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Evolution and Immunity in Cancer and HIV

Abstract

Cancer and HIV are frequently-incurable diseases with high global burden. As evolving popula-

tions within a single individual, both exhibit dramatic expansions in size and diversity which interact

with the immune system and complicate treatment. The advent of cheap and accessible DNA se-

quencing and quantification technologies has enabled detailed measurements of these diseases from

samples often distributed sparsely in time. Integrating these data into a quantitative, dynamical view

of disease progression in order to improve treatments remains an open challenge.

In this thesis, we explore examples of data integration with dynamical models in three areas: can-

cer evolution, cancer surveillance by the immune system, and HIV infection under an immune re-

sponse. In the first chapter, we describe a tool for phylogenetic inference using DNA sequencing

of spatially distinct samples from a cancer. In benchmarks, the tool overcomes noise introduced

by sequencing to provide a picture of the evolutionary history of a tumor. In the second and third

chapters, we describe the results of applying this tool to two datasets, first in primary pancreatic

cancers with matched preneoplastic lesions and next in untreated metastases. We find many shared

driver mutations among the primary tumor and preneoplastic lesions, suggesting preneoplastic

cells can spread through the pancreas. In untreated metastases, we observe limited driver gene het-

erogeneity, consistent with a model of growth, mutation, and metastasis seeding from the primary

tumor. In the fourth chapter, we describe a branching process model of neutral evolution in tu-

mors and fit analytical predictions from it to cancer sequencing data. This neutral model explains
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patterns in sequencing data for many tumors. In the fifth chapter, we propose and analyze a simple

model of cancer immune surveillance. We find that tumors susceptible to immune clearance must

have a rate of mutation higher than is usually observed clinically. In the final chapter, we propose a

dynamical model of viral rebound and immune control and compare it to data from several stud-

ies in macaques infected with SIV and SHIV and treated with immunotherapy. These results are

combined with data from HIV infection to make predictions for future trials in humans.
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0
Introduction

This dissertation presents a collection of projects which explore the dynamics of two diseases: cancer

and HIV. In both diseases, the ongoing replication of very many nearly identical units gives rise to

disease pathology. The high amount of symmetry in each system suggests that a description which

exploits it (i.e. a model) could be much less complex than a precise physical description of the system

while remaining relatively accurate. Further, many natural questions about cancer and HIV lend

themselves to modeling. For example, we cannot observe all the individual cells in a tumor, but we

1



might wish to know if are there any cells resistant to a particular treatment present in the tumor.

A model of the evolution of a tumor will assign a probability to this event, and in some cases this

approach will be more efficient than doing the very difficult work of improving measurement tech-

nology for cancer. We are also often interested in questions related to the past: When was someone

first infected with HIV? How large was a tumor 10 years ago? Models provide a way for us to reason

about these questions.

Next, we will briefly review the features of each disease essential to our modeling approaches.

0.1 Cancer

A cancer is a self-renewing population of asexually reproducing cells derived from healthy tissue

of an organism. Cancer is a disease of the genome 58. That is, a handful of genetic changes, perhaps

3 256, amidst a sea of genetic information (3 ∗ 109 base pairs) are sufficient to transform a healthy

human cell into a cancerous one. Genetic mutations can enter the DNA both before and during

DNA replication (mitosis). In the modeling here, we group these rates together into the rate associ-

ated with replication for simplicity. Our picture of cancer is simplified additionally: the process of

transformation in reality also interact with environmental factors in several ways. First, the rate of

genetic change itself is influenced by the environment. Some environmental factors interfere with

the faithful replication of DNA when cells divide, increasing the rate at which driver mutations ar-

rive in cells. Second, the effects of genetic mutations are context-dependent, though in cancer there

is a large set of mutations which seem to promote the development of cancer across a variety of con-

texts 11. The genetic changes required to reliably induce a cancerous population of cells might be

fewer in an individual with compromised immunity or local tissue damage. In some cases they also

depend on the cell type in which the mutations arise.

A cancer starting from a single cell takes a very long time (sometimes decades) to grow to a clini-
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cally meaningful size 279. By this time, the cancer population has grown from one to 109 (∼ 1cm3)

cells. Because many cancer cells will die before having the chance to divide, a population of 109 cells

will have undergone even more divisions, say 1011 33. The interaction of this extremely large number

of divisions with very rare genetic processes such as the development of therapy-resistance mutations

or additional driver gene mutations has been the focus of several modeling efforts (e.g. Refs. 37,215,77).

In chapter 5 we will explore how an immune system which recognizes foreign genetic material might

interact with a population that has acquired so many genetic changes. The kinetics of cancer growth

have been studied in great detail 276. The early growth of a tumor is often approximately exponen-

tial, followed by slower growth as the tumor approaches a carrying capacity due to space constrains,

nutrient limitations, or other forces. A branching process is a mathematical model of cancer cell be-

havior which gives rise to exponential growth and is conservative in the sense that it predicts cancer

growth which does not slow down at a carrying capacity. In a branching process, a single cancer cell

either divides into two or dies stochastically. In a growing tumor, the expected number of offspring

of a cancer cell must be greater than 1. During division, daughter cells might also acquire mutations

which distinguish their genomes from the parental genome. The branching process model provides

a way to connect observable quantities in the tumor, like the rate of division, net growth rate, or the

number of detectable mutations, to model parameters.

Because a cancer is often observed when it is very large, it is natural to imagine a branching pro-

cess (or other tumor model), but moving backwards in time. This is called a coalescent process, be-

cause from this perspective, cells merge into their parental lineages (“coalesce”) as time goes on. For a

population with very large but fixed size, Kingman showed that a large class of models actually have

essentially the same type of coalescent 133. However, for an exponentially growing population, the

situation is more complicated: the Kingman coalescent and the reverse-time branching process will

be similar but never quite match 246. Further, all coalescent processes can be thought of as trees. In a

group of N individuals, two among them will have a most-recent common ancestor. After connect-
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ing these two individuals to their most-recent common ancestor, among the now N-1 individuals

(including the ancestor but not the original two individuals) there will again be a pair with a most-

recent common ancestor. Individuals are joined in this way until only one remains: the most recent

common ancestor of all the individuals in the population. The resulting graph is a tree which de-

scribes the history of reproduction in the population. In this thesis, when we say “phylogenetic tree”

we are referring to this graph.

0.2 HIV

The emergence of HIV in the human population caused a public health crisis of global proportions.

Until the late 1980s, an HIV diagnosis was essentially a death sentence 39. But prolonged scrutiny

of the virus from the biomedical research community, culminating in understanding of the mecha-

nisms of HIV replication, enabled the development of small molecules which interfere specifically

with the HIV life cycle. The change in an individual with HIV who received this antiretroviral ther-

apy came to be known as the Lazarus effect.

In contrast to cancer, the process of reproduction in HIV is more complicated. HIV is a mem-

ber of the Lentivirus genus, all of which are single-stranded RNA viruses which undergo reverse

transcription into double-stranded DNA. In an HIV replication cycle, the HIV RNA genome, en-

veloped by a capsid protein, enters a cell and is converted into DNA by an enzyme called reverse

transcriptase. This DNA integrates into the host genome and is then later transcribed back into

RNA and translated into new viral particles. The HIV genome is only about 105 bases (compared

to human genome 3 ∗ 109), but the rate of mutation during a cycle of replication is extremely high

compared to humans (3 ∗ 10−5 per position per generation).

The very high rate of mutation in HIV contributes to the inability of a single antiretroviral ther-

apy to reliably control an infection. Current treatment regimens typically combine three drugs—
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often with disparate resistance mechanisms—in order to ensure that there is essentially no ongoing

viral replication and, even if there were, combination resistance would remain quite unlikely 109.

However, several challenges remain in the fight against HIV. First, for infected individuals receiving

treatment, therapy must be taken for life and is not without side effects. Second, for infected indi-

viduals not receiving treatment, challenges in global health pose barriers to the distribution and use

of effective treatment regimensof Health Statistics & Informatics. Third, uninfected individuals remain at

risk of disease transmission, due in part to the lack of an effective vaccine for HIV.

0.3 Chapters Overview

The chapters in this thesis are self-contained, each with its own introduction, description of meth-

ods and results, and discussion. Most of the work in this dissertation has been previously published.

For these chapters, supplemental material has been omitted from the dissertation to avoid the length

becoming unwieldy. Instead, the supplemental material is available online with the original publica-

tion. Because many of the projects involved large collaborations, in the forward before each chapter

I have clarified some of the more practical details of the projects as well as my principal contribu-

tions.

In chapter 1, we describe a method, called Treeomics, for inferring the phylogenetic tree among

several cancer samples taken from the same individuals. In this method we assume that each spatially

distinct sample of a tumor represents a highly related collection of cells, so that we might imagine

the phylogenetic tree we infer corresponds to the phylogenetic tree associated with the most recent

common ancestor of each sample. The problem is complicated by the fact that the sequencing data

considered is bulk tumor DNA sequencing, which has multiple sources of noise and destroys link-

age information between mutations. The method combines information from each mutation in a

model-based framework in order to infer the most consistent phylogeny.
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In chapter 2, we describe an application of Treeomics to data collected from matched cancerous

and precancerous lesions in the pancreas. The coincidence of these samples provides a perfect con-

trol for understanding what distinguishes the cancerous lesions, since in a particular individual the

samples experienced a highly similar environment and they began on almost identical genetic back-

grounds. We pay special attention to the distribution of driver mutations in these samples in order

to assess the relatedness of these samples as well as whether or not precancerous lesions have experi-

enced the genetic changes necessary for transformation.

In chapter 3, we describe another application of Treeomics to previously published data from un-

treated metastatic cancer samples. Many published datasets contain a few untreated individuals, and

we collect these data in order to provide a reliable picture of the natural progression of metastasis.

These data are particularly valuable because most treatments include some form of mutagenic ther-

apy which obscures the underlying biological processes shaping the original metastasis formation.

We again pay special attention to the distribution of driver mutation heterogeneity among metas-

tases in a single individual in order to assess how much sampling would be required to develop a

comprehensive picture of the driver gene mutations in a metastatic cancer.

In chapter 4, we turn to a more theoretical model of neutral mutations in an exponentially grow-

ing cancer. Starting from a model of cell division, death, and mutation, we derive the distribution of

several observable quantities in terms of these parameters. We also derive an invariant of the model

which can be used to assess deviations from neutrality and compare this result to cancer sequencing

data.

In chapter 5, we describe unpublished work modeling the surveillance of a tumor by the immune

system. This model builds on the features of the model in chapter 4 to account for an immune re-

sponse which can distinguish self from non-self. Though the precise nature of immune surveillance

remains poorly understood, our approach provides important bounds on its effectiveness for reduc-

ing cancer burden overall. We also derive the distribution of several observable quantities, including
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the variant allele frequency spectrum, under different models of immunity.

In chapter 6, we analyze data from several trials in a model organism for HIV, the macaque.

These trials investigate a combination of immunomodulatory treatments and therapeutic vacci-

nation, that is, vaccination given to an infected individual as a form of treatment rather than pro-

phylaxis. The data in these trials are some of the first examples of immunologic control of viremia,

and therefore are very exciting to understand for the development of novel vaccination and therapy

strategies.
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1
Reconstructing metastatic seeding patterns

of human cancers

1.1 Forward

This chapter describes an early method for inferring cancer phylogenies when multiple, spatially

distinct samples are taken from a single tumor and subjected to DNA sequencing in bulk. The
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work grew out of necessity from a collaboration between Martin Nowak and Christine Iacobuzio-

Donahue. Hannes Reiter laid the algorithmic groundwork during his PhD in computer science at

the Institute of Science and Technology Austria. Alvin Makohon-Moore, then a student of Chris-

tine Iacobuzio-Donahue, contributed valuable data and insights about the process of spatial dissem-

ination. We realized that, under certain assumptions about the type of metastatic seeding which had

occurred, we could infer not only the phylogeny but also the seeding graph, and developed a heuris-

tic for assessing when these assumptions were violated. Later tools would relax these assumptions in

a more principled way to handle cases in which more mixing is expected (e.g. Ref. 81).

The problem posed to me by Hannes was to design a way of combining the data in a statistical

model so that, after applying his algorithmic framework, the resulting phylogenetic tree had some-

thing like a maximum likelihood interpretation. As such, I designed the Bayesian inference section

of this work and integrated it into the algorithmic approach. I am especially grateful to Hannes for

his guidance in the project and the example he set for tool development.

This work was first published in Ref. 218:

Reiter, J. G., Makohon-Moore, A. P., Gerold, J. M., Bozic, I., Chatterjee, K., Iacobuzio-Donahue, C.

A., Vogelstein, B., and Nowak, M. A. (2017). Reconstructing metastatic seeding patterns of human

cancers. Nature Communications, 8, 14114.

Supplemental materials can be found online at DOI 10.1038/ncomms14114

1.2 Abstract

Reconstructing the evolutionary history of metastases is critical for understanding their basic bi-

ological principles and has profound clinical implications. Genome-wide sequencing data has en-

abled modern phylogenomic methods to accurately dissect subclones and their phylogenies from

noisy and impure bulk tumor samples at unprecedented depth. However, existing methods are not
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designed to infer metastatic seeding patterns. Here we develop a tool, called Treeomics, to recon-

struct the phylogeny of metastases and map subclones to their anatomic locations. Treeomics infers

comprehensive seeding patterns for pancreatic, ovarian, and prostate cancers. Moreover, Treeomics

correctly disambiguates true seeding patterns from sequencing artifacts; 7% of variants were misclas-

sified by conventional statistical methods. These artifacts can skew phylogenies by creating illusory

tumor heterogeneity among distinct samples. In silico benchmarking on simulated tumor phyloge-

nies across a wide range of sample purities (15-95%) and sequencing depths (25-800x) demonstrates

the accuracy of Treeomics compared to existing methods.

1.3 Introduction

Genetic evolution underlies our current understanding of cancer 196,263,173 and the development of

resistance to therapies75,37. The principles governing this evolution are still an active area of research,

particularly for metastasis 181,167,259, the final biological stage of cancer that is responsible for the vast

majority of deaths from the disease. Although many insights into the nature of metastasis have

emerged 251, we do not yet know how malignant tumors evolve the potential to metastasize, nor do

we know the fraction of primary tumor cells that have the potential to give rise to metastases. More-

over, the temporal, spatial and evolutionary rules governing the seeding of metastases at spatially

distinct sites distant from the primary tumor have mostly remained undetermined 181,171,112.

In order to better understand the evolutionary process of cancer, researchers have reconstructed

the temporal evolution of patients’ cancers from genome sequencing data44,279,45,92,240. Thus far,

phylogenomic analysis has largely focused on the subclonal composition and branching patterns

of primary tumors61,68,285. The evolutionary relationships among metastases are equally important

but have less often been determined for several reasons 15,100,38,172. First, comprehensive data sets of

samples from spatially-distinct metastases in different organs are rarely available. Second, most ad-
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vanced cancer samples are derived from patients who have been treated with toxic and mutagenic

chemotherapies, imposing a variety of unknown constraints on genetic evolution, metastatic pro-

gression and its interpretation. Third, tumors are composed of varying proportions of neoplastic

and non-neoplastic cells, and inferring meaningful evolutionary patterns from such impure samples

is challenging 19,258. Fourth, chromosome-level changes, including losses, are frequently observed

in cancers, and previously acquired variants can be lost 172 (i.e., some variants are not “persistent”).

Fifth, even when performed at high depth, next generation sequencing coverage is always non uni-

form, resulting in different amounts of uncertainty at different loci within the same DNA sample

as well as among different samples at the same locus. Finally, evolutionarily informative genetic

differences among the founding cells of distant metastases tend to be rare 139,161 and therefore the

confidence in the inferred metastatic seeding pattern is often low.

The variety of methods that have recently been used to infer evolutionary relationships among

tumors underscore these complicating factors and the need for a robust phylogenomic approach.

The methods include those based on genetic distance 15,180, maximum parsimony 285,38,91, clonal order-

ing 173,92 and variant allele frequency 185,141,281. Modern phylogenomic methods classify variants based

on the observed variant allele frequencies (VAFs), account for varying ploidy and neoplastic cell con-

tent, and reconstruct comprehensive phylogenies250,229,174,73,207,80,186,282,163. In this study, however,

as we will show below, in the case of reconstructing the evolution of metastases, these methods suf-

fer from the low number of informative variants and may fail to identify the subclones that gave

rise to the observed seeding patterns. Classical phylogenetics assumes that the individual traits are

known with certainty 19. Consequently, these methods struggle with noisy high-throughput DNA

sequencing data and do not exploit the full potential of these data due to the error prone binary

present/absent classification of variants. Furthermore, many of the methods used for inferring can-

cer evolutionary trees are based on those designed for more complex evolutionary processes involv-

ing sex and recombination 112. The key conceptual difference between the new approach used here
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(“Treeomics”) and previous ones is that Treeomics reconstructs metastatic seeding patterns and in-

fers the ancestral subclones that seeded metastases at various anatomic locations. Treeomics utilizes

multiple samples from spatially distinct sites and assumes mostly monophyletic samples (i.e., mono-

clonal seeding; polyclonal seeding and reseeding of metastases only happens occasionally 259).
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1.4 Results

To illustrate our approach, we first focused on the data of a treatment-naïve pancreatic cancer pa-

tient Pam03 161 (Figure 1.1). WGS (whole-genome sequencing; coverage: median 51x, mean 56x)

as well as deep targeted sequencing (coverage: median 296x, mean 644x) was performed on ten

spatially-distinct samples: two from the primary tumor and eight from distinct liver and lung metas-

tases (Methods and ref 161). Estimated purities ranged from 21% to 48% per sample (Supplementary

Figure 1), typical for low cellularity cancers (Figure 1.1). Founder variants (clonal in all samples) and

unique variants (present in exactly one sample) are parsimony-uninformative in the sense that they

do not provide any information about common ancestors of spatially-distinct samples (except the

founding clone) and hence do not resolve metastatic seeding patterns. Nonetheless, unique variants

can provide information about the subclonal composition and phylogeny within a sample. Parsi-

mony informative variants (variants present in some but not in all samples) exhibited contradicting

mutation patterns when we tried to reconstruct a phylogeny consistent with the evolutionary pro-

cesses underlying tumor progression using conventional methods. Identifying the evolutionarily

compatible variants is known as the “binary maximum compatibility problem” and has been widely

studied for decades66,28,84,179,231,103. A strict binary present/absent classification can be very prob-

lematic due to the above described reasons. For example, likely clonal variants in the driver genes

ATM and KRAS would be classified as absent in sample LuM 2 because both were sequenced only

fourteen times and were mutated only once (Figure 1.1c; Supplementary Data 1). We developed a

Bayesian inference model to determine the posterior probability of whether a variant was or was not

found in each sequenced lesion rather than rely on a binary input (“present” or “absent”; Figure 1.1c;

Methods). This generalization, formalized as a Mixed Integer Linear Program 182 (MILP), enabled us

to simultaneously predict sequencing artifacts and infer phylogenies in a remarkably robust fashion.

Two clonal variants are evolutionary compatible if there exists an evolutionary tree where each
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variant is only acquired once and never lost. This condition is known as the perfect (the same variant

is not independently acquired twice; infinite sites model 155) and persistent (acquired variants are not

lost; no back mutation) phylogeny assumption – the basic principle of modern tumor phylogeny

reconstruction methods 229,174,73,207,80. In our case the mutation pattern of a variant is given by the

set of samples where the variant is present (Supplementary Figure 2). Therefore, two somatic vari-

ants α and β are evolutionarily incompatible if and only if samples with the following three patterns

exist: (i) variant α is absent and β is present, (ii) α is present and β is absent, and (iii) both variants

are present. Because somatic variants are by definition absent in the germline, α and β are evolution-

arily incompatible and no perfect and persistent phylogeny can explain these data (Supplementary

Figure 2). As expected, based on conventional binary present/absent classification of variants, a per-

fect and persistent tree consistent with the observed (noisy) data of Pam03 cannot be inferred. We

show that such a phylogeny indeed exists but that it is hidden behind misleading artifacts, mostly

resulting from insufficient coverage or low neoplastic cell content.

1.4.1 Identifying evolutionarily compatible mutation patterns

To account for inconclusive data, we utilize a Bayesian inference model to calculate the probability

that a variant is present in a sample (Figure 1.1c; Methods). Using these probabilities for each indi-

vidual variant, we calculated reliability scores combining the evidence for each possible mutation

pattern across all variants and samples. We constructed an evolutionary conflict graph where the

nodes were determined through analysis of all mutation patterns. Each node was assigned a weight

provided by the calculated reliability scores (Supplementary Figure 3). If two nodes (mutation pat-

terns) were evolutionarily incompatible, an edge between the corresponding nodes was added. We

aimed to identify the set of nodes that maximized the sum of the weights (reliability scores) when

no pair of nodes was evolutionarily incompatible. This maximal set represents the most reliable and

evolutionarily compatible mutation patterns (Supplementary Methods). To evaluate the confidence
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in the identified evolutionarily compatible mutation patterns, we performed bootstrapping on the

given variants.

1.4.2 Predicting putative artifacts in sequencing data

The solution obtained with the MILP directly provided the most likely evolutionarily compatible

mutation pattern for each variant. By comparing our inferred classifications to conventional binary

classifications, Treeomics predicted putative sequencing artifacts in the data (Figure 1.2a,b). The

conventional classifications differed in 9.0% of the variants in Pam03 (81 putative artifacts from 90
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variants across 10 samples; Figure 1.2b). As expected, the majority (68) of the differences were caused

by putative false negatives in the binary classification that were inferred to be present by Treeomics.

Fifty-five of these putative false-negatives had relatively low coverage (mean: 21), explaining how

they could easily be misclassified as absent given the low neoplastic cell content in the samples. Ac-

cordingly, many of these under-powered false-negatives occurred in samples with the lowest cov-

erage (liver metastasis LiM 5, lung metastases LuM 2-3) or lowest neoplastic cell content (LuM 1;

Supplementary Figure 1). In LuM 2, the driver gene mutation KRAS was incorrectly classified as

absent by conventional means though it is most likely a clonal founding mutation and was present

at a VAF of 19% in the original WGS sample (Supplementary Table 1). Similarly, the driver gene mu-

tation ATM was incorrectly classified as absent in two samples (VAF 18% and 19% in the WGS data).

Although manual review of these samples revealed mutant reads in KRAS, it is not scalable to man-

ually review every putative variant detected by next generation sequencing. Some variants contained

false negatives across many samples, indicating that these variants were generally difficult to call.

Remarkably, 89% (49/55) of the predicted under powered false-negatives were either significantly

present in the WGS data (38/49; mostly at higher coverage than in the targeted sequencing data), or

the genomic region of the variant possessed a low alignability score72 (28/49; Supplementary Table

1).

For two variants sequenced at high depth, Treeomics predicted 13 putative false negatives. The

WGS data confirmed sequencing artifacts in these two variants but indicated that 4 likely false pos-

itives (all absent in the WGS data) induced Treeomics to predict 13 false negatives rather than 4 false

positives (Supplementary Table 2). Of the 13 putative false positives (pink squares in Figure 1.2b),

92% (12/13) were classified as absent in the original WGS data and their mean VAF was 2.3% (Sup-

plementary Table 3). In total, 75% (49 putative false-negatives + 12 putative false-positives; 61/81) of

the predicted artifacts were successfully validated. Hence, we verified that at least 7% (61/900) of the

variants were misclassified by conventional binary classification. If a phylogenomic method does not
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account for sequencing artifacts, the mutation patterns of a large fraction of variants will often be

inconsistent with any inferred evolutionary tree. In Pam03, the mutation patterns of 31.1% (28/90)

of the variants would be evolutionarily incompatible (Figure 1.2a). These putative artifacts may also

help to explain the observed high tumor heterogeneity in earlier studies and the recently reported

intratumor similarity when sequencing depth is increased 285,139,161.

1.4.3 Inferring evolutionary trees

From the identified mutation patterns, Treeomics inferred an evolutionary tree rooted at the germline

DNA sequence of the pancreatic cancer patient Pam03 (Figure 1.2c). We found strong support for

an evolutionarily related group of geographically distinct lesions: samples LiM 2-5 (liver metastases)

and PT 11 (primary tumor). This result suggests that a recent parental clone of PT 11 seeded these

liver metastases. We also found the same evolutionary relationship by using the low-coverage WGS

data (Supplementary Figure 4). In contrast to the targeted sequencing data, the WGS data indi-

cated that lung metastasis LuM 1 was more closely related to LuM 2 and LuM 3. Though the low

neoplastic cell content prevents a definite conclusion about the seeding subclone of LuM 1, the re-

constructed phylogeny strongly suggests that the liver metastasis LiM 1 was seeded from a genetically

different subclone than all other liver metastases. This diversity in seeding subclones and the origin

of distinct metastases was also found in another treatment-naïve pancreatic cancer patient (Pam01)

whose data similarly indicated that liver metastases were seeded from genetically distinct subclones

(Supplementary Figure 5). The phylogeny of Pam01 suggested that distinct subclones of the pri-

mary tumor gave rise to not just different liver metastases but also different lymph node metastases.

This observation suggests that spatially and genetically distinct subclones in the primary tumor have

the capacity to seed metastases. Moreover, these subclones are not necessarily predisposed to seed-

ing at a particular site. In contrast, the phylogeny of Pam02 revealed that all liver metastases except

one (LiM 7 with low median coverage of 27) were very closely related to each other and to various

17



regions of the primary tumor–indicating recent divergence (Supplementary Figure 6). Pam02’s pan-

creatic cancer might have expanded very rapidly with only 0.5 months from diagnosis to death com-

pared to 7 and 10 months for Pam01 and Pam03. The observed genetic similarity across geograph-

ically distinct regions of the primary tumor and seven metastases could indicate high metastatic

potential of large parts of the primary tumor leading to this very short survival.

To further validate our approach, we reanalyzed data from high-grade serous ovarian cancers 15.

We were able to reproduce all phylogenetic trees of Bashashati et al. 15 except for Cases 1 and 5 (Sup-

plementary Figure 7 and Figure 1D in 15; Supplementary Figure 8). For case 5, the authors reported

an early divergence of sample 5c while Treeomics suggested a later divergence (Supplementary Figure

7c). Comprehensive analysis of their data (reinterpreted in Supplementary Figure 7a,b) revealed that

their tree either required that several variants (including two driver gene mutations and multiple

indels) occurred independently twice or that two mutations in the driver genes ABL1 and MDM4

were lost. Both possibilities seem unlikely (Supplementary Figure 7 and Figure 1D in 15); this discrep-

ancy was also identified by Popic et al. 207. Treeomics did not require these implausible scenarios to

construct an otherwise similar tree. Distance based methods can be compromised by large differ-

ences in the number of acquired mutations among samples; sample 5c had twice as many mutations

than all other samples. For case 1, Treeomics reported rather low bootstrap values and Popic et al.

inferred yet another phylogeny such that no definitive conclusion could be obtained. This disagree-

ment across methods highlights the importance of a confidence measure for the inferred branches as

otherwise phylogenies are difficult to interpret in a conclusive fashion.

If multiple subclones with spatially distinct evolutionary histories (i.e, polyphyletic samples due

to polyclonal seeding or reseeding of a metastasis) were present in the same sample at detectable

frequencies, conventional phylogenetic approaches would be unable to separate their evolutionary

trajectories. In these scenarios, evolutionarily incompatible mutation patterns with high reliability

scores were utilized to detect these subclones and to infer separate evolutionary histories (Supple-
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mentary Figure 9a; Methods). For the prostate cancer data of case 661 (Supplementary Figure 9),

Treeomics identified subclonal structures and separated their evolutionary trajectories without re-

quiring high purity samples or deep sequencing data.

1.4.4 In silico benchmarking demonstrates high accuracy

We implemented a stochastic continuous-time multi-type branching process to imitate the genetics

of distinct metastases seeded according to an evolving cancer 102,5 (Figure 1.3; Methods). We inves-

tigated a total of 90,000 independently simulated phylogenies comprised of 180 different combi-

nations of sample purity, mean sequencing depth, point mutation rate, chromosome level changes

and mono- and polyphyletic metastases. Based on the simulated ground truth data, we compared

the performance of Treeomics with conventional phylogenetic methods (Maximum Parsimony and

Neighbor Joining) and modern phylogenomic methods (LICHeE 207 and PhyloWGS73) across sam-

ple purities of 15% to 95% and sequencing depths of 25 to 800 (Figure 1.3c) representing the range

of common sequencing data. A comparison of the mean branching error demonstrates that phy-

logenies reconstructed from low coverage WES data or from samples with very low neoplastic cell

content exhibit high error rates independent of the used method. For mean coverages of 100 and

above, the error rates drop dramatically and phylogenies can be accurately reconstructed (Figure 1.3c,

Supplementary Figure 10).

Current subclone inference algorithms do not directly reconstruct phylogenies of distinct sites as

Treeomics does but infer joint phylogenies of variants, which are sometimes simultaneously grouped

into subclones73,207,80,186,282. To enable a comparison of these slightly different methodologies, we

developed a mutation matrix error score (similar as in 207) that checks (i) if variants of the same sub-

clone were indeed assigned to the same subclone and (ii) if the ancestral relationship among variants

was correctly determined (Methods). For example, in the simulated phylogeny illustrated in Fig-

ure 1.3a, the tested tools had to correctly assign the acquired variants to the founding subclone (PT
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Figure 1.3:a|Simulatedmetastaticprogressionaccordingtoastochasticbranchingprocess102,5.Metastases(M1-6)
arenumberedinchronologicalorderoftheirseeding.Purpleandbluelinesindicateevolutionamonglineageswithin
theprimarytumor.Pinknumberscorrespondtothefoundingvariantspresentinallcancercellsandbluenumbers
correspondtotheparsimonyinformativevariants.Numbersinreddenotesubclonalvariantsacquiredaftertheseed-
ingofthemetastasis.SCindicatessubclone.Dottedboxesillustratebiopsies.b|Treeomicscorrectlyreconstructed
thesimulatedphylogenyinpanelabyidentifyingtheparsimonyinformativevariants(blue).Privatemutations(purple
numbersinpanela)acquiredintheprimarytumorareindistinguishablefromsubsequentlyacquiredmutations(red
numbersinpanela).c|Benchmarkingacross15,000simulatedphylogenieswithsixmonoclonalmonophyleticmetas-
tasesdepictingthemeanbranchingerrorconditionedonatleastonevariantperbranch.Phylogeniesreconstructed
fromlowcoverageWESdataorfromsampleswithverylowneoplasticcellcontentexhibitedhigherrorratesindepen-
dentoftheusedmethod.Necessarybinarypresent/absentclassificationformaximumparsimonyandneighborjoining
wasbasedonTreeomics’Bayesianinferencemodel(variantwaspresentifp>50%).
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Figure 1.4:a|Benchmarkingacross15,000simulatedphylogenieswithsixmonophyleticmetastases(noreseeding).
TreeomicsgreatlyoutperformedLICHeEinallconsideredscenarios.Intheorangeframedscenarios,LICHeEwas
unabletoinferavalidsolutionforthemajorityofcases.PhyloWGSexhibitedmeanerrorscoresmorethan10-fold
higherthanthoseofTreeomicsinmostconsideredscenarios.b|Benchmarkingacross15,000simulatedphylogenies
withthreemonophyleticandthreepolyphyleticmetastasesimitatingpatientswithreseededmetastases21,23,53.
Treeomicsexhibitedthelowestmeanerrorscoreacrossallscenarios.TheperformanceofPhyloWGSdidnotsignif-
icantlychangecomparedtomonophyleticmetastases(possiblyduetotheadvantageousinput).Theerrorscoresof
TreeomicsandLICHeEslightlyincreased.
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SC 1) and the parsimony informative subclones (PT SC 3-5, 7). Since the runtime of PhyloWGS in-

creases significantly with the number of variants, we removed all private variants in the input for

PhyloWGS (purple and red variants in Figure 1.3a). Treeomics and LICHeE were provided with all

detected variants and therefore had to distinguish between parsimony informative variants and pri-

vate variants as well as sequencing artifacts. All tools accurately identified ancestral subclones and

their variants for mean coverages above 200 and a neoplastic cell content greater than 35% (Figure

1.4a). Treeomics outperformed LICHeE and PhyloWGS in all considered scenarios (Figure 1.4a).

In the majority of scenarios, the error score of PhyloWGS was more than 10-fold higher than the er-

ror score of Treeomics. For mean coverages below 50, the error score of LICHeE increased notably

while PhyloWGS was mostly struggling with low neoplastic cell content (<35%).

