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Computational Mechanisms Underlying the Influence of Agency on Learning 
 

 

Abstract 

 

We live in an uncertain environment where making flexible predictions about the 

occurrence of positive and negative events is necessary for maximizing rewards, minimizing 

punishments, and guiding future behavior. Predictions are most accurate, and feedback most 

useful, when our own actions are responsible for the outcomes we receive. Both humans and 

animals exhibit a bias toward presuming control, or agency, over outcomes (Mineka, 1985), and 

extensive work suggests that beliefs about agency have substantial effects on how individuals 

learn from different types of outcomes. By utilizing computational models, neuroimaging, and 

flexible behavioral tasks, this dissertation investigated the behavioral and neurobiological 

pathways through which humans make inferences about hidden information and determined how 

these inferences influence learning processes.  

We first found that inference about hidden agents modulated biased learning of positive 

and negative outcomes within the same individuals. A novel Bayesian model could account for 

this learning asymmetry, demonstrating a mechanistic framework for understanding how causal 

attributions contribute to learning (Paper 1). Next, we showed that RPE signals in the dorsal and 

ventral striatum were scaled by both subjective and model-derived beliefs about agency, but in 

opposite directions, providing preliminary evidence that striatal learning is gated by causal 

inference (Paper 2). Finally, we show that controllability arbitrates the use of a Pavlovian over an 



 iv  

instrumental learning system (Paper 3). Together, these results suggest that beliefs about agency 

are at least one factor that influences how we learn from feedback and how we decide the types 

of learning processes to utilize. 
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Introduction 

 

Background and Implications 

We live in an uncertain environment where making flexible predictions about the 

occurrence of positive and negative events is necessary for maximizing rewards, minimizing 

punishments, and guiding future behavior. Predictions are most accurate, and feedback most 

useful, when our own actions are responsible for the outcomes we receive. Both humans and 

animals exhibit a bias toward presuming control, or agency, over outcomes (Mineka, Gunnar, & 

Champoux, 1985). Humans attribute agency to various inanimate objects or external forces 

(Gilbert & Wilson, 2009; Guthrie, 1995) and presume that others’ behavior is goal-directed 

(Rosset, 2008). Not only is the presumption of agency over outcomes adaptive for behavior, but 

research also suggests that it is rewarding (Kool, Getz, & Botvinick, 2013; Leotti & Delgado, 

2011).  

The study of agency spans a wide range of different literatures: self-representation, action 

representation, psychopathology, social interactions, and cognitive biases, to name a few. As 

such, definitions of agency are varied. However, throughout this dissertation, we accept the 

definition provided by Schmidt and Heumüller of agency as a causal attribution process that can 

be limited to the self or extended to the other (Schmidt & Heumüller, 2010). We will use sense of 

agency to refer to the extent to which one attributes outcomes to a self-generated action. Some 

theories also distinguish between two subcomponents of the sense of agency: feelings of agency 

and judgments of agency (Synofzik, Vosgerau, & Newen, 2008). Feelings of agency refer to 

implicit, lower-level attributions (for example, judgments of motor-outcome contingencies), 

while judgments of agency refer to explicit, perceptible, “belief-like” instances of causal 
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attributions. All of the work presented here deals with agency judgments, and not lower-level 

predictions or inferences about agency that happen outside of conscious awareness.  

One way in which beliefs about agency influence behavior is that they produce a suite of 

cognitive biases. Numerous studies have provided evidence for the prevalence of a self-serving 

bias, defined as the attribution of good outcomes to oneself and bad outcomes to external forces 

(Campbell & Sedikides, 1999; Hughes & Zaki, 2015). For example, people are more likely to 

think a third party influenced a gamble when the outcome was a loss instead of a win 

(Morewedge, 2009), more likely to take credit for positive as opposed to negative outcomes 

(Bradley, 1978), and demonstrate decreased intentional binding (the perception that an action is 

causal to an outcome if they occur closely together in time) for monetary losses compared to 

gains as well as negative versus positive affect cues (Takahata et al., 2012; Yoshie & Haggard, 

2013). Similarly, optimistic and pessimistic biases can be manipulated by changes in outcome 

controllability. For example, greater perceived control is associated with increased optimism bias 

(Weinstein, 1980a), and this finding has also been shown in a large meta-analysis (Klein & 

Helweg-Larsen, 2002). Researchers have also looked at how agency influences a variety of 

outcomes, including sleep quality (Sanford, Yang, Wellman, Liu, & Tang, 2010) and pain 

perception (Akitsuki & Decety, 2009). Determinations of controllability have also been shown to 

have substantial effects on mental health and well-being. Theorists have argued that experiencing 

a lack of control in early environment can influence increased attribution to external causes, 

leading to a vulnerability for anxiety and depression (Chorpita & Barlow, 1998), and an 

extensive animal literature supports such claims (Mineka, 1982). For example, rhesus monkeys 

show signs of extreme stress and depression (Stroebel, 1969) and elevated cortisol levels 

(Hanson, 1976) when a lever that controlled the presentation of harmful stimuli was removed, 
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even when the stimuli were not presented again. In a seminal study by Alloy and Abramson, 

healthy participants exhibited an agency bias for desired outcomes, and a "non-agency" bias for 

undesired outcomes, while depressed participants showed no such bias (Alloy & Abramson, 

1979). This work suggests that biased beliefs of control may be protective against depression, 

and that these cognitive distortions arise not solely from a belief that individuals have control 

over positive outcomes, but that negative outcomes can be attributed to someone or something 

outside of oneself. 

Prior work on fear and aversive learning has attempted to pinpoint a mechanism for the 

development of psychopathology related to agency. Not only is there evidence that exposure to 

uncontrollable aversive events impairs subsequent avoidance learning in both animals (Maier & 

Seligman, 1976) and humans (Hartley, Gorun, Reddan, Ramirez, & Phelps, 2014), but exposure 

to controllable aversive events results in enhanced avoidance learning that persists even in future 

scenarios (Volpicelli, 1983). These results suggest that controllability over aversive outcomes, 

and not just instances of stress, determines to what extent individuals experience psychological 

consequences. While this traditional learning work has been imperative for progressing our 

understanding of adverse psychopathological outcomes, it has not been able to provide a 

cohesive framework for uniting the wide array of literatures on these topics. We propose the use 

of a modern reinforcement learning framework and computational modeling techniques in order 

to better formalize and probe how causal inference shapes learning. 

 

The Neurobiology of Agency and Learning 

Several brain regions have been associated with beliefs about agency, with many studies 

suggesting distinct neural correlates for self-agency compared to external-agency beliefs. 
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Numerous studies that have examined the neural correlates of beliefs about self-agency 

compared to external-agency have found evidence for the role of temporoparietal junction 

(TPJ), precuneus, and dorsomedial prefrontal cortex (dmPFC) in external-agency, and insular 

regions in self-agency (David, Newen, & Vogeley, 2008; Farrer & Frith, 2002; Sperduti, 

Delaveau, Fossati, & Nadel, 2011). In addition, a study using positron emission technology 

(PET) imaging has demonstrated lateralization of the inferior parietal lobule, finding activation 

of the left inferior parietal lobule when participants performed an action themselves, and 

activation of the right inferior parietal lobule when participants watched someone else move an 

object on a screen (Chaminade & Decety, 2002). Taken together, this work implicates two 

seemingly distinct groups of “self-referential” and “other-referential” regions in agency beliefs. 

Sensory motor regions, specifically the pre-supplementary motor areas (SMA), have also been 

implicated in tasks involving agency judgments. While some research has shown that the pre-

SMA is related to both beliefs about self-agency (Miele, Wager, Mitchell, & Metcalfe, 2011) and 

external agency (Sperduti et al., 2011), lesion studies suggest that this region may be encoding 

intentional action more broadly. For example, patients with lesions to the pre-SMA often suffer 

from anarchic hand syndrome, where they describe uncontrollable hand movements as the hand 

having a “will of its own.”  

The primary cortical regions associated with causal inference do not seem to demonstrate 

much overlap with regions implicated in learning about outcomes. Previous work in animals has 

shown that reward prediction errors (RPEs), which represent the difference between expected 

and received reinforcement, are encoded by dopaminergic neurons (Schultz, Dayan, & 

Montague, 1997), and human neuroimaging studies find a consistent RPE signal in the ventral 

striatum (McClure, Berns, & Montague, 2003; O'Doherty, Dayan, Friston, Critchley, & Dolan, 
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2003). Human neuroimaging studies on the integration of reinforcement learning and subjective 

causal attributions are sparse. However, studies of goal-directed behavior in both humans and 

animals implicate medial prefrontal cortex and dorsal striatum (anterior caudate) (Balleine & 

Doherty, 2009), and rodent studies suggest that a vmPFC-striatal circuit is necessary for control 

over positive and negative feedback (Amat et al., 2014). A single study on self-serving bias 

found activation in the dorsal anterior cingulate and in the dorsal striatum (Seidel et al., 2010), 

suggesting a possible updating mechanism taking place during this type of bias. 

 

Current Research 

One challenge for studying these topics is that it is difficult to measure how people 

estimate the causes of outcomes. By utilizing computational models, neuroimaging, and flexible 

behavioral tasks, we can better measure and define the components of latent causal inference. 

This dissertation will explore behavioral and neurobiological pathways through which humans 

make inferences about hidden information and investigate how these inferences influence 

learning processes across three studies. In Paper 1, I hypothesized that outcome attributions to 

internal or external forces would influence to what extent individuals learn from negative and 

positive feedback, and that a novel computational model that could estimate causal beliefs would 

be able to account for learning behavior. Paper 2 explored how beliefs about agency and the 

associated impact on learning asymmetries for positive and negative feedback are represented in 

the brain. By optimizing the task used in Study 1 for functional magnetic resonance imaging 

(fMRI), I aimed to replicate our previous behavioral findings, determine whether striatal 

prediction errors scale along with latent causal inference, and look at whether there are 

functional distinctions within sub-regions of the striatum for learning that is modulated by causal 
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inference. In order to further examine the precise learning processes that are influenced by 

outcome controllability and to integrate our previous work with the broader reinforcement 

learning literature, Paper 3 seeks to provide a computational explanation for the arbitration 

between Pavlovian learning, which involves stimulus-outcome associations, and instrumental 

learning, which involves action-outcome associations. By manipulating the controllability of 

rewarding outcomes, I aimed to show that Pavlovian processes are favored when controllability 

is low, and instrumental processes are favored when controllability is high. 
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Paper 1: Causal Inference About Good and Bad Outcomes 

Hayley M. Dorfman, Rahul Bhui, Brent L. Hughes, and Samuel J. Gershman 

Published in: Psychological Science (2019), In Press 

 

Abstract 

People learn differently from good and bad outcomes. We argue that valence-dependent learning 

asymmetries are partly driven by beliefs about the causal structure of the environment. If hidden 

causes can intervene to generate bad (or good) outcomes, then a rational observer will assign 

blame (or credit) to these hidden causes, rather than to the stable outcome distribution. Thus, a 

rational observer should learn less from bad outcomes when these are likely to have been 

generated by a hidden cause, and the pattern should reverse when hidden causes are likely to 

generate good outcomes. To test this hypothesis, we conducted two experiments in which we 

explicitly manipulated the behavior of hidden agents (N = 80, N = 255). This gave rise to both 

kinds of learning asymmetries in the same paradigm, as predicted by a novel Bayesian model. 

These results provide a mechanistic framework for understanding how causal attributions 

contribute to biased learning. 

People are motivated to maximize rewards and minimize punishments, but when 

updating their beliefs, they often weigh good and bad news differently. The nature of this 

differential weighting remains puzzling. In some cases, animals and humans attend more to bad 

events, and learn more rapidly from punishments compared to rewards (Baumeister, Bratslavsky, 

Finkenauer, & Vohs, 2001; Taylor, 1991). Similarly, some studies of reinforcement learning 

have found that learning rates are higher for negative than for positive prediction errors 

(Christakou et al., 2013; Gershman, 2015b; Niv, Edlund, Dayan, & O'Doherty, 2012). However, 
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other work has demonstrated the opposite pattern of results—greater learning for positive 

outcomes, not only in reinforcement learning tasks (Kuzmanovic, Jefferson, & Vogeley, 2016; 

Lefebvre, Lebreton, Meyniel, Bourgeois-Gironde, & Palminteri, 2017; Moutsiana, Charpentier, 

Garrett, Cohen, & Sharot, 2015), but also in procedural (Wachter, Lungu, Liu, Willingham, & 

Ashe, 2009) and declarative learning tasks (Eil & Rao, 2011; Sharot, Korn, & Dolan, 2011). 

Here, we explore the hypothesis that the direction of valence-dependent learning 

asymmetries depends on beliefs about the causal structure of the environment. To provide some 

intuition, we borrow an example from Abramson, Seligman & Teasdale (1978): consider a 

researcher who receives a rejection for a manuscript submission. The researcher’s inferences 

about the cause of that feedback will influence whether she modifies the paper or appeals the 

decision. If the researcher believes that she was rejected because the paper was bad, she will 

revise the paper and take this new information into consideration for future submissions. 

However, if she believes that the rejection was due to the opinion of an unfair reviewer, she will 

be less likely to update her beliefs about the quality of the paper. In other words, she will 

“explain away” the rejection as being due to a hidden cause (e.g., the reviewer’s caustic 

temperament) rather than her own behavior. 

Abramson, Seligman, and Teasdale argued that “failure means more than merely the 

occurrence of a bad outcome” (Abramson, Seligman, & Teasdale, 1978). Rather, attribution of 

negative outcomes to oneself is what constitutes failure. According to learned helplessness 

theory, individuals with an “optimistic explanatory style” tend to attribute negative events to 

external forces, whereas those with a “pessimistic explanatory style” believe that the causes of 

negative events are internal. On this view, optimistic and pessimistic cognitive biases might arise 

from both differing experiences of reinforcements and beliefs about their causes. Namely, both 
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the availability of rewards and punishments in the environment and the degree to which these 

consequences are attributed to oneself determine to what extent positive and negative outcomes 

influence learning.  

Valence-dependent learning asymmetries are important because they may give rise to 

systematic biases with real-world consequences. On the one hand, learning more from positive 

outcomes can give rise to unrealistic optimism (Sharot et al., 2011) and risk-seeking behavior 

(Niv et al., 2012). On the other hand, learning more from negative outcomes can lead to 

unrealistic pessimism (Maier & Seligman, 1976) and risk aversion (Smoski et al., 2008). Thus, 

understanding the determinants of these asymmetries may provide insights into a wide range of 

behavioral phenomena and provide necessary information to curtail their harmful consequences.  

 One limitation of many past studies examining valence-dependent learning asymmetries 

is that they do not directly measure or control participants’ beliefs about causal structure, and 

hence they are not ideal for testing our hypothesis. In the present paper, we report a more direct 

test by manipulating the causal structure of a reinforcement learning task to induce both 

positively-biased and negatively-biased learning asymmetries in the same participants. 

Participants were asked to choose between two options with unknown reward probabilities and 

were informed that an agent could silently intervene to change the outcome either positively 

(benevolent condition), negatively (adversarial condition), or randomly (neutral condition). 

Based on a Bayesian model of causal inference, we expected that participants would update their 

beliefs about the reward probabilities more from negative than positive outcomes in the 

benevolent condition. This is due to the fact that negative outcomes could not have been caused 

by an interfering external agent, but instead must have been a result of the participant’s enacted 

choice (i.e. sampled from the option’s reward distribution). Likewise, we expected that 



 
 

 
 

12 

participants would learn more from positive compared to negative outcomes in the adversarial 

condition. To examine the robustness and flexibility of our model, Experiment 2 explored a more 

realistic scenario where the probability of latent agent intervention was unknown to participants. 

 

Experiment 1 

In Experiment 1, we manipulated the causal structure underlying a reinforcement learning task, 

such that a hidden agent occasionally intervened to produce particular outcome types (good, bad, 

or random). This allowed us to test our primary hypothesis that positive outcomes would be 

weighed more heavily when the hidden agent was adversarial, whereas negative outcomes would 

be weighed more heavily when the hidden agent was benevolent. Importantly, if participants 

make no causal attributions in the task, then they should learn equally well from positive and 

negative outcomes in all of the three experimental conditions. However, any disproportionate 

learning of positive or negative outcomes can be attributed to the experimental manipulation of 

the causal structure. We formalized this hypothesis in terms of a Bayesian model that 

incorporates the underlying causal structure by rationally assigning credit to the different 

possible sources of feedback. This model describes participants’ beliefs about latent agent 

interventions, while also providing a mechanistic account for how beliefs are formed and how 

they influence learning from positive and negative feedback. 

