

Mindfully Attending to Variability: Challenging Chronicity Beliefs in Two Populations

Citation

Bercovitz, Katherine Elizabeth. 2019. Mindfully Attending to Variability: Challenging Chronicity Beliefs in Two Populations. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.

Permanent link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029665

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available. Please share how this access benefits you. <u>Submit a story</u>.

Accessibility

Mindfully Attending to Variability: Challenging Chronicity Beliefs in Two Populations

A dissertation presented

by

Katherine Elizabeth Bercovitz

to

The Department of Psychology

in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in the subject of

Psychology

Harvard University

Cambridge, Massachusetts

May 2019

© 2019 Katherine Elizabeth Bercovitz All rights reserved.

Mindfully Attending to Variability: Challenging Chronicity Beliefs in Two Populations

Abstract

Six out of every ten adults in the United States are diagnosed with at least one chronic condition. These conditions are often considered incurable and are characterized by their persistence—with symptoms lasting over one year. With symptoms infiltrating day-to-day functioning, those with chronic conditions have no choice but to pay attention to them. The overarching question addressed in this dissertation is: Does it matter *how* someone pays attention to these symptoms?

In two studies, I investigated if the way in which someone pays attention to their symptoms affects health outcomes and perceived personal control. Specifically, I investigated how mindfully paying attention to symptom variability (versus stability) affects personal control and health outcomes. In Study 1, I focused on chronic pain patients and the effects of paying attention to how pain symptoms are fluctuating over time. In Study 2, I focused on older adults who are concerned about age-related memory decline. I discuss the effects of paying attention to how their memory performance is fluctuating over time.

Title pagei
Copyrightii
Abstractiii
Table of Contentsiv
Acknowledgementsvi
Dedicationviii
Chapter 1. Personal control and mindfulness1
1.1 Defining control
1.2 Psychological and physical health effects of personal control
1.3 Increasing personal control
1.4 Mindfulness and personal control14
1.5 Two investigations of the "ATV Hypothesis"18
Chapter 2. Successful aging, personal control, and mindfulness
2.1 Defining successful aging19
2.2 Beliefs about aging and personal control19
2.3 Challenging the aging label22
2.4 ATV pilot study28
2.5 Research questions and hypotheses for study 1
2.6 Methodology for study 1
2.7 Results of study 151
2.7 Results of study 1 51 2.8 Discussion 67

Table of Contents

Chapter 3. Perceptions of control and chronic pain experience	
3.1 Chronic pain definition and clinical import	76
3.2 Chronic pain and perceptions of control	78
3.3 The role of attention in the pain experience	79
3.4 Research questions and hypotheses for study 2	81
3.5 Methodology for study 2	82
3.6 Results for study 2	99
References125	
Appendix A: Supplementary Analyses for Memory Study143	
Appendix B: Supplementary Analyses for Pain Study	

Acknowledgements

There are many people who made this journey possible. To those who smoothed the road before me without me ever knowing, thank you.

I'd like to thank my advisor, Professor Ellen Langer for welcoming me into her lab and sharing nuggets of research wisdom that she has collected (mindfully) over 50 years of her distinguished career. Thank you also to my dissertation committee members Professors Richard McNally, Leah Somerville, and Francesco Pagnini for their guidance and encouragement.

Next, I'd like to thank members of the Langer Lab who made collaboration fun and exciting, including: Karyn Gunnet-Shoval, Noga Tsur, Deborah Phillips, Chiara Haller, Christelle Ngnoumen, Chanmo Park, Dahua Wang, and Xiaomin Sun. I'd also like to thank the many research assistants who have volunteered in the lab over the years and provided tireless work and friendship including: Charles Choueiri, Hadley Johnson, Jacob Jones, Violet Fludzinkski, Ashale Portell, Rosemary Scalise, Anna Musser, Hannah Emerson, Hye Eon Park, Tim Martin, Melanie French, and Alissa Hiener.

Thank you to my students across three semesters of Sophomore Tutorial, who inspired me with their curiosity and work ethic. You helped me discover a love of teaching.

Thank you to my support network in Cambridge and outside of it, including: Helen Jing, Marie-Christine Nizzi, Monica Burns, Caterina Magri, Jayden Ziegler, Francesca Vitale, Lauren Jung, Crystal Campoverde, Katherine Kennedy, Amy Bernstein, Dudley House B-2 crew (Jackie Yun, Janet Daniels, Lindsay Guest, and Ahsley Skipworth), Aurora Sanfeliz at the Bureau of Study Counsel, Cindy Fiore, Bill Santoro, Celia Raia, Laura Chivers. Andrea Lynch, Laura Stark, and Heather Law. Thank you to my original undergraduate research advisors, Professors Patti Simone and Matt Bell at Santa Clara University. You taught me the joys of answering original research questions. And thank you to Gerald and Sally DeNardo for making that research possible.

I'd also like to thank my family. Thank you especially to my mom, dad, and brother, Benjamin. Your unconditional love and support mean the world to me.

And finally thank you to my love, Eric Kittlaus. Our PhD journeys meant that we would be separated for six years, but our love grew even stronger. Thank you for your love and encouragement and for inspiring me every day with your optimism and curiosity. For my students

Chapter 1. Personal control and mindfulness

1.1 Defining control

Researchers in the field of psychology have long investigated the phenomenon of personal control and have adopted many terms to describe the various theoretical nuances assumed under the concept of "control." These areas of research include the illusion of control (Langer, 1975; Langer & Roth, 1975), learned helplessness (Abramson et al., 1978; Seligman & Maier, 1967; Seligman, 1972), internal and external locus of control (Rotter, 1966), primary and secondary control (Rothbaum, Weisz, & Snyder, 1982), self-efficacy (Bandura, 1977), and selfmastery (Adler, 1927). The concept of locus of control is considered one of the most influential in the field of psychology, yielding over 4,000 original source articles and 20,000 citations on Google Scholar (Reich & Infurna, 2017). Personal control reflects individuals' beliefs regarding the extent to which they are able to control or influence outcomes. One important distinction made in this literature concerns the difference between actual (objective) control over one's life and one's perceived (subjective) control over one's life. There is much evidence to suggest that perceived personal control influences people's behaviors, emotions, and health more strongly than actual (objective) control (Kaplan & Camacho, 1983; Langer, 1975; McAndrew, Horowitz, Lancaster, & Leventhal, 2010). This chapter will focus on the effects of perceived personal control and how it relates conceptually to sociocognitive ("Langerian") mindfulness.

The illusion of control. The field of perceived control originated from a series of observations about how people try to control chance situations. In 1967, sociologist James Henslin observed that people attempted to control the outcome of a die roll (Henslin, 1967). Specifically, Henslin observed that people playing the game "craps" would throw the dice more softly when attempting to produce a low roll and more rigorously when attempting to produce a

high roll. Subsequent experimental investigations have shown that when a chance-governed situation incorporates characteristics relevant to skill-determined situations (e.g., choice, familiarity, involvement, competition), people often respond to the situation as if it is skill-determined and behave as though they can control these chance events. This skill orientation in a chance situation was coined as the "illusion of control" (Langer, 1975). Langer's research on the illusion of control provided empirical support for this view and has shown it to be even more extensive than Henslin originally suggested.

Some examples of how people apply these so-called "skill orientations" in chance situations include actively engaging with the experience and familiarizing themselves with the materials. In one study, participants were given the chance to select a lottery ticket and were then given the opportunity to exchange the ticket for one they were told had a better chance of winning (Langer, 1975). Despite the increased odds associated with the new ticket, participants were significantly more likely to keep their original ticket. This was the harbinger of the endowment effect (e.g., Carmon & Ariely, 2000).

In a similar vein, studies have demonstrated how participants mistake good luck for skill (Langer & Roth, 1975; Myers & Fort, 1963). Myers and Fort (1963) presented participants with a series of gambles and the option of accepting or rejecting any particular gamble. Participants were shown the outcome of each trial whether or not the gamble was accepted. They found that if participants had accepted the previous gamble and won, they were more likely to accept the next gamble compared to it if they had accepted and lost, even though in a chance-based task winning or losing should not influence confidence on subsequent trials because trials are independent. Langer (1975) found that participants were more confident that they would win a game of chance when playing against an awkward confederate as opposed to a more confident

one. Participants were also more likely to rate a chance game (e.g., predicting a series of coin tosses on a fair coin) as one requiring skill when having a series of initial successes (Langer & Roth, 1975).

The associated advantages of feeling in control suggest that the illusion of control is an adaptive process. Some researchers have argued that positive illusions, such as our failures to recognize our incompetence and our tendency to overestimate our ability to control events, are evolutionarily adaptive errors that have served us in creating and maintaining a sense of consistency--and thus reducing negative emotional experiences--as we navigate the world (Ehrlinger & Dunning, 2003; Taylor et al., 1988). Illusions of control can be viewed as adaptive biases, insofar as they enable people to feel hopeful in situations where they perceive uncertainty and risk. Illusion of control may also be especially beneficial in young adults, as they may work harder than if they believed that others (or chance) dictated the outcome of their effectors (Langer, 1975). Research finds that people who feel they have control of a situation are likely to exhibit behaviors that will better enable them to cope with potentially threatening situations compared to those who believe that chance or other non-controllable factors determine whether their behavior will be successful (Monty, Rosenberger, & Perlmuter, 1973). It is not surprising, then, that perceptions of personal control is associated with a host of salubrious psychological and physical effects, which are discussed below.

1.2 Psychological and physical health effects of personal control

Physical health and perceived control. Psychological theory and subsequent research investigations demonstrate that personal control beliefs strongly predict future behavior, health, and illness (e.g., Infurna, Ram, & Gerstorf, 2013). Perceived control has been associated with psychological and physical health in a large body of research, starting in the late 1960s (Glass et

al., 1969; Langer & Rodin, 1976; Langer et al., 1975; Rodin & Langer, 1977; Langer, Janis, and Wolfer, 1975). Personal control is a key protective factor for well-being, with individuals with higher levels of global perceived control reporting more control over their health (Infurna & Gerstorf, 2013). As a result of feeling more control, these individuals may be more likely to adopt and maintain healthy behaviors, such as exercising, following a healthy diet, and adhering to the advice of medical professionals (Bandura, 2004; White, Wójcicki, & McAuley, 2012).

A greater perception of personal control results in a decreased risk of physical decline and cardiovascular disease (Infurna & Gerstorf, 2014; Lachman & Agrigoroaei, 2010), as well as better neuroendocrine functioning and immunocompetence (Agrigoroaei et al., 2013; Bollini, Walker, Hamann, & Kestler, 2004; Wiedenfeld et al., 1990) and grip strength (Infurna & Gerstorf, 2014).

Researchers have also linked higher levels of perceived control with better cognitive functioning, including memory ability, executive functioning, and processing speed (Caplan & Schooler, 2003; Lachman & Agrigoroaei, 2012; Langer, Rodin, Beck, Weinman, & Spitzer, 1979).

Perceived control has been established as a key component of health throughout the life span (Heckhausen & Schulz, 1995) and is particularly emphasized in the literature as important for the older adult population. The first investigations in this domain began in the 1970s and have continued to influence the field. These first studies demonstrated the robust health benefits to restoring personal control to elderly nursing home residents by providing them with more responsibilities and choices over their care experience (Langer & Rodin, 1976). Specifically, those in the experimental group were invited to take personal responsibility for their care and living arrangements, including placement of the furniture, choosing the timing of a movie showing, and how they wanted to spend their time. Finally, they were given the responsibility for caring for a plant. Those in the control group were told to take advantage of the amenities of the institution, specifying that it was the staff's responsibility to create the best environment possible, including caring for the new plants. The primary difference between the two groups was the degree to which personal control over the environment was emphasized. In addition to better health, activity patterns, mood, and sociability, older adults who were encouraged to take more personal control over their environment were less likely to die over the next 18 months (Langer & Rodin, 1976; Rodin & Langer, 1977).

In line with those results, Kaplan and Camacho (1983) found that perceived health predicted mortality even more strongly than actual health. Regardless of their actual health status, older adults who perceived their health to be poor were six times more likely to die than those who perceived themselves to be in excellent health (Idler & Kasl, 1991). Moreover, researchers have found that feeling in control of one's life led to greater late-life well-being and a later onset of terminal decline, independent of factors that are usually key to mortality including age, gender, SES, and disability (Gerstorf et al., 2014). One primary mechanism that researchers have put forward regarding the relationship between perceived control and decreased mortality is more effective regulation of stressors. Impaired control of stressors leads to increased activation of the HPA axis and more allostatic load, which accompany many diseases (Cohen, 2000; Juster, McEwen, & Lupien, 2010).

Parallel to the work on good health and mortality is a literature investigating the role of control in the experience of pain. Specifically, perceived control is one of the key factors that influences the experience of both acute and chronic pain (Gatchel, Peng, Peters, Fuchs, & Turk, 2007; Williams, Golding, Phillips, & Towell, 2004). Painful stimuli that are objectively

uncontrollable are perceived as more distressing and intense than controllable stimuli (Carlsson et al., 2006). To be effective in reducing pain, control over the stimulus can be perceived as instrumental, as is the case when it is possible to implement a behavioral response (e.g., interrupt the stimulus), or cognitive, when there is a cognitive strategy available (e.g., distraction; Litt, 1988). As reported in other situations, actual methods of exacting control do not have to be provided; they just needs to be perceived as available (Thompson, 1981).

In chronic pain patients, perceived helplessness is generally the strongest predictor of disability and pain level (Samwel, Evers, Crul, & Kraaimaat, 2006; Turner, Jensen, & Romano, 2000). Clinical implications are relevant, as health care professionals could support the perception of control in patients, for example by making them more engaged in the care process or in other activities where they can be have control (McCracken & Eccleston, 2005). It should be noted, however, that if multiple attempts of gaining control over pain fail, that can exacerbate frustration and pain (McCracken, Carson, Eccleston, & Keefe, 2004). Rather than trying to control pain itself, sometimes it could be preferable to try to gain control over the effect of pain on one's life (Gatchel et al., 2007). For more on perceived control and the chronic pain experience, see Chapter 3.

Psychological health and perceived control

In addition to physical health, a large body of research has investigated the relationship between perceived control and psychological health. Several psychological outcomes generally associated with well-being seem to be related to a sense of control over one's life. Among these outcomes are resilience, motivation, and life satisfaction across the socioeconomic spectrum (Lachman & Weaver, 1998) and across a variety of cultures (Cheng, Cheung, Chio, & Chan, 2013). Perceived control has been shown to help one to adapt to a variety of stresses including economic stress, job loss, and caregiver burden (Zautra et al., 2012).

For example, laboratory experiments have demonstrated that stress tolerance is related to perceived control over aversive stimuli. Specifically, participants who were able to administer the timing of shocks reported less anxiety than participants who were not in control of the shock (i.e., when the experimenter admisintered the shock; Pervin, 1963). In the clinical realm, anxiety and depression have both been linked to low levels of perceived control (e.g., Brown & Siegel, 1988). Low perception of control seems to be a constant across people with many different anxiety disorders (for a meta-analysis see Gallagher et al., 2014), suggesting that those suffering from these disorders may benefit from increasing their perception of control. These and other psychological distress may be reduced by increasing a sense of control (Averill, 1973), either through promoting coping behavior or initiating a reappraisal process (Bandura, 1982). Langer, Janis, and Wolfer (1975) demonstrated the integrations of these strategies in patients preparing for surgery. Specifically, they found that a comprehensive strategy consisting of cognitive reappraisal, calming self-talk, and selectively attending to the more favorable aspects of the present situation led to lower pre- and post-operative stress levels and quicker recovery.

Adopting a sense of control over one's past, present, and future circumstances in equal measure does not seem to optimally benefit those suffering from anxiety. In the temporal model of control, Frazier and colleagues (2002) hypothesized that perceived control over past events (i.e. self-blame, "What could I have done to prevent this?") may lead to more distress, while control over the present (i.e. "What can I do now?") and future (i.e. "How can I prevent this from happening again?") may lead to less distress. Indeed, longitudinal data from a sample of female sexual assault victims supported this temporal model of control, with higher levels of perceived

control over the past sexual assault related to more distress, and more perceived control over present (recovery) or future circumstances related to less distress (Frazier, 2003). Two studies found that perception of present control (but not past or future control) was related to reduced posttraumatic stress symptoms (Frazier, Steward, & Mortensen, 2004; Najdowski & Ullman, 2009). Similarly, Larsen and Fitzgerald (2010) found that for women who had been sexually harassed, perceived control over the recovery process along with the perception that future harassment was unlikely were both linked to fewer posttraumatic stress disorder symptoms.

In the context of panic disorder, experimental research has demonstrated that giving patients more control over their environment reduces symptoms. For example, Sanderson and colleagues (1989) found that when exposing panic disorder patients to a stressful environment conducive to panic (i.e. a 5.5% carbon-dioxide enriched atmosphere), patients who were lead to believe that they were able to change carbon-dioxide levels with personal dials demonstrated fewer symptoms, including fewer catastrophic cognitions and fewer reports of a panic attack. Not surprisingly, compared to a non-clinical sample, those diagnosed with panic disorder and social phobia reported a lower sense of internal control as measured by Levenson's (1973) locus of control scale. Specifically, those diagnosed with panic disorder perceive that events are proceeding in a random and uncontrollable way, while those diagnosed with social phobia perceive interactions as controlled by more powerful others in the form (e.g. those who judge them; Cloitre, Heimberg, Liebowitz, & Gitow, 1992).

Another anxiety disorder, obsessive-compulsive disorder (OCD), has been previously characterized by the patient's relationship with control. Specifically, OCD is characterized by an individual's attempts to control one's own thoughts and one's environment through rituals (Carr, 1974; Reuven-Magril, Dar, & Liberman, 2008). Researchers have suggested that clinicians use cognitive therapy to help their patients find alternative ways to increase sense of control (Moulding & Kyrios, 2007).

Along with anxiety, low perceived control is also related to depression, as described in detail by Seligman's application of learned helplessness theory to those with depressive disorders (e.g., Miller & Seligman, 1975). Specifically, Seligman ascribed depression to feelings of helplessness over one's life circumstances. Later, Seligman described how one's attributional style could predict whether or not learned helplessness would occur. Seligman and Abramson (1979) found that individuals who view the etiology of negative events as internal, global and stable (i.e. displaying a pessimistic attributional style) were more likely to exhibit symptoms of depression than those with an optimistic attribution style (i.e., belief that causes of negative events are external, specific, and unstable). Researchers have demonstrated that depressive symptoms may be attenuated with interventions that aim to improve mastery and personal control (Zautra et al., 2012).

1.3 Increasing personal control

Given the importance of the construct of personal control, researchers have investigated how to increase it, both in the laboratory and outside of it. In the laboratory, one successful technique researchers have employed in order to experimentally increase perceptions of control is simply telling participants that they have control over various features of the immediate environment. For example, Bollini and colleagues (2004) manipulated perceived control by giving participants a button that purportedly reduced the volume over a speaker. Even though the button did not actually reduce the volume, participants believed that the button would produce this effect since the noise fluctuated throughout the session. Importantly, a manipulation check showed that participants were 54% more likely to report feeling control during the trials they were given access to this button as compared to the trials in which they were not given access to this button.

Researchers have also experimentally manipulated perceptions of control by manipulating the actual controllability of the task/environment at hand. While participants in the noise dial experiment described above (Bollini et al.,2004) were given only the perception of control over the environment, participants in other experiments were given actual control. For example, researchers manipulated the controllability of a driving simulator by altering the program to simulate slippery driving conditions (Agrigoroaei et al., 2013). Specifically, the researchers created a "low controllability" group by lowering the coefficient on the road friction (.4) and adding wind gusts. This "low controllability" group was compared to a "normal controllability" group for whom the road friction was doubled (.8) and the wind gusts were removed. The researchers' manipulation check showed that those in the "low controllability" group, indeed, had lower scores (than the "normal controllability" group) on a question asking them how much control they believed they experienced during the driving portion of the experiment.

Researchers have also manipulated the construct of perceived control in the laboratory setting by asking participants to think about control in their lives, either by remembering recent events (Kay, Gaucher, Napier, Callan, & Laurin, 2008) or by simulating the self in different hypothetical scenarios (Laurin, Kay, & Moscovitch, 2008). Kay and colleagues (2008) found that participants who were asked to recall a recent positive event from their lives that they had control over exhibited more endorsement of beliefs of personal control compared to those who were asked to recall a recent positive event that they did not have control over. Instead of using actual life events, Laurin and colleagues (2008) asked participants to read hypothetical scenarios.

Specifically, those in the "low personal control" condition read scenarios that emphasized low amounts of personal control in stressful hypothetical scenarios (e.g., being chased by an attacker and having the police come to the rescue) while those in the "high personal control" condition read the same scenarios that emphasized more personal control (e.g., being chased by an attacker and taking the initiative to call 9-1-1 so that the police will come to the rescue). The authors found that participants who read the "low personal control" scenarios indeed were less likely to endorse personal control beliefs than those who read the "high personal control" scenarios.

Researchers have also investigated the role of mood in inducing perceived control. Specifically, researchers found that in depressed individuals, a positive mood induction led to more judgments of control over an uncontrollable, positive event (i.e., winning the lottery, Alloy, Abramson, & Viscusi, 1981).

In line with the temporal model of control (Frazier et al., 2002), planning for the future has also been investigated as a way to increase personal control (e.g, Bandura, 1997; Lachman & Burack 1993). Prenda and Lachman (2001) found that the effects of future planning on life satisfaction were mediated by perceived control, suggesting that planning may facilitate perceptions of control, which, in turn, increase life satisfaction. Similarly, encouraging decisionmaking has been shown to increase perceptions of control (Schulz, 1980). Much like Langer and Rodin's original 1976 study, Schulz gave nursing home residents control over the timing of volunteer visits.

Experimentally manipulating perceptions of control outside of the laboratory has been another major topic of inquiry. Increasing the amount of information an individual has access to has been shown to increase perceptions of control in surgery patients (Johnson, 1975). Specifically, when gastroendoscopy patients received precise descriptions of anticipated

11

reactions and medical procedures they experienced less pain, less need for medication following surgery, and less time in post-operative recovery than participants in the control groups (Johnson, 1975).

Researchers have also demonstrated how cognitive restructuring can be beneficial in increasing perceptions of control. The first of these interventions was implemented by Langer and Rodin in a nursing home setting (Langer & Rodin, 1976). By emphasizing the amount of control residents had over their own health and well-being and encouraging them to make their own decisions about their care, the researchers produced notable positive health changes in their participants, including reduced mortality at a 18-month followup (Rodin & Langer, 1977). While Rodin and Langer (1977) did not specifically measure beliefs about control as a primary outcome, Rodin (1983) found that training older adults to challenge negative beliefs about their abilities, self-regulation and coping skills showed a positive relationship between decreased cortisol and increased ratings of perceived control, as well as better health.

Similarly, Schultz (1976) found that giving nursing home residents control over the scheduling of volunteer visits led to better health metrics as provided by the activities director than those in the comparison groups. However, following up with the participants demonstrated the detrimental effects of removing control from those who have it (Schulz & Hanusa, 1978). Specifically, the researchers found that at the three timepoints after the volunteers stopped visiting (i.e., at 24, 30 and 42 months), the group who was given control over the visiting schedule not only did not maintain their gains, but actually fared worse than those in the comparison groups. This study highlighted the ethically challenging aspects of control interventions. Perhaps one difference between this follow-up and that of Rodin and Langer (1977) was that Schulz (1976) manipulated the amount of control of a single decision, whereas

Langer and Rodin (1976) emphasized personal control of their entire care experience, a comprehensive cognitive restructuring.

In the domain of memory, Lachman and colleagues found that the most effective memory training was one that not only taught memory skills, but also emphasized the amount of control an individual had over their memory performance (Lachman, Weaver, Bandura, Elliott, & Lewkowicz, 1992). At followup, participants in this group evidenced increased beliefs about memory controllability (specifically beliefs about improvement being possible, effort improving outcomes, and decrement being preventable). In the domain of falls, researchers found that teaching older adults how to think more positively about their abilities and the amount of control they had over future falls produced more positive health outcomes than those in the control group (Tennstedt, Howland, Lachman, Peterson, & Jette, 1998). Specifically, the researchers conducted a randomized control trial with older adults who reported a fear of falling and activity restriction. The participants who were taught cognitive restructuring techniques alongside strength-training exercises showed less intention to restrict activity and more perceived control over mobility as compared to a control group who were provided the same amount of social contact. Notably, individuals in the experimental group did not express that they felt more control over their falls as compared to the control group immediately after the intervention, nor at the followup timepoints (i.e., 12 weeks and 12 months). This finding suggests that perhaps the cognitive restructuring did not help by increasing perceptions of control, but by some other mechanism.

One area that has received little attention is the possibility of manipulating perceptions of control through mindfulness instruction. I discuss the relationship between mindfulness and personal control in the section below.

13

1.4 Mindfulness and personal control

Given the multitude of benefits associated with feeling a sense of personal control, researchers have focused on outlining methods by which an individual might increase his/her sense of control. In this section I will describe socio-cognitive mindfulness (also called "Langerian mindfulness"), a multifaceted concept that has been developed over 40 years of research (Langer, 1989). Specifically, I will describe its key features and how they may help individuals experience more control over the aging process and chronic pain experiences, which I will outline in Chapters 2 and 3, respectively.

Two ways of being: Mindful and mindless. In the 1970s, Langer and colleagues observed empirically how people are quick to recycle a previously-learned rule or formula, even when the context is no longer appropriate to use said rule or formula (e.g., Langer, Blank, & Chanowitz, 1978). These observations led to the theory that people spend the majority of their time in a "mindless" state (Chanowitz & Langer, 1981; Langer, 1989), which can be understood as operating on "automatic pilot." When one is mindless, one automatically applies old information or mode of thinking to the current context. In this automatic processing model, one searches for information that is hypothesis supporting. In contrast, when one is in a "mindful" state, he/she actively notices new things about the current situation and draws novel distinctions; he/she is sensitive to subtle changes in the context. Mindfulness as described by Langer is about considering alternative perspectives and being open to new possibilities (Langer, 1989; Langer & Moldoveanu, 2000).¹ According to this theory, mindfulness is the process of noticing something on purpose. For example, one might notice how something is different from how (s)he expected

¹ Note that we are not referring to "mindfulness" as it is often used in the Eastern tradition,

it, even if the deviation is quite subtle. In this active process of noticing, one opens up to different possibilities and avenues of choice.

Theoretically, approaching a situation mindfully should promote a sense of control by combating mindless beliefs i.e., acting without considering the current context. One way that mindfulness could promote a sense of control is by upending the limiting belief of stability in a changing world, especially when the perceived stability is related to negative symptoms. Someone in a mindful state would attend to the natural variability in the environment (Langer, 1989). According to this approach, the novelty-seeking aspect of mindfulness gives one a sense of control by enabling flexible problem-solving and making clear continual opportunities for choice. When someone is in a mindful state, they expect variability in the environment. Langer describes this process as attending to variability or "ATV" (Langer, 1989).

Attending to symptom variability. A large body of research demonstrates that people move through life mindlessly, that is, as though events were unchanging and contextindependent (see Langer & Moldoveanu, 2000). This dominant orientation starkly contrasts against the biological reality of allostasis. Allostasis is the process by which the human body is in its healthiest state, rapidly sensing changes in the internal and external environment and adapting readily (McEwen & Wingfield, 2003). In line with the allostatic framework, studies from the past 40 years have shown that noticing novelty on purpose is associated with improved health and psychological well-being (for a review see Langer, 2009).

The idea of attending to variability is about challenging mindless beliefs, specifically the belief that something or someone is remaining stable over time. This rigid thought pattern is theorized to limit personal control.

Consider people with "chronic" health conditions who come to believe that they experience their symptoms *all the time*. When chronic health patients are taught to pay attention to how their symptoms vary over time, they can benefit in at least three ways. First, they experience a general sense of control over their illness by realizing that their symptoms are not present all the time. Second, they begin to notice patterns in their symptoms; namely, that certain contexts make their symptoms more or less severe. In noticing and analyzing these contexts, the individual can actually begin to control their symptoms by avoiding certain situations and actively searching others that minimize suffering and maximize wellbeing. Finally, actively noticing new things and seeing the limitless choices implied in any activity has been shown to be generally beneficial to health and wellbeing (Langer, 2009; Perlmuter & Langer, 1983)

As an example, consider someone with a diagnosis of chronic fatigue syndrome. Because the fatigue has been labeled as "chronic," the person may begin to buy into the belief that (s)he is tired "all the time". This limiting (and mindless) belief is likely an oversimplification, and it robs the person of control over the experience. Surely there are times of day when (s)he is less fatigued and times when (s)he is more fatigued. Teaching people to attend to variability can help provide relief in a number of ways. First, when they are asked to notice times throughout the day that they are more and less tired, they begin to question the pervasive control of the illness over their lives. Second, they can notice the circumstances under which they are more fatigued and alter their schedules accordingly. An individual may consistently notice more fatigue after meeting with a specific person. If possible, the individual can enact control by avoiding meeting with this person or meeting for a shorter period of time. Finally, noticing the nuances of the fatigue experience may spark curiosity about the nuances in the world, in general. Just as Langer considers the construct of mindfulness as both a state and trait measure (Langer, 1989), one can also consider that people differ in the amount they attending to variability. As such, there are two lines of research in the field of sociocognitive mindfulness: one examining how trait levels of mindfulness predict wellbeing and another examining the effects of an attention to variability (ATV) training.

For example, both patients with amyotrophic lateral sclerosis and their caregivers who are more mindful have been shown to experience more positive wellbeing and quality of life, decreased rates of functional decline and less burnout (Pagnini et al., 2015; Pagnini, Phillips, Bosma, Reece, & Langer, 2016).

Two empirical studies recently applied the attention to variability paradigm in a training context (Delizonna, Williams, & Langer, 2009; Zilcha-Mano & Langer, 2016). Delizonna and colleagues found that people who were trained to pay attention to their heart rate over the course of a week had more control over it after one week than those who were trained to pay attention to the stability of their heart rate (Delizonna et al., 2009). The second study found that pregnant women who paid attention to the variability of their positive and negative physical symptoms and mood over the course of a few weeks demonstrated better mental health and more positive affect postpartum than those in the control groups (Zilcha-Mano & Langer, 2016). As of yet, there have not been any published studies investigating ATV training in those with chronic illness or aging, experiences which can both be characterized by strong prior beliefs about time-related expectations. In the case of chronic illness, one can have the belief that symptoms are present all the time. In the case of aging, one can have the belief of ongoing decline. I will investigate the effects of attending to variability on personal control beliefs and health outcomes (i.e., cognitive performance and experienced pain).

1.5 Two investigations of the "ATV Hypothesis"

One potential way to influence personal control that has not been investigated is teaching people to attend to variability in their symptoms. We investigated the attention to variability paradigm in two populations: older adults who believe they are experiencing age-related memory decline (Chapter 2) and patients suffering from chronic pain (Chapter 3). These populations relate in that they are both characterized by strong beliefs about the limitations their conditions confer. In the case of aging, decline is assumed as the norm (Fiske, Cuddy, Glick, & Xu, 2002). In the case of chronic pain is believed by some patients to be present all the time. Because both aging and chronic pain experience are often perceived as externally controlled and inevitable, they are good candidates for investigating the attention to variability (ATV) paradigm and, more specifically, how it operates in populations with low internal perceptions of control.

Chapter 2. Successful aging, personal control, and mindfulness

2.1 Defining successful aging

The U.S. Bureau of the Census (2011) reported that between the years 2000 and 2010, the rate of growth for the nation's 65-and-older sector surpassed the growth rate of the entire population. Similarly, in the European Union, the ratio of people above 65 years old to people between 15 and 64 years old is projected to increase from 25.4% to 53.5% between 2008 and 2060 (European Commission, 2009).

As a result of this demographic shift, research has increasingly turned to maintaining well-being in later life, including investigations on how to preserve physical and cognitive functioning as well as psychological health (Cho, Martin, & Poon, 2014; J. W. Rowe & Kahn, 1997). This chapter will investigate the beliefs people hold about the aging process, the implications of these beliefs for perceived control, and a mechanism by which older people might increase perceptions of control over their memory performance, namely, learning to pay attention to how their memory performance is changing over time.

2.2 Beliefs about aging and personal control

At the same time that people believe they can control chance events, they also perceive the aging process as one of increased disability and uncontrollable decline (Fiske, Cuddy, Glick, & Xu, 2002; Langer, 1989). Associations between old age and ill-health--fostered by societal messages, negative labeling, and stigmatization of older adults--lead to expectations of decline and of incompetence among this age group, which cause them to forfeit control and lower selfesteem (Rodin & Langer, 1980).

The venerable qualities originally subsumed in the term "elderly" are largely overlooked in its colloquial use. In its original form, the term described a wise and respected individual of advanced age; however, its contemporary use has come to ascribe it the same assumptions of instability and uncontrollability as labels of chronic illness and decline. Similar to labels of chronic illness, our society's labels for aging individuals have managed to foster implicit negative attitudes about older adults as being inflexible, incompetent, low in personal control, and susceptible to ill-health. Drastic increases in life expectancy over the past century, coinciding with a shift in leading causes of death from acute to chronic illness (Johnson, Hayes, Brown, Hoo, & Ethier, 2014), may have contributed to a view of aging and chronic illness as inextricably linked. While it is typically assumed that susceptibility to chronic illnesses and disabilities increases with age, contrary to expectations, poor health is not an inevitable consequence of aging (J. Rowe & Kahn, 1987; J. W. Rowe & Kahn, 1997). Moreover, scientists have come to understand aging through a biopsychosocial model (Rook, Charles, & Heckhausen, 2011), understanding that the process of aging is hugely affected by psychological, behavioral, and environmental factors within the individual's control.

One significant factor that leads to a relinquishing of personal control and to an illusion of incompetence are premature cognitive commitments (Chanowitz & Langer, 1981). Premature cognitive commitments form when we accept initial impressions or pieces of information at face value, without thinking critically about their context-dependent nature, and allow those initial impressions to settle and crystallize in our minds until similar signals from the world call up these impressions or information again (Langer, 1989). At this point, however, now later in time and in a much different context, we nevertheless respond to those initial impressions and information in the same way as we had the first time. That is, even though the previously-learned information does not dictate behavior in the current context in which it is now triggered, we still act according to the old information. Premature cognitive commitments therefore reflect a mindless process in so far as previously-learned information is no longer available (or selected) for conscious processing and evaluation (Langer, 1989; Langer, Hatem, Joss, & Howell, 1989).

In the case of aging, we learn as children what it means to "be old." This information is learned free of context and is later unpacked just as it was initially learned for reference once people reach older age (Langer, 2009). The specific "facts" that Western children learn characterize the aging process as one of inevitable and largely uncontrollable decline. These attitudes are pervasive in Western society to such an extent that even young children espouse these attitudes; even before entering elementary school, children demonstrate negative stereotypes toward older adults (Isaacs & Bearison, 1986). Moreover, there is evidence to suggest that as a person ages these stereotypes become self-views (Rothermund, 2005). Not only do people explicitly stereotype older adults, but they also hold implicit stereotypes about this age group (Levy & Banaji, 2002).

The primary stereotypes held about older adults are that they are high in "warmth" dimensions (e.g., "kind"), but low in competence dimensions (e.g., "frail"; Cuddy, A.J.C. and Fiske, 2002; Fiske et al., 2002). While age-based stereotypes are multifaceted and include both positive and negative aspects (Cuddy, Fiske, & Glick, 2008), the negative aspects are generally more emphasized, with older adults generally stereotyped as forgetful, slow, timid, weak, and rigid (Nelson, 2004).

It is of little surprise that people of all ages hold implicit and explicit stereotypes of the older adults given how deeply they insinuate themselves into Western culture. This is reflected in and perpetuated by linguistic patterns. Specifically, a textual analysis spanning English material across a 200-year period of time demonstrated a linear trajectory of negative age-based stereotypes (Ng, Allore, Trentalange, Monin, & Levy, 2015). For example, negative societal

expectations about aging process are reflected in common expressions, including "senior moments," which semantically links age and forgetfulness (Bonnesen & Burgess, 2004) and "over the hill," a phrase with indicates that once one reaches a certain age, he or she will begin to decline

Pertinent to the current discussion of perceived control and successful aging, societal stereotypes of old age contribute to personal experiences of decreased perceived control in older adults. Specifically, expectations of aging as a process of increasing dependence on others can negatively affect older adults' experience of self-efficacy and control (Langer, 2009). The language of aging and age-related cues dictate functioning as individuals' identities crystallize around assumptions that then become self-fulfilling prophecies or situation-inferred losses of control.

Consistent with Langer's mind/body unity theory (see Langer, Chanowitz, Jacobs, Rhodes, Palmerino, & Thayer, 1990), the stereotype embodiment theory (Levy, 2009) describes how people age in accordance with their own stereotypes about older people. For example, individuals from cultures with predominantly strong negative beliefs about older people (i.e., those who grew up in the United States) were more likely to experience memory problems than those from cultures who do not hold the same negative beliefs (i.e., China and the American deaf community, Levy & Langer, 1994). These attitudes not only affect older adults' memory abilities, but predicted longevity; survival analyses revealed that people with positive attitudes of aging lived about 7.5 years more than those who did not hold negative beliefs about the aging process (Levy, Slade, Kunkel, & Kasl, 2002).

2.3 Challenging the aging label

22

How might older adults loosen their premature cognitive commitment about the aging process? Mindfulness theory suggests that noticing new things about the environment (including the self) allows one to broaden one's fixed schemas (Langer, 1989). One's beliefs about the aging process are no exception.

Research has shown that having "young" grandparents while growing up was related to a longer life, suggesting that one's early schemas of "old" may affect longevity (Langer, Perlmuter, Chanowitz, & Rubin, 1988). This loosening of cognitive labels is considered an inherently mindful process (Langer, 1989).

Another avenue for changing attitudes is subliminal priming methods, which involves training a person to dissociate the concept of "old" and "bad" by teaching a new association, namely strengthening the "old-good" connection. Research has shown that this type of training over a few months significantly improves perceptions of control (Levy, Pilver, Chung, & Slade, 2014). If one has an especially strong and overlearned association of "old" and "bad", another method is to remove cues from the environment that they have come to associate with old age. This idea was demonstrated most powerfully by a study conducted in 1979, which warrants a detailed description. In this experiment (Langer, Chanowitz, Jacobs, Rhodes, Palmerino, & Thayer, 1990; Langer, 2009; Langer, 1989), Langer and colleagues tested the hypothesis that when older people bring their minds back to a more youthful period, their bodies will also become more youthful. To test this hypothesis, 70 year-old men lived together for five days in a house retrofitted with furniture and décor from 1959 (20 years before). Participants were instructed to live as though it were actually 1959. The researchers provided magazines, television programs, songs and movies that were popular just twenty years before. Participants were

instructed to talk about events that happened in 1959 as though they were current events and not to refer to anything that happened after that date (including personal experiences).

Older men who were randomly assigned to a control group also attended the retreat at the retrofitted house at a separate time, but these men were not asked to live as though it were 1959; instead, they were asked to reminisce about that time in their lives, surrounded by the same cues of the 1959. Because the retreat was novel and mindfulness inducing, participants in both the control and experimental groups improved significantly on many measures, which challenged the decline model of aging. Participants in both groups improved on measures of physical health including better hearing, stronger hand strength and increased appetites. Participants also improved on tasks testing figure memory ability. In regards to engagement, researchers observed that participants took the initiative to prepare their own meals and clean up after themselves, a marked from initial reports of dependence on caregivers. These results suggested that removing cues of age and inserting cues of youth affect one's perception of control and health.

Moreover, compared to those who were asked to reminisce about this period, those who "became" their younger selves improved more on measures of vision, joint flexibility, posture, manual dexterity, and digit-symbol substitution. Just by "being" their younger selves, the older adults in the experimental group were able to significantly improve their own health, even on measures that were thought to be irreversible. Moreover, at the end of the study participants looked significantly younger than at the study's start. This study suggested that age-related cues affected both physical and cognitive health in dramatic ways.

These findings were corroborated by evidence from Hsu, Chung, and Langer (2010), who examined the effects of age cues on health and longevity across five very different settings. One of the primary findings was that women who think they look younger after having their hair

colored or cut show a decrease in blood pressure and appear younger in photographs presented to blind raters. In the same study, the researchers discovered that clothing, unlike uniforms, can function as an age-related cue such that those who wear work uniforms have lower morbidity than those who earn the same amount of money and do not wear work uniforms. They also found that baldness cues old age; male participants who balded prematurely saw themselves as older, aged faster, and had an increased risk of getting prostate cancer and coronary heart disease compared to male counterparts who did not prematurely bald. Older mothers also demonstrated a longer life expectancy compared to women who bore children earlier in life, possibly due to their exposure to younger age-related cues. Lastly, Hsu et al. (2010) found that in domestic relationships involving partners of significantly-varying ages, younger spouses lived shorter lives while older spouses lived longer lives, presumably due to their exposures to older and younger age-related cues, respectively.

In the present study we utilized the attention to symptoms variability (ATV) paradigm in order loosen perceptions of decline. Specifically, we asked older adults with concerns about memory to notice the natural fluctuations in their memory performance throughout the day for six days using text message prompts sent to their cell phones. As with any ATV intervention, our design emphasizes that one's memory is not uniformly poor that fluctuations are a result of different environmental factors that are more controllable than the "aging" narrative. Ours is the first study to investigate how the ATV paradigm can be applied to beliefs about age-related decline.

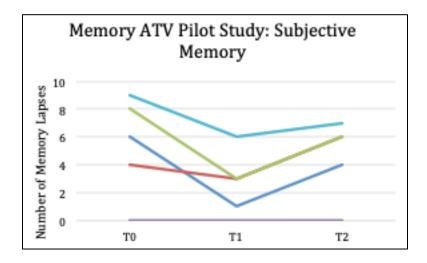
Beliefs about memory ability and decline trajectories. One stereotype that is especially tied to the aging process is cognitive decline, particularly memory loss (e.g., Cuddy & Fiske, 2002). Both middle aged and older adults, alike, admit that they are concerned about their

own memory loss (Lachman, 2004). Memory complaints increase with age, concerning 41% of those aged 55-65 years and 52% of those aged 70-85 years (Commissaris, Ponds, & Jolles, 1998). In the case of those in middle age (40-59 years of age), these concerns are often unfounded, as those in this particular age demographic experience a peak for many cognitive abilities including verbal memory, vocabulary, inductive reasoning, and spatial orientation (Willis & Schaie, 1999). Two decades earlier Langer and colleagues (1979) demonstrated that older adults would remember what is important to them. Despite these developmental strengths enjoyed in middle age and ability of older adults to focus on what is important, a billion-dollar industry of preserving cognition has emerged, including online "brain games" (e.g., Lumosity.com), which endorse a "use it or lose it" approach to cognitive health. The popularity of these games seem to suggest that there is a market of consumers who do believe that something can be done to maintain cognition. However, there is much empirical evidence that older adults do not feel much control over their memory (e.g., Hultsch, Hertzog, Dixon, & Small, 1998). For example, they are much less likely than younger adults to attribute memory successes to controllable factors (e.g., strategy) than they are to attribute them to uncontrollable factors (e.g., ability or genes; Blatt-Eisengart & Lachman, 2004).

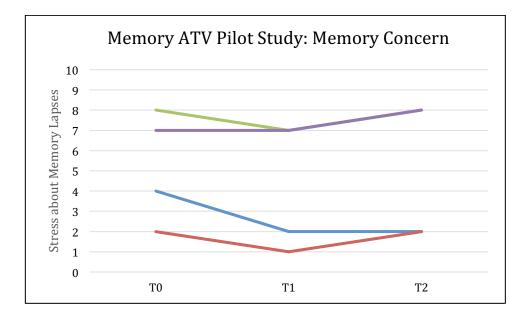
These beliefs have real-world consequences for future health, particularly for cognitive health. Studies have shown that the self-perception of memory decline, as well as stereotypic beliefs of aging, are strong predictors of actual memory decline (Cook & Marsiske, 2006; Zelinski, Gilewski, & Thompson, 1980). Moreover, perceived memory decline was implicated in subsequent global cerebral metabolic decline (Ercoli et al., 2006). People who held more negative age stereotypes at baseline showed significantly steeper loss of hippocampal volume and more accumulation of neurofrillary tangles and amyloid plaques, both of which are associated with Alzheimer's Disease (Levy et al., 2016). This effect held when controlling for measures of baseline health. Related to beliefs about decline trajectories are beliefs about one's memory ability, also called memory self-efficacy (or MSE). Beliefs of memory efficacy have been shown to be positively correlated with performance on episodic memory tasks (Berry & West, 1993) and have also been shown to account for some age-related variance in memory performance (Desrichard & Köpetz, 2005). Even so, the relationship between memory efficacy beliefs and memory performance is a complex one. Two recent meta-analysis found a low, but statistically significant correlation between memory self-efficacy beliefs and memory performance where r = .15 (Beaudoin & Desrichard, 2011) and r = .06 (Crumley, Stetler, & Horhota, 2014). One interesting nuance of the Beaudoin and Desrichard (2011) meta-analysis was that memory performance was more positively correlated to concurrent memory efficacy beliefs (i.e., how an individual feels they are performing on a certain task) than to overall memory efficacy beliefs. Indeed, researchers have found that older adults are often inaccurate when asked to rate their memory ability and how it had changed over time (Rickenbach, Agrigoroaei, & Lachman, 2015).

Given the importance of these beliefs, many researchers have investigated ways to improve memory self-efficacy. On the whole, subjective memory seems much more difficult to manipulate than objective memory performance in older adults (Lachman, 2004). One avenue that researchers have used to improve memory self-efficacy beliefs is by teaching memory strategies. For example, Lachman, Andreoletti, and Pearman (2006) found that teaching older adults to categorize items in an episodic memory task led to increased control beliefs over their memory. As mentioned in Chapter 1, Lachman and colleagues (1992) found that cognitive restructuring about memory beliefs (paired with memory strategy training) improved both memory efficacy beliefs and cognitive ability. Indeed, a meta-analysis from Floyd and Scogin (1997) confirmed that the most effective method by which researchers could improve memory efficacy were protocols that combined mnemonic strategy training and attempts to modify expectancies/beliefs about memory ability.