In the case of reseeded metastases 100,172,157 leading to multiple evolutionary trajectories and there-

fore polyphyletic lesions, the error score of Treeomics and LICHeE slightly increased while the per-

formance of PhyloWGS did not change significantly (possibly due to the advantageous input; Figure

1.4b). Treeomics exhibited the lowest error score across methods in all scenarios. Interestingly both

Treeomics and LICHeE performed best in the case of high sequencing depth but low or medium

purity – suggesting that there is further room for improvement (Figure 1.4b). We hypothesize that

the higher purity leads to more detected private variants and hence to more potential sequencing

artifacts. In the case of an elevated point mutation rate (e.g. due to mismatch repair deficiency) or

highly chromosomally unstable cancers 55, Treeomics continued to have the lowest mutation matrix

error score in 119 of 120 considered scenarios (Supplementary Figs. 11, 12). The runtime of PhyloWGS

was around 5-8 hours per simulated phylogeny (in total 300,000 core computing hours; elevated

mutation rate could not be evaluated due to the high runtime), while LICHeE needed on average a

few minutes ( 4,000 hours) and Treeomics less than a minute per case (in total 800 core computing

hours).
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1.5 Discussion

The new approach described here efficiently reconstructs the evolutionary history, detects potential

artifacts in noisy sequencing data, and finds the ancestral subclones giving rise to the distinct metas-

tases. The evolutionary theory of asexually evolving populations combined with Bayesian inference

and Integer Linear Programming enabled us to infer detailed phylogenomic trees with significantly

fewer errors than existing methods (Figure 1.3, Figure 1.4, Supplementary Figs. 10-12). In contrast to

other tools, Treeomics accounts for putative artifacts in sequencing data and can thereby infer the

branches where somatic variants were acquired as well as where some may have been lost during evo-

lution, presumably through losses of heterozygosity resulting from chromosomal instability 172,145.

The branching in the inferred trees shed new light on the origin and the seeding patterns of par-

ticular metastatic lesions 181,112. For example, in contrast to colon cancer, where liver metastases are

assumed to seed lung metastases 261, our results suggest that this may not be the case in pancreatic

cancer. The reconstructed phylogenies also indicate that distinct subclones in the primary tumor

were equally capable to seed metastases in the same and in different organs (Supplementary Figure

5). However, we did not find any evidence for polyphyletic metastases which confirms findings in a

mouse model of pancreatic cancer where the large majority of lung and liver metastases were mono-

phyletic 157. The evolutionary rules of natural metastatic cancers leading to the highly non-random

pattern of metastases in Pam03 are just beginning to emerge.

Despite these detailed reconstructed phylogenies, there are several limitations that should not be

neglected. A low mutation matrix error score does not directly imply correctly reconstructed seeding

patterns and vice versa (compare Figure 1.3c and Figure 1.4a). A method can exhibit low mutation

matrix error scores while exhibiting high branching errors and vice versa. Moreover, without addi-

tional data, even correctly inferred cancer phylogenies do neither directly provide information about

the temporal ordering in which metastases were seeded nor about the anatomic location of the seed-
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ing subclones. For example, metastasis M4 diverged first in the simulated phylogeny but was seeded

rather late (Figure 1.3a). Furthermore, a single seeding event cannot be distinguished from multiple

seeding events from the topology of the reconstructed tree alone (see 112). Only sufficient sampling of

all sites can provide evidence about the location of the seeding subclone and the likely timing of the

seeding event. For example, the genetic similarity of the primary tumor sample PT 11 and the liver

metastases LiM 2-5 suggests multiple seeding events from a recent ancestor of PT 11. Future phyloge-

nomic approaches could incorporate estimated growth rates and mutation rates to better quantify

the probability of metastasis to metastasis spread.

We have designed Treeomics from first principles to directly handle ambiguity in high-throughput

sequencing data, including samples with low neoplastic cell content or coverage. The mutation

patterns and their evolutionary conflict graph form a robust data structure and consequently the

painful task of semi-automatic filtering becomes unnecessary. As a result of the Bayesian confi-

dence estimates for the individual variants, this method can infer more robust results than tradi-

tional phylogenetic methods, which employ a binary representation of sequencing data (Figure 1.2a).

Furthermore, as shown above, distance-based methods can produce results inconsistent with the

evolutionary theory of cancer as they often ignore knowledge of biological phenomena specific to

neoplasia (Supplementary Figure 7). We note that PhyloWGS, LICHeE and other subclone infer-

ence methods have not been designed to reconstruct phylogenies based on these few genetic variants

that determine the evolutionary history of metastases. The key difference between these approaches

is that Treeomics assumes that mixing of subclones from two spatially distinct sites and hence poly-

phyletic samples are rare 172,139,157. Treeomics therefore works extremely well among metastases but

is not applicable for liquid cancers. On the contrary, tools like PhyloWGS work extremely well in

liquid cancers. Last, we compared our results to AncesTree 80, which roughly identified the evolu-

tionarily related samples in Pam03 but excluded 70% (63/90) of the variants (among them the driver

gene mutations in KRAS and ATM) in the inferred phylogeny due to evolutionary incompatibilities
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(Supplementary Figure 13).

At present, Treeomics only employs nucleotide substitutions and short insertions and deletions –

a subset of the available information. The benchmarking results demonstrate that a single mutation

varying in two samples is typically sufficient for Treeomics to infer the correct evolutionary history

(Figure 1.3a,b); a crucial property given the high genetic similarity of metastases 139,161. Other types

of data, such as copy number alterations, structural variations and DNA methylation, could be

incorporated into Treeomics to further improve the accuracy of the inferred results.

1.6 Methods

1.6.1 DNA sequencing design and validation

Sequencing data were generated in two stages (see 161). First, genomic DNA from 26 tumor sam-

ples of three subjects (20 metastases and 6 primary tumor sections) was evaluated by 60x whole

genome sequencing (WGS) using an Illumina Hi-Seq 2000 (see Figure 1.1, Supplementary Figs. 5,

6 for anatomic locations of the individual samples). Importantly, genomic DNA from the normal

tissue of each patient was used to facilitate identification of somatic variants. We obtained an aver-

age coverage of 69x with 97.5% of bases covered at >10x, revealing a total of 127,597 putative coding

and noncoding somatic mutations, (average of 4,908 per sample). To limit the artifacts generated

by WGS and alignment, we filtered the putative variants using several quality parameters, including

read directionality, mutant allele frequency detected in the normal, known human SNPs, and the

number of independent tags at each site. This analysis, combined with manual inspection of the raw

data, yielded a total of 2,105 potential mutations for subsequent validation.

Second, we utilized a targeted sequencing approach to independently screen every mutation that

we observed to be of high quality in at least one WGS tumor sample. Briefly, probes for capture

were designed to flank each potential mutant base (2,105) and libraries were prepared for the origi-
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nal 26 WGS samples of the three subjects. Using an Illumina chip-based approach, we successfully

aligned, processed, and validated 381 mutations (range 106-164 per patient) at an average sequencing

depth of 731x (Supplementary Data 1-3). In addition to the increased coverage and sensitivity of tar-

geted sequencing, both sequencing approaches generated independent datasets in which we could

directly compare putative variants in silico among many tumors within a patient. Additional details

regarding patient selection, processing of tissue samples and DNA extraction and quantification can

be found in 161.

1.6.2 Bayesian inference model

To compute reliability scores for each mutation pattern, we extract posterior probabilities for the

presence and absence of a variant in a sample from a Bayesian binomial likelihood model of error-

prone sequencing. If f is the true fraction of variant reads in the sample, π is our prior belief about f,

and e is the sequencing error rate, the posterior distribution P of f given N total reads and K variant

reads is

P(f|N,K) =
1
Z

(
N
K

)
(f(1 − e) + (1 − f)e)K (fe + (1 − f)(1 − e))N−K π(f) (1.1)

where Z is a normalizing constant (see Supplementary InformationMethods). A priori, the vari-

ant allele frequency in a sample is exactly zero (f = 0) with some positive probability c0. The prior π

is then of the following form

π(f) = c0δ(f) + (1 − c0)g(f) (1.2)

where δ(f) denotes the Dirac delta function and g(f) denotes a prior given the variant is present. We

use a sample-specific prior function to account for the by multiple fold varying neoplastic cell con-

tent across samples (Supplementary InformationMethods; Supplementary Figure 2). The posterior

probability that a variant is absent in a sample with low neoplastic cell content will be lower than in

26



a sample with high neoplastic cell content despite the same K and N (Supplementary Information-

Methods). The posterior probability that a variant is absent, denoted by q, and the probability that

a variant is present, denoted by p, are

q = P(f ≤ fabsentγs|N,K), p = 1 − q (1.3)

where γs is the estimated neoplastic cell content in sample s and fabsent is the maximal frequency

threshold for an absent SNV (Supplementary InformationMethods). A variety of more sophisti-

cated variant detection algorithms can be used here as long as the output can be converted to pos-

terior probabilities of presence and absence. We obtained robust results across all investigated sce-

narios with the frequency threshold of fabsent = 0.05, however other thresholds can be used. We

calculate the probability of each mutation pattern for a particular variant by multiplying the corre-

sponding posterior probabilities for each sample. Each mutation pattern has some positive probabil-

ity, but those supported by the data are given much more weight. A mutation pattern ν is denoted

as a binary vector of length |S| (total number of samples) where νs is 1 if the variant is present in

sample s and 0 if absent. The likelihood Lµ(ν) that a variant µ exhibits pattern ν is

Lµ(ν) =
∏
s∈S

pνs
µ,sq

1−νs
µ,s (1.4)

If the presence or absence of a variant in some samples is uncertain, the likelihood of any individ-

ual mutation pattern will generally be lower. The reliability score ων of each mutation pattern ν

(corresponding to a node in the evolutionary conflict graph; Supplementary Figure 3) is given by

ων =
−log(

∏
µ
(
1 − Lµ(ν)

)
m

(1.5)

Assuming mutations are independent across each other and across samples, the argument of the log-
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arithm denotes the likelihood that no mutation has pattern ν and hence leverages the full sequenc-

ing information from all variants. With these scores (weights) normalized by the number of consid-

ered variants m, the minimum weight vertex cover of the evolutionary conflict graph corresponds to

identifying the most reliable and evolutionarily compatible mutation patterns (see Supplementary

Information Methods for further details).

1.6.3 Identifying evolutionarily compatible mutation patterns

Given the calculated reliability scores, we efficiently find the most reliable and evolutionarily com-

patible mutation pattern for all variants via solving a Mixed Integer Linear Program 182 (MILP). In

the Supplementary Information we prove that finding these mutation patterns is equivalent to solv-

ing the Minimum Vertex Cover problem; one of Karp’s original 21 NP-complete problems66,124. In

the Minimum Vertex Cover problem one wants to find the minimum set of nodes in an undirected

graph such that each edge in the graph is adjacent to one of the nodes in the minimum set. There-

fore, by definition all edges are covered by the nodes in the minimum set. Similarly, we try to find

the weighted set of nodes (here mutation patterns) with the minimal sum of reliability scores such

that no evolutionary incompatibilities in the conflict graph remain. After this minimal set of nodes

and their adjacent edges have been removed from the graph, we can easily infer an evolutionary tree

since evolutionary conflicts no longer exist among the remaining nodes (i.e., all edges were covered

and removed with the minimal set). The remaining set of mutation patterns is by definition the

maximal set of evolutionarily compatible patterns (Supplementary Methods).

In the evolutionary conflict graph G = (V,E), each node i ∈ V represents a different mutation

pattern. For n samples, the number of nodes |V| is given by 2n. For each pair of evolutionarily in-

compatible mutation patterns i and j, there exists an edge (i, j) ∈ E. The weight (ci) of each node i

is given by the reliability scores ωi described in the Bayesian inference model section (Supplementary

Figure 3).
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The MILP to find the minimal-weighted set of evolutionarily incompatible mutation patterns is

defined by the following objective function and constraints:

objective function minimize
∑

i∈V cixi

constraints subject to xi + xj ≥ 1 for all (i, j) ∈ E

xi ∈ {0, 1}, ci > 0 for all i ∈ V
This formulation guarantees that the MILP solver finds the minimal value of the objective func-

tion such that all constraints are met and hence the nodes in the selected set cover all edges. The evo-

lutionarily compatible and most reliable mutation patterns {i|xi = 0} are given by the complement

set of the optimal solution {i|xi = 1} to the MILP.

Day and Sankoff showed that inferring the most likely evolutionary trajectories is a computation-

ally challenging problem (NP-complete66). Sophisticated approximation algorithms have been de-

veloped in the context of language and cancer evolution28,179,231. However, medium-sized instances

of NP-complete problems are no longer intractable due to the enormous engineering and research

effort that has been devoted to ILP solvers. The MILP 182 formulation enables an efficient and ro-

bust analysis of large datasets. We prove that an approximation algorithm that would guarantee that

its solution is at most 36.06% worse than the optimal solution cannot exist unless the complexity

class P=NP (Supplementary Methods, Theorem 1). Salari et al. 231 explored a related approach but

approximated two NP complete problems, possibly leading to suboptimal results. Treeomics pro-

duces a mathematically guaranteed to be optimal result without convergence or termination issues.

Note that a mathematical optimal solution is not necessarily equivalent to the biological truth, espe-

cially in the case of low neoplastic cell content or coverage (Figure 1.3, Figure 1.4). MILPs may also

be useful in other areas of phylogenetic inference where methods with strong biological assumptions

(e.g. constant mutation rates or specific substitution profiles) are not applicable or are computation-

ally too expensive to obtain guaranteed optimal solutions.
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1.6.4 Inferring evolutionary trees

After the evolutionarily compatible mutation patterns {i|xi = 0} have been identified and variants

are assigned to their most likely evolutionarily compatible pattern based on the maximum likelihood

weights given by the Bayesian inference model, the derivation of an evolutionary tree is a trivial

computational task. In quadratic time (O(mn)) of the input size we construct a unique phylogeny

where n is the number of samples and m is the total number of distinct variants 101. The branches

where the individual variants are acquired follow from the inferred tree.

1.6.5 Detecting subclones of distinct origin

Evolutionary incompatible mutation patterns with high reliability scores may indicate mixed sub-

clones with distinct evolutionary trajectories (Supplementary Figure 9). Recall that evolutionary

incompatibility requires that the conflicting variants need to be present together in at least one sam-

ple. However, even if both variants are mutated in a statistically significant fraction in the same

sample, these variants may not be present in the same cells and the evolutionary laws of an asexu-

ally evolving population may not be violated. If an evolutionarily incompatible mutation pattern

exhibits a reliability score higher than expected from noise, Treeomics utilizes this evidence to infer

subclones with distinct evolutionary trajectories and unidirectional spreading. A detailed pseudo

code is provided in the Supplementary Methods. Subsets (descendants) and supersets (ancestors)

of the conflicting mutation pattern are simultaneously identified and a comprehensive evolution-

ary tree is inferred. We performed extensive benchmarking of the subclone detection algorithm for

various scenarios described in the following section (Figure 1.4, Supplementary Figure 9). Further-

more, we tested the method on sequencing samples from the same prostate. After two subclones

were separated in mixed samples from a prostate tumor17, 12643 (out of 12645) variants supported

the inferred evolutionary tree (Supplementary Figure 9). The remaining two variants were predicted
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to be false positives by Treeomics.

1.6.6 In silico benchmarking

To assess the performance of Treeomics, we simulated metastatic progression according to a stochas-

tic multi-type continuous-time branching process 102,10,275,32,215,216 where metastases are seeded inde-

pendently at random. Cells divide with birth rate b = 0.16, die with death rate d = 0.1555, and can

leave the current site to successfully colonize a new site with probability q = 10−9 102,88. When a cell

divides, a point mutation is acquired with probability u = 0.045 (assuming a point mutation rate of

5∗10−10 per basepair and 45 megabases covered by Illumina exome sequencing 121) and a Copy Num-

ber Variant (CNVs) is acquired with a rate of 0.1% per division. The evolutionary process is initiated

by a single advanced cancer that already accumulated driver gene mutations. Subsequently accu-

mulated mutations, Single Nucleotide Variants (SNVs) and CNVs, are assumed to be neutral 272,34.

Variants are acquired randomly across all chromosome pairs such that no two copy number events

overlap along the same lineage. SNVs and CNVs may overlap, in which case the timing of the events

is used to determine the allele fraction of SNVs at the affected locus. CNV length is sampled from

the observed length distribution in 23. After m spatially distinct metastases reached the detection size

M = 108, the simulation is stopped. Note that new metastases can also be seeded from previously

seeded metastases.

To model the biopsy and sequencing process, a single sample consisting of one million cells of

each of the m metastases consistent to the considered purity (15%, 35%, 55%, 75%, 95%) is subject to

in silico sequencing. Metastases with a mixture of ancestries (polyphyletic samples) are simulated

by random sampling from two distinct sites proportional to the tumor sizes at these sites (size of

the second site possibly still below the detection limit). Sequencing depth is negative binomially

distributed with a given mean (25, 50, 100, 200, 400, 800). A sequencing error rate of e = 0.5%

is assumed. The simulation output is the number of variant and reference ”reads” in each metas-
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tasis sample for each mutated locus present with a VAF of at least 5% and supported by at least 4

variant reads (2 in the case of a coverage of 25) in any of the sampled metastases. An example for

a simulated phylogeny is depicted in Figure 1.3a. Simulated phylogenies are available on github:

https://github.com/johannesreiter/treeomics.

We compared Treeomics to standard phylogenetic reconstruction (Maximum Parsimony239,

Neighbor Joining 239) and modern tumor phylogeny reconstruction methods (LICHeE 207, Phy-

loWGS73). Two different error metrics demonstrate the performance of Treeomics against existing

methods: branching error and mutation matrix error score. The branching error quantifies the ac-

curacy of the reconstructed coalescent relationships among distinct sites. From the true coalescent

tree among metastatic sites, the collection of coalescent events among the sites is computed and

compared to those predicted by the method. The branching error is defined as the fraction of true

coalescent events missed by the reconstruction method. Since maximum parsimony and neighbor

joining trees do not infer the evolutionary relationships among individual variants, the branching

error metric was used to compare these methods (Figure 1.3).

The mutation matrix error score quantifies the accuracy of the reconstructed sequence of mu-

tations acquired during an evolutionary process. For a tumor with k parsimony-informative muta-

tions across m metastases, a k by k matrix A is constructed where Ai,j = 1 if mutation i is parental

to mutation j and 0 otherwise. If two mutations are acquired on the branch in the true phylogeny,

the correct evolutionary ordering among this pair of mutations is not required and Ai,j = 0.5. In

PhyloWGS, where many phylogenies are sampled, this reconstructed phylogeny mutation matrix Â

is averaged over all samples. If a tool did not provide any information about a pair of mutations i, j,

Âi,j is set to Ai,j − 0.5. For the reconstructed matrix A ̂, the normalized error score is computed as∑
i,j

(
Ai,j − Âi,j

)2
/(k2 − k). Because LICHeE and PhyloWGS do not directly infer the coalescent

relationship among sites, the mutation matrix error score was used in the benchmarking (Figure 1.4,

Supplementary Figs. 11-12). Recall that only founder and parsimony informative mutations were
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provided as input to PhyloWGS while LICHeE and Treeomics also had to deal with noisy private

mutations. PhyloWGS was run with 2,500 MCMC iterations and 5,000 inner Metropolis-Hastings

iterations for a maximum of 15 hours for each individual case. Increasing the number of samples and

iterations did not significantly decrease the mutation matrix error score. LICHeE was run with the

default parameter values except that we set maxVAFAbsent and minVAFPresent to 0.05 as well as

minClusterSize and minProfileSupport to 1. These parameter changes significantly improved the

performance of LICHeE in our data set.

1.6.7 Binary present/absent classification

We perform conventional binary present/absent classification of each variant to allow a comparison

to the inferred classification used in our new approach. We scored each variant by calculating a p-

value in all samples (one-tailed binomial test): Pr(X > K|H0,K,N) = 1 −
∑K−1

i=0
(N

i

)
pi
fpr(1 −

pfpr)
N−i where N denotes the coverage, K denotes the number of variant reads observed at this po-

sition, and X denotes the random number of false-positives. As null hypothesis H0, we assume that

the variant is absent. Similar to Gundem et al. 100, we assumed a false-positive rate (pfpr) of 0.5% for

the Illumina chip-based targeted deep sequencing. We used the step-up method 21 to control for an

average false discovery rate (FDR) of 5% in the combined set of p-values from all samples of a pa-

tient. Variants with a rejected null hypothesis were classified as present. The remaining variants were

classified as absent.

1.6.8 Code availability

The source code and a manual for Treeomics, as well as multiple examples illustrating its usage, are

provided at https://github.com/johannesreiter/treeomics as well as in Supplementary Software.

Treeomics v1.5.2 was used for the entire analysis. The tool is implemented in Python 3.4. The inputs

33



to the tool are the called variants and the corresponding sequencing data, either in tab-separated-

values format or as matched tumor-normal VCF files. As output, Treeomics produces a comprehen-

sive HTML report (see github repository) including statistical analysis of the data, a mutation table

plot and a list of putative artifacts (false-positives, well-powered and under-powered false negatives).

Additionally, Treeomics produces evolutionary trees in LaTeX/TikZ format for high-resolution

plots in PDF format. If circos is installed, Treeomics automatically creates the evolutionary con-

flict graph and adds it to the HTML report. Treeomics also supports various filtering (e.g., minimal

sample median coverage, false-positive rate, false-discovery rate) for an extensive analysis of the se-

quencing data. Detailed instructions for the filtering and analysis are provided in the readme file in

the online repository. For solving the MILP, Treeomics makes use of the common CPLEX solver

(v12.6) from IBM.

1.6.9 Data availability

Targeted sequencing data of subjects Pam01, Pam02, and Pam03 have been deposited in the github

repository in the directory /src/input/Makohon2016 and are also provided in Supplementary Data

1-3. All other relevant data are available within the article and its Supplementary Files or available

from the corresponding authors.
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2
Precancerous neoplastic cells can move

through the pancreatic ductal system

2.1 Forward

This work considers the relationship betweenmatched precancerous and cancerous lesions in the

pancreas. Most people will develop precancerous lesions in the pancreas (and many other organs),
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but the vast majority of these lesions will remain benign–at least over the course of a normal life-

time. Informed by the phylogenetic inference tool in Chapter 1, we provide the first characterization

of the similarities and differences between these lesions. The work is the product of a longstanding

collaboration between Martin Nowak, Christine Iacobuzio-Donahue, and Bert Vogelstein, and the

experimental work described here began long before my involvement. I am indebted to Bert and

Christine’s vision and planning, which made the collection of such remarkable data possible.

Hannes Reiter, Alvin Makohon-Moore, and I collaborated to analyze the data in this study. We

were all involved in reviewing data quality and the generation and analysis of phylogenies for each

patient. I contributed most heavily to the analysis of mutational signatures in these patients and the

inference of event times at the end of the chapter.

This work was first published in Ref. 159:

Makohon-Moore, A. P.*, Matsukuma, K.*, Zhang, M.*, Reiter, J. G.*, Gerold, J.M.*, Jiao, Y., Sikkema,

L., Attiyeh, M. A., Yachida, S., Sandone, C., Hruban, R. H., Klimstra, D. S., Papadopoulos, N.,

Nowak, M. A., Kinzler, K. W., Vogelstein, B., and Iacobuzio-Donahue, C. A. (2018). Precancerous

neoplastic cells can move through the pancreatic ductal system. Nature, 561(7722), 201. (*equal con-

tribution)

Supplemental materials can be found online at DOI 10.1038/s41586-018-0481-8

2.2 Abstract

Most adult carcinomas develop from noninvasive precursor lesions, a progression that is supported

by genetic analysis. We analyzed the somatic variants of co-existing pancreatic cancers and precursor

lesions sampled from distinct regions of the same pancreas. After inferring evolutionary relation-

ships, we found that the ancestral cell had initiated and clonally expanded to form one or more le-

sions, and that subsequent driver gene mutations eventually led to an invasive pancreatic cancer. We
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estimate that this multi-step progression generally spans many years. These new data reframe the

step-wise progression model of pancreatic cancer by illustrating independent, high-grade pancreatic

precursor lesions observed in a single pancreata often represent a single neoplasm that has colonized

the ductal system, accumulating spatial and genetic divergence over time.

2.3 Introduction

The transformation of a normal cell to invasive cancer occurs through the accumulation of genetic

and epigenetic changes 265. Many invasive carcinomas of adults develop from morphologically rec-

ognizable noninvasive precursor lesions 264. The most common precursor lesion associated with

pancreatic ductal adenocarcinoma (PDAC) is pancreatic intraepithelial neoplasia (PanIN) 17. At the

morphologic level, low-grade PanINs (LG-PanIN, PanIN-1 and PanIN-2) have minimal to moder-

ate cytologic atypia and higher-grade PanINs (HG-PanIN, PanIN-3) have severe cytologic atypia.

HG-PanINs exhibit morphological features that are thought to facilitate progression to an infiltrat-

ing carcinoma 114.

Aspects of this progression are supported by genetic studies 114,262,123, yet fundamental questions

about the development of PDAC remain 158. The majority of PanINs (regardless of grade) harbor

KRAS mutations; increasing grade of PanINs and invasive carcinomas are more likely to contain ad-

ditional driver gene alterations such as those in TP53, CDKN2A, and SMAD4. Moreover, PanINs

adjacent to PDACs often share many genetic alterations in both passenger and driver genes 177,113.

Collectively, these observations suggest a subset of PDACs arise from adjacent PanINs, just as a col-

orectal carcinoma can arise from an underlying adenoma 83. However, in individuals with multiple

anatomically distinct PanINs 168, the biologic and genetic relationships among these lesions and

their clinical significance are not fully understood 280. For instance, cancerization of the pancreatic

ducts by an established PDAC recapitulates lesions with histopathologic features that are difficult
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to distinguish from those of bona fide PanIN precursor lesions 134. Further, the importance of non-

invasive precursor lesions was recently challenged by a whole genomic sequence analysis of pan-

creatic cancers which proposed that pancreatic cancer tumorigenesis is neither gradual nor slow 189.

We posited that a genomic evaluation of PDAC and matched co-evolving PanINs would provide

additional insights into the biology of pancreatic cancer precursors and the dynamics of step-wise

progression.

2.3.1 Evolutionary scenarios

Figure 2.1 presents the conceptual framework underlying the interpretation of sequencing data gen-

erated from one PanIN and PDAC in the same patient, outlining three possible scenarios that in

theory might be found. In the first scenario, the PanIN and the PDAC do not share any somatic mu-

tations and arose independently. In the second scenario, the PanIN shares a subset of the somatic

passenger and driver gene mutations with the PDAC, but the PDAC contains additional driver or

passenger gene alterations not present in the PanIN. Scenario 2 presumes that a common ancestral

cell underwent initiation and clonal expansion prior to seeding the PanIN and PDAC, but neither

the common ancestral cell nor the founding PanIN cell had yet acquired all the genetic events re-

quired to generate an invasive neoplasm. In the third scenario, the PanIN and the PDAC share some

passenger mutations and all driver gene alterations, and the ancestral cell that seeded both the PDAC

and PanIN already acquired all alterations required to form a malignant cancer.

2.4 Results

To investigate the progression patterns of pancreatic carcinogenesis, >100 resected pancreata from

over a three-year interval were prospectively screened to identify those samples in which at least one

LG-PanIN (PanIN-2) or HG-PanIN (PanIN-3) was present in a region that was anatomically dis-
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Figure 2.1:a.EvolutionaryscenariosofcoexistentPanIN(s)andPDAC.Foreachofthethreeevolutionaryscenar-
ios,D1andD2indicatetwohypotheticaldrivergenealterationswhereasthecoloredcellsrepresentthegermline
(matchednormalsample)inblueandthemostrecentcommonancestor(MRCA)inorangeforeachPanIN/PDACpair.
Theprimarytumorislabeled“PDAC”whilethePanINislabeledbyaletter.Inscenario1,noneofthesomaticgene
alterationsaresharedbythePanINandPDAC.MutationD1isprivatetoPDACandmutationD2isprivatetothe
PanIN.Inscenario2,onlyD1issharedbythePanINandPDAC.ThemutationinD2isprivatetothePDAC.Inscenario
3,bothD1andD2drivergenealterationsaresharedbythePanINandPDAC.b.Tissuecollection,histologicalreview
andmicrodissection,wholeexomesequencing(WES),andphylogeneticanalysisofhumanpatients.Bodydiagram
wasadaptedfromtheMotifoliotoolkit.ExampleofPanINsandmatchedPDAC.Thedashedoutlinesindicateregions
thatunderwentlasercapturemicrodissectionofDNAextractionfollowedbywholeexomesequencing(WES).The
low-gradePanIN(LG-PanIN)showswellformedpapillarystructureswithnuclearcrowdingandcytologicatypia.The
high-gradePanIN(HG-PanIN)hasregionsofpseudopapillaryformation(arrows)withhighnucleartocytoplasmic
ratio.ThematchedPDACshowsfeaturesofpoorlydifferentiatedcarcinomawithdesmoplasia.
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tinct and far removed from that of the PDAC (Methods). We excluded any patient with a personal

or family history of PDAC from our study, as the dynamics of initiation in patients with germline

alterations may be different from that in sporadic pancreatic carcinogenesis 223. Eight patients were

identified, from which 12 PanINs and eight PDACs were sampled for the current study (Supplemen-

tary Table 1). All 20 tissue samples were laser-capture microdissected to ensure that a high fraction of

the cells within each lesion were neoplastic (Figure 2.1b). Despite the microscopic size of the PanINs,

we were able to obtain sufficient amounts of DNA to generate high quality libraries for whole ex-

ome sequencing (WES). Importantly, the generation of these libraries did not require whole genome

amplification prior to WES, thus reducing potential errors in downstream analyses.

Sequencing libraries were prepared from each of the lesions as well as from normal tissues of each

patient and used for massively parallel sequencing on an Illumina HiSeq instrument. We obtained

a median canonical exon coverage of 253x across all samples. By comparison of each lesion with its

matched normal DNA, a total of 2,886 somatic single base substitutions (SNVs) and small inser-

tions or deletions (INDELs) were identified (Extended Data Figure 1, Supplementary Table 2). As a

group, the PanINs harbored as many SNVs/INDELs as the PDACs (average of 75 vs. 80, Extended

Data Figure 1b). We also analyzed somatic copy number alterations (CNAs) and structural variants

(SVs) from the exomic sequencing data (Supplementary Tables 3 and 4, Extended Data Figure 1c and

2). The number of CNAs, unlike the number of SNVs/INDELs, was higher in PDACs compared

to PanINs (average of 90 vs 68). Computational analysis (Methods) revealed somatic mutations in

many well-known driver genes, such as KRAS, CDKN2A, TP53, SMAD4, U2AF1, and KMT2D

(Supplementary Table 5). Collectively, the genetic features of this set of PanINs and PDACs were

consistent with previous sequencing studies of these tumors 121,24,268,274,12. To infer evolutionary

relationships among the PanINs and PDACs for each patient based on the SNVs/INDELs, we em-

ployed Treeomics218, a recently developed phylogenetic method designed specifically for analyzing

sequencing data from spatially distinct tumors in the same individual 160 (Methods). Treeomics
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identified high confidence phylogenies for the matched samples from each of the eight patients (Fig-

ure 2.2a-c, Extended Data Figures 3-5). These analyses allowed us to derive the evolutionary relation-

ships between the coexisting PanINs and the PDAC in each patient.

2.4.1 Evolutionary patterns in pancreatic cancer and precursor lesions

In our cohort, we found two cases (PIN102 and PIN105) in which no passenger gene mutations

were shared by the PDAC and PanIN (Figure 2.2a, Extended Data Figure 3). For example, in patient

PIN105 both the PanIN and PDAC had a KRAS p.G12D missense mutation. The PDAC exhibited

80 additional point mutations, including a one basepair frameshift deletion in TP53, a missense mu-

tation in ACVR1B p.C34Y, and a 15 basepair in frame deletion in SMAD4. Additionally, the PDAC

acquired CNA losses affecting CDKN2A, MAP2K4, TP53, and SMAD4 (Extended Data Figure 3b).

