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Essays in Evolutionary Theory

Abstract

Chapter 1 proposes and empirically tests a model for the evolution of long,

synchronous flowering intervals in bamboos. Chapter 2 develops a mathematical

method for studying the interaction of multiple populations in stochastic evolu-

tionary games. Chapter 3 applies this methodology to antagonistic and mutualis-

tic species interactions, showing that faster evolution is beneficial in antagonisms,

but that slower evolution can be beneficial in some mutualisms. Chapter 4 uses a

stochastic model of evolutionary games to show that assortment favors the evolution

of cooperation under very general conditions, including when Hamilton’s rule fails.

Chapter 5 uses a simple model and economic intuition to show that the Trivers-

Willard hypothesis of sex allocation—mothers in good condition should (i) have

more sons and (ii) care more for sons—holds more generally in case (i) than in case

(ii). Chapter 6 identifies and mathematically characterizes a novel selective force,

induced by genetic drift, operating in transitions between male and female heteroga-

mety. This ‘drift-induced selection’ favors epistatically dominant sex determining

mutations, possibly explaining their observed preponderance. Chapter 7 proposes a

new genetic model to explain the rarity of environmental sex determination (ESD)

relative to genetic sex determination (GSD), based on the inevitable coupling of

sex-biasing alleles (e.g., of genes underlying temperature thresholds) and ‘sexually

antagonistic’ alleles (which increase fitness in one sex but reduces fitness in the

other). Chapter 8 proposes and implements a new metric for genome-wide recombi-

nation, r̄, that takes into account the positions of crossovers, as well as independent

assortment of homologs. Chapter 9 discovers a deeply-conserved form of crossover
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patterning: the number of crossovers covaries positively across the chromosomes

within individual meiotic nuclei. Crossover covariation causes an increase in the

frequencies of gametes with either many or few crossovers, which population genetic

modelling shows to be advantageous in a fluctuating environment.

iv



Contents

1 Extended flowering intervals of bamboos evolved by discrete
multiplication 6
1.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Model of initial synchronization . . . . . . . . . . . . . . . . . . . . . 11
1.4 Model of interval growth by multiplication . . . . . . . . . . . . . . . 14
1.5 Statistical testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Finite-population evolution with rare mutations in asymmetric
games 22
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Evolution with mutations in multiple finite populations . . . . . . . 26
2.4 The stationary distribution when mutations are rare . . . . . . . . . 33
2.5 The usefulness of the result . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 The Red Queen and King in finite populations 57
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 A finite-population model of symbiosis evolution . . . . . . . . . . . 64
3.4 Antagonistic symbioses . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 Mutualistic symbioses . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

v



4 Assortment and the evolution of cooperation in a Moran pro-
cess with exponential fitness 91
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4 Payoff-to-fitness transformations . . . . . . . . . . . . . . . . . . . . 98
4.5 Defining when assortment favours cooperation . . . . . . . . . . . . . 100
4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.7 Realization of the model in a nest-structured population . . . . . . . 109
4.8 Games with more than two players . . . . . . . . . . . . . . . . . . . 110
4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 The Trivers-Willard hypothesis: sex ratio or investment? 116
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3 The general model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4 An example where the investment version fails . . . . . . . . . . . . 124
5.5 Broad sufficient conditions for the sex ratio version to hold . . . . . 129
5.6 Narrow sufficient conditions for the investment version to hold . . . 131
5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Drift-induced selection between male and female heterogamety141
6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3 Characterization of the equilibrium paths . . . . . . . . . . . . . . . 146
6.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7 Sexual antagonism and the instability of environmental sex
determination 185
7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 188

vi



8 A rigorous measure of genome-wide genetic shuffling that
takes into account crossover positions and Mendel’s second
law 204
8.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.3 Derivation of r̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.4 Properties and intrinsic implications of r̄ . . . . . . . . . . . . . . . . 219
8.5 Experimental determination of crossover positions . . . . . . . . . . 222
8.6 Measuring r̄ in humans . . . . . . . . . . . . . . . . . . . . . . . . . 225
8.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

9 Per-nucleus crossover covariation and implications for evo-
lution 238
9.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

References 312

vii



Author List

The following authors contributed to Chapter 1: Martin A. Nowak and Charles
C. Davis.
The following authors contributed to Chapter 2: Laura K. Hayward.
The following authors contributed to Chapter 3: Laura K. Hayward, Christian Hilbe,
and Martin A. Nowak.
The following authors contributed to Chapter 4: Daniel B. Cooney and Benjamin
Allen.
The following authors contributed to Chapter 5: David A. Haig and Martin A. Nowak.
The following authors contributed to Chapter 6: Pavitra Muralidhar, George W. A. Con-
stable, and Martin A. Nowak.
The following authors contributed to Chapter 7: Pavitra Muralidhar.
The following authors contributed to Chapter 8: Nancy Kleckner and Martin A. Nowak.
The following authors contributed to Chapter 9: Shunxin Wang, Fei Sun, Aurora
Ruiz-Herrera, Yongliang Shang, Hongbin Liu, Denise Zickler, Zijang Chen, Nancy
Kleckner, and Liangran Zhang.

viii



Listing of figures

1.2.1 Long-intervalled flowering in bamboos. . . . . . . . . . . . . . . . . . 9
1.3.1 A model of initial synchronization in bamboos. . . . . . . . . . . . . 12
1.3.2 Initial evolution of mast intervals longer than two years. . . . . . . . 13
1.5.1 Mast intervals within bamboo subclades appear to have arisen from

a multiplication process. . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Long-run frequencies of strategies in the Crawford-Sobel signalling
game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.2 The beer-quiche game. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.3 Long-run frequencies of strategies in the beer-quiche game. . . . . . 48

3.4.1 Evolutionary dynamics of antagonistic symbioses. . . . . . . . . . . . 70
3.5.1 Evolutionary dynamics of mutualisms when k is small. . . . . . . . . 74
3.5.2 Evolutionary dynamics of mutualisms when k is large. . . . . . . . . 76

4.6.1 Games in which assortment favours cooperation. . . . . . . . . . . . 106

5.4.1 Fitness functions for which the sex ratio version holds but the invest-
ment version does not. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6.1 Biased investment in a mixed brood. . . . . . . . . . . . . . . . . . . 132
5.6.2 Fitness functions for which the investment version holds. . . . . . . . 134
5.6.3 Fitness functions for which the opposite of the investment version holds.135

6.3.1 Transitions between male and female heterogamety without a change
in the sex determining locus (model 1). . . . . . . . . . . . . . . . . 147

6.3.2 Transitions between male and female heterogamety with a change in
the sex determining locus to a previous autosome (model 2). . . . . . 151

ix



6.3.3 A general representation of the substitutions involved in changing the
heterogametic system. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.5.1 Fixation probabilities in Model 1 heterogametic transitions. . . . . . 161
6.5.2 The components of drift-induced selection in model 1. . . . . . . . . 167
6.5.3 Fixation probabilities in Model 2 heterogametic transitions. . . . . . 170
6.5.4 The components of drift-induced selection in model 2. . . . . . . . . 174

7.2.1 Genetic sex determination dominates environmental sex determina-
tion in vertebrates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.2.2 The advantage of environmental sex determination: exploiting sex-
specific benefits of different environments. . . . . . . . . . . . . . . . 200

7.3.1 Genetic sex determination evolves from temperature sex determina-
tion via sexually antagonistic genes. . . . . . . . . . . . . . . . . . . 201

7.3.2 Invasion conditions for sex-biasing, sex-antagonistic gene complexes
in ESD species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.3.3 Gradual evolution of heterogametic sex determination from temper-
ature sex determination. . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.2.1 Crossover position affects the amount of genetic shuffling. . . . . . . 209
8.3.1 Calculating r̄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
8.4.1 Example values of r̄. . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
8.6.1 Calculation of E[r̄] from crossover patterns at meiosis I in humans. . 226
8.6.2 Calculation of r̄ from a sequenced human egg. . . . . . . . . . . . . . 229

9.3.1 Per-nucleus analysis of crossovers. . . . . . . . . . . . . . . . . . . . . 242
9.3.2 Over-dispersed distribution of total crossovers per nucleus. . . . . . . 245
9.3.3 Experimental documentation of per-nucleus covariation of crossovers. 247
9.3.4 Over-dispersed distribution of total axis lengths per nucleus. . . . . . 252
9.3.5 Experimental documentation of per-nucleus covariation of axis lengths.253
9.3.6 Intrinsic variation and covariation of axis lengths can explain per-

nucleus covariation of crossovers in human male. . . . . . . . . . . . 255
9.3.7 Mathematical modelling demonstrates the evolutionary advantage of

crossover covariation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

x



Dedicated to Martin and Denise Veller.

xi



Acknowledgments

I am grateful to Martin Nowak, my advisor, for many things. First, for welcoming
into his research group a dispirited economics graduate student with an interest in,
but little knowledge of, theoretical biology. Second, for providing a free and exciting
academic environment in which to think about and discuss research. Third, for
always being available for stimulating conversations about work and life.

Each of the members of my committee—David Haig, Dan Hartl, Nancy Kleck-
ner, and Naomi Pierce—could separately count as my PhD advisor, so generous
and influential have they been with their thoughts and advice. I have benefited
tremendously from discussions and collaborations with them.

Finally, I am grateful to my parents, Martin and Denise Veller, for supporting
my education at every step.

xii



Introduction

The essays in this dissertation fall under the broad heading of theoretical evolu-

tionary biology. Evolutionary theory is based on the principle of selection, and its

subfield of evolutionary genetics is additionally based on the principles of Mendelian

genetics. The solidity of these principles is what first attracted me to evolutionary

theory as a graduate student in economics who had become disillusioned with the

type of theory being done there.

Chapter 6 in this dissertation is an example of how these principles aid the theo-

retician in evolutionary genetics. It concerns transitions between male- and female-

heterogametic sex determination, which have been common, for example, in reptiles

and amphibians [49]. At first, this evolutionary lability seems mysterious—why

would the genetic basis of such a fundamental, conserved trait as sex change so

often?

Suppose that we begin with a system of XX/XY male heterogamety, and ask how

a transition to ZW/ZZ female heterogamety can occur. One obvious starting point

is the appearance of a mutation that will define the W chromosome in the desired

ZW/ZZ system. Suppose that this dominant feminizing mutation occurs on an X

chromosome (it could also occur on an autosome), and call the mutated chromosome

1



X′. Thus far, all we have done is to posit a mutation with certain effects. In the

simplest version of the model, the population dynamics are then entirely governed

by random mating (an assumption that can be relaxed) and fair segregation of

the sex chromosomes (Mendel’s first law). The setting up of the model is done.

Studying the deterministic dynamics of this model, Bull and Charnov [53] found

that continuous paths of equilibria link male and female heterogamety (here, XX/XY

and X′Y/YY). This revealed that evolutionary transitions between the two systems

are not mysterious at all, as they can occur simply by drift along the equilibrium

paths. Chapter 6 in this dissertation studies the same model in the context of a

finite population, and shows that genetic drift in fact induces a selective force along

the equilibrium paths—in favor of epistatically dominant sex determining mutations

(possibly explaining why these are empirically the most common type).

The points I wish to make here are: (i) The foundational principles of Mendelian

genetics, as they do so often in evolutionary genetics, make the construction of the

appropriate model extremely simple: posit a mutation, assume Mendelian genetics,

and analyze the resulting dynamics. No ad hoc assumptions are required, such

as choices of functional forms (e.g., logistic growth, logarithmic utility); the only

assumptions made—random mating and no exogenous selection on the different

genotypes—have natural interpretations and can easily be relaxed. This is unusual

in the mathematical modelling of natural phenomena. (ii) The fact that the basic

ingredients of the model are well-established empirical laws allows the theoretician

great epistemological confidence in interpreting the results of the model. Thus,

subtle and surprising findings such as Bull and Charnov’s equilibrium paths and the

‘drift-induced selection’ discovered in Chapter 6 can be trusted as real phenomena,

with no suspicion that they are instead spurious consequences of ad hoc modelling

2



decisions. Such confidence would usually be unwarranted in, say, ecological and

economic modelling. (A social corollary is that, because ten theorists in a room

would often all write down the same model of a given problem in evolutionary

genetics, there is consequently less disagreement about theoretical results than there

is in other fields.)

I have found it exhilarating to explore some of the consequences of selection and

Mendelian genetics in the papers that form this dissertation. The dissertation is

organized as follows. Chapter 1 uses a simple model to hypothesize that the long,

synchronous flowering intervals of bamboos (e.g., 120 years for Phyllostachys bambu-

soides) evolved by successive discrete multiplication from shorter ancestral intervals.

A prediction of the hypothesis is that observed flowering intervals should factorize

into small prime numbers. Support for this prediction is found in a historical data

set of bamboo flowering observations. Chapter 2 develops a mathematical method

for studying the interaction of multiple populations in evolutionary games, when

the mutation rates to new strategies are small. Chapter 3 applies this methodol-

ogy to species interactions, asking when it is better for a species to evolve quickly,

and whether it can ever be better to evolve slowly. Faster evolution by any means

(higher mutation rate, shorter generation time, and more efficient selection) is shown

to be favored in antagonistic interactions—a ‘Red Queen’ effect. Slower evolution

is shown to be favored in an important class of mutualisms. This ‘Red King’ effect

operates predominantly via less efficient selection, rather than lower mutation rates

or longer generation times. Chapter 4 uses a stochastic model of evolutionary games

to show that assortment favors the evolution of cooperation under very general con-

ditions, including when Hamilton’s rule fails to predict the direction of selection

on the cooperative trait. Chapter 5 uses a simple model and economic intuition to

3



show that the Trivers-Willard hypothesis of sex allocation—mothers in good con-

dition should (i) have more sons and (ii) care more for sons—holds more generally

in case (i) than in case (ii). Chapter 6 identifies and mathematically characterizes

a novel selective force, induced by genetic drift, operating in transitions between

the sex-determining systems of male and female heterogamety. This ‘drift-induced

selection’ favors epistatically dominant sex determining mutations, possibly explain-

ing their observed preponderance in heterogametic systems. Chapter 7 proposes a

new genetic model to explain the rarity of environmental sex determination (ESD)

relative to genetic sex determination (GSD). In a species with ESD, an allele that

biases development towards one sex (e.g., by shifting temperature thresholds) can

couple with a ‘sexually antagonistic’ allele that increases fitness in that sex but re-

duces fitness in the other. The invasion of this haplotype selects for its subsequent

expansion and strengthening, together with the elimination of recombination along

its length, leading eventually to a new sex chromosome and thus GSD. Chapter 8

proposes a new metric for genome-wide recombination, r̄, that takes into account the

positions of crossovers (since terminal crossovers cause less recombination than cen-

tral crossovers) as well as the contribution of independent assortment of homologous

chromosomes (Mendel’s second law). r̄ is increased by crossover interference, sug-

gesting a possible adaptive advantage for this classical but mysterious phenomenon.

Measuring r̄ in humans reveals that genetic shuffling is nearly maximal, and that this

is due largely to independent assortment, which contributes about 30 times more

shuffling than crossovers do. Chapter 9 documents a new form of crossover pat-

terning, conserved across eukaryotes: the number of crossovers covaries positively

across the chromosomes within individual meiotic nuclei. This effect results from a

similar covariation of chromosome axis lengths at meiotic prophase, and causes an

4



increase in the frequencies of gametes with either many or few crossovers. This can

be advantageous in a sporadically fluctuating environment, because high-crossover

gametes are useful when the environment changes, while low-crossover gametes are

useful in periods of stasis between environmental changes.
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1
Extended flowering intervals of bamboos

evolved by discrete multiplication

1.1 Abstract

Numerous bamboo species collectively flower and seed at dramatically extended,

regular intervals—some as long as 120 years. These collective seed releases, termed

‘masts’, are thought to be a strategy to overwhelm seed predators or to maximize

pollination rates. But why are the intervals so long, and how did they evolve? We

6



propose a simple mathematical model that supports their evolution as a two-step

process: First, an initial phase in which a mostly annually-flowering population

synchronizes onto a small multi-year interval. Second, a phase of successive small

multiplications of the initial synchronization interval, resulting in the extraordinary

intervals seen today. A prediction of the hypothesis is that mast intervals observed

today should factorize into small prime numbers. Using a historical data set of

bamboo flowering observations, we find strong evidence in favour of this prediction.

Our hypothesis provides a first concrete theoretical explanation for the mechanism

underlying this remarkable phenomenon.

1.2 Introduction

Understanding the basis of species’ phenology—the timing of life history events such

as plant flowering and bird migration—is a key area of ecological and evolutionary

research [552]. Easily one of the most captivating phenomena in this regard is the

extended synchronous flowering and fruiting intervals exhibited by woody bamboos

[196, 250]. Although numerous woody bamboo species flower and fruit at more

modest time intervals, there are numerous extraordinary examples of bamboos with

greatly extended intervals (Fig. 1.2.1). For example, the Asian bamboos Bambusa

bambos, Phyllostachys nigra f. henonis, and P. bambusoides flower every 32, 60, and

120 years, respectively [84, 250, 268, 402, 463, 473, 474]. Historical records of this

phenomenon for the latter two species date back as far as 813 C.E. and 999 C.E.,

respectively [268]. In each of these cases, individuals of a species collectively flower

and fruit in enormous quantities (referred to as ‘masting’) only to die back, leaving

behind seeds which subsequently germinate. The cycle then repeats itself. In some

documented cases, this synchrony is maintained even after plants are transplanted

7



far from their native ranges [36, 84, 377, 473].

Though other plant species exhibit an ability to mast—most notably Diptero-

carpaceae in Southeast Asia [12, 249]—none is known to exhibit either the regu-

larity or the extraordinary interval length of the mast cycles observed in bamboos.

Despite its broad interest to biologists, however, the evolution of these prolonged

regular flowering intervals has received surprisingly little theoretical investigation.

The leading explanation for masting in bamboos is attributed to Janzen [249, 250],

who proposed that the enormous number of propagules (fruits or seeds) released

during these episodes satiate local predator populations, ensuring that more seeds

survive than with sporadic, and thus less abundant, propagule release [273, 274]. In

the case of bamboos, these predators typically include rats, birds, and pigs [250].

The stabilizing selection underlying the predator-satiation hypothesis requires that

a plant releasing its propagules out of synchrony with its cohort will likely have

them all consumed by predators. Support for this comes from measurements of seed

predation rates during and outside of masting episodes, including for bamboos [284]

and other masting species [106, 113, 391, 583].

A second explanation for bamboo masting is that, in wind-pollinated plants like

bamboos, synchronous pollen production may increase outcross pollination rates,

providing a benefit to individuals who seed during a mast episode [391, 393, 488].

Evidence for this hypothesis comes from the higher fertilization rates typically ob-

served during mast episodes in wind-pollinated plants, including beech [391], rimu

[393], and oak [289].

A third explanation, the so-called fire cycle hypothesis [270], argues that the

large seed release during a mast can act as fuel for wildfires (sparked by lightning,

for example). Under this scenario, bamboo seeds are hypothesized to be resilient

8
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Figure 1.2.1: Long-intervalled flowering in bamboos. A recent phylogeny of the bamboos as
inferred by Kelchner et al. [271]. Twenty-one species with long-intervalled flowering are displayed
across their associated bamboo tribes and subtribes. These are species whose flowering intervals
can be estimated from the data summarized by Janzen [250] (see [544, Appendix S2] for details
of interval estimation). Species names have been updated to reflect current taxonomy.
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to fire, while competing vegetation is not. However, most masting bamboo species

live in humid, tropical forests, where wildfires are unlikely to have been a factor in

their long-term evolution [451]. Moreover, it is difficult to see how the stabilizing

selection required for continued synchrony could be maintained without wildfires

recurring frequently and predictably. The predator-satiation and wind-pollination

hypotheses, on the other hand, clearly involve perpetual stabilizing selection.

While these theories of stabilizing selection provide explanations for the existence

of synchronous seeding in bamboos, a more intriguing puzzle remains: what explains

the remarkable regularity and length of bamboo mast cycles? Here, we propose

and test a novel mathematical model of the evolution of bamboo masting to solve

this puzzle. The puzzle is twofold. First, how was synchrony achieved on the

shorter, regular multi-year intervals that have been hypothesized to be ancestral

in bamboos [250]? Second, given the strong stabilizing selection for maintaining a

regular interval, how did the shorter ancestral intervals lengthen to the extraordinary

intervals seen today?

In the mathematical models we develop to answer these questions, we shall pri-

marily make use of the language of the predator satiation hypothesis, simply because

it is the best known and most widely accepted explanation for masting in bamboos.

The models do not depend on the veracity of the predator satiation hypothesis, how-

ever, only on the existence of stabilizing selection. In general, they can be written

in the language of any of the theories of stabilizing selection proposed for bamboo

masting, including the commonly-invoked wind-pollination hypothesis.
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1.3 Model of initial synchronization

We first hypothesized that initial synchronization on a multi-year interval could

occur naturally in a population of annual flowerers when two conditions are met.

First, plants that wait longer to flower may accumulate greater energy resources to

invest in producing more seeds, and/or seeds that are better protected [151]. (The

latter scenario, involving better-protected seeds, seems less applicable to bamboos,

whose ancestral fruit type is a caryopsis, i.e., fruits with seeds that are generally

less well protected than those of many other flowering plants.) In bamboos, this

investment might, for example, take the form of increased shoot production between

masts. Second, total potential seed predation varies from year to year, but is typi-

cally high, amounting to a significant proportion of maximum possible seed release.

Evidence for this assertion comes from observations of enormous predation rates in

minor mast years among well studied woody tree species [106, 113, 391, 583].

These conditions can be incorporated into a simple mathematical model (Fig. 1.3.1;

full mathematical details in [544, Appendix S1]). Here, we assume a fixed environ-

mental carrying capacity, and begin with a population comprising mostly plants

that seed annually, but with some variation in seeding time, so that a small number

of plants seed every two years. These two-year plants may be distributed across

odd and even years in this two year cycle, forming two reproductively distinct ‘co-

horts’. Under a broad class of parameterizations, a common outcome of our model

is synchronization onto a single cohort of two-year plants, following a year where all

annual plants and one cohort of two-year plants are eliminated because their entire

seed set is lost to predation (see Fig. 1.3.1 for additional details of the population

dynamics involved). Importantly, our model is not restricted to synchronization

onto only a two-year cycle: longer intervals of synchronization are possible in a sim-
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Figure 1.3.1: A model of initial synchronization in bamboos. Blue phase: Initially, the pop-
ulation comprises mostly annual-flowering bamboos, with a small number flowering every two
years (symmetric across odd and even years). Owing to their higher individual seed release, the
two-year plants increase in numbers over time (a). Total annual seed release declines, as the
population’s seeding becomes increasingly diluted over the odd and even years of the two-year
cohorts (b). Red phase: When total annual seed release declines below maximum potential
predation (b), the population is at risk of having an annual seed release completely consumed
by predators. When this eventually occurs, all of the annual plants, together with the two-year
cohort seeding that year, are eliminated (a). Green phase: If predation is not unusually high
the following year, the seed release of the remaining two-year cohort will fill the environmental
carrying capacity, establishing synchrony onto that cohort’s two year cycle.

ilar model if we extend the variation in the initial population to include plants with

longer flowering intervals, including three, four, and five years (Fig. 1.3.2). Also, by

altering the parameters of the model, we can hasten or lengthen the transition to a

multi-year mast cycle, so that the transition times in Figs. 2 and 3 should not be

seen as characteristic of the model (see [544, Appendix S1]).
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Figure 1.3.2: Initial evolution of mast intervals longer than two years. Our model of initial
synchronization can also explain the initial evolution of mast intervals longer than two years, if
sufficient variation exists in the original (mostly annual-flowering) population. Because of the
stochastic nature of the model, the same original setup can result in the evolution of a three
year (a), four year (b), or five year (c) mast cycle.
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1.4 Model of interval growth by multiplication

Once synchronization has been established in a population, say, on a three year mast

interval, stabilizing selection should maintain synchrony. This is because plants

flowering out of sync—e.g., after two or four years—would release its seeds alone,

and thus consumed by predators. Given such strong selection for synchrony, how

then could flowering intervals have increased to the extraordinary lengths observed

today? Janzen [250] noted that a plant flowering at an interval twice that of its

population—at six years, in the case of a three year population mast cycle—would

always flower during a masting year (i.e., every second mast), and thus be buffered

against predation. Indeed, this holds for a mutant flowering at any multiple of the

initial population mast interval, not just double. And since plants waiting longer to

flower release more propagules, such mutants would likely be favoured during times

of low population growth, when delaying seeding would not represent a significant

‘missed opportunity’.

For example, suppose a mutant with a flowering interval twice that of its popula-

tion releases s% more seeds than the average single-interval plant (or, equivalently,

seeds that are better protected, and thus suffer s% less predation). Suppose too

that average population growth is g% per period. Then a simple population growth

model predicts that selection will favour the mutant if s > g. Over two population

masts, an average population member will yield (1 + g)2 descendants, while the

mutant will yield (1 + g)(1 + s) descendants; the latter is larger than the former

when s > g. This is likely to hold especially when population growth, g, is low (and

owing to the nature of exponential growth, g cannot be large for too extended a

period of time). Analogous conditions for mutants of higher-multiple intervals can

also be derived. In general, if the population growth rate is g%, a mutant that
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flowers only every n mast periods and releases sn% more seeds than the average

population member will face positive selection if 1 + sn > (1 + g)n−1. For small

integers n, this is likely to hold for reasonable long-term values of g. So when popu-

lation growth is low, multiple-interval mutants can emerge, be selected for, and fix.

Under this scenario, the population’s flowering period increases to a multiple of its

initial synchronization interval.

The converse, however, is not true: if a population’s growth rate increases, mu-

tants with intervals a fraction—say half—of the cohort’s would not survive, because

they would seed out of synch with the population every second period of their re-

duced interval. So, earlier initial flowering intervals are not recoverable, and thus

the population’s flowering interval can only increase in our multiplicative model.

The evolution of extended flowering intervals in bamboos may therefore represent

an instance of Dollo’s law, or irreversibility in evolution [124].

The rival hypothesis for the evolution of very long mast intervals is one of gradual

growth. Because mast episodes are not instantaneous, instead lasting from a few

weeks to even a few years in the case of species with very long mast intervals, such

as Phyllostachys bambusoides [250], seed release is in fact distributed across a mast

episode. If plants that release their seeds later in the episode are selectively favoured,

then selection over time would gradually shift the distribution in the direction of

longer intervals. However, both theory and empirical evidence suggest that plants

releasing their seeds later in mast episodes would in fact be selected against. Since

mast episodes tend to result in a surge in local seed predator populations, either

through migration or rapid reproductive growth, predation pressure is expected to

increase as a mast episode progresses. Seeds released late in a mast are thus expected

to suffer the highest predation rates, and yield fewer successful offspring [250]. This
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is borne out in studies that observe predation rates across entire mast episodes, both

for bamboos [192, 284] and for Dipterocarpaceae [113, 114].

On the other hand, seeds released early in a mast episode do not enjoy the safety

in numbers that seeds released during the mast’s peak do. Despite predator levels

initially being low, therefore, these early seeds are very vulnerable to predation by

the predators that are present. Thus, while the above argument against gradual

interval growth suggests that gradual interval reduction is a possibility, we do not

expect such reductions to significantly affect mast interval lengths.

It has been claimed that the very long mast intervals observed in, for example,

Phyllostachys bambusoides (120 years) and P. nigra f. henonis (60 years) constitute

evidence against the predator satiation hypothesis [270]. The arguments given for

this would similarly pit these observations against other theories of stabilizing selec-

tion in bamboos, such as the wind-pollination hypothesis. In the case of predator

satiation, it has been assumed that integral to the hypothesis is that long mast

intervals have evolved to starve seed predators between masts, ensuring that preda-

tor numbers are low when a mast eventually occurs [250, 273, 274]. But since the

longest known mast intervals greatly exceed the lifespans of typical seed predators,

the predator satiation hypothesis cannot alone explain why selection favoured in-

creases of mast intervals to the extremes observed today [270]. In our theory of

interval growth by successive multiplication, we have reconciled the predator satia-

tion hypothesis (and, indeed, any theory of stabilizing selection) with the existence

of extreme mast interval lengths. Though the key selective factor in longer intervals

is greater seed release, rather than predation (or any other stabilizing factor), that

these longer intervals must be discrete multiples of their preceding intervals is a

direct result of the heavy predation faced by plants releasing their seeds in isolation
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(or, again, any perpetual stabilizing force that maintains synchrony).

1.5 Statistical testing

The logic underlying this mechanism of interval growth yields a simple, testable

numerical prediction. If the extraordinary flowering intervals observed today are

the result of successive multiplications of the initial synchronization interval, then

they should be decomposable back into those multiples (and the initial interval).

Though the theory is consistent with multiples of any size if population growth

is sufficiently low, and though the mechanics of the genetic clock in bamboos are

poorly understood [384], small multiples seem more likely than larger ones. The

physiological and underlying genetic adjustments necessary for much larger single

interval multiplications would likely render such multiplications implausible. Thus,

we hypothesize that the extended mast intervals of bamboos should factorize into

small positive integers, so that their unique prime factorization should include only

small prime numbers.

Do the data support this hypothesis? An initial survey of the most well-studied

examples is promising (Fig. 1): Phyllostachys bambusoides (120 yrs = 5 yr initial

synchronization interval × 3 × 2 × 2 × 2), P. nigra f. henonis (60 yrs = 5 yr initial

synchronization interval × 3 × 2 × 2), and Bambusa bambos (32 yrs = 2 yr initial

synchronization interval × 2 × 2 × 2 × 2) [84, 250, 268, 402, 463, 473, 474]. These

examples support our hypothesis on several fronts. First, all of these intervals are

factorizable into small primes (5 or smaller). Second, the smallest primes appear

most often in each factorization, consistent with smaller prime multiples being more

likely. Third, the 120 year mast interval of P. bambusoides is a small multiple of

the 60 year interval of the closely related P. nigra f. henonis, suggesting a common
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ancestral interval from which the two have evolved.

Other bamboo species with extended intervals are less well studied. For these

species, a number of factors are likely to increase measurement error in estimates of

mast intervals [250]. These include geographic variation in observations of masting,

observations gathered at different stages of consecutive masting episodes (many

of which can last more than one year), and misidentification of species, as well

as natural variation around mean flowering intervals within species [165]. A more

detailed discussion of the factors that contribute to mast interval measurement error

is included in [544, Appendix S2].

Nonetheless, a broader inspection of the estimated mast intervals of these less

well-studied species, together with their phylogenetic placement, corroborates our

hypothesis. In the two monophyletic genera in our data that exhibit variation in

mast intervals across more than two species, Phyllostachys and Chusquea, these

mast intervals demonstrate evidence of having arisen through a multiplicative pro-

cess (Fig. 1.5.1). The three Phyllostachys species in our data share a common base

interval of 15 years (15 yrs, 60, 120), which under our hypothesis would itself have

arisen from a shorter (3 or 5 yr) initial synchronization interval. Allowing for mea-

surement error, the three Chusquea species appear to share a base interval of 8 years

(16 yrs, 23, 32). Similar patterns of multiples in bamboo flowering intervals have

previously been noted as anomalous [202]—this anomaly is resolved as a natural

consequence of our multiplication model.

To test our hypothesis more formally, we developed a simple, robust nonpara-

metric test to determine if estimated mast intervals (Fig. 1.2.1) are more tightly

clustered around numbers factorizable into small primes (‘NFSP’, here defined as

primes 5 or smaller) than would be expected by chance under an appropriate null
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Figure 1.5.1: Mast intervals within bamboo subclades appear to have arisen from a multiplica-
tion process. Two hypothesized patterns of small multiplications of intervals along phylogenies
[153, 523] of Phyllostachys (a) and Chusquea (b), the two genera in our data set for which
flowering intervals can be estimated for more than two species. The mast intervals of these
species are consistent with the multiplication model we propose, allowing for small measurement
error in the case of C. ramosissima (estimated interval 23 yrs vs. predicted interval 24 yrs).
Hypothesized intervals, ancestral and extant, are displayed in boxes; measured intervals from
our data set are displayed on the bottom lines.
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hypothesis. Here, our null hypothesis is that extended mast intervals evolved grad-

ually (instead of via the discrete multiplications we have hypothesized), resulting

in a smooth, continuous distribution of interval lengths (see [544, Appendix S3] for

details of the estimation of the null distribution). Compared to samples generated

from this null distribution, the measured flowering intervals were significantly closer

to NFSP (p = 0.0041) and contained significantly more NFSP (p = 0.0024). These

results strongly support the small primes hypothesis. Moreover, they are robust to

changes in the construction of the null distribution, and alternative definitions of

NFSP (see [544, Appendix S3]).

1.6 Discussion

To our knowledge, our study is the first to develop a mathematical theory of the

mechanism underlying extended mast intervals in bamboos. In our model, an initial

phase of synchronization onto a small interval is followed by successive multiplication

of the interval by small numbers. Three key assumptions underlie our multiplica-

tion model: i.) strong stabilizing selection that maintains interval synchrony, ii.)

that later seed release allows for greater seed release (and/or for better protected

seeds), and iii.) approximately regular, endogenously-timed mast intervals. These

assumptions may explain why other masting plant species, such as members of the

Dipterocarpaceae clade, do not exhibit such greatly extended intervals as the bam-

boos do. In particular, while assumptions i.) and ii.) above are likely to apply

to many masting plants, assumption iii.), which is likely under genetic regulation,

appears to be unique to bamboos. This assumption, which is crucial to the survival

of multiple-interval mutants in our model, may thus be the key distinction that has

allowed bamboos to achieve such dramatically extended flowering intervals.
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The only other organisms that are well known to exhibit long-intervalled syn-

chrony are the periodical cicadas (genus Magicicada), whose synchronized emer-

gence from an underground larval state on 13- and 17-year intervals has similarly

been attributed to predator satiation [56, 329, 330]. Evolutionary explanations have

been proposed for their large-prime lifecycles [191, 345, 589], which clearly cannot

be factorized into small primes, and thus stand in contrast to our hypothesis for

the evolution of long-intervalled masting in bamboos. This suggests distinct evo-

lutionary and genetic mechanisms underlying the periodical lifecycle of cicadas in

comparison to long-intervalled masting in bamboos. For example, a leading expla-

nation for the large-prime lifecycles of the periodical cicadas is that they minimize

the possible frequency of subharmonic resonances with the multi-year lifecycle of

a predator or parasite [580]. This evolutionary mechanism appears not to apply

to masting bamboos, since the major predators of their seeds are typically either

fast-breeding (e.g., rats) or migratory (e.g., fowl and pigs).

In conclusion, our multiplicative model provides the first theoretical explanation

of long-intervalled masting in bamboos, and offers a framework upon which com-

parative analyses can be devised to explore the genetic and developmental basis of

this striking biological phenomenon.
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2
Finite-population evolution with rare mutations

in asymmetric games

2.1 Abstract

We model evolution according to an asymmetric game as occurring in multiple fi-

nite populations, one for each role in the game, and study the effect of subjecting

individuals to stochastic strategy mutations. We show that, when these mutations

occur sufficiently infrequently, the dynamics over all population states simplify to an
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ergodic Markov chain over just the pure population states (where each population is

monomorphic). This makes calculation of the stationary distribution computation-

ally feasible. The transition probabilities of this embedded Markov chain involve fix-

ation probabilities of mutants in single populations. The asymmetry of the underly-

ing game leads to fixation probabilities that are derived from frequency-independent

selection, in contrast to the analogous single-population symmetric-game case [170].

This frequency independence is useful in that it allows us to employ results from the

population genetics literature to calculate the stationary distribution of the evolu-

tionary process, giving sharper, and sometimes even analytic, results. We demon-

strate the utility of this approach by applying it to a battle-of-the-sexes game, a

Crawford-Sobel signalling game, and the beer-quiche game of Cho and Kreps [87].

2.2 Introduction

In evolutionary game theory, games are played within populations, and the preva-

lence of different strategies changes over time according to natural-selection-like

dynamics [238, 349, 396, 454, 457, 566]. This provides a natural method by which

to model biological evolution [349] and various learning processes [172], and offers a

‘rationality-light’ approach to equilibrium selection [454].

In the classical approach, populations are infinitely large and dynamics are de-

terministic; the focus is typically on the equilibrium refinement of evolutionary sta-

bility [238, 349]. More recently, stochastic finite-population dynamics have been

introduced into evolutionary game theory [160, 170, 263, 352, 396, 591]. These of-

ten take the form of an ergodic Markov chain—for example, when there is a positive

mutation rate—the state space of which is all possible strategy compositions of the

population [170]. Ranking the various population states’ weights in the stationary
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distribution is then a natural method of equilibrium selection [160, 263], and solves

many problems of the deterministic approach.

A drawback is that the state space is often very large, making calculation of

the stationary distribution infeasible. Addressing this, Fudenberg and Imhof [170]

study the case of a symmetric game played within a single, finite population, and

show that, when the mutation rate is very small, the evolutionary process simplifies

significantly. The intuition is straightforward: Starting from a pure (monomorphic)

population state, we wait a very long time for a new strategy to appear in the

population, because the mutation rate is small. When it does, it either goes extinct

or takes over the population (‘fixes’). Because this resolution of the mutant’s fate

occurs on a much shorter timescale than the waiting time for another mutation to

occur, it typically re-establishes a pure state. The process therefore approximates a

simpler process over just the pure states. This dramatic reduction of the state space

makes calculation of the stationary distribution computationally simple.

The transition probabilities of this simpler process depend critically on the var-

ious mutants’ fixation probabilities—the probability that a given strategy, having

arisen in a population otherwise pure for a different strategy, subsequently fixes

in that population. Because the game is symmetric, the payoffs that determine

these fixation probabilities are frequency dependent—the payoff to a mutant strat-

egy changes as its frequency in the population increases. For most evolutionary

processes, frequency-dependent fixation probabilities either do not exist in closed

form, or are intractable when they do [396]. This significantly limits the analytical

use of Fudenberg and Imhof’s result.

Here, we employ the basic machinery of Fudenberg and Imhof [170] to derive a

result similar to theirs for asymmetric games. There are several reasons why such a
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result is desirable. First, many situations in which we might want to study evolu-

tionary or learning dynamics are best modelled as asymmetric games—for example,

signalling games [105, 198, 494], games of entry and entry-deterrence [350, 369, 453],

and games of time consistency and commitment [301]. Second, because only strict

Nash equilibria of asymmetric games are evolutionarily stable [455], the determin-

istic approach based on evolutionary stability often fails. This is especially true for

multi-stage asymmetric games, which typically have no strict Nash equilibria (be-

cause alternative strategies that induce the same path of play, prescribing the same

actions on that path but different actions off it, are payoff equivalent).

In our model, evolution occurs in multiple interacting populations, one for each

role in the underlying asymmetric game. When the mutation rate is very small,

the evolutionary process simplifies to one over just the pure states (each population

is monomorphic). Transition probabilities between pure states in this embedded

process again depend on the fixation probabilities of single mutants, but these turn

out to be much simpler than in the symmetric game case of Fudenberg and Imhof.

To see this, suppose we start in a pure state. A mutant eventually arises in one

of the populations, and either goes extinct or fixes in that population before an-

other mutant arises in any of the populations. The other populations are therefore

monomorphic for the duration of the mutant’s extinction or fixation. But because

the game is asymmetric, payoffs to different strategies in one population depend

only on the states of the other populations, and so the payoffs that determine the

fixation probability of the mutant (and therefore the transition probabilities in the

embedded evolutionary process) are frequency independent. Frequency-independent

selection is a standard assumption in the population genetics literature [111, 143],

and closed-form fixation probabilities (exact and approximate) exist for many evo-
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lutionary processes of interest. Using our result, we can employ these to derive

sharper, and sometimes even analytical, characterizations of long run evolutionary

behaviour in many asymmetric games of interest. This allows for powerful evolu-

tionary equilibrium selection in these games.

We illustrate the utility of our result with three examples. First, in a ‘battle

of the sexes’ game, we show that a closed-form characterization of the stationary

distribution is possible. Second, we consider a discrete Crawford-Sobel signalling

game [105]. We show that, when multiple signalling equilibria of differing infor-

mation content exist for a given misalignment of signaller and receiver interests,

the most informative is evolutionarily dominant. This gives a more foundational

support to Crawford and Sobel’s heuristic argument in favour of the most infor-

mative signalling equilibria, which they base on Schelling’s [461] concept of ‘focal

points’. Finally, we apply our methodology to the ‘beer-quiche’ game of Cho and

Kreps [87], and show that, while it supports the Intuitive Criterion in its selection

between the two Bayesian Nash equilibria of the game, non-equilibrium states are

also evolutionarily significant, especially for small population sizes.

2.3 Evolution with mutations in multiple finite populations

Asymmetric games are characterized by the existence of multiple ‘roles’ (‘Player

1’, ‘Player 2’, etc.). In the evolutionary approach, the simplest way to incorporate

multiple roles is to model evolution as occurring in multiple interacting populations

[26, 156, 236–238, 349, 406, 591].1

Suppose that we have an underlying game Γ with roles i = 1, . . . , I, each role

associated with a finite strategy set Si, and the payoff to a player in role i when
1In Section 2.6, we discuss how our results relate to the alternative modelling choice of a single

population, in which each generation, each member draws a role from some distribution.
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play is ⟨s1, . . . , sI⟩ ∈
∏I

i=1 Si given by πi(s1, . . . , sI) ∈ R.

We assume the existence of I populations, one for each role, with the size of

each population i constant through time at Ni ∈ N. The overall population state

at a given time is defined as the I-tuple of strategy frequencies in the respective

populations at that time: pt ∈
∏I

i=1∆
|Si|, where ∆n is the unit simplex in Rn.2 We

shall be interested in the evolution of this population state over time.

Evolution proceeds as a stochastic process in discrete time. Each generation, each

member of each population receives the expected value of interacting, according to Γ,

with a group comprising one member from each other population, randomly chosen,

and with each group equally likely. (The use of expected payoffs, rather than true

payoffs received from single random interactions, is for the sake of tractability.) If

ptj(s
k
j ) denotes the proportion of members of population j that are playing strategy

skj ∈ Sj at time t, then, for example, the expected payoff to a member of population

1 who employs strategy s11 ∈ S1 in period t is

Eπ1(s11|pt) = Eπ1(s11|pt−1) =

|S2|∑
k2=1

. . .

|SI |∑
kI=1

pt2(s
k2
2 ) . . . ptI(s

kI
I )π1(s

1
1, s

k2
2 , . . . , s

kI
I ).

Here, pt−1 denotes the population states in all populations other than population 1,

and signifies that the expected payoff to a strategy in population 1 depends only

on the strategy frequencies in the other populations 2, . . . , I, a consequence of the

asymmetry of the underlying game.

These expected payoffs in each population i are then translated to non-negative

fitnesses fi(ski |p−i) according to some positive monotonic transformation (possibly

different for each population).3 In the case of no mutations, the fitnesses within each
2Since the populations are finite, pt is in fact confined to a finite subset of this space.
3Popular choices in the evolutionary game theory literature include linear fitness, fi(Eπi) =
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population can be used to update that population to its next-period state according

to an evolutionary or imitation dynamic, usually following the general Darwinian,

or ‘monotonicity’, principle that strategies with high fitness increase in proportion

relative to those with low fitness.

Some notation: let Pi denote the (finite) set of all possible population states for

population i, let P =
∏I

i=1 Pi denote the set of all possible overall population states,

and let P−i denote the set of all possible population states for populations other

than i. The set of ‘pure’ states for population i, Ppure
i , comprises all states in Pi

where every member of population i is playing the same strategy (in which case we

say that population i is ‘monomorphic’). Abusing notation a little, we label such

states by the strategy that all members are playing, i.e., Ppure
i = Si. Finally, the

set of overall pure states, Ppure =
∏I

i=1 P
pure
i , is the set of overall population states

in which every population is pure.

The evolutionary process with no mutations in each population i is a stochas-

tic process {X0
i (t), t = 0, 1, . . .}, with state space Pi, and transition probabilities

T 0
i (pi, p

′
i|p−i) for p = ⟨pi, p−i⟩ ∈ P , p′i ∈ Pi. The transition probabilities depend on

the population state p−i because this determines fitnesses within population i.

For each population i, we require two basic assumptions of this no-mutation evo-

lutionary process defined by T 0
i (pi, p

′
i|p−i):

Assumption 1. If in some period a strategy in population i is absent, then it is

absent in all future periods. Formally, for all ⟨pi, p−i⟩ ∈ P , p′i ∈ Pi, and si ∈ Si, if

pi(si) = 0 and T (pi, p
′
i|p−i) > 0, then p′i(si) = 0.

1 + ηiEπi, and exponential fitness, fi(Eπi) = exp(ηiEπi); in each case, the parameter ηi > 0
mediates the strength of selection, i.e., the sensitivity of fitness to changes in expected payoff.
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Assumption 2. No matter the population state of other populations, any strategy

currently played in i, unless it is played by all members of i, has positive probability

of having increased representation next period. For any ⟨pi, p−i⟩ ∈ P , and for each

si ∈ Si such that 0 < pi(si) < 1, there exists p′i ∈ Pi such that p′i(si) > pi(si) and

T 0
i (pi, p

′
i|p−i) > 0.

Assumptions 1 and 2 are satisfied by many finite-population stochastic processes

studied in evolutionary game theory and population genetics when there are no mu-

tations, selection is finitely strong, and fitnesses are positive. These include stochas-

tic models of imitation learning [172], the Moran process [375], and the Wright-Fisher

process [154, 584]. Processes that are excluded include best-response dynamics and

fictitious play [172].

Loosely, Assumption 1 ensures that the pure states for population i are absorb-

ing. In a learning context, it distinguishes imitation learning from other learning

processes: strategies not employed by anyone in a population cannot be imitated

[31, 170, 458]. It is also a natural assumption in a biological context: without mu-

tations, the creation of novel genes, and therefore novel strategies, is not possible.

Assumption 2 ensures that non-pure states in population i are transient. This

we take to be the essence of stochastic dynamics. It is important to note that the

‘positive probability’ of Assumption 2 can be very small. It is not restrictive, for ex-

ample, that unsuccessful strategies can spread in a population, since the probability

that they do so can be appropriately small.

One context in which assumption 2 might appear, at first glance, to be too strong

is that of imitation learning in multi-stage games, where some decision nodes are not

reached given the strategies currently employed in the populations, so that ‘play’
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at these nodes cannot be directly observed.4 This is a problem for assumption 2

only if a particular condition holds, which we consider to constitute a somewhat

‘knife-edge’ case: learning is by imitation based only on direct observation of play.

If imitation can also be based, even if only to a very small degree, on communi-

cation between agents in a population, then actions at currently-unobserved nodes

could be discussed and imitated, and so assumption 2 would be valid. This we take

to be far more realistic. It is implicit in Young’s [591] assumption that ‘each time

an agent plays he starts afresh and must ask around to find out what is going on’,

and a similar logic underlies many models of social learning (e.g., [138]). Again, we

should stress that any amount of such communication validates assumption 2; the

condition under which it is invalid is therefore a knife-edge case.5 Communication is

especially relevant for situations where membership of the populations is not fixed

through time, instead being affected by exits and entries (as modelled by birth-

death processes, for example). In this case, if a decision node is currently unreached

for a given population, then new entrants in that population must nonetheless have

strategies that prescribe actions at the unreached nodes; in a pure imitation dynam-

ics, they can only get these by ‘asking around’.

We make the further assumption that the evolutionary processes occur indepen-

dently within each population, in the sense that, although the probability that

population i transitions from pi to p′i between periods t and t + 1 depends on the

period-t population states of the other populations, the transitions that these other

populations make between periods t and t + 1 do not influence the transition in
4We are grateful to a referee for emphasizing this point, and prompting the present discussion.
5It might be objected that changing one’s strategy at an unreached decision node would not

alter one’s payoff, so that imitative strategy changes of this sort would not be expected, but this
objection fails to take into account the fundamental stochasticity of the process: even detrimental
strategy changes are expected to occur with some positive probability.
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population i. This is similar to the assumption that expected, rather than realized,

payoffs are relevant for fitnesses, in the sense that it too is an abstraction from

the true, random, matching of players in a given period. Like the expected payoffs

assumption, it is made for tractability.

Under this assumption, the no-mutation processes {T 0
i }Ii=1 aggregate to an overall

no-mutation Markov process T 0 over the state space P, where for p = ⟨p1, . . . , pI⟩, p′ =

⟨p′1, . . . , p′I⟩ ∈ P , T 0(p, p′) =
∏I

i=1 T
0
i (pi, p

′
i|p−i).

We now incorporate mutations into this general evolutionary process. We specify

for each population i a mutation rate εµi > 0, with µi a population-specific pa-

rameter that governs the between-population relative frequency of mutations, and

ε an across-population parameter governing the overall frequency of mutations. We

then alter the above no-mutation evolutionary process as follows: From a population

state pt in period t, a preliminary (pre-mutation) population state pt+1
(0) for period

t + 1 is chosen according to the transition probabilities T 0, i.e., according to the

no-mutation evolutionary process.

