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ABSTRACT 

 
Rapid and effective responses to disease outbreaks require the ability to 

accurately detect and anticipate changing dynamics of an outbreak over time. 

However, disease surveillance is frequently undermined by extended delays 

between symptom onset and official case reports, often due to complex and multi-

tiered disease reporting and communication systems interacting at national, state, 

and city levels. Timeliness of reporting and response may be further exacerbated in 

settings that experience resource constraints. 

Digital data streams that are available in real- or near-real-time have the 

potential to complement or improve traditional disease surveillance by quickly and 

continuously capturing signals of population health that may be meaningful for 

disease tracking and forecasting. In addition, digital data are trending towards being 

made freely and publicly available through public servers and APIs, which remove 

barriers to data access and open up avenues for predictive modeling independent of 

resource level. Further, methodologies that focus on data-driven and self-adaptive 

learning can yield flexible and readily-implementable models for the public health 

sector.  

Focusing on a collection of inputs, including Google search trends, Twitter, 

news reports, and satellite weather data, and employing statistical and machine 

learning methodologies to process, synthesize, and analyze these data, I present 
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several applications of disease detection and forecasting models, which are 

developed as real-time decision support tools. Each project uses, as a case study, a 

mosquito-borne disease outbreak, which requires anticipation on the scale of weeks 

or months to effectively interrupt transmission. Across case studies, I describe 

flexible models functional at both large (e.g. national) and small (e.g. city-level) 

spatial scales. Over the course of this thesis, I move towards increasingly more 

generalizable modeling techniques such that learning from input data becomes 

more autonomous, requires less human input, and can be applied to a wider range 

of systems (e.g. surveillance bodies, diseases). In all cases, I show how predictions 

can fill a critical time gap between case onset and case reporting, with the goal of 

supporting early warnings and outbreak anticipation within public health 

surveillance systems. 
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1 

Introduction 
  

Disease surveillance is a critical input that informs public health action. 

Rapid and effective responses to disease outbreaks rely on timely and accurate case 

reports to assess risks, prioritize public health threats, allocate resources across 

multiple health sectors, and deploy interventions to interrupt disease transmission. 

However, rarely are cases reported into the surveillance system the moment they 

occur, for administrative, biological, and logistical reasons [1]. This compromises 

the role of surveillance in detecting changes in disease transmission in real-time. 

Predictive modeling offers one solution to this problem, by providing estimates of 

current (nowcast) and future (forecast) disease activity using a wide range of data 

streams and signal mining techniques. 

In the past decade, the near real-time availability of novel and disparate 

internet-based data sources has motivated the development of complementary 

methodologies to track the incidence and spread of diseases. These approaches 

exploit information from internet search engines[2–5], news reports[6–8], 

clinicians’ search engines[9], crowd-sourced participatory disease surveillance 

systems[10–12], Twitter microblogs[13–16], Electronic Health Records[17], and 

satellite images[18] to estimate the presence of a disease in a given location. 

Exploiting these relationships to quickly and continuously capture signals of 
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population health activity can generate accurate, prospective disease forecasts that 

complement traditional surveillance. Further, the majority of these data streams 

have the advantage being freely and digitally accessible, and thus may be leveraged 

independent of resource level. 

A challenge in predictive modeling is developing sufficiently generalizable 

and adaptive models; that is, models that demonstrate successful application to 

different contexts (e.g. locations, diseases) and that are capable of learning from 

new information, in addition to standard concerns for overfitting and out-of-sample 

performance. Particularly for the public health system, it is useful to develop 

flexible and readily-implementable models that can adapt to a wide range of 

surveillance problems. Thus, methodologies that focus on data-driven and self-

adaptive learning are especially of interest. 

In this thesis, I leverage different methodologies and data streams for the 

purpose of infectious disease forecasting, focusing on two important predictive 

modeling goals: generalizability and reproducibility. Statistical and machine 

learning algorithms are used to create flexible, adaptive disease tracking and 

forecasting models that show promise in a wide range of applications (e.g. location, 

disease) and that rely on digital and open-access data, alongside data readily 

available in the surveillance system. Specifically, in the absence of access to real-

time government-reported Zika case counts during the 2016 outbreak in Latin 

America, I demonstrate the ability of Internet-based data sources to track and 

predict the outbreak in five countries, through a collection of dynamic, 

multivariable models (Chapter 2). These models use readily-available and freely-
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accessible digital data to fill a critical time gap for decision-makers ahead of the 

release of official case documentation. Then, focusing on the important but 

complex relationship between climate and mosquito-borne disease dynamics, I 

present a data-driven, machine learning approach capable of identifying, at a high 

spatial resolution, potentially useful weather patterns to predict dengue fever 

epidemics in a diverse set of municipalities in Brazil (Chapter 3). Specifically, this 

project exploits ensemble learning with support vector machines to generate 

dynamic models that are self-adaptive, i.e. require no human input to detect and 

learn from highly predictive patterns in the data. Beyond learning from weather 

patterns, this project additionally incorporates mechanistic knowledge of dengue 

outbreak cycles in order to improve model forecasts and align with understood 

transmission dynamics. Finally, in the last chapter of this thesis, I introduce a 

simple and flexible model capable of producing accurate nowcasts in a multitude 

of disease settings and temporal ranges (Chapter 4). The model requires no disease-

specific parameterization, learning only from historical cases and reporting delays, 

which allows the model to function well in very different disease settings. 

The models and applications presented here serve as proof-of-concept or 

pilot-implemented tools for real-time disease tracking and forecasting.  

 

1. Jajosky RA, Groseclose SL. Evaluation of reporting timeliness of public 
health surveillance systems for infectious diseases. BMC Public Health. 
2004;4: 29. 

2. Polgreen PM, Chen Y, Pennock DM, Nelson FD. Using internet searches for 
influenza surveillance. Clin Infect Dis. 2008;47: 1443–1448. 



	 4	

3. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. 
Detecting influenza epidemics using search engine query data. Nature. 
2009;457: 1012–1014. 

4. Yuan Q, Qingyu Y, Nsoesie EO, Benfu L, Geng P, Rumi C, et al. Monitoring 
Influenza Epidemics in China with Search Query from Baidu. PLoS One. 
2013;8: e64323. 

5. Althouse BM, Ng YY, Cummings DAT. Prediction of Dengue Incidence 
Using Search Query Surveillance. PLoS Negl Trop Dis. 2011;5: e1258. 

6. Majumder MS, Kluberg S, Santillana M, Mekaru S, Brownstein JS. 2014 
ebola outbreak: media events track changes in observed reproductive 
number. PLoS Curr. 2015;7. 
doi:10.1371/currents.outbreaks.e6659013c1d7f11bdab6a20705d1e865 

7. Majumder MS, Santillana M, Mekaru SR, McGinnis DP, Khan K, 
Brownstein JS. Utilizing Nontraditional Data Sources for Near Real-Time 
Estimation of Transmission Dynamics During the 2015-2016 Colombian 
Zika Virus Disease Outbreak. JMIR Public Health Surveill. 2016;2: e30. 

8. Brownstein JS, Freifeld CC, Reis BY, Mandl KD. Surveillance Sans 
Frontières: Internet-based emerging infectious disease intelligence and the 
HealthMap project. PLoS Med. 2008;5: e151. 

9. Santillana M, Nsoesie EO, Mekaru SR, Scales D, Brownstein JS. Using 
clinicians’ search query data to monitor influenza epidemics. Clin Infect Dis. 
2014;59: 1446–1450. 

10. Smolinski MS, Crawley AW, Baltrusaitis K, Chunara R, Olsen JM, Wójcik 
O, et al. Flu Near You: Crowdsourced Symptom Reporting Spanning 2 
Influenza Seasons. Am J Public Health. 2015;105: 2124–2130. 

11. Paolotti D, Carnahan A, Colizza V, Eames K, Edmunds J, Gomes G, et al. 
Web-based participatory surveillance of infectious diseases: the Influenzanet 
participatory surveillance experience. Clin Microbiol Infect. 2014;20: 17–21. 

12. Dalton C, Durrheim D, Fejsa J, Francis L, Carlson S, d’Espaignet ET, et al. 
Flutracking: a weekly Australian community online survey of influenza-like 
illness in 2006, 2007 and 2008. Commun Dis Intell Q Rep. 2009;33: 316–
322. 

13. Paul MJ, Dredze M, Broniatowski D. Twitter improves influenza forecasting. 
PLoS Curr. 2014;6. 
doi:10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117 

14. Broniatowski DA, Paul MJ, Dredze M. National and local influenza 
surveillance through Twitter: an analysis of the 2012-2013 influenza 
epidemic. PLoS One. 2013;8: e83672. 



	 5	

15. Nagar R, Yuan Q, Freifeld CC, Santillana M, Nojima A, Chunara R, et al. A 
case study of the New York City 2012-2013 influenza season with daily 
geocoded Twitter data from temporal and spatiotemporal perspectives. J Med 
Internet Res. 2014;16: e236. 

16. Signorini A, Segre AM, Polgreen PM. The use of Twitter to track levels of 
disease activity and public concern in the U.S. during the influenza A H1N1 
pandemic. PLoS One. 2011;6: e19467. 

17. Santillana M, Nguyen AT, Louie T, Zink A, Gray J, Sung I, et al. Cloud-
based Electronic Health Records for Real-time, Region-specific Influenza 
Surveillance. Sci Rep. 2016;6: 25732. 

18. Nsoesie EO, Patrick B, Naren R, Mekaru SR, Brownstein JS. Monitoring 
Disease Trends using Hospital Traffic Data from High Resolution Satellite 
Imagery: A Feasibility Study. Sci Rep. 2015;5: 9112. 

 
 

 
 
 
 
  



	 6	

 

 

 
 
 

2 
  



	 7	

Forecasting Zika Incidence in the 2016 Latin 

America Outbreak Combining Traditional 

Disease Surveillance with Search, Social Media, 

and News Report Data 

 

2.0 ABSTRACT 

Over 400,000 people across the Americas are thought to have been infected 

with Zika virus as a consequence of the 2015-2016 Latin American outbreak. 

Official government-led case count data in Latin America are typically delayed by 

several weeks, making it difficult to track the disease in a timely manner. Thus, 

timely disease tracking systems are needed to design and assess interventions to 

mitigate disease transmission. 

We combined information from Zika-related Google searches, Twitter 

microblogs, and the HealthMap digital surveillance system with historical Zika 

suspected case counts to track and predict estimates of suspected weekly Zika cases 

during the 2015-2016 Latin American outbreak, up to three weeks ahead of the 

publication of official case data. We evaluated the predictive power of these data 

and used a dynamic multivariable approach to retrospectively produce predictions 

of weekly suspected cases for five countries: Colombia, El Salvador, Honduras, 

Venezuela, and Martinique. Models that combined Google (and Twitter data where 

available) with autoregressive information showed the best out-of-sample 
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predictive accuracy for 1-week ahead predictions, whereas models that used only 

Google and Twitter typically performed best for 2- and 3-week ahead predictions. 

Given the significant delay in the release of official government-reported 

Zika case counts, we show that these Internet-based data streams can be used as 

timely and complementary ways to assess the dynamics of the outbreak.   

2.1 INTRODUCTION 

The rapid spread of Zika virus has led to more than 400,000 suspected cases 

across the Americas since its introduction to Brazil in 2014, and has triggered alerts 

around the globe[1]. This event has led to diverse interventions and travel warnings 

to affected areas, underscoring the importance of proactive disease surveillance. 

While cases of sexual transmission of Zika virus have been documented[2], the 

virus is primarily transmitted through the bite of the Aedes aegypti mosquito and 

causes nonspecific flu-like symptoms and skin rashes[3,4]. Of particular concern is 

the possible link between Zika virus and neurological disorders such as 

microcephaly, a birth defect in which babies of infected pregnant women are born 

with abnormally small heads[5–8]. Over 1800 cases of Zika-related microcephaly 

and central nervous system disorders in newborns have been reported since the 

beginning of the epidemic, and the virus has spread to 70 countries globally[9]. In 

February 2016, the World Health Organization declared Zika a global public health 

emergency[10]. With no existing vaccinations or treatment for Zika infections, 

control of the Aedes aegypti mosquito is critical to curb the spread of the virus, as 

has been observed in dengue fever studies[11,12]. This requires continuous and up-

to-date surveillance of cases to drive vector control interventions accordingly[13]. 
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In countries with now autochthonous transmission, the surveillance of Zika 

infections is predominantly passive; cases are identified on the basis of 

hospitalizations and clinical symptom reports. The Pan American Health 

Organization (PAHO) currently streamlines reports from ministries of health, and 

reports weekly confirmed and suspected cases of Zika by country[14]. The release 

of these reports and those produced by the ministries, however, is typically delayed 

by three or more weeks due to systematic processing and data collection. As a 

consequence, the changing dynamics of Zika are frequently hard to be assessed in 

a timely manner, and thus, the availability of current data on Zika to the public and 

public health officials is limited. 

In the past decade, the near real-time availability of novel and disparate 

internet-based data sources has motivated the development of complementary 

methodologies to track the incidence and spread of diseases. These approaches 

exploit near real-time information from internet search engines[15–18], news 

reports[19–21], clinician’s search engines[22], crowd-sourced participatory disease 

surveillance systems[23–25], Twitter microblogs[26–29], Electronic Health 

Records[30], and satellite images[31] to estimate the presence of a disease in a 

given location. 

Some of the biases and errors observed when using these alternative data 

sources as individual indicators of disease incidence have been recently mitigated 

by using ensemble approaches that combine information from multiple data sources 

to produce a more robust disease estimate[32]. In parallel, multiple improvements 

have been proposed to disease tracking methodologies based on Google 
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searches[33–38]. Finally, it has been shown that in the absence of information from 

traditional government-lead disease reporting, the combined use of news reports 

and Google’s search activity of the word “zika” in Colombia led to reasonable 

estimates of cumulative cases of Zika[20]. To the best of our knowledge, however, 

no attempts have been made to date to harness these and other digital data sources 

for near-real time weekly forecasting of Zika infections. 

Here we assess the feasibility of using Zika-related Google search queries, 

Zika-related Twitter microblogs, and information from news reports collected by 

the web-based surveillance system HealthMap[16], in the prospective monitoring 

of Zika in five countries: Colombia, El Salvador, Honduras, Venezuela, and 

Martinique. In addition, we evaluate the ability of a collection of multivariable 

models that use information from these three data sources as input, to dynamically 

track and forecast the incidence of Zika virus up to 3 weeks ahead of the release of 

reports from PAHO, using multiple evaluation metrics. 
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2.2 METHODS 

 

2.2.1 DATA 

EPIDEMIOLOGIC DATA. We obtained weekly reports from the Pan American Health 

Organization (PAHO) that document the number of laboratory-confirmed and 

suspected cases of Zika in the Americas from the website 

(http://ais.paho.org/phip/viz/ed_zika_epicurve.asp) and from weekly 

epidemiological updates[39]. In the absence of this information, we obtained 

suspected and lab-confirmed Zika cases from epidemiological bulletins produced 

by the national Ministries of Health (MOH) of Colombia and Martinique[40,41]. 

Throughout the manuscript, we refer to these data as “official case count”. Due to 

the lack of robust diagnostic capabilities across the Americas and the estimated 

large number of asymptomatic cases[4,42], the present study focuses on predicting 

suspected Zika cases, which can be used as a proxy for potential hospital visits in 

each locality. This information could be useful for public health decision-makers 

when designing resource allocation plans. Under PAHO criteria, cases were 

classified as suspected if the patient presented a rash and two or more of the 

following symptoms: fever, conjunctivitis, arthralgia, myalgia, and peri-articular 

edema[43]. The time series of suspected cases spans the entire epidemic period of 

each country, beginning with the earliest reported cases through the last available 

epidemiologic week in the data (last accessed August 3, 2016). Data profiles for 

each country can be seen in Table 1. 

 

 



	 12	

 

 

GOOGLE SEARCH QUERIES. The selection process of potentially useful search terms 

to track Zika avoided forward-looking bias and was performed via the Google 

Correlate and Google Trends tools (https://www.google.com/trends/correlate/; 

https://www.google.com/trends/). We identified the most highly correlated terms 

with the time evolution of Zika incidence in Colombia and Venezuela on Google 

Correlate within the time period of May 2015 to Jan 2016, and used Google Trends 

to identify search terms related to the term “Zika” for all five countries. The time 

window for the selection of these terms did not exceed the training period of each 

model. Because the output of Google Trends and Google Correlate consists of 

country-specific search terms, these are different for each country. All highly 

correlated terms to the query “Zika” were selected as model inputs without 

discrimination, including some potential misspellings of the disease such as “sika” 

and “sica”. We obtained weekly fractions of all identified Google search terms 

using the Google Trends website. The selected search terms were used as 

independent variables in the models and are shown in Table A.1. 

Table 2.1. Data profile for countries.         