The PDAC and PanIN may have arisen independently and by chance accumulated the same KRAS

mutation (scenario 1), or they may have been initiated by a single KRAS p.G12D mutant clone and

subsequently diverged (i.e. scenario 2). Scenario 1 may be more likely given the high frequency of

KRAS variants in PDAC (>90%)13 and the absence of any other shared somatic variants among the

matched PanIN and PDAC samples in both of these patients. Moreover, the PanINs in both of

these cases exhibited PanIN-2 histology, and a previous study indicated that low grade PanINs of-

ten harbor genetic features that support independent evolution. We note the previous observation

included distinct KRAS variants in matched PanINs, contrary to the two cases presented here9.

Four of the eight cases showed unequivocal evidence for scenario 2, that is a common ancestral

cell underwent initiation and clonal expansion to form one or more PanINs. Further clonal expan-

sions driven by additional driver gene mutations in a PanIN cell eventually led to a PDAC (Figure

2.2b, Extended Data Figure 4). For example, in patient PIN101, the common ancestor of PanIN le-

sion A and the PDAC acquired 14 somatic passenger mutations, including a KRAS p.G12D, as well

as losses affecting ACVR1B, MAP2K4, TP53, and SMAD4 (Figure 2.2b, Extended Data Figure 4a).
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The PDAC accumulated 28 point mutations including a p.A21D missense mutation in CDKN2A

and a missense mutation in TP53 for p.R273H, as well as a loss affecting CDKN2A and a gain affect-

ing MYC. The PanIN lesion A accumulated 111 point mutations, including a nonsense mutation in

SDK2. Similar patterns were found in PIN103, PIN104 and PIN108, i.e. driver gene mutations com-

mon to all lesions as well as additional driver gene mutations specific to the PDAC (i.e., scenario 2,

Figure 2.2b).

Finally, we observed two cases with phylogenetic patterns consistent with scenario 3 (PIN106

and PIN107) in which all lesions in a single pancreata shared all of the driver gene mutations iden-

tified (Figure 2.2c, Extended Data Figure 5). In patient PIN106, the common ancestor of all four

samples harbored 47 somatic point mutations, including a p.G12D missense mutation in KRAS, a

p.G266E missense mutation in TP53, a mutation affecting the splice region in ATM, and a p.Q597*

in GLI3 (Figure 2.2c). The PDAC subsequently acquired 39 passenger mutations and losses affecting

CDKN2A and SMAD4.

In summary, the lesions in four of these eight patients were unequivocally derived from the same

precursor clone, as they shared multiple passenger genes and a subset of driver genes (scenario 2).

The presence of these additional driver gene alterations, coupled with phylogenetic analysis, pro-

vides persuasive evidence that the PDAC was derived from a PanIN in each case. These results high-

light the value of genetic evaluation of morphologically distinct legions in revealing the evolutionary

dynamics of pancreatic carcinogenesis. Because the PanINs were all anatomically distinct and far re-

moved from the PDAC (Methods), the data indicate that a single mutant clone had spread through

the pancreatic ductal system to generate coexisting neoplastic lesions (Figure 2.3a). This situation

is similar to what occurs in the bladder, wherein a single clone can form multiple anatomically dis-

tinct neoplasms 235. Though it would seem much more challenging for a neoplastic cell to journey

through the fluid in the pancreatic ductal system than to journey through the urine, this journey has

been described in intraductal papillary mucinous neoplasms of the pancreas, and clearly occurred in
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Figure 2.3:a.SpatialevolutionandPanINprogressioninintralobularducts.LowgradePanIN(LG-PanIN)andhigh
gradePanIN(HG-PanIN)lesionsrepresentprecursorswithdifferingdegreesofnuclearandcytologicatypia.ALG-
PanINdevelopsandseedsacellthattravelstoasecondduct(arrow,leftpanel).ThefirstLG-PanINmaturesintoa
HG-PanIN,whileaLG-PanINdevelopsatthesecondsiteandacellsubsequentlytravelstoathirdduct(arrow,center
panel).ThesecondsiteLG-PanINmaturesintoaHG-PanINwhileaLG-PanINdevelopsatthesecondsite(rightpanel).
b.Estimatedprogressiontimes.ThelineageleadingfromtheMRCAtothePanINsisillustratedinyellow,whilethelin-
eageleadingfromtheMRCAtothePDACisingreen.Clonalpassengermutationswereusedtoestimateprogression
times,shownforeachpatientwith90%CIs.Overall(black),theinferredmediantimeelapsedbetweenthecommon
ancestralcellandthebirthofthefoundercloneofaPanINwas7.1years(90%CI3.3-12.2;MRCAtoPanIN,n=12).
ThemediantimeelapsedbetweenthecommonancestralcellandthePDACwas4.3years(90%CI2.3-7.2;MRCAto
PDAC,n=8).Theseestimatesassumeamutationrateof0.0224pergenerationandatimepergenerationof4days
(OnlineMethods).

45



these four patients as well201.

To assess genetic relatedness using all somatic variants, we quantified Jaccard similarity coeffi-

cients between pairs of lesions within each scenario (Figure 2.2d, Supplementary Table 6). Inter-

estingly, scenario 2 PanIN lesions tended to share fewer somatic variants with the matched PDAC

as compared to PanIN lesions in scenario 3 (average Jaccard similarity coefficient of 0.39 vs. 0.50,

respectively), although the range of Jaccard similarity coefficients overlapped between the two sce-

narios (scenario 2 range = 0.10 - 0.57, scenario 3 range = 0.44 – 0.70).

Our phylogenetic analysis also enabled us to estimate the mutational signatures operating in

different tumor lineages that led to the PDAC or a coexisting PanIN (Extended Data Figures 6-8).

Some signatures were shared between a PDAC and PanIN, while others operated only on a subset of

different branches 226.

In PIN106 and PIN107, the PDACs and corresponding PanINs contained the same driver gene

SNVs/INDELs (scenario 3, Figure 2.2 and Extended Data Figure 5). In addition to the lost copies of

CDKN2A and SMAD4, several unobserved factors might contribute to their morphological differ-

ences. First, the PDAC may have accumulated additional genetic events of significance in regions of

the genome not assessed by whole exome sequencing. Second, the PDACs may have acquired epi-

genetic alterations that were not detectable by the approach we used. Third, the microenvironment

may have influenced the progression from a PanIN to a PDAC 134. Finally, the PanIN lesions in

PIN106 and PIN107 may represent cancerization of the ducts (invasive cancer growing back into the

duct system and simulating PanINs). We note the PDACs in these two patients showed moderate to

poorly differentiated histology, thereby decreasing but not fully eliminating this possibility 280.

2.4.2 Modeling progression time of pancreatic cancer evolution

The WES data allow us to estimate the time required for a cell to progress from a non-invasive, neo-

plastic clone to an invasive pancreatic cancer 279 (Methods). We used the number of acquired genetic
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passenger alterations from a common ancestor to the PanINs and the PDACs, after removing mu-

tations suspected to be drivers or subclonal, to infer the amount of passed time. Because the great

majority of the mutations present in any of these lesions are passengers and are not associated with

positive or negative growth advantage, these mutations can serve as a molecular clock. Based on pre-

viously estimated mutation rates 257 and cell division times 135 measured in PanINs, we found that the

median time elapsed between the common ancestral cell (Figure 2.3b) and the birth of the founder

clone of a PanIN was 7.1 years (90% CI of the median: 3.3 to 12.2 years). Similarly, the median time

elapsed between the common ancestral cell and the founder cell of the PDAC itself was 4.3 years

(90% CI 2.3 to 7.2 years). Because the PanIN samples are monophyletic in all patients, we cannot

estimate how long the primary tumor lineage might have existed as a PanIN. Nonetheless, these

intervals are conservative underestimates of the times required to develop neoplasia and radiographi-

cally detectable cancer because they do not include any clonal steps prior to the birth of the common

ancestral cell nor the time between the birth of the PDAC founder cell and the multiplication of this

cell to form a clinically evident mass. A larger patient cohort is required to assess whether or not this

length of time is characteristic of the population of individuals with PDAC. When the time required

for mass development is taken into account, the data suggest that it takes an average of at least 8.1

years elapsed between the birth of the common ancestral cell and the presence of a clinically evident

mass (Methods).

2.5 Discussion

Comparison of our results with three recent studies is informative. First, Matsuda et al. found that

77% of patients without clinically evident pancreatic neoplasia actually harbored PanIN-1 lesions

when autopsied 168. Moreover, Wood et al. found that low grade PanINs (PanIN-1 and PanIN-2)

from the same patient generally do not share the same genetic alterations, in contrast to our data
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which show genetic relationships among high grade PanINs (PanIN-3) 113. When taken together

with our results, the data suggest that early neoplastic lesions in the pancreas may represent inde-

pendent events, and that the success of the neoplastic cells in colonizing the ductal system is only

achieved with histologic progression and the accrual of additional genetic alterations. Of interest in

this regard, the budding off of small clusters of neoplastic epithelial cells into the lumen is one of the

pathognomonic morphological features of a high-grade PanIN (PanIN-3) 115.

Our data are apparently at odds with the interpretation of a recent study that concluded PDACs

do not arise in a gradual fashion 189. This conclusion was based on genetic analyses of microdissected

PDACs and did not include an analysis of PanINs, nor were models applied to the data to support

such a conclusion. As such, it relied on assumptions about the timing of transition from precursor

lesion to invasive carcinoma. By contrast, our data are directly based on genomic analyses of the pre-

cursor lesions and their corresponding PDACs. Our step-wise model is supported not only by the

current data but also by a body of scientific literature 24,268,274,12,160,279,120,217 that suggests single/short

base substitutions that gradually accumulate over many years form the great majority of the genetic

alterations responsible for this tumor type. Our findings in no way contradict the observation that

multiple chromosome translocations can occur simultaneously (chromothripsis) in a small subset of

pancreatic tumors 189,217. However, they do buttress the model that PDAC development is a multi-

step progression caused by the accumulation of somatic alterations in driver genes, a process that

generally spans many years.

It could be argued that the cases we analyzed were unusual in that more than one advanced

PanIN was found in each pancreas, and our selection of eight out of 100 patients potentially in-

troduced an unintended bias in our cohort. However, Matsuda et al. have shown that multiple

advanced PanIN lesions are the norm rather than the exception when the entire pancreas is method-

ically dissected 168. Further, the mutations in driver genes and distribution of mutational signatures

in this cohort are similar to those previously observed in pancreatic cancers. Finally, genomic anal-
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ysis of a PDAC arising directly from an adjacent high grade PanIN lesion revealed a gradual genetic

progression from PanIN to PDAC8 – similar to our findings for anatomically separate high grade

PanIN lesions and their corresponding PDACs.

In summary, we have discovered that pancreatic intraepithelial neoplasia (i.e., PanIN-2 and

PanIN-3) need not be a spatially localized lesion; rather, it is a disease that can spread through the

entire ductal system. Additional studies—with more patients and a higher density of samples—will

be required to determine the frequencies of the evolutionary scenarios we identified and to clarify

which features of precursor lesions put them at substantial risk of transformation. Nonetheless, our

data suggest that the multiple, apparently discrete PanIN lesions observed in an individual patient

often represent a single neoplasm that can spread (contiguously or discontiguously) along the ductal

system. This finding provides an explanation for the observation that patients who have had a high

grade PanIN or PDAC removed by subtotal pancreatectomy are at high risk for the development of

recurrent disease.

2.6 Methods

2.6.1 Patient selection

Human tissues were collected with the approval of the Johns Hopkins Hospital Institutional Re-

view Board (protocols NA_00001584 and NA_00017879) after informed and written consent was

obtained, following all relevant ethical regulations. Fresh-frozen samples from eight patients who

underwent surgical resection of pancreatic cancer at Johns Hopkins Hospital (Jan 2009-Dec 2011)

with pathologic confirmation of pancreatic ductal adenocarcinoma and geographically distinct

PanIN-2 or PanIN-3 lesions were selected for study. For inclusion in the study, PDAC, PanIN le-

sion(s), and normal duodenum tissue were required for each patient. To minimize the possibility

of studying cancerization of normal ducts, we only included PanINs in which at least 1.0 cm of un-
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involved lobular parenchyma was present between the PanIN and the cancer, or the PanINs were

present in a block that contained no cancer.

2.6.2 Processing of tissue samples

For each tissue sample, multiple sequential 5 µm thick cryosections were mounted on polyethylene

naphthalate (PEN) membrane slides and stained with cresyl violet for visualization of histologic

features and confirmation of adequate cellularity. Neoplastic epithelium was laser-microdissected

using the Leica LMD7 laser microdissection system.

2.6.3 DNA extraction and quantification

Genomic DNA (gDNA) was extracted from each normal, PanIN, or tumor piece using a standard

phenol and chloroform extraction followed by precipitation in ethanol. The gDNA was quanti-

fied by LINE assay (i.e. counting long interspersed elements (LINE) using real-time PCR. The

LINE forward primer was 5’-AAAGCCGCTCAACTACATGG-3’ and the reverse primer was 5’-

TGCTTTGAATGCGTCCCAGAG-3’. The real-time PCR protocol was 50°C for 2 min, 95°C for

2 min, 40 cycles of 94°C for 10 s, 58°C for 15 s, and 70°C for 30 s, 95°C for 15 s, and 60°C for 30 s. The

PCR reactions were carried out using Platinum SYBR Green qPCR mastermix (Invitrogen).

2.6.4 Whole exome sequencing and alignment

Whole exome sequencing (WES) was performed on an Illumina HiSeq 2000 platform for a target

coverage of 150X. Upon the completion of WES, the data were analyzed in silico to determine over-

all quality and coverage. Sequencing reads were aligned to the hg19 human reference genome using

BWA 146. Read de-duplication, base quality recalibration, and multiple sequence realignment were

performed using the Picard Suite and GATK version 3.171,175. SNVs were called using Mutect version
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1.1.6 and INDELs were detected using HaplotypeCaller version 2.471,54.

2.6.5 Filtering of whole exome sequencing data

WES generated a large list of potential mutations, and we evaluated these data to identify high qual-

ity mutations while removing sequence artifacts. Each mutant must have been observed with at least

5% variant allele frequency with 20x coverage in at least one neoplastic sample; each mutant must

have been observed in less than 2% of the reads (or 3 reads total) of the matched normal sample with

10x coverage. This filtering yielded a total of 2,886 mutations for subsequent analysis (Supplemen-

tary Table 2).

2.6.6 Driver gene and mutation analysis

All somatic variants causing a frameshift deletion, frameshift insertion, in-frame deletion, in-frame

insertion, missense, nonsense, nonstop, splice site/region, or a translation start site were considered.

If a variant was a missense or nonsense mutation, we required the variant to have a CHASM p-

value of ≤ 0.05 and an FDR of ≤ 0.25. In combination with manual review, driver gene mutations

were identified if the gene was supported by at least three of the following four methods: 20/20+36,

TUSON65, MutSigCV 142 (see Table S1 in Ref. 255 for gene list), and a hotspot analysis48. In addition,

we also considered genes significantly mutated in large PDAC sequencing studies 24,268,12,213. Further,

we required that each somatic variant have a variant allele frequency of < 2% in the patient-matched

normal tissue as well as any normal tissue from another patient. If a deleterious variant was detected

in a driver gene as described above, and was not detected abundantly in any normal tissue, it was

considered a driver gene variant.
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2.6.7 CNAs

Allele-specific copy number analysis was performed using FACETS241. Briefly, FACETS performs

a complete analysis that includes library size and GC-normalization, and segmentation of total and

allele-specific signals, using coverage and genotypes of single nucleotide polymorphisms simulta-

neously across the exome 241. The resulting segments accurately identify points of change in the

exome, accounting for diploidy, purity, and average ploidy for each sample. A maximum likelihood

approach then assigns each segment with a major and minor integer copy number.

2.6.8 Evolutionary analysis

We derived phylogenies for each set of samples by using Treeomics 1.7.9 218. Each phylogeny was

rooted at the matched patient’s normal sample and the leaves represented the PanIN or tumor sam-

ples. Treeomics employs a Bayesian inference model to account for error-prone sequencing and

varying neoplastic cell content to calculate the probability that a specific variant is present or ab-

sent. Treeomics infers the global optimal tree based on Mixed Integer Linear programming. For

Extended Data Figures 3-5, the CNAs were not directly used to infer phylogenies in order to prevent

bias from potential false-negatives or false-positives, given that CNA calls from multiple samples

within a patient are particularly sensitive to varying neoplastic cell content and depth of sequencing.

Moreover, WES data usually does not capture the exact breakpoints of CNAs, further complicating

phylogenetic analysis. Nevertheless, common PDAC driver genes KRAS, MYC, GATA6, and CDK6

were manually reviewed in the CNA data for evidence of gains, while CDKN2A, SMAD4, TP53,

MAP2K4, TGFβR2, and ACVR1B were queried for losses. Allelic losses were defined as total copy

number (tcn) = 1 or 0, and gains were defined as tcn ≥ 4. Given the CNA status of a given driver

gene in each sample, the driver gene with the CNA status was manually placed on the corresponding

position edge in the phylogeny (previously derived using SNVs/INDELs). This approach was used
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with each PDAC driver gene affected by a CNA as defined above.

Our classification of each patient into one of three evolutionary scenarios was based on SNVs/INDELs

that affect key driver genes in PDAC (e.g. KRAS G12D). Such alterations represent driver gene vari-

ants that are readily interpretable with respect to function as well as position on the phylogenetic

tree. Nonetheless, CNAs can also affect driver genes involved in pancreatic cancer (e.g. CDKN2A

deletion). If we reclassify the eight patients using both SNVs/INDELs as well as CNAs affecting

driver genes (Extended Data Figures 3-5), we find that the evolutionary scenario does not change for

six patients. For two patients (PIN106 and PIN107), the scenario changes from scenario 3 to scenario

2, indicating a step-wise progression of PanINs and PDACs for all eight patients. As noted above,

the identification and placement of CNAs on a phylogenetic tree remains challenging. Nonetheless,

we note that the SNV/INDEL phylogenies represent a minimum number of evolutionary steps:

including additional CNAs would either confirm or increase the total number of steps in the evolu-

tion of the PDAC.

2.6.9 Structural variant analysis

We inferred structural variants (SV) using DELLY2 (v.0.7.5) to verify the reconstructed phyloge-

nies 214. Since the SVs were called for each sample independently, we merged SVs for which DELLY

determined breakpoints differing by at most 250 base-pairs among the samples of each patient. In

total, we found 154 distinct SVs in the eight subjects. After a comprehensive manual review of the

called SVs, we developed additional criteria to minimize the number of false positives. We required

that each SV has to pass one of the following two filters in at least one sample: 1) (a) SV is supported

by at least 3 distinct split reads, (b) the ratio of split reads that support the SV to the total number

of split reads at the position of the SV is greater or equal to 0.75, and (c) the number of the SV sup-

porting split reads is greater than the number of split reads in the normal sample; or 2) (d) SV is

supported by at least 5 discordantly paired (DP) reads, (e) the ratio of DP reads that support the SV
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to the total number of DP reads at the position of the SV is greater or equal to 0.25, and (f) the num-

ber of the SV supporting DP reads is greater than the number of DP reads in the normal sample.

After applying these filters, we obtained 40 SVs (Supplementary Table 4).

To create input files for Treeomics, we used the number of SV supporting split and DP reads as

the number of variant reads. We normalized the coverage of SVs such that on average it approxi-

mately matched the median coverage of the SNVs (single nucleotide variants). Generally, the in-

ferred phylogenies based on the SVs agreed well with the ones based on SNVs. However, since the

significantly lower number of SVs per subject (median 4; range 0-14; Supplementary Table 4), the

confidence in the inferred branches was significantly lower than in the phylogenies based on SNVs.

For PIN106 (coverage in sample of PanIN-A was extremely low), we inferred a slightly different phy-

logeny as PanIN-A diverged before the PDAC, likely due to many false negatives resulting from the

extremely low coverage and the therefore difficult detection of SVs in this sample. For PIN108, no

SVs were shared across multiple samples and hence there were no parsimony-informative SVs such

that a phylogeny could be inferred.

2.6.10 Mutation signatures

We assessed the presence of previously identified mutational signatures4 in each patient. Our phy-

logenetic analysis enabled us to estimate the signatures operating at different stages of cancer evolu-

tion 226. For SNVs acquired along each phylogenetic branch, we estimated the maximum likelihood

signature proportions among 30 previously identified trinucleotide signatures 3 (see https://github.com/mskcc/mutation-

signatures). We quantified the uncertainty in these estimates by performing 100 iterations of boot-

strap resampling within each branch followed by signature re-estimation. We ignored branches with

5 or fewer mutations and removed signature 24 because of its similarity to smoking. The maximum

likelihood signature estimates and 90% bootstrap confidence intervals for each branch are shown

in Extended Data Figures 6-8. We detect signatures 1, 2, 3, and 6, consistent with previous studies4.
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Additionally, we find evidence for signatures 4 (associated with smoking) and 29 (associated with

chewing tobacco). Signatures operating on different branches within a patient were not significantly

more similar than those across patients (mean cosine distance similarity 0.62 vs 0.59, p=0.21, one-

sided permutation test). We note that signature estimates had large bootstrap uncertainty and the

number of patients as well as the number of mutations is limited.

2.6.11 Progression time inference

We assume that the number of passenger mutations n acquired along a lineage during time T (in cell

generations) is Poisson-distributed with rate equal to T times the mutation rate per cell division 121:

nµ|T ∼ Poisson(µT) (2.1)

We assume that a random sample from the population of PanINs or PDACs takes T genera-

tions to progress from a previous stage (either most recent common ancestor (MRCA) of all sam-

pled PanINs and PDAC in a patient or the MRCA of the most closely related PanIN to the PDAC)

to the founder of a particular PanIN or PDAC, and that the mutational clock time µT is gamma-

distributed with hyperparameters shape k and scale θ (k, θ > 0) uniform a priori:

µT ∼ Gamma(k, θ) (2.2)

In order to infer the joint distribution of (T, k, θ), we use the following sampling strategy. For

each sample i, we update T by sampling directly from the gamma posterior:

Tiµ|n, k, θ ∼ Gamma(k + n, θ/(1 + θ)) (2.3)

Using the updated values, we jointly update k, θ by Metropolis-Hastings sampling from the pos-
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terior:

L(k, θ) ∝ π(k, θ)
∏
Ti

dGamma(k, θ, µTi) (2.4)

where dgamma is the density function for the gamma distribution and π(k, θ) is the prior over

the hyperparameters (uniform). This setup pools information about the time to progression for

each sample toward the population of progression time estimates, with a flexible structure for the

overall distribution of times provided by the gamma distribution.

In order to convert the inferred number of generations to absolute time, we follow a previous

method 279 by multiplying by the average time for cell division. To estimate the division time, we

again follow the previous method but instead note that 14% of Stage II PanINs stain positively for

Ki-67 135. We therefore estimate the generation time of PanIN Stage II cells to be 4 days. The muta-

tion rate µ per generation is 0.0224, calculated for 35 Mb of exome sequencing multiplied by a point

mutation rate of 6.4 ∗ 10−10 per generation 257.

To calculate the expected time it takes that the PDAC founding cell grows to a detectable lesion

of 1 cm3 (≈ 109 cells), we used previously measured PDAC metastasis doubling times of 56 days6

leading to an exponential growth rate of r=0.012 per day. The probability density function for the

time an exponential branching process conditioned on survival takes to reach size M = 109 is ap-

proximately given by:

f(tM)(t) = exp(− r
b
Mexp(−rt))

r2M
b

exp(−rt) (2.5)

where b = 1/2.3 per day is the assumed PDAC cell division rate 279,77.
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2.7 Data availability

Sequence data have been deposited at the European Genomephenome Archive (EGA), which is

hosted by the European Bioinformatics Institute (EBI) and the Centre for Genomic Regulation

(CRG), under accession number EGAS00001002778. Further information about EGA can be

found at https://ega-archive.org and ”The European Genome-phenome Archive of human data

consented for biomedical research” (http://www.nature.com/ ng/journal/v47/n7/full/ng.3312.html).

Source data are provided for Figure 2.3, panel b, and Extended Data Figures 1, 7 and 8. All other rel-

evant data are included within the manuscript or are available upon request from the corresponding

author (C.I-D.).
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3
Minimal functional driver gene

heterogeneity among untreated metastases

3.1 Forward

This work grew out of a review of driver gene heterogeneity among untreated metastases. Hannes,

Alvin, and I realized that no such analysis had been performed previously since most cancer studies
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had only one or a few patients who met the treatment criteria. After Hannes completed the initial

and painstaking work compiling the data from several sources and running Treeomics (see Chapter

1), we all came together with Chris, Bert, and Martin to analyze the results and decide how to pro-

ceed. The results of this were additional data and insight into targeted therapy outcome heterogene-

ity, a more stringent definition of driver genes, and a model of tumor progression and metastastic

seeding which helped make sense of the data. I contributed most to the development and coding of

the model, which was analyzed in parallel by Alex Heyde, who contributed several excellent insights.

I also helped to check his analysis and contributed heavily to the manuscript revisions.

This work was first published in Ref. 219:

Reiter, J. G.*, Makohon-Moore, A. P.*, Gerold, J. M.*, Heyde, A., Attiyeh, M. A., Kohutek, Z. A.,

Tokheim, C. J., Brown, A., DeBlasio, R. M., Niyazov, J., Zucker, A., Karchin, R., Kinzler, K. W.,

Iacobuzio-Donahue, C. A., Vogelstein, B., and Nowak, M. A. (2018). Minimal functional driver

gene heterogeneity among untreated metastases. Science, 361(6406), 1033–1037. (*equal contribu-

tion)

Supplemental materials can be found online at DOI 10.1126/science.aat7171

3.2 Abstract

Metastases are responsible for the majority of cancer-related deaths. While genomic heterogeneity

within primary tumors is associated with relapse, heterogeneity among treatment-naïve metastases

has not been comprehensively assessed. We analyzed sequencing data for 76 untreated metastases

from 20 patients and inferred cancer phylogenies for breast, colorectal, endometrial, gastric, lung,

melanoma, pancreatic, and prostate cancers. We found that within individual patients a large major-

ity of driver gene mutations are common to all metastases. Further analysis revealed that the driver

gene mutations that were not shared by all metastases are unlikely to have functional consequences.
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A mathematical model of tumor evolution and metastasis formation provides an explanation for the

observed driver gene homogeneity. Thus, single biopsies capture most of the functionally impor-

tant mutations in metastases and therefore provide essential information for therapeutic decision

making.

3.3 Main

The clonal evolution model of cancer proposes that cells accrue advantageous mutations and clon-

ally expand such that these mutations are eventually present in all tumor cells 196,83,114,97. Recent

studies reported mutations in putative driver genes that were only present in subpopulations of tu-

mor cells 118,92. The extent to which the acquisition of advantageous mutations continues after the

initiation of the primary tumor 244 or during metastasis formation is unknown 259,167. The grow-

ing list of putative driver genes and the increased sensitivity of next-generation sequencing have

facilitated the discovery of subclonal driver gene mutations within a tumor 118,11. Nevertheless, the

evolutionary dynamics and the clinical significance of driver gene mutation heterogeneity in solid

tumors are not fully understood.

Cells acquire a few mutations during each division due to imperfect DNA replication; hence,

any population of cells is genetically heterogeneous 26. Because cancer cells continue to divide after

cancer initiation, many new mutations are expected to be present in tumor subpopulations. How-

ever, to assess functional heterogeneity, advantageous mutations in putative driver genes must be

distinguished from neutral replication errors in those genes. For example, within oncogenes only

few recurrently mutated positions are functional and therefore many mutations—even in driver

genes—may not have important functional consequences. Moreover, although metastatic disease is

responsible for most cancer-related deaths, the heterogeneity of driver gene mutations has predomi-

nantly been evaluated in primary tumors. Biopsies of metastatic lesions are not readily available and
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cellsacquiredadditionaldrivermutationsduringthegrowthoftheprimarytumor(PT)andmayexpandtoformde-
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constructedcancerphylogeniesfromthosebiopsies.(A)Originalcloneseedsallmetastases.Allmetastasesshare
samefoundingdrivermutations.Subcloneswithadditionaldrivermutations(D4)evolvetoolatetoseedmetastases,
butmightbedetectableinthePT.(B)Asinglehighlymetastaticsubcloneevolvesandgivesrisetoallmetastases.All
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typically are acquired after exposure to toxic and mutagenic chemotherapies. These treatments can

induce selective bottlenecks and confound the interpretation of genetic alterations.

Because driver gene mutations increasingly inform clinical treatment decisions, undetected driver

heterogeneity among metastases poses a barrier to the success of this precision medicine approach 265.

If the founding cells of different metastases carry distinct driver gene mutations, disease progres-

sion and treatment could be fundamentally more complex than expected from a primary tumor

biopsy alone. Additional driver gene mutations might be present in all or in a subset of metastases

(Figure 3.1). In both scenarios, more biopsies would be necessary for accurate diagnosis and optimal

treatment. Here, we comprehensively analyzed the evidence for driver gene mutation heterogeneity

among untreated metastases across cancer types. We also developed a mathematical model to deter-

mine the evolutionary mechanisms that give rise to inter-metastatic driver mutation heterogeneity.
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We analyzed data from 20 cancer patients for whom genome- or exome-wide sequencing was per-

formed for at least two distinct treatment-naïve metastases 234,111,131,94,160,41,202. In total, we studied

115 samples including 76 untreated metastases samples from diverse tissues (mean of 3.8 and median

of 3 metastases per patient) (Supplemental Figure 1; Supplemental Table 1). We assessed somatic

mutations of patients with pancreatic, endometrial, colorectal, breast, gastric, lung, melanoma, and

prostate cancer (Figure 3.2A). We classified nonsynonymous variants into putative driver and passen-

gers mutations according to the TCGA consensus list of 299 putative driver genes (10). To allow for

a consistent interpretation of driver gene mutation heterogeneity, we excluded two hypermutated

subjects with more than 1000 nonsynonymous mutations and focused on the remaining eighteen

subjects. In these subjects, we found a median of 4.5 mutated driver genes (range 2-18) (Figure 3.2A).

To determine the evolutionary timing of somatic mutations, we inferred cancer phylogenies and

mapped all variants onto evolutionary trees 218 (supplementary materials; Supplemental Figure

2). We classified mutations into those present in all metastases (MetTrunk, hereafter referred to as

trunk) and those present in a subset of metastases (MetBranch, hereafter referred to as branch) (Fig-

ure 3.2B). We observed similar numbers of nonsynonymous or splice-site variants (hereafter referred

to as nonsynonymous) in both categories (Figure 3.2A). In contrast, trunks exhibited a 2 fold en-

richment of the ratio of driver gene mutations to nonsynonymous mutations compared to branches

(9.1% vs. 4.0%, two-sided paired t-test P=0.004; Figure 3.3A). Nevertheless, we observed mutations

in driver genes that were heterogeneous among metastases for 12 of 18 subjects.

To investigate whether heterogeneous mutations in putative driver genes were likely to be func-

tional, we employed a variety of approaches. We found that a large proportion of nonsynonymous

variants in driver genes along trunks were previously detected at least once in other cancers (COS-

MIC, Catalogue Of Somatic Mutations In Cancer; 37.8%, 31/82) whereas a much smaller proportion

along branches was present in COSMIC (15.6%, 5/32; two-sided Fisher’s exact test P = 0.025; Figure

3.3B). The fraction of driver gene mutations in branches in COSMIC was in fact similar to that of
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passenger gene mutations in either trunks or branches (14.1%, 128/905 and 12.5%, 89/712). Because

mutations that are true drivers are often recurrent, we investigated how frequently identical nonsyn-

onymous variants were found in COSMIC. While variants in driver genes along trunks on average

occurred in 0.32% COSMIC samples (occurrence mean of 82.0 in 25,516 COSMIC samples), driver

gene mutations acquired along branches occurred more than 100-fold less frequently (0.0016%; Fig-

ure 3.3C; Wilcoxon rank-sum test P=0.008).

We then utilized several methods to predict the functional impact of 1,755 nonsynonymous vari-

ants along trunks and branches. We found that driver gene mutations acquired along trunks were

more likely to have predicted functional consequences (Figure 3.3, D-F; Supplemental Figure 3).

Variants with the most likely protein changing effects (mutation consequences with high impact,

e.g., frameshift or nonsense mutations) were frequently observed in driver genes along trunks but

rarely observed along branches (30.5% vs 6.3%; Fisher’s exact test P = 0.006; Figure 3.3D). The fre-

quency of high impact variants in driver genes along branches was no higher than that in passenger

genes. FATHMM242 predicted significantly stronger functional effects for driver gene mutations

along trunks than along branches (mean scores of -2.1 vs. 1.0; scores below -0.75 indicate likely driver

mutation; Wilcoxon rank-sum test P<0.001; Figure 3.3E). Similarly, CHASMplus 254 predicted sig-

nificantly higher gene-weighted scores for driver gene mutations along trunks than along branches

(mean scores 0.47 vs. 0.16; higher values indicate likely functional effects; Wilcoxon rank-sum test

P<0.001; Figure 3.3F).