This preliminary population state is then subjected to random mutations of the

following form: in each population i, each member has probability εµi of discarding

her strategy and randomly selecting another from the strategy space Si, with each

strategy (including the one she just discarded) equally likely.6 This mutation process

is carried out independently across the members of a population, and similarly across

populations, resulting in the final population state for period t+ 1, pt+1.

The evolutionary process with mutations can be summarized by the following
6We can easily allow for the possibility that not all mutations between strategies within a

population are equally likely; this case is discussed in Section 2.6.
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scheme:

pt → selection (stochastic) → mutation (stochastic) → pt+1.

Within each population i, this is a stochastic process governed by the transition

probabilities T ε
i (pi, p

′
i|p−i). These individual population processes aggregate to an

overall Markov process over the state space P, defined by the transition probabilities

T ε(p, p′) =
∏I

i=1 T
ε
i (pi, p

′
i|p−i) (because the independence of the within-population

processes is not compromised by the mutations process we have defined).

Since µi > 0 for each population i, there is positive probability that, from any

given population state, any state can be reached in one generation (it just requires

the appropriate mutations). Consequently, the evolutionary process T ε(p, p′) with

positive mutation rates µi is an ergodic Markov chain. It therefore has a unique

stationary distribution, which it approaches in the long run.

In principle, this stationary distribution is analytically calculatable, but in reality,

for many games of interest, the state space (all possible population states) will

usually be so large that this calculation is infeasible. In general, the size of the state

space is |P| =
∏I

i=1

(Ni+|Si|−1
|Si|−1

)
. In the case of just two populations, each of size 20

members, and each with 4 strategies available to its members, the size of the state

space is approximately 3× 106: calculating the stationary distribution thus involves

solving a system of about 3 × 106 linear equations. This problem intensifies as the

population sizes increase.

In the next section, we employ a theorem of Fudenberg and Imhof [170] to show

that, when the mutation rate is very small for each population (ε≪ 1), the station-

ary distribution of the evolutionary process with mutations approximates an embed-

ded Markov process on a much-reduced state space, the set of all pure states Ppure
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(the size of which does not increase with increasing population size). Moreover, the

asymmetry of the underlying game will render selection frequency-independent in

the rare-mutations regime. This will make calculation of the transition probabilities

of this embedded Markov chain much simpler than for symmetric games.

2.4 The stationary distribution when mutations are rare

Assumptions 1 and 2, which concern the within-population no-mutation evolu-

tionary processes T 0
i , translate into the following two straightforward propositions,

stated without proof, concerning the aggregate no-mutation process T 0:

Proposition 1. Under T 0, all pure population states p ∈ Ppure are absorbing.

Proposition 2. Under T 0, all population states p ∈ P\Ppure are transient.

Label pure population states by s = ⟨s1, . . . , sI⟩ ∈ Ppure: here, all members of

population i play strategy si ∈ Si. Denote by s/s′i the population state where every

population j ̸= i is monomorphic for the strategy sj , and population i is monomor-

phic for the strategy si except for one individual, who plays s′i ̸= si. Let the set of

all such states be Ppure/i.

Proposition 3. Fix s ∈ Ppure, and consider the limit lim
ε→0

T ε(s, p)
ε for states p ∈ P\{s}.

This limit exists for all states p ∈ P\{s}. However, lim
ε→0

T ε(s, p)
ε > 0 if, and only if,

p ∈ Ppure/i for some i. Otherwise, lim
ε→0

T ε(s, p)
ε = 0.
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To prove this, note that T ε(s, p) is a polynomial in ε for all p. For T ε(s, s/s′i),

this polynomial has lowest-order term Niµi

|Si| ε, and so lim
ε→0

T ε(s, s/s′i)
ε = Niµi

|Si| > 0. On

the other hand, if the states s and p differ by the strategy played by more than one

individual, then a one-step transition from the former to the latter requires more

than one mutation, so T ε(s, p) has lowest-order term of order εk, k ≥ 2. Thus, for

such states p, lim
ε→0

T ε(s, p)
ε = 0.

Proposition 3 states that mutations from a pure state to a state where only one

individual in one of the populations deviates from the pure state are, for small

mutation rates, at least an order of magnitude more likely than other transitions

from the pure state (and, owing to the pure states being absorbing under the no-

mutation process, mutations are the only way to transition out of pure states).

Now suppose that, from a pure state s, the system transitions to the state s/s′i.

Since interior states in population i are transient, absent further mutations in popu-

lation i, the process will absorb either back into the pure state s (the mutant strategy

s′i has ‘gone extinct’) or into the pure state ⟨s′i, s−i⟩ = ⟨s1, . . . , si−1, s
′
i, si+1, . . . , sI⟩

(the mutant strategy s′i has ‘fixed’).

But when the mutation rates are very small, we should expect this extinction or

fixation of strategy s′i to occur before another mutant appears in population i, and

indeed before a mutant subsequently appears in any other population. This latter

fact, that no mutant is expected to appear in any of the other populations during

the extinction/fixation event in population i, is key in determining the probability

that fixation of s′i will occur in population i. Because the underlying payoffs to,

and thus fitnesses of, strategies si (the ‘incumbent’ strategy) and s′i (the ‘mutant’

strategy) depend only on the population states in the other populations, and since

these are fixed at s−i for the duration of the extinction or fixation of s′i, the fitness
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difference between si and s′i is constant for the duration of this event. Thus, selection

is frequency-independent in this regime, a fact that will make the calculation of the

various fixation probabilities significantly simpler.

To formalize this intuition, for states s ∈ Ppure and s/s′i ∈ Ppure/i define µ̂i(si, s′i) :=

lim
ε→0

T ε(s, s/s′i)
ε = Niµi

|Si| = µ̂i, and let ρi(si, s′i|s−i) be the ‘fixation probability’ that,

given that populations −i remain monomorphic for strategies s−i, a s′i mutant who

appears in population i that is otherwise monomorphic for strategy si subsequently

fixes. Assumption 2 ensures that this probability is always positive.

Now let K = |Ppure| =
∏I

i=1 |Si|, and let 1, . . . ,K be some enumeration of the

pure population states.7 Construct a K × K transition probability matrix Λ as

follows:

• If the pure states labelled m and n are s = ⟨si, s−i⟩ and ⟨s′i, s−i⟩ respectively

(i.e., pure states that differ by only one population’s strategy), then Λmn =

µ̂iρi(si, s
′
i|s−i).

• If the pure states m and n differ by more than one population’s strategy,

Λmn = 0.

• Having thus defined Λmn for all distinctm and n, define Λmm = 1−
∑

n ̸=m Λmn.

Λ is the transition probability matrix for a homogeneous Markov chain over the

(finite) state space Ppure.8 Moreover, this Markov chain is irreducible, since any

pure state can be reached from any other with positive probability in a number of
7A particular enumeration that we have found useful: writing Ki =

∏I
j=i+1 |Si|, enumerate

the pure state ⟨sm1
1 , . . . , smI

I ⟩ by
∑I−1

i=1 Ki(mi − 1) +mI . The population states in the pure state
enumerated n can then be recovered as follows: mI−1 = n mod |SI |, and mi−1 =

⌊
n
Ki

⌋
mod |Si|

for each i < I.
8If there are some m such that Λmm < 0 in the above construction of Λ, one can rescale all

mutation rates µi by an appropriately small factor to render all Λmm > 0. Any such rescaling will
result in the same stationary distribution induced by Λ.
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steps equal to the number of populations on whose strategies the two pure states

differ.

This establishes the final proposition that we require, that Λ induces a unique

stationary distribution on the state space of pure population states [265]:

Proposition 4. There is a unique vector λ = (λ1, . . . , λK) such that λj ≥ 0 for all j,

λ1 + . . .+ λK = 1, and λΛ = λ.

We are now in a position to state our main result. Propositions 1-4 ensure that

T 0, T ε, and Λ satisfy Assumptions 6-9 of Fudenberg and Imhof [170]. Employing

their Theorem 2,9 we arrive at the following theorem.

Theorem 1. For each ε, denote by λε the unique stationary distribution of the

Markov process T ε. If n corresponds, in the enumeration of pure states, to the pure

state s, then

lim
ε→0

λε(s) = λn.

That is, the stationary distributions of T ε approach λ as mutation rates become

small.

2.5 The usefulness of the result

Our result is useful on two fronts. First, it extends to asymmetric games our ability

to compute the limiting stationary distributions of finite-population evolutionary or

imitation processes. We have argued that it is these games, and asymmetric multi-
9A simple proof of a generalization of Fudenberg and Imhof’s [170] result, holding for more

general evolutionary processes, has recently been given by McAvoy [351].
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stage games in particular, for which stochastic finite-population dynamics are most

relevant.

Second, the fixation probabilities used to calculate Λ derive from frequency-

independent selection. Since frequency-independent selection has long been a stan-

dard assumption of the population genetics literature, we can make use of the many

results about fixation probabilities in that literature. This bridge between evolu-

tionary game theory and classical population genetics could allow for analytical

calculation of the rare-mutations stationary distribution, where this would be im-

possible or infeasible in a single-population symmetric game setup [170] (where the

fixation probabilities that compose Λ derive from frequency-dependent selection,

and therefore typically do not exist in closed form, or are intractable when they do

[396]10)

To illustrate this, we consider three examples: a ‘battle of the sexes’ game, a

discrete Crawford-Sobel signalling game [105], and the ‘beer-quiche’ game of Cho

and Kreps [87].

Example 1: Battle of the sexes

The well-known ‘battle of the sexes’ game involves a man and a woman hoping to

coordinate their weekend activities, which are either going to a ballet performance

(the woman’s preference) or going to a rugby match (the man’s preference). Both
10In the particular case where the evolutionary process is a birth-death process [265, 396], a closed

form for fixation probabilities exists—see, e.g., [265, Sec. 4.7] and [396, Eq. 6.13]. In general, it is
a complicated expression involving the relative fitnesses of the incumbent and mutant strategies at
each possible intermediate frequency of the mutant strategy. One case for which this expression
simplifies to a tractable form is the Moran process, if fitnesses are calculated as exponential functions
of game payoffs [102, 520]. For some other frequency-dependent evolutionary processes, fixation
probabilities can be shown to approach tractable representations as the population size becomes
very large—see, e.g., [171]. However, as we shall discuss in Section 2.6, the cases to which the ‘rare
mutations’ approximation studied here best applies are specifically those where population sizes
are not too large.
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the man and the woman prefer coordination on either activity to not coordinating.

The simple example we shall study is summarized by the payoff matrix:

Man
B

R

Woman

B R

1, 2 0, 0

0, 0 2, 1

To cast this into an evolutionary model, assume two separate populations of men

and women, of size Nm and Nw respectively. Each period, each member of each

population goes either to the ballet or to the rugby, and receives his/her expected

payoff from interacting with a random member of the other population. (This

corresponds to members of each group preferring to be at an event attended by

many members of the other group, though males would prefer this to be at the

rugby, and females would prefer it to be at the ballet.)

Expected payoffs Eπ within both populations translate to fitnesses via the linear

transformation fθ(Eπ) = 1 + ηθEπ, where θ is either m (‘man’) or w (‘woman’),

and ηm and ηw are the strengths of selection in the men’s and women’s populations

respectively. The evolutionary or imitation dynamics within each population are

assumed to be a Moran process [375, 396], occurring with mutations in the manner

set out in Section 2.3. The per-person mutation, or experimentation/error, rates in

the men’s and women’s populations are εµm and εµw respectively.

In populating the rare-mutations Markov matrix Λ, we need only consider tran-

sitions between pure states where either the male population’s strategy is different

or the female population’s strategy is different, but not both. For example, con-

sider the transition from the pure state where the men all go to the rugby and
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the women all to the ballet, (R,B), to the pure state where everyone goes to the

rugby, (R,R). (The bold font indicates that these are population strategies.) In

the former ‘incumbent’ female population, members all had fitness 1+ηw(0) = 1. A

mutant woman going instead to the rugby has fitness 1 + ηw(1) = 1 + ηw, and thus

has (frequency-independent) selective advantage ηw over the ballet-going members

of the female population.

This frequency independence allows us to make use of the well-known formula for

fixation probability under a Moran process [396]: If a single mutant has selective

advantage s over the other members of the (size N) population, then its fixation

probability is

ρ(s) =
1− 1/(1 + s)

1− 1/(1 + s)N

for s ̸= 0, and ρ(0) = 1/N . The corresponding formula for the case of frequency-

dependent selection is significantly more complicated [265, 396].

The entry of Λ corresponding to the transition (R,B) → (R,R) is therefore

Λ(R,B)→(R,R) = µ̂wρw(ηw) =
Nwµw

2

1− 1/(1 + ηw)

1− 1/(1 + ηw)Nw
.

For the reverse transition (R,R) → (R,B), mutant women have fitness 1, while

incumbents have fitness 1 + ηw. Mutants are thus at relative selective disadvantage
(1)−(1+ηw)

1+ηw
= −ηw/(1 + ηw), and the relevant entry of Λ is

Λ(R,R)→(R,B) = µ̂wρw

(
−ηw
1 + ηw

)
=
Nwµw

2

1− (1 + ηw)

1− (1 + ηw)Nw
.

The other entries of Λ are calculated similarly. Enumerating the pure states
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(B,B), (B,R), (R,B), and (R,R) as 1, 2, 3, and 4 respectively,

Λ =



1− . . . µ̂wρw(
−2ηw
1+2ηw

) µ̂mρm( −ηm
1+ηm

) 0

µ̂wρw(2ηw) 1− . . . 0 µ̂mρm(2ηm)

µ̂mρm(ηm) 0 1− . . . µ̂wρw(ηw)

0 µ̂mρm( −2ηm
1+2ηm

) µ̂wρw(
−ηw
1+ηw

) 1− . . .


,

where the ellipses abbreviate that the rows must each sum to one.

We have a number of free parameters in this model; to wit: the sizes of, selection

strengths in, and mutation rates in the two populations. As an example, suppose

we set the sizes of, and selection strengths in, the two populations equal at N and η

respectively. Making use of the fact that, for the Moran process, ρ(s)/ρ(−s/[1+s]) =

(1 + s)N−1, we calculate the stationary distribution of the Markov chain defined by

Λ:

λ =

[
1,

1

(1 + 2η)N−1
,

1

(1 + η)N−1
, 1

]
/λ̄,

where λ̄ is a normalization constant. Notice that, in the rare mutations limit, the

mutation rates, though possibly different in the two populations, do not affect the

long-term distribution of states.

The proportions of time the populations spend both at the rugby and both at the

ballet are equal, and are higher for larger values of the common selection strength η

and population size N . The intuition for this effect of η is straightforward: A higher

η increases the fixation probabilities of positively selected mutants, and decreases the

fixation probabilities of negatively selected mutants. In this coordination game, the

former are always mutants leading towards the coordination equilibria (B,B) and

(R,R), while the latter are always mutants leading away from these coordination

equilibria.
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The effect of population size can most easily be seen from the ratio of transition

probabilities from a non-coordination to a coordination state (positive selection s)

and vice-versa (negative selection −s/[1 + s]): ρ(s)/ρ(−s/[1 + s]) = (1 + s)N−1.

This ratio increases with N , and so, for each path into and out of a coordination

equilibrium, a higher N increases the transition probability into, relative to the

symmetric probability out.

Example 2: Crawford-Sobel signalling

The next game to which we apply our result is a discrete variant of a signalling game

from Crawford and Sobel [105, Sec. 4]. Suppose that there are three possible states

of the world, θ ∈ {0, 1, 2}, with each equally likely. A signaller observes the state of

the world, and sends a costless signal s ∈ {a, b, c} to a receiver, who observes only

the signal, and not the state of the world. Having observed the signal, the receiver

makes a decision r. Payoffs to signaller and receiver are as follows:

πS(θ, r) = −(r − θ − γ)2,

πR(θ, r) = −(r − θ)2,

where γ ≥ 0 is a parameter that characterizes the signaller and receiver’s misalign-

ment of interests (for every θ, the receiver’s optimal decision is γ lower than the

signaller would most want it to be). For simplicity, we restrict the receiver’s possible

decisions r to the set {0, 0.5, 1, 1.5, 2}, which covers all possible optimal decisions

the receiver could make given some posterior over the state space, having observed

a signal.

For all γ ≥ 0, Nash equilibria exist where the signaller sends the same signal no

matter the state of the world, and the receiver, observing that signal, makes decision
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r = 1. We call these equilibria ‘uninformative’, and label them ‘xxx’, since the same

signal x ∈ {a, b, c} is sent for each state of the world {0, 1, 2}. Also, for all γ, Nash

equilibria exist where the signaller sends the same signal for states θ = 0 and θ = 2,

and a different signal for state θ = 1: to all sent signals, the receiver responds with

decision 1. Since no practical (decision-changing) information is transmitted by the

signaller, we also call these equilibria, labelled ‘xyx’, ‘uninformative’.

For sufficiently low γ, there also exist ‘partially informative’ equilibria where, for

two adjacent states of the world (i.e., {0,1} or {1,2}), the signaller sends the same

signal, but for the other state of the world, sends a different signal. For such ‘xxy’

and ‘xyy’ equilibria, these threshold values for γ are 0.25 and 0.75 respectively.

Finally, for γ ≤ 0.5, there exist ‘informative’ equilibria, where the signaller sends

a different signal for each state (‘xyz’), and the receiver makes a decision equal to

the state that the signal is sent from.

A full characterization of the Nash equilibria of this game, including the receiver’s

responses to unsent signals required to sustain each equilibrium, is included in [543,

Appendix].

Crawford and Sobel [105] argue, somewhat informally, that for a given value of

γ, the most reasonable equilibria are the most informative ones possible for that γ.

This, they claim, is because these equilibria are Pareto-superior to less informative

equilibria, and are salient—or ‘focal’ in Schelling’s [461] language—in that they are

the most informative equilibria (the other salient equilibria are the least informative

ones, but these are ruled out on the former grounds of being Pareto-inferior to the

most informative equilibria).

The methodology developed in the present paper allows us to test this equilibrium

selection prediction more formally, in the context of learning by agents. Notice
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that none of the equilibria that are not perfectly informative is strict, so that a

deterministic infinite-population approach would be of little use here, particularly for

higher values of the misalignment parameter γ (for which the informative equilibria

do not exist). Instead, our finite-population approach is better-suited to this game.

We assume two populations, one of signallers and one of receivers. The size of

each population is N . Each signaller is equipped with a response to each possible

state of the world, and each receiver with a response to each possible signal. States

of the world are drawn independently for each individual interaction (i.e., there is

no aggregate state of the world), and fitnesses are calculated according to expected

payoffs.

Evolution within each population is assumed to be a Wright-Fisher process [154,

584], which has been used as a model for both biological evolution [219] as well as

imitation learning [509, 518]. Expected payoffs translate to fitnesses exponentially,

f(Eπ) = exp(ηEπ), with selection strength η and per-person mutation rate εµ in

both populations.

In constructing Λ, frequency-independent selection allows us to make use of the

well-known ‘diffusion approximation’ formula for the fixation probability, under the

Wright-Fisher process, of a single mutant at selective advantage s in a population

of size N [279]:

ρ(s) ≈ 1− exp (−s)
1− exp (−Ns)

for s ̸= 0, and ρ(0) = 1/N .11 Again, the case of frequency-dependent selection is
11The diffusion approximation formula cited above is known to be very accurate [141, 142], and

we would expect our results to alter very little were we to use near-exact numerical approximations
of the true fixation probabilities. Such numerical estimation of fixation probabilities is computa-
tionally very expensive, which further highlights the value of our result: when selection is frequency
dependent, as in the single-population symmetric-game case, fixation probabilities will usually have
to be estimated numerically, whereas in our asymmetric-game case, where selection is frequency
independent, we may make use of well-known exact or approximate closed-form fixation probabili-
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Figure 2.5.1: Frequencies of the signalling profiles of different levels of information transmis-
sion in the long-run dynamics of the Crawford-Sobel game, plotted for various values of the
misalignment parameter γ. Both signaller and receiver populations are of size N = 100; fitness
is exponential in expected payoffs, with equal selection strength η = 1; mutation rates are equal
in the two populations. The results are broadly consistent with Crawford and Sobel’s prediction
that the most informative equilibria supportable by a given value of γ are the most reasonable
for that γ.

significantly more complicated [7, 247, 317].

We use these fixation probabilities to populate Λ according to the method set

out in Section 2.4, and calculate its stationary distribution. Fig. 2.5.1 plots, for the

case N = 100 and η = 1, and for various values of the misalignment parameter γ,

the relative frequencies of equilibria of different information levels in this stationary

distribution.12

It can be seen from Fig. 2.5.1 that the results of the learning/evolutionary dy-

ties.
12The frequencies that we plot for a given equilibrium type are in fact those of all population

states whose signalling profile is consistent with that equilibrium type: because the populations are
large and selection is strong, the plotted frequencies correspond closely with those of the equilibria
(which would take into account receiver behaviour too).
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namics in this game broadly support Crawford and Sobel’s prediction that the most

informative equilibria supportable by a given γ are the most reasonable for that γ.

For low levels of misalignment γ < 0.4, the informative equilibria dominate, and

information transmission is almost always perfect in the long run. For intermediate

levels of misalignment (0.4 < γ < 1), partially informative equilibria, especially

those of the form xyy, are dominant. For high levels of misalignment (γ > 1), only

uninformative equilibria can be supported, and indeed such equilibria dominate the

long-run dynamics.

Note that the equilibria involving signalling of the forms xxy and xyx do not have

analogs in the equilibria of the game with continuous state, signal, and decision

spaces [105]; they are artefacts of the discrete structure of the game we have set

up. It is reassuring, then, that they play little role in the long-run dynamics for all

values of γ.

Example 3: The beer-quiche game

Our final example is the beer-quiche game of Cho and Kreps [87], employed by

them to illustrate the equilibrium refinement method they advance, the ‘Intuitive

Criterion’. The extensive form of the game is given in Fig. 2.5.2. Player 1 is either a

wimp (type tw) or surly (type ts), with probabilities 0.1 and 0.9 respectively. Player

1 knows his type; player 2 does not. Player 1 either has beer or quiche for breakfast,

observed by player 2, who then chooses whether to fight player 1 or not. The payoffs

are such that player 2 should choose to fight player 1 if the posterior probability he

holds that player 1 is a wimp is greater than 0.5. For any action by player 2, player

1 prefers beer for breakfast if he is surly, but quiche if he is a wimp. Regardless of

player 1’s type, he would prefer to avoid fighting.
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Figure 2.5.2: Extensive-form setup of the beer-quiche game of Cho and Kreps [87].

The game has two Bayesian Nash equilibria, both of the ‘pooling’ kind: one in

which player 1 eats quiche no matter his type, and one in which player 1 drinks

beer no matter his type. In both cases, player 2 chooses not to fight in response to

the observed behaviour of player 1, but would fight in response to the unobserved

behaviour. Both pooling equilibria are sustained by player 2’s ‘out-of-equilibrium’

belief that, if he were to observe player 1 having the opposite breakfast to that

consumed in equilibrium, there would be a greater-than-half chance that player 1’s

type was wimp. Cho and Kreps’s Intuitive Criterion, however, rules out the always-

quiche equilibrium, by the argument that the out-of-equilibrium beliefs that player

2 is required to hold do not survive forward-inductive reasoning [87] [173, Ch. 11.2].

The Intuitive Criterion has been criticized as being, in some cases, too rationality-

heavy [173]. Our methodology allows us to test whether its prediction in the beer-

quiche game holds up under a rationality-light learning process, where players need

not even know the other players’ payoffs.

We assume two populations, one for each role. Evolution proceeds in each popula-

tion as a Wright-Fisher process with mutations. The population of player i’s, ‘popu-
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lation i’, is of size Ni, with selection strength ηi, exponential fitness fi = exp(ηiEπ),

and per-individual mutation rate µi. Each member of population 1 has a strategy

prescribing his breakfast choice (beer or quiche) if he turns out to be wimpish (with

probability 0.1) and if he turns out to be surly (with probability 0.9). Each mem-

ber of population 2 has a strategy prescribing his response (fight or don’t fight) to

seeing a member of population 1 drink beer for breakfast, and to seeing a member

of population 1 eat quiche. Each round, each member of each population receives

his expected ex-ante (i.e., before types are chosen in population 1) payoff from

interacting with a random member of the other population.

We label pure population states by the tuple b(tw), b(ts); r(B), r(Q): respectively,

breakfast had when wimpish, breakfast had when surly; response to beer-drinking,

response to quiche-eating. For the former two, B and Q represent ‘beer’ and ‘quiche’,

while, for the latter two, F and N represent ‘fight’ and ‘no fight’. Again, the bold

font is used to indicate that these are population strategies.

The weights of the most popular states in the stationary distribution are displayed

in Fig. 2.5.3, for the parameter settings η1 = η2 = 0.2, µ1 = µ2, and for various

population sizes N = N1 = N2. For large population sizes (N > 20), the pooling

equilibrium predicted by the Intuitive Criterion, BB;NF, is the modal state in the

stationary distribution. For all population sizes, the other pooling equilibrium, ‘all-

quiche’, has low weight in the stationary distribution; this supports its rejection by

the Intuitive Criterion.

Apart from the fact that, of the two Bayesian Nash equilibria, the one predicted

by the Intuitive Criterion is dominant, it is also of interest that non-equilibrium

population states occur so frequently in the long run. These states are, in order

of their weights in the stationary distribution, QB;NF, QB;NN, and BB;NN.
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Figure 2.5.3: The frequencies of various population states in the long run dynamics of the
beer-quiche game, plotted for various common population sizes N = N1 = N2. For reference,
population state ‘QB;NF’ is that where members of population 1 eat quiche (Q) if wimpish
and drink beer (B) if surly, while members of population 2 do not fight (N) if they see beer-
drinking and do fight (F) if they see quiche-eating. The equilibrium predicted by the Intuitive
Criterion, BB;NF, is modal for large (> 20), but not for low (< 20), population sizes. The
equilibrium ruled out by the Intuitive Criterion, QQ;FN, is infrequent in the long-run dynamics
for all population sizes.
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Indeed, for small population sizes (N < 20), the state QB;NF has highest weight

in the stationary distribution.

The success of these non-equilibrium states is a result of neutral and nearly-

neutral drift. Starting from the equilibrium state BB;NF, members of population

2 who instead play NN achieve the same expected payoff (0.9) as those playing

NF , and so can neutrally invade the population. If they fix, the pure population

state BB;NN is established. From this state, members of population 1 who play

QB are slightly favoured over the incumbents playing BB (expected payoff 3 versus

2.9), and so can invade and fix, establishing the pure state QB;NN. From this

state, members of population 2 who play NF are slightly favoured (expected payoff

1 versus incumbent expected payoff 0.9). If they invade and fix, pure state QB;NF

is established. But from this pure state, members of population 1 who play BB

are slightly favoured (expected payoff 2.9 versus incumbent 2.8). If they invade and

fix, the equilibrium pure state BB;NF is re-established. Notice that, because the

reverse directions involve only neutral and slightly disfavourable mutations, they

also occur with non-negligible probability, and are therefore likely to influence the

stationary distribution.

The intuition for the fact that increased population size here results in the system

spending more time in the Nash equilibrium state is similar to that for the same

observation in the battle of the sexes. When the population size is small, mutants

that are weakly selected against still have non-negligible probability of fixing, and

so transitions out of BB;NF to, say, QB;NF (mutant’s expected payoff only 0.1

less than incumbents’) play a role in the long-run dynamics. When the population

size is very large, mutants that are weakly selected against have very little chance

of fixing, and so these paths out of equilibrium are shut down, leaving only neutral
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paths such as BB;NF → BB;NN. Increasing selection strength η would have the

same effect.

2.6 Discussion

Our model involves a number of assumptions and simplifications, four major ones of

which we discuss below: (i) the assumption of multiple populations, (ii) that, in the

no-mutations process, only pure states are absorbing, (iii) that mutations can, in

reality, be sufficiently rare for the evolutionary dynamics to behave like the limiting

case, and (iv) that mutation rates within populations are uniform. Thereafter, we

briefly discuss the relevance of the approach developed in this paper for mixed-

strategy equilibria.

On (i), an alternative approach would be to model evolution as occurring in a

single population, wherein each agent has a strategy for every role [353]. Expected

payoffs to players could then be computed on the basis of random assignment of

roles each period.

In most learning contexts, the multiple-population setup seems more natural: we

think of roles as being assigned at the outset, with each agent subsequently learning

how best to play her assigned role. An example is the battle of the sexes game studied

in Section 2.5, where the gender of each agent is fixed for the duration of his/her

learning period. The multiple-population setup is also better suited to modelling the

genetical evolution of multiple interacting, though reproductively distinct, species.

In the context of genetical evolution within a single species, however, the more

natural model is a single population in whose genomes strategies for different roles

are encoded at different loci. Strategies are then collections of alleles, one for each

locus, and are inherited intact (ignoring genetic recombination). In the course of
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the propagation of a strategy, which locus is relevant will change from generation to

generation, as different roles are taken on (carrier is male or female, carrier is the

incumbent occupant of a territory or the trespasser, etc.).

When should we expect the evolutionary dynamics under this single-population

model to resemble those under our multiple-population model (where each locus, or

role, is treated as a separate ‘population’)? Here, the answer is simpler for deter-

ministic infinite-population dynamics. If there is variation within the population for

alleles (/strategies) at multiple loci (multiple loci exhibit ‘polymorphism’), then the

multiple-population approach and the single-population approach yield equivalent

dynamics under the deterministic replicator dynamics if a simple condition concern-

ing allele frequencies holds [107]. This condition, known in the population genetics

literature as linkage equilibrium, amounts to statistical independence of allele fre-

quencies across loci, and is preserved through time under the replicator dynamics

[107].

In a finite population, polymorphism at multiple loci will be common if the mu-

tation rate or the population size are sufficiently large. The stochastic nature of the

evolutionary process in a finite population ensures that linkage equilibrium will not

always hold, and so a ‘dynamical equivalence’ result such as that described above is

not possible. Nonetheless, if mutations at different loci occur independently, then in

the regime of rare mutations studied in this paper, it will almost always be the case

that at most one locus is polymorphic in the population. Thus linkage equilibrium

will almost always hold, since linkage disequilibrium between two loci requires that

both loci be polymorphic. In the rare mutations limit, therefore, the dynamics are

the same whether we model evolution as occurring in multiple populations of loci,

or in a single multi-locus population.
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On (ii), we noted that, in multi-stage games, play at unreached decision nodes

could not be imitated if imitation were a learning process based only on direct obser-

vation of play. Under this condition, interpreting assumption 2 as applying to imita-

tion processes seems unjustified—mixed population states in which one population

is polymorphic for an action at an unreached decision node could be maintained in

perpetuity. As argued in Section 2.3, this condition represents an unrealistic ‘knife-

edge’ case. In reality, we expect agents to communicate about their strategies. The

case of imitation only by direct observation is nonetheless a useful benchmark from

which to discuss the influence of the general factors that validate assumption 2 for

imitation learning processes. Despite the obvious importance of such a discussion,

it has not, to our knowledge, explicitly appeared in the literature on stochastic

learning in extensive form games.

On (iii), how rare do mutations have to be for the population dynamics to resemble

those in our limiting case? A simple heuristic may be derived as follows: Assume

all I populations to be of size N , with a common individual mutation rate of µ.

Consider the case where, starting from a monomorphic state, a mutant appears in

one of the populations. Under most commonly studied population dynamics (e.g.,

Wright-Fisher, Moran), the time that it takes this mutant either to go extinct or fix

in its population is of order N or less [143, 281]. Say that this time is aN . Then

the probability that another mutant appears during the extinction/fixation of this

mutant is about µNI × aN ; for this probability to be below some small threshold

ν, we require µ < ν/(aIN2). If this holds, the dynamics should resemble those for

the limiting case µ→ 0.

The bound could probably be loosened for most games, as it can be in the single-

population symmetric game case (Wu et al. [586]): the analogous loosening of the
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bound in Wu et al. [586] is from order 1/N2 (our heuristic) to order 1/(N lnN).

In their case, this holds for all games except coexistence games, in which mixed

equilibria are stable. The reason for this latter fact is that, if selection is very strong

in a coexistence game, the population can stabilize around the mixed equilibrium

for a very long period of time, long enough for another mutation to occur with

non-negligible probability. In the case of coexistence games, the bound must be

tightened to order N−1/2e−N [586]. In asymmetric games, an analogous ‘negative

feedback’ issue could arise in a situation where two populations stabilize each other

at respective mixed equilibria. A good example is the ‘matching pennies’ game,

where the row player and column player have the same strategy space (heads and

tails); if the strategies played match, the row player gets payoff +1 and the column

player gets −1, and if they don’t match, the row player gets −1 and the column

player +1. In our multi-population context, if the column population predominantly

plays heads, the row population moves to predominantly playing heads, which in

turn leads to a decrease in the play of heads in the column population, and a

subsequent decrease in the play of heads in the row population, etc. If selection

is strong enough, this situation could persist for long enough that the chance of

another mutation occurring would be non-negligible. (Recent derivations [475] of

fixation probabilities in a Moran process when multiple populations are polymorphic

should be useful in analyzing such cases.) In this case, a strengthening of the ‘rare

mutation’ bound would be required: following the analysis of Wu et al. [586], we

would expect a bound of order I−1N−1/2e−N to suffice.

In any case, it is clear that our rare-mutations result is most relevant either if

mutations (or experimentation and errors) occur at a low per-period rate, or if the

populations under study are small, or both. In learning dynamics, interpretation of
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this ‘rare mutations’ condition is difficult, since the rate of mutations is calibrated

to the timescale over which strategy revisions are made. Thus, a ‘generation’ might

in fact constitute a very short period of time, and we might expect experimentation

or errors to be very infrequent on such a timescale. Interpretation of this condi-

tion is easier for genetical evolution, where the timescale is in generations, and the

probabilities of mutations can be reasonably well measured. For example, the point

mutation rate at a single nucleotide site in humans (though known to vary across

the genome [489, 576, 582], and between the sexes [246]) is of order about 10−8 per

generation [328, 446]. If we set a threshold of ν = 0.05 and a = 1, and consider

evolution at two independent loci (‘roles’), then the bound µ < ν/(aIN2) holds for

populations of up to about 1500 individuals.

On (iv), it may be objected that, in our model, mutation rates within populations

are uniform: a mutation from any strategy to any other strategy is equally likely.

While this assumption may be valid in certain genetic contexts, in a learning context

we might expect certain errors, or examples of experimentation, to be less likely than

others [172]. Also, in a genetical context, if we include in our concept of mutation

the possibility of structural changes (e.g., rearrangements, translocations), or if we

are interested in the evolutionary dynamics of a certain functional genotype relative

to all other genotypes (grouped as one class), then asymmetric mutation rates would

be natural [355, 395].

Our result can be generalized in a straightforward way to incorporate heterogene-

ity in mutation rates within populations. If we denote by εµi(si, s′i) the probability

that a member of preliminary period-t population i currently employing strategy

si will mutate to playing s′i in the finalized period-t population, then the evolu-

tionary process with mutations is a Markov chain T ε. It is still the case that, for
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s = ⟨s1, . . . , sI⟩ ∈ Ppure, lim
ε→0

T ε(s,p)
ε = 0 if p /∈ Ppure ∪ Ppure/i for some i. But now,

for s/s′i ∈ Ppure/i, lim
ε→0

T ε(s,s/s′i)
ε = Niµi(si, s

′
i). The transition probability matrix Λ

is then constructed as before.

If it is always the case that µi(si, s′i) > 0, then the Markov chain defined by

Λ is irreducible, and an analogous form of Theorem 1 goes through as before. If,

however, we allow there to be some i, si, and s′i such that µi(si, s′i) = 0, then the T ε

are no longer guaranteed to induce irreducible Markov chains. It is then required

that T ε have a unique stationary distribution for each ε > 0, and that there exists

a unique stochastic vector λ such that λΛ = λ, for the analogous Theorem 2 to go

through [170, 351].

A final point concerns games with mixed-strategy equilibria. In evolutionary game

theory, two kinds of ‘mixed strategy’ states must be distinguished [25, 197]. The

‘population kind’ is where individuals within a population each play pure strategies,

but different individuals play different strategies. In our setup, when mutations

are rare, the system spends almost all of the long-run time in pure states (where

individuals within each population all play the same strategy); mixed strategies

of the ‘population kind’ are therefore essentially never observed. The underlying

reason is that these polymorphic states are transient under the no-mutations process.

For a different reason, these ‘population kind’ mixed states are also excluded by

the evolutionary stability concept of infinite-population deterministic dynamics in

asymmetric games: the component strategies of an equilibrium mixed state must

have equal fitness, but then any of them could be involved in a ‘neutral invasion’ of

the state [476].

The second kind of mixed strategy state is the ‘individual kind’, and involves

the individuals of a population all playing the same mixed strategy. Unlike the
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‘population kind’, such states can be evolutionarily stable in infinite-population

dynamics. They do, however, raise a problem for our finite-population approach.

Allowing individuals to play any mixed strategy requires an infinite strategy space

(the unit simplex in R|Si|, for population i with pure-strategy space Si), and therefore

an infinitely large state space. A workaround would be to approximate the infinite

strategy space R|Si| by a discrete lattice.
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3
The Red Queen and King in finite populations

3.1 Abstract

In antagonistic symbioses, such as host-parasite interactions, one population’s suc-

cess is the other’s loss. In mutualistic symbioses, such as division of labor, both

parties can gain, but they might have different preferences over the possible mutu-

alistic arrangements. The rates of evolution of the two populations in a symbiosis

are important determinants of which population will be more successful: faster evo-

lution is thought to be favored in antagonistic symbioses (the ‘Red Queen effect’),
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but disfavored in certain mutualistic symbioses (the ‘Red King effect’). However,

it remains unclear which biological parameters drive these effects. Here, we ana-

lyze the effects of the various determinants of evolutionary rate: generation time,

mutation rate, population size, and the intensity of natural selection. Our main

results hold for the case where mutation is infrequent. Slower evolution causes a

long-term advantage in an important class of mutualistic interactions. Surprisingly,

less intense selection is the strongest driver of this Red King effect, while relative

mutation rates and generation times have little effect. In antagonistic interactions,

faster evolution by any means is beneficial. Our results provide insight into the

demographic evolution of symbionts

3.2 Introduction

Antagonistic symbioses can be conceptualized well in the following simple, constant-

sum game [115, 388]:

Player 2

C D

Player 1 A 1, 0 0, 1

B 0, 1 1, 0

(3.1)

Here, player 1’s available strategies are A and B, player 2’s are C and D, the first

payoff in each cell is player 1’s, and the second is player 2’s. Interacting populations

of ‘player 1s’ and ‘player 2s’ constitute an antagonistic symbiosis, which we expect

to evolve according to arms-race dynamics [121]. To see why, suppose we start with

population 1 all playing strategy A and population 2 all playing strategy C, so
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that population 1 is doing well at the expense of population 2. Now, a mutant in

population 2 who plays strategy D does better (payoff 1) than other members of

population 2 (payoff 0), and can take over, at population 1’s expense (their payoff

decreases from 1 to 0). Population 1 is then expected to switch to strategy B, after

which population 2 switches to strategy C, and so on. As the Red Queen said to

Alice, “it takes all the running you can do, to keep in the same place” [68].

Arms-race dynamics characterize many interactions both in the natural world and

in human behavior. In a host-parasite interaction, for example, the host is selected to

develop immunity to the parasite, which in turn selects for new ‘resistance’ mutations

in the parasite, which selects for the host to develop immunity to the new mutant

parasite, and so on. In Batesian mimicry, a palatable species (of butterfly, for

example) evolves to mimic the warning display of an unpalatable species, so that it

is mistaken by predators for the unpalatable species. This selects for the unpalatable

species to evolve a new display, so as not to be mistaken for the palatable species,

which is then under selection to mimic the new display, and so on [527].

Antagonistic interactions play out at an intragenomic level as well. Examples,

among many others [59, 362], are the X-linked male-meiotic driving gene Dox and

its autosomal suppressor Nmy in Drosophila simulans [507, 508], centromeric repeat

sequences seeking to drive in female meiosis and the centromere-histone genes that

keep them in check [226, 337], and the mammalian recombination-specifying gene

Prdm9 and the binding sequences of its protein (which are under positive selection to

escape PRDM9 binding [19, 35, 421, 528]). Consistent with arms-race dynamics, the

conflicting elements in these examples all show genetic evidence of rapid evolution

[16, 120, 226, 255, 283, 316, 337, 383, 428, 469].

Mutualistic symbioses with a degree of conflict [123, 227] can also be conceptual-
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ized in a simple game [26]:

Player 2

C D

Player 1 A 2, 1 0, 0

B k, k 1, 2

(3.2)

with 0 ≤ k < 2. From either of the two mutualistic coordination states (A,C)

and (B,D), neither population is under selection to deviate to one of the non-

coordination states (A,D) and (B,C). But population 1 prefers coordination state

(A,C), while population 2 prefers coordination state (B,D). Of most interest is the

case k < 1, where game (3.2) is a true mutualism (both populations prefer the two

coordination states to the two non-coordination states).

This game also describes many interactions in both nature and humans. Mu-

tualisms often involve a division of labor [309], such as the production of different

nutrients in a microalgal-microbial partnership [240], the separate production of a

‘poison’ and its ‘antidote’ by two linked genetic elements in a gamete-killing meiotic

drive complex [59, 207], or the economic production of different goods by trading

partners when production exhibits increasing returns to scale [299]. In these cases,

it is beneficial to both interactants that all tasks be carried out, but there can be

conflict over who should do which tasks [555]. For example, it is better to be the an-

tidote producer than the poison producer in the meiotic drive complex, because the

gains of their partnership are shared equally, but its disruption (by recombination)

is costlier to the poison producer.

Another example, Müllerian mimicry, involves two poisonous species (of butter-

fly, say) evolving to share a common pattern, one pattern being easier for their
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predators to learn than two [483]. But if the species’ original patterns evolved to

suit differences in their respective habitats, behaviors, or genomic backgrounds, then

there might be conflict over which pattern to converge on, with each species enjoying

an evolutionary advantage if convergence is on its original pattern.

In both antagonistic and mutualistic symbioses, the relative rates of evolution

of the participating populations are thought to be important determinants of their

relative evolutionary success. A faster rate of evolution could be achieved through

various means [26, 121, 123, 227]. First, it could derive from a shorter generation

time, allowing more generations over which to adapt [115]. Second, it could derive

from a higher rate of mutation, more rapidly generating new variants that allow a

population to escape an unfavorable state of interaction [123, 492, 504]. Finally, it

could derive from more effective action of natural selection. This could be because

the stakes are higher for one population than the other—‘the rabbit is running for

his life, while the fox is only running for his dinner’ [121]—or because selection

acts more effectively in large populations, owing (roughly speaking) to a reduced

effect of random drift [302] (a precise formulation of this statement is given in [546,

Appendix Section S5.2]).

Common wisdom holds that a faster rate of evolution is advantageous in antago-

nistic interactions [537], the better to ‘keep ahead in the race’ [121]. But it has not,

to our knowledge, been clearly demonstrated which individual biological parameters

drive this ‘Red Queen effect’ in theory.

In an important paper, Bergstrom and Lachmann [26] (hereafter B&L) demon-

strated that a slower rate of evolution might be advantageous in some mutualistic

interactions, an effect they called the ‘Red King effect’. They studied two popula-

tions interacting according to the mutualism game (3.2), with deterministic evolu-
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tionary dynamics operating in each of the two populations, both of infinite size, and

without the possibility of mutations.

In their model, x is the proportion of population 1 playing strategy A (so that

the proportion 1 − x play B), and y the proportion of population 2 playing D

(1− y play C). Then the expected payoff to a member of population 1 who plays A

when interacting with a random member of population 2 is, from the payoff matrix

(3.2), πA1 = 2(1 − y). On the other hand, the payoff to a member playing B is

πB1 = k(1−y)+y, and the average payoff in population 1 is π̄1 = xπA1 +(1−x)πB1 . The

analogous quantities in population 2, πC2 , πD2 , and π̄2, are calculated similarly. The

strategy frequencies in the two populations evolve according to replicator dynamics:

ẋ = mx
[
πA1 (y)− π̄1(x, y)

]
, ẏ = ny

[
πD2 (x)− π̄2(x, y)

]
. (3.3)

Here m,n > 0 are parameters that calibrate the relative rates of evolution of the two

populations by determining how responsive their respective evolutionary dynamics

are to fitness differences among strategies.

These dynamics are deterministic—evolutionary trajectories are fully determined

once their starting points are known—and evolution necessarily leads to one of the

two coordination equilibria, (A,C) [x = 1, y = 0; population 1’s preference] or

(B,D) [x = 0, y = 1; population 2’s preference], where evolution then halts.

B&L showed that, when k > 1 in game (3.2) and population 1 evolves slower than

population 2 (m < n), then the set of starting points from which evolution proceeds

to population 1’s favored equilibrium (A,C) (the equilibrium’s ‘basin of attraction’)

is larger than the basin of attraction of the equilibrium (B,D). In this sense, slower

evolution is beneficial. When k < 1, the opposite result holds: if population 1

evolves slower, the basin of attraction of (A,C) is smaller than that of (B,D).
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Here, we construct a finite-population model of symbiosis evolution, incorporating

all of the biological determinants of evolutionary rate. This model allows us to

extend B&L’s results for mutualisms in several ways, and to apply a similar analysis

to antagonistic symbioses, leading to a richer picture of the evolutionary dynamics

of symbioses.

First, our model allows for an explicit characterization of which evolutionary

rate parameters influence the relative success of the interacting populations. This

is unknown for mutualisms (B&L’s general rate parameters m and n have no clear

biological interpretation), has not been fully disentangled for antagonistic symbioses,

and in both cases is crucial for standard empirical measures of evolutionary rate

(such as the substitution rate at neutral genetic loci, which depends on mutation

rate and generation time, but is insensitive to changes in population size [280]).

Second, our model allows us to uncover a key influence of evolutionary timescale

on symbiosis evolution. In the mutualism game (3.2), we shall show that the short-

run behavior of our stochastic evolutionary dynamics is very similar to that of the

replicator dynamics studied by B&L: from a given starting state, the dynamics

rapidly converge to, or near to, one of the two equilibria of the game. Which

equilibrium is most likely to be approached depends critically on the starting point,

just as in the dynamics of B&L. On a longer timescale, however, we shall show the

evolutionary dynamics of this game to be of a very different nature. The long-run

dynamics involve transitions between equilibria, driven by sporadic mutation, and

eventually become independent of where the dynamics first started. As we shall

show, in mutualisms, many of the conclusions concerning the short-run dynamics

are either annulled or reversed in the long run.

Our main results are summarized in Table 1.
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Table 3.2.1: The biological parameters that drive the Red Queen and King effects in antagonistic
and mutualistic symbioses. For each of the parameters that determine evolutionary rate, we ask
whether the population with the larger parameter value, and which therefore evolves faster, is
more successful (QQ, a Red Queen effect) or less successful (KK, a Red King effect) in the
interaction, holding the other rate parameters constant and equal between the two populations.
The short-run results are numerically computed for particular parameter values (see Figs. 3.4.1,
3.5.1, and 3.5.2). The long-run results are for the weak-mutation limit, and are exact (see
text for details). For selection strength and population size in the mutualisms: (i) we set one
population’s selection strength to w (or both populations’, when studying the effect of population
size), and assume that the larger parameter value is larger by a small amount. (ii) ‘k small’
means k < 1/(1 + w); ‘k large’ means k > 1/(1 + w), and (iii) we assume the populations to
be sufficiently large.

Mutualism Mutualism
Antagonistic symbiosis k small k large
Short run Long run Short Long Short Long

1/Generation time QQ QQ QQ NE KK NE
Mutation rate NE QQ NE NE NE NE
Selection strength QQ QQ QQ KK KK QQ
Population size QQ QQ QQ KK KK QQ
QQ: Red Queen effect. KK: Red King effect. NE: no effect

3.3 A finite-population model of symbiosis evolution

Populations 1 and 2 are of sizes N1 and N2, and interact according to a two-player,

two-strategy game such as games (3.1) and (3.2). The ‘populations’ here can be

broadly construed: they could be all the individuals of two species in a symbiosis,

for example, or all the alleles at two distinct loci among the genomes of a single

species.

The evolutionary process occurs in discrete time-steps. Each time-step, individu-

als in each population receive their average payoffs from interacting with a random

member of the opposite population. An individual’s payoff π in population l is

translated to a non-negative fitness value 1 + wlπ, so that the ‘selection strengths’

w1, w2 > 0 calibrate the effectiveness of natural selection in the two populations.

In each time-step, a ‘birth-death event’ occurs in one of the populations. Indi-

viduals in the two populations have relative generation times g1 and g2: in a given
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time-step, the birth-death event occurs in population l with probability proportional

to Nl/gl, independently across time-steps.

A birth-death event in a population involves choosing an individual to reproduce,

with probability proportional to fitness, and an individual to die, with each equally

likely. These can be the same individual. A single offspring of the reproducing

individual replaces the individual that was chosen to die. This within-population

process, the Moran process [375, 511], has been used as a model both of biological

evolution [219, 396] and of imitation learning [170, 174, 224]. In the Moran process,

one ‘generation’ of a population typically corresponds to a number of birth-death

events that is about the same as the population’s size [219]. In our two-population

framework, we shall label the number of time-steps equal to the sum of the popu-

lations’ sizes as a common ‘generation’: each individual experiences on average one

birth-death event per generation.