 

Method 

Participants 

 80 participants (25 female, 52 male, 3 unreported) from Amazon Mechanical Turk completed a 

two-alternative forced choice behavioral task. The sample size was chosen in order to exceed 
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sample sizes from previous, related work (Lefebvre et al., 2017; Sharot et al., 2011). Participants 

were excluded from analyses if they failed to choose the stimulus with the higher reward 

probability for > 60% of trials, leaving data from 72 participants (20 female, 49 male, 3 

unreported) for subsequent analyses (90% of participants met the accuracy criterion). 

Participants gave informed consent, and the Harvard Committee on the Use of Human Subjects 

approved the experiment. 

 

Procedure 

 Participants were instructed to imagine that they were mining for gold in the Wild West. On 

each trial, participants had to choose between one of two different colored mines by clicking on a 

button underneath the mine of their choice (Fig. 1.1b). After making a decision, participants 

received either a reward of gold or a loss of rocks (Fig. 1.1b).  Each mine in a pair produced a 

reward with either 70% or 30% probability. Each reward yielded a small amount of real bonus 

money (5 cents) and each loss resulted in a subtraction of real bonus money (5 cents). Bonuses 

were summed, revealed, and paid out at the end of the task.  

Participants completed three blocks of 50 trials (150 total trials) in different “mining 

territories” (Fig. 1.1a). Participants were instructed that different agents frequent each territory: a 

bandit will steal gold from the mines and replace it with rocks (adversarial condition), a tycoon 

will leave extra gold in the mines (benevolent condition), and a neutral sheriff will try to 

redistribute gold and rocks in the mines (neutral condition). Participants completed each of the 

three conditions once, in randomized order. The agents intervened on 30% of the trials, and 

participants were told this proportion explicitly at the start of the task, though they did not know 

unambiguously whether the agent intervened on any particular trial. While the underlying reward 
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distributions (i.e., absent intervention) for the mines were 70% or 30%, the hidden agent 

intervened on 30% of trials (or 15 out of 50 trials). For example, the benevolent intervention 

produces rewards on 15 out of 50 trials, the adversarial intervention produces losses on 15 out of 

50 trials, and the random intervention produces either losses or rewards for 15 out of 50 trials. 

After feedback on each trial, participants were asked whether they believed the outcome they 

received was a result of hidden agent intervention (binary response of “Yes” or “No”; Fig. 1.1b). 

To ensure that participants understood task instructions, they were asked comprehension 

questions that required correct answers before proceeding. 

 
Figure 1.1. Behavioral task schematic. (a) Participants are told the latent agent intervention condition (adversarial, 
benevolent, or neutral) at the start of each block. (b) Participants make a choice on a two-armed bandit. They then 
receive feedback and judge whether or not they believe that the latent agent intervened on the current trial. 

 

Bayesian reinforcement learning model 
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 The problem facing the participant during the task is to choose the option yielding the highest 

reward. Because she does not know the reward probabilities of the two arms, she must estimate 

them from experience, while taking into account possible intervention from the hidden agent. We 

developed a Bayesian reinforcement learning model that jointly infers the hidden agent 

interventions and the reward probabilities. Here, we summarize the model (see Supplemental 

Materials for a full mathematical description.). 

 After choosing an action and observing reward !" on trial #, the participant updates her 

estimate of the action’s intrinsic reward probability $" according to a reinforcement learning 

equation that depends on inferences about latent causes: $"%& = 	$" +	*"(!" −	$"), where *" is a 

learning rate. The learning rate changes across trials depending on the posterior probability of the 

hidden agent intervention, as computed by Bayes’ rule. When the posterior probability is high, 

the learning rate is low. Intuitively, the model predicts that the participant should suspend 

learning about the reward probabilities when she believes that the outcome was generated by an 

external force. Although the model is derived from Bayesian principles, at a mechanistic level it 

closely resembles standard reinforcement learning models that update reward predictions based 

on prediction errors. Like other Bayesian reinforcement learning models, the dynamic learning 

rate is derived from probabilistic assumptions about the environment (e.g., (Frank, Doll, Oas-

Terpstra, & Moreno, 2009; Gershman, 2015a; Gershman & Niv, 2015) rather than left as a free 

parameter. However, we enrich typical reinforcement learning models by rationally assigning 

credit to different possible sources of feedback. In other words, the learning rate in the Bayesian 

model is calculated by integrating one’s cumulative, past beliefs about intervention into one’s 

value estimate of a particular choice. 
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Critically, the learning rate exhibits asymmetries depending on whether the hidden agent 

tends to produce positive or negative outcomes. For example, when the agent is adversarial, 

positive outcomes can only be generated from the intrinsic reward probabilities, whereas 

negative outcomes can be generated by either the hidden agent or the intrinsic reward 

probabilities. Consequently, negative outcomes are less informative about the reward 

probabilities in this scenario, inducing a lower learning rate. 

 The Bayesian model was fit using maximum a posteriori estimation with empirical priors 

based on previous research (Gershman, 2016). We compute a posterior over the underlying 

parameters, and then input the expected values into a softmax function to model choice 

probabilities, with a response stochasticity (inverse temperature) parameter and a "stickiness" 

parameter to capture choice autocorrelation (Gershman, Pesaran, & Daw, 2009). 

 A valence-dependent learning asymmetry is built into the structure of the Bayesian 

model. Thus, the model itself cannot be used to test for the existence of such an asymmetry. To 

provide evidence for asymmetric learning, we also fit a reinforcement learning (RL) model in 

which we modeled separate, fixed learning rates for positive and negative outcomes in each of 

the three experimental conditions (six learning rates total). This RL model is “heuristic” in the 

sense that it characterizes, but does not explain mechanistically, learning rate asymmetries in our 

task. Importantly, this model allows for differential weighting of positively and negatively 

valenced outcomes without taking into account hidden agent interventions. 

We used random-effects Bayesian model selection (Rigoux, Stephan, Friston, & 

Daunizeau, 2014; Stephan, Penny, Daunizeau, Moran, & Friston, 2009) to compare models. This 

procedure treats each participant as a random draw from a population-level distribution over 

models, which it estimates from the sample of model evidence values for each model. We used 
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the Laplace approximation of the log marginal likelihood to obtain the model evidence values. 

For our model comparison metric, we report the “protected exceedance probability” (PXP), the 

probability that a particular model is more frequent in the population than all other models under 

consideration, taking into account the possibility that some differences in model evidence are due 

to chance. 

 

Results 

Behavioral analyses 

As a preliminary manipulation check, we verified that participants’ beliefs about hidden causes 

varied with the outcome valence in a condition-specific manner (Fig. 1.2a). Participants were 

more likely to believe that a hidden cause resulted in negative, as opposed to positive outcomes 

overall, t(71) = 16.82, p < 0.0001, d = -0.32, 95% CI [-0.55 -0.08]. Importantly, participants were 

more likely to believe that the hidden agent had intervened after negative compared to positive 

outcomes in the adversarial condition, t(71) = 66.24, p < 0.0001, d = -0.28, 95% CI [-0.51 -0.04], 

and after positive compared to negative outcomes in the benevolent condition, t(71) = -71.35, p < 

0.0001, d = -0.99, 95% CI [-1.23 -0.74]. Participants were also slightly more likely to be believe 

that the hidden agent had intervened after negative outcomes in the neutral condition, t(71) = 

6.83, p < 0.0001, d = -0.31, 95% CI [-0.55 -0.08]. We will revisit this effect in the context of our 

computational model. 
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Figure 1.2. Beliefs about hidden agent intervention in Experiment 1. (a) Average belief about hidden agent 
intervention by condition and feedback type. Intervention probability was calculated by taking the mean of each 
participant’s guess of whether or not the latent agent caused a given outcome for each trial. (b) Bayesian model 
predictions. Across-subject standard error of the mean (SEM) is shown for both panels. 
 

Computational modeling 

To characterize the effects of outcome valence and agent type on learning, we first fit a RL 

model with six separate learning rates. As shown in Fig. 1.3a, participants generally learned 

more from positive than from negative outcomes across all conditions, t(71) = 5.56, p < 0.0001, 

d = 0.66, 95% CI [0.32 0.99]. By treating the positivity bias in the neutral condition, t(71) = 3.08, 

p < 0.003, d = 0.36, 95% CI [0.03 0.70], as a participant-specific baseline and subtracting it from 

the other conditions, we obtained a relative measure of learning rates for the adversarial and 

benevolent conditions (Fig. 1.3b), revealing an underlying sensitivity to condition and valence. A 

2 x 2 (adversarial vs. benevolent and positive vs. negative) repeated measures ANOVA on 

relative learning rates revealed no significant main effects (p = 0.57 for condition, p = 0.84 for 

valence) but a significant interaction [F(1,71) = 4.91, p < 0.05]. Consistent with our hypothesis, 
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the learning rate advantage for positive vs. negative outcomes reverses depending on the causal 

structure of the task. 

 Although the interaction effect is significant, the effects are small and noisy because the 

model is over-parametrized: by modeling learning rates separately for each condition and 

outcome valence, it cannot capture a common learning mechanism and thus has a small amount 

of data from which to estimate each parameter. We therefore developed a Bayesian 

reinforcement learning model that makes explicit the common learning mechanism. Learning 

rates in the Bayesian model are determined entirely by the causal structure, which is known to 

the participant. The only free parameters in the model are those governing the choice policy 

(response stochasticity and stickiness). We fixed the prior probability of hidden agent 

intervention in the Bayesian model at 30% to replicate the instructions that participants received 

in the task (a variant of the model in which this probability was treated as a free parameter for 

each participant yielded a value very close to the ground truth: mean = 0.296, SEM = 0.038).  
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Figure 1.3. Learning rates. (a) Reinforcement learning (RL) model with separate learning rates for each condition 
(adversarial, benevolent, neutral) and outcome valence (positive, negative). Across all conditions, there is a tendency 
to learn more from positive than from negative outcomes. (b) Subtracting the learning rates for the neutral condition 
(which serves as a participant-specific baseline) from the other conditions, a cross-over interaction between 
condition and outcome valence is revealed. (c) Relative learning rates from the Bayesian model, averaged across 
trials. 

 

As expected, the Bayesian model shows a strong interaction between condition and 

outcome valence (Fig. 1.3c), a direct consequence of causal inference. To bolster our claim that 

causal inference predicts the valence-dependent learning rate asymmetry, we examined the 

relationship between intervention judgments and learning rates (derived from the Bayesian 

model), finding that learning rates were significantly lower for trials on which participants 

believed that the hidden agent intervened, compared to trials on which they believed that the 

hidden agent did not intervene, t(71) = -6.94, p < 0.0001, d = -0.82; Fig. 1.4a.  

Quantitative metrics also supported the Bayesian model. First, the model can predict 

intervention judgments even though it was not fit to these judgments: a signed rank test between 

the participants’ guesses about intervention and the model’s posterior over intervention showed a 

significant median point-biserial correlation (rpb = 0.45, p < 0.0001). Second, the Bayesian model 
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received unequivocally stronger support than the reinforcement learning model with six learning 

rates according to a random-effects model selection procedure (PXP = 0.97 and PXP < 0.001). 

This model was also strongly favored over the Bayesian model with a free intervention 

probability parameter (PXP < 0.001) and a non-Bayesian reinforcement learning model with 

separate learning rates for positive and negative feedback (PXP = 0.03). 

 

Discussion 

Participants in Experiment 1 demonstrated asymmetric learning from positive and negative 

outcomes that reversed depending on the nature of a hidden intervening agent: when the hidden 

agent intervened to produce negative outcomes, learning was greater for positive outcomes, and 

when the hidden agent intervened to produce positive outcomes, learning was greater for 

negative outcomes. A Bayesian model captured this pattern and could also accurately predict 

participant’s trial-by-trial judgments about interventions. As predicted by the model, learning 

rates were lower when participants believed that the hidden agent intervened. These results 

support our hypothesis that causal inference plays a central role in determining valence-

dependent learning asymmetries. 

 Note that our data are not consistent with a model in which subjects follow a simple rule 

of ignoring negative feedback in the adversarial environment and positive feedback in the 

benevolent environment. If they were in fact following such a rule, then we would expect 

learning rates in those cases to be 0, whereas in fact they are significantly greater than 0.  The 

Bayesian model captures the differential sensitivity to positive and negative feedback in a more 

graded manner than a simple rule-based model. 
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Experiment 2 

One of the broader questions motivating this research is how the environment shapes learning 

rate asymmetries. We addressed this question in Experiment 2 by creating a subtle ambiguity in 

our experimental task: instead of informing participants of the exact intervention probability, we 

simply told them that hidden agents occasionally intervene. We reasoned that this ambiguity 

more directly reflects experiences in the real world in which probabilities for interventions and 

outcomes are often unknown and would be resolved by participants in different ways depending 

on their prior expectations.  

  

Method 

Participants 

 299 participants (“Sample A”: N = 110 [49 female, 56 male, 5 unreported]; “Sample B”: N = 

194 [90 female, 96 male, 8 unreported]) recruited from Amazon Mechanical Turk completed a 

two-alternative forced choice behavioral task. Sample B was collected as part of a pre-registered 

replication, though for the purposes of these analyses we have aggregated the two samples (see 

Supplemental Materials for further information on the pre-registered replication. Registration 

details can be found on the Open Science Framework: https://osf.io/3htpj/). Participants were 

excluded from model fitting if they did not choose the stimulus with the higher reward 

probability for > 60% of trials. 85.3% of all participants met the accuracy criterion (86.4% 

[Sample A], 84.7% [Sample B]). Participants were also excluded if they did not properly respond 

to an attention check question (N = 6). We included data from 255 participants in the model fits 

(N = 95 for Sample A; N = 160 for Sample B). Participants gave informed consent, and the 

Harvard Committee on the Use of Human Subjects approved the experiment. 
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Procedure 

 Behavioral task procedures were identical to those outlined in Experiment 1, except that 

participants were told that the hidden agents would intervene “sometimes.” Actual intervention 

remained fixed at 30% (15 of 50 trials per block). 

 

Computational Model 

 Because participants were not told the intervention probability, we explored models that either 

estimated the probability directly (the “adaptive Bayesian” model) or treated it as a free 

parameter (the “fixed Bayesian” model). In addition, we fit a model in which the intervention 

probability was derived empirically by simply averaging the binary intervention judgments. We 

refer to this model as the “empirical Bayesian” model. 

 

Results 

Behavioral analyses 

 Replicating the results of Experiment 1, participants believed that the hidden agent caused 

negative outcomes more often than positive outcomes across all conditions, t(254) = 6.26, p < 

0.0001, d = -0.06, 95% CI [-0.18, 0.06], and there was a significant difference between belief in 

the hidden agent for good outcomes in the benevolent and neutral conditions, and for bad 

outcomes in the adversarial and neutral conditions, t(254) = 7.03, p < 0.0001, d = 0.29, 95% CI 
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[0.17, 0.41].

Figure 1.4. Learning rates for trials where participants did or did not believe the outcome was a result of 
hidden agent intervention for (a) Experiment 1 and (b) Experiment 2. Learning rates were derived from the 
Bayesian model (Experiment 1) and the empirical Bayesian model (Experiment 2). 
 
 

Computational Modeling 

 Model comparison overwhelmingly (PXP > 0.999) supported the “empirical Bayesian” model 

(in which the intervention probability is derived from the binary intervention judgments) 

compared to a more sophisticated “adaptive Bayesian” model (which estimated the intervention 

probability from experience) and a “fixed Bayesian” model which treated the intervention 

probability as a free parameter. 

