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Measuring and predicting enhancer-promoter communication 

 
 

Abstract 
 
 

Mammalian genomes harbor millions of noncoding elements called enhancers that 

quantitatively regulate gene expression, but it remains unclear which enhancers regulate which genes. 

A key bottleneck in understanding the regulatory wiring that connects noncoding regulatory 

elements to specific target genes has been that we have lacked scalable experimental approaches for 

perturbing enhancers in the genome and determining their effects on gene expression. To address 

this challenge, we developed new experimental approaches to systematically quantify the effects of 

enhancers regulating a gene of interest in a given cell type. Applying these approaches to dozens of 

genes uncovered complex networks of regulatory connections that could not be predicted by any 

existing approach. Strikingly, a simple equation based on a mechanistic model for enhancer function 

performed remarkably well at predicting the complex patterns of regulatory connections we 

observed in our datasets. This Activity-by-Contact (ABC) model involves multiplying measures of 

enhancer activity and enhancer-promoter 3D contacts, and can predict enhancer-gene connections 

based on chromatin state maps. Together, these experimental and computational approaches 

provide a systematic framework to understand gene regulation by enhancers and will catalyze efforts 

to interpret human genetic variation and manipulate gene expression for therapeutic purposes. 
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Chapter 1: Introduction 

 

Overview 

Each cell in a metazoan organism contains the same genes, but genes are expressed at different 

levels and in different combinations in different the cell types (1). Regulation can occur at any step 

in expression, from transcribing a gene into mRNA, to mRNA splicing, export, and stability, to the 

efficiency of translating the mRNA into protein and the protein’s stability (2-4). In practice, the 

predominant point of regulation is the selection of which genes to transcribe and how highly to 

transcribe them (1).  

 

Transcription is controlled by cis-regulatory sequences in the genome that recruit trans factors to 

promote the production of the mRNA corresponding to a given gene. Each cell type expresses a 

distinct set of trans factors to orchestrate the expression of the correct subset of genes. Promoters, 

the cis-regulatory sequences in the immediate vicinity of the start of each gene, recruit and position 

RNA polymerase, the enzyme that carries out transcription (5). In most eukaryotes, transcription 

also depends on enhancers, elements separated from promoters by potentially large genomic 

distances and that can further refine gene expression across cell types and through developmental 

time (6-8). It is thought that the physical separation between enhancers and promoters provides 

multicellular organisms the flexibility needed to differentially regulate the same complement of genes 

in each cell type (9).  

 

The genomic separation between enhancers and their target genes raises a central question for the 

understanding of gene regulation: how do enhancers regulate specific target genes?  
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In this thesis, I present our work toward understanding how enhancers regulate specific target genes 

by developing perturbation-based tools to characterize the regulatory functions of noncoding 

elements in their native genomic contexts. To frame this work, I will review the discovery and 

characterization of enhancers and our current understanding for how enhancers regulate specific 

target genes.  

 

Discovery and definition of enhancers 

As early as the nineteen-sixties, the conceptual paradigm for understanding transcriptional regulation 

was already established (10). Transcription factors bind sequences in the to promote or inhibit 

binding of the necessary factors for transcription, including RNA polymerase, the enzyme 

responsible for transcribing DNA into RNA (11). In this way, the transcription of each gene results 

from the integration of positive and negative signals that reflect cell state. 

 

These principles are largely the result of work in prokaryotes and bacteriophages. In these systems, 

the sequences that control expression are in the immediate vicinity of the transcriptional start site of 

a gene. It was widely assumed that transcriptional regulation in metazoans would mirror the situation 

in prokaryotes, albeit with more complicated regulation. However, it has become clear that in 

addition to promoters, transcription in metazoans is regulated by enhancers, non-coding regulatory 

that influence gene expression across large genomic distances (12). 

 

The first enhancer was discovered when a group led by Walter Shaffner cloned the rabbit beta-

globin gene and promoter into two different plasmid vectors to introduce into HeLa cells. One of 

the vectors expressed beta-globin at dramatically higher levels, despite the only difference being that 
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it included a portion of the genome of the SV40 virus that was expected to be functionally inert. 

Deletion analysis localized the enhancer element to a small portion of the viral SV40 genome (13). 

 

Subsequent experiments revealed the “enhancing effect” remained when inverting the orientation of 

the beta-globin gene in the plasmid, when increasing the distance between the enhancer and the 

gene, but not when the gene and enhancer were on separate plasmids in the same cells (13-16). 

These properties came to constitute the classical definition of an enhancer, and to distinguish 

enhancers from other non-coding regulatory elements such as promoters (17). 

 

Upon this discovery, Walter Shaffner speculated presciently “that cellular ‘enhancers’ are activating 

the genes within each chromosomal domain, and that classes of different ‘enhancers’ are involved in 

the developmental, as well as tissue-specific, expression of genes” (13), and quickly applied the same 

plasmid-based assay approach to identify enhancers in a mammalian genome.   

 

The first mammalian enhancer was discovered from the immunoglobin heavy chain (IgH) locus (18, 

19).  Unlike the SV40 enhancer, which stimulated expression in any cell type, the IgH enhancer 

appeared active only in B-cells, the cell type in which IgH is highly expressed. The discovery of the 

IgH enhancer revealed two additional properties of enhancers that have proved widespread. First, 

enhancers tend to be cell type specific, driving expression in some cell types but not others. Indeed, 

the IgH enhancer was the “first component identified in the then enigmatic phenomenon of cell 

type-specific expression” (20). Second, the IgH enhancer is several thousand base pairs from the 

IgH promoter, the nearest and presumed target promoter, which suggested that enhancers may 

activate transcription over long distances in their endogenous locations in the genome.  
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Mechanisms of enhancer function 

Plat forms for  t ranscr ipt ion fac tor  b inding 

Enhancers are DNA sequences 50-1000 base pairs long functionally defined as elements able to 

activate transcription from a promoter over long distances and in an orientation-dependent manner. 

Biochemically, enhancers act through the binding of transcription factors that are recruited to 

enhancer DNA through interactions with short sequence motifs. These sequence-specific 

transcription factors in turn recruit transcriptional co-activators through protein-protein interactions. 

The transcription factors and co-activators assembled at enhancers can activate transcription at any 

of its rate-limiting steps (21), including recruitment of the per-initiation complex (PIC) (22), 

initiation (23), polymerase pause release (24), and elongation (25). 

 

It was initially thought that enhancers activate transcription by facilitating recruitment of RNA 

polymerase or the pre-initiation complex (PIC) to the target promoter (26). This was by analogy to 

the situation in prokaryotes and yeast (which largely lack enhancers), in which recruitment of 

polymerase is the major rate-limiting and regulated step in transcription (27). Indeed, enhancers do 

interact with general transcription factors and Mediator, protein factors critical for the formation of 

the pre-initiation complex and recruitment of RNA polymerase (26). However, the situation in 

metazoans appears to be more complex. Recruitment of polymerase to promoters is not sufficient to 

activate transcription in mammalian cells (28), and polymerase binding does not appear to be a key 

control point in mammalian transcription (29).  

 

The emerging view is that an important (even predominant) mode of enhancer function is that they 

regulate the release of polymerase from promoter-proximal pausing (30-33). After transcriptional 

initiation, the polymerase pauses for many minutes after transcribing just~40 nucleotides (34). 
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Release from this promoter-proximal pausing into productive elongation is a major rate-limiting step 

in transcription, and requires the positive elongation factor P-TEFb (35-38). It is thought that 

factors bound at enhancers play a key role in bringing P-TEFb to promoters, such as in one 

noteworthy example in which BRD4 is required to recruit P-TEFb to the FOSL1 promoter and for 

polymerase paused there to progress into productive elongation (39). 

 

Enhancer -assoc iated his tone modi f i cat ions 

Many of the coactivators recruited to enhancers covalently modify the histone proteins that bind the 

DNA flanking the enhancers. There are >100 described histone modifications, potentially forming a 

vast combinatorial “histone code” that conveys regulatory signals and retains regulatory information 

through DNA replication, when most transcription factors dissociate from their binding sites (40, 

41). Indeed, in some cases recruitment of histone modifying complexes has been observed to affect 

gene expression (42-44), and mutations in histones at modifiable positions that mimic or prevent 

specific modifications are transforming events in cancer (45). 

 

Histone modifications can affect enhancer function and gene expression in two ways. First, the 

modifications on histones alter the biophysical properties of the chromatin fiber to influence 

chromatin compaction. In vitro studies have shown that histones form a less compact confirmation 

when acetylated (46), and this is thought to facilitate the ability of transcription factors or 

polymerase to access binding sites on the DNA (47, 48). Second, these modifications also provide a 

binding platform for additional layers of transcriptional cofactors. For example, BRD4 is recruited 

to enhancers by acetylated histones such as H3K27ac and promotes pause release and 

transcriptional elongation by recruiting p-TEFb to target promoters (49). 
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However, it not known which marks are causally related to gene expression, and it is thought that 

many marks may be incidental consequences of cofactor recruitment or transcriptional activity (50). 

For example, H3K4me1 is a mark associated with distal enhancers, but cells engineered to express 

catalytically inactive versions of the writers of this mark (the proteins Mll3 and Mll4) have only 

modest changes in gene expression. Notably, cells lacking these proteins completely have dramatic 

changes in expression, suggesting the histone modifying activity of these factors is not central to 

their role as transcriptional coactivators (51). 

 

While their mechanistic roles in enhancer function are not clear, these histone modifications 

distinguish putative enhancers from other non-coding elements, and the presence of certain histone 

modifications, especially H3K27ac, is predictive for gene expression and for the ability of an element 

to act as an enhancer in plasmid based reporter assays (52, 53). 

 

Physi ca l  contac t  be tween enhancers  and targe t  genes  

It was initially unclear how to reconcile two defining observations about enhancers: (i) enhancers 

can activate at long distances (many kilobases) from their target promoters; and (ii) enhancers do not 

activate promoters on separate plasmids when co-transfected into the same cell. That is, enhancers 

can be far from their target promoters, but must nevertheless be connected. 

 

Experiments in which an enhancer and a promoter were placed on separate DNA fragments 

revealed that enhancers can communicate when joined non-covalently through a protein bridge (e.g. 

biotin/streptavidin) (54) or by interweaving the plasmids (55). This suggested that enhancers can 

function when in physical proximity to a target promoter but do not require a continuous tether of 

DNA, ruling out models in which factors recruited to enhancers reach distant prompters by sliding 
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across the DNA or by initiating a chain of adjacent binding events (56). These observations 

supported what has become the dominant model: that enhancers function by physically contacting 

target promoters and looping out the intervening sequence.  

 

Direct evidence for physical association between enhancers and promoters within the nucleus first 

came from experimental measurements that quantify the contact frequency between fragments of 

DNA, such as capturing chromosome confirmation (3C) (57). In one seminal study, 3C at the 

mouse beta-globin locus found that in fetal liver, which expresses beta-globin, the LCR was in more 

frequent contact with the beta-globin promoter than with intervening sequences (58). Notably, in 

brain tissue, which does not express beta-globin, the inactive LCR did not have higher contact with 

the beta-globin promoter, which suggested that the looping between enhancers might itself be 

regulated. Similarly, DNA FISH demonstrated that in some cases enhancers and promoters are 

localized particularly in cell types in which they are active (59).  

 

Recently, single molecule imaging approaches that directly reveal the physical interactions between 

enhancers and promoters as well as transcriptional output have provided strong evidence that 

contact is required for enhancers to regulate activate transcription, and that transcription ceases 

immediately when the enhancer disengages from the promoter (60). At least in this experimental 

system, enhancer-promoter contact is necessary for transcriptional activation. 

 

Together, these observations indicate that enhancers physically contact their target promoters by 

looping out potentially large amounts (up to 2Mb) of the intervening DNA.  It is important to note 

that these looping interactions are not necessarily stable interactions. Rather, loops between 
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enhancers and promoters can form and dissociate dynamically (60). This dynamic movement allows 

many loci in a region to interact (58, 61). 

 

Genome-wide enhancer maps 

In order to understand how the genome integrates developmental and environmental cues in the 

control of gene expression, it is necessary to recognize enhancer elements in the genome, to discern 

in which cell types enhancers are active and, eventually, to know which genes they control.  

 

One hallmark of regulatory elements was accessibility to digestion by DNase (assayed genomewide 

by DNase-seq), as transcription factor binding displaces the histones proteins that would otherwise 

bind enhancer DNA (62). As described above, enhancers are also characterized by histone 

modifications such as H3K27ac and H3K4me1 (63) and the binding of transcriptional cofactors 

such as P300 (64). Elements bearing these features have been found to correspond, albeit 

imperfectly, with elements observed to have enhancer activity in plasmid based reporter assays (65). 

Efforts such as the ENCODE project have leveraged these insights to identify and catalogue 

functional genomic elements in multiple cell types and species (66). Currently the catalogue of 

human putative enhancer elements contains over 1 million distinct genomic regions (67). 

 

These systematic maps of regulatory elements across cell types and species have provided several 

insights into the functions of non-coding regulatory elements including enhancers.  First, elements 

with the biochemical signatures of enhancers (e.g. H3K27ac) have highly cell-type specific activity, 

apparently active in a minority of cell types and quiescent in others, consistent with a role for 

enhancers in creating cell type specific phenotypes (50). Second, genetic variants associated to 

common diseases by GWAS studies are highly enriched in putative enhancers, suggesting disordered 
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gene regulation plays a central role in pathophysiology (68, 69). Finally, these maps highlight the 

central importance of non-coding regulatory elements in development, as highly regulated 

developmental genes tend to be located in gene deserts with few genes and many highly conserved, 

putative enhancers (70). For example the proto-oncogene and transcriptional regulator MYC is 

encoded within a 3Mb region containing no other protein coding genes, but dozens of putative 

enhancers that are thought to precisely control MYC expression (71, 72).  

 

While genome-wide approaches have enumerated putative enhancers, the vast majority have not 

been functionally tested, and we do not know which genes in which cell types they regulate (if any). 

There are very few cases in which natural or experimental evidence has demonstrated that a given 

enhancer actually regulates a specific target gene in the genome. These few cases have suggested that 

the network connecting enhancers and targets genes is staggeringly complex; there are examples of 

enhancers regulating one or more target genes across large genomic distances and instances of 

enhancers appearing to “skip” over a proximal to gene to regulate a more distant one (73, 74). For 

example, mice with activating insertions into an enhancer (termed the ZRS) within the intron of the 

Lmbr1 gene have limb malformations caused by increased expression of the Shh gene nearly 1 Mb 

away (75). Moreover, numerous studies (including the work presented in the thesis) have 

demonstrated that multiple enhancers can contribute the expression of a single gene in the same cell 

type (76, 77) or across cell types (78). In the face of this complexity, we currently lack a systematic, 

mechanistic understanding of how enhancers achieve specificity for their target genes.  
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Mechanisms of enhancer specificity 

Enhancers  are  broadly  compat ib le  wi th many promoters  

One potential mechanism (“biochemical compatibility”) to explain the specificity of enhancers for 

certain promoters is that enhancers can only regulate promoters with complementary combinations 

of compatible transcription factors, that the specificity of an enhancer for its target promoter(s) is 

encoded in the sequences of the enhancer and promoter. This mechanism is tested in experiments 

that remove the enhancer and promoter from their genomic context to test the ability of enhancers 

to activate different promoters in plasmid-based assays.  

 

The largest and most compelling studies of this type tested fragments from the entire Drosophila 

genome for enhancer activity when paired with one of several exemplar promoters (79), or as 

promoters paired with several exemplar enhancers (80). In both formats, there appear to be just two 

classes of enhancers and promoters: housekeeping genes and developmental genes. Housekeeping 

gene promoters tended to be strongly activated only by enhancer elements very near or overlapping 

housekeeping gene promoters, while developmental gene promoters were activated by intergenic 

elements distal to transcription start sites. Moreover, the enhancers within a class activated all 

promoters in the class with a consistent fold change. Other smaller studies suggest that this broad 

compatibility (20) and limited core-promoter-dictated specificity (81) may also extend to mammalian 

cells. Thus, enhancers appear to be broadly compatible with many, but not all promoters. At least in 

Drosophila, there appears to be a clear distinction between the enhancers that strongly activate 

housekeeping promoters versus developmental promoters. 

 

The notion that enhancers are compatible with many target promoters is also supported by 

laboratory experiments or experiments of nature that juxtaposed enhancers with non-native targets 
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in the genome. For example, Burkitt’s lymphoma, a subtype of B-cell lymphoma, is characterized by 

chromosomal rearrangements that bring the highly active IgH enhancer on chromosome 14 into 

close proximity with the oncogene c-MYC on chromosome 8 (82). Similarly, the human beta-globin 

LCR is able to activate other genes when experimentally inserted into a distant location in the mouse 

genome (83). 

 

The pat tern o f  3D contac ts  in the genome constrains enhancer-promoter  

communicat ion.  

An additional mechanism to provide specificity for enhancers is that the three dimensional structure 

of the genome constrains the set of promoters with which an enhancer has the opportunity to 

interact. Indeed, it has long been observed that some genetic elements are capable of insulating 

promoters from the effects of enhancers on the opposite side of the element (7, 84, 85). It has only 

recently been understood that many insulators act by shaping the three dimensional structure of the 

genome, which in turn constrains enhancer-promoter contacts (86).  

 

Hi-C, an assay that characterizes the chromatin confirmation of the entire genome (87), has revealed 

that the genome is packaged into domains of approximately 100 kb to 1 Mb in length termed 

topologically associating domain (TADs). These domains are defined as regions in which loci within 

the domain exhibit increased contact relative to regions outside the domain at the same linear 

distance (88). Globally, TADs appear to be functional units of genome regulation. Both gene 

expression and chromatin state are more correlated across cell types for genes within the same TAD 

than genes in different TADs at the same linear distance (89, 90), suggesting genes within a TAD 

may be influenced by common regulatory signals.  
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The boundaries of many mammalian TADs are characterized by the binding of the insulator factor 

CTCF, and are thought to insulate the promoters in one domain from the effects of enhancers in 

another (91). Ablation of these TAD boundary insulator elements can allow enhancers in one TAD 

to interact with genes in another (92, 93). For example, one study perturbed a single CTCF element 

at the boundary between two adjacent TADs, and observed that a gene in one TAD, PDGFRA, 

increased contact with an apparently highly active putative enhancer in the other, resulting in 

activation of PDGFRA (89).  

 

Based on the observation that enhancers physically contact target promoters, it has been 

hypothesized that enhancer specificity is encoded in the specific looping structures adopted by 

chromatin in a given cell type. Indeed, genome-wide characterizations of chromatin contacts by Hi-

C have revealed frequent focal loops between promoters and elements with enhancer-associated 

histone modifications, and the genes associated with a loop are higher expressed in cell types where 

the loop is present than in cell types where the loop is not (94). 

 

Consistent with an instructive role for specific chromatin loops in enhancer specificity, deletion 

studies in Drosophila have identified “tethering elements” near the promoters of some genes required 

to permit activation from distal enhancers (95, 96). These elements are hypothesized to function by 

stabilizing the looping structure between an enhancer and promoter. Moreover, recent experiments 

in which artificial transcription factors were used to create a chromatin loop between enhancers and 

promoters found that forced looping is sufficient for an enhancer to activate a promoter (61, 97-99).  

 

Emerging evidence complicates the view that insulation by TAD boundaries or the existence of 

focal chromatin loops represent predominant means of dictating enhancer-gene interactions.  
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Degradation of CTCF or cohesin abolishes the demarcation of the genome into TADs as well as 

most focal loops, but has only modest effects on transcriptional regulation (100, 101). This indicates 

that even without TAD boundaries or loops, enhancers do not generally activate inappropriate 

targets and are often still able to regulate their native targets, suggesting these structures are not the 

primary determinants of enhancer-gene communication. 

 

Contributions of this thesis 

Despite the tremendous progress over the last four decades in understanding how enhancers tune 

gene expression, a critical question remains: how do enhancers target specific promoters?  A key 

bottleneck in understanding enhancer-promoter communication has been that we have lacked the 

tools to characterize the functions of large numbers of enhancers in the genome.  

 

In Chapter 2, I describe our work to develop a high-throughput approach based on CRISPR 

interference (CRISPRi) to characterize the functions of gene regulatory elements in their native 

genomic contexts (102). In this work, we leveraged pooled CRISPR screens (103, 104) in 

combination with CRISPR interference (CRISPRi)—which alters chromatin state at targeted loci 

through recruitment of a KRAB effector domain fused to catalytically dead Cas9 (105-107) — to 

characterize the functions of 1.29 Mb of genomic sequence around the essential transcription factors 

GATA1 and MYC in K562 erythroleukemia cells. This method allowed us for the first time to 

systematically define the enhancers quantitatively tuning the expression of a gene in a given cell type.  

 

The work described in Chapter 3 extended the CRISPRi-based functional mapping approach to 

develop a more comprehensive understanding of enhancer-promoter connectivity. 
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First, we expanded the CRISPR functional genomics toolkit by combining pooled CRISPR screens 

with RNA FISH and flow cytometry. This approach enables high-throughput, quantitative genetic 

screens for any arbitrary phenotype that can be linked to expression of one or several genes. Our 

FlowFISH approach precludes the need to knock in reporter genes or develop complicated cellular 

assays for pooled screens, and can be readily applied for other studies of non-coding regulatory 

elements or protein coding genes.  

 

Next, we systematically mapped the enhancers controlling the expression of 28 genes in K562 cells. 

This perturbation dataset precisely quantifies the effect size of each enhancer and allowed us to 

evaluate, for the first time, existing models of enhancer-gene specificity in a general way across many 

genomic loci. No existing predictive tool explained the complex patterns of connections we 

observed.  

 

In order to predict the observed functional connections, we developed the “Activity-by-Contact” 

(ABC) model based on the simple biochemical notion that an element’s quantitative effect on a gene 

should depend on its strength as an enhancer (“Activity”) weighted by how often it comes into 3D 

contact with the promoter of the gene (“Contact”).  The ABC model represents the first means to 

accurately predict enhancer-gene connections based on epigenetic data. 

 

Moreover, the ABC model provides a new conceptual understanding for how enhancers regulate 

specific genes in the genome. Quantitative contact frequency of enhancers with target genes — 

rather than the presence of specific loops and domains — predicts enhancer-gene regulation. The 

success of the ABC model demonstrates that functional specificity can arise from the precise 

arrangement and activities of enhancers in the genome, even in the absence of biochemical 
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specificity between enhancers and promoters. 

 

Finally, in Chapter 3, I conclude with my perspective on the remaining questions in how enhancers 

and promoters collaborate to control transcription and the outlook for applying our growing 

understanding of transcriptional regulation to dissect the contributions of noncoding genetic 

variation to human disease and to manipulate gene expression for therapeutic purposes. 
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Chapter 2: Systematic mapping of functional enhancer-

promoter connections with CRISPR interference 

Most of this chapter was originally published as: Fulco CP, Munschauer M, Anyoha R, Munson G, 

Grossman SR, Perez EM, Kane M, Cleary B, Lander ES, Engreitz JM. Systematic mapping of 

functional enhancer-promoter connections with CRISPR interference. Science. 2016 Nov 11. 

 

Preface 

In this chapter, I describe a collaborative project within Eric Lander’s lab to develop a high-

throughput approach based on CRISPR interference (CRISPRi) to characterize the functions of 

gene regulatory elements in their native genomic contexts (1). This method allowed us for the first 

time to systematically define the enhancers quantitatively tuning the expression of a gene in a given 

cell type.  

 

This effort grew out of a shared vision in Eric’s lab that perturbing noncoding elements such as 

lncRNAs and enhancers in their native genomic locations would be critical for understanding 

genome function. Jesse Engreitz, Mathias Munschauer, and I set out to develop high throughput 

genetic screening tools to perturb the noncoding genome, including enhancers, promoters, and 

lncRNAs. We worked together to generate and validate the K562 CRISPRi cell line. We initially 

designed tiling CRISPR gRNA libraries to cover the region containing the essential transcription 

factor MYC and the lncRNA PVT1 (which we mused might play a role in MYC regulation). Jesse 

worked with Shari Grossman with advice from Russell Ryan to expand the library to cover 

additional sites of interest throughout the region.  
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I worked side-by-side with Rockwell Anyoha to clone the CRISPRi library, perform the pooled 

essentiality screen in K562 cells, and validate the identified enhancers using single sgRNA qPCR. 

Jesse and I wrote the code to analyze the screens. Michael Kane cloned the enhancers into a plasmid 

and quantified the enhancers’ activities in luciferase assays. Liz Perez performed ChIP-qPCR to 

confirm that even at a site we found not to affect MYC expression or proliferation, CRISPRi 

reduced H3K27ac occupancy. 

 

At the time there were no examples of an enhancer discovered using CRISPRi, so it was not known 

how many such cases would be validated by more conventional, orthologous approaches. That is, 

the false positive rate of the approach was completely unknown. To validate these enhancers and the 

CRISPRi screening approach, Jesse and I devised a strategy to test these enhancers by genetic 

deletion and read out the direct, cis-effects on MYC expression using ddPCR. Glen Munson 

engineered the cell lines and Liz performed the ddPCR with some help from Rockwell.  

 

Based on conversations with Shari, Brian Cleary, Eric, and me, Jesse developed a heuristic model to 

predict MYC-regulating enhancers across cell types and applied it analyze GWAS variants near 

MYC. This model evolved into the ABC model (see Chapter 3).  
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Abstract 

Gene expression in mammals is regulated by noncoding elements that can impact physiology and 

disease, yet the functions and target genes of most noncoding elements remain unknown. We 

present a high-throughput approach that uses CRISPR interference (CRISPRi) to discover 

regulatory elements and identify their target genes. We assess >1 megabase (Mb) of sequence in the 

vicinity of 2 essential transcription factors, MYC and GATA1, and identify 9 distal enhancers that 

control gene expression and cellular proliferation. Quantitative features of chromatin state and 

chromosome conformation distinguish the 7 enhancers that regulate MYC from other elements that 

do not, suggesting a strategy for predicting enhancer-promoter connectivity. This CRISPRi-based 

approach can be applied to dissect transcriptional networks and interpret the contributions of 

noncoding genetic variation to human disease. 

 

Introduction 

A fundamental goal in modern biology is to identify and characterize the noncoding regulatory 

elements that control gene expression in development and disease, yet we have lacked systematic 

approaches to do so. Studies of individual regulatory elements have revealed principles of their 

function, such as the ability of enhancers to recruit activating transcription factors, modify 

chromatin state, and physically interact with target genes (2, 3). From these insights, systematic 

mapping of chromatin state and chromosome conformation across cell types has been used to 

identify putative regulatory elements (4-7). However, these measurements do not determine which 

(if any) genes are regulated or assess the quantitative effects on gene expression. Indeed, the rules 

that connect regulatory elements with their target genes in the genome appear to be complex. 
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Regulatory elements do not necessarily affect the closest gene, but instead may act across long 

distances (8, 9). It remains unclear how many regulatory elements control any given gene, or how 

many genes are regulated by any given element (3, 4, 9).  

We developed a high-throughput approach that utilizes the programmable properties of 

CRISPR/Cas9 to characterize the regulatory functions of noncoding elements in their native 

contexts. We use pooled CRISPR screens in combination with CRISPR interference (CRISPRi) — 

which alters chromatin state at targeted loci through recruitment of a KRAB effector domain fused 

to catalytically dead Cas9 (dCas9) (10-13) — to simultaneously characterize the regulatory effects of 

up to 1 Mb of sequence on a gene of interest (Figure 2-1A) (See Appendix A).  