Finally, to account for the possibility of mutation, we assume that, in a birth-death

event in population l, the offspring inherits its parent’s strategy with probability

1−εµl, or mutates to the alternative strategy with probability εµl. Thus, µ1 and µ2

represent the relative mutation rates of the two populations (they are unitless), while

the parameter ε calibrates the overall frequency of mutations in the two populations

(in units ‘per replication’).

In sum, given a payoff matrix such as (3.1) and (3.2), and rate parameters N1, N2,

g1, g2, w1, w2, µ1, µ2, and ε, and provided µ1, µ2, ε > 0, the above defines an ergodic

Markov chain over a state space comprising all possible strategy compositions of the

two populations. If 0 ≤ i ≤ N1 is the number of A-strategists in population 1 at

some point in time (so that N1 − i individuals play B), and 0 ≤ j ≤ N2 is the

number of C-strategists in population 2 (N2 − j play D), then the population state
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is (i, j). The behavior of the evolutionary process is characterized by the probability

of moving from state (i, j) to (i′, j′) in one time-step, for all such pairs of states—

these probabilities are provided in [546, Appendix Section S1].

Two regimes are of interest in these dynamics, corresponding roughly to their

short-run and long-run behavior.

Given some initial population state (i0, j0), the short-run dynamics (a) are not

affected much by mutations, instead being governed mostly by selection strengths,

population sizes, and generation times, (b) depend critically on the starting point

(i0, j0), (c) have trajectories that are similar to those of the replicator dynamics,

especially when the populations are large, and (d) in coordination games, like game

(3.2), converge rapidly to or near one of the pure population states (in which each

population is monomorphic) associated with the equilibria of the game. For illustra-

tion, the upper panels in Figs. 3.5.1, 3.5.2, and especially S1 display the similarity

of the short-run behavior of our dynamics to the replicator dynamics, in the context

of the mutualism game (3.2) (cf. Fig. 2 of B&L [26]).

The long-run dynamics, on the other hand, are of a very different nature. Because

the evolutionary process, as we have defined it, is ergodic, the probability that the

system is in some state in the future eventually becomes independent of where the

system started [265]. This effect is illustrated for the antagonistic symbiosis game

in the lower panels of Fig. 3.4.1, and for the mutualism game in the lower panels

of Figs. 3.5.1 and 3.5.2. The state of the system comes to depend not on the early

dynamics that emanate from the starting point, but instead on infrequent transitions

between equilibria, driven by mutations.

The object of interest in these long-run dynamics is their stationary distribution,

that is, the proportion of time spent in each population state in the long run. Equiv-
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alently, the stationary distribution tells us, were we to observe many independent

instances of equivalent symbioses evolving, what proportion of these symbioses we

should expect to find in each possible state at some fixed point in time in the long

run [265].

While we shall numerically study the stationary distribution of our evolution-

ary process for large mutation rates and selection strengths, we shall also invoke

recent methodological advances in evolutionary game theory [406, 543] to study

it analytically in certain limits. Chief among these will be the ‘weak-mutation

limit’, ε → 0, which approximates the case where mutations are very infrequent:

N1εµ1, N2εµ2 ≪ 1 [174, 543]. This is a common assumption in the population

genetics and evolutionary game theory literatures [174, 355, 564], and is realistic

when populations are small, or when the individual mutation rate is very small. For

example, in genetical evolution, the mutations we are considering might be single

nucleotide substitutions, which occur at rates of order 10−8 or smaller per generation

for most organisms [334]; if multiple nucleotide substitutions are required to change

strategies, then the relevant mutation rates are even lower. Therefore, while the

case of infrequent mutations is certainly not general, it is a relevant and interesting

case to consider.

In the weak-mutation limit, the dynamics converge to an embedded dynami-

cal process over just the four pure states [170, 543]; concomitantly, the station-

ary distribution collapses to a probability distribution over these pure states, λλλ =[
λ(A,C), λ(A,D), λ(B,C), λ(B,D)

]
. In these embedded dynamics, transitions between

the pure states occur with probabilities determined by the relative frequency of ap-

pearance of mutants in the two populations, and the probabilities of fixation of these

various mutants [543] (full details in [546, Appendix Section S4]).
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In this paper, we examine the influence of individual rate parameters—mutation

rate, generation time, selection strength, and population size—on the outcomes of

antagonistic and mutualistic symbioses. For the majority of our analysis, we take

the following ‘all else equal’ approach: For each rate parameter, we hold equal and

constant for the two populations all but that parameter, and then ask whether the

population with the larger value of that parameter is, by some relevant criterion,

evolutionarily more successful.

This ‘all else equal’ approach is motivated by two considerations: First, it will be

seen to allow for simple mathematical characterization of the long-run dynamics in

the weak-mutation limit. Second, it allows us to ask in a clear way, ‘What is the

contribution of a given parameter to the success of the populations?’ For illustration,

suppose we see that a large population of parasites does well against a small host

population. We might wonder whether it is the parasite’s large population size or

its rapid generation time that is the main reason for its success. The cleanest way

to get at an answer is to ask what the effect of the parasite’s large population size

would be if we eliminated any benefit from a faster generation time—i.e., by setting

the parasite’s generation time equal to its host’s. We would then do the same for

generation time, by setting the parasite and the host population sizes equal.

This approach ignores possible interactions between rate parameters—for exam-

ple, if the parasite’s larger population size is beneficial only if the parasite also has

a faster generation time than its host’s. For antagonistic symbioses, in the weak-

mutation limit, we will be able to relax the ‘all else equal’ simplification to prove

more general results about the long-run effect of the various rate parameters. For

mutualisms, our long-run weak-mutation analytical results do require the ‘all else

equal’ assumption. We also give some numerical suggestion that they hold qualita-
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tively when we relax this assumption.

3.4 Antagonistic symbioses

In this section, we study the evolutionary dynamics of populations interacting ac-

cording to the antagonistic symbiosis game (3.1). An appropriate measure of the

relative success of population 1 in a given population state is the proportion of (A,C)

and (B,D) matchings (favorable to population 1) minus the proportion of (A,D)

and (B,C) matchings (unfavorable to population 1). If this quantity is positive,

then population 1 has a larger average payoff than population 2 in that state.

3.4.1 Strong mutation, strong selection

We begin by numerically studying the short and long-run dynamics, when mutations

are not very rare and selection is not very weak.

We first set the two populations’ sizes, selection strengths, and mutation rates

equal (N1 = N2, w1 = w2, µ1 = µ2), and vary their relative generation times g1 and

g2. For the parameter values that we consider, we find a weak Red Queen effect in

the short-run dynamics (Fig. 3.4.1A): when population 1 has a longer generation

time, the set of initial population states from which, after 50 generations, population

1 is on average more successful is greater than the set of initial population states for

which the reverse is true. We find a more pronounced Red Queen effect in the long-

run dynamics, when the dynamics have become independent of where they started

(Fig. 3.4.1A).

We then set the populations’ generation times equal (g1 = g2), as well as their

sizes (N1 = N2) and mutation rates (µ1 = µ2), and allow their selection strengths

w1 and w2 to vary. We now find very strong Red Queen effects in both the short

69



0 10 20 30 40 50
0

10

20

30

40

50

P
o
p
u
la

ti
o
n
 1

Population 2All C All D

All B

All A

A Population 1 has
longer generation time

S
h

o
rt

−
ru

n
 d

y
n

a
m

ic
s

0 10 20 30 40 50
0

10

20

30

40

50

P
o
p
u
la

ti
o
n
 1

Population 2All C All D

All B

All A

B Population 1 has
lower mutation rate

0 10 20 30 40 50
0

10

20

30

40

50

P
o
p
u
la

ti
o
n
 1

Population 2All C All D

All B

All A

C Population 1 is
under weaker selection

0 50 100 150 200 250

0

5

10

15

20

25

P
o
p
u
la

ti
o
n
 1

Population 2All C All D

All B

All A

D Population 1 is
of smaller size

0 10 20 30 40 50
0

10

20

30

40

50

P
o
p
u
la

ti
o
n
 1

Population 2All C All D

All B

All A

L
o

n
g

−
ru

n
 d

y
n

a
m

ic
s

0 10 20 30 40 50
0

10

20

30

40

50

P
o
p
u
la

ti
o
n
 1

Population 2All C All D

All B

All A

0 10 20 30 40 50
0

10

20

30

40

50

P
o
p
u
la

ti
o
n
 1

Population 2All C All D

All B

All A

0 50 100 150 200 250

0

5

10

15

20

25

P
o
p
u
la

ti
o
n
 1

Population 2All C All D

All B

All A

R
e
la

ti
v
e
 s

u
c
c
e
s
s
 o

f
p
o
p
u
la

ti
o
n
 1

Population 1 is
strongly favored

Population 1 is
strongly disfavored

−1.0

−0.5

0.0

0.5

1.0

Figure 3.4.1: Evolutionary dynamics of antagonistic symbioses, when population 1 evolves
slower than population 2 owing to (A) a longer generation time, (B) a lower mutation rate, (C)
weaker selection, and (D) a smaller population size. Each panel shows the numerically computed
dynamics, assuming that both populations coincide in their evolutionary rate parameters except
for the parameter explicitly varied. The upper panels show, for each initial population config-
uration in the state space, population 1’s relative success after 50 generations. Except when
the populations differ only in their mutation rates, a short-run Red Queen effect operates in all
cases: as the blue area covers more than 50% of the square, population 1’s slower evolution leads
to its typically being disfavored after 50 generations for a larger fraction of initial population
states. The short-run Red Queen effect is strongest for selection strength and population size.
The lower panels show population 1’s relative success after 50, 000 generations, by which time
the starting configuration no longer influences the dynamics: the panels have a uniform color. A
strong long-run Red Queen effect is observed in all cases: population 1’s slower evolution causes
a larger fraction of long-run time to be spent in states unfavorable to it. Baseline parameters:
N1 = N2 = 50, w1 = w2 = 0.05, g1 = g2 = 1, µ1 = µ2 = 1, and ε = 0.001. (A) g1 = 10;
(B) µ1 = 0.1; (C) w2 = 0.5; (D) N1 = 25, N2 = 250. A ‘generation’ is N1 + N2 elementary
time-steps of the Moran process.
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run and the long run (Fig. 3.4.1C). We find similar Red Queen effects, especially

in the long run, when populations differ in their mutation rates (Fig. 3.4.1B) or in

their sizes (Fig. 3.4.1D).

We have spoken loosely of the ‘short run’ and ‘long run’. While 50 generations

are certainly short run, the long run should be more precisely defined as the time by

which the distribution over population states is close to the stationary distribution.

In the language of Markov chains, this is known as the ‘mixing time’ of the dynamical

process [320].

For small population sizes, the time evolution of the probability distribution over

states can feasibly be computed given any starting point. It is shown in [546, Fig. S6]

that, in the antagonistic dynamics, for the parameter values used in Fig. 3.4.1 (with

small populations, of size 50), we may speak of the ‘long run’ as being after 100-

1,000 generations. For larger population sizes, it is not computationally feasible to

compute the time evolution of the probability distribution over states, and we must

resort to approximate analytical arguments.

We give such arguments in [546, Appendix Section S3], Section S3. Here, we

summarize their conclusions. We assume that mutations are infrequent. When

selection acts weakly in at least one of the populations l—that is, when Nlwl <

1—the mixing time of the antagonistic co-evolutionary process is approximately

proportional to 1/(εµl) [if selection acts weakly in both populations, then the mixing

time will be proportional to 1/minl(εµl)]. When selection acts strongly in both

populations (Nlwl > 1), then the mixing time is proportional to 1/minl(Nlwlεµl).

In this latter case, the mixing time decreases with increasing population size, owing

to a higher substitution rate of beneficial mutations (which drive the evolutionary

dynamics of the antagonism game (3.1)) in larger populations (see [546, Appendix
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Section S5.2]. That the mixing time in either case does not increase rapidly with

increasing population size, and in fact decreases in the case of strong selection,

indicates that the stationary distribution will be relevant on realistic timescales.

3.4.2 Weak mutation

To gain a greater understanding of the above results, we study the analytically

tractable case of rare mutations, ε → 0, using the methodology developed in

ref. [543].

In this ‘weak-mutation limit’, the long-run stationary distribution collapses to a

distribution over just the four pure states, λλλ =
[
λ(A,C), λ(A,D), λ(B,C), λ(B,D)

]
. The

relative success of population 1, as defined above, then simplifies to
(
λ(A,C) + λ(B,D)

)
−(

λ(A,D) + λ(B,C)

)
, which, by symmetry of the underlying states (λ(A,C) = λ(B,D),

λ(A,D) = λ(B,C)), is proportional to λ(A,C) − λ(A,D).

First, we examine the influence of generation time and mutation rate on the

success of population 1. We fix N1 = N2 = N and w1 = w2 = w, and write

γ = (1 + w)N−1 > 1. Define r1 = (µ1/g1)/(µ2/g2), the relative arrival rate of

mutations in population 1. The stationary distribution of the evolutionary process,

λλλ =
[
λ(A,C), λ(A,D), λ(B,C), λ(B,D)

]
, is then

λλλ =

[
1 + γr1
r1 + γ

, 1, 1,
1 + γr1
r1 + γ

]
/λ̄, (3.4)

where λ̄ ensures that λλλ sums to one (calculations in [546, Appendix Section S5.4]).

The relative success of population 1 is then

λ(A,C) − λ(A,D) =
(γ − 1)(r1 − 1)

(r1 + γ)λ̄
, (3.5)
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which is increasing in r1. Since both a higher mutation rate and a shorter generation

time for population 1 increase r1, they are both associated with greater evolutionary

success in Red Queen interactions. In fact, this result can be shown to hold far more

generally: it does not require that the population sizes and selection strengths be

set equal for the two populations, and holds for all standard evolutionary dynamics,

including those exhibiting frequency dependence [396, 401, 406, 475, 511] (proof in

[546, Appendix Section S5.3]).

A larger population size and a stronger selection strength of population 1 can also

be shown to increase its relative evolutionary success, λ(A,C) − λ(A,D), although the

results cannot be written as neatly as in (3.4) [546, Appendix Sections S5.1, S5.2].

Again, these results hold more generally: for many evolutionary processes, including

the Moran and Wright-Fisher processes, they hold even if the generation times,

mutation rates, and selection strengths are not set equal for the two populations.

3.5 Mutualistic symbioses

In this section, we study the evolutionary dynamics of populations interacting ac-

cording to the mutualism game (3.2). We take the measure of relative success of

population 1 in a given population state to be the proportion of (A,C) matchings

in that state minus the proportion of (B,D) matchings. If this quantity is positive,

then population 1 has a larger average payoff than population 2 in that state.

3.5.1 Strong mutation, strong selection

As we did for the antagonistic game in the previous section, we begin here by

numerically studying the short- and long-run dynamics, when mutations are not

rare and selection is not weak. We consider large and small values of k, specifically
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Figure 3.5.1: Evolutionary dynamics of mutualisms when k is small, and population 1 evolves
slower than population 2 owing to (A) a longer generation time, (B) a lower mutation rate, (C)
weaker selection, and (D) a smaller population size. Population parameters are the same as in
Fig. 3.4.1, and k = 1/2. A short-run Red Queen effect is observed for generation time, selection
strength (especially), and population size. Relative differences in mutation rate again have no
discernible short-run effect. In the long run, differences in mutation rate and generation time
again have no effect, while a Red King effect is found for selection strength and population size.

k = 1/2 and k = 3/2.

When k = 1/2, and we set the populations’ sizes, selection strengths, and muta-

tion rates equal (N1 = N2, w1 = w2, µ1 = µ2), and vary their relative generation

times g1 and g2, we find a weak Red Queen effect in the short-run dynamics for

the parameter values we consider: when population 1 has a longer generation time,

the set of initial states from which, after 50 generations, the proportion of (A,C)

matchings is expected to be less than that of (B,D) matchings is larger than the

set of initial states for which the reverse is true (Fig. 3.5.1A). This is similar to

Bergstrom and Lachmann’s general replicator-dynamics result for k < 1 [26].

In the long run, however, the average proportion of (A,C) matchings relative to

(B,D) matchings becomes independent of where the dynamics started; this effect
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is clear after 50,000 generations (Fig. 3.5.1, lower panels). In this case, we find that

differences in generation time between the two populations have almost no effect on

their relative success (Fig. 3.5.1A).

We also find that differences in the populations’ relative mutation rates µ1 and

µ2, when their other rate parameters are equal, confer almost no advantage to either

population, in both the short run and the long run (Fig. 3.5.1B).

If, instead, we allow the populations’ selection strengths w1 and w2 to differ,

setting their other rate parameters equal, we observe stronger effects. Now, there

is a pronounced Red Queen effect in the short-run dynamics, which reverses to a

strong Red King effect in the long run (Fig. 3.5.1C). A similar result is found when

the populations have equal rate parameters except for their population sizes: when

population 1 is smaller (so that it evolves slower—again, see [546, Appendix Section

S5.2] for a precise statement of this), it suffers a small disadvantage in the short-run

dynamics (a Red Queen effect), but an advantage in the long-run dynamics (a Red

King effect) (Fig. 3.5.1D).

When k = 3/2, these results reverse (Fig. 3.5.2). We now find a Red King effect in

the short-run dynamics, which is largest when evolutionary rate differences between

the populations derive from differences in selection strength (Fig. 3.5.2C). This is

similar to Bergstrom and Lachmann’s general replicator-dynamics result for k > 1,

and indeed, the upper panels in Figs. 3.5.2A,B,D and Fig. S1 in [546] look very

similar to B&L’s Fig. 2 [26]. Again, generation time and mutation rate differences

have little effect on the long-run dynamics (Fig. 3.5.2A,B). In contrast, a strong Red

Queen effect is found in the long-run dynamics when the populations differ in their

selection strengths (Fig. 3.5.2C), with population size having a weak Red Queen

effect in the long run (Fig. 3.5.2D).
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Figure 3.5.2: Evolutionary dynamics of mutualisms when k is large, and population 1 evolves
slower than population 2 owing to (A) a longer generation time, (B) a lower mutation rate,
(C) weaker selection, and (D) a smaller population size. Population parameters are the same
as in Fig. 3.5.1, but now k = 3/2. A short-run Red King effect is observed for generation
time, selection strength, and population size, with that for selection strength most pronounced.
These short-run Red King effects are analogous to that found by Bergstrom and Lachmann
[26]. Relative differences in mutation rate have no discernible short-run effect. In the long run,
differences in mutation rate and generation time have no effect on the relative success of the
populations, while a Red Queen effect is found for selection strength and population size.
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To summarize, when mutation rates are not very small, we find, for k = 1/2,

a Red Queen effect in the short run, and a Red King effect in the long run; for

k = 3/2, we find a Red King effect in the short run, and a Red Queen effect in the

long run. The long-run effects are driven by selection strengths and population sizes;

generation times and mutation rates have little effect on the long-run dynamics.

Again, the appropriate definition of the ‘long run’ is how long it takes for the

dynamics to get close to their stationary distribution. This can be computed exactly

for small population sizes. In the mutualism game (3.2), for the parameter values

we have considered in Figs. 3.5.1 and 3.5.2, Fig. S6 in [546] suggests that the long

run could be considered any time after about 1,000-10,000 generations.

For larger population sizes, such computations are not feasible, and we must again

resort to approximate analytical arguments. These are detailed in [546, Appendix

Section S3]. We summarize their conclusions here. Mutations are assumed to be

infrequent. When selection acts weakly in both populations (Nlwl < 1 for l = 1, 2),

then the mixing time is approximately proportional to 1/minl (εµl). When selection

acts strongly in at least one population l, then the mixing time is approximately

proportional to eNlwl/(Nlwlεµ) (or, if selection acts strongly in both populations,

the largest such value among them).

The exponential term in this last expression is a result of requiring substitutions

against selection for the process to mix. It means that the mixing time will be

prohibitively long when populations are large and selection acts strongly in them

(mixing times increasing exponentially with population size have also been observed

in single-population coordination games [32, 263], where transitions between equilib-

ria require evolution against selection too). In these cases, our stationary distribu-

tions will not be empirically relevant; evolution over realistic timescales will involve
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movement to an equilibrium and then stasis there, as in Bergstrom and Lachmann’s

analysis [26]. When populations are not large and selection is not very strong, then

the stationary distribution will still be reached on a realistic timescale. This will

also be true when the effective sizes of the populations are not large [73], or when

the populations are subdivided into small subpopulations [137, 573], properties that

hold for many mutualistic symbionts [61, 101, 374].

3.5.2 Weak mutation

Again, analytical results can be obtained for the long-run dynamics in the weak-

mutation limit (ε→ 0), using the methodology developed in ref. [543]. In this limit,

the stationary distribution collapses to a distribution over just the pure states,

λλλ =
[
λ(A,C), λ(A,D), λ(B,C), λ(B,D)

]
, and population 1’s relative success, as defined

above, simplifies to the quantity λ(A,C) − λ(B,D).

We first examine the influence of generation time and mutation rate. Setting

N1 = N2 = N and w1 = w2 = w, but not specifying k, g1, g2, µ1, or µ2, the

stationary distribution of the evolutionary process is

λλλ =

[
1,

(
1

1 + w

)N−1

,

(
1 + kw

1 + 2w

)N−1

, 1

]
/λ̄, (3.6)

where λ̄ ensures that λ sums to one (calculations in [546, Appendix Section S6.1].

As expected, most time in the long run is spent in the two coordination states (A,C)

and (B,D), because w > 0 and 0 ≤ k < 2. Less intuitively, for small values of k

(< 1/[1 + w]), more time is spent in the worse non-coordination state (A,D) than

in the better non-coordination state (B,C).

Similar to the numerical results we obtained for the case where mutations are

not very rare, neither the generation times nor the relative mutation rates of the
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two populations have any influence on the stationary distribution λλλ in the weak-

mutation limit: if populations 1 and 2 are of the same size, and if natural selection

acts equally efficiently in them, then they will be equally successful in the long run,

no matter their relative generation times or mutation rates. This weak-mutation re-

sult in fact holds for all standard evolutionary processes, including those exhibiting

within-population frequency dependence, such as the dynamics that govern Mülle-

rian mimicry [546, Appendix Section S6.1].

It turns out (mathematical details in [546, Appendix Section S6.1]) that tran-

sitions against selection play an important role in this weak-mutation result. For

example, while a higher relative mutation rate (or shorter generation time) in pop-

ulation 1 renders the transition from (A,D) to (B,D) more likely than that from

(A,D) to (A,C), they also make the reverse transition, from (B,D) to (A,D), more

likely than that from (A,C) to (A,D). Because of the symmetry of the fitness

changes in these two sets of transitions, these mutations effects (and, similarly, gen-

eration effects) cancel out exactly. In words, with a higher mutation rate, population

1 is typically the one that evolves to a coordination equilibrium (in the direction of

selection), but it is also typically the one that evolves back out of it (against the

direction of selection).

Furthermore, numerical calculations suggest that this weak-mutation result is

broadly robust to inequalities in population sizes and selection strengths [546, Fig. S10C,D]:

relative mutation rates and generation times have very little effect on the long-run

success of the two populations in the weak-mutation limit. (Of course, we have

not explored the entire parameter space, and so cannot completely rule out that

there exist parameter values where mutation rates and generation times do have an

appreciable effect on the relative success of the populations.)
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The directional effects of selection strength and population size limit are more

subtle. For selection strength, we equate population 1 and 2’s sizes at N , and fix

population 2’s selection strength at w2 = w. Then, if N is sufficiently large, and

population 1 has a slightly higher selection strength than population 2, population

1 is less successful when k < 1/(1 + w), and more successful when k > 1/(1 + w)

(proofs in [546, Appendix Section S6.3]). Numerical calculations suggest that the

‘sufficiently large’ population size is not very large: results for N = 100 agree with

those above [546, Fig. S10A].

The results are similar if we equate the selection strengths in the two populations

at w, and set population 1’s size slightly higher than that of population 2: population

1 is less successful when k < 1/(1 + w), and more successful when k > 1/(1 + w)

(proofs in [546, Appendix Section S6.4]). Again, numerical calculations suggest that

these results are robust to inequality in mutation rates and generation times, and

larger differences in the two populations’ sizes when both are sufficiently large [546,

Fig. S10B,E,F].

Intuition for these results can be gained by noting that any switch from one coor-

dination state to the other involves two transitions: one transition out of the original

equilibrium (against the direction of selection), and a subsequent transition into the

new equilibrium state (in the direction of selection). Whether weaker selection (or a

smaller population size) favors population 1 depends on which non-equilibrium state

is more often passed during these two transitions. This is driven predominantly by

the relative probabilities of the transitions against selection, because these probabil-

ities are very sensitive (more so than those of transitions in the direction of selection)

to population size, selection strength, and the payoffs involved.

Of the transitions against selection, transitions to (B,C) always involve the fix-
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ation of mutants of payoff k in populations of payoff 2, while transitions to (A,D)

always involve the fixation of mutants of payoff 0 in populations of payoff 1.

Therefore, when k is large, the passed non-equilibrium state is usually (B,C)

[indeed, notice that (B,C) has a higher weight than (A,D) in the stationary dis-

tribution (3.6) precisely when k > 1/(1 + w)]. Focusing therefore on transitions

through (B,C), if population 1 experiences weaker selection (or is of smaller size),

the transition from (A,C) to (B,C) occurs more easily than that from (B,D) to

(B,C). So we expect more time to be spent in population 1’s disfavored equilibrium

state (B,D) in the long run—a Red Queen effect.

Contrariwise, if k is small, the passed non-equilibrium state is usually (A,D).

So, if selection is less effective in population 1, more time is spent in its favored

equilibrium state (A,C)—a Red King effect—because transitions from this state to

(A,D), involving fixation of a selected-against mutant in population 2, are relatively

very rare.

In contrast to the minor influence of relative mutation rates and generation times

on the long-run success of the two populations in the weak-mutation limit, the effect

of population size and selection strength is very large. Indeed, when N1 = N2 = 100

and w2 = 0.15, a small increase in w1 from 0.15 to 0.16 increases λ(A,C)/λ(B,D)

(another measure of population 1’s relative success, useful for illustrating extreme

values) about 35% when k = 1.5, and decreases it about 30% when k = 0.8 [546,

Fig. S10A]. Changes of similar magnitude are seen when holding w1 = w2 = 0.15

and increasing N1 from 100 to 105 [546, Fig. S10B]. These effects, caused by small

changes in population size and selection strength, are larger than those caused by

varying relative mutation rates and generation times across ten orders of magni-

tude [546, Fig. S10C,D]. Larger changes in population size and selection strength
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have enormous effects on the long-run relative success of the two populations [546,

Fig. S10E,F].

3.5.3 Weak selection

Returning to the effect of mutation rate and generation time, we have shown an-

alytically that these have no effect on the long-run stationary distribution in the

weak-mutation limit. To analytically study the long-run effect of mutation rates

when they need not be negligibly small, we make use of another recent advance in

evolutionary game theory [406]. We impose that the population sizes N , selection

strengths w, and generation times g of the two populations be equal. Their mu-

tation rates, εµ1 and εµ2, need not be equal, and we do not impose that ε → 0.

Instead, we assume w ≪ 0; that is, we assume that selection operates very weakly in

the two populations. Long-run Red King and Queen effects consistent with that we

have found above for selection strength and population size would have that slower

evolution (via a smaller mutation rate) is favored when k < 1, and disfavored when

k > 1 [the threshold for k that was previously relevant, 1/(1 + w), tends to 1 as

w → 0].

Unlike in the weak-mutation case, the stationary distribution of this process places

non-negligible weight on every possible population state, including those where one

or both populations are polymorphic. Again, the relative success of population 1

depends on the long-run proportion of (A,C) and (B,D) matchings, which, following

the notation in ref. [406], we denote by ⟨pAqC⟩ and ⟨pBqD⟩ respectively. Using

Eq. (29) in ref. [406], we calculate the long-run advantage to population 1 in the

weak-selection limit:

⟨pAqC⟩ − ⟨pBqD⟩ = A(1− k)ε(µ2 − µ1), (3.7)
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where A = wN(N−1)/[8(1+[N−1]εµ1)(1+[N−1]εµ2)] > 0 (calculations in [546,

Appendix Section S7]). Therefore, when k < 1, population 1 does better when it

evolves slower (µ1 < µ2), while when k>1, population 1 does better when it evolves

faster (µ1 > µ2). We have thus analytically recovered long-run Red King and Queen

effects of mutation consistent with those for selection strength and population size.

When mutation rates are small (ε ≪ 1), the two populations do approximately

equally well, consistent with our weak-mutation results above.

3.6 Discussion

We have placed the evolution of symbioses, both antagonistic and mutualistic, into

a simple finite-population model, and studied the effect of parameters that influence

the rate of evolution of the participating populations on those populations’ relative

success.

Among these ‘rate parameters’, mutation rate and generation time are perhaps

the most obvious and responsive [51, 210, 400, 491, 492, 498, 549, 577]. Selection

strengths, though also a clear determinant of evolutionary rate, seem more of a

fixed property of an interaction, but could change over time if one population re-

duces its dependence on the interaction [121], or actively increases the dependence

of its interactant [588]. Population size is perhaps the most complicated of the

rate parameters, because changes in the relative success of interacting populations

(possible driven by differences in their population sizes) are expected to manifest

themselves in subsequent changes in the populations’ sizes [462].

It is important to realize that, though we have studied differences in the relative

success of interacting populations caused by different evolutionary rate parameters,

our results do not say anything directly about how the rate parameters themselves
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should evolve. For example, it is conceivable that a slower generation time leads

to greater success for a population (i.e., that a Red King effect holds), but that a

faster generation time is selected for within that population. In this example, slow

evolution could be interpreted as a public good.

This has important implications for how results such as ours and those of Bergstrom

and Lachmann [26] should be interpreted in studies of molecular evolution (e.g.,

[449]). Though generation times and mutation rates determine the rate of nucleotide

substitution at neutral sites [280], were we to find that a slower generation time or

a lower mutation rate lead to greater success for a population in a mutualism, this

would not necessarily imply that species involved in mutualisms should exhibit lower

neutral substitution rates than closely related species not involved in mutualisms.

Examining the evolution of the rate parameters themselves would require a more

complicated model than that we have studied. In a population genetic setting,

one could posit in each population two distinct genetic loci: a ‘strategy locus’,

the alleles at which determine which game strategies their bearers play, and a ‘rate

locus’, the alleles at which determine the value of a rate parameter such as mutation

rate. The evolutionary dynamics would then inform how both the success of the

populations and their evolutionary rates evolve. One setting where we might expect

evolutionary rate within a population to evolve to increase that population’s relative

success is if the interacting populations are subdivided into many isolated symbioses

(on ‘islands’), between which migration occurs (this model is similar to the ‘haystack

model’ considered by Bergstrom and Lachmann [26]). A rate parameter value that

improves a subpopulation’s success on an island causes that subpopulation to send

out more migrants—who bear the rate parameter value—to colonize other islands.

Thus, in symbioses with a high degree of population structure, we might expect the
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results we have found in this paper to be informative of how evolutionary rate will

evolve within populations.

In antagonistic symbioses, we have shown that faster evolution through any of

the rate parameters leads to greater evolutionary success in our model, in both the

short run and the long run—a clear Red Queen effect (faster evolution is beneficial).

Mutation rate and generation time play similar roles in determining the long-run

outcome of antagonistic interactions when mutations are infrequent. As far as our

results have implications for evolution within populations, this suggests that one

population might compensate for an intrinsically longer generation time by evolv-

ing an elevated mutation rate. Consistent with this, bacterial strains subjected to

antagonistic interactions with bacteriophages often exhibit much higher mutation

rates than do control strains [416]. A similar explanation has been suggested for

the finding that, in mammals, generation time is positively correlated with the rate

of intra-chromosomal recombination [58], which, like mutation, is a generator of

variation [388]. With particular respect to selection strength, the ‘life-dinner prin-

ciple’ [121] holds in our model: in an antagonistic interaction, the population for

whom the interaction matters more (the rabbit, not the fox) is evolutionarily more

successful.

In mutualistic symbioses, we have uncovered an important influence of evolution-

ary timescale on the relative success of interacting populations, with results in the

short-run and long-run often being in opposition.

In the short run, the stochastic evolutionary dynamics that we have studied are

similar to the deterministic dynamics studied by Bergstrom and Lachmann [26], and

our short-run results replicate theirs. In particular, we find a short-run Red Queen

effect when k is small in game (3.2), and a short-run Red King effect (slow evolution
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is beneficial) when k is large. Our analysis extends that of B&L by allowing us

to determine which of the biological rate parameters drive these effects; to wit:

generation times, population sizes, and (especially) selection strengths.

In the long run, we find a Red King effect when k is small, and a Red Queen

effect when k is large, contrary to the short-run results. Among the rate parameters

that could drive these long-run results, mutation rate and generation time in fact

have little to no effect on the long-run relative success of mutualistic populations,

unless mutation is frequent. This is a surprising result, given that mutation rate and

generation time are perhaps the most prominent determinants of evolutionary rate.

This result depends on the possibility of evolution against selection, always present

in stochastic evolutionary dynamics. It could not be discovered using deterministic

evolutionary dynamics, because in such dynamics, evolution always proceeds in the

direction of selection. Deterministic dynamics admit little notion of the strength

of selection: selection is either ‘positive’ or ‘negative’. In reality, selection is a

continuum—as the Red Queen said to Alice, “I could show you hills, in comparison

with which you’d call that a valley” [68]—and deleterious mutations do sometimes

fix because of random drift, especially in populations that are not very large [280,

333, 356, 404, 405].

The long-run Red King and Queen effects in mutualisms, for small k and large

k respectively, instead operate predominantly in our model through the efficiency

of selection (which increases with selection strength and population size), not the

generation of variation (mutation and generation rates).

With short-run and long-run results differing so starkly, timescale clearly mat-

ters for evolution in mutualisms in our model. The short-run dynamics depend

critically on their starting point. Comparisons of the populations’ short-run rela-
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tive success, both in our analysis and B&L’s [26], involve counting the proportion

of non-equilibrium starting states from which evolution leads to each equilibrium.

This implicitly assumes every starting state to be equally likely, a problematic as-

sumption. In addition, interpretation of ‘starting points’ in a continuous process like

evolution is itself problematic. Analysis of the long-run dynamics, which become

independent of where they started, obviates these problems.

Which results, short-run or long-run, are relevant to a specific case depends on

which evolutionary timescale is appropriate. Again, this question is treated quan-

titatively in [546, Appendix Section S3]. In mutualisms, the long-run dynamics

are characterized by transitions between the equilibria—involving evolution first

against, and then with, selection—so the applicability of our long-run results de-

pends on the timescale of these transitions. When both populations are very large

and under strong selection, the time it takes for a transition between equilibria to

occur can be so long as to be empirically irrelevant; here, the short-run dynamics

are of more interest. When the populations have small effective population sizes

(owing to small census size, or population structure, for example) or selection acts

weakly in them, equilibrium transitions can be frequent, and the long-run dynamics

apply.

In our analysis, we have made several modeling decisions and simplifying assump-

tions:

We have assumed that interactions are pairwise, for simplicity. The consideration

of multiplayer games [115, 185–188, 354, 587] is a desirable extension, and has been

shown to influence the outcome of mutualism games in infinite populations [187]

and antagonism and Snowdrift games in finite populations [115].

In deriving our main analytical results, we assumed that mutations are very in-
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frequent. This is a realistic assumption in many cases, but not always. Fig. S5 in

[546] shows that mutation rates in the two populations do not have to be exceed-

ingly small for our weak-mutation analytical results to be an excellent quantitative

match [434, 543, 586], and Figs. S2-5 in [546] suggest that, even for very large mu-

tation rates, the long-run relative success of the populations qualitatively matches

our weak-mutation results in most cases. The only notable exceptions, all for the

mutualism game (3.2), are (i) for large k, when the populations have different selec-

tion strengths, a strong long-run Red Queen effect for small mutation rates reverses

to a weak Red King effect when mutation rates are very large [546, Figs. S2C,S5C];

(ii) when the populations have different mutation rates and both their mutation

rates are very large, then, contrary to our weak-mutation result where differences in

mutation rates have no effect, we find a long-run Red King effect for small k [546,

Figs. S3B,S5B] and a Red Queen effect for large k [546, Figs. S2B,S5C] [exception

(ii) is consistent with our weak-selection result, (3.7)]; (iii) for small k, genera-

tion time has a Red Queen effect for intermediate and large mutation rates [546,

Figs. S3A,S5B]. We note that a very recent methodological advance in the study of

stochastic evolutionary dynamics [542] suggests that tractable analytical study of

the stationary distribution outside the weak-mutation regime may soon be possible.

In finite-population evolutionary game theory, game payoffs π must be translated

to positive fitnesses f [396], with this translation calibrated by a strength of selection

w. We have employed the commonly-used linear translation f = 1+wπ, but others

are also possible. The exponential translation f = exp(wπ) has the advantage

that it guarantees fitnesses always to be positive, no matter the range of game

payoffs, and also sometimes allows for neater characterization of long-run dynamics

[33, 103, 519, 520]. Results are expected to be similar for the two translations, and
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they are identical in the weak-selection limit w → 0. Fig. S5 in [546] suggests that

our results are essentially unchanged when we employ either translation.

The dynamics in our model, based on the widely-used Moran process, are highly

stylized, especially in their assumption of constant population sizes over time. It

would be interesting to study the evolutionary dynamics of games (3.1) and (3.2)

using more complicated inter-generational population dynamics [189, 417, 493].

Finally, the games themselves are particular simplifications of more complex in-

teractions. One key simplification in games (3.1) and (3.2) is that strategies are

discrete: A, B, C, and D. This will be relevant for many antagonistic symbioses;

for example, it is probably a realistic summary that a pathogen is either resistant

or not to a host’s defenses. For mutualisms, we have motivated the discrete game

(3.2) with examples that exhibit such discreteness, such as division of labor, and

Müllerian mimicry. However, many mutualisms are likely to involve continuous

strategies: for example, how much energy to expend on a cooperative or altruistic

task, as in the degree to which an ant colony protects from herbivores the plant

that houses and feeds it [167], and in turn the energy the plant dedicates to hous-

ing and feeding the ants. For such cases, an alternative, continuous-strategy model

specification is appropriate.

An attractive option is a simple modification of a Nash bargaining game [386].

Players 1 and 2 choose activity levels x and y. If x+ y > 1, then both receive zero

payoff. If x+y ≤ 1, then player 1 receives payoff αx+(1−α)y, and player 2 receives

αy + (1− α)x. α ∈ (0, 1) calibrates the degree to which players’ payoffs depend on

their own actions. As long as x + y < 1, both players’ payoffs increase if either

player increases its activity, so that the game is mutualistic. But when α is small,

each player would prefer to have a lower activity than the other, while when α is
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large, each would prefer to have the larger activity. Unlike in the discrete-strategy

mutualism game, where there were two discrete equilibria, here there is a continuous

path of equilibria (the line x + y = 1). In [546, Appendix Section S8], we study

the co-evolutionary dynamics of populations of player 1s and 2s. The short-run

dynamics in this game involve evolution to the equilibrium line, while the long-run

dynamics are characterized by drift-like movement along and around it.

In both the short and long runs, the faster-evolving population is at an advantage

when α is large (a Red Queen effect; [546, Fig. S11]), but a disadvantage when α is

small (a Red King effect; [546, Fig. S12]). The short-run effects are driven by all rate

parameters. However, similar to what we found for the discrete mutualism game,

the long-run effects here are driven predominantly selection strength and population

size—differences in mutation rate and generation time have little long-run effect.

This is because selection strength and population size contribute differentially here

to a case of drift-induced selection: stochastic jumps off the equilibrium path return

with an average directional bias, so that a drift-induced directional flow operates

along the path. Drift-induced selection is a newly-recognized phenomenon that has

recently gained attention in the stochastic dynamics literature [99, 100, 547]. It can

be studied analytically using diffusion approximations and separations of timescales

[419]. Such a study in the context of continuous-strategy mutualisms would be an

important extension of our preliminary analysis.

In this vein, studying the finite-population dynamics of other games in which slow

evolution has been hypothesized to be beneficial [229] would also be desirable.
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4
Assortment and the evolution of cooperation in

a Moran process with exponential fitness

4.1 Abstract

We study the evolution of cooperation in a finite population interacting according to

a simple model of like-with-like assortment. Evolution proceeds as a Moran process,

and payoffs from the underlying cooperator-defector game are translated to positive

fitnesses by an exponential transformation. These evolutionary dynamics can arise,
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for example, in a nest-structured population with rare migration. The use of the

exponential transformation, rather than the usual linear one, is appropriate when

interactions have multiplicative fitness effects, and allows for a tractable character-

ization of the effect of assortment on the evolution of cooperation. We define two

senses in which a greater degree of assortment can favour the evolution of coop-

eration, the first stronger than the second: (i) greater assortment increases, at all

population states, the probability that the number of cooperators increases, relative

to the probability that the number of defectors increases; and (ii) greater assortment

increases the fixation probability of cooperation, relative to that of defection. We

show that, by the stronger definition, greater assortment favours the evolution of

cooperation for a subset of cooperative dilemmas: prisoners’ dilemmas, snowdrift

games, stag-hunt games, and some prisoners’ delight games. For other cooperative

dilemmas, greater assortment favours cooperation by the weak definition, but not

by the strong definition. We also show that increasing assortment expands the set

of games in which cooperation dominates the evolutionary dynamics. Our results

hold for any strength of selection.

4.2 Introduction

Whether like-with-like assortment favours the evolution of cooperation is a critical

question in social evolution and population biology more generally [139, 159, 197,

327, 399, 424]. Assortment can result if interactions are often between related in-

dividuals (e.g., if the population is ‘viscous’; [209, 512]), or if individuals prefer to

interact with those to whom they are similar (homophily; [169, 363]). Any theo-

retical analysis of the relationship between assortment and cooperation requires the

synthesis of two models: one for cooperative interactions, and one for population
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assortment.

The simplest models of cooperation are games between two players, where each

player has available to it the same two strategies: cooperate (C) and defect (D). The

paradigmatic example is the prisoners’ dilemma [13, 397, 435], but many other two-

strategy games can be interpreted as cooperative dilemmas as well [275, 398, 487].

A simple model of assortment in two-strategy games was developed by Grafen

[197]. In his model, individuals can be of two types, corresponding to the two

strategies in the underlying game. In a given time-step, an individual interacts with

a same-type individual with probability r, and a random member of the population

(possibly same-type, possibly not) with probability 1 − r. Higher values of r cor-

respond to greater degrees of assortment in the population. This model has been

extended in many ways [1, 3, 27, 139, 248, 532, 539, 540]

Does increased assortment tend to favour cooperation? Of course, this question

is not new, and has been approached from numerous angles. Most analyses have

been in a deterministic, infinite-population setting. In such a setting, Hamilton

[212, App. A] determines, for several particular games of interest, whether selection

is in favour of cooperators or defectors in a population with an interaction structure

identical to that in [197]. Extending this, Eshel and Cavalli-Sforza [139] analyze the

effect of Grafen’s assortment parameter on the conditions for evolutionary stability

of cooperation and defection. They show that, for cooperative dilemmas broadly

defined (two cooperators do better than two defectors, and a defector does better

than a cooperator when faced with a cooperator), there are threshold assortment

levels 0 < r∗∗ < r∗ < 1 such that, if r > r∗, cooperation is the only ESS, but if

r < r∗∗, defection is an ESS (and the only one in the case of a prisoners’ dilemma).

That is, sufficiently high relatedness renders cooperation evolutionarily stable, while
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sufficiently low relatedness renders defection evolutionarily stable.

More recently, the effect of assortment on the evolution of cooperation has been

studied in the context of finite populations subject to stochastic evolution. In this

setting, a natural measure of the success of a strategy is the weight of its pure

state (where the population is monomorphic for that strategy) in the stationary

distribution of the evolutionary process [4, 170, 533, 543]. In a two-strategy game

(such as the usual cooperative dilemmas) with symmetric, small mutation rates,

the superiority of one strategy over the other corresponds to its having a higher

fixation probability [4, 170]. In a very general model of social evolution that allows

for arbitrary dependence of payoffs on strategy frequencies and population structure

of any sort, van Cleve [531] derives, in the limit of weak selection, the conditions

under which the fixation probability of cooperation exceeds that of defection.

An alternative way to study whether assortment aids cooperation is to determine

the effect on key parameters of the evolutionary process, positive or negative, of

marginal changes in the assortment parameter. In the economics literature, this

general approach is called ‘comparative statics’: rather than trying to determine the

exact effect a change in one variable has on another, we instead try to determine just

the direction of the effect (its ‘comparative static’). Many empirical studies of social

evolution test the broad ‘comparative statics’ statement that increased relatedness

should be associated with more cooperation, and much of social evolutionary theory

is interpreted in this way [164]. It is therefore important that the comparative statics

of social evolution be studied extensively from a theoretical perspective.

A step in this direction was recently provided by Allen and Nowak [3], who

studied the effect of assortment on the evolution of cooperation in a finite population

subject to Wright-Fisher evolution. Interaction each period accords with Grafen’s
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assortment process, with expected payoffs derived from an underlying two-strategy

game. Expected payoffs are translated to fitnesses according to a linear mapping

mediated by a selection strength parameter w, and the next period’s population

composition is chosen stochastically on the basis of these fitnesses. Allen and Nowak

[3] derive analytical results for the ‘weak selection limit’, w → 0. In this limit, for

most cooperative dilemmas, increasing relatedness favours cooperation in the sense

that it increases the fixation probability of a single cooperator relative to that of a

single defector.

Here, we make use of a relatively recent advance in the study of finite-population

evolutionary game theory to give a more general characterization of the comparative

statics of assortment in Grafen’s model. We model evolution as a Moran process

[375], occurring in a finite population that interacts according to Grafen’s assortment

model. Expected payoffs translate to fitnesses according to an exponential mapping

mediated by a selection strength parameter w [520].

In this setup, we find that increasing r increases the fixation probability of a

cooperator relative to that of a defector for the same set of cooperative dilemmas

to which the result in Allen and Nowak [3] applies. However, our result holds for

any strength of selection, while that of Allen and Nowak [3] holds only for weak

selection. We also define a stronger sense in which increased r favours cooperation,

and show that this too holds for a natural class of cooperative dilemmas: prisoners’

dilemmas, snowdrift games, stag-hunt games, and some prisoners’ delight games. To

distinguish this stronger definition, we provide an example of a cooperative dilemma

where assortment favours cooperation by the weaker definition of Allen and Nowak

[3], but not by our stronger definition. Finally, we define what it might mean for

assortment to favour cooperation outside the context of any particular game, using
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the ‘containment order’ notion of Peña et al. [424]. We show that assortment favours

cooperation in our model according to this definition.

For most of this work, we follow in the footsteps of many others [1, 27, 139, 197,

248, 409, 532] by treating r as an abstract assortment parameter without specifying

how this assortment arises mechanistically. In Section 4.7, however, we illustrate

how our model could apply to a nest-structured population. In this setting, the

parameter r quantifies the frequency of interaction among nest-mates.

4.3 Model

Social interactions are between two individuals, with the payoffs from any one in-

teraction defined by the payoff matrix

C D

C R S

D T P

(4.1)

The population is of constant size N . Each member’s type is either cooperator

(plays C) or defector (playsD). Each period, each member of the population receives

its expected payoff from the following interaction: with probability r, it interacts

with an individual of the same type, and with probability 1− r, it interacts with a

random member of the population, with each member equally likely. We allow for

the possibility of self-interaction, to simplify the analysis. In [103, Appendix A], we

show that our main results, Propositions 1 and 3, also hold when self-interaction is

not allowed, while a modified version of Proposition 2 holds.

The population state at a given time is defined by the number of cooperators, i.
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If 1 ≤ i ≤ N − 1, then the expected payoff to a cooperator and a defector are:

πCi = rR+ (1− r)
iR+ (N − i)S

N
,

πDi = rP + (1− r)
iT + (N − i)P

N
. (4.2)

These expected payoffs in turn translate to positive fitnesses fCi and fDi according

to some positively monotonic transformation f , which we assume for simplicity also

to be differentiable (f > 0, f ′ > 0). We discuss the choice of transformation in

Section 4.4.

Evolution is modelled as a Moran process [375, 396]. Each period, the fitnesses

of the cooperators and defectors in the population are calculated as above. One

member is chosen for reproduction; the probability of being chosen is proportional

to fitness. One member of the population is chosen to die; each member is equally

likely to be chosen. A new individual is then born, taking the place of the one chosen

to die. The new individual is of the same type as its parent, the member chosen for

reproduction (which can be the same as the individual that was chosen to die).

Thus, if there are i cooperators this period in the population, with 1 ≤ i ≤ N−1,

then denoting by pi,j the probability that there will be j cooperators next period,

we have:

pi,i+1 =
N − i

N
· ifCi
ifCi + (N − i)fDi

,

pi,i−1 =
i

N
· (N − i)fDi
ifCi + (N − i)fDi

,

pi,i = 1− pi,i+1 − pi,i−1,

pi,j = 0 if j /∈ {i− 1, i, i+ 1}. (4.3)
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Now consider the probability that a single cooperator, presently in a population

that is otherwise all defectors, takes over the population; i.e., its ‘fixation probabil-

ity’, ρC . For our frequency-dependent Moran process, this is given by [396]:

ρC =
1

1 +
∑N−1

j=1

∏j
i=1

fD
i

fC
i

.