 Colombia Venezuela Martinique Honduras El Salvador 

Cumulative cases 92891 51043 33925 22705 11779 

Number of search terms 26 15 8 11 12 

Weeks of data 46 38 30 26 37 

Week of first cases 8/9/15 10/11/15 12/27/15 12/13/15 9/20/15 
Week of last accessible 
cases 7/10/16 6/26/16 7/17/16 5/29/16 5/29/15 

Number of training 
weeks (G+T, AR / 
AGO+T / ARGO+TH) 

20, 17 15, 12 12, 9 12, 9 17, 14 
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TWITTER MICROBLOGS. We leveraged a custom script to access the free Twitter 

Public API to collect the maximum allowed number of tweets (up to 1% total 

Twitter volume) with any geographical coordinates. We then searched these tweets 

by country, using Twitter’s assigned country code and restricting to tweets in which 

this parameter was present, for the weekly volume of Twitter micro-blogs 

containing any of the words “Zika”, “microcephaly”, and “microcefalia”, but only 

Colombia and Venezuela had relevant Zika-related tweets, within the weeks of the 

epidemic outbreak, to merit the inclusion of Twitter data in our models. The fraction 

of tweets containing the Zika-related words when compared to the total number of 

tweets for each country was computed for every week and used as an independent 

variable in the models. 

 

HEALTHMAP DIGITAL SURVEILLANCE. We obtained cumulative reported case counts 

of Zika virus disease in all countries via the HealthMap digital disease surveillance 

system (www.healthmap.org), which reports non-governmental media alerts of 

infections[16]. From these alerts, we calculated the weekly incidence of Zika 

infection for use as an independent variable in the models. 

  

RELATIONSHIP BETWEEN CASES AND INTERNET-BASED DATA. In order to assess whether 

the selected Google search terms, Twitter microblogs, and HealthMap-reported 

cases could be useful for weekly prediction of Zika incidence, we computed the 

Pearson’s correlation between each predictor and the official Zika case count, first 
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for the training period of each country and later for the entire time series. In 

addition, we evaluated the autocorrelation of the signal itself (as lag-1, lag-2, and 

lag-3 terms). To determine the optimal linear relationship between the predictors 

and cases, we applied a series of simple transformations to these data and selected 

the transformation which produced the highest Pearson’s correlation. The results of 

this preliminary analysis was used for variable selection and to inform the dynamic 

transformation of variables process within the model, detailed below. 

2.2.2 MODELS 

A collection of multivariable models, inspired by those introduced in the 

Flu prediction literature[30,37], were considered to estimate and forecast weekly 

suspected cases of Zika in the aforementioned five countries. These models used as 

input the weekly Google search frequencies of Zika-related terms, the fraction of 

Zika-related Twitter microblogs, cumulative Zika case counts as recorded by the 

HealthMap disease surveillance system, and the available historical official case 

count data at a given point in time. For consistency and comparability, all models 

(i) automatically select the most relevant search terms for prediction, (ii) 

incorporate new information on Zika cases as reports are released every week, and 

(iii) identify the best functional relationship between each input variable and the 

outcome variable, every week. 

The selection of the most predictive input variables was performed using a 

penalized Least Absolute Shrinkage and Selection Operator (LASSO) regression 

approach as described in[44]. While avoiding the use forward-looking information, 

we incorporated the most recently available information on Zika cases every week 
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by dynamically expanding the time window of the training set of the models. 

Finally, at each week, we analyzed whether transforming each input variable would 

increase its correlation with the output variable. If this were the case, then the 

transformed value of the input variable producing the highest correlation with case 

data would be used as input for the model. As more epidemiological information 

becomes available, this dynamic transformation process allows the model to 

recursively recalibrate and incorporate changes in the relationships between the 

input variables and the case count information observed so far. The transformations 

we considered were not exhaustive and included the log(x), x2, and sqrt(x). 

 In addition to the models that used the aforementioned data streams as input, 

we built a collection of baseline models for comparison and context. We considered 

models that only used historical observation of Zika cases to predict cases on the 

subsequent weeks and models that incorporated information from these various 

data streams. Given the success of Google search terms in tracking other diseases 

as observed in [27,28], our models utilized Google search as a central predictor, 

and we explored the additions of Twitter and HealthMap data for the improvement 

of model predictions. Specifically, we considered (i) AR: a baseline lag-3 

autoregressive model that used only Zika surveillance information from the prior 3 

weeks to predict suspected cases, (ii) G+T: a model which used only Google search 

and Twitter (if available) data for prediction as introduced in[33] (iii) ARGO+T: a 

model which used autoregressive information and Google and Twitter (if available) 

data, adapted from[37], and (iv) ARGO+TH: a model which combined all data 

streams (Twitter if available, Google, HealthMap) with lag-3 autoregressive terms. 



	 16	

For the two countries (Colombia and Venezuela) which had available Twitter data, 

we also constructed identical models (ii - iv) without this data source; that is, using 

Google and HealthMap data only. Our models are described by the following 

equation 

!"# = 	&# +	()*
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where we expand an autoregressive model of lag N with the inclusion of the fraction 

of Google search frequency X for each term j, the fraction of Twitter volume T, and 

HealthMap-reported cases H. As described in[37], autoregressive terms generally 

help maintain predictions within a reasonable range, while Google and Twitter 

information help the models to respond more rapidly to sudden changes in the 

dynamics. Due to the novelty of the Zika outbreak, stationarity was not used as a 

way to assess the appropriateness of using autoregressive models as a baseline; 

instead, we relied on the observed high autocorrelation of the signal with recent 

time lags of case counts and evidence of similar mosquito-borne outbreaks 

modeling approaches[45,46]. 

At each week, we used our models to generate predictions for 1, 2, and 3 

weeks ahead of current time. To avoid future-looking bias in our predictions, 

forecasts were made using only the information available to each model at each 

week t; and for each time horizon our case count estimate was obtained using a 

different model. For instance, all models with autoregressive terms are restricted, 

in further week-ahead predictions, from accessing weeks of case data that have not 

yet occurred relative to week t. Thus, 3-week ahead (t+3) forecasts for model (i) 
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were generated using only the lag-3 term (AR3) of official cases from 3 weeks prior 

to t+3: that is, using the observed cases available exactly at week t. 1-week ahead 

(t+1) forecasts for model (i), meanwhile, utilized all three AR1, AR2, and AR3 

terms, which contain information on reported cases from the strictly observable 

weeks t, t-1, and t-2. In other words, data that would be unavailable in real-time for 

predictions - in our case, data on future infections - are excluded from each model. 

This same rule applies to models (iii) and (iv), which also include autoregressive 

information. Reflecting the delay in the release of case reporting, the models do 

access future weeks (relative to week t of case reporting) of Google searches, 

Twitter microblogs, and HealthMap-reported cases, since these digital streams are 

available closer to real-time than are official case data. 

All models were trained through the same week in the time series and 

evaluated over the same time window, although the number of training weeks 

differed based on the information required in each model. Models containing 

autoregressive information began training 4 weeks into each epidemic, as opposed 

to training from the first week of reported cases, in order to necessarily inform the 

one-, two-, and three-week lag terms. A summary of dates and data used by country 

is shown in Table 1. 

Models were fit as multiple generalized linear models with the glmnet 

package[47] in R v3.2.4[48], validated using k-fold cross validation, and evaluated 

for their out-of-sample predictive performance. For each model, we report three 

evaluation metrics: root mean square error (RMSE), the relative RMSE (rRMSE), 

and the Pearson correlation of predictions with observed cases, as detailed in[32]. 



	 18	

Equations for each metric can be found in Equations A.1. 

 

2.3 RESULTS 

In order to evaluate the feasibility of using Zika-related Google searches, 

Twitter microblogs, HealthMap news reports, and historical official case counts to 

track Zika, we calculated the Pearson correlation between (a) the observed 

suspected case counts and each input variable, and (b) the observed suspected case 

counts and three transformations: log(x), x2, and sqrt(x), for each input variable. 

These transformations were observed to sometimes lead to better correlation values 

than the original raw variables for different time periods. Figures A.1-5 displays in 

each country the best transformation of each input variable and suspected Zika case 

counts. From the multiple panels for each country, it can be seen that at least a 

subset of these (transformed) variables showed potential to be useful to track Zika. 

Indeed, correlations ranged from 0.93 to 0.56 in Colombia; 0.90 to 0.18 in 

Honduras; 0.39 to 0.29 in Venezuela; 0.69 to 0.13 in Martinique; and 0.92 to 0.41 

in El Salvador. The lowest-correlation predictors tended to be the lag-3 

autoregressive term, HealthMap-reported cases, and non-specific Google search 

terms like “Virus.” 

For each country, we produced out-of-sample predictions for the one, two, 

and three-week ahead time-horizons with the four models introduced in the 

previous section. We evaluated models according to the maximum number of data 

sources available, and thus assessed all models with Twitter data, where available 

(Colombia and Venezuela). In addition, we evaluated models with and without the 
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inclusion of Twitter data. Plots comparing model predictions with the official Zika 

case count, by time horizon and country, are shown in Figures 2.1-2.3. Table 2.2 

summarizes the out-of-sample predictive performance of the four models for each 

of the three week-ahead time horizons and for all countries, as captured by the three 

evaluation metrics. Note that while some model predictions showed high 

correlation values with official case counts, their predictions showed large 

discrepancies with the data. As a consequence, we relied on the relative RMSE 

(rRMSE) to establish the quality of model prediction given the short time span of 

the outbreaks. The rRMSE provides an estimate of the prediction error relative to 

the number of true cases observed in each week over the evaluation period, and, 

from our perspective, allows for better comparisons across models and time 

horizons. We henceforth judge model performance using this metric.  
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Figure 2.1. Prediction results for (a) Colombia and (b) Honduras. In each country, the weekly 

estimations of AR (dotted blue), G+T (green), ARGO+T (orange), and ARGO+TH (red) models are 

compared to the official case counts (black). Models include Twitter data where available 

(Colombia). The best model performance (lowest relative RMSE) in each time series by country is 

shown as a bolded line. 
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Figure 2.2. Prediction results for (a) Venezuela and (b) Martinique. In each country, the weekly 

estimations of AR (dotted blue), G+T (green), ARGO+T (orange), and ARGO+TH (red) models are 

compared to the official case counts (black). Models include Twitter data where available 

(Venezuela). The best model performance (lowest relative RMSE) in each time series by country is 

shown as a bolded line. 

 

 

Figure 2.3. Prediction results for El Salvador. The weekly estimations of AR (dotted blue), G+T 

(green), ARGO+T (orange), and ARGO+TH (red) models are compared to the official case counts 

(black). The best model performance (lowest relative RMSE) in each time series is shown as a 

bolded line. 
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Table 2.2. RMSE, rRMSE, and Pearson's correlation coefficient (ρ) for 1-, 2-, and 3-week ahead out-of-sample predictions. Models include 
Twitter data where available (Colombia and Venezuela). The best fit metric for each week-ahead prediction is show in bold. 

 Colombia 

 1 week 2 week 3 week 
Model RMSE rRMSE ρ RMSE rRMSE ρ RMSE rRMSE ρ 

AR 801.313 40.462 0.821 1484.018 66.829 0.539 2057.483 83.900 0.284 
G+T 823.149 34.450 0.764 857.490 37.300 0.752 995.311 41.903 0.634 
ARGO+T 621.673 30.076 0.870 775.786 39.583 0.780 914.643 44.233 0.679 
ARGO+TH 617.795 29.888 0.871 848.968 40.153 0.731 903.155 42.440 0.698 
          

 Venezuela 

 1 week 2 week 3 week 
  RMSE rRMSE ρ RMSE rRMSE ρ RMSE rRMSE ρ 

AR 1665.733 68.542 0.822 4196.484 117.444 0.834 10349.050 259.699 0.665 
G+T 972.937 35.336 0.626 1277.588 39.813 0.283 1226.614 39.953 0.475 
ARGO+T 892.063 38.780 0.831 927.343 41.946 0.701 1372.884 48.249 0.486 
ARGO+TH 1036.760 46.497 0.771 1148.229 67.028 0.626 1459.830 75.513 0.528 
          

 Martinique 

 1 week 2 week 3 week 
  RMSE rRMSE ρ RMSE rRMSE ρ RMSE rRMSE ρ 

AR 397.204 59.298 0.678 460.931 73.935 0.617 477.638 78.409 0.744 
G+T 302.038 40.123 0.721 376.475 47.758 0.586 450.635 53.835 0.384 
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Table 2.2 (Continued). RMSE, rRMSE, and Pearson's correlation coefficient (ρ) for 1-, 2-, and 3-week ahead out-of-sample predictions. Models 
include Twitter data where available (Colombia and Venezuela). The best fit metric for each week-ahead prediction is show in bold. 
 
 
ARGO+T 336.375 42.998 0.800 425.005 61.420 0.701 510.691 73.822 0.492 
ARGO+TH 342.577 44.923 0.799 424.417 61.382 0.710 506.310 73.423 0.482 
          

 Honduras 

 1 week 2 week 3 week 
  RMSE rRMSE ρ RMSE rRMSE ρ RMSE rRMSE ρ 

AR 262.701 167.009 0.546 538.930 330.114 -0.068 886.701 555.937 -0.903 
G+T 213.788 53.909 0.675 222.045 51.993 0.740 292.718 64.733 0.355 
ARGO+T 144.327 30.436 0.784 222.278 55.670 0.736 323.089 158.377 0.243 
ARGO+TH 132.675 41.605 0.853 203.616 51.874 0.584 335.778 163.436 0.085 
          

 El Salvador 

 1 week 2 week 3 week 
  RMSE rRMSE ρ RMSE rRMSE ρ RMSE rRMSE ρ 

AR 159.185 126.486 0.961 261.119 234.615 0.929 379.797 350.656 0.888 
G+T 120.979 166.901 0.881 124.338 152.882 0.911 180.282 187.945 0.855 
ARGO+T 122.995 112.516 0.960 151.654 103.649 0.976 170.130 115.720 0.923 
ARGO+TH 100.318 110.603 0.957 149.407 103.143 0.975 166.552 113.459 0.920 
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As seen in the evaluation metric values, no single model performed best 

across metrics, time horizons, and countries. Based on the rRMSE, models that 

combined Google (and Twitter data where available) with autoregressive 

information showed better predictive accuracy for 1-week ahead predictions. 

Meanwhile, models that only used Google (and Twitter where available) typically 

performed best for two and three-week ahead predictions. 

The ARGO+T or ARGO+TH models outperformed all other models in 1-

week forecasts for all countries with the exception of Venezuela and Martinique. 

In Venezuela and Martinique, the ARGO+T model (rRMSE = 38.8 and 43.0, 

respectively) slightly underperformed relative to the G+T model (rRMSE = 35.3 

and 40.1, respectively), with a difference in rRMSE of about 3 percent points. In 

Colombia and El Salvador, the difference in rRMSE was less than 2% between the 

ARGO+TH and the ARGO+T models, with both models improving the rRMSE 

substantially compared to the G+T model. 

In further week-ahead predictions, the Google and Twitter only (G+T) 

model outperformed models that also incorporated autoregressive information, 

exhibiting the lowest rRMSE in 3 of 5 countries for 2-week forecasts, and in 4 of 5 

countries for 3-week forecasts. 

Across models, prediction accuracy decreased as predictions were made 

further into the future, resulting in increases in rRMSE (and RMSE) and declines 

in model correlations across time horizons. Of all countries studied, Colombia had 

the best model performance in each week-ahead horizon for every model, with the 

exception of 3-week G+T forecasts; of all time horizons, the 1-week ahead 
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predictions performed best in each country and model. In most cases, the 

autoregressive model over-predicted Zika incidence and underperformed all other 

models. 

Table A.2 shows the performance of additional versions of these models 

(i.e., the ARGO+T model with and without Twitter data). It can be seen that the 

inclusion of Twitter microblog data into our models improved or was comparable 

to (within 0.2 rRMSE) the performance of all models lacking Twitter data in 

Colombia (range of rRMSE reduction: -0.13, 1.6), and of the ARGO+T and 

ARGO+TH models in Venezuela (range of rRMSE reduction: 8.14, 125.1), for all 

time horizons. Conversely, incorporating HealthMap digital cases improved the 

rRMSE by no more than 3.8 points, or 7% (range: 0.06%, 6.8%) across models, 

time horizons, and countries, but worsened the rRMSE by up to 25.1 points, or 60% 

(range: 1.4%, 59.8%). The relative predictive power of each variable, as given by 

their standardized model coefficients, at each week in the out-of-sample 

predictions, is displayed in a collection of heatmaps in Figure A.2. 

 

2.4 DISCUSSION AND CONCLUSION 

 We have shown that Internet-based data sources can be used to track and 

forecast estimates of suspected weekly Zika cases, weeks ahead of the publication 

of official case counts. Models that rely exclusively on Google searches have 

among the lowest error (rRMSE) of all models, indicating that Google search terms 

alone have the potential to track Zika cases. The heatmaps shown in Figure A.6 

confirm that Google search terms have significant predictive power in most 
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countries and time horizons. 

