1s̄
1
1 d̄2

1s̄
1
1 · · ·

d̄0
1s̄

2
1 d̄1

1s̄
2
1 d̄2

1s̄
2
1 · · ·

...
...

...
. . .

(10.1)

where d̄1 := N(r̄1), and s̄i1 := r̄i1(1 + γ) = r̄i1 + γr̄i1 (note that by an abuse of notation, s̄i1

does not mean (r̄1 + γr̄1)i). The first row consists of non-induced slices and the rest of the

rows are all induced slices. Also note that with the definition above, res(d̄1) = r̄1γr̄1.

Theorem 10.1. d3(uλ) = s̄1aλaσ2.

Proof. The restriction of uλ is res(uλ) = u2σ2 . In the C2-slice spectral sequence, the class

u2σ2 supports a nonzero d3-differential

d3(u2σ2) = (r̄1 + γr̄1)a3σ2 .

Therefore, uλ must support a differential of length at most 3. For degree reasons, this

differential must be a d3-differential. Natuality implies that

d3(uλ) = s̄1aλaσ2 ,

as desired.

To organize the C4-slices in table 10.1, we separate them into columns. Each column
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Figure 10: d3-differentials within the column containing d̄2
1.

consists of one non-induced slice cell, d̄i1, and all the induced slice cells of the form d̄i1s̄
j
1,

where j ≥ 1.

In light of Theorem 10.1, each column can be treated as an individual unit with respect

to the d3-differentials. More precisely, the leading terms of any of the d3-differential are

slices belonging to the same column. When drawing the slice spectral sequence of BP((C4))〈1〉,

we first produce the E2-page of each column individually, together with their d3-differentials

(See Figure 10 and 11). Afterwards, we combine the E5-pages of every column all together

into one whole spectral sequence.

Remark 10.2. Some classes support d3-differentials with target the sum of two classes.
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Figure 11: d3-differentials within the column containing d̄3
1.
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For example, the class d̄2
1s̄

2
1u2λu2σu2σ2 in bidegree (12, 0) supports the d3-differential

d3(d̄2
1s̄

2
1u2λu2σu2σ2) = d̄2

1s̄
2
1u2λu2σ · s̄1a3σ2 = d̄2

1s̄
3
1u2λu2σa3σ2 + d̄3

1s̄1u2λu2σaλaσ2 ,

because s̄2
1 · s̄1 = s̄3

1 + d̄1s̄1. The first term is in the same column as the source, but the

second term is not (it belongs to a slice cell in the next column).

This d3-differential is introducing the relation d̄2
1s̄

3
1u2λu2σa3σ2 = d̄3

1s̄1u2λu2σaλaσ2 after

the E3-page. As a convention, when we are drawing the slice spectral sequence, we only

kill the leading term of the target:

d3(d̄2
1s̄

2
1u2λu2σu2σ2) = d̄2

1s̄
3
1u2λu2σa3σ2 .

Note that both the source and the target are in the same column.

10.3 d5-differentials

Theorem 10.3. d5(u2σ) = d̄1aλa
3
σ.

Proof. This differential is given by Hill–Hopkins–Ravenel’s slice differential theorem [39,

Theorem 9.9].

In the integer graded slice spectral sequence, this d5-differential produces all the d5-

differentials between the line of slope 1 and the line of slope 3 (by using the Leibniz rule).

Theorem 10.4. The class d̄2
1u2λu2σ at (8, 0) supports the d5-differential

d5(d̄2
1u2λu2σ) = d̄3

1uλu2σa2λaσ.

96



0 4 8 12

0

4

8

s̄1aσ2

s̄21a2σ2

d̄1uλaσ

d̄1aλaσ

d̄21a2λa2σ

d̄1s̄1uσaλaσ2

2d̄21u2σa2λ=d̄21uλaλa2σ

2d̄21uλu2σaλ=d̄21u2λa2σ

d̄21u2λu2σ

d̄31uλu2σa2λaσ

d̄31s̄1u3σa3λaσ2

Figure 12: d5-differential on d̄2
1u2λu2σ.

Proof. The restriction of d̄2
1u2λu2σ is res(d̄2

1u2λu2σ) = r̄2
1γr̄

2
1u4σ2 , which supports the d7-

differential

d7(r̄2
1γr̄

2
1u4σ2) = r̄5

1γr̄
2
1a7σ2

in C2-SliceSS(BP((C4))〈1〉). This implies that the class d̄2
1u2λu2σ must support a differential

of length at most 7 in C4-SliceSS(BP((C4))〈1〉). The only possible targets are the classes

d̄3
1uλu2σa2λaσ at (7, 5) and d̄3

1s̄1u3σa3λaσ2 at (7, 7) (see Figure 12).

To prove the desired d5-differential, it suffices to show that the d7-differential

d7(d̄2
1u2λu2σ) = d̄3

1s̄1u3σa3λaσ2

does not exist. For the sake of contradiction, suppose that this d7-differential does occur.

By natuality, this differential must be compatible with the restriction map. The left-hand
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side restricts to r̄2
1γr̄

2
1u4σ2 , but the right-hand side restricts to

res(d̄3
1s̄1u3σa3λaσ2) = r̄3

1γr̄
3
1(r̄1 + γr̄1)a7σ2 = 0 6= r̄5

1γr̄
2
1a7σ2

because the d3-differential d3(u2σ2) = (r̄1 +γr̄1)a3σ2 introduced the relation (r̄1 +γr̄1)a3σ2 =

0. This is a contradiction.

Corollary 10.5. d5(u2λ) = d̄1uλa2λaσ.

Proof. Using the Leibniz rule, we have

d5(d̄2
1u2λu2σ) = d̄2

1u2λd5(u2σ) + d̄2
1u2σd5(u2λ)

= d̄2
1u2λ · d̄1aλa3σ + d̄2

1u2σd5(u2λ)

= 0 + d̄2
1u2σd5(u2λ)

= d̄2
1u2σd5(u2λ),

where we have used the gold relation uλa3σ = 2u2σaλaσ = 0. Theorem 10.4 implies that

d̄2
1u2σd5(u2λ) = d̄3

1uλu2σa2λaσ. Rearranging, we obtain the equality

d̄2
1u2σ(d5(u2λ)− d̄1uλa2λaσ) = 0,

from which the desired differential follows (multiplication by d̄2
1u2σ is faithful on the E5-

page).

All the other d5-differentials are obtained from Theorem 10.4 via multiplication with

the classes

1. d̄1aλaσ at (1, 3) (permanent cycle);
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2. d̄1uλaσ at (3, 1) (permanent cycle);

3. d̄2
1u2σa2λ at (4, 4) (d5(d̄2

1u2σa2λ) = d̄3
1a3λa3σ2);

4. d̄4
1u4λu4σ at (16, 0) (d5-cycle).

and using the Leibniz rule (see Figure 13).

There is an alternative way to prove Corollary 10.5 by using the norm formulas. Start

with the d3-differential

d3(u2σ2) = (r̄1 + γr̄1)a3σ2

in the C2-slice spectral sequence. The first formula of Theorem 9.8 predicts the d3-

differential

d3

(
u2λ

u2σ

)
= tr(u2σ2 · (r̄1 + γr̄1)a3σ2).

However, this prediction is void because the right-hand side is equal to 0:

tr(res(uλaλ)(r̄1 + γr̄1)aσ2) = uλaλtr(res(s̄1aσ2)) = uλaλ · 2s̄1aσ2 = 0.

This is due to the fact that d3(uλ) 6= 0, and so u2λ is a d3-cycle.

The second formula, however, predicts the d5-differential

d5

(
aσ ·

u2λ

u2σ

)
= NC4

C2
(r̄1 + γr̄1)a3λ

in the C4-slice spectral sequence. Using the Leibniz rule, this formula predicts the d5-
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Figure 13: d5-differentials in C4-SliceSS(BP((C4))〈1〉).
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differential

d5(aσu2λ) = d5

(
u2σ

(
aσ ·

u2λ

u2σ

))
= d5(u2σ)

(
aσ ·

u2λ

u2σ

)
+ u2σd5

(
aσ ·

u2λ

u2σ

)
= (d̄1aλa3σ)

(
aσ ·

u2λ

u2σ

)
+NC4

C2
(r̄1 + γr̄1)u2σa3λ

= 0 +NC4
C2

(r̄1 + γr̄1)u2σa3λ

= NC4
C2

(r̄1 + γr̄1)u2σa3λ.

To compute NC4
C2

(r̄1 + γr̄1), note that

res(NC4
C2

(r̄1 + γr̄1)) = (r̄1 + γr̄1)(γr̄1 − r̄1) = −(r̄2
1 − γr2

1) = −r̄2
1u
−1
σ (1 + γ).

Therefore, NC4
C2

(r̄1 + γr̄1) = −tr(r̄2
1u
−1
σ ), and the target of the normed d5-differential is

−tr(r̄2
1u−σ)u2σa3λ = −tr(r̄2

1uσa6σ2) = tr(r̄2
1uσa6σ2).

The last equality holds because multiplication by 2 kills transfer of classes with filtration

at least 1.

To identity this target with a more familiar expression, we add tr(r̄1γr̄1uσa6σ2) to it

and use the Frobenius relation:

tr(r̄2
1uσa6σ2) + tr(r̄1γr̄1uσa6σ2) = tr(r̄1(r̄1 + γr̄1)uσa6σ2)

= tr(r̄1uσaσ2res(tr(r̄1aσ2)a2λ))

= tr(r̄1uσaσ2)tr(r̄1aσ2)a2λ

= 0.
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The last expression is 0 on the E5-page because d3(uλ) = s̄1aλaσ2 = tr(r̄1aσ2)aλ. Therefore,

tr(r̄2
1uσa6σ2) = tr(r̄1γr̄1uσa6σ2)

= tr(res(d̄1u2σa3λ)) (res(d̄1) = r̄1γr̄1u
−1
σ )

= 2d̄1u2σa3λ

= d̄1uλa2λa2σ (2u2σaλ = uλa2σ).

It follows that

aσ(d5(u2λ)− d̄1uλa2λaσ) = 0,

and d5(u2λ) = d̄1uλa2λaσ, as desired.

10.4 d7-differentials

Theorem 10.6. The classes 2d̄2
1u2λu2σ at (8, 0) and 2d̄4

1u2λu4σa2λ at (12, 4) support the

d7-differentials

d7(2d̄2
1u2λu2σ) = d̄3

1s̄1u3σa3λaσ2 ,

d7(2d̄4
1u2λu4σa2λ) = d̄5

1s̄1u5σa5λaσ2 .

Proof. Consider the d7-differential

d7(r̄2
1γr̄

2
1u4σ2) = r̄5

1γr̄
2
1a7σ2 = r̄4

1γr̄
3
1a7σ2

in the C2-slice spectral sequence (the last equality holds because r̄1 = γr̄1 after the d3-

102



0 4 8 12

0

4

8

s̄1aσ2

s̄21a2σ2

d̄1uλaσ

d̄1aλaσ

d̄21a2λa2σ

d̄1s̄1uσaλaσ2

2d̄21u2σa2λ=d̄21uλaλa2σ

2d̄21uλu2σaλ=d̄21u2λa2σ

2d̄21u2λu2σ

d̄31s̄1u3σa3λaσ2

Figure 14: d7-differential on 2d̄2
1u2λu2σ.

differentials). The transfer of the target is

tr(r̄4
1γr̄

3
1a7σ2) = tr(res(d̄3

1u3σa3λ)r̄1aσ2) = d̄3
1s̄1u3σa3λaσ2 .

For degree reasons, this class must be killed by a differential of length exactly 7 (see

Figure 14). Natuality implies that the source is

tr(r̄2
1γr̄

2
1u4σ2) = tr(res(d̄2

1u2σu2λ)) = 2d̄2
1u2σu2λ.

The second differential is proved using the same method, by applying the transfer to

the d7-differential

d7(r̄4
1γr̄

4
1u4σ2a4σ2) = r̄7

1γr̄
4
1a11σ2 = r̄6

1γr̄
5
1a11σ2 .
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Corollary 10.7. The classes 2u2λ and 2u2λu2σ support the d7-differentials

d7(2u2λ) = d̄1s̄1uσa3λaσ2 ,

d7(2u2λu2σ) = d̄1s̄1u3σa3λaσ2 .

Proof. Since the classes d̄1, u4σ, and aλ are permanent cycles, the second differential in

Theorem 10.6 can be rewritten as

d̄4
1u4σa2λ(d7(2u2λ)− d̄1s̄1uσa3λaσ2) = 0,

from which the first differential follows. The second differential is proven similarly by using

the first differential in Theorem 10.6.

Remark 10.8. Corollary 10.7 can also be proved by applying the transfer to the d7-

differential

d7(u4σ2) = r̄3
1a7σ2 = r̄2

1γr̄1a7σ2

in the C2-slice spectral sequence.

Remark 10.9. On the E7-page of C4-SliceSS(BP((C4))〈1〉), there is more than one class at

(8, 0). They are

1. 2d̄2
1u2λu2σ = tr(res(d̄2

1u2λu2σ)) = tr(r̄2
1γr̄

2
1u4σ2);

2. d̄1s̄
2
1uλuσu2σ2 = (d̄1uλuσ)(s̄2

1u2σ2) = tr(res(d̄1uλuσ)r̄2
1u2σ2) = tr(r̄3

1γr̄1u4σ2);

3. s̄4
1u4σ2 = tr(r̄4

1u4σ2).
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Except for class (1), the classes (2) and (3) are “grayed out” on the upper-left of Hill,

Hopkins, and Ravenel’s original computation of C4-SliceSS(D−1
1 BP((C4))〈1〉) [40, pg. 4].

On the E2-page, there is more than one class at (7, 7) as well:

1. d̄3
1s̄1u3σa3λaσ2 = tr(r̄4

1γr̄
3
1a7σ2);

2. d̄2
1s̄

3
1u2σa2λa3σ2 = tr(r̄5

1γr̄
2
1a7σ2);

3. d̄1s̄
5
1uσaλa5σ2 = tr(r̄6

1γr̄1a7σ2);

4. s̄7
1a7σ2 = tr(r̄7

1a7σ2).

Applying transfers to the following d3-differentials in C2-SliceSS(BP((C4))〈1〉) yields d3-

differentials in C4-SliceSS(BP((C4))〈1〉):

1. d3(r̄6
1u2σ2a4σ2) = r̄6

1(r̄1 + γr̄1)a7
σ2

: transfer of this kills (3) + (4);

2. d3(r̄5
1γr̄1u2σ2a4σ2) = r̄5

1γr̄1(r̄1 + γr̄1)a7σ2 : transfer of this kills (2) + (3);

3. d3(r̄4
1γr̄

2
1u2σ2a4σ2) = r̄4

1γr̄
2
1(r̄1 + γr̄1)a7σ2 : transfer of this kills (1) + (2).

These d3-differentials identified the four classes at (7, 7). The transfer argument in Theo-

rem 10.6 shows that each of the three classes at (8, 0) supports a d7-differential, all killing

the single remaining class at (7, 7).

The proof of Hill–Hopkins–Ravenel’s Periodicity theorem [39, Section 9] shows that the

class d̄8
1u8λu8σ at (32, 0) is a permanent cycle. For degree reasons, the following classes are

also permanent cycles and survive to the E∞-page:

1. η = s̄1aσ2 at (1, 1);

2. η2 = s̄2
1a2σ2 at (2, 2);
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3. η′ = d̄1aλaσ at (1, 3);

4. η′2 = d̄2
1a2λa2σ at (2, 6);

5. ε = d̄4
1u4σa4λ at (8, 8).

Their names come from the spherical classes that they detect in π∗S [40, Theorem 9.8]

under the Hurewicz map

π∗S −→ π∗BP((C4))〈1〉C4 .

Theorem 10.10. The class u4λaσ supports the d13-differential

d13(u4λaσ) = d̄3
1u4σa

7
λ.

Proof. Applying the second norm formula of Theorem 9.8 to the d7-differential

d7(u4σ2) = r̄3
1a7σ2

in the C2-slice spectral sequence predicts the d13-differential

d13(u4λaσ) = u4σN
C4
C2

(r̄3
1a7σ2)

= d̄3
1u4σa7λ

in the C4-slice spectral sequence. The target is not zero on the E13-page because multiplying

it by the permanent cycle d̄5
1u4σaλ gives the nonzero class d̄8

1u8σa8λ at (16, 16). Therefore,

this d13-differential exists.

Multiplying the differential in Theorem 10.10 by the permanent cycle d̄5
1u4σaλ produces

a d13-differential in the integer graded spectral sequence.
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Corollary 10.11. The class d̄5
1u4λu4σaλaσ at (17, 3) supports the d13-differential

d13(d̄5
1u4λu4σaλaσ) = d̄8

1u8σa8λ = ε2.

Theorem 10.12. The class d̄4
1u4λu4σ at (16, 0) supports the d7-differential

d7(d̄4
1u4λu4σ) = d̄5

1s̄1u2λu5σa3λaσ2 .

Proof. The class η′ = d̄1aλaσ is a permanent cycle. By Corollary 10.11, the class d̄4
1u4λu4σ

at (16, 0) must support a differential of length at most 13. For degree reasons, the only

possible target is d̄5
1s̄1u2λu5σa3λaσ2 .

Corollary 10.13. The class u4λ supports the d7-differential

d7(u4λ) = d̄1s̄1u2λuσa3λaσ2 .

Proof. This follows directly from Theorem 10.12 because

d̄4
1u4σ(d7(u4λ)− d̄1s̄1u2λuσa3λaσ2) = 0

and multiplication by d̄4
1u4σ is faithful on the E7-page.

Once we have proven the d7-differentials in Theorem 10.6 and Theorem 10.12, all the

other d7-differentials are obtained via multiplication with the classes

1. d̄4
1u4σa4λ at (8, 8) (permanent cycle);

2. d̄4
1u4λu4σ at (16, 0) (Theorem 10.12);

3. d̄8
1u8λu8σ at (32, 0) (d7-cycle).
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and using the Leibniz rule (see Figure 15).

10.5 Higher differentials

Fact 10.14. Multiplication by ε = d̄4
1u4σa4λ is injective on the E2-page. The image of this

multiplication map is the region defined by the inequalities

s ≥ 8,

3(s− 8) ≤ t− s− 8.

In other words, this region consists of classes with filtrations at least 8 and these classes

are all on or below the ray of slope 3, starting at (8, 8). Starting from the E5-page, all the

classes in this region are divisible by ε. Therefore, when r ≥ 5, multiplication by ε induces

a surjective map from the whole Er-page to this region.

Lemma 10.15. Let dr(x) = y be a nontrivial differential in C4-SliceSS(BP((C4))〈1〉).

1. The class εx and εy both survive to the Er-page, and dr(εx) = εy.

2. If both x and y are divisible by ε on the E2-page, then x/ε and y/ε both survive to the

Er-page, and dr(x/ε) = y/ε.

Proof. We will prove both statements by using induction on r, the length of the differential.

Both claims are true in the base case when r = 3.

Now suppose that both statements hold for all differentials with length k < r. Given a

nontrivial differential dr(x) = y, we will first show that εy survives to the Er-page.

If εy supports a differential, then y must support a differential as well. This is a

contradiction because y is the target of a differential. Therefore if εy does not survive to
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Figure 15: d7-differentials in C4-SliceSS(BP((C4))〈1〉).
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the Er-page, it must be killed by a differential dk(z) = εy where k < r. By Fact 10.14, z

is divisible by ε. The inductive hypothesis, applied to the differential dk(z) = εy, shows

that dk(z/ε) = y. This is a contradiction because dr(x) = y is a nontrivial dr-differential.