The fixation probability of a single D in a population otherwise all-C is

ρD =

∏N−1
i=1

fD
i

fC
i

1 +
∑N−1

j=1

∏j
i=1

fD
i

fC
i

.

From these expressions, the ‘relative fixation probability of cooperation’, ρC/ρD,

simplifies to:
ρC

ρD
=

N−1∏
i=1

fCi
fDi

.

4.4 Payoff-to-fitness transformations

To move from game interaction to reproduction, one must specify some transfor-

mation of payoff (πCi and πDi in our model) to fitness (fCi and fDi , respectively).

Here, ‘fitness’ is shorthand for all those things that determine the rate at which an

organism reproduces, i.e., its viability, fecundity, and fertility, although fecundity

is the most natural interpretation in the Moran process that we study. We require

that the payoff-to-transformation f be monotonic, so that fitness increases with

payoff, and that it be positive. A common choice is a linear transformation such as

f = 1 + wπ, where w > 0 represents selection strength.

Some of our results will apply to any transformation that is monotonic, positive,

and differentiable. For most of our results, however, we follow Blume [33] and
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Traulsen et al. [520] by using an exponential transformation f(x) = exp (wx), so

that

fCi = exp
(
wπCi

)
, fDi = exp

(
wπDi

)
, (4.4)

where w is the strength of selection. This choice of transformation is for the most

part arbitrary [520]. But in the common linear transformation, f = 1 + wπ, when

some payoffs are negative, the selection strength needs to be sufficiently small to

ensure that all fitnesses are positive. In contrast, the exponential transformation

that we use guarantees that all fitnesses are positive, even if some payoffs in the

underlying game are negative.

Moreover, the exponential transformation is conducive to a ‘multiplicative fitness

effects’ interpretation. If an individual has a total of K interactions, with each inter-

action k having a small fitness consequence exp
(
wπk/K

)
≈ 1+wπk/K, and if these

fitness consequences combine multiplicatively, then the total fitness consequence is

f =

K∏
k=1

exp (wπk/K) = exp

(
w

1

K

K∑
k=1

πk

)
.

If the πk are interpreted as payoffs from an underlying game, then the expression

above can be read as exp (wπ), where π is the average payoff to the individual.

Treating averages as expectations, this is the same as the expression in (4.4).

Finally, we note that in the weak selection limit w → 0, the exponential fitness

transformation (4.4) coincides with the usual linear fitness transformation f = 1 +

wπ, since Taylor expanding (4.4) around w = 0 gives exp (wπ) = 1 + wπ +O(w2).

Thus, models that use the linear fitness transformation and the weak selection limit

(e.g. [3, 401]) can be thought of as special cases of the exponential fitness formulation
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[585].

4.5 Defining when assortment favours cooperation

We are interested in whether, and under what conditions, assortment favours co-

operation. To proceed, we must address two semantic questions. First, how is

cooperation defined? Second, given a suitable definition of cooperation, what does

it mean for it to be favoured by assortment?

For strategy C in game 4.1 to be represent cooperation, there are three compar-

isons one might consider:

C1. R ≥ P (Mutual cooperation is better than mutual defection)

C2. R ≥ S (Cooperation helps opposing cooperators)

C3. T ≥ P (Cooperation helps opposing defectors)

One may also consider strict versions of these inequalities; these will be denoted

with primes (for example, C1′ denotes R > P ). For the game to be a dilemma,

there must be some temptation to defect, which could be any of the following:

D1. T ≥ R (Better to defect vs. cooperators)

D2. P ≥ S (Beter to defect vs. defectors)

D3. T ≥ S (Defector is favoured in C-D interaction)

The six conditions C1–C3 and D1–D3 include all possible pairwise comparisons of

payoffs. If all are satisfied in their strict form, the game is a Prisoner’s Dilemma

(T > R > P > S). Following Nowak [398], we define a cooperative dilemma to be any

game satisfying C1′, and at least one of D1′–D3′. This definition can be considered
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minimal, in that other definitions in the literature [3, 223, 275, 424] require more

stringent conditions.

Having defined a cooperative dilemma, we now consider what it might mean for

assortment to favour cooperation. Our first definition centers on the quantities

pi,i+1/pi,i−1, which we term the ‘relative rate of increase of cooperation’ at popula-

tion state i. We can say assortment favours cooperation if it increases the relative

rate of increase of cooperation for all interior i:

Definition 1. For a given cooperative dilemma, assortment favours cooperation in

the strong sense if ∂
∂r

pi,i+1

pi,i−1
> 0 for all i = 1, . . . , N − 1.

In our second definition, we say that assortment favours cooperation if it increases

the relative fixation probability of cooperation, ρC/ρD:

Definition 2. For a given cooperative dilemma, assortment favours cooperation in

the weak sense if ∂
∂r

ρC

ρD
> 0.

The use of the terminology ‘weak’ and ‘strong’ for these definitions is justified by

the fact that the strong definition implies the weak definition: if ∂
∂r

fC
i

fD
i
> 0 for all

i = 1, . . . , N − 1, then clearly ∂
∂r

∏N−1
i=1

fC
i

fD
i
> 0.

Definitions 1 and 2 characterize what it means for assortment to favour coopera-

tion in a given cooperative dilemma. One can also ask what it means for assortment

to favour cooperation generally, outside the context of any particular game. To

address this question, we propose a third definition, based on the ‘containment or-

der’ notion of Peña et al. [424]. Informally, this definition asserts that assortment

favours cooperation if it expands the set of games for which cooperation is favored.

For the formal definition, let C denote the set of games satisfying C1′, C2, and C3.

(These games can be seen as ‘strongly cooperative’). For any r > 0, let S(r) ⊂ C be

the subset of games for which ρC > ρD.
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Definition 3. Assortment favours cooperation in the containment order sense if

S(r1) ⊂ S(r2) whenever r1 < r2.

Equivalently, assortment favours cooperation in the containment order sense if, for

any game in the set C and any r1 > 0, ρC > ρD for r = r1 implies that ρC > ρD for

r > r1. Peña et al. [424] also define a ‘volume order’ notion under which assortment

can favour cooperation: if it increases the volume of the set of games for which

cooperation is favoured. This is weaker than the containment order notion, and so

if in our model assortment favours cooperation in the containment order sense, it

does so in the volume order sense as well.

4.6 Results

We first consider the question of when assortment favours cooperation in the strong

sense of Definition 1. Notice that, given the Moran process transition probabilities in

(4.3), pi,i+1/pi,i−1 = fCi /f
D
i . So the condition for assortment to favour cooperation

in the strong sense simplifies to ∂
∂r

fC
i

fD
i
> 0 for all i = 1, . . . , N − 1. This allows us to

analyze for which games assortment favours cooperation in the strong sense, having

made no assumptions about the nature of payoff-to-fitness transformation f beyond

the requirement that it be positively monotonic, positive, and differentiable:

Proposition 1. Assortment favours cooperation in the strong sense for any game

satisfying C2 and C3 (that is, R ≥ S and T ≥ P ), with at least one inequality strict.

Proof. Suppose R ≥ S and T ≥ P , with at least one inequality strict. We have from
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(4.2) that, for 1 ≤ i ≤ N − 1,

∂

∂r
πCi = R− iR+ (N − i)S

N
=
N − i

N
(R− S) ≥ 0,

∂

∂r
πDi = P − iT + (N − i)P

N
=

i

N
(P − T ) ≤ 0,

with at least one of these inequalities strict. But, because the fitnesses fCi and fDi

are increasing with respect to πCi and πDi respectively,

∂

∂r
fCi = f ′(πCi )

∂

∂r
πCi ≥ 0,

∂

∂r
fDi = f ′(πDi )

∂

∂r
πDi ≤ 0,

with at least one inequality strict. It follows that ∂
∂r

fC
i

fD
i
> 0.

The assumption that f be differentiable is for neatness, but can be safely dropped

with an obvious restatement of Definition 1 that fCi /fDi just be increasing in r.

An alternative definition of the ‘relative rate of increase of cooperation’ at pop-

ulation state i is the expected increase in the share of cooperators, pi,i+1 − pi,i−1,

which can also be shown to be increasing in r when R ≥ S and T ≥ P , with at

least one inequality strict. This follows from Proposition 1 and the fact that pi,i+1

is increasing, and pi,i−1 decreasing, in fCi /f
D
i .

For the remainder of our results, we use the exponential transformation (4.4).

With this transformation, the relative rate of increase of cooperation is calculated

by successively applying (4.3) and (4.4):

pi,i+1/pi,i−1 = fCi /f
D
i = exp

(
w
[
πCi − πDi

])
, (4.5)

with πCi and πDi as specified in (4.2). Using this, we can prove a partial converse to

103



Proposition 1 in the case of exponential fitness, which shows that Proposition 1 can

be strengthened to an ‘if, and only if’ statement provided the population size N is

sufficiently large.

Proposition 2. If assortment favours cooperation in the strong sense, then one of

the following three sets of conditions is satisfied:

(2a) R ≥ S and T ≥ P , with at least one inequality strict.

(2b) R > S, T < P , and N < R−S+P−T
P−T .

(2c) R < S, T > P , and N < S−R+T−P
S−R .

Proof. We have from (4.5) that

∂

∂r

pi,i+1

pi,i−1
= exp

(
w
[
πCi − πDi

])
w
∂

∂r

[
πCi − πDi

]
,

and since the exponential is positive, the sign of ∂
∂r

pi,i+1

pi,i−1
is the same as the sign of

∂
∂r

[
πCi − πDi

]
. Writing x := i/N , so that x ∈ (0, 1), we have from (4.2) that this

quantity is given by

∂

∂r
πCi − ∂

∂r
πDi = [R− xR− (1− x)S]− [P − xT − (1− x)P ]

= (1− x)(R− S) + x(T − P ). (4.6)

We prove Proposition 2 by considering all possible cases for the signs of R − S

and T − P .

• From Proposition 1, we know that if T ≥ P and R ≥ S (with at least one

inequality strict), ∂
∂r

pi,i+1

pi,i−1
> 0.

• If R ≤ S and T ≤ P , both terms in (4.6) are non-positive, and so ∂
∂r

pi,i+1

pi,i−1
≤ 0.
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• If R < S and T > P , the term R − S in (4.6) is negative, and the term

T − P is positive. The expression (4.6) is therefore increasing in x := i/N ,

and therefore smallest when i = 1. So, in this case, ∂
∂r

pi,i+1

pi,i−1
> 0 for each

i = 1, . . . , N − 1 if, and only if, (4.6) is positive when i = 1. When i = 1,

(4.6) equals [(N − 1)(R − S) + (T − P )]/N , which is positive if, and only if,

N < (S −R+ T − P )/(S −R).

• If R > S and T < P , the term R− S in (4.6) is positive, and the term T − P

is negative. The expression (4.6) is therefore decreasing in x := i/N , and

therefore smallest when i = (N − 1)/N . So, in this case, ∂
∂r

pi,i+1

pi,i−1
> 0 for each

i = 1, . . . , N − 1 if, and only if, (4.6) is positive when i = (N − 1)/N . When

i = (N − 1)/N , (4.6) equals [(R− S) + (N − 1)(T − P )]/N , which is positive

if, and only if, N < (R− S + P − T )/(P − T ).

We now determine how much broader the conditions are under which assortment

favours cooperation in the weaker sense of Definition 2.

As noted by Traulsen et al. [520], the ratio of fixation probabilities ρC/ρD in

the frequency-dependent Moran process simplifies significantly with the exponential

fitness transformation (4.4):

ρC

ρD
=

N−1∏
i=1

fCi
fDi

=
N−1∏
i=1

exp
(
w
[
πCi − πDi

])
,

= exp

(
w

N−1∑
i=1

[
πCi − πDi

])
. (4.7)

But in our case, we have from (4.2) that for each i, πCi +πCN−i = 2rR+(1−r)(R+S)
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T - P

R - S

Assortment favours
cooperation in

weak sense

Assortment favours
cooperation in both

senses

Figure 4.6.1: A summary of our results for two-player games. Assortment favours cooperation
in the strong sense (increases the relative rate of increase of cooperators for all intermediate
population states) if R ≥ S and T ≥ P , with at least one inequality strict (blue and red cross-
hatch). For large enough population sizes, this is a necessary condition as well. Assortment
favours cooperation in the weak sense (increases the fixation probability of a single cooperator,
relative to a single defector) if, and only if, R− S > P − T (blue).

and πDi + πDN−i = 2rP + (1− r)(T +P ) [if N is even, πCN/2 = rR+ (1− r)(R+S)/2

and πDN/2 = rP +(1− r)(T +P )/2]. Grouping payoff terms for i and N − i in (4.7),

we see that, for both odd and even N ,

ρC

ρD
= exp

(
w
N − 1

2
[2rR+ (1− r)(R+ S)− 2rP − (1− r)(T + P )]

)
= exp

(
w
N − 1

2
[(R− P + S − T ) + r(R− P − S + T )]

)
. (4.8)

This allows us to analyze for which games assortment favours cooperation in the

weak sense of Definition 2 (Fig. 4.6.1).

Proposition 3. Assortment favours cooperation in the weak sense if, and only if,

R− S > P − T .
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Proof. From (4.8), we have that

∂

∂r

ρC

ρD
= exp

(
w
N − 1

2
[(R− P + S − T ) + r(R− P − S + T )]

)
w
N − 1

2
(R−P−S+T ).

Since the exponential is positive, ∂
∂r

ρC

ρD
> 0 ⇔ R− P − S + T > 0.

This condition corresponds to that found by Allen and Nowak [3] for assortment

favouring cooperation in the same weak sense, but their result applies only in the

weak selection limit (w → 0), whereas our result holds for all selection strengths.

A corollary of Proposition 3 follows from a result due to Fudenberg and Imhof

[170]. Consider an evolving finite population of cooperators and defectors, where

cooperators mutate to defectors and defectors to cooperators at the same rate. If this

rate of mutation is very small (the ‘weak mutation limit’), the long-run distribution

of the (ergodic) evolutionary process over all population states i = 1, 2, . . . , N is

close to a distribution over just the two pure states all-D (i = 0) and all-C (i =

N). This distribution is given by
(

ρD

ρD+ρC
, ρC

ρD+ρC

)
, whose dependence on ρC/ρD

can explicitly be seen in the form
(

1
1+ρC/ρD

, 1− 1
1+ρC/ρD

)
. If greater assortment

increases the ratio ρC/ρD (i.e., if assortment favours cooperation in our weak sense),

it also increases the weight on the cooperative state in this weak mutation limit.

Corollary 1. In the Moran process with symmetric mutation rates, in the weak-

mutation limit, greater assortment increases the stationary distribution’s weight on

the cooperative state all-C if, and only if, R− P − S + T > 0.

If the condition R − P − S + T > 0 holds and mutations are very infrequent,

then this corollary can be interpreted as follows: at a time point far in the future, a

population with a high degree of assortment is more likely to be all cooperating than

is a population with a low degree of assortment. Alternatively, among many evolving
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populations, cooperation will be more common among those with high assortment

than those with low assortment.

We have demonstrated that, for a large class of cooperative dilemmas, assort-

ment favours cooperation in our strong sense, and that for an even broader class,

assortment favours cooperation in the weak sense. To demonstrate the utility of the

distinction between our weak and strong definitions, we provide an example of a

game in which assortment favours cooperation in the weak sense but not the strong

sense.

Suppose we have a population of size N > 10 interacting according to Grafen’s

assortment model, with payoffs specified by the game

C D

C R = 10 S = 1

D T = 8 P = 9

.

This is a ‘cooperative dilemma’ in the sense of Nowak [398] in that it satisfies C1′,

C2′, D2′, and D3′. Here, assortment favours cooperation in the weak sense, because

R− P − S + T = 8 > 0. But assortment does not favour cooperation in the strong

sense, because none of the conditions (2a), (2b), and (2c) holds: (2a) and (2c) fail

because T < P ; (2b) fails because R−S+P−T
P−T = 10 < N .

Eq. (4.8) tells us that, for a given game (4.1) and value of r, cooperation is

favoured in the sense ρC > ρD if and only if

(R− P + S − T ) + r(R− P − S + T ) > 0. (4.9)

This condition allows us to show that assortment favours cooperation in general for
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our model, according to Definition 3:

Proposition 4. Assortment favours cooperation in the containment order sense.

Proof. For any game in the set C, the coefficient of r in (4.9) is nonnegative, since

both R − S and T − P are. The left-hand side of (4.9) is therefore nondecreasing

in r. It follows that, for a particular game in C and a particular assortment value

r1 > 0, if ρC > ρD for r = r1 then ρC > ρD for r > r1.

4.7 Realization of the model in a nest-structured population

So far we have described the model in abstract terms. Here we show how the

model can be realized in a nest-structured population, with r describing the relative

frequency of interaction among nest-mates.

Consider a population with N nests, each containing a single adult. Each time-

step corresponds to a single (non-overlapping) generation. Each generation, each

adult produces a large number of juveniles. Each juvenile interacts with a large num-

ber of others, a proportion r of these being with juveniles from the same nest, and

the remaining proportion 1− r being with juveniles chosen uniformly from the pop-

ulation at large. These interactions determine a juvenile’s fitness multiplicatively,

so that fitness is an exponential function of the sum of individual payoffs.

After interaction, a new head for each nest is chosen, forming the next generation

of adults. With high probability (1 − µ, where µ ≪ 1 represents the migration

rate) the new head of a nest is chosen from among the juveniles who were born at

this nest. Otherwise (with probability µ) the new head is chosen from the juvenile

population at large. In each case, the choice is made proportionally to fitness.

In the limit µ → 0, the dynamics of the above model coincide with those of the

simple model we have studied in this paper (up to a rescaling of time). The reason
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is that, as the migration rate becomes very small, the probability of there being

two migrants in a given generation becomes negligible compared to that of there

being only one migrant. Thus at most one nest changes its strategy per generation,

consistent with the Moran process.

4.8 Games with more than two players

In reality, many cooperative dilemmas are not pairwise interactions, but involve

more than two players [159, 188, 407, 423, 539]. Here, we shall demonstrate that

our methodology can extend to a particularly simple n-player cooperative dilemma,

a linear public goods game. We shall show that increased assortment favours the

evolution of cooperation in this case.

Interactions occur in groups of size n, where each interactant is either a cooperator

(C) or a defector (D). Assortment is defined as r = P(C|C)−P(C|D), where P(C|D)

is the probability that a randomly chosen interactant of a defector is a cooperator,

and P(C|C) is the probability that a randomly chosen interactant of a cooperator is

a cooperator [27, 538]. (It is easily seen that P(C|C)−P(C|D) = P(D|D)−P(D|C),

so that this definition does not depend on the labelling of strategies. The definition

is also consistent with that used in our two-player setup above and with regression-

based definitions of relatedness; see e.g. [30].)

Assortment derives from a ‘population structure’, which determines, from the

number of cooperators in the population, their distribution among the interacting

groups. Formally, in a population of size N , a population structure m (for ‘matching

function’) is a vector-valued function that specifies, for each possible number i of co-

operators in the population, a probability distribution (m[0](i),m[1](i), . . . ,m[n](i))

over the n + 1 possible group compositions, so that m[j](i) is the probability that,
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when there are i cooperators in the whole population, a randomly chosen group

contains exactly j cooperators. (The subscript in m[j](i) is bracketed to distin-

guish that this is the number of cooperators in the group, while we have throughout

used an unbracketed subscript to indicate the number of cooperators in the whole

population.)

One complication arises. In an infinite-population setting [256, 443, 539], where

the proportion x ∈ [0, 1] of cooperators is specified, it is required that the population

structure f , applied to the proportion of cooperators x, recapitulate that proportion:

x =
∑n

j=0 jm[j](x). In our finite-population case, the law of large numbers does not

apply: N/n groups drawn independently from the distribution m(i) need not contain

a total of i cooperators. To sidestep this complication, we shall make an assumption

analogous to that of self-interaction in the two-player game setup: interactants in a

group are drawn with replacement from the population, according to the distribution

m(i). That is, we shall assume that an individual can take on multiple positions in

the group, so that a group of n need not contain n distinct individuals.

We shall be interested in the population structures that maintain, for all interme-

diate i = 1, 2, . . . , N − 1, a constant assortment parameter r. One such population

structure, and a natural extension of the population structure we analyzed for two-

player games, is this: A cooperator’s n− 1 group-mates are, with probability r, all

cooperators, and with probability 1−r are drawn randomly and independently from

the population (i.e., they constitute a binomial sample of size n−1). When there are

no cooperators in the population (respectively, no defectors), then all groups com-

prise only defectors (respectively, only cooperators). The exact population structure

that leads to a constant r will not matter in what follows, because the game we shall

consider is linear. For general (nonlinear) n-player games, the population structure
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will matter.

The game played by the n constituents of a group is a linear, or additive, public

goods game. A cooperator produces, at individual payoff cost c to itself, a public

good that provides benefit b to each member of the group. A defector enjoys the

benefits of the public good produced by cooperators in the group, but does not

produce any itself. The payoff to a cooperator in a group with j cooperators is

πC[j] = jb−c, while the payoff to a defector in a group with j cooperators is πD[j] = jb.

When there are i cooperators in the population, the expected payoff to a cooper-

ator and a defector are, respectively:

πCi = −c+ b+ (n− 1)P(C|C)b;

πDi = (n− 1)P(C|D)b. (4.10)

With a constant-r assortment process, we have [539]:

πCi − πDi = (n− 1)[P(C|C)− P(C|D)]b− c+ b = (n− 1)rb− c+ b.

As before, we calculate fitness exponentially from expected payoffs, and update

the population according to a Moran process. Checking our strong condition by

which assortment favours cooperation, Definition 1:

pi,i+1/pi,i−1 = fCi /f
D
i = exp

(
w[πCi − πDi ]

)
= exp (w[(n− 1)rb− c+ b]) ,

so that
∂

∂r

pi,i+1

pi,i−1
= w(n− 1)b exp (w[(n− 1)rb− c+ b]) > 0.

Therefore, assortment favours the evolution of cooperation in the strong sense here.
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The above results apply to a linear public goods game. For nonlinear public goods

games, a single assortment parameter does not suffice to characterize the effects of

population structure on natural selection; rather, a full probability distribution over

all possible group compositions is required [407, 538]. Therefore, while nonlinear

public goods games are important from both a theoretical [11, 188, 423] and em-

pirical [193] perspective, an analysis of how assortment affects cooperation in such

games is beyond the scope of the current work.

4.9 Discussion

We have studied the effect of assortment on the evolution of cooperation, making

use of a simple model of like-with-like assortment in two-strategy games. We have

demonstrated that, for many cooperative games of interest (including prisoners’

dilemmas, snowdrift games, and stag-hunt games), increased assortment favours the

evolution of cooperation in two senses: it increases the rate at which the cooperative

strategy increases in the population, and it increases the fixation probability of

cooperators relative to that of defectors.

Most studies of stochastic game theory—for example, Allen and Nowak [3] in a

setting similar to ours—assume selection to be weak. This assumption is made be-

cause standard stochastic models are otherwise intractable, with analytical results

impossible. Here, making use of an exponential transformation of payoffs to fit-

nesses [520] instead of the usual linear one, we have demonstrated that informative

analytical results may be obtained in the more general case allowing any strength

of selection. This exponential transformation is not simply a mathematical expedi-

ency. We have argued that it is the appropriate transformation of average payoff to

fitness when fitness derives from many interactions with multiplicative fitness effects.
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Multiplicative fitness effects are a common assumption in population genetics [143],

but not in evolutionary game theory, where additive fitness effects are standard.

Our results highlight the usefulness of this exponential payoff-fitness transformation

in the Moran process, and suggest that this transformation could lead to tractable

results for other questions in social evolution and evolutionary game theory more

broadly.

Our results give exact conditions for the success of cooperation under arbitrary

selection strength. Specifically, Eq. (4.8) implies that cooperation is favored in the

sense ρC > ρD if and only if

σR+ S > T + σP, (4.11)

where

σ = (1 + r)/(1− r) (4.12)

is the structure coefficient [5, 510] of this model. That the condition for success

takes the form (4.11) is significant: Tarnita et al. [510] proved that the condition for

success takes this form for a large class of models, but only under weak selection.

The fact that condition (4.11) applies under any selection strength can be traced

to our use of the exponential payoff-to-fitness transformation; one would not expect

the same outcome for other models or other transformations.

We observe that σ is increasing in r according to Eq. (4.12). This implies that all

of our comparative statics results with respect to r (i.e., pertaining to Definitions

1 and 2) also hold as comparative statics with respect to σ. It also gives another

way to understand our containment order result (Proposition 4). Peña et al. [424]

show that, for two-strategy games in structured populations, comparing population

114



structures according to the containment order amounts to comparing their structure

coefficients, higher structure coefficients being better for cooperation. Since the

structure coefficient for our model is increasing in r, it follows that higher r favours

cooperation in the containment order sense.

The structure coefficient in Eq. (4.12) matches that found by Allen and Nowak [3]

for a similar discrete-generation model, although the latter result holds only under

weak selection. Interestingly, in both cases, σ is independent of the population size.

These results can also be understood in terms of the scaled relatedness coefficient κ

[308, 533], which is related to the structure coefficient by σ = (1 + κ)/(1− κ) [531].

Comparing with Eq. (4.12), we see that, for our model and for that of Allen and

Nowak [3], the scaled relatedness coefficient κ is equal to the assortment parameter

r. This is a consequence of the fact that both models use a global update rule

[387], meaning that, after game interaction, individuals compete globally for the

opportunity to reproduce. Thus, in these models, assortment affects game payoff,

but does not further affect the probability of reproduction. For other models such as

games on graphs [2, 408, 514], which do not have global updating, local competition

effects can cause κ to be different from the degree of assortment.
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5
The Trivers-Willard hypothesis: sex ratio or

investment?

5.1 Abstract

The Trivers-Willard hypothesis has commonly been considered to predict two things.

First, that a mother in good condition should bias the sex ratio of her offspring

towards males (if males exhibit greater variation in reproductive value). Second,

that a mother in good condition should invest more per son than per daughter.
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These two predictions differ empirically, mechanistically, and, as we demonstrate

here, theoretically too. We construct a simple model of sex allocation that allows

simultaneous analysis of both versions of the Trivers-Willard hypothesis. We show

that the sex ratio version holds under very general conditions, being valid for a

large class of male and female fitness functions. The investment version of the

hypothesis, on the other hand, is shown to hold only for a small subset of male and

female fitness functions. Our results help to make sense of the observation that the

sex ratio version is empirically more successful than the investment version.

5.2 Introduction

The Trivers-Willard hypothesis (TWH) [525] predicts that, when one sex exhibits

more variation in reproductive value, then mothers in good condition should ‘prefer’

offspring of that sex, and vice-versa for mothers in poor condition. (In polygy-

nous species, the sex with more variable reproductive value is usually males; for

convenience we shall adopt this convention throughout.) What should be meant by

‘prefer’, however, is not entirely clear. Two definitions can be found in the empirical

literature.

One definition is that mothers in good condition should bias their individual sex

ratios towards sons, and mothers in poor condition towards daughters. This inter-

pretation is suggested by the title of Trivers and Willard’s original paper, ‘Natural

selection of parental ability to vary the sex ratio of offspring’. This ‘sex ratio version’

of the TWH has been the subject of a large empirical literature—well known exam-

ples exist for red deer [92, 93], feral horses [66], parasitoid wasps [83], and humans

[63, 365].

The second definition is that mothers in good condition should bias their parental
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care towards sons, and mothers in poor condition towards daughters. This definition

also seems to be implied by Trivers and Willard [525]: ‘In species with a long period

of PI [parental investment] after birth of young, one might expect biases in parental

behavior toward offspring of different sex, according to parental condition; parents

in better condition would be expected to show a bias toward male offspring.’ Many

empirical tests of this ‘investment version’ of the TWH have also been conducted.

For example, Fujita et al. [175] conclude that the TWH is supported by their finding

that mothers of low socioeconomic status in agropastoral villages in northern Kenya

produce more nutritious milk when breastfeeding daughters than sons, and vice-

versa for mothers of high socioeconomic status. The assumption that biased parental

investment is part of the TWH extends far into the empirical literature—see, e.g.,

[24, 43, 64, 108, 179, 228, 234, 235, 430, 556], and the references in these papers—and

is explicitly defended in [65].

The two versions of the TWH clearly make very different empirical predictions.

A broad observation is that the sex ratio version is empirically more successful

than the investment version [272]. On the sex ratio version, for example, of the 37

studies of ungulate mammals surveyed by Sheldon and West [480], 29 found a sex

ratio effect in the direction predicted by the TWH. 15 of the 37 studies returned

significant results (p < 0.05); of these 15, 13 were in the direction predicted by the

TWH.1 In a statistical meta-analysis of these studies, Sheldon and West [480] found

a significant positive correlation between maternal condition and the proportion of

male offspring. In humans, adequately powered empirical tests tend to find a small

sex ratio bias in the direction predicted by the TWH [6, 134].
1Insignificant results can be explained either by inadequate sample size or constraints imposed

by genetic sex determination. Significant results in the opposite direction can be explained by
demographic factors [310, 464].
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Empirical tests of the investment version, on the other hand, tend to show more

mixed results. Only 4 of the 8 studies of nonhuman mammals surveyed by Keller

et al. [272] found an investment effect in the direction predicted by the TWH,

and studies in humans have proven similarly inconclusive [272]. There could be

methodological reasons for this. For example, while it is obvious what outcome to

measure when testing for biased sex ratios, it is not as obvious when testing for

biases in parental care, since parental care can take many forms [272]. There also

does not yet exist an extensive review of empirical tests of the investment version,

and so any statements about its empirical success must be preliminary. With these

caveats in mind, it is still safe to conclude that the sex ratio version has thus far

been empirically more successful.

The two versions of the TWH also differ mechanistically, an observation which

has significant implications for research into the physiological and behavioural bases

of the parental biases predicted by the hypothesis. The aim of the present paper is

to characterize how the two versions differ in theory. This issue has been raised by

Carranza [67], who gave a simple graphical example for which the sex ratio version

holds while the investment version does not—though see [65] for a critical review of

this example.

Though much theoretical work has been carried out on the TWH and sex allo-

cation in general, it has typically not focussed on the distinction between the two

versions of the hypothesis that are tested in the empirical literature. Most models of

sex allocation—e.g., [162, Sec. 1-3]—combine sex ratio and investment costs into a

single variable for each sex, ‘parental expenditure’ (or ‘allocation’). This variable is

useful for a number of general arguments, most notably Fisher’s principle [129, 154]

that, under certain assumptions, total population parental expenditure on offspring
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of the two sexes should be equal. Other models of sex allocation have held brood

composition fixed, and derived conditions under which parental investment should

be biased towards male or female offspring—e.g., [348], [162, Sec. 5], and [318]. Oth-

ers have focussed simultaneously on sex ratio and clutch size in cases where sibling

interaction is relevant, but have not studied the level of parental investment/care

in individual offspring [184, 199, 385, 569].

A unified model allowing for simultaneous analysis of the sex ratio and investment

versions of the TWH is therefore lacking. Here, we construct a simple model to ex-

pose the logic underpinning both the sex ratio and investment versions of the TWH.

We show that, while the sex ratio version holds under very general specifications

of how adult condition translates to fitness for males and females, the investment

version is very sensitive to the nature of these condition-to-fitness translations. This

theoretical result helps to make sense of the disparity in empirical success between

the two versions of the hypothesis, as noted by Keller et al. [272].

5.3 The general model

The TWH is based on three assumptions. First, that parental condition (usually

taken to be mother’s) correlates with offspring condition. Second, that offspring

condition persists into adulthood, so that it is relevant for reproductive value. Third,

that ‘Adult males will be differentially helped in [reproductive success] (compared

to adult females) by slight advantages in condition’ [525].

‘Condition’ is not explicitly defined in the original paper of Trivers and Willard

[525]. Its definition has remained vague in much of the biological literature [90], but

in the context of the TWH, can involve many physical factors, including the ability

of a parent to provision its offspring, as well as heritable factors such as traits under
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direct genetic control (sexual ornaments, for example) and social status. It is im-

portant to note that condition cannot be intepreted simply as reproductive value—

either of parent or offspring—because the TWH requires that condition translate to

reproductive value differently for males and females. In the Discussion section, we

provide a more detailed consideration of problems with the definition of ‘condition’

in the TWH.

We capture the three assumptions of the TWH in the following simple model.

Each mother is of a certain physical condition, cm (continuously distributed), and

has a single brood of precisely two offspring. A mother’s total investment capability,

which she apportions fully between her two offspring, is limited by her physical

condition to I(cm), assumed to be non-decreasing in cm (mothers in better condition

are able to invest more) and smooth. The post-investment condition of an offspring

whose mother was of condition cm and who received investment i is, regardless of

its sex, c(cm, i), increasing in both arguments ( ∂
∂cm

c(cm, i) > 0 and ∂
∂ic(cm, i) >

0) and concave in investment ( ∂2

∂i2
c(cm, i) < 0). This post-investment condition

is assumed to persist into adulthood, and to be the quantity that is relevant for

offspring fitness. To avoid confusion, we should note at this stage that condition—a

physical measure—is treated as distinct from fitness.

That c should depend on i is clear. In our model, ‘investment’ is taken to mean the

level of direct parental care for a single offspring. It is plain that, by this definition,

offspring condition should increase with investment.

Why does c depend directly on cm too? Mother’s condition can affect offspring’s

condition directly (as opposed to indirectly, through greater investment capacity)

in several ways, examples of which are: (i) if condition is defined by social rank,

and rank is hereditary—as, for example, in baboons [225], spotted hyenas [130], and
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red grouse [378]; (ii) if condition is in part determined genetically (this could apply

either to maternal or paternal condition: in our model, cm could equally well refer

to either). This genetic mechanism of condition transmission is especially clear for

sexually selected traits [136, 147, 300, 422].2

The model thus far captures the first two assumptions of Trivers and Willard

[525]. Their third assumption, in the context of our model, means at the very

least that adult condition c(cm, i) translates differently into reproductive success for

males than it does for females. (In fact, the focal quantity should be reproductive

value, not reproductive success [310]. We shall abbreviate this to ‘fitness’.) A son

in condition c will be assumed to have fitness f♂(c), while a daughter in the same

condition will have fitness f♀(c).
The optimization problem for a mother in condition cm is one of backwards in-

duction: first, to choose the optimal investment decision for each possible brood

(male-male, male-female, and female-female), and then, using the maximum fitness

sums that arise from these investment decisions, to choose the sex ratio that max-

imizes the expected sum of her offspring’s fitnesses. Denoting by p the probability

of having a son (the same probability is assumed to apply independently for each of

the two offspring), the optimization problem can be formally written:

max
p∈[0,1]

max
i1,i2,i3

∈[0,I(cm)]

p2[f♂(i1) + f♂(I(cm)− i1)]

+ 2p(1− p)[f♂(i2) + f♀(I(cm)− i2)]

+ (1− p)2[f♀(i3) + f♀(I(cm)− i3)],

2Note that all results in this paper hold in the simplified cases where (a) the improved condition
of offspring of high-condition mothers derives only from those mothers’ ability to invest more in
their offspring ( ∂

∂cm
c(cm, i) = 0 and ∂

∂i
c(cm, i) > 0), and (b) there is no difference in investment

ability between high and low quality mothers, and the translation of their condition to offspring
condition is purely hereditary ( ∂

∂cm
c(cm, i) > 0 and ∂

∂i
c(cm, i) = 0).
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where f♂(i1), for example, is shorthand for f♂(c(cm, i1)).

In the context of our model, the sex ratio version of the TWH may be stated as

follows: There exists a threshold maternal condition such that a mother in better

condition has an optimal sex ratio that is male-biased, while a mother in worse

condition has an optimal sex ratio that is female-biased. The question of whether a

mother should have a male- or female-biased sex ratio is shown in [545, Appendix

1] to be equivalent to the simpler question of whether she would prefer to have two

male or two female offspring (which is not to say that her optimal sex ratio is then

necessarily one or zero—this is just a ‘litmus test’ for the optimal sex ratio being

biased by any amount).

The investment version of the TWH, on the other hand, is this: There exists a

threshold maternal condition such that a mother in better condition, upon having a

mixed brood (one male and one female offspring), will invest more in her son than

in her daughter, while a mother in worse condition will invest more in her daughter

than in her son.

It should be noted, in light of the facts that checking the sex ratio version amounts

to comparing the fitness sum of an all-male brood with that of an all-female brood,

and checking the investment version amounts to comparing investment patterns in a

mixed brood, that our results are based on simultaneous optimization, by backwards

induction, of the sex ratio and investment decisions. In particular, the optimal sex

ratio will itself depend on the optimal investment patterns for the various possible

brood compositions, as is made clear in [545, Appendix 1].

The model presented above is not meant to represent reality in full detail, but

rather to make accessible the logic underpinning the two versions of the TWH.

More complex models that extend our framework to more realistic settings would
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also be desirable. For example, we have ignored possible demographic differences

between the sexes, though these have recently been shown to influence predictions

of the TWH [464]. Our assumption that each mother has exactly two offspring

is not realistic but simplifies the analysis considerably, and is the smallest brood

number that still allows for simultaneous analysis of sex ratio and investment bias.

It is argued in the Discussion section and [545, Appendix 3] that the case of a

monotocous species, where single offspring are raised in sequence, will not differ

much from our simple single-period, two-offspring model.

It will also be noted that our model applies best to contexts where (i) the sex ratio

and parental care decisions are separable (in time, for example), and (ii) parental

care is of a continuous, quantitative form (for example, the length of the period of

parental care—duration of gestation, or time until weaning, say—or the fat content

of breast milk). In such cases, the conceptual difference between the sex ratio and

investment versions of the TWH is clear. (i) excludes cases where the sex ratio

and investment decisions coincide, such as in parasitoid wasps. It applies, on the

other hand, to vertebrate species where parental care is given post-conception and

post-birth. (ii) excludes those discrete parental care decisions that are harder, con-

ceptually, to distinguish from sex ratio decisions, such as sex-biased brood reduction

[205, 348].

5.4 An example where the investment version fails

A simple case that satisfies Trivers and Willard’s assumption 3, and which results

in a mother always investing more in the male of a mixed brood, no matter her

condition (and thus contra the investment version of the TWH), is where the fitness-

condition profiles are linear for both males and females: f♂(c) = λc and f♀(c) =
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offspring fitness

adult condition, c

f♀ = c + k  (k > 0)

f♂ = λc  (λ > 1)

c*

Figure 5.4.1: The ‘classic’ Trivers-Willard fitness functions, for which the sex ratio version of
the Trivers-Willard hypothesis holds, while the investment version does not. Because male fitness
always increases faster with condition than does female fitness, fitness returns to investment in
a male offspring are always greater than in a female offspring of the same initial condition, and
so a mother with a mixed brood will always invest more in the male of the brood, no matter her
own condition.

c + k, with λ > 1 so that the fitness profile is steeper for males than for females

(clearly satisfying Trivers and Willard’s assumption 3) (Fig. 5.4.1). k > 0 can be

adjusted arbitrarily; for example, it can be adjusted so that the average reproductive

value of sons and daughters coincides. Alternatively, if offspring of one sex cost

more to raise than offspring of the other sex, this could be represented by the

fitness function of the more expensive sex shifting downwards for each condition;

such a shift would lead to a population sex ratio biased against that sex. These

facts concerning the adjustability of the fitness functions—i.e., the average fitness

effects of having male and female offspring and therefore the population sex ratio

as well—are true of all later specifications as well.

The investment decision of a female in condition cm who has a mixed brood, de-

noting by is how much she invests in her son, amounts to the following maximization
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problem:

i∗s := argmax
is

f♂(c(cm, is))+ f♀(c(cm, I(cm)− is)
)

= argmax
is

[
λc(cm, is)

]
+
[
c(cm, I(cm)− is) + k

]
.

Her investment will be male-biased if i∗s > I(cm)/2, i.e., if i∗s > I(cm)− i∗s. Assum-

ing an interior solution i∗s ∈ (0, I(cm)), the first-order condition for i∗s amounts to

equating the male and female offspring’s marginal fitness returns to investment:

∂

∂is

(
[λc(cm, is)] + [c(cm, I(cm)− is) + k]

)∣∣∣
is=i∗s

= 0

⇒ λ∂2c(cm, i
∗
s)− ∂2c(cm, I(cm)− i∗s) = 0

⇒ ∂2c(cm, i
∗
s) < ∂2c(cm, I(cm)− i∗s)

⇒ i∗s > I(cm)− i∗s,

where ∂2c(·, ·) refers to the partial derivative of c with respect to its second argument,

and where the second-to-last step follows from λ > 1 and the last step from the

concavity assumption ∂22c < 0 (∂22c(·, ·) is the second partial derivative). Thus,

no matter a mother’s condition, she always biases investment in favour of the male

offspring of a mixed brood. The reason for this is that the marginal returns to

investment in a male offspring, λ∂2c(cm, i), are always greater than the returns to

investment in a female of the same condition, ∂2c(cm, i).3

3This result, and the reason behind it, extend to any functions f♂ and f♀ that satisfy f ′♀(x) <
f ′♂(y) for any x and y, since then the general first-order condition for i∗s yields

f ′♂(c(cm, i∗s)
)
∂2c(cm, i∗s)− f ′♀(c(cm, I(cm)− i∗s)

)
∂2c(cm, I(cm)− i∗s) = 0

⇒ ∂2c(cm, i∗s)

∂2c(cm, I(cm)− i∗s)
=

f ′♀(c(cm, I(cm)− i∗s)
)

f ′♂
(
c(cm, i∗s)

) < 1 ⇒ i∗s > I(cm)− i∗s ,

where the last step follows from the concavity of c with respect to its second argument.
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We shall show later (Section 5.5) that the sex ratio version of the TWH holds

under quite general conditions on f♂ and f♀. These conditions are satisfied by the

linear fitness functions studied in this section. Still, owing to the simplicity of the

present fitness functions, it will nonetheless be instructive to demonstrate here that

the sex ratio version of the TWH holds for them.

It is proven in [545, Appendix 1] that a mother of condition cm will have an

optimal sex ratio that is male-biased if and only if she would prefer, in fitness terms,

to have two male offspring than two female offspring (again, it is important to note

that this comparison of the fitness sums of an all-male brood and an all-female

brood is a diagnostic test for whether the mother’s optimal sex ratio is at all male

or female biased, and does not imply that her optimal sex ratio is necessarily one

or zero). Notice that she always apportions investment equitably among a same-

sex brood, owing to the concavity of fitness with respect to investment for both

male and female offspring (a result of condition being concave in investment and

this concavity being maintained under the linear transformation to fitness). So the

condition for a male-biased sex ratio amounts to the following inequality:

2f♂(cm, I(cm)/2) > 2f♀(cm, I(cm)/2)

⇔ 2λc(cm, I(cm)/2) > 2[c(cm, I(cm)/2) + k]

⇔ c(cm, I(cm)/2) >
k

λ− 1
.

But since ∂
∂cm

c(cm, I(cm)/2) = ∂1c(cm, I(cm)/2) + ∂2c(cm, I(cm)/2) I
′(cm)
2 > 0, and

assuming the existence of some c∗m ∈ (0, 1) such that c(c∗m, I(c∗m)/2) = k
λ−1 =: c∗,

this implies that mothers with condition above c∗m have a male-biased optimal sex

ratio, and mothers with condition below c∗m have a female-biased optimal sex ratio.
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The sex ratio version of the TWH therefore holds in this case, while the investment

version does not.

Finally, it is interesting to note that mothers of condition c∗m, though indifferent

between having an all-male brood and an all-female brood, are not indifferent be-

tween those choices and having a mixed brood. To see this, note that each male

in an all-male brood of such a mother has the same fitness as each female in an

all-female brood, and each receives the same investment I(c∗m)/2. Thus, a mother

with a mixed brood could achieve the same fitness sum as with a same-sex brood

if she invests I(c∗m)/2 in each offspring, male and female. But as the argument

above demonstrates, this is not the optimal investment decision for the mother:

she should always invest more in the male offspring than in the female offspring of

a mixed brood. So her fitness sum from having a mixed brood and apportioning

investment optimally is strictly higher than her fitness sum from having a same-

sex brood and apportioning investment optimally. And as a result, by continuity,

mothers whose condition is sufficiently close to c∗m, though the bias in their sex ratio

is determined by whether their condition is higher or lower than this value, would

nonetheless have optimal sex ratios that are mixed (i.e., not zero or one). The intu-

ition for this result is that, with a mixed brood, the mother can divert investment

away from the female offspring, for whom it is relatively unproductive (in fitness

terms) and towards the male offspring, for whom it is relatively productive. This

choice is not available to the mother of a same-sex brood.

This explanation complements other reasons for why selection favours individual

sex ratios that are not zero or one. In situations with local within-sex competition for

mates, selection can favour extreme sex ratios [211], but it will also not favour those

that are zero or one. More generally, in small populations whose overall sex ratio
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fluctuates stochastically, intermediate individual sex ratios can be favoured because

extreme individual sex ratios confer a greater fitness penalty when the population

sex ratio is biased in the same direction as they are, compared to the fitness gain

they confer when the population sex ratio is biased symmetrically in the opposite

direction [550]. (For most species, however, around the equilibrium population sex

ratio, the selective forces in favour of individuals whose sex ratios match it over

those with extreme sex ratios are likely to be weak—this follows from the general

arguments in [513] and [579]).

5.5 Broad sufficient conditions for the sex ratio version to

hold

Assume that the optimal investment decision for the mother of a same-sex brood,

no matter her condition, is always to apportion investment equitably between her

two offspring. This holds if the functions f♂(c(cm, i)) and f♀(c(cm, i)) are both

concave in investment i—loosely speaking, given that c(cm, i) is already concave

in i, this means that either f♂ and f♀ are themselves (weakly) concave, or that

any convexities in them are not sufficient to overturn the concavity of c(cm, i) in i.

This is satisfied, for example, by the linear fitness functions assumed in Section 5.4,

by those displayed in Fig. 5.6.3, and by those displayed in Fig. 5.6.2 provided the

convex fitness function f♂(c) is not too convex.4

With this assumption, a simple and natural set of ‘single-crossing’ conditions

under which the sex ratio version of the TWH always holds is:
4More precisely, in this case of convex f♂(c), we require ∂2

∂i2
f♂(c(cm, i)) < 0, which translates

to the condition
∣∣∣ ∂22c(cm,i)
∂2c(cm,i)

∣∣∣ > ∣∣∣∣ f ′′♂(c(cm,i))

f ′♂(c(cm,i))

∣∣∣∣, i.e., that c is relatively more concave in i than f♂ is
convex in c.
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(SC1) The condition-fitness profiles for males and females cross only once (at c∗),

with the male profile starting below the female profile (in poor adult condition,

males are less fit than females: c < c∗ ⇒ f♂(c) < f♀(c)) and ending above

it (in good adult condition, males are fitter than females: c > c∗ ⇒ f♂(c) >

f♀(c));
(SC2) There exists some maternal condition c∗m such that c∗ = c(c∗m, I(c

∗
m)/2)).

If f♂(c(cm, i)) and f♀(c(cm, i)) are concave in i, and if (SC1) and (SC2) hold, then

mothers in condition cm > c∗m have optimal sex ratios that are male-biased, while

those in condition cm < c∗m have optimal sex ratios that are female-biased.

To prove this, first consider the case of a female in condition cm > c∗m. A sufficient

condition for her optimal sex ratio to be male-biased is that she would achieve

higher fitness with an all-male brood than with an all-female brood (as shown in

[545, Appendix 1]). Since her optimal investment decision in either case is equitable

apportionment among the brood, this condition becomes:

2f♂(c(cm, I(cm)/2)) > 2f♀(c(cm, I(cm)/2)).

But since ∂
∂cm

c(cm, I(cm)/2) = ∂1c(cm, I(cm)/2) + ∂2c(cm, I(cm)/2) I
′(cm)
2 > 0, we

have that cm > c∗m ⇒ c(cm, I(cm)/2) > c(c∗m, I(c
∗
m)/2) = c∗, and so, from the

single-crossing condition (SC1), f♂(c(cm, I(cm)/2)) > f♀(c(cm, I(cm)/2)).

A female in condition cm < c∗m would, by a similar argument, achieve higher

fitness with an all-female brood than with an all-male brood, and so her optimal

sex ratio would be female-biased.

The case where at least one of f♂(c(cm, i)) or f♀(c(cm, i)) is not everywhere

concave in i is more complicated, and in general, the single-crossing conditions do
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not guarantee that the sex ratio version holds (a graphical counterexample is given

in [545, Appendix 2]).

5.6 Narrow sufficient conditions for the investment version to

hold

We have seen in Section 5.4 that, for a simple set of fitness functions that satisfy

the Trivers-Willard assumptions, the investment version of the hypothesis does not

hold. In this section, we derive conditions under which the investment version of the

TWH does hold. They are significantly narrower than the basic set of assumptions

stated by Trivers and Willard [525].