 

Results 

We studied two gene loci, GATA1 and MYC, that affect proliferation of K562 erythroleukemia cells 

in a dose-dependent manner (Figure A-1). This allowed us to search for regulatory elements that 

quantitatively tune GATA1 or MYC expression using a proliferation-based pooled assay (Figure 2-

1A). Importantly, GATA1 and MYC are not located near other strongly essential genes (Figure A-1); 

thus, proliferation defects caused by sgRNAs targeted to sequences near these genes can be 

attributed to elements regulating GATA1 or MYC. We designed a library containing 98,000 sgRNAs 

tiling across a total of 1.29 Mb of genomic sequence around GATA1 and MYC as well as 85 kb of 

control noncoding regions (See Appendix A). We infected K562 cells expressing KRAB-dCas9 

under a doxycycline-inducible promoter with a lentiviral sgRNA library and sequenced the 

representation of sgRNAs before and after growing cells in doxycycline for 14 population doublings 

(Figure 2-1A). As expected, internal control sgRNAs targeting the promoters of known essential 
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genes (11) were depleted (Figure A-2A) and correlated across biological replicates (R = 0.91, Figure 

A-2B). 

We examined the quantitative depletion of sgRNAs in a 74 kb region surrounding GATA1, which 

encodes a key erythroid transcription factor (Figure 2-1B). Because the efficiency of different 

sgRNAs for CRISPRi can vary dramatically (11), we used a sliding window approach, averaging the 

scores of 20 consecutive sgRNAs and assessing the false discovery rate (FDR) of this metric through 

comparison to negative control, non-essential regions (See Appendix A, Figure A-3). Because the 

average spacing between consecutive sgRNAs was 16 bp, the regions targeted by 20 consecutive 

sgRNA spanned an average of 314 bp (Figure A-3C,D). With this approach, the window with the 

highest score (strongest depletion) overlapped the GATA1 TSS itself (Figure 2-1B, Figure A-3F). In 

addition, we identified 3 distal elements that significantly affected cellular proliferation (FDR < 0.05, 

Figure 2-1B, See Appendix A). One such element (e-GATA1) is located ~3.6 kb upstream of 

GATA1 and corresponds to a DNase I hypersensitive site (DHS) marked by H3K27ac (Figure 2-

1C); notably, this element shows high sequence conservation among vertebrates, and the syntenic 

sequence in mouse is required for proper Gata1 expression in murine erythroid progenitor cells (14). 

The second distal element (e-HDAC6) corresponds to a conserved DHS located ~1.5 kb upstream 

of HDAC6 (Figure 2-1C). A third significant element is located at a DHS near the promoter of 

GLOD5, which itself is not essential and only weakly expressed in K562 cells. The first two elements 

overlap GATA1 ChIP-Seq peaks and sequence motifs (Figure 2-1C), consistent with known auto-

regulatory loops in which GATA1 activates its own expression (15). All three elements reside in 

close linear and spatial proximity to GATA1 (Figure A-4A). Finally, multiple regions in the gene 

body of GATA1 scored as significantly depleted in the screen (Figure 2-1B), but, because 

recruitment of KRAB-dCas9 to these sites may directly interfere with transcription (10), we focused 

on distal regulatory elements in subsequent analysis. 
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Figure 2-1. Systematic mapping of noncoding elements that regulate GATA1 . (A) CRISPRi 
method for identifying gene regulatory elements. Cells expressing KRAB-dCas9 from a dox-
inducible promoter are infected with a pool of single guide RNAs (sgRNAs) targeting every possible 
site across a region of interest. In a proliferation-based screen, cells expressing sgRNAs that target 
essential regulatory elements will be depleted in the final population. (B) CRISPRi screen results in 
the GATA1 locus. A high CRISPRi score indicates strong depletion over the course of the screen. 
Red boxes: Windows showing significant depletion compared to negative control sgRNAs (See 
Appendix A). DNase I hypersensitivity, H3K27ac ChIP-Seq, and histone modification annotations 
(ChromHMM) in K562 cells are from ENCODE (4). (C) Close-up of e-GATA1 and e-HDAC6. 
sgRNA track shows CRISPRi scores for each individual sgRNA in the region. White bar in GATA1 
ChIP-seq track represents the GATA1 motif. (D) qPCR for GATA1 and HDAC6 mRNA in cells 
expressing individual sgRNAs. KRAB-dCas9 expression was activated for 24 hours before 
measurement. Gray bars: different sgRNAs for each target. Ctrl: negative control sgRNAs without a 
genomic target. Error bars: 95% confidence intervals (CI) for the mean of 3 biological replicates 
(See Appendix A). *: p < 0.05 in T-test versus Ctrl. 
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To characterize these elements, we measured GATA1 expression using quantitative PCR in cell lines 

stably expressing individual sgRNAs (See Appendix A). As expected, targeting KRAB-dCas9 to the 

GATA1 TSS reduced GATA1 expression (76% reduction, Figure 2-1D). sgRNAs targeting e-

GATA1 or e-HDAC6 reduced GATA1 expression by 44% and 33%, respectively (Figure 2-1D), 

and affected the expression of genes known to be regulated by the GATA1 transcription factor 

(Figure A-4B), confirming that these enhancers regulate GATA1. In contrast, sgRNAs targeting the 

HDAC6 TSS did not reduce GATA1 expression despite reducing HDAC6 expression (Figure 2-

1D), indicating that (i) the pooled screen accurately predicted that this region does not reduce 

GATA1 expression and (ii) the effects seen for the e-GATA1 and e-HDAC6 sgRNAs are not due 

to general effects of targeting KRAB-dCas9 to the gene neighborhood. Additionally, both e-GATA1 

and e-HDAC6 can activate the expression of a plasmid-based reporter gene (Figure A-4C). 

Together, these results support the specificity of this CRISPRi-based approach and demonstrate that 

e-GATA1 and e-HDAC6 quantitatively control GATA1 expression in K562 cells. 

Considering the close proximity of GATA1 to HDAC6 (Figure 2-1B, S4A), we tested whether this 

pair of enhancers also regulates HDAC6. sgRNAs targeting e-GATA1 and e-HDAC6 reduced 

HDAC6 expression by 42% and 22%, respectively, comparable to their effects on GATA1 (Figure 

2-1D). Intriguingly, inhibition of the GATA1 promoter led to an increase in HDAC6 expression 

(+47%, Figure 2-1D), and inhibition of the HDAC6 promoter modestly activated GATA1 (+9%, 

Figure 2-1D); this suggests that GATA1 and HDAC6 may compete for these shared enhancers, 

similar to observations for other pairs of neighboring genes (16, 17). Interestingly, histone 

deacetylases are required for erythropoiesis (18) and HDAC6 has been implicated in cellular 

proliferation in multiple cancers (19). Thus, although HDAC6 does not score as essential in 

proliferation assays in K562 cells, it is possible that proliferative defects observed upon inhibition of 
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e-GATA1 or e-HDAC6 result from the combined effects on both GATA1 and HDAC6 expression, 

and the genomic proximity of these genes may be important for coordinating their expression in vivo. 

These observations indicate a complex connectivity between enhancers and promoters in their 

native genomic contexts (Figure A-4D). 

We next investigated the cis regulatory architecture of MYC, a critical transcription factor encoded 

within a 3-Mb topological domain that contains hundreds of putative enhancers. Several enhancers 

in this domain regulate MYC in other cell types (See Appendix A), but chromatin state varies 

dramatically across cell types and it is unclear which of these elements regulate MYC in a given cell 

type. Notably, the domain contains over 60 genetic haplotypes associated (through genome-wide 

association studies) with human phenotypes, including cancer susceptibility (20). 

To identify elements that regulate MYC in K562 cells, we tiled sgRNAs across ~1.2 Mb of sequence 

in this topological domain (Figure 2-2A). A sliding window analysis identified several regions whose 

inhibition reproducibly reduced cellular proliferation, including a known promoter-proximal element 

located 2 kb upstream of the MYC TSS (Figure A-5A)(21), the transcribed region of the MYC gene 

body (Figure A-5A), and seven distal regions (labeled e1 through e7) located between 0.16 and 1.9 

Mb downstream of MYC (Figure 2-2A, A-5B,C). We also identified two regions that significantly 

increased cell proliferation (r1 and r2), and thus may repress MYC expression (Figure 2-2A, Figure A-

5D,E)(See Appendix A).  



 

	 32 

Figure 2-2. Identification and prediction of elements that regulate MYC . (A) CRISPRi 
screening identifies 7 distal enhancers (e1-e7) that activate MYC and two repressive elements (r1, r2) 
that may act to repress MYC. NS1: an element that does not score in the screen. (B) 18-kb windows 
around each of the 7 distal enhancers. Y-axis scales are equivalent between panels. (C) qPCR for 
MYC mRNA in cells expressing individual sgRNAs 24 hours after KRAB-dCas9 activation. Gray 
bars: 2 different sgRNAs per target, or 5 for non-targeting controls (Ctrl). Error bars: 95% CI for 
the mean of 12 biological replicates (See Appendix A). *: p < 0.05 in T-test versus negative controls. 
(D) Correlation between MYC expression and relative cell viability for e1-e7, MYC TSS, NS1, and 
Ctrl sgRNAs. Pearson’s R = 0.92 includes e1-e7 sgRNAs only; with the others, R = 0.95. (E) 
Predicted impact of DHS elements on MYC expression (a function of quantitative DHS, H3K27ac, 
and Hi-C signal) versus their experimentally derived CRISPRi scores. 
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Each of the seven putative activating elements is marked by high levels of DNase I hypersensitivity 

(Figure 2-2A); is bound by multiple transcription factors (Figure A-6A); and shows patches of 

sequence conservation across mammals (Figure 2-2B). Each enhancer frequently contacts the MYC 

promoter in three dimensions as assayed by Hi-C and ChIA-PET in K562 cells (Figure 2-2A) (4, 7); 

elements e5 and e6/7 form very long-range (>1.8 Mb) loops to the MYC promoter and are located 

within 10 kb of CTCF ChIP-Seq peaks with motifs oriented toward MYC (Figure A-5B,C), 

consistent with the convergent rule for CTCF-mediated chromatin loops (7). Two elements (e3 and 

e4) correspond to alternative TSSs for the long noncoding RNA PVT1 (Figure 2-2A); knockdown 

experiments indicate that the mature PVT1 RNA transcript itself is likely not essential in K562 cells 

(Figure A-1) and so e3 and e4 likely affect cellular proliferation through direct regulation of MYC. 

 

We experimentally characterized these seven activating elements to test whether they regulate MYC. 

CRISPRi inhibition of each of these elements with individual sgRNAs led to proliferation defects in 

a competitive growth assay (Figure A-6B) and led to a 9-62% reduction in MYC expression (Figure 

2-2C). The magnitude of the change in gene expression correlated with the proliferation defect, 

consistent with a quantitative relationship between cell growth and precise MYC expression levels 

(Pearson R = 0.92, Figure 2-2D). In a plasmid-based reporter assay, each putative regulatory element 

led to >5-fold up-regulation of a reporter gene relative to a control sequence (Figure A-6C) (See 

Appendix A). For a subset of the elements (e2, e3, and e4), we generated clonal cell lines containing 

genetic deletions on one or two of the three chromosome 8 alleles (K562 cells are triploid) and 

measured the expression of MYC from each allele (See Appendix A). For each element, we found 

that genetic deletions reduced MYC expression from the corresponding allele(s), confirming our 

CRISPRi results (Figure A-7). Together, these data support the hypothesis that these seven 
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elements, spanning 1.6 Mb of noncoding sequence, act as enhancers to control MYC expression and 

cellular proliferation.  

In addition to e1-e7, we characterized one noncoding element (NS1) that did not score in the screen 

(Figure 2-2A). In K562 cells, NS1 displays strong DHS and H3K27ac occupancy, binds to multiple 

transcription factors (Figure A-6A), and participates in a long-range chromatin loop to the MYC 

promoter (Figure 2-2A). In a lung adenocarcinoma cell line, NS1 regulates MYC as assayed by 

CRISPRi inhibition with individual sgRNAs (22). Accordingly, we wondered whether NS1 regulates 

MYC in K562 cells despite not being detected as such in our CRISPRi screen. To explore this 

possibility, we targeted KRAB-dCas9 to NS1 with individual sgRNAs in K562 cells and found that 

CRISPRi successfully reduced H3K27ac occupancy to an extent similar to that observed when 

targeting other MYC enhancers (Figure A-6D). Despite affecting chromatin state at NS1 in K562 

cells, these sgRNAs did not substantially impact cellular proliferation or MYC expression (Figure 2-

2C,D), consistent with the results from the pooled screen. These observations support the ability of 

the CRISPRi screening approach to distinguish elements that do and do not regulate a given gene. 

However, we note that some regulatory elements, such as those that act redundantly with others in 

the locus, may not be discoverable by this method (See Note A1). 

The ability to systematically test gene regulatory elements will help to train predictive models of 

functional enhancer-promoter connectivity. Notably, existing annotations and catalogs of enhancer-

promoter predictions performed poorly at distinguishing e1-e7 from enhancers that do not impact 

MYC expression (See Appendix A). For example, ENCODE annotates 185 Kb of sequence in this 

domain as putative “strong enhancer” in K562 cells (Figure 2-2A), but only 8% of this sequence, 

corresponding to e1-e7, appears to regulate MYC. We sought to improve the ability to predict 

enhancers and connect them with genes that they regulate. When we examined chromatin state 
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maps (including DHS, H3K27ac and Hi-C), we found that quantitative DHS or H3K27ac signal 

could distinguish most of the seven MYC enhancers but ranked them in the wrong order (Figure A-

8A): for example, e5 shows the strongest DHS signal yet has the weakest effect on MYC expression 

(Figure 2-2). Accordingly, we considered a framework (Figure A-8B) wherein the impact of an 

enhancer on gene expression is determined both by its intrinsic activity level (for which we use 

quantitative DHS and H3K27ac levels as a proxy) and the frequency at which the enhancer contacts 

its target promoter (for which we use Hi-C data as a proxy) (See Appendix A). This metric correctly 

ranked 6 of the 7 distal enhancers as the most important of 93 DHS elements in K562 cells (Figure 

2-2E) and provided a reasonable ordering of their relative effects (Spearman correlation = 0.79). We 

note that this approach did not perfectly distinguish between enhancers that do and do not regulate 

MYC: NS1 was ranked 7 and e6 was ranked 11. Nonetheless, quantitative measures of chromatin 

state and chromosome conformation are strongly predictive of enhancers that regulate MYC in 

K562 cells. 
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Figure 2-3. A heuristic model predicts disease-associated MYC enhancers across cell types.  
(A) H3K27ac occupancy around MYC varies among 8 cell types and primary tissues. Black arrows: -
elements highlighted in panels below. (B) Locations of 4 enhancers previously shown to regulate 
MYC expression in other cell types and their predicted impact in a corresponding cell type. Points 
show predicted impact of 2-kb windows tiled in 100-bp increments across the MYC locus. T-ALL: 
T-cell acute lymphoblastic leukemia. AML: Acute myeloid leukemia. For each cell type, predicted 
impact is calculated based on available data. (C) Haplotype blocks of SNPs linked to human diseases 
and phenotypes (R2 > 0.8 with index SNP in genome-wide association study). (D) SNPs associated 
with bladder cancer and Hodgkin’s lymphoma overlap regulatory elements predicted by our metric 
to regulate MYC in a corresponding cell type or tissue. A SNP associated with height overlaps a 
conserved element that is active only in chondrocytes. Karpas422: diffuse large B cell lymphoma cell 
line. 
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To determine whether this approach might be applicable in other cellular contexts, we examined 4 

MYC enhancers identified in other cell types (Figure 2-3A,B)(See Appendix A). In each case our 

metric ranked these known elements among the 3 most important in the corresponding cell type 

(Figure 2-3B). We also identified multiple instances where elements predicted to regulate MYC in 

one or more cell types harbor single nucleotide polymorphisms (SNPs) associated with human traits 

including cancer susceptibility and height (Figure 2-3C,D). Additional CRISPRi-based functional 

mapping in other cell types and gene loci might allow the derivation of general models to predict 

functional enhancer-promoter connections and help to understand noncoding genetic variation. 

 

Discussion 

In summary, CRISPRi screens can accurately identify and characterize the regulatory functions and 

connectivity of noncoding elements. In the MYC and GATA1 loci, CRISPRi reveals complex and 

non-obvious dependencies between multiple genes and enhancers, including relationships that 

suggest regulation of multiple genes by the same enhancer, coordinated activity of multiple 

enhancers to control a single gene, and competition between neighboring promoters. Thus, learning 

the principles and connectivity of transcriptional networks requires dissecting putative regulatory 

elements in their native genomic contexts. 

While we used cellular proliferation as a readout to investigate 2 essential genes, this CRISPRi 

approach can be applied to identify regulatory elements that control an arbitrary gene or phenotype 

of interest through alternative assays, for example by tagging an endogenous gene locus with green 

fluorescent protein (GFP) and sorting cells by GFP expression (23). 



 

	 38 

Together with complementary methods using catalytically active Cas9 (23-25), CRISPRi-based 

functional mapping provides a broadly applicable approach (See Appendix A) to dissect 

transcriptional networks and interpret the contributions of noncoding genetic variation in gene 

regulatory elements to human disease.  
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Chapter 3: Activity-by-Contact model of enhancer 

specificity from thousands of CRISPR perturbations 

Most of this chapter was originally published as: Fulco CP, Nasser J, Jones TR, Munson G, Bergman 

D, Subramanian V, Grossman SR, Anyoha R, Patwardhan TA, Nguyen TH, Kane M, Doughty B, 

Perez E, Durand NC, Stamenova EK, Lieberman Aiden E, Lander ES, Engreitz JM. Activity-by-

Contact model for enhancer specificity from thousands of CRISPR perturbations. bioRxiv. 2019 Jan 

26. 

 

Preface 

In this chapter, I describe our work to (i) expand the CRISPR functional genomics toolkit by 

combining pooled CRISPR screens with RNA FISH and flow cytometry, (ii) apply this new tool to 

systematically map the enhancers controlling the expression of 28 genes in K562 cells, and (iii) 

develop the ABC model as the first means to accurately predict enhancer-gene connections based on 

epigenetic data. 

 

I developed the FlowFISH screening protocol initially with Vidya Subramanian. Vidya optimized the 

FISH protocol, we worked together to determine the flow cytometry sorting protocol, and I 

optimized the gRNA library preparation protocol. Vidya and I together performed our initial large-

scale screen for GATA1 enhancers using a pool cloned by Rockwell Anyoha. For subsequent 

screens, Glen Munson carried out the wet lab CRISPR pool cloning, cell culture, FlowFISH, and 

sequencing library preparation, and I sequenced the libraries with occasional assistance from Tung 

Nguyen. 
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Drew Bergman and I carried out validation experiments such as comparing the quantitative effect of 

single guide RNAs between qPCR and FlowFISH, and, with Tung Nguyen, using siRNAs and 

RNA-seq to evaulate potential trans effects. Tung Nguyen and Liz Perez also contributed to other 

validation experiments and data analysis. 

 

I wrote the initial FlowFISH screen analysis pipeline, and provided minor assistance to Ben 

Doughty, Tejal Patwardhan, and Ray Jones in adapting it to be more scalable and accurate. Jesse 

curated additional enhancer-gene functional connection data from the literature with some help 

from me. 

 

Joe Nasser, Ray Jones, and Jesse Engreitz wrote the majority of the code to operationalize the ABC 

model and to compare our compendium of functionally tested enhancer-gene connections to 

predictive models such as the ABC model, with some input from me. Shari Grossman was a source  

of critical discussions in the development, design, and evaluation of the ABC model. 

 

Elena Stamenova, Neva Durand, and Erez Lieberman Aiden contributed Hi-C maps of chromatin 

contacts in mouse embryonic stem cells. Erez also helped Joe, Jesse, and me explore how the pattern 

of chromatin contacts predicted from simple globule models could explain our functional data.   
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Abstract 

Mammalian genomes harbor millions of noncoding elements called enhancers that quantitatively 

regulate gene expression, but it remains unclear which enhancers regulate which genes. Here we 

describe an experimental approach, based on CRISPR interference, RNA FISH, and flow cytometry 

(CRISPRi-FlowFISH), to perturb enhancers in the genome, and apply it to test >3,000 potential 

regulatory enhancer-gene connections across multiple genomic loci. A simple equation based on a 

mechanistic model for enhancer function performed remarkably well at predicting the complex 

patterns of regulatory connections we observe in our CRISPR dataset. This Activity-by-Contact 

(ABC) model involves multiplying measures of enhancer activity and enhancer-promoter 3D 

contacts, and can predict enhancer-gene connections in a given cell type based on chromatin state 

maps. Together, CRISPRi-FlowFISH and the ABC model provide a systematic approach to map 

and predict which enhancers regulate which genes, and may help to interpret the functions of the 

thousands of disease risk variants in the noncoding genome.  

 

Introduction 

DNA elements in the human genome called enhancers control how different combinations of genes 

are expressed in different cell types and states, and harbor thousands of genetic variants that 

influence risk for common diseases. A major challenge in interpreting the functions of these variants 

is to map enhancer-gene connections: Which enhancers regulate which genes in which cell types, 

and with what quantitative effects? 

 

Studies of individual enhancers and genes have shown that these connections can be complex: 

multiple enhancers can regulate a single gene, a single enhancer can regulate multiple genes across 
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long genomic distances, and the network of enhancer-gene connections appears to rewire across cell 

types (1, 2). The mechanisms that give rise to this complexity remain poorly understood. One 

possibility (“biochemical specificity”) is that a given enhancer can regulate only the promoters that 

have complementary combinations of compatible transcription factors (TFs) (3-6). In a few cases it 

has been shown that specific TF-TF interactions are required for an enhancer to regulate a promoter 

(7, 8). Another possibility is that enhancer-gene interactions depend primarily on the 3D architecture 

of the genome, such as topological domains (9, 10) or chromatin loops (1, 11, 12). In a few cases it 

has been shown that manipulating enhancer-promoter contacts can affect gene expression (13-15). 

Various studies have integrated aspects of transcription factor binding and 3D architecture to 

attempt to predict enhancer-gene regulation (16-19). Yet, it has been difficult to evaluate these 

models or discover new ones because we have lacked efficient ways to study the regulatory effects of 

large numbers of enhancers in the genome.  

 

We set out to map the effects of many putative enhancers on gene expression and thereby learn 

general rules to predict enhancer-gene connections across many cell types. We and others have 

recently developed high-throughput methods that use CRISPR to perturb noncoding elements in 

their native genomic locations to measure their effect on a target gene (17, 20-24). However, these 

methods have had two major limitations: (i) they cannot be readily applied to any target gene (they 

require that a gene has a phenotype that is well suited for multiplex screening, such as affecting cell 

proliferation, or is engineered to facilitate such screening, for example by introduction of a reporter 

construct under the control of its promoter in the genome) and (ii) they do not directly read out 

RNA levels.  
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Results 

To overcome these limitations, we developed an approach called CRISPRi-FlowFISH to perturb 

hundreds of noncoding elements in parallel and quantify their effects on the expression of an RNA 

of interest (Figure 3-1A; Figure B-1). In this approach, we design a library of guide RNAs (gRNAs) 

targeting a large collection of candidate regulatory elements, transduce the library into a population 

of cells expressing KRAB-dCas9 (on average 1 gRNA per cell), and induce KRAB-dCas9 expression 

for 48 hours. To measure the effects of candidate elements on the expression of a gene of interest, 

we: (i) use fluorescence in situ hybridization (FISH) to quantitatively label single cells according to 

their expression of an RNA of interest; (ii) sort labeled cells with fluorescence-activated cell sorting 

(FACS) into 6 bins based on RNA expression; (iii) use high-throughput sequencing to determine the 

abundance of each gRNA in each bin; (iv) and use this information to infer the effect of each gRNA 

on RNA expression. To assess quantitative effects and statistical significance, we calculate average 

the effects of all gRNAs within each candidate element (Figure B-2A,B) and compare to hundreds 

of negative control gRNAs in the same screen.  
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Figure 3-1. CRISPRi-FlowFISH identifies regulatory elements for GATA1 and HDAC6  
(A) CRISPRi-FlowFISH method for identifying gene regulatory elements. Cells expressing 
KRAB-dCas9 are infected with a pool of gRNAs targeting DHS elements near a gene of interest, 
labeled using RNA FISH against that gene, and sorted into bins of fluorescence signal by FACS. 
The quantitative effect of each gRNA on the expression of the gene is determined by sequencing the 
gRNAs within each bin. Inset: example of K562 cells labeled for RPL13A. (B) Distal elements 
affecting GATA1 and HDAC6 expression in K562 cells. Genes expressed in K562 cells are shown 
in black; those not expressed are shown in grey. Red arcs denote activation, blue arcs denote 
repression. Grey circles are DEs where perturbation with CRISPRi affects the expression of at least 
one tested gene as measured by CRISPRi-FlowFISH. See Figure B-3A for the full tested region 
spanning 4 Mb. (C) Close-up on region containing GATA1 and HDAC6. Points represent the 
effect on gene expression of a single gRNA. HDAC6 vertical axis capped at 200%. Grey, red, and 
blue bars: DHS elements in which CRISPRi leads to no detectable change (grey), a significant 
decrease (red) or increase (blue) in expression as measured by CRISPRi-FlowFISH. DHS elements 
in the gene body of the assayed gene are excluded from analyses because recruitment of KRAB-
dCas9 to these sites may directly interfere with transcription. 
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To validate the approach, we first used CRISPRi-FlowFISH to identify elements that regulate the 

expression of GATA1 in K562 human erythroleukemia cells. We performed replicate CRISPRi-

FlowFISH screens using a probeset against GATA1 and tested the functions of 127 candidate 

elements spanning 4 Mb (Figure 3-1B,C; Figure B-3A). Replicate screens produced highly correlated 

estimates for the effect sizes of each element on GATA1 expression (Pearson R = 0.95 for 

significant elements, Figure B-2C). As expected, these screens identified the three elements that we 

previously found to regulate GATA1 (17), and we confirmed for individual gRNAs that the effects 

on gene expression estimated from CRISPRi-FlowFISH agreed with RT-qPCR measurements 

(Pearson R = 0.93, Figure B-1F). We note that these experiments do not distinguish between cis and 

trans effects (see Appendix B). 

 

To generate a large enhancer perturbation dataset, we used CRISPRi-FlowFISH in K562 cells to test 

a total of 3744 candidate regulatory element-gene pairs. Specifically, we designed FlowFISH assays 

for 28 genes in 5 genomic regions (spanning 1.1-4.0 Mb) and CRISPRi gRNAs against all DNase 

hypersensitive (DHS) elements in K562s within 450 kb of any of the genes (108 to 202 elements per 

gene for a total of 742 unique elements). The 28 genes included some with erythroid lineage-specific 

expression (e.g., GATA1) and some that are ubiquitously expressed (e.g., RAB7A), and were selected 

(after testing FlowFISH probesets for 51 genes) as those genes with probesets that met stringent 

criteria for both specificity and statistical power (Figure B-4, see Appendix B). We had >80% power 

to detect an effect on gene expression of 25% for all 28 genes and as low as 10% effects for 3 genes 

(Figure B-4C, see Appendix B). We analyzed these CRISPRi-FlowFISH data together with data 

from an additional 380 candidate regulatory element-gene pairs from previous CRISPR-based 

experiments in K562 cells, including our previous CRISPRi tiling proliferation screen in the MYC 

locus (17, 23, 25-31). 
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In total, our dataset included 3010 candidate distal element-gene (DE-G) pairs (where the targeted 

element is located >500 bp from a TSS) and 1114 distal promoter-gene (DP-G) pairs (where the 

targeted element is located <500 bp from a TSS). Here we focused on DE-G pairs, and analyzed 

DP-G pairs separately because we and others have found promoters can affect the expression of 

nearby genes through a variety of mechanisms beyond that of cis-acting enhancers (see Appendix B).  

 

These perturbation-based maps uncovered complex connections wherein individual enhancers 

regulated up to 5 genes, individual genes were regulated by up to 12 distal elements, and in some 

cases enhancers appeared to “skip” over proximal genes to regulate more distant ones (Figure 3-2; 

Figure B-3; Figure B-5). Of the 3010 DE-G pairs tested, 122 involved a significant effect on gene 

expression at a false discovery rate (FDR) < 0.05. The effect was activating in 80% of cases and 

repressing in 20% of cases (98 vs. 24), with absolute effect sizes ranging from 5%-93% (median: 

24%). Of 818 distinct DEs studied, 79 (10%) detectably regulated at least one gene in our dataset.   