Intervention modality. In the past, these training studies have relied on in-person sessions, which take place over the course of many weeks (Floyd & Scogin, 1997; Lachman et al., 1992). One issue with this approach is scalability. Namely, it would be increasingly difficult to widely offer this type of training to those who are interested in it using an in-person approach. Others have found that using text-message based interventions can be a good strategy for incorporating a population that would not normally have access to an in-person session: namely, those from a rural background (Mahmud, Rodriguez, & Nesbit, 2010). Another issue with the typical session-based approach is that it does not necessarily prompt participants to incorporate the intervention into their everyday lives. For example, an intervention that asks participants to generate positive statements that could replace negative cognitions about memory performance, does not offer participants the experience of noticing these cognitions in "real time." Given the increased trend in favor of technology-based interventions in many populations including among older adults (Bercovitz & Pagnini, 2016), we decided to use text messaging in order to deliver a mindful attention to symptom variability training.


2.4 ATV pilot study

We conducted a brief pilot study in order to evaluate a physical workbook that was designed to prompt participants to notice the patterns in their memory throughout the day. For this pilot study, we recruited six older adults from the greater Boston Area to complete our ATV workbook exercises. One individual did not feel that they had enough time to commit to the experiment so they quit the study after the first session, leaving us with 5 individuals (N = 5, M_{age}= 68.4, age range: 60-74; 3 males).


We gave participants a physical workbook that they were asked to fill out consistently at breakfast, lunch, and dinner for 12 days. In this workbook they were asked to write down all the things that they remembered and forgot since the last time they wrote in the journal. Every three days, they were asked to tally up the total instances of forgetting and remembering.

Procedure. Participants were recruited from a list of individuals who had taken part in memory studies with the lab before. Participants were screened via telephone and were invited to participate if they met the following inclusion/exclusion criteria: no indication of cognitive impairment (score > 8 on the Short Portable Mental Status Questionnaire), no history of stroke, brain injury, other neurological disorders, or depression. Participants were also required to respond that they were fluent in English Participants came into the lab individually for their first measurement session and we introduced the workbook exercises. We instructed participants to begin their workbook exercises the following day. After six days of at-home activities, participants came into the lab for testing. On Day 13, participants returned to the lab for final testing. Survey data were collected on the computer via the Qualtrics.com platform. We compensated participants \$15 to help cover travel expenses to and from the lab.

Outcomes. While our primary goal for this pilot study was to gather qualitative feedback about our ATV intervention workbook, we also measured subjective memory performance and memory concern using the Everyday Memory Questionnaire-Revised (Royle & Lincoln, 2008). We found that subjective memory performance increased after one week for 4 out of the 5 individuals. After six more days, all 4 of these individuals reported a decrease in their subjective memory performance from the midweek session. After six days of the intervention, 3 of the 5 individuals in the ATV group reported less stress over their memory lapses. After six more days of the intervention, reports of memory concern increased again for 2 out of the 3 individuals, with the third experiencing no change in concern. See Figures 1.1 and 1.2 below.

Figure 1.0. Memory Pilot Study. Number of "yes" responses on the Everyday Memory Questionnaire. More "yes" responses indicate lower subjective memory (N=5). We measured subjective memory performance at three time-points with 12 days of at-home activities (attention to variability in memory) assigned between T0 and T2.

Figure 1.1. Responses of how stressful the memory lapses described in Everyday Memory Questionnaire with 0 indicating "not at all stressful" and 10 indicating "very stressful" (N = 4). We measured stress about memory performance at three time-points with no activities assigned in the 12 days between T0 and T2. One individual did not respond to the question since they did not indicate any memory lapses.

Qualitative feedback. Our main instruction to those in the study was to make note of the things they remembered and forgot since the last time they wrote in their notebooks. In the final survey, four out of the five individuals indicated that they felt that a strength of the study was that it made them more aware of their memory.

We found that while many people consistently wrote in their study notebook, they expressed uncertainty about how many items they should write about. Additionally, many participants from this pilot study reported that they found it very difficult to write about specific things they *remembered* to do and ended up just writing a list of things they accomplished during the time period (e.g., washed the dishes, changed the laundry). Participants tended to focus on the things they were forgetting, occurrences that were most salient to them (e.g., "good specifying forgets [sic], but it's harder to be consistent about what remembers to include"). When asked about the limitations of the exercises, two of the five participants commented that they felt limited by us asking at the same time each day. With this feedback in mind, we decided to ask participants in our text-message study to focus on their memory performance in the past 30 minutes to encourage a less biased reflection. We also decided to ask participants about specific types of forgetting that they experienced during the last 30 minutes (adapted from Royle and Lincoln's Everyday Memory Questionnaire, 2008).

We found our approach of teaching the participants about ATV left much room for improvement. Specifically, we relied on the participants to notice that their memory was changing throughout the day, but did not explicitly ask them to compare timepoints across the intervention. In addition, participants selected instances that were salient to them, but we felt that this did not aid in our goal of showing them how their memory changes throughout the whole day. Namely, we did not give them a good method of sampling across their day in an unbiased manner.

Take-aways. We had two primary take-aways from the pilot study. The first conclusion was that we wanted to remove the ambiguity and bias from the sampling process and give participants a more systematic approach to sample the variability in their memory performance. Therefore, we reasoned that text messages could prompt participants to make comparisons across disparate points in time, which would be more effective at teaching participants about variability in their memory performance across the day.

32

Our pilot study also informed our decision about the length our text-message-based intervention. Specifically, we found that it was most convenient for participants to schedule the first and second sessions one week apart. Therefore, to make the first and session sessions one week apart, the intervention must occur in the time between these sessions. Another decision we had to make was whether or not to continue the text messages for two weeks. Our pilot study included 12 days of journaling with an in-person session in the middle to give the participants the chance to reflect on general patterns and also to ask any clarifying questions to the experimenter. Any improvements we did observe came from the first to the second session and did not continue to improve as a result of the second week of journaling. Therefore, we decided to make our intervention six days in length, which was in line with the ATV study investigating heart-rate variability (Delizonna et al., 2009).

The goal of the research presented below was to investigate the effects of a text-messagebased intervention, which prompted participants to reflect on natural variability of their memory processes.

2.5 Research questions and hypotheses for study 1

Given the large body of evidence demonstrating the importance of maintaining perceptions of control (see Chapter 1), it is essential to investigate ways in which older adults can maintain high internal control beliefs, particularly with regard to memory. Specifically, we investigated the attention to variability (ATV) paradigm over the course of a week with older adults who view their forgetting behavior as problematic. We prompted older adults to focus on the variability in their memory ability, with the overarching goal of challenge the idea of steady age-related decline. This ATV training occurred over six days, sandwiched by two assessment sessions, both of which included online and phone components. In addition to investigating the effects of this mindful attention training on memory control beliefs, we also assessed changes in perceptions of memory ability and performance on cognitive tests. Our primary hypotheses for Study 1 were:

- Older adults who are prompted to attend to the variability in their memory performances will demonstrate increases in positive memory efficacy beliefs (as measured by the Memory Controllability Inventory). We hypothesize that this effect will not occur in the comparison groups.
- 2. Older adults who are prompted to attend to the variability in their memory performances will demonstrate a change in their subjective memory performance, such that they will indicate fewer memory lapses over the past 24 hours at T1 than T0 (i.e., Question #1 on Everyday Memory Questionnaire). We hypothesize that this effect will not occur in the comparison groups.
- 3. Older adults who are prompted to attend to the variability in their memory performances will report less stress about their memory failures at T1 than at T0. We hypothesize that this effect will not occur in the comparison groups.
- 4. Older adults who attend to the variability in these abilities will demonstrate improved memory scores, while those in the comparison groups will not.

Our secondary hypotheses were:

1. There will be a positive relationship between positive memory control beliefs and scores on the Langer Mindfulness Scale.

2.6 Methodology for study 1

Participants

Sample size. Sample size was determined in order to have enough power to detect an effect given the analysis, a one-way ANCOVA. Specifying this test with three groups, statistical power =.80, α = .05, and expecting a medium effect size, our power analysis suggested a final sample size of 52 per group (Total *N*= 156; Cohen J., 1992). This effect size is based on Delizonna and colleagues' study using the ATV paradigm (Delizonna et al., 2009), which reported an ETA = .23. Delizonna et al. (2009) also reported a 25% data attrition rate, which indicated initially that we should aim to recruit 65 individuals per group (Total *N*= 195 individuals). After 100 participants enrolled in the study, we checked the attrition rate (including technical errors), which was 10% at that point. Therefore, I decided to conservatively account for a possible 15% attrition and enroll at least 180 individuals.

Recruitment. A total of 188 participants (ages 65-80) were recruited from around the United States using a a Facebook.com advertising campaign (N = 107), electronic newsletters and bulletin boards associated with Osher Lifelong Learning Institutes (N = 24), an older adult database created from previous lab studies (N = 17), a Craigslist ad (N = 3), and referrals from friends and family (N = 4). Thirty-three individuals did not remember or did not report the mode of recruitment. These advertisements began with "Do you have "senior moments" that concern you?" in order to recruit those with memory concerns (see below a sample advertisement). These advertisements included a link to a 5-minute online prescreening survey and the researchers' contact information. If participants met the first round of inclusion criteria, they were prompted to enter an email address and phone number so that we could contact them. The majority of people completed the online prescreening survey (N = 72), while some completed the full prescreening process over the phone (N = 16).



Figure 1.2. Sample Online Advertisement for the Memory Study.

Inclusion and exclusion criteria. Inclusion criteria for participants included a) 65-80 years of age; b) fluency in the English language (An affirmative response to "Are you fluent in English?"), c) expressed concern about one's memory (An affirmative response to "Would you say you are at all concerned about your memory?"). Exclusion criteria included: a) the presence of cognitive impairment (score of < 8 on the Short Portable Mental Status Questionnaire); b) the presence of any medical conditions that affect cognitive ability, such as stroke, acquired brain injury, other neurological disorders or illnesses, or untreated hypertension. Participants were also excluded from the final analysis if they did not complete 2/3 of questions from any of the following: Survey 1, Survey 2, and our text message prompts. Our final attrition was 32 individuals out of 186 enrolled (17% attrition; see Table 1.0 below). One hundred fifty-six individuals were included in the final analysis ($M_{age} = 69.85$, SD = 3.80; $M_{Education} = 17.30$, SD

=2.65; 142 females). The characteristics of the final sample are also included in Table 1.1 just below.

 Table 1.0. Attrition of memory study participants.

	Total	Usable Data
Enrolled	188	
Quit	4	184
Did not complete 2/3 of Survey 1	5	179
Technical difficulties	4	175
Did not complete 2/3 of text messages	13	162
Did not complete 2/3 of Survey 2	6	156

	Total
Male	13
Female	142
Other	1
n	
Less than high school	1
High school graduate	3
Some college, but no degree	12
Bachelor's degree	16
Associate's degree	43
Master's degree	61
Doctorate	12
Professional (JD, MD)	8
Status	
Single	21
Married	69
Widowed	18
Separated	2
Divorced	37
Civil Union	3
	FemaleFemaleOtherILess than high schoolHigh school graduateSome college, but no degreeBachelor's degreeAssociate's degreeMaster's degreeDoctorateProfessional (JD, MD)StatusSingleMarriedWidowedSeparatedDivorced

Table 1.1 Participant characteristics of memory study.

	Other	6
Income pe	r year	
	\$10,000 to \$19,999	10
	\$20,000 to \$29,999	14
	\$30,000 to \$39,999	22
	\$40,000 to \$49,999	16
	\$50,000 to \$59,999	14
	\$60,000 to \$69,999	11
	\$70,000 to \$79,999	8
	\$80,000 to \$89,999	8
	\$90,000 to \$99,999	10
	\$100,000 to \$149,999	22
	\$150,000 or more	11
	Prefer not to answer	9
Employme	ent Status	
	Working (Paid employee)	28
	Working (Self-employed)	9
	Not working (Temporary	
	layoff from job)	1
	Not working (Looking for	3

Table 1.1. Participant characteristics of memory study (Continued).

	1)	
	work)	
	Not working (Retired)	108
		4
	Not working (Disabled)	
	Not working (Other)	0
	Prefer not to answer	0
Race		
	White/Caucasian	148
	Black/African American	2
	Other	1
	Multiracial	2
	Asian	3
Identifie	es as Religious	
	Yes	71
	No	77
	Prefer not to answer	8
Region o	of Residence	
	Northeast	53
	South	47
	Midwest	31
	West	25

Measures

Prescreening Measures

Short Portable Mental Status Questionnaire (SPMSQ-T; Roccaforte, Burke, Bayer, &

Wengel, 1994). Based on a test designed for in-person administration (Pfeiffer, 1975), the 10item SPMSQ-T is a measure designed to screen for cognitive impairment over the telephone. The test is scored out of a total possible of 10 points, and includes questions designed to probe diverse cognitive abilities including short-term memory, long-term memory, orientation to surroundings, information about current events, and counting backwards. A score of 8-10 indicates no cognitive impairment. A score below 8 indicates the presence of a cognitive impairment, with a score of 6 or 7 indicating mild cognitive impairment, a score of 3-5 indicating moderate cognitive impairment, and a score of 0-2 indicating severe cognitive impairment. The SPMSQ administered by telephone has been found to offer modest accuracy distinguishing between those with cognitive impairment and those without cognitive impairment with a reported sensitivity of .74 and specificity of .79 (Roccaforte et al., 1994).

Primary outcome measures

Everyday Memory Questionnaire-Revised (EMQ-R; Royle & Lincoln, 2008). This 13item self-report scale measures subjective memory performance. Namely, respondents are asked to indicate whether or not they had experienced certain memory failures within the past 24 hours (e.g., "Did you find that a word was "on the tip of your tongue" - you knew what it was but could not quite find it?). Following the 13 yes/no questions about one's memory functioning, participants are asked to rate how stressful these failures are on a scale of 0-10 with 0 indicating "not at all stressful" to 10 indicating "very stressful." The final question asks the participant to compare their memory functioning that day compared to other days ("much worse than usual, a little worse than usual, same as usual, somewhat better than usual, much better than usual"). This 13-item version was shortened from the original 28-item version (Sunderland, Watts, Baddeley, & Harris, 1986). Analysis of the revised version demonstrated two main factors: Attentional tracking and Retrieval. The EMQ-R has demonstrated strong internal reliability (Royle & Lincoln, 2008).

Memory Controllability Inventory (MCI; Lachman, Bandura, Weaver, & Elliott, 1995). The Memory Controllability Inventory is a 19-item Likert scale with questions about one's memory. Participants rate each statement from 1 (*strongly disagree*) to 7 (*strongly agree*). The MCI includes six subscales, including: Present Ability (e.g., "I can remember the things I need to."), Potential Improvement (e.g., "I can find ways to improve my memory"), Effort Utility (e.g., "If I work at it, I can improve my memory."), Inevitable Decrement (e.g., "There's not much I can do to keep my memory from going downhill."), Independence (e.g., "As I get older I won't have to rely on others to remember things for me."), and Alzheimer's Likelihood (e.g., I think there's a good chance I will get Alzheimer's disease"). On all the subscales except Alzheimer's Likelihood and Inevitable Decrement, higher scores indicate higher levels of perceived personal control over one's memory. The authors reported alpha reliability coefficients from three samples ("Present Ability" alpha = .58-.70, "Potential Improvement" alpha = .62-.70, "Effort Utility" alpha = .65-.73, "Inevitable Decrement" alpha = .58-.77, "Independence" alpha = .49- .68, "Alzheimer's Likelihood" alpha = .65-.73). Of the 19 items, 5 are reverse scored.

Brief Test of Adult Cognition by Telephone with Stop-and-Go Switch Task (BTACT;

Tun & Lachman, 2006). The BTACT is a neuropsychological battery based off well-known laboratory tasks and modified versions of well-established psychometric tests. The BTACT, which is proctored over the phone, is designed to be sensitive to performance on a range of

cognitive abilities in older adults without cognitive impairments including: episodic verbal memory (both immediate and delayed list recall of 15 unrelated words of the Rey Auditory-Verbal Learning Test, Rey, 1964), working memory span (backwards digit span, Wechsler, 1997) and language verbal fluency. We also included the optional Stop-and-Go switch task to test task-switching ability/inhibitory control. Two versions of the test (Form A and Form B) are available for repeated measurement. This test has demonstrated good construct validity and test-retest reliability (Lachman, Agrigoroaei, Tun, & Weaver, 2014). Moreover, the assessment's authors found no difference in performance between individuals who took the test over the phone vs. in person (Tun & Lachman, 2006).

Secondary outcome measures

Langer Mindfulness Scale-14 Item (LMS-14; Pirson, Langer, Bodner, & Zilcha, 2012). We assessed trait mindfulness using the Langer Mindfulness Scale (LMS-14), a 14-item Likert scale (1= *Strongly disagree* to 7 = *Strongly agree*) which includes three factors: novelty seeking, novelty producing, and engagement, and good psychometric properties.

Geriatric Depression Inventory - Short Form (GDI-sf; Sheikh & Yesavage, 1986). This scale is comprised of 15 yes/no questions and is typically used to screen for depression in older adults. The GDI-sf is an abridged version of the original 30-question assessment by the same authors, shortened with the goal of reducing participant response burden (Yesavage et al., 1983). A score of 5 (or higher) out of 15 indicates probable mild depression. The short form was found to be highly correlated with the long version (r = .89) with similarly high rates of sensitivity (Lesher & Berryhill, 1994). The GDS-sf has good validity in both out-patient and in-patient clinical populations, but not with patients with cognitive impairment (Herrmann et al., 1996; Lesher & Berryhill, 1994).

Program adherence. As a measure of program adherence, we calculated the proportion of text messages participants responded to out of the total 12 (i.e., 2 messages per day for 6 days). Participants were only included in the final analysis if they completed two-thirds of these prompts. The mean average number of scheduled text messages completed in our final sample was 11.01 (SD = 1.46).

Procedure

Prescreening. In order to determine eligibility, we screened interested parties in two parts. The first part was composed of questions regarding personal demographics, health histories, and attitudes toward memory. The second part was a cognitive assessment to assess possible cognitive impairment. Some people completed both parts over the phone (N = 16), while the majority completed the first part via an online survey delivered via the Qualtrics.com website platform and the second part over the phone.

Prescreening – Part 1. Potential participants completed the first phase of the prescreening, either on the phone, or via an online prescreening survey. This part of the prescreening determined whether participants met the following requirements: age (65-80 years), English fluency, owning a smartphone, concern with memory (an affirmative response to "Would you say you are at all concerned about your memory?"), no untreated hypertension, and no history of conditions that affect cognitive ability including stroke, acquired brain inquiry, neurological disorders and illness. Participants were also asked two more questions during this stage, though the responses did not have bearing on eligibility. These questions assessed whether they had noticed memory decline over the past few years (yes/no) and their level of concern with the memory decline ("On a scale of 1-5, how concerned are you about memory decline with 1 being "not concerned at all" and 5 being "very concerned".)

Prescreening – Part 2. The second phase of the prescreening consisted of a cognitive assessment over the phone, including the Short Portable Mental Status Questionnaire (SPMSQ, Pfeiffer, 1975) and some sections of the Brief Assessment of Adult Cognition by Telephone (BTACT, Tun & Lachman, 2006). Specifically, participants were tested on word list recall (immediate and delayed), digit span, verbal fluency, and inhibitory control. Participants were randomly assigned to either Form A or Form B of the BTACT. Only performance on the SPMSQ was used to determine eligibility (with a score of 8 or above ruling out cognitive impairment).

Compensation. In exchange for participating, participants received a \$15 gift card code to Amazon.com. In addition, they received information about techniques to stay cognitively active, which was published by the Global Council on Brain Health (2017).

Random assignment. Participants were randomly assigned to one of three groups using random.org, which generates random numbers using atmospheric noise.

Baseline Measurement (Session 1). The first study survey was sent over email immediately after the cognitive assessment. This survey was delivered using an active link that directed users to a survey delivered on the Qualtrics.com platform. To start the survey, participants indicated that they had read and agreed to the terms in the informed consent. This baseline survey included the following items: Positive and Negative Affective Schedule (PANAS), Sunderland Everyday Memory, Memory Controllability Inventory, Multifactorial Memory Questionnaire, subjective age ratings, the Langer Mindfulness Scale (14-item version), questions about perceptions of health and quality of life, the Image of Aging Scale, the Geriatric Depression Scale (Short Form), and questions about demographics. **Experimental conditions.** The three experimental conditions differed in the delivery schedule and content of ATV mindfulness instructions. All participants were asked to respond to two messages per day for six days. The High Mindfulness Memory group (Condition 1, N = 49) was designed to encourage participants to notice how their memory performance was fluctuating over the course of the week. The Low Mindfulness Memory group (Condition 2, N=52) was designed to encourage participants to notice their memory performance over the week, highlighting the stability instead of the fluctuation. The General Mindfulness group (Condition 3, N = 55) was designed to make participants generally aware of their present experience, without attending to memory-related cues. The differences are noted below, as well as in Figure 1.3 just below the descriptions.

Condition 1 ("High Mindfulness Memory" group). For six consecutive days, we prompted participants in this condition to reflect on their memory twice per day (once in the morning and once in the late afternoon/early evening). The contact schedule was created separately for each participant using a random number generator with the parameters that the first message should be sent to the participant between 9am and noon and the second sent between noon and 8pm. Each communication asked participants to a) describe the activity they had been doing over the past 30 minutes, b) rate their memory performance during the last 30 minutes using a sliding scale (with 0 indicating *Poor* and 100 indicating *Excellent*), c) check a box next to all the types of memory lapses/instances of forgetfulness they had experienced in the past 30 minutes (out of the 10 listed in the Everyday Memory Questionnaire), d) compare their memory performance to the last time we asked them using a sliding scale with -10 indicating

Much Worse, and 10 indicating *Much Better*² and e) describe any factors they believed may have accounted for any differences in memory performance. In addition, this group was instructed each morning at 9am to be attentive to how their memory performance changed throughout the day and to ask oneself what might account for these changes, though we did not require any response (see the text below):

"Throughout the day, pay attention to the natural fluctuations in your memory performance. Pay attention to the effects these changes have on you and your behaviors and interactions with others throughout the day. Most importantly, notice when your memory is better/worse and ask oneself why this may be (e.g., sleep, mood, distractions?) Notice three ways your memory is different from last time you checked."

Condition 2 ("General Mindfulness" group). Just like those in Condition 1, participants in Condition 2 were sent two text messages per day. Instead of receiving the messages on a random schedule, they received messages every day at the same times (i.e., one at 9am and one at 8pm) to discourage noticing fluctuation throughout the day. Those in this group were asked to reflect on the activity they had been engaged in over the past 30 minutes. They were not asked about their memory performance, at all.

Condition 3 ("Low Mindfulness Memory" group). Participants in this condition received daily prompts asking them to report on their memory performance over the last 30 minutes, just as those in Condition 1 did. Unlike those in Condition 1, those in the Low Mindfulness Memory group were only prompted to report on their memory performance in the morning at 9am. Also unlike those in Condition 1, participants in Condition 3 were not asked to reflect on how their

² Note that this question did not appear if this was the first time we were texting the participant.

memory was fluctuating. Finally, participants in Condition 3 were also texted in the evening at 8pm, but this text message did not pertain to memory. This evening message prompted them to reflect on the activity they had been engaged in over the past 30 minutes. The rationale for including this evening text message prompt was to ensure that all groups received two text-message prompts per day. We thought that prompting them about their memory twice per day might encourage them to notice fluctuation in their memory performance, which we did not want.

	General	Low Mindfulness-	High Mindfulness
	Mindfulness	Memory	Memory
2 daily text	Yes	Yes	Yes
messages prompts?			
Schedule of text	Fixed-	Fixed-	Random -
messages	9am and 8pm	9am and 8pm	morning (9am-
			noon) and evening
			(noon-8pm)

Table 1.4. Differences in scheduling among the three conditions in memory study.

	General Mindfulness	Low Mindfulness Memory	High Mindfulness Memory
Question about activities in last 30 minutes?	Yes	Yes	Yes
Questions about memory performance in last 30 minutes?	No	Yes	Yes
Question about how memory different from last time point?	No	No	Yes
Morning reminder to notice fluctuation in memory and consider underlying patterns?	No	No	Yes

Session 2 (Final Measurement). Participants were sent a final survey the day after their text messages ended. This final survey included the Sunderland Everyday Memory Questionnaire and the Memory Controllability Inventory.

Follow-up call. After the final survey, participants completed a 15-minute cognitive assessment via phone. Specifically, participants completed the form of the BTACT that they did not complete during the prescreening call (i.e., if they completed Form A in the first call, they would complete Form B in the follow-up call). The experimenter was always blind to the condition of the participant. In most cases (all except 2), the experimenter who proctored the final assessment session was also the person who conducted the prescreening call.

Debriefing. After the follow-up call, we sent participants a debriefing form via email explaining our study hypotheses, as well as an Amazon.com giftcard code for \$15 and the handout from the Global Council on Brain Health (2017) entitled, "Engage Your Brain: GCBH Recommendations on Cognitively Stimulating Activities."

Data analysis. In order to determine the effects of our interventions on our dependent variables of interest, we first conducted a series of one-way ANCOVAs, inserting the baseline scores of each dependent variable as covariates. Before running these tests, we checked that statistical assumptions of the one-way ANCOVA were met for each of our dependent variables, as follows:

 First, we checked for the homogeneity of regression means, separately for each dependent measure of interest, by inspecting the Condition x Baseline term of the ANCOVA analyses. We found that each of our measures satisfied this assumption (see Appendix A).

49

- 2. Second, we checked to make sure the data satisfied the assumption of homogeneity of variances across the experimental conditions by using Levene's Test of Equality of Error Variances. All measures except the Everyday Memory Questionnaire's "Stress about Memory Lapses" met this assumption (see Appendix A). In the case of the EMQ's question about stress, we utilized a reciprocal transformation. Figure 2.9 shows that the error variances were equally distributed after this transformation.
- 3. Third, we checked for outliers via visual inspection of the boxplots. Outliers were defined as those with standardized residuals with *z*-scores above or below 3. We found no outliers matching this definition in any of our dependent variables (see Appendix A). For the Brief Test of Adult Cognition by Telephone (which is composed of many

subtests), we conducted a Multivariate Analysis of Analysis of Variance (MANOVA), after verifying that we had satisfied the statistical assumptions, including:

- The model includes two or more dependent variables that are measured at the continuous level;
- 2. The model includes one independent variable that consists of two categorical or more categorical, independent groups;
- 3. Independence of observations;
- 4. No multicollinearity (Appendix A);
- 5. Homogeneity of variance (see Appendix A^3)

³ Note that the follow-up test for the reverse trials of the switch task cannot be accurately interpreted because the data did not meet the assumption of homogeneity of variance.

Given our data were not amenable to repeated measures ANOVAs (as we tested participants at only two time points), we decided to further investigate the difference between baseline and follow-up sessions by conducting a series of paired-sample t-tests, separately for each of the three study conditions. Given concerns about multiple comparisons and increased chances of a Type I Error, we applied a Bonferroni correction to these analyses, dividing the significance value (.05) by the number of tests performed (3) for a more conservative significance value of .017. In the cases of the High Mindfulness Memory group, we had a priori predictions about the direction of the effect, so our significance value was set to .1, and adjusted to .033 with the Bonferroni correction. Each of the dependent variables met the statistical assumptions of this test.

2.7 Results of study 1

In this section, we begin with a summary of the most notable findings, and then describe the results in detail for our four separate research questions, which investigated the effects of the interventions on 1) memory control beliefs, 2) subjective memory performance, 3) stress about subjective memory performance, and 4) actual memory performance.

Summary of results. As predicted, we found positive effects of the ATV intervention, with the High Mindfulness Memory group reporting significantly fewer lapses in their memory after the intervention (p = <.001), along with increased control over their memory. Specifically, those in the High Mindfulness Memory group became more likely to feel control over their present memory abilities (p = .04) and potential improvement (p = .052) after the intervention.

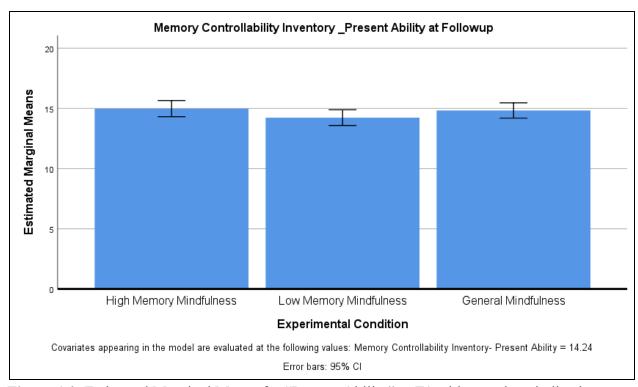
On the other hand, we found that those who were asked to pay attention to their memory and not the fluctuation (the "Low Mindfulness Memory" group) demonstrated declines in reported beliefs about memory controllability including: decreased beliefs in the utility of efforts to improve memory ability (p = .013), decreased beliefs about control over their independence (p = .06), increased beliefs about memory decline being inevitable (p = .06), and increased beliefs about the likelihood of developing Alzheimer's Disease (p = .06). At the same time, this group also evidenced decreased stress about memory lapses (p = .001).

We found that noticing the activities they were engaged in (the task of the "General Mindfulness" group) positively affected the participants. Specifically, participants in this group became more likely to feel control over their present memory abilities (p = .043) and less likely to report memory lapses after the intervention (p = .013).

Finally, we found significant relationships between trait mindfulness and control beliefs about memory. We discovered a positive relationship between trait mindfulness and the following variables: Present Ability (r = .39, p < .001), Potential Improvement (r = .29, p <.001), Effort Utility (r = .23, p = .005), and Independence (r = .20, p = .012). We also discovered the predicted negative relationship between trait mindfulness and the following negative beliefs about memory controllability: Inevitable Decrement (r = .27, p = .001) and Alzheimer's Likelihood (r = .21, p = .01). See below for the full analyses, parsed by research question. For simplicity, the significant findings are presented below and the rest are included in Appendix A.

Demographic variables

First we tested to ensure that the groups did not significantly differ on the demographic variables of age, education (number of years), Geriatric Depression Scale (short form) and Langer Mindfulness Scale. The groups did not differ on these measures (See Appendix A for a full description of the analyses).

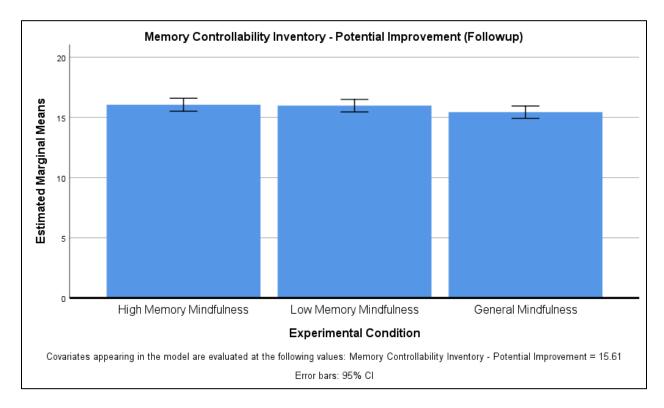

Research question #1: Control beliefs

Our first research question of interest was: Does paying attention to the variability in memory performance positively affect how much control someone feels they have over their memory?

To answer this question, we conducted an ANCOVA for each of the subscales of the Memory Controllability Inventory (MCI) that indicate positive attitudes towards memory controllability (Present Ability, Potential Improvement, Effort Utility and Independence), along with negative attitudes towards memory controllability (Inevitable Decrement and Alzheimer's Likelihood). We followed up the ANOVAs with a series of paired-sample t-tests.

MCI-Present Ability. Since the variances of these groups were not homogenous at baseline on this measure as determined by Levene's test, (F(2,153) = 4.91, p <.001), we conducted a Welch's *F*-test to determine that there were no significant differences among the three group means on "Present Ability" at baseline, *Welch's F*(2, 100.50) = .329, p = .69 (Appendix A).

A one-way ANCOVA revealed the following: As we expected, the covariate ("Present Ability" scores at T0) was significantly related to the final "Present Ability" scores, (F(1,152) = 233.10, p < .001, partial $\eta^2 = .61$; see Appendix A). After adjusting for pre-intervention scores of "Present Ability", there was not a statistically significant difference in post-intervention scores of "Present Ability" among the three conditions, F(2, 152) = 2.112, p = .247, partial $\eta^2 = .018$. See below for the Estimated Marginal Means of the three conditions at T1.


Figure 1.0. Estimated Marginal Means for "Present Ability" at T1 with error bars indicating a 95% confidence interval.

Paired-sample t-tests revealed the following: For the High Mindfulness Memory group, participants' mean "Present Ability" score at T0 was 14.16 (SD = 3.50) and increased to 14.92 (SD = 3.60) at follow-up, t(48) = -2.11, p = .04. Similarly, for those in the General Mindfulness group, the mean "Present Ability" score increased from 14.00 (SD = 4.40) at T0 to 14.64 (SD = 4.10) at follow-up, t(54) = -2.08, p = .043. For those in the Low Mindfulness group, the mean "Present Ability" score did not change from baseline to follow-up (t(51) = .207, p = .84).

MCI-Potential Improvement. Since the variances of these groups were not homogenous at baseline as determined by Levene's test (F(2,153) = 3.17, p < .001), we conducted a Welch's *F*-test in order to determine that there were no significant differences among the three group

means on "Potential Improvement" at baseline, *Welch's* F(2, .96.82) = 2.13, p = .13 (see Appendix A).

Our primary analysis, a one-way ANCOVA revealed the following: the covariate ("Potential Improvement" scores at T0) was significantly related to the follow-up "Potential Improvement" scores, (F(1,152) = 169.12, p < .001, partial $\eta^2 = .53$; see Appendix A). After adjusting for pre-intervention scores of "Potential Improvement", there was not a statistically significant difference in post-intervention scores of "Potential Improvement" among the three conditions, F(2, 152) = 1.62, p = .20, partial $\eta^2 = .021$. See below for the Estimated Marginal Means of the three conditions at T1.

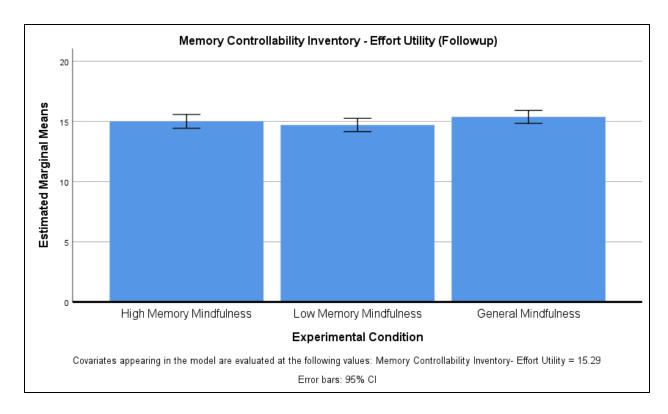
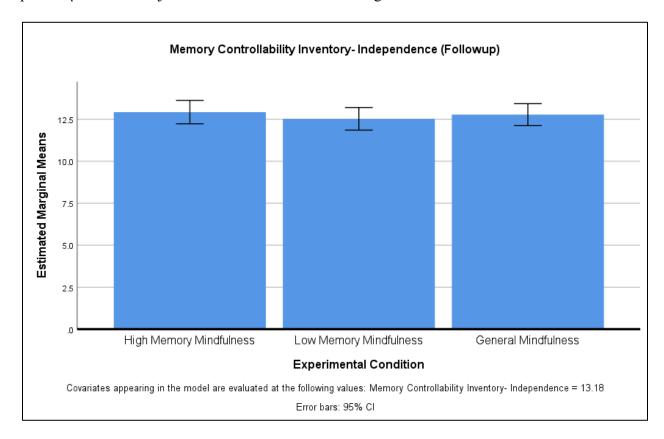


Figure 1.1 Estimated marginal means for "Potential Improvement" at T1. Error bars indicate 95% confidence intervals.

Paired-sample t-tests revealed the following: For the High Mindfulness Memory group, participants' mean "Potential Improvement" score at T0 (M = 14.96, SD = 3.36) increased to 15.59 (SD = 2.89) at T1, t(48) = -1.99, p = .052. Participants' mean "Potential Improvement" score did not change significantly from baseline to follow-up for either the Low Mindfulness Memory group (t(51) = .21, p =.23) or for the General Mindfulness group (t(54) = 1.27, p = .21).

MCI-Effort Utility. A one-way ANOVA revealed that there were no significant differences among the three group means on "Effort Utility" at baseline, F(2, 153) = .43, p = .66 (see Appendix A).

Our primary analysis, a one-way ANCOVA revealed the following: As expected, the covariate ("Effort Utility" scores at T0) was significantly related to the follow-up "Effort Utility" scores (F(1,152) = 147.66, p < .001, partial $\eta^2 = .50$; see Appendix A). After adjusting for preintervention scores of "Effort Utility", there was not a statistically significant difference in postintervention scores of "Potential Improvement" among the three conditions, F(2, 152) =1.49, p = .23, partial $\eta^2 = .020$. See below for the Estimated Marginal Means of the three conditions at T1.

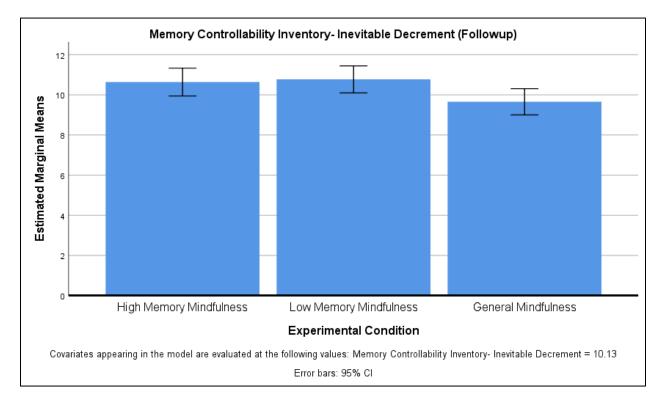

Figure 1.2. Estimated marginal means for "Potential Improvement" at T1. Error bars indicate 95% confidence intervals.

Paired-sample t-tests revealed the following: For those in the Low Mindfulness Memory group, the mean "Effort Utility" score significantly decreased from baseline (M = 15.69, SD = 2.92) to follow-up (M = 14.98, SD = 3.05), t (51) = 2.59, p = .013. Participants' mean "Effort Utility" score did not change after the intervention for either the High Mindfulness Memory group (t(48) = .79, p = .44) nor for the General Mindfulness group, t(54) = -.43, p = .67.

MCI- Independence. A one-way ANOVA revealed that there were no significant differences among the three group means on "Independence" at baseline, F(2, 153) = .61, p = .55 (see Appendix A).

A one-way ANCOVA revealed the following: As expected, the covariate

("Independence" scores at T0) was significantly related to the follow-up "Independence" scores $(F(1,152) = 137.46, p < .001, \text{ partial } \eta^2 = .48; \text{ see Appendix A})$. After adjusting for preintervention scores of "Independence", there was not a statistically significant difference in postintervention scores of "Independence" among the three conditions, F(2, 152) = .71, p = .71, partial $\eta^2 = .004$. See just below for the Estimated Marginal Means of the three conditions at T1.


Figure 1.3. Estimated marginal means for "Independence" at T1. Error bars indicate 95% confidence intervals.

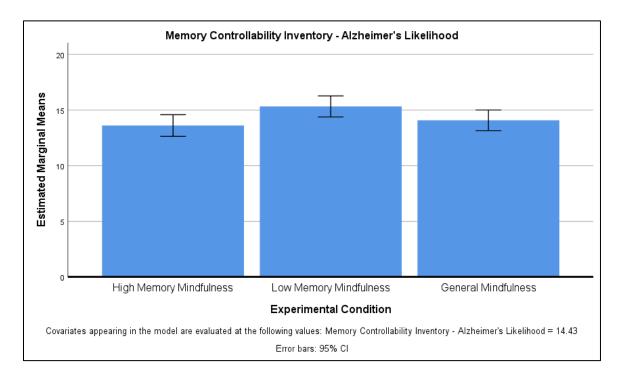
Paired-sample t-tests revealed the following: For those in the Low Mindfulness Memory group, the mean "Independence" score decreased from 13.48 (SD = 3.25) at baseline to 12.73

(SD = 3.57) at follow-up, t(51) = 2.08, p = .043. Participants' mean "Independence" score did not change between baseline and follow-up for either the High Memory Mindfulness group (t(48) = .271, p = .79) or the General Mindfulness group (t(54) = 1.46, p = .15).

MCI- Inevitable Decrement. A one-way ANOVA revealed that there were no significant differences among the three group means on "Inevitable Decrement" at baseline, F(2, 153) = .79, p = .46 (see Appendix A).

A one-way ANCOVA revealed the following: The covariate, "Inevitable Decrement" scores at T0, was significantly related to the follow-up "Inevitable Decrement" scores (F(1,152)= 147.66, p < .001, partial $\eta^2 = .50$; see Appendix A). After adjusting for pre-intervention scores of "Inevitable Decrement", there was a statistically significant difference in post-intervention scores of "Inevitable Decrement" among the three conditions, F(2, 152) = 3.295, p = .040, partial $\eta^2 = .042$. See just below for the Estimated Marginal Means of the three conditions at T1.

Figure 1.3. Estimated marginal means for "Independence" at T1. Error bars indicate 95% confidence intervals.


Pairwise analyses of the Estimated Marginal Means⁴ revealed that the final "Inevitable Decrement" scores were significantly lower in the General Mindfulness group than in either the Low Mindfulness Memory group or the High Mindfulness Memory group (see Figure 17.5). To be more precise, "Inevitable Decrement" scores were significantly lower in the General Mindfulness group than in the Low Mindfulness Memory group (M = 10.767, SE = .340), a mean difference of 1.113, 95% CI [.176, 2.049], p = .020. Similarly, "Inevitable Decrement" scores at follow-up were marginally lower in the General Mindfulness condition (M = 9.654, SE = .331) than in the High Mindfulness Memory condition (M = 10.636, SE = .351), a mean difference of .982, 95% CI [.028, 1.936], p = .061. There was no significant difference between the High Mindfulness Memory and Low Mindfulness Memory groups (p = .79).

Paired-sample t-tests revealed the following: For those in the Low Mindfulness Memory group, the mean "Inevitable Decrement" score marginally increased from 9.83 (SD = 3.35) at baseline to 10.54 (SD = 3.32) at follow-up, t(51) = -1.91, p = .061. Participants' mean "Inevitable Decrement" score did not change as a result of the intervention in either the High Mindfulness Memory group (t(48) = -1.07, p = .29) nor in the General Mindfulness group (t(54) = 1.19, p = .24).

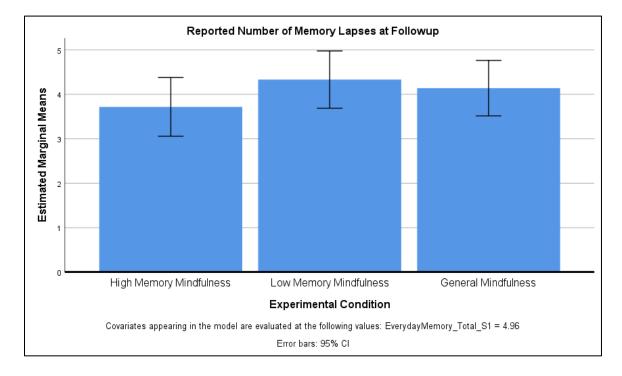
MCI-Alzheimer's Likelihood. A one-way ANOVA revealed that there were no significant differences among the three group means on "Alzheimer's Likelihood" at baseline, F(2, 153) = 1.47, p = .23 (see Appendix A).

⁴ All post-hoc comparisons of Estimated Marginal Means utilized a Bonferroni correction.

The primary analysis, a one-way ANCOVA revealed the following: As expected, the covariate ("Alzheimer's Likelihood" scores at T0) was significantly related to the follow-up "Alzheimer's Likelihood" scores, F(1,152) = 227.37, p < .001, partial $\eta^2 = .60$ (see Appendix A). After adjusting for pre-intervention scores of "Alzheimer's Likelihood", there was a statistically significant difference in post-intervention scores of "Alzheimer's Likelihood" among the three conditions, F(2, 152) = 3.38, p = .037, partial $\eta^2 = .043$ (Appendix A).

Figure 1.4. Estimated marginal means for "Alzheimer's Likelihood" at T1. Error bars indicate 95% confidence intervals.

Pairwise analyses of the Estimated Marginal Means with a Bonferroni adjustment revealed the following (Appendix A): "Alzheimer's Likelihood" scores were statistically significantly greater in the Low Mindfulness Memory group (M = 15.33, SE = .48) compared to the High Mindfulness Memory group (M = 13.61, SE = .49), a mean difference of 1.72, 95% CI [.06, 3.38], p = .044. Additionally, the pairwise analysis revealed no difference between the General Mindfulness group and the Low Mindfulness Memory group (p = .20) and no difference between the General Mindfulness group and the High Mindfulness Memory group (p = 1.0).


Paired-sample t-tests revealed the following: For those in the Low Mindfulness Memory group, the mean "Alzheimer's Likelihood" score marginally increased from 13.87 (SD = 4.69) at baseline to 14.83 (SD = 5.24) at follow-up, t(51) = -1.88, p = .066. Participants' mean score did not change for either the High Mindfulness Memory group (t(48) = 1.46, p = .15) or the General Mindfulness group, (t(54) = 1.11, p = .27).

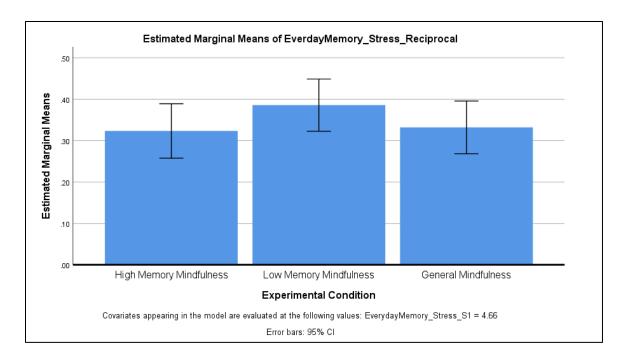
Research question #2: Subjective memory performance

Our second research question of interest was: Does paying attention to variability in memory performance positively affect one's subjective memory performance?

To assess overall effect of ATV on subjective memory performance, (the number of "yes" responses to daily memory lapses in the past 24 hours in the Everyday Memory Questionnaire), our primary analysis was a one-way ANCOVA.