In Colombia and Venezuela, where robust Twitter data were available, we 

found that Twitter improved predictions compared to models that lacked the data 

source. Meanwhile, though HealthMap news reports have been found to be good 

estimators of Zika cumulative incidence[20], the effect of incorporating HealthMap 

news reports into our models was marginal across countries and generally did not 

reduce prediction error in any of the weeks-ahead forecasts; where it did reduce 

prediction error, in El Salvador, it did by less than 2% compared to the next-best 

model lacking HealthMap data. We noted early evidence of HealthMap’s weak 

predictive power in its low correlation with official case counts, as shown in Figures 

A1-5. Likewise, the heatmaps of Figure A.6 reveal that news reports data generally 

had low influence in models after the first several weeks of out-of-sample 

predictions. We noted, however, in a post-hoc analysis, that news of Zika infections 

were 2-3 weeks delayed with respect to the time when cases had occurred. This fact 

suggests that in the absence of official case count reports, one may use (a potentially 

lagged version) of news reports to track Zika activity as found previously by[20]. 

In the future, we would expect to improve model predictions by incorporating 

HealthMap data lagged back in time by 2-3 weeks. 

As seen in flu forecasting studies[32], the quality of predictions decreased 

as the time horizon of prediction increased. Specifically, for one-week predictions, 

we found that the model that uses Google (and Twitter where available) combined 

with autoregressive terms (the ARGO+T model) performs best in most countries, 

and its performance is better than or comparable to the equivalent model that lacks 
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autoregressive information. Thus, the use of historical case information 

(autoregressive terms) improves predictions in the near future, a finding that has 

been documented in prior studies[26,30,37]. However, for 2-3 week-ahead 

predictions, models that use exclusively data from Google and Twitter (G+T), 

without autoregressive terms, perform best. This is likely because the 2-3 week old 

official case information is no longer crucial to refine the accuracy of predictions, 

and changes in Google search and Twitter activity better respond to fluctuations in 

Zika dynamics. Consequently, relying on historical case data becomes less useful 

in making predictions further into the future. This is also observed in the low 

relevance of lag terms in the 2- and 3-week heatmaps of all models (Figure A.6). 

Additionally, as automatically identified by our term selection methodology 

(LASSO), the predictive power of Google search terms is stronger in 1 week-ahead 

predictions than in 2 and 3 week-ahead predictions. This can be observed in the 

heatmaps shown in Figure A.6. This finding confirms the appropriateness of using 

a real-time hidden Markov process as a modeling framework, as discussed in [37]. 

From this perspective, people affected by Zika will search for Zika-related terms 

when affected by the virus or when they may suspect risk of exposure to it. This 

population search behavior suggests that monitoring search activity may help track 

disease incidence. The decreased relevance of search activity in 2 and 3 week-ahead 

predictions may suggest that autoregressive case count information may have a 

stronger role in future occurrences. 

Our models improve upon prior methodologies[32,33,38] that use internet-

based data sources to track flu by adding an internal dynamic variable 
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transformation process to reassess the relationship of all input variables with the 

official Zika case count each week. Indeed, the heatmaps of variable coefficients 

show that model forecasts depended on an ensemble of terms whose predictive 

power changed magnitude and direction week by week. Given that Google queries 

were selected on the basis of their relationship to case data or to the term “Zika” 

exclusively in the training period, it is likely that these relationships change and 

perhaps even weaken in later weeks. We thus emphasize the importance the need 

for dynamic transformation of the input variables to recursively reassess these 

relationships and readjust predictors to their best linear fit with the data. 

Some of the limitations of our approach include, for example, the inherent 

population biases of Internet search engines and Twitter microblog users. Internet 

searches patterns may also reflect media coverage and situational awareness that 

may not coincide with the dynamics of the disease being tracked. Also, different 

countries and locations frequently have distinct news reporting practices. Local 

media in regions with endemic mosquito-borne diseases may react differently to 

outbreaks than regions where these diseases are less frequent. Media attention thus 

has the potential to dramatically influence our weekly predictions. The dynamic 

reassessment of the predictive power of each input variable, via LASSO and the 

dynamic transformation approach discussed earlier, is built in our model to mitigate 

these events. Terms that may peak during a week of high media attention can be 

thrown out of the influence of the model for the subsequent week of prediction if 

their relationship with case count information has weakened. Only the terms with 

high predictive power are selected by the LASSO. In this way, our models are self-
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correcting. Nonetheless, we note that since our predictions rely largely on user 

search and media activity, our work is meaningful only in time periods when the 

population is aware of the disease; to this point, it has been demonstrated that Zika 

virus was introduced to Brazil and the Americas at least one year before the 

epidemic was recognized by health ministries and the public at large[49]. 

Another important consideration is the time lag between peaks in Zika virus 

incidence and microcephaly, of up to 5 months[50,51]. Our models capture search 

activity surrounding the Zika epidemic, and thus end up using search terms like 

“microcephaly” as input. These terms may be related to broader awareness of Zika 

activity. Given the estimated lag, however, evaluating microcephaly-related queries 

synchronously with cases has the potential to introduce a bias in the model. Further 

work must explore the effect of lagging these terms compared to our synchronous 

use of them. 

As mentioned in the Methods section, Twitter data was not sufficient for 

use in the models for all countries. To improve upon this, future work could explore 

keyword queries that incorporate symptoms of Zika infection. In addition, to 

increase the total volume of tweets we plan to collect historical data based on these 

new query strings and explore ways to geocode the data ourselves, instead of 

relying on the current Twitter-generated subset of tweets with coordinate 

information. 

Another challenge lies in the prediction of very low case numbers. In several 

weeks of the countries studied, official case counts of Zika fell below 50 suspected 

cases per week; this is very low relative to the thousands of cases experienced per 
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week at the height of the epidemics. We observe that the quality of predictions 

decreases during time periods with low case numbers, and the model tends to under-

predict cases. Our prediction approaches worked best in locations with highest Zika 

incidence, independently of Internet penetration. This tendency was also observed 

in the assessment of the Google Dengue Trends system in[38][45]. 

Limitations on the use of official suspected case counts from PAHO as our 

prediction goal include under-reporting. Indeed, Zika has been observed to be 

asymptomatic in at least 80% of infected persons[42]. As a consequence, our 

models likely underestimate the true number of Zika infections that exist, while 

reasonably estimating the actual number of suspected cases that seek medical 

attention. Unfortunately, no surveillance system has yet reported estimates of 

asymptomatic Zika infections, and it is unclear whether asymptomatic infections 

can result in the same consequences of birth and neurological defects as do 

symptomatic infections.  

The predictions of our model should be compared to those of SIR-type 

models and epidemiologic models that evaluate Zika incidence in the context of 

important, known drivers of Zika, such as climate and ecological factors. In this 

paper, we explore whether digital data streams are viable estimators of Zika cases. 

In future inquiry, we believe that these methods could be incorporated into, and 

enhance, traditional epidemiologic methods to track the virus.  

Given the need of early interventions to curb mosquito-borne disease 

transmission, our model predictions fill a critical time-gap in existing Zika 

surveillance since official case count reports will, most likely, continue being 
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published multiple weeks after the occurrence of Zika cases. Moreover, access to 

real-time and likely future estimates of Zika activity provide an opportunity for 

health and government officials to allocate resources differently when potential 

changes in Zika dynamics are likely to occur, even ahead of official case 

documentation. The models presented here show promise to be expanded to any 

country at any time to track Zika cases and signal changes in transmission for public 

health decision-makers. Our models currently predict Zika activity at the country 

level, which we feel is useful for national decision-makers and surveillance 

purposes; however, our methodology can be extended to finer spatial units, such as 

the regional or municipal level. Performing predictions with higher spatial 

resolution will allow more targeted interventions and allocation of resources to the 

areas with the greatest projected burden of disease.  

To produce these predictions in a publicly available and timely manner, we 

will work to create a website that displays Zika estimates for multiple countries 

continuously updated in real-time, similar to content published on 

www.healthmap.org/flutrends and www.healthmap.org/denguetrends. 
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Combining weather patterns and cycles of 

population susceptibility to forecast dengue fever 

epidemic years in Brazil: a dynamic, ensemble 

learning approach 

3.0 ABSTRACT 

A major challenge in disease forecasting is developing algorithms that can 

learn from complex disease dynamics, identifying patterns and signals with 

minimal human input. Focusing on the important but complex relationship between 

dengue fever outbreaks and (a) weather patterns (temperature, rainfall) and (b) the 

empirically observed 3-4 year disease burden cycles, we present a data-driven, 

machine learning approach capable of autonomously and continuously identifying 

weather patterns and cycles in population susceptibility to predict dengue fever 

outbreak years in Brazilian municipalities. Specifically, our approach is dynamic, 

adaptable to multiple and heterogeneous study areas with high spatial resolution, 

and leverages publically available data sources, including a globally-available 

meteorological data source. We produce annual retrospective, out-of-sample 

epidemic forecasts months ahead of the historically-observed seasonal onset of 

dengue epidemics, and show that using just two simple weather inputs can yield 

good forecast accuracy, and further improve when combined with learned cycles of 

dengue fever outbreaks, a proxy for population infection susceptibility. 
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3.1 INTRODUCTION  

The last decade has seen enormous advances in the way data is generated 

and collected, resulting in large volumes of complex information known as “Big 

Data.” The recent availability of these data has opened up new avenues for 

epidemic monitoring, with data streams such as satellite imagery[1,2], Google 

searches[3,4], mobile phones [5,6], genomics[7,8], and disease surveillance 

databases[9,10] providing rich sources of information on the causes and outcomes 

of disease, population behaviors, environmental conditions, and other potential 

signals of population health. Exploiting these relationships to generate accurate, 

prospective forecasts would benefit health systems by allowing early mobilization 

of resources for the prevention of morbidities and deaths in the face of public health 

threats. However, a major challenge in disease forecasting is developing algorithms 

that can autonomously and continuously learn from these complex, dynamic 

systems, identifying patterns and signals with minimal human input. 

One such complex system is the interplay of human, climate, and mosquito 

dynamics that give rise to the transmission of mosquito-borne diseases. Dengue 

fever, a viral mosquito-borne disease transmitted predominately by the Aedes 

aegypti and Aedes albopictus mosquitoes, infects an estimated 390 million people 

per year, with nearly half the world’s population living at risk of infection[11]. The 

global burden of dengue has doubled every 10 years over the last 3 decades[12], 

and the disease is projected to expand its latitude range as global temperatures 

increase and create new habitats for the Aedes mosquitoes among previously-

unexposed human populations[13]. Climate, in particular temperature and 
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precipitation, creates favorable conditions for the breeding and survival of Aedes 

mosquitoes as well as for the transmission of the dengue fever virus. Distinct ranges 

of temperature and precipitation have been observed to have an influence on the 

extrinsic incubation period[14,15], mosquito maturation rate[16], length of larval 

hatch time[17], survival rate[18], and biting rate[19]. However, the relationships 

that govern these parameters and give rise to dengue transmission are complex and 

dynamic, changing over time and across geographies. Moreover, multi-year cycles 

of dengue fever outbreaks, caused by one or more circulating dengue fever 

serotypes (DENV I, II, III, IV) and short-term immunity conferred after infection, 

add an important layer of complexity to prediction[20].  

The dengue forecasting literature lacks a systematic, self-adaptive, and 

reproducible approach capable of identifying weather patterns that may be 

predictive of dengue fever outbreaks, particularly at a local level. Vector-borne 

diseases commonly exhibit spatial heterogeneity, a result of spatial variation in 

vector habitat, weather patterns, and human control actions[21–24]. For developing 

forecast systems, this feature implies a trade-off between model generalizability 

and spatial resolution. As a consequence, most studies to date focus on producing 

predictions for a single location, ranging from the national- to the city-level[25–

27], while others build and evaluate multiple modeling strategies per study site in 

efforts to manually identify relationships between weather patterns and dengue 

incidence over different geographies and temporal windows[28,29]. Both 

approaches highlight the difficulty in producing forecast models that are viable in 

diverse settings. In contrast, data-driven techniques demonstrate promise by 
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learning from multi-scale, complex systems and automatically adapting to new 

information. A recent study showed the promise of a data-driven approach in 

identifying weather patterns with meaningful signals for dengue fever outbreaks, 

but not in an out-of-sample fashion[30]. 

3.1.1 OUR CONTRIBUTION 

Focusing on the important but complex relationship between dengue 

incidence and (a) weather patterns and (b) the empirically observed 3-4 year disease 

burden cycles, we present a data-driven, machine learning approach capable of 

autonomously and continuously identifying weather patterns and cycles in 

population susceptibility to predict dengue fever outbreak years in Brazilian 

municipalities. Specifically, our approach is dynamic, adaptable to multiple and 

heterogeneous study areas with high spatial resolution, and leverages publicly 

available data sources, including a globally-available meteorological data source. 

We produce annual retrospective, out-of-sample epidemic forecasts at the city-

level, months ahead of the historically-observed seasonal onset of dengue 

epidemics. We assess the feasibility of this autonomous learning approach using 

two simple weather inputs (temperature, rainfall) in 20 Brazilian cities with diverse 

microclimates, and we attempt to characterize the conditions that yield successful 

forecasts. 

3.2 RESULTS  

3.2.1 EXPLOITING WEATHER SIGNALS TO CREATE A DATA-DRIVEN FORECAST 
SYSTEM 

We obtained data on annual dengue fever cases (Brazilian Ministry of 

Health) for 2001-2017 and on daily temperature and precipitation (GMAO-NASA) 
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for 2000-2016, for 20 dengue-endemic municipalities spanning large geographic 

and population ranges (Fig. B.1, Table B.1). Weather patterns were extracted and 

analyzed across hundreds of partially-overlapping time intervals collectively 

spanning the last 7 months of a given year, a time period that typically precedes the 

onset of epidemic outbreaks in Brazil. These patterns were then assessed for their 

ability to predict an outbreak year (defined as a year in which the number of cases 

exceeds 100 per 100,000 persons) for the subsequent year. Retrospective, out-of-

sample forecasts trained on a yearly expanding window were produced for 10 years 

(2008-2017) and for each time interval using support vector machines, a binary 

classifier (Fig. 3.1A-C). Every year, the top predictive time intervals were 

automatically selected to participate in an ensemble voting system based on 

historical out-of-sample prediction accuracy (Fig. 3.1D-E). In order to accrue 

enough out-of-sample prediction years to input to the ensemble voting system, we 

used the first 4 years of out-of-sample predictions to inform ensemble model 

selection, and produced ensemble-based predictions for the remaining 6 years 

(2012-2017). 
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Figure 3.1. Ensemble forecast workflow. (A) To predict next year’s epidemic status, we extract 

features from a daily time series of temperature (K) and precipitation (mm) over a defined (t0, p) 

time interval and for each year in the training period. (B) We produce an array of features 

corresponding to the mean value of temperature and precipitation over the (t0, p) interval, and (C) 

train a support vector machine to classify next year’s epidemic status. (D) This process is repeated 

for all 432 (t0, p) intervals, and the top 11 models are automatically selected to (E) contribute to a 

majority voting system based on historic out-of-sample accuracy. 

 

This system, which autonomously identifies and exploits the predictions of 

multiple time windows during the calendar year, makes it possible to identify 

temporally similar regions of highly predictive periods of the year preceding 

dengue outbreaks, here referred to as “weather signatures.” Weather signatures 

represent similar time windows during the year that show consistently high out-of-

sample prediction accuracy. We observed that cities with higher ensemble (2012-

2017) prediction accuracy tended to have clear weather signatures, while cities with 

poor performance exhibited no specific tendencies (Figs. 3.2, 3.3A). Further, strong 

weather signatures in a city often corresponded to or preceded important tropical 

seasons, such as the rainy and dry seasons. 
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Figure 3.2. The 10-year (2008-2017) out-of-sample forecast accuracy (%) for each time window of 

temperature and precipitation, by municipality. The x-axis (t0) indicates the start date of the time 

interval, and the y-axis (p) indicates the length of the time interval from which weather data were 

gathered (10-95 days). Models achieving at least 7/10 correct out-of- sample forecasts are shown in 

shades of yellow. Municipalities are ordered by decreasing ensemble prediction accuracy; that is, 

the proportion of years correctly forecasted by the ensemble method over the years 2012-2017. 
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Figure 3.3. Weather-based prediction results for 120 municipality-years. 

A) Annual out-of-sample forecasts of outbreak status (epidemic/non-epidemic) for 20 Brazilian 

municipalities from 2012-2017, shaded by mean posterior probability (MPP) of the true outbreak 

status. Correct forecasts are indicated by a plus (+) sign, and cells with light shading indicate that 

the model predicted the correct class with low probability. Municipalities are ordered by decreasing 

ensemble prediction accuracy; that is, the proportion of years correctly forecasted by the ensemble 

method over the years 2012-2017. 

B) The number of total epidemic and non-epidemic years correctly forecasted across 20 

municipalities, by year. The dashed white line indicates the number correctly forecasted after 

incorporation of empirically-observed dengue cycles. 

C) The mean posterior class probability across municipalities, by year and epidemic status.  