 

Using this data, we sought to identify generalizable rules to explain which enhancers regulate which 

genes in the genome. To do so, we compared various predictors to our experimental results by 

means of a precision-recall plot (Figure 3-3A). (Precision refers to the proportion of positive 

predictions that are ‘true positives’ — where true regulatory connections are the 98 significant DE-

G pairs where perturbation of the element led to a decrease in gene expression, and the 2912 non-

regulatory connections are those where no decrease was detected despite >80% power to detect 

25% effects. Recall refers to the proportion of true connections included in the predictions. For 

analysis of repressive effects, see Appendix B). 

  



 50 

 

 

Figure 3-2. CRISPRi-FlowFISH produces regulatory maps of DE-G connections in multiple 
loci. (A) Example of CRISPRi-FlowFISH screen data. DE-G connections are elements affecting 
the expression of JUNB, PRDX2, and RNASEH2A in CRISPRi-FlowFISH screens in K562 cells. 
Red arcs denote activation, blue arcs denote repression. The width of the arc corresponds to the 
effect size. Distal elements are DHS peaks. Tested genes refer to genes for which we performed 
CRISPRi-FlowFISH experiments. See Figure B-3B for the full tested region spanning 1.4 Mb. (B) 
Same as (A) for the genes HNRNPA1, NFE2, and COPZ1. See Figure B-3C for the full tested 
region spanning 1.2 Mb. (C) Histogram of the number of distal elements affecting each gene in our 
dataset. (D) Histogram of the number of genes affected by each distal element tested in our dataset. 
(E) Comparison of genomic distance with observed changes in gene expression upon CRISPR 
perturbations. Each dot represents one tested DE-G. Red dots: connections where perturbation 
resulted in a decrease in the expression of the tested gene. Blue dots: perturbation resulted in an 
increase. Grey dots: had no significant effect. Panels (C-E) include both FlowFISH data from this 
study and tested pairs from other studies. See Figure B-5 for plots including FlowFISH data only. 
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We first examined three categories of methods that are commonly used to predict enhancer-gene 

connections, and found these had only modest predictive value (Figure 3-3A): 

(1) Predictions based solely on distance thresholds along the genome performed poorly. For 

example, while 84% of regulatory DEs were located within 100 kb of their target promoter, only 

14% of DEs within 100 kb of an expressed promoter had a regulatory effect (precision = 14%, 

recall = 84%). Assigning each DE to the closest expressed gene yielded 45% precision and 33% 

recall.  

(2) Predictions based solely on features of the 3D genome also performed poorly. Assigning 

each DE to promoters based on the presence of Hi-C loops yielded 25% precision and 4% recall, 

and assigning each DE to each other promoter in the same Hi-C contact domain yielded 14% 

precision and 77% recall. 

(3) Predictions based on prior machine learning approaches were similarly unsuccessful, 

including supervised methods to predict enhancer-promoter interactions from epigenomic data and 

unsupervised methods based on correlations between chromatin marks and gene expression across 

cell types (Fig 3A, see Appendix B) (18, 19). 

  

Given the limitations of existing methods, we developed a new Activity-by-Contact (ABC) model to 

predict enhancer-gene connections. This model is based on the simple biochemical notion that an 

element’s quantitative effect on a gene should depend on its strength as an enhancer (“Activity”) 

weighted by how often it comes into 3D contact with the promoter of the gene (“Contact”), and 

that the relative contribution of an element on a gene’s expression (as assayed by the proportional 

decrease in expression upon CRISPR-inhibition) should depend on the element’s effect divided by 

the total effect of all elements. Under this model (Figure 3-3B), the fraction of regulatory input to 

gene G contributed by element E is thus given by: 
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We defined Activity (A) as the geometric mean of the read counts of DHS and H3K27ac ChIP-Seq 

at an element E, and Contact (C) as the normalized Hi-C contact frequency between E and the 

promoter of gene G (see Appendix B). (The ABC score performed similarly across a range of data 

preprocessing parameters, and when defining Activity using other combinations of measurements of 

chromatin accessibility, histone modifications, and nascent transcription, see Appendix B, Figure B-

6,B-7,B-8). 

 

The ABC model performed remarkably well, and much better than alternatives, at predicting DE-G 

connections in our CRISPR dataset. The quantitative ABC score correlated with the experimentally 

measured relative effects of candidate elements on gene expression (Spearman ρ for regulatory DE-

G pairs = –0.68 Figure 3-3C). Binary classifiers based on thresholds on the ABC score substantially 

outperformed existing predictors of enhancer-gene regulation. For example, when we used an ABC 

threshold corresponding to 70% recall, the predictions had 63% precision, and the area under 

precision-recall curve (AUPRC) was 0.66, compared to 0.36 for predictions based solely on genomic 

distance (Figure 3-3A).  
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Figure 3-3. The ABC model predicts the target genes of enhancers. (A) Precision-recall plot 
for classifiers of DE-G pairs. Positive DE-G pairs are those where the distal element significantly 
decreases expression of the gene. Curves represent the performance for predicting significant 
decreases in expression for DE-G pairs based on thresholds on the ABC score (red) and genomic 
distance between the DE and the TSS of the gene (black). Circles represent the performance of 
various predictors in which DEs are assigned to: the closest expressed gene (“c”); all promoters 
within 100 kb (black), genes predicted by the algorithms TargetFinder (“t”) (18) or JEME (“j”) (19); 
promoters in same Hi-C contact domain (“d”); and promoters at the opposite anchors of Hi-C 
loops (“l”), RNA Polymerase II ChIA-PET loops (“p”) (32), or H3K27ac HiChIP loops (“h”) (33). 
(B) Calculation of the ABC score (see Appendix B). Values for DHS, H3K27ac, and Hi-C are 
presented in arbitrary units. (C) Comparison of ABC scores (predicted effect) with observed 
changes in gene expression upon perturbations. Each dot represents one tested DE-G pair. Dotted 
black line marks 70% recall, corresponding to the red dot in panel A.  
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The ABC score far outperformed models based on either Activity (quantitative DHS or H3K27ac 

signal) or Contact (Hi-C contact frequency) alone (AUPRC = 0.25, 0.17 and 0.31, respectively; 

Figure 3-3A; Figure B-6A). This is because experimentally observed regulatory DE-G pairs varied 

substantially — with some having higher Activity and lower Contact, some showing higher Contact 

and lower Activity, and some having a balance of the two factors (Figure B-6B). 

 

Given the ability of the ABC model to make predictions in K562 cells based solely on epigenomic 

data from that cell type, we explored whether the ABC model could generalize to predict enhancer-

gene connections in other cell types.  

 

To do so, we first identified alternative ways to estimate Contact in the ABC model; although maps 

of chromatin accessibility and histone modifications are available in many cell types, maps of 3D 

contacts are not. Because contact frequencies in Hi-C data correlate well across cell types (see 

Appendix B) (34, 35), we compared versions of the ABC model in which we estimated Contact for 

each DE-G pair using either K562 Hi-C data or the average Hi-C contact frequency from 8 other 

human cell types. Both approaches performed similarly at predicting our CRISPR data in K562 cells 

(AUPRC = 0.66 and 0.68 respectively; Figure B-9A). Thus, the ABC model can make predictions in 

a given cell type without cell-type specific Hi-C data, and minimally requires: (i) a measure of 

chromatin accessibility (DHS or ATAC-seq) and (ii) a measure of enhancer activity (ideally, 

H3K27ac ChIP-seq). 

 

Using this approach, we evaluated the ability of the ABC model to predict 968 measured DE-G 

pairs in 5 additional human and mouse cell types beyond our initial K562 dataset. These pairs 

included 940 from previous studies that inhibited DEs with epigenetic or genetic perturbations and 
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measured the effects with RNA-seq or qPCR (33, 36-45), and 28 from new experiments in which we 

deleted enhancers in mouse embryonic stem cells and measured the effects using allele-specific 

RNA-seq (see Appendix B). We used epigenomic datasets to generate genome-wide predictions of 

enhancer-gene connections in each of these 5 cell types, and compared them to the CRISPR data in 

the corresponding cell type. The ABC scores correlated with the quantitative effects on gene 

expression (Spearman ρ for regulatory DE-G pairs = -0.38, Fig 4A), and at an ABC threshold 

corresponding to 70% recall, the predictions had 74% precision (AUPRC = 0.75, Fig 4B, see 

Appendix B). As expected, the predictions of the ABC model were highly cell-type specific: when 

we used ABC scores from K562 cells to predict DE-G pairs measured in other cell types, the 

AUPRC dropped from 0.75 to 0.12.  
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Figure 3-4. The ABC model generalizes across cell types. (A) Comparison of ABC scores 
(predicted effect) with observed changes in gene expression upon perturbations in GM12878 cells, 
LNCaP cells, NCCIT cells, primary human hepatocytes, and mouse ES cells. Each dot represents 
one tested DE-G pair. (B) Precision-recall plot for classifiers of DE-G pairs shown in (A). Positive 
DE-G pairs are those where the distal element significantly decreases expression of the gene. Curves 
represent the performance for predicting significant decreases in expression for DE-G pairs based 
on thresholds on the ABC score (red) and genomic distance between the DE and the TSS of the 
gene (black). Circles represent the performance of models that predict significant regulation for DE-
G pairs based on various criteria: pair lies within 100 kb (black), and DEs are assigned to regulate 
the nearest expressed gene (grey). (C) Comparison of observed and predicted DE-G connections in 
the SORT1 locus (chr1:109714926-109989926). Predicted DE-G connections (dotted red arcs) are 
based on ABC maps in primary human liver tissue. Observed DE-G connections (solid red arcs) are 
from previous experiments in which CRISPR was used to introduce indels near rs12740374 in 
primary hepatocytes (45) and an eQTL study in human liver (46).   
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We next examined the 16 DE-G pairs in our dataset that involved enhancers that harbor noncoding 

genetic variants known to influence risk for human diseases or traits. At a threshold corresponding 

to 70% recall in our K562 dataset, the ABC model correctly connected these DEs to their target 

gene(s) in 13 of 16 cases (81% recall). For example, a previous study identified 3 enhancers that 

contain noncoding variants associated with rare erythroid disorders, and found that introducing 

indels into these enhancers in K562 using CRISPR affected the expression of nearby genes involved 

in erythropoiesis (28). The ABC model correctly identified each of these 3 regulatory DE-G pairs in 

K562 cells, and, notably, also identified the same connections in primary human erythroid 

progenitor cells. As another example, a variant associated with coronary artery disease and plasma 

low-density lipoprotein cholesterol (rs12740374) has been shown to be an eQTL for SORT1 in 

primary human liver tissue, and CRISPR edits in the corresponding element affect SORT1 

expression in primary hepatocytes (45, 46). ABC maps in primary human liver tissue correctly 

connected this enhancer to SORT1 (Figure 3-4C). Thus, the ABC model can predict enhancer-gene 

connections based on cell-type specific epigenomic data, and may be widely useful for interpreting 

the functions of noncoding genetic variants associated with human diseases. 

 

Finally, toward further improving predictions, we identified situations in which the ABC model 

failed to accurately predict DE-G connections.  

 

We first compared predictions for tissue-specific versus ubiquitously expressed genes (sometimes 

referred to as “housekeeping” genes, see Appendix B), and found that the ABC model performed 

dramatically better for tissue-specific than for ubiquitously expressed genes (AUPRC = 0.77 vs 

0.12). This was because ubiquitously expressed genes had fewer enhancers: for the 30 genes for 

which we had data for all nearby DEs, tissue-specific genes (n=22) had an average of 2.6 distal 
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enhancers per gene, while ubiquitously expressed genes had only 0.1 (only a single enhancer across 8 

ubiquitously expressed genes; rank-sum test p = 0.002, Figure B-10). Interestingly, these 

observations are consistent with findings in Drosophila, where plasmid-based reporter assays have 

shown that ubiquitously expressed gene promoters are less sensitive to distal enhancers than are 

tissue-specific gene promoters (6). We conclude that the ABC model applies well to tissue-specific 

genes (97% of all genes, see Appendix B) but not to ubiquitously expressed genes, which appear to 

be largely insensitive to the effects of distal enhancer perturbations for reasons that remain to be 

explored. 

 

We next examined our CRISPR dataset for DE-G pairs that likely represent regulatory effects due to 

mechanisms other than the cis-acting functions of enhancers (see Appendix B). We identified effects 

of distal CTCF sites, which may regulate gene expression by affecting 3D contacts (13 regulatory 

pairs, Figure B-11) and indirect effects, such as an enhancer regulating one gene that in turn affects a 

second nearby gene in trans (18 pairs, Figure B-12). Because these DE-G pairs do not represent 

direct effects of enhancers, we reasoned that removing them from the CRISPR dataset should 

provide a better estimate of the ability of the ABC model to predict enhancer-gene connections. 

Indeed, the AUPRC rose from 0.66 to 0.72 for all genes and to 0.82 for tissue-specific genes (Figure 

B-13). These results suggest a strategy to iteratively refine our predictions of DE-G connections by 

using CRISPRi tiling to identify exceptions to the ABC model, characterizing their molecular 

mechanisms, and developing new models to predict these effects.  

 

Discussion 

In summary, our work reveals key properties of enhancer-gene connections and provides an 

important foundation for future studies of regulatory elements and genetic variants in the noncoding 
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genome. Our perturbation data, consistent with the predictions of the ABC model, indicate that 

enhancers often regulate more than one gene (Figure 3-2D), that most enhancers with detectable 

effects are located within 100 kb of their target promoters (Figure 3-2E), and that enhancers can 

have a wide range of quantitative effects on gene expression — including many elements with small 

effects (Figure 3-3C).  

 

Our results raise the intriguing possibility that the ABC model reflects an underlying biochemical 

mechanism: that enhancer specificity may often be controlled by quantitative factors including 

enhancer activity and enhancer-promoter contact frequency, rather than by qualitative logic 

involving the particular combinations of transcription factors at the enhancers and promoters. 

CRISPRi-FlowFISH and the ABC model provide a means to test these mechanisms, and to further 

refine our understanding of noncoding regulatory elements by mapping and modeling promoter-

promoter regulation, functions of CTCF sites, and combinatorial effects of multiple enhancers in a 

locus.  

 

Beyond its conceptual implications concerning gene regulation, the ABC model has important 

practical applications. Because it can make genome-wide predictions in a given cell type based on 

easily obtained epigenomic datasets, the ABC model provides a framework for mapping enhancer-

gene connections across many cell types — including primary human cell types and states that are 

difficult to directly manipulate with CRISPR. This suggests a systematic approach to decode 

transcriptional regulatory networks and to interpret the functions of noncoding genetic variants that 

influence risk for human diseases and traits. 
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Chapter 4: Conclusion 

 

Overview 

In this thesis, I described our work toward understanding how enhancers regulate specific target 

genes.  At the outset of this work, there were few examples where the target genes of an enhancer 

were known. These examples suggested a vast, complex network in which individual genes can be 

regulated by multiple enhancers and individual enhancers can regulate multiple genes across large 

distances in the genome (1-3). In the face of this complexity, we have lacked a systematic 

understanding of enhancer-promoter communication. 

 

To address this challenge, we developed scalable, general, and quantitative perturbation-based tools 

to characterize the regulatory functions of noncoding elements in their native genomic contexts, and 

applied them to systemically map the enhancers regulating dozens of genes. This compendium 

allowed us to evaluate, in an unbiased manor across many loci, predictive models of enhancer-gene 

connections. No existing model explained the patterns of connections we observed.  

 

In order to predict the observed functional connections, we developed the “Activity-by-Contact” 

(ABC) model based on the simple biochemical notion that an element’s quantitative effect on a gene 

should depend on its strength as an enhancer (“Activity”) weighted by how often it comes into 3D 

contact with the promoter of the gene (“Contact”). The ABC model enabled us for the first time to 

accurately predict enhancer-gene connections based on epigenetic data.  
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Moreover, our comprehensive mapping of the enhancers regulating dozens of genes provides 

insight into the mechanisms of enhancer function. The appreciation that quantitative 3D contacts is 

a hallmark of functional regulatory connections unifies seemingly disparate observations, such as 

that in some cases enhancers-gene connections indeed correspond to chromatin loops (4), that 

disruption of TAD boundaries can alter enhancer regulation (5-7), and that many enhancers regulate 

the expression of genes in close linear proximity in the genome (1). Further, the success of the ABC 

model demonstrates that functional specificity can arise from the precise arrangement and activities 

of enhancers in the genome, even in the context of broad biochemical compatibility. 

 

Opportunities for understanding enhancer function  

Despite the success of the ABC model in predicting enhancer-gene connections, the regulatory 

maps we observed highlight two remaining questions.  

 

First, how do multiple enhancers combine to regulate a single gene? Numerous studies have found 

that a single gene can be regulated by several enhancers even in the same cell type. While it is 

generally unclear if these enhancers combine additively, sub-additively, or synergistically, in several 

cases we find evidence that enhancers act synergistically. For example, the sum of the effect sizes 

observed upon individually perturbing the 7 enhancers for MYC in K562 cells is more than 100% 

(Chapter 2), and the ABC score shows a log-linear relationship with effect sizes across our full 

dataset (Chapter 3). Further work using combinatorial perturbations to enhancers will be required to 

address how multiple enhancers combine to regulate gene expression.  

 

Second, how do enhancers activate their target genes biochemically? Enhancers are defined 

functionally as elements that can activate transcription, and we lack a unifying framework to describe 
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how enhancers achieve this activation. For example, the ABC model relies on an estimate of activity 

based in part on H3K27ac ChIP-seq, but we lack a mechanistic understanding of why H3K27ac 

marks active enhancers. As described in Chapter 1, pioneering experiments based on the 

simultaneous single molecule imaging of promoters, enhancers, and RNA are enabling us to watch 

transcriptional activation as it unfolds (8-10). I anticipate that these approaches, in combination with 

targeted perturbations of enhancers, promoters, and/or transcriptional co-factors, will unlock the 

molecular basis of enhancer function. The observation that ubiquitously expressed genes are 

insensitive to enhancers may also provide a foothold into this problem; understanding why 

ubiquitously expressed gene promoters encode expression without distal enhancers may elucidate 

why tissue-specific gene promoters rely on enhancers. Notably, ubiquitously expressed genes have 

been observed to have highly efficient pause release (11), supporting an emerging hypothesis that 

many enhancers function through the release of promoter proximal pausing (12, 13). 

 

An emerging view of transcriptional control is that the molecular factors required to regulate and 

carry out transcription may form phase-separated condensates, membraneless organelles created by 

networks of weak, transient, largely non-structured interactions between many multivalent factors 

(14-17). This view is prompting the field to rethink previous results and assumptions to consider 

how (and if) they fit into this new paradigm. The ABC model, though based on a molecular intuition 

separate from the phase-separated condensate model, is in fact highly compatible with it, albeit with 

a change in vocabulary. For example, it may be that “Contact” in the ABC model represents 

membership in the same phase-separated droplet rather than direct, structured protein-protein 

interactions between factors bound at the enhancer and promoter. The formation of phase-

separated condensates depends synergistically on the concentrations of transcriptional co-factors 
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recruited by enhancers (14), which may form part of the mechanism for the apparent synergy we 

observe in the combinatorial action of multiple enhancers. 

 

Outlook 

The ability of the ABC model to predict the effects of perturbing an enhancer suggests an 

immediate application: to predict the target genes of enhancers disrupted by genetic variants 

associated to human disease through GWAS. GWAS studies are unbiased surveys of the genome to 

identify common genetic variants correlated with a phenotype (18). The variants identified through 

GWAS are often located outside annotated genes and enriched in enhancer elements (19-21). 

Because we have lacked a predictive understanding of how variants in enhancers affect the 

expression of target genes, translating these observations into biological or therapeutic insight has 

proved challenging (22). Despite the thousands of disease-associated variants identified through 

GWAS (23), in only a few cases has the likely causal gene and cell type been identified 

experimentally (examples listed in (22)). The cell-type specific networks of enhancer-gene 

connections predicted by the ABC model present a path forward for narrowing the set of likely 

causal genes and cell types for each association.  

 

More broadly, our understanding of the non-coding genome is approaching an inflection point. As 

our mechanistic and predictive models of regulatory genomics improve, our focus is shifting from 

describing to manipulating gene regulation. Already, therapies based on combining insights from 

human genetics and regulatory genomics are emerging, including approaches that target enhancer-

associated factors (24) or even directly target enhancers (25). It is no longer hard to imagine a time 

when we understand how the genome encodes biology, and how to leverage this understanding 

therapeutically.  
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Appendix A. Supplemental Material for Chapter 1 

 

Supplemental Notes 

 

Note A1. A general izable  method to  d is cover  and character ize  gene regulatory  

e l ements  

We set out to develop an approach to identify noncoding elements that regulate a given gene in its 

endogenous genomic context. A method to accomplish this would need to be able to (i) survey the 

regulatory function of many thousands of kilobases of genomic sequence, including regions not 

predicted to have regulatory function; (ii) sensitively identify and robustly quantify the effects of 

noncoding elements, and (iii) be generally applicable to study any gene of interest.  

 

We designed our CRISPRi-based screening approach to address these goals. Our results in the 

GATA1 and MYC loci demonstrate that this approach is scalable, sensitive, and specific. In the 

following sections we describe the conceptual and technical features that enable these characteristics 

and compare this method to similar approaches that use catalytically active Cas9 (1-3). 

 

CRISPRi enables  scalable  funct ional  character izat ion o f  gene regulatory e l ements .  

Because noncoding regulatory elements can be located far from their target genes and a gene might 

be controlled by multiple elements (4-6), a method to dissect the regulatory architecture of a given 

gene must be able to interrogate, through loss-of-function experiments, large regions of genomic 

sequence. To develop a scalable method, we exploited the programmable CRISPR system in the 
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setting of a pooled screen to simultaneously interrogate the functions of many noncoding regions. In 

this method, we synthesize a library of sgRNAs targeting noncoding regions of interest; generate a 

lentiviral library containing each of these sgRNAs; and establish a population of cells in which each 

cell expresses doxycycline-inducible KRAB-dCas9 and a single sgRNA. The effects of each sgRNA 

can be identified by using high-throughput sequencing to characterize the representation of sgRNAs 

in the cell population before and after a phenotypic selection (7, 8). This approach enables high-

throughput interrogation of noncoding elements: in this study, we assay 1.29 Mb of sequence 

around GATA1 and MYC in a single pooled experiment. 

 

CRISPRi robust ly  ident i f i es  gene regulatory e l ements .    

A method for characterizing the regulatory network for a given gene needs to be able to robustly 

identify regulatory elements, even when their effects on gene expression are relatively small in 

magnitude. Several features of our approach help to provide high sensitivity and specificity for 

regulatory elements. 

 

First, the pooled screening format provides numerous advantages that help to identify small effects. 

Specifically, pooled screens include contributions of many individual cells for each sgRNA; assess 

the functions of different sgRNAs in the same experimental context (in the same plate); and 

measure changes in sgRNA representation using count-based statistics.  

 

Second, the use of the KRAB-dCas9 system enables independent assessments of the function of the 

same regulatory element with multiple adjacent sgRNAs. This property stems from the fact that 

KRAB-dCas9 appears to disrupt the functions of regulatory elements across distances on the order 

of hundreds of base-pairs (9), such that in the MYC and GATA1 loci we observe regions where 
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dozens of sgRNAs are consistently depleted (Figure 2-1B, 2A). This is advantageous for quantifying 

the impact of an element because the efficacy of individual sgRNAs varies for reasons inherent to 

the CRISPR system, such as the effect of the targeting sequence on sgRNA transcription or stability 

(7). Thus, the degree to which an individual sgRNA affects gene expression reflects not only the 

importance of the disrupted element but also the potency of the sgRNA itself. To address this issue, 

we average the scores across multiple consecutive sgRNAs, providing a more robust estimate of the 

effect of an individual element. We note that this property appears to differ qualitatively from 

previous approaches using catalytically active Cas9 to perform mutagenesis of noncoding regions (1-

3). Cas9-mediated mutagenesis relies on non-homologous end-joining to disrupt critical sequence 

motifs, and so – because the resulting indels are on the order of tens of bases or smaller – only the 

few sgRNAs very close to critical sequence motifs appear to disrupt the function of any given 

regulatory element (1-3). These properties may be important in determining the power of screens 

using each approach and may have different trade-offs for positive versus negative selection screens. 

 

Supporting the specificity and sensitivity of this approach, we find that each of the elements 

identified by our CRISPRi screens (e-GATA1, e-HDAC6, and e1-e7), do in fact affect the 

expression of the intended gene, including effects on gene expression as small as 10%. We note that 

the sensitivity of this approach for even smaller effects might be accomplished by assaying more 

cells per sgRNA. 

 

CRISPRi-based screening i s  general  and can be appl ied to s tudy other genes or phenotypes .  

A general method for identifying gene regulatory elements should be applicable to any gene of 

interest. While we looked for effects on survival and proliferation in K562 cells in order to 

characterize multiple gene loci in a single screen, we note that this CRISPRi-based approach could 
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be applied to study an arbitrary gene of interest through fluorescence-based readouts of cells with a 

gene tagged in its endogenous locus with GFP (1). This strategy for mapping regulatory elements 

can also be applied in the context of other functional readouts, including other FACS-based assays 

(2, 10) or drug or toxin resistance phenotypes (8, 11). 

 

Together, these properties provide a scalable, sensitive, and general method for mapping the 

functions of gene regulatory elements. This CRISPRi-based approach appears to have 

complementary properties to Cas9-mediated mutagenesis approaches (1-3): CRISPRi can robustly 

identify gene regulatory elements and provides non-mutagenic inhibition that is consistent across 

individual alleles and cells, while mutagenesis-based approaches appear to provide high resolution 

for identifying specific motifs. Further work will be required to determine how to best leverage these 

complementary features to dissect the networks of noncoding elements controlling gene expression. 

Finally, we note that in theory neither approach will be able to identify elements that act redundantly 

with other elements in a given locus, or elements that reside in repetitive genomic regions that 

cannot be uniquely targeted with CRISPR. Although we found several instances in which promoters 

repress neighboring genes, perhaps by a competition mechanism, it remains unclear whether 

CRISPRi can identify other types of repressive elements that are not promoters. Similarly, its utility 

in identifying intronic enhancers within the body of the assayed gene is unclear, as recruitment of 

KRAB-dCas9 to these sites may directly interfere with transcription. Further technical advances will 

be required to characterize and explore the functions of these elements. 

 

 

 

 



 
 

 74 

Note A2. Essent ia l i ty  o f  noncoding RNAs in the MYC locus .  

Previous CRISPR screens have established that the protein coding genes expressed in the vicinity of 

MYC are not essential in K562 cells (Figure A-1). We further considered whether noncoding RNA 

genes in this region — including PVT1, CCDC26, and 5 microRNAs — are also essential and thus 

might explain the effects on cell proliferation conferred by the enhancers we discover in the MYC 

locus. In each case, we found that these noncoding RNAs either do not affect cell proliferation in 

K562 cells (PVT1 and CCDC26) or are not detectably expressed (microRNAs) and thus that e1-e7 

likely control cell proliferation through regulation of MYC.  

 

Two of the MYC enhancers we identified (e3 and e4) correspond to promoters that produce short 

alternative isoforms of the long noncoding RNA (lncRNA) PVT1 (Figure 2-2A). Because PVT1 has 

previously been reported to affect cellular proliferation in trans based on siRNA-mediated 

knockdown experiments in mammary and ovarian cell lines (12, 13), we investigated whether a trans 

function of the PVT1 transcript could be responsible for its promoters affecting cellular 

proliferation in K562 cells. We performed competition assays between K562 cells transfected with 

control siRNAs and cells transfected with siRNAs against PVT1 or, as positive controls, MYC or 

GATA1 (see Methods). Knockdown of MYC or GATA1 (27% or 52% reduction, respectively) led 

to a reduction in cellular proliferation relative to cells transfected with control siRNAs, as expected 

(Figure A-1C,D). In contrast, knockdown of PVT1 (66% reduction for the best siRNA) did not lead 

to detectable changes in proliferation (Figure A-1C,D). This indicates that reduction of the mature 

PVT1 lncRNA does not affect the proliferation of K562 cells. 