A one-way ANOVA revealed that there were no significant differences among the three group means at baseline, F(2, 153) = 1.08, p = .34 (see Appendix A). A one-way ANCOVA, revealed the following: As expected, the covariate (reported lapses at T0) was significantly related to the reported lapses at follow-up, F(1,152) = 19.69, p < .001, partial $\eta^2 = .15$ (see Appendix A). After adjusting for the number of reported lapses at T0, there was not a statistically significant difference in post-intervention reports of lapses among the three conditions, F(2, 152) = .90, p = .41, partial η^2 = .012. See just below for a graphical depiction of the estimate marginal means.

Figure 1.5. Estimated marginal means for Number of Reported Memory Lapses at T1. Error bars indicate 95% confidence intervals.


Paired t-tests revealed the following: There was a significant decrease in the number of reported lapses for those in the High Mindfulness Memory group after the intervention ($M_{Baseline}$ = 5.12, [SD = 2.36], $M_{Final} = 3.78$ [SD = 2.26]; t(48) = 3.83, p < .001) and for those in the General Mindfulness group ($M_{Baseline} = 5.18$, $M_{Final} = 4.22$; t(48) = 2.57, p = .013). For those in the Low Mindfulness Memory group, there was no significant difference in scores between baseline and follow-up, t(51) = .93, p = .34.

Research question #3: Memory-related stress

Our third research question of interest was: Does paying attention to variability in memory performance positively affect one's memory-related stress?

To assess overall effect of our ATV intervention of how stressed someone is about memory lapses we used Question #2 on the Everyday Memory Questionnaire ("If you answered "yes" to any of the previous questions (1-10), please put an "X" in the box below to rate how stressful in general these memory experiences were for you, with 0 meaning not at all stressful, and 10 meaning very stressful").

A one-way ANOVA revealed that there were no significant differences among the three groups means at baseline, F(2, 153) = .21, p = .81 (see Appendix A). Our primary analysis, a one-way ANCOVA revealed the following: As expected, the covariate (reported stress at baseline) was significantly related to the reported lapses at follow-up, F(1,147) = 6.66, p = .011, partial $\eta^2 = .043$ (see Appendix A). After adjusting for the number of reported lapses at T0, there was not a statistically significant difference in post-intervention reports of lapses among the three conditions, F(2, 147) = 1.02, p = .34, partial $\eta^2 = .015$. See just below for a graphical depiction of the estimated marginal means.

Figure 1.5. Estimated marginal means for Stress about Reported Memory Lapses at T1. Error bars indicate 95% confidence intervals.

Paired t-tests revealed the following: There was a significant decrease in stress levels for those in the Low Mindfulness Memory group ($M_{Baseline} = 4.79 [SD = 2.21], M_{Final} = =3.52 (SD_{TI} = 1.75); t(51) = 3.61, p = .001]$. There was no significant change in the reported memory-related stress for either the High Mindfulness Memory group (t(48) = 1.44, p = .16) or for the General Mindfulness group (t(54) = 1.36, p = .18).

Research question #4: Memory performance

Our final research question of interest was: Does paying attention to variability in memory performance positively affect objective memory performance (scores on the Brief Test of Adult Cognition by Telephone)?

In order to answer this question, we conducted a multivariate analysis of variance (MANOVA), which revealed the following: The differences between conditions on the combined dependent variables was not statistically significant, F(14, 268) = .894, p = .566; Wilks' $\Lambda = .913$; partial $\eta^2 = .045$.

Next we conducted a series of paired t-tests to determine if there were significant differences between baseline and follow-up on BTACT performance. There were no statistically significant differences between T0 and T1 scores for any of the three groups on any of the subtests of the BTACT (see Figures 68-70).

Research question #5: Trait Mindfulness

Finally, we probed the relationship between trait mindfulness (as measured by the Langer Mindfulness Scale at baseline) and memory-related outcomes at baseline, by calculating Pearson correlation coefficients. We discovered a positive relationship between trait mindfulness and the following: Present Ability (r = .39, p < .001), Potential Improvement (r = .29, p < .001), Effort Utility (r = .23, p = .005), and Independence (r = .20, p = .012). We also discovered a negative relationship between trait mindfulness and the following beliefs about memory controllability: Inevitable Decrement (r = .27, p = .001) and Alzheimer's Likelihood (r = .21, p = .01). We did not observe a relationship between the LMS and the following measures: number of lapses reported (r = .02, p = .80), stress about memory lapses (r = .004, p = .96), or any of the sub-tests on the BTACT (p > .05).

Exploratory Analyses

As an exploratory analysis, we conducted a series of Pearson's Chi-square tests to determine if whether or not a person improved depended on his/her level of trait mindfulness. To explore this, we tested whether those scoring in the top 25% of the LMS had a higher likelihood

of improving on our outcomes of interest than those scoring in the bottom 25%. The analyses did not reveal a significant effect of LMS quartile on whether an individual improved (p > .1, see Appendix A). We also conducted a series of exploratory Chi-square tests⁵ to determine the effect of memory concern (as measured on the Everyday Memory Questionnaire) on whether or not they improved on the dependent variables. To explore this possibility, we tested whether those with the top 25% of "Memory Concern" scores differed in their likelihood of improving on our outcomes of interest than those scoring in the bottom 25% of "Memory Concern scores". We found that one's memory concern did affect one's likelihood of improving on the Red-Green Accuracy test on the BTACT, $x^{2}(1, N = 50) = 5.06$, p = 0.025, (see Appendix A for the full analysis). Specifically, those with the least concern (bottom 25% of scores) improved, while those with the most concern (top 25% of scores) declined after the week. There was no significant effect of memory concern quartile on the change scores of any of the other measures (see Appendix A).

2.8 Discussion

Over half of older adults aged 70-85 express concerns about their own cognitive decline, particularly memory loss (Commissaris, Ponds, & Jolles, 1998). It is perhaps unsurprising then that a large body of literature indicates that older adults tend to have much lower perceptions of control over their memory than younger adults do (e.g., Hultsch, Hertzog, Dixon, & Small, 1998) and that researchers have had limited success with experimental attempts to change attitudes about memory controllability (e.g., Lachman, 2004). Our research question was: can we increase

⁵ In the cases with fewer than 10 participants in a cell, we conducted a Fisher's Exact Test.

perceptions of control and memory performance by challenging the belief of perpetual memory lapses?

In this study, we conducted an experiment to determine the effects of an "attention to variability" (ATV) training paradigm in older adults (N = 156, ages 65-80) who expressed concerns about their memory. Specifically, we trained participants to pay attention to the natural fluctuation in their memory performance over the course of six days using text-message prompts. In addition to the group that received the ATV training, we included two comparison groups that also received six days of text-message prompts: 1) a group that was asked to pay attention to their memory performance (but not the fluctuation; "Low Mindfulness Memory"), and 2) a group that was asked to report on the activity they were engaged in over the past 30 minutes ("General Mindfulness"). Our main outcome measures were changes in memory efficacy beliefs (Memory Controllability Inventory), subjective memory performance (Everyday Memory Questionnaire), stress about memory failures (Everyday Memory Questionnaire), and actual memory performance on a telephone-based cognitive battery (BTACT).

As predicted, we found positive effects of the ATV intervention, with the High Mindfulness Memory group reporting significantly fewer lapses in their memory after the intervention (p < .001), along with evidence of increased perceptions of control over their memory. Specifically, those in the High Mindfulness Memory group became marginally more likely to feel control over their present memory ability (p = .04) and endorse the potential for memory improvement (p = .052) after the six-day intervention.

On the other hand, we found the opposite effect in those who were asked to pay attention to their memory performance every morning, not the fluctuation (the "Low Mindfulness Memory" group). Specifically, this group evidenced declines in reported beliefs about memory controllability including: significantly decreased beliefs in the utility of efforts to improve memory ability (p = .013), along with marginally decreased beliefs about control over their independence (p = .06), marginally increased beliefs about memory decline being inevitable (p =.06), and marginally increased beliefs about the likelihood of developing Alzheimer's Disease (p =.06). These findings, which all travel in the same direction, suggest that drawing one's attention to stability of symptoms results in feelings of less control.

Given the focus on stability, it is unsurprising that the Low Mindfulness Memory group did not report any change in memory lapses after the week. Those in this group also demonstrated significantly reduced stress about memory lapses (p = .001). This reduced stress may have indicated relief or comfort in perceived stability, a phenomenon supported by past literature (e.g., Agrigoroaei et al., 2013).

We also found that noticing and reporting on the activities they were engaged in over the past 30 minutes (the task of the "General Mindfulness" group) produced positive effects. Specifically, participants in this group became marginally more likely to feel control over their present memory abilities (p = .043) and significantly less likely to report memory lapses (p = .013) than at the beginning of the study. We initially included this comparison group to control for the effects of feeling engaged in the study. Upon further consideration, it seems that the instructions for this group also emphasized personal action, which the literature suggests is associated with increased perceptions of control (e.g., the effects of personal decision making and planning for future action; Langer & Rodin, 1976; Schultz, 1980; Lachman & Burack 1993). Another reason the General Mindfulness group might have improved is that the participants were generating evidence of their successful attempts of autobiographical retrieval (i.e., remembering what they had done in the past 30 minutes). In the future it would be interesting to compare this

group against one that was asked to report on another self-relevant detail from the past 30 minutes (e.g., mood) that did not emphasize personal action. Adding this group could help us disambiguate the effects of emphasizing personal action and the successful retrieval of a past event.

Beyond perceptions of control and subjective memory performance, we were also interested in whether our interventions would result in changes in performance on a cognitive battery. We did not find any support for this hypothesis, as scores on memory and go/no-go switch tasks did not significantly change between baseline and follow-up on the Brief Test of Adult Cognition by Telephone for any of the groups. This finding is in line with the literature that describes how beliefs about memory controllability and actual performance often do not travel together (Beaudoin & Desrichard, 2011; Crumley, Stetler, & Horhota, 2014). In addition, it would be important to consider motivations to perform on this memory test, as researchers have demonstrated that older adults demonstrate better memory performance when they are motivated to do well (e.g., Langer et al., 1979). Later research found that older adults' memory strategies change based on their motivations to succeed on a given task (Benjamin, 2007; Castel, 2007; Castel, Balota, & Mccabe, 2009), and that they may even deploy strategy more efficiently than younger adults (Castel, Murayama, Friedman, Mcgillivray, & Link, 2013).

Finally, we found the predicted significant relationships between trait mindfulness and control beliefs about memory. We discovered a positive relationship between trait mindfulness (as measured by the Langer Mindfulness Scale) and the following variables: Present Ability (r = .39), Potential Improvement (r = .29), Effort Utility (r = .23) and Independence (r = .20). We also discovered a negative relationship between trait mindfulness and the following beliefs about memory controllability: Inevitable Decrement (r = .27, p = .001) and Alzheimer's Likelihood (r

= -.21, p = .01). Before this study, none had investigated the relationship between trait mindfulness and beliefs about controllability. The LMS has been previously associated with positive mental health outcomes in healthy populations (Pagnini, Bercovitz, & Phillips, 2018; M. A. Pirson, Langer, & Zilcha, 2018), along with samples of patients with Amyotrophic Lateral Sclerosis and their caregivers (Pagnini et al., 2015, 2016). The fact that the trait mindfulness is related to memory controllability beliefs supports the rationale to identify experimental protocols that increase mindfulness.

Future directions

One area that warrants further exploration is the "dosage" of the ATV mindfulness intervention. Specifically, we would like to systematically test whether more messages per day or more days produce a stronger effect. For example, Zilcha-Mano and Langer (2016) found effects of an ATV intervention that prompted participants to respond to two text messages per day for two weeks. On the other hand, the effects found by Delizonna et al. (2009) were observed after only one week of prompts, though these prompts were delivered every 3 hours. While it is possible that a longer intervention would have produced a stronger effect, it is also possible that participants would have responded just as well to a shorter intervention. A future study could randomly assign participants to interventions of different lengths and "dosages". In addition, we could investigate how long the effects lasted after different dosages.

Related to the "dosage" of the intervention is the question of the spacing of our text messages. We chose to follow the protocol as described by Zilcha-Mano and Langer (2016), which described two text-message prompts per day. A few older adults reported informally during the follow-up phone call that the text-messaging window (describing the last 30 minutes) was not large enough to capture the day's important memory failures (e.g., forgetting their laptop to teach a class). This indicated that older adults may be eager to report and understand more concerning memory failures, rather than the ones that happen to fall in the time frame of the randomly scheduled messages. In the future, we could investigate how understanding the variability in these more serious lapses could affect their memory controllability. For example, we could prompt participants to reflect on the whole day and journal about the reasons that they might have experienced the memory lapses.

Another future direction would be to analyze the responses to the text message prompts, which would allow us to investigate the metacognitive abilities and memory control beliefs. Specifically, we collected information about how those in the High Mindfulness group rated their memory performance and also how they compared the performance to the last time we prompted them. In theory, we can compare the ratings at two adjacent time points to determine if the person was correct in rating whether it was better or worse since the last time we asked them. We may find that some older adults are more "accurate", while some demonstrate a positive or negative bias. It would be interesting to investigate whether an accurate or positive bias would be more associated with reports of memory controllability.

Another important addition to a future study would be a waitlist control group to determine the effects of the passage of time on our dependent variables of interest. While the current study did have the benefit of pre- and post- tests, along with comparison groups, a waitlist control group would strengthen the inferences we could draw, as it would allow us to parse out any testing effects. This would be especially important if the general mindfulness group attended to memory, which is possible given that the first survey had many questions asking them to evaluate their memory performance.

72

One potential limitation of the present study was that some of the older adults were not very concerned about their memory initially, which is not surprising given the consistent finding that older adults demonstrate a positivity bias in both memory and attention tasks (Mather & Carstensen, 2005). In pretests, we had trouble finding older adults who would rate their concern as higher than 4 out of 7 on a Likert scale, so we decided to relax the inclusion criteria to "Would you say you are at all concerned about your memory?" On our prescreening survey, participants rated their level of concern as 2.82 on a scale of 1 (not at all concerned) to 5 (very concerned). Our exploratory analysis indicated that it may actually be those who are less concerned about their memory who improve on cognitive tests. A future investigation could recruit older adults who are concerned, along with those who are not and systematically compare the effects of our mindfulness interventions.

Another potential limitation of the study was that the demographics were skewed to largely represent one group, namely highly educated Caucasian women. Future studies should attempt to recruit a broader and more broader demographic sample, as has been recommended by the field (e.g., Arnett, 2015). As a note of practical advice to researchers relates to using Google's Boomerang platform to schedule text messages. Specifically, this platform does not integrate well with text messages sent through the telecommunications company, Sprint. Sprint customers were required to receive our prompts through their email accounts, with notifications turned on so that they would not miss our messages. This may have changed the experience for these participants, especially those who were not used to having phone notifications turned on.

Overall, we found positive effects of attending to fluctuation in memory ability after only six days on both subjective memory ability and memory controllability beliefs. Further research will help us better isolate why the High Memory Mindfulness and General Mindfulness groups both improved, along with elucidating the role of concern in the effectiveness of the interventions.

2.9 Conclusions

In this study, we investigated the "attention to variability" paradigm in older adults with memory concern, which is situated in the broader discussion of successful aging (Rowe & Kahn, 1987) and the biopsychosocial model of development. Successful aging is a product many factors, including challenging expectations about what it means to get older. From a young age, we learn a narrative about aging, which prominently features decline. For many of us, this story will be interpreted mindlessly and unconditionally such that we will come to view certain arbitrary experiences (e.g., lower back pain at age 50) as definitive markers of an uncontrollable aging process. That is, some of us will choose to create a reality of aging by reinforcing it through our interpretations of personal experiences (e.g., *lower back pain at age 50 must necessarily mean I'm aging and declining rather than being related to the gardening activities I am currently engaging in*).

It also remains unclear what exactly researchers mean when they talk about "aging." The reality of most of our life experiences is that they exist as multiple, separate, and temporary states (e.g., lower back pain at age 50 and forgetting where one has placed their keys at age 50 may be two separate, unrelated, and temporary experiences). Our inclination, however, is to try to connect isolated experiences into a coherent story. The "aging" story seems to have evolved as a way to link together all experiences of loss or decline occurring at a later chronological stage. Moreover, this linking of seemingly-related experiences contributes to a view of "aging" as an ongoing, uncontrollable, and permanent process. There is a lot of variance in the aging process, however. In fact, there is as much variation among "older adults" as there is among "younger

adults," which suggests that there isn't one monolithic aging experience, but rather one for each person that is changing all the time. In the future, we'd like to further investigate the effects of teaching older adults to observe the variability in many experiences typically associated with advanced age, including eyesight, hearing ability, balance, and taste. More generally, we will continue to investigate how challenging the dominant view of aging could improve health and well-being for older adults.

Chapter 3. Perceptions of control and chronic pain experience

3.1 Chronic pain definition and clinical import

According to the International Association for the Study of Pain, pain is defined as the unpleasant sensory and emotional experience resulting from actual or potential tissue damage (International Association for the Study of Pain, 1979). In contrast to nociception, the working definition of "pain" requires a negative emotional appraisal.

Cited as one of the most common reasons that patients seek medical attention (Komaroff, 1990; Schappert, 1992), pain is categorized either as acute or chronic. While acute pain signals the pain experiencer of potential injury, chronic pain persists over a period of at least three months (Treede et al., 2015). In contrast to acute pain, which is often considered a symptom of an underlying disease or illness, chronic pain can be considered a disease in its own right (Goldberg & McGee, 2011).

Chronic pain is estimated to affect about 1 in 5 adults across the globe, with 1 in 10 developing a chronic pain condition each year (Gureje, Korff, Simon, & Gater, 1998). In the United States, 25.3 million adults (~11% of the population) reported having pain every day for the past three months (National Health Institute Survey, 2012).

Most chronic non-cancer pain falls into one of three categories: osteo- and rheumatoid arthritis (40%), pain related to operations and injuries (25%), and spinal issues (20%; International Association for the Study of Pain International Association for the Study of Pain).

The widespread effects of pain. The pain experience affects not only the individual's wellbeing and ability to perform everyday tasks, but also takes a toll on interpersonal relationships and the society, at large. These factors will be reported in the sections below.

Pain effects on everyday functioning, social relationships, and finances. The chronic pain experience affects one's ability to exercise, sleep well, perform household duties, maintain social relationships, and live independently (as reviewed in Dueñas, Ojeda, Salazar, Mico, & Failde, 2016).

Experts estimate that the economic cost of chronic pain is comparable to that of cancer or cardiovascular disease (around 635 billion dollars per year; Gaskin & Richard, 2012). Specifically, chronic pain results in lost productivity at work, absenteeism, and places financial burdens of care on family and friends.

Pain's comorbidity with psychological disorders. Many research studies have noted the comorbidity between psychological disorders and chronic pain (for a review of the relationship between chronic pain and depressive and anxiety disorders see Bair, Robinson, Katon, & Kroenke, 2003) . One large-scale study from the World Health Organization (n=25916) found a relationship between pain and psychological disorders in all 15 sites across 14 countries in Asia, Africa, Europe, and the Americas (Gureje et al., 1998). Specifically, people reporting persistent pain were significantly more likely to meet the *International Statistical Classification of Diseases 10th Edition* (ICD-10) criteria for depressive and anxiety disorders.

While the link between chronic pain and mental disorders is robust, the mechanism is not well understood (Dersh, Polatin, & Gatchel, 2002). Specifically, it is not known whether depression causes pain, pain causes depression, or some third factor causes both. One notable finding is that antidepressants used to treat depressive and anxiety disorders (TCAs and SNRIs) have been found to modulate both neuropathic pain and fibromyalgia (Arnold et al., 2004, 2005).

The created pain experience. While the sensory aspects of pain are often emphasized, pain is, in fact, a unique construct in that it is shaped by both bodily sensations and emotional

appraisal (Treede et al., 2015). In other words, pain is a result of both sensations and one's interpretation of those sensations.

A thorough understanding of the pain experience requires identifying the surrounding biopsychosocial context (Gatchel et al., 2007). For example, researchers have found that electric shocks are rated as more painful when the participant believes that a confederate delivered an electric shock on purpose rather than accidentally (Gray & Wegner, 2008). Substantial evidence suggests the role of psychosocial factors in the development of chronic pain and the pain experiencer's ability to cope with it (for a review see Edwards, Dworkin, Sullivan, Turk, & Wasan, 2016) Some of these psychosocial factors include orientation towards pain (Tsur, Defrin, & Ginzburg, 2017), pain appraisals (Jackson, Wang, & Fan, 2014), pain catastrophizing (Sullivan, 2012), and pain-related fears including fear of pain, fear of exercise, and fear of (re)injury (Crombez, Vlaeyen, Heuts, & Lysens, 1999; Vlaeyen & Linton, 2000).

The pain experience is also affected by the experiencer's health beliefs, including one's health locus of control beliefs and beliefs about the pain experience. For example, Williams and Thorn (1989) found that those who believed that pain would be enduring showed poor compliance to health advice from medical professionals. The next section will focus on perceptions of control in the pain experience.

3.2 Chronic pain and perceptions of control

One important psychological factor that influences the experience of chronic pain is a perception of control over the pain. It is well-established that giving people control over pain (whether it be acute or chronic) reduces pain severity (e.g., Weisenberg, Wolf, Mittwoch, Mikulincer, & Aviram, 1985). Indeed, perceived control has been found to moderate the pain response. A recent meta-analysis from more than 15,000 responses determined that self-efficacy had a significant negative relationship with functional impairment (r=-.49), affective distress (r=-.43), and pain severity (r=-.39) in chronic non-cancer pain (Jackson, Wang, Wang, & Fan, 2014).

Researchers have found that chronic pain patients who demonstrated a chance locus of control (i.e., attributing pain severity to chance) were more likely to experience depression, obsessive-compulsive symptoms and psychological distress; additionally these individuals were more likely to rely on distraction and prayer to relieve symptoms rather than employing active coping strategies (Crisson & Keefe, 1988).

Given the importance of perceiving one is in control of the pain experience, it is essential that researchers understand how to change maladaptive beliefs about the pain experience. Importantly, researchers found that perceptions of control over pain can be manipulated experimentally. For example, chronic pain patients randomly assigned to a short-term in-patient multidisciplinary pain management program saw increases in perceptions of control over pain as compared to those assigned to the control group (Lipchik, Milles, & Covington, 1993).

3.3 The role of attention in the pain experience

The attention to variability paradigm (introduced in Chapter 1) would theoretically benefit the noncancer chronic pain patient by teaching them to challenge the limiting belief that pain sensations are stable across time. Through the process of moving the attributions from the external to the internal (i.e., becoming more agentic over the pain experience), patients could see increased functionality, more positive affect, and less pain severity. On the other hand, it is also possible that asking participants to pay attention to any aspect of their pain sensations could make the pain experience even more severe in some people. Specifically, this type of exercise could result in patients focusing on negative aspects of the experience or becoming hypervigilant when the threat value of the pain is determined high (i.e., in the case of fear of pain and fear of re-injury; Crombez, Van Damme, & Eccleston, 2005)

Pain regulation: Distraction and focus. Two primary mechanisms that researchers have explored in down-regulating the sensory pain experience are distraction and focused attention (as discussed in Veldhuijzen, Kenemans, Bruin, Olivier, & Volkerts, 2006). Distraction requires that participants disengage from the pain experience and reengage in a concurrent sensory experience (e.g., auditory, visual, somatosensory) unrelated to their pain. Researchers have found in healthy young adults that the processing of pain and highly demanding tasks interfere with each other (Veldhuijzen et al., 2006); the authors, in turn, suggest that pain patients may benefit from highly challenging distractions.

At the same, researchers have discovered the practical difficulties that chronic pain patients have shifting attention away from pain (e.g., Wiech, Ploner, & Tracey, 2008). In other words, patients have trouble disengaging from the current pain experience to attend to another somatosensory experience or cognition. The issue of motivation comes into play, as well, as many patients are unmotivated to shift their attention away from pain information. In fact, van Damme and colleagues (2010) concluded in their review paper that focusing on pain-relevant stimuli was more effective in down-regulating pain than non-pain-relevant stimuli. Focused attention to pain sensation has been shown to down-regulate pain. Specifically, researchers have found that asking participants to focus on a particular aspect of the nociceptive experience (e.g., the severity or location of the sensation) reduces pain in healthy people (Nouwen, Cloutier, Kappas, Warbrick, & Sheffield, 2006) and those with chronic pain (Roelofs, Peters, van der Zijden, & Vlaeyen, 2004).

There has also been one investigation of the attention to variability paradigm in the pain context, which is under review for publication. This research focused on healthy volunteers to understand the influence of mindfully attending to a painful stimulus on Conditioned Pain Modulation (CPM; Tsur, Defrin, Haller, Bercovitz, & Langer, unpublished). In this study, undergraduates were randomly assigned to one of three groups: a control group, a pain-specific mindfulness group, or a non-pain-specific mindfulness group. The pain-specific mindfulness group was instructed to pay attention to the variability in a noxious thermal stimulus. We found that those in the control group (who were instructed to sketch) demonstrated a maladaptive response (a reduced modulation) to the noxious stimuli, whereas in the mindfulness groups did not, suggesting the positive effects of an ATV intervention, even in a single session. This study with healthy undergraduates was a first step to investigating the ATV phenomenon in chronic pain patients.

3.4 Research questions and hypotheses for study 2

In Study 2, we investigated whether teaching people with chronic non-cancer pain to notice how their pain severity/unpleasantness changes over time can decrease their pain severity and reports of pain interference in their daily lives, and increase perceptions of control over pain, beliefs about pain as constant. We generated four primary research hypotheses and one secondary hypothesis. Our primary hypotheses included:

1. Those in the High Mindfulness Pain condition will exhibit significant increases in beliefs about how much they can control their pain (i.e.., increases in the MHLC-Form C

"Internal" subscale) after the ATV intervention, while those in the comparison groups will not.

- Those in the High Mindfulness Pain condition will exhibit significant decreases in beliefs about pain being constant (as measured by the PBAPI) after the ATV intervention, while those in the comparison groups will not.
- Those in the High Mindfulness group over one week will exhibit significant decreases in pain interference (as measured by the SF-36) after the ATV intervention, while those in the comparison groups will not.
- 4. Those in the High Mindfulness Pain condition will decease significantly on measures of pain severity after one week (as measured by the BPI), while those in the comparison groups will not
- 5. Those in the High Mindfulness group over one week will exhibit significant decreases in pain catastrophizing (as measured by the PCS) after the ATV intervention, while those in the comparison groups will not.

Our secondary hypothesis was:

1. There will be a negative relationship between the Langer Mindfulness Scale and negative control beliefs, pain interference, and pain severity.

3.5 Methodology for study 2

Participants

Recruitment. Participants were recruited from Tufts Medical Center and a private pain practice in the Greater Boston Area with the help from study collaborators Dr. Rina Bloch, Dr. Sameer Kapasi, Dr. Feng Wang, Dr. Robert Edwards. These physicians posted flyers in their waiting room and handed out physicians' letters of support at the end of their patients' appointments. In addition, Dr. Asmina Lazaridou sent out an email to previous chronic pain patients who had participated in research studies before. Participants were also recruited from two social media sites: Reddit.com and Facebook.com. Specifically, we posted information about the prescreening process on the following subreddit groups, which are chronic pain support groups: r/ChronicPain (23 k subscribers), r/migraine (22 k subscribers), r/Thrits (3.5 k subscribers), r/neuropathy (551 subscribers), r/rheumatoid (4.6 k subscribers). We also delivered a Facebook ad to those living in the United States who were connected to pain support groups.

Inclusion and exclusion criteria.

Inclusion criteria. We recruited people who live in the United States, indicated that they were aged 18+, fluent in English, and owned a smartphone that they would be willing to use for the study. Additionally, they were required to respond "yes" to the question, "Do you experience chronic pain?"

Exclusion criteria. Exclusion criteria were as follows: Individuals under the age of 18; Individuals who did not endorse their pain as chronic; Individuals who were pregnant; Individuals with diagnosed cognitive impairment; Individuals who would not be able to read text messages because of visual impairment; Individuals with a spinal cord injury or active cancer; Amputees; Individuals with unhealed fractures; Diabetics who did not have symptoms under control; Individuals who reported visits to a doctor for a fall in the last 6 months; Individuals with the diagnosis of schizophrenia. These exclusion criteria were suggested by Dr. Rina Bloch, a medical doctor who specializes in chronic pain.

Sample size. Sample size was determined in order to have enough power to detect an effect given the analysis, a one-way ANCOVA. Specifying this test with three groups, statistical power =.80, α = .05, and expecting a medium effect size, our power analysis suggested a final

sample size of 52 per group (Total N= 156; Cohen J., 1992). This effect size is based on Delizonna and colleagues' study using the ATV paradigm (Delizonna et al., 2009), which reported an ETA = .23. Delizonna et al. (2009) also reported a 25% data attrition rate, indicating initially that we should aim to recruit 65 individuals per group (Total N = 195 individuals). Early on, we checked the attrition rate, which was much higher than we anticipated (around 40%). Therefore, we monitored recruitment until we had usable data from 156 individuals ($M_{age} =$ 43.80, SD =15.19; 141 female). In total, we recruited 300 individuals. Participants were excluded from analysis for the following reasons: (1) they did not complete at least 2/3 of Survey 1; (2) they had technical difficulties in receiving our text messages or they were sent on the wrong schedule, (3) they did not respond to at least 2/3 of their scheduled text messages (i.e., 8 out of 12), or (4) they did not respond to at least 2/3 of the second survey. One person who signed the informed consent was later found to be ineligible for participation, so that individual was not included in the final analysis. For a chart of attrition and demographic information, see just below.

Table 2.0. Attrition of pain study participants.				
Enrolled	300			
Did not meet inclusion criteria	1	299		
Quit	13	286		
Did not complete 2/3 of S1	22	264		
Technical difficulties	23	241		
Did not complete 2/3 of text messages	52	189		
Did not complete 2/3 of S2	29	160		
Data collected after cutoff met	4	156		

, **.** .

Age (in years)		
	18-24	22
	25-34	26
	35-44	31
	45-54	33
	55-64	32
	64-74	13
	75+	2
Gender		
	Female	141
	Male	12
	Other	3
Education		
	High School Graduate	13
	Some College, no degree	40
	Associates Degree	18
	Bachelor's Degree	47
	Master's Degree	26
	Doctorate	7
Table 2.1 Partic	cipant characteristics of pain study (Continu	ued)
	Professional Degree (JD, MD)	5
Marital Status		
	Single	58
	Married	64
	Widowed	5
	Separated	2
	Divorced	20
	Civil Union	1
	Other	4

 Table 2.1 Participant characteristics of pain study

Household Income

mousenoiu i		
	Less than \$10,000	8
	\$10,000 to \$19,999	16
	\$20,000 to \$29,999	20
	\$30,000 to \$39,999	11
	\$40,000 to \$49,999	10
	\$50,000 to \$59,999	16
	\$60,000 to \$69,999	10
	\$70,000 to \$79,999	7
	\$80,000 to \$89,999	1
	\$90,000 to \$99,999	6
	\$100,000 to \$149,999	28
	\$150,000 or more	15
	Prefer not to answer	8
Employmen	t Status	
	Working (paid)	69
	Working (self-employed)	12
	Not working- Temporary lay-off	0
	Not working- Looking for Job	8
	Not working- Retired	16
	Not working - Disabled	34
	Not working - Other	8
	Not working- Student	7
	Prefer not to answer	2
Race		
	Hispanic, Latino	6
	Non-Hispanic, Latino	150
	Caucasian/White	146
	African American/Black	4
	More than one race selected	5

P	refer not to answer	1	
Religious			
У	<i>Y</i> es	72	
Ν	lo	80	
P	refer not to answer	4	

Table 2.1 Participant characteristics of pain study (Continued)

Seen Physician in Last Y	Seen Physician in Last Year for Pain?	
	Yes	138
	No	8
	N/A	10
Official Diagnosis Receiv	ved?	
	Yes	120
	No	22
	N/A	5
Official Diagnosis		
	Multiple	48
	Fibromyalgia	9
	Migraine	2
	Chronic Pain	6
	Arthritis	27
	Herniated Discs/Degenerative Disc Disease	e 3
	Ehlers-Danlos/ Hypermobilit Syndrome	y 4
	Complex Regional Pain Syndrome	6
	Other	17
Duration of Pain (in mor	nths)	
	Mean	101.69
	Median	60

St. Deviation	103.17
Range	4-624

Table 2.2. Pain characteristics for pain study participants (Continued).

Usual Level of Pain (past week) ⁶				
	Mean	5.96		
	Median	6		
	St. Deviation	1.73		

Measures

Primary outcome measures.

Visual analog scale (VAS) for sensory magnitude and affect. The visual analog scale asks participants to separately rate the intensity and unpleasantness of their pain experience "right now" by making a mark on a horizontal line with one end indicating no pain and the other end indicating extreme pain. This measurement approach was validated for chronic pain and experimental manipulations involving noxious thermal stimuli (e.g., Price, Mcgrath, Rafii, & Buckingham, 1983; Wewers & Lowe, 1990). We have adapted this to an online format by using a sliding scale. For the intensity rating, participants are asked to place a mark on a vertical line between 0 and 100 with 0 indicating "no pain sensation" to 100 indicating "most intense pain imaginable". For the unpleasantness rating, participants are asked to place a mark on a vertical

⁶ Participants responded to the question during the prescreening survey: On a scale of 0 to 10, with 0 being "no pain at all" and 10 being "the worst pain imaginable", how would you rate your USUAL level of pain in the past week.

line between 0 and 100 with 0 indicating "not at all unpleasant" to 100 indicating "most unpleasant imaginable."

Pain Beliefs and Perceptions Inventory (PBAPI; Williams & Thorn, 1989). This selfreport assessment includes 16 questions, which originally described three subscales including: Time (the belief that pain will be enduring, e.g., "I am continuously in pain"), Mystery (the belief that the causes of pain are mysterious, e.g., "I can't figure out why I am in pain"), and Self-Blame (the belief that the patient is to blame for the pain, e.g., "If I am in pain, it is my own fault"). The authors found that the Time subscale significantly predicted reported pain intensity in chronic pain patients (D. A. Williams & Thorn, 1989). Additionally, the Time and Mystery subscales were significantly correlated with poor self-esteem. Further investigations demonstrated that chronic pain patients who scored high on the Time and Mystery dimensions were less likely to use cognitive coping strategies (e.g., reappraisal; Williams & Keefe, 1991). A more recent investigation by the primary author (Williams, Robinson, & Geisser, 1994) favors a four-factor structure which separated the "Time" dimension into "Pain Constancy" and "Pain Permanence."

Multidimensional Health Locus of Control Scale – Form C (MHLC-Form C;

Wallston, Stein, & Smith, 1994). Based on the Multidimensional Health Locus of Control Scales (Wallston, Wallston, & Devellis, 1978), the MHLC-Form C is an 18-item self-report instrument that was designed to measure control beliefs in a wide variety of health-related conditions. The scale requests that participants indicate how much they agree with each of the statements from 1 (*Strongly Disagree*) to 6 (*Strongly Agree*). The scale was and was originally validated in two samples that included patients with rheumatoid arthritis, chronic pain, cancer, and diabetes. The scale has four subscales which differentiate whom the participant attributes

control of the health condition: internal (e.g., "I am directly responsible for my condition getting better or worse."; six items, $\alpha = .85$ -.87), chance (e.g., "If I am lucky, my condition will get better"; six items, $\alpha = .79$ -.82), doctors (e.g., "If I see my doctor regularly, I am less likely to have problems with my condition"; three items, $\alpha = .71$), and other people (e.g., "Other people play a big role in whether my condition improves, stays the same, or gets worse."; three items α = .70-.71). The authors reported how scores of these subscales changed as a result of a pain management program that was designed, in part, to decrease pain helplessness. In this sample of chronic pain patients, scores on the internality subscale increased, while scores on the three "external" subscales decreased. In terms of construct validity, the internality subscale was negatively correlated with pain levels and pain helplessness. The "Chance" externality subscale was positively correlated with depression (r = .33) and pain helplessness (r = .27), The "Doctors" externality subscale was positively correlated with reported pain (r = .17) and helplessness (r = .17). Finally, the "Other People" externality subscale was positively correlated with reported pain (r = .26) and helplessness (r = .40).

The MOS 36-Item Short-Form Health Survey (SF-36; J. E. Ware, Jr., & Sherbourne, 1992). The SF-36 is self-administered general health survey, which is composed of 36 questions

spanning eight dimensions, including: 1) limitations in physical activities because of health, 2) limitations in social activities because of health or emotional problems, 3) limitations in ability to fulfill typical roles because of physical health problems; 4) limitations in ability to fulfill typical roles because of emotional problems 5) bodily pain; 6) general mental health, 7) vitality, and 8) general health perceptions. The scale has demonstrated good psychometric properties, including reliabilities over .80 (McHorney, Ware, Jr., Lu, & Sherbourne, 1994; McHorney, Ware, Jr., & Raczek, 1993). Instead of asking participants to respond to their health over "past four weeks",

we asked about the "past week" in order to assess the affect of our six-day text message intervention.

Brief Pain Inventory- Short (BPI-sf; Daut, Cleeland, & Flanery, 1983). This 9-item self-report scale measures the severity of pain and the impact of pain on functional health. Specifically, the BPI-sf asks participants to rate the worst, least, average, and current pain, along with perceived interferences in various life domains including: general activity, mood, walking ability, work inside and outside of the home, social relations, sleep, and enjoyment of life. Originally validated in cancer patients (Cleeland CS., 1991), the BPI has also been validated in those with non-cancer pain (Keller et al., 2004). We primarily focused on the following two questions: 1) "Please rate your pain by marking the box beside the number that best describes your pain on average ($0 = no \ pain \ and \ 10 = pain \ as \ bad \ as \ you \ can \ imagine$)" and 2) "Please rate your pain by marking the box beside the number that best describes your pain right now ($0 = no \ pain \ and \ 10 = pain \ as \ bad \ as \ you \ can \ imagine$)"

Pain Catastrophizing Scale (PCS; Sullivan, Bishop, & Pivik, 1995). The Pain Catastrophizing Scale is a 13-item self-report instrument that asks respondents to consider how much they experienced 13 different thoughts/feelings when in pain on a five-point scale with 0 indicating *Never* and 4 indicating *All the time*. The PCS yields a total score, as well as scores for three subscales: "Rumination", "Magnification", and "Helplessness". An example item of the "Rumination" subscale is: "I keep thinking about how much it hurts." An example item of the "Magnification" subscale is: "I become afraid that the pain will get worse." An example item of the "Helplessness subscale is: "There's nothing I can do to reduce the intensity of my pain." The authors reported excellent internal consistency for all the subscales (Total score alpha coefficient = .87; "Rumination" alpha coefficient = .87; "Magnification" alpha coefficient = .66;"Magnification" alpha coefficient = .78; Sullivan et al., 1995).

Secondary Measures

Langer Mindfulness Scale. See Chapter 2 for a complete description of this measure.

Hospital Anxiety and Depression Scale (HADS; Zigmond & Snaith, 1983). The Hospital and Anxiety Depression Scale is comprised of 14 self-report items, prompting participants to indicate the frequency they experience certain situations on a 4-point Likert Scale (0-3) over the preceding week. The HADS has two subscales, one that gauges symptoms of depression (HADS-D, e.g., "Worrying thoughts go through my mind") and one that gauges symptoms of anxiety (HADS-A, e.g., "I get a sort of frightened feeling like 'butterflies' in the stomach"). The authors created this scale as a tool to assess depression and anxiety in people with health conditions. For example, it does not rely on somatic cues that may have more to do with other health conditions rather than depression or anxiety (i.e., fatigue, sleep disturbance). The scale has been demonstrated to have good psychometric properties (Bjelland, Dahl, Tangen, & Neckelmann, 2002).

The Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5; Weathers et al., 2013)

. The PCL-5 is a 20-item self-report measure, which prompts participants to indicate the frequency with which they experience each PTSD symptom on a 5-point Likert scale (0-4) over the past month. This measure revised version of the previous PTSD checklist to reflect updates in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). As with the previous version, symptoms are summed to yield a continuous measure of PTSD symptom severity (Range: 0-80). Blevins, Weathers, Davis, Witte, and Domino (2015) reported excellent psychometric properties for this scale.

Program adherence. Participants were prompted to respond to 12 text messages over the course of six days. We calculated the total number of messages they responded to and divided this number by 12. In the final sample, participants completed 11.04 of scheduled texts out of 12 on average (SD = 1.11).

Procedure

Screening. Initially, we screened participants over the phone (N = 38). We switched to an online prescreening survey, which was delivered using the Qualtrics.com platform. This screening determined eligibility for study participation based on the inclusion and exclusion criteria described above. Before the screening questions, participants agreed to the terms of a prescreening consent form either verbally (if the prescreening process was conducted over the phone) or with a digital signature (if the prescreening was conducted via Qualtrics.com).

Compensation. In exchange for completing the online surveys at T0, T1, T2, and T3, participants were entered into a raffle for one of four \$100 Amazon gift cards. In addition, participants received a \$10 gift card to Amazon.com for completing the final survey.

Random assignment. Participants were randomly assigned to one of three groups using the Microsoft Excel function "=RANDBETWEEN (1,3)." In the end, the distribution of the participants to the groups was as follows: High Mindfulness (N= 53), Low Mindfulness (N = 48), and General Mindfulness (N = 55).

Baseline Measurement. After digitally signing an online consent form, all participants responded to an initial survey. The survey was comprised of the following scales and questions: Demographic questions (including questions about age, gender identity, marital status, religious beliefs, level of education, annual household income, employment status, and race/ethnicity), questions about pain history (including number of months the individual suffered from chronic

pain and the body areas they typically experience pain), the Pain Beliefs and Perceptions Inventory (Williams & Thorn, 1989), the Multidimensional Health Locus of Control Scale (Form C; Wallston et al., 1994), a Visual Analog Scale of pain intensity and unpleasantness, the Brief Pain Inventory, the MOS 36-Item Short-Form Health Survey (SF-36; (Ware et al., 1992), the Langer Mindfulness Scale (LMS-14; Pirson et al., 2012), the Hospital Anxiety and Depression Scale (HADS; Zigmond & Snaith, 1983), the Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5; Blevins, Weathers, Davis, Witte, & Domino, 2015), and the Pain Catastrophizing Scale (PCS, Sullivan et al., 1995).

Experimental conditions. The independent variable was the degree to which we asked people to notice how their pain levels were changing over six days. We included three conditions in this experiment (i.e., "High Mindfulness Pain", "General Mindfulness": and "Low Mindfulness Pain"). Participants in all groups received two text message prompts every day for six days. The experimental conditions differed in the content of the text messages and the schedule they received the text messages. The differences among these conditions are detailed in the paragraphs below and in the schematics following them.

Condition 1 ("High Mindfulness Pain" group). We tailored the instructions for participants in this group in order to maximize the likelihood they would notice the variability in their pain sensations. For six consecutive days, we prompted participants in this condition to reflect on their pain twice per day (once in the morning and once in the late afternoon/early evening). The contact schedule was created separately for each participant using a random number generator with the parameters that the first message should be sent to the participant between 9am and noon and the second sent between noon and 9pm. Each communication asked participants to a) describe the activity they had been doing just before receiving our prompt, b)

rate their current pain levels on both severity and unpleasantness dimensions using a sliding scale version of the VAS with 0 indicating *No pain sensation (Not at all unpleasant)* and 100 indicating *Most intense pain imaginable (Most unpleasant imaginable)*, and c) compare their pain levels to the last time we asked them using a sliding scale separately for intensity and unpleasantness (with -10 indicating *much more intense [or unpleasant] than last time*, 0 indicating *the same as last time* and 10 indicating *much more intense [or unpleasant] than last time*). In addition, this group was instructed each morning at 9am to be attentive to how their pain levels changed throughout the day and to ask oneself what might account for these changes, though we did not require any response to this prompt (see the text below):

Throughout the day, pay attention to the natural fluctuations in pain sensations. Pay attention to the effects these changes have on you and your behaviors and interactions with others throughout the day. Most importantly, notice when a symptom is better/worse and ask oneself why this may be. Notice three ways your symptoms are different from last time you checked."

Condition 2 ("General Mindfulness" group). Just like those in Condition 1, participants in Condition 2 were sent two text messages per day. Instead of receiving the messages on a random schedule, they received messages every day at the same times (i.e., one at 9am and one at 8pm). Those in this group were asked to reflect on the activity they had been engaged in just before receiving the prompt. We designed this group's instructions so that the participants were engaged in a mindfulness activity, without reference to pain. Specifically, in taking a moment to reflect on what they were doing, they were given the chance to become more engaged in the present moment.

Condition 3 ("Low Mindfulness Memory" group). This condition was designed to prompt participants to become aware of their pain levels, but not how symptoms were fluctuating. Participants in this condition received the same daily prompts asking them to report on their pain levels over the last 30 minutes, just as those in Condition 1. Unlike those in Condition 1, those in the Low Mindfulness Pain group were only prompted to report on their memory performance in the morning at 9am. Also unlike those in Condition 1, participants in Condition 3 were not asked to reflect on how their pain was fluctuating. Finally, participants in Condition 3 were also texted in the evening at 8pm, but this text message did not pertain to pain. This evening message prompted them to reflect on the activity they had been engaged in before receiving the text message prompt. The rationale for including this evening text message prompt was to ensure that all groups received two text-message prompts per day. We thought that prompting them about their pain severity twice per day could encourage them to notice fluctuation in their symptoms, which we did not want.

Table 2.3. Differences	s in text message	e scheduling amo	ng the three co	nditions.

	General Mindfulness	Low Mindfulness	High Mindfulness
2 daily text messages prompts?	Yes	Yes	Yes
Schedule of text messages	Fixed- 9am and 9pm	Fixed- 9am and9pm	Random - morning (9am-noon) and evening (noon-9pm)

Table 2.4. Difference in text message content Among three conditions.

	General	Low Mindfulness	High Mindfulness
	Mindfulness	Pain	Pain
Question about activities in last 30	Yes	Yes	Yes

minutes?			
Questions about	No	Yes	Yes
pain in last 30			
minutes?			
Questions about	No	No	Yes
how pain different			
from last timepoint?			
Morning reminder	No	No	Yes
to notice fluctuation			
in pain and consider			
underlying pattern?			