To identify the evolutionary determinants of inter-metastatic heterogeneity, we developed a

mathematical framework to assess how rates of growth, mutation, and dissemination give rise to

driver gene mutation heterogeneity 102,77 (supplementary materials). The original clone in the pri-

mary tumor grows with a rate of r0 = b0 − d0 per day (birth rate bi, death rate di for each clone

i) and disseminates cells to distant sites with rate q0 per day (Figure 3.4A). When a cell divides, a

daughter cell can acquire an additional driver mutation with probability u. This model produces
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inter-metastatic heterogeneity if not all detectable metastases were seeded from the same subclone in

the primary tumor.

Following previously measured growth and selection parameters, we assume a growth rate of

r0 = 1.24% per day and a relative growth advantage of a driver gene mutation of s = 0.4% (s =

bi(b0 − 1)) 32,88. To mimic the composition of our cohort, we consider the first four metastases that

reach a detectable size of 108 cells ( 1 cm3). We find that the probability of inter-metastatic driver

heterogeneity is 10.5% (Figure 3.4; d = 0.2475, q = 10−7). The original founding clone of the

primary tumor most likely seeds all detectable metastases (green cells; Figure 3.1A). The increased

growth rate conferred by a new driver mutation is insufficient to compensate for the time spent

waiting for the driver mutation to occur (Supplemental Figures 4, 5).

The model reveals that the probability of observing inter-metastatic driver heterogeneity in-

creases when the primary tumor grows very slowly before metastases are seeded, the average growth

advantage of additional driver mutations is very large, and the driver gene mutation rate is high

(Supplemental Figure 6C). In contrast, a high dissemination rate produces less inter-metastatic het-

erogeneity because metastases are established before driver subclones grow large (Figure 3.4E, Sup-

plemental Figure 7C). For very high driver growth advantages but slowly growing cancers, another

scenario is possible: all metastases are seeded from the same highly advantageous subclone (Figure

3.1B). Finally, if driver mutations instead increase the dissemination rate, an almost ten-fold increase

is required to produce inter-metastatic driver heterogeneity (Figure 3.4F; Supplemental Figure 8).

In real patients, we expect less inter-metastatic heterogeneity for several reasons. First, driver gene

mutations may not confer the same advantage in the microenvironment of the primary tumor and

of a distant site, reducing the probability of heterogeneity (Supplemental Figure 9). Second, primary

tumor growth may slow down due to space or nutrient constraints or surgical removal, also reduc-

ing the expected inter-metastatic heterogeneity (Supplemental Figure 10). Third, advanced cancer

cells have already acquired multiple driver gene mutations in various pathways, possibly reducing
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the number of additionally available driver gene mutations that confer a significant selective advan-

tage (Supplemental Figure 6B).

Overall, we observed a depletion of heterogeneous mutations in putative driver genes among

metastases (Figure 3.3). Moreover, the majority of those that were observed had only weak or no

predicted functional effects. These results are compatible with multiple recent studies on neutrally

evolving cancers after transformation244,34,273. However, the mathematical framework demonstrates

that a lack of inter-metastatic driver heterogeneity does not imply neutral evolution but can also

be explained by various other factors, including primary tumor growth dynamics (Figure 3.4). Fur-

thermore, growth rates may saturate and fitness gains of additional driver gene mutations become

smaller because available resources (nutrients, oxygen, etc.) are already almost optimally utilized; a

phenomenon that is observed in bacterial evolution96.

Several limitations of this study should be noted. First, we exclusively focused on single nu-

cleotide variants and small insertions/deletions because their functionality can be predicted by mul-

tiple methods and their heterogeneity has immediate clinical consequences for therapy selection 265.

We did not assess recurrent noncoding, copy number, or epigenetic alterations since functional

prediction methods for them are not yet available. Second, we cannot exclude the possibility that

mutations in yet undiscovered driver genes of metastases are heterogeneous. Third, we could not

evaluate micro metastases that are not visible clinically.

Because therapy selection and treatment success of previously untreated patients increasingly de-

pends on the identification of genetic alterations, it will be critical to extend this analysis to larger

cohorts and more cancer types to investigate whether minimal driver gene mutation heterogene-

ity is a general phenomenon of advanced disease. This pan-cancer analysis of untreated metastases

suggests that a single biopsy accurately represents the driver gene mutations of a patient’s metastases.

68



3.4 Funding and support

This work was supported by the National Institutes of Health grants K99CA229991 (J.G.R.), CA179991

(C.A.I. D.), F31CA180682 (A.P.M.-M.), T32 CA160001-06 (A.P.M.-M.), F31CA200266 (C.J.T.),

U24CA204817 (R.K.), CA43460 (B.V.), as well as by the Lustgarten Foundation for Pancreatic Can-

cer Research, The Sol Goldman Center for Pancreatic Cancer Research, The Virginia and D.K. Lud-

wig Fund for Cancer Research, an Erwin Schrödinger fellowship (J.G.R.; Austrian Science Fund

FWF J-3996), a Landry Cancer Biology fellowship (J.M.G.), and the Office of Naval Research grant

N00014-16-1-2914.

3.5 Author contributions

J.G.R., A.P.M.-M., C.A.I.-D., B.V., and M.A.N. conceived and designed the study. A.P.M. M.,

M.A., Z.A.K., A.B., R.D., J.N., A.Z., and C.A.I.-D. performed autopsies. A.P.M.-M., M.A., Z.A.K.,

K.K., K.W.K., C.A.I.-D., and B.V. generated sequencing data. J.G.R. performed computational anal-

ysis. J.G.R., J.M.G., A.H., and M.A.N. performed mathematical modeling. C.J.T. and R.K. per-

formed CHASMplus analysis. C.A.I.-D., B.V., and M.A.N. supervised the study. J.G.R., A.P.M.-

M., J.M.G., A.H., C.A.I. D., B.V., and M.A.N. wrote the manuscript. All authors read and ap-

proved the manuscript.

3.6 Competing interests

K.W.K. and B.V. are founders of Personal Genome Diagnostics. B.V. and K.W.K. are on the Scientific

Advisory Board of Sysmex-Inostics. B.V. is also on the Scientific Advisory Boards of Exelixis GP.

These companies and others have licensed technologies from Johns Hopkins, and K.W.K. and B.V.

receive equity or royalties from these licenses. The terms of these arrangements are being managed

69



by Johns Hopkins University in accordance with its conflict of interest policies.

3.7 Data and materials availability

Accession numbers for the raw sequencing data are available in the original publications (13–18).

Data of Brown et al., Hong et al., and Makohon Moore et al. as well as of subjects MSKA1 and

MSKA2 are deposited at the European Genome-Phenome Archive (http://www.ebi.ac.uk/ega) and

are available under accession numbers EGAS00001000760, EGAS00001000942, EGAS00001002186,

and EGAS00001002777, respectively. Data of Gibson et al. and Sanborn et al. are deposited to the

database of Genotypes and Phenotypes (dbGaP) at the National Center for Biotechnology Infor-

mation (NCBI) under accession codes phs001127.v1.p1 and phs000941.v1.p1, respectively. Data of

Kim et al. are deposited to the Sequence Read Archive (SRA) at the NCBI under the project ID of

PRJNA271316.

70



4
Quantifying clonal and subclonal passenger

mutations in cancer evolution

4.1 Forward

Ivana Bozic invited me to contribute to this originally purely theoretical project after deciding that it

would benefit from comparison to allele frequency spectra from TCGA sequencing data. My main
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contributions were principly in bioinformatics: running variant calling software, filtering results,

implementing fitting approaching and helping to produce figures. I benefited greatly from exposure

to Ivana’s incisive analysis of the stochastic model described here. The critical insight about the bal-

ance between birth and death rates in a branching process framework helped shape the direction of

Chapter 5 as well.

This work was first published in Ref. 34:

Bozic, I., Gerold, J. M., and Nowak, M. A. (2016a). Quantifying Clonal and Subclonal Passenger

Mutations in Cancer Evolution. PLOS Computational Biology 12(2), e1004731.

Supplemental materials can be found online at DOI 10.1371/journal.pcbi.1004731

4.2 Abstract

The vast majority of mutations in the exome of cancer cells are passengers, which do not affect the

reproductive rate of the cell. Passengers can provide important information about the evolutionary

history of an individual cancer, and serve as a molecular clock. Passengers can also become targets for

immunotherapy or confer resistance to treatment. We study the stochastic expansion of a popula-

tion of cancer cells describing the growth of primary tumors or metastatic lesions. We first analyze

the process by looking forward in time and calculate the fixation probabilities and frequencies of

successive passenger mutations ordered by their time of appearance. We compute the likelihood of

specific evolutionary trees thereby informing the phylogenetic reconstruction of cancer evolution in

individual patients. Next, we derive results looking backward in time: for a given subclonal muta-

tion we estimate the number of cancer cells that were present at the time when that mutation arose.

We derive exact formulas for the expected numbers of subclonal mutations of any frequency. Fitting

this formula to cancer sequencing data leads to an estimate for the ratio of birth and death rates of

cancer cells during the early stages of clonal expansion.
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4.3 Introduction

In healthy tissues, cell division and cell death are tightly controlled processes, which enable a precise

balance assuring that the number of cells in the body remains approximately constant. However,

during each cell division mistakes in DNA replication can occur, leading to accumulation of mu-

tations in individual cells 257,86. The majority of such mutations are effectively neutral (passengers),

but some of them (drivers) can provide selective advantage to the cell, by tipping the balance of cell

division and death slightly in favor of increased proliferation 162,18,32. This unwanted evolution 35,195,191

of somatic cells can lead to a clonal expansion of cells with driver mutations, which can ultimately

result in the formation of tumors and seeding of new lesions in distant tissues 265,224,276.

Sequencing efforts over the past decades have resulted in a compendium of genetic alterations in

the exomes of common human cancers and revealed that adult cancers harbor dozens (leukemias)

to hundreds (lung cancer and melanoma) somatic mutations. A typical tumor is thought to con-

tain 2-8 driver gene mutations, with the rest being neutral passengers 265. Unlike driver mutations,

passengers cannot be attacked by conventional targeted therapy, but some of them can become tar-

gets for immunotherapy or induce resistance to treatment 211,227,36. In addition, passenger mutations

can provide information about the timing of cancer evolution in individual patients by acting as a

molecular clock 279.

Recent studies found that the evolution of metastases in colorectal 121 and pancreatic cancer 279,

and even the evolution of primary colorectal cancer follows largely neutral evolution244, in which

the founding cell starts a clonal expansion during which cells accumulate neutral mutations (pas-

sengers) rather than drivers. Here we study neutral evolution during clonal expansion and show

that passenger mutations can be used to infer the parameters of the tumorigenic process. Our

model is a generalization of the famous Luria-Delbrück model for studying resistance mutations

in bacteria 153,74. In contrast to the original Luria-Delbrück model, in which wild type and mu-
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tant populations grew deterministically and mutation occurred stochastically, in our model all cell

types grow stochastically; our model also includes cell death. Many authors have studied the fully

stochastic version of the Luria-Delbrück model in which all mutants are treated as a single popula-

tion 57,117,137,128,129,126. In these models there are only two cell populations: wild type and mutant. In

contrast, here we study populations started by individual passenger mutations separately.

4.4 Results

We model the accumulation of passenger mutations during clonal expansion of cancer using a

multi-type branching process 10,132 that starts with a single type-0 cell. All cells in the process divide

with rate b and die with rate d. At each division, one of the daughter cells receives a new passen-

ger mutation with probability u, which starts a new type. We are interested in the mutations accu-

mulating in the exome during tumor evolution, so we are mostly interested in the mutation rate

u = 0.015, which is the product of the normal point mutation rate per cell division (∼ 5 · 10−10)

and the number of base pairs in the exome (∼ 3 · 107) 32.

Any new mutation that appears in the population can be lost due to stochastic fluctuations. The

probability that its lineage will not survive is δ = d/b, the ratio of the death and the birth rates 10,

and we will see later that the limiting behavior of the process is strongly dependent on δ and not the

individual values of b and d. We label the mutations with surviving lineages (”successful” mutations)

according to their order of appearance. We are interested in the fraction of cells harboring mutation

k, for k ≥ 1, and the phylogenetic relationships 19 between first appearing successful mutations

(Figure 4.1).

Throughout the paper we mostly assume that the birth rate is b = 0.25 per day, a typical value for

colorectal cancer 32, but all results scale accordingly for other values of b. The ratio of death and birth

rates in cancer has been estimated to be on the order of δ = 0.72 in fast-growing colorectal cancer
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Figure 4.1: (A)Newpassengermutationscanbelostduetostochasticdrift(diamonds).Successfulmutationsform
survivinglineages.Weordersuccessfulmutationsbytheirtimeofappearance.Individualcellscanharbormanypas-
sengermutationsandvariousdifferentphylogeniescanarise(B).Intheexampleshown,mutation2appearsinacell
thatalreadyharborsmutation1.Thusallcellsthathavemutation2alsohavemutation1.Similarly,allcellscellsthat
havemutations4or5alsoharbormutations1and2.Mutation3formsanindependentclone.Wecalculatethelikeli-
hoodofdifferentphylogeniesandtheexpectednumberofsubclonalmutationsofanyfrequency.
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metastases75 to δ = 0.99 in early tumors 32, and we focus on δ values in this range.

The average number of passenger mutations with surviving lineage that are present in a popula-

tion of M cells is Mu 36. For a tumor containing M = 109 cells (∼ 1 cm in diameter) the number of

passenger mutations is∼ 1.5 · 107. The number of mutations is thus almost half of the length of

the exome, but the vast majority of those mutations are present in a small number of cells, far below

the detection limit of current sequencing technologies93. We are mostly interested in the mutations

present in a sizable fraction of the population (above 0.1% of all cells). We assume an infinite allele

model, in which each mutation can appear only once.

We perform Monte Carlo simulations of the multitype branching process using the Gillespie

algorithm95. Between 5,000 and 10,000 surviving runs are used for each parameter combination.

4.4.1 Probability of fixation of new mutations.

In a pure birth process, d = 0, the founding cell (type-0 and no other mutations) is always present

in the population, and thus all new mutations are subclonal; they are present in less than 100% of

tumor cells. However, with death rate d > 0, new mutations appearing during clonal expansion can

reach fixation in the population. We show in Methods that the probability that the k-th mutation

with surviving lineage eventually fixates and becomes present in all cells is given by

ρk ≈
(

u
u − log δ

)k

. (4.1)

If the k-th surviving mutation reaches fixation, it is implied that all preceding k − 1 surviving muta-

tions (labeled 1 to k−1) also reach fixation. Therefore each cell in the lesion has the first k mutations.

From formula (4.1) we see that the probability of fixation increases with both the mutation rate,

u, and the death-birth ratio, δ. Assuming normal mutation rate in the exome we have u = 0.015.

Thus, in a fast-growing population, in which δ is significantly smaller than 1, it is unlikely that any
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new mutation reaches fixation. For example, for δ = 0.72, the probability that the first appearing

mutation with surviving lineage reaches fixation is ρ1 ≈ 0.04. For δ = 0.96 this probability is ρ1 ≈

0.27. When growth is particularly slow, for example δ = 0.99, the first mutation with surviving

lineage has a ρ1 ≈ 0.6 chance of fixation, while the second has a ρ2 ≈ 0.36 chance and even the fifth

can fixate with probability ρ5 ≈ 0.08.

4.4.2 Frequency and phylogenies

We show in Methods that the cumulative distribution function for the frequency of cells with the

k-th mutation is given by

Fk(α) ≈ 1 −
(

u
u − log[1 − α(1 − δ)]

)k

(4.2)

for 0 < α < 1. Formula (4.2) is the probability that the frequency of cells carrying the k-th mu-

tation is less than α. Note that Fk(α) does not approach 1 as α = 1 due to a non-zero fixation

probability. The excellent agreement between Formula (4.2) and exact computer simulations of the

stochastic process is shown in Figure 2A,B. The fixation probability of the k-th mutation is precisely

ρk = 1 − Fk(1). For fast growing tumors, δ = 0.72, the median frequencies of the first three surviv-

ing mutations are all smaller than 5% (Figure 4.2A). In contrast, for slow growing tumors, δ = 0.99,

the median frequencies of the first three mutations are all greater than 40% (Figure 4.2B).

Another significant difference between slow growing and fast growing tumors is exhibited by the

phylogenetic relationships among the first surviving mutations. When δ = 0.72, the most likely

phylogeny including the founding population (type-0) and the first surviving mutations is star-like

(first tree in Figure 4.3A). In contrast, when δ = 0.99, the most likely phylogeny is linear (last tree in

Figure 4.3A).

Formulas for the probabilities of all six phylogenetic trees involving the founding population
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Figure 4.2: (A-B)Cumulativedistributionfunctionforthefirstthreesuccessfulmutations.They-axisshowstheprob-
abilitythatthemutationhasafrequencyoflessthanα.Comparisonbetweenformula(4.2)andexactcomputersim-
ulationsofthestochasticprocesswithdeath-birthratiosδ = 0.72 (A)andδ = 0.99 (B).Forδ = 0.72,themedian
frequenciesofthefirstthreesuccessfulmutationsarebelow5%.Forδ = 0.99,theyareallabove40%.(C-D)Muta-
tionfrequencyversustimeofappearance.(C)Meanfrequencyattainedbyamutationwhicharosewhentherewere
zothercellsinthepopulation,fordifferentvaluesofthedeath-birthratio,δ.(D)Maximumlikelihoodandmaximuma
posterioriestimate(whichareapproximatelyequal)forthenumberofcellsinthepopulationwhenthemutationwith
frequencyαarose.Passengermutationrateu = 0.015 (productofthenumberofbasepairsintheexome,L ∼ 3·107,
andthenormalpointmutationrateduringcelldivision,µ ∼ 5 · 10−10).
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Figure 4.3: (A)Allsixphylogenetictreescontainingthefirstthreesurvivingpassengermutationsareshown.(B)Proba-
bilitiesofeachtreefordifferentvaluesofthedeath-birthratio,δ (formulasshowninMethods).Forδ = 0.72,thefirst
treeisthemostlikely.Forδ = 0.99,thesixthtreeisthemostlikely.Forintermediateδ = 0.97,themostlikelytree
shapeisthatoftrees2-4.Passengermutationrateu = 0.015.

and the first three surviving mutations are given in Methods. In Figure 4.3 we plot all six trees and

their probabilities for various values of δ. For all values of δ, either the first or the last tree are the

most likely. However, if we do not possess the knowledge of the order in which the first mutations

appeared, then trees 2-4 (Figure 4.3A) are indistinguishable, and for intermediate δ (i.e. δ = 0.97),

the shape of trees 2-4 will be the most likely.

4.4.3 Frequency and time of appearance

Let us now assume that there were z other cells in the population when a certain mutation (with

surviving lineage) appeared. In Methods we calculate the probability distribution for the even-

tual frequency of that mutation. We show that the expected frequency that the mutant eventually

achieves is

E(x) =
1 − δz+1

(1 − δ)(z + 1)
. (4.3)

If δ = 0, which means no cell death, d = 0, the expected frequency is 1/(z + 1). However, for

δ > 0 and especially when δ is close to 1, which is the most relevant case for cancer growth, the
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expected frequency is much higher than 1/(z+1). For example, consider a mutation (with surviving

lineage) which appears when there are 100 other cells present in the tumor; for δ = 0 this mutations

reaches an expected frequency of E(x) = 0.01; for δ = 0.99 it reaches an expected frequency of

E(x) = 0.63 (Figure 4.2C).

So far we have studied the branching process by looking forward in time. We now derive several

results that are useful for inferring knowledge about the early evolutionary history of the tumor ob-

tained from data at late stages of its evolution. To start, we ask an inverse question: if a mutation is

present at frequency α, when did it first appear? We show in Methods that the maximum likelihood

and maximum a posteriori estimates for the number of cancer cells that were present at the time

when that mutation arose are approximately the same and given by

ẑMAP ≈ ẑML = − 1
log[1 − α(1 − δ)]

. (4.4)

Note that the estimated number of cells at appearance increases with δ (Figure 4.2D).

We see from formula (4.4) that a mutation that is present in 10% of the population has most

likely appeared when there were as few as 10 cells (if δ = 0 which is unlikely in cancer) to as many

as 1000 cells (if δ = 0.99). Similarly, a mutation that is present in 50% of cells most likely appeared

when there were as few as 1 other cell (if δ = 0) to as many as 200 cells (if δ = 0.99).

4.4.4 Expected number of clonal and subclonal mutations

We prove in Methods that the expected number of subclonal mutations present at a frequency larger

than α is

ms =
u(1 − α)

(1 − δ)α
(4.5)
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Similarly, the expected number of clonal passenger mutations is given by

mc =
δu

1 − δ
(4.6)

The number of sublclonal mutations is highly dependent on the ratio δ. When there is no cell

death, δ = 0, there is on average only a single passenger mutation that is present at a frequency

higher than 1%. On the other hand, if δ = 0.99, there will be about 150 passenger mutations present

in more than 1% of cancer cells (Table 4.1).

Table 4.1:Expectednumberofsubclonalandclonalmutationsfordifferentvaluesofδ = d/b.

δ > 0.1% > 1% > 10% > 50% Clonal
0 15.0 1.5 0.14 0.015 0
0.72 53.5 5.3 0.48 0.05 0.04
0.96 374.6 37.1 3.37 0.38 0.36
0.99 1498.5 148.5 13.5 1.5 1.48
0.999 14985 1485 135 15 15

Values calculated using formulas (4.5) and (4.6).We assumed normal point mutation rate in
the exome u = 0.015.

Formula (4.5) can be fitted to cancer sequencing data to determine how well the branching pro-

cess model of neutral evolution describes the observed mutation frequencies and to extract the most

likely parameters of the process. We fit our formula to the TCGA (http://cancergenome.nih.gov/)

colorectal cancer dataset, publicly available at https://dcc.icgc.org/releases/current/Projects/COAD-

US. All samples were classified as either microsatellite-stable (MSS) or instable (MSI) based on the

sample’s total number of mutations 252, and their purity and ploidy have been assessed 284. We re-

quired samples with ploidy between 1.8 and 2.2 so that the cancer was not too far from diploid and

chromosomal instability and LOH did not significantly alter the distribution of allele frequencies.

We further required a purity estimate of at least 70%. A total of 42 samples passed both of these cri-
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teria and were fit to our formula, after adjusting their allele frequency to account for sample purity.

In Figure 4.4 we plot the number of mutations with allele fraction between 0.12 and 0.25, found

in two colorectal cancer samples from the TCGA dataset. Mutations with allele frequency of 25%

or more may be clonal (for example, a heterozygous mutation present in one copy of a tetraploid

chromosome). On the other hand, mutations with allele frequency below 10% can be difficult to

detect (which translated to 12% corrected frequency as the average purity of our samples is 85%).

In 272, the authors fit the same data to a formula they derived using a deterministic approximation

with no cell death.

Assuming that there is no loss of heterozygosity and that all mutations are present in a single

allele of a diploid cell, the allele frequency of a mutation is 1/2 of its cancer cell frequency. It follows

from formula (4.5) that the number of mutations with allele frequency larger than α but smaller

than 0.25 is given by
u

2(1 − δ)

(
1
α
− 1

0.25

)
. (4.7)

Out of the 42 colorectal cancer samples that passed our filtering criteria, 16 had fits with with

R2 ≥ 0.9, and we show them in Supplementary Figure 1. For the two cancers in Figure 4.4, the best

fit is obtained for a = u/(1 − δ) = 1.23 (Figure 4.4A) and a = 62.1 (Figure 4.4B). More generally,

the median value for a in MSS cancers is 2.86, and 27.61 for MSI cancers. For MSS cancers, assuming

a normal passenger mutation rate in the exome u = 0.015 leads to birth-death ratio δ = 0.997.

This value is between the estimates of net proliferation rates in premalignant colorectal tumors (δ ∼

0.999) and colorectal cancers (δ ∼ 0.99) obtained from cancer incidence data 151. If the mutation rate

is elevated 10-fold, then the best fit is obtained with death-birth ratio δ = 0.97. Note that fitting

formula (4.7) and assuming death rate d = 0 (which implies δ = 0) to the data means that the

mutation rate during tumor evolution needs to be∼ 400 fold higher than the normal mutation rate,

which is unlikely.
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Figure 4.4:ExomesequencingdatafortwocolorectalcancersfromtheTCGAdataset,(A)microsatellitestable(MSS)
and(B)microsatelliteinstable(MSI),showthecorrectedallelefractionofeachdetectedmutation(observedallele
fractiondividedbypurity).Mutationswithallelefrequencyof25%ormoremaybeclonal272andmutationswith
correctedallelefrequencybelow12%canbedifficulttodetectreliably.Thuswefocusonmutationswithfractions
between0.12and0.25,andplotthenumberofmutationswithfractionbetweenαand0.25asafunctionofα.The
dataarefittotheformulaforthenumberofmutationswiththecorrespondingallelefrequency(4.7).Thebestfitfor
a = u

2(1−δ) anditscorresponding95%confidenceintervalisshownforeachsample.

Interestingly, for δ close to 1, the number of subclonal mutations with frequency above 50% is

approximately equal to the number of clonal passengers collected during tumor progression. Thus

subtracting the number of subclonal mutations with frequency above 50% from the number of all

clonal mutations in the cancer will be an estimate for the number of clonal mutations present in the

first malignant cell.

4.5 Discussion

In summary, we have shown that the frequencies of the first and thus most abundant passenger

mutations are influenced not only by the mutation rate, but also by the death-birth ratio, δ = d/b,

of the cancer cells. If δ is close to 1, which is the relevant case for slow overall growth, then several

clonal passengers may not have been present in the first tumor cell, but were collected during clonal
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expansion. The ratio δ also determines the shape of the cancer’s phylogenetic tree, which is star-

shaped for fast growth and linear for slow growth (Figure 3). Additionally, if we consider a mutation

that has a certain observed frequency in the population of cancer cells, we can ask: how many cells

were present when that mutation arose? The answer varies hundred-fold as the death-birth ratio, δ,

changes from 0 to 0.99. This is particularly relevant as high levels of cell death are reported in both

malignant and premalignant tissues63,127.

In this work, we derive a simple form (4.7) for the cumulative distribution of mutant allele fre-

quencies under a neutral model of cancer evolution. Fitting the cumulative distribution of allele

fractions in a sample to this functional form and analyzing the goodness of fit provides information

about the nature of the process underlying the generation of mutant alleles. We computed this dis-

tribution with data from each patient by first dividing all allele fractions in a single patient by the

sample purity and then restricting our view to allele fractions in the interval [.12, .25]. The high end

of interval was chosen to minimize the chance clonal mutations appeared in it and the low end was

chosen to ensure that sequencing was powered to detect such mutations. The cumulative distribu-

tion of allele fractions in this interval was computed at each mutant allele fraction as the number

of mutations greater than that fraction but less than or equal to the cutoff at 0.25. Finally, we per-

formed a least-squares fit to the functional form described using MATLAB and report fits with R2

values at least 0.9.

Our model is applicable to individual cancers in which there are no subclonal drivers at observ-

able cell frequencies. This includes both liquid and solid tumors. It has recently been shown that

colorectal tumors fit this model often 244,272. In contrast, some liquid cancers such as chronic lym-

phocytic leukemia usually harbor subclonal drivers, and are thus not good candidates for the appli-

cation of our model 140.

In a previous paper 36, we have studied the accumulation of individual resistance mutations in

cancer using a fully stochastic Luria-Delbrück model. For targeted therapies, resistance mutations
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are estimated to be rare: only about a hundred positions in the genome can give rise to resistance if

mutated75,144,37. Therefore all results in Ref. 36 were derived in the limit of very small mutation rates,

about∼ 10−7 per cell division. In that scenario, two resistance mutations are virtually never present

in the same cell, and the fixation of mutations in the population is extremely unlikely. In contrast,

here we are interested in the accumulation of passenger mutations in the whole exome, which leads

to a large number of passenger mutations in the population. Even individual cells contain many

different mutations. Therefore, new questions arise and a new mathematical approach is needed.

Our model is a continuous time version of the infinite alleles branching process introduced by

Griffiths and Pakes98, and is a special case (birth-death process) of the model studied recently by

Wu and Kimmel 278. These works were mostly interested in the limiting frequency spectrum of the

process, namely the number of mutations present in j individuals as time t → ∞; for example, Wu

and Kimmel provide an explicit expression for the mean limiting frequency spectrum for the birth-

death process in terms of the hypergeometric function. We study the same process with respect to

tumor size and derive explicit expressions for the frequencies of mutations according to their order

of appearance. We also study the expected number of mutations above a certain frequency, which

has connections to the frequency spectrum.

Sottoriva and Graham 244 estimate the number of cells, including the new cell, that were present

when a mutation with observed frequency α appeared by 1/α, using a deterministic model with

no cell death. A deterministic model is always useful as it provides the simplest approach to study

evolutionary dynamics. Our formula (4.4) provides the stochastic correction to their prediction.

Recently, Durrett76 derived formulas for the expected number of passenger mutations present

at a frequency larger than α. His process differs from ours as in his model mutations occur inde-

pendent of cell division. Consequently, the founding cell can collect mutations prior to the first cell

division, and even for d = 0 there could be passenger mutations that are clonal. In contrast, in our

model for d = 0 all mutations are strictly subclonal.
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In this paper we do not consider loss of heterozygosity (LOH), which implies that mutations can

be lost from the cell during cell division. The rate of LOH is on the order of 10−6 or lower per cell

division in tumors that do not have chromosomal instability (CIN) 105. For such small LOH rate,

if LOH events are neutral or deleterious, the fraction of cells that gained a mutation but then lost

it will be very small, and our results would still hold; our results would also hold for LOH events

that occur at higher rates but are deleterious. In a subsequent paper we will study the effect of LOH

events on the evolutionary dynamics of passenger mutations, and focus on situations where they

occur with high frequency (CIN) 193,136.

Similarly, here we do not consider the effect of new driver mutations that may appear during

clonal expansion of cancer 32,78,215,79. The addition of drivers may change both the observed muta-

tional frequencies and the phylogenies of the occurring mutations. Instead we focus only on the

accumulation of neutral mutations, which is the relevant case for studying the growth of metastases

and even some primary tumors 279,121,272.

While cancer spends much time in clonal expansion, plateau stages are also common. The effects

of plateau stages after clonal expansion on the frequency of passenger mutations can be studied

using a density-dependent branching process used previously in the context of resistance to cancer

therapy 31. This density-dependent model can be approximated analytically with a two phase model:

a branching process with constant birth and death rates b and d corresponding to the growth phase,

and a plateau phase of length T in which birth rate of all cells is approximately equal to d. In this

model, mutations present at the end of the plateau phase can be either ”old” mutations that were

present at the end of the growth phase, or ”new” mutations that appeared during the plateau phase

and were not lost. In the large time T limit, all old mutations will either reach fixation or be lost in

the population, but for shorter times T frequencies of old mutations can be approximated by their

frequencies at the end of the exponential growth phase. On the other hand, the number of new

mutations that are present above a certain frequency can be studied analytically using techniques
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from 31 to show that new mutations will in general not be present at observable frequencies if the

population size at the plateau is on the order of millions of cells or higher. Rodrigues-Brenes et al.

recently studied inhibited cancer growth in the context of stem-cell driven cancers 225.

In our model we do not explicitly take into account the possible existence of a differentiation

hierarchy within the cancer population: namely, the existence of cancer stem cells, which are able

to propagate the tumor population indefinitely, and differentiated cells, which have limited life-

spans. However, our results can also inform the study of this more complicated situation, and our

analysis in fact applies to cancer stem cells. To add differentiated cells, we can consider the model

in which, in addition to our basic assumptions, stem cells can also divide to produce one stem cell

and one differentiated cell of generation 1, differentiated cells of generation i divide to produce two

differentiated cells of generation i + 1 and the lifespan of differentiated cells is n divisions (i.e. dif-

ferentiated cells of generation n are lost from the population). A reasonable estimate for the number

of divisions before mitotic arrest is n = 10 (e.g. 4-6 divisions in colon 208 and 15-20 in hematopoi-

etic system22), which means that each differentiated cell of generation 1 produces∼1000 cells before

they are lost from the population. Typical detectable tumors contain billions of cells; mutations

that occur in the lineage of a single differentiated cell will remain confined to that lineage, which will

contain no more than∼1000 cells (or no more than∼ 106 cells if n = 20), and will not reach a sig-

nificant fraction in the population (less than 1/106 for n = 10 or less than 1/103 for n as high as 20).