 

 
3.2.2 WEATHER-BASED FORECASTING PERFORMANCE 

Using weather data (temperature and precipitation) alone to predict annual 

dengue outbreaks, our approach accurately forecasted 81% of all epidemic years 

across 20 municipalities in Brazil between 2012-2017 (Table 3.1, Fig. 3.3). The 

approach only identified 58% of non-epidemic years correctly. This resulted in an 

overall accuracy of approximately 72%. For reference, the frequency of epidemic 
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and non-epidemic years was 60% and 40%, thus, a naive approach that predicts that 

all years are epidemic (the class majority) would achieve an accuracy of 60%. Our 

approach significantly exceeded (p=0.005) the predictive power of a naive 

predictor. 

 

Table 3.1. Performance of weather-based out-of-sample forecasts across 120 municipality-years in 

Brazil, with and without consideration for DENV susceptibility cycles.  

 

3.2.3 INCORPORATING DENGUE SUSCEPTIBILITY CYCLES 

Our weather-based ensemble approach remains ignorant to the specific 

relationship between weather patterns and dengue outbreaks, instead allowing the 

data to drive model selection and predictions. However, endemic transmission of 

dengue fever is typically distinguished by periodic outbreak cycles of around 3-4 

years. These outbreak cycles are thought to occur as a result of 1) an exhaustion of 

the susceptible population after an outbreak, and 2) and short-term cross-immunity 

to other circulating DENV serotypes after infection[20]. Both factors result in a 

depletion of the population vulnerable to infection, and act as barriers to subsequent 

outbreaks. Independent of climate variability over the years, we expect some 

preservation of these susceptibility cycles. 



	 46	

Inspired by this phenomenon, we implemented a post-hoc decision rule 

incorporating empirical information on 3- and 4-year dengue fever cycles observed 

in endemic municipalities in Brazil. We computed the probability of transitioning 

between outbreak states (epidemic/non-epidemic) after 2 and 3 consecutive years 

as the mean second- and third-order Markov transition probabilities, respectively, 

across municipalities meeting endemic selection criteria (B.1.1 Supplemental 

Materials and Methods: “Study Sites”). This Markov transition matrix was 

computed using the first 11 years of data preceding the first ensemble out-of-sample 

predictions. For each prediction year, a winner-takes-all decision rule overturned 

the ensemble prediction if the probability of a specific transition to one class 

exceeded the percent of model votes for the opposite class. 

 

3.2.4 DENGUE CYCLES IMPROVE UPON WEATHER-BASED FORECASTS 

Compared to the exclusively weather-based approach, incorporating these 

empirically-observed dengue cycles improved the ability to predict non-epidemic 

years by approximately 20% (specificity=69%) and increased overall accuracy to 

74.2% (Table 1). This improvement is the consequence of the decision rule’s role 

in identifying and overturning specifically epidemic forecasts following a sequence 

of observed epidemic years. The decision rule replaced 7 epidemic forecasts with 

non-epidemic forecasts, of which 5 were correct (Fig. 3.3B). A majority of these 

overturns belonged to cities which had experienced 3 consecutive epidemic years 

leading up to the prediction. 
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The decision rule is intended to serve as an “expert opinion” for situations 

in which there is strong evidence for the transition between outbreak states after 

multiple consecutive years of one state. Our specific finding - that the dengue cycles 

were used exclusively to overturn epidemic forecasts - suggests that while the 

weather conditions in those locations and years were identified to be conducive to 

an outbreak, there was stronger evidence that the population may have had low 

susceptibility to infection (thus avoiding an outbreak), based on multiple 

consecutive preceding years of high disease incidence. 

 

3.2.5 MODEL PERFORMANCE BY YEAR 

The success of epidemic forecasts varied by year, suggesting that certain 

years were better suited for weather-based outbreak predictions, while other years 

may have been outliers for either dengue activity or weather conditions and thus 

were more difficult to predict. During the last three years of the time series (2015-

2017), epidemics were predicted by the weather-only models with at least 80% 

accuracy, with 100% of the 13 outbreaks in 2016 correctly forecasted (Fig. 3.3B,C). 

Conversely, non-epidemic years during 2013-2014 were particularly difficult to 

predict, with only one-third and one-half of cities correctly forecasting non-

epidemics for these years, respectively. The most successful non-epidemic 

predictions occurred in 2012, for which 6 out of 8 non-epidemics (75%) were 

predicted correctly. Overall, 2015 and 2016 were the most successfully classified 

years, with 80% and 85% of municipalities correctly classified as epidemics or non-
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epidemics, respectively, while 2014 and 2017 were the most difficult years to 

predict, with 45% and 35% of municipalities misclassified, respectively. 

Incorporating information on the dengue cycles helped detect an additional 

non-epidemic in 2012 and 2015, and an additional 3 non-epidemics in 2017 (Fig. 

3.3B). 

 

3.2.6 QUANTIFYING THE STRENGTH OF PREDICTIONS 

Because our forecast system produces deterministic binary predictions 

(epidemic/non-epidemic year) using support vector machine classifiers, a natural 

question is how to quantify the strength of each prediction. In particular, this issue 

is important to identify the conditions under which predictions are made with strong 

conviction, and whether the strength of a prediction corresponds to its accuracy. 

For instance, misclassification of epidemics based on weather conditions may be 

the consequence of several factors, including: anomalous weather years, non-

weather factors that contribute more strongly to epidemic status, and poor 

distinction (separability) between epidemic and non-epidemics in the training data, 

possibly the result of a limited time series. Understanding the strength with which 

incorrect predictions were made is thus uniquely of interest. We explored ways to 

characterize the strength of predictions based on both the historic strength of the 

selected ensemble generating the prediction, as well as the strength of the weather-

based classifiers themselves. 

As a reminder, the ensemble that predicts epidemic status for each city and 

for each year is composed of multiple time windows (each its own model) that have 
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consistently exhibited the highest out-of-sample prediction performance compared 

to the rest of the calendar year. The consistency of time window selection into the 

ensemble is represented in Fig. 3.4. In our framework, time windows are 

automatically selected into the final ensemble as a function of both 1) their own 

historic out-of-sample performance and 2) the historic performance of their 

calendar neighbors, that is, models representing temporally similar windows. 

Consequently, we computed a metric of ensemble strength that captures both of 

these elements (B.1.5), and observed that the strongest ensembles belonged to cities 

with clear temporal patterns (as shown in Figs. 3.3, 3.4), which in turn were among 

the best-performing cities (Fig. B.2). In other words, we found that cities that 

perform better tend to make predictions based on similar periods of high-

performing windows (consistency), rather than based on several temporally 

disparate but high-performing windows (inconsistency). Still, ensemble strength 

only represents the historic performance of time windows (how well time windows 

have predicted in previous years), which is an incomplete characterization of 

prediction strength; for instance, models with good historic prediction performance 

may still fail if the weather data for the upcoming year are not separable and/or 

provide evidence for the wrong outbreak state.  

  



	 50	

 

Figure 3.4. Periods of the year selected into the ensemble forecast model for 2012-2017, by 

municipality. The x-axis (t0) indicates the start date of the time interval, and the y-axis (p) indicates 

the length of the time interval from which weather data were gathered (10-95 days). Municipalities 

with smaller and brighter yellow centers are those which exhibit the highest consistency in the 

predictive performance of weather patterns. Municipalities are ordered by decreasing ensemble 

prediction accuracy; that is, the proportion of years correctly forecasted by the ensemble method 

over the years 2012-2017. 

 

Consequently, to assess the extent to which available weather evidence 

were able to distinguish between epidemic vs. non-epidemic years for different 

cities and years (the strength of the classifier), we extracted calibrated posterior 

probabilities of each SVM model using Platt’s scaling[31]. The posterior 

probability reflects the distance to the separation boundary distinguishing epidemic 

and non-epidemic years on the basis of weather. Thus, a higher probability 
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represents how strongly the weather patterns of the prediction year aligned with 

those experienced by prior outbreak or non-outbreak years. We observed that in 

general, the probabilities were well calibrated, i.e. roughly 80% of predictions made 

with 0.8 probability were epidemics (Fig. B.3); however, the small sample (120 

out-of-sample predictions) somewhat limited the ability to assess this feature. 

Over the 11 models composing each ensemble SVM, we computed the 

mean of the posterior probabilities (MPP, Fig. 3.3A) and compared these to the 

accuracy of the prediction. We found that a majority (75%) of municipality-years 

were predicted with moderate (0.6-0.8) or strong (0.8-1.0) mean posterior 

predicted-class probabilities (i.e. P(Epidemic) for predicted epidemics and 1-

P(Epidemic) for predicted non-epidemics), with over 70% of these moderate or 

strong predictions correct (Fig. B.4). However, we also found that many 

misclassifiers “failed silently,” that is, outputted incorrect answers with high 

confidence[32]. Our results show that over half of missed true epidemics were 

predicted to be epidemics with less than 0.3 MPP, and likewise, over half of missed 

non-epidemics were classified as epidemics with over 0.7 MPP. In general, this 

implies that incorrect predictions were typically the result of strong model 

conviction against true outbreak status; that is, based on historical climate patterns, 

these municipality-years had periods of weather conditions conducive to either 

outbreaks or low dengue activity, but experienced the opposite. In a few cities that 

showed no strong evidence of weather signatures (i.e. Barueri, Rio de Janeiro; Fig. 

3.4), mean posterior probabilities were more borderline (0.4-0.6), suggesting that 

the climatic distinction between epidemic and non-epidemic years may have been 
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low in those locations, resulting in low separability in the data and higher 

occurrence of incorrect predictions. 

We therefore endeavor to apply a loose typology to instances of 

misclassification, in order to better understand the limitations of the present 

modeling framework. For municipality-years whose epidemic status was 

misclassified with strong conviction (mean posterior predicted-class probability ≥ 

0.8), it is likely that the dengue activity that year was highly anomalous given what 

had been experienced in historically-similar weather conditions (Fig. B.5). For 

municipality-years whose epidemic status was misclassified with borderline 

conviction (i.e. mean posterior predicted-class probability close to 0.5), the error is 

more likely to be a consequence of insufficient data to discriminate between 

epidemic and non-epidemic years on the basis of weather patterns alone; that is, the 

models were not well suited to make this distinction in the first place (Fig. B.5). 

Both cases highlight separate limitations of our approach. First, we expect 

that both a greater variety of environmental variables (e.g. humidity, vegetation, 

standing water) and non-environmental variables (e.g. human activity and public 

health interventions) will contribute to more accurate predictions by considering 

broader factors that contribute to dengue fever activity in a given location. Second, 

the robustness of our predictions was limited by a short time series of annual 

information, which may not be adequate to detect true differences in epidemic and 

non-epidemic years on the basis of weather alone. Nonetheless, our reproducible 

modeling framework accommodates additional predictors and longer time series 
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with no additional effort, and thus we highlight these as limitations of only the 

present analysis, with potential for improved performance in other data settings. 

 

3.2.7 COMBINING ENSEMBLE AND CLASSIFIER STRENGTHS 

We observed that models with stronger posterior probabilities and weaker 

ensembles achieved higher accuracy compared to those with weaker probabilities 

and stronger ensembles, suggesting that the previous year’s weather data played a 

larger role than historic model performance in ultimately determining whether a 

prediction would be correct (Fig. B.4). There was no clear hierarchy, however, in 

the ordering of the combined strength of the classifiers and the ensembles; that is, 

models with strong classifier probabilities and strong ensembles did not necessarily 

outperform models with weaker classifier probabilities and weaker ensembles. 

 

3.3 DISCUSSION 

Here we have demonstrated a novel method to forecast dengue fever 

outbreak years in Brazil at the smallest administrative unit, using a single, flexible 

modeling framework and only two simple weather inputs. Our approach 

automatically learns from the patterns of any inputted series and leverages the best 

historic predictions to generate an ensemble forecast. Further, by integrating our 

statistical approach with observed cycles of dengue fever outbreaks as a proxy for 

population susceptibility, our models achieve higher accuracy and improve 

substantially in predicting non-epidemic years. These forecasts provide timely 

information on dengue fever activity to policymakers months ahead of outbreak 
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seasons. Further, our entirely data-driven models show an ability to learn from 

complex relationships between dengue epidemics and climatic conditions and 

identify, in vastly different locations, important weather patterns with potential 

biological significance. Importantly, these models can be immediately extended to 

other locations, requiring no location-specific manipulation or inputs aside from a 

globally-available time series of daily temperature and precipitation. 

Using weather information only, our models seek to characterize and 

exploit the predictive ability of distinct weather patterns preceding outbreak years. 

Because our framework automatically identifies the time periods for which weather 

patterns produce strong signals, it was possible to identify weather signatures in 

multiple locations with vastly different ecosystems and geographic locations. For 

this, we observed that cities with better overall prediction accuracy had stronger 

weather signatures, with some biological consistency. For example, the 

southeastern municipality of Barra Mansa (5 of 6 ensemble years predicted 

correctly) exhibited strong signals from time windows spanning the first half of the 

city’s rainy season, in October through December of each year. Farther north, the 

hot, wet, and humid municipality of Manaus (5 of 6 ensemble years predicted 

correctly), situated at the mouth of the Amazon, appeared to show two distinct 

weather signatures straddling the driest month of the year, August. These patterns, 

generated from 10 years of out-of-sample model predictions, suggest that in 

different regions of Brazil, weather may affect dengue transmission differently and 

at different times of the year. However, in locations where weather-based 

predictions were less successful, these signatures were not clear; for instance, Rio 
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de Janeiro (3 out of 6 ensemble years predicted correctly) showed no clear temporal 

trend. In cities such as these, we might expect to see a lower influence of weather 

patterns on transmission compared to other predictors (e.g. policy, behavior, land 

use). We did not find clear relationships between prediction accuracy and city 

characteristics such geography, population density, or municipality size. We 

believe this work may catalyze important research both on the local influence of 

weather patterns on dengue outbreaks as well as the extent to which other, non-

weather factors drive outbreaks in these locations. 

Even weather conditions that appear highly suitable for an outbreak (or 

none), based on historical information, may be challenged by other factors that limit 

(or encourage) transmission of dengue. A key strength of our approach is the 

incorporation of empirically-observed information on dengue fever susceptibility 

cycles, to correct for potential short-term immunity that results from previous 

exposure to the dengue virus. We found that these susceptibility cycles were critical 

to the performance of models, particularly those which identified weather patterns 

suitable for a dengue outbreak in a year with potentially low population 

susceptibility to infection. For instance, this approach correctly identified 3 

additional non-epidemics in 2017 compared to weather patterns alone, supporting 

the discourse on the unusually low dengue activity seen in Brazil in 2017[33]. Still, 

our models missed half (6/12) of non-epidemics in 2014, which was predicted by 

experts to be a low transmission year due to immunity provided by a large 2013 

outbreak with no changes in circulating DENV serotypes[34,35]. Thus, 

incorporating information on specific circulating serotypes could be used to better 
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detect changes in population immunity and enhance our approach, though this 

surveillance information is more challenging to routinely acquire. Regardless, here 

we highlight the importance of incorporating mechanistic processes of disease 

transmission into data-driven approaches that may be otherwise blinded to them.  

Because dengue transmission is driven by multiple complex socioecological 

and biological factors, we expect our models to capture only a portion of the 

epidemiologic triangle. Here we show the performance of two simple and relevant 

weather indicators of dengue fever, but the incorporation of additional weather 

features (i.e. humidity, vegetation, soil water absorption) combined with a feature 

selection step may lead to improved accuracy of forecasts, by considering more 

complex weather conditions preceding dengue outbreaks. Further, weather- and 

susceptibility-based models can contribute valuable information to larger ensemble 

approaches leveraging a collection of mobility, sociodemographic, epidemiologic, 

climatic, and biological information. 

Our approach also showcases the feasibility (and limitations) of predicting 

in a “small data” setting, wherein only 17 outcome data points were available (each 

representing annual outbreak status between 2001-2017). We chose a short training 

period (initial 7 years) to maximize the number of out-of-sample predictions, but 

ultimately it is difficult to establish strong climatic distinctions between outbreak 

and non-outbreak years in the data with so few samples. Thus, we anticipate 

improvement in performance for settings that have multiple decades of data, which 

would allow for longer training periods, improved separability in the data, and more 
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stable identification of dengue susceptibility cycles, all improving the quality and 

robustness of predictions. 

Ultimately, this framework provides a simple, reproducible method of 

predicting dengue fever outbreak years in a wide range of locations. Given that the 

global and economic burden of dengue is placed at an estimated 390 million 

infections and $8.9 billion per year[11,36], optimizing resource allocation for the 

disease prevention is critical. However, control of the Aedes mosquito requires 

weeks or months before effects are seen on the vector population, so predicting 

dengue outbreaks up to several months of their onset is ideal. Our reproducible 

approach, which uses of globally-available data with daily resolution, is intended 

to serve as an unsupervised learning framework to produce early outbreak warnings 

in any desired context, resulting in more efficient resource mobilization, budgeting, 

and prevention campaigns. Developing transparent early warning systems at the 

local level is emerging as a top global health priority, making our contribution both 

timely and impactful. 