Therefore, εy survives to the Er-page.

εy

y

z

z/ε εx

x

·ε

dk

·ε

dk

dr

·ε

If εx does not survive to the Er-page, then it must be killed by a shorter differential as

well. This shorter differential introduces the relation εx = 0 on the Er-page. However, the

Leibniz rule, applied to the differential dr(x) = y, shows that

dr(εx) = εy 6= 0

on the Er-page. This is a contradiction. It follows that εx survives to the Er-page as well,

and it supports the differential

dr(εx) = εy.

This proves (1).

To prove (2), note that if y/ε supports a differential of length smaller than r, then the

induction hypothesis would imply that y also supports a differential of the same length.
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Similarly, if y/ε is killed by a differential of length smaller than r, then the induction

hypothesis would imply that y is also killed a by a differential of the same length. Both

scenarios lead to contradictions. Therefore, y/ε survives to the Er-page.

We will now show that x/ε survives to the Er-page as well. Since x supports a dr-

differential, x/ε must also support a differential of length at most r. Suppose that dk(x/ε) =

z, where k < r. The induction hypothesis, applied to this dk-differential, implies the

existence of the differential dk(x) = εz. This is a contradiction.

y

y/ε εz

z

x

x/ε

·ε

·ε

dk

dr

dk

·ε

It follows that x/ε survives to the Er-page, and it supports a nontrivial dr-differential.

Since y/ε also survives to the Er-page, the Leibniz rule shows that

dr(x/ε) = y/ε,

as desired.

Theorem 10.16. Any class x = ε2a on the E2-page of C4-SliceSS(BP((C4))〈1〉) must die on

or before the E13-page.
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Proof. If the class a is a d13-cycle, then x is a d13-cycle as well. Since ε2 is killed by a

d13-differential by Corollary 10.11, ε2a must be killed by a differential of length at most 13.

Now suppose that the class a is not a d13-cycle and it supports the differential dr(a) = b,

where r ≤ 13. Applying Lemma 10.15, we deduce that the class x = ε2a must support the

nontrivial dr-differential

dr(ε
2a) = ε2b,

and therefore cannot survive to the E13-page.

Theorem 10.17. The class d̄7
1s̄1u2λu7σa5λaσ2 at (19, 11) supports the d11-differential

d11(d̄7
1s̄1u2λu7σa5λaσ2) = d̄10

1 u8σa10λa2σ.

Proof. The class d̄10
1 u8σa10λa2σ at (18, 22) is equal to

d̄10
1 u8σa10λa2σ = ε2(d̄2

1a2λa2σ).

By Theorem 10.16, this class must die on or before the E13-page. For degree reasons, the

only possibility is for it to be killed by a d11-differential coming from the class d̄7
1s̄1u2λu7σa5λaσ2 .

Corollary 10.18. The class s̄1u2λu3σaσ2 supports the d11-differential

d11(s̄1u2λu3σaσ2) = d̄3
1u4σa5λa2σ.

Proof. The d11-differential in Theorem 10.17 can be rewritten as

d7
1u4σa5λ(d11(s̄1u2λu3σaσ2)− d̄3

1u4σa5λa2σ) = 0.
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Since multiplication by d̄7
1u4σa5λ is injective on the E11-page, the claim follows.

Corollary 10.19. The class d̄6
1u4λu6σa2λ at (20, 4) is a permanent cycle that survives to

the E∞-page. In homotopy, it detects the class κ̄ ∈ π20S.

Proof. For degree reasons, this class is a permanent cycle that survives to the E∞-page.

To show this detects κ̄, consider the commutative diagram

π∗S π∗BP((C4))〈1〉C4

π∗BPC2
R π∗(i

∗
C2

BP((C4))〈1〉)C2 ,

res

where the bottom horizontal map is the composition

BPR
ιL−→ i∗C2

BP((C4)) −→ i∗C2
BP((C4))〈1〉.

It is proven in [47, Section 6] that κ̄ is detected in the C2-slice spectral sequence of BPR by

the class v̄2u8σ2a4σ2 . Since v̄2 = r̄3
1, κ̄ is detected in C2-SliceSS(i∗C2

BP((C4))〈1〉) by the class

r̄12
1 u8σ2a4σ2 . This is exactly the restriction of the class d̄6

1u4λu6σa2λ because

res(d̄6
1u4λu6σa2λ) = r̄6

1γr̄
6
1u8σ2a4σ2 = r̄12

1 u8σ2a4σ2 .

Therefore, κ̄ is detected by d̄6
1u4λu6σa2λ, as desired.

As shown in Figure 16, all the other d11-differentials are obtained from the d11-differential

in Theorem 10.17 via multiplication with the permanent cycles ε, κ̄, and d̄8
1u8λu8σ (at

(32, 0)).

Similarly, all the other d13-differentials are obtained from Corollary 10.11 by using

multiplicative structures with the classes η′, ε, κ̄, and d̄8
1u8λu8σ (see Figure 17).
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Figure 16: d11-differentials in C4-SliceSS(BP((C4))〈1〉).
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Figure 17: d13-differentials in C4-SliceSS(BP((C4))〈1〉).
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Figure 18: Differentials in C4-SliceSS(BP((C4))〈1〉).
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Figure 19: E∞-page of C4-SliceSS(BP((C4))〈1〉).
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10.6 Summary of differentials

Differential Formula Proof

d3 d3(uλ) = s̄1aλaσ2 Theorem 10.1 (restriction)

d3(u2σ2) = s̄1a3σ2

d5 d5(u2σ) = d̄1aλa3σ [39, Theorem 9.9] (Slice Differentials Theorem)

d5 d5(u2λ) = d̄1uλa2λaσ Theorem 10.4 and Corollary 10.5 (restriction)

d7 d7(2u2λ) = d̄1s̄1uσa3λaσ2 Theorem 10.6 and Corollary 10.7 (transfer)

d7(2u2λu2σ) = d̄1s̄1u3σa3λaσ2

d7 d7(u4λ) = d̄1s̄1u2λuσa3λaσ2 Theorem 10.12 and Corollary 10.13 (norm)

d11 d11(s̄1u2λu3σaσ2) = d̄3
1u4σa5λa2σ Theorem 10.17 and Corollary 10.18

(uses Theorem 10.16)

d13 d13(u4λaσ) = d̄3
1u4σa7λ Theorem 10.10 and Corollary 10.11 (norm)

11 The slice filtration of BP((C4))〈2〉

The refinement of BP((C4))〈2〉 is

S0[r̄1, γr̄1, r̄3, γr̄3] −→ BP((C4))〈2〉.
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Its slices are the following:


r̄i3γr̄

i
3r̄
k
1γr̄

k
1 : S(3i+k)ρ4 ∧HZ, i, k ≥ 0

r̄i3γr̄
j
3r̄
k
1γr̄

l
1 + r̄j3γr̄

i
3r̄
l
1γr̄

k
1 : C4+ ∧C2 S

(3i+3j+k+l)ρ2 ∧HZ, i 6= j or k 6= l.

Similar to the slices of BP((C4))〈1〉, we organize the slices for BP((C4))〈2〉 in order to facilitate

our computation.

Consider the monomial r̄i3γr̄
j
3r̄
k
1γr̄

l
1. When i = j, this monomial can be written as

d̄i3r̄
k
1γr̄

l
1. Fix an non-negative integer i. After the d3-differentials, the classes of filtration

≥ 3 that are contributed by these slices cells are exactly the same as the classes on the

E5-page of C4-SliceSS(BP((C4))〈1〉), truncated at the line (t− s) + s = 12i. For this reason,

we will call this collection of slices d̄i3BP((C4))〈1〉. Figure 20 shows the truncation lines for

the slices d̄i3BP((C4))〈1〉 and Figures 21 and 22 illustrate the classes contributed by the slices

in d̄3BP((C4))〈1〉 and d̄2
3BP((C4))〈1〉.

When i 6= j, the monomial r̄i3γr̄
j
3r̄
k
1γr̄

l
1 contributes an induced slice of the form r̄i3γr̄

j
3r̄
k
1γr̄

l
1+

r̄j3γr̄
i
3r̄
l
1γr̄

k
1 . By symmetry, let i < j. The d3-differential d3(u2σ2) = s̄1a

3
σ2

= (r̄1 + γr̄1)a3
σ2

identifies r̄1 and γr̄1 when the filtration is at least 3. By an abuse of notation, we can

rewrite this slice cell as

r̄i3γr̄
j
3r̄
k
1γr̄

l
1 + r̄j3γr̄

i
3r̄
k
1γr̄

l
1 = (r̄i3γr̄

i
3)(r̄j−i3 + γr̄j−i3 )r̄k1γr̄

l
1 = d̄i3s̄

j−i
3 r̄k1γr̄

l
1.

For a fixed pair {i, j} with i < j, the classes of filtration ≥ 3 that are contributed by these

slice cells after the d3-differentials are exactly the same as the classes on the E5-page of

C2-SliceSS(i∗C2
BP((C4))〈1〉), truncated at the line (t − s) + s = 6i + 6j. For this reason, we

will call this collection of slices d̄i3s̄
j
3i
∗
C2

BP((C4))〈1〉. Figure 23 shows the truncation lines for
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Figure 20: Truncations lines for the slices d̄i3BP((C4))〈1〉.
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Figure 21: Classes contributed by the slices in d̄3BP((C4))〈1〉.
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Figure 22: Classes contributed by the slices in d̄2
3BP((C4))〈1〉.

122



0 4 8 12 16 20

0

4

8

12

16

Figure 23: Truncation lines for the slices d̄i3s̄
j
3i
∗
C2

BP((C4))〈1〉.

these slices. Figures 24, 25, and 26 illustrate the classes contributed by some of these slices.

All the slices of BP((C4))〈2〉 are organized into the following table, where the number

inside the parenthesis indicates the truncation line. For convenience, we will refer to each of

the collections on the top row as a BP((C4))〈1〉-truncation, and each of the other collections

as a i∗C2
BP((C4))〈1〉-truncation.
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∗
C2

BP((C4))〈1〉.
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Figure 25: Classes contributed by the slices in s̄2
3i
∗
C2

BP((C4))〈1〉.
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Figure 26: Classes contributed by the slices in s̄3
3i
∗
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BP((C4))〈1〉 or d̄3s̄3i
∗
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d̄0
3BP((C4))〈1〉 − (0) d̄1

3BP((C4))〈1〉 − (12) d̄2
3BP((C4))〈1〉 − (24) · · ·

d̄0
3s̄

1
3i
∗
C2

BP((C4))〈1〉 − (6) d̄1
3s̄

1
3i
∗
C2

BP((C4))〈1〉 − (18) d̄2
3s̄

1
3i
∗
C2

BP((C4))〈1〉 − (30) · · ·

d̄0
3s̄

2
3i
∗
C2

BP((C4))〈1〉 − (12) d̄1
3s̄

2
3i
∗
C2

BP((C4))〈1〉 − (24) d̄2
3s̄

2
3i
∗
C2

BP((C4))〈1〉 − (36) · · ·
...

...
...

. . .

(11.1)

12 The C2-slice spectral sequence of i∗C2
BP((C4))〈2〉

In this section, we will compute the C2-slice spectral sequence for i∗C2
BP((C4))〈2〉. The

composition map

BPR
iL−→ i∗C2

BP((C4)) −→ i∗C2
BP((C4))〈2〉

induces a map

C2- SliceSS(BPR) −→ C2- SliceSS(i∗C2
BP((C4))〈2〉)

of C2-slice spectral sequences. The formulas in Theorem 9.11 translate the differentials in

C2- SliceSS(BPR) to the following differentials in C2- SliceSS(i∗C2
BP((C4))〈2〉):

d3(u2σ2) = (r̄1 + γr̄1)a3
σ2

d7(u4σ2) = (r̄3
1 + r̄3 + γr̄3)a7

σ2

d15(u8σ2) = r̄1(r̄2
3 + r̄3γr̄3 + γr̄2

3)a15
σ2

d31(u16σ2) = r̄4
3γr̄3a

31
σ2

The class u32σ2 is a permanent cycle.
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On the E2-page, the refinement

S0[r̄1, γr̄1, r̄3, γr̄3] −→ i∗C2
BP((C4))〈2〉

implies that all the slice cells are indexed by monomials of the form r̄i3γr̄
j
3r̄
k
1γr̄

l
1, where

i, j, k, l ≥ 0.

We now give a step-by-step description of the surviving classes after each differential:

1. After the d3-differentials, the relation r̄1 = γr̄1 is introduced for classes with filtrations

≥ 3. Therefore, the slice cells corresponding to these classes can be written as a sum

of monomials from the set {r̄i3γr̄j3r̄k1 | i, j, k ≥ 0}.

2. After the d7-differentials, the relation r̄3
1 + r̄3 + γr̄3 = 0 is introduced for classes with

filtrations ≥ 7. Therefore given a class with filtration at least 7, depending on its

bidegree, its corresponding slice cell can be written as a sum of monomials from the

set {r̄i3γr̄j3r̄1 | i, j ≥ 0}, {r̄i3γr̄j3r̄2
1 | i, j ≥ 0}, or {r̄i3γr̄j3r̄3

1, r̄
i+j
3 γr̄3 | i, j ≥ 0}.

3. After the d15-differentials, the relation r̄1(r̄2
3 + r̄3γr̄3 + γr̄2

3) = 0 is introduced for

classes with filtrations ≥ 15. Given a class with filtration at least 15, depend-

ing on its bidegree, its corresponding slice cell can be written as a sum of mono-

mials from the set {r̄i+1
3 γr̄1

3 r̄1, r̄
i
3γr̄

2
3 r̄1, | i ≥ 4}, {r̄i+1

3 γr̄1
3 r̄

2
1, r̄

i
3γr̄

2
3 r̄

2
1, | i ≥ 4}, or

{r̄i+1
3 γr̄1

3 r̄
3
1, r̄

i
3γr̄

2
3 r̄

3
1, r̄

i+2
3 γr̄3 | i ≥ 4}.

4. After the d31-differentials, the relation r̄4
3γr̄3 = 0 is introduced for classes with fil-

trations ≥ 31. Since all the classes with filtrations ≥ 31 have slice cells divisible by

r̄4
3γr̄3 on the E31-page, they are all wiped out by the d31-differentials. The spectral

sequence collapses afterwards and there is a horizontal vanishing line with filtration

31 on the E∞-page.
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Example 12.1. Consider all the classes at (31, 31). On the E2-page, their names are of the

form x · a31σ2 , where x is a sum of slice cells of the form {r̄i3γr̄j3r̄k1γr̄l1 | 3i+ 3j + k+ l = 31}.

1. After the d3-differentials, x can be written as a sum of slice cells from the set

{r̄i3γr̄j3r̄k1 | 3i+ 3j + k = 31}.

2. After the d7-differentials, x can be written as a sum of slice cells from the set

{r̄i3γr̄j3r̄1 | i+ j = 10}.

3. After the d15-differentials, x can be written as a sum of slice cells from the set

{r̄9
3γr̄3r̄1, r̄

8
3γr̄

2
3 r̄1}.

4. After the d31-differentials, all the remaining classes are killed.

Example 12.2. Consider all the classes at (33, 33). On the E2-page, their names are of the

form x · a33σ2 , where x is a sum of slice cells of the form {r̄i3γr̄j3r̄k1γr̄l1 | 3i+ 3j + k+ l = 33}.

1. After the d3-differentials, x can be written as a sum of slice cells from the set

{r̄i3γr̄j3r̄k1 | 3i+ 3j + k = 33}.

2. After the d7-differentials, x can be written as a sum of slice cells from the set

{r̄i3γr̄j3r̄3
1, r̄

10
3 γr̄3 | i+ j = 10}.

3. After the d15-differentials, x can be written as a sum of slice cells from the set

{r̄9
3γr̄3r̄

3
1, r̄

8
3γr̄

2
3 r̄

3
1, r̄

10
3 γr̄3}.

4. After the d31-differentials, all the remaining classes are killed.
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13 Induced differentials from BP((C4))〈1〉

In section 11, the slices of BP((C4))〈2〉 are subdivided into collections of the form d̄i3BP((C4))〈1〉

(BP((C4))〈1〉-truncation) and d̄i3s̄
j
3i
∗
C2

BP((C4))〈1〉 (i∗C2
BP((C4))〈1〉-truncation), where i ≥ 0 and

j ≥ 1. On the E2-page of the C4-slice spectral sequence, the classes contributed by the

slices in d̄i3BP((C4))〈1〉 is a truncation of the E2-page of C4- SliceSS(BP((C4))〈1〉), and the

classes contributed by the slices in d̄i3s̄
j
3i
∗
C2

BP((C4))〈1〉 is a truncation of the E2-page of

C2- SliceSS(i∗C2
BP((C4))〈1〉).

Recall that in the computation of SliceSS(BP((C4))〈1〉), we have also divided the slices

into collections (they are the columns in Table 10.1). The computation was simplified

by treating each collection individually with respect to the d3-differentials. After the d3-

differentials, we combined the E5-pages of every collection together to form the E5-page of

SliceSS(BP((C4))〈1〉).

In light of this simplification for SliceSS(BP((C4))〈1〉), it is natural to expect that in

SliceSS(BP((C4))〈2〉), each collection can be treated individually with respect to differentials

of lengths up to 13 (the longest differential in BP((C4))〈1〉). Knowing this will allow us to

compute the E13-page of each collection individually, and then combine them together to

form the E13-page of SliceSS(BP((C4))〈2〉).

Definition 13.1. A predicted differential is a differential whose leading terms for the source

and the target belong to slices in the same collection and the position of that differential

matches with a differential in C4- SliceSS(BP((C4))〈1〉) or C2- SliceSS(i∗C2
BP((C4))〈1〉).

For example, all of the differentials whose source and target are on or above the trun-

cation lines in Figures 21, 22, 24, 25, 26 are predicted differentials.

Definition 13.2. An interfering differential is a differential whose source and target are
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in different collections.

Given the definitions above,

Theorem 13.3. The collections can be treated individually with respect to differentials of

lengths up to 13. More specifically:

1. For 3 ≤ r ≤ 11, all the predicted dr-differentials occur and there are no interfering

dr-differentials.

2. All the predicted d13-differentials occur.

13.1 d3-differentials

The quotient map BP((C4))〈2〉 → BP((C4))〈1〉 induces a map

SliceSS(BP((C4))〈2〉) −→ SliceSS(BP((C4))〈1〉)

of C4-slice spectral sequences. In SliceSS(BP((C4))〈1〉), the d3-differentials are generated

under multiplication by

d3(uλ) = s̄1aλaσ2 .

For natuality and degree reasons, the same differential occurs in SliceSS(BP((C4))〈2〉) as well.

Moreover, by considering the restriction map

C4- SliceSS(BP((C4))〈2〉) −→ C2- SliceSS(i∗C2
BP((C4))〈2〉),

we deduce the d3-differential

d3(u2σ2) = s̄1a3σ2
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as well. (even though we are working with a C4-slice spectral sequence, this differential

applies to some of the classes in i∗C2
BP((C4))〈1〉-truncations because of our naming conven-

tions). All the predicted differentials are generated by these two differentials. Afterwards,

there are no more d3-differentials by degree reasons.

13.2 d5-differentials

In SliceSS(BP((C4))〈1〉), all the d5-differentials are generated under multiplication by the

differentials

d5(u2σ) = d̄1aλa3σ

and

d5(u2λ) = d̄1uλa2λaσ.