Hence mutations appearing in the lineages of differentiated cells will not be present at frequencies

above 0.1% or 1% that we are interested in - mutations above these frequencies will be only those in

the stem cell population, which will behave as described in our model. The only adjustment that

needs to be made to our results when referring to cancer stem cells is the adjustment of the mutation

rate to account also for mutations that occur to stem cells during asymmetric divisions.

We recently developed a spatial version of the model studied in this paper, which we mostly

analyzed through computer simulations 267. In this spatial model, tumor growth occurs on a 3-
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dimensional lattice and birth rate is reduced in the presence of many neighboring cancer cells. This

results in the inside of the tumor being in the state of equilibrium between birth and death, while

the surface of the tumor is able to expand. If the effective birth rate of cells in the surface of the spa-

tial model is comparable to the birth rate in the well-mixed model, there will be more mutations

present above a certain frequency in the spatial case, as the spatial tumor experienced more divisions

to reach the same size. However, the addition of migration of tumor cells allows cells to explore less

crowded spatial positions and in turn reduces the number of divisions needed to reach the same

size as well as the number of mutations above a certain frequency, bringing this model closer to the

model without space 267.

4.6 Methods

4.6.1 Eventual fraction and time of appearance

We are interested in the eventual fraction of cells carrying a successful mutation, which appeared

when there were z other cells in the population. Let Y be the population started by these z cells

(i.e. cells without the mutation) and X the population carrying the mutation. The probability that

exactly i out of z non-mutant cells have surviving lineage is

πi =

(
z
i

)
(1 − δ)iδz−i. (4.8)

When i = 0, the non-mutant fraction dies out and the eventual fraction of the mutant is 1. For

i ≥ 1, the number of non-mutant cells Y ≈ e(b−d)t(V1 + · · · + Vi), where V1, . . . ,Vi are

independent exponentially distributed random variables with mean b/(b − d) 36,79 and time t is

large and measured from the time of appearance of the mutant. In other words, the number of cells
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without the mutation is given by

Y =


e(b−d)t(V1 + · · ·+ Vi) with probability πi, i ≥ 1

0 with probability π0

(4.9)

Similarly, X ≈ e(b−d)tV, where V is again exponentially distributed random variable with mean

b/(b − d). Thus when the number of non-mutant cells with surviving lineage i > 0, the eventual

fraction of cells with the mutation is

x =
X

X + Y
=

V
V + V1 + · · ·+ Vi

= β[1, i], (4.10)

where β[1, i] is a beta-distributed random variable with probability density function i(1 − w)i−1 36.

This allows us to calculate the probability that the fraction of the population carrying the mutation

is smaller than α, for 0 < α < 1:

Prob[x ≤ α|Y(0) = z] ≈
z∑

i=1

(
z
i

)
(1 − δ)iδz−i(1 − (1 − α)i) (4.11)

= 1 − (1 − α+ δα)z (4.12)

Probability density function for the fraction of mutants, the first of which appeared when there

were z other cells in the population is

fz(α) = (Prob[x ≤ α|Y(0) = z])′ (4.13)

= (1 − δ)z(1 − α+ δα)z−1 (4.14)
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Then the mean fraction that the mutant will eventually achieve in the population is

E(x) = δz +

∫ 1

0
αfz(α)dα =

1 − δz+1

(1 − δ)(1 + z)
(4.15)

We can obtain the maximum likelihood (ML) estimate for the number of cells that were present

in the population when the mutation that is present at a fraction α (for α < 1) appeared, by maxi-

mizing the probability distribution for the mutant fraction fz(α) (4.14):

ẑML = − 1
log[1 − α+ δα]

(4.16)

To calculate the maximum a posteriori (MAP) estimate for the number of cells that were present

in the population when the mutation that is present at a fraction α appeared, we let v be the prob-

ability that a particular single mutation appears during cell division. Then v is also the probability

that this mutation apperas in the population when there are z cells and forms a surviving lineage, for

all z ≥ 1. We note that v is very small and on the order of 10−9. The probability that the successful

mutation first appeared when there were z cells is p(z) = v(1− v)z−1 so to get the MAP estimate we

will maximize p(z)fz(α):

ẑMAP = − 1
log[1 − v] + log[1 − α+ δα]

≈ − 1
log[1 − α+ δα]

(4.17)

since v is very small.

Probability of fixation of k-th mutation

In a pure birth process (with d = 0) the founding population (type-0 and no other mutations)

will always be present in the population, and thus all mutations will be present in less than 100%

of tumor cells. However, when death rate d > 0, new mutations appearing during clonal expan-
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sion can reach fixation in the population. Probability that the k-th mutation with surviving lineage

eventually fixates and becomes present in all cells is approximately given by

ρk ≈
∫ ∞

0

(zu)k−1e−zuu
(k − 1)!

δzdz. (4.18)

Here we use the fact that the population sizes at which mutations with surviving lineage appear can

be approximated by a Poisson process on [0,M]with rate u 36, that final population size M is large

and that if k-th mutation is produced when there are z other cells in the population, it will reach

fixation if and only if the lineages of the other z cells die out. Evaluating the integral above we obtain

ρk ≈
(

u
u − log δ

)k

. (4.19)

We can obtain the maximum likelihood (ML) estimate for the number of cells that were present

in the population when the mutation that is present at a fraction α (for α < 1) appeared, by maxi-

mizing the probability distribution for the mutant fraction fz(α) (4.14):

ẑML = − 1
log[1 − α+ δα]

(4.20)

To calculate the maximum a posteriori (MAP) estimate for the number of cells that were present

in the population when the mutation that is present at a fraction α appeared, we let v be the prob-

ability that a particular single mutation appears during cell division. Then v is also the probability

that this mutation apperas in the population when there are z cells and forms a surviving lineage, for

all z ≥ 1. We note that v is very small and on the order of 10−9. The probability that the successful

mutation first appeared when there were z cells is p(z) = v(1− v)z−1 so to get the MAP estimate we
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will maximize p(z)fz(α):

ẑMAP = − 1
log[1 − v] + log[1 − α+ δα]

≈ − 1
log[1 − α+ δα]

(4.21)

since v is very small.

Probability of fixation of k-th mutation

In a pure birth process (with d = 0) the founding population (type-0 and no other mutations)

will always be present in the population, and thus all mutations will be present in less than 100%

of tumor cells. However, when death rate d > 0, new mutations appearing during clonal expan-

sion can reach fixation in the population. Probability that the k-th mutation with surviving lineage

eventually fixates and becomes present in all cells is approximately given by

ρk ≈
∫ ∞

0

(zu)k−1e−zuu
(k − 1)!

δzdz. (4.22)

Here we use the fact that the population sizes at which mutations with surviving lineage appear can

be approximated by a Poisson process on [0,M]with rate u 36, that final population size M is large

and that if k-th mutation is produced when there are z other cells in the population, it will reach

fixation if and only if the lineages of the other z cells die out. Evaluating the integral above we obtain

ρk ≈
(

u
u − log δ

)k

. (4.23)

Fraction of cells with k-th mutation

Having already characterized the probability that the k-th passenger mutation reaches fixation in

the population, we will now investigate the size of the population with the k-th mutation when it is

92



subclonal.

We can derive the cumulative distribution function for the fraction of cells with the k-th mu-

tation by again using the fact that the population sizes at which mutations with surviving lineage

appear can be approximated via a Poisson process on [0,M]with rate u, where M is the final popula-

tion size 36, together with result (4.12).

Prob[xk ≤ α] ≈
∫ ∞

0

(zu)k−1e−zuu
(k − 1)!

[1 − (1 − α+ δα)z]dz (4.24)

= 1 −
(

1 − log(1 + (−1 + δ)α)

u

)−k

(4.25)

From here we can derive the median fraction of cells with the k-th mutation

Med(xk) = min

1,
1 − eu(1−2

1
k )

1 − δ

 (4.26)

Trees

In addition to the numbers of cells carrying specific mutations, we will also investigate the phylo-

genetic relationships between neutral mutations in tumors. We will show that the likelihood of a

particular configuration depends on the parameters on the process.

We first calculate the probability that mutation 2 appears in the lineage of mutation 1 (and not

0). We will use the approximation that the probability that mutation 2 is offspring of mutation 1 is

equal to the eventual fraction of cells with mutation 1 in the population. Then the probability that

mutation 2 appears in the lineage of mutation 1 is

p1→2 ≈ E(x1) = ρ1 +

∫ 1

0
αg1(α)dα, (4.27)
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where g1 is the probability distribution function for the fraction of cells with the first mutation. In

other words, g1 is the derivative of the cumulative distribution function given in (4.25) for k = 1.

For b = 0.25, d = 0.18 and u = 0.015, p1→2 = 0.15, while for d = 0.2475 and b and u same as

before, p1→2 = 0.77, in excellent agreement with simulations results.

Next we want to estimate the probabilities of each of the six trees (Figure 3) involving the first

three (successful) passenger mutations. For these calculations we will need the following two quan-

tities, sub1 and sub2, mean fractions of cells with the first and the second mutation, conditioned

on their subclonality. Mean fraction of cells with the first mutation, conditioned on that mutation

being subclonal, is simply

sub1 =

∫ 1
0 αg1(α)dα

1 − ρ1
. (4.28)

On the other hand, mean fraction of cells with the second mutation, conditioned on that mutation

being subclonal, is

sub2 =

∫ 1
0 αg2(α)dα

1 − ρ2
, (4.29)

where g2 is the derivative of the cumulative distribution function given in (4.25) for k = 2.

Table 4.2: Likelihood of phylogenetic trees

δ 1 2 3 4 5 6
Formulas 0.72 71.1% 9.8% 3.8% 9.8% 4.5% 1.2%

0.96 26.4% 15.2% 9.9% 15.2% 16.1% 17.2%
0.99 5.5% 9.7% 8.2% 9.7% 15.1% 51.7%

Simulations 0.72 73.9% 7.7% 3.5% 7.5% 6.2% 1.1%
0.96 30.7% 12.7% 8.8% 12.7% 18.1% 16.9%
0.99 7.4% 8.9% 7.6% 9.2% 15.2% 51.2%

Probability of each of the six trees for different values of death-birth ratio δ. Probabilities
obtained using formulas from this section and results from 10,000 (surviving) runs of the
computer simulation. Parameters: birth rate b = 0.25 and passenger mutation rate
u = 0.015.
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We will also need sub1c
2 , mean fraction of cells with mutation 2, conditioned on 1 being clonal and

2 not being clonal, and sub1nc
2 , mean fraction of cells with mutation 2, conditioned on 1 not being

clonal and 2 not being clonal. sub1c
2 = sub1 and since

E(x2) = ρ2
1 + (1 − ρ2

1)sub2 = ρ2
1 + ρ1(1 − ρ1)sub1c

2 + (1 − ρ1)sub1nc
2 (4.30)

we have

sub1nc
2 = (1 + ρ1)sub2 − ρ1sub1. (4.31)

We will start with calculating the probability of tree 2, p2, in which mutation 2 is not offspring of 1

(event A) and mutation 3 is offspring of 1 (event B). We will denote the event that mutation 1 does

not fix as C. Then A ⊂ C and

p2 = P(A ∩ B) = P(A ∩ B ∩ C) (4.32)

= P(C)P(A|C)P(B|A ∩ C)

≈ P(C)P(A|C)P(B|C)

In other words, we approximate P(B|A ∩ C)with P(B|C) and obtain

p2 ≈ (1 − ρ1)(1 − sub1)sub1. (4.33)

Thus tree 2 occurs only when mutation 1 is subclonal (which occurs with probability 1 − ρ1), muta-

tion 2 is offspring of mutation 0 (which occurs with probability 1−sub1) and mutation 3 is offspring

of mutation 1 (which occurs with probability≈ sub1). When calculating the probabilities of indi-

vidual trees, we again use the approximation that the probability that e.g. mutation 2 is offspring of

mutation 1 is equal to the eventual fraction of cells with mutation 1 in the population.
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Similarly, the probability of tree 4, p4, in which mutation 2 is offspring of 1 and mutation 3 is

offspring of 0 is given by

p4 ≈ (1 − ρ1)sub1(1 − sub1) ≈ p2. (4.34)

We will calculate the probability of tree 1, p1, in a similar manner. Let A and C be the same events

as above and let event B now be that mutation 3 is not an offspring of either 1 or 2. Then

p1 = P(A ∩ B) = P(A ∩ B ∩ C) (4.35)

= P(C)P(A|C)P(B|A ∩ C)

≈ (1 − ρ1)(1 − sub1)(1 − E(x1|A ∩ C)− E(x2|A ∩ C))

≈ (1 − ρ1)(1 − sub1)(1 − sub1 − sub1nc
2 )

Thus we have

p1 ≈ (1 − ρ1)(1 − sub1)(1 − sub1 − (1 + ρ1)sub2 + ρ1sub1) (4.36)

Similarly, the probability of tree 3, p3, is

p3 ≈ (1 − ρ1)(1 − sub1)sub1nc
2

= (1 − ρ1)(1 − sub1)((1 + ρ1)sub2 − ρ1sub1) (4.37)

We now turn to calculating the probability of tree 5, p5. Tree 5 can occur when mutation 1 either

fixes or does not fix. Mutation 1 fixes with probability ρ1, and then mutation 2 must not fix in the

population with mutation 1 (which occurs with probability 1 − ρ1) and mutation 3 must not be

offspring of mutation 2 (which occurs with probability 1 − sub1c
2 = 1 − sub1). If mutation 1

does not fix (which occurs with probability 1 − ρ1), then mutation 2 is offspring of mutation 1 with
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probability sub1, mutation 2 does not fix in the population with mutation 1 with probability 1 − ρ1

and mutation 3 is offspring of mutation 1 but not 2 with probability≈ sub1 − sub1nc2nc1
2 . Here

sub1nc2nc1
2 is the mean fraction of cells with mutation 2, conditioned on mutation 1 not being clonal

and mutation 2 being offspring but not clonal in 1. We have

p5 ≈ ρ1(1 − ρ1)(1 − sub1c
2 ) + (1 − ρ1)sub1(1 − ρ1)(sub1 − sub1nc2nc1

2 )

= ρ1(1 − ρ1)(1 − sub1) + (1 − ρ1)
2sub1(sub1 − sub1nc2nc1

2 )

≈ (1 − ρ1)[ρ1(1 − sub1) + (1 + ρ1)sub1(sub1 − sub2)] (4.38)

In the last equality we used the fact that

sub1nc2nc1
2 ≈ sub1nc

2 − ρ1sub1

1 − ρ1
. (4.39)

Using similar reasoning and 4 scenarios: 1) mutation 2 fixes, 2) mutation 1 fixes, but mutation 2

does not, 3) mutation 1 does not fix but mutation 2 fixes in the population with mutation 1 and 4)

mutation 1 does not fix, mutation 2 does not fix in the population with mutation 1 we obtain

p6 ≈ ρ2 + ρ1(1 − ρ1)sub1 + (1 − ρ1)ρ1(sub1)
2 + (1 − ρ1)

2sub1sub1nc2nc1
2

≈ (ρ1)
2 + ρ1(1 − ρ1)sub1(1 − sub1) + (1 − ρ2

1)sub1sub2 (4.40)

Expected number of subclonal mutations

Let uz be the probability that, when there are z total cells in the population, a new mutation is pro-

duced that will become subclonal and present in a fraction larger than α. The probability that a new

mutation with surviving linage is produced before going to z − 1 or z + 1 cells is bu/(b + d) · (1 −

d/b) = u(1 − δ)/(1 + δ) for z > 1. When z = 1, the probability that a new mutation with surviv-
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ing lineage is produced before going to 2 cells (the only option in the process without extinction) is

u · (1 − d/b) = u(1 − δ). For all z > 0, probability that the newly produced mutation is subclonal

is 1 − (d/b)z.

Using formula (4.12), probability that a subclonal mutation with surviving lineage, that appeared

when there are z other cells, is present in a fraction larger than α is

Prob[x > α|x < 1] =
(1 − α+ δα)z − δz

1 − δz (4.41)

This leads to

uz = u
1 − δ

1 + δ
((1 − α+ δα)z − δz) (4.42)

for z > 1 and

u1 = u(1 − δ)((1 − α+ δα)1 − δ1) (4.43)

We are interested in the expected value for the number of subclonal mutations with fraction larger

than α. Let mk be the expected value for the number of such mutations when the process starts with

k cells. We are again only interested in the process that does not go extinct. Thus we have

m1 = u1 + m2 (4.44)

mk = uk + pmk+1 + (1 − p)mk−1, (4.45)

for k > 1 and p = 1/(1 + δ). Expressing m1 in terms of mk we get

m1 = u1

k−2∑
i=0

(
1 − p

p

)i

+
u2

p

k−3∑
i=0

(
1 − p

p

)i

+ · · ·+ 1
p
uk−1 + mk (4.46)
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Taking the limit of the right-hand side when k → ∞ and noting that mk → 0 when k → ∞we get

m1 = u1

∞∑
i=0

(
1 − p

p

)i

+
∞∑
z=2

uz

p

∞∑
i=0

(
1 − p

p

)i

=

(
u1 +

∞∑
z=2

uz

p

) ∞∑
i=0

(
1 − p

p

)i

=

(
u1 +

∞∑
z=2

uz

p

)
p

2p − 1
(4.47)

Plugging in the expressions for uz and p we get that the expected value for the number of subclonal

mutations with fraction larger than α is

m1 =

( ∞∑
z=1

u(1 − δ)((1 − α+ δα)z − δz)

)
1

1 − δ

=
∞∑
z=1

u((1 − α+ δα)z − δz) (4.48)

Evaluating the last sum we obtain the expected number of subclonal mutations present in a fraction

larger than α

ms = m1 =
u(1 − α)

(1 − δ)α
(4.49)

Expected number of clonal mutations

Using the same reasoning as in the previous section we can calculate the expected number of clonal

mutations.

mc =
∞∑
z=1

uδz =
δu

1 − δ
(4.50)
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5
Evolutionary dynamics of neoantigens

under immune surveillance

5.1 Forward

This work grew out of an interest in cancer immunotherapy responses which began after discussions

with Luis Diaz. Hannes Reiter and I realized that we could not answer questions about how many
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mutations would be sufficient for a robust immunotherapy response without working back to the

founding cell of the tumor. In doing so, we developed a model that focuses on the interaction of

immunity with an evolving tumor population and is less focused on the particulars of therapy re-

sponse. I contributed to several aspects of this work, including the original model descriptions, code,

and analysis. The simulations and analysis were improved greatly by Alex Whatley and Michael

Nicholson, who contributed especially to the weak immunity model. The work benefited greatly

from input and guidance from Martin Nowak and comments from Bert Vogelstein. We are prepar-

ing this work for publication.

5.2 Introduction

Genetic mutations inflict changes in all human cells over time 154. While most mutations are pas-

sengers of no phenotypic consequence, some confer a growth advantage eventually sufficient to

initiate the development of a tumor 266. The expansion of a tumor reveals the mutations acquired

during its development. When these mutations give rise to altered peptide fragments, their display

on the cell surface can trigger an adaptive autoimmune response. Accordingly, the adaptive immune

system has long been suspected to surveil the body for expanded populations of somatic cells and

eliminate them 130, thereby reducing the incidence of cancer. Recent results in checkpoint-blockade

immunotherapy confirm the presence and efficacy of endogenous, tumor-reactive cytotoxic T cells

in some tumors 143,170,99. Further, durable and complete responses to immunotherapy have been ob-

served even when the checkpoint-blockade inhibitor is withdrawn, raising the possibility that novel

immune responses continue to mount after immunotherapy is withdrawn. However, the success of

checkpoint-blockade immunotherapy has so far been confined to a small subset of tumors, includ-

ing mismatch repair-deficient (MMRD) colorectal cancers 143, smoking-associated lung cancers 221,

and UV exposure-driven melanomas 169,220, all of which harbor relatively high numbers of detectable
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mutations.

These observations have inspired the hypothesis that a sufficient number of mutation-associated

neoantigens are required for robust response to immunotherapy and eventual clearance or control

of a tumor 221,233. Still, which tumors might be good candidates for immunotherapeutic intervention

remains an important open question, and the landscape of neoantigens in a clinically relevant tumor

remains unclear. Because many mechanisms exist to thwart immune elimination of tumor cells 200,

a lack of response in other tumor types could in principle reflect the need for different systems-

immunologic perturbations in order to unleash endogenous immunity. Here, we explore the ef-

fectiveness of immune surveillance and immunotherapy with a simple model of tumor immunity.

The model incorporates the accumulation and loss of neoantigens as well as the growth dynamics

of a tumor. The model establishes that, for most tumors, endogenous immunity is insufficient for

tumor control even in the absence of barriers to immunity like resistance or HLA loss.

5.3 Model

5.3.1 Background

Human cells display endogenous protein fragments to antigen-specific T cells via the MHC class I

pathway. T cell responses against unmutated protein fragments are rare because T cells must survive

negative selection in the thymus, where autoreactive cells are removed. However, a genetic change

in a cell can lead to production of a mutation-assocaited neoantigen, a mutant protein fragment

capable of eliciting an immune response from an extant T cell clone. An expanding tumor clone

harboring a neoantigen will eventually encounter antigen-specific T cells. In a successful anti-tumor

immune response, these T cells expand and specifically eliminate the tumor clone harboring the

neoantigen.

Tumors arise as a result of a stepwise process of accumulated genetic change. The genetics of large
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tumors are consistent with a ”big-bang” model of initiation in which the cells in a tumor descend

from a single founder with a selective advantage and whose early growth is exponential 245. Differ-

ences between an individual’s germline and tumor can be partitioned according to whether they

arose before this initiation event or after. Mutations acquired before initiation might also be present

in other, presumably healthy, somatic cells. Mutations acquired after may be also be clonal, though

the vast majority of tumor mutations will be subclonal 33. Immune surveillance, or the sensing and

elimination of tumor clones which harbor immunogenic peptides, might act on mutations which

occur before or after initiation.

5.3.2 Model Description

We consider three possible models of tumor interaction with the immune system. In all the models,

the initiating cell of a tumor can begin with or without neoantigens. Let the number of neoantigens

in the initiating cell of a tumor be k. The tumor population grows as a branching process with cell

division rate b and death rate d (b > d). Upon cell division, a new neoantigen is produced in one

daughter with probability u, and every neoantigen is unique. In the first model, the immune system

purges neoantigens from a growing tumor immediately after they arise. This situation is illustrated

in figure 5.1a. In the second case, a clone of cells harboring a particular neoantigen does not stimulate

an immune response until it grows to some threshold size T. After reaching this size, the clone is

quickly eliminated. Figure 5.2a illustrates this scenario. Finally, an immune response might emerge

against a neoantigen which is constant but very weak compared to the growth advantage of the

tumor. In this case, the death rate of cells harboring k neoantigens is increased by k ∗ s. Figure 5.3a

illustrates this scenario.
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5.4 Results

5.4.1 Analysis

We first consider the case when a tumor is initiated in a cell without any neoantigens and no loss of

neoantigens is possible. The fate of a tumor population depends on the birth and death rates of the

initiated cell and the rate at which cells gain neoantigenic mutations. In this case the original cell has

some chance to survive and reach detectable size if the growth rate of cells free of any neoantigens is

positive, that is if

u < 1 − d
b

In this regime, it is possible for the population of cells without any neoantigens to sustain itself. Al-

though cells continue to accumulate mutations, the whole population is expanding exponentially.

However, when the rate of acquiring neoantigens is higher than this threshold, all cells will acquire

neoantigens and immune responses will eventually drive the population extinct. Figure 5.1b shows

an example simulation trajectory for this process. The elimination of neoantigenic clones slows the

growth of the tumor population by exactly the rate that neoantigens are produced. Neoantigenic

mutations will never be found in such a population, but the effect of their elimination will be im-

plicitly reflected in the apparent rate of tumor growth. Using this insight and previous results for

the variant allele frequency spectrum in exponentially growing populations 34, the variant allele fre-

quency spectrum for neutral mutations under this model of immunity can be calculated. Figure 5.1c

shows the results of this calculation. Both the intrinsic tumor growth rate and the rate of gaining

neoantigens influence the proportion of initiated tumors which will be eliminated by the immune

system, as shown in Figure 5.1d.

The immediate killing model is an optimistic possible scenario for the effectiveness of immune

surveillance. However, the immune system might instead require some time or signals to mount an
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effective immune response, resulting in immune pressure which is very effective but only mounts

after a tumor clone harboring a neoantigen reaches a certain size T. In this model, the whole tumor

might be much larger than T but be mostly devoid of neoantigens; it is only the size of the subclone

harboring the neoantigen which determines whether or not an immune response specific to that

neoantigen will be mounted.

For this model (Figure 5.2a), immune surveillance is equally effective at removing initiated tumor

cells because every cell which acquires a neoantigen will, eventually, go extinct. However, a sur-

viving trajectory exhibits more interesting dynamics (Figure 5.2b): large fluctuations in the size are

observed early on during moments of immune activation. Two phases of growth can be observed,

corresponding to the times before and after immunological pressure reduces the overall growth rate

of the tumor. The expected size of the tumor is shown for different thresholds in Figure 5.2c, high-

lighting the different regimes. The threshold also influences a simulated immunotherapy treatment

response (Figure 5.2d) in which a tumor grows without any immune pressure and then is subject

to immune pressure under the threshold model at a later time. Tighter thresholds produce a more

dramatic response.

In the third model of immune surveillance, we consider the case that an immune response only

weakly curtails the growth of a clone harboring a particular neoantigen (Figure 5.3a). In this regime,

it is important to account for the accumulation of neoantigens, and subsequently increased im-

mune killing, in a particular cell. A population of cells without any neoantigens will grow exponen-

tially, giving rise to populations with subsequently more neoantigens over time, as shown in Figure

5.3b. In the long-time limit, the proportion of the population relative to the unmutated popula-

tion which harbors a particular number of neoantigens will stabilize 184. This proportion is shown

as a function of the rate of gaining neoantigens in Figure 5.3c. Surviving neutral and neoantigenic

mutations will have different variant allele frequency spectra as shown in Figure 5.3d.
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5.4.2 Loss of neoantigens

We have until now only considered the case in which gained neoantigens could not be lost. How-

ever, consider the case in which a cancer population with some neoantigens present in the initiated

founding cell grows to a clinically detectable size as a result of some dysfunction in the immune

response. If this dysfunction is subsequently reversed, what should happen to the population of tu-

mor cells? If the above condition is not satisfied, then the immune response will certainly (though

perhaps slowly) drive the population extinct under any of the immune models considered. How-

ever, if survival of an unmutated cell is possible and many such cells exist at detection, then im-

munotherapy might not lead to tumor eradication. Figure shows the expected number of cells

without neoantigens in a tumor that is not subject to immune pressure for different mutational

scenarios. When a tumor with a normal mutation rate reaches detectable size, it is expected to have

produced many cells without neoantigens. When t ∗ v is large, a tumor of size N is expected to pro-

duce an unmutated cell if

log(N) >
u
v

5.4.3 Resistance to immunity

All of the models considered so far predict the elimination of tumors which begin with a very high

mutation rate. However, such tumors are frequently observed clinically. One possible explanation

for their appearance is the presence of a heritable mutation which confers resistance to immunity.

A possible example of this mutation class is constitutive cell surface expression of PD-L1. In the

context of the threshold immune response model, we derive an exact expression for the survival

probability of such an initiated cell as a function of the resistance probability and the threshold size.

Figure 5.5 illustrates the resistance model and survival probabilities. When the resistance probability
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γ is greater than approximately 1/T per generation (Figure 5.5b, right panel T = 104), The survival

probability of an initiated cell is not significantly altered by immune surveillance.

5.4.4 Applications

We establish bounds on the effectiveness of immune surveillance by estimating the chance that a

newly arising mutation can stimulate an immune response. In order to produce a neoantigen, a

point mutation must change the amino acid sequence of a protein, then be processed and displayed

on the cell surface by the antigen presentation pathway, and finally recognized by a T-cell clone spe-

cific to that antigen. 75% of newly arising mutations are coding mutations, which can potentially

generate several neopeptides depending on how the protein is digested. Only a small proportion of

mutant peptide fragments can be successfully presented by a particular HLA allele. Both computa-

tional predictions of binding affinity 165,166 and direct measurement of peptide presentation by mass

spectrometry 16 suggest that the proportion of peptides which can be presented by a cell is very small.

Pyke et al, applying NetMHCPan, find approximately 1% percent of peptides can be presented by an

individual with diverse HLA alleles, though this calculation requires the choice of a binding affinity

cutoff. Direct measurements of presented peptides by mass spectrometry find similarly that slightly

less than 0.1% of possible peptidome fragments can be detected on the surface of human cells, corre-

sponding to an overall presentation probability of about 1% for an amino acid substitution. Accord-

ingly, only a small proportion of mutated peptides have corresponding expanded T-cell clones7. We

conservatively assume that any presented neoantigen can be recognized by some T-cell clone.

This estimate suggests that many tumors are initiated on a background lacking any neoanti-

gens: fewer than 1 in 100 single nucleotide polymorphisms are neoantigenic. Figure 2a illustrates

what point-mutational burden produces a 90-percent chance of harboring at least one pre-existing

neoantigen if they are distributed in this way. We note frameshift In/Dels might be more likely to

produce neoantigens: a frameshift mutation resulting in a chain of 90 new amino acids can in prin-

107



ciple produce 100 new peptide fragments, a factor of 10 larger than an amino acid substitution. If an

individual has a lower germline diversity of HLA alleles, the proportion of mutations which gener-

ate neoantigens will be smaller. Finally, it might be the case that immune surveillance acts to remove

neoantigens from populations of precancerous or even healthy cells. In this case, the number of

founding neoantigens in a tumor will be lower than what is expected by chance.

Using a normal mutation rate µ of 5 ∗ 10−10 per base per cell division 154 and assuming 75% of

all exonic mutations are coding mutations, the contribution of normal point mutations to the rate

u is not larger than µ · 3 ∗ 107 · 0.75 · 0.01 · 2 ≈ 2 ∗ 10−4 per cell division. While death rates

in cancer branching process models have been estimated to be only slightly smaller than birth rates,

the growth advantage of primary tumor cells dwarfs the probability of gaining a neoantigen. With

b normalized to 1, estimates for d range between d = 0.999 in premalignant lesions and d = 0.99

in early tumors 33. This suggests that even immediate elimination of any cell harboring a neoanti-

genic peptide would be insufficient to drive extinct most clinically relevant tumors. Further, if the

observed dynamics of tumor growth already reflect immune surveillance, the true growth advantage

of transformed cells is even higher.

Nonetheless, certain cancers exhibit elevated mutation rates, and some mutational processes are

more likely to lead to the creation of neoantigens. For example, in tumors with DNA repair defi-

ciency or environmental mutagenic pressure from smoking or UV light, the underlying mutation

rate can be increased by orders of magnitude, and u can exceed the growth advantage of cancerous

cells. In this regime, a tumor must contend with adaptive immunity in some way. We conclude that

while the adaptive immune system might play a role in the dynamics of premalignant tissue or ma-

lignant tissue with an elevated mutation rate, it cannot arrest the growth of malignant tissue when

the mutation rate is normal.

The mutation rate in certain tumors changes over time. For example, in UV-light associated

melanoma, the founding tumor cell has experienced a high mutational burden, but subsequent
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tumor growth shields most cells from this mutagenic pressure. Therefore, in our model this process

is best represented by a founding cell with a large number of neoantigens, but a low rate of gaining

new neoantigens. When this tumor evolves in the context of immune suppression and grows to a

clinically detectable size, it is expected to produce cells which harbor none of the original neoanti-

gens and no new neoantigens, despite starting with such a high number. This situation is distinct

from MMRD colorectal cancer, where neoantigens continue to be accumulated at a very high rate

and our model predicts cells without any neoantigens are very unlikely.

5.5 Discussion

Many additions to our model of tumor immunity are possible. For example, defects in antigen pre-

sentation machinery and immune exhaustion are well-documented mechanisms of immune evasion.