 

3.4 MATERIALS AND METHODS 

We developed a single, flexible modeling framework capable of identifying 

potentially useful weather patterns to predict dengue fever, and used this to forecast 

annual outbreak status (epidemic / non-epidemic). 

Our workflow, outlined in Fig. B.1, combines elements from signal 

processing/spectral analysis, machine learning, and ensemble modeling to achieve 

robust, data-driven epidemic forecasts that do not require any prior knowledge of 
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the system (i.e. climatic influences on dengue transmission). Our research question 

is inherently one of time series classification, to forecast epidemic vs. non-epidemic 

years of dengue fever. The workflow begins with a time series of hourly and daily 

weather information, which serve as inputs to a collection of classifiers that 

contribute to ensemble-based epidemic predictions. Our approach can be described 

in 5 steps: 

1. Signal preprocessing: for a time series of weather data, define time 

intervals of varying sizes (10-95 days across the last 7 months of the 

calendar year), and use a windowing technique to include 

information within several days of the interval 

2. Time series feature extraction: extract summary measures for 2 

weather variables with known influence on mosquito-borne disease 

dynamics, temperature and precipitation 

3. Independent model training and prediction: train a collection of 

independent support vector machine (SVM) classifiers on historical 

information from each unique time interval, and generate an out-of-

sample epidemic prediction for the following year 

4. Model selection: choose the best 11 models, representing strongly 

predictive periods of the year preceding outbreaks, based on a) 

historical out-of-sample prediction accuracy and b) out-of-sample 

performance of neighboring time intervals 

5. Ensemble prediction: determine a final out-of-sample epidemic 

forecast by majority vote of the selected top models 
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 �
To potentially enhance the performance of this exclusively weather-based 

approach, we implemented a post-hoc step incorporating empirical information on 

3- and 4-year dengue fever cycles as a proxy for population susceptibility to 

infection. 

6. Dengue cycles: implement a decision rule governed by the second- 

and third-order Markov transition probabilities, reflecting the 

transition between consecutive sequences of epidemic and non-

epidemic states 

 �
We applied our approach to 20 cities in Brazil spanning large geographic 

and population ranges (Fig. 3.1, Table B.1). We used as input a historical time series 

spanning 17 years and consisting of information on dengue case reports (number, 

annual) and 2 weather variables: 2-meter air temperature (Kelvin, daily) and 

precipitation (kg/m2, hourly). We describe data sources, acquisition, and processing 

in the Supporting Information. After an initial training period of 7 years, we 

generated 10 years of out-of-sample epidemic predictions for each of the 

independent models using a one-year expanding training window (Step 2). We used 

the first 4 years of out-of-sample predictions to inform ensemble model selection 

(Step 4), and produced ensemble-based predictions for the remaining 6 years (Step 

5). 

�

3.4.1 SIGNAL PREPROCESSING 

Using a daily time series of weather data to forecast dengue fever epidemic 

status requires identifying the most predictive period(s) of the calendar year during 
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which weather information contains a strong signal for subsequent dengue fever 

outbreaks. In order to construct a single framework that can automatically identify 

important weather signals in multiple different locations with vastly different 

ecosystems and weather patterns, we allow the data to inform the choice of time 

intervals. Our algorithm achieves this by scanning over multiple, partially-

overlapping time intervals across the calendar year, and building hundreds of 

models on these different intervals in order to select those with the strongest signals. 

Each time interval is defined by a start date, t0, between early June and late 

September, and a period length, p, of between 10 and 95 days. The combination of 

each (t0, p) produces multiple, partially-overlapping intervals spanning the last 7 

months of the calendar year. 

Borrowing from spectral analysis and wavelet decomposition, we use a 

windowing-inspired approach to better capture signals within the time intervals. 

Windowing is typically used to improve signal clarity, and here we apply a 

rectangular “range” as described in[30] to incorporate information in the days both 

within and around each time interval. We define a rectangle of 5 x 6, indicating 

that, for every defined (t0, p) time interval, the algorithm collects information from 

5 consecutive start dates, t0, t0+1, … , t0+4, spanning 6 consecutive period lengths, 

p, p+1, … , p+5. Each time interval and weather variable, then, is summarized by 

30 data points, each capturing slightly different temporal slices from the time series. 

This process effectively adds a bit of redundant information to the model building 

process - to which our learning algorithm, the support vector machine, is in general 
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robust - in order to pick up signals in the data that may not be captured by applying 

an arbitrary “start” and “end” cutoff to the data. 

 
3.4.2 TIME SERIES FEATURE EXTRACTION 

�
Time series data must be transformed into appropriate inputs in order to be 

used in supervised learning models. This process, called time series feature 

extraction, involves computing summary features of the time series, which can 

range from simple means to complex wavelet transforms. To test the feasibility of 

our approach using only simple summary features, we extracted the following 

features within each (t0, p) time interval based on the findings of[30]: 1) the 

arithmetic mean of daily temperature, and 2) mean precipitation frequency, with 

frequency defined as the time interval (in days) between peaks (local maxima) of 

daily precipitation. 

  

3.4.3 INDEPENDENT MODEL TRAINING AND PREDICTION 

The goal of our independent model building step is to identify dynamically, 

through the continually-updating performance of a collection of models, the periods 

of the year that are most predictive of annual dengue outbreaks, in order to exploit 

a small number of them to generate forecasts.  

To forecast outbreak years, we trained a collection of support vector 

machine (SVM) classifiers on an initial 7 year training period, and produced annual 

forecasts incorporating the most recently available weather information using a 

dynamic, one-year expanding training window. A unique SVM was trained for each 

of the (t0, p) time intervals, resulting in a total of 432 independent models trained 
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per year. Each model generated out-of-sample predictions for the remaining 10 

years of data. Predictions were made by classifying the 30 out-of-sample data points 

corresponding to the weather information preceding the target year, and taking a 

majority vote. In order to handle highly nonlinear relationships between weather 

variables, both radial basis function (RBF) and sigmoid kernels were used and 

evaluated for performance, and show results for the best respective kernel in each 

city. We tuned model parameters (gamma, soft margin cost function, and 

coefficient) using 10-fold cross-validation. 

Support vector machines, a supervised learning method for classification, 

were used because of their flexibility in the face of complex, nonlinear decision 

boundaries and their robustness to overfitting and outliers. The property that 

underpins these advantages is known as the “large-margin classifier.” SVMs are 

also known for their good performance in high-dimensional feature space, which is 

advantageous for the scale-up of the model to include dozens more predictors. 

 

3.4.4 MODEL SELECTION 

From the resulting collection of 432 models, the best-performing models 

(n=11) were selected each year based on a) historical out-of-sample prediction 

accuracy (% outbreak forecasts correct) and b) out-of-sample prediction accuracy 

of neighboring models (representing similar time intervals). These models thus 

represent strongly predictive periods of the year preceding outbreaks, and the 

algorithm rewards the high performance of similar temporal windows over the high 

performance of a time window whose neighbors exhibit poor prediction tendencies. 
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Because the model building process is dynamic, resulting in a new collection of 

models each year with continually-updating performance measures, the selection 

of the 11 models changes from year to year.  

In order to get a sense of the out-of-sample performance of the 432 models, 

we allowed all models to generate 4 years of out-of-sample predictions before the 

top 11 models were selected based on this prediction accuracy. As a result, the 

ensemble approach, which exploited the predictions of the top 11 models, was used 

for the final 6 years of out-of-sample predictions. 

 �
3.4.5 ENSEMBLE PREDICTION 

Ensemble learning helps improve machine learning algorithms by 

combining the results of multiple trained predictors in order to generate a single, 

robust prediction. In our approach, we combine the results from the strongest-

performing models, which represent the most highly predictive time periods 

preceding dengue outbreaks. While there are an abundance of ensembling methods 

in machine learning, we use a simple majority vote of the 11 models to decide a 

single forecast. These single forecasts were produced for the last 6 years of the 17-

year dataset, representing the culmination of a prediction process that involves: 7-

year initial training period, 4-year out-of-sample model calibration period, and 6-

year out-of-sample ensemble prediction period. Across 20 Brazilian municipalities, 

this scheme produced 120 municipality-years of out-of-sample ensemble 

predictions. 

 

3.4.6 DENGUE CYCLES 
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Our weather-based ensemble approach remains ignorant to the relationship 

between weather patterns and dengue outbreaks, instead allowing the data to drive 

model selection and predictions. However, endemic transmission of dengue fever 

is typically distinguished by periodic outbreak cycles of around 3-4 years. These 

outbreak cycles are thought to occur as a result of 1) an exhaustion of susceptibles 

after an outbreak, and 2) and short-term cross-immunity to other circulating DENV 

serotypes after infection[20]. Both factors result in a depletion of the population 

vulnerable to infection, and act as barriers to subsequent outbreaks. Independent of 

climate variability over the years, we expect some preservation of these cycles.  

Consequently, we implemented a “decision rule” in the model based on the 

observed transitions between epidemic- and non-epidemic years across 51 

Brazilian municipalities meeting endemic inclusion criteria (Supplemental 

Information). Across these municipalities, we computed the mean second- and 

third-order Markov transition probabilities, representing the probability of 

transition from one outbreak state (epidemic/non-epidemic) to the opposite 

outbreak state (non-epidemic/epidemic) after 2 and 3 consecutive years, 

respectively. Thus, we obtained the transition probabilities governing the following 

3- and 4-year cycles: 001, 110, 0001, and 1110 (0= non-epidemic year, 1= epidemic 

year). Transition probabilities were computed based only on the first 11 years of 

data; that is, the years preceding the 6 out-of-sample ensemble predictions. 

Our decision rule acts as a surrogate “expert opinion,” overturning the 

ensemble prediction if the probability of a specific transition exceeded the percent 

of model votes (out of 11 votes). For example, if the ensemble predicts an epidemic 
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year to succeed 2 epidemic years with 7 votes, the corresponding “strength” of that 

vote is 63% (7/11), which is weaker than the corresponding observed second-order 

transition probability for a non-epidemic year to follow 2 epidemic years (0.71). In 

this case, the model vote would be overridden to predict a non-epidemic year 

instead of an epidemic year. 

We compared the performance of predictions based solely on weather 

patterns to those which incorporate additional empirical data from outbreak cycles. 
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Nowcasting by Bayesian Smoothing: A flexible, 

generalizable model for real-time epidemic 

tracking 

4.0 ABSTRACT 

Delays in case reporting are common to disease surveillance systems. One 

major consequence is that disease activity is not fully known until days or weeks 

later, giving surveillance bodies an incomplete picture of current disease activity at 

a given moment in time. Nowcasting, or “predicting the present,” offers a solution 

to the issue of reporting delays. Here, we introduce Nowcasting by Bayesian 

Smoothing (NobBS), a simple and flexible Bayesian model for nowcasting 

infectious diseases in different settings. Specifically, we show the performance of 

this approach in weekly nowcasts of dengue fever cases in Puerto Rico and 

influenza-like illness (ILI) cases in the United States over multiple years, requiring 

no disease-specific parameterization despite being very different diseases (directly 

transmitted vs. vector-borne) and exhibiting substantially different reporting 

delays. This method allows for both uncertainty in the delay distribution and the 

time evolution of the epidemic curve, producing smooth, time-correlated estimates 

of cases. We test NobBS against an established Bayesian nowcast method(9) and 

find that NobBS outperforms this benchmark for both diseases and over multiple 

time periods. In particular, we show that while point estimates of the models are 

similar when time-to-report distributions are relatively fixed over time, NobBS 
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improves the estimation of uncertainty and accommodates temporal variation in 

delay probabilities. 

 
4.1 INTRODUCTION 

Effective public health action relies on disease surveillance that is timely 

and accurate, especially in disease outbreaks(1, 2). Specifically, surveillance 

provides the information required to assess risks, prioritize and allocate resources 

to public health threats, deploy and discontinue interventions to interrupt disease 

transmission, and monitor the impact of those interventions. Ideally, disease 

surveillance systems should closely track the often fast-changing circumstances of 

outbreaks, distinguishing true changes in the dynamics from artifacts of reporting. 

Despite the importance of timely surveillance data, substantial challenges 

exist to collect and report case information in real time. Multiple features of the 

disease and surveillance system contribute to reporting delays, including: delays in 

symptoms onset after infection; delays in medical care-seeking after onset; delays 

in providers obtaining and reporting diagnostic information; level of awareness of 

disease activity influencing care-seeking and reporting; and system-level 

processing delays, a result of complex and multi-tiered disease reporting and 

communication systems interacting at multiple administrative levels(3). Reporting 

delays can be further exacerbated in resource-constrained settings. As a 

consequence, surveillance data are typically not complete until weeks or months 

after infections have actually occurred, providing an incomplete picture of current 

disease activity. 
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Nowcasting, or “predicting the present,” is an approach to mitigate the 

impact of reporting delays. With origins in the insurance claims and actuarial 

literature(4, 5), nowcast models aim to estimate the number of occurred-but-not-

yet-reported events (e.g. insurance claims, disease cases) at any given time based 

on an incomplete set of reports. In public health settings, nowcasting approaches 

have been explored for AIDS in the 1980s and 1990s(6–8) as a consequence of the 

long incubation period from HIV infection until development of AIDS. More 

recently, nowcasting has been applied to infectious disease outbreaks such as 

foodborne illness outbreaks(9, 10). These studies draw principally on survival 

analysis and actuarial techniques to model the reporting delay and draw inferences 

based on historical patterns. Infectious disease nowcast models have largely 

focused on specific applications, not the common challenges that exist across many 

different diseases. These studies have strictly focused on modeling the reporting 

delay distribution—a legacy of the actuarial techniques giving rise to many of these 

approaches—and generally neglect a key feature of outbreaks: that future cases are 

intrinsically linked to past reported cases, a fact that creates potentially strong 

autocorrelation in the true number of cases over short time intervals. In other words, 

the infectious disease transmission process provides an additional signal of the 

number of cases to be expected in the near future. Lastly, previous models have 

largely focused on providing point estimates of the number of cases. Point estimates 

are useful, but quantifying the uncertainty in those estimates may provide critical 

context for users of surveillance data. 
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Here, we introduce Nowcasting by Bayesian Smoothing (NobBS), a simple 

and flexible generalized Bayesian model for nowcasting infectious diseases in 

different settings. Specifically, NobBS allows for both uncertainty in the delay 

distribution and the time evolution of the epidemic curve, producing smooth, time-

correlated estimates of cases. We show the performance of NobBS in weekly 

nowcasts of dengue fever cases in Puerto Rico and influenza-like illness (ILI) cases 

in the United States over multiple years, requiring no disease-specific 

parameterization despite being very different diseases (directly transmitted vs. 

vector-borne) and exhibiting substantially different reporting delays. We test 

NobBS against an established Bayesian nowcast method(9) and find that NobBS 

outperforms this benchmark for both diseases and over multiple time periods. In 

particular, we show that while point estimates of the models are similar when time-

to-report distributions are relatively fixed over time, NobBS improves the 

estimation of uncertainty and accommodates temporal variation in delay 

probabilities. 