In SliceSS(BP((C4))〈2〉), the first differential still exists by Hill–Hopkins–Ravenel’s Slice Dif-

ferential Theorem [39, Theorem 9.9]. To prove that the second differential exists as well,

consider again the map

SliceSS(BP((C4))〈2〉) −→ SliceSS(BP((C4))〈1〉).

For natuality reasons, u2λ must support a differential of length at most 5 in SliceSS(BP((C4))〈2〉).

Since uλ supports a nonzero d3-differential, u2λ is a d3-cycle. This implies that u2λ must

support a d5-differential whose target maps to d̄1uλa2λaσ under the quotient map (which

sends r̄3 and γr̄3 to zero). It follows that the only possible target is d̄1uλa2λaσ, and the

same d5-differential on u2λ exists in SliceSS(BP((C4))〈2〉).

All the predicted d5 differentials in SliceSS(BP((C4))〈2〉) are generated by these two dif-

ferentials.
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It remains to show that there are no interfering d5-differentials. There are two cases to

consider:

(1) The source is in a i∗C2
BP((C4))〈1〉-truncation. Every class in a i∗C2

BP((C4))〈1〉-truncation is

in the image of the transfer map

C2- SliceSS(i∗C2
BP((C4))〈2〉) tr−→ C4- SliceSS(BP((C4))〈2〉).

On the E5-page of C2- SliceSS(i∗C2
BP((C4))〈2〉), every class is a d5-cycle because there are no

d5-differentials. Therefore after applying the transfer map, all the images must be d5-cycles

as well.

(2) The source is in a BP((C4))〈1〉-truncation. If the source is in the image of the transfer,

then by the same reasoning as above, it must be a d5-cycle. If the source is not in the image

of the transfer, then it can be written as d̄i3d̄
j
1u

a
λu

b
σa

c
λa

d
σ for some i, j, a, b, c, d ≥ 0. The only

possibilities are the blue classes in Figure 27. These classes might support d5-differentials

whose targets are classes in i∗C2
BP((C4))〈1〉-truncations. However, using the differentials

d5(u2λ) = d̄1uλa2λaσ and d5(u2σ) = d̄1aλa3σ, we can easily show that all of these classes are

d5-cycles.

13.3 d7-differentials

In the slice spectral sequence for BP((C4))〈1〉, the d7-differentials are generated under multi-

plicative structure by three differentials:

1. d7(2u2λ) = d̄1s̄1uσa3λaσ2 ;

2. d7(2u2λu2σ) = d̄1s̄1u3σu3λaσ2 ;

3. d7(u4λ) = d̄1s̄1u2λu2σa3λaσ2 .
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Figure 27: Possible sources in BP((C4))〈1〉-truncations that could support d5-interfering
differentials. The magenta lines indicate the locations of the classes in i∗C2

BP((C4))〈1〉-
truncations.
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Using the natuality of the quotient map

SliceSS(BP((C4))〈2〉) −→ SliceSS(BP((C4))〈1〉),

we deduce that the classes 2u2λ, 2u2λu2σ, and u4λ must all support differentials of length

at most 7 in SliceSS(BP((C4))〈2〉). The formulas for the d5-differentials on u2λ and u2σ imply

that all three classes above are d5-cycles. Therefore, they must all support d7-differentials.

It follows by natuality that we have the exact same d7-differentials in SliceSS(BP((C4))〈2〉).

These differentials generate the predicted d7-differentials in all the BP((C4))〈1〉-truncations.

All of the predicted d7-differentials in i∗C2
BP((C4))〈1〉-truncations are obtained by using

the transfer map

C2- SliceSS(BP((C4))〈2〉) tr−→ C4- SliceSS(BP((C4))〈2〉).

More precisely, the transfer map takes in a d7-differential in BP((C4))〈2〉, which is generated

by d7(u4σ2) = (r̄3+γr̄3+r̄3
1)a7σ2 = (s̄3+r̄3

1)a7σ2 , and produces a corresponding d7-differential

in a i∗C2
BP((C4))〈1〉-truncation.

Note that in the C2-slice spectral sequence for BP((C4))〈1〉, the d7-differentials are gen-

erated by d7(u4σ2) = r̄3
1a7σ2 , whereas in the C2-slice spectral sequence for BP((C4))〈2〉, they

are generated by d7(u4σ2) = (s̄3 + r̄3
1)a7σ2 . The readers should be warned that strictly

speaking, the d7-differentials are not appearing independently within each i∗C2
BP((C4))〈1〉-

truncations, but rather identifying classes between different i∗C2
BP((C4))〈1〉-truncations. The

exact formulas for this identification will be discussed in Section 14. Nevertheless, since

the leading terms are independent, the d7-differentials do occur independently within each

i∗C2
BP((C4))〈1〉-truncation.
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It remains to prove that there are no interfering d7-differentials. There are two cases to

consider.

(1) The source is in the image of the transfer (in other words, the source is produced

by an induced slice cell). Denote the source by tr(x), where x is a class in the C2-slice

spectral sequence. If tr(x) supports a d7-differential in the C4-slice spectral sequence, then

natuality of the transfer map implies that in the C2-slice spectral sequence, x must support

a differential of length at most 7. This means that x either supports a d3-differential or a

d7-differential.

If x supports a d3-differential d3(x) = y, then since the transfer map is faithful on the

E3-page, applying the transfer to this d3-differential yields the nontrivial d3-differential

d3(tr(x)) = tr(y)

in the C4-slice spectral sequence. This is a contradiction to the assumption that d7(tr(x)) 6=

0.

Therefore, x must support a d7-differential d7(x) = y in the C2-slice spectral sequence.

Applying the transfer map to this d7-differential gives d7(tr(x)) = tr(y), which must be the

d7-differential on tr(x) by natuality. However, this will not be an interfering d7-differential

because it is a predicted d7-differential that is obtained via the transfer.

Example 13.4. In Figure 28, there is a possibility for a d7-interfering differential with

source a class at (11, 3) coming from a BP((C4))〈1〉-truncation (it is supposed to support

a predicted d11-differential), and the target a class at (10, 10) coming from i∗C2
BP((C4))〈1〉-

truncations (a pink class).

The two possible sources at (11, 3) are d̄3s̄1u2λu3σaλaσ2 = tr(r̄3γr̄3r̄1u4σ2a3σ2) and

d̄3
1s̄1u2λu3σaλaσ2 = tr(r̄4

1γr̄
3
1u4σ2a3σ2). By the discussion above, if any of these two classes
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support a d7-differential hitting a class in the image of the transfer, then this differential

must be obtained by applying the transfer map to a d7-differential in the C2-slice spectral

sequence.

In the C2-slice spectral sequence, the relevant differentials are the following:

d7(r̄3γr̄3r̄1u4σ2a3σ2) = r̄3γr̄3r̄1(r̄3 + γr̄3 + r̄3
1)a11σ2

d7(r̄4
1γr̄

3
1u4σ2a3σ2) = r̄4

1γr̄
3
1(r̄3 + γr̄3 + r̄3

1)a11σ2 .

The transfer of the targets are (d̄3s̄3s̄1+d̄3s̄
4
1)a3λa4σ2 and (d̄3

1s̄3s̄1+d̄3
1s̄

4
1)a3λa4σ2 , respectively.

They are both 0 on the E7-page because they are targets of d3-differentials. It follows that

the d7-interfering differentials do not occur at (11, 3). The same argument also shows that

there are no d7-interfering differentials with sources at (19, 11), (23, 15), (31, 7), . . ..

(2) The source is not in the image of the transfer (in other words, the source is produced

by a regular, non-induced slice cell). As shown in Figure 28, for degree reasons, there are

possible interfering d7-differentials with sources at

1. (20, 4), (28, 12), (36, 20), . . .;

2. (32, 0), (40, 8), (48, 16), . . .;

3. (52, 4), (60, 12), (68, 20), . . .;

. . ..

To prove that these d7-differentials do not exist, it suffices to prove that all the classes

at (20, 4) are d7-cycles. Once we prove this, all the other possible sources above will be

d7-cycles as well by multiplicative reasons.

The quotient map SliceSS(BP((C4))〈2〉) −→ SliceSS(BP((C4))〈1〉) shows that both classes

at (11, 3), d̄3
1s̄1u2λu3σaλaσ2 and d̄3s̄1u2λu3σaλaσ2 , must support nontrivial d11-differentials.
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Multiplication by the permanent cycles at (8, 8) (d̄3d̄1u4σa4λ and d̄4
1u4σa4λ) implies that all

three classes at (19, 11) (coming from the slice cells d̄2
3d̄1s̄1, d̄3d̄

4
1s̄1, and d̄7

1s̄1) must support

nontrivial d11-differentials. In fact, these are the predicted d11-differentials.

There are three classes at (20, 4): d̄2
3u6σu4λa2λ, d̄3d̄

3
1u6σu4λa2λ, and d̄6

1u6σu4λa2λ. If any of

these classes supports a nontrivial d7-differential, the target would be a classes at (19, 11),

which, as we have shown in the previous paragraph, supports a nontrivial d11-differential.

This is a contradiction because something killed on the d7-page becomes trivial on the

d11-page, and cannot support a nontrivial d11-differential.

13.4 d11-differentials

For degree reasons, there are no possible d9-differentials. The next possible differentials are

the d11-differentials.

In the slice spectral sequence for BP((C4))〈1〉, all the d11-differentials are generated by

the single d11-differential

d11(s̄1u2λu3σaσ2) = d̄3
1u4σa5λa2σ

under multiplication. Using the quotient map

SliceSS(BP((C4))〈2〉) −→ SliceSS(BP((C4))〈1〉),

we deduce that the class s̄1u2λu3σaσ2 must support a differential of length at most 11 in

SliceSS(BP((C4))〈2〉).

Our knowledge of the earlier differentials implies that this class is a dr-cycle for r ≤ 10,

and hence it must support a d11-differential. Furthermore, the formula of the d11-differential
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Figure 28: The dashed red lines are the possible d7-interfering differentials. The cyan
classes are the d5-truncation classes, the magenta classes are the d7-truncation classes, and
the pink classes are classes in i∗C2

BP((C4))〈1〉-truncations after the predicted d7-differentials.
The green differentials are the predicted d11-differentials which all occur.
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is of the form

d11(s̄1u2λu3σaσ2) = d̄3
1u4σa5λa2σ + · · · ,

where “· · · ” indicates terms that go to 0 under the quotient map (which sends r̄3, γr̄3 7→ 0).

All of the predicted d11-differentials are obtained using this d11-differential under multipli-

cation.

Similar to situation of the d7-differentials, strictly speaking, the d11-differentials do not

necessarily occur within each BP((C4))〈1〉-truncation. For instance, in the formula above,

the “· · · ” could be d̄3u4σa5λa2σ. If this happens, the d11-differential would be identifying

the two classes, d̄3
1u4σa5λa2σ and d̄3u4σa5λa2σ, which are located in different BP((C4))〈1〉-

truncations. Given this, we can kill off the leading term and assume that the rest of the

terms remain. This will give us the same distribution of classes after the d11-differentials

and will not affect later computations.

It remains to show that there are no d11-interfering differentials. Figure 29 shows all

the possible d11-interfering differentials. We will prove that none of them exist.

(1) Blue differentials. These differentials have sources at

• {(27, 11), (39, 23), (51, 35), . . .};

• {(35, 3), (47, 15), (59, 27), . . .};

• {(55, 7), (67, 19), (79, 31), . . .};

• {(75, 11), (87, 23), (99, 35), . . .};

• · · · .

The sources of these differentials are in the image of the transfer map. Their pre-images in

the C2-slice spectral sequence are all d11-cycles (more specifically, they all support differen-
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tials of length at least 15). Therefore, their images under the transfer map cannot support

nontrivial d11-differentials.

(2) Gray differentials. These differentials have sources at

• {(43, 19), (67, 43), (91, 67), . . .};

• {(63, 23), (87, 47), (111, 71), . . .};

• {(59, 3), (83, 27), (107, 51), . . .};

• {(79, 7), (103, 31), (127, 55), . . .};

• {(99, 11), (123, 35), (147, 59), . . .};

• {(119, 15), (143, 39), (167, 63), . . .};

• {(139, 19), (163, 43), (187, 67), . . .};

• · · · .

Each of the sources is a d7-truncation class. If any of these differentials exist, we will obtain

a contradiction when we multiply this differential by the classes at (8, 8) (either d̄3d̄1u4σa4λ

or d̄4
1u4σa4λ).

For example, suppose the class at (43, 19) supports a nontrivial d11-differential. The

target (a class at (42, 30)), when multiplied by the class d̄4
1u4σa4λ, is a nonzero class at

(50, 38). The source, however, becomes 0. This is a contradiction.

(3) Black differentials. These differentials have sources at

• {(18, 6), (26, 14), (34, 22), . . .};

• {(30, 2), (38, 10), (46, 18), . . .};
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• {(50, 6), (58, 14), (66, 22), . . .};

• {(62, 2), (70, 10), (78, 18), . . .};

• · · · .

It suffices to show that all of the classes in the first set are d11-cycles. Once we have

proven this, multiplication by the class u8λu8σ (d11-cycle), the three classes at (20, 4)

((d̄2
3, d̄3d̄

3
1, d̄

6
1)u4λu6σa2λ, all d11-cycles), and the two permanent cycles at (8, 8) ((d̄3d̄1, d̄

4
1)u4σa4λ)

will show that all the other classes are d11-cycles as well.

Now, for the first set, the names of the classes at each of the possible sources are as

follows:

• (18, 6): 2(d̄2
3, d̄3d̄

3
1, d̄

6
1)u3λu6σa3λ = (d̄2

3, d̄3d̄
3
1, d̄

6
1)u4λu4σa2λa2σ

• (26, 14): 2(d̄3
3d̄1, . . . , d̄

10
1 )u3λu10σa7λ = (d̄3

3d̄1, . . . , d̄
10
1 )u4λu8σa6λa2σ

• (34, 22): 2(d̄4
3d̄

2
1, . . . , d̄

14
1 )u3λu14σa11λ = (d̄4

3d̄
2
1, . . . , d̄

14
1 )u4λu12σa10λa2σ

• · · · .

The names can all be written as products of the following d11-cycles: d̄1, d̄3, aλ, aσ, u4λaσ

(supports d13-differential), and u4σ (supports d13-differential). Therefore, there are no d11-

interfering differentials in this case.

(4) Red differentials. These differentials have sources at

• {(14, 2), (22, 10), (30, 18), . . .};

• {(34, 6), (42, 14), (50, 22), . . .};

• {(46, 2), (54, 10), (62, 18), . . .};
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• {(66, 6), (74, 14), (82, 22), . . .};

• · · · .

Similar to (3), it suffices to show that all of the classes in the first set are d11-cycles.

Afterwards, all the other classes can be proven to be d11-cycles via multiplication by the

class u8λu8σ, the classes at (20, 4), and the classes at (8, 8) (all of which are d11-cycles).

Now, for the first set, the classes at (22, 10), (30, 18), (38, 26), . . . are all d11-cycles

because they can be written as products of classes at (20, 4) and classes at (2, 6), (10, 14),

(18, 22), . . . (all of which are d11-cycles). Afterwards, we deduce that the classes at (14, 2)

are d11-cycles as well because if they are not, then multiplying the d11-differential by the

classes at (8, 8) would produce a nontrivial d11-differential on the classes at (22, 10). This

is a contradiction because we have just proven that all the classes at (22, 10) are d11-cycles.

13.5 Predicted d13-differentials

In the slice spectral sequence of BP((C4))〈1〉, all the d13-differentials are generated by d13(u4λaσ) =

d̄3
1u4σa7λ under multiplication. This differential was proven by applying the norm formula

(see Theorem 9.8, Theorem 10.10 and Corollary 10.11). In fact, we can also prove this dif-

ferential in SliceSS(BP((C4))〈2〉) by using the norm formula, and we will do so in Section 15

when we discuss the norm in depth.

Alternatively, we can analyze the quotient map

SliceSS(BP((C4))〈2〉) −→ SliceSS(BP((C4))〈1〉)

again. Since u4λaσ supports a d13-differential in SliceSS(BP((C4))〈1〉), it must support a

differential of length at most 13 in SliceSS(BP((C4))〈2〉). Our knowledge of the earlier differ-
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Figure 29: The dashed lines are the possible d11-interfering differentials. The cyan classes
are the d5-truncation classes, the magenta classes are the d7-truncation classes, and the pink
classes are classes in i∗C2

BP((C4))〈1〉-truncations after the predicted d7-differentials. The green
differentials are the predicted d11-differentials and the orange differentials are the predicted
d13-differentials.
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entials implies that u4λaσ must be a d11-cycle, and hence must support a d13-differential.

More specifically, we can deduce this fact by analyzing the class d̄3
3u4λu8σa5λaσ at (25, 11).

If u4λaσ supports a dr-differential of length r < 13, then d̄3
3u4λu8σa5λaσ must support a

dr-differential as well, which is impossible by degree reasons.

Since the d13-differential on u4λaσ respects natuality under the quotient map, it must

be of the form

d13(u4λaσ) = d̄3
1u4σa7λ + · · · ,

where “· · · ” denote terms that go to 0 under the quotient map sending r̄3, γr̄3 7→ 0 (in

particular, it could contain d̄3u4σa7λ, as we will see in Section 15). All the predicted d13-

differentials are generated by this differential under multiplication.

Similar to the cases for d7 and d11-differentials, the readers should be warned that the

d13-differentials are not necessarily occurring within each BP((C4))〈1〉-truncation. The above

formula identifies the leading term, d̄3
1u4σa7λ, with the rest of the terms (possibly none).

Therefore, we can kill off the leading term and assume that the rest of the terms remain.

13.6 E13-page of SliceSS(BP((C4))〈2〉)

Figure 30 shows the E13-page of SliceSS(BP((C4))〈2〉) with the predicted d13-differentials

already taken out. The truncation classes are color coded as follows:

1. Cyan classes: d5-truncation classes;

2. Magenta classes: d7-truncation classes;

3. Green classes: d11-truncation classes;

4. Orange classes: d13-truncation classes;
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5. Pink classes: i∗C2
BP((C4))〈1〉-truncation classes.

14 Higher differentials I: d13 and d15-differentials

In this section, we prove all the d13 and d15-differentials in the slice spectral sequence of

BP((C4))〈2〉, as well as differentials between i∗C2
BP((C4))〈1〉-truncation classes.

14.1 d13-differentials

Proposition 14.1. The class u4σ supports the d13-differential

d13(u4σ) = d̄3a3λa7σ.

Proof. This is an immediate application of Hill–Hopkins–Ravenel’s Slice Differential The-

orem [39, Theorem 9.9].

The d13-differential in Proposition 14.1 generates all the d13-differentials between the

line of slope 1 and the line of slope 3 under multiplication (see Figure 31).

Proposition 14.2. The class d̄2
3u4λu6σa2λ at (20, 4) supports the d13-differential

d13(d̄2
3u4λu6σa2λ) = d̄3

3uλu8σa8λaσ.

Proof. We will prove this differential by using the restriction map

res : C4- SliceSS(BP((C4))〈2〉) −→ C2- SliceSS(i∗C2
BP((C4))〈2〉).
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Figure 30: The E13-page of SliceSS(BP((C4))〈2〉) with the predicted d13-differentials already
taken out. The cyan classes are d5-truncation classes, the magenta classes are d7-truncation
classes, the green classes are d11-truncation classes, the orange classes are d13-truncation
classes, and the pink classes are i∗C2

BP((C4))〈1〉-truncation classes.
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The restriction of d̄2
3u4λu6σa2λ is r̄2

3γr̄
2
3u8σ2a4σ2 . In the C2-slice spectral sequence, this class

supports the d15-differential

d15(r̄2
3γr̄

2
3u8σ2a4σ2) = r̄2

3γr̄
2
3 r̄1(r̄2

3 + r̄3γr̄3 + γr̄2
3)a19σ2

= r̄3
3γr̄

3
3 r̄1a19σ2 + r̄2

3γr̄
2
3(r̄2

3 + γr̄2
3)r̄1a19σ2 .