However, these additions would only make controlling a nascent tumor more challenging. Like-

wise, continued accumulation of driver mutations after cancer transformation would produce cells

tolerant of an even higher rate of gaining neoantigens. On the other hand, environmental pres-

sures besides immunity might arrest a tumor at a carrying capacity, precipitating the accumulation

of mutations. Thus, late in the life of a tumor, cells at the carrying capacity might acquire many

rare neoantigens, and the ability of these cells to seed new metastases might well depend on mech-

anisms to evade immune pressure. Finally, we have assumed that the drivers of tumorigenesis are

not themselves neoantigens. We believe this is a reasonable approximation for the vast majority of

tumors because antigenic driver mutations are probably as rare as antigenic passengers and, if the

immune system is acting to eliminate neoantigens, even more rarely observed. However, there is

suggestive evidence that the very small proportion of driver mutations surveilled by the immune

system slightly reduce cancer incidence 166, though this observation may be confounded by other

factors associated with high HLA diversity.
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Our model clarifies the challenge in immunologic control of a tumor: the high fidelity of DNA

replication which suppresses the accumulation of cancer drivers also prevents distinguishing be-

tween cancerous and normal tissue. Given that a tumor has emerged under the influence of a nor-

mal mutation rate, it is unlikely to harbor or acquire enough neoantigens to be driven extinct. We

emphasize that this result holds in the best possible case for the immune system; no amount of

systems-immunologic perturbation will improve it. This situation is analogous to the error thresh-

old model 190, though that model was originally studied in a population with fixed size. The sensi-

tivity of the immune system establishes an error threshold for cancer cells, but in most cases cancers

exist well below this threshold because the expansion of the tumor population gives the population

many chances to avoid neoantigens (see Figure 5.6).

However, even in this case, immunotherapies can provide clinically meaningful benefit, especially

in combination with other therapies 37. When tumors emerge with a high mutation rate, our results

underscore the ability of the immune system to lead to durable control and point to genomic fea-

tures which might distinguish tumors which have already been depleted of neoantigens from those

which might respond to immunotherapy.

5.6 Derivations

5.6.1 Simple Model

Let Z(t) be a continuous-time exponential branching process with division rate b and death rate d,

b > d. The long-term extinction probability pext of this process can be derived by considering a

one-step conditional recurrence for a single cell:

pext = P(Birth) ∗ p2
ext + P(Death)
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pext =
b

b + d
∗ p2

ext +
d

b + d

The solution to this polynomial between 0 and 1 is

pext =
d
b

The probability that the branching process survives in the long run is ρ = 1 − d
b .

5.6.2 Mutation

We introduce neoantigens into this system as follows. Upon division, each daughter will acquire

some mutations which might be neoantigens. Let Zk(t) be the number of cells with k neoanti-

gens. Since there are very many possible mutations, we model the acquisition of neoantigens in

an infinite sites framework. If the number of new neoantigens in one daughter cell is Poisson dis-

tributed with mean u/2, then the probability that both daughter cells have no neoantigens P00 is

e−u. The probability that one daughter has at least one new neoantigen but the other does not have

any P01 is 2e−u/2(1 − e−u/2), and the probability that both daughters have new neoantigens P11 is

(1 − e−u/2)2.

5.6.3 Low rate of gaining neoantigens

The rate of gaining neoantigens is quite small (we estimate that the expected number of neoantigens

gained in a healthy cell per division is about u = 10−4), so for convenience we will assume u << 1.

In this regime,

P00 = 1 − u + O(u2)

P01 = u + O(u2)
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P11 = O(u2)

We will neglect terms of order O(u2) and describe the rest of our results in terms of u, the approx-

imate probability that one daughter gains a mutation.

5.6.4 Lethal neoantigens

In the simplest case, neoantigens immediately cause the death of a cell harboring them. In this case,

the dynamics of the surviving process are equivalent to one in which the birth rate is reduced by a

factor 1−u. The process can survive in principle if b(1−u) > d, and when this is the case it survives

with probability 1 − d
b(1−u) .

5.6.5 Models without loss

In the threshold model without loss, any cell which acquires a neoantigen with eventually die.

Therefore, the survival probability of this process is unaltered. Likewise, in the model of constant

immune pressure, if this pressure is sufficient to guarantee extinction of any clone with a neoantigen

(that is, if d + w > b, then the survival probability of this process is also unaltered.

5.6.6 Neoantigen loss

Upon division, each neoantigen can be lost with probability ν. Starting from a cell with k neoanti-

gens, in the limit of small loss rates the probability of generating a daughter cell with k − 1 neoanti-

gens and another with k neoantigens is approximately 2kν. Let v = 2ν as before. In our model ex-

tended to loss, a cell division produces two daughters with k neoantigens with probability 1−u−kv,

one daughter with k and one with k+1 neoantigens with probability u, and one with k and one with

k − 1 with probability kv.
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5.6.7 Gain and loss approximation

Begin with a population of cells with k neoantigens. The expected proportion of cells f(x, t)with x

neoantigens at time t obeys the differential equation:

df(x, t)
dt

= −b(u + vx)f(x, t) + buf(x − 1, t) + bv(x + 1)f(x + 1, t)

with initial condition f(k, 0) = 1, where b is the birth rate, u is the probability that one daughter cell

is produced with a neoantigen upon division, and v is the probability per neoantigen that a neoanti-

gen is lost upon division.

The generating function g(s, t) corresponding to this distribution, i.e.

g(s, t) =
∞∑
x=0

sxf(x, t)

obeys the differential equation:

dg
dt

= (s − 1)bug − (1 − s)bv
dg
ds

with initial condition g(s, 0) = sk. It admits the following solution

g(s, t) = e
(1−e−btv)(s−1)u

v (1 + e−btv(s − 1))k

This generating function can be recognized as the generating function corresponding to the sum

of two random variables, a Poisson with mean (1 − e−bvt)u/v and a binomial with k trials and

success probability e−bvt.
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The expected proportion of cells with no mutations, f(0, t) is therefore:

f(0, t) = e(e
−bvt−1)u/v(1 − e−btv)k

We wish to calculate the expected number of cells with no neoantigens that exist when a single

mutant cell grows until an immune response is triggered. First, the size of the neoantigenic clone

grows in expectation according to

E[Z1(t)] = e(b(1−v)−d)t

because accumulation of additional neoantigens does not change the size of the original clone. We

require that b(1 − v) > d so that the mutant clone grows in size. We approximate the time at which

the immune response occurs against the founding clone as the time at which this expectation reaches

the threshold:

t∗ ≈ log(T)
b(1 − v)− d

The total population grows in expectation according to

E[Z] = e(b−d)t

so the number of cells with no neoantigens produced by a clone with 1 neoantigen M1 is approxi-

mately

M1 ≈ f1(0, t∗)e(b−d)t∗

Furthermore, the expected number cells with no neoantigens produced independently is approxi-

mately

λ ≈
∫ t∗

0
bvf1(1, τ)e(b−d)τdτ
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And for very small rates v this number is approximately Poisson distributed.

5.6.8 Threshold return criteria

We approximate the survival probability of a cell which begins with no neoantigens in a process with

neoantigen gain rate u, loss rate v, threshold T and birth and death rates b, d.

pext = P(Birth)
(
(1 − u)p2

ext + upextpext,u
)
+ P(Death)

Where pext,u is the probability that a process beginning with one neoantigen goes extinct. We esti-

mate pext,u as follows. First, we assume that the threshold is sufficiently large that, in the absence of

an immune response, if a population of cells reaches the threshold then it is certain to survive. Thus,

a mutant cell goes extinct either by fluctuating extinct (this happens with the natural extinction

probability of the process) or by reaching the threshold. All cells with the neoantigen will be driven

extinct, but on the way the mutant clone might produce cells without the neoantigen. It produces N

such cells (calculated above). Thus,

pext,u = d + (1 − d)
∞∑

n=0

pn
extP(N = n)

Using the definition above for λ,

pext,u = d + (1 − d)
∞∑

n=0

pn
ext

λne−λ

n!

pext,u = d + (1 − d)eλ(pext−1)

The full recurrence is as follows:

pext =
b

b + d
(
(1 − u)p2

ext + upext(d + (1 − d)eλ(pext−1))+ d
b + d
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and can be solved numerically.

5.6.9 Gain, loss, and a continuous immune response

Suppose the immune system does not eliminate sufficiently large populations of antigenic cells but

rather it increases the death rate of a cell with k neoantigens by kw. In this case, the expected number

of cells Z(x, t)with x neoantigens at time t obeys the differential equation:

dZ(x, t)
dt

= Z(x, t)
(
b(1 − u − xv)− d − wx)

)
+ Z(x + 1, t)bv(x + 1) + Z(x − 1, t)bu

The corresponding generating function is

dg
dt

= g
(
b(1 − u(1 − s)− d

)
+

dg
ds
(
bv(1 − s)− sw

)
with initial condition g(s, 0) = Z0sk for a population of size Z0 with k neoantigens.

While exactly solvable, the solution to this PDE is quite complicated. However, the dependence

on the initial condition decays with rate bv+w, and after this decay, growth of the population overall

is controlled by a simple exponential,

Z(t) ≈ C ∗ exp
(
t ∗ b(b − d)v + (b(1 − u)− d)w

bv + w
)

Thus, the population will grow in expectation iff the exponent is positive. After some algebra this is

equivalent to

v +
w
b
(1 − u

ρ
) > 0

Further, relative to a population with mutation rate u, a population with mutation rate u
2 will expe-
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rience a growth rate advantage s:

s =
buw

2(bv + w)

.

5.6.10 Expected number of cells at time t

Let the number of cells at time t with no neoantigens be Y0(t) and set Y0(0) = 1. A new mutant

population is produced from Y0 at rate buY0(t). The ith mutation initiates a population Yi. Let Kt

be the number of mutations occurred by time t at times (ut)
Kt
t=1. The immune response is triggered

when a particular neoantigen reaches size T. This population is then killed. Therefore the total

population at time t is

Z(t) = Y0(t) +
Kt∑
i=1

Yi(t)

Let (Xi(t))∞i=1 be iid linear birth death processes and (τi)Kt
i=1 the unorered mutation times. Then

Z(t) d
=X0(t) +

Kt∑
i=1

Xt(t − τi)I{0<Xt(t−τi)<T}

where equality is noted in distrubtion. Next, we approximate that each population grows de-

terministically and only mutations are stochastic. Thus, each Xi(t) is approximated by eλt where

λ = b(1 − u)− d for unmutated cells and λ = b − d for mutated cells.

5.6.11 Mean number of cells under approximation 1

Let λ0 = b(1 − u) − d, λ1 = b − d and d = d/b. Under approximation 1, Kt is Poisson with

parameter b(1 − d)u(eλ0t − 1)/λ0. From this and Wald’s lemma,

E[Z(t)] = eλ0t +
bueλ0t

λ1 − λ0
T(λ1−λ0)/(λ1)−1
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= eb(1−u)−d)tTu/(1−d)

For eλ1t ≥ T, otherwise E[Z(t)] = eλ1t.

5.7 Time to resistance

Michael, not sure if we will use this. But going through it again I think it is a really great derivation.

Let’s discuss.

5.7.1 Yule model limit

As an aside, we note the special case when there is no death (a Yule process). Here, the expected

number of unmutated offspring produced in one division is:

E(Z0(t + dt)|Z0(t) = 1) = 2e−u/2 + 2e−u/2(1 − e−u/2) (5.1)

E(Z0(t + 1)|Z0(t) = 1) = 2e−u/2

This is greater than 1 when

u < 2log(2)

This condition places an absolute upper bound on the rate at which a dividing population can gain

mutations but still hope to maintain an ancestral sequence.

5.7.2 VAF for v = 0 in continuous model

we provide a heuristic argument for the distribution of the number of cells carrying a uniformly

chosen neoantigen. Suppose we observe a tumor at time t, and let L = max{number of neoantigens in cell}.
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Thus we can partition the growing tumor population into (Zi(s))
L,t
i=0,s=0, where Zi(s) is the num-

ber of cells with i neoantigens at time s. Let the growth rate of cell with i neoantigens be λ(i), and

we will assume this is a monotone decreasing function of i. To avoid clutter let λ = λ(0) and

λ(i) = λi. Further suppose at rate ν each cell is replaced by an identical copy of itself and a copy

possessing a never seen before neoantigen. While L is a time-dependent random variable, if we con-

sider fixed L, Theorem 3 in 184 informs us that conditional on type 0 survival, almost surely,

lim
t→∞

(e−λtZi(t))Li=0 = W

 i∏
j=1

ν

λ− λj

L

i=0

= W(ci)
L
i=1,

where W is exponential with parameter λ/α(0). If we suppose λ− λi = is then ci =
νi

si
∏i

j=1 j−1.

For the remainder of this discussion we will assume L is fixed and large and use the approximation

Zi(s) = Wcieλs. The number of new neoantigens acquired in the population by time t will be

denoted K.

At time t let the number of new neoantigens generated by a cell with i − 1 neoantigens be Ki,

with 1 ≤ i ≤ L. Such neoantigens are generated at rate νZi(s) = Wci−1eλs. Therefore the arrival

density for any such neoantigen that arrives before t is approximately

fTi(s) =
λeλs

eλt − 1
.

Let Yi(t) be the number of cells possessing such a neoantigen that arrived at Ti, which we refer to as

the clone initiated by that neoantigen. Cells of this clone will continue to accumulate neoantigens,

and so we let Yij(t) be the number of cells in the clone that have j neoantigens i ≤ j ≤ L. We may

apply Theorem 3 in 184 to the growth of this clone which yields the approximation

Yij(s) = Wici,jeλi(s−Ti)
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for s ≥ Ti, and with Wi ∼ Bern(λi/αi)Exp(λi/αi), ci,j =
νj−i

sj−i

∏j−i
k=1 k−1. Hence the total number

of cells in this clone at t is

Yi(t) = Wieλi(t−Ti)
L∑

j=i

ci,j = Wieλi(t−Ti)Ci.

Thus the clone size distribution of neoantigens who arrive in a cell already possessing i − 1 neoanti-

gens is

P(Yi(t) > y) = E[P(Wieλi(t−Ti)Ci > y)] (5.2)

= E

[∫ t−λ−1
i log y

CiWi

0
fTi(s) ds

]
(5.3)

= E

[
eλt(CiWi/y)λ/λi − 1

eλt − 1

]
(5.4)

If W is fixed, then each of the Ki is Poisson with parameter Wci(eλt − 1)/λ. Therefore if from

the possible K neoantigens we select a particular neoantigen uniformly at random, this neoantigen

was initially acquired in the division event to a cell already possessing i − 1 neoantigens with proba-

bility ci−1∑L−1
j=0 cj

. Let
∑L−1

j=0 cj = A. Hence at time t, the distribution of the number of cells possessing

a uniformly chosen neoantigen is

P(Y(t) > y) =
L∑

i=1

ci−1

A
E

[
eλt(CiWi/y)λ/λi − 1

eλt − 1

]
≈

L∑
i=1

ci−1C
λ/λi
i E[Wλ/λi

i ]

Ayλ/λi
(5.5)

where the last approximation is due to eλt ≫ 1. Note that here L is random and an expectation

should be taken upon the above inequality with respect to the distribution of L. In principle this
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distribution may be obtained using Theorem 1 of 184. However regardless of L, if ν/s < 1 then

(
ν
s

)i∏i
j=1 j−1

A
Cλ/λi

i =

(
ν
s

)i∏i
j=1 j−1

A

 L∑
j=i

νj−i

sj−i

j−i∏
k=1

k−1

λ/λi

≤
(
ν
s

)i∏i
j=1 j−1

A
. (5.6)
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6
Viral rebound kinetics following single and

combination immunotherapy for HIV/SIV

6.1 Forward

This work builds on previously published modeling efforts in viral dynamics 148,29, providing an

improved model, better statistical fitting approaches, an expanded data set, and a data-driven con-
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nection to human viral rebound. Many people have contributed to this work, including Melanie

Prague, Chloe Pasin, Irene Balelli, James Whitney, Dan Barouch, and Jon Li. Alison Hill supervised

this project and my work on it. I contributed to the development and analysis of the model, merging

the stochastic and deterministic regimes in the model, and simulating rebound dynamics. We are

preparing this work for publication.

6.2 abstract

HIV infection can be treated but not cured with combination antiretroviral therapy, and new ther-

apies that instead target the host immune response to infection are now being developed. Three

recent studies of such immunotherapies, conducted in an animal model (SIV or SHIV-infected rhe-

sus macaques), have shown that agents which target the innate immune receptor TLR7 along with

recombinant viral-vector vaccines or monoclonal antibodies can prevent or control the rebound in

viremia that usually accompanies the discontinuation of antiretroviral drugs. However, the mech-

anism of action of these therapies remains unknown. In particular, it is unclear what relative role

was played by reduction of the pool of latently infected cells versus boosting of anti-viral immune

responses, and whether the therapies acted independently or synergistically. Here we conduct a

detailed analysis of the kinetics of viral rebound in this collection of studies, and use mechanistic

mathematical models combined with rigorous statistical methods for model fitting and selection

to quantify the impact of these immunotherapies on viral dynamics. We find that the therapeutic

vaccine reduced the effective reactivation rate from the latent reservoir by an average of 4-fold (95%

CI [2,8]), and boosted the avidity of antiviral immune responses by 17-fold [5, 67] when alone and

210-fold [30, 1400] when combined with the TLR7-agonist. In the context of later initiation of

antiretroviral therapy only (9 weeks vs 1 week after infection), the TLR7-agonist reduced the reser-

voir contribution to rebound by an average of 8-fold [4, 16], and also slightly increased target cell
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availability (1.5-fold). The monoclonal antibody boosted immune response avidity by 8-fold [3,16]

and displayed no detectable synergy with the TLR7 agonist. These results provide a framework for

understanding the relative contributions of different mechanisms of preventing viral rebound and

highlight the multi-faceted roles of TLR7-agonists as immunotherapy for HIV/SIV cure.

6.3 Introduction

Worldwide, over 39 million people are currently infected with HIV, and 2 million individuals are

newly infected each year260. While combination antiretroviral therapy (ART) can suppress viral

replication, preventing both transmission and progression to AIDS, it cannot completely clear the

infection. A latent reservoir of integrated virus exists in long-lived lymphocytes and can re-initiate

the infection (“rebound”) whenever treatment is stopped 243,178. Consequently, current therapy must

be taken for life, and new research efforts are underway to find a permanent cure for HIV69.

Two general approaches are being taken to prevent HIV rebound and hence allow therapy to

be completely stopped (“cure”). One approach, often called a “sterilizing cure”, aims to purge all

remaining latent virus from the body 53, ideally re-capitulating the effects of case-studies involving

bone marrow transplants (e.g. 283,106) or extremely early treatment initiation (e.g. 204,107). Another

approach, often called a “functional cure”, is to instead equip the immune system with the ability to

control virus that reactivates from latency, perhaps mimicking what naturally occurs in so-called elite

controllers 25 or post-treatment controllers 230. Because of the difficulties in detecting latent virus and

the lack of known immune correlates of HIV control, all current potentially-curative interventions

must be evaluated by conducting treatment interruption studies, in which recipients eventually stop

all therapy in a controlled manner and are monitored closely for viral rebound 82.

Here we analyze data from three recent studies 29,148,30 that are part of a larger effort to use thera-

pies that perturb the immune response (known as “immunotherapy”) to induce viral control either
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by clearing latent virus, boosting anti-viral immune responses, or both. One component of the in-

vestigation therapy is a small-molecule agonist of the Toll-like receptor 7 (TLR7), part of the innate

immune system involved in antiviral defense 149. Another component is a “therapeutic vaccine”

(administered during infection, as opposed to traditional preventative vaccines). The vaccine con-

tains HIV (or SIV) DNA encoded in a viral vector (either Ad26, an adenovirus vector, or MVA, a

modified vaccinia virus vector) and is administered in a prime-boost regimen (one vector, then the

other) 13,14 (Figure 6.1). The third component is the PGT121 monoclonal antibody, which targets the

V3 loop of the HIV envelope protein and has the highest potency of any antibody isolated to date,

neutralizing∼ 70% of HIV isolates with a median IC50 of around 50 ug/mL 122,269. Innate immune

stimulation as a strategy to treat chronic viral infections 199,87, supplement vaccination248,116,125, or

enhance the effect of monoclonal antibodies 237 has previously been shown to be promising.

Two of these pre-clinical studies were conducted in SIV-infected rhesus macaques, a well-validated

animal model of HIV infection which recapitulates HIV pathogenesis and ART response 8. For

studies involving the monoclonal antibody, animals were instead infected with SHIV, a chimeric

virus consisting of the HIV envelope gene in an SIV backbone. One or two of the immunotherapies

was given to animals during long-term ART, and viral levels were monitored once all therapies were

discontinued. The kinetics of viral rebound were altered in many treated animals, and a subset of

animals showed unprecedented responses - some animals never rebounded and appeared to have a

achieved a sterilizing cure, and another subset rebounded temporarily but then achieved complete

suppression of virus (apparent functional cure) (Figure 6.1). The goal of this study was to com-

bine mechanistic mathematical models with rigorous statistical methods to characterize in detail

the changes in rebound kinetics in all study animals, compare hypotheses about the effects of each

component of the immunotherapy intervention individually, evaluate their synergy, and provide

recommendations about future trials.

Mathematical models have a long history of informing the dynamics of infections within individ-
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ual hosts 194, and have been used to study viruses such as hepatitis B 192,203,64 and C 183,49, influenza 176,

dengue 197,56, and herpes simplex virus 238. For HIV, these viral dynamics models have been instru-

mental in understanding many important aspects of infection, such as the cause of viral load decline

post-peak 205,247, the lifespan of infected cells 270,110, the rate of seeding of the latent reservoir9, and

the effects of treatment with antiretroviral therapy 164,277,228,46, and investigational immunothera-

pies such as antibodies 150 and IL-7 253. These models are generally represented in the form of non-

linear ordinary differential equations, and are often fit to data to estimate parameters that cannot

be directly measured. Traditionally, such fitting was done on an individual-by-individual using

least-squares (e.g.43,150) or maximum likelihood-based optimization, or fully Bayesian approaches

(e.g. 277,152), but these methods may suffer from identifiability issues when data is sparsely sampled

or variables are unobserved, and do not provide a formal way of comparing dynamics between treat-

ment groups. More recently, inference methods based on non-linear mixed-effects models have been

developed to jointly infer parameters from groups of individuals and formally test for differences

between treatment groups 209,46.

In this paper we describe the use of mathematical modeling to understand the effects of the sin-

gle and combination immunotherapy on viral rebound kinetics following ART-cessation. First, we

develop an augmented model of HIV/SIV dynamics which includes latent infection and an adap-

tive immune response. Then we analyze the dynamics of this model and investigate the theoretical

identifiability of its parameters from longitudinal viral load data. We present a Bayesian non-linear

mixed effects statistical inference framework to estimate model parameters from the data and use

this to evaluate the most likely mechanism of action of each component of the treatment.
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6.4 Results

6.4.1 Development of a viral dynamics model for rebound and control

Animals who received either ART alone or augmented with the TLR7-agonist, therapeutic vaccine,

monoclonal antibody, or combination immunotherapy exhibited a wide range of viral rebound

trajectories (Figure 6.1). The standard mathematical model of HIV viral dynamics, which describes

interactions only between virus and target CD4 T cells, cannot explain prominent features of these

kinetics, such as a large difference between peak and set-point viral load or eventual control of infec-

tion43. We hypothesized that these kinetics were influenced by the induction of an adaptive immune

response before and during rebound. This idea is supported by the obsevation that immunotherapy

led to perturbations in interferons and interferon-stimulated genes, activation of multiple lympho-

cyte subsets, and expansion of cellular immune responses to viral peptides 29,148,30.

To infer the mechanisms of immunotherapy action across the full range of observed viral re-

bound kinetics, we augmented the standard model of viral dynamics to account for an adaptive im-

mune response. In addition to modeling uninfected and infected target cells and virus, we included

population of effector immune cells which suppress infection and a longer-lived precursor popula-

tion which produces effectors and provides immunological memory. Our model is general enough

to represent either cellular or humoral responses. We also modeled the reactivation of latently in-

fected cells, which provides the initial source for rebounding virus. The model was specifically devel-

oped to be flexible enough to capture rebound kinetics both in the regime where latent cells reacti-

vate frequently and rebound occurs rapidly, and in the regime when reactivation from latency is rare

and there are stochastic delays until the first fated-to-establish lineage exits the reservoir 152,108,206. Fig-

ure 6.2 shows the model schematic and associated mathematical description. This augmented model

is able to qualitatively reproduce the diverse rebound trajectories seen in data from the two studies,

including rebound followed by a high set-point and rebound followed by immune control (Figure
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6.3 and SI Figures TBA). The Methods section details the study designs, therapies, data collection,

model structure, and fitting methods.
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Figure 6.2:Briefly,freevirusesVentertargetcellsT (withinfectionrateβ),producinginfectedcellsI.Infected
cellsinturnreleasefreevirus(ratek).Long-livedprecursorimmunecellsPwhichencounterviralantigenprolifer-
ate(p(V) = pV/(V + NP))andproduceshort-livedeffectorimmunecellsE.Effectorimmunecellseliminate
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MoredetailsareprovidedintheMethods.

6.4.2 Simulation analysis of determinants of viral rebound kinetics

The goal of this study was to understand the effects of immunotherapy by estimating the parame-

ters of the model from the observed rebound trajectories and then comparing these parameters be-

tween treatment groups. To justify this approach, we first sought to determine which model param-

eters could be identified from viral load time-series alone, and to understand the expected influence

of these parameters on rebound kinetics. A comprehensive identifiability analysis, detailed in the
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Methods, found that the combination of reservoir reactivation rate a, target cell replenishment rate

λ, and viral burst size k can be adjusted to produce equivalent observed trajectories (since we only

have longitudinal measures of viral load V and not infected cells I). Likewise, we can only identify

the ratio of precursor immune cell production rate m and half-maximal inhibitory concentration

(IC50) of effector cells NE (since we don’t have measures of effector immune cell levels E). Accord-

ingly, we fixed the viral burst size k and the effector half-max NE so the remaining parameters were

identifiable. Furthermore, viral clearance rate, lifespans of each cell population, and the fraction of

expanded immune cells that revert to memory can be estimated from other data sources, and so we

fixed these parameters at experimentally-determined values (Table 6.1 and Methods).

The resulting model has six remaining parameters to be estimated: target cell replenishment rate

λ, infection rate β, the latent cell reactivation rate a, precursor immune cell production rate m, max-

imal proliferation rate of immune cells p, and the half-maximally stimulating level of virus NP. We

verified that this combination of parameters was formally identifiable (see Methods), and then sim-

ulated the model under systematic variations in each parameter to understand how each affects re-

bound kinetics. If the immune response is not strong enough, then the kinetics of this model reduce

to those of previous viral dynamics models without immune responses (Figure 6.3, top row). The

availability of target cells (λ) and the baseline viral infectivity (β) control the early viral growth rate,

while the timing of rebound depends on the rate at which latent cells reactivate (a). The density of

target cells that the virus can access (λ) also influences the eventual setpoint viral load.

However, when viral antigen stimulates immune cells sufficiently, the immune response can cur-

tail rebounding infection (Figure 6.3, bottom row). Increases in the rate at which effector immune

cells expand when stimulated by antigen (p) and the rate of immune precursor cell production (m),

which here determines the initial level of precursor cells, e.g. the size of the memory pool, at the time

of treatment interruption, reduce the height and timing of peak viremia. The degree of control of

the viral load setpoint is determined mainly by NP, the viral load level at which antigen-stimulation
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Figure 6.3:Toprow:Weakimmuneresponse(p = 0.1).A)Viralloadtrajectoriesproducedbythemodelfordifferent
valuesofeithertargetcellproductionrate(λ),viralinfectivity(β),orlatentcellreactivationrate(a).B)Sensitivity
ofviralloadtoparametervaluesλ,β,oraovertime.Relativesensitivitytoparameterθ isdefinedas∂V

∂θ
θ
V .Bottomrow:Strongimmuneresponse(p = 1).C)Viralloadtrajectoriesproducedbythemodelfordifferentvaluesofeither

immunememoryproductionrate(p),immuneproliferationrate(p),orimmunerepsonseavidity(NP).D)Sensitivityof
viralloadtoparametervaluesm,p,orNPovertime.Parametervalues,whennotvariedand[min,max]whenvaried:
λ = 50 [0,500]cellsmL−1day−1,β = 5 × 10−7 [0,20]mLcopies−1day−1,NE = 104cellsmL−1,dT = 0.05
day−1,a = 10−5 [10−12,10−4]cellsmL−1day−1,dI = 0.4day−1,k = 5 × 104virionscells−1day−1,c = 23
day−1,m = 1 [0.01,100]cellsmL−1day−1,f = 0.9,p = 0.1 (A,B)orp = 1 [0.01,10](C,D)day−1,NP = 104 [102,
106]copiesmL−1,dE = 1day−1,dP = 0.001day−1.
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is half-maximal, determines the degree of control of the viral load setpoint. When NP is smaller, im-

mune cells can still effectively proliferate even when viral load drops, thus maintaining control. The

timing and rate of early viral growth - before the immune response has expanded to sufficient levels -

is still controlled by λ, β, and a (see SI Figure TBA).

These results are corroborated by formal sensitivity analysis (Methods), which indicates that viral

load values early on during rebound tend to provide the most information about the parameters

related to target cells (λ), viral fitness (β), and reservoir reactivation (a), whereas values later on have

more information about the immune response (m, p, NP) (Figure 6.3, right).

6.4.3 Estimation of immunotherapeutic treatment effects from viral rebound

data

After confirming that our model can qualitatively capture a wide range of viral rebound dynamics,

we used a statistically rigorous group-level fitting approach to identify the model parameters from

the observed viral rebound data. Our main goal was to compare parameters between groups receiv-

ing different combinations of immunotherapy. In inference framework, baseline parameters gov-

erning the dynamics in each individual are assumed to be drawn from a shared distribution which

allows for heterogeneity between individuals, known as the random effects. Fixed treatment effects

alter the parameters according to the treatment each individual received. Here, the treatments we

consider include the TLR7-agonist, the Ad26/MVA therapeutic vaccine, and the PGT121 antibody.

We considered animals infected with SIV and SHIV separately, as we expected that many viral dy-

namic paramters could differ between these virus strains. For the two SIV studies, we also included

the study identity (Study 1/Whitney 148 or Study 2/Barouch 29) as a “treatment” in order to search

for systematic differences in rebound kinetics, which are most likely to be caused by the different

timing of ART initiation between the studies (9 vs 1 week after infection, respectively). In addition

to exploring a collection of biologically-motivated models (Methods, Tables 6.5 and 6.6), we refined
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our model using an iterative model selection procedure based on the Bayesian Information Crite-

rion (BIC). Inference was performed using an implementation of the Stochastic Approximation

of Expectation Maximization (SAEM) 232. The Methods section contains details about parameter

inference and model selection.

We first examined the effects of the TRL7-agonist and therapeutic vaccine in the studies involv-

ing SIV-infected animals (Studies 1 and 2 in Figure 6.1). Our model-fitting procedure reliably iden-

tified effects of the immunotherapy on several model parameters, suggesting mechanisms for the

efficacy of these treatments (Figure 6.4). We found that therapeutic vaccination reduced the rate

of successful reactivations from the latent reservoir (↑ ta) by 4-fold (95% CI 2-8) and increased the

sensitivity of immune cells to antigen stimulation (↓ NP) by 17-fold (95% CI 5-67). In addition, our

fitting supported an interaction between the vaccine and the TLR7-agonist, resulting in an addi-

tional 12-fold increase (95% CI 3-47) in immune sensitivity to antigen (↓ NP) when both therapies

were administered together, for a total 210-fold boost. We hypothesize that vaccination, alone and in

concert with TLR7-agonist treatment, establishes an adaptive immune response with wide breadth

which reduces the fraction of viruses archived in the reservoir which can successfully reactivate, and

primes adaptive immune response to expand in the event of reactivation.

Furthermore, we identified several study-specific effects. In the Whitney study (Study 1 148), viral

rebound kinetics supported a 10-fold elevation (95% CI 3-30) in the responsiveness of immune cells

(↓ NP) in all groups, and an 8-fold reduction (95% CI 4-16) in the latent reservoir reactivation rate

in the presence of TLR7-agonist treatment (8-fold decrease in time between reactivations, ta). We

hypothesize that the first finding is due to the longer time after initial infection that ART was started

in this study compared to Study 2 (8 weeks vs 1 week), which could have allowed for the formation

of a more effective memory response. Indeed, previous investigation of immunological dynamics

early in acute infection indicate that the timing of ART initiation determines the strength of HIV-

specific immune responses and the kinetics of the subsequent rebound 271. The inferred reduction
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in the latent reservoir exit rate is consistent with the observation of large viral blips despite ART

during TLR7-agonist treatment in the Whitney study 148, which suggests reactivation and clearance

of latently infected cells. This reduction was inferred even if we excluded the two animals who never

rebounded (outliers with large values of ta in Figure 6.4A).