Once again, we found that participants had significantly higher learning rates for positive 

outcomes compared to negative outcomes, t(254) = 4.73, p < 0.0001, d = -0.82, 95% CI [-0.95, -

0.69]. Further replicating our results from Experiment 1, we also found that learning rates were 

significantly lower for trials where participants believed that the hidden agent intervened, 

compared to trials where they believed that the hidden agent did not intervene, t(252) = 16.77, p 

< 0.0001, d = -0.80, 95% CI [-0.93, -0.67]; Fig. 1.4b].  
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A signed rank test between the participants’ actual guess about intervention and the 

intervention predicted by the model showed a significant median point-biserial correlation (rpb = 

0.55, p < 0.0001), demonstrating that intervention judgments can be accurately predicted by the 

adaptive Bayesian model. 

 

Discussion 

By modifying the behavioral task and the computational model to include an unknown 

probability of hidden agent intervention, we were able to gain insight into individual differences 

in prior expectations that govern valence-dependent learning asymmetries. First, a version of the 

Bayesian model that derived the intervention probability from the average of participants’ binary 

judgments was favored by model selection among the models we considered. We conjecture that 

our task taps into prior expectations about the nature and frequency of hidden agents, possibly 

formed over a lifetime of learning. 

 

General Discussion 

Across two experiments, we found that the direction of valence-dependent learning asymmetries 

could be influenced by manipulating beliefs about causal structure. Specifically, participants 

learned more from positive than from negative outcomes when hidden agents intervened 

adversarially, and conversely, learned more from negative than from positive outcomes when 

hidden agents intervened benevolently. A Bayesian model explained the complete pattern of 

asymmetries, and an extension of the model that inferred the probability of hidden agent 

intervention could capture performance in the more complex scenario in which the intervention 

probability was unknown. 
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Our findings are consistent with the long-standing idea that optimistic biases are not 

exclusively a consequence of increased salience of positive outcomes, but also involve external 

attribution of negative outcomes (Miller & Ross, 1975). With replication across two independent 

samples, people displayed a generalized tendency to attribute positive outcomes to themselves 

and negative outcomes to others. Numerous studies have provided evidence for the prevalence of 

a self-serving bias (the attribution of good outcomes to oneself and bad outcomes to external 

forces) (Campbell & Sedikides, 1999; Hughes & Zaki, 2015). For example, people are more 

likely to think a third party influenced a gamble when the outcome was a loss instead of a win 

(Morewedge, 2009), more likely to take credit for positive as opposed to negative outcomes 

(Bradley, 1978), and demonstrate decreased intentional binding for monetary losses compared to 

gains as well as negative versus positive affect cues (Takahata et al., 2012; Yoshie & Haggard, 

2013). Our computational model does not take into account a self-preservation bias, but 

removing individual variance by subtracting the bias in the neutral condition from the other two 

conditions results in our hypothesized asymmetry. In addition, our data show that participants 

have higher learning rates for positive outcomes. This discrepancy between learning rates for 

good and bad news is consistent with the well-studied phenomenon of an inherent optimism bias 

(Weinstein, 1980a). Therefore, it may be more difficult for individuals to discount their agency 

over rewards, even when they are provided with explicit instructions about the structure of the 

environment. 

While our model can account for our experimental findings and the related phenomena 

reviewed above, we have not demonstrated that it provides a comprehensive account of optimism 

bias in general. It is difficult to attribute optimism bias to causal structure without knowing (or 

manipulating) subjects’ structural beliefs, which was the starting point of the present paper. 
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Nonetheless, it is possible to offer some speculations (Gershman, 2018). If a person has a strong 

belief in their self-efficacy, then observing failure will favor the hypothesis that a latent cause 

was responsible, resulting in less updating compared to if success was observed. One suggestive 

source of data comes from studies of psychiatric disorders, where beliefs about self-efficacy and 

agency are disrupted. 

Previous work has shown that learning asymmetries are associated with depression, 

anhedonia, and pessimism/optimism. For example, research demonstrates that patients with 

depression and anhedonia exhibit blunted learning for both rewards and punishments (Chase et 

al., 2010), and depressed participants accurately recall negative outcomes while healthy 

participants underestimate the frequency of negative outcomes (Nelson & Craighead, 1977). It 

should be noted, however, that other studies have also found no relationship between optimism 

and asymmetric updating (Stankevicius, Huys, Kalra, & Seriès, 2014). Our findings suggest that 

optimistic/pessimistic traits should depend on the interaction between imbalanced learning and 

beliefs about agency. We propose that a latent factor, such as agency inference, may be 

mediating inconsistent findings in the literature regarding imbalanced learning for positive and 

negative outcomes. This idea is supported by research that shows that optimistic and pessimistic 

biases can be manipulated by changes in outcome controllability. For example, greater perceived 

control is associated with increased optimism bias (Weinstein, 1980b), and this finding has also 

been shown in a large meta-analysis (Klein & Helweg-Larsen, 2002). In a seminal study by 

Alloy and Abramson, healthy participants exhibited an agency bias for desired outcomes, and a 

"non-agency" bias for undesired outcomes, while depressed participants showed no such bias 

(Alloy & Abramson, 1979). This work suggests that biased beliefs of control may be protective 

against depression, and that these cognitive distortions arise not solely from a belief that 
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individuals have control over positive outcomes, but that negative outcomes can be attributed to 

someone or something outside of oneself (though see(Msetfi, Murphy, Simpson, & Kornbrot, 

2005), for evidence that abnormal beliefs about control in depression may be due to an 

impairment in contextual processing).  

 

Conclusion 

In sum, we provide evidence that valence-dependent learning asymmetries arise from causal 

inference over hidden agents. This idea, formalized in a simple Bayesian model, was able to 

quantitatively and qualitatively account for both choices and intervention judgments. An 

important task for future work will be to understand the limits of this framework: to what extent 

can we understand self-serving biases, learned helplessness, and other related behavioral 

phenomena in terms of a common computational mechanism? More generally, the real world is 

typically less well-behaved than the idealized experimental scenarios studied in this paper; 

people constantly face causally complex and ambiguous inferential problems, where simple 

attributions to “good” and “bad” latent agents may not be applicable. We foresee an exciting 

challenge in extending the Bayesian framework to tackle these more realistic settings. 
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Abstract 
 
Learning from positive and negative outcomes can be biased by beliefs about outcome 

controllability, but little is known about the neural systems underlying the interaction between 

controllability and valence-dependent learning asymmetries. In this study, participants (N = 36) 

were scanned using functional magnetic resonance imaging (fMRI) while completing a 

behavioral task that manipulated beliefs about causal structure underlying a two-armed bandit 

task. Replicating previous work, the direction of valence-dependent learning asymmetry was 

dependent on beliefs about causal structure, as predicted by a Bayesian reinforcement learning 

model. Specifically, participants learned more from positive reward prediction errors (RPEs) 

than from negative RPEs when they believed that an adversarial hidden agent may have 

intervened, whereas they learned more from negative RPEs when they believed that a benevolent 

hidden agent may have intervened. RPE signals in the dorsal and ventral striatum were scaled by 

the posterior probability of the hidden agent intervention, but in opposite directions. These 

findings are consistent with the Bayesian reinforcement learning model, which predicts that 

striatal learning is gated by causal inference. 
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Introduction 

Beliefs about control over outcomes influence how people interact and learn from the world 

around them. For example, we recently demonstrated that by manipulating beliefs about causal 

structure, individuals showed asymmetric learning of positive and negative outcomes (Dorfman, 

Bhui, Hughes, & Gershman, 2019). Specifically, participants learned more from positive than 

from negative outcomes when hidden agents intervened adversarially, and conversely, learned 

more from negative than from positive outcomes when hidden agents intervened benevolently. A 

Bayesian model explained the complete pattern of asymmetries, and an extension of the model 

that inferred the probability of hidden agent intervention could capture performance in a more 

complex scenario in which the intervention probability was unknown. We have demonstrated 

that a Bayesian reinforcement learning process can explain biases produced by beliefs about 

hidden causes, but it remains unclear whether this process can be represented neurobiologically.  

Converging evidence from prior studies has identified a suite of brain regions implicated 

in judgments of causal attributions and reinforcement learning. For example, inferior parietal 

regions have been linked to causal attributions of behavior and agency over actions (Farrer & 

Frith, 2002; Ruby & Decety, 2001). Further, there is some evidence suggesting that processes 

associated with external (e.g., attribution to another person) and internal agency (e.g. attribution 

to the self) may recruit distinct neural systems. For example, a meta-analysis examining the 

effects of agency beliefs on functional brain recruitment revealed that the recruitment of the 

superior temporal gyrus (STG), inferior parietal lobe (IPL), precuneus, pre-SMA, and 

dorsomedial prefrontal cortex (dmPFC) are selective to external agency beliefs, whereas activity 

in the bilateral insula, bilateral primary somatosensory cortex and left pre-motor cortex are 

associated with internal agency (Sperduti, Delaveau, Fossati, & Nadel, 2011). While external and 
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internal agency recruit distinct systems, there is also evidence for overlapping recruitment in 

regions such as the central gyrus, which suggests that these processes are not entirely distinct 

(Sperduti et al., 2011). In the learning literature, previous work in rodents, primates, and humans 

has shown that reward prediction errors (RPEs), which represent the difference between 

expected and received reinforcement, are encoded by dopaminergic neurons in the midbrain 

(Schultz, Dayan, & Montague, 1997), and prediction error information is projected to the 

striatum and frontal cortex (see (Niv, 2009) for a review). In human neuroimaging, RPE signal is 

found in regions of the striatum, prefrontal cortex (PFC) and orbitofrontal cortex (OFC) 

(McClure, Berns, & Montague, 2003; O'Doherty, Dayan, Friston, Critchley, & Dolan, 2003). 

Importantly, there is also evidence for magnitude fluctuations of RPE-related activation. For 

example, striatal activation tracks with the magnitude of prediction errors (Bermudez & Schultz, 

2010) and striatal RPEs are sensitive to distributional properties of reward (Park et al., 2012). 

Together, this evidence suggests that it is reasonable to expect striatal BOLD activation in our 

study to mimic the magnitude asymmetries from our previous behavioral work.  

  Prior human neuroimaging research has examined functional brain recruitment associated 

with perceptions of agency and reinforcement learning in parallel, however, less is known about 

the neural systems underlying how perceptions of agency interact with the ability to learn from 

positive and negative outcomes. Although no human neuroimaging work to date explicitly tests 

this, some research implicates reward-related regions in this interaction. For example, while 

doing a motion prediction task, participants showed greater activation in the anterior insula, 

anterior cingulate cortex, and midbrain for trials where they believe they caused a loss, but 

diminished activation in the ventral putamen for these same trials (Späti et al., 2014). In addition, 

Bhanji & Delgado (2014) have shown that the striatum is sensitive to changes in controllability, 
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and others have found that caudate and nucleus accumbens are sensitive to rewards that are 

chosen rather than passively received (Zink, Pagnoni, Martin-Skurski, Chappelow, & Berns, 

2004). 

  In the present study, we seek to investigate the neural mechanisms for agency-modulated 

learning. Here, we are interested in whether these learning asymmetries are mirrored in striatal 

BOLD activation, and if by using subjective attribution judgments and isolating components of 

our computational model, we can determine that agency-modulated learning is governed by 

distinct brain regions. 

 

Method 

Participants & Data Inclusion 

Participants were recruited from the University of California at Riverside SONA study pool 

system. A total of 36 right-handed adults (ages 18-24, mean = 19.3, 14 males, 24 females) 

participated in the study. Individual runs were evaluated for excessive head movement (> 4mm), 

but no runs were ultimately excluded for excessive movement. Eleven participants were 

excluded from analyses due to unavoidable technical issues (n = 5), and three subjects had one 

run excluded from analyses due to unavoidable technical issues. To meet the accuracy threshold, 

participants must have chosen the stimulus option with the higher reward probability for at least 

50% of the trials, which indicates above chance performance, and participants who did not meet 

this threshold were excluded from analysis (n = 6). This left a total of 25 participants for the 

majority of analyses. An additional two participants, although meeting accuracy criterion for the 

task, did not have enough variation in their choices to be properly modeled, so some analyses 

where conditions were further split include 23 participants. 
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Figure 2.1. fMRI Task Schematic. At the start of each run, participants are told which territory they are in 
(“Tycoon” or “Bandit”). Trial components consist of a choice between two stimuli (2.5 s), a fixation ISI (1.5-2.5 s), 
feedback (win or loss; 1.5 s), a fixation ISI (2-4 s), and an intervention guess (3 s). At the end of each run, a fixation 
IRI was presented for 10 s plus the residual amount of time from the stimulus choice and intervention guess events. 
ISI denotes inter-stimulus interval. IRI denotes inter-run interval. 
 

Task Details 

The task was presented using PsychoPy software version 1.85.2 (Peirce, 2007), and displayed on 

a screen visible through a mirror attached to the head coil. Behavioral responses were collected 

with a MRI-compatible button box, and all participants used the index and middle finger of their 

right (dominant) hand to make responses. Prior to doing the task in the scanner, participants 

received verbal instructions and completed a practice version of the task. 

In this study, participants completed a reinforcement learning task in which they 

encountered multiple learning environments. This task was modified from our previous 

behavioral task for use in the scanner (Fig. 2.1; Dorfman et al., 2019). Participants were 

instructed to imagine that they were mining for gold in the Wild West. On each trial, participants 

had to choose between one of two different colored mines by using the button box. After making 

a decision (choice period: 2.5 s), an inter-stimulus fixation interval (ISI: jittered between 1.5 s-

2.5 s) was displayed.  Participants then viewed feedback of either a reward (gold) or loss (rocks) 

for 1.5 s. Each mine in a pair produced a reward with 70% or 30% probability of winning gold. 

Participants were instructed that each reward yielded a small amount of bonus money and each 
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loss resulted in a subtraction of bonus money. In actuality, all participants received a $5 bonus at 

the end of the experiment.  

Participants completed four blocks of 30 trials (120 total trials) in different “mining 

territories.” A single block was presented for each functional run. Participants were instructed 

that different agents frequent each territory: a bandit will steal gold from the mines and replace it 

with rocks (adversarial condition) and a tycoon will leave extra gold in the mines (benevolent 

condition). During the task, participants completed two blocks of each condition, which were 

interleaved in a pseudorandomized fashion. The agents intervened on 30% of the trials, and 

participants were told this proportion explicitly at the start of the task, though they did not know 

unambiguously whether the agent intervened on any particular trial. While the underlying reward 

distributions (i.e., absent intervention) for the mines were 70% or 30%, the hidden agent 

intervened on 30% of trials (or 9 out of 30 trials). For example, the benevolent intervention 

produces rewards on 9 out of 30 trials and the adversarial intervention produces losses on 9 out 

of 30 trials. After feedback and the presentation of a second ISI (2-4 s), participants were asked 

whether they believed the outcome they received was a result of hidden agent intervention 

(binary response of “Yes” or “No”; 3s) and made their selection using the button box. During the 

stimulus choice and intervention guess period, the events would end as soon as a button was 

pressed. Residual time from these events was added to the inter-run interval (IRI; 10 s plus 

residual) at the end of each run/block. 

 

Computational Model 

Previously, we demonstrated that a computational model that accounts for beliefs about agency 

can explain asymmetric updating of positive and negative outcomes (Dorfman et al., 2019). This 
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model allows for a participant to update their estimate of the reward probability for a particular 

action according to a reinforcement learning equation that integrates perceptions of causal 

inference. Specifically, the learning rate changes across trials depending on the posterior 

probability of the hidden agent intervention, as computed by Bayes’ rule. Intuitively, when the 

posterior probability is high, the learning rate is low, and the participant should suppress learning 

about the reward probabilities when they believe that the outcome was generated by an external 

force. Our hypothesized model includes a parameter, ., which reflects a trial-by-trial estimate of 

the participant’s belief about non-intervention, conditional on the past history of actions and 

rewards for the relevant task block. In other words, a larger . value indicates more control over 

outcomes, and a smaller . value indicates less control over outcomes. In one version of our 

hypothesized model, we fixed the prior probability of hidden agent intervention at 30% to 

replicate the instructions that participants received in the task, while another version initialized 

the prior probability of intervention as the mean of the participant’s subjective intervention 

judgments. The former we will refer to as the fixed Bayesian model, and the latter the empirical 

Bayesian model. We hypothesized that one of the two Bayesian models would best fit the 

behavior of our participants when compared to a six-learning rate model that cannot account for 

causal inference. The six-learning rate model fits a different learning rate for each condition by 

valence combination (e.g., positive Benevolent, negative Benevolent, etc.), and therefore it 

makes no assumptions about asymmetry.  