This implies that in the C4-slice spectral sequence, d̄2
3u4λu6σa2λ must support a differential

of length at most 15.

If d15(d̄2
3u4λu6σa2λ) = x, then by natuality,

res(x) = r̄3
3γr̄

3
3 r̄1a19σ2 + r̄2

3γr̄
2
3(r̄2

3 + γr̄2
3)r̄1a19σ2 .

This is impossible because while the class r̄2
3γr̄

2
3(r̄2

3 + γr̄2
3)r̄1a19σ2 has a pre-image on the

E15-page (d̄2
3s̄

2
3r̄1a6λa7σ2), the class r̄3

3γr̄
3
3 r̄1a19σ2 does not. The closest thing to its possible

pre-image is d̄3
3s̄1a9λaσ2 , which restrictions to 0 in the C2-slice spectral sequence because it

is killed by a d3-differential.

Therefore, the class d̄2
3u4λu6σa2λ must support a d13-differential. There is one possible

target, which is the class d̄3
3uλu8σa8λaσ at (19, 17). This proves the desired differential.

Consider the following classes:

1. d̄3uλu2σa2λaσ at (7, 5). This class is a permanent cycle by degree reasons.

2. d̄3
3uλu8σa8λaσ at (19, 17). This class is a permanent cycle (it is the target of the

d13-differential in Proposition 14.2).

3. d̄3
3u8σa9λaσ at (17, 19). This class is a permanent cycle by degree reasons.
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4. d̄4
3u12σa12λ at (24, 24). This class supports the d13-differential d13(d̄4

3u12σa12λ) =

d̄5
3u8σa15λa7σ.

Using the Leibniz rule on the differential in Proposition 14.2 with the classes above produces

all the d13-differentials under the line of slope 1 (see Figure 31).

14.2 Differentials between i∗C2
BP((C4))〈1〉-truncation classes

Using the restriction map

res : C4- SliceSS(BP((C4))〈2〉) −→ C2- SliceSS(i∗C2
BP((C4))〈2〉)

and the transfer map

tr : C2- SliceSS(i∗C2
BP((C4))〈2〉) −→ C4- SliceSS(BP((C4))〈2〉),

we can prove all the d3, d7, d15, and d31-differentials between i∗C2
BP((C4))〈1〉-truncation classes

(pink classes).

The general argument goes as follows: suppose tr(a) and tr(b) are two i∗C2
BP((C4))〈1〉-

truncation classes on the Er-page, and dr(a) = b in C2- SliceSS(BP((C4))〈2〉). We want to

prove the differential dr(tr(a)) = tr(b) in C4- SliceSS(BP((C4))〈2〉). Since dr(a) = b, tr(b)

must be killed by a differential of length at most r (natuality). Moreover, if res(tr(a)) and

res(tr(b)) are both nonzero on the Er-page, dr(a) = b implies dr(res(tr(a))) = res(tr(b)).

By natuality again, tr(a) must support a differential of length at most r. In all the cases

of interest, either our complete knowledge of all the shorter differentials (when r = 3, 7,

and 15) or degree reasons will deduce our desired differential.

Convention 14.3. From now on, we will only specify the bidegrees and the name of their
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Figure 31: d13-differentials in SliceSS(BP((C4))〈2〉).
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slice cells for i∗C2
BP((C4))〈1〉-truncation classes. This reduces cluttering of notations. For

example, instead writing out the full name s̄6
3r̄

2
1u8σ2a12σ2 , we will write s̄6

3r̄
2
1 at (28, 12) in-

stead. It is unnecessary to write down their full names for computations and our convention

improves the readability of our formulas.

Example 14.4. On the E15-page, there are three classes at (28, 12) (s̄6
3r̄

2
1, d̄3s̄

4
3r̄

2
1, d̄2

3s̄
2
3r̄

2
1)

and five classes at (27, 27) (s̄9
3, d̄3s̄

7
3, d̄2

3s̄
5
3, d̄3

3s̄
3
3, d̄4

3s̄3) coming from i∗C2
BP((C4))〈1〉-truncations.

In the C2-slice spectral sequence, there are d15-differentials

d15(s̄6
3r̄

2
1) = s̄6

3r̄
2
1 · r̄1(d̄3 + s̄2

3) = s̄6
3s̄3(d̄3 + s̄2

3)

= d̄3s̄
6
3s̄3 + (d̄3s̄

6
3s̄3 + s̄6

3s̄
3
3) = s̄6

3s̄
3
3 = s̄9

3 + d̄3
3s̄

3
3,

d15(d̄3s̄
4
3r̄

2
1) = d̄3s̄

4
3r̄

2
1 · r̄1(d̄3 + s̄2

3) = d̄3s̄
4
3s̄3(d̄3 + s̄2

3) = d̄3s̄
4
3 · s̄3

3 = d̄3s̄
7
3 + d̄4

3s̄3,

d15(d̄2
3s̄

2
3r̄

2
1) = d̄2

3s̄
2
3r̄

2
1 · r̄1(d̄3 + s̄2

3) = d̄2
3s̄

2
3s̄3(d̄3 + s̄2

3) = d̄2
3s̄

2
3 · s̄3

3 = d̄2
3s̄

5
3 + d̄4

3s̄3.

This implies that the three classes s̄6
3r̄

2
1, d̄3s̄

4
3r̄

2
1, d̄2

3s̄
2
3r̄

2
1 all support differentials of length

at most 15 in the C4-slice spectral sequence. Since we have complete knowledge of all the

shorter differentials, the d15-differentials above must occur.

Alternatively, we can use the transfer. The first differential can be rewritten as

d15(tr(r̄6
3 r̄

2
1)) = tr(r̄9

3 + r̄6
3γr̄

3
3).
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In the C2-slice spectral sequence, we have the d15-differential

d15(r̄6
3 r̄

2
1) = r̄6

3 r̄
2
1 · r̄1(d̄3 + s̄2

3)

= r̄6
3s̄3(d̄3 + s̄2

3)

= d̄3s̄3r̄
6
3 + (d̄3s̄3r̄

6
3 + r̄6

3s̄
3
3)

= r̄6
3s̄

3
3

= r̄9
3 + r̄6

3γr̄
3
3.

Applying the transfer shows that the class tr(r̄9
3 + r̄6

3γr̄
3
3) must be killed by a differential

of length at most 15. Our knowledge of the previous differentials again proves the desired

differential. The other two differentials above can be proved in the same way by using the

transfer.

The formulas in Section 12 describe explicitly the surviving i∗C2
BP((C4))〈1〉-truncation

classes on each page. The d3-differentials introduce the relation r̄1 = γr̄1 for i∗C2
BP((C4))〈1〉-

truncation classes with filtrations at least 3. After the d3-differentials, their slice cells can

all be written as

d̄i3s̄
j
3r̄
k
1 ,

where j > 0.

The d7-differentials introduce the relation r̄3
1 + r̄3 + γr̄3 = 0 for classes with filtrations

at least 7. In other words, r̄3
1 = s̄3 for i∗C2

BP((C4))〈1〉-truncation classes with filtrations at

least 7. After the d7-differentials, their corresponding slice cells can all be written as

d̄i3s̄
j
3r̄
k
1 ,
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Figure 32: d7-differentials between i∗C2
BP((C4))〈1〉-truncation classes.

where j > 0 and 0 ≤ k ≤ 2. Figure 32 shows the d7-differentials between i∗C2
BP((C4))〈1〉-

truncation classes.

Proposition 14.5. After the d15-differentials between i∗C2
BP((C4))〈1〉-truncation classes, the

following relations hold for the classes in filtrations at least 15:

1. s̄3
3r̄1 = s̄3

3r̄
2
1 = 0;

2. s̄6m+1
3 = d̄3m

3 s̄3 for all m ≥ 0;

3. s̄6m+2
3 = d̄3m

3 s̄2
3 for all m ≥ 0;
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4. s̄6m+3
3 = d̄3m

3 s̄3
3 for all m ≥ 0;

5. s̄6m+4
3 = d̄3m+1

3 s̄2
3 for all m ≥ 0;

6. s̄6m+5
3 = d̄3m+2

3 s̄3 for all m ≥ 0;

7. s̄6m
3 = 2d̄3m

3 for all m ≥ 1.

Proof. The d15-differential in the C2-slice spectral sequence multiplies the slice cell of the

source by r̄1(r̄2
3 + r̄3γr̄3 + γr̄2

3) = r̄1(d̄3 + s̄3).

(1) We have the equality

r̄3
3 + γr̄3

3 = (r̄3 + γr̄3)(r̄2
3 + r̄3γr̄3 + γr̄2

3) = s̄3(d̄3 + s̄2
3).

Therefore,

res(s̄3
3r̄1) = (r̄3

3 + γr̄3
3)r̄1

= (r̄3 + γr̄3) · r̄1(r̄2
3 + r̄3γr̄3 + γr̄2

3)

= res(tr(r̄3)) · r̄1(r̄2
3 + r̄3γr̄3 + γr̄2

3).

Consider the class r̄3u8σ2 in the C2-spectral sequence. It supports the d15-differential

d15(r̄3u8σ2) = r̄3 · r̄1(r̄2
3 + r̄3γr̄3 + γr̄2

3)a15σ2

= (r̄3
3 r̄1 + r̄2

3γr̄3r̄1 + r̄3γr̄
2
3 r̄1)a15σ2

= (r̄3
3 r̄1 + res(d̄3s̄3r̄1))a15σ2 .
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Applying the transfer to this d15-differential and using natuality implies the d15-differential

d15(s̄3) = tr(r̄3
3 r̄1a15σ2) + tr(res(d̄3s̄3r̄1a15σ2)) = s̄3

3r̄1

in the C4-slice spectral sequence. Therefore, s̄3
3r̄1 = 0 after the d15-differentials.

For s̄3
3r̄

2
1, the proof is exactly the same. The exact same argument as above shows the

d15-differential

d15(s̄3r̄1) = s̄3
3r̄

2
1

in the C4-slice spectral sequence.

(2) The statement holds trivially when m = 0. When m ≥ 1, we have the equality

r̄6m+1
3 + r̄6m−2

3 γr̄3
3 = r̄6m−2

3 (r̄3
3 + γr̄3

3). This implies the d15-differential

d15(r̄6m−2
3 r̄2

1u8σ2) = (r̄6m+1
3 + r̄6m−2

3 γr̄3
3)a15σ2

in the C2-slice spectral sequence. Applying the transfer and using natuality, we obtain the

d15-differential

d15(s̄6m−2
3 r̄2

1) = tr(r̄6m+1
3 ) + tr(r̄6m−2

3 γr̄3
3) = s̄6m+1

3 + d̄3
3s̄

6m−5
3

in the C4-slice spectral sequence. This produces the relation

s̄6m+1
3 = d̄3

3s̄
6m−5
3

for all m ≥ 1. Induction on m proves the desired equality.
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(3) The statement holds trivially when m = 0. When m ≥ 1, we have the equality

r̄6m+2
3 + r̄6m−1

3 γr̄3
3 = r̄6m−1

3 (r̄3
3 + γr̄3

3).

This implies the d15-differential

d15(r̄6m−1
3 r̄2

1u8σ2) = (r̄6m+2
3 + r̄6m−1

3 γr̄3
3)a15σ2

in the C2-slice spectral sequence. Applying the transfer and using natuality produces the

d15-differential

d15(s̄6m−1
3 r̄2

1) = tr(r̄6m+2
3 ) + tr(r̄6m−1

3 γr̄3
3) = s̄6m+2

3 + d̄3
3s̄

6m−4
3

in the C4-slice spectral sequence. Induction on m proves the desired equality.

(4) The statement holds trivially when m = 0. When m ≥ 1, we have the equality

r̄6m+3
3 + r̄6m

3 γr̄3
3 = r̄6m

3 (r̄3
3 + γr̄3

3).

This implies the d15-differential

d15(r̄6m
3 r̄2

1u8σ2) = (r̄6m+3
3 + r̄6m

3 γr̄3
3)a15σ2

in the C2-slice spectral sequence. Applying the transfer and using natuality produces the

d15-differential

d15(s̄6m
3 r̄2

1) = tr(r̄6m+3
3 ) + tr(r̄6m

3 γr̄3
3) = s̄6m+3

3 + d̄3
3s̄

6m−3
3
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in the C4-slice spectral sequence. Induction on m proves the desired equality.

(5) We have the equality

r̄6m+4
3 + r̄6m+1

3 γr̄3
3 = r̄6m+1

3 (r̄3
3 + γr̄3

3).

This implies the d15-differential

d15(r̄6m+1
3 r̄2

1u8σ2) = (r̄6m+4
3 + r̄6m+1

3 γr̄3
3)a15σ2

in the C2-slice spectral sequence. Applying the transfer and using natuality produces the

d15-differential

d15(s̄6m+1
3 r̄2

1) = tr(r̄6m+4
3 ) + tr(r̄6m+1

3 γr̄3
3)

in the C4-slice spectral sequence. When m = 0, the target is s̄4
3 + d̄3s̄

2
3, from which we get

the relation s̄4
3 = d̄3s̄

2
3. For m ≥ 1, the target is s̄6m+4

3 + d̄3
3s̄

6m−2
3 , from which we get the

relation s̄6m+4
3 = d̄3

3s̄
6m−2
3 . Induction on m proves the desired equality.

(6) We have the equality

r̄6m+5
3 + r̄6m+2

3 γr̄3
3 = r̄6m+2

3 (r̄3
3 + γr̄3

3).

This implies the d15-differential

d15(r̄6m+2
3 r̄2

1u8σ2) = (r̄6m+5
3 + r̄6m+2

3 γr̄3
3)a15σ2

in the C2-slice spectral sequence. Applying the transfer and using natuality produces the
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d15-differential

d15(s̄6m+2
3 r̄2

1) = tr(r̄6m+5
3 ) + tr(r̄6m+2

3 γr̄3
3)

in the C4-slice spectral sequence. When m = 0, the target is s̄5
3 + d̄2

3s̄3, from which we get

the relation s̄5
3 = d̄2

3s̄3. For m ≥ 1, the target is s̄6m+5
3 + d̄3

3s̄
6m−1
3 , from which we get the

relation s̄6m+5
3 = d̄3

3s̄
6m−1
3 . Induction on m proves the desired equality.

(7) Since

r̄6m
3 + r̄6m−3

3 γr̄3
3 = r̄6m−3

3 (r̄3
3 + γr̄3

3),

there is the d15-differential

d15(r̄6m−3
3 r̄2

1u8σ2) = r̄6m−3
3 (r̄3

3 + γr̄3
3)a15σ2

in the C2-slice spectral sequence. Applying the transfer and using natuality produces the

d15-differential

d15(s̄6m−3
3 r̄2

1) = tr(r̄6m
3 ) + tr(r̄6m−3

3 γr̄3
3) = s̄6m

3 + tr(r̄6m−3
3 γr̄3

3)

in the C4-slice spectral sequence.

We will now use induction on m. When m = 1, the target is s̄6
3 + 2d̄3

3, from which

we deduce s̄6
3 = 2d̄3

3. When m > 1, the target is s̄6m
3 + d̄3

3s̄
6m−6
3 , from which we deduce

s̄6m
3 = d̄3

3s̄
6m−6
3 . Induction on m shows that s̄6m

3 = 2d̄3m
3 .

Warning 14.6. The class s̄3
3 is not 0 after the d15-differentials between i∗C2

BP((C4))〈1〉-

truncation classes. In particular, the classes d̄3s̄
3
3 at (15, 15), d̄2

3s̄
3
3 at (21, 21), d̄3

3s̄
3
3 at

(27, 27), . . . are not targets of d15-differentials with sources coming from i∗C2
BP((C4))〈1〉-
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truncation classes. However, some of these classes (d̄3
3s̄

3
3 ∈ (27, 27) and d̄7

3s̄
3
3 ∈ (51, 51), for

example) are still targets of d15-differentials with sources coming from BP((C4))〈1〉-truncation

classes. We will discuss this in the next subsection.

Figures 33 and 34 illustrate the d15-differentials between i∗C2
BP((C4))〈1〉-truncation classes.

14.3 All the other d15-differentials and some d31-differentials.

We will now prove the rest of the d15-differentials (see Figure 35).

Proposition 14.7. The class 2d̄2
3u4λu6σa2λ at (20, 4) supports the d15-differential

d15(2d̄2
3u4λu6σa2λ) = d̄3

3s̄1a9λaσ2 .

(Under our naming convention, the target is abbreviated as d̄3
3s̄1 at (19, 19)).

Proof. In the C2-slice spectral sequence, the restriction of the class d̄2
3u4λu6σa2λ at (20, 4)

supports the d15-differential

d15(res(d̄2
3u4λu6σa2λ)) = r̄2

3γr̄
2
3 · r̄1(r̄2

3 + r̄3γr̄3 + γr̄2
3)

= d̄2
3r̄1(d̄3 + s̄2

3)

= d̄3
3r̄1 + d̄2

3s̄
2
3r̄1

= d̄3
3r̄1 + res(tr(d̄2

3r̄
2
3 r̄1)).

Applying the transfer map shows that the class

tr(d̄3
3r̄1) + tr(res(tr(d̄2

3r̄
2
3 r̄1))) = d̄3

3s̄1 + 2 · tr(d̄2
3r̄

2
3 r̄1) = d̄3

3s̄1
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Figure 33: d15-differentials between i∗C2
BP((C4))〈1〉-truncation classes.
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Figure 34: d15-differentials between i∗C2
BP((C4))〈1〉-truncation classes. The targets of the

blue differentials have two surviving classes instead of one.
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Figure 35: The rest of the d15-differentials.
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must be killed by a differential of length at most 15. By degree reasons, the differential

must of length 15, and the source must be

tr(res(d̄2
3u4λu6σa2λ)) = 2d̄2

3u4λu6σa2λ

by natuality. This proves the desired differential.

Using the exact same method as the proof of Proposition 14.7, we can prove d15-

differentials on the following classes:

1. {(20, 4), (32, 16), (44, 28), . . .}, {(116, 4), (128, 16), (140, 28), . . .}, . . ..

2. {(48, 0), (60, 12), (72, 24), . . .}, {(144, 0), (156, 12), (168, 24), . . .}, . . ..

3. {(88, 8), (100, 20), (112, 32), . . .}, {(184, 8), (196, 20), (208, 32), . . .}, . . ..

Remark 14.8. The restrictions of the classes d̄3d̄
3
1u4λu6σa2λ and d̄6

1u4λu6σa2λ at (20, 4)

support the following d15-differentials in the C2-spectral sequence:

d15(r̄3γr̄3r̄
6
1) = r̄3γr̄3r̄

6
1 · r̄1(r̄2

3 + r̄3γr̄3 + γr̄2
3) = d̄3s̄

2
3 · r̄1(s̄2

3 + d̄3) = (d̄2
3s̄

2
3 + d̄3s̄

4
3)r̄1,

d15(r̄12
1 ) = r̄12

1 · r̄1(r̄2
3 + r̄3γr̄3 + γr̄2

3) = s̄4
3 · r̄1(s̄2

3 + d̄3) = (d̄3s̄
4
3 + d̄2

3s̄
2
3 + s̄6

3)r̄1.