Follow-up assessments. Regardless of condition, participants were contacted on a consistent schedule with follow-up surveys delivered via email. Specifically, we followed up with participants at three time points: on the day after the week's exercises (T1), one month after T1 (T2), and three months after T1 (T3). At T1, participants were asked to reflect on their impressions of the text messages. At the end of T3, participants saw a debriefing form⁷. If participants did not complete the final survey, we emailed them a copy of the final debriefing form.

Strategy for analyses. In order to determine the effects of our interventions on our dependent variables of interest, we first conducted a series of one-way ANCOVAs, inserting the baseline scores of each dependent variable as covariates. Before running these tests, we checked that statistical assumptions of the one-way ANCOVA were met for each of our dependent variables, as follows:

⁷ Note that for this dissertation, only results at T1 are reported.

- First, we checked for the homogeneity of regression means, separately for each dependent measure of interest, by inspecting the Condition x Baseline term of the ANCOVA analyses. We found that each of our measures satisfied this assumption, except Pain Interference (see Appendix B), so we opted for an ANOVA rather than an ANCOVA in that case.
- 2) Second, we checked to make sure the data satisfied the assumption of homogeneity of variances across the experimental conditions by using Levene's Test of Equality of Error Variances. All measures except PBAPI's "Pain as Mystery" and MHLC "Chance" met this assumption (see Appendix B). In the case of "Pain as Mystery" and "Chance" we utilized a reciprocal transformation, and the error variances were equally distributed after this transformation (Figures 2.3 and 2.6).
- 3) Third, we checked for outliers via visual inspection of the boxplots. Outliers were defined as those with standardized residuals with z-scores above or below 3. We utilized a winsorizing procedure on any outliers, which are discussed in the results section below (see Appendix B).

Given our data were not amenable to repeated measures ANOVAs (as we tested participants at only two time points), we decided to further investigate the difference between baseline and follow-up sessions by conducting a series of paired-sample t-tests, separately for each of the three study conditions. Given concerns about multiple comparisons and increased chances of a Type I Error, we applied a Bonferroni correction to these analyses, dividing the significance value (.05) by the number of tests performed (3) for a more conservative significance value of .017. In the cases of the High Mindfulness Pain group, we had a priori predictions about the direction of the effect, so our significance value was set to .1, and adjusted to .033 with the Bonferroni correction. Each of the dependent variables met the statistical assumptions of this test.

3.6 Results for study 2

In this section, we begin with a summary of the most notable findings, and then describe the results in detail for of our four separate research questions, which investigated the effects of the interventions on 1) beliefs about pain, 2) pain interference, 3) pain severity, and 4) pain catastrophizing.

Summary of findings

Paying attention to the variability in the pain experience (the "High Mindfulness Pain" group) resulted in positive changes after the intervention including significant decreases in reports of pain interfering in their daily lives (p = .03). As expected, the ATV intervention also resulted in decreased likelihood of endorsing "Pain as Permanent" (p = .001). In term of locus of control, ATV participants increased their endorsement of a doctor's role in their treatment (p = .006).

Paying attention to pain (the "Low Mindfulness Pain" group) resulted in positive cognitive changes, including decreased magnification of pain (p = .037). The group also evidenced some changes in pain beliefs, including significantly more endorsement of a doctor's role in their treatment (p = .015) and marginally increased endorsement of the role of chance/fate in the pain experience (p = .065).

Finally, we saw significant relationships between trait mindfulness measured by scores on the LMS and mental health variables. We discovered a negative relationship between trait mindfulness the following measures: depressive symptoms (r = -.26, p = .001), PTSD symptoms (-.19, p = .018), pain magnification (r = ..17, p = .03), attitudes of helplessness towards pain (r = ..18, p = .02), and beliefs of pain as mysterious (r = ..19, p = .02). The LMS was also positively correlated with attitudes towards the doctor's role in the treatment process (r = .20, p = .02). See below for the full analysis, parsed by research question.

Demographic variables

First we tested to ensure that the experimental groups did not significantly differ on the demographic variable of age and following pain-related variables: Pain Duration (in months) and "usual level of pain" on a scale of 0-10 (Pain Severity). For the descriptive statistics of these variables across the conditions see Appendix B.

A one-way ANOVA revealed no significant difference in the age of our participants among the three conditions (F(2, 153) = .80, p = .45).. Similarly, a one-way ANOVA revealed no statistically significant difference among the three conditions in their reported pain duration (F(2, 153) = 2.68, p = .07) or "usual" level of pain severity (F(2, 153) = .50, p = .61). See Appendix B for the full analyses.

Research question #1: Pain beliefs

Our first research question concerned the effects of our interventions on pain beliefs. This question had two parts:

- Does paying attention to variability in pain experience positively affect how much control someone feels (s)he has over their pain?
- 2) Does paying attention to variability in pain experience affect how someone views his/her pain (i.e., as permanent, constant, or mysterious)?

In order to answer the first question, we conducted a series of one-way ANCOVAs to examine whether there were statistically significant differences in how much control one feels they have over their pain among the three study conditions after our intervention (T1), adjusting for the effect of baseline scores. After checking that the statistical assumptions were met, we conducted separate ANCOVA analyses for the following subscales of the Multidimensional Health Locus of Control-Form C: Doctors, Chance, and Internal. We were missing a question from the "Other People" subscale, so we were not able to analyze it. In order to answer the second question, we also conducted separate ANCOVA analyses for the following Pain Beliefs and Perceptions Inventory (PBAPI) subscales: Pain as Permanent, Pain as Constant, Pain as Mystery, and Self-Blame.

MHLC-Doctors. A one-way ANOVA revealed that there were no significant differences among the three group means at baseline, F(2, 153) = .14, p = .87 (see Appendix B).

Next we conducted our primary analysis, a one-way ANCOVA, which revealed the following results: As expected, the covariate (scores at baseline) was significantly related to the follow-up scores (F(1,152) = 112.82, p < .001, partial $\eta^2 = .43$; see Appendix B). After adjusting for pre-intervention scores of MHLC-Doctors, there was not a statistically significant difference in post-intervention scores of MHLC-Doctors among the three conditions, F(2, 152) = 1.20, p = .30, partial $\eta^2 = .02$. See the graphical depiction of the Estimated Marginal Means of the three conditions at T1 just below.

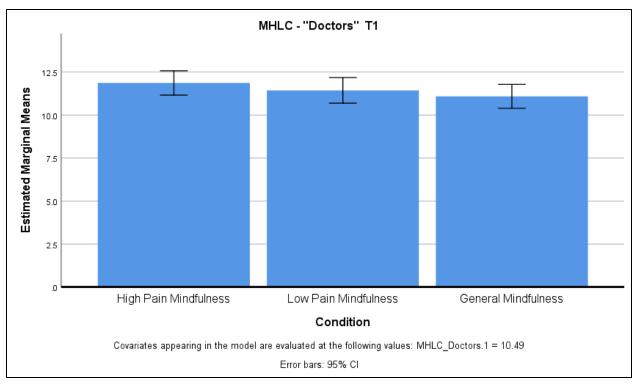
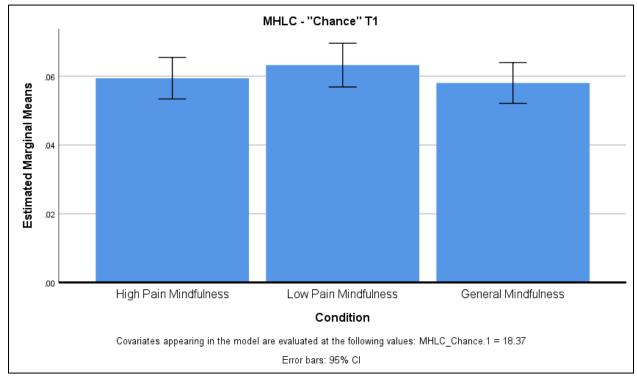



Figure 2.5. Estimated Marginal Means for MHLC- "Doctors" at T1. The error bars indicate a 95% confidence interval.

Paired-sample t-tests revealed the following: Participants' mean "MHLC-Doctors" score significantly increased for both the High Mindfulness Pain group ($M_{Baseline} = 10.28 [SD = 3.77]$, $M_{Final} = 11.74 [SD = 3.52]$, t(52) = -2.86, p = .006) and for Low Mindfulness Pain group, ($M_{Baseline} = 10.65 [SD = 3.81]$, $M_{Final} = 11.52 [SD = 3.38]$), t(47) = -2.52, p = .015. Finally, for those in the General Mindfulness group, the mean "MHLC-Doctors" score did not change significantly from baseline to follow-up, t(54) = -1.56, p = .12.

MHLC-Chance. A one-way ANOVA revealed that there were no significant differences among the three group means on MHLC-Chance scores at baseline, F(2, 153) = .52, p = .59 (see Appendix B).

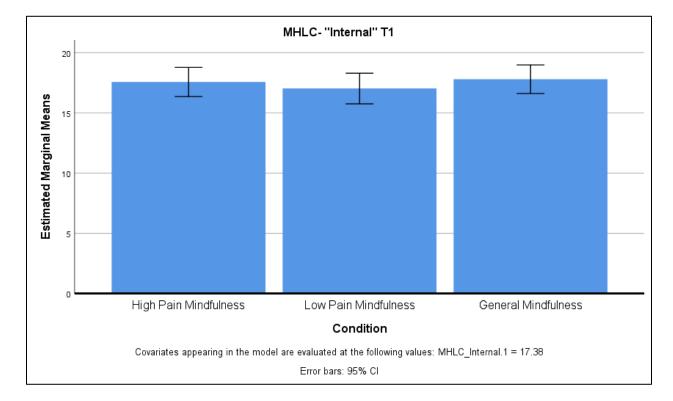

Next we conducted our primary analysis, a one-way ANCOVA, which revealed the following: As expected, the covariate (scores at baseline) was significantly related to the follow-up scores (F(1,152) = 100.43, p < .001, partial $\eta^2 = .40$; see Appendix B). After adjusting for pre-intervention scores of MHLC-Chance, there was not a statistically significant difference in post-intervention scores of MHLC-Chance among the three conditions, F(2, 152) = .73, p = .48, partial $\eta^2 = .01$.

Figure 2.6. Estimated Marginal Means for MHLC- "Chance" at T1. The error bars indicate a 95% confidence interval.

Paired-sample t-tests revealed the following: For those in the Low Mindfulness Pain group, the mean "MHLC-Chance" score marginally increased from baseline (M = 17.58, SD = 7.11) to follow-up (M = 18.65, SD = 7.13), t (47) = -1.88, p = .065. Participants' mean "MHLC- Chance" score did not significantly change from baseline to follow-up for either the High Mindfulness Pain group (t(52) = -1.31, p = .20) nor for the General Mindfulness group, t(54) = -1.52, p = .14.

MHLC-Internal. We did not find a significant effect of any of our interventions on the MHLC-Internal scores. For the full analysis, see Appendix B. See the graphical depiction of estimated marginal means at T1 just below.

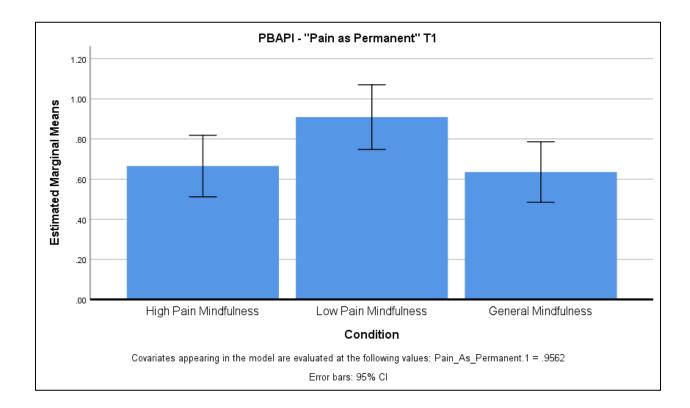


Figure 2.7. Estimated Marginal Means for MHLC- "Internal" at T1. The error bars indicate a 95% confidence interval.

PBAPI- Pain as Permanent. We identified two outliers in this dependent variable and applied a winsorizing transformation procedure (see Appendix B). A one-way ANOVA revealed

that there were no significant differences among the three group means on "Pain as Permanent" scores at baseline, F(2, 153) = .16, p = .85 (see Appendix B).

Next we conducted our primary analysis, a one-way ANCOVA to determine if there were differences in "Pain as Permanent" scores at T1 among the three study conditions, after taking into account the baseline measures. As expected, the covariate ("Pain as Permanent" scores at baseline) was significantly related to the final "Pain as Permanent" scores (F(1,152) = 262.84, p < .001, partial $\eta^2 = .63$; see Appendix B). After adjusting for pre-intervention scores of the measure, we found a statistically significant difference in post-intervention scores of "Pain as Permanent" among the three conditions, F(2, 152) = 3.522, p = .032, partial $\eta^2 = .044$. See the graphical depiction of estimated marginal means at T1 just below.

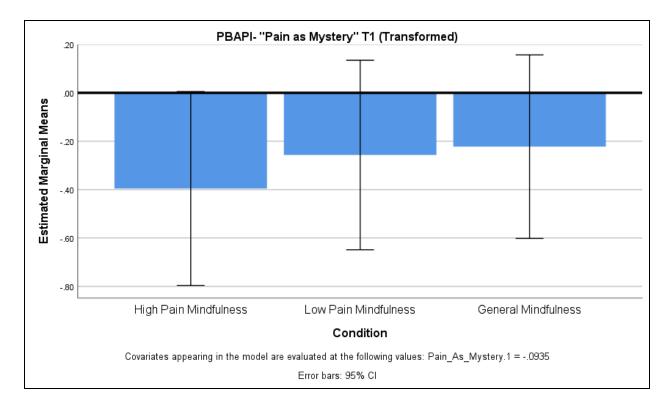


Figure 2.8. Estimated Marginal Means for PBAPI- "Pain as Permanent" at T1. The error bars indicate a 95% confidence interval.

Pairwise comparisons on the Estimated Marginal Means were conducted with a Bonferroni correction (see Figure 13.5). "Pain as Permanent" scores at follow-up were statistically significantly higher in the Low Mindfulness Pain condition (M = .91, SE = .08) than in the General Mindfulness condition (M = .64, SE = .08), a mean difference of .27, 95% CI [-.029-.517], p = .046. There was no significant difference between the High Mindfulness Pain and Low Mindfulness Pain groups (p = .1), nor was there a significant difference between the High Mindfulness Pain group and the General Mindfulness group (p = 1.0).

Paired-sample t-tests revealed the following: Participants' mean score significantly decreased on "Pain as Permanent" for the High Mindfulness Pain group ($M_{Baseline} = .96$ [SD = .86] at T .67 (SD = .95) at T1, t(52) = 3.68, p = .001). Similarly, for those in the General Mindfulness group, the mean score significantly decreased from .91 (SD = .91) at T0 to .60 (SD = .90) at T1, t(55) = 3.50, p = .001. For those in the Low Mindfulness Pain group, the mean score did not change significantly from baseline (M = 1.01, SD = .96) to follow-up (M = .95, SD = .94; t(47) = .78, p = .44).

PBAPI – **Pain as Mystery.** Our analyses did not reveal any effects of the intervention on this variable. For a full description of the analyses, see Appendix B. See the graphical depiction of estimated marginal means at T1 just below.

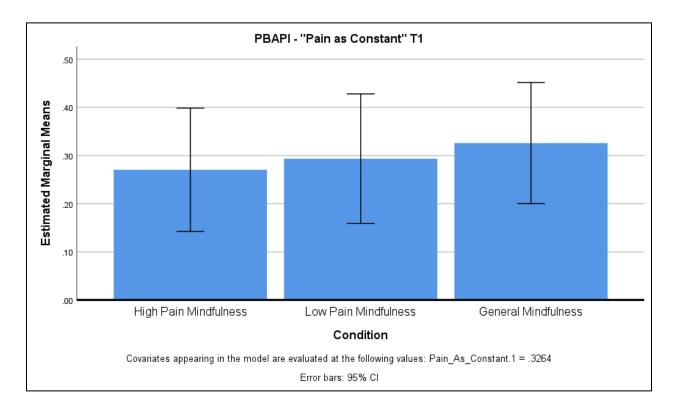


Figure 2.9. Estimated Marginal Means for PBAPI- "Pain as Mystery" at T1. The error bars indicate a 95% confidence interval.

PBAPI- Pain as Constant. A one-way ANOVA revealed that there were no significant differences among the three group means on "Pain as Constant" scores at baseline, F(2, 153) = .06, p = .95 (see Appendix B).

Next we conducted our primary analysis, a one-way ANCOVA to determine if there were differences in "Pain as Constant" scores at T1 among the three experimental study conditions, taking into account the baseline scores. As expected, the covariate ("Pain as Constant" scores at baseline) was significantly related to the follow-up "Pain as Constant" scores (F(1,152) = 150.12, p < .001, partial $\eta^2 = .50$; see Appendix B). After adjusting for pre-intervention scores of the measure, there was not a statistically significant difference in post-intervention scores among

the three conditions, F(2, 152) = .19, p = .83, partial $\eta^2 = .002$ (Appendix B). See just below for a graphical depiction of the estimated marginal means of the three conditions at follow-up.

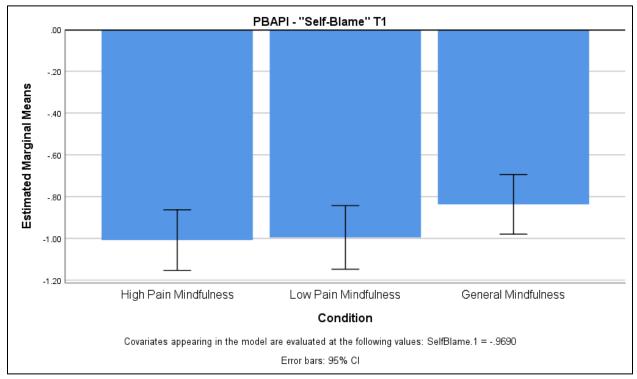


Figure 2.10. Estimated Marginal Means for PBAPI- "Pain as Contant" at T1. The error bars indicate a 95% confidence interval.

Paired-sample t-test revealed the following: Participants' mean score did not change between baseline and follow for any of the groups (High Mindfulness Pain: t(52) = .78, p = .44; Low Mindfulness Pain: t(47) = .44, p = .66; General Mindfulness: t(54) = .08, p = .94).

PBAPI- Self-Blame. A one-way ANOVA revealed that there were no significant differences among the three group means on "Self-Blame" scores at baseline, F(2, 153) = 1,12, p = .33 (see Appendix B).

Next we conducted our primary analysis, a one-way ANCOVA to determine if there were differences in final "Self-Blame" scores among the three study conditions, taking into account the baseline scores. As expected, the covariate ("Self-Blame" scores at baseline) was significantly related to the follow-up "Self-Blame" scores, (F(1,152) = 196.27, p < .001, partial $\eta^2 = .56$; see Appendix B). After adjusting for pre-intervention scores of the measure, there was not a statistically significant difference in post-intervention scores among the three conditions, F(2, 152) = 1.69, p = .19, partial $\eta^2 = .022$ (Appendix B). See just below for a graphical depiction of the estimated marginal means of the three conditions at follow-up.

Figure 2.11. Estimated Marginal Means for PBAPI- "Pain as Constant" at T1. The error bars indicate a 95% confidence interval.

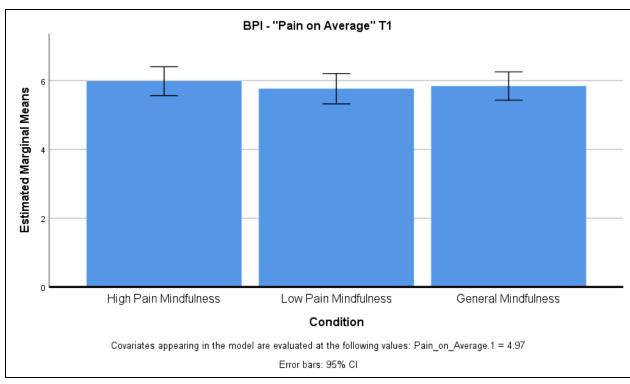
Paired-sample t-tests revealed the following: For those in the General Mindfulness group, the mean score increased baseline (M = -1.1, SD = .74) to follow-up (M = -.93, SD = .87;

t(54)= -2.24, p= .03). Participants' mean scores did not significantly change from baseline to follow-up for either the High Mindfulness Pain group (t(52) = .86, p = .39) or the Low Mindfulness Pain group (t(47) = .41, p =.68).

Research question #2: Pain interference

Our second research question of interest was: Does paying attention to variability in pain result in improvements in how much pain affects one's day-to-day life (i.e., reduced pain interference as measured by the MOS SF-36)?

First, we checked that we had met the statistical assumptions of the ANCOVA (see above for the preliminary analyses). In fact, the data for this measure violated an important statistical assumption of the ANCOVA: the homogeneity of regression slopes (Appendix B). As a result, we conducted a one-way ANOVA on the final pain interference scores, without accounting for the baseline scores. A one-way ANOVA revealed that there were no significant differences among the three group means on pain interference scores at baseline, F(2, 153) = 1.45, p = .24(Appendix B). We found no significant effect of experimental condition on the final scores, F(2, 153) = .28, p = .76 (Appendix B). See just below for a graphical depiction of the estimated marginal means of the three conditions at follow-up.


Paired-sample t-tests revealed the following: For the High Mindfulness Pain group, participants' mean score significantly decreased from 7.03 (SD = 2.11) at baseline to 6.46 (SD = 2.52) at follow-up, t(52) = 2.23, p = .03. Participants' mean score did not change between baseline and follow-up for the Low Mindfulness Pain group (t(47) = .19, p = .85) or for the General Mindfulness Group (t(54) = .74, p = .46).

Research question #3: Pain severity

Our third research question of interest was: Does paying attention to variability in pain experience positively affect pain severity? We answered this question by investigating two questions on the Brief Pain Inventory. The first question asked participants to rate their pain on average: "Please rate your pain by marking the box beside the number that best describes your pain on average ($0 = no \ pain$ and $10 = pain \ as \ bad \ as \ you \ can \ imagine$)." The second question asked participants to rate their pain at that moment: "Please rate your pain by marking the box beside the number that tells how much pain you have right now ($0 = no \ pain \ and \ 10 = pain \ as \ bad \ as \ you \ can \ imagine$)."

BPI – "**Pain on Average**". A one-way ANOVA revealed that there were no significant differences among the three group means on "Pain on Average" scores at baseline, F(2, 153) = .26, p = .77 (see Appendix B).

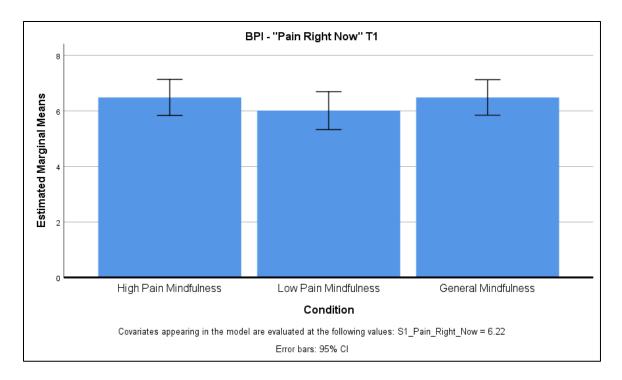
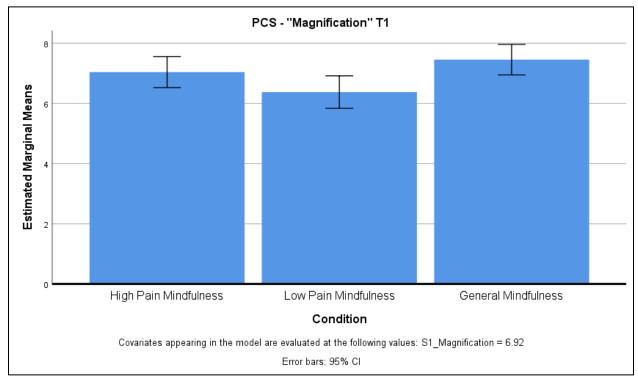

Next we conducted our primary analysis, a one-way ANCOVA to determine if there were differences in "Pain on Average" scores at T1 among the three study conditions, accounting for baseline measures. As expected, the covariate ("Pain on Average" scores at baseline) was significantly related to the follow-up "Pain on Average" scores (F(1,152) = 49.26, p < .001, partial $\eta^2 = .25$; see Appendix B). After adjusting for pre-intervention scores of the measure, there was not a statistically significant difference in post-intervention scores among the three conditions, F(2, 152) = .263, p = .77, partial $\eta^2 = .003$ (Appendix B). See just below for a graphical depiction of the estimated marginal means of the three conditions at follow-up.

Figure 2.11. Estimated Marginal Means for BPI- "Pain on Average" at T1. The error bars indicate a 95% confidence interval.

Paired t-tests revealed that all three groups increased significantly on reported pain severity (High Mindfulness Pain group: $M_{Baseline} = 4.89 [SD = 1.80]$, $M_{Final} = 5.94 [SD = 1.84]$, t(52) = -4.30, p < .001; Low Mindfulness Pain group: $M_{Baseline} = 4.90 [SD = 1.89]$, $M_{Final} = 5.73$ [SD = 1.62], t(47) = -3.67, p = .001; General Mindfulness group, $M_{Baseline} = 5.13 [SD = 2.17]$, $M_{Final} = 5.91$, [SD = 1.82]; t(54) = -2.65, p = .011).

BPI - "Pain Right Now". Our analyses did not reveal any effects of the intervention on this variable. For a full description of the analyses, see Appendix B. See just below for a graphical depiction of the estimated marginal means of the three conditions at follow-up.

Figure 2.12. Estimated Marginal Means for BPI- "Pain Right Now" at T1. The error bars indicate a 95% confidence interval.


Research question #4: Pain catastrophizing

Our final research question of interest was: Does paying attention to variability in pain experience positively affect the extent to which someone reports pain catastrophizing?

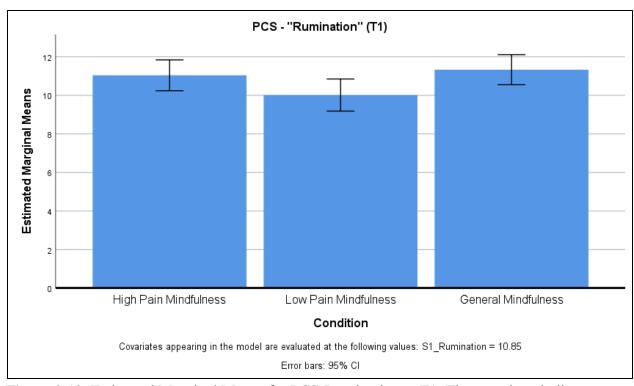
We conducted one-way ANCOVAs to examine whether there were significant differences in Pain Catastrophizing Scale scores among the three study conditions at follow-up (T1). Specifically, we did separate analyses for each of the subscales of the Pain Catastrophizing Scale including: Rumination, Magnification, and Helplessness.

PCS-Magnification. A one-way ANOVA revealed that there were no significant differences among the three group means on "Magnification" scores at baseline, F(2, 153) = 1.27, p = .28 (see Appendix B).

Next we conducted our primary analysis, a one-way ANCOVA to determine if there were differences in "Magnification" scores at T1 among the three study conditions, accounting for baseline scores. The covariate (scores at baseline) was significantly related to the follow-up scores (F(1,152) = 189.08, p < .001, partial $\eta^2 = .55$; see Appendix B). After adjusting for pre-intervention scores of the measure, there was a statistically significant difference in post-intervention scores among the three conditions, F(2, 152) = 4.14, p = .018, partial $\eta^2 = .052$ (Appendix B). See just below for a graphical depiction of the estimated marginal means of the three conditions at follow-up.

Figure 2.13. Estimated Marginal Means for PCS-Magnification at T1. The error bars indicate a 95% confidence interval.

Pairwise comparisons on the Estimates Marginal Means were conducted with a


Bonferroni correction (Appendix B). "Magnification" scores at follow-up were statistically

significantly higher in the General Mindfulness condition (M = 7.45, SE = .26) than in the Low Mindfulness Pain condition (M = 6.38, SE = .27), a mean difference of 1.07, 95% CI [.166, 1.984], p = .046. There was no significant difference between the High Mindfulness Pain and Low Mindfulness Pain groups (p = .24), nor was there a significant difference between the High Mindfulness Pain group or the General Mindfulness group (p = .37).

Paired t-tests revealed the following: For the General Mindfulness condition, participants' mean score significantly increased from 6.42 (SD = 2.83) at T0 to 7.09 (SD = 2.80) at T1, t(54) = -2.72, p = .009. For those in the Low Mindfulness Pain condition, the mean score decreased from baseline (M = 7.13, SD = 3.28) to follow-up (M = 6.52, SD = 2.64; t(47) = 2.14, p = .037). Finally, for those in the High Mindfulness Pain condition, the mean score did not change significantly from baseline to follow-up (t(52) = -.06, p = .95).

PCS-Rumination. A one-way ANOVA revealed that there were no significant differences among the three group means on "Rumination" scores at baseline, F(2, 153) = 2.58, p = .08 (see Appendix B).

Next we conducted our primary analysis, a one-way ANCOVA to determine if there were differences in "Rumination" scores at T1 among the three study conditions, after taking the baseline scores into account. As expected, the covariate ("Rumination" scores at baseline) was significantly related to the follow-up "Rumination" scores (F(1,152) = 167.02, p < .001, partial $\eta^2 = .52$; see Appendix B). After adjusting for pre-intervention scores of the measure, there was not a statistically significant difference in post-intervention scores among the three conditions, F(2, 152) = 2.81, p = .06, partial $\eta^2 = .036$ (Appendix B). See just below for a graphical depiction of the estimated marginal means of the three conditions at follow-up.

Figure 2.13. Estimated Marginal Means for PCS-Rumination at T1. The error bars indicate a 95% confidence interval.

Paired-sample t-tests revealed that none of the groups significantly changed from baseline to follow-up (High Mindfulness Pain group: t(52) = .22, p = .83; Low Mindfulness Pain group: t(47) = 1.71, p = .09; General Mindfulness group: t(54) = -1.65, p = .10).

PCS-Helplessness. Our analyses did not reveal any effects of the intervention on this variable. For a full description of the analyses, see Appendix B.

Research question #5: Trait Mindfulness

Finally, we probed the relationship between trait mindfulness (as measured by the Langer Mindfulness Scale) and pain-related outcomes, by calculating Pearson correlation coefficients. We saw significant relationships between trait mindfulness measured by scores on the LMS and mental health variables. We discovered a significant negative relationship between trait mindfulness the following measures: depressive symptoms (r = .26, p = .001) and PTSD symptoms (r = ..19, p = .018). In the same vein, we observed a marginally significant negative relationship between the LMS and Anxiety symptoms (r = ..16, p = .066). We also observed a significant negative relationship between the LMS and the following pain catastrophizing measures and pain beliefs: pain magnification (r = ..17, p = .03), attitudes of helplessness towards pain (r = ..18, p = .02), and beliefs of pain as mysterious (r = ..19, p = .02). There was also a marginally significant negative relationship between the LMS and pain rumination (r = ..14, p = .07). The LMS was also positively correlated with attitudes towards the doctor's role in the treatment process (r = .20, p = .02). Finally, we did not observe a relationship between the LMS and the following measures at baseline: ratings of pain on average (r = .02, p = .78), ratings of pain "right now" (r = ..09, p = .26), pain interference scores (r = ..12, p = ..13, beliefs about the role of chance/fate in the pain experience (r = ..10, p = .22), beliefs about pain as constant (r = .07, p = .93), and beliefs about pain as permanent (r = .031, p = .70).

As an exploratory analysis, we conducted a series of Pearson's Chi-square tests to determine if whether or not a person improved depended on his/her level of trait mindfulness. To explore this, we tested whether those scoring in the top 25% of the LMS had a higher likelihood of improving on our outcomes of interest than those scoring in the bottom 25%. We found that the likelihood of improving on the "helplessness" measure was higher in top LMS performers, $\chi^2(1, N = 66) = 3.48$, p = 0.06 (see Appendix B). The rest of the tests did not reveal a significant effect of LMS quartile on whether an individual improved (see Appendix B). We also conducted an exploratory analysis investigating the effect of decreasing one's belief that pain is constant on improvement in other areas. We found an effect of changing one's belief about one's personal

control and one's reports of "pain right now". Specifically, we found that the participants who became less likely to endorse their pain is constant increased on perceived personal control over the pain ($\chi^{2}(1, N = 46) = 4.81$, p = 0.028) and decreased on ratings of pain right now ($\chi^{2}(1, N = 40) = 3.06$, p = 0.084)⁸. See Appendix B.

3.7 Discussion

With one in five adults worldwide experiencing the effects of chronic pain, it is essential to understand how to mitigate its effects (Gureje, Korff, Simon, & Gater, 1998). Given that pain is defined by the psychological interpretation of noxious stimuli, we determined that intervening on this process of interpretation could be particularly useful. Specifically, we intervened on the attentional process, as it is yet unclear under what circumstances it is more adaptive to attend to the pain or distract oneself from it.

In the present study, we tested an "attention to variability" (ATV) paradigm with chronic pain patients (N=156). Specifically, we investigated how prompting participants to pay attention to the fluctuation in their pain sensations would affect their pain experience including: beliefs about pain, subjective ratings of the pain, how much they felt that the pain affected their daily lives, and reports of pain catastrophizing. In order to test the ATV effects, we created a text-message-based intervention, which consisted of three text messages every day for six days. We included two comparison groups that also received six days of text-message prompts: 1) a group that was asked to pay attention to their pain, but not the fluctuations ("Low Mindfulness Pain"), and 2) a group that was asked to report on the activity they were engaged in over the past 30 minutes ("General Mindfulness").

⁸ This finding was considered significant with our one-tailed predictions.

Summary of findings. Paying attention to the variability in the pain experience (the "High Mindfulness Pain" group) resulted in positive changes after the intervention including significant decreases in reports of pain interfering in their daily lives (p = .03). As expected, the ATV intervention also resulted in decreased likelihood of endorsing "Pain as Permanent" (p = .001). In terms of locus of control, ATV participants increased their appreciation for communicating with one's doctor (p = .006).

Paying attention to pain, but not the fluctuations (the "Low Mindfulness Pain" group) resulted in adaptive cognitive changes, including decreased magnification of pain (p = .037). The group also evidenced some changes in pain beliefs, including significantly more endorsement of a doctor's role in their treatment (p = .015) and marginally increased endorsement of the role of chance/fate in the pain experience (p = .065). Finally, they were also significantly more likely than those in the General Mindfulness group to endorse pain as "permanent" (p = .065). These findings suggest that emphasizing the predictability of pain can have positive effects.

The General Mindfulness group evidenced maladaptive changes after the intervention including: significant increases in pain magnification (p = .009) and a higher likelihood towards self-blame after the intervention than before (p=.03). In terms of pain beliefs, they decreased significantly on the "Pain as Permanent" measure (p=.001), and were significantly lower on this measure than the "Low Mindfulness Pain" group at follow-up, controlling for baseline scores (p=.046). One reason we may have seen an increase in self-blame in this group is that the textmessages which prompted people report their activities over the past 30 minutes emphasizes active behavior (as discussed in Chapter 2). While the other two groups were also asked to report on their activities, it was not the sole focus of the text message prompts. It is also difficult to interpret whether "self-blame" should be interpreted as a negative or positive, as endorsement of these statements could be evidence of more internal control.

Finally, we saw significant relationships between trait mindfulness measured by scores on the LMS and mental health variables in the predicted directions. We found a negative relationship between trait mindfulness the following measures: depressive symptoms (r = -.26, p= .001), PTSD symptoms (-.19, p = .018), pain magnification (r = -.17, p = .03), attitudes of helplessness towards pain (r = -.18, p = .02), and beliefs of pain as mysterious (r = -.19, p = .02). The LMS was also positively correlated with attitudes towards the doctor's role in the treatment process (r = .20, p = .02).

Perceived control over pain. Regarding pain-specific control beliefs, we had predicted that those in the High Mindfulness Pain condition would demonstrate increased control over their pain after six days. Instead, we found that none of the groups saw increased personal control over their pain (as measured by the "Internal" subscale on the MHLC-Form C) after the intervention. We did, however, observe changes in two other health "locus of control" variables: Doctor and Fate/Chance.

Instead of movement on the "Internal" subscale, we found that those in the High Mindfulness Pain and Low Mindfulness Pain groups became more likely to attribute pain outcomes to their doctors. Those in Low and High Mindfulness Groups both became significantly more likely to endorse beliefs about the importance of the doctor-patient relationship. This "Doctor" subscale of the MHLC-Form C is composed of the following items: a)" If I see my doctor regularly, I am less likely to have problems with my condition" b) "Whenever my condition worsens, I should consult a trained professional" and c) "Following doctor's orders to the letter is the best way to keep my condition from getting any worse." These items do not place all responsibility in the hands of a doctor, but also place the onus on the individual to communicate needs with a doctor and follow through with their recommendations. Future work could investigate how chronic pain patients communicate with their care team about their pain after an ATV intervention. For example, would they be more likely to follow a doctor's care instructions? Given the difficulty reported in getting patients to follow care plans as prescribed (e.g., DiMatteo, 1994), this would be an important question to follow up on. One hypothesis is that an ATV would be especially useful in improving a doctor-patient relationship because the patients have been able to notice patterns in the pain experience and work together with the doctor to capitalize on that knowledge. For example, if a person recognizes that pain is more severe in the morning, the doctor may help the patient identify factors that contribute to the pain.

In addition to increasingly endorsing the importance of doctors, the Low Mindfulness Pain group also became marginally more likely to endorse chance/fate (e.g., "Luck plays a big part in determining how my condition improves"), indicating an attitude shift away from internal locus of control. In fact, the only group that evidenced more personal control over the pain experience was the General Mindfulness group, who demonstrated more Self-blame about the pain than they did at baseline. At the same time, the General Mindfulness group was also the only one to show increased maladaptive cognitive patterns (i.e., magnification of pain). In the case of the pain experience, it may be the case that less focus of the self as agentic may ultimately lead to better results.

Attitudes towards pain. As expected, the "High Mindfulness Pain" group was significantly less likely to endorse pain as permanent at the outset. This was also the case for the General Mindfulness group, but in this group the change was also accompanied by maladaptive

changes including increased self-blame and pain magnification. Perhaps participants in the High Mindfulness group were more hopeful that they could capitalize on the fact that pain is not as permanent as they thought (i.e., through the doctor-patient relationship), while those in the General Mindfulness group were blaming the self for not tapping into the fact that pain is in flux. The current study does not allow us to understand why the "Pain as Permanent" might travel with certain outcomes, so this will be the task of future investigations.

We were surprised that there was no change in any of the groups on the measure of "Pain as Constant" on the PBAPI. This scale includes measures like: "I am continuously in pain" and "It seems like I wake up with pain and I go to sleep with pain." We expected that those in the High Mindfulness Group would demonstrate significantly decreased scores on this measure after our ATV intervention. Similarly, we were surprised that participants in the High Mindfulness group did not decrease on endorsements of "Pain as Mysterious." A future investigation could help us determine why we saw movement on the Pain as Permanent, but not on the of these other two subscales.

Pain Severity. While the three groups varied in their coping, pain catastrophizing, and pain beliefs, they also increased significantly in the amount of pain "on average" that they experienced. This finding perhaps makes positive changes in the High Mindfulness Pain group and General Mindfulness group more interesting, considering that they are accompanied by increased changes. Future investigations should investigate the factors that led to increased pain severity in all three groups.

Future directions

As was the case in the memory study in Chapter 2, we also do not know if the intervention would have been more or less effective in a different "dosage." One next step would

be to systematically vary the amount of time the intervention is delivered (both throughout the day and overall). One pervasive qualitative comment (entered into a text box in the follow-up session) was that the exercises seemed repetitive, especially the daily morning message that reminded people in the High Pain Mindfulness group to notice the fluctuations in their pain throughout the day. A future intervention could vary the morning text a bit from day to day so that it was not perceived as too monotonous.

Another future direction would be to hone in on the factors that are important to creating the impression that symptoms vary throughout the day. Our study included three components for the "High Mindfulness" group that differentiated it from the "Low Mindfulness" group: a randomized schedule, prompts for comparison, and morning reminders to pay attention to the variability and consider the underlying patterns. For example, is it important that we explicitly prompt participants to compare pain levels to the last time we asked them? This next step may be especially important given that we did not see movement on the "Pain as Constant" belief.

While we remind participants each morning to pay attention to the fluctuation and find patterns in how the pain was changing, we only supported the first instruction with our text message prompts. Future investigations could systematically investigate whether adding prompts asking participants to reflect on why the pain is changing would amplify the effects we saw in this study.

One potential limitation of the study was the heterogeneity of chronic pain conditions that our participants reported. Since there were so many different diagnoses reported, we could not statistically control for the diagnosis. As a result, we were unable to tell if some diagnoses were more amenable than others to our intervention. For example, it would make sense that if someone is given a diagnosis that is poorly understood then they may benefit from an intervention that increases personal control over that disease. For example, chronic lower back pain is often the result of sitting for extended periods of time, while the etiology of Fibromyalgia is largely unknown (Wolfe et al., 1990).

Another limitation of this study was that our population was limited to those who were Caucasian women who were comfortable with technology (as most were recruited via social media websites) and owned a smartphone. In the future, it would be important to test our hypotheses with a broader demographic, as has been advocated in the field of psychology (e.g., (Arnett, 2015)

The research study described in this chapter is the first investigation of an ATV intervention with a clinical population. In this study, we found support for the hypothesis that our attention to variability intervention positively affects chronic pain patients, most notably decreased pain interference.

With the opioid crisis in the United States, it is more important than ever to identify treatment plans that supplement prescription medications, as roughly 21-29% of chronic pain patients who are prescribed opioids abuse them (Vowles et al., 2015). In the future, researchers should investigate how a refined ATV paradigm could be incorporated into a larger pain management strategy. Aside from applications of the ATV intervention, researchers can use the paradigm to better understand how attentional mechanisms affect the experience of pain. Specifically, we will continue to seek answers to the question, can attending to pain symptoms actually help patients and under what circumstances?

References

- Abramson, L. Y., Seligman, M. E. P., Teasdale, J. D., Garber, J., Miller, S., & Irwin, F. (1978). Learned Helplessness in Humans : Critique and Reformulation. *Journal of Abnormal Psychology*, 87(1), 49–74.
- Adler, A. (1927). Understanding human nature. Oxford, England: Greenberg.
- Agrigoroaei, S., Polito, M., Lee, A., Kranz-Graham, E., Seeman, T., & Lachman, M. E. (2013). Cortisol response to challenge involving low controllability: The role of control beliefs and age. *Biological Psychology*, 93(1), 138–142. https://doi.org/10.1016/j.biopsycho.2013.01.003
- Alloy, L. B., Abramson, L. Y., & Viscusi, D. (1981). Induced mood and the illusion of control. *Journal of Personality and Social Psychology*, 41(6), 1129–1140. https://doi.org/10.1037/0022-3514.41.6.1129
- Arnett, J. J. (2015). The Neglected 95% Why American Psychology Needs to Become Less American, (August). https://doi.org/10.1037/0003-066X.63.7.602
- Arnold, L. M., Lu, Y., Crofford, L. J., Wohlreich, M., Detke, M. J., Iyengar, S., ... Group, T. (2004). A Double-Blind, Multicenter Trial Comparing Duloxetine With Placebo in the Treatment of Fibromyalgia Patients With or Without Major Depressive Disorder. *Arthritis* and Rheumatism, 50(9), 2974–2984. https://doi.org/10.1002/art.20485
- Arnold, L. M., Rosen, A., Lu, Y., Souza, D. N. D., Goldstein, D. J., Iyengar, S., & Wernicke, J. F. (2005). A randomized , double-blind , placebo-controlled trial of duloxetine in the treatment of women with fibromyalgia with or without major depressive disorder. *Pain*, 119, 5–15. https://doi.org/10.1016/j.pain.2005.06.031
- Averill, J. R. (1973). Personal control over aversive stimuli and its relationship to stress. *Psychological Bulletin*. https://doi.org/10.1037/h0034845
- Bair, M. J., Robinson, R. L., Katon, W., & Kroenke, K. (2003). Depression and Pain Comorbidity. Archives of Internal Medicine, 163, 2433–2445.
- Bandura, A. (1977). Self-efficacy : Toward a Unifying Theory of Behavioral Change. *Psychological Review*, 84(2), 191–215.
- Bandura, A. (1982). Self-efficacy mechanism in human agency. *American Psychologist*. https://doi.org/10.1037/0003-066X.37.2.122
- Bandura, A. (2004). Health promotion by social cognitive means. *Health Education & Behavior : The Official Publication of the Society for Public Health Education*, 31(2), 143–

164. https://doi.org/10.1177/1090198104263660

- Barak, B., & Schiffman, L. G. (1981). Cognitive age: A nonchronological age variable. *Advances in Consumer Research*, 8(1), 602–606.
- Beaudoin, M., & Desrichard, O. (2011). Are Memory Self-Efficacy and Memory Performance Related? A Meta-Analysis. *Psychological Bulletin*, 137(2), 211–241. https://doi.org/10.1037/a0022106
- Benjamin, A. S. (2007). Memory is more than just remembering: Strategic control of encoding, accessing memory, and making decisions. *Psychology of Learning and Motivation*, 48, 175–223.
- Bercovitz, K., & Pagnini, F. (2016). Mindfulness as an opportunity to narrow the grey digital divide. In *Integrating Technology in Positive Psychology Practice* (pp. 214–228). IGI Global.
- Berry, J. M., & West, R. L. (1993). Cognitive self-efficacy in relation to personal mastery and goal setting across the life span. *International Journal of Behavioral Development*, *16*(2), 351–379.
- Bjelland, I., Dahl, A. A., Tangen, T., & Neckelmann, D. (2002). The validity of the Hospital Anxiety and Depression Scale : An updated literature review. *Journal of Psychosomatic Research*, *52*, 69–77.
- Blatt-Eisengart, I., & Lachman, M. E. (2004). Attributions for memory performance in adulthood: Age differences and mediation effects. *Aging, Neuropsychology, and Cognition*, 11(1), 68–79.
- Blevins, C. A., Weathers, F. W., Davis, M. T., Witte, T. K., & Domino, J. L. (2015). The posttraumatic stress disorder checklist for DSM-5 (PCL-5): Development and initial psychometric evaluation. *Journal of Traumatic Stress*, 28(6), 489–498.
- Bollini, A. M., Walker, E. F., Hamann, S., & Kestler, L. (2004). The influence of perceived control and locus of control on the cortisol and subjective responses to stress. *Biological Psychology*, 67(3), 245–260. https://doi.org/10.1016/j.biopsycho.2003.11.002
- Brown, J. D., & Siegel, J. M. (1988). Attributions for negative life events and depression: the role of perceived control. *Journal of Personality and Social Psychology*, *54*(2), 316–322.
- Caplan, L. J., & Schooler, C. (2003). The roles of fatalism, self-confidence, and intellectual resources in the disablement process in older adults. *Psychology and Aging*, *18*(3), 551–561. https://doi.org/10.1037/0882-7974.18.3.551

Carlsson, K., Andersson, J., Petrovic, P., Petersson, K., Öhman, A., & Ingvar, M. (2006).