 

4.2 RESULTS 

We developed a Bayesian approach to nowcast total case numbers using 

incomplete, time-stamped reported case data based on an estimated delay 

distribution, intrinsic autocorrelation from the transmission process, and historical 

case data. Generally, the approach learns from historical information on cases 

reported at multiple delays (e.g. no delay, 1-week delay, 2-week delay, etc.) from 

the date of case onset to estimate the reporting delay probability at each delay and 
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the relationship between case counts from week-to-week, and uses this to predict 

the number of not-yet-reported cases in the present. We tested this approach, 

NobBS, using two different infectious disease surveillance data sources: dengue 

fever surveillance in Puerto Rico, and national notifications of influenza-like illness 

(ILI) in the United States. Using all of the available data on case reporting delays 

up to the point of prediction, weekly dengue nowcasts were estimated for the time 

period December 23, 1991 through November 29, 2010 (989 weeks), and weekly 

ILI nowcasts were produced over the period June 30, 2014 through September 25, 

2017 (170 weeks). For comparison, we generated weekly nowcasts over the same 

periods using an existing Bayesian approach (9). To access a large amount of 

historical data relative to the length of each time series, dengue fever models used 

a 104-week (approximately 2-y) moving window while the ILI models used a 27-

week (approximately 6-mo) moving window. Our primary outcome metric to 

assess nowcast performance was the logarithmic score, a proper score that evaluates 

the probability assigned to the observed outcome rather than error associated with 

a point prediction. For purposes of discussion, we reported the exponentiated form 

of the mean logarithmic score (the geometric mean of the assigned probabilities) to 

provide a metric on the scale of 0 (no certainty of the outcome) to 1 (complete 

certainty of the outcome). In addition, we estimated other metrics describing the 

performance of point estimates (mean absolute error (MAE), root mean square error 

(RMSE), and relative root mean square error (rRMSE)) and the prediction interval 

(95% prediction interval (PI) coverage), and of these, focus on comparing the 

rRMSE and 95% PI coverage across approaches. 
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4.2.1 PERFORMANCE IN FORECASTING WEEKLY DENGUE AND INFLUENZA INCIDENCE 

Figs. 4.1-4.2 show weekly dengue fever and ILI nowcasts for NobBS and 

the benchmark approach over multiple seasons for both diseases. Table 4.1 

summarizes the point and probability-based accuracy metrics for each, where 

higher accuracy is indicated by lower MAE, RMSE, and rRMSE, higher average 

scores, and lower distance from 0.95 for the 95% prediction interval (PI) coverage. 
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Figure 4.1. Weekly dengue fever nowcasts for December 23, 1991 through December 25, 2000 
using a 2-year moving window. (A) NobBS nowcasts along with (B) point estimate and 
uncertainty accuracy, as measured by the log score and the prediction error, are compared to (C) 
nowcasts by the benchmark approach with (D) corresponding log scores and prediction errors. For 
nowcasting, the number of newly-reported cases each week (blue line) are the only data available 
in real-time for that week, and help inform the estimate of the total number of cases that will be 
eventually reported (red line), shown with 95% prediction intervals (pink bands). The true number 
of cases eventually reported (black line) is known only in hindsight and is the nowcast target. 
Historical information on reporting is available within a 104-week moving window (grey shade) 
and used to make nowcasts. The log score (brown line) and the difference between the true and 
mean estimated number of cases (grey line) are shown as a function of time.  
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Figure 4.2. Weekly ILI nowcasts for June 30, 2014 through September 25, 2017 using a 6-month 
moving window. (A) NobBS nowcasts along with (B) point estimate and uncertainty accuracy, as 
measured by the log score and the prediction error, are compared to (C) nowcasts by the 
benchmark approach with (D) corresponding log scores and prediction errors. For nowcasting, the 
number of newly-reported cases each week (blue line) are the only data available in real-time for 
that week, and help inform the estimate of the total number of cases that will be eventually 
reported (red line), shown with 95% prediction intervals (pink bands). For the benchmark 
approach, the 95% prediction intervals are very narrow and are thus difficult to see. The true 
number of cases eventually reported (black line) is known only in hindsight and is the nowcast 
target. Historical information on reporting is available within a 27-week moving window (grey 
shade) and used to make nowcasts. The log score (brown line) and the difference between the true 
and mean estimated number of cases (grey line) are shown as a function of time.  
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Table 4.1. Performance measures for each nowcast approach by disease (mean % reported with no delay). 
  

         

Disease Model Period % of weeks 
predicted 

Average 
Score MAE RMSE rRMSE 95% PI 

coverage 

Dengue NobBS Full time period* 100% 0.349 16 37.6 0.600 0.87 

(4%)   Weeks in which at least 1 
case was reported in the first 
week 

-- 0.274 21 46.6 0.464 0.85 

 
  

       
 

Benchmark (ref. 9) Full time period* 55% -- 32 57.4 1.14 -- 
 

  Weeks in which at least 1 
case was reported in the first 
week 

-- 0.161 37 68.1 1.24 0.91 

Influenza NobBS Full time period* 100% 0.218 693 987.8 0.074 1.00 
(82%)   

       

 
Benchmark (ref. 9) Full time period* 100% 0.017 609 916.2 0.062 0.00          

         

*Full time period for: dengue fever (12/23/1991-11/29/2010) and ILI (6/30/2014-9/25/2017) 
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Because the NobBS model accounts for both under-reporting and the 

autocorrelated progression of transmission across successive weeks, it makes 

predictions even in weeks when there are no cases reported for the week. 

Conversely, the benchmark model does not make nowcasts for weeks in which 

there are no initial case reports (common in the dengue Puerto Rico data), hence 

the nowcasts in Figs. 4.1C and 4.2C appear as discontinuous lines. To account for 

these differences, we report accuracy metrics between NobBS and the benchmark 

approach for both (1) the full time series of the data and (2) weeks when at least 

one case was reported in the first week, i.e. the subset of weeks for which both 

models could make predictions (Table 4.1). To compare the full time series of 

nowcasts across approaches, even in the absence of predictions by the benchmark 

model, we assigned missing estimates a point prediction of 0 but did not calculate 

a penalized log score for those weeks. 

The benchmark approach made predictions in only 55% of weeks in the 

dengue fever time series (Table 4.1). In this subset of weeks, the NobBS approach 

achieved relatively smooth and accurate tracking of the dengue fever time series 

(rRMSE = 0.464, average score = 0.274) despite low proportions of cases reported 

on the week of onset (Fig. 4.1A-B). The 95% prediction interval (PI) coverage, 

defined as the proportion of times the 95% PI included the true number of cases, 

was 0.85. In comparison, the benchmark approach produced less accurate point 

estimates and slightly broader uncertainty intervals (rRMSE = 1.24, average score 

= 0.161, 95% PI coverage = 0.91) with greater fluctuation in nowcasts from week-

to-week (Fig. 4.1C-D). Because many weeks in the dengue data were low 
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incidence, assigning a prediction of 0 to the benchmark approach’s missing 

nowcasts improved its rRMSE to 1.14 in the full time series, though NobBS still 

far exceeded the accuracy of this and all other metrics (Table 4.1). 

Nowcast point estimates tracked the ILI time series well for both 

approaches, though with greater error in point estimates by all measures for the 

NobBS approach (NobBS rRMSE = 0.074 vs. benchmark rRMSE = 0.062; see 

Table 1 for other metrics). However, the NobBS approach produced considerably 

wider prediction intervals (Figs. 4.1C, 4.2C) resulting in both higher log scores 

(NobBS average score = 0.218 vs. benchmark average score = 0.017) and 100% 

coverage by the 95% prediction intervals compared to 0% coverage for the 

benchmark (Table 4.1). 

To quantify the smoothness of the predictions of NobBS, particularly in the 

dengue time series, we calculated the 1-week lagged autocorrelation of predictions 

(ρa) and compared this to the 1-week lagged autocorrelation of cases (ρc). In 

addition, we computed metrics reflecting the accuracy of the approaches in 

capturing the change in cases from week-to-week: the mean absolute error of the 

change (MAEΔ) and the RMSE of the change (RMSEΔ) (Table 4.2). The formulae 

for these additional metrics are provided in Materials and Methods. Because some 

weeks experienced no change in case numbers from the previous week, we did not 

calculate the rRMSE. Comparing the full time series, the nowcasts produced by 

NobBS exhibited high autocorrelation for both diseases (ρa = 0.876 for dengue, 

0.973 for ILI) while the benchmark approach yielded lower autocorrelation for 

dengue fever nowcasts, comparatively (ρa = 0.631 for dengue, 0.970 for ILI). 
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Further, the autocorrelation of NobBS nowcasts was closer to that of the true cases 

for both diseases (ρc = 0.958 for dengue fever and ρc = 0.972 for ILI). For dengue, 

over the weeks in which at least 1 case was initially reported, the NobBS approach 

achieved both lower mean absolute difference between predicted and observed 

changes in cases (NobBS MAEΔ = 23 vs. benchmark MAEΔ = 50) and lower 

RMSE of the change (NobBS RMSEΔ = 35.8 vs. benchmark RMSEΔ = 64.6). In 

addition, NobBS outperformed the benchmark approach over the full time series of 

dengue cases (Table 4.2). For ILI, however, the metrics for the weekly change were 

similar for the two approaches (Table 4.2). For reference, dengue cases changed in 

absolute value by on average 9.79 cases/week and ILI by 1,312.6 cases/week. 
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Table 4.2. Performance measures for estimates of the change in disease incidence from the previous week. 

Model 

 
Dengue (mean cases/week=48) Influenza (mean cases/week=14,000) 

Period MAEΔ RMSEΔ ρa ρc MAEΔ RMSEΔ ρa ρc 
NobBS Full time period* 17 35.8 0.876 0.958 669 1027.1 0.973 0.972 

  Weeks in which at least 1 case 
was reported in the first week 

23 45.2 -- -- -- -- -- 
 

  
     

  
   

Benchmark (ref. 
9) 

Full time period* 34 64.6 0.631 0.958 612 1004.2 0.970 0.972 
 

Weeks in which at least 1 case 
was reported in the first week 

50 88.2 -- -- -- -- -- 
 

          

*Full time period for: dengue fever (12/23/1991-11/29/2010) and ILI (6/30/2014-9/25/2017) 
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4.2.2 REPORTING DELAYS IMPACT NOWCAST PERFORMANCE 

The delay distributions between the reporting systems are strikingly 

different (Figs. 4.1, 4.2, C.1). In the case of the dengue fever surveillance system, 

which includes specimen collection and laboratory testing, only approximately 4% 

of cases were processed during the week of onset, on average. In contrast, the U.S. 

Outpatient Influenza-like Illness (ILI) Surveillance Network (ILINet) captures only 

syndromic data reported electronically, with over 80% of ILI cases reported, on 

average, the same week they present (i.e. with no delay). Overall, we observed that 

the accuracy of nowcast point estimates (rRMSE) was higher for the ILI data 

compared to dengue, which may be related to the high proportion of cases reported 

with 0-weeks delay in these data. In addition, in several weeks of the time series 

we observed that the error of model predictions was larger when there were larger 

absolute changes in the number of cases initial case reports – a finding that is 

especially true for dengue fever, which experienced high fluctuations in the number 

of initial reports over time (Table C.1, Fig. C.2). Note that because of the difference 

in predictive distribution bin widths based on the number of cases that accrue for 

influenza vs. dengue fever (Materials & Methods), average scores are not 

comparable across diseases. 

 

4.2.3 NOBBS IMPROVES NOWCASTING WITH VARYING REPORTING DELAYS 

Dengue fever and ILI also exhibit differences in the trends of reporting 

delay probabilities over time. For dengue fever, we observe a noisier, more time-

varying probability of reporting for cases, with more extreme fluctuations in the 
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proportion of initial reports compared to ILI cases, which show more constant 

(tighter ranges of) reporting probabilities from week-to-week (Fig. C.3). 

Independent of the initial proportion of cases reported (high vs. low), we 

hypothesized that these trends (relatively constant vs. time-varying) are particularly 

impactful on the performance of the nowcast, and that relatively constant reporting 

probabilities, as seen in the ILI data, may be linked to the higher accuracy of these 

predictions. 

To test the robustness of the model, we simulated ILI data using the final 

counts from the true dataset, but imposing a time-varying delay distribution; 

specifically, with faster initial reporting during weeks of high incidence (described 

in Materials and Methods). Using these simulated data, we found that NobBS was 

relatively robust to changes in reporting delays (Fig. C.4, Table C.2). In the context 

of stable reporting delays (original ILI data), NobBS performed comparably to the 

benchmark model (Fig. 4.2, Table 4.1). However, NobBS outperformed the 

benchmark in terms of point estimates (NobBS rRMSE = 0.302 vs. benchmark 

rRMSE = 0.621), uncertainty estimates (NobBS average score = 0.06 vs. 

benchmark average score ≈ 0), and accuracy of the predicted change (Table C.3) in 

the presence of more time-varying reporting delays (simulated ILI data), a reality 

in many epidemics(11). 

 

4.2.4 PERFORMANCE BY YEAR 

The performance of ILI nowcasts across accuracy measures was relatively 

consistent by year, but there were fluctuations in the year-to-year performance of 
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both approaches applied to dengue data (Table 4.3). In general, nowcast point 

estimates for dengue were more accurate during the first half of the series (1992-

2000) compared to the second half (2001-2010), with rRMSE’s nearly doubling 

after 2000. In addition, average scores tended to be high in years that experienced 

a very low number of dengue cases (e.g. 2000, 2002, 2004, 2006). The model was 

particularly effective at identifying periods of low incidence, with high 

probabilities assigned to the correct outcome bin (width = 25 cases, details in 

Materials and Methods) when the number of cases eventually reported was low 

(Fig. C.5). On the other hand, during periods of high dengue activity, lower 

probabilities were assigned to the correct bin, a feature of the bin size (fixed at 

width = 25 cases) containing a smaller fraction of the predictive distribution. 

Overall, NobBS outperformed the benchmark approach on all performance 

measures across individual years (Table 4.3).  

Both approaches had their lowest accuracy on three high incidence dengue 

seasons: 1994, 2007, and 2010 (Table 4.3; Fig. 4.1). The average scores for these 

years range between 0.041 and 0.17 across the NobBS and benchmark approaches, 

falling clearly below the rest of the years in performance. These scores not only 

reflect unusually poor point estimate predictions as judged by rRMSE, but also the 

finding that the predictive distribution for weeks in these years for both approaches 

rarely included the true value of interest (a consequence of dramatic over- or 

underestimates), resulting in many estimates being assigned log scores of -10. 
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Table 4.3. Annual performance measures for each nowcast model, by disease. All 
predicted weeks for each model are compared.  

 

  

Disease 

  
NobBS Benchmark (ref. 9) 

Year Cases MAE rRMSE RMSE Average 
Score 

MAE rRMSE RMSE Average 
Score 

Dengue 1992       3,570  15 0.271 19.7 0.262 27 0.473 33.2 0.154 
  1993       2,044  10 0.325 13.0 0.436 20 0.559 23.5 0.237 
  1994       5,455  29 0.356 45.9 0.171 50 0.690 63.3 0.108 

  1995       2,075  13 0.450 16.2 0.330 28 1.035 38.4 0.178 
  1996       1,856  8 0.520 11.0 0.472 17 0.617 21.9 0.270 
  1997       2,413  12 0.375 16.2 0.402 20 0.625 26.7 0.228 
  1998       5,334  33 0.448 47.8 0.129 65 0.801 89.9 0.072 
  1999       1,823  9 0.389 11.9 0.493 18 0.897 23.5 0.250 
  2000          766  4 0.359 6.1 0.720 17 2.225 20.2 0.304 
  2001       2,274  11 0.487 16.6 0.437 26 0.492 37.7 0.189 
  2002          821  5 0.522 5.7 0.834 16 1.101 23.0 0.352 
  2003       1,422  6 0.471 9.5 0.590 32 1.412 47.5 0.193 
  2004          911  6 0.599 7.2 0.610 13 2.088 17.0 0.368 
  2005       2,543  14 0.998 21.4 0.407 32 1.150 42.0 0.178 
  2006          734  4 0.891 6.3 0.770 13 1.211 15.8 0.395 
  2007       3,290  30 0.675 55.4 0.102 55 0.632 93.6 0.066 
  2008          843  8 1.032 12.8 0.629 38 4.145 50.7 0.191 
  2009       2,448  19 0.667 26.7 0.225 57 2.405 81.9 0.092 
  2010       6,820  71 0.583 132.4 0.055 121 0.854 198.7 0.041 
Influenza 2014    726,312  1052 0.085 1565.9 0.188 958 0.091 1482.0 0.004 

 
2015    679,850  685 0.086 890.3 0.203 624 0.069 848.0 0.019 

 
2016    704,020  696 0.072 861.8 0.224 376 0.043 480.1 0.063 

 
2017    632,353  551 0.046 712.9 0.258 659 0.047 934.2 0.008 
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4.2.5 MOVING WINDOW SIZES 

To leverage a large number of historical training weeks while also 

considering the number of available weeks in the time series, we chose moving 

windows of 104 weeks (approx. 2-y) for dengue fever (a longer time series) and 27 

weeks (approx. 6-mo) for ILI (a shorter time series). On the one hand, moving 

windows allow for a more stable estimation of the recent delay distribution, as 

information from very old and potentially less relevant weeks are forgotten. On the 

other hand, the size of the moving window reflects judgment on how quickly and 

smoothly changes in the data should be realized by the model: longer moving 

windows tend to produce smoother estimates, but the model may be less sensitive 

to abrupt changes in the data (e.g. changes in how quickly cases are reported during 

an outbreak) or shorter-interval secular trends, e.g. seasonality. 

While we chose long moving windows to capitalize on data availability, 

these considerations may affect the choice of moving window size and nowcast 

performance, depending on the data. In light of this, we experimented with moving 

windows of different lengths to assess the impact on nowcast performance with 

dengue fever data. We tested moving windows of 5, 12, and 27 weeks (approx. 6 

months) and found that accuracy metrics were similar for moving windows of 12 

weeks or longer (range in rRMSE: 0.6-0.655; average score: 0.35-0.37) (Table C.4; 

Fig. C.6). A 5-week moving window, however, produced substantially lower 

accuracy nowcasts (rRMSE = 7.381) with several steep case overestimates in 2007-

08 and 2010 (Fig. C.6A). 
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4.3 DISCUSSION 

We introduce a new approach for Bayesian nowcasting and demonstrate 

its application in two disease contexts with different reporting systems, 

outperforming an existing method in terms of point estimate (reduced RMSE) and 

probabilistic (higher logarithmic score) predictive performance. In particular, 

NobBS performs well even when the delays in case reporting change over time. 

Lacking any disease-specific parameterization, and relying only on historical 

trends of case reporting as input, this approach can be immediately adapted in a 

variety of disease settings. 