(In the formulas above, we used the relation r̄3
1 = r̄3 + γr̄3 = s̄3.) By natuality and degree

reasons, there exist d15-differentials

d15(d̄3d̄
3
1) = (d̄2

3s̄
2
3 + d̄3s̄

4
3)r̄1

and

d15(d̄6
1) = (d̄3s̄

4
3 + d̄2

3s̄
2
3 + s̄6

3)r̄1
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in the C4-slice spectral sequence.

We also have the following d15-differentials on the classes d̄3s̄
2
3 and s̄4

3 at (20, 4):

d15(d̄3s̄
2
3) = (d̄2

3s̄
2
3 + d̄3s̄

4
3)r̄1,

d15(s̄4
3) = (d̄3s̄

4
3 + d̄2

3s̄
2
3 + s̄6

3)r̄1.

After the d15-differentials, the surviving classes at (20, 4) are 2d̄3d̄
3
1, 2d̄6

1, d̄3d̄
3
1 + d̄3s̄

2
3,

and d̄6
1 + s̄4

3. There is a slight subtlety here because from the way we are organizing

the d15-differentials, the surviving leading terms should be d̄3d̄
3
1, 2d̄3d̄

3
1, d̄6

1, and 2d̄6
1. Our

presentation of the surviving classes will not affect later computations.

Proposition 14.9. The class d̄3
3d̄1u4λu10σa6λ at (28, 12) supports the d15-differential

d15(d̄3
3d̄1u4λu10σa6λ) = d̄3

3s̄
3
3a9λa9σ2 .

Proof. The restriction of the class d̄3
3d̄1u4λu10σa6λ supports the d15-differential

d15(res(d̄3
3d̄1u4λa10σa6λ)) = d̄3

3r̄
2
1 · r̄1(d̄3 + s̄2

3)

= d̄3
3s̄3(d̄3 + s̄2

3)

= d̄4
3s̄3 + d̄4

3s̄3 + d̄3
3s̄

3
3

= d̄3
3s̄

3
3

in the C2-slice spectral sequence. This implies that the class d̄3
3d̄1u4λu10σa6λ must support

a differential of length at most 15 in the C4-slice spectral sequence. For degree reasons, it

must support a d15-differential, and the target must be d̄3
3s̄

3
3 by natuality.

The proof of Proposition 14.9 can be used to prove d15-differentials on the following
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classes:

1. {(28, 12), (52, 36), (76, 60), . . .}, {(124, 12), (148, 36), (172, 60), . . .}, . . .;

2. {(68, 20), (92, 44), (116, 68), . . .}, {(164, 20), (188, 44), (212, 68), . . .}, . . .;

3. {(84, 4), (108, 28), (132, 52), . . .}, {(180, 4), (204, 28), (228, 52), . . .}, . . ..

Proposition 14.10. The class d̄4
3u8λu12σa4λ at (40, 8) supports the d15-differential

d15(d̄4
3u8λu12σa4λ) = d̄5

3s̄1u4λu15σa11λaσ2 .

Proof. In the C2-slice spectral sequence, the restriction of d̄4
3u8λu12σa4λ supports the d31-

differential

d31(res(d̄4
3u8λu12σa4λ)) = d̄4

3 · (d̄3r̄
3
3) = d̄5

3r̄
3
3.

This implies that the class d̄4
3u8λu12σa4λ must support a differential of length at most 31

in the C4-slice spectral sequence. By degree reasons, the target can either be at (39, 39)

(d31-differential) or at (39, 23) (d15-differential).

There are two classes at (39, 39) — d̄6
3s̄3 and d̄5

3s̄
3
3. Since neither class restricts to d̄5

3r̄
3
3,

the target cannot be at (39, 39) by natuality. The only possibility left is the class d̄5
3s̄1 at

(39, 23). This is the desired differential.

Proposition 14.11. The class 2d̄4
3u8λu12σa4λ at (40, 8) supports the d31-differential

d31(2d̄4
3u8λu12σa4λ) = d̄5

3s̄
3
3a39σ2 .

Proof. As in the proof of Proposition 14.10, we have the differential

d31(res(d̄4
3u8λu12σa4λ)) = d̄4

3 · (d̄3r̄
3
3) = d̄5

3r̄
3
3
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in the C2-spectral sequence. Applying the transfer to the target of this differential shows

that the class tr(d̄5
3r̄

3
3) = d̄5

3s̄
3
3 must be killed in the C4-slice spectral sequence by a differ-

ential of length at most 31.

For degree reasons, the target can only be killed by a differential of length 31. Therefore,

by natuality, the source must be

tr(res(d̄4
3u8λu12σa4λ)) = 2d̄4

3u8λu12σa4λ.

The proofs of Proposition 14.10 and 14.11 can be used to prove d15 and d31-differentials

on the following classes:

1. {(40, 8), (64, 32), (88, 56), . . .}, {(232, 8), (256, 32), (280, 56), . . .}, . . .;

2. {(96, 0), (120, 24), (144, 48), . . .}, {(288, 0), (312, 24), (336, 48), . . .}, . . .;

3. {(176, 16), (200, 40), (224, 64), . . .}, {(368, 16), (392, 40), (416, 64), . . .}, . . ..

Remark 14.12. All the other classes at (40, 8) support d31-differentials hitting the same

target, d̄6
3s̄3. In the formulas below, we use the relation r̄3

3 = γr̄3
3, which is produced by the

d15-differentials, as well as Proposition 14.5.

1. d31(res(d̄3
3d̄

3
1)) = d31(res(d̄3

3s̄
2
3)) = d̄3

3s̄
2
3 · (d̄3r̄

3
3) = d̄4

3(r̄5
3 + r̄3

3γr̄
2
3) = d̄4

3s̄
5
3 = d̄6

3s̄3.

2. d31(res(d̄2
3d̄

6
1)) = d31(res(d̄2

3s̄
4
3)) = d̄2

3s̄
4
3 · (d̄3r̄

3
3) = d̄3

3(r̄7
3 + r̄3

3γr̄
4
3) = d̄3

3s̄
7
3 = d̄6

3s̄3.

3. d31(res(d̄3d̄
9
1)) = d31(res(d̄3(s̄3)6)) = d̄3s̄

4
3s̄

2
3 · (d̄3r̄

3
3) = d̄3(d̄2

3s̄
2
3 + s̄6

3) · (d̄3r̄
3
3) = d̄4

3s̄
2
3r̄

3
3 +

d̄2
3s̄

6
3r̄

3
3 = d̄4

3s̄
5
3 + d̄2

3s̄
9
3 = d̄6

3s̄3 + 0 = d̄6
3s̄3.

4. d31(res(d̄12
1 )) = d31(res(s̄8

3)) = s̄8
3(d̄3r̄

3
3) = d̄3(r̄11

3 + r̄3
3γr̄

8
3) = d̄3s̄

11
3 = d̄6

3s̄3.
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This, combined with Proposition 14.11, shows that both remaining i∗C2
BP((C4))〈1〉-truncation

classes (d̄6
3s̄3 and d̄5

3s̄
3
3) at (39, 39) are killed by d31-differentials. The same phenomenon

occurs at the following bidegrees as well:

1. {(39, 39), (63, 63), (87, 87), . . .}, {(231, 39), (255, 63), (279, 87), . . .}, . . .;

2. {(95, 31), (119, 55), (143, 79), . . .}, {(287, 31), (311, 55), (335, 79), . . .}, . . .;

3. {(175, 47), (199, 71), (223, 95), . . .}, {(367, 47), (391, 71), (415, 95), . . .}, . . ..

Now we turn to prove the nonexistence of d15-differentials on classes.

Proposition 14.13. There is no d15-differential on the class d̄4
3d̄

2
1u4λu14σa10λ at (36, 20).

In other words, the class d̄4
3d̄

2
1u4λu14σa10λ is the leading term of a d15-cycle.

Proof. The restriction of d̄4
3d̄

2
1u4λu14σa10λ supports the d15-differential

d15(res(d̄4
3d̄

2
1u4λu14σa10λ)) = d̄4

3r̄
4
1 · r̄1(d̄3 + s̄2

3)

= d̄4
3s̄3r̄

2
1(d̄3 + s̄2

3)

= d̄5
3s̄3r̄

2
1 + (d̄5

3s̄3r̄
2
1 + d̄4

3s̄
3
3r̄

2
1)

= d̄4
3s̄

3
3r̄

2
1.

The class d̄4
3s̄

3
3r̄

2
1 is also killed by the d15-differential supported by the i∗C2

BP((C4))〈1〉-truncation

class d̄4
3s̄3r̄1:

d15(d̄4
3s̄3r̄1) = d̄4

3s̄3r̄1 · r̄1(d̄3 + s̄2
3)

= d̄5
3s̄3r̄

2
1 + (d̄5

3s̄3r̄
2
1 + d̄4

3s̄
3
3r̄

2
1)

= d̄4
3s̄

3
3r̄

2
1.
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Technically, after these two d15-differentials, the surviving class is d̄4
3d̄

2
1 + d̄4

3s̄3r̄1. However,

since the second differential has already been accounted for, there is no more d15-differential

on the class d̄4
3d̄

2
1u4λu14σa10λ.

The proof of Proposition 14.13 can be used to show that there are no d15-differentials

on the following classes:

1. {(36, 20), (60, 44), (84, 68), . . .}, {(132, 20), (156, 44), (180, 68), . . .}, . . .;

2. {(52, 4), (76, 28), (100, 52), . . .}, {(148, 4), (172, 28), (196, 52), . . .}, . . .;

3. {(92, 12), (116, 36), (140, 60), . . .}, {(188, 12), (212, 36), (236, 60), . . .}, . . ..

Proposition 14.14. There is no d15-differential on the class s̄3
3s̄1u4λu9σa5λaσ2 at (27, 11).

Proof. The class s̄3
3s̄1u4λu9σa5λaσ2 is in the image of the transfer because d̄3

3s̄1 = tr(d̄3
3r̄1).

In the C2-slice spectral sequence, the class d̄3
3r̄1 supports the d15-differential

d15(d̄3
3r̄1) = d̄3

3r̄1 · r̄1(d̄3 + s̄2
3) = d̄4

3r̄
2
1 + d̄3

3s̄
2
3r̄

2
1.

If the class d̄3
3s̄1 does support a d15-differential, then by natuality, the target must be

tr(d̄4
3r̄

2
1 + d̄3

3s̄
2
3r̄

2
1) = tr(d̄4

3r̄
2
1) + tr(d̄3

3s̄
2
3r̄

2
1) = d̄4

3s̄
2
1 + 0 = d̄4

3s̄
2
1.

This is impossible because the class d̄4
3s̄

2
1 is killed by a d3-differential and no longer exists

on the d15-page (the only class left at (26, 26) is d̄3
3s̄

2
3).

The proof of Proposition 14.14 can be used to show that there are no d15-differentials

on the following classes:

1. {(27, 11), (39, 23), (51, 35), . . .}, {(123, 11), (135, 23), (147, 35), . . .}, . . .;
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2. {(55, 7), (67, 19), (79, 31), . . .}, {(151, 7), (163, 19), (175, 31), . . .}, . . .;

3. {(83, 3), (95, 15), (107, 27), . . .}, {(179, 3), (191, 15), (203, 27), . . .}, . . ..

15 Higher Differentials II: the Norm

In this section, we will use Theorem 9.8 to “norm up” differentials in C2-SliceSS(BP((C4))〈2〉)

to differentials in C4-SliceSS(BP((C4))〈2〉).

Recall that in the C2-slice spectral sequence of BP((C4))〈2〉, all the differentials are gen-

erated under multiplication by the following differentials:

d3(u2σ2) = v̄1a3σ2 = (r̄1 + γr̄1)a3σ2

d7(u4σ2) = v̄2a7σ2 = (r̄3
1 + r̄3 + γr̄3)a7σ2

d15(u8σ2) = v̄3a15σ2 = r̄1(r̄2
3 + r̄3γr̄3 + γr̄2

3)a15σ2

d31(u16σ2) = v̄4a31σ2 = r̄4
3γr̄3a31σ2

Theorem 15.1. In the C4-slice spectral sequence of BP((C4))〈2〉, the class u2λaσ supports

the d5-differential

d5(u2λaσ) = 2d̄1u2σa3λ.

Proof. Applying Theorem 9.8 to the d3-differential d3(u2σ2) = (r̄1 + γr̄1)a3σ2 predicts the

d5-differential

d5

(
u2λ

u2σ

aσ

)
= N(r̄1 + γr̄1)a3λ.
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If this differential exists, then applying the Leibniz rule yields the differential

d5(u2λaσ) = d5

(
u2σ ·

u2λaσ
u2σ

)
= d5(u2σ) · u2λaσ

u2σ

+ u2σ · d5

(
u2λaσ
u2σ

)
= d̄1aλa

3
σ ·

u2λaσ
u2σ

+ u2σ ·N(r̄1 + γr̄1)a3λ

= 0 +N(r̄1 + γr̄1)u2σa3λ (uλa3σ = 2u2σaλaσ = 0)

= N(r̄1 + γr̄1)u2σa3λ

In fact, the existence of these two d5-differentials are equivalent, and it suffices to prove

the d5-differential on u2λaσ.

Since uλ supports a d3-differential, u2λ is a d3-cycle and the class u2λaσ survives to the

E5-page. To identify the target, note that

res(N(r̄1 + γr̄1)) = (r̄1 + γr̄1)(γr̄1 − r̄1)

= −(r̄2
1 − γr̄2

1)

= −r̄2
1u−σ(1 + γ)

This implies that N(r̄1 + γr̄1) = −tr(r̄2
1u−σ). Note that res(u−1

σ ) = 1. We need to include

this term because N(r̄1 + γr̄1) is in degree 1 + σ + λ. If we apply the transfer to r̄2
1, which

is in degree 2 + 2σ2, we would obtain something in degree 2 + λ. This does not match the

degree of N(r̄1 + γr̄1). Applying the transfer to r̄2
1u
−1
σ yields matching degrees.

The target of the predicted differential is

−tr(r̄2
1u
−1
σ )u2σa3λ = −tr(r̄2

1uσa6σ2) = tr(r̄2
1uσa6σ2).
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To identify this with 2d̄1u2σa3λ, consider the equality

tr(r̄2
1uσa6σ2) + tr(r̄1γr̄1uσa6σ2) = tr(r̄1(r̄1 + γr̄1)uσa6σ2)

= tr(r̄1uσaσ2res(tr(r̄1aσ2)a2λ))

= tr(r̄1uσaσ2)tr(r̄1aσ2)a2λ.

The last expression is 0 because d3(uλ) = s̄1aλaσ2 = tr(r̄1aσ2)aλ. It follows that

tr(r̄2
1uσa6σ2) = −tr(r̄1γr̄1uσa6σ2)

= tr(r̄1γr̄1uσa6σ2)

= tr(res(d̄1u2σa3λ))

= 2d̄1u2σa3λ.

This class is not zero on the E5-page. Therefore, the d5-differential on u2λaσ exists.

Remark 15.2. In the integer graded spectral sequence, the normed d5-differential can be

seen on the class d̄3
1u2λu2σaλaσ at (9, 3):

d5(d̄3
1u2λu2σaλaσ) = 2d̄4

1u4λa4λ.

This is the product of the differential in Theorem 15.1 and d̄3
1u2σaλ. An alternative, perhaps
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easier way to identify the target is to note that

d̄3
1u2σaλtr(r̄

2
1uσa6σ2) = tr(res(d̄3

1u2σaλ)r̄
2
1uσa6σ2)

= tr(r̄5
1γr̄

3
1a8σ2)

= tr(r̄4
1γr̄

4
1a8σ2) (r̄1 = γr̄1 after the d3-differentials)

= tr(res(d̄4
1u4σa4λ))

= 2d̄4
1u4σaλ.

Theorem 15.3. In the C4-slice spectral sequence of BP((C4))〈2〉, the class u4λaσ supports

the d13-differential

d13(u4λaσ) = d̄3
1u4σa7λ + tr(r̄2

3uσa14σ2).

Proof. Applying Theorem 9.8 to the d7-differential d7(u4σ2) = (r̄3
1 + r̄3 + γr̄3)a7σ2 predicts

the d13-differential

d13

(
u4λ

u4σ

aσ

)
= N(r̄3

1 + r̄3 + γr̄3)a7λ.

Since d13(u4σ) = d̄3a3λa7σ, multiplying the source of this differential by u4σ gives

d13(u4λaσ) = d13

(
u4σ ·

u4λ

u4σ

aσ

)
= d13(u4σ) · u4λ

u4σ

aσ + u4σ · d13

(
u4λ

u4σ

aσ

)
= d̄3a3λa7σ ·

u4λ

u4σ

aσ + u4σ ·N(r̄3
1 + r̄3 + γr̄3)a7λ

= 0 + u4σ ·N(r̄3
1 + r̄3 + γr̄3)a7λ (uλa3σ = 2u2σaλaσ = 0)

= N(r̄3
1 + r̄3 + γr̄3)u4σa7λ.

The existence of these two differentials are equivalent. To prove that the differential on

u4λaσ exists, it suffices to show that the predicted target is not zero on the E13-page.
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The restriction of N(r̄3
1 + r̄3 + γr̄3) is

res(N(r̄3
1 + r̄3 + γr̄3)) = (r̄3

1 + r̄3 + γr̄3)(γr̄3
1 + γr̄3 − r̄3)

= r̄3
1γr̄

3
1 + (γr̄3r̄

3
1 + r̄3γr̄

3
1) + (γr̄3γr̄

3
1 − r̄3r̄

3
1)− (r̄2

3 − γr̄2
3)

= res(d̄3
1) + γr̄3r̄

3
1u−3σ(1 + γ) + r̄3γr̄

3
1u−3σ(1 + γ)− r̄2

3u−3σ(1 + γ)

The predicted target of the differential on u4λaσ is

N(r̄3
1 + r̄3 + γr̄3)u4σa7λ = d̄3

1u4σa7λ + tr(γr̄3r̄
3
1uσa14σ2) + tr(γr̄3γr̄

3
1uσa14σ2)− tr(r̄2

3uσa14σ2)

= d̄3
1u4σa7λ + tr(γr̄3r̄

3
1uσa14σ2) + tr(γr̄3r̄

3
1uσa14σ2) + tr(r̄2

3uσa14σ2)

= d̄3
1u4σa7λ + 2tr(γr̄3r̄

3
1uσa14σ2) + tr(r̄2

3uσa14σ2)

= d̄3
1u4σa7λ + tr(r̄2

3uσa14σ2)

To show that this is not zero, we multiply the predicted differential on u4λaσ by d̄9
1u8σa5λ

(and use the Leibniz rule) to bring it to the integer-graded part of the slice spectral sequence:

d13(d̄9
1u4λu8σa5λaσ) = d̄9

1u8σa5λ · (d̄3
1u4σa7λ + tr(r̄2

3uσa14σ2)).

The source of this new predicted differential is at (25, 11) and the target is at (24, 24).