To simplify the analysis, we assume that to determine the investment bias (male

or female) in a mixed brood of a mother in condition cm, it suffices to check in

which direction natural selection ‘points’ from an initial state of equitable investment

in the male and female offspring (i.e., does it point towards increased, and thus

biased, investment in the male or in the female?). If the ancestral state is equitable

apportionment of investment within mixed broods, and if maternal behavioural

changes are gradual, then this is the investment bias that natural selection would

lead to.

Mathematically, this amounts to checking the slope of the mixed brood’s fitness

sum f♂(c(cm, is)) + f♀(c(cm, I(cm)− is)) with respect to investment is in the male

offspring, evaluated at the point is = I(cm)/2. If the brood’s fitness sum is of the

‘single-humped’ shape displayed in Fig. 5.6.1, i.e., with one local maximum that is

also the global maximum, and with no local minima, then this slope indeed points

towards the global maximum.

The investment version of the TWH then simplifies to the following: the partial
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Investment in the male of a mixed brood, is Investment in the male of a mixed brood, is

Unique local max. also global max.Slope at is = I(cm)/2 points 
towards global max.

0 I(cm)/2 I(cm) 0 I(cm)/2 I(cm)

Mixed brood’s fitness 
sum:

    f♂(c(cm, is)) 

+  f♀(c(cm, I(cm) - is)))  

Optimal 
investment 
is male-
biased

Optimal 
investment 
is female-
biased

Figure 5.6.1: If the fitness sum of a mixed brood is ‘single-humped’ with respect to investment
in the male of the brood, then the slope of the function at the point of equitable investment
points in the direction of the optimal bias in investment, significantly simplifying detection of
the latter in our model.

derivative of the fitness sum of a mixed brood, taken with respect to investment in

the male offspring, and evaluated at the point of equitable investment I(cm)/2, is

negative for maternal conditions below a certain threshold, and positive for maternal

conditions above that threshold. This partial derivative, in general form, is given

by:

∂

∂is

[
f♂(c(cm, is))+ f♀(c(cm, I(cm)− is)

)] ∣∣∣
is=I(cm)/2

=f ′♂(c(cm, I(cm)/2)
)
∂2c(cm, I(cm)/2)− f ′♀(c(cm, I(cm)/2)

)
∂2c(cm, I(cm)/2)

=
[
f ′♂(c(cm, I(cm)/2)

)
− f ′♀(c(cm, I(cm)/2)

)]
∂2c(cm, I(cm)/2). (5.1)

Since ∂2c(cm, I(cm)/2) > 0, the sign of this expression is the same as the sign of the

term in square brackets in the last line. The investment version of the TWH thus
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further simplifies to the following: f ′♂
(
c(cm, I(cm)/2)

)
< f ′♀(c(cm, I(cm)/2)

)
for all

cm below some threshold, and f ′♂
(
c(cm, I(cm)/2)

)
> f ′♀(c(cm, I(cm)/2)

)
for all cm

above that threshold. In other words, male fitness responds less to increases in adult

condition than does female fitness below some threshold adult condition, and male

fitness responds more to changes in adult condition than does female fitness above

that threshold condition. This condition is rather specific, and will hold for only a

subset of the fitness functions that are consistent with Trivers and Willard’s original

assumptions. Indeed, under a strict reading of Trivers and Willard’s ‘Assumption 3’

(quoted in Section 5.3), it appears that the condition (5.1) we have derived for the

investment version to hold is in fact disallowed! Nevertheless, there are some natural

instances where we might expect them to be fulfilled, as the following example

illustrates.

We keep the female fitness function from before, f♀(c) = c+k, k > 0, and specify

a convex male fitness function f♂(c) such that the slope of f♂(c) is less than one

(the slope of f♀(c)) for all adult conditions below a certain (realized) threshold ĉ (we

keep the notation c∗ for the point at which f♂ and f♀ cross), and greater than one

for all adult conditions above that threshold (see Fig. 5.6.2). That is, we require the

male fitness function to be sufficiently convex. Under this scenario, it is clear that

the condition (5.1) is satisfied, and we expect the investment version of the TWH

to hold in this case.

If we instead specify that the male fitness function be sufficiently concave, while

keeping the female fitness function linear (Fig. 5.6.3), then a situation results that

is directly opposed to that predicted by the investment version of the TWH. Now,

mothers in poor condition are expected to bias investment towards the male of

a mixed brood, while mothers in good condition are expected to bias investment
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fitness

adult condition, c

f♀ = c + k  (k > 0)

f♂  convex enough

c*ĉ

Figure 5.6.2: Fitness functions for which the investment version of the Trivers-Willard hypoth-
esis does hold. If the male fitness function is sufficiently convex, then the very small slope at
low conditions makes investment in males in low condition unattractive relative to investment in
females, and so mothers in low condition should bias investment towards females. Conversely,
investment in males in good condition is very attractive (their fitness function is very steep),
and so mothers in good condition should bias their investment towards male offspring.
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fitness

adult condition, c

f♂  concave enough

f♀ 

Figure 5.6.3: Fitness functions for which a situation opposite that predicted by the investment
version of the Trivers-Willard hypothesis is expected to result. Because the slope of the male
fitness function starts out very steep, investment in males in poor condition yields high fitness
returns, and so mothers in poor condition would be expected to bias investment towards the
male of a mixed brood. Conversely, mothers in good condition are expected to bias investment
towards the female of a mixed brood, because the eventual flatness of the male fitness function
makes investment in males in good condition relatively unproductive.

towards the female of a mixed brood. Nonetheless, the sex ratio version of the

TWH is expected still to hold in this case.

5.7 Discussion

We have demonstrated, in the context of a simple unified model, that the conditions

under which the sex ratio version of the TWH holds are significantly broader than

those under which the investment version is expected to hold. This helps to make

sense of the observation that empirical tests of the former tend to return positive

results, while empirical tests of the latter return more mixed results [272].

The difference between the two versions of the hypothesis can be understood in

terms of the economic difference between absolute and marginal value. Whether

135



a mother in a certain condition should bias her sex ratio towards male offspring

amounts to asking whether the male fitness function lies above the female fitness

function for the relevant condition, i.e., whether there exists an absolute difference

in fitness between offspring of the two sexes. On the other hand, for a mother

with a mixed brood, whether she should bias parental investment towards the male

offspring amounts to asking whether the male fitness function is steeper than the

female fitness function for the relevant condition, i.e., whether improvement of the

male’s condition yields a greater marginal fitness return. This insight is clearly

captured by Keller et al. [272], who find no evidence for an investment-version

Trivers-Willard effect in the United States:

[Resource allocation biasing] should be biased toward the offspring that

most improves the parents’ fitness per unit invested. However, this bias

has no necessary link to the fitness value of the offspring. Rather, it is

predicted by cues related to the marginal gains of allocating each par-

ticular resource to the sex in question. The assumptions of the TWH (a

higher correlation between condition and [reproductive success] among

males than females, and a correlation between the parent’s and off-

spring’s conditions) are unrelated to these marginal benefits, but they

are related to the fitness value of offspring.

Loosely, then, the sex ratio version of the TWH is expected to hold when the male

and female fitness functions are such that males in poor condition have relatively

low fitness (the male fitness function starts out below the female fitness function),

males in good condition have relatively high fitness (the male fitness function ends

up above the female fitness function), and the fitness functions cross once (e.g.,

Figs. 5.4.1, 5.6.2, and 5.6.3). This describes the classic picture of male and female
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fitness functions in polygynous species, and so we should expect the sex ratio version

of the TWH to hold very generally.

The investment version, on the other hand, is expected to hold only if the male

fitness function is much flatter than the female fitness function for poor conditions,

but much steeper for good conditions (e.g., Fig. 5.6.2). This condition is much

more restrictive than that under which the sex ratio version holds, and so we should

expect the investment version of the TWH to hold less generally than the sex ratio

version.

Our model is simply intended to capture the logic of why the sex ratio and

investment versions of the TWH differ. We discuss some of the model’s assumptions,

and the possibility of their relaxation, below.

First, our analysis optimizes over phenotypes, and therefore ignores both their

genetic basis and the evolutionary dynamics that might lead to their optimization.

In this sense, it is a heuristic analysis. Studying phenotypes in a static, non-genetic

setting was vital both for the simplicity of the exposition and the results (for a

defense of this style of modelling, see Parker and Maynard Smith [418]). Nonetheless,

it remains possible that the optimal behaviours derived here are not evolvable in a

simple population genetic framework. It might be objected that the genetic basis

of some of the behaviours we discuss is both unknown and likely to be complicated,

but it is a simple retort that, if a behaviour is not evolvable when assumed to have

a simple genetic basis, we are unlikely to be able to demonstrate that it is evolvable

assuming it to have a more complicated one.

Second, the assumption of a single fixed brood of constant size two is, of course,

not realistic in general, having been made for the sake of tractability. One direction

in which the model could be made more realistic would be to allow brood size to
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vary, and to undergo selection in conjunction with sex ratio and the pattern of

parental investment. While it is not clear whether this could be done in a way that

still permitted tractable analysis, it could alter the interpretation of our results if

there were significant interactions between optimal brood size and the optima of

our variables of interest, sex ratio and the pattern of parental investment [579] [163,

Sec. 9].

In this vein, another way in which the model could be generalized would be to

consider sex ratio and investment patterns across sequential broods. Consider the

simplest case, that of two offspring raised one after the other. The optimization

problem faced by the mother is then slightly different to that she faces in our single-

brood model. For example, she might be able to alter her sex ratio for the second

offspring conditional on the sex of her first offspring; this option is not available

to the mother of a single brood. In this case, the results of the sequential model

are very similar to those of the single-period model we have analyzed—see [545,

Appendix 3]. If, on the other hand, her sex ratio cannot change between periods

in the sequential model, then a mother whose sex ratio is not zero or one invests

in her first offspring without knowing the sex of her second offspring. This case is

significantly more complicated, but a tentative analysis [545, Appendix 3] suggests

that its results would usually not differ significantly from those of our single-period

model.

Third, our model is, in the language of economic theory, a ‘partial equilibrium’

analysis: the decision problem faced by one mother is independent of the decisions

made by other mothers. In our model, for example, the exogenous parameter k,

mediating the height of the female fitness function, can be adjusted so that, given

the population distribution of maternal condition, the average reproductive success
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of sons and daughters is equal. In reality, the mating success of a male in good

condition depends on the number of other males in good condition, and this in

turn depends on the sex allocation decisions of other mothers in the population. A

full general equilibrium model would specify a distribution of maternal conditions,

and sex ratio and investment strategies for mothers in each condition, such that

(a) each mother’s strategies are optimal, given the strategies of other mothers, (b)

the average reproductive success of all sons would match that of all daughters, and

possibly (c) the distribution of adult condition of the daughters matches that of the

mothers. We do not believe that the technical tools of sex allocation theory are yet

advanced enough to approach this general equilibrium problem, but it represents an

important avenue of future research.5

Fourth, our model treats maternal and offspring condition as continuous variables,

where in reality the important factor for reproductive success may be discrete, like

rank within a social hierarchy. The strategic concerns raised in the previous para-

graph apply with even more force here: whether a mother’s investment in her son

causes him to jump up one place in the male condition ranking clearly depends on

the decision of the mother of the son presently ‘occupying’ that place. A more subtle

complication is that the discretization of the fitness functions’ domain (here, within-

sex rank) makes analysis of the effects of continuous variables (like investment) on

fitness significantly less tractable.

A related, but more fundamental problem with the approach adopted here is that
5On the strategic considerations, however, we expect that, in equilibrium, a certain monotonicity

condition should hold: in particular, within-sex offspring condition rank should covary perfectly
with maternal condition rank. If this were not satisfied, we would have the odd scenario that,
in equilibrium, a mother in better condition than another neglects her son (say) sufficiently much
relative to the other mother that her son’s post-investment condition is lower than that of the
other mother’s son. So, if this monotonicity condition were to hold, we should not expect strategic
concerns to alter the structure of the problem, at least in terms of the rank of offspring condition.
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‘condition’ is treated as an abstract, and therefore unobserved, quantitative variable.

But many of the contingencies that we have shown to be of theoretical importance

involve the shape of reproductive value functions with respect to condition; since

condition is not empirically observed, neither can the shape of these functions be.

The criteria that we have derived for when the sex ratio and investment versions of

the TWH hold are therefore not directly measureable.

Getting around this problem would require substitution of ‘condition’ for an im-

perfect but observable proxy variable, such as weight. That is, it would require

measurement of the fitness functions with respect to weight, and how weight re-

sponds to parental condition and investment. This would detract significantly from

the generality of the theory, and would be accurate only in so far as weight correlates

closely with true condition. It is possible that a composite proxy involving many

variables (such as weight, nutritional status, sexual ornaments, etc.) might improve

this correlation.

This problem applies not only to our model, but to all theoretical models of the

TWH that treat ‘condition’ as an intermediate variable [90]. It appears to us to

be the chief obstacle to generating testable predictions from such models, and its

solution is therefore a crucial line of future research.
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6
Drift-induced selection between male and

female heterogamety

6.1 Abstract

Evolutionary transitions between male and female heterogamety are common in both

vertebrates and invertebrates. Theoretical studies of these transitions have found

that, when all genotypes are equally fit, continuous paths of intermediate equilibria

link the two sex chromosome systems. This observation has led to a belief that
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neutral evolution along these paths can drive transitions, and that arbitrarily small

fitness differences among sex chromosome genotypes can determine the system to

which evolution leads. Here, we study stochastic evolutionary dynamics along these

equilibrium paths. We find non-neutrality, both in transitions retaining the ancestral

pair of sex chromosomes and in those creating a new pair. In fact, substitution rates

are biased in favor of dominant sex determining chromosomes, which fix with higher

probabilities than mutations of no effect. Using diffusion approximations, we show

that this non-neutrality is a result of ‘drift-induced selection’ operating at every

point along the equilibrium paths: stochastic jumps off the paths return, on average,

with a directional bias in favor of the dominant segregating sex chromosome. Our

results offer a novel explanation for the observed preponderance of dominant sex

determining genes, and hint that drift-induced selection may be a common force in

standard population genetic systems.

6.2 Introduction

In most animals, sex is determined genetically [49]. Among those animals with

genetic sex determination, the majority exhibit heterogametic sex determination:

the presence or absence of a sex-specific chromosome triggers sexual differentiation

[28, 49]. Depending on whether the sex-specific chromosome is in males or in females,

the system is, respectively, male heterogamety (XX females, XY males) or female

heterogamety (ZW females, ZZ males).

The system of heterogamety is a fundamental genetic property of a species. It

is therefore surprising that it is evolutionarily very labile, with transitions between

male and female heterogamety having occurred frequently in amphibians [232], rep-

tiles [145, 427], and fishes [144, 339, 340], as well as in invertebrates [20, 260, 551]. A
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striking example of a recent transition is found in the frog Rana rugosa: populations

in northern Japan exhibit female heterogamety while populations in southern Japan

exhibit male heterogamety [371, 392].

In a classic theoretical study, Bull and Charnov [53] showed that continuous

paths of population genetic equilibria exist between male and female heterogamety.

States along these paths are equilibria in the sense that the evolutionary dynamics

of an infinite, randomly mating population are stationary at them when all geno-

types are equally fit. Intermediate states along the paths involve the presence of

multiple genotypes for each sex, a situation observed in several species, e.g., the

platyfish Xiphophorus maculatus [261, 262], the blue tilapia Oreochromis aureus

[306], a Lake Malawi cichlid Metriaclima pyrsonotus [477], the western clawed frog

Xenopus tropicalis [447], and the housefly Musca domestica [148, 161, 366].

Two of these equilibrium paths are of particular interest. The first, which we

shall refer to as ‘model 1’, governs those transitions between male and female het-

erogamety that involve the same pair of sex chromosomes [53] (see Figures 6.3.1 and

6.3.3A). The second, which we shall refer to as ‘model 2’, governs those transitions

between male and female heterogamety that involve different pairs of sex chromo-

somes, i.e., where the sex chromosome pair in one system is autosomal in the other,

and vice versa [53, 470, 471] (see Figures 6.3.2 and 6.3.3B).

The existence of these deterministic equilibrium paths has led to a belief that

neutral drift along them in finite populations could be responsible for transitions

between male and female heterogamety [49, 50, 534], an important baseline model

for such transitions [534]. Moreover, arbitrarily small fitness differences between

the sexual genotypes can eliminate the equilibrium paths under deterministic evo-

lutionary dynamics, and render one of the heterogametic systems stable and the
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other unstable [53]. This has led to a belief that small fitness differences alone can

determine which transitions are possible [49, 50, 534].

Here, we examine these claims in the context of finite-population evolutionary

dynamics. Using both stochastic simulations and analytical approximations based

on the removal of fast variables, we estimate the fixation probabilities of the various

sex determining mutations along the two equilibrium paths, starting from a state

of simple heterogamety. We find that evolution along these ‘neutral’ equilibrium

paths is in fact not neutral, instead showing a clear bias in favor of dominant sex

determining mutations. Selection for otherwise deterministically neutral genotypes

has previously been recognized in other settings [88, 100, 183, 290, 326, 420, 513,

550]. Perhaps the most prominent example is Gillespie’s criterion [183], which states

that if the reproductive rates of two genotypes have equal arithmetic mean but

different variance, then the genotype with lower variance will be selected for, owing

to higher geometric mean fitness. A key difference is that, in the neutral models

we study, we assume no a priori differences in the reproductive rates of the various

genotypes; these instead emerge naturally in our analysis of the dynamics along and

around the equilibrium paths.

When all genotypes are equally fit, we find in both models that the substitution

rates of the dominant sex determining mutations (in directions a and c in Figure

6.3.3) are higher than the substitution rates of recessive mutations (in directions b

and d in Figure 6.3.3). Thus, in finite populations, stochastic evolutionary dynamics

have a clear directionality along the equilibrium paths, owing to a drift-induced

selective force. However, this selective force is a weak one—its effect on fixation

probabilities in the neutral case is of order 1/N—and therefore can be dominated

by direct selective forces such as viability, fecundity, or fertility differences between
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genotypes.

We also study the case where the sex-specific chromosome (the Y or the W) has

accumulated deleterious recessive mutations, as it is expected to do over time in its

non-recombining region [71, 74]. When the sex-specific chromosome is so degraded

that homozygosity for it is lethal (as in mammals and birds), most heterogametic

transitions are impossible [49]. However, in many other taxa, the sex-specific chro-

mosome has accumulated only few recessive deleterious mutations—this state is

common, for example, in amphibians, reptiles, and fish [15]. In such cases, homozy-

gosity for the sex-specific chromosome is not expected to be lethal, and in fact can

be associated with only a small fitness cost, if any at all. When taking into account

these natural selective forces, we find in model 1 that the drift-induced selective

bias in favor of dominant sex determining mutations is amplified, though the over-

all substitution rates in both directions are reduced. In model 2, the drift-induced

bias in favor of dominant sex determining mutations is reduced when these selec-

tive forces are taken into account. Thus, in model 2, when selection is weak and

the population is small, dominant sex determining mutations substitute at a higher

rate; when selection is strong and the population is large, recessive sex determining

mutations substitute at a higher rate.

The potential for drift-induced selection in transitions between sex determining

systems has previously been noted by Vuilleumier et al. [554], who use simulations

to investigate the stochastic dynamics of model 1, focusing predominantly on the

effects of population structure. Our work overlaps with theirs in one particular case,

that of a single deme, with no viability differences between the various genotypes.

In that case, they too find non-neutral fixation probabilities for new dominant and

recessive sex determining mutations, but find fixation probabilities substantially
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above the neutral expectation for both classes of mutation. In contrast, we find

in this case that dominant sex determining mutations fix with probability above

the neutral expectation, but recessive mutations fix with probability lower than the

neutral expectation. The fixation probabilities that they report are also orders of

magnitude different from those we report, especially for large populations [compare,

for example, their Figure 1(a) with our Figure 4A]. They also find mean conditional

fixation times that are invariant, and in some cases even decrease, as population

size increases; we find mean conditional fixation times that increase linearly with

population size, consistent with drift-like dynamics. We have independently simu-

lated their population model for the case that overlaps with ours, and obtain results

consistent with ours, but different from those they report. The validity of our re-

sults is supported by mathematical analysis, which also allows us to explain them in

analytical detail. In addition, we also consider transitions between sex determining

systems in model 2, where the sex chromosome locus is changed in the course of

a transition; empirically, this scenario is possibly even more common than model

1 [144]. Our results thus suggest that biases favoring dominant sex determining

mutations may be general to transitions between male and female heterogamety.

6.3 Characterization of the equilibrium paths

6.3.1 Model 1

Consider an initial male-heterogametic system, XX/XY. Suppose now that a mu-

tation occurs on an X chromosome that renders the feminizing tendency of the

resulting chromosome—call the new chromosome X′—dominant to the masculiniz-

ing tendency of the Y (so that X′Y individuals are female). Allowing all possible
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Figure 6.3.1: Transitions between male and female heterogamety without a change in the sex
determining locus (model 1). (A) In model 1, heterogametic transitions involve intermediate
systems of five sexual genotypes. In the system depicted here, there are three female and two
male genotypes. Transition a is from male to female heterogamety, and involves fixation of the
dominant feminizing X′ chromosome (mutated from an X). The reverse transition, b, is from
female to male heterogamety, and involves fixation of the recessive feminizing X chromosome
(mutated from an X′). A symmetric path, with two female and three male genotypes, also exists
(see Figure 6.3.3A). (B) The equilibrium path (dashed line) governing transitions a and b. For
ease of visualization, attention is restricted to the frequencies of the three female genotypes
when the sex ratio is 1/2 (as it is at every point on the equilibrium path). These frequencies
are displayed in a de Finetti diagram, where, for example, the relative frequency of XX females
at a point is given by the height of that point along a perpendicular line dropped from the XX
corner to its opposing side. Some deterministic trajectories to the equilibrium path are displayed
with arrowed grey lines. Color shading indicates frequency of XX females (blue) relative to X′Y
females (orange). The equation for the equilibrium path is given in Eq. (6.1).
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male-female matings between the genotypes results in a closed system of five sexual

genotypes: females can be XX, X′X, or X′Y, while males can be XY or YY (Fig-

ure 6.3.1A, system arises in direction a). Clearly, this system could also arise in

the reverse direction: starting from a female-heterogametic system, X′Y/YY, an X′

chromosome can mutate to an X chromosome with recessive feminizing tendency

(Figure 6.3.1A, direction b). (It should of course be noted that the usual sex chro-

mosome labels—X, Y, Z, and W—are arbitrary, so that we could just as validly

label those in a female-heterogametic system X′ and Y. We also note that ‘sex chro-

mosomes’ are defined simply by the presence of a locus at which genes of major

sex determining effect segregate—it is possible, for example, that X and Y chro-

mosomes are identical along their entire length, and recombine along their entire

length, except at the major sex determining locus.)

Assuming the genotypes all to have equal fitness (i.e., that the system is neutral),

enumerating them in the above order (XX, X′X, X′Y, XY, YY), and letting pi be

the population frequency of genotype i, Bull and Charnov [53] showed that, for any

value 0 ≤ q ≤ 1, the population state

p1 =
(1− q)2

2(1 + q)2
, p2 =

q(1− q)

(1 + q)2
, p3 =

q

1 + q
,

p4 = (1− q)/2, p5 = q/2, (6.1)

is an equilibrium in an infinite, randomly-mating population (Figure 6.3.1B). When

q = 0, all males are XY and all females XX, so that a system of male heterogamety

operates; when q = 1, males are YY and females X′Y, and the system is female

heterogamety. For intermediate values 0 < q < 1, all five genotypes are present at

positive frequency.
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A symmetric, though distinct, path exists where, from an initial female-heterogametic

system ZW/ZZ, a dominant masculinizing Z′ arises from a mutated Z, and, if it

reaches high enough frequency, establishes a male-heterogametic WW/WZ′ sys-

tem. The reverse transition along the same path involves fixation of the recessive Z

chromosome from an initial WW/WZ′ system. Intermediate states along this path

involve two female and three male genotypes.

These symmetric paths, one with three female and two male genotypes (as illus-

trated in Figure 6.3.1), and the other with two female and three male genotypes

(described in the previous paragraph), are illustrated in a general format in Figure

6.3.3A. There, among the transitions involving fixation of dominant sex determin-

ing mutations, those from male to female heterogamety are labeled a (as in Figure

6.3.1A), while those from female to male heterogamety are labeled c. Among the

transitions involving fixation of recessive sex determining mutations, those from fe-

male to male heterogamety are labeled b (as in Figure 6.3.1A), while those from

male to female heterogamety are labeled d. We shall use this labeling throughout

for model 1 transitions.

Notice that, if there are no demographic differences between males and females,

then the dynamics in directions c and d are identical to those in directions a and b,

respectively, up to a relabeling of males and females.

For the non-neutral case, the equilibrium path connecting systems of male and

female heterogamety no longer exists [53]. The resultant dynamics in this scenario

depend on the selective forces acting on each of the genotypes. Transitions in ei-

ther direction involve the production of individuals homozygous for a previously

sex-specific chromosome (the Y for transitions in direction a and the X′ and X for

those in direction b). Sex-specific chromosomes are expected to accumulate reces-
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sive deleterious mutations in a heterogametic system [71, 74], causing individuals

homozygous for them to be selected against weakly in young heterogametic systems

(as in many reptiles, amphibians, and fishes) and to be inviable in old systems (as in

mammals and birds). In the latter case, model 1 transitions are impossible. In the

former case, we expect YY genotypes to be selected against in transitions in direc-

tion a, and X′X and XX genotypes to be selected against in transitions in direction

b (in direction b, the X chromosome is created simply by mutation at a major sex

determining locus on the X′ chromosome; the X is therefore expected to carry the

same deleterious mutations that the X′ does).

6.3.2 Model 2

Begin with a male-heterogametic system XX,AA/XY,AA, where A is initially au-

tosomal. Now suppose that a mutation occurs on an A chromosome that confers

on the resultant chromosome, A′, a feminizing tendency dominant to the masculin-

izing tendency of the Y (so that XY,AA′ and YY,AA′ individuals are female). All

possible matings then yield a closed system of six sexual genotypes, females being

XX,AA, XX,AA′, XY,AA′, or YY,AA′, and males being XY,AA or YY,AA (Figure

6.3.2, direction a). Again, this system could arise in the reverse direction as well,

starting from the female-heterogametic system YY,AA′/YY,AA and introducing, as

a mutated Y chromosome, a recessive feminizing X (Figure 6.3.2, direction b).

Scudo [470, 471] and Bull and Charnov [53] showed that, when all genotypes

are equally fit (i.e. when the system is neutral), enumerating them in the above

order (XX,AA, XX,AA′, XY,AA′, YY,AA′, XY,AA, YY,AA), and writing pi for
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a b

Figure 6.3.2: Transitions between male and female heterogamety with a change in the sex
determining locus to a previous autosome (model 2). Model 2 transitional systems involve six
sexual genotypes. In the system illustrated here, there are four female and two male genotypes.
Transition a involves fixation of the dominant feminizing A′ chromosome (mutated from an A),
and causes the previous sex chromosome Y to become an autosome. Transition b involves fixation
of the recessive feminizing X (mutated from a Y), and causes the previous sex chromosome A
to become an autosome. The equilibrium path of this system is given in Eq. (6.2). A symmetric
path, with two female and four male genotypes, also exists (see Figure 6.3.3B).

the frequency of genotype i, a continuous path of equilibria,

p1 =
(1− q)2

2(1 + q)2
, p2 =

q(1− q)2

2(1 + q)2
, p3 =

q(1− q)

1 + q
, p4 = q/2,

p5 = (1− q)/2, p6 = q/2, (6.2)

connects male heterogamety at one end (XX,AA/XY,AA; q = 0) with female het-

erogamety at the other (YY,AA′/YY,AA; q = 1), with intermediate equilibria

(0 < q < 1) involving all six genotypes.

Notice that, if the former system transitions to the latter (Figure 6.3.2, direction

a), the Y chromosome becomes autosomal, and the previous autosome A becomes

a sex chromosome. Notice too that this transition involves the production of YY

individuals. On the other hand, the reverse transition (Figure 6.3.2, direction b) does

not involve the production of individuals homozygous for the previously sex-specific

chromosome (here, the A′ chromosome), an important difference.
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Again, a symmetric, though distinct, equilibrium path exists that connects a

female-heterogametic system AA,ZW/AA,ZZ with a male-heterogametic system

AA′,WW/AA,WW via an intermediate system with two female and four male geno-

types. Transitions from female to male heterogamety along this path involve produc-

tion of WW individuals, the W having been female-specific in the original system of

female heterogamety. But transitions from male to female heterogamety along this

path do not involve the production of A′A′ individuals, the A′ having been male-

specific under male heterogamety. That heterogametic transitions along standard

equilibrium paths are possible without the production of WW or YY individuals

(using the standard labeling) is an important fact often forgotten in the literature

on evolutionary transitions between sex determining mechanisms.

These symmetric equilibrium paths, one with four female and two male genotypes

(as in Figure 6.3.2), and the other with two female and four male genotypes (as de-

scribed in the previous paragraph), are illustrated in a general way in Figure 6.3.3B.

There, among model 2 transitions involving fixation of dominant sex determining

mutations, those from male to female heterogamety are labeled a, while those from

female to male heterogamety are labeled c. Among the reverse transitions involving

fixation of recessive sex determining mutations, those from female to male heteroga-

mety are labeled b, while those from male to female heterogamety are labeled d. We

shall use this labeling throughout for model 2 transitions. Transitions b and d do

not involve the production of individuals homozygous for a previously sex-specific

chromosome, while transitions a and c do.

Again, notice that, if there are no demographic differences between males and

females, then the dynamics in directions c and d are respectively identical to those

in directions a and b up to a relabeling of males and females.
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Figure 6.3.3: A general representation of the substitutions involved in changing the heteroga-
metic system, both for model 1 transitions (A) and for model 2 transitions (B). Transitions
between heterogametic systems that involve the arrival and fixation (‘substitution’) of new dom-
inant sex determining mutations are labeled a and c. Transitions that involve the substitution of
new recessive sex determining mutations are labeled b and d. For model 2 (B), we have used the
arbitrary letters A and B to denote the two separate chromosomes/unlinked loci: one switches
to a sex chromosome, and the other switches to an autosome, each time the heterogametic
system changes.
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6.4 Methods

The equilibrium paths described in the previous section arise under deterministic

evolutionary dynamics. Our aim is to study stochastic evolution along and around

these paths. To do so, we employ Monte Carlo simulations to estimate the substitu-

tion rates of the various mutations along the paths, and approximation techniques

to analytically investigate the results of these simulations.

For computational efficiency, our simulations are of a non-overlapping genera-

tions Wright-Fisher process [154, 219, 584]. For mathematical tractability, on the

other hand, our analytical treatment considers models of the overlapping gener-

ations Moran type [375]; mapping between these processes in the diffusion limit

simply requires rescaling the rate of genetic drift [143]. The agreement of the re-

sults under the two processes will demonstrate their robustness to the consideration

of overlapping or non-overlapping generations.

6.4.1 Monte Carlo simulations

For both model 1 and model 2, we simulate a population of constant size N , which

comprises males and females, and evolves according to a sexual Wright-Fisher pro-

cess [154, 219, 584]. Each generation, males and females form mating pairs, N in

total. An individual can be in more than one pair, and the probability that an

individual is in a given pair is proportional to that individual’s fitness relative to

other members of its sex (and is independent across pairs). Each mating pair pro-

duces a single offspring, whose sexual genotype (and therefore sex) is determined

by randomly choosing a gamete from each of its parents. The sex chromosomes of

heterogametic individuals are assumed to segregate in a Mendelian fashion. After

offspring production, all individuals in the parental generation die. (This model is
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equivalent to one in which each male contributes a large number of sperm, pro-

portional to his fitness, to a common sperm pool, each female contributes a large

number of eggs, proportional to her fitness, to a common egg pool, and each of N

offspring is then formed by drawing a random sperm and a random egg from the

respective pools.)

As a baseline for both models, we consider the case where each genotype is equally

fit (the ‘neutral’ case), i.e., where each individual within a sex is equally likely to be

chosen to be in a given mating pair. Thereafter, we focus on cases where individuals

that are homozygous for a previously sex-specific chromosome suffer a selective

disadvantage: each such individual is a fraction 1− s as likely as other members of

its sex to be chosen to be in a given mating pair.

In all cases, we assume no population structure (mating is random), and no

demographic differences between males and females in our simulations. Relaxing

these assumptions is an important direction of future work, and would be aided by

parallel theoretical developments in the general study of drift-induced selection. In

[547, Section S1.3], we give some numerical picture of how demographic differences

between males and female (viz. greater variance in male reproductive success) affect

our results (also see Discussion section).

6.4.2 Diffusion approximations

In the Moran formulation, we likewise consider a discrete population of N individu-

als. Males and females of each genotype encounter each other with a probability per

unit time proportional to their frequency in the population. On encountering each

other, a pair produces a single offspring, which inherits its sexual genotype from

its parents in a Mendelian fashion. In order to keep the population size constant
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at N , another individual is chosen to die. In the neutral case, each individual in

the population is equally likely to be chosen to die. In the case with selection, the

probability that an individual is chosen to die is weighted by a normalized death

probability, the inverse of that genotype’s fitness. This implementation of selec-

tion will give similar dynamics to the Wright-Fisher model to leading order in the

selection strength (see In [547, Section S2.1].

In order to simplify the probabilistic model, we make use of a diffusion approx-

imation [111]. Denoting the frequency of each genotype by pi and assuming N to

be large but finite, the evolution of the pdf for the system ϕ(p, t) is approximately

governed by

∂ϕ(p, τ)

∂τ
=−

∑
i

∂

∂pi
[Ai(p)ϕ(p, τ)]

+
1

2N

∑
i,j

∂2

∂pi∂pj
[Bij(p)ϕ(p, τ)] (6.3)

[178, 361], where the forms of the vector A(p) and the matrix B(p) can be directly

calculated for both models 1 and 2 from their respective probability transition rates

(see [547, Section S2.1]. The term A(p) primarily controls the time-evolution of

the mean of ϕ(p, t), and can thus be interpreted as a deterministic selective term.

Indeed, in the deterministic limit (N → ∞), the dynamics of the system are de-

scribed by the ordinary differential equations ṗ = A(p). Meanwhile, the term B(p)

controls the diffusion of ϕ(p, t), thus capturing the effect of genetic drift.

In comparing this diffusion equation with one for the analogous Wright-Fisher

process, we must take account of two scalings. First, genetic drift is larger by a factor

of two in the Moran formulation than in the Wright-Fisher formulation [143, 149].

This leads to an additional pre-factor of 1/2 appearing before the B(P ) in the
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Wright-Fisher formulation of Eq. (6.3). Second, reproduction occurs 4N times faster

in the Wright-Fisher model. This is because individual reproduction events in the

sexual Moran model occur at an average rate proportional to the product of the

frequency of males and females in the population (which is 1/4 at equilibrium sex

ratios), whereas, in the Wright-Fisher model, N reproduction events occur every

time-step. Since we have already taken into account a factor N in timescale in

obtaining Eq. (6.3) (τ = t/N), the Wright-Fisher formulation of Eq. (6.3) contains

an additional factor of 4 preceding all terms on the right-hand side of Eq. (6.3).

We wish to determine the probabilities of transitions from male to female het-

erogamety, and vice-versa. The calculation of these quantities is not straightforward;

the diffusion equation (6.3) governing the dynamics is non-linear in either four or

five variables (for models 1 and 2, respectively). However, analytical progress can

be made by exploiting a separation of timescales that is present in both models.

Such methods have long been successfully employed in population genetics to solve

a wide range of problems [140, 390, 499]. The key to progress is in noting that,

in the deterministic neutral systems, a trajectory starting from any initial point

will quickly collapse to a point on the equilibrium path of the system, Eq. (6.1)

for model 1 (Figure 6.3.1B) and Eq. (6.2) for model 2, where it will then stay. In

the current notation, this line is the set of solutions p to the equation A(p) = 0.

When genetic drift and selection are taken into account, the system will no longer

reach and subsequently remain at a position on this line. However, if selection is

weak and N is large (such that the rate of genetic drift, 1/N , is small), then the

system will quickly collapse to a subspace in the vicinity of this line; it will then

slowly move along this ‘slow subspace’ until the system fixes in a state of either

male or female heterogamety. We exploit this separation of timescales by removing
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the fast transient dynamics to obtain an approximation for the system dynamics

in the slow subspace. Since this approximate description in the slow subspace is in

terms of a single variable, q [see Eqs. (6.1) and (6.2)], fixation probabilities are then

straightforward to calculate.

There is no unique way to mathematically implement the approach outlined con-

ceptually above. While methods similar to the projection operator formalism de-

scribed in [178] have historically found most favor in the population genetics lit-

erature (e.g., [140, 499]), in this paper we implement the approach described in

[419], which is more intuitive in the present case. The full calculation is provided

in the [547, Section S2.2]. Here we simply state the key results. On removing the

fast-variables, the dynamics of Eq. (6.3) can be approximated by

∂ψ(q, τ)

∂τ
=− ∂

∂q
{[D(q) + S(q)]ψ(q, τ)}

+
1

2N

∂2

∂2q
{B(q)ψ(q, τ)} . (6.4)

Here, ψ(q, t) is the probability density function for q along the slow subspace. In a

similar fashion to Eq. (6.3), the terms D(q) and S(q) control the time-evolution of

the mean of ψ(q, t) and can thus be interpreted as selective terms for q along the

slow subspace. Likewise, the term B(q) controls the diffusion of ϕ(p, t), and can

thus be interpreted as capturing the effect of genetic drift along the slow subspace.

The equation for the slow subspace itself can be approximated by the equation

for the equilibrium line, since they lie close to each other in the weak selection limit,

and coincide when selection is absent. The equations for D(q), S(q), and B(q) can be

determined from A(p) and B(p) along with the equation for the slow subspace. The

terms D(q) and B(q) are simply the components of A(p) and B(p) along the slow

158



subspace (i.e., respectively, the components of deterministic selection and genetic

drift in the subspace). More interesting is the term S(q), which is a selective term

induced by genetic drift. Its origin can be interpreted in various ways. First, it can be

graphically understood as resulting from a bias in how fluctuations taking the system

off the slow subspace return to the slow subspace (i.e., fluctuations do not return,

on average, to the point from which they originated on the slow subspace) [100,

419]. Second, it can be mathematically understood as the result of making a non-

linear change of stochastic variables [444] into the system’s slow variable. Finally,

it can be understood as the result of a selective pressure favoring genotypes with

a lower variance in their reproductive output—Gillespie’s Criterion [182, 216, 420].

In Eq. (6.4), differences in the variance of the reproductive output of the genotypes

emerge naturally from the confinement of the system to the slow subspace.

6.5 Results

6.5.1 Model 1: Transitions using the same chromosomes

In this section, we study transitions between male and female heterogamety where

the sex chromosome locus is the same under both systems (Figures 6.3.1 and 6.3.3A).

Monte Carlo simulations

We begin with a male-heterogametic system, XX/XY, in a population of constant

size N , initially with N/2 females (all XX) and N/2 males (all XY). We consider

a mutation to one of the X chromosomes, rendering it an X′ chromosome, X′Y and

X′X bearers of which are female. YY individuals are male. If the X′ chromosome

‘fixes’ in the population, a female-heterogametic system, X′Y/YY, is established

(direction a in Figures 6.3.1A and 6.3.3A).
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Influenced by whether the original X′ mutation occurs in oogenesis or spermato-

genesis, the X′ could initially find itself in an X′X or an X′Y female. We consider

both cases in our simulations, and in both begin with a population that is N/2

females (one of which carries an X′ chromosome) and N/2 males.

Initially assuming all five sexual genotypes to be equally fit, what is a reasonable

null expectation for the fixation probability of this X′ chromosome? The fixation

probability of a mutation on the X chromosome of no effect is simply the inverse of

the initial census count of the X chromosome, i.e., 1/(3N/2). This we take to be

the neutral expectation for ρnull
X′ , the fixation probability of the X′ chromosome, so

that Nρnull
X′ = 2/3.

Instead, we find in our simulations that the fixation probability of the X′ chro-

mosome is higher than this neutral expectation, with NρX′ ≈ 1.12 (Figure 6.5.1A).

This is irrespective of the background on which the initial X′ chromosome finds itself

[547, Figure S1A]. The average conditional fixation time of the X′ chromosome is

close to 2.4N for each N considered in our simulations, and again, this is irrespective

of the mutation’s initial background [547, Figure S1B]. A fixation time that scales

linearly with N is strongly suggestive of drift-like evolutionary dynamics.

We now consider evolution in the other direction along the path (direction b

in Figures 6.3.1A and 6.3.3A). We begin with an established X′Y/YY female-

heterogametic system, and consider a mutation to one of the X′ chromosome that

renders it an X. If this X chromosome subsequently fixes in the population of X

and X′ chromosomes, an XX/XY male-heterogametic system would be established.

Here, the X mutation must occur in oogenesis, since it derives from an X′ chro-

mosome which must have been borne by a female. Therefore, the first individual

to carry the new X chromosome must be an XY male. For consistency, we be-
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Figure 6.5.1: Fixation probabilities in Model 1 heterogametic transitions. (A, B) The fixation
probability of a neutral dominant feminizing X′ arising in an XX/XY system is significantly higher
than the neutral expectation (A), while the reverse fixation probability of a neutral recessive
feminizing X chromosome arising in an X′Y/YY system is lower than the neutral expectation
(B). (C) If YY individuals are selected against in the transition from XX/XY to X′Y/YY, the
substitution rate of the X′ chromosome causing this transition is reduced. Still, selection needs
to be sufficiently strong to reduce the substitution rate below the neutral expectation (above red
line), and even stronger to reduce the substitution rate below that of the neutral X chromosome
in the reverse transition (above white line). This is especially true in smaller populations.
(D) Fixation probabilities of the X′ and X chromosomes, in directions a and b of Figure 6.3.1A
respectively, when individuals homozygous for a previously sex-specific chromosome have relative
fitness reduced by s = 0.5%. Though the fixation probabilities of the two chromosomes decrease
when this selection operates, the relative advantage in substitution rates enjoyed by the dominant
X′ over the recessive X is exacerbated.
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gin our simulations with N/2 females and N/2 males (one of which carries the X

chromosome).

Similar to before, our neutral expectation for the fixation probability of the X is

just the inverse of the number of X′ chromosomes initially in the population, i.e.,

ρnull
X = 1/(N/2), so that Nρnull

X = 2. Instead, in our simulations we find the fixation

probability of the X chromosome to be much lower than this neutral expectation,

with ρX ≈ 0.65 (Figure 6.5.1B). The average conditional fixation time of the X

chromosome is, like that of the X′, close to 2.4N for each N considered [547, Figure

S2B].

Thus, the fixation probability of the X′, starting from an initial XX/XY system,

is almost twice as great as the fixation probability of the X, starting from an ini-

tial X′Y/YY system. However, to properly determine whether evolution along the

equilibrium path is biased in favor of the X′ chromosome, we must consider the sub-

stitution rates of the two chromosomes. In doing so, we assume symmetric mutation

rates in the two directions, i.e., that the probability of an X chromosome mutating

to an X′ is the same as the probability of an X′ chromosome mutating to an X. We

also assume this mutation rate to be sufficiently small that at most one mutation

segregates in the population at any given time (a common assumption [355]).

Suppose this mutation rate to be u per chromosome per generation. An XX/XY

population with even sex ratio produces X′ mutations at a rate of µX′ = (3N/2)u

per generation, while an X′Y/YY population produces X mutations at a third of

this rate, µX = (N/2)u per generation. Under our naive neutral expectations, the

substitution rates of the X and X′ chromosomes should both be u (= µX′ρnull
X′ =

µXρnull
X ). Instead, the substitution rate µX′ρX′ from an XX/XY to an X′Y/YY

system (in direction a of Figures 6.3.1A, 6.3.3A) is about (3N/2)u×1.12/N = 1.68u,
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while the substitution rate µXρX from an X′Y/YY to an XX/XY system (direction

b of Figures 6.3.1A, 6.3.3A) is about (N/2)u × 0.65/N = 0.325u. That is, the

substitution rate of the X′ is more than five times higher than that of the X.

Since, in the population model we have simulated, there are no demographic

differences between males and females, the transitions symmetric to those above

(i.e., in directions c and d in Figure 6.3.3) occur with fixation probabilities and

substitution rates equivalent to those we have estimated above (i.e., with reference to

Figure 6.3.3, the fixation probabilities in directions a and b match those in directions

c and d respectively).

Therefore, the most likely trajectory that the neutral dynamical system will follow

in the long term is the recurrent invasion and fixation of successive dominant sex

determining mutations, flipping the system repeatedly between male and female

heterogamety. This corresponds to a bias in favor of rightward transitions in Figure

6.3.3.

We now consider the possibility that some genotypes are fitter than others. In

particular, we study the case where individuals homozygous for a previously sex-

specific chromosome (including mutated versions of it) are of lower fitness.

The transition from a male-heterogametic XX/XY system to a female-heterogametic

X′Y/YY system, via fixation of the dominant X′ chromosome and displacement of

the X, involves the production of YY males. Assume that YY males have relative

fitness 1 − s, while all other sexual genotypes are of equal fitness 1. Figure 6.5.1C

gives the fixation probability of the X′ chromosome for various values of s and N .

As expected, the fixation probability decreases as selection against the YY geno-

type increases. Nonetheless, it is clear that the YY genotype can suffer appreciable

fitness reductions with the X′ chromosome still fixing with probability higher than
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the neutral expectation. This is especially true in small populations, in which se-

lection acts less efficiently [302]; we would expect this to carry over to structured

populations of larger size, e.g., those that are subdivided into many small demes in

which drift is an important force [303, 573].

The reverse transition, from the X′Y/YY to the XX/XY system, involves the

production of X′X and XX females. The substitution rate of the X, in direction

b of Figure 6.3.1A, was very low even when no genotypes were of reduced fitness;

selection against the XX and X′X genotypes (recall that the X′ chromosome is just

an X mutated at the sex-determining locus) severely exacerbates this disadvantage

(Figures 6.5.1D and S4). Again, given the symmetry between transitions in direc-

tions a and c in Figure 6.3.3, and between transitions in directions b and d, the

above results imply a bias towards c transitions over d transitions, with this bias

exacerbated by selection. That is, selection generally exacerbates the bias in favor

of rightward (dominant) transitions in Figure 6.3.3.

Analytical results

To better understand these simulation results, we now study the system analytically

in the diffusion limit. We first consider the neutral case. Applying the fast-variable

elimination described in Methods and detailed in full in [547, Section S2], we find

for the model 1 system described in Eq. (6.1) that the system dynamics can be

approximated by Eq. (6.4) with D(q) = 0 and

S(q) = 1

4N

q(1− q)(1 + q)3(1 + q2){1 + (2− q)q[4 + q(6 + q)]}
[1 + q(2 + 3q)]3

B(q) = 1

4

q(1 + q)3{1 + q [1 + q(6− q(6 + (3− q)q))]}
[1 + q(2 + 3q)]2

(6.5)
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(calculations in [547, Section S2.2.1]). As we expect in this neutral scenario, there

are no deterministic contributions to selection along the equilibrium path [D(q) = 0].

However, there is a drift-induced selection term [S(q) ̸= 0]. The strength of the drift-

induced selection is of order 1/N , generated as it is by demographic fluctuations.

Recalling that q = 0 corresponds to male heterogamety [XX/XY; p1 = 1/2, p4 = 1/2

in Eq. (6.1)], while q = 1 corresponds to female heterogamety [X′Y/YY; p3 = 1/2,

p5 = 1/2 in Eq. (6.1)], we find that the drift-induced selection selects for the fixation

of the dominant sex determining mutation at every point on the equilibrium path

[S(q) > 0 for all q ∈ (0, 1)].

How does this drift-induced selection emerge? Essentially, in this ‘neutral’ stochas-

tic system, demographic fluctuations continually perturb the system away from the

equilibrium path (to which the deterministic system is constrained). There is then

a selective pressure for the system to return to the equilibrium path. However,

the nonlinear trajectories along which these fluctuations return, combined with the

curvature of the equilibrium path, give rise to a bias in the average position to

which fluctuations return. In other words, fluctuations arising at a point q return

on average to a point q + δ(q) on the equilibrium path.

Mathematically quantifying this bias requires taking account of the probability

distribution of fluctuations in each genotype, the form of trajectories back to the

equilibrium path, and the curvature of the equilibrium path itself, each of which

varies as q is varied. However, further intuition can be gained by decomposing S(q)

into two components: S(q) = SNL(q) + SC(q). The first term, SNL(q), quantifies

contributions to S(q) arising from the non-linearity of trajectories that take the sys-

tem back to the equilibrium path. The second term, SC(q), quantifies contributions

to S(q) arising from the curvature of the equilibrium path itself. Plotting these
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terms together in Figure 6.5.2A, we see that it is the curvature of the equilibrium

path that contributes most to the observed drift-induced selection.

Standard methods can be used to numerically calculate the fixation probability of

either male or female heterogamety for any initial condition q0 on the slow subspace

(see [178, 444]; and [547, Section S2.3]). Our final task is to calculate how the

initial conditions described in the previous section, those of single mutants invading

a resident population, map onto initial conditions on the equilibrium path. That is,

for a given p0, we wish to determine q0. This calculation is given in [547, Section

S2.3.1]; with it, the neutral fixation probabilities can be calculated.