We next examined the impact of the TLR7-agonist and the monoclonal antibody alone and in

combination in SHIV-infected animals (Study 3 in Figure 6.1, 30). The SHIV data exhibited greater

variability than the SIV data overall: there was greater heterogeneity in the time to viral rebound

and larger differences between peak and setpoint viral load. Furthermore, the residual error inferred

by our fitting procedure was larger for the SHIV data compared to SIV, suggesting our model was

better able to capture the dynamics in the SIV data. Nonetheless, we found that PGT121 antibody

administration produced a 2.2-fold reduction (95% CI 1.7-2.9) in viral infectivity (↓ β) and a 7-fold

improvement (95% CI 3-16) in the responsiveness of immune cells (↓ NP) during rebound. While

the mechanisms causing these effects remain unclear, PGT121 antibody administration might elim-

inate more fit viral strains from the latent reservoir, leaving behind less-infectious virus. Antibody

administration might also have boosted endogenous antiviral immune responses, as has been previ-

ously observed 187.

To evaluate the robustness of our results, we used three different algorithms for selecting the op-

timal combination of treatment effects and for each of these we tested optimization based on both

Bayesian Information Criteria (BIC) and log-likelihood (see Methods). We also varied the initial

conditions for all parameter values fed to the model. In all cases, the models we report are robust to

these variations. Despite the theoretical identifiability of all parameters we fit for, there was some-

times evidence of mutual information shared between the viral infectivity β and the target cell den-

sity λ. We therefore tested that an alternate model structure to our best-fit selection, which swapped

the location of a treatment effect between β and λ, was indeed worse. The same procedure was

conducted for treatment effects on NP, p, and m, which all describe some aspect of the immune re-
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sponse and hence could be hard to separate. We again found our selected model was optimal (Tables

6.5, 6.6). Before beginning the selection procedure, we defined a set of models based on biologically-

motivated hypothesis about the potential effects of these treatments, and we later tested that none

of these models were better than the selected one. All these results are reported in Tables 6.5 and 6.6.

In Study 1 and Study 2 there was some variation in the doses of the TLR7-agonist given between

animals (Table 6.7), and after including dose as a covariate in the model we could find no discernible

influence on any kinetic parameters.

Finally, we carefully explored the relationship between the different treatment effects associ-

ated with each best-fit model. After finding the best-fit model in each study, we tested support for

that model structure in data from the other study. We find that the model structure identified in

the SHIV study is strongly disfavored by the SIV data. However, the model structure identified by

the combination of SIV studies has nearly as much support in the SHIV data as the best-fit SHIV

model. Accordingly, the specific parameters on which the combination of TLR7 and PGT121 treat-

ment in SHIV are acting is less clear.

6.4.4 Predicting the effects of immunotherapeutic treatment in humans

Finally, we used these results to predict how TLR7-based immunotherapies would alter rebound

kinetics in human trials. Our approach was to first develop a calibrated model of HIV rebound, and

then simulate the model after adding in the treatment effects (for the antibody, vaccine, etc) that we

identified in the SIV and SHIV studies. To characterize HIV rebound, we assembled data from a

series of clinical trials that included treatment interruptions after long-term suppressive antiretro-

viral therapy initiated during chronic infection, totaling 69 individuals sampled at least weekly 147.

We fit our mathematical model to these viral rebound trajectories to determine the population-level

distribution of the model parameters (see Methods). Comparing the rebound kinetics between SIV,

SHIV, and HIV (Table 6.8), we found a large differences in the parameters estimated for differ-
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ent viruses. The rate of reactivation from the latent reservoir was estimated to be highest for HIV

(smallest time between reactivations, ta), followed by SIV and then SHIV. This parameter is not

scale-invariant and instead depends on the absolute number of latently infected cells, so the larger

body size of humans as compared to macaques likely explains the apparent difference number of

cells reactivating per day. The target cell density was inferred to be largest for HIV (↑ λ), whereas

SHIV was found to have both the highest intrinsic viral infectivity (↑ β) and most sensitive immune

response (↓ NP). The inter-individual variation in rebound trajectories (only considering control

animals) was low for SIV but higher for HIV and SHIV.

To predict how a human cohort might respond to immunotherapy treatment, We next con-

ducted simulations where we altered the baseline parameters for HIV rebound by the immunother-

apy effects identified in this study. Underlying this approach is the assumption that each therapy

component will have the same relative effect in humans as in macaques (e.g. a five-fold reduction in

reservoir reactivation). All single and combination immunotherapies involving the TLR7-agonist,

the Ad26/MVA vaccine, and the PGT121 antibody were simulated in a hypothetical population

of 200 individuals, and we calculated the distribution of peak viremia, setpoint viral load, and

time to rebound for each case (Figure 6.5, 6.7-6.12). These simulations predict that the TLR7-

agonist/vaccine combination could be effective in humans: 42% of simulated individuals rebounded

above the detection threshold and then subsequently controlled viremia below it, and another 17%

had no detectable viral rebound for a year after treatment interruption. The combination of TLR7-

agonist/PGT121 Ab treatment is predicted to result in a dramatic suppression of viral rebound in

humans, primarily because the antibody’s reduction of viral infectivity (β) is sufficient to push the

viral growth rate below the critical threshold R0 = 1 in many individuals. Figures 6.7, 6.8, 6.9,

6.10, 6.11, and 6.12 show predictions for many other hypothetical treatment scenarios in humans and

macaques.
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6.5 Discussion

In this study, we developed and applied a joint stochastic and deterministic model of viral rebound

with immune control to reveal treatment effects in several ATI immunotherapy trials. Using a sta-

tistically rigorous group-level fitting framework, we identified treatment effects on several immuno-

logical parameters and on the latent reservoir itself. Notably, we identify multiple synergistic effects

between TLR7 agonist treatment and vaccination or antibody treatment. Beyond suggesting treat-

ment effects, our results highlight the impact of ART initiation time on later rebound and suggest

explanations for differences between dynamics in SIV, SHIV, and HIV. Finally, the work provides a

framework with which to make predictions, however imperfect, for outcomes in human trials.

Our approach is not without limitations. Even this expanded model is unable to capture certain

patterns in viral rebound observed in these studies. Features of viral rebound which reflect these

processes might be erroneously attributed to parameter differences and treatment effects in our fit-

ting. For example, the model fails to account for the continued increase in viral load, characteristic of

the transition to immunodeficiency, in subject 13 at the end of the Whitney study. Our model also

does not account for within-host evolution of the virus, and our model of immunity is very simpli-

fied. Future longitudinal sampling of immunological covariates will be critical for the development

of more detailed dynamical models of systems immunity in the context of infection. The much

larger unexplained variability associated with SHIV relative to SIV suggests these factors might be

especially important for producing more accurate models of SHIV infection.

Because viral load was the only densely-sampled quantity in these studies, many model parame-

ters were fixed in order to improve identifiability. Therefore, absolute values of the fit parameters

are less reliable than trends observed between groups. This lack of identifiability also contributes to

uncertainty about the location of treatment effects on particular parameters: a different choice of

fixed parameters could lead to different treatment effect locations, especially among the parameter
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groups [λ, ta, k] and [m, NE]. Additional data supporting the treatment effects we inferred and

these alternative possibilities are discussed below.

Our statistical approach assumes similarities among the model parameters across individuals and

assumes a particular form for treatment effects which influence the interpretation of our results.

Though the population similarity assumption provides additional statistical power, if it is severely

mis-specified, the results will not be reliable. We assumed multiplicative treatment effects for ease of

interpretation, but our finding of treatment interactions must be interpreted in the context of this

underlying assumption. Our model priors—log-normal—were designed to allow for a wide range of

fitting results over all possible positive parameter values, but in reality, certain additional parameter

regimes are implausible a priori. Finally, we adapted tools designed primarily for fitting deterministic

models to the problem of joint stochastic-deterministic viral rebound (see methods). Future work

might approach fitting fully stochastic simulations of viral rebound while maintaining this group

structure among individuals.

Despite these limitations, this work makes several important contributions. First, we apply a

minimal model of adaptive immunity which can give rise to a wide range of rebound dynamics to

data from several studies. The model offers an alternative to previously proposed “bi-stability” ex-

planations for low set-point viral load60.

Additionally, our model merges the stochastic reactivation phase with the dynamics of viral re-

bound so that the combined effects of parameters in each regime can be assessed coherently. Long

waiting times to viral rebound have been observed in individuals with very low latent reservoirs,

suggesting that the stochastic reactivation regime will become only more relevant as therapies which

reduce the size of the latent reservoir improve. In addition to stochastic exit from the latent reservoir

compartment, our model also captures the probability that a reactivating cell gives rise to produc-

tive infection, which is itself a function of the model parameters. Because our stochastic model is

integrated with later deterministic dynamics and accounts for this probability, our approach can
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capture information from the whole course of viral rebound to more precisely estimate the rate of

reactivation from the latent reservoir when compared to stochastic reactivation models alone 206,59.

Second, our model provides insights into mechanisms of drug action which are supported by

additional data. In Study 1, TLR7 agonist administration was inferred to reduce the rate of latent

reservoir reactivation. The observed reduction in integrated SIV DNA and two negative viral out-

growth assays in this group support the hypothesis that this treatment reduced the size of the la-

tently infected population. Detectable viral “blips” concurrent with the administration of TLR7

agonist also suggest that TLR7 treatment has the capacity to reactivate, and thus presumably lead

to the clearance of, a significant proportion of latently infected cells 148. TLR7 agonist administra-

tion was also inferred to increase the rate of target cell production. Whether TLR7 treatment can

effect a long-term change in the amount of target cells—a rare CD4 T cell subset which is difficult

to measure directly—has not been directly assessed. However, TLR7 has been shown to transiently

alter the proportion of activated cells in several immune subsets 148. A change in the rate of target cell

production might also be reflective of a more generally healthy immune system.

In the Barouch study, vaccination was inferred to reduce the rate of latent reservoir reactivation.

One possible explanation for this effect is that the latent reservoir archives a large diversity of viral

sequences 249,40,42,119, and after vaccination, many of them will not be able to give rise to produc-

tive infection. Vaccination might also have led to the creation of an immune response which began

eliminating latently infected cells even before the end of antiretroviral therapy. Vaccination is also

inferred to lead to the presence of an immune cell population which is very sensitive to virus. The

creation of such a long-lived memory immune population is a hallmark of successful vaccination.

The interaction effect between TLR7 agonist treatment and vaccination produces an even more sen-

sitive immune population. This effect is supported by the role of TLR7 as a bridge between innate

and adaptive immunity 149.

Our fitting results suggest a difference between studies 1 and 2. In study 1, the baseline level of NP
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was reduced and TLR7 agonist treatment increased both the rate of target cell production (↑ λ) and

immune sensitivity to antigen (↓ NP). We ascribe these differences between the studies to the later

ART start time in the Whitney study. Later ART start time has been shown to increase the size of

the latent reservoir271, impact the formation of memory immune responses 271, and might also affect

immune exhaustion or the potential for viral evolution.

As a result of parameter unidentifiability, the effects of TLR7 and vaccine treatment on the tar-

get cell replenishment rate λ and time between latent cell reactivations ta might be explained by an

effect on a different pair of parameters (ta and k or λ and k) instead. However, we believe the effects

on ta and lambda are more likely because they are supported by direct measurements of integrated

viral DNA and known mechanisms of TLR7.

In the SHIV study, the data are generally more challenging to interpret. Overall, the amount of

variability in these data are much larger; we obtained a best-fit error term more than twice as large

for the SHIV data as compared to the SIV data. We find that the effect of antibody treatment is,

first, to reduce the infectivity of virus. This is surprising because the antibody is no longer present

when antiretroviral therapy is withdrawn. However, if antibody is eliminating certain viral strains

from the reservoir, perhaps only the more mutated, and therefore possibly less fit, viral strains avoid

elimination. Antibody treatment is also inferred to produce an immune response which is more sen-

sitive to virus. This also might be the result of selection for mutated viral strains against which it is

easier to mount an effective immune response. Finally, in this study TLR7 was inferred to increase

the basal rate of immune precursor production, altering the initial size of the immune response

against virus at the time of ART cessation. One possible explanation for this observation is that

TLR7 leads to the permanent expansion of SHIV-specific immune responses just as it might have

led to the expansion of the target cell population in the SIV context. Because SIV and SHIV viral

particles have different exteriors, it is possible that the true target cell populations for these viruses

are different 188, explaining the lack of an effect on the target cell replenishment rate λ in this study.
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Another possible explanation is that the treatment effect on m is not identifiable with an effect on

NE, the per-cell effectiveness of immune effectors. Previous systems immunologic analysis suggests

that outcomes in this study are connected to NK cell function, and TLR7 signaling plays a criti-

cal role in NK cell function, at least via cytokines produced by dendritic cells 1. TLR7 treatment

might lead to the creation of a mature dendritic cell population very efficient at antigen presenta-

tion, thereby reducing NE. The fact that the best-fitting model did not support an effect of antibody

treatment on the rate of latent reservoir reactivation is different from the mechanism of action hy-

pothesized in the original study. However, we cannot exclude this mechanism because competing

models of the effect of antibody and TLR7 treatment on the rate of latent reservoir reactivation had

only slightly worse statistical support (see Table 6.5).

Third, by merging HIV rebound data with immunotherapy treatment effects inferred by our

model, we generated hypotheses for the outcomes of different immunotherapeutic agents in hu-

mans. Treatments which move closer to viral control in humans are expected to produce higher vari-

ability in rebound dynamics and give rise to dynamics below the limit of quantification for the most

common HIV RNA assays. The possibility of rebound dynamics with high peak viral load followed

by control also complicates the design of human trials. Future trials in humans and also present an

opportunity to build on the knowledge gained from the animal models analyzed here. Increasing

the density of sampling after ART cessation and continuing post-peak viral load, expanding the

collection of longitudinal immune covariates, precisely measuring drug washout kinetics in each

individual would all contribute to an improved understanding of treatment effects. In macaques,

using barcoded virus would also contribute to an improved estimate of latent reservoir reactivation

rate. Overall, if the therapeutic effects of these treatments transfer to a human context, our results

suggest they will dramatically alter the course of viral rebound.
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6.6 Methods

6.6.1 Data

The design of the studies we considered is explained in detail elsewhere 29,148,30, but summarized

here. All studies were conducted in rhesus macaques, which were infected intrarectally with the

SIVmac251 virus and later treated with the combination antiretroviral therapy (ART) regime of

tenofovir, emtricitabine, and dolutegravir (TFV/FTC/DTG). In the first study, all animals were

given ART starting 65 days after infection, and were treated with ART for at least 400 days, be-

fore ART was stopped. During ART, some animals were additionally administered repeated doses

of a TLR7-agonist (treatment group), while others received a placebo (control group). The study

was divided into several phases and arms, in which the treatment groups received slightly different

courses of the TLR7 therapy (see Figure 6.1A-B, Table 6.2). Overall, there were 8 control animals

and 13 TLR7-agonist treated animals. In the second study, all animals started ART after only 1 week

of infection, and were treated with ART for 500 days before stopping. Animals were divided into

four groups of 8-9 individuals each - one control group who only received ART, one group who

additionally received the TLR7-agonist (10 doses 2 weeks apart), another group who additionally re-

ceived a prime-boost vaccine regimen (2 doses of Ad26 followed by 2 of MVA, each 12 weeks apart),

and a fourth group who additionally received both the TLR7-agonist drug and the vaccine regimen.

In all animals in both studies, there was at least 2 weeks between the time the last immunotherapy

intervention was given and when ART was interrupted, which was chosen to insure that any non-

ART treatment had washed out of the system by the time ART was stopped. This way, any change

in viral rebound kinetics caused by the intervention must be due to a permanent perturbation made

to the system, and not a direct inhibitor effect of the immunotherapy. In all studies, viral load was

measured every 3-4 days after ART cessation. Additionally, viral load values were measured during

acute infection and during ART administration. In all cases viral load values below the detection
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limit of assays (50 or 200 copies/mL) are censored.

In the first study with TLR7-agonist only, all but two animals experienced persistent viral re-

bound. Two animals in the TLR7-agonist treatment group never experienced detectable viral load

after ART was stopped. This represents the first observed case of a potential sterilizing cure in this

SIV system. In the second study with TLR7-agonist and vaccine, all animals initially rebounded,

but three animals treated with the combined immunotherapy eventually re-suppressed virus below

the detection limit. The rebound trajectories of all animals are shown in Figures 6.1 (C-H).

6.6.2 Model development

The basic viral dynamics model used to describe HIV infection before and during antiretroviral

therapy can also be used to describe the rebound of infection when treatment is stopped (which

displays similar kinetics to acute infection). This often-used model reproduces many aspects of in-

fection kinetics, such as exponential increase in viremia after initial infection or rebound, declining

viral load after a peak is reached, and eventual stabilization at a “set point”. However, it cannot de-

scribe the diversity of viral rebound trajectories seen in these studies - such as large declines in viral

load from peak to setpoint or eventual post-rebound control - and does not explicitly consider viral

latency nor antiviral immune responses. To address these issues, we developed an augmented model

of HIV/SIV infection dynamics which incorporated ideas from multiple different existing models

of various viral infections (Figure 6.2). We previously used this model in a preliminary analysis of a

subset of this data 29.

The model we used is described by a system of ordinary differential equations that track changes

in the levels of uninfected (T) and infected (I) target cells, free virus (V), and precursor (P) and effec-
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tor (E) immune responses over time (Figure 6.2 ):

Ṫ = λ− βTV − dTT

İ = a +
βTV

1 + (E/NE)
− dII

V̇ = kI − cV

Ṗ = m + p(1 − f)
V

V + NP
P − dPP

Ė = pf
V

V + NP
P − dEE

(6.1)

This model assumes that infection is well-mixed throughout the blood and other lymph tissue,

ignoring any spatial structure or compartmentalization. All variables are expressed as concentrations

(per mL of plasma). Model variables and parameters are summarized in Table 6.1.

Susceptible, uninfected target cells (T) are produced at a constant rate λ and die at a per capita

rate dT. These cells are assumed to be CD4+ T cells, but may only be a subset of the total CD4+

population. Although the specific phenotype of CD4+ T cells that confers susceptibility is not com-

pletely clear, it is known that activated cells are more susceptible to infection than resting cells, and

that only a small fraction of all CD4+ T cells are productively infected even at peak viremia (more

may be abortively or latently infected). Here we ignore heterogeneity in infected cell subpopula-

tions.

New infections occur proportionally to the density of free virus (V), target cells (T), and the

infectivity rate β. Infected cells (I) release virus at rate k and die at a rate dI. Free virus is cleared at

rate c. We do not explicitly track latent infection, since it only significantly impacts infection levels

when viral loads are very low, but instead use parameter a to describe the rate which latently infected

cells reactivate to produce productive infection (which is necessary to kick-start rebound). This

rate incorporates both the number of cells latently infected with intact virus as well as their per-
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Table 6.1:Variablesandparametersoftheviraldynamicsmodel(Eq.(6.43),Figure6.2.

Description Units Value Source
Variables:
T (Uninfected) target cells cells mL−1

I (Productively) Infected cells cells mL−1

V Free virus RNA copies mL−1

P Precursor immune cells cells mL−1

E Effector immune cells cells mL−1

Fixed parameters:
dT Death rate of target cells day−1 0.05
dI Death rate of infected cells day−1 0.4
dP Death rate of precursor immune cells day−1 0.001
dE Death rate of effector immune cells day−1 1
c Virus clearance rate day−1 23
k Virus production rate virions cells−1 day−1 50 000
m Production rate cells mL−1 day−1

of precursor immune cells
f Fraction of effector immune cells 0.9

that don’t revert to memory
NE Effector concentration at which cells mL−1 10 000

half-maximal inhibition occurs
Estimated parameters:
λ Production rate of target cells cells mL−1 day−1

β Viral infectivity mL copies−1 day−1

a Latent cell reactivation rate cells day−1

p Maximum proliferation rate mL copies−1 day−1

of immune cells
NP Viral load at which half-maximal copies mL−1

proliferation occurs
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capita rate of reactivation and the probability that they produce a lineage that escapes extinction and

reaches detectable viremia.

We include a relatively general model of an antiviral immune response, which could represent cel-

lular or humoral effects. Long-lived precursor immune cells (which includes both naïve and mem-

ory subsets) are produced at a baseline rate m. If this model were used during acute infection, m

would be related to the frequency of naive precursors, whereas during viral rebound, m is domi-

nated by the reactivation of memory cells formed during acute infection. In response to antigen

(assumed here to be free virus, but could instead be infected cells), these cells are stimulated to pro-

liferate at an antigen-dependent rate. The maximum proliferation rate is p and half-maximal pro-

liferation occurs at viral load NP. [Explain functional form of relationship, cite de Boer, Perelson

work] A fraction f of all proliferating cells become short-lived effectors (E), while the remaining

fraction will return to a long-lived memory state (P). Long-lived precursor immune cells die at rate

dP and short-lived effectors die at rate dE. Effectors reduce the rate at which actively infected cells are

produced (either by inactivating free virus or killing early-stage infected cells 89), with half-maximal

inhibition occurring at a concentration NE. We could also have modeled effectors as killing infected

cells, though previous work has shown that this mechanism is only consistent with existing data

if the model explicitly includes an extra compartment for early stage infected cells that are not yet

targeted by cytolytic immune responses 89, we have included non-lytic effects, and either model has

similar qualitative behavior during rebound.

During ART, we assume infection is completely blocked (β = 0), and that treatment is given

for long enough that virus and cells reach steady states, which we take as the initial conditions at the
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time of ART interruption:

T0 =
λ

dT

I0 =
a
dI

V0 =
a
dI

k
c

P0 =
m

(dP − p(1 − f)V0/(V0 + NP))

E0 =
pfP0V0

dE(V0 + NP)

(6.2)

6.6.3 Model parameters and identifiability

The data available for fitting this model consists only of longitudinal values of viral load (V), and

therefore all parameters of the model are unlikely to be identifiable. While longitudinal values of

total CD4+ T cells were collected, the relationship between this number and target cell density T is

unclear for the reasons discussed in the previous section, and, this measurement is notoriously noisy

in non-human primates sampled under anesthesia. Actively infected cells (I) are difficult to quan-

tify separately from forms of latent or defective infection. Characterization of anti-viral immune

responses (related to P, E) was only done once before and after rebound.

We conducted both analytic and numeric investigation of the model to determine principled

ways to reduce the number of parameters to be estimated from the data. We simulated the model

under a wide range of parameter conditions, systematically varying one parameter at a time, to un-

derstand the role that each parameter played in the viral rebound trajectories (Figure 6.2). In addi-

tion, we applied the differential algebra algorithm DAISY20 to determine the formal identifiability

of the model parameters, given perfect measurement of free virus levels.

When only viral load is observed, one of the parameters from each of the sets {λ, a, k} and
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{NE,m} is always non-identifiable. Therefore we fixed viral burst rate to k = 5×104 virions/cell/day 51,

and immune-response efficacy NE = 104 cell/day. The latter value is chosen arbitrarily, since inhibi-

tion by immune cells is extremely difficult to measure quantitatively in experiments. However, the

choice is inconsequential and only results in a scaling of the inferred m value.

While most other parameters are theoretically identifiable, many are practically impossible to

infer from the available data. The fast time-scale of virus relative to infected cells makes the viral

clearance rate c practically non-identifiable, and so we fixed this value to c=23/day based on plasma

aphoresis studies 212. Cell death rates are very hard to identify from viral loads during active infec-

tion, and didn’t have a large influence on viral load kinetics within a certain range, so we fixed val-

ues from isotope-labeling studies in the literature (/day) as 0.05 for target cells, 0.4 for infected

cells, 0.001 for precursor immune cells, and 1 for effector immune cells. Target death rate was esti-

mated based on the estimated death rate of a fast subpopulation of CD4+ memory T cells in rhesus

macaques (0.05 in uninfected animals, 0.1 in those with high SIV loads)90 and of activated memory

CD4+ T cells in humans (0.08) 156. Infected cell death rates were taken from the rate of viral load

decline during ART for SIV observed in previous analyses271,29,148. The death rate of precursor im-

mune cells, which actually represents the net decay combining cell death and homeostatic (antigen-

independent) proliferation, was roughly estimated from turnover rates of slow-proliferating mem-

ory CD8+ T cells in uninfected macaques (0.0025)90, decay of human CD8 responses to yellow

fever (0.006) 2 and smallpox (0.0002) 104 vaccination, and decay of murine responses to LCMV

(<0.0005) 52. The death rate of effector immune cells was estimated from LCMV infection in mice

(0.4) 27,67 and acute mononucleosis infection in humans (0.8) 156. We assumed the fraction of prolif-

erating effectors that return to a long-lived memory state was (1-f)=0.1, consistent with experiments

in multiple animals (reviewed in62), and results were insensitive to values other than those very near

0 or 1.

This left a model with six remaining unknown parameters: β, λ, a,m, p,NP. We repeated the
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formal identifiability analysis in DAISY with this reduced model. We confirmed this reduced model

is locally identifiable, and when m is fixed the model is globally identifiable. To understand what

features of the viral rebound kinetics would be most informative of each of these parameters, and

to understand how the density of samples may impact identifiability, we assessed the sensitivity of

viral load (V) to each parameter (generically denoted θ) over time by evaluating ∂V
∂θ

θ
V , taking into

account the role of the parameter in both the initial condition of the system and the subsequent

time evolution.

6.6.4 Model fitting

The same model fitting procedure was used for SIV-TLR7-VAC and the SHIV-TLR7-AB data.

However, the two datasets were not combined as it was assumed that values for parameters will be

highly different in the two population as the virus studied was different (SIV vs. SHIV).

The model in Equation (6.43) was fit to the longitudinal viral load data to estimate the values of

the parameters. Briefly, in this framework, the parameter values for all individuals in the population

are assumed to be drawn from a common distribution, and the goal is to estimate the mean and vari-

ance of this hyper-distribution. To ensure positivity, all parameters are estimated in log-transformed

scale, denoted as log(θ) → θ̃. Individuals in the study may receive different treatments, and the

mean parameter value may be shifted by each treatment in a different way. More explicitly, this sta-

tistical model assumes that the value of parameters θi = (βi, λi, tai,mi, pi,NPi) in individual i can

be broken down into the following components

θ̃ij = log(θij) = µj +
∑

k

G(i, k)ωjk +
∑
k ̸=k′

G(i, k)G(i, k′)ωjkk′ + ηij

ηi ∼ N (0,Σ)

(6.3)

where j ∈ {β, λ, a,m, p,NP}.
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The first term µj, known as the fixed effect, is the mean value of parameter θ̃j across the popu-

lation in an individual who does not receive any of the treatments. The logical matrix G(i, k) de-

scribes the ‘treatments’ each individual received. If individual i received treatment k, then G(i, k) =

1 whereas it is 0 otherwise. In this study k = 1..4, as we consider an effect of the TLR7-agonist,

of the therapeutic vaccine, of the study identity (timing of ART initiation) and of the antibodies.

The terms ωjk describe the treatment effects: treatment k modifies the mean of parameter j by an

amount ωjk. We also consider the interactions between these treatments that are identifiable by

design, i.e. therapeutic vaccine×TLR7-agonist, TLR7-agonist× study effects and antibodies×

TLR7-agonist. The terms G(i, k)G(i, k′)ωjkk′ describe the interaction effects: combination of treat-

ment k and treatment k′ modifies the mean of parameter j by an amount ωjkk′ . The final term, ηij,

is known as the random effect, and describes the amount by which the observed parameter value θij

differs from the expected mean in the treatment group. The random effects of an individual i, ηi, are

assumed to be normally distributed with diagonal variance-covariance matrixΣ = diag(ϵj)j=1...5. It

means that is is supposed independent for each parameter that appears in Eq. (6.43).

For example, in the SIV-TLR7-VAC data, if we are considering the parameter for the time for

reservoir reactivation ta ( tai = e ˜tai), then this may be affected by TLR7-agonist, therapeutic vac-

cine administration, the study identity (timing of ART initiation), and interactions between these

interventions. The equation for the components of this parameter becomes:

˜tai = µta + G(i,TLR7)ωta,TLR7 + G(i,Vac)ωta,Vac

+ G(i, Study)ωta,Study + G(i,TLR7)G(i,Vac)ωta,TLR7xVac

+ G(i,TLR7)G(i, Study)ωta,TLR7xStudy + ηta,i

ηta,i ∼ N (0, ϵta2)

(6.4)

We assumed that the data are observed with measurement error, thus we defined a residual er-
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ror model. In other words, the observed log10 viral load of patient i at time t, denoted Yi(t), is

normally-distributed with a constant error (ζ1ρi(t)) and a proportional (ζ2Y∗
i (t)ρi(t)) error term

around the true viral load Y∗
i (t) computed from the model derived from Eq. (6.43). This model

referred as combined error model is classic when considering blood counts. It is expected that the

magnitude of the error may depend on a constant measurement error and on the magnitude of the

quantity observed210 and writes:

Yi(t) = Y∗
i (t) + (ζ1 + ζ2Y∗

i (t))ρi(t)

Y∗
i (t) = log10[V(t, βi, λi, tai,mi, pi,NPi)]

ρi ∼ N (0, 1)

(6.5)

Finally, many observed viral load values in these studies are left-censored, because they are below the

detection limit of available assays (either 50 or 200 copies/mL, depending on the study). All these

data points were included in our fitting. but considered as censored.

We used the Monolix software (MonolixSuite2019R2) to estimate the values of all the model

parameters ( µ, ω, ϵ and ζ ) by maximizing the likelihood of the data given the model and param-

eters 236. We assumed good pratical identifiability, thus we did not use prior knowledge about the

values of the parameters we attempted to fit, and so therefore did not implement a penalized likeli-

hood strategy. The software uses a frequentist version of the stochastic approximation expectation

maximization (SAEM) algorithm70. SAEM is an iterative algorithm that essentially consists of con-

structing Markov chains that converge to the conditional distributions of the parameters given the

data. The final parameters estimates are given by the mean parameters values over the iterations dur-

ing the smoothing phase of the Markov chain. The standard errors of these parameters represent the

uncertainty of the estimated population parameters. They are calculated via the estimation of the

Fisher Information Matrix 138. It is derived from the second derivative of the log-likelihood which
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is evaluated by importance sampling 222. All the statistical aspects of this fitting approach has been

described elsewhere47.

6.6.5 Model Selection

In order to focus on the strongest effects and control the number of hypotheses, we determined the

location of treatment effects in each dataset by employing an iterative model selection approach.

Starting from a model without treatment effects but with random effects on each parameter, we

applied two independent variable selection methods.

First, we applied the method Stepwise Covariate Modeling (SCM). SCM has two phases: first,

each covariate’s potential effect on each parameter is examined, and the effect leading to the best

improvement in the target criteria is incorporated in the following iteration. Next, when no further

improvement in the target criteria is possible, each previously introduced effect is removed if it fails

to contribute to an improvement in the target criteria. Second, we applied the method COnditional

Sampling for Stepwise Approach based on Correlation tests (COSSAC). The COSSAC method also

has two phases and is similar to SCM but less exhaustive. COSSAC introduces the covariate most

correlated with the random effects of a paramater into the next iteration of model fitting. When this

simpler incorporation procedure stops yielding an improvement in the target criteria, a backward

elimination is performed as in SCM. Both methods are illustred in 50. We used both likelihood and

BIC as target criteria. After each selection procedure, we verified that the sign of a treatment effect

was inferred unambiguously, so that it could be assigned a clear biological interpretation. To do

so, we used a Wald test at level 5% to determine if treatment effects differed significantly from zero,

ωjk ̸= 0.

In the SIV-TLR7-VAC data, we ran the selection procedure on each of the five treatment covari-

ates: TLR7-agonist, therapeutic vaccine, study identity (ART initiation time) and the two available

interactions TLR7-agonist-therapeutic vaccine and TLR7-agonist-study identity. In the SHIV-
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TLR7-AB data, we ran the selection procedure on each of the three treatment covariates: TLR7-

agonist, antibodies, and the interaction bteween TLR7-agonist-antibodies.