 

In contrast, we found that CRISPRi targeting e3 (corresponding to a TSS of PVT1), which led to a 

~77% reduction in PVT1 RNA levels (Figure A-1E), did affect cellular proliferation in competition 
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assays (Figure 2-2C). Thus, the proliferative defect observed upon inhibition of these elements in 

K562 cells appears to reflect their functions in the cis regulation of MYC rather than previously 

reported trans functions of the PVT1 RNA transcript itself. This is consistent with previous findings 

that gene promoters (including promoters of lncRNAs) can act as enhancers for neighboring genes 

(14, 15). Indeed, we show that both e3 and e4 activate expression of a plasmid-based reporter gene 

(Figure A-5B, see Methods), indicating that these elements can act as enhancers. Further work will 

be required to investigate the possibility that other mechanisms associated with PVT1 transcription 

might also quantitatively contribute to controlling MYC expression in cis. 

 

In addition to PVT1, the MYC region also contains the lncRNA CCDC26 (a pseudogene), which is 

expressed from a TSS 7.2 Kb distal to e5. Although e5 scored in our screen and affected MYC 

expression, we did not observe depletion of sgRNAs targeting the CCDC26 TSS or promoter 

despite an abundance of sgRNAs in these regions (Figure A-5B). Thus, e5 and other enhancers likely 

affect cell proliferation through regulation of MYC rather than through regulation of CCDC26. We 

note that it is technically possible that depletion of CCDC26 or PVT1 contributes to affecting cell 

proliferation in the context of MYC suppression, but our data are inconsistent with them having strong 

effects on cell proliferation independent of changes in MYC. 

 

The genetic region around also MYC harbors five putative miRNA genes previously described in 

several cancer cell lines (miR1204-1208). To determine if these miRNAs are expressed in K562s, we 

inspected ENCODE short RNA sequencing data 

(wgEncodeCshlShortRnaSeqK562CellShortAln.bam) and found that 0 reads (out of >29 million 

reads) overlap the RefSeq-annotated putative miRNAs in the region. Because regulation by miRNAs 
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is thought to be highly dependent on miRNA abundance (16), miR1204-1208 do not likely have 

important functions in K562 cells. 

 

Note A3. Repress ive  e l ements  in the  MYC locus .  

We identified 2 elements in the MYC locus (r1 and r2, Figure 2-2A, A-5) whose inhibition by 

CRISPRi led to increased proliferation of K562 cells in our screen, suggesting that these elements may 

act to repress MYC expression. Both of these elements have smaller absolute effect sizes in the 

screen data than the weakest detected enhancer (e5, 10% reduction in MYC expression), suggesting 

that these repressive elements may have even smaller quantitative effects on MYC expression. 

Interestingly, one of these elements corresponds to the promoter of a minor PVT1 isoform (Figure 

2-2A), consistent with a model wherein this promoter of PVT1 competes with the MYC promoter 

for regulatory signals. 

 

Note A4: Conceptual  f ramework for  predi c t ing enhancer  funct ion.  

Our heuristic approach for comparing the relative activity of enhancers is based on a classic model 

in which an enhancer affects gene expression by recruiting transcription factors and activating gene 

expression upon physical contact (“looping”) between the enhancer and a target promoter (17, 18). 

In this model, the quantitative impact of an enhancer might depend on (i) its intrinsic activity (i.e., 

the complement of transcription factors recruited to the element and their effects on a target 

promoter) and (ii) the frequency at which the enhancer physically contacts its target promoter in the 

nucleus. We note that this model does not represent all of the possible mechanisms by which 

regulatory elements might regulate their target genes (17), but does provide a simple framework with 

which to combine these two aspects of enhancer function. 
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To represent the intrinsic activity of an enhancer, we used quantitative measures of DHS and 

H3K27ac occupancy (see Methods) based on previous evidence that they correlate with various 

measures of activity. For example, DHS signal at regulatory elements in the genome correlates with 

transcription factor occupancy (19, 20) and with the activity of those elements in plasmid-based 

reporter assays (21). H3K27ac occupancy correlates with expression of neighboring genes across 

cellular contexts (22, 23) as well as with on-plasmid enhancer activity (21).  

 

To represent the contact frequency between an enhancer and promoter, we used genome-wide 

measurements based on Hi-C (24) (see Methods), a method that requires physical contact and 

crosslinking in order to produce a signal linking two regions of genomic DNA. Physical contacts 

between enhancers and promoters correlate with gene activation (6, 17, 18, 25), and in a few cases 

increasing the frequency of enhancer-promoter contact has been shown to activate gene expression 

(26, 27). 

 

These observations provide a conceptual foundation for this heuristic approach to comparing the 

relative impact of enhancers on gene expression. Further work will be necessary to determine 

whether this approach in fact reflects the mechanisms by which these enhancers regulate MYC. 

Regardless of the underlying mechanisms, this simple heuristic can distinguish elements that regulate 

MYC in K562 cells from those that do not and may be more broadly useful for connecting 

regulatory elements with their target genes. 

 

Note A5: Guide l ines  for  des ign o f  addi t ional  CRISPRi screening l ibrar ies .  

We sought to determine how to best design CRISPRi screening libraries using fewer sgRNAs per 

gene and thus enabling the interrogation of more genes. We analyzed our data by down-sampling 



 
 

 78 

the number of sgRNAs to every 2nd, 4th, 5th, or 10th sgRNA within each 20-sgRNA window. We 

found that, as expected, this reduces the reproducibility of estimates of the quantitative effects of 

elements and thus reduces power to detect elements with small effects (Figure A-9A).  

 

An alternative strategy for designing smaller libraries is to focus on the subset of regions that are 

likely to score. All of the elements detected in our screen are centered on DHS sites (Figure A-9B) 

and every significantly depleted or enriched 20-sgRNA window is located within 1 kb of a DHS 

peak (the union of wgEncodeUwDnaseK562PkRep1.narrowPeak and 

wgEncodeUwDnaseK562PkRep2.narrowPeak). Designing a screen against only DHS sites could 

reduce the size of the library by approximately a factor of 5. However, it remains unclear whether 

there are regulatory elements in other loci that are not DHS sites. 
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Methods 

Selec t ion o f  targe t s  for  sgRNA library 

To develop this CRISPRi screening approach (see Note A1), we focused on two genes — MYC and 

GATA1 — that play critical roles in human development and disease and that are known to affect 

cellular proliferation in K562 cells (28). We determined by consulting a genome-wide catalog of gene 

essentiality in K562 cells (28) as well as Hi-C data in K562 cells (25) that MYC and GATA1 are not 

located in close linear (500 Kb) or spatial proximity (within the same topological domain) to other 

genes expressed in K562 cells that strongly affect cell proliferation (Figure A-1). We also examined 

the potential effects of several noncoding RNAs in the MYC locus on cell proliferation, but 

determined that none are likely to contribute (see Supplemental text). 

 

We designed an sgRNA library containing guides targeting several loci as well as internal controls, 

for a total of 98,599 sgRNAs. We dedicated most of the sgRNAs in the library to studying the MYC 

locus, due to the apparent complexity of its regulatory architecture (e.g., see Figure 2-3A) (29) and its 

importance in many human cancers. To identify the elements that regulate MYC, we examined the 

3-Mb topological domain and selected a ~666 Kb region that contained MYC itself, many elements 

with strong DHS and H3K27ac signal in K562 cells, and all intervening regions. We selected 

additional regions throughout the domain to cover other strong H3K27ac peaks downstream of 

MYC (including the regions surrounding e5-e7 that from Hi-C can be observed to form long-range 

loops to the MYC promoter), as well as additional regions upstream of MYC that are marked by 

active chromatin in other cell types but not in K562s (e.g., see Figure 2-3A). In each case, we 

included at least 5 kb of sequence surrounding the ENCODE “broadPeak” annotations. We note 

that performing similar experiments with larger libraries — for example including all possible 
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sgRNAs in the 3-Mb topological domain containing MYC — is possible and would require 

increasing the scale of the experiment (number of cells and reads) accordingly. 

 

For GATA1, we tiled a 74 kb region containing the GATA1 gene body as well as several putative 

enhancer elements nearby, including 17 kb annotated as “weak enhancer” and 19.4 kb annotated as 

“strong enhancer” by ENCODE ChromHMM (Figure 2-1B). We note that we do not rule out the 

possibility that additional regulatory elements beyond this span may regulate GATA1. 

 

We included several additional sets of sgRNAs as internal positive and negative controls for the 

screen. As negative controls, we included 4,082 scrambled-sequence sgRNAs, selected to include all 

20- or 21-nucleotide sgRNAs from the previous genome-wide CRISPRi screening library designed 

by the Weissman lab (11), subject to the filters described below. We also included sgRNAs targeting 

the promoters of 600 protein-coding genes – including 535 that are expressed in K562 cells 

(fragments per kilobase per million >1) and 65 that are not expressed – as internal standards in the 

screen to compare to previous genome-wide screens assessing gene essentiality (11, 28). We selected 

these genes to span the range of potential effects on cellular proliferation, including the 52 most 

essential genes reported previously (28). 

 

Finally, because sgRNAs tiling across a noncoding region might be subject to different biases than 

scrambled-sequence sgRNAs (e.g., due to specific sequence motifs, repetitive regions, or general 

toxic effects of targeting KRAB-dCas9 to chromatin), we selected additional negative control 

regions that are not close to genes known to be strongly essential but nonetheless do have putative 

regulatory elements marked by DHS and H3K27ac. We used these negative control regions (85 kb 



 
 

 81 

total) to estimate an empirical false discovery rate for elements in the GATA1 and MYC loci (see 

below). 

 

sgRNA des ign for  t i l ing noncoding sequences  

To design sgRNAs for tiling across noncoding sequences, we generated a list of all possible targeting 

sites with an NGG PAM. We calculated a specificity score based on potential off-target sites using a 

previously described algorithm (http://crispr.mit.edu, (30)), and removed guides with specificity 

scores <20. We note that this means that certain noncoding regions, including regions containing 

repetitive elements, are not tested by this screen. For cloning sgRNAs into sgOpti, we added a “G” 

base to the beginning of the 20-nucleotide sequence if the first base was not already a “G”. We note 

that we applied additional filters to the sgRNAs considered during analysis of the screen (see below). 

 

sgRNA des ign for  targe t ing promoters  

Because CRISPRi has a ~200-bp window of efficacy surrounding the TSS (Note A1) (31), we 

used capped analysis of gene expression (CAGE) data from K562 cells (32) to precisely define TSS 

locations (10-bp resolution) and designed sgRNAs targeting the regions immediately proximal to this 

site. In cases where genes showed multiple TSSs (as judged by the second-strongest TSS having 

>20% of the CAGE signal of the stronger TSS), we designed sgRNAs against both of these TSSs. 

To design sgRNAs targeting these sites, we used an algorithm based on a previous approach (11). 

We first generated all possible guides of length 18-24 where the first position in the genome 

corresponds to a “G”, filtering out those with potential for off-target effects based on their 

specificity score. We defined prioritized windows around the TSS corresponding to (-30 to +45 bp), 

(-30 to +95 bp), and (-200 to +200 bp). We selected sgRNAs from these regions in order until we 
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obtained 20 sgRNAs per promoter. For each window, we chose as many sgRNAs as possible that 

were spaced at least 5 bp apart, and then moved to the next priority window. 

 

Tissue Culture  

We maintained K562 (ATCC) cells a density between 100K and 1M per mL in RPMI-1640 (Thermo 

Fisher Scientific, Waltham, MA) with 10% heat-inactivated FBS (HIFBS, (Thermo Fisher Scientific), 

2mM L-glutamine, and 100 units/ml streptomycin and 100 mg/ml penicillin. We maintained 

HEK293Ts between 20 and 80% confluence in DMEM with 1 mM Sodium Pyruvate, 25mM 

Glucose (Thermo Fisher Scientific) and 10% HIFBS unless otherwise noted.   

 

Construc ts  for  CRISPRi 

We expressed sgRNAs from sgOpti, a modification of pLenti-sgRNA (Addgene #71409) with the 

sgRNA scaffold replaced with the sgRNA-(F+E)-combined optimized scaffold previously described 

(33). We generated constructs expressing inducible KRAB-dCas9 by replacing the SFFV promoter 

with a TRE3G promoter and the P2A-mCherry cassette with an IRES-GFP or IRES-BFP cassette 

in pHR-SFFV-KRAB-dCas9-P2A-mCherry (Addgene #60954) (11). 

 

CRISPRi l ine  generat ion 

We generated the inducible CRISPRi cell lines by (i) transducing K562 cells with a construct 

expressing rtTA linked by IRES to a neomycin resistance cassette expressed from an EF1α 

promoter (ClonTech, Mountain View, CA) and selecting with 200 µg/mL G418 (Thermo Fisher), 

then (ii) transducing these rtTA-expressing K562 cells with one of the KRAB-dCas9 constructs 
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described in the section above. We selected for cells expressing GFP or BFP by fluorescence 

activated cell sorting (FACS).  

 

sgRNA library c loning  

We synthesized an oligo pool corresponding to the sgRNA library with PCR tags (purchased from 

CustomArray, Bothell, WA). We amplified the pool by PCR with primers sgRNA Library Fwd/Rev 

to add homology arms for Gibson assembly, and purified the product with an equal volume (1×) 

AMPure XP SPRI beads (Beckman Coulter, Danvers, MA). We prepared the vector backbone by 

digesting sgOpti with BsmBI (New England Biolabs (NEB), Ipswich, MA) followed by purification 

with 0.75× AMPure XP SPRI. We assembled 70 ng amplified library into 500 ng digested vector in a 

50 µL Gibson reaction (NEB), cleaned these by 0.75× AMPure XP SPRI, eluted in 15 µL H2O and 

electroporated the entire volume into Endura competent cells (Lucigen, Middleton, WI). We 

expanded the cells in liquid culture for 18 hours at 30 °C and purified the pooled library plasmid 

with the Endotoxin-Free Plasmid Maxiprep Kit (Qiagen, Hilden, Germany). 

 

Lentiv irus product ion 

We plated 700,000 HEK293T cells on 6-well plates (Corning, Corning, NY) and 24 hours later 

transfected with 1 µg dVPR, 300 ng VSVG, and 1.2 µg transfer plasmid using XtremeGene9 (Roche 

Diagnostics, Indianapolis, IN). For pools, the cell number and plasmid mass were scaled 

proportionally to 14 million cells on a 15 cm plate (Corning). 16 hours post-transfection we changed 

media to DMEM with 20% HIFBS. At 48 hours post-transfection, we harvested viral supernatants 

and filtered them through a 0.45 µM syringe filter before use. 
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Pooled CRISPRi screens for  essent ia l i ty  

We transduced K562 harboring a doxycycline-inducible KRAB-dCas9 at an multiplicity of infection 

(MOI) of 0.3 at a coverage of 1,000 transduced cells per sgRNA as previously described (28). 

Starting 36 hours after transduction, we selected for successfully transduced cells with 1 µg/mL 

puromycin for 72 hours and collected 150 million cells as a reference sample. After maintaining cells 

at 1,000× coverage in 0.2 µg/mL puromycin and 0.5 µg/mL doxycycline for 14 population 

doublings, we collected 150 million cells of the final cell population. We extracted genomic DNA 

from both the reference and final cell populations using the QIAamp DNA Blood Maxi kit (Qiagen) 

according to the manufacturer's instructions. We amplified sgRNAs integrations from 900 µg 

genomic DNA by PCR with indexed sgRNA sequencing library primers containing Illumina 

adaptors and sequenced them on a HiSeq 2500 using custom Illumina sequencing and index primers 

to an average depth of >350 reads per sgRNA. We used Bowtie (34) to align the resulting sequences 

to the sgRNA library allowing perfect matches only. 

 

Analys i s  o f  sgRNA deple t ion in pro l i f e rat ion-based s creen 

To evaluate the potential of off-target sgRNA-mediated toxicity to affect cellular proliferation, we 

inspected the depletion of the set of sgRNAs in the tiled negative control regions (where we expect 

no on-target sgRNA depletion) and noted that the frequency of sgRNAs more than 2-fold depleted 

across the screen is higher (2-proportion Z-test p<0.0001) in sgRNAs with specificity scores below 

50 (9%) than those with a score of 50 or above (5%). We considered only the sgRNAs with 

specificity scores >50 in the subsequent analysis. We also ignored sgRNAs with more than 10 “G” 

bases in the targeting sequence, which also lead to an increased frequency of off-target toxicity based 

on analysis of the negative control sgRNAs. These filters retain >90% of sgRNAs. To ensure robust 

calculation of sgRNA scores, we examined only sgRNAs with at least 50 raw reads in the initial 
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timepoints for both replicates (retains 98% of sgRNAs). We assessed the depletion of the remaining 

sgRNAs as described below. 

 

CRISPRi score  

The “CRISPRi score” represents the –log2 depletion between the beginning and end of the 

proliferation screen (14 population doublings). We calculated the CRISPRi score for each of two 

replicates and report the mean of these scores as the CRISPRi score for each sgRNA. To identify 

significant regions by integrating information from multiple sgRNAs, we used a sliding window 

approach, averaging the mean CRISPRi score across N consecutive guides. To choose N, we 

compared the correlation of the window CRISPRi scores between the two replicates as a function of 

N (Figure A-2A). We found that using N = 20 yielded a Pearson’s correlation of 0.80 between the 

two replicates (Figure A-2B). As the sgRNAs were spaced on average every ~16 bp (Figure A-2C), 

windows of 20 consecutive sgRNAs spanned on average 314 bp (median = 237 bp, Figure A-2D). 

We note that this resolution is on the same order as the size of scoring regions in our CRISPRi 

screen (hundreds of bp), indicating that choosing a smaller window size would not necessarily 

increase the resolution of the approach. Because some regions are covered sparsely due to repetitive 

sequence, we considered windows only if they contained 20 guides within a span of 1000 bp (Figure 

A-2D). We note that the enhancers we identify (e-GATA1, e-HDAC6, e1-e7) are robust to the 

precise choice of window size. 

 

To identify significant windows, we required first that the CRISPRi score for the window had an 

irreproducible discovery rate < 0.05 when comparing the two replicate screens (35). Second, we 

tested whether the mean of the sgRNAs in each window deviated significantly from the mean of the 

negative controls, using sgRNA CRISPRi scores averaged across duplicate screens. Specifically, we 



 
 

 86 

calculated a T-test statistic by comparing the CRISPRi scores of the 20 sgRNAs with those of the 

scrambled-sequence, negative control sgRNAs. We assessed the empirical false discovery rate (FDR) 

of windows in the GATA1 and MYC loci by comparing these T statistics to those generated from 

sliding windows across three negative control regions that are located far from known essential 

genes expressed in K562 (see Selection of targets for sgRNA library), and selected a threshold based 

on a FDR of 0.05. This threshold corresponded to a Benjamini-Hochberg-corrected T-test p-value 

of 0.032. We considered significant elements with an absolute effect size of >25%. 

 

The final reported CRISPRi scores for 20-sgRNA windows in figures represent the average of the 

two replicate screens normalized to the average of the scrambled-sequence negative-control 

sgRNAs. 

 

Sources  for  ep igenomics  data 

We downloaded data generated by the ENCODE Project Consortium (36) in K562 cells 

corresponding to DNase I hypersensitivity sequencing (DHS-seq); H3K27ac, GATA1, and CTCF 

chromatin immunoprecipitation sequencing (ChIP-seq); the chromatin state hidden Markov model 

(ChromHMM); and RNA Pol II ChIA-PET (37). To examine transcription factor occupancy at 

various enhancers, we downloaded the genome-wide binding sites of 100 transcription factors based 

on ChIP-Seq in K562 cells (wgEncodeRegTfbsClustered track from UCSC Genome Browser). We 

obtained sequence conservation from the UCSC Genome Browser corresponding to the phastCons 

100-mammal multiple alignment (38). CTCF motifs were identified using FIMO (39) to search for 

the “V_CTCF_01” and “V_CTCF_02” position weight matrices from TRANSFAC (36). We 

obtained in situ Hi-C data for multiple cell types and used 5-Kb resolution KL-normalized observed 

matrix for all plots and analyses (25). 
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Cloning indiv idual  sgRNAs 

For each of the selected enhancers (e-GATA1, e-HDAC6, e1-e7), and promoters (GATA1 and 

MYC) that scored in the screen, we selected 2 non-overlapping sgRNAs with a preference for 

sgRNAs with high specificity and CRISPRi scores and sgRNAs that overlap the peak of DNase 

hypersensitivity. For regions that did not score (NS1, HDAC6 promoter), we selected sgRNAs 

based on the same criteria, although because these sgRNAs were not high scoring, we also preferred 

guides predicted to have high efficacy (40). As negative controls, we selected 5 sgRNAs from the set 

without genomic targets. We cloned these sgRNAs as previously described (41) into sgOpti. 

 

Generat ing sgRNA-express ing s table  c e l l  l ines   

We generated stable cell lines expressing single sgRNAs by lentiviral transduction in 8 µg/ml 

polybrene by centrifugation at 1400 x g for 45 minutes with one million cells per well in 24 well 

plates. After 24 hours, we selected for transduction with 1 µg/ml puromycin (Gibco) for 72 hours 

then maintained cells in 0.2 µg/ml puromycin. For each sgRNA, we generated three independent 

polyclonal cell populations through triplicate infections. 

 

Single  sgRNA knockdown 

We plated sgRNA-expressing stable cell lines at 200,000 cells/ml in 0.5 µg/ml doxycycline and 

harvested cells 24 hours later by lysing in Buffer RLT (Qiagen).  

 

RNA extrac t ion and quant i tat ive  RT-PCR 

We extracted RNA from 20,000-50,000 cells per experiment in Buffer RLT (Qiagen) using 

Dynabeads MyOne Silane beads (Thermo Fisher), treated samples with TURBO DNase (Thermo 
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Fisher), and cleaned again with Dynabeads MyOne Silane beads. We used AffinityScript reverse 

transcriptase (Agilent Technologies, Lexington, MA) and random nonamer primers to convert RNA 

to cDNA. We performed qPCR using SYBR Green I Master Mix (Roche) and calculated differences 

using the ΔΔCT method versus GAPDH. 

 

To achieve power to detect small effects in gene expression, we performed 3 technical qPCR 

replicates (from the same cDNA) and took the median value for further analysis. We also included 

many biological replicates. Specifically, we derived 3 independent lines for each sgRNA and assayed 

each once as a biological replicate in GATA1 locus experiments (for a total of 3 replicates) and 4 

times for experiments in the MYC locus (for a total of 12 biological replicates).  

 

RNA sequenc ing and analys i s  

To examine the transcriptional changes resulting from inhibition of a GATA1 enhancer, we 

performed RNA-sequencing on cell lines expressing individual sgRNAs targeting the GATA1 TSS 

(2 different sgRNAs), e-HDAC6 (2 different sgRNAs), and non-targeting, negative controls (4 

different sgRNAs). We generated RNA sequencing libraries from 3 biological replicates for each 

sgRNA and processed the data as previously described (42). We identified differentially expressed 

genes (q < 0.05, fold-change > 2) with DESeq2 (version 1.6.3) (43) and found a significant overlap 

in the sets of differentially expressed genes between GATA1 TSS and e-HDAC6 targeting sgRNAs 

(Figure A-4B), suggesting that e-HDAC6 leads to downstream transcriptional changes consistent 

with direct regulation of GATA1. 
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Single  sgRNA compet i t ive  growth assays 

For competition experiments we pooled the indicated K562 cells expressing an individual sgRNA 

and KRAB-dCas9-IRES-BFP with K562s expressing either GFP or RFP (control cells) in 0.5 

µg/mL doxycycline. We measured the fractions of CRISPRi and control cells by flow cytometry 

after 24 hours and again after 7 additional days. We performed each experiment in six replicates 

including competitions against both the GFP- and RFP-expressing control lines. We quantified the 

growth phenotype gamma as previously described (11). 

 

Luci f erase  reporter  assays  for  enhancer  ac t iv i ty  on a p lasmid 

To test the functions of each putative regulatory element in a classic reporter-based enhancer assay, 

we created a reporter plasmid derived from pGL4.23 (Promega, Madison, WI) where firefly 

luciferase is expressed from a 180-bp fragment of the MYC promoter (hg19 coordinates: 

chr8:128748316-128748495). We designed an insertion site ~2 kb upstream of the MYC promoter 

for inserting each candidate enhancer sequence, and we flanked this region with polyadenylation 

signals in either direction to avoid measuring luciferase activity driven from transcripts initiating 

from the enhancer elements themselves. The negative control sequence corresponded to a 

kanamycin resistance cassette.  

 

For each construct, we transfected 500,000 K562 cells using the Lonza (Cologne, Germany) Amaxa 

96-well Shuttle according to the manufacturer’s instructions for this cell type (except transfecting all 

500,000 cells in a single well) with 250 ng of reporter plasmid plus 250 ng of a plasmid expressing 

Renilla luciferase. We harvested cells 48 hours after transfection by spinning once, washing with PBS, 

and resuspending in 40 µl Passive Lysis Buffer (Promega). We performed the Dual-Luciferase 

Reporter Assay according to the manufacturer’s protocol (Promega). Barplots report firefly 
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luciferase activity normalized to Renilla luciferase activity and to the negative control construct for 3 

replicate transfections. 

 

Chromatin immunoprec ip i tat ion for  H3K27ac 

We performed ChIP for H3K27ac as previously described, with modifications (44). We grew K562 

cells expressing individual sgRNAs targeting MYC enhancers or negative controls in the presence of 

doxycycline for 48 hours. We harvested cells, washed once in cold PBS, and crosslinked with 1% 

formaldehyde in PBS for 10 minutes at 37 °C followed by quenching with glycine for 5 minutes at 

37 °C. We washed cells twice in ice cold PBS with 1× protease inhibitor (Roche). We flash froze the 

pellets and stored at -80°C until sonication, at which time we thawed the pellets on ice and lysed 

cells in ChIP Lysis Buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl pH 8.0) on ice for 10 minutes. 

We sonicated batches of 3 million cells in 100 µL using a Q800R2 Sonicator (QSonica, Newtown, 

CT) at 50% amplitude, 30 s on / 30 s off, for 7.5 minutes to obtain fragment sizes between 150 and 

700 bp. 

 

We diluted 100 µL lysate from 1 millions cells in 660 µL ChIP Dilution Buffer (0.01% SDS, 1.1% 

Triton X-100, 1.12 mM EDTA, 16.7 mM Tris-HCl pH 8.0), and saved an aliquot for whole-cell 

extract. For immunoprecipitation of H3K27ac (using antibody 39685 from Active Motif, Carlsbad, 

CA), we incubated 5 µl of antibody with Protein A/G beads (Thermo Fisher) in Blocking Buffer 

(500 mM Tween-20, 500 mM BSA in 1x PBS) for 2 hours at 4 °C. We then washed the beads once 

in Blocking Buffer, resuspended the beads in 55 µL Blocking Buffer, and added it to the DNA 

samples. We incubated the antibody-bead-lysate mixture overnight at 4°C rotating end over end. 

Next day, we washed the samples as follows: four times with 200 µL of RIPA Buffer (0.1% Na-

deoxycholate, 0.1% SDS, 1% Triton X-100, 100 mM NaCl, 1 mM EDTA, 10 mM Tris-HCl pH 8.0), 
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twice with 100 uL RIPA High Salt Buffer (0.1% Na-deoxycholate, 0.1% SDS, 1% Triton X-100, 500 

mM NaCl, 1 mM EDTA, 10 mM Tris-HCl pH 8.0), twice with LiCl Wash Buffer (250 mM LiCl, 

0.5% NP-40, 0.5% Na-deoxycholate, 1 mM EDTA, 10 mM Tris-HCl pH 8.0), and twice with 1× 

TE. Following the washes, we resuspended beads in Elution Buffer (10 mM Tris-HCl pH 8.0, 5 mM 

EDTA, 300 mM NaCl, 0.1% SDS) and incubated the resuspended beads at 65 °C for 10 minutes. 