Once we verify that the target of this new differential is not zero on the E13-page, we can

then conclude that the target of the original differential on u4λaσ is also not zero on the
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E13-page. Indeed,

d̄9
1u8σa5λ · (d̄3

1u4σa7λ + tr(r̄2
3uσa14σ2))

= d̄12
1 u12σa12λ + tr(res(d̄9

1u8σa5λ)r̄
2
3uσa14σ2)

= d̄12
1 u12σa12λ + tr(r̄2

3 r̄
9
1γr̄

9
1a24σ2)

= d̄12
1 u12σa12λ + tr(r̄2

3 r̄
18
1 a24σ2)

= d̄12
1 u12σa12λ + tr(r̄2

3(r̄3 + γr̄3)6a24σ2) (in the C2-spectral sequence, r̄3
1 = r̄3 + γr̄3)

= d̄12
1 u12σa12λ + tr(r̄2

3(r̄6
3 + r̄4

3γr̄
2
3 + r̄2

3γr̄
4
3 + γr̄6

3)a24σ2)

= d̄12
1 u12σa12λ + tr(r̄4

3γr̄
4
3a24σ2) + tr(r̄8

3a24σ2) + tr((r̄6
3γr̄

2
3 + r̄2

3γr̄
6
3)a24σ2)

= d̄12
1 u12σa12λ + tr(res(d̄4

3u12σa12λ)) + tr(r̄8
3a24σ2) + tr(res(d̄2

3u6σa6λtr(r̄
4
3a12σ2))

= d̄12
1 u12σa12λ + 2d̄4

3u12σa12λ + s̄8
3 + 2d̄2

3u6σa6λtr(r̄
4
3a12σ2)

= d̄12
1 u12σa12λ + 2d̄4

3u12σa12λ + s̄8
3,

which is not zero on the E13-page. Therefore, the normed d13-differential on u4λaσ exists.

Remark 15.4. The term tr(r̄2
3uσa14σ2) in the expression of the target can also be rewritten

as

tr(r̄2
3uσa14σ2) = tr(r̄3(r̄3 + γr̄3)uσa14σ2 + r̄3γr̄3uσa14σ2)

= tr(res(d̄3u4σa7λ)) + tr(res(tr(r̄3a3σ2)a4λ)r̄3uσa3σ2)

= 2d̄3u4σa7λ + tr(r̄3uσa3σ2)tr(r̄3a3σ2)a4λ.
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Intuitively, this is saying that after the d13-differentials,

d̄3
1 = 2d̄3 + terms in i∗C2

BP((C4))〈1〉-truncations.

This intuition will be useful in the proof of the next theorem.

Theorem 15.5. In the C4-slice spectral sequence of BP((C4))〈2〉, the class u8λaσ supports

the d29-differential

d29(u8λaσ) = d̄2
3d̄1u8σa15λ + tr(r̄4

3 r̄
2
1uσa15λ).

Proof. Applying Theorem 9.8 to the d15-differential d15(u8σ2) = r̄1(r̄2
3 + r̄3γr̄3 + γr̄2

3)a15σ2

predicts the d29-differential

d29

(
u8λ

u8σ

aσ

)
= N(r̄1(r̄2

3 + r̄3γr̄3 + γr̄2
3))a15λ.

If this d29-differential exists, multiplying it by u8σ (a permanent cycle) yields the d29-

differential

d29(u8λaσ) = N(r̄1(r̄2
3 + r̄3γr̄3 + γr̄2

3))a15λ.

In fact, the existence of these two differentials are equivalent, and it suffices to show that

the second differential exists. We will identify its target and show that it is not zero on the

E29-page.

The restriction of N(r̄1(r̄2
3 + r̄3γr̄3 + γr̄2

3)) is

res(N(r̄1(r̄2
3 + r̄3γr̄3 + γr̄2

3))) = r̄1(r̄2
3 + r̄3γr̄3 + γr̄2

3) · γr̄1(γr̄2
3 − r̄3γr̄3 + r̄2

3)

= (r̄3γr̄3)2r̄1γr̄1 + (r̄4
3 + γr̄4

3)r̄1γr̄1

= res(d̄2
3d̄1) + r̄4

3 r̄1γr̄1u−7σ(1 + γ).
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Therefore, the target of the normed differential on u8λaσ is

d̄2
3d̄1u8σa15λ + tr(r̄4

3 r̄1γr̄1u−7σ)u8σa15λ = d̄2
3d̄1u8σa15λ + tr(r̄4

3 r̄
2
1uσa30σ2).

To show that this target is not zero, we will multiply it by d̄5
3d̄

2
1u16σa9λ to bring it to

the integer graded part of the spectral sequence. After this multiplication, the predicted

d29-differential becomes

d29(d̄5
3d̄

2
1u8λu16σa9λaσ) = d̄7

3d̄
3
1u24σa24λ + d̄5

3d̄
2
1u16σa9λtr(r̄

4
3 r̄

2
1uσa30σ2).

The source of this differential is at (49, 19) and the target is at (48, 48) (see Figure 36).

Once we verify that the target of this new differential is not zero on the E29-page, we can

then conclude that the original target is also not zero on the E29-page, and the normed

differential exists.

The new target is equal to

d̄7
3d̄

3
1u24σa24λ + d̄5

3d̄
2
1u16σa9λtr(r̄

4
3 r̄

2
1uσa30σ2)

= d̄7
3d̄

3
1u24σa24λ + tr((r̄3γr̄3)5r̄4

3 r̄
4
1γr̄

2
1a48σ2)

= d̄7
3d̄

3
1u24σa24λ + tr((r̄3γr̄3)5r̄4

3 r̄
6
1a48σ2)

= d̄7
3d̄

3
1u24σa24λ + tr((r̄3γr̄3)5r̄4

3(r̄3 + γr̄3)2a48σ2) (in the C2-spectral sequence, r̄3
1 = r̄3 + γr̄3)

= d̄7
3d̄

3
1u24σa24λ + tr((r̄3γr̄3)5r̄6

3a18σ2) + tr((r̄3γr̄3)5r̄4
3γr̄

2
3a48σ2)

= d̄7
3d̄

3
1u24σa24λ + d̄5

3s̄
6
3 + d̄7

3s̄
2
3.

To further simplify the target, take the d13-differential on u4λaσ and multiply it by
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d̄7
3u20σa17λ. This produces the d13-differential

d13(d̄7
3u4λu20σa17λaσ) = d̄7

3u20σa17λ(d̄
3
1u4σa7λ + tr(r̄2

3uσa14σ2))

= d̄7
3d̄

3
1u24σa24λ + tr((r̄3γr̄3)7r̄2

3a48σ2)

= d̄7
3d̄

3
1u24σa24λ + d̄7

3s̄
2
3

This is a differential with source at (49, 35) and target (48, 48), and it introduces the relation

d̄7
3d̄

3
1u24σa24λ + d̄7

3s̄
2
3 = 0 after the E13-page. Therefore, the target of our d29-differential is

d̄5
3s̄

6
3 = tr((r̄3γr̄3)5s̄6

3a48σ2).

We will now show that d̄5
3s̄

6
3 6= 0 on the E29-page. Recall that in the C2-slice spectral

sequence, we have the d15-differential

d15((r̄3γr̄3)5r̄3
3 r̄

2
1u8σ2a33σ2) = (r̄3γr̄3)5r̄3

3 r̄
2
1 · r̄1(r̄2

3 + r̄3γr̄3 + γr̄2
3)a48σ2

= (r̄3γr̄3)5r̄3
3 · (r̄3 + γr̄3)(r̄2

3 + r̄3γr̄3 + γr̄2
3)a48σ2

= (r̄3γr̄3)5r̄3
3(r̄3

3 + γr̄3
3)a48σ2

= (r̄3γr̄3)5r̄6
3a48σ2 + (r̄3γr̄3)8a48σ2

Applying the transfer to this differential yields the d15-differential

d15(d̄5
3s̄

3
3r̄

2
1) = d̄5

3s̄
6
3 + 2d̄8

3u24σa24λ

in the C4-spectral sequence (cf. Proposition 14.5). Therefore, the target of our normed

d29-differential can be identified with the class 2d̄8
3u24σa24λ on the E29-page, which is not

zero. This completes the proof of the theorem.

Theorem 15.6. In the C4-slice spectral sequence of BP((C4))〈2〉, the class u16λaσ supports
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the d61-differential

d61(u16λaσ) = d̄5
3u16σa31λ.

Proof. Applying Theorem 9.8 to the d31-differential d31(u16σ2) = r̄4
3γr̄3a31σ2 predicts the

d61-differential

d61

(
u16λ

u16σ

aσ

)
= N(r̄4

3γr̄3)a31λ = d̄5
3a31λ.

To show that this differential exists, it suffices to show that the target is not 0 on the

E61-page. Multiplying this differential by the permanent cycle u16σ gives

d61(u16λaσ) = d̄5
3u16σa31λ.

If the target of this new differential is not zero on the E61-page, then the original target

will also not be zero, and both d61-differentials will exist.

Now, we will multiply the predicted d61-differential on u16λaσ by d̄11
3 u32σa17λ to move it

to the integer graded spectral sequence:

d61(d̄11
3 u16λu32σa17λaσ) = d̄16

3 u48σa48λ.

This is a predicted d61-differential with source at (97, 65) and target at (96, 96). It suffices

to show that the target of this differential is no zero on the E61-page.

Theorem 15.5 shows that there is a d29-differential

d29(d̄13
3 d̄2

1u8λu40σa33λaσ) = 2d̄16
3 u48σa48λ.

For degree reasons, if the class d̄16
3 u48σa48λ is zero on the E61-page, then the only possibility

is for it to be killed by a d31-differential (see Figure 36). This is impossible by considering

178



the class d̄17
3 u48σa51λa3σ = d̄16

3 u48σa48λ·d̄3a3λa3σ at (99, 105). If the class d̄16
3 u48σa48λ is indeed

zero after the d31-differentials, then d̄17
3 u48σa51λa3σ will also be zero after the E31-page (this

is because d̄3a3λa3σ is a permanent cycle). However, by degree reasons, d̄17
3 u48σa51λa3σ

cannot be killed by a differential of length at most 31.

Therefore, the class d̄16
3 u48σa48λ is not zero on the E61-page and the normed d61-differential

on u8λaσ exists.

16 Higher Differentials III: The Vanishing Theorem

16.1 α and α2

Let α be the class d̄8
3u24σu24λ at (48, 48). Theorem 15.5 and Theorem 15.6 show that

1. The class α is a permanent cycle that survives to the E∞-page;

2. The class α2 = d̄16
3 u48σa48λ at (96, 96) is killed by the d61-differential

d61(d̄11
3 u16λu32σa17λaσ) = α2.

In the C4-slice spectral sequence of BP((C4))〈2〉, α will be playing the role of ε in

C4- SliceSS(BP((C4))〈1〉). The following lemma is the higher height analogue of Lemma 10.15

and is proven using the exact same method.

Lemma 16.1. Let dr(x) = y be a nontrivial differential in C4-SliceSS(BP((C4))〈2〉).

1. The class αx and αy both survive to the Er-page, and dr(αx) = αy.

2. If both x and y are divisible by α on the E2-page, then x/α and y/α both survive to

the Er-page, and dr(x/α) = y/α.
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Figure 36: Normed d29 and d61-differentials.
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Proof. We will prove both statements by using induction on r, the length of the differential.

Both claims are true when r ≤ 15.

Now, suppose that both statements hold for all differentials of length smaller than r.

Given a nontrivial differential dr(x) = y, we will first show that αy survives to the Er-page.

If αy supports a differential, then y must support a differential as well. This is a

contradiction because y is the target of a differential. Therefore if αy does not survive to

the Er-page, it must be killed by a differential dk(z) = αy, where k < r.

We claim that z is divisible by α. If k ≤ 15, then this is true because we have charac-

terized completely all the differentials of length ≤ 15, and in all the cases z will be divisible

by α. If k > 15, then k will be divisible by α as well because it is a class on or under the

line of slope 1 with filtration at least 48, and all such classes are divisible by α starting

from the E16-page.

The inductive hypothesis, applied to the differential dk(z) = αy, shows that dk(z/α) =

y. This is a contradiction because dr(x) = y is a nontrivial dr-differential. Therefore, αy

survives to the Er-page.

αy

y

z

z/α αx

x

·α

dk

·α

dk

dr

·α

If αx does not survive to the Er-page, then it must be killed by a shorter differential.
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This shorter differential will introduce the relation εx = 0 on the Er-page. However, the

Leibniz rule, applied to the differential dr(x) = y, shows that

dr(αx) = αy 6= 0

on the Er-page. This is a contradiction. Therefore, αx must survive to the Er-page as well,

and it supports the differential

dr(αx) = αy.

This proves (1).

To prove (2), note that if y/α supports a differential of length smaller than r, then the

induction hypothesis would imply that y also supports a differential of the same length.

Similarly, if y/α is killed by a differential of length smaller than r, then the induction

hypothesis would imply that y is also killed a by a differential of the same length. Both

scenarios lead to contradictions. Therefore, y/α survives to the Er-page.

We will now show that x/α also survives to the Er-page. Since x supports a dr-

differential, x/α must also support a differential of length at most r. Suppose that

dk(x/α) = z, where k < r. The induction hypothesis, applied to this dk-differential, implies
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the existence of the differential dk(x) = αz. This is a contradiction because dr(x) = y.

y

y/α αz

z

x

x/α

·α

·α

dk

dr

dk

·α

It follows that x/α survives to the Er-page, and it supports a nontrivial dr-differential.

Since y/α also survives to the Er-page, the Leibniz rule shows that

dr(x/α) = y/α,

as desired.

Theorem 16.2 (Vanishing Theorem). Any class of the form α2x on the E2-page of C4-

SliceSS(BP((C4))〈2〉) must die on or before the E61-page.

Proof. If x is a d61-cycle, then the class α2x is a d61-cycle as well. Since α2 is killed by a

d61-differential, α2x must also be killed by a differential of length at most 61.

Now suppose that the class x is not a d61-cycle and it supports the differential dr(x) = y,

where r ≤ 61. Applying Lemma 16.1(1), we deduce that the class α2x must support the

nontrivial dr-differential

dr(α
2x) = α2y.
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Therefore, it cannot survive past the E61-page.

16.2 Important permanent cycles

Proposition 16.3. The following classes are permanent cycles that survive to the E∞-page

of C4- SliceSS(BP((C4))〈2〉).

• η′ := d̄1aλaσ at (1, 3);

• ξ := d̄3a3λa3σ at (3, 9);

• ε′ := at (8, 8);

• β := d̄3
3u8σa9λaσ at (17, 19).

Proof. All the classes are clearly permanent cycles. It is also immediately clear that η′ and

ξ survive to the E∞-page.

Suppose that ε′ is killed by a differential. For degree reasons, the length of that differ-

ential must be 7. This implies that α · ε′ at (56, 56) must also be killed on or before the

E7-page. This is impossible for degree reasons. This shows that ε′ survives to the E∞-page.

Now, suppose that β is killed by a differential. For degree reasons, the length of that

differential must be 17. This implies that α · β at (65, 67) must also be killed on or before

the E17-page. This is again impossible because of degree reasons.

In Figure 37, we have drawn some multiplications by ξ (red structure lines) and β (blue

structure lines). These multiplications will be useful later when we prove long differentials

that cross the vanishing line of slope 1.

Proposition 16.4. Let γ := d̄2
3u4λu6σa2λ at (20, 4). Then

1. d13(γ) = d̄3
3uλu8σa8λaσ (d13(20, 4) = (19, 17)) ;
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Figure 37: E16-page of SliceSS(BP((C4))〈2〉). The differentials shown are the long differentials
that cross the vanishing line of slope 1. The black differentials are the d61-differentials; the
sienna differentials are the d59-differentials; the plum differentials are the d53-differentials;
and the red-orange differentials are the d43-differentials.
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2. d15(γ2) = d̄5
3s̄1u4λu15σa11λaσ2 (d15(40, 8) = (39, 23));

3. d31(γ4) = d̄9
3s̄

3
3 = tr(r̄12

3 γr̄
9
3u16σ2a47σ2) (d31(80, 16) = (79, 47));

4. The class γ8 = d̄16
3 u32λu48σa16λ at (160, 32) is a permanent cycle.

Proof. (1) and (2) are Proposition 14.2 and Propostion 14.10, respectively.

To prove (3), note that γ4 · β is the class d̄11
3 u16λu32σa17λaσ at (97, 35), which supports

the d61-differential killing α2. Therefore γ4 must support a differential of length at most

61. The possible targets are the following classes:

• d̄9
3s̄

3
3 at (79, 47);

• d̄10
3 s̄3 at (79, 47);

• d̄13
3 uλu38σa38λaσ at (79, 77);

• d̄12
3 s̄

2
3r̄1 at (79, 79).

We know all the d31-differentials between i∗C2
BP((C4))〈1〉-truncation classes. In particular,

the class d̄10
3 s̄3 at (79, 47) supports the d31-differential

d31(d̄10
3 s̄3) = d̄12

3 s̄
2
3 (d31(79, 47) = (78, 78)),

and the class d̄12
3 s̄

2
3r̄1 at (79, 79) is killed by the d31-differential

d31(d̄10
3 s̄3r̄1) = d̄12

3 s̄
2
3r̄1 (d31(80, 48) = (79, 79)).

Now, consider the class d̄10
3 d̄2

1u8λu32σa24λ at (80, 48). The product of this class with
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β = d̄3
3u8σa9λaσ is the class

d̄10
3 d̄2

1u8λu32σa24λ · d̄3
3u8σa9λaσ = d̄13

3 d̄2
1u8λu40σa33λaσ

at (97, 67). This class supports the d29-differential

d29(d̄13
3 d̄2

1u8λu40σa33λaσ) = 2d̄16
3 u48σa48λ (d29(97, 67) = 2(96, 96)).

Therefore, the class d̄10
3 d̄2

1u8λu32σa24λ must support a differential of length at most 29. The

only possibility is the class d̄13
3 uλu38σa38λaσ at (79, 77).

It follows that the only possibility for the target of the differential supported by γ4 is

the class d̄9
3s̄

3
3 at (79, 47). The differential will be the d31-differential that we claimed. This

proves (3).

For (4), since the classes d̄16
3 , u32λ, u48σ, and a16λ are all permanent cycles, their product

is a permanent cycle as well.

Proposition 16.4 shows that whenever we have proved a dr-differential of length r < 31,

we can multiply that differential by α and γ4 and use Lemma 16.1 to deduce more dr-

differentials. If the length of the differential is r ≥ 31, then we can multiply that differential

by (48, 48) and (160, 32) and use Lemma 16.1 to produce more dr-differentials.

16.3 Long Differentials Crossing the Line of Slope 1

Theorem 16.5. The following differentials exist:

1. d61(d
11
3 u16λu32σa17λaσ) = α2 (d61(97, 35) = (96, 96));

2. d61(2d
14
3 u15λu42σa27λ) = α2β (d61(2(114, 54)) = (113, 115));
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3. d59(d
17
3 s1u14λu51σa37λaσ2) = α2β2 (d59(131, 75) = (130, 134));

4. d53(d
20
3 d

2
1u12λu62σa50λ) = α2β3 (d53(148, 100) = (147, 153));

5. d53(d
23
3 d

2
1u12λu70σa59λaσ) = α2β4 (d53(165, 119) = (164, 172));

6. d53(2d
26
3 d

2
1u11λu80σa69λ) = α2β5 (d53(2(182, 138)) = (181, 191));

7. d43(d
29
3 s

3
3) = α2β6 (d43(199, 167) = (198, 210)).

Proof. Since β is a permanent cycle, the classes α2βi (1 ≤ i ≤ 6) are all killed on or before

the E61-page by differentials of decreasing length. More precisely, if a dr-differential kills

α2βi and a dr′-differential kills α2βi
′

with 0 ≤ i < i′ ≤ 6, then r ≥ r′.

Consider the class α2β6. The shortest differential that can kill this class is a d43-

differential. Therefore, all the differentials killing the class α2βi for 1 ≤ i ≤ 6 must all be

of length at least 43 and at most 61.