In the two datasets, effects were tested on parameters (beta,NP, ta,m). After the selection per-

formed, the effects found on beta were tested on lambda and effects found on NP were tested on p.

When fitting abilities were similar according to the target criteria for each permutations, the effect

was kept on the parameters which led to the most straightfoward biological explanation.

Repeated fitting suggests that the SAEM algorithm employed by Monolix converged to a global

maximum. We ran 100 final estimations with high number of iteration in the burn-in, exploratory,

and smoothing phase of the SAEM algorithm. Each fitting produced cosistent final estimates, and

we selected the best in term of maximization of the log-likelihood for further interpretation. These

highest-likelihood estimates of various effects were considered as final and presented in the article.

We confirmed that this last model was the best in term of BIC compared to all other models tested.

We also investigate over-parametrization and thus overfitting by checking the ratio between the

largest and the smallest eigen value of the Fisher Information Matrix, which remained small, in both

cases around 100 (smallest 0.033, largest 4.1 for SIV-TLR7-VAC and smallest 0.049, largest 3.8 for

SHIV-TLR7-AB).

Misspecification in the structural model, the error model, and the covariate model can be de-

tected by discrepancies between the observed percentiles and their prediction intervals. Visual pre-

dictive checks illustrate these intervals. We found that the model was even able to fit the two animals

in the TLR7-agonist treatment group who never experienced detectable viral load after ART was

stopped.

In order to characterize the robustness of our results, we investigated several perturbations to

the model and fitting procedure. In the statistical model described in Eq. 6.3, we assumed an on-off

effect of TLR7 agonist, i.e. G(i,TLR7) is 0 or 1. We tested several model accounting for the design

of TLR7 agonist administration (different number of doses and concentrations administered in
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subsets of monkeys). The covariate G(i,TLR7)was replaced by a variable representing the number

of doses, the average dose, the cumulative dose and the maximal dose of drug administered. None of

these modelings produced a better fit in term of log-likelihood or BIC.

In the SIV-TLR7-VAC data, we investigated if the effect of the interaction between study identity

and TLR7 agonist could be replaced by study effect of TLR7 effect alone. However, such a model

exhibits suboptimal log-likelihood and BIC values. We also verified that, when restricting the data

to control group monkeys in each study, no strong study identity effects appear. Additioanally,

we ran an analysis excluding the two nonrebounding monkeys. No major change in the type and

magnitude of the treatment effects was observed.
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fallingintheindicatedquadrant.Viralreboundtrajectoriesweresimulatedforoneyear.
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6.7 Supporting Tables

6.8 Model derivations

6.8.1 Re-parameterizing the model to account for stochastic reactivation

from latency

We have expressed our model for the dynamics of active and latently infected cells, free virus, and

anti-viral immune responses as a system of differential equations (Eqs. 1), which implicitly assumes

that each variable and parameter is large enough that transitions happen continuously and fluctu-

ations are small relative to the expected dynamics. This is in general a good assumption, especially

in the regime we fit to where viral loads are above a detection limit of 50-200 copies/mL. However,

there is one reaction for which we believe this assumption often fails: the reactivation of latently

infected cells. In the model presented in the main text, we have assumed that reactivation occurs

at a continual rate a. In reality, reactivations are discrete events occurring to single cells, and when

the latent reservoir size is small enough or the per-cell reactivation rate low enough, there could be

long waiting times between these events. Previous studies in HIV-infected humans and SIV-infected

macaques have estimated these reactivations rates to be between 0.5-5 cells/day 108,85, and so in the

presence of reservoir-reducing therapies, these rates could be much lower. In our data for SHIV-

infected macaques especially (Figure 1, Study 3), we often see long delays to rebound followed by

relatively rapid viral growth, which are suggestive of low rates of reservoir reactivation.

The differential equation model in Eqs. 1 can always still be fit to data in which reservoir reacti-

vation happened after a delay, and would just result in a smaller effective a value. However, there

would be two major problems in interpreting these fit values. One would be that it would not be

possible to compare a values between two animals or treatment groups and claim that the differ-

ences were proportional to differences in reservoir size. As we will show below, when reactivation is
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Table 6.2:Summaryofstudydesigns.

Study ART
regimen

ART
start

Immunotherapy ART
duration

N

1 SIV-TLR7
148

TDF+
FTC+

9 wks Control 1.5 yrs
(76 wks)

6

DTG
(daily)

Control 2.2 yrs
(115 wks)

2

8
TLR7 GS-986 0.1 mg/kg wk 70,

0.2 mg/kg wk 72,
0.3 mg/kg wks
74:2:82

1.5 yrs
(76 wks)

4

GS-986 0.1 mg/kg wks
72:2:90, 108:2:124

2.2 yrs
(115 wks)

3

GS-9620 0.05 mg/kg wks
72:2:90, 108:2:124

2.2 yrs
(115 wks)

3

GS-9620 0.15mg/kg wks
72:2:90

2.2 yrs
(115 wks)

3

13

ALL 21

2 SIV-TLR7-Vac
29

TDF+
FTC+

1 wk Control 1.4 yrs
(71 wks)

9

DTG
(daily)

TLR7 GS-9620 0.15mg/kg wks
50:2:70

8

Vac Ad26/MVA Ad26 wks 24, 36;
MVA wks 48, 60

9

TLR7-Vac GS-9620+
Ad26/MVA

See above 8

ALL 34

3 SHIV-TLR7-Ab
30

TDF+
FTC

1 wk Control 2.5 yrs
(129 wks)

11

DTG
(daily)

TLR7 GS-9620 0.15 mg/kg wks
96:2:114

11

Ab PGT121 10 mg/kg wks
106:2:114

11

TLR7-Ab GS-9620 +
PGT121

See above 11

44
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Table 6.3:PopulationparametervaluesandtreatmenteffectsforbestestimatedmodelforTRL7-Vac.

Mean Random effect
(fold-change)

Treatment effect(fold-change)

TLR7 Vac TLR7*Vac Study TLR7*Study

λ 71 1.2 1.5 [1.3, 1.8]
β 4.4×10−7 1.1
ta 0.30 2.7 3.9 [1.9, 7.9] 7.6 [3.6, 16.2]
m 32 5.4
p 0.85 1.8

NP 1.6×106 3.5 0.057 0.083 0.10
[0.015, 0.22] [0.021, 0.32] [0.033, 0.32]

Table 6.4:PopulationparametervaluesandtreatmenteffectsforbestestimatedmodelforTRL7-Ab.

Mean Random effect
(fold-change)

Treatment effect(fold-change)

TLR7 Ab TLR7*Ab

λ 39
β 1.0×10−6 1.3 0.45 [0.34, 0.59]
ta 3.2 2.3
m 1.9 23 100 [6.1, 1700]
p 3.6

NP 7.7×104 1.9 0.14 [0.061,0.30]
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Table 6.5: Alternative models tested for TLR7-Vac.BIC=BayesianInformationCriterion

Treatment effects
TLR7 Vac Study TLR7*Study TLR7*Vac Justification BIC

(Best Fit) – ta,NP NP λ, ta NP This was the best fit model to
arise from the selection procedure

932.1

BH1 – ta,NP ta λ, ta NP Our initial hypothesis was that
the ART start time should influ-
ence the size of the latent reservoir

947.9

BH2 – ta,NP NP λ, ta ta Our initial hypothesis was that
TLR7 and Vac may act synergisti-
cally to reduce the latent reservoir
size

942.0

BH12 – ta,NP ta,NP λ, ta ta,NP Combing both of the above
hypotheses

940.6

AM1 – ta, p p λ, ta ta, p Same as best fit model but with
immune effects on p instead of
NP

954.0

AM2 – ta,m m λ, ta m Same as best fit model but with
immune effects on m instead of p

954.8

AM3 – ta,NP NP ta, λ NP Same as best fit model but with-
TLR7 effects on β instead of
λ

940.7

RM1 – β,NP – m – Use the effects that were esti-
mated for TLR7-Ab study

980.2

RM2 – β,NP NP m NP Use the effects that were es-
timated for TLR7-Ab study
(except for ones that could not be
be estimated there, for them use
values from best fit model)

967.0
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Table 6.6: Alternative models tested based for TLR7-Ab.BIC=BayesianInformationCriterion.

Treatment effects
TLR7 Ab TLR7*Ab Justification BIC

(Best Fit) m β,NP – This was the best fit model to arise from the
selection procedure

746.5

BH1 m ta,NP – Our initial hypothesis was that the Ab would
reduce the size of the latent reservoir

763.7

BH2 ta β,NP – Our initial hypothesis was that TLR7 would
reduce the size of the latent reservoir, and, this
effect was selected in the TLR7-Vac study

766.0

BH3 m β,NP NP Our initial hypothesis is that the TLR7 may in-
crease the effect of the Ab, and this interaction
was observed for the vaccine in the TLR7-Vac
study

761.5

AM1 NP β,NP – same as best fit model but including a TLR7
effect on NP instead of on m

760.7

AM2 m β,m – same as best fit model but including a vaccine
effect on m instead of NP

770.7

AM3 λ β,NP – same as best fit modeling but including a TLR7
effect on λ instead of m, since λwas selected for
TLR7 in the TLR7-Vac study

769.4

AM4 m λ,NP – same as best fit model but including a vaccine
effect on λ instead of on β

754.4

RM1 λ, ta ta,NP – Use the effects that were estimated for TLR7-
Vac study

747.5

RM1b λ, ta ta,NP ta Use the effects that were estimated for TLR7-
Vac study plus ta interaction

764.5

RM2 λ, ta ta,NP NP Use the effects that were estimated for TLR7-
Vac study, including interaction

778.3

RM2b λ, ta ta,NP ta,NP Use the effects that were estimated for TLR7-
Vac study, including interactions on both ta
and NP

776.6
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Table 6.7: Details of TLR7-agnosist dosing variations received by animals in Study 2148

ID ID # ART duration
76 wks?
(vs 115 wks)

Description GS-9620?
(vs GS-986)

# doses Cumulative
dose
(mg/kg)

Average
dose
(mg/kg)

Max
dose
(mg/kg)

1 156-08 1 GS-986 0.1 mg/kg
wk 70, 0.2 mg/kg
wk 72, 0.3 mg/kg
wks 74:2:82

0 7 1.8 0.26 0.3
2 166-08 1 0 7 1.8 0.26 0.3
3 280-09 1 0 7 1.8 0.26 0.3
4 310-09 1 0 7 1.8 0.26 0.3

5 205-08 1 Control 0 0 0 0 0
6 267-08 1 0 0 0 0 0
7 105-09 1 0 0 0 0 0
8 234-09 1 0 0 0 0 0
9 322-09 1 0 0 0 0 0
10 374-09 1 0 0 0 0 0

11 162-09 0 Control 0 19 0 0 0
12 305-10 0 0 19 0 0 0

13 280-10 0 GS-986 0.1 mg/kg
wks 72:2:90,
108:2:124

0 19 1.9 0.1 0.1
14 288-10 0 0 19 1.9 0.1 0.1
15 344-10 0 0 19 1.9 0.1 0.1

16 293-09 0 GS-9620 0.05
mg/kg wks 72:2:90,
108:2:124

1 19 0.95 0.05 0.05
17 295-10 0 1 19 0.95 0.05 0.05
18 304-10 0 1 19 0.95 0.05 0.05

19 177-10 0 GS-9620 0.15mg/kg
wks 72:2:90

1 10 1.5 0.15 0.15
20 341-10 0 1 10 1.5 0.15 0.15
21 412-10 0 1 10 1.5 0.15 0.15
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Table 6.8: Comparing population parameter values in the absense of treatment for SIV vs SHIV vs HIV.

SIV SHIV HIV

Parameter Mean Random effect
(fold-change)

Mean Random effect
(fold-change)

Mean Random effect
(fold-change)

λ 71 1.2 39 330 1.2
β 4.4×10−7 1.1 1.0×10−6 1.3 5.30×10−7 1.1
ta 0.30 2.7 3.2 2.3 0.014 20
m 32 5.4 1.9 23 3.8 12
p 0.85 1.8 3.6 3.3 2.7

NP 1.6×106 3.5 7.7×104 1.9 9.3×105 4.4

common, the inferred a value is linearly related to the frequency of reactivation, whereas when re-

activation is rare, it is log(a)which is proportional to reactivation rate. Another problem is that the

variance between individuals in the inferred a value is expected to increase dramatically when reac-

tivation is rare, since the combination of inter-individual variation in reservoir size and the stochas-

tic waiting time until the first reactivation will contribute to the observed time of rebound. One

solution could be to fit our data to one of the fully or fully or partially-stochastic models for vi-

ral rebound that have been developed previously, however, these models are not amenable to the

statistically-rigorous group level fitting approaches we wish to employ here. Therefore, as detailed

below, we develop a parameter transformation approach that allows us to capture the expected re-

bound kinetics for any rate of reservoir reactivation. The main idea of this approach is to replace the

continuous rate a with a variable ta which describes the average time between reactivation events for

latently infected cells.

Throughout this derivation, we will consider a model of only a single varible - actively infected

cells. This is an approximation for the regime where target cells are not yet limited, an effective im-

mune response has not yet kicked in, and free virus is proportional to infected cells. At the end, we

will incorporate the results with the full model.
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6.8.2 Rebound kinetics in the limit of rare reactivation

When latent cells reactivate rarely, the reactivation process can be well described consisting of first a

waiting time ta until the first latent cell reactivates and produces an instantaneous jump in infected

cell count to level I1 (concentration equivalent of 1 infected cell), followed by growth. The differen-

tial equation for this process is

İrare =


0 t < ta

bI − dII t ≥ ta

The solution to this equation is

I(t)rare =


0 t < ta

I1ert t ≥ ta

were we define R0 = b/dI (the basic reproductive ratio) and r = dI(R0 − 1) (the asymptotic

growth rate in the absence of reservoir reactivation, target cell limitation, or immune responses).

The time until rebound, defined as I(t) = Ir, can be solved as

trarer = ta +
1
r

ln
(

Ir
I1

)
(6.6)

6.8.3 Rebound kinetics in the limit of frequent reactivation

When latent cells reactivate frequently, the reactivation process is well described as a continuous rate,

α, at which cells exit the latent reservoir. If each cell contributes a concentration equivalent of I1,

then the dynamics follow a single differential equation
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İ = αI1 + bI − dII

= a + rI

were we define a = αI1 (the concentration of latent cells exiting the reservoir per day), and as

before, R0 = b/dI and r = dI(R0 − 1). This equation has the solution, for all t > 0

I(t)freq =
a
r
(
ert − 1

)
+ I0ert (6.7)

The initial condition, I0, is the equilibrium value of Eq. 6.8.3 with R0 = 0, which gives the value

of I during administration of ART and therefore at the time of ART stop

I0 =
a
dI

which results in the solution

I(t)freq =
a
r
(
ert − 1

)
+

a
dI

ert

The time until rebound, defined as I(t) = Ir, can be solved as

tfreqr =
1
r

ln
(

Irr/a + 1
r/dI + 1

)
(6.8)

6.8.4 Discontinuity between the two regimes

First, we will show that there is a discontinuity between these regimes in terms of the time to re-

bound as a function of the amount of reactivation. To compare them, first note that if cells exit the

latent reservoir at rate a, and these events are independent and time homogeneous, then the average

178



time between reactivation events is τa = 1/α = I1/a, and the distribution of individual waiting

times ta follows p(ta) = (1/τa)e−ta/τa .

If we look at the limit of rare reactivation dynamics, then the average time to rebound, for a given

average waiting time τa between reactivation events, is

E[tr]rare =
∫ ∞

0
p(ta)tr(ta)dta

=

∫ ∞

0
(1/τa)e−ta/τa

(
ta +

1
r

ln
(

Ir
I1

))
dta

= τa +
1
r

ln
(

Ir
I1

) (6.9)

Next, we look at the formula for frequent reactivation dynamics, and see what happens if reacti-

vation becomes rarer. Does it approach Eq. 6.9 ? We replace a using τa = I1/a in Eq. 6.8 and take

the limit of τa approaching zero

lim
τa→∞

tfreqr (τa) = lim
τa→∞

1
r

ln
(
τarIr/I1 + 1

r/dI + 1

)
=

1
r

ln
(
τarIr/I1

r/dI + 1

)
=

1
r

ln
(

Ir
I1

)
+

1
r

ln(τa) +
1
r

ln
(

r
r/dI + 1

)
=

1
r

ln
(

Ir
I1

)
+

1
r

ln(τa) +
1
r

ln(dI) +
1
r

ln
(

1 − 1
R0

)
(6.10)

We can see that Equation 6.9 and Equation 6.10 do not match. Rebound time should grow lin-

early with τa in the rare reactivation regime (Eq. 6.9) but in Eq. 6.10 it only grows logarithmically.

Generally, Eq. 6.10 underestimates the rebound time, since Ir ≫ I1 and R0 > 1.

We can understand qualitatively why the two models don’t match. The rare reactivation model

assumes that even in the case of instantaneous reactivation (a → ∞ or τa → 0), the infection only
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starts growing from a level I1. Only a single reactivating cell contributes to rebound. However, in

the frequent reactivation model, if reactivation is high then the initial condition is much larger than

I1, since there would have been many reactivated cells around prior to ART stop which can begin

growing immediately upon ART stop. And, cells can continue reactivating during rebound, which

further increases the rate at which infection grows beyond just at rate r.

*Make a figure to show this

6.8.5 Bridging the two regimes

We can bridge the two regimes by thinking of a model that would apply in the regime of interme-

diate a, where reactivation occurs relatively quickly and a few reactivation events contribute to re-

bound. Assume that cells reactivate exactly every∆ time steps. Each cell that reactivates starts at

level I1 and then grows, according to Eq. 6.8.2, exponentially at rate r. This gives a formula for the

size of the total infection

I(t) = I1er(t−t0) + I1er(t−t0−∆) + I1er(t−t0−2∆) + ...+ I1er(t−t0−k∆)

=

k∑
n=0

I1er(t−t0)e−rn∆

= I1er(t−t0)

(
1 − e−r(k+1)∆

1 − e−r∆

)

= I1er(t−t0)
(

er∆ − e−rk∆

er∆ − 1

)
(6.11)

where t0 is the time of the first reactivation, and k + 1 is the number of reactivations that happen

before time t. It is the highest integer such that t−t0−k∆ ≥ 0, which implies that (t−t0)/∆−1 <

k ≤ (t − t0)/∆. We set t0 = ∆ = ta, because we want ta to have the interpretation of being the

time of the first reactivation and will assume that it is also representative of the average waiting time.
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We choose the highest possible k, so k = (t − t0)/∆ = t/ta − 1.

I(t) = I1er(t−ta)

(
erta − e−r(t/ta−1)ta

erta − 1

)

= I1

(
ert − 1
erta − 1

) (6.12)

Compare this equation to Eq. 6.7. They are equivalent when

aeff =
I1r

erta − 1

I0 = 0
(6.13)

Thus, conceptually, this method for including multiple reactivations has made our formula for

rare reactivations (Eq. 6.8.2) closer to the one for frequent reactivations (Eq. 6.7) by accounting for

the contributions of multiple reactivating cells. However, it would still underestimate rebound time

when reactivation is really common because it still assumes the initial cell level is zero.

We want to choose a value of the initial condition I0 which is a function of ta and can cover all the

regimes. When ta is large, we want I0 = 0. When ta is small, we want I0 = a/dI = I1/(dIta). One

option is

I0 = w
I1

tadI

w = 2−(tadI)
n

(6.14)

This function describes a sigmoidal curve that goes from one to zero, switching at ta = 1/dI. The

constant n controls the sharpness of the interpolation (higher n, sharper transition). n = 2 gives
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reasonable behavior for biological parameters.

The rational behind this function is that when tadI ≪ 1, there are many cells reactivated even

at the moment ART is stopped (at average level I1
tadI

), while when tadI ≫ 1, there are usually no

latent cells activated at the time ART is stopped. In reality, the number of cells present at ART stop

is random variable, but this is a reasonable approximation to the average behavior and reproduces

the average rebound time when ta is the mean time between reactivations.

Note: With this new I0, it will not be true that I(ta) = I0. As soon as there is a non-zero initial

condition, there will be some growth that happens before the first post-ART reactivation. This

growth is due to cells that reactivated before ART stopped. Therefore, I(ta) is equal to I0 plus this

older growth.

We can analytically calculate the rebound time for this model

tr =
1
r

ln
(

Irr + aeff

I0r + aeff

)
=

1
r

ln
(

(Ir/I1)(erta − 1) + 1
w/(tadI)(erta − 1) + 1

)
=

1
r

ln
(

(Ir/I1)(erta − 1) + 1
2−(tadI)n/(tadI)(erta − 1) + 1

) (6.15)

We can check that in the limit of large ta, the rebound time will approach the value for the rare

reactivation model (trarer , Eq 6.6):

lim
ta→∞

tr =

=


ta +

1
r

ln
(

Ir
I1

)
n > 1

1
r

ln
(

Ir
I1

)
+

1
r

ln(tadI) +
1
r

ln(2)(tadI)
n n < 1

(6.16)
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The first expression, with n > 1, gives the correct limit. However, if n is too small (less than

one), then the weighing function w doesn’t decay fast enough with ta, and so the initial condition I0

doesn’t decay to zero fast enough, and the time to rebound is underestimated (rebound happens too

fast). With our value of n = 2, rebound times will be correct for large ta.

We can put all of this together to define a model that works in both regimes:

Two-regime model v1

Composite parameters:

r = dI(R0 − 1)

aeff =
I1r

erta − 1

w = 2−(tadI)
n

(6.17)

Initial conditions:

I0 = w
I1

tadI
(6.18)

Equations:

İ = aeff + rI (6.19)

Note that these equations work even when R0 < 1 (r < 0), and aeff = I1 when R0 = 1 (r = 0)

(although numerically it may be undefined).

183



6.8.6 Conditioning on survival reactivating cells in the stochastic regime

We previously analyzed the dynamics of rebound assuming that cells reactivate from latency every ta

days (i.e. at rate 1/ta) and that infection then grows exponentially towards rebound. This model is a

simplification, since in reality infection dynamics are a fully stochastic process. Developing a model

to track every stochastic reaction between a cell and virus is beyond the scope of this work, and such

a model would not be identifiable from typical in vivomeasurements of viral kinetics. However,

recognizing the underlying stochastic nature of these dynamics leads to an important correction to

our work.

While some reactivating latent cells will produce a chain of infection that eventually leads to re-

bound, others will - simply by chance - end up going extinct. Without specifying any details of the

underlying stochastic processes, we can define the probability of long-term survival of the infection

started from a single reactivating cell (often called the “establishment” or “survival” probability) as

psurv ∈ [0, 1]. Then the average time between surviving reactivations is ta/psurv.

While overall, the expected dynamics averaged over all reactivating cells is described by the deter-

ministic equations,

E[I(t)] = I1ert.

If we condition on survival of the reactivated cell, then the expected dynamics are larger by a

factor of 1/psurv:

E[I(t)|I(t) > 0] =
I1

psurv
ert.

Together, this means that Eqs. 6.17-6.19 can be updated with an effectively longer interval be-

tween reactivating latent cells (ta → ta/psurv) and an effectively higher initial concentration of
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actively infected cells (I1 → I1/psurv).

The value of the survival probability and its relationship to the other model parameters depends

on the details of the underlying stochastic process. In all cases, psurv will be higher when R0 is higher.

As an example, we consider the relatively generic stochastic process used to describe reactivation

from latent infection in Hill et al 108:

∅ → Y... rate constant: α

Y → NY... rate constant: b × pλ(N)

Y → ∅... rate constant: d

(6.20)

This model tracks only actively infected cells. In this notation, Y represents an individual cells

and ∅ represents no cells, and the arrows represent events that change the number of cells. Mathe-

matically this process is a type of burst-death-immigration branching process. A reactivation event

from latency produces an actively infected cell at rate α, where ta = 1α. This cell can either die

(at rate d) or produce a collection of virions (at rate b) that results in the infection of N other cells,

where N is a Poisson-distributed random variable with parameter λ, pλ(N) =
(
e−λλN) /(N!).

After an infection event, the original cell dies.

The overall survival probability for a single reactivated cell is the weighted sum of the probability

of producing N offspring and the probability that at least one of these offspring survives.
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psurv =
d

d + b
∗ 0 +

b
d + b

∞∑
N=0

pλ(N) ∗ (1 − (1 − psurv)
N)

=
b

d + b

(
1 − e−λ

∞∑
N=0

λN

N!
∗ (1 − psurv)

N

)

=
b

b + d

(
1 − e−λpsurv

)
Since it is generally impossible to measure the underlying stochastic parameters (e.g. b, d, and

λ), we want to replace them in this equation with composite parameters that are more accessible.

We use the basic reproductive ratio, R0 = bλ
b+d , which describes the average number of secondary

infections arising from a single cell, and ρ, the so-called Fano factor, which is the ratio of the variance

to the average for the same quantity (ρ = 1 + dλ/(b + d)). Previous studies have suggested that

ρ ∼ 10 (reviewed in 108). Then, we find that the survival probability satisfies the implicit condition

psurv(R0 + ρ− 1) = R0(1 − e−psurv(R0+ρ−1)) (6.21)

Note that the survival probability is only non-zero when R0 > 1. Otherwise extinction is guaran-

teed.

The solution to this implicit definition can be expressed in terms of the Lambert W function:

psurv =
1

R0 + ρ− 1
(
W(−R0e−R0) + R0

)
(6.22)

Conditioning on survival for reactivating lineages in the stochastic regime leads to the following

combined model. Note that for the R0 < 1 case psurv = 0 and we have taken the limit of expres-

sions as psurv → 0.

186



Two-regime model v2

Composite parameters:

r = dI(R0 − 1)

psurv =


0 R0 ≤ 1

1
R0 + ρ− 1

(
W(−R0e−R0) + R0

)
R0 > 1

aeff =


I1

ta
R0 ≤ 1

I1r
psurv(erta/psurv − 1

) R0 > 1

w =


0 R0 ≤ 1

2−(tadI/psurv)n R0 > 1

(6.23)

Initial conditions:

I0 = w
I1

tadI
(6.24)

Equations:

İ = aeff + rI (6.25)

6.8.7 Accounting for numerical errors

For all differential equation solvers we have tested, numerical errors often arise when evaluating

Eqs. 6.19 or 6.25 when ta is large. This occurs due to the extremely small values of aeff and w (and
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therefore I0) and the extremely small values of I(t) inferred for t < ta with this continuous approx-

imation. We can get around this by choosing not to start integration for I(t) right at t = 0 if both

aeff and I0 are very small, but instead, choosing a time tgo such that at least one of them is larger. We

also want to make sure this time is not too large, because then, infection levels could have grown out

of the simple regime we are considering now (no target cell limitation, no immune control).

An easy solution is to choose a tgo such that I(tgo) = I1. Since I1 is the true biological minimum

of infection, we know that for I(t) < I1 any approximations about exponential viral growth are

valid.

I(tgo) = I1

aeff

r
(
ertgo − 1

)
+ I0ertgo = I1

tgo =
1
r

ln
(

I1 + aeff/r
I0 + aeff/r

)
= ta −

1
r

ln
(

w(erta − 1)
tadI

+ 1
)

(6.26)

Then we integrate the equation

İ =


0 t < tgo

aeff + rI t ≥ tgo

(6.27)

with initial condition

I(tgo) = I1 (6.28)

We will only use tgo if I(0) < I1, which guarantees that tgo > 0.

This leads to the updated model
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Two-regime model v3

Composite parameters:

r = dI(R0 − 1)

psurv =


0 R0 ≤ 1

1
R0 + ρ− 1

(
W(−R0e−R0) + R0

)
R0 > 1

aeff =


I1

ta
R0 ≤ 1

I1r
psurv(erta/psurv − 1

) R0 > 1

w =


0 R0 ≤ 1

2−(tadI/psurv)n R0 > 1

(6.29)

Functions to avoid small number errors : k

tgo =


0 R0 ≤ 1

max
(

0,
ta

psurv
− 1

r
ln
(

w
psurv

tadI

(
erta/psurv − 1

)
+ 1
))

R0 > 1
(6.30)

Initial conditions:

I0 = w
I1

tadI
(6.31)
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Equations: For all t > tgo

İ = aeff + rI (6.32)

6.8.8 Calculating the long-term growth rate when free virus is included

The model we have shown tracks only infected cells, as well as ignoring the immune response and

target cell limitation. The final model can be augmented to includes these effects by simply adding

the extra variables and terms to the system of equation for I(t). However, in doing so, we must

make a slight alteration in our expression for r, the early growth rate of infection (before target cell

limitation or immune response has set in). Previously, we had used the expression r = dI(R0 − 1),

but this is not valid when we track free virus as well as infected cells.

Consider a set of viral dynamics equations tracking infected cells along with free virus:

İ = bV − dII

V̇ = kI − cV

Which can be expressed in matrix form, with ⃗̇x =

 I

V

, as

⃗̇x =

−dI b

k −c

 x⃗

The eigenvalues λ of this matrix satisfy the polynomial

(−dI − λ)(−c − λ)− bk = 0
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Which has the solutions

λ =
−(c + dI)±

√
(c + dI)2 − 4(cdI − bk)

2

=
−(c + dI)±

√
(c − dI)2 + 4dIcR0)

2

The positive root of this equation dominates the solution in the long term, so we set the parame-

ter r in our model to be

r =
−(c + dI) +

√
(c − dI)2 + 4bk)
2

In this model, the basic reproductive ratio is R0 = bk/(cdI), and so r can be expressed in terms of

R0 as

r =
−(c + dI) +

√
(c − dI)2 + 4dIcR0)

2
(6.33)

If R0 > 1, then r > 0. This equation can be re-arranged for R0, as

R0 =
(

1 +
r
c

)(
1 +

r
dI

)
(6.34)

which reduces to the simplified formula, R0 = r/dI + 1 or r = dI(R0 − 1) only if r ≪ c.

While estimates of R0 and r using the simplified formulas will only be off by around 5% for values of

c = 23 /day and r ∼ 1/day observed in this study, this will significantly alter our estimates of aeff

(Eq. 6.17) and lead to biased estimates of other parameter values.

6.8.9 Two regime model including all variables

Variables: (Observed) V, (Unobserved) T, I, P, E

Basic parameters: (Fit) λ, β, ta,NP, p,m, (Fixed) dT, dI, dP, dE, c, k,NE, f, and washout time

(tw), viral load equivalent of one cell (I1 = 4 ∗ 10−5), mean-to-variance ratio for virus production
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(ρ = 10), and interpolation constant (n = 3).

Time-averaged values of variables during ART (β = 0) :

TART =
λ

dT

IART =
I1

tadI

VART =
I1

tadI

k
c

PART =


m

dP − p(1 − f)VART/(VART + NP)
dP > p(1 − f)VART/(VART + NP)

1000NE dP ≤ p(1 − f)VART/(VART + NP)

EART =
pfPARTVART

dE(VART + Np)

(6.35)

Functions to connect stochastic and deterministic regimes: k

Basic reproductive ratio:

R0 =
λβk

(1 + EART/NE)dTdIc
(6.36)

Early exponential growth rate:

r =
−(c + dI) +

√
(c − dI)2 + 4cdIR0

2
(6.37)

Survival probability starting from single actively-infected cell:

psurv =


0 R0 ≤ 1

1
R0 + ρ− 1

(
LambertW(−R0e−R0) + R0

)
R0 > 1

(6.38)
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Effective reactivation rate of latently-infected cells:

a =


I1

ta
R0 ≤ 1

I1r
psurv

(
erta/psurv − 1

) R0 > 1
(6.39)

Interpolation function:

w =


0 R0 ≤ 1

2−(tadI/psurv)n R0 > 1
(6.40)

Functions to avoid small number errors : k

tgo =


0 R0 ≤ 1

max
(

0,
ta

psurv
− 1

r
ln
(

w
psurv

tadI

(
erta/psurv − 1

)
+ 1
))

R0 > 1
(6.41)

Initial conditions:

T0 = TART

I0 =


IART R0 ≤ 1

max(wIART, I1/psurv) R0 > 1

V0 =
k
c
I0

P0 = PART

E0 = EART

(6.42)
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Equations: For all t > tw + tgo

Ṫ = λ− βTV − dTT

İ = a +
βTV

1 + (E/NE)
− dII

V̇ = kI − cV

Ṗ = m + p(1 − f)
V

V + NP
P − dPP

Ė = pf
V

V + NP
P − dEE

(6.43)
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