Following this first brief reverse crosslinking step, we added 5 µL RNase Cocktail (Thermo Fisher) 

and incubated at 37 °C for 30 minutes, and then added 5 µl Proteinase K (NEB) and incubated at 

65 °C for 2 hours. Samples were cooled on ice. DNA was extracted using Agencourt XP (SPRI) 

beads (Beckman Coulter) at 2× sample volume, followed by elution in 10 mM Tris-HCl pH 8.0. We 

performed quantitative PCR using Roche 2× SYBR Green Master Mix on a Roche LightCycler 480. 

We calculated enrichment compared to 5 positive control primers designed against H3K27ac peaks 

outside of the MYC region. 

 

s iRNA-mediated knockdown o f  MYC, GATA1, and PVT1 

We transfected 200,000 cells with 10 nM siRNAs obtained from GE Dharmacon (Lafayette, CO) in 

quadruplicate using the Neon transfection system (Thermo Fisher, settings: 1,450 V, 10 ms width, 3 

pulses). We harvested cells in Buffer RLT (Qiagen) 24 hours after knockdown and estimated target 

gene expression relative to cells transfected with non-targeting siRNAs by quantitative PCR as 

described above. For competition experiments we transfected fluorescently labeled cells (GFP or 

RFP) with indicated siRNAs at 10 nM following the described procedure. We pooled cells such that 

cells transfected with siRNAs targeting PVT1, MYC or GATA1 were matched with differently 

labeled cells transfected with non-targeting control siRNAs. We measured the GFP and RFP 

fractions immediately following transfection and again after 4 days by flow cytometry. Each 

experiment was carried out in quadruplicates and included a label-swap experiment. 
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Strategy  for  genet i c  de l e t ions o f  enhancers  in the MYC locus 

To test the effects of enhancers on MYC expression through genetic manipulations, one 

straightforward experiment would be to use CRISPR/Cas9 to generate clonal cell lines containing 

homozygous knockouts of each putative enhancer and measure the effects on MYC using the qPCR 

assays described above. However, there are several reasons why this experiment is not ideal in our 

system. First, we observe significant biological variation in MYC expression between clonal cell 

lines. Second, MYC affects cellular proliferation and thus cells lacking one of these enhancers may 

be outcompeted. Finally, K562 cells are triploid, making it difficult to obtain cell lines where an 

enhancer is removed on all 3 alleles. 

 

Accordingly, we developed an alternative strategy (Figure A-7). We used CRISPR/Cas9 to generate 

clonal cell lines carrying heterozygous genetic deletions (on 1 or 2 of the 3 homologous chromosomes) 

and compared the expression of MYC on the modified and unmodified homologous chromosomes 

in the same cells. We expect that if the enhancer in fact regulates MYC, MYC expression from the 

modified allele should be reduced compared to the wild-type allele. This approach is identical in 

concept to classical cis-trans tests. This allele-specific approach can demonstrate that regulation of 

MYC is a direct, cis effect of the enhancer rather than an indirect effect (for example, due to the 

enhancer regulating another gene that in turn regulates MYC). 

 

To implement this strategy, we first generated a cell line containing polymorphic sites on each allele 

of MYC. Because K562 cells do not contain polymorphisms in the MYC transcript, we knocked in 

polymorphic tags using CRISPR/Cas9 and homologous recombination. We first chose a targeting 

site in a MYC intron in a region that did not show sequence conservation across mammals. We 

reasoned that editing such a site would not likely affect the regulation of MYC. We designed an 
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sgRNA targeting this site as well as a ssDNA oligo to use as a donor for homologous recombination 

(Figure A-7A). This oligo contained four random nucleotides (NNNN), allowing us to generate cell 

lines containing unique polymorphic on each of the 3 alleles. We co-transfected these sgRNAs, 

Cas9, and the donor oligo in K562 cells, isolated clonal cell lines through serial dilution, and 

genotyped this intronic site by PCR and sequencing. We identified a clonal cell line containing 3 

distinct variants (CTAA, CCCG, and ATCG) in the targeted location. We expanded this cell line 

(K562-MYC-Tag) and used it for the second round of transfections. 

 

To delete MYC enhancers, we designed sets of 4 sgRNAs flanking each element, with 2 sgRNAs on 

each side. These sgRNAs were designed to delete ~1 kb regions containing the DHS site in the 

middle of the element. For e3 and e4, we designed the sgRNAs to cut outside of the exons and 

splice sites of PVT1. We co-transfected the K562-MYC-Tag cell line with Cas9 and sets of 4 

sgRNAs, generated clonal cell lines through serial dilution, and genotyped each clone (Figure A-7B). 

We expanded clones containing deletions on 1 or 2 of the 3 alleles. 

 

For each deletion clone and for 26 wild-type control clones, we use a droplet digital PCR (ddPCR) 

hydrolysis assay to measure the allele-specific expression of MYC and PVT1. We used this data, in 

combination with the genotyping amplicon sequencing, to infer partial phasing of the alleles relative 

to the polymorphic tags in the MYC intron (Figure A-7C). We performed these experiments for e2, 

e3, and e4 because these loci had SNPs that allowed us to determine which allele was deleted (see 

below). We compared the allele-specific expression between wild-type and deletion clones to 

determine how deleting MYC enhancers affected MYC expression (Figure A-7D,E).  

 

Additional technical details for each of these steps are included below. 
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CRISPR/Cas9 trans fe c t ions and c lonal  c e l l  l ine  se l e c t ion 

To delete specific sequences, we co-transfected 600 ng of Cas9-expressing plasmids (“PX330-

NoGuide”), 300 ng of a pool of sgRNA-expressing plasmids (“pZB-Sg3”), and 600 ng of a plasmid 

expressing EGFP and a puromycin selectable marker from a CAG promoter (pS-pp7-GFPiP). To 

create PX330-NoGuide, we modified PX330 (gift from Feng Zhang, Addgene plasmid #44230) (45) 

to remove the sgRNA expression cassette. To generate pZB-Sg3, we cloned a human U6 promoter 

and optimized sgRNA scaffold sequence (33) into a minimal vector with an ampicillin-selectable 

marker and a ColE1 replication origin. We transfected batches of 250,000 human cancer cells using 

the Neon Transfection System (Invitrogen), using 3 pulses of 10 milliseconds at 1450 V and plated 

them into a 96-well plate in 200 µl media. As an internal control for each set of transfections, we 

performed a transfection using a pool of 4 sgRNAs with no predicted target sites in the human 

genome. To knock in polymorphic tags into the MYC locus, we included 200 ng of ssDNA oligo in 

the transfection. 

 

We verified efficient transfection by examining GFP expression after 24 hours. To select for 

transfected cells, we replaced the media 24 hours after transfection with 200 µl media + 4 µg/ml 

puromycin. One day later, we split the cells into a 6-well plate with 2 ml of 4 µg/ml puromycin. One 

day later, we replaced the media with 2 ml of media with no puromycin. We allowed cells to grow 

for 7-8 days, replacing the media every 2-3 days. Once the cells could be reliably counted, we plated 

8 96-well round-bottom plates at a dilution of 0.4 cells/well. We grew these plates in 200 ul of 20% 

FBS media, doing partial media changes every 3-4 days, for 12-16 days. Clonal cell lines were split 

into multiple copies and grown for 2-14 days before harvesting for biological replicates. We 
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harvested cells for DNA and RNA extraction by removing most of the media and adding 3.5× 

volume Buffer RLT (Qiagen). 

 

Genotyping de l e t ion c lones  by PCR and sequenc ing 

To genotype K562 clones, we isolated genomic DNA using Silane beads.  For genotyping MYC-Tag 

insertion clones (Figure A-7A), we performed PCR using primers surrounding the site followed by a 

second round of PCR to add a different barcode to each sample and sequenced the amplicons on an 

Illumina MiSeq (Illumina, San Diego, CA). 

 

For genotyping deletion clones, we performed a first round of PCR using primers spanning the 

deleted region (Figure A-7B) and examined this PCR product using gel electrophoresis. Both wild-

type and deletion-sized bands were visible and were used to prioritize clones for further analysis. We 

next performed a second nested PCR on this product to add sequencing tags and clone-specific 

barcodes for high-throughput sequencing. We sequenced these products to span the deletion 

junction; the number of unique amplicons in each clone was used to determine the number of 

deleted alleles. (This number is technically a lower bound, because in rare cases multiple alleles could 

be deleted and repaired in the same fashion). Finally, we counter-screened deletion clones for 

inversions, which can occur when Cas9-mediated cuts occur on both sides of the region, but the 

cuts are repaired with an inversion of the intervening sequence. We sought to eliminate clones that 

showed evidence of inversions, which could confound later analysis. For e2, we used primers 

spanning one side of the intended junction and eliminated clones that showed evidence of an 

amplicon corresponding to an inverted sequence. For e3 and e4, we were unable to obtain 

satisfactory PCR primers and so used a restriction digest approach that could distinguish whether 
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the internal sequence was inverted or not. For e3, we digested PCR amplicons with AvrII and PsiI; 

for e4, we digested with NdeI and BglII (all enzymes from NEB). 

 

Measuring a l l e l e - spec i f i c  MYC and PVT1 express ion in de l e t ion c lones  

We designed and validated ddPCR assays to measure the allele-specific expression of MYC and 

PVT1. We first cloned the polymorphic regions of MYC and PVT1 from K562-MYC-Tag using the 

ddPCR-MYCIntron Fwd/Rev and ddPCR-PVT1 Fwd/Rev PCR primers to generate separate 

plasmid vectors containing each allele of each amplicon. We generated synthetic standard curves by 

mixing these vectors in specified ratios: 100:0, 90:10, 50:50, 10:90, and 0:100. Each standard curve 

was generated and quantified in duplicate to confirm that the assays were specific and quantitative.  

 

To perform the ddPCR assay, each 20µl reaction contained 1X ddPCR Supermix for Probes - no 

dUTP (BioRad, Hercules, CA), 450 nM each of forward and reverse primer, and 500 nM probe. To 

measure the relative expression of the 3 MYC alleles (Figure A-7C), we used MYCIntron Fwd and 

Rev along with a FAM-conjugated CTAA or ATCG probe and a HEX-conjugated CCCG probe in 

two separate assays, then merged the results by comparing to the constant CCCG probe. To 

measure the relative expression of the 2 PVT1 polymorphisms (Figure A-7C), we used PVT1 Fwd 

and Rev and probes against T and C alleles in a single assay. Probes were purchased as Custom 

ZEN Double-Quenched Probes (IDT). Following droplet generation on a QX200 droplet generator 

(BioRad), we performed 40 cycles of PCR with a 10 minute 55°C combined and melting extension 

step. We counted droplets using the QX200 Droplet Reader (BioRad) and determined allele specific 

expression by the ratio of FAM and HEX positive droplets. 
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 To measure the allele-specific expression of each deletion clone, we generated cDNA from cells as 

described above and performed ddPCR using 1000 cell-equivalents of cDNA for MYC and 100 for 

PVT1. We measured each clone using 2 or 3 technical replicates and averaged the ratios between 

these measurements for further analysis.  

 

Analys i s  o f  a l l e l e - spec i f i c  express ion data for  de l e t ion c lones  

To analyze the allele-specific ddPCR data for the deletion clones, we first inferred the phasing of the 

deletions relative to the polymorphic tags in MYC. We identified known polymorphisms near the 

deleted enhancers that would allow us to phase the deletions by examining DNA sequencing 

experiments from multiple types of ENCODE experiments (e.g., ChIP-Seq, DHS sequencing). We 

identified rs67423398 (C/T/T in triploid K562 cells) just outside of the sgRNAs designed at e2 

(Figure A-7B), allowing us to directly genotype the deletion bands by amplicon sequencing. For e3 

and e4, there were no SNPs in the vicinity of the deletions themselves, but, because each acts as a 

promoter for PVT1, we were able to use a SNP in a downstream PVT1 exon (rs11604, T/C/C in 

K562 cells) that allowed us to determine the allele of the deletions by examining which allele of 

PVT1 RNA was decreased (Figure A-7C). Accordingly, for each e2 clone we performed amplicon 

sequencing as described in the previous section and determined on which allele(s) the deletion 

occurred, and for each e3 and e4 clone we performed ddPCR to read out the allele-specific RNA 

expression of PVT1. This allowed us to determine whether the deletion occurred on the unique 

allele (C for rs67423398 or T for rs11604, C-T) or the ambiguous allele (T for rs67423398 or C for 

rs11604). 

 

We next phased these polymorphisms based on the unique allele to the polymorphic tags in MYC. 

To do so, we first examined clones that carried deletions on the unique allele and examined their 
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allele-specific expression of MYC. For e2, for example, we had 6 independent clones carrying such 

deletions, and these showed a consistent decrease in MYC expression on the CTAA allele (e.g., 

Figure A-7D). We similarly linked the PVT1 unique allele to CTAA (Figure A-7C). By this strategy, 

we were able to phase some of the deletions to a unique MYC polymorphism (CTAA-C-T allele, 

Figure A-7C), and the remaining deletions to one of the other two alleles. 

 

For each clone, we then calculated the change in expression of each MYC allele relative to 26 wild-

type control clones. We first calculated the average expression of each allele in the control clones, 

which was approximately balanced (31% CTAA, 39% ATCG, 30% CCCG, Figure A-7D). For each 

clone, we compared the allelic expression fraction to the control clones to determine a fold-change 

for each allele. We then normalized these fold-changes to maximum of the 3 alleles, assuming that 

this represents a wild-type allele (e.g., Figure A-7D, right), and termed this the “normalized allele 

expression”. We performed a similar computation on each wild-type clone. Finally, we compared the 

normalized allele expression between wild-type and deletion clones. For the unique allele (CTAA-C-

T), we directly used the MYC normalized allele expression. For the remaining alleles (ATCG-T-C 

and CCCG-T-C), we chose the one of the two alleles with the lowest normalized allele expression, 

assuming that this was the deletion allele, and similarly generated a distribution of control values by 

performing a similar procedure on wild-type clones. We combined these comparisons across alleles 

and compared deletion to control clones using a Wilcoxon rank sum test (Figure A-7E). 

 

Comparison to  prev ious enhancer-promoter  predi c t ions 

Given our functional mapping of enhancers that regulate MYC, we compared our list of true MYC 

enhancers to existing methods for predicting or inferring enhancer-promoter connections. We 

found that none of these strategies specifically identified more than 2 of the 7 MYC enhancers and 
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correctly distinguished the 2 GATA1 enhancers from neighboring elements that do not affect 

GATA1 expression. We describe each of these approaches below.  

1. One commonly used strategy for connecting enhancers with target promoters is to assign an 

enhancer to its nearest gene. It is clear that this does not accurately capture the complexity of 

enhancer-promoter connections (5), but lacking clear alternatives this approach is frequently 

used to assess which gene an enhancer might regulate. For GATA1, this approach does not 

accurately capture how both e-GATA1 and e-HDAC6, which are closest to GATA1 and 

HDAC6, respectively, in fact regulate both genes. For MYC, e1-e4 would be assigned as 

regulators of PVT1, while e5-e7 would be assigned to the CCDC26 pseudogene. 

Several methods for predicting enhancer-promoter connections are based on correlations in 

chromatin state across cell types.  

2. One such method is based on correlation in histone modification profiles between candidate 

enhancer-promoter pairs within 125 kb across nine cell types, including K562 cells (46). 

Because of this distance restriction, this method does not make any predictions for MYC. 

For GATA1, this strategy misses both e-GATA1 and e-HDAC6, and makes dozens of 

incorrect predictions. 

3. A second method based solely on correlation predicts enhancer-promoter pairs using 

correlation in DHS for all candidate pairs within 500 kb of one another across 125 cell types, 

including K562 cells (19). For GATA1, this method correctly identifies both e-GATA1 and 

e-HDAC6 but also incorrectly assigns two additional distal enhancers in the regions tested in 

our screen. For MYC, this approach correctly identifies only one of the K562 enhancers (e4) 

and makes dozens of other predictions that do not overlap e1-e7. (The published catalog 

from this study does not report which cell type each prediction refers to, and thus some of 
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these additional predicted enhancers may represent regions that regulate one of the target 

genes in another cell type.) 

4. A third correlation-based method (PreSTIGE) predicts enhancer-promoter pairs by pairing 

cell-type-specific H3K4me1 signals with cell-type specific gene expression across 12 cell 

types, using a 100 kb distance plus a subset of CTCF sites to set domain boundaries (47). In 

the GATA1 locus, PreSTIGE reports that 29 kb of the 74 kb covered by our screen is an 

enhancer for GATA1, including both e-GATA1 and e-HDAC6 but incorrectly reporting 

many kilobases of additional sequence. In the MYC locus, PreSTIGE predicts a single region 

to be an enhancer; this region does not correspond to any of the enhancers we identify. 

In addition to methods based on correlations in chromatin state across cell types, a second 

category of approaches for inferring enhancer-promoter functional connections is based on 

measuring their physical interactions with methods based on chromosome conformation capture. 

Physical contacts between enhancers and promoters correlate with gene activation (6, 17, 18, 25)(1, 

6, 46, 47), and in a few cases increasing the frequency of enhancer-promoter contact has been 

shown to activate gene expression (26, 27). However, long-distance chromatin loops can form 

without regulatory effects on gene expression (e.g., when a promoter forms a loop with a region that 

is not an enhancer), and the abilities of various features of chromosome conformation data to 

predict functional interactions remains unclear (6). Accordingly, we examined several features 

previously noted to correlate with enhancer-promoter connections to determine if they might 

correctly identify enhancers in the MYC locus.  

5. We first examined loops as defined by in situ Hi-C (25). In a Hi-C map of K562 cells at 5 kb 

resolution, five focal loops involving the MYC promoter were reported. Of the five, one 

corresponds to the long-range loop with e6/e7, one corresponds to NS1, and the other three 

correspond to CTCF-bound sites that do not overlap MYC enhancers. Thus, at the reported 
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significance thresholds and with the available resolution, these calls do not correspond with 

the enhancers that regulate MYC. Nonetheless, Hi-C data shows that these sites frequently 

contact MYC (Figure 2-2A), and higher resolution maps may allow identification of focal 

loops to these sites. Regardless of the specific loop calls, we find that incorporating this 

information into our heuristic helps to rank enhancers likely to regulate MYC (see Chapter 

2).  

6. RNA Pol II ChIA-PET has been proposed as a proximity interaction method that enriches 

for enhancer-promoter interactions (37). ChIA-PET in K562 cells 

(wgEncodeGisChiaPetK562Pol2InteractionsRep1) identifies many interactions between 

MYC and sites throughout the adjacent contact domain (Figure 2-2A). Notably, these do 

include all 7 of the MYC enhancers in K562, but also include dozens of other sites with 

equal or higher interaction frequencies (Figure 2-2A). Furthermore, ChIA-PET in K562 cells 

does not detect interactions between GATA1/HDAC6 and either of their enhancers.  

7. Various methods developed to predict enhancer-promoter interactions have been developed 

and trained based on interactions identified in chromosome conformation capture 

experiments. Consistent with the poor positive predictive value of chromosome 

conformation capture data as described above, methods trained on this data (e.g., (48, 49)) 

also do not correctly identify MYC or GATA1 enhancers.  

Together, these observations highlight the importance of direct functional mapping of 

regulatory elements. Furthermore, they underscore the opportunity for new models that integrate 

these two classes of approaches based on chromatin state and proximity interactions in the context 

of appropriate training data generated through CRISPRi-based mapping of regulatory elements. 
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Calculat ing predi c t ed impact  o f  MYC enhancers  in K562 ce l l s  

To rank the relative importance of putative activating elements near MYC in K562 cells, we first 

created a list of putative regulatory elements in the locus. We downloaded DHS peak calls from 

ENCODE (narrowPeak files corresponded to both replicates in K562 cells), expanded these peaks 

by 500 bp, and merged overlapping peaks. For each of these merged peaks, we calculated 

normalized read count (reads per million, RPM; not normalized to length of the element) from 

H3K27ac and DHS measurements in K562 cells, and retained windows in the top 50% percentile 

with respect to H3K27ac signal, yielding 93 putative regulatory elements. For each element, we 

calculated the normalized contact frequency to the MYC promoter by consulting KL-normalized 

observed contact matrices at 5-kb resolution generated by in situ Hi-C (25). We calculated relative 

impact by the following formula: Predicted impact = log2(H3K27ac RPM × DHS RPM × Hi-C 

contact × Hi-C contact), thereby weighting “activity” and “proximity” approximately equally. Each 

element was ranked according to this score. In Figure 2-2E, peaks overlapping the MYC enhancers 

were colored red and plotted versus their CRISPRi score, defined by the maximum CRISPRi score 

in a window overlapping the element. 

 

To compare the performance of this heuristic with simpler models, we calculated rankings based on 

H3K27ac ChIP-Seq RPM only, DHS RPM only, and Hi-C contacts only for the same set of 93 

putative regulatory elements (Figure A-8A). We note that because these 93 elements were selected 

based on DHS and H3K27ac signal as described above, this may be an optimistic estimate of the 

value of each dataset alone.  

 

Additional experimental data will be required to further refine this model and determine whether it 

is applicable to different gene loci. 
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Calculat ing enhancer  ranks across  c e l l  types  

To expand this approach across additional cell types, we downloaded DHS and H3K27ac ChIP-seq 

data for diverse cell lines and primary tissues from the Roadmap Epigenomics Project (50), 

ENCODE (36), and others (51, 52). While these data are available across a wide range of cell types 

(235 samples total), proximity interactions maps are available in a very limited number of cell types. 

Accordingly, we explored to what extent the topological architecture of the MYC locus changes 

across 7 human cell types previously mapped using in situ Hi-C (25, 53). We found that key features 

of the proximity contacts of the MYC promoter appeared consistent across cell types, including the 

long-range contacts to the edges of the topological domain as well as several distinct peaks within 

these domains (Figure A-8C). These cell-type invariant long-range loops typically corresponded to 

sites bound by CTCF across multiple cell types, consistent with previous reports (25). Beyond these 

long-range loops, the quantitative interactions of the MYC promoter did change somewhat across 

different cell types, with elevated contact frequency coinciding with the presence of strong H3K27ac 

occupancy in a given cell type. To capture the features consistent across cell types, we generated a 

generic proximity profile for the MYC locus by averaging the proximity interactions across these 7 

cell types, normalizing the absolute magnitude of interactions in each cell type by the signal at the 

MYC promoter itself. This generic profile accurately captured the cell-invariant long-range 

interactions (Figure A-8C), providing a reasonable template for weighting the contributions of 

different enhancers in the MYC locus across cell types. 

 

To rank elements across the entire domain, we calculated the predicted impact score as described 

above in 400-bp windows tiled every 100-bp across chr8:127000000-131500000. DHS and H3K27ac 

were not always available for each of the 235 different samples — accordingly, we used both 

datasets where available, or calculated an alternative ranking using one or the other dataset (e.g., DHS 
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or H3K27ac normalized read count × normalized Hi-C signal). Given the varying patterns of DHS 

and H3K27ac signal around a regulatory element (DHS is strong at the center of the element while 

H3K27ac is depleted in the nucleosome-free region but strong just outside), we smoothed these 

scores at 2-kb resolution to better compare models generated from DHS or H3K27ac alone. To 

collapse neighboring windows with strong scores yet retain resolution for the strongest local 

maximum (e.g., corresponding to the center of the regulatory element), we removed windows that 

had an overlapping window with a higher score. Finally, we assigned a rank to these remaining 

windows and focused on the top 10 elements in each cell type. 

 

Analys i s  o f  enhancers  known to regulate  MYC 

We curated a list of enhancers that have been shown to regulate MYC in their endogenous genomic 

contexts. (i) An enhancer implicated in MYC regulation in the context of colorectal cancer (“Myc-

335”) was identified based on an association rs6983267 and risk for colorectal cancer (54, 55). 

Genetic knockout of this enhancer in mice leads to an ~40% reduction in Myc RNA expression in 

the colon, and confers resistance to intestinal tumorigenesis in an APC-/- background (56). (ii) An 

enhancer implicated in MYC regulation in the context of lung adenocarcinoma (LUAD) was 

identified based on a focal amplification of a noncoding region in multiple primary LUAD tumors 

(57). Genetic knockout of this enhancer in a LUAD cell line led to a ~30% reduction in MYC 

expression (57) and defects in cellular proliferation. (iii) An enhancer implicated in T-ALL was 

identified based on focal amplifications of a noncoding region ~1.47 Mb downstream of MYC (58). 

This enhancer contacts the MYC promoter as assayed by chromosome conformation capture, and a 

mouse knockout of this element leads to defects in thymocyte development and improved survival 

in the context of NOTCH1-induced leukemogenesis (58, 59). (iv) An enhancer implicated in AML 

was identified on the basis of strong occupancy by Brg1 in a murine leukemia cell line, and is focally 
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amplified in ~3% of human AMLs. This enhancer (E3) was shown to loop to the MYC promoter, 

and knockdown of Brg1 led to dramatic loss of MYC expression (60). We extracted coordinates 

from these previous studies and overlapped these coordinates with highly ranked enhancers in 

relevant cell types (Figure 2-3B). 

 

Analys i s  o f  GWAS variants  near MYC 

We downloaded a list of variants associated with human phenotypes from the GWAS Catalog at 

EBI (https://www.ebi.ac.uk/gwas/, accessed May 11, 2016). 121 associations are reported in 

chr8:127900000-131000000. We used HaploReg v4.1 

(http://www.broadinstitute.org/mammals/haploreg/haploreg.php, accessed May 11, 2016) (61) to 

identify SNPs linked to the GWAS index SNP with r2 >= 0.8 in the European population.  The 

black boxes in Figure 2-3C represent the span of all such SNPs for each variant, collapsed by 

phenotype to yield 66 unique associations between a human disease or trait and a genetic haplotype. 

We highlight three examples where these SNPs overlap elements predicted to regulate MYC. (i) A 

SNP linked to increased risk of Hodgkin’s lymphoma, which has previously been noted to overlap 

with B-cell specific H3K27ac signals (51), overlaps an element that our heuristic predicts to be 

quantitatively among the most important for regulating MYC in B cell lymphoma cells (Figure 2-

3D). (ii) A SNP associated with bladder cancer risk is located in a conserved DHS element active in 

multiple gastrointestinal tissues, and thus may regulate MYC in bladder epithelial cells, for which 

chromatin data is not available (Figure 2-3D). (iii) A SNP associated with height overlaps a 

glucocorticoid receptor motif in a conserved H3K27ac-marked element active only in chondrocytes 

(Figure 2-3D). (DHS data from chondrocytes was not available). Although this SNP is located >1.9 

Mb from MYC, it resides at the anchor of the long-range chromatin loop near e7 (Figure 2-2A), 

suggesting that this SNP may affect height by altering the regulation of MYC in a chondrocyte-
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related cell type. Dozens of other predicted regulatory elements overlap disease-associated genetic 

variants near MYC. 

 

Software for  data analys i s  and graphica l  p lo ts  

We used the following software for data analysis and graphical plots: R Bioconductor (version 3.0) 

(62), Gviz (version 1.10.11), gplots (version 2.17.0), GenomicRanges (version 1.18.4) (63), 

rtracklayer (version 1.26.3) (64), BEDTools (65), Integrative Genomics Viewer (version 2.3.26) (66), 

Pandas (version 0.12.0), Matplotlib (version 1.3.0), Biopython (version 1.61) (67), and SciPy (version 

0.12.0). 