In order to investigate whether there is an anatomical distinction in the striatum for 

learning during trials when an individual believes they have agency compared to trials when they 

do not have agency in a model-based way, we configured subcomponents of the empirical 

Bayesian model in order to formalize three distinct value representations: a baseline 
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representation, calculated as /01, an agency representation, calculated as /01 ∗ 	., and a non-

agency representation, calculated as /01 ∗ (1 − .). Put simply, the baseline representation does 

not take into account beliefs about control, the agency representation scales the prediction error 

by the posterior over controllability (.), and the non-agency representation scales the prediction 

error by the posterior of uncontrollability (the inverse of .). We hypothesized that these 

separable representations would parametrically modulate different regions of the striatum during 

feedback. Specifically, we expected to see ventral striatal activation for all three representations 

but enhanced dorsal striatal activation for the agency representation.  

 

fMRI Data Acquisition & Preprocessing 

Imaging data were collected on a 3.0 T Magnetom Prisma MRI scanner with the vendor 32-

channel head coil (Siemens Healthcare, Erlangen, Germany) at the University of California at 

Riverside Center for Advanced Neuroimaging. A T1-weighted high-resolution multi-echo 

magnetization-prepared rapid-acquisition gradient echo (ME-MPRAGE) anatomical scan (van 

der Kouwe et al., 2008) of the whole brain was acquired for each subject prior to any functional 

scanning (176 sagittal slices, voxel size = 1.0 x 1.0 x 1.0 mm, TR = 2530 ms, TE = 1.69 - 7.27 

ms, TI = 1350 ms, flip angle = 7◦, FOV = 256 mm). Functional images were acquired using a 

T2*-weighted echo-planar imaging (EPI) pulse sequence that employed multiband RF pulses and 

Simultaneous Multi-Slice (SMS) acquisition (Moeller et al., 2010; Feinberg et al., 2010; Xu et 

al., 2013). In total, four functional runs were collected for each subject, with each run 

corresponding to a single task block, two for each condition (84 interleaved axial-oblique slices 

per whole brain volume, voxel size = 1.5 x 1.5 x 1.5 mm, TR = 2000 ms, TE = 30 ms, flip angle 

= 80◦, in-plane acceleration (GRAPPA) factor = 2, multi-band acceleration factor = 3, FOV = 
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204 mm). Functional slices were oriented to a 30◦ tilt towards coronal from AC-PC alignment. 

The SMS-EPI acquisitions used the CMRR-MB pulse sequence from the University of 

Minnesota. 

Functional data were preprocessed and analyzed using SPM12 (Wellcome Department of 

Imaging Neuroscience, London, UK). Each functional scan was realigned to correct for small 

movements between scans, producing an aligned set of images and a mean image for each 

subject. The high-resolution T1-weighted ME-MPRAGE images were then co-registered to the 

mean realigned images and the gray matter was segmented out and normalized to the gray matter 

of a standard Montreal Neurological Institute (MNI) reference brain. The functional images were 

then normalized to the MNI template (resampled voxel size 2 mm 343 isotropic), spatially 

smoothed with an 8 mm full-width at half-maximum (FWHM) Gaussian kernel, high-pass 

filtered at 1/128 Hz, and corrected for temporal autocorrelations using a first-order 

autoregressive model. 

 

fMRI Analysis 

General linear models (GLMs) included impulse regressors that were convolved with the 

hemodynamic response function. Temporal onsets for stimulus choice, feedback, and 

intervention judgment were models as regressors of interest. All trial events besides the 

regressors of interest for a particular GLM were included as nuisance regressors, with the 

exception of ISIs, ITIs, and IRIs. Trial-by-trial parameters from the computational models were 

included in relevant GLMs as parametric modulators. A constant regressor for baseline activity 

and six-parameter motion regressor were also included in all GLMs. 
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All group-level reported results are t-maps that have been whole-brain corrected at a 

voxel-wise threshold of p < 0.001 and a cluster-corrected at p < 0.05, family-wise error (FWE). 

Region labels are based on the Harvard-Oxford Cortical and Subcortical Atlases and the SPM 

Automated Anatomical Labeling atlas (AAL2; (TzourioMazoyer:2002bi; Rolls, Joliot, & 

Tzourio-Mazoyer, 2015) and voxel-coordinates are reported in Montreal Neurological Institute 

(MNI) space. 

 

Results 

Behavior & Computational Model 

To verify that participants made attribution judgments that made sense given the experimental 

manipulation, we looked at their hidden agent intervention judgments by outcome valence and 

condition. Replicating results from our previous paper, we found overall that participants were 

more likely to believe that negative outcomes were more likely to be caused by the hidden agent 

compared to positive outcomes, F(31) = 14.88, p < 0.001. There was also a significant condition 

by outcome valence interaction, F(31) = 74.7, p < 0.0001, where participants were more likely to 

believe that the hidden agent had intervened after negative compared to positive outcomes in the 

adversarial condition, and after positive compared to negative outcomes in the benevolent 

condition.  

We compared the empirical Bayesian model (posterior over hidden causes is set at the 

individual’s mean subjective intervention judgment) , the fixed Bayesian model (posterior over 

hidden causes is set at 30%), and the six-learning rate model (separate learning rates for each 

condition by valence combination) using random-effects Bayesian model selection (Rigoux, 

Stephan, Friston, & Daunizeau, 2014; Stephan, Penny, Daunizeau, Moran, & Friston, 2009). 
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This procedure treats each participant as a random draw from a population-level distribution over 

models, which it estimates from the sample of model evidence values for each model. We used 

the Laplace approximation of the log marginal likelihood to obtain the model evidence values. 

For our comparison metric, we report the protected exceedance probability (PXP), the 

probability that a particular model is more frequent in the population than all other models under 

consideration, taking into account the possibility that some differences in model evidence are due 

to chance. We found that the empirical Bayesian model (PXP = 0.97) is superior to both the 

fixed Bayesian model (PXP = 0.02) and the six-learning rate model (PXP < 0.01), and 

demonstrates our predicted 4-way asymmetry between valence and condition, replicating our 

previous studies (see Supplemental Materials, Fig. S2.1). To further interrogate our model, we 

can also look at how the model corresponds to actual participant behavior. We found that 

learning rates were significantly lower for trials where participants believed that the hidden agent 

intervened, compared to trials where they believed that the hidden agent did not intervene, t(24) 

= -5.48, p < 0.0001, d = -1.10 (Supplemental Materials, Fig. S2.2). In addition, participants’ 

judgments about intervention also showed a significant median point-biserial correlation with the 

intervention predicted by the model, r = 0.424, p < 0.0001 (Supplemental Materials, Fig. S2.3). 

 

fMRI Results 

Asymmetric learning 

Since previous work provides evidence that the magnitude of striatal activation can shift in 

accordance with changes in reward magnitude and prediction error strength, we expected to see 

magnitude differences in striatal activation for contrasts comparing positive and negative 

outcomes (e.g. winning gold compared to receiving a rock). We also hypothesized that the 
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magnitude of striatal BOLD response would track the learning rate asymmetry across conditions 

shown in the task behavior. 

The goal of these analyses was to identify neural regions that might exhibit asymmetry in 

activation magnitude for the interaction between condition and feedback type. We began with the 

simplest possible analysis to address this question by performing whole-brain analyses that 

assessed functional recruitment during feedback and compared recruitment that was enhanced 

for the benevolent relative to the adversarial conditions. Results revealed that there was greater 

activity in the left anterior cingulate and the left medial prefrontal cortex for the benevolent 

compared to adversarial condition during feedback (Table 2.1).  

Table 2.1: benevolent > 
adversarial 

  MNI Coordinates 

Region Label Extent t-value x y z 
      

Paracingulate Gyrus 188 6.198 -12 38 -6 
Frontal Pole 261 5.101 -16 58 4 
Superior Frontal Gyrus 159 4.975 -18 36 50 

 

Next, we computed analyses to identify functional recruitment that was enhanced for 

positive relative to negative feedback. These whole-brain analyses revealed significant 

differences in activation for win feedback compared to loss feedback (wins > losses) in, the 

striatum and prefrontal cortices (PFC), regions that have been consistently implicated in 

incremental reward learning (Table 2.2). We investigated these findings further by computing 

separate contrasts for feedback type (wins versus losses) in the different experimental conditions 

(benevolent, adversarial). In the benevolent condition (wins benevolent > losses benevolent), 

there was differential activation for wins relative to losses in the left hippocampus (149 voxels at 

X = -28, Y = -8, Z = -24) and the left medial prefrontal cortex (137 voxels at X = -2, Y = 62, Z = 

-8). In the adversarial condition, (wins adversarial > losses adversarial) there was differential 
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activation in the striatum and mPFC (Table 2.3). To identify whether functional recruitment of 

these regions exhibited asymmetric recruitment for positive and negative outcomes across 

conditions, we conducted a 4-way interaction. However, when we computed a 4-way interaction 

contrast of feedback type and condition type, we did not find the hypothesized asymmetric 

magnitude differences in the striatum. A single cluster of activation in the right medial 

orbitofrontal cortex (OFC) withstood FWE correction (153 voxels at X = 22, Y = 30, Z = -18). 

Table 2.2: wins > losses   MNI Coordinates 
Region Label Extent t-value x y z 
      
Accumbens 5475 10.077 10 6 -10 
Occipital Fusiform Gyrus 420 6.897 -36 -74 -32 
Inferior Temporal Gyrus 646 6.561 -58 -54 -16 
Cerebral White Matter 
 

157 6.248 30 -42 28 

Middle Temporal Gyrus 285 6.065 60 -6 -26 
Occipital Pole 145 5.962 30 -92 -8 
Cerebellum 173 5.233 18 -46 -20 
Superior Frontal Gyrus 245 5.173 20 34 52 
Inferior Temporal Gyrus 141 5.097 52 -42 -22 
Superior Frontal Gyrus 336 5.078 -18 24 54 
Putamen 231 5.050 -24 -8 18 
Lateral Occipital Cortex 162 4.910 20 -76 42 
Precuneus 322 4.644 -4 -60 34 
Rectus 5475 3.675 2 54 -18 

Table 2.3: wins 
adversarial – losses 
adversarial 

  MNI Coordinates  

Region Label Extent t-value x y z 
      

Accumbens 5844 12.530 10 6 -8 
Thalamus 291 7.743 -18 -10 16 
Precuneus 1404 6.955 -12 -56 36 
Inferior Temporal 
Gyrus 

1914 6.951 -56 -54 -16 

Thalamus 364 6.866 12 -14 18 
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Beliefs about hidden agent intervention 

 

To interrogate the neural influence of beliefs about agency on learning, we contrasted wins and 

losses for trials where participants believed the hidden agent caused a given outcome in one 

model (wins for no agency trials > losses for no agency trials), and we contrasted wins and losses 

for trials where participants believed they caused a given outcome in another model (wins for 

agency trials > losses for agency trials). When participants believed the hidden agent had control 

over feedback, we found clusters with increased activity in the medial prefrontal cortex (mPFC) 

and the ventral striatum (bilateral nucleus accumbens), extending into the right amygdala for 

wins relative to losses (Table 2.4). Next, we examined the contrast of win > loss for trials in 

which participants believed that their actions produced the outcomes they received. Interestingly, 

the model looking at trials where participants believed they had agency over outcomes showed 

significantly increased activation in overlapping ventral striatal and mPFC regions, but also 

displayed activation extending into dorsal striatal regions, including the caudate, suggesting that 

RPEs are represented differentially in striatum based on subjective beliefs about agency (Table 

2.5). 

Lateral Occipital 
Cortex 

164 6.093 58 -64 -14 

Left Cerebral White 
Matter 

135 6.069 -26 2 32 

Middle Temporal 
Gyrus 

284 5.784 62 -8 -28 

Temporal Fusiform 
Cortex 

202 5.556 -28 -46 -26 

Temporal Fusiform 
Cortex 

420 5.468 40 -36 -18 

Frontal Pole 149 5.196 -20 44 36 
Superior Frontal 
Gyrus 

165 4.626 -26 18 62 
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To investigate this hypothesis, we performed a model-based comparison using model-

derived quantities as opposed to variables derived from behavior. To further interrogate learning 

mechanisms, we conducted region of interest analyses within the ventral and dorsal striatum. 

These regions were chosen because a large body of prior work has shown that activity in these 

regions is associated with RPE during learning. In the present study, we sought to compare how 

well three possible GLMs accounted for activation in the nucleus accumbens and caudate: 1) 

RPE alone, 2) /01 ∗ ., and 3) /01 ∗ (1 − .). In order to compare dorsal and ventral striatal 

activation we generated anatomical masks of the bilateral nucleus accumbens and the bilateral 

Table 2.4: wins/no agency 
> losses/no agency 

  MNI Coordinates 

Region Label Extent t-value x y z 
      
Frontal Pole 1158 7.030 -8 68 4 
Left Putamen 210 6.158 -16 4 -10 
Right Accumbens 199 5.409 12 8 -12 
Superior Frontal Gyrus 262 5.098 -22 36 46 

Table 2.5: wins/agency > losses/agency MNI Coordinates 
Region Label Extent t-value x y z 
      
Right Caudate 1574 9.875 4 10 -6 
Right Cerebral White Matter 319 8.520 18 28 -14 
Left Precuneous Cortex 829 7.045 -8 -58 28 
Left Precentral Gyrus 2101 6.457 -28 -20 62 
Right Cerebral White Matter 222 6.257 22 4 24 
Paracingulate Gyrus 290 5.903 10 52 6 
Left Cerebellum 151 5.801 -36 -74 -34 
Left Middle Temporal Gyrus 142 5.200 -66 -50 -4 
Left Cerebral White Matter 251 5.102 -16 -16 32 
Right Caudate 130 4.477 16 -14 22 
Left Precentral Gyrus 2101 3.808 -20 -24 72 
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caudate (Pauli, Nili, & Tyszka, 2018). In order to compare the models, we approximated the log 

model evidence for each subject using the Bayesian information criterion, which we then used to 

compute the PXP for each model. This comparison showed that /01 ∗ (1 − .) (PXP = .4895) 

better accounted for activity in the nucleus accumbens compared to /01 ∗ . (PXP = .30) or 

RPE alone (PXP = .21). Activity in the bilateral caudate, however, was better accounted for by 

/01 ∗ . (PXP = .68) compared to /01 ∗ (1 − .) (PXP = .28) or the RPE-alone model (PXP = 

.04). These results suggest that ventral striatum encodes value regardless of agency, whereas 

dorsal striatum encodes actions over which the participant presumed to have agency. 

To explore whether our task agency manipulation elicits differential brain activation in 

regions typically associated with agency judgments, we first compared activation for trials where 

participants believed that the hidden agent caused the outcome to trials where participants did not 

believe the hidden agent caused the outcome during the causal attribution phase (no agency > 

agency). This contrast revealed enhanced activation in left post-central gyrus (350 voxels at X = 

-40, Y = -18, Z = 48). However, no negative activation survived correction for this contrast, 

suggesting that no regions are preferentially active for beliefs about agency compared to beliefs 

about non-agency. We sought to verify this finding by identifying regions that parametrically 

tracked with ., so we computed a GLM that including a parametric modulator for the 

probabilistic belief about intervention at feedback (.). Our model parameter, ., represents the 

posterior over hidden causes, with higher values for . accounting for a stronger sense of agency. 

Using . as a single parametric modulator, a whole-brain analysis demonstrated significant 

activation in the right middle temporal gyrus (191 voxels at X = 54, Y = -26, Z = -12). Because 

higher values of . are equivalent to more agency, this analysis is theoretically equivalent to an 
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agency > non-agency contrast. However, using . as a parametric modulator as opposed to using 

participant’s subjective beliefs, provides us with a continuous rather than a binary measure. 