The results for the fixation probabilities of the mutants are given in Figure 6.5.1A,

in which we see excellent agreement between theory and simulations. In particular

we find that the fixation probability of the X′ chromosome under the diffusion ap-

proximation is NρX′ ≈ 1.13 (Figure 6.5.1A). This is irrespective of the background

on which the initial X′ chromosome finds itself, as both of these initial conditions

lead to the same initial condition q0 on the equilibrium path [547, Section S2.3.1].

We may also compute the mean conditional fixation time of the X, which agrees well

with our simulation estimates when the differences in variance between the Wright-

Fisher and Moran processes are taken into account [547, Figure S1B]. Meanwhile the

fixation probability of an X chromosome is NρX ≈ 0.68, again in close agreement

with our simulation results (Figure 6.5.1B), as is the computed mean conditional

fixation time [547, Figure S2B].

We now consider the possibility that some genotypes are fitter than others. For

transition direction a, assume that YY males (with frequency p5) have relative death

rate ∆5 = 1+s, while all other sexual genotypes have death rate 1. When s is small,

we can still utilize fast-variable elimination to arrive at the approximate description
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Figure 6.5.2: (A) In model 1, random demographic fluctuations induce a selective gradient S(q)
along the equilibrium path in favor of the dominant sex determining chromosome, i.e., causing
q to increase on average [see Eqs. (6.4) and (6.5)]. S(q) can be divided into two components.
The first, S(NL), is from non-linear components of the mapping of fluctuations back to the
equilibrium path; the second, S(C), is from the curvature of the equilibrium path. In this case, it
can be seen that the primary contribution to the drift-induced bias S(q) is from curvature of the
equilibrium path. (B) Contributions to average dynamics along the equilibrium path arising from
drift-induced selection, S(q), and deterministic selection against individuals homozygous for a
previously sex-specific chromosome, D(q) [see Eq. (6.4)]. Note that the form of D(q) is expected
to change depending on whether the initial population exhibits XX/XY male heterogamety
[D(a)(q)] or X′Y/YY female heterogamety [D(b)(q)] [Eqs. (6.6) and (6.7)], i.e., whether the
transition is in direction a or direction b of Figure 6.3.1A. In both plots the parameters have
been scaled such that Nδ = 1 in order to facilitate the comparison of contributions to selection
along the slow subspace.
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of the system dynamics given by Eq. (6.4). The functions S(q) and B(q) retain the

forms given in Eq. (6.5), but now D(q) = D(a)(q), where

D(a)(q) = −s
4

q2(1− q)(1 + q)2

1 + 2q + 3q2
(6.6)

and the superscript ‘(a)’ denotes that this is D(q) evaluated for transitions in direc-

tion a (Figure 6.5.2B; calculations in [547, Section S2.2.1]). This term is of order s

as this is the deterministic contribution to the dynamics along the slow subspace.

For the reverse transition b, assume that XX and X′X females (with frequencies

p1 and p2) have relative death rates ∆1 = 1+s and ∆2 = 1+s respectively, while all

other sexual genotypes have death rate 1. Again utilizing fast variable elimination,

we find D(q) = D(b)(q), where

D(b)(q) = −s
8

q(1 + 2q − q2)(1− q2)

1 + 2q + 3q2
(6.7)

and the superscript ‘(b)’ denotes that this is D(q) evaluated for transitions in direc-

tion b (Figure 6.5.2B; calculations in [547, Section S2.2.1]).

We are now in a position to calculate the respective fixation probabilities of

mutations arising in directions a and b. We find that, while the fixation probability

of X′ in direction a is of course lower than in the neutral case (since YY is selected

against), the relative reduction of the fixation probability of X in direction b is even

higher (Figure 6.5.1D).

6.5.2 Model 2: Transitions that change the sex chromosome pair

In this section, we study transitions between male and female heterogamety where,

in the course of the transitions, a pair of chromosomes that are initially autosomal
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are co-opted as new sex chromosomes, while one of the old sex chromosomes becomes

autosomal (Figures 6.3.2 and 6.3.3B).

Monte Carlo simulations

Beginning with an XX,AA/XY,AA male-heterogametic system (where X and Y are

sex chromosomes and A is an autosome), assume that a mutation appears on an A

chromosome, rendering it an A′ such that XX,AA, XX,AA′, XY,AA′, and YY,AA′

individuals are female, while XY,AA and YY,AA individuals are male (Figure 6.3.2).

If the A′ chromosome reaches sufficiently high frequency in the population, the

X chromosome is eliminated, and a YY,AA′/YY,AA female-heterogametic system

establishes (direction a in Figures 6.3.2 and 6.3.3B).

We initially assume all six sexual genotypes to be equally fit. Unlike for the

case of transitions involving the same chromosome pair, we do not propose a null

expectation for the fixation probability of the A′ mutation. This is because, if it

fixes, it displaces the unlinked X chromosome from the population: this is not the

‘population’ in which the A′ arises, being a mutated A chromosome. (In contrast,

in model 1, the X′ chromosome for example is a mutated X chromosome, and if it

fixes, it displaces the X chromosome.) Therefore, we shall focus predominantly on

comparing the substitution rates of the A′ and X chromosomes (i.e., the substitution

rates, respectively, in directions a and b of Figure 6.3.2). We may, however, take as

a reference neutral fixation probability for both mutations, ρref, that of a mutation

of no effect occurring on an autosome: Nρref = 1/2.

In our simulations, we find the fixation probability of the A′ chromosome to

be NρA′ ≈ 1.07 (Figure 6.5.3A), substantially higher than our reference value of

1/2. This value is insensitive to the genetic background of the initial mutation [547,
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Figure 6.5.3: Fixation probabilities in Model 2 heterogametic transitions. (A) The fixation prob-
ability of a neutral dominant feminizing A′ arising in an XX,AA/XY,AA system is substantially
higher than the reverse fixation probability, that of a neutral recessive feminizing X chromosome
arising in an YY,AA′/YY,AA system. (B) If YY individuals are selected against in the transition
from XX,AA/XY,AA male heterogamety to YY,AA′/YY,AA female heterogamety (direction a
in Figure 6.3.2), the substitution rate of the A′ chromosome causing this transition is reduced.
But selection needs to be sufficiently strong to reduce the substitution rate below that of the
neutral X chromosome in the reverse transition (above white line), especially in smaller popula-
tions. (C) Fixation probability of the A′ chromosome when YY individuals have relative fitness
reduction s = 0.5%. Since the reverse transition (direction b in Figure 6.3.2) does not involve
the production of individuals homozygous for the previously sex specific chromosome (the A′),
the substitution rates in the two directions are equal where the declining fixation probability of
the A′ intersects the flat neutral fixation probability of the X, here at a population size of only
about 150 individuals. For larger populations, the recessive X substitutes at a higher rate than
the dominant A′.

Figure S5A]. The average conditional fixation time of the A′ in our simulations is ap-

proximately 2.65N for each N considered, again regardless of the initial background

of the mutation [547, Figure S5B], and again suggestive of drift-like dynamics.

Turning our attention to transitions in the other direction along the equilibrium

path (direction b in Figures 6.3.2 and 6.3.3B), we begin with a female-heterogametic

YY,AA′/YY,AA system, and assume that a mutation on a Y chromosome occurs,

rendering the chromosome a recessive feminizing X. If this mutation reaches suffi-

cient frequency, the male-heterogametic system XX,AA/XY,AA establishes.

We estimate in our simulations that the fixation probability of the X is NρX ≈

0.54 (Figure 6.5.3A), which is fractionally higher than the reference value of 1/2.
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The background on which the mutation arises has no effect on its fixation probability

[547, Figure S6A]. The average conditional fixation time of the X chromosome is

also close to 2.65N for all values of N considered [547, Figure S6B].

To see if there is a directional bias in one direction or the other along the equi-

librium path, we assume that these mutations occur at the same rate, u per chro-

mosome per generation, and calculate the substitution rates of the two transitions.

The male-heterogametic system XX,AA/XY,AA generates A′ mutations at rate

µA′ = 2Nu, so that the substitution rate from an XX,AA/XY,AA system to a

YY,AA′/YY,AA system (in direction a of Figures 6.3.2, 6.3.3B) is about µA′ρA′ =

2Nu×1.07/N = 2.14u. Similarly, the female-heterogametic system YY,AA′/YY,AA

generates X mutations at rate µX = 2Nu, and so the substitution rate from a

YY,AA′/YY,AA system to an XX,AA/XY,AA system (direction b of Figures 6.3.2,

6.3.3B) is about µXρX = 2Nu × 0.54/N = 1.08u, or about half that of the reverse

transition.

Again, with no demographic differences between males and females, the transi-

tions symmetric to those above (i.e., in directions c and d in Figure 6.3.3B) occur

with fixation probabilities and substitution rates equivalent to those we have esti-

mated above (i.e., the fixation probabilities in directions a and b match those in

directions c and d respectively).

We now consider the role of selective differences between the genotypes. This

is an especially important question here because, unlike in model 1 heterogametic

transitions, model 2 transitions are possible without the production of individuals

homozygous for a previously sex-specific chromosome. In particular, the transitions

in directions b and d of Figure 6.3.3B change the heterogametic system, but do

not involve the production of individuals homozygous for the previously sex-specific
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chromosome. In contrast, the reverse transitions (in directions a and c) do involve

the production of individuals homozygous for previously sex-specific chromosomes.

Since we have found these latter transitions to have higher substitution rates than

the reverse transitions in the neutral case, we should expect selection to reduce, and

when strong enough to overturn, this bias.

We focus on the transition from the male-heterogametic XX,AA/XY,AA sys-

tem to the female-heterogametic YY,AA′/YY,AA system (direction a in Figures

6.3.2 and 6.3.3B), involving the substitution of a dominant female-determining A′

chromosome as a mutated A. The Y chromosome is sex-specific in the original

XX,AA/XY,AA system, and we assume that it has accumulated deleterious re-

cessive mutations such that the two YY genotypes are of fitness 1 − s, relative to

all other genotypes’ fitness of 1. Figure 6.5.3B gives the fixation probability of the

A′ chromosome for various values of s and N . Naturally, the fixation probability

decreases as selection against the YY genotypes increases, and this effect is stronger

in larger populations (in which selection acts more efficiently [302]). Indeed, in

large populations, even very small degrees of selection against the YY genotypes are

enough to overturn the substitution rate bias in favor of dominant sex determining

mutations.

Analytical results

We begin by considering the dynamics of the neutral model. Once again, fast-

variable elimination can be used to calculate the effective dynamics of the system

along the equilibrium path [see Eq. (6.4)]. For model 2 (as with model 1), D(q) = 0

(that is, there is no deterministic contribution to the dynamics along the equilibrium
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path), but there is a drift-induced selection term, which now takes the form

S(q) = q(1− q)(1 + q)3 [1 + (2− q)q] {1 + q [6− q (2− q(10 + q))]}
4N [1 + q(2 + 5q)]3

, (6.8)

which, along with the expression for diffusion along the equilibrium path,

B(q) = 1

4

q(1 + q)3 {1 + q [1 + q (10− q(2 + q)(5− q))]}
[1 + q(2 + 5q)]2

, (6.9)

approximates the stochastic dynamics (calculations in [547, Section S2.2.2]). Recall-

ing that q = 0 corresponds to male heterogamety [XX,AA/XY,AA; p1 = 1/2, p5 =

1/2 in Eq. (6.2)], while q = 1 corresponds to female heterogamety [YY,AA′/YY,AA;

p4 = 1/2, p6 = 1/2 in Eq. (6.2)], we find that the drift-induced selection selects for

the fixation of the dominant sex determining mutation at every point on the equi-

librium path [S(q) > 0 for all q ∈ (0, 1)].

As in model 1, we find that demographic fluctuations away from the equilibrium

path return to the equilibrium path on average with a bias, described by the drift-

induced selection term S(q). Once again, S(q) can be split into two components,

SNL(q) and SC(q), that respectively capture the contribution to S(q) arising from

the non-linearity of trajectories taking the system back to the equilibrium path and

the curvature of the equilibrium path itself. These terms are plotted in Figure

6.5.4A, in which we see that, as with model 1, it is the curvature of the equilibrium

path that contributes most to drift-induced selection in model 2.

Using this single-variable description of the dynamics, the fixation probability

for any initial condition q0 on the equilibrium path can be calculated. In order to

determine the fixation probability of mutants in the system starting from a single

copy, we need to calculate the mapping, for each initial mutation scenario, from p0
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Figure 6.5.4: (A) In model 2, as in model 1, random demographic fluctuations induce a selective
gradient S(q) along the equilibrium path in favor of the dominant sex determining chromosome,
i.e., causing q to increase on average [see Eqs. (6.4) and (6.8)]. Again, S(q) can be divided
into two components: S(NL), from non-linear components of the mapping of fluctuations back
to the equilibrium path, and S(C), from the curvature of the equilibrium path. As in model 1,
curvature of the equilibrium path is the primary contributor to drift-induced selection in favor
of increasing q. (B) Contributions to average dynamics along the equilibrium path arising from
drift-induced selection, S(q), and deterministic selection against individuals homozygous for a
previously sex-specific chromosome, D(q) [see Eq. (6.4)]. Such individuals are only produced
in transitions in direction a of Figure 6.3.2, where the initial population is XX,AA/XY,AA male
heterogametic, so that D(a)(q) < 0 for all q ∈ (0, 1) [see Eq. (6.10)]. In transitions in direction
b of Figure 6.3.2, where the initial population is YY,AA′/YY,AA female-heterogametic, no A′A′

individuals are produced, and so D(b)(q) = 0 for all q. In both plots the parameters have been
scaled such that Nδ = 1 in order to facilitate the comparison of contributions to selection along
the slow subspace.
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to q0. This calculation is given in [547, Section S2.3.2]. We can now evaluate our

numerical expression for the neutral fixation probability at these initial conditions.

Recall that simulations of the Wright-Fisher process showed the fixation probability

of the A′ chromosome to be NρA′ ≈ 1.07, higher than our reference value of 1/2. Our

analytical prediction slightly underestimates this fixation probability (NρX ≈ 1.02;

Figure 6.5.3A). The background on which the mutation arises has no effect on its

fixation probability, because the two scenarios initially have an identical component

q0 along the slow manifold [547, Section S2.3.2]. The computed mean conditional

fixation time of the A′ agrees well with our simulation estimates [547, Figure S5B].

We next consider the fixation probability of an X mutation occurring on an ini-

tially autosomal Y. Our Wright-Fisher simulations returned an estimated fixation

probability of NρA′ ≈ 0.54. Once again, there is a small discrepancy with our an-

alytical results, which overestimate this value (NρX ≈ 0.61; Figure 6.5.3A). The

fixation probability is again the same irrespective of the background on which the

X mutation occurs, because the initial conditions on the equilibrium path are the

same [547, Section S2.3.2]. Again, we may compute the mean conditional fixation

time of the X, and find good agreement with our simulation estimates when the

variance difference between the Wright-Fisher and Moran processes is taken into

account [547, Figure S6B].

We now consider the role of selective differences between the genotypes. As we

have noted, comparing transitions in directions a and b, only those in direction

a involve the production of individuals homozygous for a previously sex-specific

chromosome, and so we focus here on transitions in direction a. We assume that the

two YY genotypes (with frequencies p4 and p6) have elevated death rates ∆4 = 1+s

and ∆6 = 1 + s relative to all other genotypes’ death rates of 1. The term D(q) in
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Eq. (6.4) now becomes D(q) = D(a)(q), where

D(a)(q) = − s

16

q(1− q)(1 + q)2 [1 + (8− q)q]

1 + q(2 + 5q)
. (6.10)

D(a)(q) < 0 for all q ∈ (0, 1), and so this term acts in the opposite direction to

S(q) > 0 (Figure 6.5.4B; calculations in [547, Section S2.2.2]). There is thus an

antagonism between the deterministic contribution to selection D(a)(q) (favoring

transitions in direction b) and the drift-induced selection (favoring transitions in

direction a). Which of these dominates depends on the strength of selection and the

population size: D(a)(q) increases with s, while S(q) decreases with N .

In contrast, since transitions in direction b do not produce individuals homozygous

for a previously sex-specific chromosome, none of the genotypes is selected against.

Therefore, D(q) in direction b is D(b)(q) = 0.

Whereas in model 1 selection exacerbated the directionality of switching between

sex determining systems (while decreasing the overall switching rate), in model

2 we see that deterministic selection and drift-induced selection work in opposite

directions. Thus, for small populations with weak selection, transitions in directions

a and c in Figure 6.3.3B occur more often than transitions in directions b and d,

while for large populations with strong selection, transitions in b and d occur more

often than transitions in directions a and c.

6.6 Discussion

We have studied stochastic evolution along two ‘neutral’ equilibrium paths connect-

ing male and female heterogamety. We have shown that, even when all genotypes are

equally fit, evolution along these paths is not neutral. Instead, it shows significant
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substitution rate biases in particular directions, specifically in favor of dominant

sex determining mutations. We have demonstrated these biases to be the result of

drift-induced selection: random perturbations off the equilibrium path—inevitable

in finite populations—return to the equilibrium path with an average directional

bias in favor of the dominant segregating sex chromosome. The substitution rates

of dominant sex determining mutations that switch the system of heterogamety are,

in both of the cases we have studied, higher than those of truly neutral mutations

occurring on the same chromosomes.

Evolutionary transitions between male and female heterogamety have been com-

mon in the evolutionary history of animals [15, 144, 145, 232, 260, 339, 340, 427], de-

spite the fact that, in any given heterogametic system, the sex-specific chromosome

should degrade over time by the operation of Muller’s ratchet [71, 74]. To counter

this ‘evolutionary trap’ [54, 442], mechanisms based on direct selective forces have

been invoked to explain the frequency of heterogametic transitions (e.g., the opera-

tion of sex-specific selection [536]). Our demonstration of drift-induced selection in

transitions between male and female heterogamety suggests that mechanisms based

on direct selective differences between the sex chromosome genotypes may be unnec-

essary to explain empirical transitions. We have shown that small fitness reductions

to individuals homozygous for previously sex-specific chromosomes are not enough

to overturn the biases caused by drift-induced selection (Figures 6.5.1C and 6.5.3B).

Large fitness reductions to such individuals (and in the limit, their inviability) ren-

der most transitions impossible—the exception being the recessive transitions b and

d in model 2.

The influence of drift-induced selection in heterogametic transitions is therefore

best understood in terms of evolutionary timescale. From an initial heterogametic
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system with homomorphic sex chromosomes, the sex-specific chromosome gradu-

ally accumulates recessive deleterious mutations that would reduce the fitness of

individuals homozygous for this chromosome. At some threshold period of time of

accumulation of these mutations, the fitness reduction of the homozygote reduces

the fixation probability of a dominant sex reversal mutation exactly enough to can-

cel this mutation’s drift-induced selective advantage (Figures 6.5.1C and 6.5.3B).

Prior to this time threshold, a transition via a dominant sex reversal mutation is

likely—it becomes less likely as the threshold is neared. However, progress towards

the threshold is reset every time a transition occurs, because each transition cre-

ates a new sex-specific chromosome from a chromosome that was previously not

sex-specific.

A notable prediction of our findings is that heterogametic transitions should typ-

ically involve dominant sex determining mutations. That is, we should expect tran-

sitions usually to occur in directions a and c in Figures 6.3.3A and 6.3.3B, and

not in directions b and d. This general prediction is not unique to our theory.

For example, under the theory that heterogametic transitions are driven by link-

age between novel sex determining genes and genes with sex-specific fitness effects

[536], dominance of the sex determining mutation is either required for a transition,

or substantially increases the parameter range over which a transition may occur.

However, our analysis does reveal that this prediction can be recapitulated with a

minimal number of biological assumptions.

Evidence in favor of this prediction comes from intermediate ‘multi-factorial’ sys-

tems [14]. In the platyfish Xiphophorus maculatus, females are XX, WX, or WY,

while males are XY or YY [261, 262]. In principle, such a system could have arisen

either in directions a or b of Figure 6.3.3A, depending on the ancestral heteroga-
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metic system. Mapping known systems of heterogamety in the genus Xiphophorus

[522] onto a phylogeny of the clade [112] suggests this ancestral system to be male

heterogamety, in which case the intermediate system of X. maculatus has arisen in

direction a of Figure 6.3.3A, via a dominant sex reversal mutation, consistent with

our prediction. The western clawed frog, Xenopus tropicalis, also has an interme-

diate system: females are ZW or WW, and males are ZZ, ZY, or WY [447]. This

system could have arisen in direction c or d in Figure 6.3.3A, depending on the

ancestral system. The mechanism of sex determination has yet to be determined

for most members of the genus Xenopus [447, 522], but the well-studied X. laevis

is female-heterogametic [69], as is X. borealis [177]. If female heterogamety is an-

cestral to the intermediate system of X. tropicalis, then this intermediate system

would have arisen in direction c of Figure 6.3.3A, again consistent with our pre-

diction. Though it is possible that balancing selection operates to stabilize these

observed instances of multi-factorial systems (e.g., [411])—with the important sug-

gestion that, because observed instances are rare, most intermediate multi-factorial

systems are transitional—the drift-induced selection that we have discovered oper-

ating at all points on the slow subspace near the line of equilibria will, even in this

case, act so as to make invasion of dominant sex determining mutations more likely.

The prediction that heterogametic transitions should usually involve dominant

sex determining mutations can also be tested by reciprocal crosses of species or

populations on either side of a recent heterogametic transition, provided the an-

cestral system is known. In the frog Rana rugosa, populations in northern Japan

are female-heterogametic, while those in southern Japan are male-heterogametic

[371, 392]. The sex chromosomes in these populations are all homologous [529], and

so a model 1 transition appears to have occurred. Because the ancestral system
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is male heterogamety [403], the candidate directions in Figure 6.3.3A are a and d.

These two directions can be distinguished by crossing a homogametic male (from

the north) with a homogametic female (from the south). If the transition occurred

in direction a, all the offspring from this cross should be male, but if it occurred

instead in direction d, all the offspring should be female. This test has been car-

ried out using homogametic males from Hirosaki (in the north) and homogametic

females from Kumano (in the south), the reciprocal cross of which yielded almost

all male offspring [392]. Again, this is consistent with our prediction. [Crossing

heterogametic males and females yielded a sex ratio of 1/2 [392], consistent with the

model 1 transitions we have studied, though not informative of which direction the

transition was in.]

The bias we have found in favor of substitution of dominant sex determining

mutations also carries predictions for how the genetic pathways underlying sex de-

termination should look. We have referred throughout to ‘sex chromosomes’, but in

reality we are talking about genes of major sex determining effect, the presence or

absence of which acts as a switch to direct development down separate molecular

pathways, or sex determining ‘cascades’, which then produce males and females.

The downstream components of these cascades tend to be widely conserved [28],

but there is significant lability in the upstream components—through the addition

of new sex determining genes to the top of the cascade [575] and the shuffling of

genes already in a cascade [460]—suggesting that these cascades evolve ‘from the

bottom up’. This is consistent with our findings: our model predicts successive

transitions involving dominant sex determining mutations, with comparatively few

reversals involving fixation of recessive sex determining mutations, and so we expect

either the expansion of sex determining cascades, or their shuffling, but seldom their

180



contraction.

The drift-induced selective force that we have identified is a weak one: when

all genotypes are equally fit, it shifts fixation probabilities away from the values

expected under neutrality by amounts of order 1/N . This raises two questions. First,

are neutral transitions, even in the direction of the drift-induced bias, empirically

relevant, given that they involve fixation probabilities of order 1/N? Second, would

direct selective forces, such as viability differences among genotypes, not overwhelm

the drift-induced bias?

On the first question, as with the study of neutral substitutions elsewhere in the

genome, this depends on how often the relevant mutations are produced. The ex-

tended sex-determining cascades discussed above present a large mutational target:

mutations of major sex determining effect can occur at many points along them.

These mutations can also occur in many ways, in addition to standard sequence-

mutation events: (i) translocation of a gene in a sex determining pathway and a

resulting shift in expression or function [78, 521], (ii) duplication and subsequent

neo-functionalization of such a gene [29, 460], and (iii) mutation of a major sex

determining gene’s regulatory elements, such as transcription factors [28, 505]. The

frequency of these mutations is evidenced by the heterogeneity of major sex deter-

mining genes observed between and within clades [28].

On the second question, it is true that the drift-induced bias we have found be-

comes very weak as population size increases, while direct selective forces do not.

When such selective forces operate—for example, when there is selection against

individuals homozygous for a previously sex-specific chromosome—we have argued

that drift-induced biases are most likely to be relevant in populations with small

effective sizes. One way in which effective population size can be reduced is through
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demographic differences between the sexes, for example if males exhibit higher vari-

ance in reproductive success. Notice that demographic differences between the sexes

also eliminate the symmetry between dominant transitions from male to female het-

erogamety and from female to male heterogamety, and the same for recessive tran-

sitions, so that they also allow the possibility that male or female heterogamety

may be favored. In [547, Section S1.3], we have introduced greater variance in male

reproductive success for the case of model 1 transitions by altering our baseline

population model so that, each generation, a reduced subset of males is randomly

chosen to be candidate mates, with the other males denied the possibility of mat-

ing. In the neutral case, we find that dominant transitions from male to female

heterogamety exhibit a substantially higher substitution rate than in the case with

no demographic differences between the sexes [547, Figure S8A], while dominant

transitions from female to male heterogamety have a slightly reduced substitution

rate [547, Figure S8B]. The substitution rate of recessive transitions from female to

male heterogamety is increased marginally relative to the case of no sex differences

[547, Figure S8D], while recessive transitions from male to female heterogamety have

a significantly reduced substitution rate [547, Figure S8D]. Therefore, the general

effect of greater variance in male reproductive success in the neutral case is to exacer-

bate the bias in favor of dominant sex determining mutations, and to bias evolution

towards female heterogamety. When selection against individuals homozygous for

a previously sex specific chromosome is taken into account, we expect the results

to differ from those under no sex differences for two reasons: because drift-induced

selection operates differently in this regime, as for the neutral results just described,

and because reducing the number of males eligible to mate reduces the effective pop-

ulation size, rendering the deterministic selection against individuals homozygous
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for a previously sex specific chromosome less effective. To illustrate these effects,

Figure S10 in [547] displays the fixation probabilities of a dominant X′ chromosome

in an initially XX/XY system, with varying strengths of selection against YY males.

Compared with the case of no sex differences (Figure 6.5.1C, [547, Figure S10C]),

the fixation probabilities of the X′ are greatly increased when males have greater

variance in reproductive success [547, Figure S10A,B], so that, even for substantial

degrees of selection against YY individuals, the X′ fixes with non-negligible prob-

ability. Another effect of the reduced effective population size is that conditional

fixation times are substantially smaller than in the case of no sex differences [547,

Figure S9].

In comparing the substitution rates of dominant and recessive sex determining

mutations, we have assumed that their respective mutation rates, i.e., the rates at

which they are generated, are equal. It is possible that this is not the case, and that

one class of sex determining mutations is generated more rapidly than the other

[14, 232]. If this were the case, it would simply be a distinct mechanism by which

we expect one class of sex determining gene to be more prevalent than the other. We

should note that this is not as simple as comparing the rates of generation of gain-

of-function and loss-of-function mutations. Suppose, for example, that a system

is initially XX/XY male heterogametic, and consider a transition in direction a of

Figure 6.3.1A, involving fixation of a dominant feminizing X′ mutation. Depending

on the molecular functioning of the initial XX/XY system, this dominant X′ could be

gain-of-function or loss-of-function. If the Y is initially dominant male-determining

(as, e.g., in mammals [28, 296]), then a mutation on the X chromosome that blocks

the Y’s activity (a gain-of-function mutation) would be dominant feminizing, as

we require. If, however, the initial system depends on the ratio of some gene (or
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genes) on the X chromosome with respect to autosomes (as in Drosophila [28, 39]),

then a loss-of-function mutation to a relevant gene on the X chromosome could be

dominant feminizing.

We have studied direct transitions between male and female heterogamety. These

appear to have been common, at least in vertebrates [144]. However, transitions are

also possible between heterogametic and environmental sex determination [48, 49,

239, 432], so that transitions between heterogametic systems could also occur via

an intermediate system of environmental sex determination.

We have identified the force driving our results to be drift-induced selection oper-

ating along the equilibrium path (in the neutral case) or in its near vicinity (in the

case with selection). While drift-induced selection as a force in natural selection has

analogs that have been known for some time (e.g., Gillespie’s criterion [182, 183],

and selection in favor of reduced variance in offspring sex ratios [513, 550]), the

demonstration that it acts endogenously in systems of biological interest is relatively

recent [88, 100, 290, 326, 420]. We suspect that drift-induced selection will come

to be recognized as an important force in many dynamical systems in population

biology.

184



7
Sexual antagonism and the instability of

environmental sex determination

7.1 Abstract

The sex of an organism can be determined by its genetics or by its early environment.

Across the animal kingdom, genetic sex determination (GSD) is far more common

than environmental sex determination (ESD). Here, we propose an explanation for

this pattern: the coupling of genes that bias offspring sex ratios toward one sex with
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genes that are beneficial in that sex but costly in the other. Gradual strengthening

of the sex-specific tendency of this association eventuates in a neo-sex chromosome,

i.e., GSD. Our model predicts to which system of heterogamety ESD will evolve

when nesting behavior is an important determinant of brood sex ratios. It explains

the puzzling observation in some GSD species of sex reversal induced by extreme

environments. The model also suggests an approach to discovering sex determining

genes in ESD species.

7.2 Introduction

The dominance of GSD over ESD across the animal kingdom is well illustrated in

vertebrates (Fig. 7.2.1), where the most prevalent form of GSD, heterogamety, is far

more common than the most prevalent form of ESD, temperature-dependent sex de-

termination (TSD) [15, 28, 49]. A similar preponderance of GSD, and heterogamety

in particular, is found in invertebrates [15, 28, 49].

This pattern is unexpected, because ESD allows a species to take advantage of

environmental variation that differentially affects the fitness of sons and daughters—

the Charnov-Bull effect [44, 80, 485, 562, 563]—while GSD does not. For example,

it could be that developing at warmer temperatures is beneficial for offspring of both

sexes, owing to more rapid development, but that the benefit to female offspring is

greater than that to male offspring (Fig. 7.2.2). In this case, a system of TSD where

offspring incubated above some threshold temperature develop as female, while those

incubated below the threshold temperature develop as male, is evolutionarily sta-

ble, including against invasion of GSD [44, 81] (Fig. 7.2.2 and [382, Section S1, S2]).

This system—‘females high, males low’—is common in reptiles with TSD, especially

turtles [47, 252]. If, instead, males benefit more from developing at higher temper-
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ESD
ZW/ZZ
XX/XY

Figure 7.2.1: Genetic sex determination dominates environmental sex determination in ver-
tebrates. Cladogram of vertebrates illustrating the sex determination mechanisms found in all
major groups. Genetic sex determination (GSD) has been split into male heterogamety (XX
female, XY males) and female heterogamety (ZW females, ZZ males). For fish, only gonochoric
species (species with separate males and females) have been included. While information for
many species is not available, it is clear that GSD is far more common than environmental sex
determination (ESD) across all clades. The ancestral sex determining mechanism for all ver-
tebrates is probably GSD [253], but phylogenetic reconstructions of clades within vertebrates,
such as squamates (for whom ESD is probably ancestral [427]), indicate multiple independent
transitions from ESD to GSD within each group, with many fewer transitions in the reverse
direction, suggesting an inherent instability of ESD [410].
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atures, then the stable TSD system is reversed: offspring above a certain threshold

temperature develop as male, and those below as female—this ‘males high, females

low’ system is observed in all known fish species with TSD [412].

Explanations for why GSD dominates, despite this advantage to ESD, have fo-

cused on sex ratio fluctuations under ESD caused by environmental perturbations

[44, 47, 49, 125, 468]; these fluctuations are avoided under GSD. But this selec-

tive disadvantage of ESD can be mitigated by responsive maternal nesting behavior

[46, 47, 55, 370, 376, 436] and long lifespans [45, 468]. A more robust explanation

for the observed instability of ESD is lacking. Here, we propose an explanation

based on factors that are expected to operate in all ESD populations, whether or

not they can mitigate the problems associated with fluctuating sex ratios in variable

environments.

7.3 Results and discussion

Our model is set in a population initially with TSD. We assume underlying fit-

ness effects that lead to a ‘females high, males low’ system, as described above

(Fig. 7.2.2), although our model also applies, with appropriate modifications, to

fitness effects that result in the other forms of TSD. Each embryo has a specific

‘threshold’ temperature θ; if incubated above this temperature, it develops as fe-

male, and if below, as male. An embryo’s threshold temperature is determined by

multiple genes [46, 55, 358, 360]. Allelic variation at these ‘threshold loci’ results in

shifted thresholds: some individuals will develop as female at a slightly lower tem-

perature or a slightly higher temperature than the population average [46, 251, 252].

We shall refer to alleles that decrease their bearers’ thresholds as ‘female biasing’,

and those that increase their bearers’ thresholds as ‘male biasing’. This genetic
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variation in thresholds makes our model of a form described as being between GSD

and TSD in recent mechanistic models of sex determination [200, 432, 467], though

we do not model the mechanistic basis of the genotype-to-phenotype mapping, as

these models do [200, 426, 432, 467]; our model is also consistent with more clas-

sical models of TSD [55]. In deriving the analytical results below, we assume that

almost every individual in the population initially exhibits a threshold close to the

evolutionarily stable threshold, θ∗ (Fig. 7.2.2b). We later relax this assumption in

numerical simulations of our model, to verify that our analytical results are robust

to the existence of appreciable initial threshold variation in the population. Envi-

ronmental temperature varies across the population’s range, so that some patches

produce mostly males or mostly females (Figs.7.2.2a, 7.3.1a). Under the assumed

fitness effects, the population sex ratio associated with the stable average threshold

θ∗ is expected to be slightly male biased (the proportion of males m > 1/2) [44, 81].

We now assume that, at a distinct locus, a new allele arises that does not affect

the threshold but confers a fitness benefit sf when expressed in females, and a

fitness cost sm when expressed in males. We assume this allele to be dominant to

the wild-type allele, and sm > sf , so that the allele is, averaged across the sexes,

costly to bear. Such ‘sexually antagonistic’ alleles are common throughout the

genomes of sexual organisms [208, 438, 441], and have been invoked elsewhere in the

evolution of sex determining mechanisms to explain why GSD species typically have

only one major sex determining gene [439] and to explain transitions within and

between heterogametic GSD systems [535, 536]. For brevity, we shall refer to the

allele as a ‘female-beneficial’ allele. If the female-beneficial allele arises on the same

chromosome as a threshold locus with a rare dominant female-biasing allele—i.e.,

one that codes for a lower-than-average threshold θ′ < θ∗, producing a proportion
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m′ < m of males (Figs. 7.2.2, 7.3.1b)—then the initial TSD system is unstable with

respect to invasion of the female-beneficial, female-biasing haplotype if the following

condition holds (all mathematical details in [382, Methods and Section S1-3]):

sf
2

(
1−m′)W ′♀ − sm

2
m′W ′♂ − sT >

r

1− r
. (7.1)

Here, r is the rate of recombination of the two loci—the right hand side of Eq. (7.1)

is an increasing function of r, ranging from 0 (when r = 0) to 1 (when r = 1/2). sT

is the marginal fitness cost of bearing the female-biasing threshold allele, ignoring

the presence of the female-biasing allele. This cost stems from the fact that the

mutant threshold allele systematically causes its bearers to develop as female in some

environments where male development would be optimal (Fig. 7.2.2). The general

form of sT is given in Fig. 7.2.2, and derived in [382, Methods]. It depends on various

factors, including the size of the difference between the two thresholds θ∗ and θ′,

the nature of the underlying Charnov-Bull fitness functions, and the temperature

distribution. Some numerical examples of sT are given in [382, Figure S3]. W ′♀ and

W ′♂ are the average fitnesses of, respectively, female and male bearers of the female-

biasing threshold allele who do not bear the female-beneficial sexually antagonistic

allele. Therefore, sf (1−m′)W ′♀/2− smm
′W ′♂/2 is the marginal benefit of having

the mutant female-beneficial allele, conditional on also having the female-biasing

threshold allele.

Condition (7.1) is easier to satisfy when the fitness cost to males of the sexually

antagonistic allele is not much larger than its fitness benefit to females (sm ≈ sf ),

and when the female-biasing and female-beneficial alleles are tightly linked (r is

small) so that their haplotype is seldom disrupted by recombination. Some numer-

ical examples of values of r for which the haplotype can invade, under reasonable
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specifications of the temperature distribution and fitness functions, are given in

Fig. 7.3.2. These examples show that the haplotype can invade even when the two

loci recombine at an appreciable rate (above 4% in some cases).

We note two caveats to the invasion analysis above. First, we have assumed that

almost every individual in the population initially exhibits a threshold close to the

evolutionarily stable threshold, θ∗. This assumption was made for the purpose of

deriving the simple analytical form of condition (7.1), but ESD populations in fact

exhibit considerable threshold variation [46, 251, 252]. To investigate whether con-

dition (7.1) accurately predicts the invasion of the female-biasing, female-beneficial

haplotype arising in a population with substantial threshold variation, we turn to

simulations of our model. Specifically, we include three or four ‘regular’ threshold

loci along a single chromosome, each segregating for two alleles, one male-biasing and

one female-biasing. These regular threshold alleles influence their bearer’s threshold

in an additive fashion (the model is described in detail in [382, Section S7]). Impos-

ing a normal distribution of temperature across patches and Charnov-Bull fitness

effects as described above, we allow the population to evolve for 1000 generations,

by which time a stable distribution of genotypes is attained, with an expected male-

biased sex ratio (Fig. 7.3.3, Table S1), but with substantial threshold variation (Ta-

ble S1). We introduce into this population a rare female-biasing, female-beneficial

haplotype, and observe if it goes on to attain appreciable frequency (i.e., if it in-

vades). The results are presented in Figs. S5-12, and demonstrate that condition

(7.1) is a good predictor of the conditions for invasion when there is initial threshold

variation in the population.

Second, we have assumed that both the female-biasing and female-beneficial (and
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male-costly) alleles are initially present at low frequency in the population. This

could occur if one of the alleles is initially present at a low-frequency mutation-

selection balance when the other is introduced into the population by mutation, or

if both are initially at mutation-selection balance. It could also occur if the alleles

recurrently appear by mutation—though each will usually appear in isolation of the

other, and therefore will often go extinct by drift or selection, at some point in evo-

lutionary time the two mutations are expected to co-occur in the same population.

This second possibility would imply much less frequent invasion of the haplotype

than the first. It is also possible that one of the mutations is initially at a medium-

frequency mutation selection balance, instead of the low initial frequency we have

assumed in our analysis—this would be expected simply to improve the prospects

for invasion of the female-biasing, female-beneficial haplotype.

Our model, and the invasion condition (7.1), bear similarities to W.R. Rice’s clas-

sic model of, and condition for, the instability of polygenic sex determination with

respect to genes of major sex-determining effect [439]. There are key conceptual

and biological differences between the models, however. We have directly modelled

the Charnov-Bull fitness effects that are thought to be the underlying evolution-

ary reason for ESD; Rice’s model does not, and therefore better applies to other

polygenic systems. In addition, Rice’s model invokes the spontaneous appearance

in the population of a mutation of major sex determining effect (e.g., the SRY

gene in mammals), while our model invokes already-existing polygenic variation in

thresholds, known to be present in populations with TSD [46, 55]. A major sex de-

termining genetic complex is expected eventually to evolve in our model (see below),

but it does so gradually, instead of appearing spontaneously as a single, large-effect

mutation. We shall demonstrate that this gradual evolution of a sex chromosome
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has novel empirical implications, distinct from the implications of Rice’s model.

The initial invasion of the female-biasing, female-beneficial haplotype causes the

population sex ratio to become more female-biased, which selects for male-biasing

threshold alleles in the genome (Figs. 7.3.1c, 7.3.3). Importantly, this selection for

male-biasing alleles does not apply to regions tightly linked and in phase with the

female-biasing, female-beneficial haplotype, because of the strong selective disad-

vantage of the haplotype in males. The increase in frequency of male-biasing alle-

les evens the population sex ratio, relaxing the Fisherian sex ratio selection acting

against the female-biasing, female-beneficial haplotype, which can therefore increase

further in frequency (Figs. 7.3.1c, 7.3.3). The simulation results that we described

previously verify this, showing that the haplotype goes on to attain appreciable fre-

quency after initial invasion (5-25% [382, Figure S5-12]). This is despite our model

of multiple threshold loci being highly restrictive, involving, for computational rea-

sons, only a single chromosome with four or fewer threshold loci in addition to the

focal locus.

As the haplotype increases in frequency, selection simultaneously acts to reduce

recombination between its two loci, because of the average deleterious effect of the

female-beneficial allele when uncoupled from the female-biasing allele. If recombina-

tion is shut down between the loci (for example, via an inversion), the haplotype be-

comes, in effect, a single female-biasing, female-beneficial allele [49, 72, 77, 155, 440].

Then, by the same logic as that described above, further female-biasing or female-

beneficial alleles that arise near the haplotype will couple with it, creating a larger

and larger haplotype that is successively more female-biasing and female-beneficial.

This further selects for male-biasing alleles elsewhere in the genome. The end result

of this process is a haplotype whose bearers develop as females and whose non-
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bearers develop as males under all experienced environmental conditions—that is,

a major sex determining factor1 on a neo-W chromosome (Fig. 7.3.1d). We have

investigated this process using the simulation model described above. Technical

details are in [382, Methods and Section S8]. An example of the gradual evolution

of a W chromosome in our simulations is displayed Fig. 7.3.3. There, it can also be

seen that the population sex ratio gradually shifts from the male-biased sex ratio

expected under ESD with the Charnov-Bull fitness functions we have assumed to the

even sex ratio expected under heterogamety. Moreover, mutations that weaken ei-

ther the female-biasing or female-beneficial tendencies of the haplotype on its way to

defining a W chromosome fail to invade [382, Fig. S13], suggesting that the process

is irreversible.

The process described above involves the coupling of female-biasing threshold

alleles and female-beneficial sexually antagonistic alleles, which leads to a neo-W

chromosome and female heterogamety. The symmetric alternative, also possible, is

the successive coupling of male-biasing and male-beneficial alleles, leading to a neo-Y

chromosome and male heterogamety. A condition similar to Eq. (7.1) can be derived

for the invasion of male-biasing, male-beneficial haplotypes [382, Section S4]. These

haplotypes can invade if they do not reduce female fitness too much relative to their

benefit to male fitness, and if their two loci do not recombine too often. Examples

of recombination rates for which male-biasing, male-beneficial haplotype can invade

are given in Fig. 7.3.2, and, like for the invasion of female-biasing, female-beneficial

haplotypes studied above, can be appreciable.

Despite these similarities, genetic or demographic differences between the sexes

might render the invasion of a male-biasing, male-beneficial haplotype more or less

likely than a female-biasing, female-beneficial haplotype. For example, a lower
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rate of recombination in males relative to females, as observed in many species

[524], would allow male-biasing and male-beneficial alleles to couple more tightly—

their average rate of recombination being lower because they are more often found

in males—promoting the invasion of male-biasing, male-beneficial haplotypes over

female-biasing, female-beneficial haplotypes (this is formalized mathematically in

[382, Section S5] and displayed in [382, Fig. S4]). This would bias evolution towards

male heterogamety, an argument that has previously been given by Trivers for genes

of major sex-determining effect [524]. The argument presented here is made espe-

cially relevant by the finding of extremely reduced male recombination in a species

with TSD, the saltwater crocodile [368].

We have thus far invoked threshold alleles, expressed in zygotes, as a source of

heritable sex ratio bias. An alternative and common source of heritable variation in

offspring sex ratios is maternal nesting behavior [46, 47, 55, 358, 359, 370, 376, 436].

Applied to our model, the coupling of female-beneficial sexually antagonistic alleles

with alleles that cause mothers to nest, for example, in warmer patches (and there-

fore to produce predominantly female offspring) will eventuate in a neo-W chromo-

some and female heterogamety. Importantly, male heterogamety is a much less likely

result in this ‘maternal behavior’ scenario, because it would require the repeated ex-

pression of male-beneficial (and female-costly) alleles in mothers (this argument is

formalized mathematically in [382, Section S6], for the case where Charnov-Bull

fitness effects are absent; a similar logic has been given by Tanaka and Iwasa [506]

for the different potentials for spread of a Japanese superstition under matrilineal

and patrilineal transmission). Sex ratio biases from maternal nesting behavior can

arise in many ways, including nest-site choice, nest construction, nesting timing, and

the duration of incubation [46, 370, 376], so this route to heterogamety might not
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be infrequent relative to that involving threshold alleles acting in embryos. If so,

transitions from ESD to female heterogamety should be more common than from

ESD to male heterogamety, a pattern that has been observed within reptiles (in-

cluding birds) [410]. The observed preponderance of male over female heterogamety

[49, 232] would then seem to have to be explained by biased transitions between

these two systems [232, 534, 536, 547].

Searching for threshold genes in TSD species is an area of active research [343,

465], but is extremely difficult, as males and females have identical genomes, and

large-scale gene expression assays at multiple points in development are required.

Our model predicts that, in a species that has recently evolved GSD from ancestral

TSD (examples in Table 7.3.1), the sex chromosomes will contain ancestral thresh-

old genes (possibly including genes that have translocated from other chromosomes),

and moreover, are likely to be enriched for them, relative to other chromosomes. If

so, examining the sex chromosomes of species with newly evolved GSD, or their

homologs in closely related TSD species (Table 7.3.1), will more readily uncover

candidate loci for threshold genes—these can then be studied more closely by mea-

suring expression during development. The jacky dragon, Amphibolurus muricatus,

is already a model organism for the study of TSD [562, 563], and so, together with

the closely related A. norrisi (GSD), represents an especially promising species in

which to apply this method of search for TSD genes.

Recent evidence suggests that some species previously thought to exhibit exclu-

sively genetic sex determination in fact also exhibit an environmental component at

extreme temperatures [28, 239, 431, 433, 530]. Our model for transitions from TSD

to GSD can explain this ‘environmental override’ phenomenon in two ways. First,

it could be a late intermediate stage in the gradual transition to true GSD, when
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Table 7.3.1: Species in which to search for threshold genes. Closely-related squamate species
in clades with ancestral temperature sex determination (TSD), one with the ancestral TSD, and
one with recently evolved genetic sex determination (GSD) [427]. Our model predicts that the
new sex chromosomes in the GSD species, or their homologs in the TSD species, will be a fruitful
place to search for TSD genes.

Genus with ancestral ESD ESD species GSD species
Amphibolurus (Agamidae) A. muricatus A. norrisi
Ctenophorus (Agamidae) C. pictus C. fordi
Phelsuma (Gekkonidae) P. ornata P. guimbeaui
Furcifer (Chamaelionidae) F. pardalis F. lateralis

thresholds in the population are shifted towards the extremes of the environmen-

tal temperature distribution (Fig 3c,d), so that TSD still operates at these extreme

temperatures. Second, our model predicts that thresholds will diverge until, but not

further than the point where some genotypes develop as females at all commonly

experienced temperatures, while the rest develop as males at all commonly expe-

rienced temperatures. The selection we have modelled acts only weakly outside of

the range of commonly experienced temperatures. TSD would therefore be expected

still to operate at uncommon temperatures, until a gene of major sex determining

effect evolves.

For clarity, we summarize the predictions of our model: (1) Transitions from ESD

to female heterogamety should be more common in clades with intensive maternal

nesting behaviour. This prediction could be tested in a comparative phylogenetic

framework. (2) In GSD systems that have recently evolved from ESD, the sex

chromosomes should be enriched for genes that were involved in the ancestral ESD

system, e.g., genes affecting thresholds if the ancestral system was TSD. Such genes

could be identified by sequencing the sex chromosomes of the GSD species or their

homolog in a closely related ESD species; candidates identified in this fashion could

then be experimentally verified using gene expression assays in the related ESD
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species. We have listed some promising candidate species for such testing in Table

7.3.1. (3) ‘Mixed’ ESD-GSD systems, where at most temperatures sex is determined

by the presence or absence of a particular chromosome, but with sex reversal at

extreme temperatures, are a natural expectation under our model. Moreover, the

pattern of sex reversal is expected to respect the ancestral ESD system. For example,

since all known TSD fish species exhibit a ‘males high, females low’ system, we expect

any transitions from TSD to GSD in fishes to be from this particular TSD system.

If sex reversal occurs in a derived GSD species, then our model predicts that it

should take the form of reversal to male development at very high temperatures,

or reversal to female development at very low temperatures. Indeed, all clear cases

of sex reversal in GSD fishes involve male development at very high temperatures

[412, 425]. We should note that this final prediction, concerning the precise patterns

of environmental override in derived GSD species, is unlikely to be unique to our

model.