Predictability modulates the affective and sensory-discriminative neural processing of pain. *Neuroimage*, *32*, 1804–1814.

- Carmon, Z., & Ariely, D. (2000). Focusing on the Forgone : How Value Can Appear So Different to Buyers and Sellers. *Journal of Consumer Research*, *27*, 360–370. https://doi.org/10.1086/317590
- Carr, A. (1974). Compulsive neurosis: a review of the literature. *Psychological Bulletin*, *81*, 311–318.
- Castel, A. D. (2007). The adaptive and strategic use of memory by older adults: Evaluative processing and value-directed remembering. *Psychology of Learning and Motivation*, 48, 225–270.
- Castel, A. D., Balota, D. A., & Mccabe, D. P. (2009). Aging, Memory Efficiency, and the Strategic Control of Attention at Encoding: Impairments of Value-Directed Remembering in Alzheimer's Disease. *Neuropsychology*, 23(3), 297–306. https://doi.org/10.1037/a0014888.Aging
- Castel, A. D., Murayama, K., Friedman, M. C., Mcgillivray, S., & Link, I. (2013). Selecting Valuable Information to Remember : Age-Related Differences and Similarities in Self-Regulated Learning, 28(1), 232–242. https://doi.org/10.1037/a0030678
- Chanowitz, B., & Langer, E. J. (1981). Premature cognitive commitment. *Journal of Personality* and Social Psychology, 41(6), 1051–1063. https://doi.org/10.1037/0022-3514.41.6.1051
- Cheng, C., Cheung, S., Chio, J. H., & Chan, M. S. (2013). Cultural Meaning of Perceived Control: A Meta-Analysis of Locus of Control and Psychological Symptoms Across 18 Cultural Regions. *Psychological Bulletin*, 139(1), 152–188. https://doi.org/10.1037/a0028596
- Cho, J., Martin, P., & Poon, L. W. (2014). Successful Aging and Subjective Well-Being Among Oldest-Old Adults. *The Gerontologist*, 55(1), 132–143. https://doi.org/10.1093/geront/gnu074
- Cleeland CS. (1991). Pain assessment in cancer. In Osoba D (Ed.), *Effect of Cancer on Quality* of Life (pp. 293–305). Boca Raton, FL: CRC Press, Inc.
- Cloitre, M., Heimberg, R., Liebowitz, M., & Gitow, A. (1992). Perceptions of control in panic disorder and social phobia. *Cognitive Therapy and* ..., 16, 569–577.
- Cohen, H. J. (2000). In search of the underlying mechanisms of frailty. *Journal of Gerontology: Medical Sciences*, 55(12), M706-8.

Cohen J. (1992). A Power Primer. Psychological Bulletin, 112(1), 155–159.

- Commissaris, C., Ponds, R., & Jolles, J. (1998). Subjective forgetfulness in a normal Dutch population: possibilities for health education and other interventions. *Patient Education and Counseling*.
- Cook, S., & Marsiske, M. (2006). Subjective memory beliefs and cognitive performance in normal and mildly impaired older adults. *Aging & Mental Health*, *10*(4), 413–423. https://doi.org/10.1080/13607860600638487
- Crisson, J. E., & Keefe, F. J. (1988). The relationship of locus of control to pain coping strategies and psychological distress in chronic pain patients. *Pain*, *35*, 147–154.
- Crombez, G., Van Damme, S., & Eccleston, C. (2005). Hypervigilance to pain: An experimental and clinical analysis. *Pain*, *116*(1–2), 4–7. https://doi.org/10.1016/j.pain.2005.03.035
- Crombez, G., Vlaeyen, J. W. S., Heuts, P. H. T. G., & Lysens, R. (1999). Pain-related fear is more disabling than pain itself: evidence on the role of pain-related fear in chronic back pain disability. *Pain*, *80*, 329–339.
- Crumley, J. J., Stetler, C. A., & Horhota, M. (2014). Examining the relationship between subjective and objective memory performance in older adults: A meta-analysis. *Psychology and Aging*, *29*(2), 250–263. https://doi.org/10.1037/a0035908
- Cuddy, A.J.C. and Fiske, S. T. (2002). Doddering but dear: Process, content, and function in stereotyping of elderly people. In T. D. Nelson (Ed.), *Ageism. Stereotyping and Prejudice against Older Persons* (Vol. 1, pp. 3–26). Cambridge, MA: MIT Press. https://doi.org/10.1017/CBO9781107415324.004
- Cuddy, A. J. C., Fiske, S. T., & Glick, P. (2008). Warmth and Competence as Universal Dimensions of Social Perception: The Stereotype Content Model and the BIAS Map. https://doi.org/10.1016/S0065-2601(07)00002-0
- Damme, S. Van, Legrain, V., Vogt, J., & Crombez, G. (2010). Neuroscience and Biobehavioral Reviews Keeping pain in mind : A motivational account of attention to pain. *Neuroscience* and Biobehavioral Reviews, 34, 204–213. https://doi.org/10.1016/j.neubiorev.2009.01.005
- Daut, R. L., Cleeland, C. S., & Flanery, R. C. (1983). Development of the Wisconsin Brief Pain Questionnaire to assess pain in cancer and other diseases. *Pain*, *17*(2), 197–210.
- Delizonna, L. L., Williams, R. P., & Langer, E. J. (2009). The effect of mindfulness on heart rate control. *Journal of Adult Development*, *16*(2), 61–65. https://doi.org/10.1007/s10804-009-9050-6
- Dersh, J., Polatin, P. B., & Gatchel, R. J. (2002). Chronic Pain and Psychopathology : Research Findings and Theoretical Considerations. *Psychosomatic Medicine*, *64*, 773–786.

https://doi.org/10.1097/01.PSY.0000024232.11538.54

- Desrichard, O., & Köpetz, C. (2005). A threat in the elder: The impact of task-instructions, selfefficacy and performance expectations on memory performance in the elderly. *European Journal of Social Psychology*, 35(4), 537–552. https://doi.org/10.1002/ejsp.249
- DiMatteo, M. R. (1994). Enhancing patient adherence to medical recommendations. *Jama*, 271(1), 79–83.
- Dueñas, M., Ojeda, B., Salazar, A., Mico, J. A., & Failde, I. (2016). A review of chronic pain impact on patients, their social environment and the health care system. *Journal of Pain Research*, *9*, 457.
- Edwards, R. R., Dworkin, R. H., Sullivan, M. D., Turk, D. C., & Wasan, A. D. (2016). The Role of Psychosocial Processes in the Development and Maintenance of Chronic Pain. *The Journal of Pain*, *17*(9), T70–T92. https://doi.org/10.1016/j.jpain.2016.01.001
- Ehrlinger, J., & Dunning, D. (2003). How Chronic Self-views Influence (and Potentially Mislead) Estimates of Performance. *Journal of Personality and Social Psychology*, 84(1), 5–17. https://doi.org/10.1037/0022-3514.84.1.5
- Engage Your Brain: GCBH Recommendations on Cognitively Stimulating Activities. (2017).
- Ercoli, L., Siddarth, P., Huang, S. C., Miller, K., Bookheimer, S. Y., Wright, B. C., ... Small, G. (2006). Perceived loss of memory ability and cerebral metabolic decline in persons with the apolipoprotein E-IV genetic risk for Alzheimer disease. *Archives of General Psychiatry*, 63(4), 442–448. https://doi.org/10.1001/archpsyc.63.4.442
- European Commission. (2009). 2009 Ageing report: economic and budgetary projections for the EU-27 Member States (2008–2060). Luxembourg.
- Fiske, S. T., Cuddy, A. J. C., Glick, P., & Xu, J. (2002). A model of (often mixed) stereotype content: Competence and warmth respectively follow from perceived status and competition. *Journal of Personality and Social Psychology*, 82(6), 878–902. https://doi.org/10.1037//0022-3514.82.6.878
- Floyd, M., & Scogin, F. (1997). Effects of memory training on the subjective memory functioning and mental health of older adults: A meta-analysis. *Psychology and Aging*, 12(1), 150-161.
- Frazier, P. (2003). Perceived control and distress following sexual assault: a longitudinal test of a new model. *Journal of Personality and Social Psychology*, *84*, 1257–1269.
- Frazier, P., Berman, M., & Steward, J. (2002). Perceived control and posttraumatic stress: A temporal model. *Applied and Preventive Psychology*, *10*, 207–223.

- Frazier, P., Steward, J., & Mortensen, H. (2004). Perceived control and adjustment to trauma: A comparison across events. *Journal of Social and Clinical Psychology*, *23*, 303–324.
- Gallagher, M. W., Bentley, K. H., & Barlow, D. H. (2014). Perceived Control and Vulnerability to Anxiety Disorders: A Meta-analytic Review. *Cognitive Therapy and Research*, *38*(6), 571–584. https://doi.org/10.1007/s10608-014-9624-x
- Gaskin, D. J., & Richard, P. (2012). The economic costs of pain in the United States. *The Journal of Pain*, *13*(8), 715–724.
- Gatchel, R., Peng, Y., Peters, M., Fuchs, P., & Turk, D. (2007). The biopsychosocial approach to chronic pain: scientific advances and future directions. *Psychological Bulletin*, *133*, 581–624.
- Gerstorf, D., Heckhausen, J., Ram, N., Infurna, F. J., Schupp, J., & Wagner, G. G. (2014). Perceived personal control buffers terminal decline in well-being. *Psychology and Aging*, 29(3), 612–625. https://doi.org/10.1037/a0037227
- Glass, D. C., Siger, J. E., & Friedman, L. N. (1969). Psychic cost of adaptation to an environmental stressor. *Journal of Personality and Social Psychology*, *12*(3), 200–210. https://doi.org/10.1037/h0027629
- Goldberg, D. S., & McGee, S. J. (2011). Pain as a global public health priority. *BMC Public Health*, *11*.
- Gray, K., & Wegner, D. M. (2008). The Sting of Intentional Pain. *Psychological Science*, 19(12), 1260–1262.
- Gureje, O., Korff, M. Von, Simon, G. E., & Gater, R. (1998). Persistent Pain and Well-being. *JAMA*, 280(2), 147–152.
- Heckhausen, J., & Schulz, R. (1995). A life-span theory of control. *Psychological Review*, *102*(2), 284–304. https://doi.org/10.1037/0033-295X.102.2.284
- Henslin, J. M. (1967). Craps and Magic. American Journal of Sociology, 73(3), 316–330.
- Herrmann, N., Mittmann, N., Silver, I. L., Shulman, K. I., Busto, U. A., Shear, N. H., & Naranjo, C. A. (1996). A validation study of the geriatric depression scale short form. *International Journal of Geriatric Psychiatry*, 11(5), 457–460.
- Hultsch, D. F., Hertzog, C., Dixon, R. A., & Small, B. J. (1998). *Memory change in the aged*. Cambridge, UK: Cambridge University Press.
- Idler, E. L., & Kasl, S. (1991). Health perceptions and survival: do global evaluations of health status really predict mortality? *Journal of Gerontology*, *46*(2), S55–S65.

https://doi.org/10.1093/geronj/46.2.855

- Idler Ellen L, & Benyamini, Y. (1997). Self-Rated Health and Mortality : A Review of Twenty-Seven Community Studies. *Journal of Health and Social Behavior*, 38(1), 21–37. https://doi.org/10.1007/sl0290-009-0045-y
- Infurna, F. J., & Gerstorf, D. (2013). Linking perceived control, physical activity, and biological health to memory change. *Psychology and Aging*, *28*(4), 1147–1163. https://doi.org/10.1037/a0033327
- Infurna, F. J., & Gerstorf, D. (2014). Perceived Control Relates to Better Functional Health and Lower Cardio-Metabolic Risk: The Mediating Role of Physical Activity. *Health Psychology*, *33*(1), 85–94. https://doi.org/10.1037/a0030208
- Infurna, F. J., Ram, N., & Gerstorf, D. (2013). Level and change in perceived control predict 19year mortality: Findings from the americans' changing lives study. *Developmental Psychology*, 49(10), 1833–1847. https://doi.org/10.1037/a0031041
- International Association for the Study of Pain. (1979). Pain terms: a list with definitions and notes on usage. *Pain*, *6*, 249–252.
- Isaacs, L., & Bearison, D. (1986). The development of children's prejudice against the aged. *The International Journal of Aging & Human Development*, 23, 175–194.
- Jackson, T., Wang, Y., & Fan, H. (2014). Associations Between Pain Appraisals and Pain Outcomes: Meta-Analyses of Laboratory Pain and Chronic Pain Literatures. *The Journal of Pain*, 15(6), 586–601. https://doi.org/10.1016/j.jpain.2014.01.499
- Jackson, T., Wang, Y., Wang, Y., & Fan, H. (2014). Self-Efficacy and Chronic Pain Outcomes: A Meta-Analytic Review. *The Journal of Pain*, 15(8), 800–814. https://doi.org/10.1016/j.jpain.2014.05.002
- Johnson, J. E. (1975). Stress reduction through sensation information. In I. G. Sarason & C. P. Spielberger (Eds.), *Stress and anxiety*. New York: Wiley.
- Johnson, N. B., Hayes, L. D., Brown, K., Hoo, E. C., & Ethier, K. A. (2014). *CDC National Health Report: leading causes of morbidity and mortality and associated behavioral risk and protective factors—United States, 2005--2013.*
- Juster, R. P., McEwen, B. S., & Lupien, S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. *Neuroscience and Biobehavioral Reviews*, 35(1), 2–16. https://doi.org/10.1016/j.neubiorev.2009.10.002
- Kaplan, G. A., & Camacho, T. (1983). Perceived Health and Mortality: A nine-year follow-up of the human population laboratory cohort. *American Journal of Epidemiology*, *117*, 292–304.

- Kay, A. C., Gaucher, D., Napier, J. L., Callan, M. J., & Laurin, K. (2008). God and the Government: Testing a Compensatory Control Mechanism for the Support of External Systems. *Journal of Personality and Social Psychology*, 95(1), 18–35. https://doi.org/10.1037/0022-3514.95.1.18
- Keller, S., Bann, C. M., Dodd, S. L., Schein, J., Mendoza, T. R., & Cleeland, C. S. (2004). Validity of the brief pain inventory for use in documenting the outcomes of patients with noncancer pain. *Clinical Journal of Pain*, 20(5), 309–318. https://doi.org/10.1097/00002508-200409000-00005
- Komaroff, A. L. (1990). 'Minor' Illness Symptoms. *Archives of Internal Medicine*, *150*(8), 1586–1587. https://doi.org/10.1001/archinte.1990.00040031586003
- Lachman, M. E. (2004). Development in Midlife. *Annual Review of Psychology*, 55, 305–331. https://doi.org/10.1146/annurev.psych.55.090902.141521
- Lachman, M. E., & Agrigoroaei, S. (2010). Promoting functional health in midlife and old age: Long-term protective effects of control beliefs, social support, and physical exercise. *PLoS ONE*, 5(10). https://doi.org/10.1371/journal.pone.0013297
- Lachman, M. E., & Agrigoroaei, S. (2012). Low perceived control as a risk factor for episodic memory: the mediational role of anxiety and task interference. *Memory & Cognition*. https://doi.org/10.3758/s13421-011-0140-x
- Lachman, M. E., Agrigoroaei, S., Tun, P. A., & Weaver, S. L. (2014). Monitoring Cognitive Functioning: Psychometric Properties of the Brief Test of Adult Cognition by Telephone. *Assessment*, 21(4), 404–417. https://doi.org/10.1177/1073191113508807
- Lachman, M. E., Andreoletti, C., & Pearman, A. (2006). Memory control beliefs: How are the related to age, stratey use, and memory improvement? *Social Cognition*, *24*(3), 359–385.
- Lachman, M. E., Bandura, M., Weaver, S. L., & Elliott, E. (1995). Assessing Memory Control Beliefs: The Memory Controllability Inventory. *Aging and Cognition*. https://doi.org/10.1080/13825589508256589
- Lachman, M. E., & Weaver, S. L. (1998). The sense of control as a moderator of social class differences in health and well-being. *Journal of Personality and Social Psychology*. https://doi.org/10.1037/0022-3514.74.3.763
- Lachman, M. E., Weaver, S. L., Bandura, M., Elliott, E., & Lewkowicz, C. J. (1992). Improving memory and control beliefs through cognitive restructuring and self-generated strategies. *Journals of Gerontology*, 47(5), 293–299. https://doi.org/10.1093/geronj/47.5.P293

Langer, E., Chanowitz, B., Jacobs, S., Rhodes, M., Palmerino, M. & Thayer, P. (1990).

Nonsequential development and aging. In C. Alexander & E. Langer (Eds.), *Higher Stages of Human Development* (pp. 114–136). New York: Oxford University Press.

- Langer, E. (1975). The illusion of control. *Journal of Personality and Social Psychology*, 32(2), 311–328.
- Langer, E. (1989). Mindfulness. Mindfulness. Reading, MA: Addison Wesley Longman.
- Langer, E. (2009). *Counterclockwise: Mindful health and the power of possibility*. New York, NY: Ballantine Books.
- Langer, E., Blank, A., & Chanowitz, B. (1978). The mindlessness of ostensibly thoughtful action: The role of "placebic" information in interpersonal interaction. *Journal of Personality and Social Psychology*, 36(6), 635–642.
- Langer, E., Hatem, M., Joss, J., & Howell, M. (1989). Conditional teaching and mindful learning. *Creativity Research Journal*, 2(3), 139–150. https://doi.org/10.1080/10400418909534311
- Langer, E. J., & Moldoveanu, M. (2000). The Construct of Mindfulness. *Journal of Social Issues*, *56*(1), 1–9. https://doi.org/10.1111/0022-4537.00148
- Langer, E. J., Rodin, J., Beck, P., Weinman, C., & Spitzer, L. (1979). Environmental determinants of memory improvement in late adulthood. *Journal of Personality and Social Psychology*, 37(11), 2003–2013. https://doi.org/10.1037/0022-3514.37.11.2003
- Langer, E. J., & Roth, J. (1975). Heads I win, tails it's chance: The illusion of control as a function of the sequence of outcomes in a purely chance task. *Journal of Personality and Social Psychology*, *32*(6), 951–955. https://doi.org/10.1037/0022-3514.32.6.951
- Langer, E., Janis, I. L., & Wolfer, J. A. (1975). Reduction of Psychological Stress in Surgical Patients. *Journal of Experimental Social Psychology*, 11, 155–165.
- Langer, E., Perlmuter, L., Chanowitz, B., & Rubin, R. (1988). Two new applications of mindlessness theory: Alcoholism and aging. *Journal of Aging Studies*, 2(3), 289–299. https://doi.org/10.1016/0890-4065(88)90008-4
- Langer, E., & Rodin, J. (1976). The effects of choice and enhanced personal responsibility for the aged: a field experiment in an institutional setting. *Journal of Personality and Social Psychology*, 34(2), 191–198. https://doi.org/10.1037/0022-3514.34.2.191
- Larsen, S., & Fitzgerald, L. (2010). PTSD symptoms and sexual harassment: the role of attributions and perceived control. *Journal of Interpersonal Violence*.

Laurin, K., Kay, A. C., & Moscovitch, D. A. (2008). On the belief in God: Towards an

understanding of the emotional substrates of compensatory control. *Journal of Experimental Social Psychology*, 44(6), 1559–1562. https://doi.org/10.1016/j.jesp.2008.07.007

- Lesher, E. L., & Berryhill, J. S. (1994). Validation of the geriatric depression scale short form among inpatients. *Journal of Clinical Psychology*, *50*(2), 256–260. https://doi.org/10.1002/1097-4679(199403)50:2<256::AID-JCLP2270500218>3.0.CO;2-E
- Levenson, H. (1973). Multidimensional locus of control in psychiatric patients. *Journal of Consulting and Clinical Psychology*, 41, 397–401.
- Levy, B. (2009). Stereotype embodiment: A psychosocial approach to aging. Current Directions in Psychological Science, 18(6), 332–336. https://doi.org/10.1111/j.1467-8721.2009.01662.x
- Levy, B., & Langer, E. (1994). Aging free from negative stereotypes: Successful memory in China and among the American Deaf. *Journal of Personality and Social Psychology*, *66*(6), 989–997.
- Levy, B. R., Banaji, M. R., Ageism, I., & Nelson, I. T. D. (2002). Implicit Ageism.
- Levy, B. R., Ferrucci, L., Zonderman, A. B., Slade, M. D., Troncoso, J., & Resnick, S. M. (2016). A Culture-Brain Link: Negative Age Stereotypes Predict Alzheimer's-deisease Biomarkers. *Psychology and Aging*, 31(1), 82–88. https://doi.org/10.1038/ncomms5234.SUMO1
- Levy, B. R., Kasl, S. V, & Gill, T. (2004). Image of Aging Scale. *Perceptual and Motor Skills*, 99(5), 208. https://doi.org/10.2466/PMS.99.5.208-210
- Levy, B. R., Pilver, C., Chung, P. H., & Slade, M. D. (2014). Subliminal Strengthening: Improving Older Individuals' Physical Function Over Time With an Implicit-Age-Stereotype Intervention. *Psychological Science*. https://doi.org/10.1177/0956797614551970
- Levy, B. R., Slade, M. D., Kunkel, S. R., & Kasl, S. V. (2002). Longevity increased by positive self-perceptions of aging. *Journal of Personality and Social Psychology*, 83(2), 261–270. https://doi.org/10.1037/0022-3514.83.2.261
- Lipchik, G. L., Milles, K., & Covington, E. C. (1993). The effects of multidisciplinary pain management treatment on locus of control and pain beliefs in chronic non-terminal pain. *The Clinical Journal of Pain*, *9*, 49–57.
- Litt, M. (1988). Self-efficacy and perceived control: cognitive mediators of pain tolerance. *Journal of Personality and Social Psychology*, 54, 149–160.
- Lundberg, O., & Manderbacka, K. (1996). Assessing reliability of a measure of self-rated health. *Scandinavian Journal of Public Health*, *24*(3), 218–224.

https://doi.org/10.1177/140349489602400314

- Mahmud, N., Rodriguez, J., & Nesbit, J. (2010). A text message-based intervention to bridge the healthcare communication gap in the rural developing world. *Technology and Health Care*, *18*(2), 137–144.
- Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition : The positivity effect in attention and memory. *Trends in Cognitive Sciences*, 9(10). https://doi.org/10.1016/j.tics.2005.08.005
- McAndrew, L. M., Horowitz, C. R., Lancaster, K. J., & Leventhal, H. (2010). Factors Related to Perceived Diabetes Control Are Not Related to Actual Glucose Control for Minority Patients with Diabetes. *Diabetes Care*, *33*(4), 736–738. https://doi.org/10.2337/dc09-1229.
- McCracken, L., Carson, J., Eccleston, C., & Keefe, F. (2004). Acceptance and change in the context of chronic pain. *Pain*, *104*, 4–7.
- McCracken, L., & Eccleston, C. (2005). A prospective study of acceptance of pain and patient functioning with chronic pain. *Pain*, *118*, 164–169.
- McEwen, B. S., & Wingfield, J. C. (2003). The concept of allostasis in biology and biomedicine. *Hormones and Behavior*, 43(1), 2–15. https://doi.org/10.1016/S0018-506X(02)00024-7
- McHorney, C. A., Ware, J. E., Jr., Lu, J. F. R., & Sherbourne, C. D. (1994). The MOS 36-Item Short-Form Health Survey (SF-36): III. Tests of Data Quality, Scaling Assumptions, and Reliability across Diverse Patient Groups. *Medical Care*, 32(1), 40–66. https://doi.org/10.2307/3766189
- McHorney, C. A., Ware, J. E., Jr., & Raczek, A. E. (1993). The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and Clinical Tests of Validity in Measuring Physical and Mental Health Constructs. *Medical Care*, 31(3), 247–263. https://doi.org/10.2307/3765819
- Miller, W., & Seligman, M. (1975). Depression and learned helplessness in man. *Journal of Abnormal Psychology*, 84, 228–238.
- Monty, R. A., Rosenberger, M. A., & Perlmuter, L. C. (1973). Amount and locus of choice as sources of motivation in paired-associate learnining. *Journal of Experimental Psychology*, 97(1), 16–21.
- Moulding, R., & Kyrios, M. (2007). Desire for control, sense of control and obsessivecompulsive symptoms. *Cognitive Therapy and Research*, *31*, 759–772.
- Myers, J. L., & Fort, J. G. (1963). A sequential analysis of gambling behavior. *The Journal of General Psychology*, *69*, 299–309.

- Najdowski, C., & Ullman, S. (2009). PTSD symptoms and self□rated recovery among adult sexual assault survivors: the effects of traumatic life events and psychosocial variables. *Psychology of Women Quarterly*.
- Nelson, T. D. (2004). *Ageism: Stereotyping and prejudice against older persons*. Cambridge, MA: MIT Press.
- Ng, R., Allore, H. G., Trentalange, M., Monin, J. K., & Levy, B. R. (2015). Increasing negativity of age stereotypes across 200 years: Evidence from a database of 400 million words. *PLoS ONE*, *10*(2). https://doi.org/10.1371/journal.pone.0117086
- Nouwen, A., Cloutier, C., Kappas, A., Warbrick, T., & Sheffield, D. (2006). Effects of Focusing and Distraction on Cold Pressor–Induced Pain in Chronic Back Pain Patients and Control Subjects. *The Journal of Pain*, 7(1), 62–71. https://doi.org/10.1016/j.jpain.2005.08.004
- Pagnini, F., Bercovitz, K. E., & Phillips, D. (2018). Langerian mindfulness, quality of life and psychological symptoms in a sample of Italian students, 1–7.
- Pagnini, F., Phillips, D., Bosma, C. M., Bosma, M. C., Reece, A., & Langer, E. (2015). Mindfulness, physical impairment and psychological well-being in people with amyotrophic lateral sclerosis. *Psychology & Health*, 30(5), 503–517. https://doi.org/10.1080/08870446.2014.982652
- Pagnini, F., Phillips, D., Bosma, C. M., Reece, A., & Langer, E. (2016). Mindfulness as a Protective Factor for the Burden of Caregivers of Amyotrophic Lateral Sclerosis Patients. *Journal of Clinical Psychology*, 72(1), 101–111. https://doi.org/10.1002/jclp.22235
- Perlmuter, L., & Langer, E. (1983). The effects of behavioral monitoring on the perception of control. *The Clinical Gerontologist*, *1*, 37–43.
- Pervin, L. A. (1963). The need to predict and control under conditions of threat. *Journal of Personality*, *31*, 570–587. https://doi.org/10.1111/j.1467-6494.1963.tb01320.x
- Pfeiffer, E. (1975). A Short Portable Mental Status Questionnaire for the Assessment of Organic Brain Deficit in Elderly Patients. *Journal of the American Geriatrics Society*, 23(10), 433– 441. https://doi.org/10.1111/j.1532-5415.1975.tb00927.x
- Pirson, M. A., Langer, E., & Zilcha, S. (2018). Enabling a Socio-cognitive Perspective of Mindfulness : The Development and Validation of the Langer Mindfulness Scale. *Journal* of Adult Development, 0(0), 0. https://doi.org/10.1007/s10804-018-9282-4
- Pirson, M., Langer, E. J., Bodner, T., & Zilcha, S. (2012). The Development and Validation of the Langer Mindfulness Scale - Enabling a Socio-Cognitive Perspective of Mindfulness in Organizational Contexts. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2158921

- Price, D. D., Mcgrath, P. A., Rafii, A., & Buckingham, B. (1983). The Validation of Visual Analogue Scales as Ratio Scale Measures for Chronic and Experimental Pain. *Pain*, 17, 45– 56.
- Reich, J. W., & Infurna, F. J. (Eds.). (2017). *Perceived Control: Theory, Research, and Practice in the First 50 Years*. New York: Oxford University Press.
- Reuven-Magril, O., Dar, R., & Liberman, N. (2008). Illusion of control and behavioral control attempts in obsessive-compulsive disorder. *Journal of Abnormal ..., 117*, 334–341.
- Rey, A. (1964). L'examen clinique en psychologie. Paris: Presses Universitaires de France.
- Rickenbach, E. H., Agrigoroaei, S., & Lachman, M. E. (2015). Awareness of Memory Ability and Change: (In)Accuracy of Memory Self-Assessments in Relation to Performance. *Journal of Population Ageing*, 8(1–2), 71–99. https://doi.org/10.1007/s12062-014-9108-5
- Roccaforte, W. H., Burke, W. J., Bayer, B. L., & Wengel, S. P. (1994). Reliability and Validity of the Short Portable Mental Status Questionnaire Administered by Telephone. *Journal of Geriatric Psychiatry and Neurology*, 7(1), 33–38. https://doi.org/10.1177/089198879400700107
- Rodin, J. (1983). Behavioral medicine: beneficial effects of self control training in aging. *Applied Psychology*, *32*(2), 153–181. https://doi.org/10.1111/j.1464-0597.1983.tb00901.x
- Rodin, J., & Langer, E. (1980). Aging labels: the decline of control and the fall of self-esteem. *Journal of Social Issues*, *36*, 12–29.
- Rodin, J., & Langer, E. J. (1977). Long-term effects of a control-relevant intervention with the institutionalized aged. *Journal of Personality and Social Psychology*, *35*(12), 897–902.
- Rodin, J., & Langer, E. J. (1977). Long-term Effects of a Control-relevant Intervention with the Institutionalized Aged, 175–179.
- Roelofs, J., Peters, M. L., van der Zijden, M., & Vlaeyen, J. W. S. (2004). Does Fear of Pain Moderate the Effects of Sensory Focusing and Distraction on Cold Pressor Pain in Pain-Free Individuals? *The Journal of Pain*, 5(5), 250–256. https://doi.org/10.1016/j.jpain.2004.04.001
- Rook, K. S., Charles, S. T., & Heckhausen, J. (2011). Aging and health. In H. S. Friedman (Ed.), *Handbook of Health Psychology* (pp. 234–262). https://doi.org/10.1093/oxfordhb/9780195342819.013.0015
- Rothbaum, F., Weisz, J. R., & Snyder, S. S. (1982). Changing the world and changing the self: A two-process model of perceived control. *Journal of Personality and Social Psychology*, 42(1), 5–37. https://doi.org/10.1037/0022-3514.42.1.5

- Rothermund, K. (2005). Effects of Age Stereotypes on Self-Views and Adaptation. In *The adaptive self: Personal continuity and intentional self-development* (pp. 223–242).
- Rotter, J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. *Psychological Monographs*, 80(1), 1–28. https://doi.org/10.1037/h0092976
- Rowe, J., & Kahn, R. (1987). Human aging: usual and successful. *Science*, 237(4811), 143–149. https://doi.org/10.1126/science.3299702
- Rowe, J. W., & Kahn, R. L. (1997). Successful Aging. *The Gerontologist*, 37(4), 433–440. https://doi.org/10.1080/02604027.1969.9971680
- Royle, J., & Lincoln, N. B. (2008). The Everyday Memory Questionnaire-revised: development of a 13-item scale. *Disability and Rehabilitation*, *30*(2), 114–121. https://doi.org/10.1080/09638280701223876
- Samwel, H., Evers, A., Crul, B., & Kraaimaat, F. (2006). The role of helplessness, fear of pain, and passive pain-coping in chronic pain patients. *The Clinical Journal of Pain*, *22*, 245–251.
- Sanderson, W., Rapee, R., & Barlow, D. (1989). The influence of an illusion of control on panic attacks induced via inhalation of 5.5% carbon dioxide-enriched air. Archives of General Psychiatry, 46, 157–162.
- Schappert, S. M. (1992). National Ambulatory Medical Care Survey: 1989 Summary. *Vital Health Statistics*.
- Schnittker, J., & Bacak, V. (2014). The increasing predictive validity of self-rated health. *PLoS ONE*, *9*(1). https://doi.org/10.1371/journal.pone.0084933
- Schulz, R. (1976). Effects of control and predictability on the physical and psychological wellbeing of the institutionalized aged. *Journal of Personality and Social Psychology*, 33(5), 563–573. https://doi.org/10.1037/0022-3514.33.5.563
- Schulz, R. (1980). Aging and control. In J. Garber & M. E. P. Seligman (Eds.), Human helplessness: Theory and applications (pp. 261–277). New York: Academic Press.
- Schulz, R., & Hanusa, B. H. (1978). Long-term effects of control and predictability-enhancing interventions: Findings and ethical issues. *Journal of Personality and Social Psychology*, 36(11), 1194–1201. https://doi.org/10.1037/0022-3514.36.11.1194
- Seligman, M., & Abramson, L. (1979). Depressive attributional style. *Journal of Abnormal ...*, 88, 242–247.

Seligman, M. E. (1972). Learned Helplessness. Annual Review of Medicine, 23(1), 407–412.

- Seligman, M. E., & Maier, S. F. (1967). Failure to escape traumatic shock. *Journal of Experimental Psychology*, 74(1), 1–9. https://doi.org/10.1037/h0024514
- Sheikh, J. I., & Yesavage, J. A. (1986). Geriatric Depression Scale (GDS) Recent Evidence and Development of a Shorter Version. *Clinical Gerontologist*, 5(1–2), 165–173. https://doi.org/10.1300/J018v05n01_09
- Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E. (1970). The State-Trait Anxiety Inventory Manual. *Palo Alto, Cal.: Consulting Psychologists*. https://doi.org/10.1037/t06496-000
- Sullivan, M. J. L. (2012). The Communal Coping Model of Pain Catastrophising : Clinical and Research Implications. *Canasian Psychology*, 53(1), 32–41.
- Sullivan, M. J. L., Bishop, S. R., & Pivik, J. (1995). The pain catastrophizing scale: development and validation. *Psychological Assessment*, 7(4), 524.
- Sunderland, A., Watts, K., Baddeley, A. D., & Harris, J. E. (1986). Subjective memory assessment and test performance in elderly adults. *Journal of Gerontology*, *41*(3), 376–384. https://doi.org/10.1093/geronj/41.3.376
- Taylor, S. E., Brown, J. D., Cantor, N., Emery, E., Fiske, S., Green-, T., ... Wood, J. (1988). Illusion and Well-Being : A Social Psychological Perspective on Mental Health. *Psychological Bulletin*, 103(2), 193–210.
- Tennstedt S, Howland J, Lachman M, Peterson E, K. L., & Jette, A. (1998). A randomized, controlled trial of a group intervention to reduce fear of falling and associated activity restriction in older adults. *Journal of Gerontology*, *53B*(6), 384–392. https://doi.org/nicht verfügbar?
- Thompson, S. (1981). Will it hurt less if i can control it? A complex answer to a simple question. *Psychological Bulletin*, *90*, 89–101.
- Treede, R. D., Rief, W., Barke, A., Aziz, Q., Bennett, M. I., Benoliel, R., ... Wang, S. J. (2015). A classification of chronic pain for ICD-11. *Pain*, 156(6), 1003–1007. https://doi.org/10.1097/j.pain.00000000000160
- Troyer, A. K., & Rich, J. B. (2002). Psychometric Properties of a New Metamemory Questionnaire for Older Adults. *Journal of Gerontology*, 57B(1), 19–27.
- Tsur, N., Defrin, R., & Ginzburg, K. (2017). Posttraumatic Stress Disorder, Orientation to Pain ,and Pain Perception in Ex-Prisoners of War Who Underwent Torture. *Psychosomatic Medicine*, 79, 655–663. https://doi.org/10.1097/PSY.000000000000461
- Tsur, N., Defrin, R., Haller, C., Bercovitz, K., & Langer, E. (n.d.). Can mindful attention training influence pain modulation capacity?

- Tun, P. A., & Lachman, M. E. (2006). Telephone assessment of cognitive function in adulthood: the Brief Test of Adult Cognition by Telephone. *Age and Ageing*, 35(6), 627–629. https://doi.org/10.1093/ageing/afl099
- Turner, J., Jensen, M., & Romano, J. (2000). Do beliefs, coping, and catastrophizing independently predict functioning in patients with chronic pain? *Pain*, 85, 115–125.
- U.S. Department of Commerce Economics and Statistics Administration. (2011). *The Older Population: 2010.*
- Veldhuijzen, D. S., Kenemans, J. L., Bruin, C. M. De, Olivier, B., & Volkerts, E. R. (2006). Pain and Attention: Attentional Disruption or Distraction? *Journal of Pain*, 7(1), 11–20. https://doi.org/10.1016/j.jpain.2005.06.003
- Vlaeyen, J. W. S., & Linton, S. J. (2000). Fear-avoidance and its consequences in chronic musculoskeletal pain : a state of the art. *Pain*, 85, 317–332.
- Vowles, K. E., Mcentee, M. L., Siyahhan, P., Frohe, T., Ney, J. P., & Goes, D. N. Van Der. (2015). Chronic Pain : a Systematic Review and Data Synthesis. *Pain*, 156(4).
- Wallston, K. A., Stein, M. J., & Smith, C. A. (1994). Form C of the MHLC Scales: A Condition-Specific Measure of Locus of Control. *Journal of Personality Assessment*, 63(3), 534–553.
- Wallston, K. A., Wallston, B. S., & Devellis, R. (1978). Development of the Multidimensional Health Locus of Control (MHLC) Scales. *Health Education Monographs*, 6(2), 160–170.
- Ware, J. E., Jr., & Sherbourne, C. D. (1992). The MOS 36-Item Short-Form Health Survey (SF-36): I. Conceptual Framework and Item Selection. *Medical Care*, 30(6), 473–483. https://doi.org/10.2307/3765916
- Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and Validation of Brief Measures of Positive and Negative Affect: The PANAS Scales. *Journal of Personality and Social Psychology*, 54(6), 1063–1070. https://doi.org/10.1037/0022-3514.54.6.1063
- Weathers, F. W., Litz, B. T., Keane, T. M., Palmieri, P. A., Marx, B. P., & Schnurr, P. P. (2013). The PTSD checklist for dsm-5 (pcl-5). *Scale Available from the National Center for PTSD at Www. Ptsd.va.Gov.*
- Wechsler, D. (1997). Wechsler Adult Intelligence Scale (WAIS-3R). *The Psychological Corporation*. https://doi.org/Pearson Clinical Psychology
- Weisenberg, M., Wolf, Y., Mittwoch, T., Mikulincer, M., & Aviram, O. (1985). Subject Versus Experimenter Control in the Reaction to Pain. *Pain*, *23*, 187–200.

- Wewers, M. E., & Lowe, N. K. (1990). A critical review of visual analogue scales in the measurement of clinical phenomena. *Research in Nursing & Health*, 13(4), 227–236.
- White, S. M., Wójcicki, T. R., & McAuley, E. (2012). Social cognitive influences on physical activity behavior in middle-aged and older adults. *The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences*, 67(1), 18–26. https://doi.org/10.1093/geronb/gbr064
- Wiech, K., Ploner, M., & Tracey, I. (2008). Neurocognitive aspects of pain perception. Trends in Cognitive Sciences, 12(8), 306–313. https://doi.org/10.1016/j.tics.2008.05.005
- Wiedenfeld, S. A., O'Leary, A., Bandura, A., Brown, S., Levine, S., & Raska, K. (1990). Impact of perceived self-efficacy in coping with stressors on components of the immune system. *Journal of Personality and Social Psychology*, 59(5), 1082–1094. https://doi.org/10.1037/0022-3514.59.5.1082
- Williams, D. A., & Keefe, F. (1991). Pain beliefs and the use of cognitive-behavioral. *Pain*, 46, 185–190.
- Williams, D. A., Robinson, M. E., & Geisser, M. E. (1994). Pain beliefs : Assessment and utility. *Pain*, 59, 71–78.
- Williams, D. A., & Thorn, B. E. (1989). An empirical assessment of pain beliefs. *Pain*, *36*(3), 351–358. https://doi.org/10.1016/0304-3959(89)90095-X
- Williams, D., Golding, J., Phillips, K., & Towell, A. (2004). Perceived control, locus of control and preparatory information: effects on the perception of an acute pain stimulus. *Personality and Individual Differences*, 36, 1681–1691.
- Willis, S. L., & Schaie, K. W. (1999). Intellectual functioning in midlife. In *Life in the middle* (pp. 233–247). Elsevier.
- Wolfe, F., Smythe, H. A., Yunus, M. B., Bennett, R. M., Bombardier, C., Goldenberg, D. L., ... others. (1990). The American College of Rheumatology 1990 criteria for the classification of fibromyalgia. *Arthritis & Rheumatism: Official Journal of the American College of Rheumatology*, 33(2), 160–172.
- Yesavage, J. a, Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., & Leirer, V. O. (1983). Development and validation of a geriatric depression screening scale: a preliminary report. *Journal of Psychiatric Research*, 17(1), 37–49. https://doi.org/10.1016/0022-3956(82)90033-4
- Zautra, A. J., Davis, M. C., Reich, J. W., Sturgeon, J. a., Arewasikporn, A., & Tennen, H.
 (2012). Phone-based interventions with automated mindfulness and mastery messages improve the daily functioning for depressed middle-aged community residents. *Journal of*

Psychotherapy Integration, 22(3), 206–228. https://doi.org/10.1037/a0029573

- Zelinski, E. M., Gilewski, M. J., & Thompson, L. W. (1980). Do laboratory tests relate to self-assessment of memory ability in the young and old? In & L. W. T. L. W. Poon, J. L. Fozard, L. S. Cermak, D. Arenberg (Ed.), *New directions in memory and aging* (pp. 519–544). Hillsdale, NJ: Lawrence Erlbaum.
- Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. *Acta Psychiatrica Scandinavica*, 67(6), 361–370.
- Zilcha-Mano, S., & Langer, E. (2016). Mindful Attention to Variability Intervention and Successful Pregnancy Outcomes. *Journal of Clinical Psychology*, 00(0), 1–11. https://doi.org/10.1002/jclp.22294

Appendix A: Supplementary Analyses for Memory Study

Full Description of Differences in Demographic Variables, LMS, and GDS-sf

A one-way ANOVA revealed no significant difference in the age of our participants among the three conditions (F(2, 153) = .11, p = .90). Similarly, a one-way ANOVA revealed no statistically significant difference among the three conditions in the education level of our participants (F(2, 153) = .59, p = .55).

We also tested to see if the groups differed significantly at baseline on the following measures: the Geriatric Depression Scale (short form) and Langer Mindfulness Scale. For the descriptive statistics of GDS and LMS scores across the conditions see the figures below.

A one-way ANOVA revealed no significant difference in mean Geriatric Depression Scale scores among the three conditions (F(2, 153) = .06, p = .94). Similarly, a one-way ANOVA revealed no statistically significant difference among the three conditions in baseline Langer Mindfulness Scale scores (F(2, 153) = 1.81, p = .17).