 

Genome bui ld 

All coordinates are reported in human genome build hg19. 
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Supplemental Figures 

 

Figure A-1. GATA1 and MYC are encoded 
far from other genes that strongly affect 
proliferation in K562 cells. (A) Gray: 
Depletion (–log2 fold-change after 14 
population doublings) in a previous genome-
wide CRISPR knockout screen of all genes 
expressed in K562 cells (28). Higher scores 
denote stronger effect on proliferation. Black: 
genes within 500 Kb or in the same 
topological domain as MYC or GATA1 
(highlighted in red). (B) Same for the three 
tiled negative-control regions. (C) 
Knockdown efficiency for siRNAs targeting 
MYC, GATA1, and PVT1, as assayed by 
qPCR compared to siRNAs without an RNA 
target (Ctrl). Gray bars: two different siRNAs 
for Ctrl and PVT1. Error bars: 95% 
confidence intervals (CI) for the mean of four 
independent transfections. *: p < 0.05 in T-
test versus negative controls.  (D) Relative 
viability of cells in a competitive growth assay 
(gamma). GFP-expressing cells were 
transfected with siRNAs against GATA1, 

MYC, PVT1, or siRNAs without a genomic target (Ctrl) and were mixed with RFP-expressing cells 
transfected with a Ctrl siRNA and grown for four days before counting. Error bars: 95% confidence 
intervals (CI) for the mean of 4 independent transfections. We tested two different sgRNAs for 
PVT1. *: p < 0.05 in T-test versus negative controls. (E) qPCR for PVT1 RNA in cells expressing 
sgRNAs targeting a TSS of PVT1 (e3) or sgRNAs without a genomic target (Ctrl). KRAB-dCas9 
expression was activated with doxycycline for 24 hours before measurement. Gray bars: two 
different sgRNAs per target. Error bars: 95% confidence intervals (CI) for the mean of 3 
independent infections. *: p < 0.05 in T-test versus negative controls.  
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Figure A-2. CRISPRi screen reproducibly depletes sgRNAs targeting promoters of essential 
genes. 

(A) Distributions of CRISPRi scores for sgRNAs targeting the promoters of genes previously 
identified as essential or non-essential based on a genome-wide CRISPR knockout screen (28) and 
for sgRNAs with no genomic target (control sequences). A higher CRISPRi score indicates stronger 
depletion over the course of the screen. 
(B) Average CRISPRi scores for 600 protein-coding gene promoters in replicate screens. 
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Figure A-3.  Sliding window 
approach for analyzing CRISPRi 
screens. 

(A) Pearson correlation between the two 
replicate screens for CRISPRi scores 
averaged across windows of different 
sizes (2, 3, 5, 10, 15, 20, 30, or 50 
consecutive sgRNAs).  
(B) CRISPRi scores for all windows of 
20 consecutive guides in the replicate 
screens. 
(C) Cumulative density plot of the 
distance between consecutive sgRNAs. 
Distribution extends beyond the x-axis 
limits. 
(D) Cumulative density plot for the 
span of 20-sgRNA windows. Windows 
spanning greater than 1 kb were not 
considered. Distribution extends beyond 
the x-axis limits. 
(E) CRISPRi scores in 20-sgRNA 
windows for three negative-control 
regions that are located far from known 
essential genes (see Methods). These 
regions show a lack of strong signal as 
compared with the GATA1 and MYC 
loci and were used to calculate an 
empirical false discovery rate for the 
CRISPRi score. 
(F) Gray: CRISPRi score in 20-sgRNA 

windows for tiled MYC and GATA1 regions (left, ~60,000 windows), the TSSs of protein coding 
genes from across a range of essentiality (middle, ~600 genes), or tiling regions far from any 
essential gene (right, ~5,000 windows). Red dots: Most strongly depleted window within identified 
enhancers and TSSs (other windows nearby, which are also often strongly depleted, are not shown 
for visual clarity). Blue: Most strongly enriched window within putative repressive elements. 
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Figure A-4.  
Characterization of 
enhancers at the GATA1 
locus. 
(A) Chromatin state and 
chromosome conformation in 
the ~400-Kb topological 
domain containing GATA1 
and HDAC6. K562 DHS, 
ChIP-Seq data, and chromatin 
state classifications 
(ChromHMM) are from 
ENCODE (36) (see Methods). 
Contact frequency matrix is 
derived from in situ Hi-C maps 
at 5-kb resolution in K562 
cells (KL-normalized observed 
matrix) (25). Black triangle and 
arrow mark the region of 

interactions between enhancers (e-GATA1 and e-HDAC6) and the promoters of GATA1 and 
HDAC6. (B) Effects of inhibiting GATA1 TSS or e-HDAC6 on gene expression of downstream 
GATA1 target genes. Venn diagram represents differentially expressed genes from RNA sequencing 
of stable lines expressing the listed sgRNA relative to cells containing negative control sgRNAs 
(Ctrl). Hypergeometric p-value of overlap <10-163. Bar plot shows that known target genes of the 
GATA1 transcription factor (MYC, HBE1, HBG1, and HBG2) (68-70) are differentially expressed 
upon inhibition of e-HDAC6. KRAB-dCas9 expression was activated for 24 hours before 
measurement. Error bars: 95% CI for the mean of 2 sgRNAs with 3 independently derived stable 
lines each. Controls: all other expressed genes. (C) Expression of firefly luciferase from plasmids 
containing each enhancer located 2 kb upstream of a MYC promoter fragment. Data is normalized 
to a random sequence of similar size (Ctrl) and to the internal Renilla luciferase control (see 
Methods). Error bars: 95% CI for the mean of 3 independent transfections. (D) Regulatory 
connections in the GATA1/HDAC6 locus: two enhancers (red) regulate both genes, and the 
promoters appear to repress one another (blue), perhaps by competing for activating signals from 
the enhancers. 
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Figure A-5.  Regulatory elements at 
MYC and downstream enhancers. 
(A) CRISPRi screen results in MYC 
gene locus, showing significant peaks 
at the MYC TSS, at several locations 
in the gene body, and at a known 
promoter-proximal regulatory element 
(e0) (21). K562 DHS, RNA-Seq, 
ChIP-Seq data, and chromatin state 
classifications (ChromHMM) are from 
ENCODE (36). (B) Expanded region 
around e5 and CCDC26 and (C) 
e6/e7 showing strong CTCF 
occupancy at DHS sites close to the 
elements. Each CTCF peak has a 
motif oriented in the reverse direction 
(toward MYC, not pictured). Note 
that the promoter of CCDC26 does 
not score as essential, indicating that 
its expression is not responsible for 
the proliferative defects observed 
upon inhibiting e5 or other enhancers. 
(D) Expanded region around the 
putative repressive elements r1 and 
(E) r2. r1 corresponds to the 
promoter of an alternative isoform of 
PVT1.  
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Figure A-6.  Characterization of enhancers at the MYC locus. 

(A) GATA1 and MYC enhancers bind many activating transcription factors. Transcription factor 
binding in a 1-kb window centered on each enhancer are shown with their ChIP-Seq signal reported 
by ENCODE (36), which assigns scores to peaks by multiplying the ChIP-seq signal values by a 
normalization factor calculated as the ratio of the maximum score value (1000) to the ChIP-seq 
signal value at one standard deviation from the mean, with values exceeding 1000 capped at 1000. 
For comparison, two random sites near MYC are shown. (B) Relative viability of cells in a 
competitive growth assay. Cells expressing the indicated sgRNAs were competed against K562 cells 
expressing GFP or RFP and grown in doxycycline for 7 days before counting. Gray bars: two 
different sgRNAs per target. Error bars: 95% CI for the mean of 6 total replicate competition assays 
using cells from 3 independent infections. *: p < 0.05 in T-test versus negative controls. (C) Each 
MYC enhancer can activate a reporter gene driven by a MYC promoter fragment in a plasmid-based 
luciferase assay. The size of each enhancer sequence is reported on the right. Ctrl: negative control 
sequence corresponding to a bacterial kanamycin resistance gene. Error bars: 95% CI for the mean 
based on three replicate transfections. (D) To determine if sgRNAs targeting NS1 successfully 
affected chromatin state, we performed ChIP for H3K27ac in cells expressing individual sgRNAs 
targeting e1, e2, e3, e4, or NS1, as well as two non-targeting control sgRNAs (see Methods). We 
measured ChIP enrichment by qPCR for 5 positive control loci, 3 negative control loci, and the 
locus targeted by the sgRNA (see Methods). Bars represent enrichment of the indicated locus 
normalized to the non-targeting control sgRNAs. Error bars: 95% CI for the mean for 5 (Ctrl) or 3 
(others) biological replicates.  
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Figure A-7.  Genetic deletions of enhancers in the MYC locus. 

(A) Strategy for generating a cell line containing polymorphic sites on each allele of MYC. We used 
CRISPR/Cas9 to knock in a random 4-mer sequence into an intronic site in the MYC locus that was 
not conserved across mammals (red line). We co-transfected a plasmid expressing Cas9, a ssDNA 
oligo donor, and an sgRNA, picked clonal cell lines, genotyped by amplicon sequencing, and isolated 
a clone with three unique alleles. (B) Strategy for deleting enhancers, showing e2 as an example. To 
delete each enhancer, we designed 4 sgRNAs flanking the DHS peak in the center of each element, 
two on each side. We co-transfected these 4 sgRNAs and isolated clones containing deletions on 1 
or 2 of the 3 alleles. The rs67423398 SNP was contained in the genotyping PCR amplicon and was 
used to determine which allele of e2 was deleted. (C) Overview of sites relevant to enhancer 
deletions in the MYC locus, including inferred phasing of polymorphic sites. Bottom: Genotypes for 
example deletion clones. (D) Allele-specific RNA measurements for representative clones. For each 
clone, we determined the fraction of RNA molecules carrying each of the MYC alleles using ddPCR 
(bar plots). We calculated a fold-change for each allele in deletions versus controls and normalized 
this to the highest of these three values within each clone (see Methods). This yielded the 
“normalized allele expression” (right). Dots: values for one clone. Horizontal bars: mean with 95% 
confidence interval for 26 wild-type clones. (E) Deletions of e2, e3, and e4 led to a 30-40% decrease 
in the expression of MYC on the corresponding allele compared to wild-type alleles in the same 
cells. We compared normalized allele expression values between wild-type and deletion alleles using 
a Wilcoxon rank-sum test. *: P < 0.05. **: P < 0.01. ***: P < 10-4.  
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Figure A-8.  Heuristic model for predicting enhancer function in the MYC locus. 

(A) Comparison of models using H3K27ac only, DHS only, Hi-C only, or a combination of all three 
(Predicted Impact, same as Figure 2-2E). This ranking is applied to 93 elements selected based on 
DHS and H3K27ac signal (see Methods), and thus provides an optimistic estimate of the power of 
each individual source of information for predicting MYC enhancers. (B) Heuristic framework for 
predicting the relative impact of regulatory elements on MYC expression. Impact depends on 
activity (estimated by quantitative H3K27ac and DHS signal, represented by size of red dot) and the 
frequency with which it contacts the MYC promoter (estimated based on Hi-C, represented by 
distance from gene). For the three example enhancers, their relative impact would be a = b > c. (C) 
Comparison of Hi-C and CTCF ChIP-Seq signal in the MYC locus across cell types. Contact 
frequency with the MYC promoter is derived from in situ KL-normalized Hi-C maps at 5-kb 
resolution across 7 cell types (25). Y-axis differs between cell types according to the depth of 
sequencing. The average contact profile used in our enhancer ranking calculations across cell types 
was created by averaging the normalized contact frequencies from these 7 cell types. CTCF motifs 
are colored according to their orientation: red = positive strand, blue = negative strand.  
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Figure A-9.  Design of new CRISPRi libraries 

(A) Pearson correlation between the two replicate screens for CRISPRi scores from windows of 
different sizes – 2, 4, 5, 10, 20 sgRNAs – downsampled by taking every 10th, 5th, 4th, 2nd, or every 
sgRNA, respectively. Reducing the density of coverage reduces reproducibility. (B) Cumulative 
density plot of the distance between 20-sgRNA windows and the nearest DHS peak, with the first 
kb highlighted below. All significantly enriched or depleted windows (Scoring) are less than 1 kb 
from a DHS peak, compared to <35% of all other windows (Non-scoring). 
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Appendix B. Supplemental Material for Chapter 2 

 

Supplemental Notes 

 

Note B1. Addit ional  mechanisms o f  d is ta l  regulatory e l ements .  

We considered two situations in which distal elements might have effects on gene expression 

through mechanisms distinct from or above that of enhancers: indirect effects and CTCF-bound 

elements. In addition to explaining some of the activating effects of distal elements (10 out of 98), 

these two situations also account for most of the DE-G pairs with repressive effects (20 out of 24). 

 

Indirec t  regulatory e f f e c t s  o f  dis tal  e l ements  

The first situation involves indirect regulatory effects. For example, an enhancer that activates gene 

A might appear to repress B in the event that activation of A represses B. We noted that 24 of the 

98 significant DE-G pairs (20%) in our data involve elements that, upon CRISPRi inhibition, led to 

increased expression (average +15%) of a nearby gene. However, these effects do not appear to result 

from cis-acting “repressors”; 6 of these 19 unique elements have activating effects on at least one 

other nearby gene (Figure B-12A). In one case, we verified that apparent repressive effects of an 

element on PLP2 expression are due to that element activating GATA1, which in turn represses 

PLP2 via a trans-acting function of the GATA1 protein product (Figure B-12B-D). 
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CTCF Sites  

The second situtation involves elements bound by CTCF, a protein that affects gene regulation by 

shaping 3D genomic architecture (1) (34% of tested DHS elements bind CTCF). Notably, some 

CTCF sites appear to be coincident with enhancer elements (in that they are strongly marked by 

H3K27ac), while others appear to be separate. When we divided CTCF-bound distal DHS sites into 

H3K27achigh vs. H3K27aclow elements, we found clear differences between the two classes (Figure B-

11). H3K27achigh CTCF elements had larger effects on gene expression (average 32%) and were far 

more often activating rather than repressive (23 vs. 3), consistent with these elements primarily 

affecting gene expression as enhancers. The ABC model accurately predicts the effects of the 

perturbation of these elements (AUPRC = 0.53, Figure B-11B). In contrast, H3K27aclow CTCF 

elements had smaller effects (average 10% vs. 32% for H3K27achigh CTCF elements, rank-sum test p 

= 0.002), had balanced effects on gene expression (5 activating and 8 repressive vs. 23 and 3 for 

H3K27achigh CTCF elements, Fisher’s exact p = 0.002), and the ABC model performed less well 

(AUPRC = 0.11, Figure B-11C).  

 

Note B2. Regulatory  e f f e c t s  o f  promoters  on nearby genes 

In addition to DE-G pairs, our CRISPR dataset in K562 cells included 1114 distal promoter-gene 

(DP-G) pairs (where the CRISPR-targeted element is located <500 bp from a TSS).   

 

We explored whether, beyond DE-G pairs, the ABC model did a good job of predicting DP-G 

connections – that is, regulatory effects of one promoter on the promoter of another nearby gene. 

In fact, it did not. Our dataset in K562 cells included 53 significant DP-G pairs (out of 1114 total 

tested), and the ABC score was only moderately predictive of these effects (AUPRC=0.16, Figure B-

14). Importantly, the DP-G pairs in our dataset behaved qualitatively differently from the DE-G 
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pairs: promoters more frequently had repressive effects (27 of 53 DP-G pairs, 51%, versus 20% for 

DE-G pairs, Fisher’s exact p < 10-4). 

 

Promoters are known have the ability to affect the expression of neighboring genes through several 

mechanisms, including: activation of nearby genes in cis, for example by acting as an enhancer (2, 3); 

second-order, downstream effects of the promoter’s protein product; promoter-promoter 

competition, in which two promoters are proposed to compete for nearby regulatory elements (4); 

and transcriptional interference, in which transcription of one gene physically blocks transcription of 

another (5). We observe likely instances of each of these in our CRISPR dataset, detailed below.  

 

Cis act ivat ion 

We and others have shown that many gene promoters activate a neighboring gene in cis through 

DNA-mediated functions of their promoters (2, 3, 6). In this dataset, promoters that activated a 

nearby gene indeed had higher 3D contact with their target genes compared to other nearby genes 

(rank-sum p = 0.001).  

  

Second-order trans e f f e c t s  

Effects on nearby genes observed when inhibiting a promoter may be second-order effects mediated 

by functions of the RNA or protein product, rather than first-order, cis effects of the promoter itself. 

We examined the 5 promoters whose inhibition affected 2 or more tested genes in our FlowFISH 

dataset (GATA1, KLF1, LYL1, PPP1R15A, and SEC61A1). Of these, 3 encode transcription 

factors and 2 encode regulators of translation, consistent with these genes having widespread effects 

on gene expression. For 3 of these genes, we found additional evidence to support that these effects 

on nearby genes did not result from direct cis effects of the promoter: inhibiting distal elements that 
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regulate these genes had directionally consistent effects on other genes. These 5 promoters also 

more often had repressive effects than other promoters we found to affect the expression of nearby 

genes (median 2 repressed genes vs 0, rank-sum test p = 0.004). Based on this evidence, we expect 

that the effects of these 5 promoters on nearby genes are likely due to second-order, downstream 

effects of their protein products in trans. 

 

For example, inhibiting the promoter of GATA1 with CRISPRi led to increased expression of 3 

nearby genes, and we confirmed through siRNA knockdown experiments that these effects are likely 

to result from trans functions of the GATA1 protein (Figure B-12D).  

  

Promoter compet i t ion 

In addition to acting through a trans function of its product, promoters may inhibit nearby genes by 

competing for enhancers or other activating signals. Our dataset included 18 promoters that 

appeared to repress a nearby gene. Notably, these included 2 promoters near HBE1 and 1 near 

MYC that have been previously shown to compete with HBE1 or MYC for activating signals in the 

genome (7, 8). 

  

Transcr ipt ional  inter f erence  

We identified 4 promoters (2 alternative promoters for each of 2 genes) where CRISPR perturbation 

caused an increase (6-36%) in the expression of a convergently transcribed neighboring gene. In 

each of these cases, precision run-on sequencing (PRO-seq) showed that the transcriptional units of 

these genes overlap (Figure B-14C), suggesting that these promoters might repress the neighboring 

gene via transcriptional interference (5). 
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Note B3. Alternat ive  methods to  es t imate  Contac t  in the  ABC score  

We explored alternative methods to estimate Contact in the ABC score in order to understand 

which features of genome architecture — such as loops and domains — are important for good 

prediction.  

 

Because >70% of the variance in Hi-C contact frequencies across a chromosome can be explained 

by modeling chromatin as a featureless, uniform polymer in the condensed (globular) state (9) (see 

Methods), we tested simply using the theoretical contacts expected from extrusion globule and 

fractal globule models (ContactGlobule is proportional to Distance-γ, with γ = 0.7 and 1, respectively) 

(9). Both scores performed nearly as well as the ABC score based on Hi-C data (AUPRC = 0.64 for 

both, versus 0.66 for ABC, Figure B-9A,C). In comparison, Activity x Loop, Activity x Domain, 

Activity x Distance, and Activity x ContactGlobule models with more extreme values of γ performed 

less well (Figure B-9). These results show that the ABC model can predict DE-gene regulation 

reasonably well even without using information about locus-specific or cell-type specific features of 

the 3D genome. This yields a useful rule of thumb: 10-fold greater genomic distance between an 

enhancer and promoter leads to approximately 10-fold lower contact frequency and 10-fold smaller 

predicted effects on gene expression. 

 

Notably, however, locus-specific Hi-C data did appear to yield better predictions for some DE-G 

pairs, including for long-range enhancer-gene connections in the MYC locus that coincide with the 

anchors of 3D loops (Figure B-9G,H). These and other 3D loops are present across many cell types 

(10, 11). Accordingly, we tested estimating Contact for a given pair of loci using the average contact 

frequency for those loci in Hi-C data from 8 other human cell types. We found that a Activity x 

ContactAverage model did a better job at predicting connections in the MYC locus than the Activity x 
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ContactGlobule models, and had slightly better performance in the full K562 CRISPR dataset (AUPRC 

= 0.68 versus 0.66 respectively; Figure B-9A). 

 

Together, these results indicate that cell-type specific features of the 3D genome are not required for 

good predictions, and that the relationship between genomic distance and quantitative contact 

frequency — more so than loops or domains — contains important information about regulatory 

enhancer-gene connections. These observations allow us to calculate ABC scores in a given cell type 

even without Hi-C data from that cell type.  
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Methods 

 

Tissue Culture  

We maintained K562 (ATCC) cells at a density between 100K and 1M per ml in RPMI-1640 

(Thermo Fisher Scientific, Waltham, MA) with 10% heat-inactivated FBS (HIFBS, Thermo Fisher 

Scientific), 2mM L-glutamine, and 100 units/ml streptomycin and 100 mg/ml penicillin. We 

maintained HEK293Ts between 20 and 80% confluence in DMEM with 1 mM Sodium Pyruvate, 

25mM Glucose (Thermo Fisher Scientific) and 10% HIFBS. CRISPRi-FlowFISH and qPCR 

experiments used K562 cells expressing KRAB-dCas9-IRES-BFP from a third generation tet-

inducible promoter (Addgene # 85449). 

 

Indiv idual  gRNA qPCR 

We generated stable cell lines expressing single gRNAs by lentiviral transduction in 8 µg/ml 

polybrene by centrifugation at 1200 x g for 45 minutes with 200,000 cells per well in 24 well plates. 

After 24 hours, we selected for transduction with 1 µg/ml puromycin (Gibco) for 72 hours then 

maintained cells in 0.3 µg/ml puromycin. For each gRNA, we generated 2 independent polyclonal 

cell populations through duplicate infections. We isolated RNA, made cDNA, and performed RT-

qPCR as previously described (10). 

 

Defining candidate  e l ements   

We defined candidate regulatory elements in 6 human cell types (K562, GM12878, NCCIT, LNCaP, 

primary hepatocytes, and primary erythroid progenitors), and 1 mouse cell type (mESCs).  
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For K562 and mESC, we concatenated all peaks called by ENCODE in both replicate DNase-seq 

experiments and merged resulting peaks. This resulted in 174,403 peaks in K562. We then removed 

any peaks overlapping regions of the genome which have been observed to accumulate anomalous 

number of reads in epigenetic sequencing experiments (‘blacklisted regions’ (12) downloaded from 

https://sites.google.com/site/anshulkundaje/projects/blacklists) — with the exception of 5 peaks 

in mESCs, which were either tested by CRISPR experiments or which were promoters of genes 

nearby tested elements, and which were not removed. Given that the ENCODE peaks were initially 

150bp in length, we extended each of these peaks 175bp to arrive at candidate elements that were 

500bp in length. 

 

For GM12878, NCCIT, LNCaP, primary hepatocytes, and primary erythroid progenitors we called 

peaks using MACS2 based on either DNase-seq or ATAC-seq as a measure of chromatin 

accessibility. We initially considered all peaks with pvalue < .1 and removed peaks overlapping 

blacklisted regions. We then resized these peaks to be 500bp in length centered on the peak summit. 

In order to approximately match the number of candidate elements considered in K562, we then 

counted DNase-seq (or ATAC-seq) reads overlapping these regions and kept the 175,000 regions 

with the highest number of read counts. To this peak list, we added 1 kb regions centered on the 

transcription start site of all genes.  

 

Any overlapping peaks resulting from this extension within a cell type were merged. We define these 

extended and merged peaks as candidate elements. 
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Guide se l e c t ion for  CRISPRi-FlowFISH screens 

We designed gRNAs within K562 candidate elements as previously described (10) and used all 

gRNAs within each candidate element after removing those with specificity scores <50 or with 

homopolymer stretches of more than 7 As, Gs, or Cs, or 4 Ts. 

 

Gene se l e c t ion for  CRISPRi-FlowFISH screens 

We used a series of filters for each probeset and screen to ensure robust, comprehensive, and 

quantitative discovery of regulatory elements for each gene (Figure B-4). We initially tested 

PrimeFlow probesets for genes expressed at >20 TPM in K562s in five genomic loci (Figure B-3). 

We first screened probesets by flow cytometry and selected those with >2-fold signal vs unstained 

cells. Next we performed a tiling CRISPRi-FlowFISH screen (see below) and focused our analysis 

on the screens that showed the following characteristics: (i) maximum unscaled knockdown among 

20-gRNAs windows within 500 bp of the TSS >50%; (ii) variance in non-targeting, negative-control 

gRNAs <1; and (iii) >80% power to detect a 25% effect in at least 80% of elements (see below). 

Based on these filters, we performed and analyzed CRISPRi-FlowFISH screens for 28 genes.  

 

CRISPRi-FlowFISH Screens 

We cloned gRNA libraries purchased from CustomArray (now GenScript) for each of 5 genomic 

loci (Figure B-3), transduced into K562s harboring a doxycycline-inducible KRAB-dCas9, and 

selected for transduced cells as previously described (10). We induced KRAB-dCas9 expression with 

1 µg/ml doxycycline for 48 hours. We used 30M cells for each screen. 

 

We used the PrimeFlow RNA Assay Kit (Thermo Fisher; Catalog number: 88-18005) according to 

the manufacturer’s instructions with some modifications. Specifically, we split each screen into three 
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10 million cell reactions and performed five total washes with 35oC wash buffer after following the 

staining protocol. We stained each sample for the gene of interest with an Alexa Fluor 647 (AF647, 

“Type 1”) probeset and against a positive control housekeeping gene with Alexa Fluor 488 (AF488, 

“Type 4”). For most screens we used control gene RPL13A, but because BAX, BCAT2, FTL, 

NUCB1, and PPP1R15A are <700 kb from RPL13A, we used ACTB for these. 

 

Fluorescence  ac t ivated ce l l  sor t ing  

We diluted the stained cells in PBS with 0.5% BSA to a concentration of 2x107 cells/ml and filtered 

using a 30µm filter (CellTrics, Catalog number 04-004-2326). We sorted 30 million cells for each 

screen into six bins based on fluorescence intensity of target genes using the Astrios EQ Sorter 

(Beckman Coulter B25982). To control for differences in staining efficiency for each cell, we 

normalized the fluorescence associated with the gene of interest to that of the control gene. 

Specifically, we used the color compensation tool to subtract a portion of each cell’s AF647 signal 

based on the intensity of its AF488 signal such that the mean AF488 signal in the top and bottom 

25% of cells based on AF647 was within 10%. If necessary, we then reduced the level of 

compensation until the fraction of cells with AF647 signal equal to 0 was no more than 5%. We set 

the gates for each bin on the compensated signal to capture 10% of the cells according to the 

percentiles (i) 0-10% (ii) 10-20%, (iii) 35-45%, (iv) 55-65%, (v) 80-90%, and (vi) 90-100%. 

 

Genomic DNA extrac t ion and gRNA sequenc ing 

We collected the sorted cells by centrifugation at 800g for 5 minutes, resuspended cells in 100uL of 

Lysis buffer (50mM Tris-HCl, pH 8.1, 10mM EDTA, 1% SDS), and incubated at 65oC for 10 

minutes for reverse crosslinking. Once the samples cooled to 37 oC, we added 2ul of RNase Cocktail 

(Invitrogen, catalog #AM2286), mixed well, and incubated the mixture at 37oC for 30 minutes. 
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Finally we added 10µl Proteinase K (NEB, catalog number P8107S), mixed well, and incubated the 

mixture at 37oC for 2 hours followed by incubation at 95oC for 20 min. We extracted genomic DNA 

using Agencourt XP (SPRI) beads (Beckman Coulter). We sequenced gRNA integrations as 

previously described (10).  

 

Analys i s  o f  CRISPRi-FlowFISH screens 

To determine the effects of each gRNA on fluorescence, we used a maximum likelihood estimation 

(MLE) method. First, we normalized gRNA frequencies in each bin by dividing each gRNA count 

by the total read count for all gRNAs in that bin and summed normalized counts across PCR 

replicates. Next, we used the limited-memory Broyden–Fletcher–Goldfarb–Shanno (BFGS) 

algorithm MLE method in the R stats4 package to fit the read counts in each fluorescence bin to the 

log-normal distribution that would have most likely produced the observed counts in the bins. The 

effect size is from the mean of the log-normal fit. We assumed the gRNAs targeting the TSS of the 

assayed gene have a “true” effect size of 85% (based on previous observations that show CRISPRi 

effects of 80-90% across a panel of genes (13)), but that some portion of the FlowFISH signal is due 

to non-specific binding of the probe. Accordingly, we scaled the effect size of each gRNA within 

each screen linearly so that the strongest 20-gRNAs window within 500 bp of the target genes TSS 

gRNAs has effect size 85%. We then averaged the effect sizes of individual gRNAs across replicates.  