Our arguments can also explain transitions from hermaphroditism (simultane-

ous or sequential) to dioecy/gonochorism, as a result of the coupling of alleles that

increase or prolong female function with alleles that improve female function and

worsen male function (or, of course, coupled alleles with the opposite effect). The

timing of the transition between sexes in simultaneous hermaphrodites, and the al-

location of reproductive expenditure on female and male function in simultaneous

hermaphrodites, are both theoretically analogous to the threshold temperature in

species with temperature sex determination [79, 80, 180]. Both sequential and si-

multaneous hermaphroditism are rare among animals, the latter especially so when

considering only non-selfing organisms [15, 180, 269]. This rarity of hermaphroditism

is in spite of its plausible advantages [82, 180, 269, 269], and, we propose, may be
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the result of sexual antagonism coupled with genetic variation for allocation of re-

productive expenditure to each sex.
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Figure 7.2.2: The advantage of environmental sex determination: exploiting sex-specific ben-
efits of different environments. An example of Charnov-Bull fitness functions [80] that lead, in
the absence of other forces, to an evolutionarily stable system of temperature sex determination.
a, Temperature τ is distributed across regions in the environment according to the distribution g.
b, Offspring of both sexes benefit from developing at higher temperatures, but female offspring
benefit more: Female fitness as a function of temperature, W♀(τ), is steeper than male fitness,
W♂(τ). These fitness functions are derived from underlying male and female viabilities (or fer-
tilities or fecundities); the calculations for this derivation are given in [382, Methods and Section
S2]. With these fitness functions, there is a threshold temperature θ∗ such that the following
system of temperature sex determination is evolutionarily stable: offspring develop as female
when incubated at temperatures above θ∗, and as male when incubated below θ∗. The stable
threshold θ∗ satisfies W♀(θ∗) = W♂(θ∗), and in this case is associated with a male-biased sex
ratio (proportion of males m > 1/2) [52, 79]. When almost all members of the population have
thresholds close to θ∗, a rare mutant with a deviant threshold θ′ < θ∗ suffers, all else equal, a
fitness cost sT = 1

2

∫ θ∗

θ′

[
W♂(τ)−W♀(τ)] g(τ)dτ > 0 (see [382, Methods] for details of this

calculation). Graphically, this fitness cost is half the area of the orange shaded triangle in b,
weighted according to g.
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Figure 7.3.1: Genetic sex determination evolves from temperature sex determination via sex-
ually antagonistic genes. An illustration of our general model. a, The population initially
exhibits temperature sex determination, with embryos becoming female at high temperatures
and male at low. There is variation in threshold temperatures (x axis), owing to male-biasing
and female-biasing threshold alleles segregating in the population, but the average embryo has
an approximately even chance of developing as male or female given the prevailing distribution
of environmental temperatures (y axis). b, A female-beneficial sexually antagonistic allele arises
near a female-biasing threshold allele. If they are sufficiently tightly linked [Condition (7.1)], this
female-biasing, female-beneficial haplotype increases in frequency, shifting the population sex ra-
tio towards a slight female bias. c, As the female-biasing, female-beneficial haplotype increases
in frequency, male-biasing alleles are selected for elsewhere in the genome, to compensate for the
population’s female bias. Simultaneously, there is selection for reduced recombination between
the female-biasing and female-beneficial alleles in the haplotype. The effect of these two selec-
tion pressures is to allow the haplotype to increase further in frequency. Those embryos that bear
it have low threshold temperatures, and therefore develop as female under most temperatures;
non-bearers have high threshold temperatures, and therefore develop as male under most tem-
peratures. d, The female tendency of the haplotype attracts further linked female-biasing and
female-beneficial alleles, which in turn selects for reduced recombination within the growing hap-
lotype, as well as more male-biasing alleles elsewhere in the genome. Eventually, embryos that
bear the haplotype develop as female at all experienced temperatures, while non-bearers develop
as male at all experienced temperatures. Sex in the population is then genetically determined,
with the haplotype on a neo-W chromosome.
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Figure 7.3.2: For sensible empirical specifications of the temperature distribution (normal) and
of male and female fitness functions (linear), the figure shows the maximum recombination rates
below which female-biasing, female-beneficial (red shading) and male-biasing, male-beneficial
(blue shading) haplotypes can invade a population with temperature sex determination. Re-
combination rates are the same in both sexes. In general, both female-beneficial, female-biasing
haplotypes and male-biasing, male-beneficial haplotypes can invade even with appreciable re-
combination of their constituent alleles. Their invasion is more likely when Charnov-Bull fitness
effects are minor (c, d) and the temperature distribution exhibits lower variance (a, c). Inva-
sion is least likely under conditions of high temperature variance and large Charnov-Bull effects
(b), but even then, is possible for reasonable recombination rates (up to about 2.5% for the
parameters considered here). Details: Temperature is distributed normally with mean 1/2 and
standard deviation 1/16 (‘low variance’) or 1/8 (‘high variance’). Individuals homozygous for
the wild-type allele a that develop at temperature have viability V♂(τ) = k + τ if male and
V♀(τ) = λτ if female, with = 1 + 2k. For ‘large Charnov-Bull effect’, k = 2/9; for ‘small
Charnov-Bull effect’, k = 2/90.
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Figure 7.3.3: Gradual evolution of GSD from TSD. After the initial invasion of a female-biasing,
female-beneficial haplotype A1T1 (in generation g1), mutations that successively strengthen the
female-biasing tendency (T2 and T3) and female-beneficial tendency (A2 and A3) of the haplo-
type, as well as the shutting down of recombination between its constituent loci in generation
g4, lead it to attain higher and higher frequency. Eventually, the haplotype is at 25% frequency,
and causes almost all its bearers to develop as female. At this point, the haplotype essentially
defines a W chromosome, and sex is determined genetically according to a system of female
heterogamety. In the gradual transition from TSD to GSD, the sex ratio of the population
moves from the male-biased sex ratio that is stable under TSD with the Charnov-Bull fitness
effects we have assumed to an almost even sex ratio, as expected under GSD. Simulation details:
Model as described in [382, Section S8]. Initial recombination rate between the focal viability
and threshold loci: 1%. Temperature distribution and Charnov-Bull effects as in Fig. 7.3.2a. An
individual’s baseline threshold is determined additively by the number of male-biasing alleles at
four regular threshold loci (those in addition to the focal threshold locus): threshold 0.20 if 0/8
male-biasing alleles, threshold 0.50 if 4/8 male-biasing alleles, threshold 0.80 if 8/8 male-biasing
alleles. Threshold reductions caused by (dominant) alleles T1, T2, and T3 are 0.1, 0.2, and 0.3
respectively. Fitness effects of sexually antagonistic alleles: A1: sf = +0.04, −sm = −0.08;
A2: sf = +0.06, −sm = −0.12; A3: sf = +0.08, −sm = −0.16.
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8
A rigorous measure of genome-wide genetic

shuffling that takes into account crossover

positions and Mendel’s second law

8.1 Abstract

Comparative studies in evolutionary genetics rely critically on evaluation of the total

amount of genetic shuffling that occurs during gamete production. Such studies have
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been hampered by the absence of a direct measure of this quantity. Existing mea-

sures consider crossing over by simply counting the average number of crossovers per

meiosis. This is qualitatively inadequate because the positions of crossovers along

a chromosome are also critical: a crossover towards the middle of a chromosome

causes more shuffling than a crossover towards the tip. Moreover, traditional mea-

sures fail to consider shuffling from independent assortment of homologous chromo-

somes (Mendel’s second law). Here, we present a rigorous measure of genome-wide

shuffling that does not suffer from these limitations. We define the parameter r̄

as the probability that the alleles at two randomly chosen loci are shuffled during

gamete production. This measure can be decomposed into separate contributions

from crossover number and position and from independent assortment. Intrinsic

implications of this metric include the fact that r̄ is larger when crossovers are more

evenly spaced, which suggests a novel selective advantage of crossover interference.

Utilization of r̄ is enabled by powerful emergent methods for determining crossover

positions, either cytologically or by DNA sequencing. Application of our analysis to

such data from human male and female reveals that: (i) r̄ in humans is close to its

maximum possible value of 1/2, (ii) this high level of shuffling is due almost entirely

to independent assortment, whose contribution is ∼30 times greater than that of

crossovers.

8.2 Introduction

The shuffling of maternally and paternally inherited genes during gamete produc-

tion is an important process in sexual populations [23]. It leads to genetic di-

versity among gametes and offspring [23], and thus aids adaptation to novel or

changing environments [578]. In addition, it improves the long-term efficiency of
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adaptation by allowing natural selection to act separately on distinct mutations

[150, 154, 230, 357, 380, 381]. Genetic shuffling has further been implicated in pro-

tecting populations from rapidly evolving parasites [213, 214] and from the harmful

invasion of selfish genetic complexes [37, 59, 206, 207]. The total amount of shuffling

that occurs in gamete production is therefore a quantity of considerable importance,

and has been the subject of much empirical interest.

Correspondingly, comparative studies of genome-wide shuffling have been carried

out across species ([23, 40, 58, 126, 127, 448, 472, 526]; reviewed in [116, 490, 497]),

with implications ranging from distinguishing the evolutionary advantages of sex

[23, 58, 116, 497, 574] to testing the genomic effects of domestication [58, 448]. A

large literature has also studied male/female differences in shuffling [37, 60, 524],

prompting several evolutionary theories to explain these differences [37, 60, 206, 312,

313, 524], which could concomitantly be informative of the adaptive value of shuffling

[524]. There can also exist differences in shuffling across individuals of the same sex

(e.g., in flies [98, 243, 244, 277, 278], mice [128, 288, 335], humans [41, 85, 292, 294,

335, 415], and Arabidopsis [456]; reviewed in [445]), and across gametes produced

by the same individual [85, 201, 222, 315, 335, 344, 560]. Finally, comparisons have

been made of the levels of shuffling within different chromosomes [34, 42, 291], with

implications for which chromosomes are most susceptible to harboring selfish genetic

complexes [206] or to be used as new sex chromosomes [382, 524].

Quantitative comparisons of such types require a proper measure of genome-wide

shuffling. Shuffling is caused both by crossing over and by independent assort-

ment of homologous chromosomes,1 which comprise ‘intra-chromosomal’ and ‘inter-

chromosomal’ shuffling, respectively.2 In previous studies, the most widely used
1Gene conversion also causes shuffling, but makes a negligible contribution, as discussed below.
2Shuffling caused either by crossing over or independent assortment of homologs is referred to as
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measures of shuffling have considered only the contribution of crossing over, and,

more specifically, total crossover frequency or map length. Crossover frequency

is simply the number of crossovers that occur during meiotic prophase, as mea-

sured either cytologically or from sequence data (further discussion below). Map

length is average crossover frequency multiplied by 50 centiMorgans (cM), 1 cM

being the map distance between two linked loci that are shuffled in 1% of gametes

[220]. Another measure that is sometimes used is the number of crossovers in ex-

cess of the haploid chromosome number [58]. Since each bivalent usually requires

at least one crossover for its chromosomes to segregate properly [117], the ‘excess

crossover frequency’ is the number of crossovers that contribute to shuffling beyond

this supposed structurally-required minimum. None of the above measures takes

into account shuffling caused by independent assortment of homologs. A fourth

measure of aggregate shuffling, which does take into account independent assort-

ment, is Darlington’s ‘recombination index’ (RI) [23, 118, 119], defined as the sum

of the haploid chromosome number and the average crossover count. The ratio-

nale for this measure derives from the fact that, given no chromatid interference in

meiosis [220, 595], two linked loci separated by one or more crossovers shuffle their

alleles with probability 1/2 in the formation of a gamete, as if the loci were on sep-

arate chromosomes. The RI is therefore the average number of ‘freely recombining’

segments per meiosis.

Importantly, none of these existing measures takes into account the specific posi-

tions of crossovers on the chromosomes. Intuitively, though, crossover position is a

critical parameter. For example, a crossover at the far tip of a pair of homologous

‘recombination’ in the population genetics literature, but ‘recombination’ has a different meaning—
the breakage and rejoining of DNA molecules—in molecular biology. To avoid confusion, we use
the unambiguous term ‘genetic shuffling’ (or just ‘shuffling’) throughout.
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chromosomes does little work in shuffling the genetic material of those chromosomes,

while a crossover in the middle causes much shuffling (Fig. 8.2.1). Additionally, two

crossovers close together may cancel each other’s effect (except for the few loci that

lie between them) and thus result in less allelic shuffling than two crossovers spaced

further apart.

Therefore, existing measures do not actually define the total genome-wide amount

of shuffling, instead serving only as proxies for this critical parameter. This is not

a trivial concern. There is significant heterogeneity in the chromosomal positioning

of crossovers at all levels of comparison—between species [266, 319, 526], popula-

tions within species [233, 321, 322, 565, 572], the sexes [37, 62, 158, 257, 524, 590],

individuals [86, 282, 305, 415, 503], and different chromosomes [34, 168, 257, 502],

all of which will impact the level of shuffling that these crossovers will cause. More-

over, there can be major differences in chromosome number and size across species

[23, 482, 571], which will seriously influence the total amount of shuffling due to

independent assortment.

The fact that the positions of crossovers matter for the total amount of shuffling

has been recognized for many years (e.g., [23, 62, 157, 195, 568, 571]). The need for

a measure of total shuffling that accounts for crossover positions has also previously

been recognized. Indeed, Burt, Bell, and Harvey [60] give an explicit formula,

identical to Eq. (8.3) below, for ‘the proportion of the genome which recombines’ (in

the population genetics sense—see footnote 2). Colombo [97] also gives an explicit

characterization of what we call r̄, phrased as a generalization of the RI. Finally,

Haag et al. [203], after noting that terminal crossovers cause little shuffling and that

map length is therefore an imperfect measure of genome-wide shuffling, suggest a

better measure to be ‘the average likelihood that a [crossover] occurs between two
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(7 shu�ed pairs each) (16 shu�ed pairs each)

A.  Terminal crossover B.  Central crossover

Figure 8.2.1: The position of a crossover affects the amount of genetic shuffling that it causes.
The figure shows the number of shuffled locus pairs that result from crossing over between two
chromatids in a one-step meiosis. The chromosome is arbitrarily divided into eight loci. (A) A
crossover at the tip of the chromosome, between the seventh and eighth loci, causes 7 of the
28 locus pairs to be shuffled in each resulting gamete. (B) A crossover in the middle of the
chromosome, between the fourth and fifth loci, causes 16 of the 28 locus pairs to be shuffled
in each resulting gamete. The central crossover thus causes more shuffling than the terminal
crossover.
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randomly chosen genes’. However, no mathematical expression that incorporates

crossover position in the measurement of genome-wide shuffling has been developed

and implemented.

Here, we present a simple, intuitive measure of the genome-wide level of shuffling.

We define r̄ as the probability that a randomly chosen pair of loci shuffle their alleles

in meiosis, taking into account crossover number and position and the contribution

of independent assortment. We have chosen the name ‘r̄’ to echo classic population

genetics terminology, where the parameter ‘r’ for a given pair of loci is the probability

that they shuffle their alleles in a gamete. Our parameter r̄ is simply this quantity

averaged across all locus pairs.

r̄ is the most direct metric of the primary effect of genetic shuffling, the diversifi-

cation of gametes and thus the transmission of new genetic combinations to offspring

[23]. r̄ should therefore be used when such diversification is the quantity of interest,

for example in judging the ability of a population to respond a sudden change (or

continual fluctuations) in its environment [578]. Genetic shuffling also has indirect

effects, such as the gradual reduction of allelic correlations (linkage disequilibrium)

within populations over time [150, 230], and the prevention of invasion of selfish ge-

netic complexes [207]. Here, crossover positions and independent assortment again

matter, and so standard metrics that simply count crossovers remain inadequate.

Therefore, r̄ is likely a better measure in these cases too, although we suggest, in

the Discussion section below, modifications of r̄ that more directly measure these

quantities of interest.

In the present work, we define the quantity r̄, develop it mathematically and

statistically, and document its intrinsic implications, e.g., for crossover interfer-

ence. We also show how it can be decomposed into separate components deriving
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from crossovers and from independent assortment of homologs. We then discuss the

approaches now available to allow chromosome-specific and/or genome-wide mea-

surement of crossover positions. With these developments in hand, we present a first

application of r̄ to quantitative evaluation of shuffling in human males and females.

8.3 Derivation of r̄

r̄ is the probability that the alleles at two randomly chosen loci are shuffled in the

production of a gamete. It can be calculated with knowledge of crossover positions

on each chromosome, in conjunction with knowledge of the fraction of the total

genomic length (in bp) accounted for by each chromosome (chromosome lengths

influence shuffling caused by both independent assortment and crossovers). In what

follows, we always assume that there are sufficiently many loci that the difference

between sampling them with or without replacement is negligible.

8.3.1 Formulas for r̄

In the ideal situation, crossover positions are defined for individual gametes, and

the parental origins of the chromosome segments delimited by these crossovers are

known. In this case, the proportion p of the gamete’s genome that is paternal can

be determined, and the probability that the alleles of a randomly chosen pair of loci

were shuffled during formation of the gamete (equivalently, the proportion of locus

pairs at which the alleles are shuffled), either by crossing over or by independent

assortment, is simply the product of the probabilities that one locus is of paternal

origin (probability p) and the other of maternal origin (probability 1 − p), in each
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of the two possible combinations:

r̄ = 2p(1− p). (8.1)

Such data can emerge directly from sequencing of single gametes (Fig. 8.3.1B) or of

a diploid offspring in which the haploid contribution from a single gamete can be

identified (Fig. 8.3.1C).

In some analyses, while crossover positions for a gamete are known, the specific

parental identities of the chromosome segments that these crossovers delimit are not

known, because the gamete-producer has been sequenced but its parents have not.

In this case, we can nonetheless calculate an expected value of r̄ for the gamete. The

parental origin of segments will alternate across crossovers on each chromosome in

the gamete, and so we can still define, for any given chromosome k, the proportions

that originate from the two different parents (pk and 1 − pk). However, it is not

possible to know, from one chromosome to the next, which sets of segments are

from the same or different parents. We address this ambiguity by assuming that the

probability that the alleles at two loci on separate chromosomes have been shuffled

is 1/2, consistent with Mendel’s Second Law. If there are n chromosomes in the

haploid set, and chromosome k accounts for a fraction Lk of the genome’s length,

and we determine that a proportion pk of chromosome k is of one parental origin

and 1− pk is of the other, then

E[r̄] =
n∑

k=1

2pk(1− pk)L
2
k +

1

2

(
1−

n∑
k=1

L2
k

)
. (8.2)

The first term in Eq. (8.2) is the probability, summed over all chromosomes k, that

two randomly chosen loci lie on chromosome k multiplied by the probability that, if
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so, they are of different parental origin. The second term is the probability that the

two randomly chosen loci lie on different chromosomes, 1−
∑n

k=1 L
2
k (i.e., one minus

the probability that a random pair of loci lie on the same chromosome), multiplied

by 1/2. This second term is probabilistic, and so Eq. (8.2) is an expectation of r̄

rather than the value actually realized in the gamete.3

Finally, cytological analysis of meiotic pachytene chromosomes allows to define

crossover positions along bivalent chromosomes at that stage of meiotic prophase I.

An expected value for r̄ can be calculated in this case following the formulas given by

Burt, Bell, and Harvey [60] and Colombo [97] (Fig. 8.3.1A). If the haploid number of

chromosomes is n and there are a total of I crossovers, then these crossovers divide

the bivalents into n+I segments (this is the RI described above). Label the segments

in some (arbitrary) order, and suppose that segment i’s fraction of total genome

length is li, with l1 + . . .+ ln+I = 1. For any randomly-selected locus pair to shuffle

its alleles in the production of a gamete, the two loci need to be situated on different

segments, the probability of which is 1−
∑n+I

i=1 l
2
i . If the two loci are indeed situated

on different segments, they shuffle their alleles with probability 1/2 (this assumes no

chromatid interference, so that two linked loci separated by one or more crossovers

at meiosis I shuffle their alleles in a resulting gamete with probability 1/2 [119, 220]).

Therefore, given the configuration of crossovers at meiosis I, the probability that the
3Given a gamete sequence and knowledge of the paternal and maternal origins of all chromosome

segments, the realized value of r̄—being the proportion of locus pairs at which alleles have been
shuffled—is precisely known. I.e., here it is a ‘parameter’. If the maternal and paternal origins
are not known, then r̄ becomes a random variable, its realized value being different for different
assortments of the possible parental origins of the various segments. We therefore calculate its
expectation with respect to the distribution of these possible assortments. Similarly, when we
observe crossovers along bivalent chromosomes at meiosis I, r̄ in a resulting gamete is again a
random variable, so we calculate its expected value, but this time with respect to the distribution
of possible patterns of chromatid involvement in the resolution of crossovers at meiosis I, and
segregation patterns of chromatids thereafter.
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Figure 8.3.1: (A) Calculating the expected value of r̄, E[r̄], at meiosis I using Eq. (8.3). (B,C)
Calculating r̄ in resulting gametes or offspring using Eq. (8.1).
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alleles at a randomly chosen pair of loci are shuffled in a resulting gamete is 1/2

multiplied by the probability that the two loci are on separate segments, or

E[r̄] =
1

2

(
1−

n+I∑
i=1

l2i

)
. (8.3)

E[r̄], as defined by Eq. (8.3), is proportional to the Gini-Simpson index [486], a

commonly used measure of diversity, especially in ecology [259].

8.3.2 Inter- and intra-chromosomal components of r̄

It is often argued that the predominant source of shuffling in sexual species is in-

dependent assortment of separate chromosomes, or, correspondingly, that the most

effective way for a species to increase genome-wide shuffling in the long term is

to increase the number of chromosomes rather than crossover frequency ([23, 109];

though see [57] and Discussion). Our formulation of r̄ allows us to partition total

shuffling into a component deriving from crossovers (intra-chromosomal shuffling)

and a component deriving from independent assortment of separate chromosomes

(inter-chromosomal shuffling), thereby allowing us to evaluate previous assertions

about the relative contributions of each in a rigorous, quantitative way.

The inter-chromosomal component of r̄ is the probability that two randomly

chosen loci are on separate chromosomes and shuffle their alleles, while the intra-

chromosomal component is the probability that two loci are on the same chromosome

and shuffle their alleles. We first present this decomposition for r̄ in a gamete or

haploid complement of an offspring. If chromosome k contains a proportion pk of
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paternal content, then the appropriate decomposition is

r̄ =

n∑
k=1

2pk(1− pk)L
2
k︸ ︷︷ ︸

Intra-chrom. component

+
∑
i ̸=j

2pi(1− pj)LiLj .︸ ︷︷ ︸
Inter-chrom. component

(8.4)

If we know crossover realizations in a haploid complement but not the specific

parental origin of the segments they delimit, then we can still calculate a proportion

pk of chromosome k to be of one parental origin and 1− pk of the other (though not

knowing which is which), so we retain the first term in Eq. (8.4) but lose information

about the second term. The appropriate partition is then

E[r̄] =
n∑

k=1

2pk(1− pk)L
2
k︸ ︷︷ ︸

Intra-chrom. component

+
1

2

(
1−

n∑
k=1

L2
k

)
,︸ ︷︷ ︸

Inter-chrom. component

(8.5)

which is the same as Eq. (8.2).

We now present the decomposition for E[r̄] at meiosis I. Suppose that the haploid

number of chromosomes is n, and that bivalent k exhibits Ik crossovers, dividing it

into segments i = 1, . . . , Ik + 1, whose fractions of the total genomic length are lk,i.

Chromosome k’s fraction of the total genomic length is Lk = lk,1+ lk,2+ . . .+ lk,Ik+1,

with L1 + L2 + . . .+ Ln = 1. Then Eq. (8.3) is partitioned as follows:

E[r̄] =
1

2

n∑
k=1

(
L2
k −

Ik+1∑
i=1

l2k,i

)
︸ ︷︷ ︸

Intra-chrom. component

+
1

2

(
1−

n∑
k=1

L2
k

)
.︸ ︷︷ ︸

Inter-chrom. component

(8.6)
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8.3.3 Averaging r̄

The above measures can be aggregated to obtain the average value of r̄ across many

gametes (or meiocytes). We denote the average value of a variable x by ⟨x⟩. To

average r̄ given sequence data from many gametes, and supposing that, for each

gamete, we can distinguish which sequences are paternal and which are maternal,

we can take the average value of Eq. (8.4), noting that the Lk are constants:

⟨r̄⟩ =
n∑

k=1

⟨2pk(1− pk)⟩L2
k︸ ︷︷ ︸

Intra-chrom. component

+
∑
i ̸=j

⟨2pi(1− pj)⟩LiLj .︸ ︷︷ ︸
Inter-chrom. component

(8.7)

If segregation is Mendelian, then in a large sample of gametes, ⟨2pi(1− pj)⟩ ≈ 1/2,

and so the inter-chromosomal component in Eq. (8.7) will be close to 1
2

(
1−

∑n
k=1 L

2
k

)
.

If we have sequence data from many gametes and can determine crossover posi-

tions but not the parental origin of the sequences these crossovers delimit, then we

take the average of Eq. (8.5), noting again that the Lk are constants (which, here,

means that the inter-chromosomal component is constant):

⟨E[r̄]⟩ =
n∑

k=1

⟨2pk(1− pk)⟩L2
k︸ ︷︷ ︸

Intra-chrom. component

+
1

2

(
1−

n∑
k=1

L2
k

)
.︸ ︷︷ ︸

Inter-chrom. component

(8.8)

Given data of crossover positions along bivalent chromosomes in many meiocytes,

we take the average of Eq. (8.6):

⟨E[r̄]⟩ = 1

2

n∑
k=1

(
L2
k −

⟨
Ik+1∑
i=1

l2k,i

⟩)
︸ ︷︷ ︸

Intra-chrom. component

+
1

2

(
1−

n∑
k=1

L2
k

)
.︸ ︷︷ ︸

Inter-chrom. component

(8.9)
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Eqs. (8.7)–(8.9) mean that we can estimate the average intra-chromosomal con-

tribution to r̄ separately for each chromosome, possibly from different sets of data,

and then combine these averages into a final measure of r̄. This is useful, because

often in sequencing or cytological studies of large numbers of gametes or meiosis I

nuclei, it is possible (or desired) to obtain accurate measurements for only a subset

of the chromosomes in each cell, so that the sets of cells from which measurements

are taken for two chromosomes will in general not overlap. This is the case, for

example, in the very rich cytological data from human pachytene nuclei in [201]. In

such cases, Eqs. (8.7)–(8.9) state that the average intra-chromosomal contribution

of one chromosome can be estimated from the set of cells from which measurements

of that chromosome were possible, while the contribution of another chromosome

can be estimated from the set of cells from which measurements of that chromosome

were possible (possibly from different sets of data); these two separate estimates can

then be combined in Eqs. (8.7)–(8.9).

Unrelated to the averaging of r̄ across multiple measurements of individual ga-

metes or meiocytes, an average value for r̄ can also be calculated directly given

pairwise average rates of shuffling for all loci. As discussed below, these can be

estimated from linkage maps generated from pooled sequence data. Suppose that

we have measured, for each locus pair (i, j), their rate of shuffling rij . ⟨r̄⟩ is then

simply the average value of rij across all locus pairs (i, j). If Λ is the total number

of loci, then

⟨r̄⟩ =
∑
i<j

rij
/(Λ

2

)
=
∑
i<j

linked

rij
/(Λ

2

)
︸ ︷︷ ︸

Intra-chrom.

+
∑
i<j

unlinked

rij
/(Λ

2

)
︸ ︷︷ ︸

Inter-chrom.

, (8.10)
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where
(
Λ
2

)
= Λ(Λ−1)/2. When rij = 1/2 for all unlinked locus pairs (i, j), the inter-

chromosomal component simplifies to (1−
∑n

k=1 L
2
k)/2, where Lk is chromosome k’s

proportion of total genomic length.

8.4 Properties and intrinsic implications of r̄

8.4.1 Properties

We note three properties of r̄. First, its minimum value is 0, and its maximum value

is 1/2, the latter relying on our assumption of many loci. The maximum value of r̄

in a gamete can occur by chance equal segregation of maternal and paternal DNA

to the gamete. The maximum value of E[r̄] at meiosis I requires, unrealistically,

that every pair of loci are either on separate chromosomes or experience at least

one crossover between them in every meiosis. The minimum value of r̄ in a gamete

could result from chance segregation of only crossover-less chromatids of one parental

origin to the gamete. The minimum value of E[r̄] at meiosis I requires crossing over

to be absent (as in Drosophila males and Lepidoptera females [571]), and either a

karyotype of one chromosome or a meiotic process that causes multiple chromosomes

to segregate as a single linkage group (as in some species in the evening primrose

genus, Oenothera [91]).

Second, r̄ satisfies the intuitive property that a crossover at the tip of a chromo-

some causes less shuffling than a crossover in the middle (some example calculations

of r̄ are given in Fig. 8.4.1). This is easily seen in Eq. (8.3). Consider a bivalent

chromosome on which a single crossover will be placed. This will divide the chromo-

some into two segments of length l1 and l2, where l1 + l2 = L is the chromosome’s

fraction of total genomic length. The contribution of this crossover to E[r̄] is seen

from Eq. (8.3) to be 1/2−(l21+ l
2
2)/2, which can be rewritten l1l2+1/2−(l1+ l2)

2/2,
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which simplifies to l1l2 under the constraint l1 + l2 = L. l1l2 is maximized when

l1 = l2 = L/2, i.e., when the crossover is placed in the middle of the bivalent. The

quantity is minimized when either l1 = 0 or l2 = 0, i.e., when the crossover is placed

at one of the far ends of the bivalent. In general, as the crossover is moved further

from the middle of the bivalent, E[r̄] steadily decreases. This is true regardless of

the positions of the crossovers on other chromosomes. Importantly, this relation-

ship also holds if, instead of considering where to place a single crossover on a whole

bivalent, we consider where to place a new crossover on a segment already delimited

by two crossovers (or by a crossover and a chromosome end). In general, if we are

to place any fixed number of crossovers along a single chromosome, E[r̄] is increased

if they are evenly spaced [548, Appendix].

Third, r̄ will tend to increase sub-linearly with both the number of crossovers and

the number of chromosomes (Fig. 8.4.1D,E,F). For example, increasing the number

of crossovers by some factor will increase the intra-chromosomal component of r̄ by

a lesser factor (and r̄ as a whole by a yet lesser factor, because its inter-chromosomal

component is unaffected). Similarly, doubling the number of chromosomes in the

haploid set will cause a less-than-twofold increase in the inter-chromosomal compo-

nent of r̄. That is, there are ‘diminishing returns’ to genome-wide shuffling from

having increasingly more crossovers and more chromosomes. These effects are de-

scribed in mathematical detail in [548, Appendix].

8.4.2 Intrinsic implications

We have noted above that, given some number of crossovers along a chromosome at

meiosis I, E[r̄] is maximized if they are evenly spaced. This observation carries the

interesting implication that positive crossover interference—a classical phenomenon
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Figure 8.4.1: (A-C) Example values of the expected value of r̄, E[r̄], at meiosis I. In each
case, E[r̄] is calculated according to Eq. (8.3). (A) Various crossover numbers and positions
in a diploid organism with only one chromosome. Notice that E[r̄] increases sub-linearly with
crossover number, even when crossovers are evenly spaced so as to maximize E[r̄]. (B) Various
chromosome numbers for a diploid organism without crossing over. Notice that E[r̄] increases
sub-linearly with chromosome number, even when chromosomes are evenly sized so as to max-
imize E[r̄]. Notice too that, when the number of chromosomes is not small, E[r̄] is close to
its maximum value of 1/2. The rightmost panel represents a crossover-less meiosis in a human
female, in which case E[r̄] is 0.474, close to its maximum value of 1/2. (C) Various con-
figurations of crossovers in a diploid organism with multiple chromosomes. (D) The ratio of
contributions to E[r̄] from independent assortment of homologs (inter-chromosomal shuffling)
and crossing over (intra-chromosomal shuffling). Isoclines indicate CO and chromosome number
combinations across which this ratio is constant. For example, the ‘45’ isocline indicates where
independent assortment contributes 45 times more shuffling than crossovers do. Chromosomes
are assumed to be of equal size, and crossovers are assumed always to be evenly spaced along
chromosomes. For each combination of n ≥ 2 chromosomes in the haploid set and I ≥ 1
crossovers per chromosome on average, we simulate 105 nuclei. For each of the n bivalent chro-
mosomes in a nucleus, we draw a value from a Poisson distribution with parameter I − 1 and
add it to 1 mandatory crossover to get the total number of crossovers for that chromosome. We
then calculate the average total intra-chromosomal contribution to E[r̄] across the nuclei, and
compare it to the inter-chromosomal contribution (which is constant across nuclei). When the
number of chromosomes is not small, the inter-chromosomal component dominates. (E) The
inter-chromosomal component increases at a decreasing rate as chromosome number increases.
(F) Similarly, holding constant the number of chromosomes (here, 5), the intra-chromosomal
component increases at a decreasing rate as average crossover number increases.
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[379, 501] where the presence of a crossover at some point along a bivalent chromo-

some inhibits the formation of nearby crossovers—will tend to increase r̄. It thus

suggests a possible selective advantage for this phenomenon (see Discussion).

Also, the general ‘diminishing returns’ to r̄ of having more crossovers (above)

carries particular implications for differences in total autosomal shuffling in the two

sexes of a species. When the number of crossovers and/or their localization does

not differ grossly between the sexes, then the amount of shuffling will be similar in

both sexes (e.g., for male and female humans, as discussed below).

8.5 Experimental determination of crossover positions

Measurement of the quantity r̄ requires that crossover positions along chromosomes

can be accurately determined. While this was previously not possible, cytological

advances have made it possible to efficiently and accurately visualize the positions

of crossovers on pachytene bivalent chromosomes [8, 168, 335, 373, 502], while rapid

technological advances in DNA sequencing have allowed crossover positions to be

determined at a fine genomic scale using sequence/marker analysis of pedigrees

[41, 294, 446, 484], individual gametes [332, 557] and meiotic triads/tetrads [96,

241, 338, 415]. These technological advances allow simple estimation of r̄.

8.5.1 Cytological analysis

The physical positions of crossovers along the axes of pachytene chromosomes can

be determined reliably in spread pachytene nuclei (or in 3D reconstructions from

serial sectioning), either with electron microscopy by direct visualization of ‘late

recombination nodules’ (which mark all crossovers [9, 481, 553, 596]), or with light

microscopy using immunofluorescent staining techniques to detect ‘type I’ (inter-
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fering) crossovers (reviewed in [221]; see Fig. 8.6.1), which are the vast majority in

most organisms [245]. The latter method is now most commonly used.

Visualization of the chromosome axes can be achieved by staining either the axes

or the SC central region (e.g., SYCP1-3). Crossover positions along the axes can be

visualized by staining molecules specific to crossover recombination complexes (e.g.,

MLH1). If desired, the positions of centromeres along the axes can be visualized by

staining for centromeric proteins such as CENP-A, and individual chromosomes can

be identified by fluorescence in situ hybridization (FISH) or locus-specific fluorescent

tags (e.g., FROS arrays), or, in favorable cases (e.g., Arabidopsis [166]), by relative

chromosome length. Spread pachytene nuclei immuno-stained for crossover positions

are now common in the literature, and have been generated for many species (e.g.,

28 bovid species in [450] alone).

Only physical distances (in µm) along chromosomes can be directly inferred from

cytological data, and so the measurement of r̄ from such data requires a way to

convert physical distances into genomic distances (in bp). The use of pachytene-

stage chromosomes in the measurement of r̄ (Fig. 8.6.1) is particularly advantageous

in this regard because, at this stage of meiosis, genomic distance is proportional to

physical distance along the chromosome axes (below and [548, Appendix]).

The physical structure of these chromosomes is highly regular: The chromatin

of each chromatid is arranged in a linear array of loops, the bases of which lie at

regular intervals along a common axis (reviewed in [285, 372, 596]). Almost all of

the DNA is accommodated in the loops, with very little DNA in the axis between

loop bases [285, 323, 372, 596]. Therefore, the genomic lengths of the loops directly

define the genomic distance per unit of physical distance along a pachytene bivalent

axis (the local ‘packing ratio’) [285, 286, 394, 450, 596]. Moreover, the local packing
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ratio along and across different chromosomes is approximately constant within each

nucleus, at least at the relatively crude scale of inter-crossover distances required

for analysis of r̄, as indicated by two criteria. First, physical loop lengths can be

measured directly, and, in a variety of species, appear to vary minimally along and

across chromosomes within nuclei (e.g., [276, 331, 372, 394, 429]; reviewed in [596]).

Second, the relative genomic lengths of chromosomes closely match their relative

physical axis lengths at pachytene (see [548, Fig. S2] for examples from diverse

species), from which we infer that the average packing ratio of different chromo-

somes within a nucleus is approximately constant. Given these considerations, the

chromosome segments’ fractions of total genomic length (bp), as required for cal-

culation of E[r̄], correspond to, and thus can be defined by, their fractions of total

physical axis length (µm). Therefore, their fractions of total axis length (easily mea-

sured from cytological spreads) can be substituted into the formulas derived above

for E[r̄] and its components.4

8.5.2 Sequence analysis

The genomic positions of crossovers in an individual’s meioses can be inferred by

sequencing the individual products of those meioses—either directly by sequencing

individual gametes or polar bodies, or by inferring gametic genomes by sequencing

individual diploid offspring—provided the individual’s diploid genome has been hap-

lophased. Haplophasing can be achieved either by sequencing an extended pedigree

involving the individual [41, 86, 215], by sequencing multiple offspring, gametes,

and/or polar bodies of the individual [89, 104, 241, 291, 332, 415], or by isolat-
4In some species (e.g., tomato [593]), it has been reported that loops are longer in heterochro-

matin than in euchromatin. While the data in [548, Fig. S2] suggest that this is not generally
the case, in such species appropriate adjustments would be needed to convert physical lengths to
genomic lengths.
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ing individual chromosomes from a somatic cell and sequencing them separately

[146, 557]. r̄ can be calculated directly from gametic genome sequencing.

r̄ can also be calculated from linkage maps derived from pooled sequencing data

(as obtained, for example, from population pedigrees [41] or pooled sperm [254]). A

linkage map gives the map distance (in cM) between pairs of linked markers. Using

this, we can generate an evenly spaced grid of loci for each chromosome (to ensure

even sampling of loci in the calculation of r̄), and impute map distances between

these pseudomarkers by linear interpolation from distances between true markers in

the linkage map (details in [548, Appendix]). Thus, we generate a map distance dij

between every pair of linked loci (i, j), which we can convert to a rate of shuffling

rij using a map function [220], e.g., Kosambi’s [297]: rij = r(dij) = 1
2 tanh (2dij).

This gives a rate of shuffling for every linked locus pair, from which we can calculate

the average intra-chromosomal component of ⟨r̄⟩ using Eq. (8.10). Assuming that

unlinked locus pairs shuffle their alleles with probability 1/2, we can calculate the

average value of shuffling across all locus pairs, ⟨r̄⟩, using Eq. (8.10).

8.6 Measuring r̄ in humans

8.6.1 Analysis of cytological data

Fig. 8.6.1 shows the calculation of E[r̄] from the immunostained pachytene chro-

mosomes of a single human spermatocyte [221] and oocyte [85]. For both sper-

matocyte and oocyte, E[r̄] is close to its maximum value of 1/2. This high level

of shuffling is due almost entirely to independent assortment: in both cases, the

inter-chromosomal component of E[r̄] is much larger than the intra-chromosomal

component (from crossovers), by a factor of about 35 in the male and about 27 in
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B

Figure 8.6.1: Calculation of E[r̄] from crossover patterns at meiosis I in humans. The left pan-
els are micrographs of immunostained spreads of a pachytene spermatocyte (A) and a pachytene
oocyte (B). The red lines show localization of synaptonemal complex protein SYCP3, and de-
marcate the structural axes of the chromosomes. The green dots along the axes show foci of
the protein MLH1, and demarcate the positions of crossover associations along the axes. The
white arrow in (A) points to the paired X and Y chromosomes. In (B), the blue dots along
the chromosome axes mark the centromeres. The paired X chromosomes in (B) have not been
identified, and are included in the calculation of E[r̄]. The central panels show the traced axes
and crossover positions from the spreads. From these, the lengths of the segments separated
by the crossovers can be measured, and converted to fractions of the total physical axis length
(these measurements can be found in [548, File S1]). The segments’ fractions of total physical
length can be taken to be approximately equal to their fractions of total genomic length, for
reasons described in the text. With these fractions of genomic length, E[r̄] may be calculated
for each spread according to Eq. (8.3), and its inter- and intra-chromosomal components de-
termined according to Eq. (8.6). The results of these calculations are given in the right panels.
Notice that we do not require individual chromosomes to be identified to calculate E[r̄] or its
intra- and inter-chromosomal components.
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the female.

Owing to the male-heterogametic (XX/XY) system of sex determination in hu-

mans, the spermatocyte in Fig. 8.6.1A contains easily identified, partially paired X

and Y chromosomes, while the oocyte in Fig. 8.6.1B contains a bivalent of paired

X chromosomes which in this case has not been distinguished from the other biva-

lents (e.g., by FISH). Therefore, the X chromosome is included in the calculation for

the oocyte, and so the inter-chromosomal components of E[r̄] for the spermatocyte

and oocyte are not expected to be equal. Though we have estimated them directly

from the single cytological spreads in Fig. 8.6.1, they can be calculated exactly

from known genomic lengths of the chromosomes. Substituting the chromosome

lengths reported in assembly GRCh38.p11 of the human reference genome (avail-

able online at www.ncbi.nlm.nih.gov/grc/human/data?asm=GRCh38.p11; lengths

listed in [548, File S1]) into the first term in Eq. (8.6), we find that the value for the

spermatocyte should be 0.4730, close to the value of 0.4744 calculated in Fig. 8.6.1A,

while the value for the oocyte should be 0.4744, close to the value of 0.4750 calcu-

lated in Fig. 8.6.1B. This close match between the exact values and those deduced

from physical chromosome axis lengths illustrates the reliability of physical length

as a proxy for genomic length in the calculation of E[r̄].

Interestingly, although the female spread exhibits about 50% more crossovers than

the male spread (74 vs. 48), the intra-chromosomal component of E[r̄] for the female

spread is only about 30% larger than that of the male spread. This is expected from

the general arguments given earlier concerning the ‘diminishing returns’ of more

crossovers (Fig. 8.4.1D,F).

We have carried out measurement of E[r̄] using data from 824 spermatocytes

collected from 10 male humans (data from [324], kindly provided by F. Sun). Us-
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ing Eq. (8.9), we calculate each chromosome’s average contribution to the intra-

chromosomal component of E[r̄] (these are listed in SI Table S1). Summing these

values, we find that the average intra-chromosomal component of E[r̄] is 0.0143,

which is similar to the value calculated for the single spermatocyte in Fig. 8.6.1A. Re-

stricting attention to the 715 cells in which data were collected for every chromosome

allows us to calculate the average and standard deviation of the intra-chromosomal

component of E[r̄] for each of the 10 individuals. The standard deviation of the

intra-chromosomal component of E[r̄] across the spermatocytes of each individual

is of order 0.0015 (SI Table S2), or about 10% of the average value. There is some

variation among the individuals for the average value of the intra-chromosomal

component of E[r̄]: the minimum value is 0.0130, while the maximum is 0.0153.

Interestingly, these minimum and maximum average values do not come from the

individuals with, respectively, the smallest and largest average crossover frequencies

(SI Table S2). In fact, the individual with the largest average value of the intra-

chromosomal component of E[r̄] has only the fourth (out of ten) largest average

number of crossovers per spermatocyte. This further highlights the importance of

crossover position for the amount of genetic shuffling, and hints that individuals

might differ systematically in their crossover positioning in ways that quantitatively

affect the amount of shuffling in their gametes.

8.6.2 Analysis of gamete sequence data

Hou et al. [241] sequenced the products of multiple meioses (first polar bodies,

second polar bodies, and ova) of several females, and haplophased these females

directly from the sequences of the meiotic products, allowing the crossover points

in those products to be determined. Fig. 8.6.2 shows the crossover points along
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Figure 8.6.2: Calculation of r̄ from the sequence of an individual egg obtained from a hap-
lophased human female. Points of crossing over along chromosomes can be estimated directly
from the gamete sequence. With no sequencing of an extended pedigree, we cannot tell which of
the haplotypes separated by crossover points are maternal and which are paternal. Therefore, we
cannot directly calculate p, the proportion of the egg’s DNA that is paternal. We can, however,
for each chromosome k find the proportion pk that is of one parental origin (without knowing
which), and then use Eq. (8.5) to calculate r̄ and its components.

the chromosomes of an egg cell from one of the individuals. Because relatives of

the individual were not sequenced, the paternal and maternal sequences cannot be

discerned. Therefore, calculation of E[r̄] proceeds according to Eq. (8.2), with its

inter- and intra-chromosomal components determined according to Eq. (8.5). Car-

rying out this calculation for all chromosomes, including the X, reveals a value of

E[r̄] = 0.4971, with an inter-chromosomal component of 0.4756 (calculated using

chromosome lengths as they appear in Fig. 8.6.2) and an intra-chromosomal com-

ponent of 0.0215 (all details in [548, File S2]). The inter-chromosomal contribution

is about 22 times larger than the intra-chromosomal contribution. If we instead re-

strict attention to the autosomes, we find E[r̄] = 0.4965, with an inter-chromosomal

component of 0.4735, and an intra-chromosomal component of 0.0230.

Fan et al. [146] haplophased a male using microfluidic techniques, and Wang et

al. [557] sequenced 91 individual sperm cells from this male, using the haplophasing
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from [146] to determine the points of crossing over in each sperm’s sequence (given

in Table S2 of [557]). From these, and because maternal and paternal sequences are

not known, we use Eq. (8.8) to calculate the average value, across all 91 gametes,

of E[r̄] and its components. Carrying out this calculation yields an average value

of E[r̄] of 0.4856, with an average inter-chromosomal component of 0.4729, and an

average intra-chromosomal component of 0.0127 (MATLAB code for these and the

following calculations is provided in [548, File S3]). The average inter-chromosomal

contribution is therefore about 37 times larger than the average intra-chromosomal

contribution. In calculating the inter-chromosomal component of E[r̄], because some

shuffled SNP positions for this individual exceeded the chromosome lengths of the

human reference genome, we used the position of the last SNP on each chromosome

(as reported in [146] in their Supplemental Data Set 2) as our proxy of that chromo-

some’s genomic length. Because there is no information about the parental origin of

the sequences in each sperm, the inter-chromosomal component for each sperm is an

average, deduced from the fixed genomic lengths of the individual’s chromosomes

[using Eq. (8.5)]. There is therefore no variance across gametes in this component.

The standard deviation of the intra-chromosomal component of r̄ across gametes is

0.0026, resulting in a coefficient of variation of about 0.2. The minimum value of the

intra-chromosomal component across all 91 sperm is 0.0058; the maximum value is

0.0178. The average intra-chromosomal component of this individual is low relative

to the average value of the intra-chromosomal component calculated from sperma-

tocytes in the previous subsection (0.0143). This is expected, as he is homozygous

for a variant of the RNF212 gene that, in homozygous form, is associated with a

reduction of ∼5-7.5% in crossover numbers in males [89, 293]. Indeed, the 91 sperm

show, on average, 22.8 crossovers each (minimum 12; maximum 32), as compared to
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the previously cited averages of 25.9 for Icelandic males [291] and 26.2 for Hutterite

males [104].

8.6.3 Analysis of linkage map data

Kong et al. [294] sequenced 8,850 mother-offspring and 6,407 father-offspring pairs of

Icelandics to generate high-density linkage maps for both sexes (data publicly avail-

able at http://www.decode.com/addendum). For each sex, we apply the method

described above for generating a linkage map of evenly spaced ‘pseudomarker’

loci, and we estimate rates of shuffling for all linked locus pairs from the map

distances between them using the Kosambi map function. We then estimate the

intra-chromosomal component of ⟨r̄⟩ using Eq. (8.10) (the inter-chromosomal com-

ponent is calculated form known chromosome lengths). This yields a male value

of 0.0138, similar to the value of 0.0143 calculated above from 824 spermatocytes

(the chromosome-specific contributions are similar too; SI Table S4). This con-

cordance indicates the validity of the linkage-data approach to estimating r̄. The

female value, including the X chromosome, is 0.0183, similar to the value of 0.0177

calculated from the single oocyte spread in Fig. 8.6.1, but smaller than the value of

0.0215 calculated from the single egg in Fig. 8.6.2. Excluding the X chromosome,

the female value is 0.0193.

8.7 Discussion

The most common current measures of genome-wide genetic shuffling—crossover

frequency and map length—do not take into account the positions of crossovers.

This is a significant limitation, because terminal crossovers cause less shuffling than

central crossovers. Traditional measures of aggregate shuffling also do not take into
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account independent assortment of homologs in meiosis. Here, we have proposed a

measure of genome-wide shuffling that naturally takes both of these features into

account. This measure, r̄, is the probability that a randomly chosen pair of loci

shuffle their alleles in meiosis.

8.7.1 r̄ should be the measure of choice for evaluation and comparison

of genetic shuffling

r̄ is the most direct measure of the aggregate amount of shuffling that occurs in the

production of gametes. Application of this measure should therefore significantly

improve the possibility of understanding the nature, basis, and significance of genetic

shuffling and its variation across different situations (e.g., across species). We hope

that this will become common practice where possible. In support of this possibility,

we have demonstrated that r̄ can readily be measured from standard sequence and

cytological data.