Dependent Variable: Men	nory Controllability Ir	iventory_Pi	resent Ability		
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	1315.408 ^a	5	263.082	46.178	.000
Intercept	101.010	1	101.010	17.730	.000
Condition	1.117	2	.558	.098	.907
MCI_PresentAbility_S1	1166.010	1	1166.010	204.667	.000
Condition * MCI_PresentAbility_S1	.131	2	.065	.011	.989
Error	854.567	150	5.697		
Total	35786.000	156			
Corrected Total	2169.974	155			

Figure 3.0. Homogeneity of Regression Slopes for "Present Ability"

Figure 3.1. Homogeneity of Regression Slopes for "Potential Improvement"

Dependent Variable: Memo	ory Controllability In	ventory - P	otential Improven	nent	
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	631.787 ^a	5	126.357	35.867	.000
Intercept	82.095	1	82.095	23.303	.000
Condition	22.834	2	11.417	3.241	.042
MCI_PotentialImproveme nt_S1	613.581	1	613.581	174.167	.000
Condition * MCI_PotentialImproveme nt_S1	18.565	2	9.283	2.635	.075
Error	528.443	150	3.523		
Total	40142.000	156			
Corrected Total	1160.231	155			

Dependent Variable: Memory Controllability Inventory - Effort Utility						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	
Corrected Model	618.113 ^a	5	123.623	30.463	.000	
Intercept	89.732	1	89.732	22.111	.000	
Condition	15.974	2	7.987	1.968	.143	
MCI_EffortUtility_S1	591.396	1	591.396	145.729	.000	
Condition * MCI_EffortUtility_S1	11.580	2	5.790	1.427	.243	
Error	608.727	150	4.058			
Total	36477.000	156				
Corrected Total	1226.840	155				

Figure 3.2. Homogeneity of Regression Slopes for "Effort Utility"

Figure 3.3. Homogeneity of Regression Slopes for "Inevitable Decrement"

Dependent Variable: Memo	ry Controllability In	ventory- Ine	evitable Decreme	nt	
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	1172.533 ^a	5	234.507	38.992	.00
Intercept	135.224	1	135.224	22.484	.00
Condition	27.162	2	13.581	2.258	.108
MCI_InevitableDecrement _S1	1080.160	1	1080.160	179.601	.00
Condition * MCI_InevitableDecrement _S1	11.342	2	5.671	.943	.392
Error	902.134	150	6.014		
Total	18732.000	156			
Corrected Total	2074.667	155			

Dependent Variable: Merr	iory Controllability li	nventory - In	dependence		
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	848.027 ^a	5	169.605	28.324	.000
Intercept	110.192	1	110.192	18.402	.000
Condition	20.903	2	10.452	1.745	.178
MCI_Independence_S1	843.475	1	843.475	140.861	.000
Condition * MCI_Independence_S1	18.220	2	9.110	1.521	.222
Error	898.197	150	5.988		
Total	27055.000	156			
Corrected Total	1746.224	155			

Figure 3.4. Homogeneity of Regression Slopes for "Independence"

Figure 3.5. Homog	eneity of Regre	ession Slopes for	r "Alzheimer's	Likelihood"
	••			

Dependent Variable: Men	nory Controllability In	ventory - Al	lzheimer's Likelih	ood	
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	2796.271ª	5	559.254	46.733	.000
Intercept	38.604	1	38.604	3.226	.074
Condition	35.247	2	17.624	1.473	.233
MCI_AlzLikelihood_S1	2697.754	1	2697.754	225.434	.000
Condition * MCI_AlzLikelihood_S1	11.080	2	5.540	.463	.630
Error	1795.036	150	11.967		
Total	36698.000	156			
Corrected Total	4591.308	155			

Dependent Variable: Every	dayMemory_Total_	S2			
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	123.155ª	5	24.631	4.500	.001
Intercept	148.111	1	148.111	27.058	.000
Condition	14.117	2	7.059	1.290	.278
EverydayMemory_Total_S 1	87.637	1	87.637	16.010	.000
Condition * EverydayMemory_Total_S 1	9.342	2	4.671	.853	.428
Error	821.069	150	5.474		
Total	3529.000	156			
Corrected Total	944.224	155			

Figure 3.6. Homogeneity of Regression Slopes for Reported Number of Memory Lapses

Figure 3.7. Homogeneity of Regression Slopes for Reported Stress Over Memory Lapses

Dependent Variable: Every		5_32			
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	52.386ª	5	10.477	2.389	.041
Intercept	229.949	1	229.949	52.426	.000
Condition	.010	2	.005	.001	.999
EverydayMemory_Stress_ S1	40.476	1	40.476	9.228	.003
Condition * EverydayMemory_Stress_ S1	2.026	2	1.013	.231	.794
Error	657.922	150	4.386		
Total	3018.000	156			
Corrected Total	710.308	155			

Figure 3.8. Test of Homogeneity of Error Variances for "Present Ability"

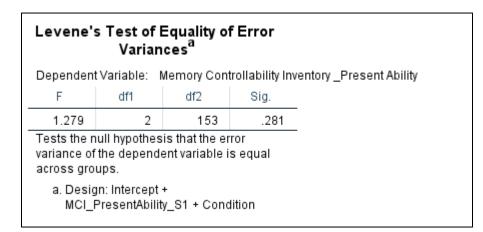


Figure 3.9. Test of Homogeneity of Error Variances for "Potential Improvement"

Levene's	Levene's Test of Equality of Error Variances ^a									
Dependent	t Variable: I	Memory Cont	trollability In	ventory - Potential Improvement						
F	df1	df2	Sig.	_						
.150	2	153	.861	_						
	the depend	sis that the er ent variable i		-						
		+ rovement_S	1 +							

Figure 3.10. Test of Homogeneity of Error Variances for "Effort Utility"

Levene'	Levene's Test of Equality of Error Variances ^a							
Dependent Variable: Memory Controllability Inventory - Effort Utility								
F	df1	df2	Sig.					
.425	2	153	.655	_				
variance of	Tests the null hypothesis that the error variance of the dependent variable is equal across groups.							
	gn: Intercept EffortUtility_9	+ S1 + Conditio	n					

Figure 3.11. Test of Homogeneity of Error Variances for "Inevitable Decrement"

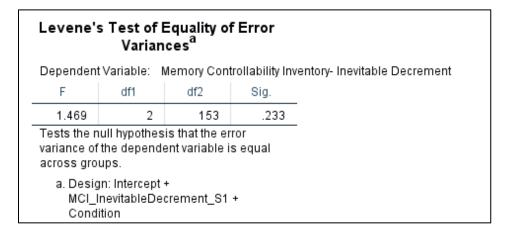


Figure 3.12. Test of Homogeneity of Error Variances for "Independence"

Levene's Test of Equality of Error Variances ^a								
Dependen	tVariable: I	Memory Cont	rollability Inv	entory - Independence				
F	df1	df2	Sig.					
1.469	2	153	.233					
variance of	Tests the null hypothesis that the error variance of the dependent variable is equal across groups.							
-	in: Intercept Independent	+ :e_S1 + Con	dition					

Figure 3.13. Test of Homogeneity of Error Variances for "Alzheimer's Likelihood"

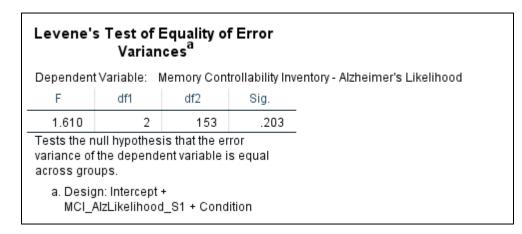


Figure 3.14. Test of Homogeneity of Error Variances for Reported Number of Memory Lapses

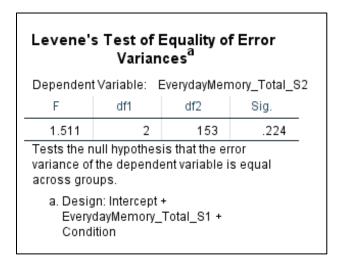


Figure 3.15. Test of Homogeneity of Error Variances for Reported Stress About Memory Lapses

Levene's	s Test of I Varian	Equality of ices ^a	f Error
Dependent	tVariable: E	EverydayMen	nory_Stress_S2
F	df1	df2	Sig.
5.242	2	153	.006
	the depend	is that the er ent variable i	
-		+ _Stress_S1 +	

Figure 3.16. Test of Homogeneity of Error Variances for Reported Stress About Memory Lapses

After Reciprocal Transformation

Levene	's Test of l Varia	Equality of inces ^a	f Error
Dependent	Variable:		
EverdayM	emory_Stre	ess_Recipro	ocal
F	df1	df2	Sig.
1.132	2	148	.325
Tests the r	null hypoth	esis that the	e error
variance o	f the depen	dent variab	ole is
equal acro	ss groups.		
a. Design:	Intercept +	- Condition	L

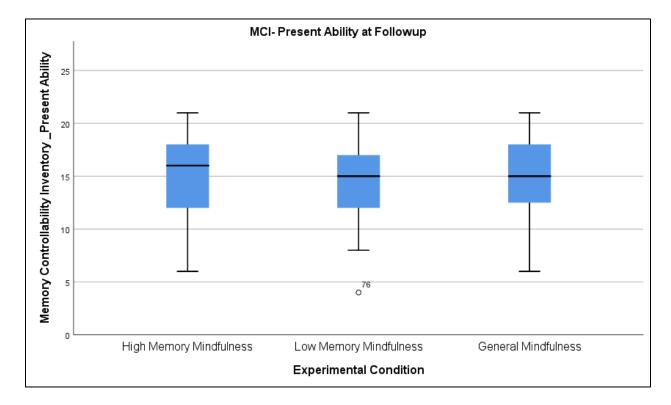


Figure 3.17. Boxplot of MCI- "Present Ability" at T1

Figure 3.18. Boxplot of MCI- "Potential Improvement" at T1

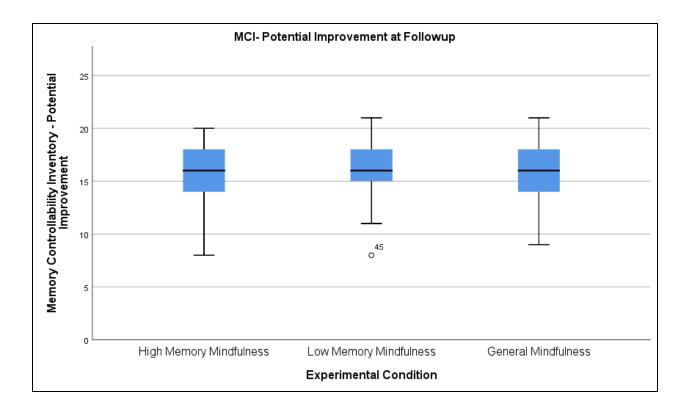


Figure 3.19. Boxplot of MCI- "Effort Utility" at T1

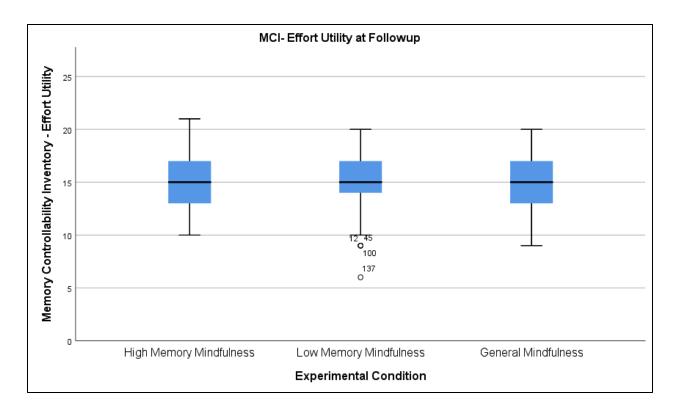


Figure 3.20. Boxplot of MCI- "Inevitable Decrement" at T1

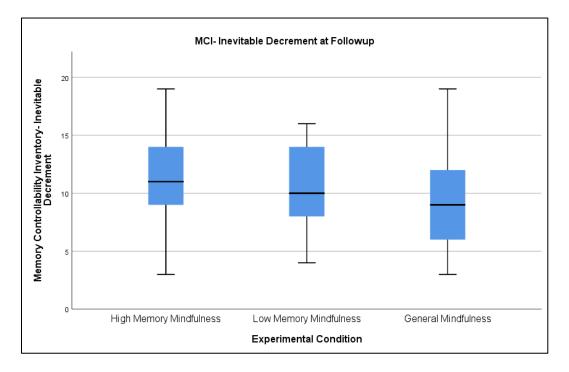


Figure 3.21. Boxplot of MCI- "Independence" at T1

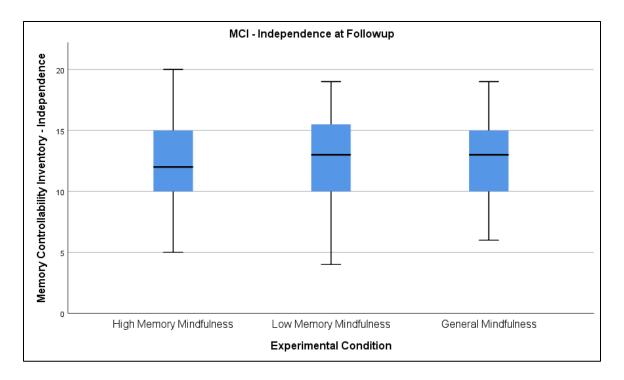


Figure 3.22. Boxplot of MCI- "Alzheimer's Likelihood" at T1

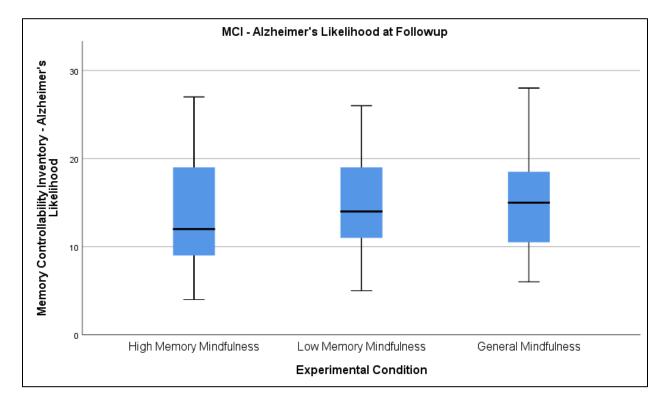


Figure 3.23. Boxplot of EMQ- Number of Reported Memory Lapses at T1

Number of Memory Lapses at Followup

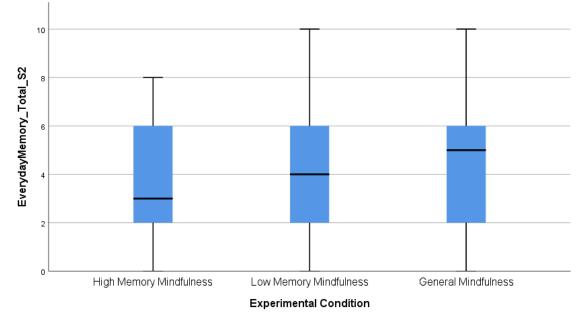
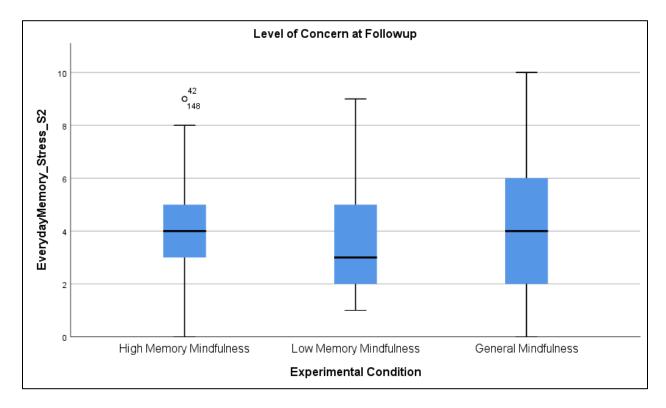



Figure 3.24. Boxplot of EMQ- Stress About Memory Lapses at T1

Figure 3.25. Table of inter-correlations among the variables of the BTACT

		C	orrelations					
ber		TWO_WLR_U nique	TWO_Digit_S pan	TWO_CF_Uni que	TWO_RGA_N ormal	TWO_RGA_R everse	TWO_RGAEx perimental	TWO_WLR_D _Unique
TWO_WLR_Unique	Pearson Correlation	1	.316**	.143	.156	.036	.084	.697**
	Sig. (2-tailed)		.000	.081	.057	.662	.307	.000
	N	150	149	149	149	149	149	149
TWO_Digit_Span	Pearson Correlation	.316**	1	.192*	007	.007	096	.199
	Sig. (2-tailed)	.000		.019	.936	.937	.248	.015
	N	149	149	148	148	148	148	148
TWO_CF_Unique	Pearson Correlation	.143	.192*	1	087	022	063	.257**
	Sig. (2-tailed)	.081	.019		.291	.790	.445	.002
	N	149	148	149	148	148	148	148
TWO_RGA_Normal	Pearson Correlation	.156	007	087	1	.294**	.047	.129
	Sig. (2-tailed)	.057	.936	.291		.000	.567	.116
	N	149	148	148	150	150	150	149
TWO_RGA_Reverse	Pearson Correlation	.036	.007	022	.294**	1	.152	.164
	Sig. (2-tailed)	.662	.937	.790	.000		.063	.046
	Ν	149	148	148	150	150	150	149
TWO_RGAExperimental	Pearson Correlation	.084	096	063	.047	.152	1	.038
	Sig. (2-tailed)	.307	.248	.445	.567	.063		.642
	N	149	148	148	150	150	150	149
TWO_WLR_D_Unique	Pearson Correlation	.697**	.199*	.257**	.129	.164*	.038	1
	Sig. (2-tailed)	.000	.015	.002	.116	.046	.642	
	N	149	148	148	149	149	149	149

Figure 3.26. Test of Homogeneity of Variance for the BTACT subtests

Imputation Nu	mber		Levene Statistic	df1	df2	Sig.
Original data	TWO_WLR_Unique	Based on Mean	.369	2	144	.692
		Based on Median	.295	2	144	.745
		Based on Median and with adjusted df	.295	2	142.463	.745
		Based on trimmed mean	.388	2	144	.679
	TWO_Digit_Span	Based on Mean	2.313	2	144	.103
		Based on Median	2.110	2	144	.125
		Based on Median and with adjusted df	2.110	2	137.952	.125
		Based on trimmed mean	2.375	2	144	.097
	TWO_CF_Unique	Based on Mean	1.624	2	144	.201
		Based on Median	.923	2	144	.400
		Based on Median and with adjusted df	.923	2	142.691	.400
		Based on trimmed mean	1.530	2	144	.220
	TWO_RGA_Normal	Based on Mean	2.253	2	144	.109
		Based on Median	.527	2	144	.592
		Based on Median and with adjusted df	.527	2	124.001	.592
		Based on trimmed mean	1.610	2	144	.203
	TWO_RGA_Reverse	Based on Mean	3.899	2	144	.022
		Based on Median	1.220	2	144	.298
		Based on Median and with adjusted df	1.220	2	135.680	.299
		Based on trimmed mean	3.418	2	144	.035
	TWO_RGAExperimental	Based on Mean	1.434	2	144	.242
		Based on Median	.654	2	144	.522
		Based on Median and with adjusted df	.654	2	113.427	.522
		Based on trimmed	.924	2	144	.399
	TWO_WLR_D_Unique	Based on Mean	.903	2	144	.408
		Based on Median	.751	2	144	.474
		Based on Median and with adjusted df	.751	2	140.267	.474
		Based on trimmed mean	.925	2	144	.399

Figure 3.27. Descriptive Statistics of Participant Age across Experimental Conditions

Age			Desc	riptives				
nye					95% Confiden Me			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
High Memory Mindfulness	49	69.47	3.808	.544	68.38	70.56	62	80
Low Memory Mindfulness	52	68.72	9.787	1.357	66.00	71.45	4	80
General Mindfulness	55	68.93	9.371	1.264	66.39	71.46	7	80
Total	156	69.03	8.167	.654	67.74	70.32	4	80

Figure 3.28. Descriptive Statistics of Participant Education across Experimental Conditions

			Desc	riptives				
How many years of formal so	hooling did:	you have? (12= finished high	school, 16=f	inished undergra	duate)		
					95% Confiden Me			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
High Memory Mindfulness	49	16.70	3.753	.536	15.62	17.78	-1	24
Low Memory Mindfulness	52	16.74	4.507	.625	15.48	17.99	-2	25
General Mindfulness	55	17.38	2.384	.321	16.74	18.03	12	23
Total	156	16.95	3.623	.290	16.38	17.53	-2	25

Figure 3.28. One-way ANOVA Comparing Age Across Experimental Condition

		ANOVA			
Age					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	15.016	2	7.508	.111	.895
Within Groups	10323.436	153	67.473		
Total	10338.452	155			

Figure 3.29. One-way ANOVA Comparing Education Across Experimental Condition

		ANOVA	,		
How many years of	formal schooling	did you hav	e? (12= finished h	nigh school,	16=finishe
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	15.662	2	7.831	.593	.554
Within Groups	2019.159	153	13.197		
Total	2034.820	155			

Figure 3.30. Descriptive Statistics of Geriatric Depression Scale Scores across Experimental

Conditions

			Desc	riptives				
Geriatric Depression Scale								
					95% Confiden Me			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
High Memory Mindfulness	49	5.84	1.724	.246	5.34	6.33	2	10
Low Memory Mindfulness	52	5.73	1.359	.188	5.35	6.11	3	9
General Mindfulness	55	5.80	1.556	.210	5.38	6.22	2	10
Total	156	5.79	1.541	.123	5.54	6.03	2	10

Figure 3.31. Descriptive Statistics of Langer Mindfulness Scale Scores across Experimental

Conditions

			Desc	riptives				
Langer Mindfulness Scale - "	Total - Sess	ion 1						
					95% Confiden Me			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
High Memory Mindfulness	49	77.69	9.986	1.427	74.83	80.56	47	97
Low Memory Mindfulness	52	78.15	8.987	1.246	75.65	80.66	57	97
General Mindfulness	55	74.76	10.963	1.478	71.80	77.73	43	95
Total	156	76.81	10.083	.807	75.22	78.41	43	97

Figure 3.32. One-way ANOVA Comparing Geriatric Depression Scale Scores Across

Experimental Conditions

		ANOVA			
Geriatric Depressio	n Scale				
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.295	2	.147	.061	.941
Within Groups	367.725	153	2.403		
Total	368.019	155			

Figure 3.33. One-way ANOVA Comparing Langer Mindfulness Scale Scores Across

Experimental Conditions

	ANOVA			
Scale - Total - Se	ession 1			
Sum of Squares	df	Mean Square	F	Sig.
362.504	2	181.252	1.801	.169
15395.105	153	100.622		
15757.609	155			
	Sum of Squares 362.504 15395.105	Scale - Total - Session 1 Sum of Squares 362.504 15395.105	Sum of Squares df Mean Square 362.504 2 181.252 15395.105 153 100.622	Scale - Total - Session 1 Sum of Squares df Mean Square F 362.504 2 181.252 1.801 15395.105 153 100.622 1

Figure 3.34. Test of Equality of Means for "Present Ability" at TO

Memory Controllability Inventory- Present Ability						
	Statistic ^a	df1	df2	Sig.		
Welch	.379	2	100.496	.686		
Brown-Forsythe	.348	2	143.074	.707		

Figure 3.35. ANCOVA Results for "Present Ability"

Dependent Variable: M	emory Controllabilit	y Inventory	_Present Ability			
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	1315.277ª	3	438.426	77.970	.000	.606
Intercept	112.142	1	112.142	19.943	.000	.116
MCI_PresentAbility_S1	1310.703	1	1310.703	233.096	.000	.605
Condition	15.881	2	7.941	1.412	.247	.018
Error	854.697	152	5.623			
Total	35786.000	156				
Corrected Total	2169.974	155				

Figure 3.36. Estimated Marginal Means for "Present Ability" at T1

Deservation Maria		imates		
Dependent Variable: Mem	ory Controlla	plinty inventor	y _Present Ability	
			95% Confide	ence Interval
Experimental Condition	Mean	Std. Error	Lower Bound	Upper Bound
High Memory Mindfulness	14.982 ^a	.339	14.313	15.651
Low Memory Mindfulness	14.236 ^a	.329	13.586	14.887
General Mindfulness 14.829 ^a		.320	14.197	15.461

Figure 3.37. Test of Equality of Means for "Potential Improvement" at T0

Robu	st Tests o	f Equality	of Means			
Memory Controllability Inventory - Potential Improvement						
	Statistic ^a	df1	df2	Sig.		
Welch	2.127	2	96.822	.125		
Brown-Forsythe	2.182	2	133.528	.117		

Figure 3.38 .	ANCOVA Results for "Potential Improvement"

Dependent Variable: Mem	ory Controllability In	ventory - P	otential Improvem	hent		
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	613.222ª	3	204.407	56.800	.000	.529
Intercept	112.890	1	112.890	31.369	.000	.171
MCI_PotentialImproveme nt_S1	608.609	1	608.609	169.117	.000	.527
Condition	11.729	2	5.865	1.630	.199	.021
Error	547.009	152	3.599			
Total	40142.000	156				
Corrected Total	1160.231	155				

Figure 3.39.	Estimated Marginal Mean	ns for "Potential In	nprovement" at T1

Dependent Variable: Mem	ory Controlla	bility Inventor	y - Potential Impr	ovement
			95% Confide	ence Interval
Experimental Condition	Mean	Std. Error	Lower Bound	Upper Bound
High Memory Mindfulness	16.050ª	.273	15.510	16.590
Low Memory Mindfulness	15.974 ^a	.263	15.454	16.494
General Mindfulness	15.434 ^a	.257	14.926	15.943

Figure 3.40. Test of Equality of Means for "Effort Utility" at T0

		ANOVA			
Memory Controllabi	lity Inventory- Effor	rt Utility			
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	12.723	2	6.362	.789	.456
Within Groups	1233.296	153	8.061		
Total	1246.019	155			

Dependent Variable:	Memory Controlla	Memory Controllability Inventory - Effort Utility						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared		
Corrected Model	606.533 ^a	3	202.178	49.542	.000	.494		
Intercept	96.046	1	96.046	23.535	.000	.134		
MCI_EffortUtility_S1	602.601	1	602.601	147.661	.000	.493		
Condition	12.192	2	6.096	1.494	.228	.019		
Error	620.307	152	4.081					
Total	36477.000	156						
Corrected Total	1226.840	155						

Figure 3.41. ANCOVA Results for "Effort Utility"

Ē

Figure 3.42. Estimated Marginal Means for "Effort Utility" at T1

Dependent Variable: Mem	ory Controlla	bility Inventor	y - Effort Utility	
			95% Confide	ence Interval
Experimental Condition	Mean	Std. Error	Lower Bound	Upper Bound
High Memory Mindfulness	15.002 ^a	.289	14.431	15.572
.ow Memory Mindfulness	14.698 ^a	.281	14.143	15.254
General Mindfulness	15.374 ^a	.273	14.836	15.913

Figure 3.43. T	est of Equality of Mean	ns for "Independence" at T0
----------------	-------------------------	-----------------------------

ANOVA								
Memory Controllability Inventory- Independence								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	14.023	2	7.012	.606	.547			
Within Groups	1768.951	153	11.562					
Total	1782.974	155						

Figure 3.44. ANCOVA Results for "Independence"

Dependent Variable: Me	mory Controllability	Inventory -	Independence			
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	829.808 ^a	3	276.603	45.878	.000	.475
Intercept	132.409	1	132.409	21.962	.000	.126
MCI_Independence_S1	828.729	1	828.729	137.456	.000	.475
Condition	4.086	2	2.043	.339	.713	.004
Error	916.417	152	6.029			
Total	27055.000	156				
Corrected Total	1746.224	155				

Figure 3.45.	Estimated Ma	rginal Means	for "Inden	endence"	at T1
		- 8			

Dependent Variable: Mem	ory Controlla	bility Inventor	y - Independence	9
			95% Confide	ence Interval
Experimental Condition	Mean	Std. Error	Lower Bound	Upper Bound
High Memory Mindfulness	12.923ª	.352	12.228	13.618
Low Memory Mindfulness	12.525 ^a	.341	11.851	13.198
General Mindfulness	12.773 ^a	.331	12.118	13.427

Figure 3.46. Test of Equality of Means for "Inevitable Decrement" at T0

ANOVA									
Memory Controllability Inventory- Inevitable Decrement									
	Sum of Squares	df	Mean Square	F	Sig.				
Between Groups	19.701	2	9.851	.753	.473				
Within Groups	2002.472	153	13.088						
Total	2022.173	155							

Dependent Variable: Mem	ory Controllability In	ventory- In	evitable Decreme	nt		
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	1161.191 ^a	3	387.064	64.406	.000	.560
Intercept	139.457	1	139.457	23.205	.000	.132
MCI_InevitableDecrement _S1	1100.136	1	1100.136	183.060	.000	.546
Condition	39.607	2	19.804	3.295	.040	.042
Error	913.476	152	6.010			
Total	18732.000	156				
Corrected Total	2074.667	155				

Figure 3.47. ANCOVA Results for "Inevitable Decrement"

Dependent Variable: Mem	ory Controlla	bility Inventor	y- Inevitable Deci	rement
			95% Confide	ence Interval
Experimental Condition	Mean	Std. Error	Lower Bound	Upper Bound
High Memory Mindfulness	10.636 ^a	.351	9.942	11.330
Low Memory Mindfulness	10.767 ^a	.340	10.094	11.439
General Mindfulness	9.654 ^a	.331	9.001	10.307

Figure 3.49. Pairwise comparisons for Estimated Marginal Means of "Inevitable Decrement"

Dependent Variable: Merr	ory Controllability Inventory- In	evitable Decreme	nt			
	()). Ever entre entre l	Mean Difference (l-		Sig.ª	95% Confidence Interval for Difference ^a	
(I) Experimental Condition	(J) Experimental Condition	J)	Std. Error		Lower Bound	Upper Bound
High Memory	Low Memory Mindfulness	130	.490	1.000	-1.317	1.056
lindfulness	General Mindfulness	.982	.483	.131	187	2.151
Low Memory Mindfulness	High Memory Mindfulness	.130	.490	1.000	-1.056	1.317
	General Mindfulness	1.113	.474	.061	035	2.261
General Mindfulness	High Memory Mindfulness	982	.483	.131	-2.151	.187
	Low Memory Mindfulness	-1.113	.474	.061	-2.261	.035

Figure 3.50. Test of Equality of Means for "Alzheimer's Likelihood" at T0

ANOVA									
Memory Controllability Inventory - Alzheimer's Likelihood									
	Sum of Squares	df	Mean Square	F	Sig.				
Between Groups	66.503	2	33.251	1.466	.234				
Within Groups	3469.722	153	22.678						
Total	3536.224	155							

Dependent Variable: M	emory Controllabilit	y Inventory	- Alzheimer's Lik	elihood		
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	2785.192 ^a	3	928.397	78.133	.000	.607
Intercept	38.863	1	38.863	3.271	.073	.021
MCI_AlzLikelihood_S1	2701.714	1	2701.714	227.372	.000	.599
Condition	80.199	2	40.100	3.375	.037	.043
Error	1806.116	152	11.882			
Total	36698.000	156				
Corrected Total	4591.308	155				

Figure 3.51. ANCOVA Results for "Alzheimer's Likelihood"

Figure 3.52. Estimated Marginal Means for "Alzheimer's Likelihood" at T1

Dependent Variable: Mem	ory Controlla	bility Inventor	y - Alzheimer's Li	kelihood		
95% Confidence Interval						
Experimental Condition	Mean	Std. Error	Lower Bound	Upper Bound		
High Memory Mindfulness	13.608ª	.493	12.634	14.582		
Low Memory Mindfulness	15.325 ^a	.479	14.378	16.271		
General Mindfulness	14.078 ^a	.468	13.154	15.002		

Figure 3.53. Pai	rwise comparisons	for Estimated Marginal Means	of "Alzheimer's Likelihood"
8	r r r r r r r r r r r r r r r r r r r		

(I) Experimental	(J) Experimental	Mean Difference (I-		o: h	95% Confidence Interval for Difference ^b	
Condition	Condition	J)	Std. Error	Sig. ^b	Lower Bound	Upper Bound
High Memory Mindfulness	Low Memory Mindfulness	-1.716	.686	.040	-3.378	055
minalumess	General Mindfulness	470	.681	1.000	-2.119	1.179
Low Memory Mindfulness	High Memory Mindfulness	1.716 [*]	.686	.040	.055	3.378
	General Mindfulness	1.246	.672	.197	381	2.873
General Mindfulness	High Memory Mindfulness	.470	.681	1.000	-1.179	2.119
	Low Memory Mindfulness	-1.246	.672	.197	-2.873	.381
Based on estimated margi	nal means					

Figure 3.54. Test of Equality of Means for "Reported Memory Lapses" at TO

ANOVA								
EverydayMemory_Total_S1								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	11.630	2	5.815	1.082	.341			
Within Groups	822.139	153	5.373					
Total	833.769	155						

	lests of	Between	-Subjects Effe	ects		
Dependent Variable: Every	/dayMemory_Total_	S2				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	113.813ª	3	37.938	6.944	.000	.121
Intercept	141.453	1	141.453	25.892	.000	.146
EverydayMemory_Total_S 1	107.578	1	107.578	19.691	.000	.115
Condition	9.846	2	4.923	.901	.408	.012
Error	830.411	152	5.463			
Total	3529.000	156				
Corrected Total	944.224	155				

Figure 3.55. ANCOVA Results for "Reported Memory Lapses"

Figure 3.56. Estimated Marginal Means for "Reported Memory Lapses"

Dependent Variable: Every		imates _Total_S2							
95% Confidence Interval									
Experimental Condition	Mean	Std. Error	Lower Bound	Upper Bound					
High Memory Mindfulness	3.717 ^a	.334	3.057	4.378					
Low Memory Mindfulness	4.331 ^a	.326	3.688	4.975					
General Mindfulness	4.138 ^a	.316	3.515	4.762					
a. Covariates appearing i EverydayMemory_Total		are evaluate	d at the following	values:					

		ANOVA	i		
EverydayMemory_St	ress_S1				
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	2.136	2	1.068	.207	.813
Within Groups	790.300	153	5.165		
Total	792.436	155			

Figure 3.57. Test of Equality of Means for Memory-related Stress at T0

Figure 3.58. ANCOVA Results for Memory-related Stress Scores (Transformed)
--

Dependent Variable: Evero	dayMemory_Stress_	Reciproca	al			
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	.452 ^a	3	.151	2.849	.040	.055
Intercept	5.775	1	5.775	109.283	.000	.426
EverydayMemory_Stress_ S1	.352	1	.352	6.664	.011	.043
Condition	.116	2	.058	1.099	.336	.015
Error	7.768	147	.053			
Total	26.480	151				
Corrected Total	8.220	150				

Figure 3.59 .	Estimated Marginal Mean	ns for Memory-related Stres	s Scores (Transformed)

Dependent Variable: Ever	dayMemory_9	Stress_Recip	procal	
			95% Confid	ence Interval
Experimental Condition	Mean	Std. Error	Lower Bound	Upper Bound
High Memory Aindfulness	.323ª	.033	.258	.389
ow Memory Mindfulness	.386 ^a	.032	.323	.449
eneral Mindfulness	.332 ^a	.032	.268	.396

Figure 3.60. MANOVA for BTACT scores

			Multivari					
er	Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared
	Intercept	Pillai's Trace	1.000	91430.388 ^b	7.000	134.000	.000	1.000
		Wilks' Lambda	.000	91430.388 ^b	7.000	134.000	.000	1.000
		Hotelling's Trace	4776.214	91430.388 ^b	7.000	134.000	.000	1.000
		Roy's Largest Root	4776.214	91430.388 ^b	7.000	134.000	.000	1.000
	Condition	Pillai's Trace	.089	.899	14.000	270.000	.560	.045
		Wilks' Lambda	.913	.894 ^b	14.000	268.000	.566	.045
		Hotelling's Trace	.094	.888	14.000	266.000	.572	.045
		Roy's Largest Root	.059	1.137 ^c	7.000	135.000	.344	.056

			P	aired Sample	es Test				
				Paired Difference	es				
		Mean	Std . Deviation	Std. Error Mean	95% Confidenc the Diffe Lower		t	df	Sig. (2– tailed)
Pair 1	TWO_WLR_Unique - WLR_Unique	.188	2.394	.346	508	.883	.543	47	.590
Pair 2	TWO_Digit_Span - Digit_Span	.063	1.174	.169	278	.403	.369	47	.714
Pair 3	TWO_CF_Unique - CF_Unique	2.064	7.711	1.125	200	4.328	1.835	46	.073
Pair 4	TWO_RGA_Normal - RGA_Normal	085	.408	.060	205	.035	-1.430	46	.160
Pair 5	TWO_RGA_Reverse – RGA_Reverse	.085	.654	.095	107	.277	.892	46	.377
Pair 6	TWO_RGAExperimental - RGA_Experimental	.213	3.007	.439	670	1.096	.485	46	.630
Pair 7	TWO_WLR_D_Unique - WLR_D_Unique	.255	2.498	.364	478	.989	.701	46	.487

Figure 3.61. Paired-sample t-tests for BTACT in High Mindfulness Memory Condition

Figure 3.61. Paired-sample t-tests for BTACT in Low Mindfulness Memory Condition

			P	aired Sample	es Test				
				Paired Differen	ces				
		Maria	Std.	Std. Error Mean	95% Confidence the Diffe	erence		46	Sig. (2-
		Mean	Deviation	Mean	Lower	Upper	t	df	tailed)
Pair 1	TWO_Digit_Span – Digit_Span	.163	1.280	.183	205	.531	.893	48	.377
Pair 2	TWO_CF_Unique - CF_Unique	1.061	9.532	1.362	-1.677	3.799	.779	48	.440
Pair 3	TWO_WLR_Unique - WLR_Unique	.510	2.042	.292	076	1.097	1.749	48	.087
Pair 4	TWO_RGA_Normal - RGA_Normal	.040	.402	.057	074	.154	.704	49	.485
Pair 5	TWO_RGA_Reverse – RGA_Reverse	040	.638	.090	221	.141	444	49	.659
Pair 6	TWO_RGAExperimental - RGA_Experimental	.020	1.421	.201	384	.424	.100	49	.921
Pair 7	TWO_WLR_D_Unique - WLR_D_Unique	.061	2.726	.389	722	.844	.157	48	.876

			P	aired Sample	es Test				
				Paired Differen	ces				
		Mean	Std . Deviation	Std. Error Mean	95% Confidenc the Diffe Lower		t	df	Sig. (2– tailed)
Pair 1	TWO_Digit_Span - Digit_Span	.231	1.231	.171	112	.573	1.352	51	.182
Pair 2	TWO_CF_Unique - CF_Unique	.865	7.675	1.064	-1.271	3.002	.813	51	.420
Pair 3	TWO_WLR_Unique - WLR_Unique	.151	2.152	.296	442	.744	.511	52	.612
Pair 4	TWO_RGA_Normal - RGA_Normal	.000	.480	.066	132	.132	.000	52	1.000
Pair 5	TWO_RGA_Reverse – RGA_Reverse	019	.720	.099	217	.180	191	52	.850
Pair 6	TWO_RGAExperimental - RGA_Experimental	.528	3.667	.504	482	1.539	1.049	52	.299
Pair 7	TWO_WLR_D_Unique - WLR_D_Unique	.170	1.939	.266	365	.704	.638	52	.527

Figure 3.62. Paired-sample t-tests for BTACT in General Mindfulness Memory Condition

Figure 3.63. Chi-square test for effect of LMS Quartile on Subjective Memory Score

_

		Lapses_Cha	ange_String			
		Decreases	Increases	Total		
LMS_25	Bottom 25%	19	9	28		
	Top 25%	26	16	42		
Total		45	25	70		
		Value	df	Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
		Value	df	(2-sided)	sided)	sided)
	Chi-Square	.259ª	1	.611		
Continuity	Correction ^b	.065	1	.799		
	d Ratio	.261	1	.610		
Likelihoo	xactTest				.799	.402
Likelihoo Fisher's E		.256	1	.613		

Count						
		Stress_Cha	nge_String			
		Decrease	Increase	Total		
LMS_25	Bottom 25%	19	14	33		
	Top 25%	22	15	37		
Total		41	29	70		
			Chi-Squai	Asymptotic	Exact Sig. (2-	Exact Sig. (1-
		Value	Chi-Squai		Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson	Chi-Square	Value .026ª		Asymptotic Significance		
	Chi-Square / Correction ^b		df	Asymptotic Significance (2-sided)		
Continuity	/ Correction ^b	.026 ^a	df 1	Asymptotic Significance (2-sided) .873		
Continuity Likelihoo	/ Correction ^b	.026 ^a	df 1 1	Asymptotic Significance (2-sided) .873 1.000		
Continuity Likelihoo	/ Correction ^b d Ratio Exact Test -Linear	.026 ^a	df 1 1	Asymptotic Significance (2-sided) .873 1.000	sided)	sided)

Figure 3.64. Chi-square test for effect of LMS Quartile on Stress about Memory

Figure 3.65.	Chi-square test	for Effect of LMS	Ouartile on MCI-	Present Ability
0	1		•	2

~ .							
Count		Descent Abili		01-1-1-1			
		Present_Abili					
		Decreased	Increa	ased	Total		
LMS_25	Bottom 25%	12	!	17	2	9	
	Top 25%	15	;	22	3	7	
Total		27	,	39	6	6	
			Chi-Squa	Asym Signifi	ptotic cance	Exact Sig. (2-	Exact Sig. (1-
		(Value	Chi-Squa	Asym	ptotic cance	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson	Chi-Square		-	Asym Signifi	ptotic cance		
	Chi-Square / Correction ^b	Value	df	Asym Signifi	ptotic cance ded)		
	Correction ^b	Value .005 ^a	df 1	Asym Signifi	ptotic cance ded) .945		
Continuity	r Correction ^b d Ratio	Value .005 ^a .000	df 1 1	Asym Signifi	ptotic cance ded) .945 1.000		
Continuity Likelihood	r Correction ^b d Ratio Exact Test -Linear	Value .005 ^a .000	df 1 1	Asym Signifi	ptotic cance ded) .945 1.000	sided)	sided)

Figure 3.66. Chi-square test for Effect of LMS Quartile on MCI- Potential Improvement

LMS_25 * Potential_Improvement_Change_String Crosstabulation

Count							
			Potential_Improvement_Chang e_String				
		Decreased	Increased	Total			
LMS_25	Bottom 25%	12	13	25			
	Top 25%	17	21	38			
Total		29	34	63			

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.065 ^a	1	.799		
Continuity Correction ^b	.000	1	1.000		
Likelihood Ratio	.065	1	.799		
Fisher's Exact Test				1.000	.501
Linear-by-Linear Association	.064	1	.801		
N of Valid Cases	63			-	

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 11.51.

Figure 3.67 .	Chi-square test	for effect of LMS	Quartile on MCI-	Effort Utility

Count							
		Effort_Utility_C	Change Str	ing			
		Decreased	Increase	-	Total		
LMS_25	Bottom 25%	19		9	28	-	
	Top 25%	22		13	35		
Total		41		22	63	_	
			hi-Squa	Asym Signifi	ptotic icance	Exact Sig. (2-	Exact Sig. (1-
		Value	chi-Squai	Asym Signifi	ptotic	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson	Chi-Square		-	Asym Signifi	ptotic icance		
	Chi-Square / Correction ^b	Value	df	Asym Signifi	ptotic icance ided)		
	Correction ^b	Value .171 ^a	df 1	Asym Signifi	ptotic icance ided) .679		
Continuity	r Correction ^b d Ratio	Value .171 ^ª .022	df 1 1	Asym Signifi	iptotic icance ided) .679 .883		
Continuity Likelihoo	r Correction ^b d Ratio Exact Test -Linear	Value .171 ^ª .022	df 1 1	Asym Signifi	iptotic icance ided) .679 .883	sided)	sided)

Count							
oount		Independence	Change	String			
		Decreased	Increa		Total		
LMS_25	Bottom 25%	14		13	27	,	
	Top 25%	26		14	40		
Total		40		27	67	,	
					rs i i		
		Value	t hi-Squa i	Asym Signifi	ts ptotic cance ided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson (Chi-Square		-	Asym Signifi	ptotic cance		
	Chi-Square / Correction ^b	Value	df	Asym Signifi	ptotic cance ided)		
	Correction ^b	Value 1.158 ^a	df 1	Asym Signifi	ptotic cance ided) .282		
Continuity Likelihood	Correction ^b	Value 1.158 ^a .676	df 1 1	Asym Signifi	ptotic cance ided) .282 .411		
Continuity Likelihood	Correction ^b d Ratio Exact Test Linear	Value 1.158 ^a .676	df 1 1	Asym Signifi	ptotic cance ided) .282 .411	sided)	sided)

Figure 3.68. Chi-square test for effect of LMS Quartile on MCI- Independence

Figure 3.69. Chi-square test for effect of LMS	S Quartile on MCI- Inevitable Decrement
--	---

LMS_25 * Inev_Decrement_Change_String Crosstabulation

Count							
		Inev_Decremen g	Inev_Decrement_Change_Strin g				
		Decreased	Increased	Total			
LMS_25	Bottom 25%	15	15	30			
	Top 25%	18	20	38			
Total		33	35	68			

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.046 ^a	1	.829		
Continuity Correction ^b	.000	1	1.000		
Likelihood Ratio	.046	1	.829		
Fisher's Exact Test				1.000	.511
Linear-by-Linear Association	.046	1	.831		
N of Valid Cases	68				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 14.56.

Figure 3.70. Chi-square test for effect of LMS Quartile on MCI- Alzheimer's Likelihood

LMS_25 * Alz_Change_String Crosstabulation

Count				
		Alz_Chang	je_String	
		Decreased	Increased	Total
LMS_25	Bottom 25%	15	16	31
	Top 25%	20	18	38
Total		35	34	69

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.123 ^a	1	.726		
Continuity Correction ^b	.012	1	.913		
Likelihood Ratio	.123	1	.726		
Fisher's Exact Test				.811	.457
Linear-by-Linear Association	.121	1	.728		
N of Valid Cases	69				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 15.28.