 

To identify elements affecting the expression of the assayed gene, we used a t-test to determine 

whether the mean effect size of the gRNAs in each candidate element deviated significantly from the 

mean of scrambled-sequence, negative control gRNAs. We computed the FDR for elements using 

the Benjamani-Hochberg method applied per gene, and used an FDR threshold of 0.05 to call 

significant E-G interactions. 
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We excluded certain E-G pairs measured with CRISPRi-FlowFISH from further analysis. E-G pairs 

were excluded if the pair met any of the below criteria: 

(i) There was less than 80% power to detect a 25% effect for this E-G pair. 

(ii) The element overlapped the gene’s promoter. 

(iii) The element was within the gene body or extended up to 2 kb downstream of the 3’ 

end of the gene. 

 

Enhancer  per turbat ion data f rom other  sources :  

To complement the data from our FlowFISH dataset, we curated results from previous experiments 

involving perturbations to accessible elements and precise measurements of the effects on gene 

expression. These included experiments involving a variety of perturbation methods (CRISPRi, 2-

guide deletion, or other genome editing) and methods of measuring the effect on gene expression 

(RNA-seq, allele-specific RNA-seq, CRISPR screens, or RT-qPCR), and included six cell lines 

(K562, GM12878, NCCIT, LNCaP, hepatocytes, and mES cells). In cases where the same element-

gene pair had been characterized in the same cell type by more than one group or by more than one 

assay, we included it only once in assessing the performance of the ABC model. We did not consider 

element-gene pairs where the element was that gene’s own promoter. Additional details are included 

below, and in the following section (Power calculations).  

 

Fulco 2016. We previously used CRISPRi (KRAB-dCas9) to tile gRNAs across a large region around 

GATA1 and MYC in K562 cells and measured the effects using a proliferation assay (10). We used 

RT-qPCR data from this study to represent the effect sizes for the 7 and 2 enhancers that 

significantly affected MYC and GATA1 expression, respectively. For all other elements, we 
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estimated their effect sizes on gene expression based on the linear relationship between MYC 

expression and proliferation (10). 

 

Klann 2017. Klann et al. used CRISPRi (dCas9-KRAB) to target gRNAs to DHS elements in a large 

region around HBE1 in K562 cells and measured the effects by FACS sorting on an integrated 

HBE1-mCherry reporter (14). We downloaded the raw count file from this study (GSE96875) and 

filtered for gRNAs with a minimum total 50 reads across the high and low mCherry bins. We 

calculated the mean log2 fold-change across all replicates, and estimated effect sizes according to the 

linear relationship between this value and qPCR experiments for individual enhancers (Supp Figure 

3B in Klann et al. 2017).  

 

Ulirsch 2016. Ulirsch et al. used CRISPR used one gRNA per enhancer to introduce small deletions at 

each of  3 enhancers in K562 cells (15). We obtained the original qPCR data from the authors and 

assessed expression differences between homozygous knockout and wild-type clones using a t test. 

 

Wakabayashi 2016. Wakabayashi et al. used one gRNA per enhancer to introduce small deletions at 

each of 5 enhancers in K562 cells (16). We obtained the original qPCR data from the authors and 

assessed expression differences between homozygous knockout and wild-type clones using a t test. 

 

Thakore 2015. Thakore et al. used KRAB-dCas9 to inhibit an enhancer (HS2) in the globin locus in 

K562 and performed RNA-seq (17). We downloaded RNA-seq count matrices from GEO 

(GSE71557) and used DESeq2 to compute differential expression between biological replicate 

experiments using CR4 (the most effective guide RNA used in this study) versus no-guide controls. 

Genes within 1 Mb of the enhancer with FDR < 0.05 were considered true positives for 



 134 

downstream analysis; only genes within this range and with sufficiently high expression (>1 sample 

with read count >= 5) were considered in the multiple hypothesis correction. 

 

Liu 2017. Liu et al. used KRAB-dCas9 to inhibit the promoters of several lncRNAs in K562 cells 

and performed RNA-seq (18). We downloaded the raw data from GSE85011 and quantified 

transcript abundance with kallisto (v. 0.43.0). A total of 19 RNA-seq experiments were performed; 

we removed one outlier (k562-LINC00910-1). We used DESeq2 to call differentially expressed 

genes for each of the 5 lncRNAs where two or more replicates were performed (EPB41L4A-AS1, 

LINC00263, LINC00909, MIR142, XLOC-042889). We compared the samples for a given 

promoter to all of the other samples (in which other lncRNA promoters were targeted) because 

there were no negative control samples. Genes within 1 Mb of the enhancer with FDR < 0.05 were 

considered true positives for downstream analysis; only genes within this range and with sufficiently 

high expression (>1 sample with read count >= 5) were considered in the multiple hypothesis 

correction. 

 

Engreitz 2016. We previously generated homozygous and heterozygous knockout clones of 12 

lncRNA and 6 mRNA promoters in mES cells on a 129S1/Castaneus hybrid genetic background, and 

measured the effects on gene expression using allele-specific RNA-seq (2) We calculated the average 

effects on the allelic expression of each gene within 1 Mb of the deleted promoter and included 

these in our perturbation database for this study. We assessed significance using DESeq2 to calculate 

the marginal effect of genotype (promoter knockout) after controlling for allele and sample (design 

formula = “~0 + Genotype + Allele + SampleName”). This effectively combines the allele-specific 

expression information across heterozygous and homozygous clones and leverages the statistical 

power of the empirical Bayes approach in DESeq2. We performed multiple hypothesis correction 
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using the Benjamini-Hochberg method considering all genes within 1 Mb of the deleted promoter. 

This approach proved more powerful than the permutation-based method we previously used to 

analyze this data (2), and identified several additional nearby genes that showed significant allele-

specific effects on expression. For this analysis, “nCtrl” and “nKO” refer to the number of wild-

type and knockout chromosomes for each locus. 

 

mES cell enhancer deletions (this study). We also included data from new experiments in which we deleted 

two putative enhancers in mES cells via transfection of multiple gRNAs and measured the effects 

on nearby genes using allele-specific RNA sequencing, as previously described (2). These two 

enhancers were selected on the basis of previous plasmid reporter assays showing enhancer activity 

for these elements (19) and are named “Chen2008-1” and “Chen2008-25” according to their 

number assignment from this previous study. We performed hybrid selection RNA-seq and 

produced allele-specific count tables as previously described (2). We assessed statistical significance 

using DESeq2 as described above. 

 

Moorthy 2017. Moorthy et al. generated enhancer knockouts in mES cells on a 129S1/Castaneus 

hybrid genetic background, and measured the effects on gene expression using allele-specific RNA-

seq as well as RT-qPCR (20). For the RNA-seq data, we calculated the average effects on the allelic 

expression of each gene within 1 Mb of the deleted element and assessed significance using 

DESeq2, considering allele-specific read counts in both heterozygous and homozygous clones as 

described above (2). This study generated a variety of heterozygous and homozygous deletions, 

including of multiple elements in different combinations in the same clones. We considered only the 

loci where at least one clone carried the deletion on the 129 allele and at least one clone carried the 

deletion on the Castaneus allele. For each deletion, we averaged the allele-specific effects across all 
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clones. We looked for genes that showed >5% change in allele-specific expression with FDR < 0.25, 

but did not identify any significantly affected genes beyond those identified by the authors’ analysis.  

 

Xie 2017. Xie et al. used KRAB-dCas9 and single-cell RNA-seq to identify 12 enhancers in K562 that 

significantly affect the expression of a neighboring gene (21). We used the log2 fold-change reported 

in the paper for genes whose expression was significantly affected by enhancer perturbations 

according to the authors’ analysis. 

 

Blinka 2016, Huang 2018, Li 2014, Mumbach 2017, Musunuru 2010, Rajagopal 2016, Spisak 2015, Tewhey 

2016, Wang 2018, Xu 2015, Zhou 2014. For experiments from these studies, we estimated effect sizes 

and standard errors from figures in these studies, and assigned significance according to the authors’ 

analysis (22-32).  

 

Fuentes 2018. Fuentes et al. used CARGO to deliver an array of 12 gRNAs with dCas9-KRAB to 

simultaneously perturb LTR5HS, LTR5A, and LTR5B repeat elements (of which there are 910 

annotated in the genome) in the NCCIT cell line, and measured the resulting changes in gene 

expression using RNA-seq (33). Because all elements were perturbed simultaneously (in each 

individual cell) in this study, the nature of the data is distinct from other data we analyzed, where 

only a single element was perturbed in any given experiment (or in any given cell in our CRISPRi 

screens). Accordingly, the data from Fuentes et al. required special analysis to identify DE-G pairs 

where effects on gene expression are likely to be due to the direct effects of an individual nearby 

DE/LTR.   
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We first identified the elements that were potentially targeted by Fuentes et al.: we considered 910 

LTR5HS, LTR5A and LTR5B elements in the RepeatMasker (v4.0.5) database as well as 1194 dCas9 

ChIP-Seq peaks (see below for ChIP-Seq analysis). We merged overlapping regions, resulting in 

1427 candidate elements.  

 

As different instances of the LTR5 repeats have high sequence similarity, we next determined how 

accurately we could measure the epigenetic profile (and thus the Activity compenent of the ABC 

score) of each LTR element. To determine the mappability of each element, we (i) simulated reads in 

each LTR region by tiling the region with 150bp paired-end reads of insert sizes between 150bp and 

400bp (in increments of 10bp), (ii) mapped the simulated reads to the hg19 genome using BWA, and 

(iii) computed the fraction of reads from each LTR that map uniquely to that LTR (mapq >30). We 

considered the 1073 regions in which >95% of simulated reads mapped uniquely as sufficiently 

mappable for the purposes of the ABC score calculation. 

 

In order to consider only the elements that were sucessfully perturbed in the CRISPRi condition, we 

further limited our analysis to the 1057 elements that displayed sufficient reduction in H3K27ac 

signal in the CRISPRi condition (>2-fold decrease in CRISPRi vs control condition, and less than 1 

read per million in total H3K27ac ChIP-seq signal in the CRISPRi condition). 

 

We next identified the set of genes that had exactly one nearby targeted LTR element (within 500 

kb, not within the gene body). To assess changes in gene expression, we re-analyzed the RNA-seq 

data from Fuentes et al. (GSE111337): we quantified gene abundances using Kallisto (34) and 

computed differential expression with DESeq2 as described in Fuentes et al. (33). We considered a 
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gene significantly differentially expressed if its Benjamini-Hochberg adjusted pvalue was <0.05. We 

calculated the statistical power to detect effects as described in the following section.  

 

In order to reduce the contribution of trans effects, we applied a filter similar to that described in 

Fuentes et al. (33): we limited our analysis to genes that have concordant effects in the CRISPRi and 

CRISPRa conditions. Specifically, we only analyzed genes that were significantly down-regulated in 

the CRISPRi condition and up-regulated in the CRISPRa condition, or genes that were not 

significant in both conditions and that had sufficient power in both conditions. 

 

To summarize, we applied the following to filters to the dataset generated by Fuentes et al:  

We only considered LTR elements which  

• Had sufficient decrease in H3K27ac signal upon CRISPRi perturbation  

• Had sufficiently high simulated mappability  

• Were at least 500kb from the closest other LTR element.  

• Did not overlap a gene promoter 

 

We only considered genes which 

• Did not have an LTR within the gene body.  

• Had concordant effects under perturbations by CRISPRi and CRISPRa 

• Had exactly one LTR within 500kb 

 

This resulted in a set of 22 positive and 872 negative LTR-gene pairs at the lenient power threshold 

(see below), and 22 positive and 0 negative LTR-gene pairs at the stringent power threshold. We 

additionally considered 5 LTR-gene pairs where Fuentes et al. deleted the LTR and quantified the 
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effect on the target gene by qPCR. The deletion of the LTR proximal to EPHA7 was not included 

as this LTR element did not have sufficiently high simulated mappability.   

 

Power ca l cu lat ions for  d i f f e r ent ia l  express ion.   

Enhancers are known to have a wide range of effect sizes on gene expression (including examples as 

low as 10%) (10), and so we designed our experimental and computational analysis of enhancer-gene 

connections to precisely estimate effect sizes and carefully estimate the power to detect certain effect 

sizes. For all datasets (including in our FlowFISH data and from other sources), we assigned each 

tested element-gene pair into one of four categories: (i) statistically significant decrease on gene 

expression (“positive” for precision-recall analysis); (ii) statistically significant increase on gene 

expression (“negative” for precision-recall analysis); (iii) >80% power to detect a 25% effect on gene 

expression, but no significant effect detected (“negative” for precision-recall analysis); or (iv) <80% 

power to detect a >25% effect on gene expression (not considered in our analysis of element-gene 

connections due to lack of power). As this stringent power cutoff permited only 23 negative DE-G 

pairs for analysis of the perturbation data in other cell types (Figure B-15), we also tested using a 

lenient threshold of >80% power to detect a 50% effect on gene expression (Fig. 4), which 

increased the number of negative pairs in other cell types to 920. 

 

Power calculations for FlowFISH experiments. For each candidate element, we used a t-test (equal 

variances) to compare the MLE effects of the gRNAs in that element to the MLE effects of 668-

3505 negative controls (non-targeting gRNAs), and applied the Benjamini-Hochberg correction 

across the set of tests in each screen. We used summary statistics from these experiments (standard 

error of the mean and n for cases and controls) to analytically solve for the power to detect >25% 
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changes in gene expression. We removed screens without 80% power to detect a 25% effect in at 

least 80% of elements, and additionally a single tested E-G connection with insufficient power. 

 

Power calculations for qPCR datasets.  We used a t-test (equal variances) to evaluate differences in gene 

expression for RT-qPCR datasets. We used summary statistics from these experiments (standard 

error of the mean and n for cases and controls) to analytically solve for the power to detect >25% or 

>50% changes in gene expression. P-value cutoffs for power calculations were determined using the 

multiple hypothesis correction methods used in the original studies. 

 

Power calculations for RNA-seq datasets.  We used DESeq2 to calculate differences in gene expression 

between cases (enhancer perturbation) and controls (35). DESeq2 uses a series of empirical Bayes 

steps to estimate the mean, variance, and log-fold-change for each gene. We cannot compute the 

power for this test analytically and instead used a simulation-based procedure to estimate the power 

to detect changes in the expression of each gene in each enhancer perturbation: 

(1) We considered the real RNA-seq data for each test, for example consisting of several 

replicates of case and control conditions. 

(2) We removed genes where fewer than two samples had five or more reads. 

(3) We estimated the mean and dispersion parameters for each gene using the DESeq2 empirical 

Bayes procedure. 

(4) Based on these parameters, we simulated 100 random datasets across all genes with the same 

total read counts as the original experiments. For each gene within 1 Mb of the perturbation, 

we reduced the mean parameter by 25% or 50% for these simulations. 

(5) We used the DESeq2 pipeline on each simulated dataset to compute the p-value for every 

gene in the genome. For each gene within 1 Mb of the perturbation, we computed the FDR 
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by performing multiple hypothesis correction with the Benjamini-Hochberg method using 

the p-value of each gene in the simulated dataset together with the p-values of other genes 

within 1 Mb derived from the real data. 

(6) We computed power based on the fraction of the 100 simulations in which FDR < 0.05. 

We used an identical procedure for power calculations for allele-specific RNA-seq, with the only 

difference being the inclusion of additional variables (representing allele and sample) in the DESeq2 

design matrix. 

 

Computing the effects of large deletions: In some cases, certain genomic perturbations (e.g., from Moorthy et 

al. 2017) involved large genomic deletions that spanned multiple ABC model elements. In these 

cases, we predicted the effect of the deletion as the sum of the ABC score of all overlapping 

elements, and assigned it to the “distal promoter” category if it overlapped a promoter element. 

 

Stringent and lenient power filters for data in other cell types 

We analyzed the enhancer perturbation data collated in other cell types at two different power 

thresholds,  the “stringent” threshold we used for analysis of the K562 data (80% power to detect 

25% effects on gene expression), and a “lenient” threshold of 80% power to detect 50% effects on 

gene expression because the experiments in other cell types were not as well powered as our 

CRISPRi-FlowFISH method, and thus assigned fewer non-regulatory DE-G pairs.   

 

In the stringently-filtered dataset, applying the threshold on the ABC score corresponding to 70% 

recall and 63% precision in our initial K562 dataset could identify DE-G connections in other cell 

types with 91% recall and 75% precision (Figure B-15).  
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When we relaxed the power requirements for data in other cell types to include more non-regulatory 

DE-G pairs (from 80% power for detecting 25% effects to detecting 50% effects), we found that 

the ABC model performed similarly in the K562 and cross-cell-type datasets (AUPRC = 0.66 vs 

0.75, respectively; Fig 4).   

 

Epigenomic datasets, processing, and analysis. 

 

DNaseI hypersensitivity sequencing (DHS), ChIP-seq, and Expression datasets 

We downloaded bam files for DNase I hypersensitivity sequencing (DHS), ChIP-seq for several 

chromatin marks including H3K27ac, and several transcription factors from a varienty of sources 

including ENCODE (33, 36-39). We generated our own H3K27ac ChIP-seq data in F1 

129/Castaneus hybrid mESCs grown in 2i media as previously described (2), and our own ATAC 

data in NCCIT cells as described below (available from GSE118912). 

 

Hi-C  

We analyzed K562 and GM12878 in situ Hi-C maps described previously (GSE63525) (11). We also 

generated new in situ Hi-C maps of male mouse V6.5 embryonic stem cells grown in 2i conditions as 

previously described (11), and sequenced 4 technical replicates to a combined depth of 1.17 billion 

reads (available from GSE118912). Hi-C loop and contact domain annotations were computed using 

the Juicer suite of tools (40). 

 

NCCIT ATAC 

We performed ATAC-seq on 10K cells NCCIT cells in duplicate according to the protocol 

described by Buenrostro et al. (41) with some modifications. Specifically, we used Sigma Nuclei EZ 
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lysis buffer for lysis for 10 minutes while spinning 500xG at 4C, resuspended with the lysis buffer, 

and spun again for 3 minutes. We then resuspended the nuclei pellet with a tagmentation buffer 

containing 12.5 uL of TD buffer, 1.25 uL of Tn5 transposase, 7.5 uL of PBS and 2.75 uL of water. 

After 15 cycles of PCR we cleaned the products with Agencourt XP (SPRI) beads and sequenced to 

a depth of at least 30M reads per sample with 100 and 200 bp paired-end reads on a HiSeq 2500. 

 

NCCIT ChIP-seq processing 

For analysis of CRISPRi and CRISPRa data from Fuentes et al., we downloaded dCas9-GFP ChIP-

seq data from GSE111337 and obtained H3K27ac ChIP-seq data directly from the authors (33). We 

aligned reads using BWA (v0.7.17) (42), removed PCR duplicates using the MarkDuplicates function 

from Picard (v1.731), and removed reads with mapq < 30. We used MACS2 (v2.1.1) (43) to call 

peaks on Cas9 ChIP-seq using the non-targeting conditions as controls as described in (33). 

 

Activ i ty  by Contac t  (ABC) model  

We designed the Activity by Contact (ABC) score to represent a mechanistic model in which 

enhancers contact target promoters to activate gene expression. In a simple conception of such a 

model, the quantitative effect of an enhancer depends on the frequency at which it contacts a 

promoter multiplied by the strength of the enhancer (i.e., the ability of the enhancer to activate 

transcription upon contacting a promoter) (10). Moreover, the relative contribution of an element 

on a gene’s expression (as assayed by the proportional decrease in expression upon CRISPR-

inhibition) should depend on the element’s effect divided by the total effect of all elements. 

 

To extend this conceptual framework to enable computing the quantitative effects of enhancers on 

the expression of any gene, we formulated the ABC score: 
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         ABC score for effect of element E on gene G = Activity of E × Contact frequency between 

E and G /  Sum of (Activity × Contact Frequency) over all candidate elements within 5 Mb. 

 

Operationally, Activity (A) is defined as the geometric mean of the read counts of DHS and 

H3K27ac ChIP-seq at an element E, and Contact (C) as the normalized Hi-C contact frequency 

between E and the promoter of gene G, and elements are defined as ~500bp regions centered on 

DHS peaks.  

 

This model has the following characteristics or assumptions: 

1. The effect of an element on gene expression is linearly proportional to contact frequency 

and enhancer Activity. 

2. A given enhancer has equal “Activity” for all genes — that is, it does not model the potential 

for biochemical specificity that could allow certain enhancers to regulate only certain 

promoters. 

3. Different enhancers contribute additively and independently to the expression of a gene. 

4. The sum in the denominator includes the gene’s own promoter, which is considered a 

potential enhancer with Activity calculated in the same manner as other enhancers. 

5. The model computes the relative effect of an enhancer on gene expression, but does not 

estimate the absolute effect. 

6. The model aims to predict the functions of enhancers, but not the functions of elements 

that act through other mechanisms. 

 

We detail the calculation of the ABC score and discuss these assumptions below. 



 145 

 

Calculating enhancer activity from DHS and H3K27ac ChIP-seq signals 

We estimated enhancer activity of candidate elements using a combination of quantitative DNase-

seq and H3K27ac ChIP-seq signals. For a given element, we counted DHS and H3K27ac reads (per 

million) in DNase peaks (150 bp from ENCODE), which we extended by 175 bp on either side (to 

500 bp total; average length after merging overlapping peaks = 597 bp, Figure B-2B) because 

H3K27ac ChIP-seq signals are strongest on the nucleosomes flanking the nucleosome-free DHS 

peak. We computed the geometric mean of DNase-seq and H3K27ac ChIP-seq signals because we 

expect that strong enhancers should have strong signals for both, and that elements that have only 

one or the other likely represent other types of elements. (Elements with strong DNase-seq signal 

but no H3K27ac ChIP-seq signal might be CTCF-bound topological elements. Elements with 

strong H3K27ac signal but no DNase-seq signal might be sequences that are close by to strong 

enhancers but do not themselves have enhancer activity, due to the spreading H3K27ac signal over 

hundreds to thousands of bp.)  

 

We note that this calculation of enhancer activity is the same for a given element across all genes. 

This means that the model assumes that an enhancer has the same “Activity” for every promoter 

(i.e., no differences due to biochemical specificity).  

 

Calculating contact frequency from cell-type specific Hi-C data.  

In our initial analysis in K562 cells, we obtained the Contact component of the ABC score for E-G 

pairs from Hi-C data in K562 cells, using the quantitative signal observed in the 5-kb x 5-kb bin 

containing the center of E and TSS of G.  
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Specifically, we used KR-normalized Hi-C contact maps at 5-kb resolution, and processed these 

maps in two steps:  

i. Rows and columns corresponding to KR normalization factors less than .1 were removed 

(these typically correspond to 5-kb bins with very few reads).  

ii. Each diagonal entry of the Hi-C matrix was replaced by the maximum of its four 

neighboring entries. Justification: The diagonal of the Hi-C contact map corresponds to the 

measured contact frequency between a 5 kb region of the genome and itself. The signal in 

bins on the diagonal can include restriction fragments that self-ligate to form a circle, or 

adjacent fragments that re-ligate, which are not representative of contact frequency. 

Empirically, we observed that the Hi-C signal in the diagonal bin was not well correlated 

with either of its neighboring bins and was influenced by the number of restriction sites 

contained in the bin. 

 

We then computed Contact for an E-G pair by rescaling the data as follows: 

i. We extract the row of the processed Hi-C matrix that contains the TSS of G. For 

convenience, the row is rescaled so that the maximum value is 100. 

ii. We set the Contact of the E-G pair to the Hi-C signal at the bin of this row corresponding 

to the midpoint of E. 

iii. We add a small adjustment (“pseudocount”) to ensure that the contact frequency for each E-

G pair is non-zero. For E-G pairs within 1 Mb, the adjustment is equal to the expected 

contact frequency at 1Mb (as predicted by the power-law relationship between contact 

frequency and genomic distance, see below), and for E-G pairs at distance d (d > 1Mb), the 

adjustment is equal to the expected contact at distance d. In each case the adjustment is 
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scaled to be in the same units as described in (i). Adding the adjustment sometimes results in 

a quantitative Contact greater than 100; in such cases, the Contact is reduced to 100. 

 

Calculating the contribution of one candidate element relative to others in the region. 

To calculate the relative effect of each element to the expression of a gene, we normalize the 

Activity by Contact of one element for a given gene to the sum of the Activity by Contact of other 

nearby elements. We included all elements within 5 Mb of the gene’s promoter in this calculation, 

and found that the performance of the model was not sensitive to this parameter (see below). We 

also included each gene’s own promoter as an element in the denominator of the ABC score. This is 

because the promoters of genes are known to have the potential to act as enhancers for other genes 

and are frequently bound by activating TFs (2, 3). Thus, the ABC score considers that the element 

near the TSS can have enhancer activity that contributes to the total regulatory signals relevant for 

that gene. We note that this normalization encodes the simplifying assumption that each element 

contributes independently and additively to gene expression. Based on the performance of the 

model in distinguishing significant DE-G pairs, this assumption appears sufficient for practical 

performance of the model. This first-order ABC model provides a foundation for incorporating 

higher-order effects such as the potential for nonlinear effects of multiple enhancers in a locus. 

 

 

Sensitivity of the ABC score to chosen parameters.  

An attractive feature of the ABC model is its simplicity: at its core, the formula involves counting 

reads in DHS, H3K27ac, and Hi-C experiments, and performing a few addition and multiplication 

operations. We designed this ABC model based on the conceptual model of enhancer function 

described. Notably, there are no free parameters that need to be fit. While the model contains no 
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free parameters, there are certain choices that need to be made in data processing. We made these 

choices based on known properties of epigenomic datasets. Specifically: 

• We set the size extension of DHS peaks to 175 bp to include the nucleosome signal 

neighboring the DHS peak, and, together with the 150-bp size DHS peaks in ENCODE 

data, to yield extended elements with a convenient size (500 bp). 

• We chose a genomic distance cutoff of 5 Mb based on this including all confirmed cases 

of cis regulation by enhancers — the longest of which is ~2 Mb. 

• We regularized the Hi-C data by adding an adjustment factor (“pseudocount”), equal to 

the average contact at d = 1 Mb (as described above). 

• We included the promoter of each gene as a regulatory element and assigned its 

“Contact” (with itself) according to the diagonal Hi-C signal as described above. 

To determine if the performance of the ABC score was sensitive to these choices, we varied the size 

of extension of DHS peaks (range: 0 to 1000 bp; our choice was 175 bp), the genomic distance over 

which elements were included in the model (range: 500 kb to 10 Mb; our choice was 5 Mb), the Hi-

C adjustment factor (range: average signal at 100 kb to 10 Mb; our choice was 1 Mb), and the signal 

at the diagonal bin of the Hi-C matrix relative to its neighboring bins (range: 0 to 500%; our choice 

was 100%). A broad range of parameter choices gave nearly identical performance (Figure B-8). The 

parameter that appeared most important was the size extension of DHS peaks, where either much 

lower or much higher extensions led to somewhat lower accuracy. This appears to be because at 

lower extension values, the H3K27ac signal is not properly captured, while at higher values the 

merging of nearby elements results in poor ability to distinguish between the functions of adjacent 

DHS peaks. These observations suggest that the ABC score is robust to our initial choices in data 

processing. 
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Alternat ive  methods to  es t imate  Contac t  in the  ABC model  

Approximating Hi-C contact frequency with the average Hi-C data 

To evaluate the performance of the ABC model using a non-cell-type-specific Hi-C dataset, we 

generated locus specific Hi-C profiles from an average of 8 human Hi-C datasets. These averaged 

profiles were created as follows: 

i. For each gene in the genome, we extract the row corresponding to this gene from each Hi-C 

matrix (KR normalized, at 5KB resolution) 

ii. Each of these profiles is then scaled using the cell-type specific power law parameters 

relative to the K562 power law parameters (see below) 

iii. Finally, the total Hi-C signal in each cell-type specific profile is normalized to sum to one 

and then averaged across cell types to create the average profile at a given locus 

 

Normalizing Hi-C Profiles Using the Power-Law Fit 

We find that different Hi-C datasets have slightly different power-law parameters. To weight all cell 

types equally in generating an average Hi-C profile, we scale the Hi-C profile in a given cell type by 

the cell-type specific parameters from the power law relationship in that cell type (see below). The 

scaling factor at distance d is given by  (scaleref/scalecelltype) * d ^ (gammaref – gammacelltype), where scaleref  and 

gammaref are the given reference parameters. For this study we used the power-law parameters in 

K562 as a reference. 