Across diseases, NobBS outperformed the benchmark approach on 

accuracy of uncertainty estimates, and produced comparable or better point 

estimates. For the subset of weeks in which both models could produce forecasts 

(week with at least one case initially reported), point estimates for NobBS were 

substantially more accurate than the benchmark model for dengue cases (rRMSE 

improved by 300%) and slightly less accurate for ILI cases (rRMSE decreased by 

19%). However, analysis of the probability distributions of the nowcasts revealed 

a much more substantial difference; the average score for NobBS was 

approximately twice as high for dengue and more than 10 times as high for ILI 

cases (Table 4.1). This indicates that the NobBS approach assigned much higher 

probability to the actual outcome, even at the cost of some point accuracy for the 

ILI cases.  

 While utilizing a similar modeling structure on case reporting delays as in 

ref.(9), NobBS introduces a simple dependency between case counts over time; 
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that is, changes in case counts between weeks are assumed to be related via a 

first-order random walk process on the logarithmic scale. This feature is critical in 

the context of infectious disease transmission, where the number of true infections 

in a given week mechanistically depends in part on the number of true infections 

in previous weeks due to the infectious process, whether the pathogen is 

transmitted directly or by vectors (12). Hence, variations of autoregressive models 

are common in disease forecasting(13, 14). When reporting delays are time-

varying, as is often the case in epidemics(11), we show that the NobBS approach 

is less accurate, but still shows improvement over the benchmark approach likely 

because the NobBS approach is informed by the number of cases experienced in 

previous weeks, not just the delay distribution, making it more robust to larger 

fluctuations.  

The accuracy of predictions is related at least in part to the number of 

cases reported to the surveillance system in week 0. When a larger proportion of 

cases were reported with no delay, as was the case for ILI compared to dengue, 

the point estimate accuracy was higher. This is not surprising, as a large fraction 

of true cases reported initially leaves fewer cases left to predict. 

We also observe greater volatility in the nowcasts when the initial number 

of cases reported increases suddenly from low values. Two weeks in the dengue 

time series highlight this: August 3, 1998 and August 16, 2010. In those weeks, 

the number of cases initially increased by 16 and 17, respectively, from the 

previous week. Over the previous 10 weeks, for comparison, the average absolute 

change in initial reports was, respectively, 2.6 and 1.8. Because this increase is an 
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outlier in the historically-observed distribution of reporting delays, in particular 

for delay d=0, the model substantially overestimated the true number of cases 

before correcting the following week. We observed that shorter moving windows 

either exacerbated this issue (e.g. in 2010) or did not produce much change (e.g. 

in 1998) (Fig. C.6), potentially because the number of cases initially reported with 

delay d=0 is small to begin with relative to the total number of cases reported 

across delays in previous weeks. While the smooth, autocorrelated relationship fit 

in the NobBS model helps reduce the effect of week-to-week variability in early 

reporting, it remains a challenge. 

Beyond supporting real-time disease tracking by public health officials, 

NobBS can complement existing disease forecast efforts by providing more 

accurate nowcasts to forecasting teams in the place of real-time reporting 

underestimates. It is common for teams in the CDC Epidemic Prediction Initiative 

(e.g. FluSight, Aedes Challenge) to experience poorer forecasts when using 

unrevised, surveillance data as inputs without accounting for reporting delays(15), 

and thus NobBS can help fill this time gap to improve prospective estimates as 

well. 

 

4.4 MATERIALS AND METHODS 

4.4.1 SURVEILLANCE DATA 

We collected data on approximately 53,000 cases of dengue fever in 

Puerto Rico and 2.77 million cases of ILI in the United States over a 21-year 

(1092 weeks) and 3.75-year (196 weeks) period, respectively. Time-stamped 
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weekly dengue data for laboratory-confirmed cases of dengue in Puerto Rico were 

collected by the Puerto Rico Department of Health and Centers for Disease 

Control and Prevention. The times used for the analysis were the time of onset as 

reported by the reporting clinician and the time of laboratory report completion. 

ILI data originated from the U.S. Outpatient Influenza-like Illness Surveillance 

Network (ILINet), which consolidates information from over 2000 outpatient 

healthcare providers in the United States who report to the CDC on the number of 

patients with ILI. The times used for the analysis were the week of ILI-related 

care seeking and the week when those cases were posted online in FluView 

(https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html) as collected in the 

DELPHI epidemiological data API (https://github.com/cmu-delphi/delphi-

epidata). ILI data with delays of more than 6 months occasionally had 

irregularities, so we restricted the analyses to delays of up to 6 months.   

 

4.4.2 SIMULATED ILI DATA 

To simulate ILI data with a time-varying probability of reporting delay 

d=0, we drew, for each week, Pr(d=0) from Unif(0.2, 0.9) for all weeks in which 

the total number of eventually-observed cases exceeded the approximate mean of 

the ILI series (14,000 cases), and from Unif(0, 0.65) for all weeks in which the 

total observed case count was less than or equal to 14,000. This probability was 

used to calculate the simulated number of cases that would be observed with d=0, 

out of the total number of cases that would be eventually observed for that week. 

The remaining cases were distributed to other delays ranging from 1-52 weeks 
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using NB(0.9,0.4). This produced a rough approximation for a hypothetical 

scenario in which cases are reported faster (higher probability of d=0) during 

weeks with higher disease activity (more cases). 

  

4.4.3 REPORTING TRIANGLE 

Delays in reporting are often structurally decomposed into a (T x D) 

dimensional “reporting triangle,” where T is the most recent week (“now”) and D 

is the maximum reporting delay, in weeks, observed in the data. The data are 

right-truncated, since at any given week t, delays longer than T – t cannot be 

observed. For example, at week t=T, only the cases reported with delay d=0 are 

observable; cases reported with longer delays (i.e. 1- or 2-week delays, d=1 or 

d=2) will be known in future weeks. In Table C.5, we present an example of the 

reporting triangle using ILI data. 

  For each week t, the goal of nowcasting is to produce estimates for the 

total number of cases eventually reported, Nt, based on an incomplete set of 

observed cases with delay d, nt,d. Since not every nt,d is observed for a delay d, but 

will be observed at some unknown time point in the future, Nt = sum(nt,d). 

  The NobBS approach is motivated by modeling the marginal cell counts 

of the reporting triangle, nt,d, in an adaptation of the loglinear chain ladder method 

developed in actuarial literature (16).  
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4.4.4 NOWCASTING BY BAYESIAN SMOOTHING (NOBBS) 

Let nt,d be the number of cases reported for week t with delay d. We assume that 

the underlying cases occur in a Poisson process such that 

!",$	~	'()*(,",$). 

We also allow for extra-Poisson variation, that is, when the variance is larger than 

the mean and a negative binomial process (of which the Poisson is a special case) 

is more appropriate. We apply this in the case of the influenza data: 

!",$	~	./(0, 1",$), where 

1",$ = 	0/(0 + ,",$). 

We then model the mean, ,",$ , as a simple log-linear equation  

5(6	7,",$8 	= 	9" + 5(6	(:$), 

where 9" represents the true epidemiologic signal for week t and :$ as the 

probability of reporting with delay=d. In other words, NobBS contains random 

effects for week t and the reporting delay d. Exponentiating both sides of the 

equation, it is clear to see that ,",$= ;<= ∗ :$.  

We place prior distributions on 9" and :$ reflecting properties of each 

parameter. Since :$ represents a probability vector containing delays = 0, …, D, 

we place on it a Dirichlet prior of length D:  

:$	~	?)0(@) 

@ = (@A, … , @C). 

The maximum delay D can be identified as the maximum observable delay in the 

data, which may change as the time series extends, or can be fixed at some value 

D thought to represent a very long delay. In the latter case, @C  can be modeled as 
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the probability of delay ≥ D. For dengue fever, we choose to fix D at 10 weeks, 

since over 99% of the cases observed in the first two years (prior to producing 

out-of-sample nowcasts) were reported within 10 weeks. For influenza, we chose 

D to be the longest possible delay within the 27-week moving window, or D=26. 

To be precise, the implications of choosing a maximum delay D within a moving 

window of W weeks means that the nowcast will be a slight underestimate, as the 

estimate for delays greater than or equal to D is based on partially-observed 

information from previous weeks, and delays longer than W are unobserved by 

the model (see the reporting triangle in Table C.5). Technically speaking, then, 

NobBS produces an underestimate for the number of cases that will eventually be 

reported within the moving window. However, since the vast majority (>99%) of 

cases are typically reported within delay D, we feel these model constraints are 

negligible. 

We place weakly informative priors on @ representing a small number of 

hypothetical total cases (10) distributed across delay bins, loosely representing the 

probability of reporting delays for each delay d observed in the first two years of 

data for dengue fever and the first 6 months of data for ILI (training periods).  

We allow a dependency between successive 9"’s to capture the time 

evolution and autocorrelation of cases from week-to-week, commonly exhibited 

by epidemic curves. We therefore model 9" as a first-order random walk: 

9"DE = .(0FG5(0, I<
J) 

9"KE~.(0FG5(9"LE, M<
J) 

Because 9" is in natural log form, this constitutes a geometric random walk.  
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We place weakly informative priors on the precisions of the Normal 

distribution, I<J=0.001 and M<J~NGFFG(0.01, 0.01). For the negative binomial 

stopping-time parameter, r, we place an informative Gamma(60,20) prior to 

reflect belief that the process deviates moderately from the Poisson. 

Models were compiled in JAGS on R (v 3.3.2) using the package “rjags” 

producing 10,000 posterior samples after a burn-in period of 100 iterations.  

 

4.4.5 NOWCAST ESTIMATES 

We produced weekly nowcasts beginning with the 27th week (influenza) 

and 104th week (dengue fever) and through the final week of the series. This 

resulted in 989 weekly out-of-sample estimates of dengue fever cases and 170 

weekly out-of-sample estimates of ILI. 

We used a two-year moving window to estimate a stable delay distribution 

within the window. As a sensitivity, and to gauge the minimum amount of 

historical information required to produce accurate nowcasts, we also applied 

moving windows of 5, 12, and 27 weeks (approximately 6 months).  

We used as a benchmark for comparison the “nowcast” function of the R 

package “surveillance” by Höhle and an der Heiden (described in ref. (9)) 

designed to produce Bayesian nowcasts for epidemics using a hierarchical model 

for nt, d ≤ T-t | nt,d , or the observed cases conditional on the expected total number 

of cases. We applied the function assuming a time-homogenous delay distribution 

and recommended parameterization described by the authors in 

http://staff.math.su.se/hoehle/blog/2016/07/19/nowCast.html, and for 
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comparability, used the same moving window sizes (27 and 104 weeks) to 

produce nowcasts over the same time periods. 

 

4.4.6 MODEL PERFORMANCE METRICS 

The mean absolute error (MAE), root mean square error (RMSE) and 

relative root mean square error (rRMSE) are defined, respectively, as: 

QRS	 = 	
1

!
TGU*(VW − YW)

Z

WDE

 

[Q\S =	]
1
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T(VW − YW)
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Z

WDE
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)J

Z

WDE

 

and were used to quantify the accuracy of point estimates, xi, compared to true 

case numbers, yi, across the different models. 

To quantify the accuracy of the point estimates in capturing the change in 

cases from week t-1 to week t, we computed the mean absolute error of the 

change (MAEΔ) and the RMSE of the change (RMSEΔ): 

QRS∆	= 	
1

! − 1
TGU*((YW − YWLE) − (VW − VWLE))

Z

WDJ

 

[Q\S∆=	]
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Z
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To capture smoothness in predictions from week-to-week, we also 

calculated the lag-1 autocorrelation of predictions (ρa):  

 

_` = 	
∑ (Z
WDJ YW − Y̅)(YWLE − Y̅)

∑ (Z
WDJ YW − Y̅)

J
 

The logarithmic scoring rule was used to quantify the accuracy of the 

posterior predictive distribution of the nowcast. Predictive distributions were 

assigned to a series of bins categorized across possible values of true case counts. 

We used bin widths of 25 cases for dengue fever and 1000 cases for influenza, 

allowing for a larger number of bins for ILI cases based on case ranges of approx. 

0-400 for dengue fever and 4,000-40,000 for ILI. For a predictive distribution 

with binned probability pi for a given nowcast target, the logarithmic score was 

calculated as ln(pi). For example, there were 115 cases eventually observed for 

the week of January 20, 1992. The NobBS nowcast for this week, which assigned 

a probability of 0.4 to the bin [100,125), thus received a log score of ln(0.4) = -

0.92. As in (15, 17), a very low log score of -10 was assigned for weeks in which 

the predictive distribution did not include the true case value and for weeks in 

which the bin probability £ e-10. This rule provides a lower limit (-10) to the 

score of highly inaccurate predictions.   

The average log score across all prediction weeks was computed for all 

models to assess nowcast performance. The exponentiated average log score 

yields a nowcast score that can be interpreted as the average probability assigned 

to the bin corresponding to the true number of cases, and is a metric for model 

comparison purposes used in several other forecast contexts (15, 17). In this 
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paper, we present the exponentiated average log score and refer to this as the 

average score.  
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5 

Conclusion and Summary 
 

In this thesis, I present a collection of flexible, self-adaptive prediction 

models. I demonstrate these models in a range of disease and geographic contexts, 

and assess their performance and ability to complement traditional public health 

surveillance efforts. I start by examining the role of digital data (Google, Twitter, 

and digital news reports) in providing estimates for weekly Zika incidence in five 

Latin American countries, up to three weeks ahead of the release of official 

surveillance reports. Across all models presented, I show that Google data plays a 

key role in capturing rapidly-changing signals of population health activity in real-

time, and thus becomes more useful in producing further-ahead weekly predictions 

compared to historical case information. Importantly, I demonstrate that even 

outbreak features present in the 2015-6 Zika epidemic such as (1) novelty of the 

disease and (2) intense media coverage – factors which might make for a noisy 

signal coming from digital, search- and report-based data – can be accommodated 

by the model. While Internet penetration differed dramatically across study 

countries, these models show good performance across sites as well as the ability 

to adapt and learn from new information: important criteria for model 

generalizability.  
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In Chapters 3 and 4 I develop more flexible and generalizable models that 

perform well across multiple, finer spatial scales and across multiple disease and 

surveillance contexts. Again, I draw from data that can be freely and digitally 

collected, either from external bodies (NASA weather data) or intrinsic properties 

of surveillance data (time-stamped reporting data). I show that using a single 

modeling framework, weather patterns can be systematically and autonomously 

extracted, analyzed, and used to make forecasts of dengue fever outbreaks at the 

city-level in Brazil. By analyzing the consistency of weather patterns across years 

and cities, it is then possible to identify signatures of successful predictions as well 

as explain where predictions might fail: an important criterion for both model 

transparency and generalizability. I show that, for some cities that experience 

highly accurate annual epidemic predictions, there are clear and environmentally-

significant time periods that produce strong signals for an outbreak, including rainy 

and dry seasons. Cities where predictions were less accurate tended to have no clear 

weather patterns, either suggesting the need for potentially more complex weather 

inputs or revealing the importance of other, non-weather factors such as behavior, 

policy, land use, or simply stochastic noise. While this model serves as a proof-of-

concept using just two simple weather inputs, temperature and precipitation, the 

framework can be easily extended to multiple weather variables such as humidity, 

soil water absorption, and more, allowing for more complex patterns to emerge.  

Finally, I construct an approach to generate more accurate real-time 

estimates of disease activity (nowcasts) to support public health decision-making. 

Combatting the common issue of reporting delays that yield real-time case 
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underestimates, I test a Bayesian approach to predict the number of not-yet-reported 

cases over multiple years for two different surveillance systems, dengue fever in 

Puerto Rico and influenza-like-illness in the United States. I show that the model 

is accurate across prediction contexts and time periods, and outperforms an 

established Bayesian nowcast model. Importantly, the approach models an 

autocorrelated, underlying case accrual process that improves predictions even 

when the reporting delay is time-varying. Because the model does not require inputs 

other than what is already collected by surveillance systems, this approach can be 

readily implemented in the public health system.  

These projects, while diverse, all share one common goal: through 

generalizable learning models, they produce accurate and timely predictions of 

disease activity to complement traditional public health surveillance and curtail the 

problems faced by reporting delays and delayed action. In public health, timing can 

be everything: anticipating outbreaks makes the difference between effectively 

interrupting disease transmission and failing to catch a growing threat. In this thesis, 

I show that it is possible to rely on a wide range of data streams to make both 

actionable and timely predictions that improve disease surveillance.    
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A.1 EQUATIONS: MODEL PERFORMANCE METRICS 

Equation A.1.1. Root Mean Square Error (RMSE) 
 

[Q\S =	]
1

!
T(VW − YW)

J

Z

WDE

			(R. 1.1) 

 
Equation A.1.2. Relative Root Mean Square Error (rRMSE) 
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Equation A.1.3. Pearson Correlation 
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Table A.1. Google search terms used as input variables for each country. 