Figure 3.71. Chi-square test for effect of LMS Quartile on BTACT - Red-Green Accuracy Test

Improvement

		Change_R	GA_String			
		Decreased	Increased	Total		
LMS_25	Bottom 25%	9	7	16		
	Top 25%	12	10	22		
Total		21	17	38		
		Value	df	Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
D	Dhi Onuana	.011 ^a	1	.917	sidedy	sided)
	Chi-Square	_				
		.000	1	1.000		
Continuity			1	.917		
		.011				
Continuity	l Ratio	.011			1.000	.590
Continuity Likelihood	l Ratio xact Test Linear	.011	1	.918	1.000	.590

Figure 3.72. Chi-square test for effect of LMS Quartile on BTACT - Category Fluency

Improvement

		Change_CF_	Jnique_Str	ing			
		Decreased	Increase	ed Tota	al		
LMS_25	Bottom 25%	11		21	32		
	Top 25%	17		27	44		
Total		28		48	76	_	
				re Tests Asymptot Significan		Exact Sig. (2-	Exact Sig. (1-
			-	Asymptot Significan	ice		
Pearson (Chi-Square	Value	df	Asymptot Significan (2-sideo	ice 1)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
	Chi-Square / Correction ^b		-	Asymptot Significan (2-sideo	ice		
Continuity	Correction ^b	Value .145 ^a	df 1	Asymptot Significan (2-sidec	ice 1) 704		
Continuity _ikelihood	Correction ^b	Value .145 ^a .019	df 1 1	Asymptot Significan (2-sidec	ice 1) 704 889		
Continuity _ikelihood	Correction ^b d Ratio xact Test Linear	Value .145 ^a .019	df 1 1	Asymptot Significan (2-sideo	ice 1) 704 889	sided)	sided)

Figure 3.73. Chi-square test for effect of LMS Quartile on BTACT- Word List Recall (Delay)

Improvement

Count							
		Change_WLR		e_Strin			
		Decreased	g Incre	ased	Total		
LMS_25	Bottom 25%	14		13	2	27	
_	Top 25%	20		21	4	1	
Total		34		34	6	38	
		c	Chi-Squa	Asymp	totic		
		Value	chi-Squa		totic ance	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson	Chi-Square		-	Asymp Signific	totic ance		
	Chi-Square Correction ^b	Value	df	Asymp Signific	totic ance led)		
	Correction ^b	Value .061 ^ª	df 1	Asymp Signific	totic ance led) .804		
Continuity Likelihoo	Correction ^b	Value .061 ^ª .000	df 1 1	Asymp Signific	totic ance led) .804 1.000		
Continuity	Correction ^b d Ratio xact Test Linear	Value .061 ^ª .000	df 1 1	Asymp Signific	totic ance led) .804 1.000	sided)	sided)

Figure 3.74. Chi-square test for effect of LMS Quartile on BTACT - Digit Span Improvement

	LMS_25 * Ch Cr	ange_Digits osstabulatio		
Count				
		Change_Digi	tSpan_String	
		Decreased	Increased	Total
LMS_25	Bottom 25%	9	10	19
	Top 25%	10	17	27
Total		19	27	46

	C	Chi-Squa	re Tests		
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.491 ^a	1	.483		
Continuity Correction ^b	.157	1	.692		
Likelihood Ratio	.490	1	.484		
Fisher's Exact Test				.552	.345
Linear-by-Linear Association	.480	1	.488		
N of Valid Cases	46				

Figure 3.75. Chi-square test for effect of Memory Concern Quartile (Top and Bottom 25%) on

Subjective Memory Performance

Ē

	Crossta				
Count					
		Lapses_Ch	ange_String		
		Decreases	Increases	Total	
Concern_Quartiles	Least concern	34	12	46	
	Mostconcern	28	21	49	
Total		62	33	95	
		Chi-Squar	Asymptotic		
	Value		Asymptotic Significance	Exact Sig. (2-	Exact Sig. (1-
Pearson Chi-Square	Value 2 943ª	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square Continuity Correction ^b	Value 2.943 ^a 2.250		Asymptotic Significance		
	2.943 ^a	df 1	Asymptotic Significance (2-sided) .086		
Continuity Correction ^b	2.943 ^a 2.250	df 1 1	Asymptotic Significance (2-sided) .086 .134		
Continuity Correction ^b Likelihood Ratio	2.943 ^a 2.250	df 1 1	Asymptotic Significance (2-sided) .086 .134	sided)	sided)

Figure 3.76. Chi-square test for effect of Memory Concern Quartile (Top and Bottom 25%) on

MCI- Present Ability

		stabulation	ty_Change_St		
Count	0,03	Jabalation			
		Present_Abi	ility_Change_Strir	ng	
		Decreased	Increased	Total	
Concern_Quartiles	Least concern	1	17 :	22 39	
	Most concern	1	19 :	32 51	
Total		3	36 !	54 90	
		Chi-Squa			
		Chi-Squa	Asymptotic	Event Sig /2	Event Sig. (1
	Value	Chi-Squar		Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square		df	Asymptotic Significance		
Pearson Chi-Square Continuity Correctior	.370 ^a	df	Asymptotic Significance (2-sided)		
Pearson Chi-Square Continuity Correctior Likelihood Ratio	.370 ^a	df 1	Asymptotic Significance (2-sided) .543		
Continuity Correction	.370 ^a	df 1 1	Asymptotic Significance (2-sided) .543 .696		sided)
Continuity Correction Likelihood Ratio	.370 ^a	df 1 1	Asymptotic Significance (2-sided) .543 .696	sided)	

Figure 3.77. Chi-square test for effect of Memory Concern Quartile (Top and Bottom 25%) on

MCI- Potential Improvement

г

		stabulation			
Count					
			nprovement_Cha e_String	ng	
		Decreased	d Increased	l Total	
Concern_Quartiles	Least concern	1	19	22 41	
	Most concern		21	28 49	
Total		4	40	50 90	
		Chi-Squa			
		Chi-Squa	Asymptotic	Event Sig. (2	Event Sig. /1
	Value	Chi-Squar df		Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square		df	Asymptotic Significance		
	.110ª	df 1	Asymptotic Significance (2-sided)		
Pearson Chi-Square Continuity Correctior Likelihood Ratio	.110ª	df 1 1	Asymptotic Significance (2-sided) .740		
Continuity Correction Likelihood Ratio	.110 ^a .014	df 1 1	Asymptotic Significance (2-sided) .740 .906		
Continuity Correction	.110 ^a .014	df 1 1 1	Asymptotic Significance (2-sided) .740 .906	sided)	sided)

Figure 3.78. Chi-square test for effect of Memory Concern Quartile (Top and Bottom 25%) on

MCI- Effort Utility

		bulation			
Count					
		Effort_Utility_	Change_String		
		Decreased	Increased	Total	
Concern_Quartiles L	east concern	28	13	41	
N	lost concern	24	19	43	
Total		52	32	84	
		Chi-Squar	Asymptotic	Exact Sig. (2-	Exact Sig (1-
	Value	Chi-Squar		Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square			Asymptotic Significance		
Pearson Chi-Square Continuity Correction ^b	Value	df	Asymptotic Significance (2-sided)		
	Value 1.386ª	df 1	Asymptotic Significance (2-sided) .239		
Continuity Correction ^b	Value 1.386ª .907	df 1 1	Asymptotic Significance (2-sided) .239 .341		sided)
Likelihood Ratio	Value 1.386ª .907	df 1 1	Asymptotic Significance (2-sided) .239 .341	sided)	

Figure 3.79. Chi-square test for effect of Memory Concern Quartile (Top and Bottom 25%) on

MCI-Independence

Г

	Cross	stabulation			
Count					
		Independend	ce_Change_Strin	g	
		Decreased	Increased	Total	
Concern_Quartiles	Least concern	2	2 2	0 42	
	Most concern	33	2 1	7 49	
Total		5-	4 3	7 91	
		Chi-Squar	Asymptotic	Event Rig (2	Evact Sig (1
		Chi-Squar	Asymptotic Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square			Asymptotic Significance	2.	
Pearson Chi-Square Continuity Correctior	1.566 ^a	df	Asymptotic Significance (2-sided)	2.	
	1.566 ^a	df 1	Asymptotic Significance (2-sided) .211	2.	
Continuity Correction	1.566 ^a	df 1 1	Asymptotic Significance (2-sided) .211 .300	2.	sided)
Continuity Correction Likelihood Ratio	1.566 ^a	df 1 1	Asymptotic Significance (2-sided) .211 .300	sided)	2.

Figure 3.80. Chi-square test for effect of Memory Concern Quartile (Top and Bottom 25%) on

MCI-Inevitable Decrement

	Cross	tabulation			
Count					
		Inev_Decreme	nt_Change_Stri g	n	
		Decreased	Increased	Total	
Concern_Quartiles	Least concern	20	2	3 43	
	Most concern	20	2	8 48	
Total		40	5	1 91	
		Chi-Square			
	Value		Tests Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	Value .216ª		Asymptotic Significance		
	.216 ^a	df	Asymptotic Significance (2-sided)		
Continuity Correction	.216 ^a	df 1	Asymptotic Significance (2-sided) .642		
Continuity Correction Likelihood Ratio	.216 ^a	df 5	Asymptotic Significance (2-sided) .642 .800		
Pearson Chi-Square Continuity Correction Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association	.216 ^a	df 5	Asymptotic Significance (2-sided) .642 .800	sided)	sided)

Figure 3.81. Chi-square test for effect of Memory Concern Quartile (Top and Bottom 25%) on

MCI-Alzheimer's Likelihood

		Alz_Chan	ge_String		
		Decreased	Increased	Total	
Concern_Quartiles	Least concern	26	21	47	
	Most concern	23	30	53	
Total		49	51	100	
Baaraan Chi Sayara	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	1.417 ^a	1	.234		
	.980	1	.322		
Continuity Correction ^b	.300				
	1.420	1	.233		
Continuity Correction ^b		1	.233	.316	.161
Continuity Correction ^b Likelihood Ratio		1	.233	.316	.161

Figure 3.82. Chi-square test for effect of Memory Concern Quartile (Top and Bottom 25%) on

BTACT- Category Fluency

Count					
		Change_CF_	Unique_String		
		Decreased	Increased	Total	
Concern_Quartiles	Least concern	25	26	51	
	Most concern	25	30	55	
Total		50	56	106	
		Chi-Square	Asymptotic	5 1 (2	5
	Value	Chi-Square		Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square			Asymptotic Significance		
Pearson Chi-Square Continuity Correctior	.135 ^a	df	Asymptotic Significance (2-sided)		
	.135 ^a	df 1	Asymptotic Significance (2-sided) .713		
Continuity Correctior Likelihood Ratio	e .135 ^a	df 1 1	Asymptotic Significance (2-sided) .713 .863		
Continuity Correctior	e .135 ^a	df 1 1	Asymptotic Significance (2-sided) .713 .863	sided)	sided)

Figure 3.83. Chi-square test for effect of Memory Concern Quartile (Top and Bottom 25%) on

BTACT- Word List Recall (Delay)

Ē

Count						
		Change_WL	R_D_Unique_St	rin		
		Decreased	Increased	Т	otal	
Concern_Quartiles	Least concern	2	20	28	48	
	Most concern	1	9	23	42	
Total		3	9	51	90	
		Chi-Squar	Asymptotic			
	Value	Chi-Squar		Exact S side		Exact Sig. (1- sided)
Pearson Chi-Square			Asymptotic Significance			
	.116 ^a	df	Asymptotic Significance (2-sided)			
Continuity Correction	.116 ^a	df 1	Asymptotic Significance (2-sided) .733			
Continuity Correction Likelihood Ratio	.116 ^a	df 1 1	Asymptotic Significance (2-sided) .733 .898			
Pearson Chi-Square Continuity Correction Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association	.116 ^a	df 1 1	Asymptotic Significance (2-sided) .733 .898		(d)	sided)

Figure 3.84. Chi-square test for effect of Memory Concern Quartile (Top and Bottom 25%) on

BTACT- Digit Span

Count						
			Change_Dig	gitSpan_String		
			Decreased	Increased	Total	
Concern_Quartiles	Least	concern	13	20	33	
	Mosto	concern	19	12	31	
Total			32	32	64	
			Chi-Squai	Asymptotic	Evact Sig. (2-	Evact Sig. (1-
			Chi-Squai		Exact Sig. (2-	Exact Sig. (1-
		Value	Chi-Squai	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square)	Value 3.065ª		Asymptotic Significance		
Pearson Chi-Square Continuity Correctior			df	Asymptotic Significance (2-sided)		
		3.065 ^a	df 1	Asymptotic Significance (2-sided) .080		
Continuity Correction		3.065ª 2.252	df 1 1	Asymptotic Significance (2-sided) .080 .133		
Continuity Correction Likelihood Ratio		3.065ª 2.252	df 1 1	Asymptotic Significance (2-sided) .080 .133	sided)	sided)

Figure 3.85. Fisher's Exact test for effect of Memory Concern Quartile (Top and Bottom 25%)

on BTACT- Red-Green Accuracy Test

Γ

Count					
		Change_R	GA_String		
		Decreased	Increased	Total	
Concern_Quartiles	Least concern	7	14	21	
	Most concern	19	10	29	
Total		26	24	50	
		Chi-Squar	Asymptotic Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	Asymptotic Significance		
Pearson Chi-Square		df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
	5.055 ^a	df 1	Asymptotic Significance (2-sided) .025		
Continuity Correction	5.055 ^a	df 1 1	Asymptotic Significance (2-sided) .025 .050		
Continuity Correction Likelihood Ratio	5.055 ^a	df 1 1	Asymptotic Significance (2-sided) .025	sided)	sided)
Pearson Chi-Square Continuity Correction Likelihood Ratio Fisher's Exact Test	5.055 ^a	df 1 1	Asymptotic Significance (2-sided) .025 .050		
Continuity Correction Likelihood Ratio	5.055 ^a	df 1 1 1	Asymptotic Significance (2-sided) .025 .050	sided)	sided)

Appendix B: Supplementary Analyses for Pain Study

Full Analyses for MHLC-Internal.

A one-way ANOVA revealed that there were no significant differences among the three group means on MHLC-Internal scores at baseline, F(2, 153) = .14, p = .87 (see Appendix D, Figure 12.1).

Next we conducted our primary analysis, a one-way ANCOVA, which revealed the following: As expected, the covariate, MHLC-Internal scores at baseline, was significantly related to the follow-up MHLC-Internal scores (F(1,152) = 170.93, p < .001, partial $\eta^2 = .53$; see Appendix B, Figure 12.2). After adjusting for pre-intervention scores of MHLC-Internal, there was not a statistically significant difference in post-intervention scores among the three conditions, F(2, 152) = .41, p = .67, partial $\eta^2 = .005$. See Appendix D for the Estimated Marginal Means of the three conditions at T1 (Figures 12.3 and 12.4).

Paired-sample t-tests revealed the following: Participants' mean score did not change between baseline and follow for any of the groups (High Mindfulness Pain: t(52) = 1.30, p = .20; Low Mindfulness Pain: t(47) = .51, p = .61; General Mindfulness: t(54) = -.88, p = .38.

Full Analyses for PBAPI- "Pain as Mystery"

The data for this variable did not meet the statistical assumption that the error variances are homogenous, so we performed a reciprocal transformation on the dependent variable ("Pain as Mystery" at T1). A one-way ANOVA revealed that there were no significant differences among the three group means on the transformed "Pain as Mystery" scores at baseline, F(2, 153) = .06, p = .95.

Next we conducted our primary analysis, a one-way ANCOVA, which revealed the following: As expected, the covariate ("Pain as Mystery" scores at baseline) was significantly related to the follow-up "Pain as Mystery" scores (F(1,135) = 16.18, p < .001, partial $\eta^2 = .11$; see Appendix D, Figure 14.2). After adjusting for pre-intervention scores of the measure, there was not a statistically significant difference in post-intervention scores of "Pain as Mystery" among the three conditions, F(2, 135) = .21, p = .81, partial $\eta^2 = .003$ (Appendix D, Figures 14.3 and 14.4).

Paired-sample t-tests revealed the following: Participants' mean score did not change between baseline and follow for any of the groups (High Mindfulness Pain: t(52) = 1.30, p = .20; Low Mindfulness Pain: t(47) = .59, p = .56; General Mindfulness: t(54) = .71, p = .48).

Full Analyses for BPI- "Pain Right Now"

A one-way ANOVA revealed that there were no significant differences among the three group means on "Pain Right Now" scores at baseline, F(2, 153) = 1.22, p = .30 (see Appendix D, Figure 19.1).

Next we conducted our primary analysis, a one-way ANCOVA, which revealed the following: As expected, the covariate ("Pain Right Now" scores at baseline) was significantly related to the follow-up "Pain Right Now" scores (F(1,152) = 45.42, p < .001, partial $\eta^2 = .23$; see Appendix D, Figure 19.2). After adjusting for pre-intervention scores of the measure, there was not a statistically significant difference in post-intervention scores among the three conditions, F(2, 152) = .65, p = .52, partial $\eta^2 = .008$ (Appendix D, Figure 19.3 and 19.4).

Paired-sample t-tests revealed that none of the groups significantly changed on this measure (High Mindfulness Pain group, t(52) = -.092, p = .92; Low Mindfulness Pain group, t(47)=.36, p=.72; General Mindfulness group: t(54)=-1.14, p=.26).

Full Analyses for PCS- Helplessness

First we checked whether there were any significant baseline differences of "Helplessness" scores among the three conditions. A one-way ANOVA revealed that there were no significant differences among the three group means on "Helplessness" scores at baseline, F(2, 153) = 1.82, p = .17 (see Appendix D, Figure 22.1).

Next we conducted our primary analysis, a one-way ANCOVA to determine if there were differences in "Helplessness" scores at T1 among the three study conditions, taking into account the baseline scores. As expected, the covariate (scores at baseline) was significantly related to the follow-up scores (F(1,152) = 127.04, p < .001, partial $\eta^2 = .46$; see Appendix D, Figure 22.2). After adjusting for pre-intervention scores of the measure, we did not find a statistically significant difference in post-intervention scores among the three conditions, F(2, 152) = .61, p = .53, partial $\eta^2 = .008$ (Appendix D, Figures 22.3 and 22.4).

Paired-sample t-tests revealed that none of the groups significantly changed on this measure from baseline to follow-up (High Mindfulness Pain condition: t(52)=1.10, p=.28; Low Mindfulness Pain condition: t(47)=1.00, p=.32; General Mindfulness condition: t(53)=-1.73, p=.38).

ependent Variable: MHL	C_Internal.2				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	3439.915 ^a	5	687.983	34.525	.000
Intercept	463.722	1	463.722	23.271	.000
Condition	26.511	2	13.255	.665	.516
MHLC_Internal.1	3333.564	1	3333.564	167.290	.000
Condition * MHLC_Internal.1	29.304	2	14.652	.735	.481
Error	2989.027	150	19.927		
Total	54099.000	156			
Corrected Total	6428.942	155			

Figure 4.0. Homogeneity of Regression Slopes for MHLC "Internal"

Figure 4.1. Homogeneity of Regression Slopes for MHLC "Chance"

Dependent Variable: MHL	C_Chance.2				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	3164.706 ^a	5	632.941	27.158	.000
Intercept	807.754	1	807.754	34.659	.000
Condition	138.719	2	69.360	2.976	.054
MHLC_Chance.1	2895.274	1	2895.274	124.229	.000
Condition * MHLC_Chance.1	138.417	2	69.208	2.970	.054
Error	3495.884	150	23.306		
Total	65668.000	156			
Corrected Total	6660.590	155			

Dependent Variable: MHL	C_Doctors.2				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	805.515ª	5	161.103	23.899	.000
ntercept	438.899	1	438.899	65.108	.000
Condition	35.549	2	17.774	2.637	.075
MHLC_Doctors.1	778.202	1	778.202	115.441	.000
Condition * MHLC_Doctors.1	25.647	2	12.824	1.902	.153
Error	1011.171	150	6.741		
Fotal	22287.000	156			
Corrected Total	1816.686	155			

Figure 4.2. Homogeneity of Regression Slopes for MHLC "Doctors"

Figure 4.3. Homogeneity of Regression Slopes for PBAPI "Pain as Mystery"

Tests of Between-Subjects Effects								
Dependent Variable: Pain_As_Mystery.2								
Source	Type III Sum of Squares	df	Mean Square	F	Sig.			
Corrected Model	48.678 ^a	5	9.736	11.907	.000			
Intercept	3.562	1	3.562	4.357	.039			
Condition	.323	2	.161	.197	.821			
Pain_As_Mystery.1	48.105	1	48.105	58.836	.000			
Condition * Pain_As_Mystery.1	2.251	2	1.125	1.376	.256			
Error	122.644	150	.818					
Total	176.438	156						
Corrected Total	171.322	155						

Figure 4.4.	Homogeneity	of Regression	Slopes for	PBAPI "Pain as Constant"
0	0,00,00,00,00,00,00,00,00,00,00,00,00,0	0	1	

Dependent Variable: Pa	in_As_Constant.2				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	34.272 ^a	5	6.854	31.109	.000
Intercept	.482	1	.482	2.189	.141
Condition	.341	2	.171	.774	.463
Pain_As_Constant.1	33.425	1	33.425	151.699	.000
Condition * Pain_As_Constant.1	.743	2	.372	1.687	.189
Error	33.050	150	.220		
Total	81.083	156			
Corrected Total	67.322	155			

Figure 4.5. Homogeneity of Regression Slopes for PBAPI "Pain as Permanent"

Dependent Variable: Pain_	_As_Permanent.2				
Gource	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	88.153 ^a	5	17.631	55.075	.000
ntercept	.151	1	.151	.472	.493
Condition	.951	2	.476	1.485	.230
Pain_As_Permanent.1	84.398	1	84.398	263.643	.000
Condition * Pain_As_Permanent.1	.562	2	.281	.878	.418
Error	48.018	150	.320		
otal	219.236	156			
Corrected Total	136.172	155			

	·	· 01 C DI	
Figure 4.6. Home	geneity of Regres	ssion Slopes for PE	BAPI "Self-Blame"

Dependent Variable: SelfBlame.2								
Source	Type III Sum of Squares	df	Mean Square	F	Sig.			
Corrected Model	57.620 ^a	5	11.524	41.576	.000			
Intercept	3.186	1	3.186	11.494	.001			
Condition	2.487	2	1.244	4.486	.013			
SelfBlame.1	57.089	1	57.089	205.964	.000			
Condition * SelfBlame.1	1.698	2	.849	3.063	.050			
Error	41.577	150	.277					
Total	238.188	156						
Corrected Total	99.197	155						

Figure 4.7. Homogeneity of Regression Slopes for BPI – "Pain on Average"

Dependent Variable: Pain_on_Average.2							
Source	Type III Sum of Squares	df	Mean Square	F	Sig.		
Corrected Model	123.430 ^a	5	24.686	10.380	.000		
Intercept	256.393	1	256.393	107.806	.000		
Condition	4.011	2	2.006	.843	.432		
Pain_on_Average.1	122.078	1	122.078	51.330	.000		
Condition * Pain_on_Average.1	4.909	2	2.455	1.032	.359		
Error	356.743	150	2.378				
Total	5847.000	156					
Corrected Total	480.173	155					

Dependent Variable: S2_Pain_Right_Now								
Source	Type III Sum of Squares	df	Mean Square	F	Sig.			
Corrected Model	139.819 ^a	5	27.964	4.848	.000			
ntercept	260.176	1	260.176	45.108	.000			
Condition	2.129	2	1.065	.185	.832			
S1_Pain_Right_Now	117.001	1	117.001	20.285	.000			
Condition * S1_Pain_Right_Now	3.152	2	1.576	.273	.761			
Error	865.174	150	5.768					
Fotal	7275.000	156						
Corrected Total	1004.994	155						

Figure 4.9. Homogeneity of Regression Slopes for Pain Interference

	Tests of Betwe	en-Subje	cts Effects		
Dependent Variable: Pai	n_Interference.2				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	357.902 ^a	5	71.580	17.811	.000
Intercept	42.621	1	42.621	10.605	.001
Condition	24.780	2	12.390	3.083	.049
Pain_Interference.1	344.960	1	344.960	85.834	.000
Condition * Pain_Interference.1	29.233	2	14.616	3.637	.029
Error	602.838	150	4.019		
Total	7178.327	156			
Corrected Total	960.739	155			

Figure 4.10.	Homogeneity	of Regression	Slopes for P	CS – "Rumination"

Dependent Variable: S2_Rumination								
Source	Type III Sum of Squares	df	Mean Square	F	Sig.			
Corrected Model	1555.014 ^a	5	311.003	36.580	.000			
Intercept	199.120	1	199.120	23.420	.000			
Condition	24.719	2	12.359	1.454	.237			
S1_Rumination	1382.532	1	1382.532	162.611	.000			
Condition * S1_Rumination	14.186	2	7.093	.834	.436			
Error	1275.313	150	8.502					
Total	21117.000	156						
Corrected Total	2830.327	155						

Figure 4.11. Homogeneity of Regression Slopes for PCS – "Magnification"

Tests of Between-Subjects Effects							
Dependent Variable: S2_N	lagnification						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.		
Corrected Model	696.968 ^a	5	139.394	38.722	.000		
Intercept	92.108	1	92.108	25.587	.000		
Condition	.119	2	.059	.016	.984		
S1_Magnification	677.461	1	677.461	188.193	.000		
Condition * S1_Magnification	4.281	2	2.140	.595	.553		
Error	539.974	150	3.600				
Total	8839.000	156					
Corrected Total	1236.942	155					
a. R Squared = .563 (Adj	usted R Squared =	.549)					

ependent Variable: S2_H	Helplessness				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	2382.379 ^a	5	476.476	26.806	.000
Intercept	359.604	1	359.604	20.231	.000
Condition	40.361	2	20.181	1.135	.324
S1_Helplessness	2309.420	1	2309.420	129.927	.000
Condition * S1_Helplessness	68.027	2	34.014	1.914	.151
Error	2666.211	150	17.775		
Total	38080.000	156			
Corrected Total	5048.590	155			

Figure 4.12. Homogeneity of Regression Slopes for PCS – "Helplessness"

Figure 4.13. Test of Homogeneity of Error Variances for MHLC "Internal"

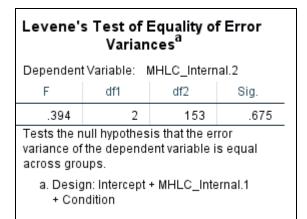


Figure 4.14. Test of Homogeneity of Error Variances for MHLC "Chance"

Levene'	s Test of I Varian	Equality of ces ^a	f Error
Dependen	tVariable: N	MHLC_Chan	ce.2
F	df1	df2	Sig.
3.194	2	153	.044
	the depende	is that the er ent variable i	
-	n: Intercept	+ MHLC_Ch	ance.1

Figure 4.15. Test of Homogeneity of Error Variances for MHLC "Chance" (Transformed)

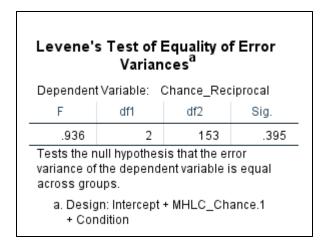


Figure 4.16. Test of Homogeneity of Error Variances for MHLC "Doctors"

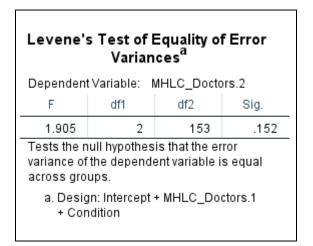


Figure 4.17. Test of Homogeneity of Error Variances for PBAPI "Pain as Mystery"

Levene's Test of Equality of Error Variances ^a								
Dependent Variable: Pain_As_Mystery.2								
F	df1	df2	Sig.					
9.692	2	153	.000					
	the depend	is that the er ent variable i						
-	ın: Intercept ondition	+ Pain_As_N	lystery.					

Figure 4.18. Test of Homogeneity of Error Variances for PBAPI "Pain as Mystery"

(Transformed)

Levene's	s Test of I Varian	Equality of ces ^a	f Error
Dependent	tVariable: F	Pain_Mystery	_Reciprocal
F	df1	df2	Sig.
.240	2	136	.787
	the depend	is that the er ent variable i	
-	in: Intercept ondition	+ Pain_As_N	lystery.

Figure 4.19. Test of Homogeneity of Error Variances for PBAPI "Pain as Constant"

Levene's Test of Equality of Error Variances ^a							
Dependent	tVariable: F	Pain_As_Co	nstant.2				
F	df1	df2	Sig.				
.389	2	153	.679				
	the depend	is that the er ent variable i					
-	ın: Intercept As_Constar	+ nt.1 + Conditi	on				

Figure 4.20. Test of Homogeneity of Error Variances for PBAPI "Pain as Permanent"

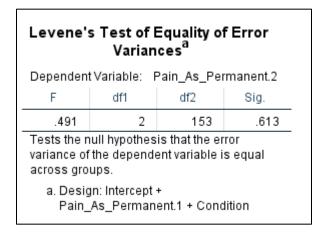


Figure 4.21. Test of Homogeneity of Error Variances for PBAPI "Self-Blame"

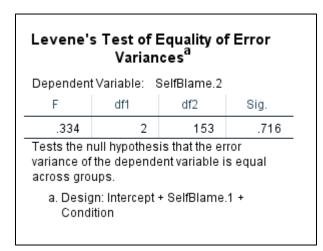


Figure 4.22. Test of Homogeneity of Error Variances for BPI- "Pain on Average"

Levene'	s Test of I Varian	Equality of ices ^a	f Error
Dependent	tVariable: F	⊃ain_on_Ave	rage.2
F	df1	df2	Sig.
.300	2	153	.741
	the depend	is that the er ent variable i	
-	in: Intercept ondition	+ Pain_on_A	werage.

Figure 4.23. Test of Homogeneity of Error Variances for BPI- "Pain Right Now"

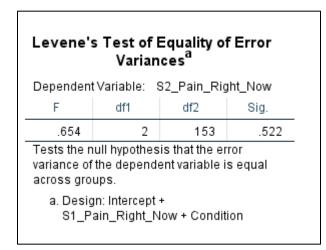


Figure 4.24. Test of Homogeneity of Error Variances for PCS – "Rumination"

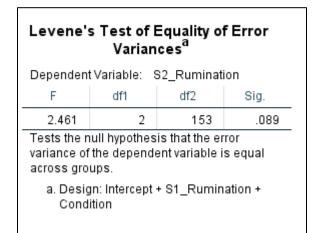


Figure 4.25. Test of Homogeneity of Error Variances for PCS – "Magnification"

Levene's	s Test of I Varian	Equality of ces ^a	f Error
Dependent	Variable: S	62_Magnifica	ation
F	df1	df2	Sig.
3.039	2	153	.051
	the depende	is that the er ent variable i	
	in: Intercept idition	+ S1_Magnif	ication

Figure 4.26. Test of Homogeneity of Error Variances for PCS – "Helplessness"

Levene's	s Test of I Varian	Equality of ces ^a	fError
Dependent	tVariable: 🖇	32_Helpless	ness
F	df1	df2	Sig.
.459	2	153	.632
	the depend	is that the er ent variable i	
-	in: Intercept idition	+ S1_Helple	ssness

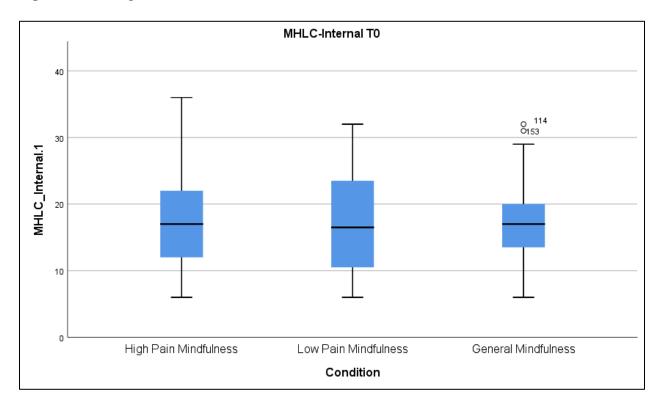
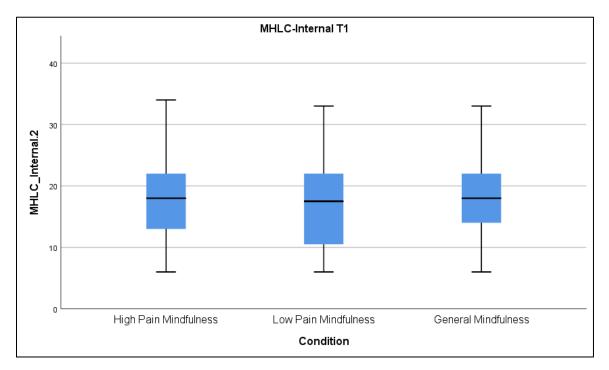



Figure 4.27. Boxplot of MHLC – "Internal" Scores at T0

Figure 4.28. Boxplot of MHLC - "Internal" Scores at T1

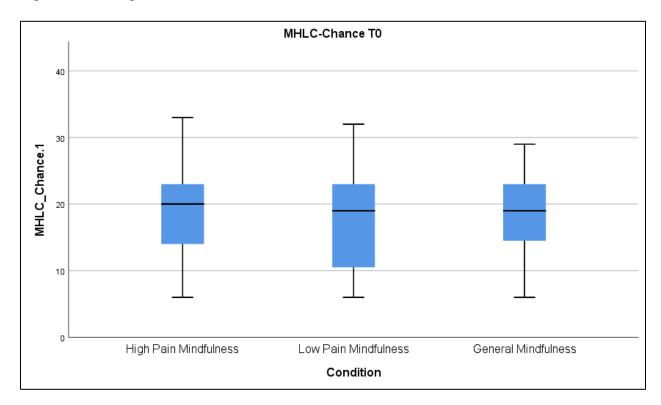
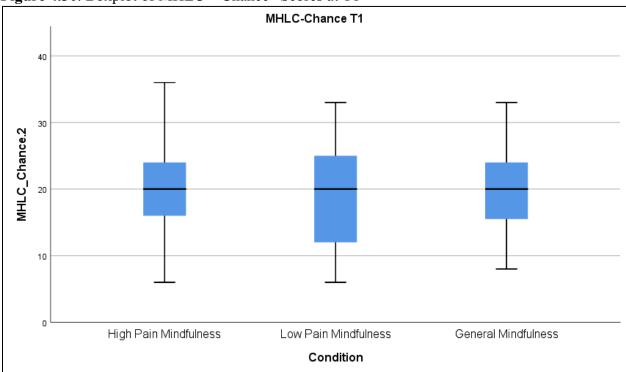



Figure 4.29. Boxplot of MHLC - "Chance" Scores at T0

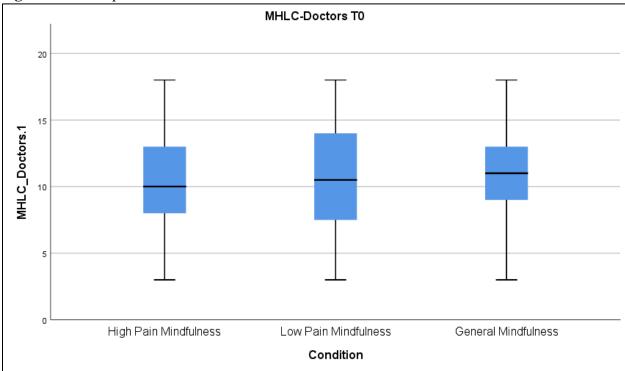
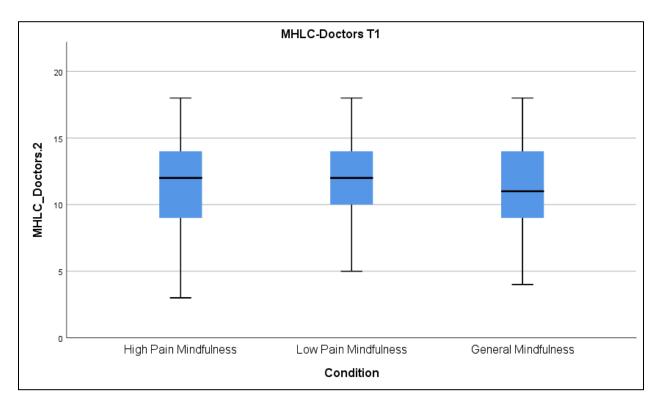



Figure 4.31. Boxplot of MHLC - "Doctors" Scores at T0

Figure 4.32. Boxplot of MHLC – "Doctors" Scores at T1

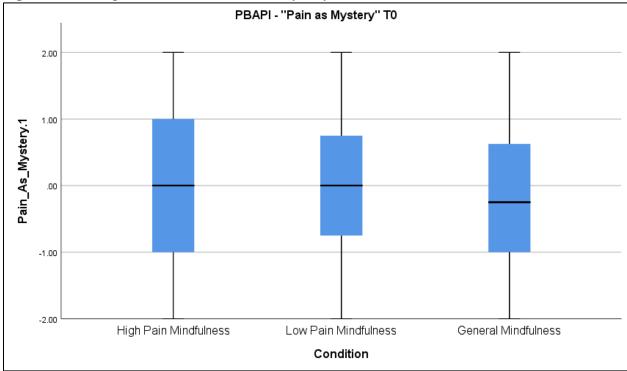
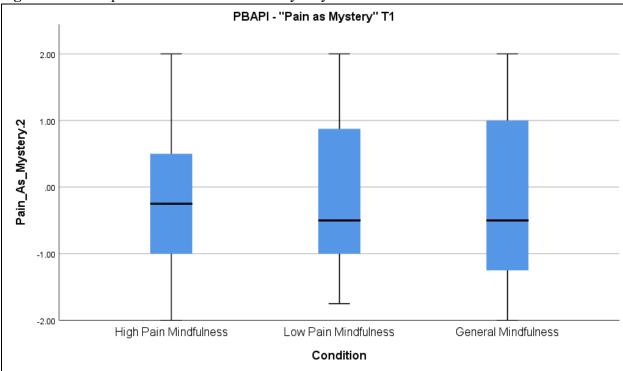



Figure 4.33. Boxplot of PBAPI – "Pain as Mystery" Scores at TO

Figure 4.34. Boxplot of PBAPI – "Pain as Mystery" Scores at T1

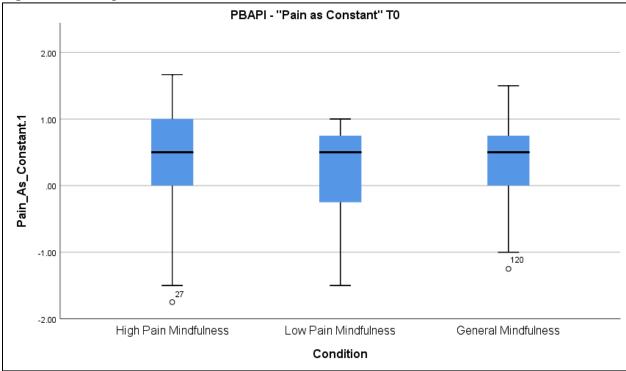
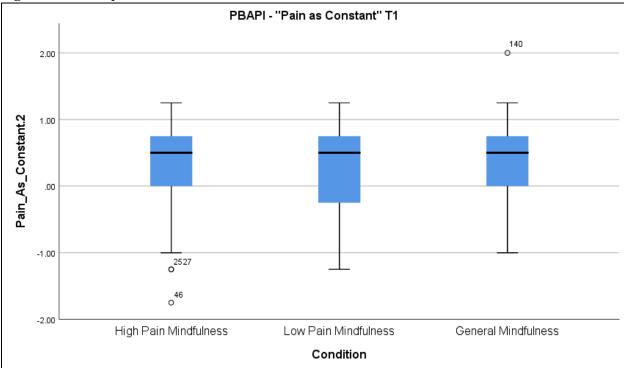



Figure 4.35. Boxplot of PBAPI – "Pain as Constant" Scores at T0

Figure 4.36. Boxplot of PBAPI – "Pain as Constant" Scores at T1

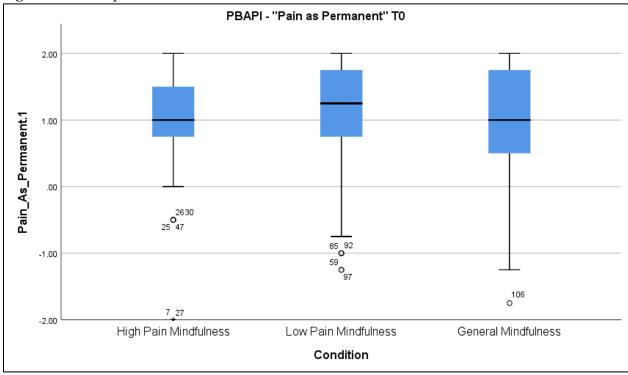
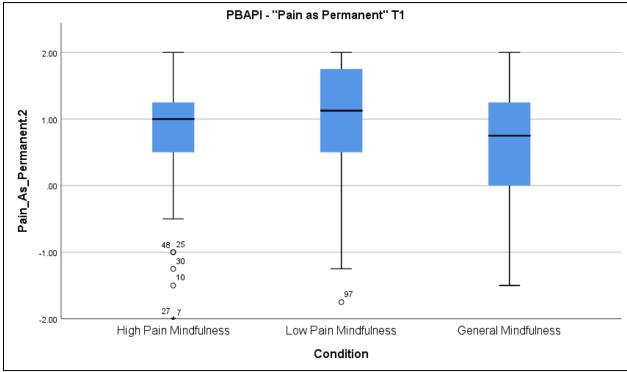



Figure 4.37. Boxplot of PBAPI – "Pain as Permanent" Scores at TO

Figure 4.38. Boxplot of PBAPI – "Pain as Permanent" Scores at T1

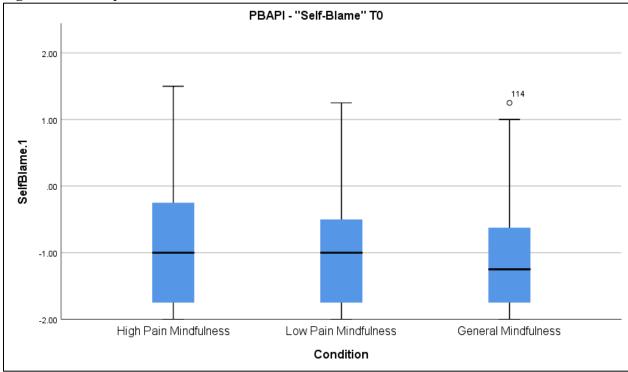
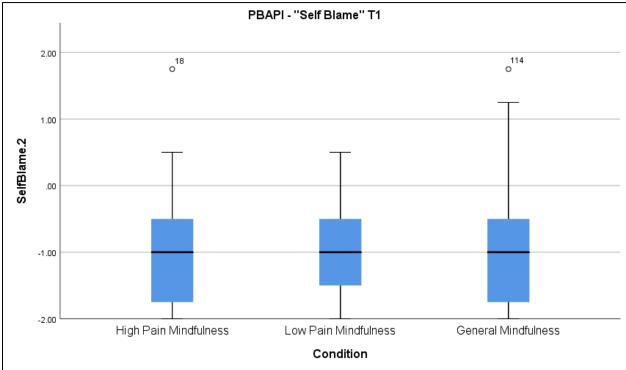



Figure 4.39. Boxplot of PBAPI – "Self-Blame" Scores at TO

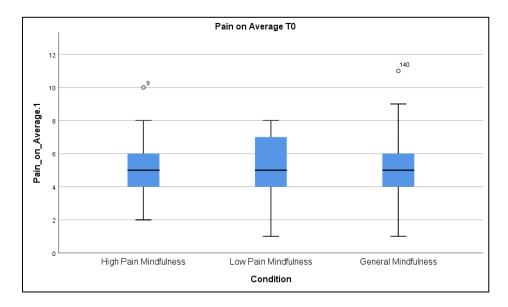
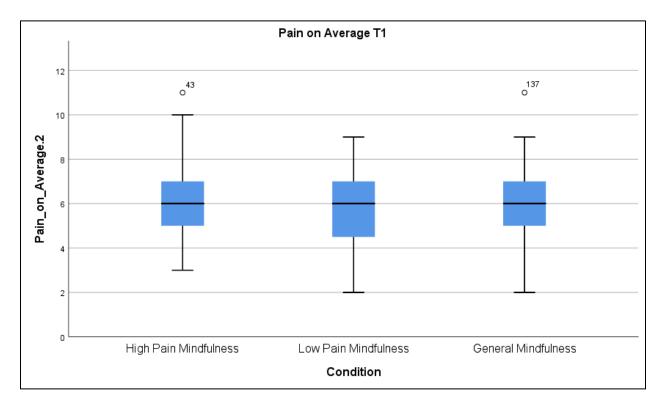



Figure 4.41. Boxplot of "Pain on Average" scores at T0

Figure 4.42. Boxplot of "Pain on Average" scores at T1

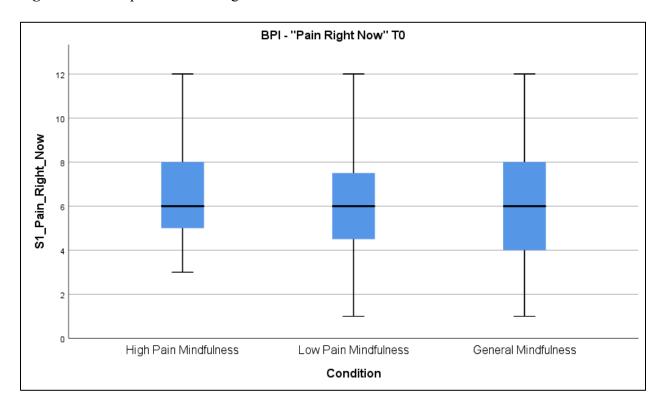


Figure 4.43. Boxplot of "Pain Right Now" scores at T0

Figure 4.44. Boxplot of "Pain Right Now" scores at T1

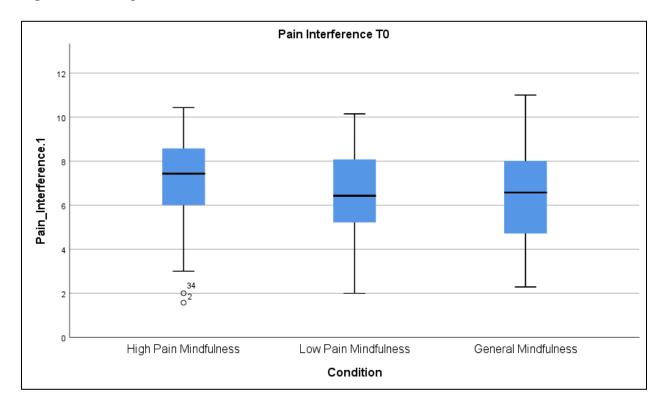
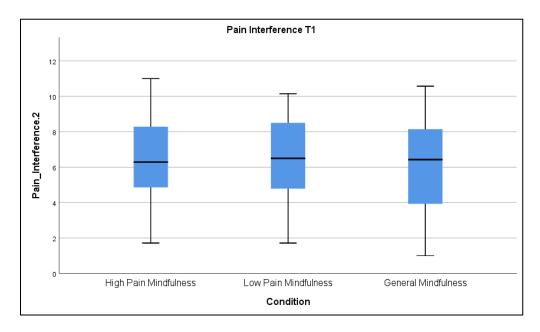



Figure 4.45. Boxplot of Pain Interference scores at T0

Figure 4.46. Boxplot of Pain Interference scores at T1

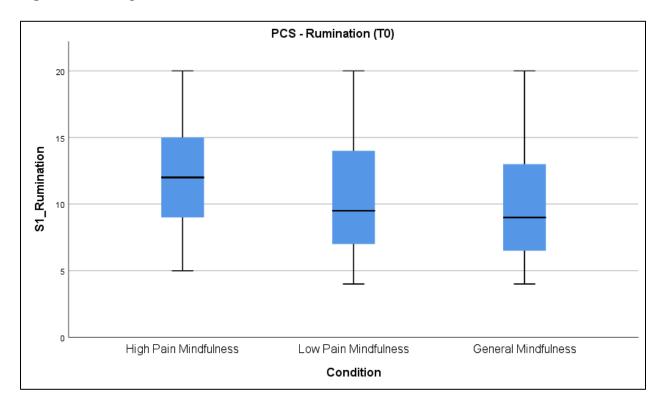
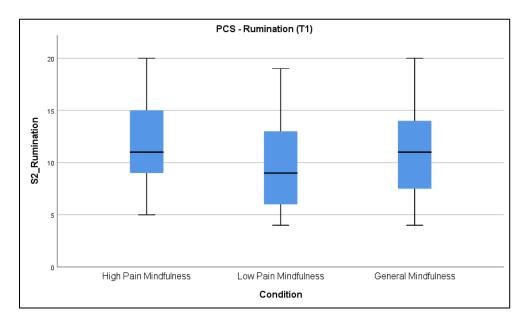