(1) follows directly from Theorem 15.6.

For (2), the only differential that can kill α2β that’s of length 43 ≤ r ≤ 61 is the claimed

d61-differential.

For (3), the only differential that can kill α2β2 that’s of length 43 ≤ r ≤ 61 is the

claimed d59-differential.

For (4), the only differential that can kill α2β3 that’s of length 43 ≤ r ≤ 59 is the

claimed d53-differential.

For (5), the only differential that can kill α2β4 that’s of length 43 ≤ r ≤ 53 is the

claimed d53-differential.

For (6), the only differential that can kill α2β5 that’s of length 43 ≤ r ≤ 53 is the

claimed d53-differential.
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Lastly, for (7), the only differential that can kill α2β6 that’s of length 43 ≤ r ≤ 53 is

the claimed d43-differential.

Applying Lemma 16.1 to the differentials in Theorem 16.5, we obtain all the other long

differentials crossing the line of slope 1. These differentials are shown in Figure 37.

17 Higher differentials IV: Everything until the E29-

page

17.1 d21-differentials

Proposition 17.1. The following d21-differentials exist:

d21(d̄21
3 u9λu62σa54λaσ) = 2d̄22

3 d̄2
1u3λu68σa65λ (d21(143, 109) = 2(142, 130)),

d21(d
25
3 u9λu74σa66λaσ) = 2d

26
3 d

2
1u3λu80σa77λ (d21(167, 133) = 2(166, 154)).

Proof. The Vanishing Theorem (Theorem 18.1) shows that the class 2(142, 30) must die on

or before the E61-page. For degree reasons, the only possibility is for it to be killed. The

only possibilities for the source of the differential are the following classes:

1. d̄21
3 u9λu62σa54λaσ at (143, 109);

2. d̄18
3 s̄3 at (143, 79);

3. d̄17
3 s̄

3
3 at (143, 79).

Class (2) is killed by the class d̄15
3 s̄

2
3 at (144, 48) by a d31-differential (this is a d31-differential

between i∗C2
BP((C4))〈1〉-truncation classes). Class (3) is killed by the class 2d̄16

3 u24λu48σa24λ

at (144, 48) via a d31-differential (see the discussion after Proposition 14.11).
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Figure 38: dr-differentials of lengths 15 < r < 29. The d19-differentials are shown in lime-
green, the d21-differentials are shown in blue, the d23-differentials are shown in orange, and
the d27-differentials are shown in forest-green.
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Therefore, the only possibility for the source is class (1), and we deduce our desired

d21-differential.

All the other d21-differentials are obtained from the differentials in Proposition 17.1 by

using product structures with the classes α and γ4 (see the discussion after Propositon 16.4).

These differentials are the blue differentials in Figure 38.

17.2 d23-differentials

Proposition 17.2. The following d23-differentials exist:

d23(d
5
3d1u8λu16σa8λ) = d

7
3s1u2λu21σa19λaσ2 (d23(48, 16) = (47, 39)),

d23(d
9
3d1u8λu28σa20λ) = d

11
3 s1u2λu33σa31λaσ2 (d23(72, 40) = (71, 63)).

Proof. We will prove the first d23-differential. The proof of the second d23-differential is

exactly the same. The restriction of the class d
5
3d1u8λu16σa8λ is r̄5

3γr̄
5
3 r̄1γr̄1u16σ2a16σ2 in the

C2-slice spectral sequence. It supports the d31-differential

d31(r̄5
3γr̄

5
3 r̄1γr̄1u16σ2a16σ2) = r̄5

3γr̄
5
3 r̄

2
1 · (r̄4

3γr̄3)a47σ2 = r̄9
3γr̄

6
3 r̄

2
1a47σ2 .

This implies that in the C4-spectral sequence, the class d
5
3d1u8λu16σa8λ must support a

differential of length at most 31. There are two possible choices for the target:

1. d̄7
3s̄3r̄

2
1 at (47, 47) (d31-differential);

2. d
7
3s1u2λu21σa19λaσ2 at (47, 39) (d23-differential).

Class (1) is impossible for natuality reasons because the class d̄7
3s̄3r̄

2
1 does not restrict
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to r̄9
3γr̄

6
3 r̄

2
1a47σ2 . Therefore, the target must be class (2) and we deduce the desired d23-

differential.

All the other d23-differentials are obtained from the differentials in Proposition 17.2 by

using product structures with the classes α and γ4 (see the discussion after Propositon 16.4).

These differentials are the orange differentials in Figure 38.

17.3 d19 and d27-differentials

Lemma 17.3. The following d29-differentials exist:

1. d29(2d̄3
3d̄1u7λu10σa3λ) = d

5
3d

2
1u16σa17λaσ (d29(2(34, 6)) = (33, 35));

2. d29(d̄2
3d̄

2
1u8λu8σ) = d

5
3uλu14σa14λaσ (d29((32, 0)) = (31, 29));

3. d29(d
22
3 d

2
1u8λu68σa60λ) = d

25
3 uλu74σa74λaσ (d29((152, 120)) = (151, 149));

4. d29(d
9
3d

2
1u8λu28σa21λaσ) = 2d

12
3 u36σa36λ (d29((73, 43)) = 2(72, 72));

5. d29(d
5
3d

2
1u8λu16σa9λaσ) = 2d

8
3u24σa24λ (d29((49, 19)) = 2(48, 48)).

Proof. (1): This follows directly from Theorem 15.5.

(2): If we multiply the class d̄2
3d̄

2
1u8λu8σ at (32, 0) by β and use Theorem 15.5, we deduce

the d29-differential

d29(d
5
3d

2
1u8λu16σa9λaσ) = 2d

8
3u24σa24λ (d29(49, 19) = 2(48, 48)).

Therefore, the class d̄2
3d̄

2
1u8λu8σ at (32, 0) must support a differential of length at most 29.

For degree reasons, the only possible target is the class at (31, 29).
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(3): Consider the class d
22
3 d

2
1u8λu68σa60λ at (152, 120). We will show that this class must

support a differential of length at most 29. Once we have shown this, the only possible

target will be the class d
25
3 uλu74σa74λaσ at (151, 149).

By Theorem 15.5, we have the d29-differential.

d29(d
24
3 d1u8λu72σa65λaσ) = d

26
3 d

2
1u80σa80λ (d29(161, 131) = (160, 160)).

If we multiply the target of this differential by ε′, we get the class 2d
28
3 u84σa84λ at (168, 168).

This class must be killed by a differential of length at most 29. For degree reasons, the

only possibility is the d29-differential

d29(d
25
3 d

2
1u8λu76σa69λaσ) = 2d

28
3 u84σa84λ (d29(169, 139) = 2(168, 168)).

The source of this differential is equal to β ·(152, 120). Therefore, the class d
22
3 d

2
1u8λu68σa60λ

at (152, 120) must support a differential of length 29, as desired.

(4): By Theorem 15.5, we have the d29-differential

d29(d
8
3d1u8λu24σa17λaσ) = d

10
3 d

2
1u32σa32λ (d29(65, 35) = (64, 64)).

If we multiply the target of this differential by ε′, we get the class 2d
12
3 u36σa36λ at (72, 72).

Therefore, this class at (72, 72) must be killed by a differential of length at most 29. The

only possibility is the d29-differential that we claimed.

(5): This differential is proven in the proof of Theorem 15.5.
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Lemma 17.4. The following d35-differentials exist:

d35(d
17
3 s1u12λu51σa39λaσ2) = 2d

20
3 u3λu60σa57λ (d35(127, 79) = 2(126, 114)),

d35(d
21
3 s1u12λu63σa51λaσ2) = 2d

24
3 u3λu72σa69λ (d35(151, 103) = 2(150, 138)).

Proof. Consider the target of the first differential. By Theorem 18.1, it must be killed on

or before the E61-page. The possibilities for the sources are

1. d̄17
3 s̄

3
3 at (127, 95);

2. d̄18
3 s̄3 at (127, 95);

3. d
17
3 s1u12λu51σa39λaσ2 at (127, 79);

4. d̄15
3 s̄3r̄

2
1 at (127, 63);

5. d
15
3 s1u18λu45σa27λaσ2 at (127, 55);

(1) is impossible because by Proposition 16.4, the class d̄17
3 s̄

3
3 at (127, 95) is the target

of the d31-differential

d31(d
16
3 u16λu48σa32λ) = d̄17

3 s̄
3
3 (d31(128, 64) = (127, 95)).

(2) is impossible because d̄18
3 s̄3 at (127, 95) supports the d31-differential

d31(d̄18
3 s̄3) = d̄20

3 s̄
2
3 (d31(127, 95) = (126, 126)).

This is a d31-differential between i∗C2
BP((C4))〈1〉-truncation classes.
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(4) is impossible because d̄15
3 s̄3r̄

2
1 at (127, 63) is the target of the d31-differential

d31(d̄12
3 s̄

2
3r̄

2
1) = d̄15

3 s̄3r̄
2
1 (d31(128, 32) = (127, 63))

between i∗C2
BP((C4))〈1〉-truncation classes.

(5) is impossible because by Proposition 17.2, this class is the target of the d23-differential

d23(d
13
3 d1u24λu40σa16λ) = d

15
3 s1u18λu45σa27λaσ2 (d23(128, 32) = (127, 63))

It follows that the only possibility for the source is (3), and we deduce our claimed

d35-differential.

The second differential is proven in the exact same way, except that we just need the

extra fact that the class d
21
3 s

3
3 at (151, 119) supports a d43-differential (Theorem 16.5).

Theorem 17.5. The following differentials exist:

1. d19(2d
30
3 u5λu90σa85λ) = d

30
3 s

3
3 (d19(2(190, 170)) = (189, 189));

d19(2d
26
3 u5λu78σa73λ) = d

26
3 s

3
3 (d19(166, 146) = (165, 165));

2. d19(d
31
3 s1u4λu93σa89λaσ2) = d

32
3 d

2
1u96σa98λa2σ (d19(195, 179) = (194, 198));

d19(d
27
3 s1u4λu81σa77λaσ2) = d

28
3 d

2
1u84σa86λa2σ (d19(171, 155) = (170, 174));

3. d19(2d
32
3 u5λu96σa91λ) = d

32
3 s

3
3 (d19(2(202, 182)) = (201, 201));

d19(2d
28
3 u5λu84σa79λ) = d

28
3 s

3
3 (d19(2(178, 158)) = (177, 177));

4. d19(2d
30
3 u13λu90σa77λ) = d

30
3 s

3
3 (d19(2(206, 154)) = (205, 173));

d19(2d
26
3 u13λu78σa65λ) = d

26
3 s

3
3 (d19(2(182, 130)) = (181, 149));

5. d19(d
31
3 s1u12λu93σa81λaσ2) = 2d

32
3 d

2
1u7λu98σa91λ (d19(211, 163) = 2(210, 182));

d19(d
27
3 s1u12λu81σa69λaσ2) = 2d

28
3 d

2
1u7λu86σa79λ (d19(187, 139) = 2(186, 158));
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6. d19(2d
32
3 u13λu96σa83λ) = d

32
3 s

3
3 (d19(2(218, 166)) = (217, 185));

d19(2d
28
3 u13λu84σa71λ) = d

28
3 s

3
3 (d19(2(194, 142)) = (193, 161));

7. d27(d
31
3 s1u10λu93σa83λaσ2) = 2d

33
3 d1u3λu100σa97λ (d27(207, 167) = 2(206, 194));

d27(d
27
3 s1u10λu81σa71λaσ2) = 2d

29
3 d1u3λu88σa85λ (d27(183, 143) = 2(182, 170));

8. d27(d
33
3 s1u6λu99σa93λaσ2) = d

35
3 d1u104σa106λa2σ (d27(211, 187) = (210, 214));

d27(d
29
3 s1u6λu87σa81λaσ2) = d

31
3 d1u92σa94λa2σ (d27(187, 163) = (186, 190)).

Proof. (1): Consider the class 2d
30
3 u5λu90σa85λ at (190, 170). By Theorem 18.1, this class

must die on or before the E61-page. If this class supports a differential, then we are done.

If it is the target of a differential, then for degree reasons, the only possibility for the

source is the class d
25
3 s

3
3 at (191, 127). However, by Proposition 14.11 and the discussion

afterwards, this class is the target of the d31-differential

d31(2d
24
3 u24λu72σa48λ) = d

25
3 s

3
3 (d31(2(192, 96)) = (191, 127)).

Therefore, this class cannot be the target of a differential. This proves the first differential

in (1).

The second differential in (1) is proven by the exact same method.

(2): To prove the first differential in (2), consider the class d
32
3 d

2
1u96σa98λa2σ at (194, 198).

By Theorem 18.1, this class must die on or before the E61-page. For degree reasons, the

only possible source is the class d
31
3 s1u4λu93σa89λaσ2 at (195, 179). This proves the first

differential in (2). The second differential is proven in the exact same way.

(5): For the first differential, consider the class 2d
32
3 d

2
1u7λu98σa91λ at 2(210, 182). By The-

orem 18.1, this class must die on or before the E61-page. If this class is the source of a

differential, the target must be the class d
35
3 u104σa105λaσ at (209, 211). This is impossible
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because we have proven in Theorem 16.5 that the class at (209, 211) is the target of a

d61-differential.

Therefore, this class must be killed by a differential of length at most 61. For degree

reasons, the only possible source is the class d
31
3 s1u12λu93σa81λaσ2 at (211, 163). This proves

the first differential in (5). The second differential is proven in the exact same way.

(3): For the first differential, consider the class d
32
3 s

3
3 at (201, 201). By Theorem 18.1, this

class must be killed on or before the E61-page. For degree reasons, the only possible sources

are the following classes:

• 2d
32
3 u5λu96σa91λ at (202, 182);

• 2d
31
3 d1u7λu94σa87λ at (202, 174);

• 2d
28
3 d

2
1u15λu86σa71λ at (202, 142).

If the class 2d
31
3 d1u7λu94σa87λ at (202, 174) is the source, then the differential will be a d27-

differential. However, by Theorem 15.5 the class 2d
30
3 u7λu90σa83λ at (194, 166) support the

d29-differential

d29(2d
30
3 u7λu90σa83λ) = d

32
3 d1u96σa97λaσ (d29(2(194, 166)) = (193, 195)).

Since 2(194, 166) · ε′ = 2(202, 174), this is a contradiction.

The class 2d
28
3 d

2
1u15λu86σa71λ at (202, 142) cannot be the source either because it is the

target of the d19-differential

d19(d
27
3 s1u20λu81σa61λaσ2) = 2d

28
3 d

2
1u15λu86σa71λ (d19(203, 123) = 2(202, 142)).

This d19-differential can be deduced from the second differential of (2) by using multiplica-
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tive structures with the classes α and γ4.

Therefore, the only possibility for the source is the class 2d
32
3 u5λu96σa91λ at (202, 182).

This proves the first d19-differential.

For the second differential, consider the class d
28
3 s

3
3 at (177, 177). By Theorem 18.1, it

must be killed by a differential of length at most 61. The possible sources are the following

classes:

• 2d
28
3 u5λu84σa79λ at (178, 158);

• 2d
27
3 d1u7λu82σa75λ at (178, 150);

• 2d
24
3 d

2
1u15λu74σa59λ at (178, 118).

By using Lemma 17.3 (1) and multiplicative structures with α, the class 2d
28
3 u5λu84σa79λ

at (178, 150) support a d29-differential, and therefore cannot be the source. The class

2 d
24
3 d

2
1u15λu74σa59λ at (178, 118) is the target of the d19-differential

d19(d
23
3 s1u20λu69σa49λaσ2) = 2d

24
3 d

2
1u15λu74σa59λ (d19(179, 99) = 2(178, 118)).

This d19-differential can be deduced from the first differential of (2) by using multiplicative

structures with the classes α and γ4.

Therefore, there is only one possible source left, and this leads to the desired d19-

differential.

(4): To prove the first differential in (4), we will first multiply the source by γ4 and prove

the d19-differential

d19(2d
38
3 u29λu114σa85λ) = d

38
3 s

3
3 (d19(2(286, 170)) = (285, 189)).
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Once we have proven this, we can immediately deduce the first differential.

Consider the class d
38
3 s

3
3 at (285, 189). By Theorem 18.1, this class must die on or before

the E61-page. For degree reasons, it cannot support a differential (because the length of

that differential must be 15 < r ≤ 61). Therefore, it must be the target of a differential.

For degree reasons, the possible sources are the following classes:

• 2d
38
3 u29λu114σa85λ at (286, 170);

• 2d
36
3 u35λu108σa73λ at (286, 146).

Using the first differential in Lemma 17.4 and multiplicative structures with γ8, we deduce

that the class 2d
36
3 u35λu108σa73λ at (286, 146) is the target of the d35-differential

d35(d
33
3 s1u44λu99σa55λaσ2) = 2d

36
3 u35λu108σa73λ (d35(287, 111) = 2(286, 146)).

Therefore, the only possible source left is the class 2d
38
3 u29λu114σa85λ at (286, 170). This

proves our desired differential.

The proof of the second differential is exactly the same (except near the end we use the

second differential in Lemma 17.4 and multiplicative structures with γ8 and α).

(7): For the first differential, consider the class 2d
33
3 d1u3λu100σa97λ at (206, 194). By Theo-

rem 18.1 and degree reasons, this class must be killed on or before the E61-page. The only

possibilities for the source are the following classes:

• d
31
3 s1u10λu93σa83λaσ2 at (207, 167);

• d
29
3 u17λu86σa70λaσ at (207, 141).

Using Lemma 17.3 (2) and multiplicative structures with α and γ4, we deduce that the

199



class d
29
3 u17λu86σa70λaσ at (207, 141) is the target of the d29-differential

d29(d
26
3 d

2
1u24λu80σa56λ) = d

29
3 u17λu86σa70λaσ (d29(208, 112) = (207, 141)).

Therefore, the source must be the class d
31
3 s1u10λu93σa83λaσ2 at (207, 167).

The second differential is proven in the exact same way, except near the end we use

Lemma 17.3 (3) and multiplicative structures with α and γ4 to deduce a d29-differential.

(8): To prove the first differential, consider the class d
35
3 d1u104σa106λa2σ at (210, 214). By

Theorem 18.1, it must be killed on or before the E61-page. The only possibilities for the

sources are the following classes:

• d
33
3 s1u6λu99σa93λaσ2 at (211, 187);

• d
31
3 s1u12λu93σa81λaσ2 at (211, 163).

By (5), the class (211, 163) supports the d19-differential

d19(d
31
3 s1u12λu93σa81λaσ2) = 2d

32
3 d

2
1u7λu98σa91λ (d19(211, 163) = 2(210, 182)).

Therefore, the only possibility for the source is the class d
33
3 s1u6λu99σa93λaσ2 at (211, 187).

This proves our desired differential.

The proof of the second differential is exactly the same.

(6): For the first differential, consider the class d
32
3 s

3
3 at (217, 185). By Theorem 18.1, this

class must die on or before the E61-page. If this class supports a differential, then the only

possible target is the class 2d
36
3 u108σa108λ at (216, 216). This is impossible because this class
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at (216, 216) is the target of the d29-differential

d29(d
33
3 d

2
1u8λu100σa93λaσ) = 2d

36
3 u108σa108λ (d29(217, 187) = 2(216, 216)).

We can deduce this differential from Lemma 17.3 (4) and multiplicative structures with α.