Colombia Venezuela Honduras El Salvador Martinique 

zika zika zika zika zika 
sintomas Guillain barre sintomas zika sintomas zika zika martinique 
zika sintomas el zika el zika sintomas del zika le zika 
el zika sintomas sintomas del zika zika enfermedad zika symptomes 
sintomas del zika sintomas zika zika virus zika virus zika symptome 
virus zika virus que es zika sintomas de zika zika virus 
virus zika virus sintomas de zika sika symptome du zika 
zika colombia que el zika enfermedad zika que es zika symptomes zika 
que es zika sintomas del zika zika en honduras zika tratamiento 

 

virus del zika que es zika virus del zika sica 
 

el sika la zika sika guillain barre 
 

el zika sintomas tratamiento zika   sica el salvador 
 

sintomas de zika sintomas de zika     
 

zika embarazo el zika virus     
 

zika microcefalia       
 

zika sintomas colombia       
 

zika fiebre       
 

sika       
 

sintomas del       
 

el sica       
 

zika repite       
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Table A.2. Comparison of models in Colombia and Venezuela, with and without Twitter data. RMSE, rRMSE, and Pearson's 
correlation coefficient (ρ) are shown for 1-, 2-, and 3-week ahead out-of-sample predictive performance. The best rRMSE for 
each model pair with and without Twitter data (i.e. ARGO vs. ARGO+T) is shown in bold. 
 Colombia 

 1 week 2 week 3 week 
Model RMSE rRMSE ρ RMSE rRMSE ρ RMSE rRMSE ρ 

AR 801.313 40.462 0.821 1484.018 66.829 0.539 2057.483 83.900 0.284 
Google only 767.867 35.567 0.786 804.209 38.882 0.772 959.216 43.119 0.646 
G+T 823.149 34.450 0.764 857.490 37.300 0.752 995.311 41.903 0.634 
ARGO 628.096 30.181 0.866 798.808 40.176 0.763 930.665 44.104 0.660 
ARGO+T 621.673 30.076 0.870 775.786 39.583 0.780 914.643 44.233 0.679 
ARGO+H 631.882 30.262 0.864 892.063 41.189 0.707 953.619 43.558 0.649 
ARGO+TH 617.795 29.888 0.871 848.968 40.153 0.731 903.155 42.440 0.698 

 
         

 Venezuela 
 1 week 2 week 3 week 
  RMSE rRMSE ρ RMSE rRMSE ρ RMSE rRMSE ρ 

AR 1665.733 68.542 0.822 4196.484 117.444 0.834 10349.050 259.699 0.665 
Google only 413.265 28.706 0.952 694.306 32.275 0.855 659.727 30.112 0.896 
G+T 972.937 35.336 0.626 1277.588 39.813 0.283 1226.614 39.953 0.475 
ARGO 1629.280 50.795 0.829 3565.201 80.405 0.841 7325.554 173.308 0.659 
ARGO+T 892.063 38.780 0.831 927.343 41.946 0.701 1372.884 48.249 0.486 
ARGO+H 1509.605 54.637 0.808 2573.568 78.326 0.862 4628.385 115.996 0.740 
ARGO+TH 1036.760 46.497 0.771 1148.229 67.028 0.626 1459.830 75.513 0.528 
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Figure A.1. Correlation of digital predictors with official suspected Zika case counts in Colombia. 

The transformation that produced the highest correlation with Zika cases for each variable is shown 

in each plot. Data points from weeks within the training period are distinguished in red. 
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Figure A.2. Correlation of digital predictors with official suspected Zika case counts in Honduras. 

The transformation that produced the highest correlation with Zika cases for each variable is shown 

in each plot. Data points from weeks within the training period are distinguished in red. 
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Figure A.3. Correlation of digital predictors with official suspected Zika case counts in Venezuela. 

The transformation that produced the highest correlation with Zika cases for each variable is shown 

in each plot. Data points from weeks within the training period are distinguished in red. 
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Figure A.4. Correlation of digital predictors with official suspected Zika case counts in El Salvador. 

The transformation that produced the highest correlation with Zika cases for each variable is shown 

in each plot. Data points from weeks within the training period are distinguished in red. 
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Figure A.5. Correlation of digital predictors with official suspected Zika case counts in Martinique. 

The transformation that produced the highest correlation with Zika cases for each variable is shown 

in each plot. Data points from weeks within the training period are distinguished in red. 
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Figure A.6. Heatmaps showing the relative influence (positive: red; negative: blue) of all input 

variables on predictions of Zika cases in (a) Colombia, (b) Honduras, (c) Venezuela, (d) El Salvador, 

and (e) Martinique.  
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Supporting Information for Chapter 3 
 
  



	 114	

B.1 SUPPLEMENTAL MATERIALS & METHODS 

B.1.1 STUDY SITES 

We tested our model on a time series of 17 years (2001-2017) for 20 municipalities 

in Brazil meeting the following criteria: 1) having experienced between 7 and 10 

epidemic years during the 17-year time period, with no more than 70% of epidemic 

years occurring in either half of the time period; 2) having a population over 

100,000 by 2017. The first criterion captures a loose definition of a “dengue-

endemic” location, which is convenient in two ways: first, locations which 

experience only epidemic or only non-epidemic years are likely experiencing 

disease dynamics unrelated to annual changes in weather patterns, and are thus not 

appropriate for our model; and second, it ensures that our model is able to train 

initially on both classes (epidemic and non-epidemic year) for each location before 

making out-of-sample predictions. In accordance with Brazilian Ministry of Health 

standards, we defined an epidemic year to be a year in which the number of 

confirmed cases of dengue fever exceeds 100 per 100,000 persons. 

 

The municipalities included in the study span a wide geographic range (14 Brazilian 

states) and range in land area from 24 to 4000 mi2, in starting population 

(population in 2001) of between 87,000 and 6 million, and in starting population 

density from 24 to 13,000 persons/mi2 (Table S1). 

 �
B.1.2 EPIDEMIOLOGIC DATA 

The number of confirmed cases of dengue fever are reported annually at the 

municipal level and made publicly available from the Brazilian Notifiable Disease 
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System (SINAN) for the years 2001-2012. We obtained weekly case numbers at 

the municipal level from the Brazilian MOH for the years 2013-2015, and from 

local municipal governments and epidemiologic reports for 2016 and 2017. 

 �
B.1.3 DEMOGRAPHIC DATA 

Population estimates by year and municipality were obtained as publicly-available 

data from the Brazilian Institute of Geography and Statistics (IBGE). 

 �
B.1.4 WEATHER DATA 

Globally modeled and assimilated weather data were obtained from the Modern Era 

Retrospective-analysis for Research and Applications, Version 2 (MERRA-2)[37]. 

The MERRA-2 data are publicly available through the Global Modeling and 

Assimilation Office (GMAO) at NASA Goddard Space Flight Center. We obtained 

daily temperature at 2 meters (mean, K) and hourly precipitation (kg/m2) at a native 

grid resolution of 0.5° x 0.625° and extracted these to municipalities by overlaying 

a spatial file of municipality boundaries and taking the weighted average of the grid 

cells covering municipal boundaries. We calculated the total accumulated rainfall 

in a day (mm) as the sum of hourly precipitation (kg/m2/hr, which is equivalent to 

mm/hr) over the 24-hour period. We show the time series of mean daily temperature 

(K) and total precipitation (mm) in Fig. B.6.  

 
B.1.5 ENSEMBLE STRENGTH 

We computed a simple metric to quantify the strength of the 11-model ensemble 

used to make yearly forecasts for each municipality. For each model, the metric 

was the sum of (a) the historical out-of-sample forecast accuracy of the time 
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window, computed as the number of years correctly predicted divided by N prior 

years, and (b) the average historical out-of-sample accuracy of the time window 

and its (up to) 8 surrounding neighbors (t0 ± 5, p ± 5). Thus, the maximum possible 

strength for any given ensemble was 2.0 (1.0 + 1.0).  

 

Table B.1. Population and land characteristics of 20 dengue-endemic study cities.  

City Area (mi²) Population* Population Density (pp/mi²) 

Rio de Janeiro 485 6320000 13030.93 
Belo Horizonte 127.8 1433000 11212.83 
Aracajú 70.22 571149 8133.71 
São Luís 319 958,545 3004.84 
Sertãozinho 155.6 101784 654.14 
Manaus 4402 1793000 407.31 
Rondonópolis 1608 144049 89.58 
São Gonçalo 91.6 337273 3682.02 
Barra Mansa 211.3 171125 809.87 
Eunápolis 462 93413 202.19 
Tres Lagoas 3941 96341 24.45 
Barueri 24.78 240749 9715.46 
SaoVicente 87.65 332445 3792.87 
Juazeiro do Norte 95.97 249939 2604.35 
Parnaiba 168.2 145705 866.26 
SantaCruz 142.7 87582 613.75 
Maranguape 228.1 113561 497.86 
Barretos 604 112101 185.60 
Ji-Paraná 2663 116610 43.79 
Guaruja 55.44 290752 5244.44     

*city proper. Source: Demographic Statistics Database, United Nations Statistics Division 2010 
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Figure B.1. Number of dengue fever epidemic years in Brazil, 2001-2015. Data on annual cases for 

all municipalities in Brazil were available through 2015, shown here, and we obtained data 

separately through 2017 for the 20 study municipalities (black crossed circles).   
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Figure B.2. Ensemble strength for 120 municipality-years (2012-2017). Ensemble strength is 

calculated for each of the 11 time windows selected into the ensemble each year, as a function of 

the historic out-of-sample accuracy of (a) the selected time window and (b) neighboring time 

windows (see Section B Materials & Methods). Municipalities are ordered by decreasing ensemble 

prediction accuracy; that is, the proportion of years correctly forecasted by the ensemble method 

over the years 2012-2017. Points are colored by prediction result (yellow=correct; green=incorrect). 
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Figure B.3. Calibration curve of mean posterior probabilities over 120 municipality-years (2012-

2017). 
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Figure B.4. Classifier and ensemble strengths. Categories of classifier probability strength (weak: 

0.2-0.4, borderline: 0.4-0.6, moderate: 0.6-0.8, and strong: 0.8-1.0) and ensemble strength (weak: 

1.2-1.4, borderline: 1.4-1.6, moderate: 1.6-1.8, and strong: 1.8-2.0). The classifier probability is the 

mean posterior class probability, computed as P(Epidemic) for predicted epidemics and 1-

P(Epidemic) for predicted non-epidemics, averaged over the 11 models of the ensemble. See 

Supporting Information Materials & Methods for calculation of the ensemble strength metric. There 

were no instances of probabilities < 0.2 nor of ensemble strengths < 1.2.  
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Figure B.5. Potentially anomalous or weakly-separable municipality-years for prediction. (A) 

Predicted probabilities by municipality and year for ensemble forecasts (2012-2017). Predictions 

are colored by their true epidemic status (red=epidemic, blue=non-epidemic) with point shape 

indicating accuracy (closed circle=correct, cross=incorrect). A cyan circle designates potentially 

anomalous years, defined as years that were incorrectly predicted with strong conviction (mean 

posterior predicted class probability ³ 0.8). A bright green circle designates years potentially 

following periods with low separability, defined as years that were misclassified with borderline 

conviction (0.4 ≤ mean posterior predicted class probability < 0.6). 

  



	 122	

 
Figure B.6. Daily time series of weather inputs: 2000-2016 patterns of A) average temperature (K) 

and B) total precipitation (mm), by municipality.  
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C 

Supporting Information for Chapter 4 
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Table C.1. NobBS average error for moderate and high absolute changes in initial 
case reports, compared to the previous week. 
	  Average error (predicted - actual) for weeks 

where: 

Disease Threshold 
Δ initial reports > 

threshold 
Δ initial reports <= 

threshold 
Dengue Moderate: 5 cases 61.6 -1.8 

  High: 10 cases 277.0 -0.2 
      

ILI Moderate: 1,000 cases -92.8 -38.4 

 High: 2,500 cases -198.9 -37.7 
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Table C.2. Comparing model performance on influenza reports with constant and non-constant delay distributions.  

Model  
Influenza: Constant delay Influenza: Non-constant (time-varying) delay 

Period MAE rRMSE RMSE Average 
Score 

95% PI 
coverage MAE rRMSE RMSE Average 

Score 
95% PI 

coverage 
NobBS 06/30/2014 - 

03/14/2016 
777.9 0.081 1135.2 0.172 1.00 3476.5 0.302 4622.7 0.06 0.93 

   
     

  
    

Benchmark 
(ref. 9) 

06/30/2014 - 
03/14/2016 689.9 0.072 15559.2 0.016 0.00 7315 0.621 10300.4 8.71E-05 0.57 

 
 
 
 
Table C.3. Performance measures for estimates of the change in ILI incidence from the previous week, comparing constant and non-
constant ILI delay distributions. 

Model  
Influenza: Constant delay Influenza: Non-constant (time-varying) delay 

Period MAEΔ RMSEΔ ρa RMAΔ MAEΔ RMSEΔ ρa RMAΔ 
NobBS 06/30/2014 - 03/14/2016 804 1268.3 0.96 1.01 3559.8 6745.3 0.78 3.77  

 
        

Benchmark 
(ref. 9) 06/30/2014 - 03/14/2016 758 1252.7 0.96 1.08 8518.1 14169.3 0.60 7.63 
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Table C.4. Select performance measures for dengue fever nowcast model with 
different moving window sizes. 
 

Model 
Moving window 

size 
rRMSE Average Score Correlation 

NobBS 5 weeks 7.381 0.368 0.275 
  12 0.634 0.370 0.760 
  27 weeks (approx. 

6 months) 
0.655 0.369 0.806 

  104 weeks (approx. 
12 years) 

0.600 0.349 0.84 
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Table C.5. Reporting triangle for June 8, 2015. The TxD reporting triangle decomposes the number of cases, nt,d, reported for each 
week t (rows) and each delay d (column). Here we show a reporting triangle containing reports up to a delay of D = 18 weeks. The 
goal of nowcasting is to predict the missing (NA) nt,d’s.  
 
 Delay d (weeks) 

Week t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

2/23/2015 15911 1955 504 306 340 104 7 4 78 31 15 8 0 23 3 0 NA NA NA 

3/2/2015 15294 2037 345 528 103 18 16 163 1 7 5 1 14 11 3 NA NA NA NA 

3/9/2015 14863 1574 659 151 361 43 24 91 11 3 2 11 18 1 NA NA NA NA NA 

3/16/2015 13708 2110 171 441 90 56 111 47 0 1 2 41 43 NA NA NA NA NA NA 

3/23/2015 13772 1372 606 76 186 73 115 0 0 0 8 39 NA NA NA NA NA NA NA 

3/30/2015 12147 1886 275 252 95 159 62 23 2 16 47 NA NA NA NA NA NA NA NA 

4/6/2015 11688 1178 387 111 124 57 18 49 68 37 NA NA NA NA NA NA NA NA NA 

4/13/2015 9612 1158 291 159 164 23 43 44 40 NA NA NA NA NA NA NA NA NA NA 

4/20/2015 9092 1161 208 136 6 31 30 29 NA NA NA NA NA NA NA NA NA NA NA 

4/27/2015 9060 993 140 82 172 39 36 NA NA NA NA NA NA NA NA NA NA NA NA 

5/4/2015 8702 924 226 213 45 35 NA NA NA NA NA NA NA NA NA NA NA NA NA 

5/11/2015 7558 1182 241 131 37 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

5/18/2015 7015 1311 482 46 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

5/25/2015 6934 799 92 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

6/1/2015 5802 642 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

6/8/2015 4708 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
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Figure C.1. The delay distribution (grey) and cumulative distribution (red), in weeks, over the full 

time series for (A) dengue fever and (B) influenza-like illness (ILI) cases. 
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Figure C.2. Comparing (A) the change in initial case reports (from previous week) to (B) the error 

of NobBS for dengue fever. 
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Figure C.3. Weekly reporting delay probabilities for delays up to 17 weeks for (A) dengue fever 

from 1990-2010 and (B) influenza-like illness from 2014-2017. 
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Figure C.4. Weekly ILI nowcasts for June 30, 2014 through March 14, 2016 using a non-constant 

(time-varying) delay distribution and 2-year moving window. (A) NobBS nowcasts along with (B) 

point estimate and uncertainty accuracy, as measured by the log score and the prediction error, are 

compared to (C) nowcasts by the benchmark approach with (D) corresponding log scores and 

prediction errors. For nowcasting, the number of newly-reported cases each week (blue line) are the 

only data available in real-time for that week, and help inform the estimate of the total number of 

cases that will be eventually reported (red line), shown with 95% prediction intervals (pink bands). 

For the benchmark approach, the 95% prediction intervals are very narrow and are thus difficult to 

see. The true number of cases eventually reported (black line) is known only in hindsight and is the 

nowcast target. The log score (brown line) and the difference between the true and mean estimated 

number of cases (grey line) are shown as a function of time. 
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Figure C.5. Comparing the probability assigned to the bin containing the true number of cases (y-

axis) to the true number of cases (x-axis), for weekly dengue fever nowcasts using NobBS. 
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Figure C.6. Weekly NobBS dengue fever nowcasts using (A) 5-week moving window, (B) 12-week 

moving window, and (C) 27-week (approx. 6 month) moving window. Plots are zoomed in the y-

axis to show the details of prediction. 
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Figure C.7. Comparing the estimated reporting probability of delay 0 from (A) NobBS and (B) the 

nowcast model in ref. (9).  

 
 