We also split the intervention beliefs by feedback type (wins and losses) and found 

significantly different activation in the left paracentral lobule when comparing trials where the 

participants believed the hidden agent caused a loss to trials where the participants believed they 

caused a loss (loss/no agency > loss/agency), modeled at the causal attribution phase (271 voxels 

at X = -12, Y = -26, Z = 64). However, we did not find any significant differences in activation 

for the contrast comparing win events during trials where the participants believed they did not 

have control to win events during trials where participants believed they did have control 

(wins/no agency > wins/agency). These findings suggest that beliefs about agency are particular 

salient for loss trials.  
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Figure 2.2. Brain areas activated by prediction errors modulated by the posterior over non-intervention, /01 ∗ .; p 
< 0.001, whole-brain cluster FWE corrected at p < 0.05. 
 

 

Figure 2.3. Brain areas activated by prediction errors modulated by the posterior over intervention, /01 ∗ (1 − .); 
p < 0.001, whole-brain cluster FWE corrected at p < 0.05. 
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Discussion 

The present study sought to uncover the neurobiological mechanisms that modulate the 

interaction between learning from positive and negative feedback and beliefs about agency. We 

used functional neuroimaging to probe the brain regions that are associated with learning about 

probabilistic outcomes and agency judgments. Based on our previous work, we expected to see a 

difference in learning from positive versus negative outcomes that could be flexibly manipulated 

as beliefs about agency changed across task conditions. While we successfully replicated our 

behavioral findings, we did not see the hypothesized asymmetry in striatal prediction error 

signal. While surprising, some research has shown that striatal activation does not always track 

with behavioral biases in reward estimation. For example, behavioral reward probability 

distortions have been found to align with prefrontal activation, but not striatal activation. In the 

striatum, activation remains linear despite behavioral biases (Tobler, Christopoulos, O'Doherty, 

Dolan, & Schultz, 2008). Relatedly, Kool, Getz, and Botvinick showed that participants 

overestimate the probability of outcomes where they have control, but do not do so for outcomes 

that are out of their control, and that this asymmetry is not mirrored in striatal RPEs, as 

hypothesized (Kool, Getz, & Botvinick, 2013). We did, however, see activation in well-validated 

reward-related regions, such as mPFC and striatum when conducting basic win > loss contrasts. 

These results suggest that although striatum is representing RPEs generally, it does not seem to 

be representing behavioral biases in learning from positive and negative outcomes when 

encountering distinct agency manipulations. 

Interestingly, when we used participants’ subjective beliefs about control over outcomes, 

we found that more dorsal regions of the striatum were active when individuals believe they have 

more control. We then investigated this finding using a model-based analysis by comparing 
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activation in ventral (nucleus accumbens) and dorsal (caudate) anatomical ROIs with distinct 

subcomponents of our computational model. We found dorsal striatal activation was best 

explained by RPEs that were scaled by the parameter representing the posterior over hidden 

causes, ., but ventral striatal activation was best explained by RPEs that were scaled by 1-	.. 

RPEs alone did not best explain activation in either region. We also explored the neural 

correlates for judgments about agency and found activation in the postcentral gyrus. Previous 

work has implicated parietal cortex as one of the regions important for agency judgments.  

One method for exploring the relationship between controllability and reinforcement 

learning is by comparing instrumental and Pavlovian learning. These two distinct types of 

learning inherently include differences in controllability – with instrumental contexts involving 

outcome-linked, self-generated actions, and Pavlovian contexts involving involuntary 

associations between stimuli and responses. Studies have overwhelmingly implicated the dorsal 

striatum, specifically, the caudate nucleus, in instrumental learning tasks. Work by Tricomi and 

colleagues showed that dorsal striatal activity was associated with a button press contingent with 

participants’ actions compared to button presses that were non-contingent (Tricomi, Delgado, & 

Fiez, 2004). One of the most direct tests of an agency-modulated dorsal-ventral striatal 

dissociation is work by O’Doherty and colleagues, where they reported ventral striatal activation 

for both Pavlovian and instrumental reward prediction errors (RPEs), and dorsal striatal (anterior 

cingulate) activation for instrumental RPE (O'Doherty et al., 2004). Our results suggest that as 

prediction errors are modulated by stronger beliefs of agency over outcomes, perhaps 

representing a form of enhanced instrumental learning, functional recruitment extends to more 

dorsal regions. However, it is important to note that the model comparisons are not decisive, 

especially for the ventral striatal activation, and when we discuss a distinction between dorsal 
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and ventral regions with regard to these results, we are noting a relative functional distinction 

and not a precise anatomical separation. One reason our model comparison results may not be 

decisive is because, in line with previous research, both instrumental and Pavlovian learning 

processes have been found to activate the ventral striatum, while instrumental processes more 

often distinctly activate the dorsal striatum. These results, in conjunction with the fact that we do 

not see asymmetric valence-tracking in the striatum, are in line with theories that propose that 

striatum encodes action tendency as opposed to valence (Guitart-Masip, Duzel, Dolan, & Dayan, 

2014). However, this conclusion is quite speculative considering the minor evidence we provide, 

and future work should explore striatal activation during instrumental and Pavlovian learning 

while manipulating beliefs about agency within positive and negative outcomes. 
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Paper 3: Bayesian Arbitration Between Pavlovian and Instrumental 

Control 
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Abstract 

A Pavlovian bias to approach reward-predictive cues and avoid punishment-predictive cues can 

conflict with instrumentally optimal actions. While most previous work has assumed that this 

bias is a fixed individual trait, we argue that it can vary within an individual. In particular, we 

propose that the brain arbitrates between Pavlovian and instrumental control by inferring which 

is a better predictor of reward. The instrumental predictor is more flexible; it can learn values 

that depend on both stimuli and actions, whereas the Pavlovian predictor learns values that 

depend only on stimuli. The cost of this flexibility is error due to overfitting, since a more 

flexible predictor can more easily fit randomness in the data. The arbitration theory predicts that 

the Pavlovian predictor will be favored when rewards are relatively uncontrollable, because the 

additional flexibility of the instrumental predictor is not useful. Consistent with this hypothesis, 

the Pavlovian approach bias is stronger under low control compared to high control. 

 

Introduction 

Pavlovian processes promote approach towards reward-predictive stimuli and avoidance of 

punishment-predictive stimuli (Wasserman, Franklin, & Hearst, 1974), even when they produce 

maladaptive behavior (K. Breland & Breland, 1961). For example, Hershberger (Hershberger, 

1986) famously demonstrated that newborn chicks struggled to learn that they should walk away 
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from a cup of food in order to obtain it. The chicks could not suppress their Pavlovian tendency 

to approach the cup, which was rigged to move farther away as the chicks approached. Another 

example of Pavlovian misbehavior comes from studies of autoshaping, in which animals interact 

with a reward-predictive cue (e.g., pigeons will peck a keylight that precedes pellet delivery) 

despite the fact that these behaviors do not affect the reward outcome. If an omission 

contingency is then introduced, such that expression of these behaviors causes the reward to be 

withheld, animals will sometimes persist in performing the maladaptive behavior, a phenomenon 

known as “negative automaintenance” (D. R. Williams & Williams, 1969). Humans also exhibit 

Pavlovian misbehavior in Go/No-Go tasks, erroneously acting in response to reward-predictive 

stimuli when they should withhold action, and erroneously withholding action in response to 

punishment-predictive stimuli when they should act (Guitart-Masip, Duzel, Dolan, & Dayan, 

2014; Guitart-Masip, Huys, et al., 2012b). 

The idea that instrumental and Pavlovian processes coexist and compete for control of 

behavior has been a long-standing fixture of associative learning theory (Miller & Konorski, 

1928; Mowrer, 1947; Rescorla & Solomon, 1967), and more recently has been formalized within 

the framework of modern reinforcement learning theories (Dayan, Niv, Seymour, & Daw, 2006). 

These theories have typically assumed that instrumental and Pavlovian processes each provide 

action values, which are then linearly combined to produce composite action values that control 

behavior. A weighting parameter determines the degree of Pavlovian influence, and this 

parameter is fit to each participant in the experimental data set. The purpose of the present paper 

is to revisit the assumption that the weighting parameter is fixed within an individual, and instead 

argue that the weighting parameter is determined endogenously by an arbitration process, much 
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like an influential proposal for the arbitration between model-based and model-free 

reinforcement learning strategies (Daw, Niv, & Dayan, 2005). 

Our theory of arbitration is based on the idea that Pavlovian and instrumental processes 

can be understood as constituting different predictive models of reward (we will use the terms 

‘predictor’ and ‘model’ interchangeably, except where we distinguish the brain’s internal models 

of the environment from our models of the brain). The instrumental predictor learns reward 

expectations as a function of both stimuli and actions, whereas the Pavlovian predictor learns 

reward expectations as a function only of stimuli. The instrumental predictor thus is strictly more 

complex than the Pavlovian predictor: it can capture any pattern that the Pavlovian predictor can 

capture, as well as patterns that the Pavlovian predictor cannot capture. The cost of this 

flexibility is that the instrumental predictor can also overfit on a finite data set, which means that 

it will generalize poorly due to fitting noise. The basic problem of arbitration is thus to negotiate 

a balance between capturing the patterns in the data (favoring the more complex instrumental 

predictor) and avoiding overfitting (favoring the less complex Pavlovian predictor). 

Bayesian model averaging elegantly resolves this problem by weighting each predictor’s 

output by the posterior probability of the predictor given the data. The posterior will tend to 

favor predictors of intermediate complexity, due to what is known as Bayesian Occam’s razor 

(MacKay, 2003). We can think of each predictive model as ‘betting’ on observing particular data 

sets (Figure 3.1, left). Simple models concentrate their bets on a relatively small number of data 

sets, whereas complex models distribute their bets across a larger number of data sets. If a simple 

model accurately predicts a particular data set, it is ‘rewarded’ more than a complex model, 

because it bet more on that data set. If the model is too simple (its bets too narrowly 

concentrated), it will fail to predict the observed data. 
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Another perspective on the same idea comes from the bias-variance trade-off (Geman, 

Bienenstock, computation, 1992, 1992; Gigerenzer & Brighton, 2009; Glaze, Filipowicz, Kable, 

Balasubramanian, & Gold, 2018). Any predictor’s generalization error (i.e., how poorly it 

predicts new data after learning from a finite amount of training data) can be decomposed into 

the sum of three components: squared bias, variance, and irreducible error. Bias is the systematic 

error incurred by adopting an overly simple model that cannot adequately capture the underlying 

regularities in the data. Variance is the random error incurred by adopting an overly complex 

model, which causes the model to overfit random noise in the training data. The irreducible error 

arises from the inherent stochasticity of the data-generating process, which is independent of the 

predictor. Bias can be reduced by increasing model complexity, but at the cost of increasing 

variance. Optimal generalization error is achieved at an intermediate level of complexity where 

the sum of squared bias and variance (i.e., the reducible error) is minimal (Figure 3.1, right). The 

bias-variance trade-off is closely connected to the Bayesian model averaging perspective, 

because predictive models with higher posterior probability will tend to have lower 

generalization error (Germain, Bach, Lacoste, & Lacoste-Julien, 2016). 

Figure 3.1. Two perspectives on model complexity. (left) Bayesian Occam’s razor. Complex models distribute 
their probability across many different data sets, and thus, get less credit for observing any particular data set, 
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whereas simple models concentrate their probability mass on a small number of data sets, and thus get relatively 
more credit when those data sets are observed. (right) As model complexity increases, generalization error due to 
bias decreases, while generalization due to variance increases. 

 
Applying these ideas to arbitration between Pavlovian and instrumental control, a key 

determinant of the optimal model complexity is controllability of reward (Huys & Dayan, 2009; 

Moscarello & Hartley, 2017). If rewards are uncontrollable (actions do not affect reward rate), 

then the simpler Pavlovian predictor will be favored by the posterior, because the additional 

complexity of the instrumental predictor is not justified relative to the penalty imposed by the 

Bayesian Occam’s razor. Only when rewards are sufficiently controllable, or once sufficient data 

have been observed, will the instrumental predictor be favored (asymptotically, the instrumental 

predictor will always be favored, because the risk of overfitting noise disappears as the data set 

becomes large). 

We test the predictions of the Bayesian arbitration model by manipulating reward 

controllability in two Go/No-Go experiments, using the Pavlovian go bias observed in previous 

experiments (Cavanagh, Eisenberg, Guitart-Masip, Huys, & Frank, 2013; Guitart-Masip, 

Chowdhury, et al., 2012a) as an index of Pavlovian control. As a complementary window into 

the arbitration process, we also explore how controllability affects the bias-variance trade-off. 

 

Method 

We describe the two experiments together because they are very similar in structure (Figure 3.2). 

Experiment 1 manipulated reward controllability between participants, whereas Experiment 2 

manipulated it within participants.  
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Figure 3.2. Behavioral task details. (a) Participants viewed a colored shape cue (for up to 2s) and had to decide 
whether to press the space bar (Go) or refrain from pressing the space bar (No-Go). They then received feedback 
(1.5s) denoted by dollar signs (reward) or a rectangular cue (neutral). Participants were instructed that they would 
receive a small amount of real bonus money for each rewarded outcome, and no bonus money for each neutral 
outcome. Feedback was followed by an inter-trial-interval (ITI, 1.5s). (b) Reward contingencies for each trial type 
(Go-to-Win; No-Go-to-Win) by action type (Go; No-Go) by task condition (Low Control; High Control). Task 
condition was manipulated either between (Experiment 1) or within (Experiment 2) participants. 
 

Participants 

We recruited two independent samples of adults from Amazon Mechanical Turk (Experiment 1: 

N = 189, Experiment 2: N = 212). Participants for Experiment 2 were recruited from an existing 

pool of Amazon Mechanical Turk workers. These workers have completed previous experiments 

for our lab and expressed interest in being re-contacted for additional study opportunities. 

Participants were excluded for inaccuracy. Specifically, if participants made the incorrect action 

(either a button press for a No-Go trial, or the absence of a button press for a Go trial) for ³ 50% 

of all trials, they were excluded from analyses. This left a total of 98 accurate participants for 

Experiment 1 and 183 accurate participants for Experiment 2. 
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Procedure 

Participants completed a modified Go/No-Go paradigm, inspired by previous work (Cavanagh et 

al., 2013; Guitart-Masip, Huys, et al., 2012b). Participants viewed a single colored square on 

each trial and had to learn the appropriate response for each square. There was a different correct 

response and reward probability combination for each shape: One square was a Go stimulus, 

where a spacebar press was rewarded 75% of the time, one square was a No-Go stimulus, where 

the absence of a button press was rewarded 75% of the time, and the third square was a Decoy 

stimulus, where a spacebar press was rewarded with a particular probability, which was 

manipulated based on experimental condition. In the Low control (LC) condition, the Decoy was 

rewarded 50% of the time, and in the High control (HC) condition – the Decoy was rewarded 

80% of the time. Our task differed from previous Go/No-Go tasks in that it did not include any 

punishment conditions. Rewarded outcomes were represented with dollar signs, and unrewarded 

outcomes were represented with a neutral (white rectangle) cue. Participants were told that they 

would receive a small amount of real bonus money for each reward outcome, and their total 

bonus was summed and disclosed at the end of the experiment. 

In Experiment 1, participants were randomly assigned to one decoy condition (LC or 

HC), so that each participant was exposed to three different stimuli (Go-to-Win, No-Go-to-Win, 

and either LC or HC). The experiment consisted of 120 trials, 40 trials for each type of stimulus, 

randomly interleaved. In Experiment 2, each participant experienced both decoy conditions in 

separate blocks. The experiment consisted of 240 trials, 120 for each block, with 40 trials for 

each stimulus within a block. 
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Computational model 

On each trial of the task, the participant must take an action (4) in response to a stimulus (5) in 

order to receive a reward (!). The problem facing the participant is to determine whether they are 

acting in an environment where outcomes are controllable (instrumental) or uncontrollable 

(Pavlovian). 

Each model has a set of parameters $ that must be learned. The parameters for the 

uncontrollable model are indexed only by the stimulus (	$6), whereas the parameters for the 

controllable model are indexed by both the stimulus and action ($67). We will walk through the 

learning equations for the uncontrollable model, but the idea is essentially the same for the 

controllable model. 