Therefore, this class must be killed by a differential of length at most 61. The only

possibilities for the source are the following classes:

• 2d
32
3 u13λu96σa83λ at (218, 166);

• 2d
31
3 d1u15λu94σa79λ at (218, 158);

• 2d
28
3 d

2
1u23λu86σa63λ at (218, 126).

The class 2d
31
3 d1u15λu94σa79λ at (218, 158) is the target of the d27-differential

d27(d
29
3 s1u22λu87σa65λaσ2) = 2d

31
3 d1u15λu94σa79λ (d27(219, 131) = 2(218, 158)).

We can deduce this differential from the second differential in (8) and multiplication with

α and γ4.

The class 2d
28
3 d

2
1u23λu86σa63λ at (218, 126) is the target of the d19-differential

d19(d
27
3 s1u28λu81σa53λaσ2) = 2d

28
3 d

2
1u23λu86σa63λ (d19(219, 107) = 2(218, 126)).

We can deduce this differential from the second differential in (5) and multiplication with

α and γ4.

It follows that the only possibility left for the source is the class 2d
32
3 u13λu96σa83λ at

(218, 166), as desired.

The proof of the second differential is exactly the same.
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All the other d19- and d27-differentials are obtained from the differentials in Proposi-

tion 17.5 by using product structures with the classes α and γ4 (see the discussion after

Propositon 16.4). These differentials are the lime-green differentials and the forest-green

differentials in Figure 38, respectively.

18 Higher differentials V: d29-differentials and

d31-differentials

18.1 d29-differentials

Theorem 18.1. The following d29-differentials exist:

1. d29(d
26
3 d

2
1u8λu80σa72λ) = d

29
3 uλu86σa86λaσ (d29(176, 144) = (175, 173));

2. d29(d
27
3 u8λu80σa73λaσ) = d

29
3 d1u88σa88λ (d29(177, 147) = (176, 176));

3. d29(2d
27
3 d1u7λu82σa75λ) = d

29
3 d

2
1u88σa89λaσ (d29(2(178, 150)) = (177, 179));

4. d29(d
28
3 d1u8λu84σa77λaσ) = d

30
3 d

2
1u92σa92λ (d29(185, 155) = (184, 184));

5. d29(d
29
3 d

2
1u8λu88σa81λaσ) = 2d

32
3 u96σa96λ (d29(193, 163) = 2(192, 192));

6. d29(2d
30
3 u7λu90σa83λ) = d

32
3 d1u96σa97λaσ (d29(2(194, 166)) = (193, 195));

7. d29(d
30
3 d

2
1u8λu92σa84λ) = d

33
3 uλu98σa98λaσ (d29(200, 168) = (199, 197);

8. d29(d
31
3 u8λu92σa85λaσ) = d

33
3 d1u100σa100λ (d29(201, 171) = (200, 200));

9. d29(2d
31
3 d1u7λu94σa87λ) = d

33
3 d

2
1u100σa101λaσ (d29(2(202, 174)) = (201, 203));

10. d29(d
32
3 d1u8λu96σa89λaσ) = d

34
3 d

2
1u104σa104λ (d29(209, 179) = (208, 208));
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11. d29(d
33
3 d

2
1u8λu100σa93λaσ) = 2d

36
3 u108σa108λ (d29(217, 187) = 2(216, 216));

12. d29(2d
34
3 u7λu102σa95λ) = d

36
3 d1u108σa109λaσ (d29(2(218, 190)) = (217, 219));

13. d29(2d
28
3 u11λu84σa73λ) = d

30
3 d1u4λu90σa87λaσ (d29(2(190, 146)) = (189, 175));

14. d29(2d
29
3 d1u11λu88σa77λ) = d

31
3 d

2
1u4λu94σa91λaσ (d29(2(198, 154)) = (197, 183));

15. d29(d
30
3 d1u12λu90σa79λaσ) = d

32
3 d

2
1u4λu98σa94λ (d29(205, 159) = (204, 188));

16. d29(2d
32
3 u11λu96σa85λ) = d

34
3 d1u4λu102σa99λaσ (d29(2(214, 170)) = (213, 199));

17. d29(2d
33
3 d1u11λu100σa89λ) = d

35
3 d

2
1u4λu106σa103λaσ (d29(2(222, 178)) = (221, 207));

18. d29(d
34
3 d1u12λu102σa91λaσ) = d

36
3 d

2
1u4λu110σa106λ (d29(229, 183) = (228, 212)).

Proof. The differentials (2), (3), (5), (10) are immediate from Theorem 15.5.

(1): Consider the class d
26
3 d

2
1u8λu80σa72λ at (176, 144). If we multiply this class by β,

we get the class (193, 163), which supports the d29-differential (5). Therefore, the class

d
26
3 d

2
1u8λu80σa72λ at (176, 144) must support a differential of length at most 29. The only

possibility is the d29-differential that we claimed.

(4): This differential follows from (2) via multiplication by ε′.

(6): Consider the class d
32
3 d1u96σa97λaσ at (193, 195). By Theorem , this class must be

killed by a differential of length at most 61. By degree reasons, the only possibility is the

d29-differential we claimed.

(8): Consider the class d
31
3 u8λu92σa85λaσ at (201, 171). If we multiply this class by ε′, we

get the class d
32
3 d1u8λu96σa89λaσ at (209, 179), which supports differential (10). Therefore,
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the class d
31
3 u8λu92σa85λaσ at (201, 171) must support a differential of length at most 29.

The only possibility is the differential that we claimed.

(9): This differential follows form (6) via multiplication by ε′.

(11): This differential follows from (10) via multiplication by ε′.

(7): Consider the class d
30
3 d

2
1u8λu92σa84λ at (200, 168). If we multiply this class by β, we get

the class d
33
3 d

2
1u8λu100σa93λaσ at (217, 187), which supports differential (11). Therefore, the

class d
30
3 d

2
1u8λu92σa84λ at (200, 168) must support a differential of length at most 29. The

only possibility is the differential that we claimed.

(12): Consider the class d
36
3 d1u108σa109λaσ at (217, 219). By Theorem , this class must be

killed by a differential of length at most 61. For degree reasons, the only possible differential

is the d29-differential that we claimed.

(13): Consider the class d
30
3 d1u4λu90σa87λaσ at (189, 175). By Theorem , this class must die

on or before the E61-page. For degree reasons, the only possible way for this to happen is

for the claimed d29-differential to exist.

(14): This differential follows from (13) via multiplication by ε′ (alternatively, we can also

use Theorem ).

(15): Consider the class d
30
3 d1u12λu90σa79λaσ at (205, 159). If we multiply this class by

ε′, we get the class d
31
3 d

2
1u12λu94σa83λaσ at (213, 167). This class support a d53-differential

by Theorem 16.5. Therefore, the class d
30
3 d1u12λu90σa79λaσ at (205, 159) must support a

differential of length at most 53. For degree reasons, this implies the d29-differential that

we claimed.

(16): Consider the class d
34
3 d1u4λu102σa99λaσ at (213, 199). By Theorem 18.1, this class
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must die on or before the E61-page. For degree reasons, the only way for this to happen is

for the claimed d29-differential to exist.

(17): This differential follows from (16) via multiplication by ε′.

(18): Consider the class d
34
3 d1u12λu102σa91λaσ at (229, 183). If we multiply this class by η′,

we get the class 2d
34
3 d

2
1u11λu104σa93λ at (230, 186). By Theorem 16.5, this class supports

a d53-differential. Therefore, the class d
34
3 d1u12λu102σa91λaσ at (229, 183) must support a

differential of length at most 53. For degree reasons, we deduce the claimed d29-differential.

Theorem 18.1, combined with using multiplicative structures on the classes α and γ4,

produces all the d29-differentials in SliceSS(BP((C4))〈2〉) (see our discussion after Proposi-

tion 16.4). These differentials are shown in Figure 39.

18.2 d31-differentials

Almost all of the d31-differentials are induced d31-differentials from i∗C2
BP((C4))〈1〉-truncation

classes, and they can be proven by using the transfer and the restriction map (see Sec-

tion 14.2).

The rest of the d31-differentials follows from Proposition 14.11 (and the discussion af-

terwards), Proposition 16.4, and multiplication with the following classes:

• α at (48, 48) (permanent cycle);

• γ8 at (160, 32) (permanent cycle);

• d
12
3 u16λu36σa20λ at (104, 40) (d31-cycle).

The d31-differentials are shown in Figure 40.
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Figure 39: d29-differentials in SliceSS(BP((C4))〈2〉).
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Figure 40: d31-differentials in SliceSS(BP((C4))〈2〉).
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19 Higher differentials VI: d35 to d61-differentials

Proposition 19.1. The following d35-differentials exist:

1. d35(d
17
3 s1u12λu51σa39λaσ2) = 2d

20
3 u3λu60σa57λ (d35(127, 79) = 2(126, 114));

2. d35(d
21
3 s1u12λu63σa51λaσ2) = 2d

24
3 u3λu72σa69λ (d35(151, 103) = 2(150, 138));

3. d35(d
21
3 s1u28λu63σa35λaσ2) = 2d

24
3 u19λu72σa53λ (d35(183, 71) = 2(182, 106));

4. d35(d
25
3 s1u28λu75σa47λaσ2) = 2d

28
3 u19λu84σa65λ (d35(207, 95) = 2(206, 130)).

Proof. (1) and (2) are proven in Lemma 17.4. For (3), consider the class 2d
24
3 u19λu72σa53λ

at (182, 106). By Theorem 18.1, this class must die on or before the E61-page. For

degree reasons, the only way this can happen is for this class to be killed by the class

d
21
3 s1u28λu63σa35λaσ2 at (183, 71). This proves the desired d35-differential.

For (4), first consider the class 2d
30
3 d

2
1u11λu92σa81λ at (206, 162). By Theorem 18.1, this

class must die on or before the E61-page. For degree reasons, this class must be killed by

the class d
25
3 s

3
3 at (207, 111).

Now, consider the class 2d
28
3 u19λu84σa65λ at (206, 130). By Theorem 18.1 again, this

class must die on or before the E61-page. For degree reasons, this class must be killed by

one of the following classes:

• d
25
3 s

3
3 at (207, 111);

• d
25
3 s1u28λu75σa47λaσ2 at (207, 95).

Since we have already shown in the previous paragraph the class d
25
3 s

3
3 at (207, 111) supports

a d51-differential, the source must be the class d
25
3 s1u28λu75σa47λaσ2 at (207, 95). This proves

the desired d35-differential.
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Using product structures with α and γ8, the d35-differentials in Proposition 19.1 produce

all the other d35-differentials. They are shown in Figure 41.

The d43-differentials follow from Theorem 16.5 (7) and using product structures with

α. They are shown in Figure 42.

Proposition 19.2. The following d51-differentials exist:

1. d51(d
25
3 s

3
3) = 2d

30
3 d

2
1u11λu92σa81λ (d51(207, 111) = 2(206, 162));

2. d51(d
29
3 s

3
3) = 2d

34
3 d

2
1u27λu104σa77λ (d51(263, 103) = 2(262, 154)).

Proof. For (1), consider the class 2d
30
3 d

2
1u11λu92σa81λ at (206, 162). By Theorem 18.1, this

class must die on or before the E61-page. For degree reasons, the only way for this to

happen is for the claimed d51-differential to exist.

For (2), consider the class 2d
34
3 d

2
1u27λu104σa77λ at (262, 154). By Theorem 18.1 again,

this class must die on or before the E61-page. There are two possibilities:

• This class supports a d61-differential and kills the class d
39
3 d

2
1u12λu118σa107λaσ at (261, 215);

• This class is killed by a d51-differential coming from the class d51(d
29
3 s

3
3) at (263, 103).

The first case is impossible because by Theorem 16.5 (5) and multiplication with α, the class

d
39
3 d

2
1u12λu118σa107λaσ at (261, 215) supports a d53-differential. It follows that the claimed

d51-differential exists.

Using product structures with α and γ8, the d51-differentials in Proposition 19.2 produce

all the other d51-differentials. They are shown in Figure 43.

All the d53-differentials are obtained from the d53-differentials in Theorem 16.5 and

using product structures with α. They are shown in Figure 44

Proposition 19.3. The following d55-differentials exist:
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1. d55(d
24
3 d

2
1u28λu74σa46λ) = d

29
3 s1u14λu87σa73λaσ2 (d55(204, 92) = (203, 147));

2. d55(d
28
3 d

2
1u44λu86σa42λ) = d

33
3 s1u30λu99σa69λaσ2 (d55(260, 84) = (259, 139)).

Proof. For (1), consider the class d
29
3 s1u14λu87σa73λaσ2 at (203, 147). By Theorem 18.1, this

class must die on or before the E61-page. For degree reasons, the only way this can happen

is for the claimed d55-differential to exist.

For (2), consider the class d
33
3 s1u30λu99σa69λaσ2 at (259, 139). By Theorem 18.1, this

class must die on or before the E61-page. For degree reasons, there are two possibilities:

• This class supports a d59-differential to kill the class 2d
38
3 u15λu114σa99λ at (258, 198);

• this class is killed by a d55-differential from the class d
28
3 d

2
1u44λu86σa42λ at (260, 84).

The first case is impossible because by Theorem 16.5 (2) and multiplication with α, the class

2d
38
3 u15λu114σa99λ at (258, 198) supports a d61-differential. Therefore, the second possibility

must occur, and we get our desired d55-differential.

Using product structures with α and γ8, the d55-differentials in Proposition 19.3 produce

all the other d55-differentials. They are shown in Figure 45.

Proposition 19.4. The following d59-differentials exist:

1. d59(d
17
3 s1u14λu51σa37λaσ2) = d

22
3 u64σa66λa2σ (d59(131, 75) = (130, 134));

2. d59(d
21
3 s1u30λu63σa33λaσ2) = 2d

26
3 u15λu78σa63λ (d59(187, 67) = 2(186, 126)).

Proof. (1) is Theorem 16.5 (3). To prove (2), consider the class 2d
26
3 u15λu78σa63λ at (186, 126).

By Theorem 18.1, this class must die on or before the E61-page. For degree reasons, the

only way this can happen is for the claimed d59-differential to exist.
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Using product structures with α and γ8, the d59-differentials in Proposition 19.4 produce

all the other d59-differentials. They are shown in Figure 46.

Proposition 19.5. The following d61-differentials exist:

1. d61(2d
26
3 u31λu78σa47λ) = d

31
3 u16λu92σa77λaσ (d61(2(218, 194)) = (217, 155));

2. d61(d
27
3 d

2
1u28λu82σa55λaσ) = d

32
3 d

2
1u12λu98σa86λ (d61(221, 111) = (220, 172));

3. d61(2d
30
3 d

2
1u27λu92σa65λ) = d

35
3 d

2
1u12λu106σa95λaσ (d61(2(238, 130)) = (237, 191));

4. d61(d
31
3 u32λu92σa61λaσ) = d

36
3 u16λu108σa92λ (d61(249, 123) = (248, 184));

5. d61(2d
30
3 u47λu90σa43λ) = d

35
3 u32λu104σa73λaσ (d61(2(274, 86)) = (273, 147));

6. d61(d
31
3 d

2
1u44λu94σa51λaσ) = d

36
3 d

2
1u28λu110σa82λ (d61(277, 103) = (276, 164));

7. d61(2d
34
3 d

2
1u43λu104σa61λ) = d

39
3 d

2
1u28λu118σa91λaσ (d61(2(294, 122)) = (293, 183));

8. d61(d
35
3 u48λu104σa57λaσ) = d

40
3 u32λu120σa88λ (d61(305, 115) = (304, 176)).

Proof. All of these differentials are proven by using the same method: we first consider the

target, which, by Theorem 18.1, must die on or before the E61-page. Once we know this,

then for degree reasons, we deduce the claimed d61-differential.

Using product structures with α and γ8, the d61-differentials in Proposition 19.5 produce

all the other d61-differentials. They are shown in Figure 47.

20 Summary of Differentials

In this section, we summarize all the differentials in the slice spectral sequence of BP((C4))〈2〉

(Figure 48 shows all the differentials from d13 to d61). To better organize the differen-
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Figure 41: d35-differentials in SliceSS(BP((C4))〈2〉).

212



0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

304

308

312

316

320

324

328

332

336

340

344

348

352

356

360

364

368

372

376

380

384

388

392

396

400

2

Figure 42: d43-differentials in SliceSS(BP((C4))〈2〉).

213



0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 384 388 392 396 400

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

204

208

212

216

220

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

304

308

312

316

320

324

328

332

336

340

344

348

352

356

360

364

368

372

376

380

384

388

392

396

400

3

Figure 43: d51-differentials in SliceSS(BP((C4))〈2〉).
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Figure 44: d53-differentials in SliceSS(BP((C4))〈2〉).
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Figure 45: d55-differentials in SliceSS(BP((C4))〈2〉).
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Figure 46: d59-differentials in SliceSS(BP((C4))〈2〉).
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Figure 47: d61-differentials in SliceSS(BP((C4))〈2〉).
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tials visually, Figure 49 shows the d13 to d15-differentials; Figure 50 shows the d19 to d31-

differentials; and Figure 51 shows the d35 to d61-differentials. The E∞-page is shown in

Figure 52. We observe that there is a horizontal vanishing line at filtration 60.
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Differential Proof

d3, d5, d7, d11 Induced differentials from C4- SliceSS(BP((C4))〈1〉) (Section 13)

d13 Induced differentials from C4- SliceSS(BP((C4))〈1〉) (Section 13.5)

Norm Formula (Theorem 15.3)

Hill–Hopkins–Ravenel Slice Differential Theorem (Proposition 14.1)

Restriction map (Proposition 14.2)

d15 Induced differentials from C2- SliceSS BP((C4))〈2〉 (Section 14.2)

Restriction-transfer (Section 14.3)

d19 Proven in Proposition 17.5

Proven together with d27-differentials

Uses the Vanishing Theorem (Theorem 18.1) and some d29 and d35-differentials

d21 Proven in Proposition 17.1. Uses the Vanishing Theorem (Theorem 18.1)

d23 Proven in Proposition 17.2. Uses the restriction map

d27 Proven in Proposition 17.5

Proven together with d19-differentials

Uses the Vanishing Theorem (Theorem 18.1) and some d29 and d35-differentials

d29 Proven in Theorem 18.1

Uses the norm Formula (Theorem 15.5) and the Vanishing Theorem (Theorem 18.1)

d31 Induced differentials from C2- SliceSS(BP((C4))〈2〉) (Section 14.2);

Proposition 14.11; and Section 18.2

d35 Proven in Proposition 19.1. Uses the Vanishing Theorem (Theorem 18.1)

d43 Proven in Theorem 16.5. Uses the Vanishing Theorem (Theorem 18.1)

d51 Proven in Proposition 19.2. Uses the Vanishing Theorem (Theorem 18.1)

d53 Proven in Theorem 16.5. Uses the Vanishing Theorem (Theorem 18.1)

d55 Proven in Proposition 19.3. Uses the Vanishing Theorem (Theorem 18.1)

d59 Proven in Proposition 19.4. Uses the Vanishing Theorem (Theorem 18.1)

d61 Proven in Proposition 19.5

Uses the norm formula (Theorem 15.6) and the Vanishing Theorem (Theorem 18.1)
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Figure 48: d13 to d61-differentials in SliceSS(BP((C4))〈2〉).
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Figure 49: d13 to d15-differentials in SliceSS(BP((C4))〈2〉).
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Figure 50: d19 to d31-differentials in SliceSS(BP((C4))〈2〉).
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Figure 51: d35 to d61-differentials in SliceSS(BP((C4))〈2〉).
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Figure 52: E∞-page of SliceSS(BP((C4))〈2〉).
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