8.7.2 Distinguishing the contributions of crossing over and Mendel’s

Second Law

We have shown that r̄ can be decomposed into a component from crossovers and a

component from independent assortment of homologs. The relative importance of

crossing over and independent assortment as sources of shuffling has long been dis-

cussed [23, 57, 58, 109]. Theories of the adaptive value of shuffling fall roughly into

two categories: those positing a short-term advantage (offspring diversification; e.g.,

the Tangled Bank [23, 181] and sib-competition [346, 578] theories) and those posit-

ing a long-term advantage (e.g., the ‘Fisher-Muller’ theory that gradually reducing

allelic correlations over time allows natural selection to operate more efficiently on
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genes at different loci [150, 154, 230, 380, 381]).

Burt [57] has argued that crossovers are more effective than independent as-

sortment in gradually reducing allelic associations (because independent assortment

shuffles genomes at fixed points, whereas crossovers can occur at many points along

a chromosome). Under this view, the crossover component of r̄ would be more

important than the independent assortment component for long-term theories of

the adaptive value of shuffling. On the other hand, the short-term theories rely on

aggregate shuffling per se. We have shown, using humans as an example, that inde-

pendent assortment will typically be the greatest contributor to aggregate shuffling.

Therefore, the independent assortment component of r̄ may be more important than

the crossover component for short-term theories of the adaptive purpose of shuffling.

Our decomposition of r̄ into these separate components allows these distinctions to

be tested quantitatively.

8.7.3 Crossover interference increases genetic shuffling

A property of the intra-chromosomal component of r̄ is that it increases as crossovers

become more evenly spread out. Thus, intriguingly, interference among crossovers

will tend to increase the amount of shuffling that they cause (similar points have been

made by Goldstein, Bergman, and Feldman [190], and Gorlov and Gorlova [194]).

In [548, Appendix], we quantify this effect for human males using the spermatocyte

data from [324], described above. Following the method employed in [338, 557]

for sampling crossovers without interference, for each chromosome we calculate an

interference-less average contribution to intra-chromosomal E[r̄] by resampling, in

each spermatocyte, the positions of the crossovers independently from the empirical

distribution pooled across all spermatocytes. We find that the observed average
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value of the intra-chromosomal contribution to E[r̄] is about 15% higher than this

interference-less value.

Crossover interference, first described more than a century ago [501], is a deeply

conserved feature of the meiotic program [231, 558]. Despite this, its adaptive

function, if any, remains unclear [245, 314, 452]. One category of hypotheses in-

vokes mechanical advantages of spread-out crossovers, either to bivalent stability in

prophase [541] or to homolog segregation at meiosis I [298]. However, such ideas

are challenged by the fact that meiotic segregation proceeds without trouble in or-

ganisms that lack crossover interference (e.g., fission yeast and Aspergillus [135]) or

that have had interference experimentally reduced or eliminated [152, 478]. The

present study raises the possibility of a qualitatively different idea, that crossover

interference provides an evolutionary advantage via its effects on genetic transmis-

sion. By explicitly taking into account the positions of crossovers in quantifying how

much shuffling they cause, we show that crossover interference serves to increase the

shuffling caused by a given number of crossovers. This finding therefore suggests a

new possibility for the adaptive function of crossover interference.

8.7.4 Additional measures of genetic shuffling

r̄ is a suitable measure of the total amount of shuffling, linearly aggregating the rates

of shuffling between different locus pairs. In this way, it quantifies the first-order

effect of shuffling, the genetic diversification of gametes/offspring [23]. However,

certain population genetic properties exhibit non-linear dependence on the rates

of shuffling between loci. For example, theoretical studies have determined that

certain allelic associations across loci can jointly increase in frequency only if their

constituent loci shuffle their alleles at a rate below some critical threshold value. This

234



has been shown for co-adapted gene complexes exhibiting positive fitness epistasis

[110, 389, 567], ‘poison-antidote’ gamete-killing haplotypes involved in meiotic drive

[75, 207, 218, 325], and associations between sex-determining genes and genes with

sexually antagonistic fitness effects [382, 439, 535, 536]. Similarly, Hill-Robertson

interference is effective only among loci that are tightly linked, shuffling their alleles

at a rate below a small threshold (which depends on the effective population size

and other parameters) [364]. In quantifying these various properties at an aggregate

level, a more suitable measure would be the proportion of locus pairs that shuffle

their alleles at a rate below the critical threshold. Such measures would be informa-

tive, for example, of which chromosomes are most likely to be co-opted as new sex

chromosomes, or of how susceptible a species is to the invasion of ‘poison-antidote’

meiotic drive complexes (or, within species, which chromosomes are most likely to

harbor such complexes), or of the average fitness reduction caused by Hill-Robertson

interference. Calculating these threshold-based aggregate measures would require

estimates of the average rates of shuffling for specific locus pairs. High-density

linkage maps would therefore be especially promising for such measurements.

8.7.5 Taking gene density into account

The calculation of r̄, as we have defined it, treats all regions of equal genomic length

as of the same importance. However, the quantity we seek to measure is really

the amount of shuffling of functional genetic elements—it is largely irrelevant if two

functionless pseudogenes shuffle, for example. Therefore, correcting the calculation

of r̄ to take gene density into account is an important extension, a point already

noted by Burt, Bell, and Harvey [60]. This is especially so if the distribution of genes

is non-random along or across chromosomes. Accounting for the gene densities of
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different genomic regions would be easiest with sequence data, especially in species

with well-annotated genomes. For species without well-annotated genomes, proxies

of the gene density of genomic regions, such as euchromatin content or GC-richness,

could be used. Accounting for gene density with cytological data would be more

complicated, since it requires knowledge of the identity and orientation of the various

chromosomes. At a crude resolution, this can be achieved with chromosome-specific

FISH probes (and, if required, centromere localization). Finer-scale identification

of different genomic regions in cytological spreads could be achieved using high-

resolution FISH [21, 22, 559]. In any case, the usual problems would arise in deciding

which parts of the genome are ‘functional’ (see [131, 132] for reviews of recent debates

on this topic).

8.7.6 Taking heterozygosity into account

Genetic shuffling of alleles at two loci in meiosis is practically relevant only if both

loci are heterozygous. A simple modification of r̄ that measures the extent of such

‘effective’ shuffling in meiosis is the proportion of locus pairs that shuffle their alleles

and are both heterozygous. Again, we are mostly interested in the shuffling of func-

tional elements, in which case estimation of this measure requires knowledge of the

landscape of ‘functional’ heterozygosity across the genome (e.g., non-synonymous

heterozygosity in protein-coding genes, as available for humans [311]) together with

knowledge of linkage disequilibrium between nearby loci (e.g., for humans [517]).

8.7.7 Taking gene conversion into account

Another source of shuffling, in addition to crossing over and independent assortment,

is gene conversion (GC) [95, 495]: the unidirectional copying of a DNA sequence
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tract from one chromatid (the donor) to a homologous chromatid (the acceptor),

either in mitosis or meiosis. In [548, Appendix], we show how to take both mitotic

and meiotic GC into account in measuring r̄. In meiosis, chromosome pairing in-

volves many points of interaction between homologous chromatids (∼ 200 across all

chromosomes in mouse spermatocytes [592]), each induced by a double-strand break

on one of the chromatids. In most organisms, only a minority of these interactions

result in crossovers [94, 245, 287], the majority instead resulting in non-crossovers.

Both outcomes are associated with short tracts of GC, (e.g., ∼ 100bp for non-

crossover GCs and ∼ 500bp for crossover GCs in mice [96, 592]). These tracts,

though numerous, are too short to seriously affect the total amount of shuffling [for

example, the contribution from meiotic GCs in mammals will be of order 10,000

times smaller than the contribution from crossovers [548, Appendix]; in yeast, this

figure is smaller—about 200 [548, Appendix]—owing to their longer GC tracts and

smaller genomes], though they may have important local effects [10, 495]. Mitotic

GC tracts result from homologous chromosome repair, are typically much longer

than meiotic GC tracts (often of order 10kb; e.g., [242, 307]), and, if they occur

in germline cell divisions leading to meiocytes, can lead to shuffling of maternal

and paternal DNA in gametes (which should especially affect males, who have more

germline cell divisions). Too little is presently known about the global frequency of

these events for us to give a reasonable quantitative estimate of how much shuffling

they cause.
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9
Per-nucleus crossover covariation and

implications for evolution

9.1 Abstract

Crossing-over is a nearly-universal feature of sexual reproduction. Here, analysis of

crossover numbers on a per-chromosome and per-nucleus basis reveals a fundamen-

tal, evolutionarily-conserved feature of meiosis: within individual nuclei, crossover

frequencies co-vary across different chromosomes. This effect results from per-
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nucleus covariation of chromosome axis lengths. Crossovers can promote evolution-

ary adaptation. However, the benefit of creating favorable new allelic combinations

must outweigh the cost of disrupting existing favorable combinations. Covariation

concomitantly increases the frequencies of gametes with especially high, or espe-

cially low, numbers of crossovers, and thus might concomitantly enhance the bene-

fits of crossing-over while reducing its costs. A four-locus population genetic model

suggests that such an effect can pertain in situations where the environment fluc-

tuates: hyper-crossover gametes are advantageous when the environment changes

while hypo-crossover gametes are advantageous in periods of environmental stasis.

These findings reveal a new feature of the basic meiotic program and suggest a

possible adaptive advantage.

9.2 Introduction

Meiosis is the specialized cellular program that yields gametes for sexual reproduc-

tion. DNA recombination is a central feature of this program. Cross-over (CO)

recombination shuffles the alleles along chromosomes, leading to genetic diversity

of gametes and thus progeny [23, 548]. The nearly-universal occurrence of CO re-

combination in sexually-reproducing organisms is assumed to imply a fundamental

adaptive role [347]. However, the ability of COs to create favorable new allelic com-

binations must be balanced against their seemingly opposing ability to break apart

existing combinations that have been selected for. These opposing potentials are

sometimes referred to as the “good” and “bad” effects of crossing-over [413, 497].

In some organisms, this dilemma is addressed by alternation between sexual and

asexual reproductive lifestyles, usually with the sexual phase involving dispersal

to new environments and/or being triggered by information that the environment
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is changing [23, 578]. Other organisms utilize programmed variations of sexual

reproduction in which recombination frequency is specifically elevated in conditions

of stress, where new genetic combinations may be beneficial [23].

In the general case, including obligately sexual organisms, theoretical modeling

suggests that the advantage of crossing-over comes into play in at least two ways

[479]. First, in the long-term evolution of populations, COs can accelerate adapta-

tion by bringing together favorable alleles that would otherwise compete with one

another and by separating favorable alleles from linked unfavorable alleles that oth-

erwise would impede the spread of the favorable alleles [150, 230, 357]. Second, in

conditions where the environment fluctuates in time or space, COs can generate

previously rare (or absent) genetic combinations that allow immediate adaptation

[70, 214, 347, 459, 578].

Previous studies of crossing-over, beginning with classical genetic analyses, pri-

marily analyzed recombination patterns on a per-chromosome basis. Such studies re-

vealed not only the occurrence of crossing-over but also the phenomenon of crossover

interference, a one-dimensional spatial patterning process that results, ultimately,

in even spacing of crossovers along each chromosome [258]. Here we analyze CO

patterns from a different perspective: with respect to the numbers of COs along

individual chromosomes in single meiotic nuclei. Such information is provided by

both cytological and DNA sequencing approaches.

Analysis of such data reveals a new basic feature of the meiotic recombination

program: the numbers of CO-fated recombination interactions (and thus COs) tend

to co-vary across different chromosomes, at higher or lower levels, within individual

meiotic nuclei. Further, in accord with diverse evidences that axis length determines

recombination/CO levels [560], the proximate basis for this effect is analogous per-
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nucleus covariation of different chromosome axis lengths. Since chromosome axis

length is known to be determined by chromatin loop length (e.g., [560]; below),

global loop length modulation could underlie global modulation of CO frequencies.

Per-nucleus CO covariation results in an over-dispersed distribution of total CO

levels per nucleus. The practical consequence of this effect is to elevate the frequen-

cies of nuclei, and thereafter gametes, that contain either very many or very few

COs, coordinately on all chromosomes. This outcome triggered the idea that CO

covariation might increase the ability of COs to promote evolutionary adaptation.

Both hyper- and hypo-CO gametes would be available, at all times, to provide either

more or less genetic shuffling according to the dictates of the circumstances. Using a

four-locus population genetic model, we provide support for this adaptive advantage

of CO covariation across a range of situations in which the environment fluctuates:

hyper-CO gametes are advantageous when the environment changes while hypo-CO

gametes are advantageous in periods of environmental stasis. These findings suggest

that CO covariation, an intrinsic feature of the basic meiotic chromosomal program

and apparently common to most sexual organisms, has the potential to increase the

power of crossing-over to enhance evolutionary adaptation.

9.3 Results

9.3.1 Per-nucleus analysis of COs.

Two methodologies can define the numbers and positions of crossover events along

each chromosome (bivalent) in individual meiotic nuclei: (i) cytological analysis and

(ii) DNA sequencing. (i) At the pachytene stage of meiotic prophase, the axes of

homologous chromosomes are linked at 1̃00nm along their lengths by a “pairing

structure”, the synaptonemal complex (SC). In spread chromosomal preparations
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Figure 9.3.1: Per-nucleus analysis of COs. (A) Human male pachytene nuclei immunostained
for chromosome axis (SYCP3; red), CO recombination complexes (MLH1; yellow) and cen-
tromeres (CREST, blue) for 22 autosomes. Left and right panels illustrate nuclei with longer
axes and more COs (left) or shorter axes and fewer COs (right). See also [561, Figure S1A-D].

subjected to immunofluorescent staining, the positions of all crossover (CO) events,

along each individual SC, are specifically marked by foci of particular proteins, e.g.,

MLH1 or Hei10-T3, as defined for many different organisms (e.g., Figure 9.3.1; [561,

Figure S1CD]). Cytological analyses can analogously define the numbers of foci that

mark the sites of early recombination intermediates (e.g., RPA or Hei10-T2; [561,

Figure S1AB]) as well as underlying SC lengths in the same nuclei at both the

CO and early intermediate stages. (ii) DNA sequence analysis has been applied

only to a few organisms thus far. Data suitable for per-nucleus analysis is available

from human female, where numbers and positions of COs along all chromosomes

in individual nuclei are known for the egg and the two polar bodies of individual

oocytes [241, 415] and from individual human male sperm [332, 557] which can be

related to per-nucleus data (below).
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CO-correlated cytologically-defined foci accurately report final CO numbers. Where

tested, their average number corresponds well to the average number of COs de-

tected either by DNA sequence analysis or as the number of chiasmata, the cytolog-

ical manifestations of COs seen at diplotene. For example, analyses of human male

report average numbers of 49.1 MLH1 foci [201, 560], 49.6 chiasmata [304], 50.7 COs

(sperm sequencing [332]); and 5̃0 COs (pedigree studies such as HapMap, deCODE

etc.; further discussions in [9, 122, 341]). This agreement reflects the fact that the

period when CO foci are present is long-lived and the number of foci remains stable

throughout different substages (e.g., [122, 341]). Correspondingly, our analyses of

DNA sequence data and CO focus data yield the same results (below).

9.3.2 The distribution of total COs per nucleus is over-dispersed rel-

ative to the hypothesis of independence across chromosomes.

Previous analyses by several methods show that the total number of CO events per

nucleus varies significantly from one nucleus to another (e.g., [241, 332, 336, 450,

503, 560]) (Figure 9.3.1 left vs right; [561, Table S1]; below). Such variability could

simply reflect intrinsic variability in the numbers of COs on different chromosomes

as determined independently on those different chromosomes (hereafter “intrinsic

variation”). To investigate this possibility, we asked whether the experimental dis-

tribution of COs per nucleus corresponded to that predicted if all variation resulted

from independent variability on different chromosomes. To do so, we pooled all of

the bivalents analyzed in experimental data, separately for each chromosome, and

then created artificial nuclei “in silico”, each containing one bivalent of each chro-

mosome drawn at random from the corresponding pool [561, Methods]. Analysis of

human male data shows that the per-nucleus CO numbers observed experimentally
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vary much more widely than predicted from the artificial nuclei assembled in silico

by the “hypothesis of independence”, with Coefficients of Variation (CVs) of 0.1 and

0.05 respectively (Figure 9.3.2A; Figure 9.3.2B top panel, blue versus red; [561, Fig-

ure S1E]). As a result, the observed percentages of nuclei that contain either more

or fewer COs are both substantially greater than those predicted by the hypothesis

of independence for in silico nuclei (Figure 9.3.2B top, blue versus red; bottom, blue

and orange). For human male, hyper- and hypo-CO nuclei each comprise 1̃6% of the

total. We define the sum of these percentages, 3̃2% in human male, as the “Variabil-

ity Index” (VI) (Figure 9.3.2C, data and corresponding best-fit normal distributions

“dist̂̂”; [561, Figure S1F]). The VI provides a useful quantitative indicator of the

magnitude of this effect. These various effects are observed for nuclei from several

different individuals, indicating that they are a common general feature of human

male meiosis [561, Figure S1EF].

The same over-dispersion seen in human male is observed in several other or-

ganisms as defined by CO focus data for two other mammals (tiger and elephant

shrew), the higher plant tomato, and the filamentous fungus Sordaria, and by DNA

sequence data for “meiotic tetrads” in human female (Figure 9.3.2DF; [561, Figure

S2A]). All data sets exhibit: (i) a significantly higher CV for total COs per nucleus

in experimental data as compared to those predicted for the hypothesis of inde-

pendence from in silico nuclei; (ii) VIs ranging from 20% to 50%; and (iii) roughly

equal numbers of hyper- and hypo-CO nuclei. These effects thus appear to be an

evolutionarily conserved feature of the basic meiotic program.
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Figure 9.3.2: Over-dispersed distribution of total COs per nucleus, and resultant hyper- and
hypo-CO nuclei. (A, B top). Experimental distribution of total CO number per nucleus in
human male pachytene nuclei (blue; n=755) is compared with the distribution predicted if COs
were determined independently on different chromosomes (the hypothesis of independence for
in silico nuclei; text; red). Solid lines are best-fit normal distributions (B top; details in [561,
Figure S2A]). The difference between these two distributions defines the frequencies of hypo-
and hyper-CO nuclei (B bottom; blue, orange). (C) The sum of the frequencies of hypo-CO
(blue) and hyper-CO (orange) nuclei is defined as the variability index (VI), determined from
the data (left) and the corresponding normal distributions (right; [561, Figure S2A]). (D, F left)
Comparisons as in (A) for COs in the five indicated organisms. **Female data come from DNA
sequencing. (E, F right) Comparisons as in (A, C, D) for early intermediates in the two indicated
organisms. ##Data are available only for chromosomes 13, 14, 15, 21 and 22. Data sources and
details of statistical analysis are given in [561, Methods]. For human male, Sordaria, tomato,
tiger, elephant shrew, and human female at CO stages, and human male and Sordaria at early
intermediate stages, n = 755, 94, 111, 59, 63, 69, 36 and 26, respectively. Error bars indicate
SD (A, D, E) or SE (C, F). See also [561, Figure S1-3].
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9.3.3 Per-nucleus covariation of COs.

Overdispersion in the distribution of COs per nucleus directly implies that the num-

bers of COs on different chromosomes tend to covary, at higher or lower levels, within

individual nuclei. This tendency for covariation can be observed experimentally. If

chromosomes of an experimental sample are divided into two comparable groups,

e.g., odd-numbered and even-numbered autosomes [561, Methods], the numbers of

events on bivalents in the two groups are seen to be correlated within individual nu-

clei (Figure 9.3.3A). Per-nucleus correlation is also seen between: (i) the numbers of

events on two different individual chromosomes (Figure 9.3.3B) and (ii) the number

of events on one bivalent with the number on all other bivalents in the same nucleus

[561, Figure S2B]. Accordingly, groups of nuclei exhibiting high, intermediate or low

total numbers of COs exhibit the same hierarchy of CO levels for every chromosome

(Figure 9.3.3C). Further, for human male, the CV for COs per nucleus and the de-

gree of covariation between odd- and even-numbered chromosomes exhibit exactly

the predicted relationship (Figure 9.3.3E; [561, Methods]).

9.3.4 Covariation contributes half or more of the total variance in

the number of COs per nucleus.

The total variance of CO number per nucleus (“A”) can be decomposed mathe-

matically into two sources (Equation 7.2 in Table 9.3.1A): the sum of the “intrinsic

variance” of CO numbers on each chromosome (“B”), and the sum of the covari-

ances of CO numbers across all pairs of distinct chromosomes (“C”). Values of A,

B, and C can be calculated directly from the experimental data. The proportional

contribution of CO covariance to the total variance in CO number is given by the
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Figure 9.3.3: (A,B) For the six organisms analyzed for COs in Figure 9.3.2, the numbers of
CO foci in single individual nuclei are correlated for two matched groups of chromosomes (e.g.,
odd vs even chromosomes in panel A left) and on pairs of individual chromosomes (B) for all
possible combinations. (C) Human male nuclei with high, medium and low total CO numbers
exhibit the same hierarchy for all 22 autosomes. (D) For the two organisms analyzed for early
intermediates in Figure 9.3.2, the numbers of CO foci in single individual nuclei are correlated
for two matched groups of chromosomes. (E) Simulations [561, Methods] confirm that stronger
per-nucleus co-variation of COs gives increased variation in the total number of COs per nucleus
(defined by CV). Sample sizes as in Figure 9.3.2. Error bars = SE (A-right and B). Data sources
and details of statistical analysis are given in [561, Methods]. See also [561, Figure S1-2].
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ratio C/A. All of the per-nucleus CO data sets described above exhibit positive val-

ues for total covariance (column (C) in Table 9.3.1B-I). Moreover, the contribution

of covariation comprises 48%-83% of the total observed variance (C/A = 0.48-0.83;

Table 9.3.1B-I) and thus is a major determining factor in all cases. [Note: the

observed covariance cannot be due to the fact that every pair of homologs almost

always acquires at least one CO (as required to ensure their regular segregation; In-

troduction) because, mathematically, neither variance nor covariance change when

one CO is removed from every bivalent.]

Interestingly, the variation in COs per nucleus is particularly large in human

female (e.g., Figure 9.3.2D, Table 9.3.1B-I). This difference results from the fact

that human female meiosis is afflicted by a unique feature, CO maturation ineffi-

ciency (CMI), which acts at a late stage in the recombination process to effectively

“subtract” COs stochastically from the original array set up by CO designation

and interference [560]. Nonetheless, covariance is still the predominant factor in

determining total variance (C/A = 83%; Table 9.3.1B-I).

These findings are confirmed and extended by analysis of DNA sequence data

from post-prophase products of human male and female meiosis (Table 9.3.1B-V;

[561, Methods]). CO patterns in individual sperm exhibit CO covariation, at exactly

the level predicted for gametes from MLH1 focus analysis under the assumption of

no chromatid interference. This correspondence has three implications. (i) Prophase

focus data accurately report final CO numbers. (ii) Chromatid interference is either

absent or extremely weak in human male, as has been found in other organisms

[338, 595] and in human female [241]. (iii) Covariation set up at prophase, as

seen in MLH1 focus patterns, is maintained essentially unaltered through gamete

formation, without any detectable influence of covariation-induced biases in the loss
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Table 9.3.1: Analysis of variance.

A. Var
(

n∑
k=1

COk

)
︸ ︷︷ ︸

(A)

=

n∑
k=1

Var (COk)︸ ︷︷ ︸
(B)

+
∑
i ̸=j

Covar (COi,COj)︸ ︷︷ ︸
(C)

(Equation 9.2)a

.
B. Decomposition of Variance
.

(A) = Obs. (B) = Var. (C) =
Organism Total Var. if Indep. Covar. (C)/(A) CV

.
I. COs per nucleus

H. male 25.3 6.2 19.1 0.75 0.10
Sordaria 8.9 4.6 4.3 0.48 0.13
Tomato 11.3 4.9 6.4 0.57 0.19
Tiger 47.0 13.0 34.0 0.72 0.11
E. shrew 13.3 5.3 8.0 0.60 0.13
H. femaleb 257.0 44.4 212.6 0.83 0.19

II. Early intermediates per nucleus
H. malec 218.4 76.3 142.1 0.65 0.31
Sordaria 62.9 16.1 46.8 0.74 0.19

III. CO stage – axis length per nucleusd

H. male 19,827.1 2,541.3 17,286.4 0.87 0.16
Sordaria 56.9 11.8 45.2 0.79 0.14
Tomato 325.6 36.9 288.7 0.89 0.07
Tiger 164,804.3 13,817.4 150,987.1 0.92 0.14
E. shrew 121,045.2 29,112.1 91,933.3 0.76 0.13

IV. Early intermediate stage – axis length per nucleus
H. malec 196.2 64.7 131.3 0.67 0.17
Sordaria 114.5 26.2 88.4 0.77 0.14

V. COs per gamete
H. spermsb 19.4 14.3 5.1 0.26 0.18
H. sperms pred. 18.7 13.9 4.8 0.26 0.18
H. eggsb 79.0 28.3 50.7 0.64 0.21
H. eggs pred. 85.4 32.2 53.2 0.62 0.22

a n is the number of chromosomes in the haploid set. COk is the number of crossovers on chro-
mosome k, but an analogous equation holds for any quantity, e.g., the axis length of chromosome
k.
b From DNA sequence data (all other data from recombination foci).
c For human male, RPA foci and axis/SC length data are available only for chromosomes 13, 14,
15, 21, and 22.
d Female axis lengths at the CO stage are not available because data come from DNA sequence
analysis (text).
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of hypo- or hyper-CO gametes. These conclusions are bolstered by the fact that, for

human female, covariation observed in gametes (eggs) is the same as that predicted

for gametes from full prophase “tetrads”, each reconstituted from an egg plus the

associated first and second polar bodies (Table 9.3.1B-V). We also note that these

findings for human gametes explain the “gamete effect” of Kong et al. [291, 295], who

observe, in sequenced human pedigrees, that the number of crossovers transmitted

to a given offspring is correlated across chromosomes.

9.3.5 Early recombination intermediates exhibit per-nucleus covaria-

tion.

During meiosis, CO sites are designated (with accompanying CO interference) at

early/mid prophase from among a much larger array of early recombination interac-

tions, each set up by a corresponding initiating double-strand break [245]. All of the

patterns described above for COs are also observed for these early intermediates,

as defined by analysis of RPA foci in human male and Hei10 T2 foci in Sordaria,

including: (1) an overdispersed distribution of total foci per nucleus, with high

VI’s and roughly equal numbers of hyper- and hypo-focus nuclei (Figure 9.3.2EF;

[561, Figure S1AB]); (2) per-nucleus correlations in the numbers of foci observed in

two equivalent chromosome groups (Figure 9.3.3D); and (3) positive levels of total

covariance and large contributions of covariance to total variance (Table IB-II).

9.3.6 Prophase chromosome axis lengths exhibit per-nucleus covaria-

tion.

Every experimental feature diagnostic of per-nucleus covariation of COs, and of early

recombination events, is also observed analogously for bivalent axis (SC) lengths at
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the corresponding stages. (1) Total axis lengths per nucleus are overdispersed, with

high VI’s and roughly equal numbers of hyper- and hypo-axis length nuclei (Fig-

ure 9.3.4; [561, Figure S1GH]). (2) Per-nucleus covariation is seen for axis lengths

between different groups of chromosomes or of individual chromosomes (Figure

9.3.5ABD; [561, Figure S2D-F]), or an individual chromosome and a chromosome

group [561, Figure 2C]. Accordingly, groups of nuclei exhibiting high, intermediate

or low total axis lengths exhibit the same hierarchy of axis lengths for every chro-

mosome (Figure 9.3.5C). (3) Axis lengths at both stages exhibit positive values of

total covariance and large contributions of total covariance to total variance (Table

9.3.1B-III, IV).

9.3.7 Per-nucleus covariation of prophase chromosome axis lengths

dictates per-nucleus CO covariation.

The axis length of an individual chromosome determines the number of initiated

recombination events (DSBs), total early recombination interactions and, then,

interference-mediated COs. Correlations between axis length and event number

are documented in several organisms (e.g., human male and female meiosis; Fig-

ure 9.3.1; [560]). Moreover: (i) Axis lengths are the same regardless of whether

recombination has been initiated, not initiated, or initiated at a reduced level

[94, 500, 516, 593, 594]. (ii) Mutations in axis components coordinately alter not

only axis length but also CO levels [176, 367, 394, 437, 594]; and (iii) human male

and female meiosis exhibit, respectively, shorter/longer axes, and fewer/more COs,

but have identical recombination processes including the density of early recombi-

nation interactions per axis length and the parameters governing CO designation
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Figure 9.3.4: Over-dispersed distribution of total axis lengths per nucleus. Panels (A-F) are
exactly analogous to panels (A-F) of Figure 9.3.2 except that they pertain to axis lengths at the
CO and early intermediate stages rather than the corresponding recombination events. ##Data
are available only for chromosomes 13, 14, 15, 21 and 22. Sample sizes as in Figure 9.3.2. See
also [561, Figure S1-2].
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Figure 9.3.5: Panels (A-D) are exactly analogous to panels (A-D) of Figure 9.3.3 except that
they pertain to axis lengths at the CO and early intermediate stages rather than the corresponding
recombination events. Sample sizes as in Figure 9.3.2. Data sources and details of statistical
analysis are given in [561, Methods]. See also [561, Figure S1-2].

and interference [560].

If chromosome axis length determines the average number of COs per bivalent,

it follows directly that per-nucleus covariation of axis lengths should determine per-

nucleus covariation of COs. In accord with this causality, per-nucleus correlation

coefficients for grouped chromosomes, and the proportion of total variance resulting

from covariation (C/A, above), are both substantially higher for axis lengths than

for COs (R >0.9 versus 0.4-0.8; and 76%-92% versus 48%-83%, respectively (Figures

9.3.5A and 9.3.3A; and Table 9.3.1B-I, III, respectively)).

Additionally, simulation of recombination patterns shows that per-nucleus covari-

ation of axis lengths can quantitatively explain CO covariation. In previous work,

we used this approach to determine, for human male meiosis, the values of all pa-

rameters that define the basic features of CO recombination (e.g., the array of total

early interactions and the nature of CO site specification by CO designation and in-

terference) [560]. We have now included in the simulation algorithm two additional

parameters that specify (i) intrinsic variation in axis lengths; and (ii) covariation

among axis lengths of different bivalents in the same nucleus [561, Methods]. When
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the values of these two parameters are set at the levels defined experimentally [561,

Methods and Figure S2C-E, S3A], simulation of human male CO patterns yields a

nearly perfect match to experimental data with respect to: (i) the CV for the total

number of COs per nucleus (Figure 9.3.6A, green vs blue), the CV for total COs

per nucleus predicted for in silico nuclei by the hypothesis of independence (Figure

9.3.6A, purple vs red), and the accompanying percentages of hyper- and hypo-CO

nuclei and the VI (Figure 9.3.6B); (ii) the per-nucleus correlation coefficients for

COs in odd versus even chromosome groups, for pairs of individual chromosomes,

and for individual chromosomes versus a chromosome group (Figure 9.3.6C green vs

blue); (iii) total variance, intrinsic variance, and co-variance and, thus the contribu-

tion of covariance to total variance, of COs per nucleus; and (iv) previously-analyzed

features [561, Figure S3B].

Finally, in most organisms, axis lengths are set up early in prophase where they

determine not only CO frequencies but the frequencies of total initiating double-

strand breaks and of early intermediates, among which a selected subset are CO

sites [560, 593, 594]. In accord with this progression, covariation is also observed

for early intermediates and their corresponding axis lengths, by all criteria (Figures

9.3.2-9.3.5; Table 9.3.1B-III, IV). By implication: (i) covariation will apply also to

gene conversion (GC) events, which arise from all types of early intermediates but

primarily from those that yield “non-crossover” products [95], and (ii) individual

nuclei (and gametes) will tend to exhibit especially high or especially low levels

coordinately for both GCs and COs.
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Figure 9.3.6: Simulation analysis shows that intrinsic variation and covariation of axis lengths
can quantitatively explain per-nucleus covariation of COs in human male. Recombination event
patterns were predicted by an enhanced simulation analysis that parameterizes both intrinsic
variation and covariation of chromosome axis lengths (text; [561, Methods]). For human male
COs, simulation using the experimentally-defined values for both of these parameters perfectly
predicts all experimentally-observed features including the CV of total COs per nucleus (Panel A,
green versus blue) and the three per-nucleus correlations in CO numbers on grouped and/or indi-
vidual chromosomes as described in Figure 9.3.3AB and [561, Figure S2B]. Moreover, simulation
using the experimentally-defined axis variation but zero axis-length co-variation perfectly predicts
the outcome of the ”hypothesis of independence” (text) (Panel A, purple vs red). Correspond-
ingly, predicted levels of hyper-CO (orange) and hypo-CO (blue) nuclei and the corresponding VI
exactly match those defined from experimental data (B). Data sources and details of statistical
analysis are given in [561, Methods]. See also [561, Figure S1-3].
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9.3.8 Per-nucleus CO covariation aids evolutionary adaptation in a

sporadically fluctuating environment.

Per-nucleus CO covariation has the effect of increasing the proportions of gametes

with extremely low and with extremely high CO numbers (above). During sexual

reproduction, gametes with few COs tend to lead to offspring that are phenotypi-

cally similar to their parents, while gametes with many COs lead to offspring with

substantial phenotypic variation. CO covariation, by elevating hypo-CO and hyper-

CO gametes, concomitantly increases the proportions of both of these classes of

offspring. At the same time, by reducing the proportion of mid-CO gametes, it

reduces the number of offspring whose phenotypes are intermediately different from

their parents’ (Figure 9.3.7A). The effect of CO covariation on CO levels in gametes

is thus expected to have significant consequences for the fitness of the resulting

offspring according to the environment(s) in which they find themselves.

Covariation is predicted to confer an advantage in a fluctuating environment.

One circumstance in which CO covariation could potentially confer an advantage is

where a species experiences occasional fluctuations in its environment, across time

or space. Such environmental fluctuations, either biotic or abiotic, are faced by the

majority of species [578]. If the environment does not change between a parental

generation and an offspring generation, then selection will tend to favor offspring

that are similar to their parents, whose phenotypes (and perhaps those of their

parents, etc.) were tried and tested in the same environment (Figure 9.3.7B). In

this situation, the fittest offspring are likely to be enriched for those produced from

hypo-CO gametes (Figure 9.3.7A); this will favor parents whose gametes exhibited

CO covariation. If, instead, the environment changes between the parental and
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Figure 9.3.7: Mathematical modelling demonstrates the evolutionary advantage of crossover
covariation. (A) CO covariation causes an overproduction of hypo-CO and hyper-CO gametes,
which, respectively, increase the frequencies of offspring with trait values very close to, and
very far from, the parental value. (B) When the environment does not change, offspring with
trait values near the parental value are favored, and thus covariation is favored. (C) When the
environment changes substantially, offspring with trait values far from the parental value become
favored, and thus covariation is again favored. (D) Only when the environment changes a little
is covariation disfavored. (E) The selective advantage of covariation is revealed formally in a
four locus population genetic model with a fluctuating environment. CO covariation enjoys a
selective advantage in all scenarios. The selective advantage of covariation increases with p,
the probability that each environmental change favors hyper-CO gametes with COs between
both locus pairs. However, covariation is favored even when p = 0, so that environmental
changes always favor gametes with a CO between only one locus pair, and thus always disfavor
covariation. Here, the benefit of covariation derives from its overproduction of hypo-CO gametes
in the periods of stasis between environmental changes. (F,G) Consistent with this logic, when
p = 0, the advantage of covariation grows as the average period of stasis, T , grows. (H) The
advantage to covariation increases monotonically with the degree of covariation. See also [561,
Figure S4-6].
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offspring generations, then selection will shift to favoring a phenotype different from

that favored in the parental generation, and thus can favor new genetic combinations

produced by crossing-over. If the environmental shift is large, the fittest offspring

will tend to be enriched for those with many new genetic combinations (Figure

9.3.7C). This again will favor parents who exhibited CO covariation, due to their

elevated levels of hyper-CO gametes (Figure 9.3.7A). This selection for hyper-CO

gametes will be stronger, the more severe the environmental change. Only in the

case where the environmental changes, but the change is mild, can mid-CO gametes

be favored (Figure 9.3.7D), and, thus, CO covariation disfavored (Figure 9.3.7A).

Population genetic modeling defines the advantage of covariation in a fluctuating

environment. To investigate the above logic more formally, we have constructed

a minimal population genetic model of selection in a fluctuating environment (full

details in [561, Methods]). For convenience, the model organism is a unisexual

haploid, and sexual reproduction occurs by the fusion of two individuals, followed by

meiosis. To allow for CO covariation across chromosomes, four loci are considered—

one pair of loci on each of two different chromosomes—with alleles A/a and B/b;

and C/c and D/d respectively. In a given generation, there is a favored combination

of alleles on each chromosome: e.g., AB and ab on chromosome 1, and CD and cd

on chromosome 2. (This symmetry—e.g., if aB is favored then so is Ab—ensures

that polymorphism is maintained at all loci, and thus allows us to focus directly

on the effect of recombination without having to worry about drastic swings in

the frequencies of particular alleles, e.g., [70, 459].) The favored combination of

alleles remains constant in periods of environmental stasis and changes to a different

combination when/after the environment changes.

Our general strategy was to simulate separately, and then compare, the evolu-
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tionary dynamics of a population that exhibits no CO covariation between the two

locus pairs and of a population that does exhibit CO covariation (full recursion

equations provided in [561, Methods]). In each simulation, we calculated the aver-

age growth rate (geometric mean fitness) of the population across 107 generations.

For a given comparison, if the population employing CO covariation has a higher

average growth rate than the population employing no CO covariation, we expect

that CO covariation would usually outcompete no covariation in a population mixed

for the two strategies [264].

Simulations were carried out over a range of values of five specified parameters:

(1) A baseline rate of recombination between each locus pair, r. This rate is chosen

arbitrarily, recognizing that the recombination rate between each locus pair could

have evolved for reasons other than, or in addition to, environmental fluctuations

(e.g., alleviation of Hill-Robertson interference). (2) The level of covariation of COs

at the two locus pairs, K, which ranges from 0 (no covariation) to 1 (maximal

covariation). (3) The average period of environmental fluctuations, T generations.

Specifically, in each generation, there is a probability 1/T that the environment

changes. (4) The probability p that, when the environment does change, the newly-

favored allele combination changes on both chromosomes (e.g., from AB/ab and

CD/cd to Ab/aB and Cd/cD). 1− p is then the probability that the newly-favored

allele combination changes on only one of the two chromosomes (each equally likely).

(5) The strength of selection, s, defined as the relative selective advantage of the

fittest genotype over the least fit genotype.

We focused primarily on a selection scenario where only those offspring that are

best genetically equipped for their environment are likely to survive and reproduce.

This scenario applies to the majority of extant species, and likely also to those an-
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cestral species in which the basic features of sex and recombination evolved [578]. In

this case, across a wide range of parameter specifications, the population employing

CO covariation virtually always enjoys a higher average growth rate than the pop-

ulation without CO covariation. Moreover, the advantage of covariation increases

as the degree of covariation increases (Figure 9.3.7E greyscale; Figure 9.3.7FG, red

versus blue; Figure 9.3.7H, [561, Figure S4C]). These findings provide a proof of prin-

ciple that CO covariation can be evolutionarily advantageous in populations faced

with fluctuating environments. We obtain similar results when selection is more

even across genotypes (multiplicative across locus pairs) [561, Figure S5]. However,

in the opposite case to that we have focused on, where selection acts so that all but

the very least fit reproduce, the results are more equivocal, with CO covariation

sometimes being advantageous, and sometimes not [561, Figure S6].

Additional findings support our specific prediction that the advantage of covari-

ation derives from its elevation of both hyper- and hypo-CO gametes, due to their

different advantages in changed or static conditions, respectively. Consistent with

this: (i) The advantage of CO covariation tends to be larger when environmental

shifts more often alter the favored genetic combinations at both locus pairs; i.e.,

when p is larger (Figure 9.3.7E; [561, Figure S4A]). Intuitively, this can be un-

derstood as the case where environmental changes are often large (Figure 9.3.7C),

with the positive effects of covariation in creating new combinations coordinately on

two (or more) chromosomes resulting from elevation of hyper-CO gametes (Figure

9.3.7A). (ii) However: the advantage of CO covariation is also apparent at low val-

ues of p (Figure 9.3.7E). In the extreme case of p = 0, a change in the environment

always favors recombination at only one locus pair. Intuitively, this corresponds to

the case where environmental shifts are always small (Figure 9.3.7D). In this case,
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environmental changes always disfavor CO covariation because small environmental

shifts select for mid-CO gametes (in our model, 1 CO; Figure 9.3.7AD). Therefore,

we infer that covariation’s advantage in the case of small p must derive from a benefit

conferred in the periods of stasis between environmental changes, and, specifically,

from overproduction of hypo-CO gametes in these periods (Figure 9.3.7AB). This

interpretation is directly supported by an additional finding: when p = 0, the ad-

vantage of CO covariation is typically greater if the average period of stasis between

environmental changes, T , is longer (Figure 9.3.7FG; [561, Figure S4B]).

To more comprehensively study the effects of the various parameters on the evolu-

tionary success of CO covariation, we focused on a simple specification of the model

where, when the environment changes, a new set of favored alleles is selected, with

all of the alternative combinations being equally likely. Under this specification, we

find again that CO covariation typically improves the average population growth

rate relative to no CO covariation. The size of this advantage is: (i) monotonic in

the degree of CO covariation (Figure 9.3.7H; [561, Figure S4C]); (ii) tends to in-

crease with the average period between environmental changes, T , unless selection

is very strong [561, Figure S4D]; and (iii) increases with the strength of selection

[561, Figure S4E].

9.4 Discussion

Here we identify a fundamental new feature of meiotic recombination: per-nucleus

CO covariation. This feature is evolutionarily conserved, as seen by documentation

in three mammals, a higher plant, and a fungus. The existence of per-nucleus CO

covariation raises two general questions. What is the mechanism? And what is its

significance? We have begun to provide answers to both questions.
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9.4.1 Mechanism.

We show that the proximate basis for per-nucleus covariation of COs is analogous

per-nucleus covariation of chromosome axis lengths. This conclusion is concordant

with, and a direct extension of, diverse evidences that chromosome axis length deter-

mines CO number, as documented above. What could determine CO axis length?

It has been shown that the density of chromatin loops along prophase chromo-

some axes is evolutionarily conserved [285]. This feature, in turn, directly implies

that axis length and chromatin loop length are inversely related. Correspondingly,

longer/shorter axes in correlation with shorter/longer loops have been documented

in a number of situations: in the two sexes of a given organism (including human)

[201, 515], domainally in heterochromatin vs euchromatin in tomato (e.g., [496]),

in the PAR region of mammalian X and Y chromosomes [267]. Further, in mouse,

deletion of a single meiotic axis component, smc1β, is sufficient to confer shorter

chromosome axes and correspondingly larger chromatin loops [394, 437]. These ob-

servations imply that global modulation of loop length is a general mechanism for

determining chromosome axis length and, therefore, the number of COs per chro-

mosome (discussion in [560]). Thus, in the present case, per-nucleus covariation of

CO numbers could be a natural consequence of global determination of chromatin

loop size.

9.4.2 Significance for Evolution.

The distribution of total COs per nucleus, as observed experimentally, is significantly

broader than that predicted if CO numbers were specified independently on different

chromosomes, and this difference is driven by covariation of CO number across

chromosomes within nuclei. As a direct consequence, CO covariation significantly
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increases the frequencies of nuclei (and thus gametes) that have especially high or

especially low levels of COs, coordinately on all chromosomes. We reasoned that this

feature might increase the ability of COs to promote evolutionary adaptation: on

the one hand, hyper-CO gametes would be available when new genetic combinations

are needed for adaptation; on the other hand, hypo-CO gametes would be available

when it is more advantageous to retain ancestral, well-evolved combinations. The

question then arises: in which specific situation(s) would the increased availability

of these two types of gametes confer a selective advantage?

We further reasoned that covariation could be advantageous in a fluctuating en-

vironment. More hyper-CO gametes would be available for times of environmental

change, when new genetic combinations become favored, and more hypo-CO would

be available for periods of stasis, when the environment is not changing and creation

of new combinations by crossing-over would tend to be deleterious. Population ge-

netic modeling provides support for the validity of these predictions. In scenarios

where environmental changes are separated by periods of stasis, covariation sig-

nificantly increases mean fitness, in proportion to the degree of covariation, and

over a wide range of parameter specifications. Moreover, details of the observed

effects provide specific evidence that covariation is favorable via its elevations of

both hyper-CO and hypo-CO gametes (above).

This analysis provides an initial proof of principle that CO covariation can be

advantageous in fluctuating environments, as probably faced by all species [578]. If

so, CO covariation expands the power of meiotic recombination to promote evolu-

tionary adaptation.

COs have diverse roles in adaptation, whose relative contributions to the evolu-

tionary maintenance of recombiation are much debated (e.g., [17, 18, 23, 150, 347,
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413, 578]). Importantly, by the logic above, CO covariation will aid in the response

to environmental fluctuations even if other factors are the predominant reasons for

the maintenance of COs. We note, however, that the model we employed is, by

necessity, highly simplified, ignoring a number of biological complexities that could

plausibly affect the degree to which CO covariation is advantageous, e.g., analysis of

only four loci, inclusion of only two chromosomes, and a limited number of environ-

mental fluctuation regimes [561, Methods]. In addition, a more direct demonstration

of the advantage of CO covariation in our model would involve competing alleles at

a fifth, unlinked “modifier” locus, the alleles at which have no direct effect on fitness

but influence the level of CO covariation among the other four loci. Future studies

can address these complexities.

We also note that Hadany and Beker [204] argue that it is favorable for low-fitness

individuals to recombine their genomes substantially, but not for high-fitness indi-

viduals to do so. Such “fitness associated recombination” is directly apparent when

high recombination is induced by, or associated with, environmental change (Intro-

duction), but is also mirrored in the situation described here, where environmental

change reduces the fitness of currently-common genotypes while environmental sta-

sis maintains the fitness dominance of common genotypes.

Additional advantages of CO covariation can also be considered. First, we note

that chromosomes lacking even a single CO are prone to mis-segregation [596]. CO

covariation does not confer an overall increase in the frequency of chromosomes

lacking a CO, which is a function of the basic mechanism by which meiotic CO

patterns are determined [570, 593, 594]. However, it does tend to bundle zero-CO

chromosomes into a smaller fraction of nuclei (e.g., [560]) and will thereby decrease

the overall probability that a nucleus will exhibit aberrant segregation(s) at Meiosis
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I. This effect, while small, represents an effective additional benefit of covariation.

Second, while we have focused here on scenarios involving short-term effects of

recombination in a fluctuating environment, it is not impossible that CO covariation

might also be beneficial for in longer-term evolution, even in stable environments.

Laboratory evolution experiments show that, under constant environmental con-

ditions, population fitness increases over time, seemingly without bound, as new

beneficial mutations (and combinations of mutations) continually arise and are in-

corporated (e.g., [581]). In this case, it is the “allelic environment” of the organism

that is constantly changing over time. Correspondingly, it is possible that, in some

regimes, in the presence of co-variation, hyper-CO gametes will increase the rates

at which independently-arising favorable mutations become linked and favorable

mutations become separated from linked deleterious ones (Introduction) whereas

hypo-CO gametes will keep new mutations together once they have become linked.

Third, when DNA is introgressed, via hybridization, from the genome of one

species into another’s, introgressed genes that are incompatible with the recipient

genome are purged by purifying selection. This process also removes introgressed

DNA surrounding the incompatible genes, with larger blocks removed in regions

of low recombination. Higher recombination thus causes finer “trimming”, allowing

greater retention of introgressed DNA that is neutral or beneficial [38, 133, 342, 466].

Introgression and purging, like CO covariation, are genome-wide events; and the

time-scale of purging is short—e.g., < 100 generations [217, 466]. After a pulse

of introgression, hypo-CO gametes are expected to be favorable if there are many

incompatible genes and few beneficial genes in the introgressed DNA, since hypo-CO

gametes allow rapid purging of many large blocks of introgressed DNA. Under this

scenario, CO covariation would speed the purging of incompatibilities by providing
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an excess of hypo-CO gametes. If, on the other hand, introgressed DNA harbors

many beneficial new genes, then hyper-CO gametes will be favorable in rapidly

unlinking these beneficial genes from linked incompatible genes, so that a greater

number of beneficial genes can be retained in the recipient species’ genome.

We also note that CO covariation is of general significance for population genetic

modeling. Classical population genetic models that probe the evolutionary advan-

tages of recombination mostly involve only two loci, although multi-locus models

have been developed to understand genomic evolution and the evolution of recombi-

nation (e.g., [17, 76, 214, 312, 414]). Since CO covariation appears to be conserved

across eukaryotes, future multi-locus population genetic models must take this phe-

nomenon into account if they are to be empirically realistic.
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