The posterior over parameters given data 8 (the history of stimuli, actions and rewards) 

and environment 9	 ∈ {<=>#!=??4@?A, C><=>#!=??4@?A} is stipulated by Bayes’ rule: 

 

0($|8,9) ∝ 0(8|$,9)0($|9) 

where 0(8|$,9) is the likelihood of the data given hypothetical parameter values $, and 

0($|9) is the prior probability of those parameter values. In the context of our task, where 

rewards are binary, $6 = 	G[!|5]	 corresponds to the mean of a stimulus-specific Bernoulli 

distribution. When 0($6)	is a JA#4($K
LM
N
, (1 − $K)

LM
N
) distribution, the posterior mean $O6 (which 

is also the posterior predictive mean for reward) is initialized to $K and updated according to:  

∆$O6 = 	 Q6
R&S 
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where S is the reward prediction error (! −	$O6), and Q6R&	is the learning rate with counter Q6 

initialized to QK and incremented by 1 every time stimulus 5 is encountered (in the controllable 

model, Q is indexed by both 5 and 4). Intuitively, $K corresponds to the prior mean (the reward 

expectation before any observations), and QK corresponds to the prior confidence (how much 

deviation from the prior mean the agent expects).  

Because the true environment is unknown, it must be inferred, which can be done using another 

application of Bayes’ rule:  

0(9|8) ∝ 0(8|9)0(9) 

where  

0(8|9) = T0(8|$,9)0($)U$ 

Is the marginal likelihood. The posterior can be updated in closed form. For clarity we adopt a 

log-odds convention, with the prior log-odds given by: 

VK = log	
0(C><=>#!=??4@?A)

0(<=>#!=??4@?A)
 

The posterior log odds are initialized to VK and updated according to: 

∆V = ! log
$O6
$O67

+ (1 − !) log
1 − $O6
1 − $O67

 

Finally, we need to specify how each model maps reward predictions onto action values. For the 

instrumental model, we assume that action values simply correspond to the expected reward for a 

particular state-action pair: Z[(5, 4) = 	$O67. For the Pavlovian model, we assume that the action 
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value is equal to Z\(5, 4) = 0 for a = No-Go and Z\(5, 4) = 	$O6 for a = Go. This assumption 

follows from the influential idea that Pavlovian reward expectations invigorate action (Guitart-

Masip et al., 2014). To combine the two action values into a single integrated value for action 

selection, we weight each model’s value by its corresponding posterior probability: 

Z(5, 4) = ^Z\(5, 4) + (1 − ^)Z[(5, 4) 

where 

^ = 0(9 = C><=>#!=??4@?A|8) = 	
1

1 + AR_
 

 

Is the posterior probability of the uncontrollable environment. 

 

To allow for stochasticity of behavior, we model the agent’s action selection according to a 

softmax, where `	is an inverse temperature parameter controlling the level of choice 

stochasticity: 

0(4|5) =
exp	[`Z(5, 4)]

∑ exp	[`Z(5, 4e)]7e
 

The model outlined above, which we will refer to as the adaptive model, updates the 

weighting parameter from trial-to-trial based on the relative predictive accuracy between the two 

controllers. We also fit a comparison model, which instead fits the weighting term as a free 

parameter. We refer to this comparison model as the fixed model. The models share the same 

underlying information processing architecture (Figure 3.2) but differ in whether w is set 
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exogenously (in the case of the fixed model) or endogenously (in the case of the adaptive 

model). 

 
Figure 3.2. Information processing architecture. Pavlovian and instrumental prediction and valuation combine 
into a single value. This integrated value includes a weighting parameter (^) that represents the evidence for the 
uncontrollable environment (i.e., in favor of the Pavlovian predictor). 
 

We fit each model’s free parameters using maximum likelihood estimation. The adaptive 

model had five free parameters: the inverse temperature `, and the parameters of the prior 

($K, QK) for each environment. We also considered a model in which VK was fit as a free 

parameter, but model comparison indicated that fixing VK = 0.5 had greater support in our data 

sets. The fixed model had six free parameters: the same five as the adaptive model, plus the 

weighting parameter w. 
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Figure 3.3. Model Simulations. Our model demonstrates a greater reliance on the Pavlovian system in the 

Low Control condition compared to the High Control condition (a) Across all trial types, the Pavlovian weight 

derived from the model is greater for the Low Control condition. (b) The model can also account for a greater Go-

bias in the Low Control condition. The Go-bias is the difference in accuracy between Go and No-Go trials. 

 

Bias-variance analysis 

To assess how controllability affects the bias-variance trade-off, we calculated these quantities 

for each participant as follows: 

@h45 = 	i j[4k = l=] −	

m

kn&

j[4k
∗ = l=] 

o4!h4><A = 	i(j[4k = l=] − 	4pk)
N

m

kn&

 

where 4k is the chosen action on trial n, 4k∗  is the optimal action, 4pk = 	
&

m
∑ j[4k = l=]m
kn& , and 

j[⋅] = 1 when its argument is true, and 0 otherwise. 
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Results 

To investigate the extent to which participants relied on Pavlovian control, we measured their 

‘Go bias’, defined as the accuracy difference between Go and No-Go trials. Under purely 

instrumental control, the Go bias should be 0, hence values greater then 0 indicate the influence 

of Pavlovian control. Figure 3.3 shows simulations of the adaptive model under high and low 

control conditions, demonstrating the prediction that low control should produce a higher 

Pavlovian weight (w) on average, which will in turn cause a stronger Go bias. 

Consistent with the model simulation, participants across both experiments showed an 

increased go-bias in the LC condition compared to the HC condition (Fig. 3.4). We used non-

parametric tests to test for differences due to the non-normality of the data, as determined by a 

Lilliefors test. Specifically, a Mann-Whitney U-test revealed a significant difference between the 

go-bias in the HC and LC condition for Experiment 1 (p < 0.001), and a Wilcoxon signed rank 

test revealed significant differences between conditions for Experiment 2 (p < 0.05). The effect 

appears to be smaller in the within-participant design (Experiment 2), possibly due to cross-talk 

between conditions. 

The adaptive model provided a quantitatively superior account relative to the fixed 

model, as assessed by random effects Bayesian model comparison (Stephan et al., 2009). 

Specifically, we calculated the protected exceedance probability (PXP), the probability that a 

particular model is more frequent in the population than all other models under consideration, 

taking into account the possibility that some differences in model evidence are due to chance. 

For both experiments, the PXP favoring the adaptive model was > 0.99. 

To verify the quantitative accuracy of the adaptive model, we plotted the Go bias as a 

function of weight quantile (Fig. 3.4), finding a close fit between model and data (for both 
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experiments, the signed rank test comparing the Go bias for the lowest and highest quantiles was 

significant at p < 0.001). Importantly, the quantiles were computed within participants, 

demonstrating that the model can capture variations in Pavlovian control over the course of a 

single experimental session. 

The timeseries of weights generated by the adaptive model is, on average, strongly 

correlated with the parameter estimates obtained from fitting the fixed model (r = 0.88, p < 

0.0001). This demonstrates that the adaptive model’s average behavior produces behavior similar 

to that predicted by earlier models using fixed weights (e.g., Guitart-Masip et al., 2012; 

Cavanagh et al., 2013), but with the weight determined endogenously rather than fit as a free 

parameter. 

We also tested the prediction that the Go bias should diminish over the course of training, 

and eventually disappear, as can be seen in the simulations (Fig. 3.3). Consistent with this 

prediction, the Go bias in Experiment 1 was greater for the first 40 trials compared to the last 40 

trials (p < 0.001, signed rank test; Fig. 3.5). The prediction is harder to test in Experiment 2, 

where the early trials of one condition occur after the late trials of the other condition. 
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Finally, we examined the effect of controllability on the bias-variance trade-off (Fig. 3.6). 

Because controllability favors the more complex instrumental model, we hypothesized that the 

HC condition would produce lower bias and higher variance (note that this bias should not be 

confused with the Pavlovian go bias). This prediction was confirmed in both Experiment 1 

(Mann-Whitney U-tests for bias, p < 0.001, and variance: p < 0.001) and Experiment 2 (Signed 

rank tests for bias, p < 0.05, and variance: p < 0.001). 

Figure 3.4. (Top) Go bias for low and high control conditions in Experiment 1 (left) and Experiment 2 (right). (Bottom) The 
adaptive model captures within-participant variability in Go bias, plotted as a function of Pavlovian weight (w) quantile for 
Experiment 1 (left) and Experiment 2 (right). Error bars show bootstrapped 95% confidence intervals around the median. 
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Figure 3.5. Go bias for early and late trials. Go bias in Experiment 1 is larger on the first 40 trials compared to the 
last 40 trials. Error bars show bootstrapped 95% confidence intervals around the median. 

Figure 3.6. Bias and variance of choice behavior for Experiment 1 (top) and Experiment 2 (bottom). Error bars 
show bootstrapped 95% confidence intervals around the median. 
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Discussion 

Taken together, our experimental data provide support for a Bayesian model averaging 

model of Pavlovian-instrumental arbitration. Our key finding was that the Pavlovian go bias was 

stronger under conditions of low reward controllability, consistent with the model’s prediction. 

Analyses in terms of the bias-variance trade-off supported the same conclusion: low 

controllability favors the simpler Pavlovian predictor, leading to high bias and low variance. 

The idea that Pavlovian-instrumental interactions are governed by probabilistic inference 

joins a number of related ideas in the theories of reinforcement learning. Most relevantly, Daw et 

al. (2005) suggested that arbitration between model-based and model-free control was 

determined by Bayesian arbitration, but they did not address Pavlovian-instrumental interactions. 

A number of earlier theories argued that certain reinforcement learning behaviors could be 

understood as arising from a model comparison process (Courville, Daw, & Touretzky, 2006; 

Gershman, 2017; Gershman, Blei, & Niv, 2010; Tomov, Dorfman, & Gershman, 2018). 

However, to our knowledge, ours is the first account that directly addresses Pavlovian-

instrumental interactions in terms of model comparison/averaging. 

Our results suggest several directions for future work. First, we have only studied the 

dynamics of the Pavlovian go bias for rewards; earlier work (e.g., Guitart-Masip et al., 2012) 

suggests that we should find a symmetric pattern for punishments, with a stronger No-Go bias 

under low controllability. Second, neuroimaging could be used to identify the neural correlates 

of arbitration. If our account is correct, we would expect to see a signal in the brain that encodes 

the dynamically changing weight parameter. Third, an open theoretical task will be to generalize 
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the model to explain other forms of Pavlovian-instrumental interactions, such as negative 

automaintenance and Pavlovian-instrumental transfer. 

More broadly, our findings are consistent with the idea that agency is one factor that can 

mediate the trade-off between learning processes, which has important implications for 

understanding psychopathology. For example, many studies in both humans and animals have 

shown that controllability (or lack thereof) influences future instrumental responding. Learned 

helplessness, where the experience of uncontrollable punishments leads to diminished 

instrumental learning (for example, failure to learn to escape an electric shock; (Maier & 

Seligman, 1976), is hypothesized to be a model of, and has been linked to, symptoms of 

depression and anxiety (Mineka & Hendersen, 1985). The idea that inferences about 

controllability underlie learned helplessness has been incorporated into formal Bayesian models 

that share some properties with the model proposed in this paper (Lieder & Goodman, 2013). 

In conclusion, we have shown how the framework of Bayesian model averaging can shed 

light on the cognitive mechanisms underlying Pavlovian misbehavior. Although the simple 

model studied in this paper is not a comprehensive theory of Pavlovian-instrumental interactions, 

it points towards one mechanism that is likely to play an important role in future, more 

comprehensive theories. 
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General Discussion 

Summary of findings 

In a series of three papers, this dissertation examined the behavioral and neurobiological 

processes that contribute to causal inference and utilized a modern computational framework to 

understand how these inferences modulate reinforcement learning. Paper 1 investigated to what 

extent causal attributions to internal or external forces influence how individuals learn from 

positive and negative outcomes and the underlying computations that give rise to learning in this 

context. Across two experiments, results demonstrated that overall, individuals learned more 

from positive compared to negative feedback. This effect was modulated by agency, such that 

learning was magnified when participants believed they had more control over their outcomes. 

Learning could be magnified or dampened depending on whether the participant was in a 

condition that allotted them more or less agency over outcomes. A novel Bayesian reinforcement 

learning model that incorporated estimates of causal beliefs could predict the asymmetric 

learning by valence interaction that was demonstrated in the behavior. Participants also showed a 

self-preservation bias, where they were more likely to believe that they were responsible for 

positive outcomes and the hidden agent was responsible for negative outcomes.  

Paper 2 explored how beliefs about agency and the associated impact on feedback-based 

learning asymmetries are represented in the brain. The valence-dependent learning asymmetries 

found in Paper 1 were replicated in Paper 2, and the same computational model was able to 

predict participant behavior. Paper 2 did not show that striatal prediction errors scaled along with 

causal inference, as hypothesized. However, we did find evidence for partial functional 

separation within the striatum for learning that was modulated by beliefs about agency. 
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Specifically, the ventral striatum tracked reward prediction errors, regardless of beliefs about 

control, but dorsal regions tracked RPEs that were scaled by beliefs about control. 

In order to further examine the precise learning processes that are influenced by outcome 

controllability and to integrate our previous work with the broader reinforcement learning 

literature, Paper 3 sought to provide a computational explanation for the arbitration between 

Pavlovian and instrumental learning. By manipulating the controllability of rewarding outcomes, 

we showed that Pavlovian processes were favored when controllability was low, and 

instrumental processes were favored when controllability was high, suggesting that balance 

between these two learning systems is reliant on an assessment of model complexity. 

 

Implications 

A cohesive framework 

This work sought to integrate classic discoveries from clinical, social, and experimental 

psychology into a unified reinforcement learning framework with direct neurobiological 

correlates. Previous work on asymmetric evaluation of positive and negative outcomes has been 

notably mixed. It has been shown that both humans and animals learn faster from punishments 

compared to rewards and pay more attention to negative events (Baumeister et al., 2001; Taylor, 

1991). Nonetheless, reinforcement learning studies have demonstrated higher learning rates for 

both positive (Kuzmanovic et al., 2016; Lefebvre et al., 2017; Moutsiana et al., 2015) and 

negative (Christakou et al., 2013; Gershman, 2015b; Niv et al., 2012) prediction errors. By 

providing a mechanistic explanation for how positive and negative outcomes might be favored in 

different contexts, as modulated by beliefs about agency, we can help explain these discrepancies 

in the literature.  
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 While one of the benefits to using mathematical models is that they produce quantifiable 

parameters that can be used to investigate individual or group differences, perhaps the greatest 

benefit is that computational models formalize a hypothesis for a latent process such as agency. 

Successful models get us closer to uncovering how precisely these latent processes come about, 

which is particularly useful when studying behavior that is difficult or impossible to measure via 

traditional methods. 

 

Clinical implications 

Differences in learning from valenced feedback are important for understanding a variety of 

cognitive biases and psychopathological outcomes. Previous work has shown that biases in 

valenced learning are associated with depression, anhedonia, and pessimistic attitudes. For 

example, patients with depression and anhedonia exhibit blunted learning for both rewards and 

punishments (Chase et al., 2010), and depressed participants accurately recall negative outcomes 

while healthy participants underestimate the frequency of negative outcomes (Nelson & 

Craighead, 1977). In addition, research in both humans and animals has shown that beliefs about 

agency influence future instrumental responding. Depression and anxiety have also been linked to 

concepts such as learned helplessness, where exposure to uncontrollable punishments impairs 

future instrumental learning (Maier & Seligman, 1976; Mineka & Hendersen, 1985). In a seminal 

study by Alloy and Abramson, healthy participants exhibited an agency bias for desired outcomes, 

and a "non-agency" bias for undesired outcomes, while depressed participants showed no such 

bias (Alloy & Abramson, 1979). This work suggests that biased beliefs of control may be 

protective against depression, and that these cognitive distortions arise not solely from a belief that 

individuals have control over positive outcomes, but also that negative outcomes can be attributed 
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to someone or something outside of oneself. Consistent with this literature, our collective findings 

suggest that a latent factor, such as agency inference, may be mediating imbalanced learning for 

positive and negative outcomes. Since disruption of this imbalanced learning is a feature of 

disorders such as depression and anxiety, future work should examine the role of agency inference 

in these disorders. 