Fitting a power-law relationship to Hi-C data 

We fit a power-law relationship to the Hi-C data in a given cell type as follows: 

i. We aggregate all entries of the Hi-C matrix located greater than 10kb and less than 1Mb 

from all gene promoters (KR normalized at 5kb resolution) 
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ii. We then perform a linear regression of the Hi-C signal in these bins on genomic distance in 

log-log space. The slope of this line is the gamma parameter and the intercept is the scale 

parameter. 

 

Approximating Hi-C contact frequency with polymer globule models 

To compute the variance in Hi-C contact frequencies (KR-normalized contacts) explained by a 

polymer globule model (and relevant to enhancer-gene regulation), we examined all gene TSSs and 

their contacts with loci at distances between 10 kb and 5 Mb in K562. The fractal globule model 

explained 69% of the variance in Hi-C contact frequency and the extrusion globule model explained 

71% of the variance. 

 

Comparison o f  ABC predi c t ions across  c e l l  types  

Quantile normalization of epigenomic data  

In order to facilitate a comparison of epigenomic datasets across cell types (and across assays, e.g., 

DNase-seq vs ATAC-seq), we quantile normalized the read counts in candidate elements from other 

cell types to the read counts in the corresponding assays in K562. Specifically, for each data type 

(H3K27ac ChIP-seq and DNase-seq or ATAC-seq) and for each class of element (promoter-

proximal and distal), we quantile normalized the signal (in RPM) from this data-type and enhancer-

class to the signal in K562. We then computed genome-wide ABC scores using these normalized 

epigenomic profiles as described above. If Hi-C data was not available in the cell type, we used the 

average Hi-C profile described above.  
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Identifying expressed genes for ABC predictions 

When using the ABC model to predict enhancer-gene connections genome-wide, we made 

predictions only for genes that are “expressed”. For cell types where RNA-seq data was available, we 

defined expressed genes as those with RNA-seq transcripts per million (TPM) > 1. For cell types 

where RNA-seq data was not available (LNCaP, primary liver) we defined expressed genes as those 

whose promoters had chromatin states consistent with active transcription. Specifically, we 

calculated a promoter score as the product of DHS (or ATAC-seq) reads and H3K27ac ChIP-seq 

reads on a 1 kb region centered at the gene’s transcription start site, and then defined expressed 

genes and those with the top 60% of promoter scores. 

 

Comparison to  o ther  publ i shed enhancer-gene predi c t ion methods 

We evaluated the performance of the following published enhancer-gene prediction methods in 

predicting DE-G connections in our dataset: 

 

JEME enhancer-gene predictions from from Cao et al. 2017. The Joint Effects of Multiple 

Enhancers (JEME) method first computes correlations between gene expression and various 

enhancer features (e.g., DNAase1, H3K4me1) across multiple cell types to identify a set of putative 

enhancers. Then a sample-specific model is used to predict the enhancer gene connections in a given 

cell type (44). We downloaded the lasso-based JEME predictions in K562 (ID 121) from 

http://yiplab.cse.cuhk.edu.hk/jeme/. For each E-G pair in our dataset, we searched to see if the 

element and gene TSS overlapped two interacting regions listed in this file. If so, the pair received a 

score of 1, otherwise it received 0. 
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K562 ChIA-PET loops from Li et al. 2012. We downloaded the K562 saturated PET clusters from 

Supplementary Table 2 of https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339270/#SD1 (45). 

For each E-G pair in our dataset, we searched to see if the element and gene TSS overlapped two 

interacting regions listed in this file. If so, the pair received a score of 1, otherwise it received 0.  

 

TargetFinder enhancer-promoter predictions from Whalen et al. 2016. We downloaded the 

TargetFinder K562 predictions from https://github.com/shwhalen/targetfinder (46). We used the 

GBM classifier including Enhancer and Promoter windows (EPW). For each DE-G pair in our 

dataset, we searched to see if the element and gene TSS overlapped an enhancer and promoter loop 

listed in this file. If so, we assigned the pair a score corresponding to the ‘prediction’ column from 

this file, otherwise it received 0.  

 

Hi-ChIP loops from Mumbach et al. 2017. We downloaded the HiCCUPS high-confidence loop 

calls from K562 cells from supplementary table 2 of https://www.nature.com/articles/ng.3963 (31). 

For each DE-G pair in our dataset, we searched to see if the element and gene TSS overlapped a 

loop listed in these files. If so, we assigned the pair a score of 1, otherwise it received 0.  

 

FlowFISH to s tudy enhancers  and promoters  in the MYC locus .  

In our previous study, we identified 7 MYC enhancers that quantitatively tuned MYC expression (by 

9-60%) (10). We studied the effects of these 7 enhancers on two other genes in the locus (PVT1 and 

CCDC26, both noncoding RNAs) to examine the potential for these enhancers to specifically 

regulate certain genes. To test their effects in the genome, we designed a pool containing 2-3 gRNAs 

per gene and 13 negative control gRNAs. We used CRISPRi-FlowFISH for MYC, PVT1, and 

CCDC26 to measure the effects of these 7 enhancers on the expression of each of these genes 
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(Figure B-9H. Because PVT1 has multiple promoters in K562 cells (47), we verified the effects we 

observed in FlowFISH using RT-qPCR with primers corresponding to a specific PVT1 isoform 

(that uses e3 as a promoter) as previously described (10).  

 

s iRNA-mediated knockdown o f  GATA1  

We transfected 200,000 K562 CRISPRi cells (from the same population of cells that was used in the 

CRISPRi-FlowFISH screens) with siRNAs (from Ambion, Thermo Fisher Scientific) using the 

Amaxa Nucleofector 96-well Shuttle (Lonza, program: 96-FF-120) following the manufacturer's 

protocol. We transfected each siRNA in quadruplicate. We harvested cells in buffer RLT (Qiagen, 

Germantown, MD) 48 hours after transfection and estimated target gene expression relative to cells 

transfected with non-targeting siRNAs by RNA sequencing.  

 

For RNA-seq, we followed version 2 of a 3’ cDNA-enriched bulk RNA barcoding and sequencing 

(BRB-seq) protocol (48) with minor modifications. Specifically, we isolated RNA from 100,000 cells 

in RLT with 2.2X volume Agencourt RNAClean XP SPRI beads (Beckman Coulter, Danvers, MA). 

We used 125 ng RNA input per sample (as measured by the RNA Qubit High Sensitivity Kit) during 

first strand synthesis with a barcoded RT primer. We then pooled 7-12 barcoded first-strand cDNA 

samples together. After an overnight second-strand synthesis, we split each pool (containing 

multiple samples indexed during first strand synthesis) into 4-8 tagmentation replicates. We 

tagmented 5 ng of cDNA using 1 uL Nextera Tagment DNA Tn5 transposase (Illumina, San Diego, 

CA, 15027916) in a 10 uL tagmentation mix for 10 minutes at 55 °C.  

 

Using the custom P5 primer and a standard Nextera i7 indexing primer, we used qPCR to optimize 

the number of PCR amplification cycles by chosing the cycle number that produced half the 
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maximal fluorescent signal. We cleaned up the reaction twice using 0.8X volume Agencourt Ampure 

XP SPRI solution (Beckman Coulter, Danvers, MA). We sequenced the resulting libraries on a 

HiSeq 2500 (Illumina) with 35 bp reads. 

 

We trimmed reads using BRB-seqTools v1.3, aligned reads to hg19 using STAR (v2.5.2b), and used 

BRB-seqTools v1.3 to count UMIs in RefSeq gene exons. We used DESeq2 to compute differential 

expression of siRNAs against GATA1 versus non-targetting controls with the design formula 

“~perturbation+dose” (to control for the doses of siRNAs). Genes within 1 Mb of GATA1 with 

Benjamani-Hochberg-corrected p-value < 0.05 were considered differentially regulated; only genes 

within this range and with sufficiently high expression (>1 sample with read count >= 5) were 

considered in the multiple hypothesis correction. 

 

Analys i s  o f  ubiqui tous ly -expressed genes   

To define the set of ubiquitously-expressed genes for human, we intersected 4 published lists of 

ubiquitously expressed genes from studies enumerating genes with detectable (49) or uniform 

expression across many tissues (47, 50) for 847 total ubiquitously expressed genes, For mouse, we 

used the list of 4781 uniformly expressed genes provided in Li et al. (51). We refer to all other genes 

as “tissue-specific”. 

 

To compute the number of enhancers per tissue-specific or ubiquitously-expressed gene, we focused 

on the subset of our data where we had comprehensive CRISPRi tiling data testing all elements near 

a genes, including 28 genes from this study and 2 genes (MYC and HBE1) from previous studies 

(10, 14). In this subset of the data, we found 58 regulatory DE-G pairs for the 22 tissue-specific 

genes and 1 regulatory DE-G pairs for the 8 ubiquitously-expressed genes (Fisher’s exact p < 10-4), 
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as reported in the main text. We note that the same trends hold in the full CRISPR dataset across all 

cell types (including DE-G pairs where we do not necessarily have comprehensive mapping of all 

DEs for that gene): we find more significant regulatory DE-G pairs for tissue-specific genes (140 

significant pairs out of 2304 tested) than for ubiquitously expressed genes (6 significant pairs out of 

777 tested, Fisher’s exact p < 10-11).  

 

Analys is  o f  CTCF si tes  

We considered that CRISPRi perturbation of CTCF-bound elements may affect gene expression 

through effects on 3D genome contacts rather than that through disruption of enhancer elements. 

We downloaded CTCF ChIP-seq peak calls generated by ENCODE and labeled a distal element as 

a CTCF-bound if the element overlapped a CTCF ChIP-seq peak. We further classified each CTCF 

site as H3K27acHigh or H3K27acLow, corresponding to elements with H3K27ac signal above or below 

the median H3K27ac signal for all tested distal elements in K562s.  

 

Estimating the  per formance o f  the  ABC score  at  predi c t ing enhancer-gene 

connec t ions 

To estimate the performance of the ABC score on a dataset measuring only the direct cis-effects of 

enhancers, we removed 762 total DE-G pairs that involved (i) CTCF-bound elements unlikely to 

function as enhancers (H3K27acLow, 755 DE-G pairs), or (ii) DE-G pairs likely to result from 

indirect effects (18 DE-G pairs).  

 

The latter category was defined as follows: We first identified genes (A) where the effects of 

promoter inhibition on nearby genes (G) are likely to be explained by second-order, indirect effects 

of the protein product (as described above). Enhancers that regulate gene A may also have indirect 
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effects on gene G. Accordingly, we removed the 18 DE-G pairs where the element activates gene A 

and also affects gene G in a direction consistent with effect of promoter A on gene G.  

 

The performance of the ABC score is markedly higher on this filtered dataset, with the AUPRC 

rising from 0.77 to 0.82 for tissue-specific genes and 0.66 to 0.72 for all genes (Figure B-13B). We 

note that all analyses presented in the paper use the full, unfiltered dataset in K562 cells unless 

otherwise specified. 

 

Software for  data analys i s  and graphica l  p lo ts  

We used the following software for data analysis and graphical plots: R  

R (3.1.1) with Bioconductor (3.0)(52), Python (3.4.2), matplotlib (1.5.3), numpy (1.15.2), Pandas 

(0.23.4), Pybedtools (0.7.8), pyBigWig (0.3.2), pysam (0.13), scikit-learn (0.18.2), scipy (0.18.1), 

seaborn (0.7.1).  

 

Genome bui ld 

All coordinates in the human genome are reported using build hg19, and all coordinates in the 

mouse genome are reported using build mm9. 
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Supplemental Figures 

 

Figure B-1. Sorting and sequencing strategy for CRISPRi-FlowFISH Screens. (A) K562 cells 
labeled with FlowFISH probesets against RPL13A (control gene) and GATA1 (gene of interest) 
imaged by fluorescence microscopy.  (B) Histograms of FlowFISH signal (arbitrary units of 
fluorescence) for GATA1 (left) and RPL13A (right) in unlabeled K562s (red), K562s stained for 
GATA1 expressing a gRNA against the GATA1-TSS (orange), or a non-targeting Ctrl gRNA (blue). 
(C) Scatterplot of FlowFISH fluorescent signal for RPL13A versus GATA1. (D) Cells in (C) with 
cells unstained for RPL13A (below dotted line in (C)) removed and using the color compensation 
tool to reduce the correlation between the control gene and gene of interest (see Methods). (E) 
Binning strategy for sorting FlowFISH-labeled cells into 6 bins each containing 10% of the cells.  
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Figure B-1 (Continued). (F) Effect on gene expression as measured by CRISPRi-FlowFISH (dark 
grey) and RT-qPCR (light grey). Error bars: 95% confidence intervals for the mean of 2 gRNAs per 
target, 3505 Ctrl gRNAs for FlowFISH, and 6 Ctrl gRNAs for RT-qPCR, each measured in 
biological triplicate. *: p < 0.05 in t-test versus Ctrl.  (G) Counts in each of the 6 bins for single 
gRNAs targeting the GATA1 TSS, the two GATA1 enhancers (DE1 and DE2) identified in Fulco 
et al. (10), and representative negative controls (Ctrl). 
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Figure B-2. CRISPRi-FlowFISH reproducibly quantifies effects of regulatory elements.  
(A) Cumulative distribution plot of the number of gRNAs in each tested candidate element. (B) 
Cumulative distribution plot of the width of each tested candidate element. (C) Correlation between 
replicate CRISPRi-FlowFISH screens for GATA1. Red points denote elements significantly 
affecting expression. Pearson R = 0.95 for significant elements, 0.55 for all elements. (D) Quantile-
quantile plot for GATA1 CRISPRi-FlowFISH screen. Red points denote elements significantly 
affecting expression. Vertical axis capped at 10-20. (E) Correlation between effect on gene expression 
as measured by CRISPRi-FlowFISH screening and RT-qPCR for all 36 E-G pairs tested by both 
methods. Value is the mean effect of the two gRNAs for each element. (F) Correlation between 
effects on gene expression for all significant E-G pairs measured by replicate CRISPRi-FlowFISH 
screens. 
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Figure B-3 (Legend on next page).  
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Figure B-3 (Continued). CRISPRi-FlowFISH enhancer perturbation dataset. DE-G 
connections are elements affecting the expression of the indicated gene in CRISPRi-FlowFISH 
screens in K562 cells. Red arcs denote activation, blue arcs denote repression. The width of the arc 
corresponds to the effect size. Distal elements (black) are tested DHS peaks. Distal CTCF elements 
(green) are CTCF ChIP-seq peaks within distal elements. Tested genes refer to genes for which we 
performed CRISPRi-FlowFISH experiments. Grey circles are DEs where perturbation with 
CRISPRi affects the expression of at least one tested gene as measured by CRISPRi-FlowFISH.  
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Figure B-4. Quality filters for CRISPRi-FlowFISH probesets and screens. (A) Histogram of 
FlowFISH signal, as measured by flow cytometry, comparing K562 cells stained with GATA1 
probes compared to unstained, negative-control cells. We required probesets to have >2-fold mean 
fluorescent signal in stained versus unstained control. (B) Percent expression remaining in gRNAs 
targeting the TSS estimated from CRISPRi-FlowFISH screening. In all cases where we assessed 
CRISPRi knockdown by gRNAs at a TSS by qPCR, we observed >75% knockdown (right). 
However, some FlowFISH probesets reported <50% knockdown for gRNAs at their TSSs (left); we 
expect that some of the signal detected by these probesets results from off-target binding. 
Accordingly, we excluded these probesets from further analysis. (C) Power to detect a given effect 
size in 80% of E-G pairs for each gene. We analyzed those screens with at least 80% power to detect 
a 25% effect for at least 80% of tested elements. Red lines represent screens that did not meet this 
power threshold.   
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Figure B-5. Properties of the CRISPRi-FlowFISH dataset. (A) Histogram of the number of 
distal elements affecting each gene in CRISPRi-FlowFISH experiments. (B) Histogram of the 
number of genes affected by each distal element tested in CRISPRi-FlowFISH experiments. (C) 
Comparison of genomic distance with observed changes in gene expression upon CRISPRi 
perturbation. Each dot represents one tested DE-G. Red dots: connections where perturbation 
resulted in a decrease in the expression of the tested gene. Blue dots: perturbation resulted in an 
increase. Grey dots: had no significant effect. 
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Figure B-6. Comparison of ABC score to other predictors. (A) Precision-recall curves for 
classifying regulatory DE-G pairs, comparing each of the components of the ABC score. (B) 
Scatterplot of Activity and Contact frequency for each tested DE-G pair. KR-normalized Hi-C 
contact frequencies are scaled for each gene so that the maximum score of an off-diagonal bin is 100 
(see Methods). (C) Precision-recall curves comparing different measures of Activity. 
ActivityFeature1,Feature2 = sqrt(Feature1 RPM x Feature2 RPM). (ABC score corresponds to 
ActivityDHS,H3K27ac x Contact). Figure legends are ordered from best to worst AUPRC.  
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Figure B-7. The ABC Score is reproducible between replicates of the epigenomic datasets. 
(A) Scatter plot of ABC Score computed using biological replicates for DHS and H3K27ac (Pearson 
R = .98). (B) Precision-recall curves for classifying regulatory DE-G pairs (Positive DE-G pairs are 
those where perturbation of element DE significantly reduces the expression of gene G) for the 
ABC Score using replicates 1 and 2 of DHS and H3K27ac.   
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Figure B-8. Sensitivity of ABC score performance to chosen parameters. Changing the 
parameters of the ABC score does not dramatically affect performance near the default values. Each 
panel presents the area under the precision recall curve (AUPRC) for the ABC score when changing 
the specified parameter. Red lines indicate the values used throughout this paper. (A) Genomic 
distance within which elements are included in the model. (B) Number of bases DHS peaks were 
extended on either side before merging to create candidate elements. (C) Genomic distance used to 
compute the pseudocount added to the Contact component (see Methods). (D) In processing of 
Hi-C data, each diagonal entry of the Hi-C matrix is replaced by the maximum of its four 
neighboring entries when estimating contact frequency at distances < 5 kb (see Methods). 
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Figure B-9. (Legend on next page).  
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Figure B-9. (Continued) Testing other methods to estimate contact frequency for the ABC 
score. (A) Precision-recall curves comparing the ABC score to other models where the Contact 
component is replaced with binary Hi-C features (loops or domains) or decreasing functions of 
genomic distance (as visualized in panel B). Activity x Genomic Distance: Contact component is 
proportional to max(.01, (1e6 - Distance)/1e6). Activity x ContactFractal, Activity x ContactExtrusion: Contact 
component is proportional to Distance-γ. ContactFractal uses γ = 1, ContactExtrusion uses γ = 0.7. Activity x 
Loop and Activity x Domain: Contact component replaced by 1 if the element and gene TSS are 
located at the anchors of the same loop or within the same contact domain, respectively, or 0 
otherwise. (B) Visualization of the quantitative functions used in (A) to replace contact frequency. 
Y-axis is in arbitrary units. In models of chromosome dynamics that assume chromatin is a 
featureless, uniform polymer in the globular state, Contact is inversely proportional to genomic 
distance raised to a fixed power (γ). Extrusion globule and fractal globule models (γ = 0.7 and 1) 
well represent the empirically observed Hi-C contacts at various distances (53). (C) AUPRC for 
ABC models where the Contact component is replaced with Distance-γ, with γ in the range [0, 3]. 
Values of γ corresponding to various polymer models are highlighted in red. The optimal values of γ 
as estimated from our CRISPRi data correspond to the values of γ that best predict Hi-C data (in the 
range of 0.7-1) (53). (D, E) Scatterplot of genomic distance vs contact frequency (Hi-C) for K562 
tested DE-G pairs whose distance is greater than 10 kb. Colors represent membership in the same 
contact domain (orange), Hi-C loop (green) or neither annotation (gray). These relationships explain 
why the ABC score performs similarly to the Activity x ContactFractal model: the power law relationship 
explains 69% of the variance of Hi-C contact frequency. In contrast, the ABC score performs very 
differently from the Activity x Loop and Activity x Domain models because loops and domains are 
not predictive of contact frequency. Y-axis is KR-normalized Hi-C signal (and, for convenience, is 
not scaled on a per-gene basis as is used in ABC model, see Methods). (F) Scatterplot of genomic 
distance vs quantitative contact frequency (Hi-C) for all loops in K562 (11). Although Hi-C contact 
frequency at loops is higher than expected under the Fractal Globule model, the absolute increase in 
contacts is modest. For example, the loops with highest contact frequency at 500 kb have the 
expected contact frequency of non-loop loci at 50 kb (dotted line). (G, H) Comparison of DE-G 
predictions in the MYC locus using Hi-C vs the ContactFractal model (G) Visualization of Hi-C tracks 
anchored at the MYC, PVT1 and CCDC26 promoters (colored lines), compared to the ContactFractal 

model (black lines). (H) Computation of the ABC score for DE-G pairs in the MYC locus using Hi-
C vs the ContactFractal model. Using Hi-C data better predicts the quantitative effects of enhancers in 
this locus.  
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Figure B.10. Tissue-specific genes have more distal enhancers than ubiquitously-expressed 
genes. (A) Left: Comparison of ABC scores (predicted effect) with observed changes in gene 
expression upon CRISPR perturbations. Each dot represents one tested DE-G pair where G is a 
ubiquitously-expressed gene. Right: precision-recall curve for ABC score in classifying regulatory 
DE-G pairs where each G is a ubiquitously-expressed gene. (B) Same as (A) for tissue-specific 
genes. All panels include only the subset of our dataset for which we have CRISPRi tiling data to 
comprehensively identify all enhancers that regulate each gene (28 genes from this study, 2 from 
previous studies).  
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Figure B-11. Analysis of CTCF-bound elements. (A) Scatterplot of CTCF signal (reads per 
million) vs H3K27ac signal (reads per million) for all DE-G pairs where the DE is bound by CTCF 
(see Methods). Dotted black line corresponds to the median H3K27ac signal for all distal elements 
in the dataset. We denote elements whose H3K27ac signal is greater than the median “H3K27acHigh 
CTCF elements” and those with H3K27ac signal less than the median “H3K27acLow CTCF 
elements”. (B) Left: comparison of ABC scores (predicted effect) with observed changes in gene 
expression upon CRISPR perturbations. Each dot represents one tested DE-G pair where the DE is 
a H3K27acHigh CTCF element. Right: precision-recall curve for the ABC score in classifying 
regulatory DE-G pairs where each DE is a H3K27acHigh CTCF element. (C): Same as (B) for 
H3K27acLow CTCF elements. 
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Figure B-12. Elements that repress a distal gene are likely explained by indirect regulatory 
effects. (A) Comparison of ABC scores (predicted effect) with observed changes in gene expression 
upon CRISPR perturbations. Each dot represents one tested DE-G pair where the element 
represses at least one gene. (B) Summary of the effect of a GATA1-regulating DE on PLP2. The 
observed repressive effect of this DE on PLP2 is consistent with this DE activating GATA1 (red 
arc), which in turn represses PLP2 via a trans-acting function of the GATA1 protein product (blue 
arc). (C) Effects of inhibiting GATA1 TSS or a GATA1 enhancer (DE) with CRISPRi. mRNA 
expression measured by CRISPRi-FlowFISH. Error bars: 95% confidence intervals for the mean of 
all gRNAs within the target element. *: BH-adjusted p < 0.05 in t-test versus negative controls (see 
Methods). (D) Effects of inhibiting GATA1 with siRNAs on gene expression of GATA1, PLP2, 
HDAC6, PQBP1, and known GATA1 transcription factor targets (54-56) as measured by RNA 
sequencing of cells transfected with GATA1 siRNA compared to non-targeting siRNAs (Ctrl). 
Control genes are the average of commonly used housekeeping genes (ACTB, B2M, C1orf43, 
CHMP2A, EMC7, GAPDH, GPI, PGK1, PPIB, PSMB2, PSMB4, REEP5, RPL13A, SNRPD3, TBP, 
TUBB, VCP, and VPS29). Error bars: 95% confidence interval for the mean of two siRNAs with 
four independent transfections each. *: BH-adjusted p < 0.05 from DESeq2 for GATA1 siRNA 
versus Ctrl (see Methods).   



 172 

 

Figure B-13. (Legend on next page). 
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Figure B-13 (Continued) Performance of the ABC score after filtering ubiquitously 
expressed genes, CTCF elements, and indirect effects. Performance of the ABC score on 
subsets of the CRISPR dataset. (A) Entire initial dataset in K562 cells (same as Fig 3). (B) K562 
dataset with H3K27aclow CTCF elements, DE-G pairs likely to result from indirect effects, and 
ubiquitously expressed genes removed. (C) DE-G pairs in CRISPRi tiling experiments that, for a 
given gene, perturb and test the effects of all nearby DEs. (D) Subset described in (C) with 
H3K27aclow CTCF elements, DE-G pairs likely to result from indirect effects, and ubiquitously 
expressed genes removed. (E) Entire dataset across 6 cell types. Includes cell types without Hi-C 
data, so the performance of Hi-C loops and domains cannot be evaluated. (F) Subset described in 
(E) with H3K27aclow CTCF elements, DE-G pairs likely to result from indirect effects, and 
ubiquitously expressed genes removed. In each panel: Left plot is a comparison of ABC scores 
(predicted effect) with observed changes in gene expression upon CRISPR perturbations. Each dot 
represents one tested DE-G pair. Right plot is a set of precision-recall curves for classifying 
regulatory DE-G pairs (Positive DE-G pairs are those where perturbation of element DE 
significantly reduces the expression of gene G).   
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Figure B-14. Effects of promoters on nearby genes. (A) Comparison of ABC scores (predicted 
effect) with observed changes in gene expression upon CRISPR perturbations in K562 cells. Each 
dot represents one tested DP-G pair (where the element itself is a promoter). (B) Precision-recall 
curve for classifying regulatory DP-G pairs (Positive DP-G pairs are those where perturbation of 
promoter P significantly reduces the expression of distal gene G). (C) Some promoters appear to 
affect expression of neighboring genes by transcriptional interference. One example is the effect of 
PRICKLE3 on PLP2. Points represent the effect of gRNAs on PLP2 expression, as measured by 
CRISPRi-FlowFISH. Red and blue bars: DHS elements in which CRISPRi leads to a significant 
decrease (red) or increase (blue) in PLP2 expression. Transcription of PRICKLE3 as measured by 
PRO-seq (negative strand, purple) extends into the gene body of PLP2 (positive strand, salmon). 
Therefore, transcriptional interference may explain why CRISPRi inhibition of the PRICKLE3 
promoter leads to an increase in PLP2 expression.    
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Figure B-15. The ABC model generalizes across cell types. 
(A) Comparison of ABC scores (predicted effect) with observed changes in gene expression upon 
perturbations in GM12878, LNCaP cells, NCCIT cells, primary human hepatocytes, and mouse ES 
cells. Each dot represents one tested DE-G pair. (B) Precision-recall plot for classifiers of DE-G 
pairs shown in (A). Positive DE-G pairs are those where the distal element significantly decreases 
expression of the gene. Curves represent the performance for predicting significant decreases in 
expression for DE-G pairs based on thresholds on the ABC score (red) and genomic distance 
between the DE and the TSS of the gene (black). The purple circle represents  the performance of 
assigning each DE to the closest expressed gene. DE-G pairs that were not significant are filtered 
for those that pass the same stringent power filter applied to the K562 dataset, requiring 80% power 
to detect a 25% effect on gene expression. (See Methods. See Fig 4 for data in these types using a 
lenient power filter of 80% power to detect a 50% effect on gene expression).   
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