 

Limitations 

While one of the strengths of this work is that it proposes a cohesive framework for 

understanding the interaction between agency and learning, it will be imperative to investigate 

the limits of this framework in additional contexts. This is especially important given that this 

work has potentially useful implications for clinical outcomes. Since the emergence and 

presentation of psychopathologies are multifaceted, it will be necessary to test our framework in 

more complex scenarios in order to make strong claims. The work presented here is merely a 

first step toward answering important questions about learning processes, and all three papers 

make way for a number of new questions to be answered. The experiments we present are simple 

and controlled in order to act as proof of concepts, but this factor limits the number of questions 

we can answer and does not always provide a perfect analogy to real-world circumstances.  

 

Conclusions 

Extensive work suggests that beliefs about agency have substantial effects on how individuals 

learn from different types of outcomes. By utilizing computational models, neuroimaging, and 

flexible behavioral tasks, this dissertation investigated the behavioral and neurobiological 

pathways through which humans make inferences about hidden information and determined how 
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these inferences influence learning processes. We first found that inference about hidden agents 

modulates biased learning of positive and negative outcomes, demonstrating a mechanistic 

framework for understanding how causal attributions contribute to learning. Next, we showed 

that RPE signals in the dorsal and ventral striatum were scaled by both subjective and model-

derived beliefs about agency, but in opposite directions, providing preliminary evidence that 

striatal learning is gated by causal inference. Finally, we show that controllability arbitrates the 

use of a Pavlovian over an instrumental learning system. Together, these results suggest that 

beliefs about agency are at least one factor that influences how we learn from feedback and how 

we decide the types of learning processes to utilize. Continuing this line of work will be 

particularly useful for elucidating how biased learning, and ultimately, outcomes like anxiety and 

depression, come about. 
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Supplemental Materials: Paper 1 

 

Computational Models 

 

Model Fitting. We used a softmax function to model choice probabilities, including a response 

stochasticity (inverse temperature) parameter and a “stickiness” parameter to capture choice 

autocorrelation (Gershman, Pesaran, & Daw, 2009). The Bayesian models were fit using 

maximum a posteriori estimation with empirical priors based on previous research (Gershman, 

2016). Specifically, the prior distribution for the inverse temperature was β ~ Gamma(4.82, 

0.88), and for the stickiness parameter was ρ ~ r(0.15, 1.42).  

 

Model Comparison. We used random-effects Bayesian model selection (Stephan, Penny, 

Daunizeau, Moran, & Friston, 2009) to compare models. This procedure treats each participant 

as a random draw from a population-level distribution over models, which it estimates from the 

sample of model evidence values for each model. We used the Laplace approximation of the log 

marginal likelihood to obtain the model evidence values. For our model comparison metric, we 

report the “protected exceedance probability” (PXP), the probability that a particular model is 

more frequent in the population than all other models under consideration. This is differentiated 

from an “exceedance probability” in that it considers the possibility that some differences in 

model evidence are due to chance. 
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Experiment 1:  

Descriptive Model. In order to characterize learning rate asymmetries without committing to the 

assumptions of the Bayesian model, we fit a “descriptive” reinforcement learning model which 

updates reward probability estimates according to $"%& = $" + *"(!" − $"), with separate 

learning rates for each combination of positive/negative outcome and the three experimental 

conditions (benevolent, adversarial, random). 

 

Bayesian Reinforcement Learning Model. This model considers a problem in which a 

decision-maker must choose an option < ∈ {1,… , t} based on experienced rewards. Each option 

is associated with an intrinsic reward distribution, but a latent cause can intervene (denoted u =

1) to generate a different reward distribution. With probability 0(u = 0), the decision-maker 

receives a reward from the intrinsic distribution,	0(!|<, u = 0), or with probability	0(u = 1), she 

receives a reward determined by the latent cause,	0(!|u = 1). The marginal distribution over 

reward given the decision maker’s choice is thus 

 

(1)  

0(!|<) = 0(!|<, u = 0)0(u = 0) + 0(!|u = 1)0(!|u = 1). 

 

In our setting, rewards are binary and distributed according to a Bernoulli distribution for 

each option, JA!>($v). Thus, absent intervention, a reward of 1 is drawn with probability $v , 

and a reward of 0 is drawn with probability 1 − $v . 
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For our experimental paradigm, we define the latent cause as another agent (the “latent 

agent”) that can allot outcomes for the decision maker. We define 3 different latent agent types: 

• Benevolent latent agent: produces a reward regardless of the decision maker’s choice. 

Formally,	0(! = 1|u = 1) = 1. 

• Adversarial latent agent: produces no reward regardless of the decision maker’s choice. 

Formally, 0(! = 0|u = 1) = 1. 

• Random latent agent: produces reward with probability 0.5 regardless of the decision 

maker’s choice. Formally,	0(! = 1|u = 1) = 1/2. 

The decision maker does not know the true reward probabilities of her options. She has a 

prior belief that the unknown parameters $v  are independently distributed according to 

JA#4(4, @), which are then updated from experience. The Beta distribution parameters can be fit 

to choice data though for simplicity we assume both are equal to 1 in the estimation procedure, 

corresponding to a uniform distribution. 

After choosing an action <" and observing reward !" on trial #, the decision maker updates 

her estimate of the reward probability $v  according to a reinforcement learning equation that 

incorporates inference over latent causes. With a Beta prior and a Bernoulli reward distribution, 

the Bayesian update rule takes the form $"%& = $" + *"(!" − $"), where *" is a parameter 

representing the learning rate that scales the reward prediction error. This learning rate is based 

rationally on beliefs about the outcome’s two possible sources: the action’s intrinsic reward and 

the latent agent’s intervention. These beliefs jointly determine the extent to which the participant 

attributes feedback to each source. The learning rate is given by 
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(2) 

*" =
0(u" = 0|!", <")

y"
v + 4 + @

 

 

where y"v ≈ 	∑ 0(u{ = 0|!{, <{){∈{&,…,"|v|nv}  is the sum of past beliefs about latent agent non-

intervention on trials when the same option was chosen. The denominator reflects the magnitude 

of evidence about the intrinsic reward probability accumulated up to trial # (it is approximate 

because we assume for tractability that evidence provided by past feedback is not revised 

according to later information). 

The learning rate’s numerator is central to our present analysis: it encodes the degree to 

which feedback should be attributed to the intrinsic reward distribution rather than to the latent 

agent, and modulates the degree of learning based on whether feedback was positive or negative. 

The value of 0(u = 0|!, <) is stipulated by Bayes’ rule: 

 

(3) 

0(u|!, <) = 	
0(!|u, <)0(u)

∑ 0(!|u′, <)0(u′)~e
. 

 

This yields the following expressions which vary based on the combination of feedback and 

agent type: 

 

Benevolent agent (negative feedback): 

0(u = 0|! = 0, <) = 1 
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Benevolent agent (positive feedback): 

0(u = 0|! = 1, <) =
$v0(u = 0)

$v0(u = 0) + 0(u = 1)
 

Adversarial agent (negative feedback): 

0(u = 0|! = 0, <) =
(1 − $v)0(u = 0)

(1 − $v)0(u = 0) + 0(u = 1)
 

Adversarial agent (positive feedback): 

0(u = 0|! = 1, <) = 1 

Random agent (negative feedback): 

0(u = 0|! = 0, <) =
(1 − $v)0(u = 0)

(1 − $v)0(u = 0) + 0(u = 1)/2
 

Random agent (positive feedback): 

0(u = 0|! = 1, <) =
$v0(u = 0)

$v0(u = 0) + 0(u = 1)/2
 

 

where the probability of intervention 0(u = 1) is known. Subtly, the decision maker’s inference 

about the latent agent’s intervention depends on her existing estimate of $v . 

The learning rate exhibits asymmetries depending on whether the latent agent tends to 

produce positive or negative outcomes. For example, when the agent is adversarial, positive 

outcomes can only come from the action itself, whereas negative outcomes are partly attributable 

to the external agent. Consequently, negative outcomes are less informative about the action’s 

reward probability, corresponding to a lower learning rate. 
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 Parameter Prior Distribution Bounds � (mean) 95% CI 

Bayesian 

RL Model 

 

` (inverse 

temperature) 

 

∼ Gamma(4.82, 0.88) 

 

[0.001, 20] 4.32 [3.71, 4.48] 

 

ρ (stickiness) 

 

~ r(0.15, 1.42) [-5, 5] 1.51 [1.31, 1.72] 

Figure S1.1. Computational model parameters for the best-fitting model in Experiment 1. 

 

Experiment 2: 

In Experiment 2, we consider the case where the decision-maker does not know the probability 

of intervention. We explored three possible models for this scenario: (1) the “adaptive Bayesian” 

model, which estimates the intervention probability directly, (2) the “fixed Bayesian” model, 

which treats the intervention probability as a free parameter, and (3) the “empirical Bayesian” 

model, which derives the intervention probability by averaging the participants’ binary 

intervention judgments. The empirical Bayesian model was the best fitting model for our data 

across two independent samples (pooled and unpooled), with a PXP > 0.999. 

 

Adaptive Bayesian Reinforcement Learning Model. For ease of comprehension, we define a 

new variable, Å, to represent the decision maker’s estimate of the latent agent’s intervention 

probability, 0(u" = 1). This can be approximated by the average of past beliefs about 
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intervention, implying that the decision maker updates	Å on each trial using: 

 

 (1) 

Å"%& = 	Å" +	
1

# + 4 + @
	(0(u" = 1|!", <") −	Å")	

 

 

The Å update rule can be coupled with the $ update rule above by plugging Å"%&	into instances 

of 0(u" = 1). 

 

Fixed Bayesian Reinforcement Learning Model. Here, we fit the estimate of the latent agent’s 

intervention probability, 0(u" = 1), as a free parameter for each participant. This is integrated 

into the Bayesian Reinforcement Learning Model described above. 

 

Empirical Bayesian Reinforcement Learning Model. This model calculates the decision-

maker’s average intervention judgment and utilizes this value for the estimate of the intervention 

probability 0(u" = 1), providing an individualized estimate of intervention for each participant. 

This is integrated into the Bayesian Reinforcement Learning Model described above. 
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 Parameter Prior Distribution Bounds � (mean) 95% CI 

Empirical 

Bayesian RL 

Model 

 

` (inverse 

temperature) 

 

∼ Gamma(4.82, 0.88) 

 

[0.001, 20] 4.10 [3.66, 4.05] 

 

Stickiness 

 

~ r(0.15, 1.42) [-5, 5] 1.22 [1.12, 1.32] 

 

Table. S1.1. Computational model parameters for the best-fitting model (“empirical Bayesian”) in 
Experiment 2. Prior Distribution: This model was fit using a maximum a posteriori estimation with empirical priors 
based on previous research (Gershman, 2016). Bounds: Limits set for the optimization procedure for each 
parameter. Mean: Mean of each parameter across all participants. CI: 95% confidence intervals for the parameters 
across all participants. 
 

Behavioral Analyses 

Win-stay Lose-shift. In order to explore participants’ choices in a “model-free” way, we 

visualized their win-stay lose-shift behavior. 
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Figure S1.3.Win-stay Lose-shift. (a) Experiment 1 and (b) Experiment 2. Error bars represent across-subject 
standard error of the mean (SEM). 
 

Task Performance 

Performance data for choice behavior in the task is reported here for both Experiment 1 (N = 70) 

and Experiment 2 (N = 255). 

 

Experiment 1. The mean proportion of trials where participants chose the more rewarding option 

was 0.794, with a standard deviation of 0.088.  

 

Experiment 2. The mean proportion of trials where participants chose the more rewarding option 

was 0.785, with a standard deviation of 0.095.  
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Figure S1.4. Percent optimal choice by trial and condition for Experiment 1 (left) and Experiment 2 (right).  

 

Individual Differences Analyses 

 

Initial Experiment 

One of the broader questions motivating this research is how the environment shapes learning 

rate asymmetries. We addressed this question by performing an exploratory analysis where we 

investigated whether individuals’ prior expectations influenced their beliefs about control. As 

proxies for prior expectations, we measured trait optimism and childhood socioeconomic status, 

under the assumption that these measures reflect ingrained beliefs about the prevalence of 

positive outcomes in the environment. 

  

Method 
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Participants. 110 participants (49 female, 56 male, 5 unreported) from Amazon Mechanical 

Turk completed the two-alternative forced choice behavioral task outlined in the main text 

(Experiment 2) and self-report measures to assess trait optimism and socioeconomic status 

(SES). Participants completed some of the self-report measures during the same session as the 

behavioral task and the remainder of the measures during a separate session to avoid fatigue. A 

larger sample size was chosen compared to Experiment 1 in order to ensure that the sample 

would be sufficiently large after excluding for inaccuracy and incomplete responses. Ninety-five 

individuals completed some or all of the self-report measures but were excluded if they did not 

complete all of the self-report measures or did not meet the accuracy criterion in the behavioral 

task. Five additional participants were excluded from zip code analyses because they chose not 

to provide zip code information, entered an invalid code, or because median income data was not 

available for the location they entered. Self-report measure analyses for the Life Orientation Test 

– Revised (LOT-R) results included data from 89 participants and results from the zip code 

analyses included data for 84 participants. Participants gave informed consent, and the Harvard 

Committee on the Use of Human Subjects approved the experiment. 

 

Self-Report Measures. Participants completed self-report measures in addition to the behavioral 

task, either directly after the task or in a separate online session. Participants completed the Life 

Orientation Test – Revised (LOT-R) (Scheier, Carver, & Bridges, 1994) to assess trait 

optimism/pessimism and the MacArthur Subjective Socioeconomic Status scale (Singh-Manoux, 

Marmot, & Adler, 2005). This questionnaire was revised to also collect objective measures of 

socioeconomic status including childhood zip code, current zip code, and current yearly income 
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(see Supplemental Materials). The sample completed additional measures that will not be 

reported here. Given our specific hypotheses about trait optimism and environmental markers of 

optimism and pessimism, we focus on LOT-R and SES results. 

 

Results 

In order to investigate whether optimistic and pessimistic biases are related to variability in 

beliefs about intervention, we tested the association between optimism scores and participants’ 

mean belief in latent agent intervention (Fig. S1.5). We used a Spearman’s rank-order correlation 

test due to the fact that LOT-R scores were optimistically skewed (range: 0-24; mean: 15.01; 

median: 17; standard deviation: 7.26). We found a significant correlation between belief in the 

latent agent across all conditions for negative feedback (rs = 0.256, p = 0.019). Since benevolent 

agents cannot cause negative outcomes, we wanted to confirm that these results were indeed due 

to appropriate attributions in the adversarial and neutral conditions. We found a significant 

association between beliefs in the adversarial condition and optimism, (rs = 0.224, p = 0.034), as 

well as for the neutral condition, (rs = 0.237, p = 0.025), but not for the benevolent condition (rs 

= -0.021, p = 0.840). A Fisher’s r-to-z transformation revealed significant differences between 

both the adversarial and benevolent correlation coefficients (z = 2.190, p = 0.029) and the neutral 

and benevolent correlation coefficients (z = 2.477, p = 0.013). These results suggest that 

optimists are more likely to blame bad outcomes on external forces. It is interesting to note that 

we did not find any relationship between attribution of positive outcomes and trait optimism (rs = 

-0.045, p = 0.679). 
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To explore a possible environmental source of asymmetries, we tested whether childhood 

socioeconomic status contributes to beliefs about agency. We used median income data from the 

most recent available data, the 2006-2010 American Community Survey (ACS) compiled by the 

University of Michigan Population Studies Center. We found that median income of 

participants’ childhood zip code (range: $16,346 - $135,253 USD) was positively correlated with 

belief in the hidden agent for negative outcomes collapsed across the adversarial and neutral 

conditions (r = 0.259, p = 0.019) (Fig. S1.6). However, consistent with our findings on trait 

optimism, there was no significant relationship between agency beliefs about positive outcomes 

and childhood neighborhood income (rs = -0.089, p = 0.388). A Fisher’s r-to-z transformation 

confirmed that the correlations for negative and positive outcomes were significantly different (z 

= 2.618, p = 0.009). 

 

Figure S1.4. Optimism and beliefs about agency. LOT-R correlates with beliefs about latent agent intervention for 
(a) negative, but not (b) positive feedback. Negative feedback trials were included from adversarial and neutral 
conditions, and positive feedback trials were taken from the benevolent and neutral conditions.  
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Figure S1.5. Childhood environment and beliefs about agency. Median income of the neighborhood where 
participants spent their childhood correlates with beliefs about latent agent intervention for (a) negative, but not (b) 
positive feedback. Negative feedback trials were combined across adversarial and neutral conditions, and positive 
feedback trials were pulled from benevolent and neutral conditions. 
 

 

Pre-registered Replication 

Due to small effect sizes and concerns about reproducibility, we attempted a pre-registered 

replication of the correlational individual differences analyses reported above. All procedures 

were identical to the original experiment. The replication was registered via the Open Science 

Framework: https://osf.io/3htpj/. 

 

Method 

 

Participants. 156 participants (74 female, 75 male, 8 other/unreported) from Amazon 

Mechanical Turk completed the two-alternative forced choice behavioral task outlined in the 
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main text (Experiment 2 and Initial Experiment above) and self-report measures to assess trait 

optimism and socioeconomic status (SES). The number of participants was determined using 

power analyses performed in RStudio (using package ‘pwr’). In order to obtain 90% power, we 

determined that we would need 155 participants for the LOT-R correlation and 151 subjects for 

the SES correlation. We collected data for a total of 196 participants on Amazon Mechanical 

Turk in order to include 156 usable participants. Exclusion criteria were identical to all other 

experiments reported here: participants were excluded if they did not get a comprehension 

question correct, did not choose the higher-rewarded option for > 60% of all trials, did not have 

usable zip code data, or encountered technical difficulties submitting their full data set. 

 

Self-Report Measures. Participants completed self-report measures in addition to the behavioral 

task, directly after the task. Participants completed the Life Orientation Test – Revised (LOT-R) 

(Scheier et al., 1994) to assess trait optimism/pessimism and the MacArthur Subjective 

Socioeconomic Status scale (Singh-Manoux et al., 2005). This questionnaire was revised to also 

collect objective measures of socioeconomic status including childhood zip code, current zip 

code, and current yearly income (see Supplemental Materials). The sample completed additional 

measures that will not be reported here. Given our desire to replicate our findings about trait 

optimism and environmental markers of optimism and pessimism, we focus only on LOT-R and 

SES results. 

Results 

We were unable to fully replicate all of our results from the initial experiment reported above. 

While some of our results did replicate (see below), we do not feel confident enough to draw any 

strong conclusions. Instead, we report the results here without further comment. 
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1. We find a replication of the correlation between belief in the latent agent across all 

conditions for negative feedback and LOT-R score (rs = 0.163, p = 0.043). 

2. We find no replication of the correlation between beliefs in the adversarial condition and 

LOT-R score (rs = 0.138, p = 0.085). 

3. We find no replication of the correlation between beliefs in the latent agent in the neutral 

condition and LOT-R score (rs = 0.069, p = 0.392) 

4. We find no replication of the non-correlation between beliefs in the latent agent in the 

benevolent condition and LOT-R score (rs = 0.196, p = 0.014).  

5. We find no replication of the non-correlation between attribution of positive outcomes 

and LOT-R score (rs = 0.206, p = 0.001). 

6. We find no replication of the significant correlation between median income of 

participants’ childhood zip code and belief in the hidden agent for negative outcomes 

collapsed across the adversarial and neutral conditions (rs = 0.104, p = 0.198) 

7. We find a replication of the non-correlation between agency beliefs about positive 

outcomes and childhood neighborhood income (rs = 0.068, p = 0.398). 
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Supplementary Materials: Paper 2 

Computational Models 

Model Fitting. We used a softmax function to model choice probabilities, including a response 

stochasticity (inverse temperature) parameter and a “stickiness” parameter to capture choice 

autocorrelation (Gershman, Pesaran, & Daw, 2009). The Bayesian models were fit using 

maximum a posteriori estimation with empirical priors based on previous research (Gershman, 

2016). Specifically, the prior distribution for the inverse temperature was β ~ Gamma(4.82, 

0.88), and for the stickiness parameter was ρ ~ r(0.15, 1.42).  

 

Model Comparison. We used random-effects Bayesian model selection (Stephan, Penny, 

Daunizeau, Moran, & Friston, 2009) to compare models. This procedure treats each participant 

as a random draw from a population-level distribution over models, which it estimates from the 

sample of model evidence values for each model. We used the Laplace approximation of the log 

marginal likelihood to obtain the model evidence values. For our model comparison metric, we 

report the “protected exceedance probability” (PXP), the probability that a particular model is 

more frequent in the population than all other models under consideration. This is differentiated 

from an “exceedance probability” in that it considers the possibility that some differences in 

model evidence are due to chance. 

 

Descriptive Model. In order to characterize learning rate asymmetries without committing to the 

assumptions of the Bayesian model, we fit a “descriptive” reinforcement learning model which 

updates reward probability estimates according to $"%& = $" + *"(!" − $"), with separate 

learning rates for each combination of positive/negative outcome and the three experimental 
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conditions (benevolent, adversarial, random). We refer to this model in the main text as the six-

learning rate model. 

 

Bayesian Reinforcement Learning Model. This model considers a problem in which a 

decision-maker must choose an option < ∈ {1,… , t} based on experienced rewards. Each option 

is associated with an intrinsic reward distribution, but a latent cause can intervene (denoted u =

1) to generate a different reward distribution. With probability 0(u = 0), the decision-maker 

receives a reward from the intrinsic distribution,	0(!|<, u = 0), or with probability	0(u = 1), she 

receives a reward determined by the latent cause,	0(!|u = 1). The marginal distribution over 

reward given the decision maker’s choice is thus 

 

(1)  

0(!|<) = 0(!|<, u = 0)0(u = 0) + 0(!|u = 1)0(!|u = 1). 

 

In our setting, rewards are binary and distributed according to a Bernoulli distribution for each 

option, JA!>($v). Thus, absent intervention, a reward of 1 is drawn with probability $v , and a 

reward of 0 is drawn with probability 1 − $v . 

 

For our experimental paradigm, we define the latent cause as another agent (the “latent agent”) 

that can allot outcomes for the decision maker. We define 3 different latent agent types: 

• Benevolent latent agent: produces a reward regardless of the decision maker’s choice. 

Formally,	0(! = 1|u = 1) = 1. 
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• Adversarial latent agent: produces no reward regardless of the decision maker’s choice. 

Formally, 0(! = 0|u = 1) = 1. 

The decision maker does not know the true reward probabilities of her options. She has a prior 

belief that the unknown parameters $v  are independently distributed according to JA#4(4, @), 

which are then updated from experience. The Beta distribution parameters can be fit to choice 

data though for simplicity we assume both are equal to 1 in the estimation procedure, 

corresponding to a uniform distribution. 

After choosing an action <" and observing reward !" on trial #, the decision maker updates her 

estimate of the reward probability $v  according to a reinforcement learning equation that 

incorporates inference over latent causes. With a Beta prior and a Bernoulli reward distribution, 

the Bayesian update rule takes the form $"%& = $" + *"(!" − $"), where *" is a parameter 

representing the learning rate that scales the reward prediction error. This learning rate is based 

rationally on beliefs about the outcome’s two possible sources: the action’s intrinsic reward and 

the latent agent’s intervention. These beliefs jointly determine the extent to which the participant 

attributes feedback to each source. The learning rate is given by 

 

(2) 

*" =
0(u" = 0|!", <")

y"
v + 4 + @

 

 

where y"v ≈ 	∑ 0(u{ = 0|!{, <{){∈{&,…,"|v|nv}  is the sum of past beliefs about latent agent non-

intervention on trials when the same option was chosen. The denominator reflects the magnitude 
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of evidence about the intrinsic reward probability accumulated up to trial # (it is approximate 

because we assume for tractability that evidence provided by past feedback is not revised 

according to later information). 

 

The learning rate’s numerator is central to our present analysis: it encodes the degree to which 

feedback should be attributed to the intrinsic reward distribution rather than to the latent agent, 

and modulates the degree of learning based on whether feedback was positive or negative. The 

value of 0(u = 0|!, <) is stipulated by Bayes’ rule: 

 

(3) 

0(u|!, <) = 	
0(!|u, <)0(u)

∑ 0(!|u′, <)0(u′)~e
. 

 

This yields the following expressions which vary based on the combination of feedback and 

agent type: 

 

Benevolent agent (negative feedback): 

0(u = 0|! = 0, <) = 1 

Benevolent agent (positive feedback): 

0(u = 0|! = 1, <) =
$v0(u = 0)

$v0(u = 0) + 0(u = 1)
 

Adversarial agent (negative feedback): 

0(u = 0|! = 0, <) =
(1 − $v)0(u = 0)

(1 − $v)0(u = 0) + 0(u = 1)
 

Adversarial agent (positive feedback): 
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0(u = 0|! = 1, <) = 1 

 

where the probability of intervention 0(u = 1) is known. Subtly, the decision maker’s inference 

about the latent agent’s intervention depends on her existing estimate of $v . 

 

The learning rate exhibits asymmetries depending on whether the latent agent tends to produce 

positive or negative outcomes. For example, when the agent is adversarial, positive outcomes can 

only come from the action itself, whereas negative outcomes are partly attributable to the 

external agent. Consequently, negative outcomes are less informative about the action’s reward 

probability, corresponding to a lower learning rate. 

 

We explored two possible models for this scenario: (1) the “fixed Bayesian” model, which treats 

the intervention probability as a free parameter, and (2) the “empirical Bayesian” model, which 

derives the intervention probability by averaging the participants’ binary intervention judgments.  

 

Fixed Bayesian Reinforcement Learning Model. Here, we fix the estimate of the latent agent’s 

intervention probability, 0(u" = 1), at 30% to mimic the instructions that participants receive. 

This is integrated into the Bayesian Reinforcement Learning Model described above. 

 

Empirical Bayesian Reinforcement Learning Model. This model calculates the decision-

maker’s average intervention judgment and utilizes this value for the estimate of the intervention 

probability 0(u" = 1), providing an individualized estimate of intervention for each participant. 

This is integrated into the Bayesian Reinforcement Learning Model described above. 
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Behavioral Analyses 

 
Figure S1. Learning Rates. The learning rates derived from the empirical Bayesian model and fit to participant 
data show distinct asymmetric learning of positive and negative outcomes by condition.  
 

 
Figure S2.2. Learning & Hidden Agent Intervention. Learning rates are significantly higher for trials where the 
participants believe they caused an outcome (“No Intervention”) compared to trials where participants believe the 
hidden agent caused an outcome (“Intervention”). 
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Figure S2.3. Model Estimates of Hidden Agent Intervention. Participants’ judgments about intervention also 
show a significant median point-biserial correlation with the intervention predicted by the model, rpb = 0.424, p < 
0.0001. 
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Supplementary Materials: Paper 3 

 

Computational Models 

 

Model Comparison. We used random-effects Bayesian model selection (Stephan, Penny, 

Daunizeau, Moran, & Friston, 2009) to compare models. This procedure treats each participant 

as a random draw from a population-level distribution over models, which it estimates from the 

sample of model evidence values for each model. We used the Laplace approximation of the log 

marginal likelihood to obtain the model evidence values. For our model comparison metric, we 

report the “protected exceedance probability” (PXP), the probability that a particular model is 

more frequent in the population than all other models under consideration. This is differentiated 

from an “exceedance probability” in that it considers the possibility that some differences in 

model evidence are due to chance. 

 

Adaptive Model. This model updates the weighting parameter from trial-to-trial based on the 

relative predictive accuracy between the two controllers. On each trial, the agent takes action(4) 

in response to stimulus (5) and receives reward (!). The agent considers two distinct generative 

models for the reward-generating process. The uncontrollable model assumes that rewards are 

independent of actions, whereas the controllable model assumes that rewards depend on actions. 

When rewards are binary, the models take the form of Bernoulli distributions governed by a 

latent parameter $67 in the controllable case and 	$6 in the uncontrollable case. Because the 

Bernoulli parameter is unknown to the agent, it must be inferred. We will present inference for 
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the uncontrollable model; inference for the controllable model is identical except that the 

parameters are indexed by stimuli and actions.  

According to Bayes’ rule:  

0($|8,9) ∝ 0(8|$,9)0($|9) 

where 0(8|$,9) is the likelihood of the data given hypothetical parameter values $, and 

0($|9) is the prior probability of those parameter values. In the context of our task, where 

rewards are binary, $6 = 	G[!|5]	 corresponds to the mean of a stimulus-specific Bernoulli 

distribution. When 0($6)	is a JA#4($K
LM
N
, (1 − $K)

LM
N
) distribution, the posterior mean $O6 (which 

is also the posterior predictive mean for reward) is initialized to $K and updated according to:  

∆$O6 = 	 Q6
R&S 

 

where S is the reward prediction error (! −	$O6), and Q6R&	is the learning rate with counter Q6 

initialized to QK and incremented by 1 every time stimulus 5 is encountered (in the controllable 

model, Q is indexed by both 5 and 4). Intuitively, $K corresponds to the prior mean (the reward 

expectation before any observations), and QK corresponds to the prior confidence (how much 

deviation from the prior mean the agent expects).  

Because the true environment is unknown, it must be inferred, which can be done using another 

application of Bayes’ rule:  

0(9|8) ∝ 0(8|9)0(9) 

where  
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0(8|9) = T0(8|$,9)0($)U$ 

Is the marginal likelihood. The posterior can be updated in closed form. For clarity we adopt a 

log-odds convention, with the prior log-odds given by: 

VK = log	
0(C><=>#!=??4@?A)

0(<=>#!=??4@?A)
 

The posterior log odds are initialized to VK and updated according to: 

∆V = ! log
$O6
$O67

+ (1 − !) log
1 − $O6
1 − $O67

 

Finally, we need to specify how each model maps reward predictions onto action values. For the 

instrumental model, we assume that action values simply correspond to the expected reward for a 

particular state-action pair: Z[(5, 4) = 	$O67. For the Pavlovian model, we assume that the action 

value is equal to Z\(5, 4) = 0 for a = No-Go and Z\(5, 4) = 	$O6 for a = Go. This assumption 

follows from the influential idea that Pavlovian reward expectations invigorate action (Guitart-

Masip et al., 2014). To combine the two action values into a single integrated value for action 

selection, we weight each model’s value by its corresponding posterior probability: 

Z(5, 4) = ^Z\(5, 4) + (1 − ^)Z[(5, 4) 

where 

^ = 0(9 = C><=>#!=??4@?A|8) = 	
1

1 + AR_
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Is the posterior probability of the uncontrollable environment. 

 

To allow for stochasticity of behavior, we model the agent’s action selection according to a 

softmax, where `	is an inverse temperature parameter controlling the level of choice 

stochasticity: 

0(4|5) =
exp	[`Z(5, 4)]

∑ exp	[`Z(5, 4e)]7e
 

Fixed Model. This model shares the same underlying information processing architecture as the 

adaptive model, but instead fits the weighting parameter as a free parameter. 

 

Model Fitting. We used a softmax function to model choice probabilities, including a response 

stochasticity (inverse temperature) parameter. We fit each model’s free parameters using 

maximum likelihood estimation. The adaptive model had five free parameters: the inverse 

temperature `, and the parameters of the prior ($K, QK) for each environment. We also considered 

a model in which VK was fit as a free parameter, but model comparison indicated that fixing VK =

0.5 had greater support in our data sets. The fixed model had six free parameters: the same five 

as the adaptive model, plus the weighting parameter w. 

 

Bias-Variance Analysis. To assess how controllability affects the bias-variance trade-off, we 

calculated these quantities for each participant as follows: 

@h45 = 	i j[4k = l=] −	

m

kn&

j[4k
∗ = l=] 
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o4!h4><A = 	i(j[4k = l=] − 	4pk)
N

m

kn&

 

where 4k is the chosen action on trial n, 4k∗  is the optimal action, 4pk = 	
&

m
∑ j[4k = l=]m
kn& , and 

j[⋅] = 1 when its argument is true, and 0 otherwise. 

 

 

 

 
 

 