Figure 4.47. Boxplot of PCS – Rumination scores at T0

Figure 4.48. Boxplot of PCS – Rumination scores at T1

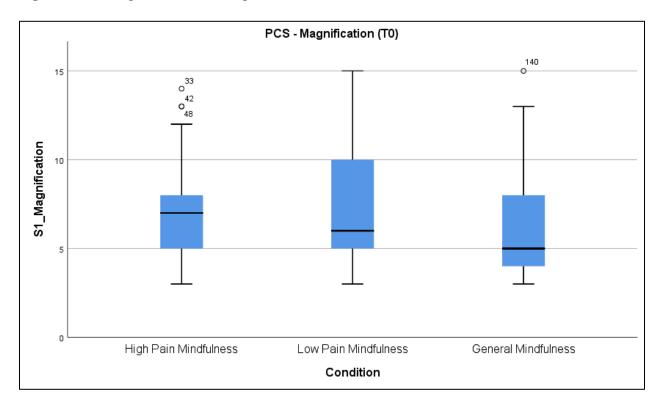
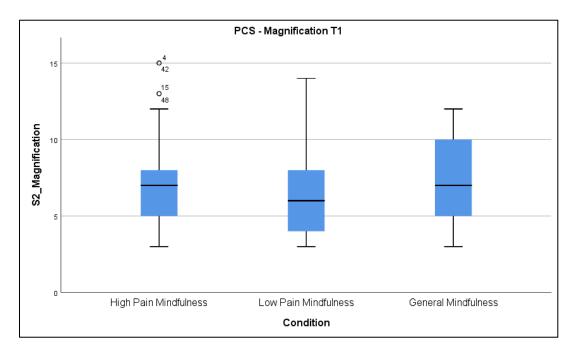



Figure 4.49. Boxplot of PCS – Magnification scores at T0

Figure 4.50. Boxplot of PCS – Magnification scores at T1

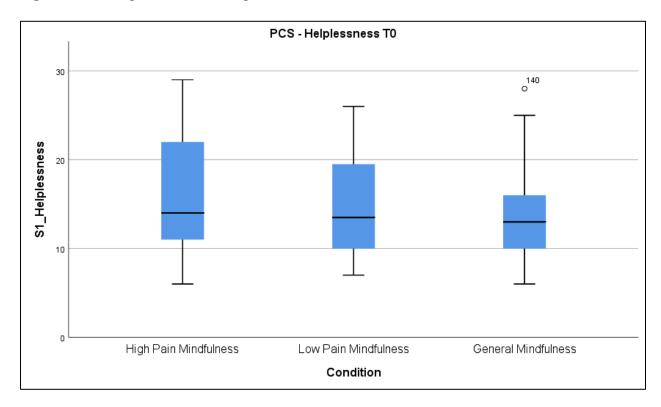
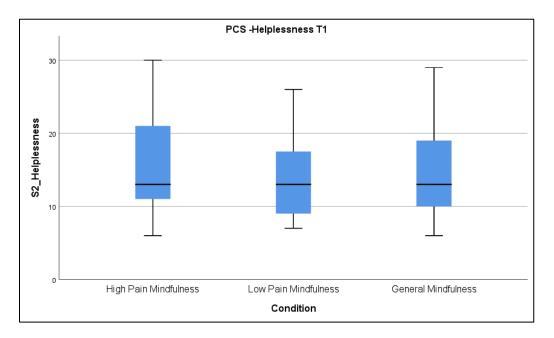



Figure 4.51. Boxplot of PCS – Helplessness scores at T0

Figure 4.52. Boxplot of PCS – Helplessness scores at T1

			De	escriptive	5			
Age								
					95% Confiden Me			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
High Mindfulness	53	42.45	14.641	2.011	38.42	46.49	19	68
Low Mindfulness	48	46.27	16.790	2.423	41.40	51.15	19	79
Active Control	55	43.60	14.971	2.019	39.55	47.65	21	81
Total	156	44.03	15.426	1.235	41.59	46.47	19	81

Figure 4.53. Descriptive Statistics of Participant Age across Experimental Conditions

Figure 4.54. Descriptive Statistics of Pain Duration (in months) across Experimental Conditions

			Des	criptives				
Pain_Duration								
					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
High Pain Mindfulness	52	128.2692	98.75025	13.69420	100.7770	155.7615	7.00	624.00
Low Pain Mindfulness	47	89.2979	106.05329	15.46946	58.1595	120.4363	4.00	600.00
General Mindfulness	54	86.8889	101.63989	13.83144	59.1465	114.6312	5.00	600.00
Total	153	101.6928	103.17386	8.34111	85.2133	118.1723	4.00	624.00

Figure 4.55. Descriptive Statistics of Pain Severity across Experimental Conditions

			503	criptives				
S1_Pain_Severity								
					95% Confiden Me			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
High Pain Mindfulness	53	7.43	1.681	.231	6.97	7.90	2	10
Low Pain Mindfulness	48	7.40	1.581	.228	6.94	7.85	4	11
General Mindfulness	55	7.13	1.915	.258	6.61	7.65	3	11
Total	156	7.31	1.733	.139	7.04	7.59	2	11

		ANOVA	L.		
Age					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	383.029	2	191.514	.803	.450
Within Groups	36499.811	153	238.561		
Total	36882.840	155			

Figure 4.56. One-way ANOVA Comparing Age Across Experimental Condition

Figure 4.57. One-way ANOVA Comparing Pain Duration Across Experimental Condition

		ANOVA			
Pain_Duration					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	55783.168	2	27891.584	2.678	.072
Within Groups	1562233.394	150	10414.889		
Total	1618016.562	152			

Figure 4.58. One-way ANOVA Comparing Pain Severity Across Experimental Condition

		ANOVA	L		
S1_Pain_Severity					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	3.002	2	1.501	.496	.610
Within Groups	462.607	153	3.024		
Total	465.609	155			

		ANOVA	L		
MHLC_Doctors.1					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	3.732	2	1.866	.135	.874
Within Groups	2115.261	153	13.825		
Total	2118.994	155			

Figure 4.59. Test of Equality of Means for MHLC - Doctors at TO

Figure 4.60. ANCOVA Results for MHLC- "Doctors"

Г

Dependent Variable	MHLC_Doctors	.2						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	779.868 ^a	3	259.956	38.110	.000	.429	114.331	1.000
Intercept	449.560	1	449.560	65.907	.000	.302	65.907	1.000
MHLC_Doctors.1	769.572	1	769.572	112.821	.000	.426	112.821	1.000
Condition	16.360	2	8.180	1.199	.304	.016	2.398	.259
Error	1036.818	152	6.821					
Total	22287.000	156						
Corrected Total	1816.686	155						

_

Figure 4.61. Estimated Marginal Means for MHLC- "Doctors" at T1

Dependent Variable: MI	HLC_Doctor	s.2		
			95% Confide	ence Interval
Condition	Mean	Std. Error	Lower Bound	Upper Bound
High Pain Mindfulness	11.863 ^a	.359	11.154	12.572
Low Pain Mindfulness	11.429 ^a	.377	10.684	12.174
General Mindfulness	11.085 ^a	.352	10.389	11.781

Figure 4.62. Test of Equality of Means for MHLC - Chance at T0

		ANOVA	i.		
MHLC_Chance.1					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	43.645	2	21.823	.527	.591
Within Groups	6336.528	153	41.415		
Total	6380.173	155			

Figure 4.63. ANCOVA Results for MHLC- "Chance"

Dependent Variable	e: Chance_Recip	rocal						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	.052 ^a	3	.017	34.870	.000	.408	104.609	1.000
Intercept	.210	1	.210	423.210	.000	.736	423.210	1.000
MHLC_Chance.1	.050	1	.050	100.431	.000	.398	100.431	1.000
Condition	.001	2	.000	.733	.482	.010	1.465	.172
Error	.075	152	.000					
Total	.690	156						
Corrected Total	.127	155						

Estimates Dependent Variable: Chance_Reciprocal										
95% Confidence Interva										
Condition	Mean	Std. Error	Lower Bound	Upper Bound						
High Pain Mindfulness	.059 ^a	.003	.053	.065						
Low Pain Mindfulness	.063 ^a	.003	.057	.070						
General Mindfulness	.058 ^a	.003	.052	.064						
a. Covariates appearii MHLC_Chance.1 =	-	del are evalu	ated at the follow	ing values:						

Figure 4.65. Test of Equality of Means for MHLC - Internal at T0

		ANOVA	i i		
MHLC_Internal.1	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	11.845	2	5.922	.138	.872
Within Groups	6588.841	153	43.064		
Total	6600.686	155			

		•	Tests of Betw	/een-Subje	ects Effec	ts		
Dependent Variabl	e: MHLC_Internal	.2						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	3410.611ª	3	1136.870	57.252	.000	.531	171.755	1.000
Intercept	476.080	1	476.080	23.975	.000	.136	23.975	.998
MHLC_Internal.1	3394.288	1	3394.288	170.933	.000	.529	170.933	1.000
Condition	15.918	2	7.959	.401	.670	.005	.802	.114
Error	3018.332	152	19.857					
Total	54099.000	156						
Corrected Total	6428.942	155						

Figure 4.66. ANCOVA Results for "MHLC" Internal

Figure 4.67. Estimated Marginal Means for MHLC- "Internal" at T1

Dependent Variable: MHLC_Internal.2											
95% Confidence Interval											
Condition	Mean	Std. Error	Lower Bound	Upper Bound							
High Pain Mindfulness	17.568 ^a	.612	16.358	18.778							
Low Pain Mindfulness	17.023 ^a	.643	15.752	18.294							
General Mindfulness	17.796 ^a	.601	16.608	18.984							

Figure 4.68. Test of Equality of Means for PBAPI – "Pain as Permanent" at T0

		ANOVA			
Pain_As_Permaner	nt.1				
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.263	2	.132	.158	.854
Within Groups	127.257	153	.832		
Total	127.520	155			

Dependent Variable: Pa	ain_As_Permanent	2						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	87.591 ^a	3	29.197	91.352	.000	.643	274.057	1.000
Intercept	.119	1	.119	.373	.542	.002	.373	.093
Pain_As_Permanent.1	84.005	1	84.005	262.837	.000	.634	262.837	1.000
Condition	2.251	2	1.126	3.522	.032	.044	7.043	.649
Error	48.581	152	.320					
Total	219.236	156						
Corrected Total	136.172	155						

Figure 4.69. ANCOVA Results for PBAPI – "Pain as Permanent"

Figure 4.70. Estimated Marginal Means for PBAPI – "Pain as Permanent" at T1

Dependent Variable: Pa	in_As_Pern	nanent.2		
			95% Confide	ence Interval
Condition	Mean	Std. Error	Lower Bound	Upper Bound
High Pain Mindfulness	.665 ^a	.078	.512	.819
Low Pain Mindfulness	.909 ^a	.082	.748	1.070
General Mindfulness	.635ª	.076	.485	.786

Figure 4.71. Pairwise Comparisons for Estimated Marginal Means of PBAPI "Pain as

Permanent"

(I) Condition	(J) Condition	Mean Difference (I- J)	Std. Error	Sig. ^b	95% Confiden Differe	
High Pain Mindfulness	Low Pain Mindfulness	244	.113	.096	517	.029
-	General Mindfulness	.030	.109	1.000	233	.294
Low Pain Mindfulness	High Pain Mindfulness	.244	.113	.096	029	.517
	General Mindfulness	.274	.112	.046	.003	.544
General Mindfulness	High Pain Mindfulness	030	.109	1.000	294	.233
	Low Pain Mindfulness	274	.112	.046	544	003

Figure 4.72. Test of Equality of Means for PBAPI – "Pain as Mystery" at T0

		ANOVA			
Pain_As_Mystery.1					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.141	2	.070	.057	.945
Within Groups	189.748	153	1.240		
Total	189.889	155			

Dependent Variable:	Pain_Mystery_Re	ciprocal						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	30.378 ^a	3	10.126	5.614	.001	.111	16.841	.939
Intercept	8.866	1	8.866	4.915	.028	.035	4.915	.595
Pain_As_Mystery.1	29.182	1	29.182	16.178	.000	.107	16.178	.979
Condition	.762	2	.381	.211	.810	.003	.423	.082
Error	243.514	135	1.804					
Total	285.464	139						
Corrected Total	273.893	138						

Figure 4.73. ANCOVA Results for PBAPI – "Pain as Mystery"

Figure 4.74. Estimated Marginal Means for PBAPI – "Pain as Mystery" at T1

Dependent Variable: Pa	in_Mystery_	Reciprocal		
			95% Confid	ence Interval
Condition	Mean	Std. Error	Lower Bound	Upper Bound
High Pain Mindfulness	395 ^a	.203	796	.005
Low Pain Mindfulness	257ª	.198	648	.135
General Mindfulness	222ª	.192	602	.157

		ANOVA			
Pain_As_Constant.1	1				
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.049	2	.024	.057	.945
Within Groups	65.423	153	.428		
Total	65.472	155			

Figure 4.75. Test of Equality of Means for PBAPI – "Pain as Constant" at T0

Figure 4.76. ANCOVA Results for PBAPI – "Pain as Constant"

Ē

Dependent Variable:	Pain_As_Constant	.2						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	33.528ª	3	11.176	50.269	.000	.498	150.806	1.000
Intercept	.500	1	.500	2.247	.136	.015	2.247	.319
Pain_As_Constant.1	33.375	1	33.375	150.118	.000	.497	150.118	1.000
Condition	.084	2	.042	.188	.829	.002	.376	.079
Error	33.794	152	.222					
Total	81.083	156						
Corrected Total	67.322	155						

Figure 4.77 .	. Estimated Marginal Means for PBAPI – "Pain as Constant" at T1

	E	stimates		
Dependent Variable: Pa	in_As_Con	stant.2		
			95% Confide	ence Interval
Condition	Mean	Std. Error	Lower Bound	Upper Bound
High Pain Mindfulness	.270ª	.065	.142	.398
Low Pain Mindfulness	.293 ^a	.068	.159	.428
General Mindfulness	.326ª	.064	.200	.451
a. Covariates appearir Pain_As_Constant.	-	del are evalu	ated at the follow	ing values:

		ANOVA			
SelfBlame.1					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1.567	2	.783	1.124	.327
Within Groups	106.603	153	.697		
Total	108.170	155			

Figure 4.78. Test of Equality of Means for PBAPI – "Self-Blame" at TO

Dependent Variabl	e: SelfBlame.2							
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	55.922 ^a	3	18.641	65.474	.000	.564	196.422	1.000
ntercept	3.962	1	3.962	13.915	.000	.084	13.915	.960
SelfBlame.1	55.879	1	55.879	196.272	.000	.564	196.272	1.000
Condition	.962	2	.481	1.689	.188	.022	3.379	.351
Error	43.275	152	.285					
Fotal	238.188	156						
Corrected Total	99.197	155						

Dependent Variable: Se	elfBlame.2			
			95% Confid	ence Interval
Condition	Mean	Std. Error	Lower Bound	Upper Bound
High Pain Mindfulness	-1.008 ^a	.073	-1.153	863
Low Pain Mindfulness	995 ^a	.077	-1.148	843
General Mindfulness	837ª	.072	980	694

Figure 4.80. Estimated Marginal Means for PBAPI – "Self-Blame" at T1

Figure 4.81. Test of Equality of Means for Pain Interference at TO

		ANOVA			
Pain_Interference.1					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	13.792	2	6.896	1.445	.239
Within Groups	730.297	153	4.773		
Total	744.088	155			

		ANOVA	L.		
Pain_Interference.2					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	3.460	2	1.730	.276	.759
Within Groups	957.280	153	6.257		
Total	960.739	155			

Figure 4.82. Test of Equality of Means for Pain Interference at T1

Figure 4.83	Test of Equality	of Means for BPI	- "Pain on A	Average" at TO
1 igui c 4.05.	1 OSt OI Liquuitty	of mound for Dri	1 uni on 1	iverage at 10

Pain_on_Average.1					
an_on_wordgor	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1.988	2	.994	.258	.773
Within Groups	589.909	153	3.856		
Total	591.897	155			

Figure 4.84. ANCOVA Results for BPI – "Pain on Average"

Dependent Variable:	Pain_on_Average	.2						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	118.521 ^a	3	39.507	16.604	.000	.247	49.813	1.000
Intercept	275.095	1	275.095	115.620	.000	.432	115.620	1.000
Pain_on_Average.1	117.202	1	117.202	49.259	.000	.245	49.259	1.000
Condition	1.250	2	.625	.263	.769	.003	.526	.091
Error	361.652	152	2.379					
Total	5847.000	156						
Corrected Total	480.173	155						

Estimates										
Dependent Variable: Pain_on_Average.2										
95% Confidence Interval										
Condition	Mean	Std. Error	Lower Bound	Upper Bound						
High Pain Mindfulness	5.982 ^a	.212	5.564	6.401						
Low Pain Mindfulness	5.764 ^a	.223	5.324	6.204						
General Mindfulness	5.841 ^a	.208	5.430	6.252						
a. Covariates appeari Pain_on_Average.1	-	del are evalu	ated at the follow	ing values:						

Figure 4.85. Estimated Marginal Means for BPI – "Pain on Average" at T1

Figure 4.86.	Test of Equal	ty of Means	for BPI - '	"Pain Rig	ght Now" at T0
--------------	---------------	-------------	-------------	-----------	----------------

		ANOVA			
S1_Pain_Right_Now					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	12.317	2	6.158	1.220	.298
Within Groups	772.273	153	5.048		
Total	784.590	155			

		Τe	ests of Betwe	en-Subjec	ts Effects	;		
Dependent Variable:	S2_Pain_Right_No	w						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	136.667 ^a	3	45.556	7.975	.000	.136	23.924	.989
Intercept	259.513	1	259.513	45.428	.000	.230	45.428	1.000
S1_Pain_Right_Now	124.761	1	124.761	21.839	.000	.126	21.839	.996
Condition	7.415	2	3.708	.649	.524	.008	1.298	.157
Error	868.326	152	5.713					
Total	7275.000	156						
Corrected Total	1004.994	155						

Figure 4.87. ANCOVA Results for BPI – "Pain Right Now"

Figure 4.88. Estimated Marginal Means for BPI – "Pain Right Now" at T1

Dependent Variable: S2_Pain_Right_Now							
			95% Confide	ence Interval			
Condition	Mean	Std. Error	Lower Bound	Upper Bound			
High Pain Mindfulness	6.486 ^a	.330	5.834	7.138			
Low Pain Mindfulness	6.012 ^a	.345	5.330	6.694			
General Mindfulness	6.484 ^a	.323	5.846	7.122			

Figure 4.89.	Test of Equality of	f Means for PCS - "Magnification" at T0
9	1	

ANOVA								
S1_Magnification								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	22.143	2	11.072	1.277	.282			
Within Groups	1326.934	153	8.673					
Total	1349.077	155						

Figure 4.90. ANCOVA Results for PCS – "Magnification"

Dependent Variable	e: S2_Magnificatio	n						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	692.687ª	3	230.896	64.485	.000	.560	193.454	1.000
Intercept	94.720	1	94.720	26.453	.000	.148	26.453	.999
S1_Magnification	677.024	1	677.024	189.080	.000	.554	189.080	1.000
Condition	29.656	2	14.828	4.141	.018	.052	8.282	.724
Error	544.255	152	3.581					
Total	8839.000	156						
Corrected Total	1236.942	155						

Figure 4.91. Estimated Marginal Means for BPI – "Magnification" at T1

	E	stimates						
Dependent Variable: S2_Magnification								
			95% Confide	ence Interval				
Condition	Mean	Std. Error	Lower Bound	Upper Bound				
High Pain Mindfulness	7.039 ^a	.261	6.525	7.554				
Low Pain Mindfulness	6.377 ^a	.273	5.837	6.917				
General Mindfulness	7.452 ^a	.256	6.945	7.958				

S1_Magnification = 6.92.

	F	airwise Comp	arisons			
Dependent Variable: S	2_Magnification					
	Mean Difference (I-			95% Confidence Interval for Difference ^b		
(I) Condition	(J) Condition	J)	Std. Error	Sig. ^b	Lower Bound	Upper Bound
High Pain Mindfulness	Low Pain Mindfulness	.663	.377	.242	250	1.576
	General Mindfulness	412	.367	.789	-1.300	.476
Low Pain Mindfulness	High Pain Mindfulness	663	.377	.242	-1.576	.250
	General Mindfulness	-1.075	.376	.014	-1.984	166
General Mindfulness	High Pain Mindfulness	.412	.367	.789	476	1.300

1.075

.376

.014

.166

1.984

Figure 4.92. Pairwise Comparisons for Estimated Marginal Means of PCS - "Magnification"

Based on estimated marginal means

*. The mean difference is significant at the .05 level.

Low Pain Mindfulness

b. Adjustment for multiple comparisons: Bonferroni.

Figure 4.93. Test of Equality of Means for PCS - "Rumination" at TO

ANOVA								
S1_Rumination								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	93.385	2	46.692	2.584	.079			
Within Groups	2764.923	153	18.071					
Total	2858.308	155						

ependent Variabl	e: S2_Rumination	ı						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	1540.828 ^a	3	513.609	60.542	.000	.544	181.625	1.000
Intercept	187.874	1	187.874	22.146	.000	.127	22.146	.997
S1_Rumination	1416.930	1	1416.930	167.021	.000	.524	167.021	1.000
Condition	47.735	2	23.867	2.813	.063	.036	5.627	.546
Error	1289.499	152	8.484					
Total	21117.000	156						
Corrected Total	2830.327	155						

Figure 4.94. ANCOVA Results for PCS – "Rumination"

Figure 4.95. Estimated Marginal Means for BPI – "Rumination" at T1

Dependent Variable: S2	2_Ruminatio	n	050 0 - 51	
			95% Confide	ence Interval
Condition	Mean	Std. Error	Lower Bound	Upper Bound
High Pain Mindfulness	11.039 ^a	.405	10.240	11.839
Low Pain Mindfulness	10.016 ^a	.422	9.183	10.849
General Mindfulness	11.330 ^a	.394	10.552	12.108
a. Covariates appeari	na in the mo	del are evalu	ated at the follow	ing values:

Figure 4.96.	Test of Eq	uality of Me	ans for PCS -	"Helplessness"	' at TO

		ANOVA			
S1_Helplessness					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	118.327	2	59.164	1.822	.165
Within Groups	4968.667	153	32.475		
Total	5086.994	155			

Figure 4.97. ANCOVA Results for PCS – "Helplessness"

Г

Dependent Variable:	S2_Helplessnes	s						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	2314.351 ^a	3	771.450	42.886	.000	.458	128.658	1.000
Intercept	393.018	1	393.018	21.848	.000	.126	21.848	.996
S1_Helplessness	2285.298	1	2285.298	127.043	.000	.455	127.043	1.000
Condition	22.086	2	11.043	.614	.543	.008	1.228	.151
Error	2734.239	152	17.988					
Total	38080.000	156						
Corrected Total	5048.590	155						

Figure 4.98.	Estimated N	Iarginal Means	PCS – "Hel	plessness"	at T1
.					

Dependent Variable: S2	_Helplessn	ess		
			95% Confide	ence Interval
Condition	Mean	Std. Error	Lower Bound	Upper Bound
High Pain Mindfulness	14.384 ^a	.586	13.225	15.542
Low Pain Mindfulness	14.165 ^a	.612	12.956	15.375
General Mindfulness	15.050ª	.575	13.914	16.186

Figure 4.99. Chi-square test for effect of LMS Quartile (Top and Bottom 25%) on BPI- "Pain on

Average"

Count						
		Pain_Av	erage_Strir	ng		
		-1.00	1.00	Total		
LMS_Split_25	Bottom 25%) 8a	28	3a 36		
	Top 25%	9a	20)a 29		
Total		17	4	18 65		
irom each othe	r at the .05 leve		hi-Squa	re Tests		
irom each othei	r at the .05 leve		t hi-Squa t	re Tests Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
		C		Asymptotic Significance		
Pearson Chi-So	quare	C Value	df	Asymptotic Significance (2-sided)		
Pearson Chi-So Continuity Corre	quare ection ^b	Value .646ª	df 1	Asymptotic Significance (2-sided) .422		
Pearson Chi-So Continuity Corro Likelihood Rati	quare ection ^b o	Value .646ª .270	df 1 1	Asymptotic Significance (2-sided) .422 .603		
Pearson Chi-So Continuity Corro Likelihood Rati Fisher's Exact T Linear-by-Linea Association	quare ection ^b o fest	Value .646ª .270	df 1 1	Asymptotic Significance (2-sided) .422 .603	sided)	sided)

Figure 4.100. Chi-square test for effect of LMS Quartile (Top and Bottom 25%) on BPI- "Pain

Right Now"

_

Count						
		Pain_R	ight_Now_ ng	_Change_Stri		
		-1.0	0	Increased	Total	
LMS_Split_25	Bottom 25	%	14a	15a	29	
	Top 25%		18a	13a	31	
Total			32	28	60	
other at the .05				significantly from e are Tests Asymptotic		
other at the .05				are Tests	Exact Sig. (2- sided)	Exact Sig. (1- sided)
other at the .05 Pearson Chi-Sc	level.	C	Chi-Squ	are Tests Asymptotic Significance	Exact Sig. (2-	
	level. quare	Value	Chi-Squa	are Tests Asymptotic Significance (2-sided)	Exact Sig. (2-	
Pearson Chi-So	level. quare ection ^b	Value .577ª	Chi-Squa df 1	Asymptotic Significance (2-sided) .448	Exact Sig. (2-	
Pearson Chi-So Continuity Corre	quare ection ^b	Value .577ª .251	Chi-Squa df 1 1	Asymptotic Significance (2-sided) .448 .617	Exact Sig. (2-	
Pearson Chi-So Continuity Corro Likelihood Ratio	quare ection ^b o fest	Value .577ª .251	Chi-Squa df 1 1	Asymptotic Significance (2-sided) .448 .617	Exact Sig. (2- sided)	sided)

Figure 4.101. Chi-square test for effect of LMS Quartile (Top and Bottom 25%) on Pain

Interference

Count							
		Interfere	ence_Ch	ange_String			
		Decrea	ised	Increased	Total		
LMS_Split_25	Bottom 25%		17a	14a	31		
	Top 25%		19a	12a	31		
Total			36	26	62		
other at the .05				r significantly fr Jare Tests Asymptot			
other at the .05				Jare Tests Asymptot Significan	ic ce E	xact Sig. (2- sided)	Exact Sig. (1- sided)
other at the .05 Pearson Chi-Sc	level.	(Chi-Squ df	J are Tests Asymptot Significan (2-sided	ic ce E	xact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-So	level. quare	Value	Chi-Squ df	Asymptot Significan (2-sided	ic ce E:)		
Pearson Chi-So Continuity Corre	quare ection ^b	Value .265ª	Chi-Squ df	Jare Tests Asymptot Significan (2-sided	ic ce E:) 507		
Pearson Chi-So Continuity Corre Likelihood Ratio	quare ection ^b	Value .265ª .066	Chi-Squ df	Jare Tests Asymptot Significan (2-sided	ic ce E:) 607 797		
	quare ection ^b o Fest	Value .265ª .066	Chi-Squ df	Jare Tests Asymptot Significan (2-sided 1	ic ce E:) 607 797	sided)	sided)

Figure 4.102. Chi-square test for effect of LMS Quartile (Top and Bottom 25%) on PCS-

Rumination

Count								
		Rumin	ation_Ch	nange_Strir	ig			
		Decrea	ased	Increase	и то	tal		
_MS_Split_25	Bottom 25%		14a	1	Sa	30		
	Top 25%		20a	1	3a	33		
Total			34	:	29	63		
other at the .05	ievel.		Chi-Sq		nptotic	Evant Qia	(2)	Evant Pin 14
uner at the .05	ievel.	Value	Chi-Sq df	Asyr Signi		Exact Sig. sided)	-	Exact Sig. (1- sided)
				Asyr Signi	nptotic ficance	-	-	
Pearson Chi-So	quare	Value		Asyr Sign (2-	nptotic ficance sided)	-	-	
Pearson Chi-So Continuity Corre	quare ection ^b	Value 1.229 ^a		Asyr Sign (2-1	nptotic ficance sided) .268	-	-	
Pearson Chi-So Continuity Corro Likelihood Ratio	quare ection ^b o	Value 1.229 ^a .732		Asyr Sign (2-1	nptotic ficance sided) .268 .392	sided)	-	
Pearson Chi-So Continuity Corro Likelihood Rati Fisher's Exact T Linear-by-Linea Association	quare ection ^b o Fest	Value 1.229 ^a .732		Asyr Sign (2-1	nptotic ficance sided) .268 .392	sided)		sided)

Figure 4.103. Chi-square test for effect of LMS Quartile (Top and Bottom 25%) on PCS-

Magnification

Count							
		Magnifi	cation_Cha	nge_String			
		Decre	ased I	ncreased	Total		
LMS_Split_25	Bottom 25	%	15a	16a	31		
	Top 25%		14a	15a	29		
Total			29	31	60		
other at the .05	level.		Chi-Squa				
otner at the .05	level.			Asymptotic Significance	Exact S		Exact Sig. (1-
		Value .000ª	Chi-Squa df	Asymptotic	side		Exact Sig. (1- sided)
Pearson Chi-So	quare	Value	df	Asymptotic Significance (2-sided)	side 3		
Pearson Chi-Sc Continuity Corre	quare ection ^b	Value .000ª	df 1	Asymptotic Significance (2-sided) .993	side		
Pearson Chi-So Continuity Corre Likelihood Ratio	quare ection ^b o	Value .000ª .000	df 1 1	Asymptotic Significance (2-sided) .993 1.000	side		
other at the .05 Pearson Chi-So Continuity Corre Likelihood Ratio Fisher's Exact T Linear-by-Linea Association	quare ection ^b o Test	Value .000ª .000	df 1 1	Asymptotic Significance (2-sided) .993 1.000	side 3 3 3	ed)	sided)

Figure 4.104. Chi-square test for effect of LMS Quartile (Top and Bottom 25%) on PCS-

Helplessness

_

Count							
		Helples	sness_Cl	hange_String			
		Decre	ased	Increased	Total		
_MS_Split_25	Bottom 259	6	17a	19a	36		
	Top 25%		21 a	9a	30		
Total			38	28	66		
other at the .05	level.		Chi-Squ	are Tests Asymptotic			
omer at the .US	level.	Value	Chi-Squ _{df}			Sig. (2- ed)	Exact Sig. (1- sided)
				Asymptotic Significance	sid		
Pearson Chi-So	quare	Value	df	Asymptotic Significance (2-sided)	2		
Pearson Chi-So Continuity Corre	quare ection ^b	Value 3.476 ^a	df 1	Asymptotic Significance (2-sided) .06:	sid 2 6		
Pearson Chi-So Continuity Corre Likelihood Ratio Fisher's Exact T	quare ection ^b o	Value 3.476 ^a 2.606	df 1 1	Asymptotic Significance (2-sided) .063	sid 2 6		
Pearson Chi-So Continuity Corro Likelihood Ratio	quare ection ^b o Test	Value 3.476 ^a 2.606	df 1 1	Asymptotic Significance (2-sided) .063	sid 2 6 0	ed)	sided)

Figure 4.105. Chi-square test for effect of LMS Quartile (Top and Bottom 25%) on MHLC-

Internal

Count						
Journ		MHLC I	nternal Cl	nange_String		
		Decrea		Increased	Total	
_MS_Split_25	Bottom 28	5%	19a	17a	36	
	Top 25%		21a	17a	38	
Total			40	34	74	
	level.	c		Asymptotic	each	
	level.	Value			Exact Sig. (2- sided)	Exact Sig. (1- sided)
			Chi-Squa	Asymptotic Significance	Exact Sig. (2-	
Pearson Chi-So	quare	Value	c hi-Squa df	Asymptotic Significance (2-sided)	Exact Sig. (2-	
Pearson Chi-So Continuity Corre	quare ection ^b	Value .046ª	Chi-Squa df 1	Asymptotic Significance (2-sided) .830	Exact Sig. (2-	
Pearson Chi-Sc Continuity Corre Likelihood Ratic Fisher's Exact T	quare ection ^b o	Value .046 ^ª .000	Chi-Squa df 1 1	Asymptotic Significance (2-sided) .830 1.000	Exact Sig. (2-	
Pearson Chi-So Continuity Corre Likelihood Ratio	quare ection ^b o Test	Value .046 ^ª .000	Chi-Squa df 1 1	Asymptotic Significance (2-sided) .830 1.000	Exact Sig. (2- sided)	sided)

Figure 4.106. Chi-square test for effect of LMS Quartile (Top and Bottom 25%) on MHLC-

Chance

~ .						
Count						
		MHLC_		Change_Strin		
		Decrea	g heac	Increased	Total	
I MO ONIH DE	Bottom 25%				41	
LMS_Split_25)	16a	25a		
	Top 25%		13a	22a	35	
Total			29	47	76	
other at the .05	level.	C		significantly from are Tests Asymptotic		
other at the .05	level.		Chi-Squ	are Tests Asymptotic Significance	Exact Sig. (2-	Exact Sig. (1-
other at the .05		Value	Chi-Squ	are Tests Asymptotic Significance (2-sided)		Exact Sig. (1- sided)
Pearson Chi-So	quare	Value .028ª	Chi-Squ	are Tests Asymptotic Significance (2-sided) .866	Exact Sig. (2-	
	quare	Value	Chi-Squ	are Tests Asymptotic Significance (2-sided)	Exact Sig. (2-	
Pearson Chi-So	quare ection ^b	Value .028ª	Chi-Squ df 1	are Tests Asymptotic Significance (2-sided) .866	Exact Sig. (2-	
Pearson Chi-So Continuity Corre Likelihood Rati	quare ection ^b	Value .028ª .000	Chi-Squ df 1 1	are Tests Asymptotic Significance (2-sided) .866 1.000	Exact Sig. (2-	
Pearson Chi-So Continuity Corre	quare ection ^b o	Value .028ª .000	Chi-Squ df 1 1	are Tests Asymptotic Significance (2-sided) .866 1.000	Exact Sig. (2- sided)	sided)

Figure 4.107. Chi-square test for effect of LMS Quartile (Top and Bottom 25%) on MHLC-

Doctors

Count						
		MHLC_		Change_Strin		
		Decre	g ased	Increased	Total	
_MS_Split_25	Bottom 259		10a	24a	34	
	Top 25%		13a	20a	33	
Fotal			23	44	67	
		roportions do		are Tests		
				are Tests	Exact Sig. (2- sided)	Exact Sig. (1- sided)
other at the .05	level.	C	Chi-Squ	are Tests Asymptotic Significance	Exact Sig. (2-	
other at the .05 Pearson Chi-Sc	level. quare	Value	Chi-Squ	are Tests Asymptotic Significance (2-sided)	Exact Sig. (2-	
Pearson Chi-So Continuity Corre	level. quare ection ^b	Value .740 ^a	Chi-Squ df 1	are Tests Asymptotic Significance (2-sided) .390	Exact Sig. (2-	
Pearson Chi-So Continuity Corre Likelihood Ratio	level. quare ection ^b	Value .740 ^a .364	Chi-Squ df 1 1	are Tests Asymptotic Significance (2-sided) .390 .547	Exact Sig. (2-	
Pearson Chi-So Continuity Corro Likelihood Ratio Fisher's Exact T Linear-by-Linea Association	quare ection ^b o Fest	Value .740 ^a .364	Chi-Squ df 1 1	are Tests Asymptotic Significance (2-sided) .390 .547	Exact Sig. (2- sided)	sided)

Figure 4.108. Chi-square test for effect of LMS Quartile (Top and Bottom 25%) on PBAPI-

"Pain as Mystery"

Count							
		Pain_M	ystery_Cha	ange_String			
		Decre	ase	Increase	Total		
LMS_Split_25	Bottom 25%		20a	10a	30		
	Top 25%		24a	10a	34		
Total			44	20	64		
	level.		Chi-Squa	are Tests Asymptotic	:		
		Value	Chi-Squa		e Exa	ct Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-So				Asymptotic Significance	e Exa		
	quare	Value	df	Asymptotic Significance (2-sided)	e Exa		
Continuity Corre	quare ection ^b	Value .114 ^a	df 1	Asymptotic Significanc (2-sided) .73	e Exa 36 46		
Continuity Corre Likelihood Rati	quare ection ^b o	Value .114 ^a .005	df 1 1	Asymptotic Significance (2-sided) .7:	e Exa 36 46		
Pearson Chi-So Continuity Corro Likelihood Ratio Fisher's Exact T Linear-by-Linea Association	quare ection ^b o Test	Value .114 ^a .005	df 1 1	Asymptotic Significance (2-sided) .7:	e Exa 36 46 36	sided)	sided)

Figure 4.109. Chi-square test for effect of LMS Quartile (Top and Bottom 25%) on PBAPI-

"Pain as Constant"

Count						
		Pain_C	onstant_Ch	nange_String		
		Decre	ased	Increased	Total	
LMS_Split_25	Bottom 259	6	14a	12a	26	
	Top 25%		12a	15a	27	
Total			26	27	53	
omer at the .US	level.	C	Chi-Squa	re Tests Asymptotic	Event Sin (2	Event Sig. (4
omer at the .05	level.	Value	C hi-Squa df		Exact Sig. (2- sided)	Exact Sig. (1- sided)
other at the .05 Pearson Chi-So			-	Asymptotic Significance	2.	2.
Pearson Chi-So	quare	Value	df	Asymptotic Significance (2-sided)	2.	2.
Pearson Chi-So Continuity Corro	quare ection ^b	Value .468ª	df 1	Asymptotic Significance (2-sided) .494	2.	2.
Pearson Chi-So Continuity Corro Likelihood Rati	quare ection ^b o	Value .468 ^a .168	df 1 1	Asymptotic Significance (2-sided) .494 .682	2.	2.
	quare ection ^b o Fest	Value .468 ^a .168	df 1 1	Asymptotic Significance (2-sided) .494 .682	sided)	sided)

Figure 4.110. Chi-square test for effect of LMS Quartile (Top and Bottom 25%) on PBAPI-

"Pain as Permanent"

Count							
		Pain_P	erm_Chan	ge_String			
		Decrea	ased Ir	ncreased	Tota	I	
_MS_Split_25	Bottom 259	%	20a	8a		28	
	Top 25%		19a	9a		28	
Total			39	17		56	
other at the .US	level.		Chi-Squa	are Tests Asympto	otic		
other at the .US	level.	Value	Chi-Squa		otic Ince	Exact Sig. (2- sided)	Exact Sig. (1- sided)
				Asympto Significa	otic Ince		
Pearson Chi-Sc	quare	Value	df	Asympto Significa (2-side	otic ince ed)		
Pearson Chi-Sc Continuity Corre	quare ection ^b	Value .084 ^ª	df 1	Asympto Significa (2-side	otic ince ed) .771		
Pearson Chi-Sc Continuity Corre Likelihood Ratio	quare ection ^b o	Value .084ª .000	df 1 1	Asympto Significa (2-side	otic ince ed) .771 1.000		
other at the .05 Pearson Chi-Sc Continuity Corre Likelihood Ratio Fisher's Exact T Linear-by-Linea Association	quare ection ^b o Test	Value .084ª .000	df 1 1	Asympto Significa (2-side	otic ince ed) .771 1.000	sided)	sided)

Figure 4.111. Chi-square test for effect of LMS Quartile (Top and Bottom 25%) on PBAPI-

"Self-Blame"

Count							
Count		ColfDiam	ne_Chang	o String			
		Decreas		reased	Total		
LMS_Split_25	Bottom 25%		10a	17a		27	
LWS_SPHL_25							
	Top 25%	1	13a	15a		28	
Total			23	32	!	55	
	e .05 level.	с	hi-Squa	are Tests Asympt			
	e .uo ievei.	C Value	t hi-Squa	Asympt Significa	totic ance	Exact Sig. (2- sided)	Exact Sig. (1- sided)
			-	Asympt	totic ance		
Pearson Chi-S	quare	Value	df	Asympt Significa	totic ance ed)		
Pearson Chi-Si Continuity Corre	quare ection ^b	Value .498 ^a	df 1	Asympt Significa	totic ance ed) .480		
Pearson Chi-So Continuity Corro Likelihood Rati	quare ection ^b o	Value .498 ^a .187	df 1 1	Asympt Significa	totic ance ed) .480 .665		
Pearson Chi-So Continuity Corro Likelihood Rati Fisher's Exact 1 Linear-by-Linea Association	quare ection ^b o Fest	Value .498 ^a .187	df 1 1	Asympt Significa	totic ance ed) .480 .665	sided)	sided)

Figure 4.112. Chi-square test for effect of "Pain as Constant" (Top and Bottom 25%) on BPI-

"Pain on Average"

Count					
		Pain Ave	rage_String		
		-1.00	1.00	Total	
Pain_Constant_Change_	Decreased	14a	27a	41	
String	Increased	13a	34a	47	
Total		27	61	88	
us level.	с	hi-Squar	Asymptotic		
us level.	C Value	t hi-Squar		Exact Sig. (2- sided)	Exact Sig. (1- sided)
			Asymptotic Significance		
Pearson Chi-Square	Value	df	Asymptotic Significance (2-sided)		
Pearson Chi-Square Continuity Correction ^b	Value .433ª	df 1	Asymptotic Significance (2-sided) .510		
Pearson Chi-Square Continuity Correction ^b Likelihood Ratio	Value .433 ^a .182	df 1 1	Asymptotic Significance (2-sided) .510 .670		
05 level. Pearson Chi-Square Continuity Correction ^b Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association	Value .433 ^a .182	df 1 1	Asymptotic Significance (2-sided) .510 .670	sided)	sided)

Figure 4.113. Chi-square test for effect of "Pain as Constant" (Top and Bottom 25%) on BPI-

"Pain Right Now"

Pain_Constant_Change_String * Pain_Right_Now_Change_String Crosstabulation

Count

		Pain_Right_Nov n		
		Decreased	Increased	Total
Pain_Constant_Change_	Decreased	24a	18a	42
String	Increased	16a	26a	42
Total		40	44	84

Each subscript letter denotes a subset of Pain_Right_Now_Change_String categories whose column proportions do not differ significantly from each other at the .05 level.

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	3.055ª	1	.081		
Continuity Correction ^b	2.339	1	.126		
Likelihood Ratio	3.074	1	.080		
Fisher's Exact Test				.126	.063
Linear-by-Linear Association	3.018	1	.082		
N of Valid Cases	84				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 20.00.

Figure 4.114. Chi-square test for effect of "Pain as Constant" (Top and Bottom 25%) on Pain

Interference

Count						
		Interferei	nce_Char	nge_Strir	ng	
		Decreas	sed li	ncreased	1 Total	
Pain_Constant_Change_	Decreased		23a	13	3a 36	-
String	Increased		27a	17	7a 44	
Total			50	3	30 80	
	C	Chi-Squai	Asymp	totic	Event Sin (2	Fuert Cir. (1
	Value	chi-Squar		totic ance	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square			Asymp Signific	totic ance		
	Value	df	Asymp Signific	totic ance led)		
Continuity Correction ^b	Value .054 ^a	df 1	Asymp Signific	totic ance led) .816		
Continuity Correction ^b Likelihood Ratio	Value .054 ^a .000	df 1 1	Asymp Signific	totic ance led) .816 1.000		
Pearson Chi-Square Continuity Correction ^b Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association	Value .054 ^a .000	df 1 1	Asymp Signific	totic ance led) .816 1.000	sided)	sided)

Figure 4.115. Chi-square test for effect of "Pain as Constant" (Top and Bottom 25%) on PCS-

Rumination

	Crosst					
Count						
		Ruminat	tion_Chan	ge_String	9	
		Decreas	sed In	icreased	Total	
Pain_Constant_Change_	Decreased		24a	19;	a 43	
String	Increased		20a	14;	a 34	
Total			44	33	3 77	
whose column proportions					he .05 level.	
whose column proportions		ignificantly f Chi-Squa df		iotic ance	he .05 level. Exact Sig. (2- sided)	Exact Sig. (1- sided)
	c	Chi-Squa	re Tests Asympt Significa	iotic ance	Exact Sig. (2-	
Pearson Chi-Square	Value	c hi-Squa i	re Tests Asympt Significa	i totic ance ed)	Exact Sig. (2-	
Pearson Chi-Square Continuity Correction ^b	Value .070 ^a	chi-Squar df 1	re Tests Asympt Significa	totic ance ed) .791	Exact Sig. (2-	
Pearson Chi-Square Continuity Correction ^b Likelihood Ratio	Value .070ª .001	chi-Squar df 1 1	re Tests Asympt Significa	totic ance ed) .791 .974	Exact Sig. (2-	
whose column proportions Pearson Chi-Square Continuity Correction ^b Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association	Value .070ª .001	chi-Squar df 1 1	re Tests Asympt Significa	totic ance ed) .791 .974	Exact Sig. (2- sided)	sided)

Figure 4.116. Chi-square test for effect of "Pain as Constant" (Top and Bottom 25%) on PCS-

Magnification

Count						
		Magnific	ation_Change_S	tring		
		Decrea	sed Increas	ed	Total	
Pain_Constant_Change_	Decreased		17a	23a	40	_
String	Increased		20a	19a	39	
Total			37	42	79	_
	Value	Chi-Squa	Asymptotic Significance		Sig. (2-	Exact Sig. (1- sided)
Pearson Chi-Square			Asymptotic		Sig. (2- ded)	Exact Sig. (1- sided)
	Value	df	Asymptotic Significance (2-sided)			
Pearson Chi-Square Continuity Correction ^b Likelihood Ratio	Value .612 ^a	df 1	Asymptotic Significance (2-sided) .434			
Continuity Correction ^b	Value .612 ^a .310	df 1 1	Asymptotic Significance (2-sided) .434 .578			
Continuity Correction ^b Likelihood Ratio	Value .612 ^a .310	df 1 1	Asymptotic Significance (2-sided) .434 .578		ded)	sided)

Figure 4.117. Chi-square test for effect of "Pain as Constant" (Top and Bottom 25%) on PCS-

Helplessness

Γ

Count							
		Helples	sness_C	Change_S	String		
		Decrea	sed	Increas	sed	Total	
Pain_Constant_Change_	Decreased		25a		22a	47	_
String	Increased		24a		19a	43	
Total			49		41	90	
	C	Chi-Squa	Asym	ptotic			
	(Value	Chi-Squa df	Asym Signifi			Sig. (2- ded)	Exact Sig. (1- sided)
Pearson Chi-Square		·	Asym Signifi	iptotic icance			
Pearson Chi-Square Continuity Correction ^b	Value	df	Asym Signifi	nptotic icance ided)			
Continuity Correction ^b	Value .062ª	df 1	Asym Signifi	nptotic icance ided) .803			
Continuity Correction ^b Likelihood Ratio	Value .062ª .001	df 1 1	Asym Signifi	nptotic icance ided) .803 .970			sided)
`.	Value .062ª .001	df 1 1	Asym Signifi	nptotic icance ided) .803 .970		ded)	

Figure 4.118. Chi-square test for effect of "Pain as Constant" (Top and Bottom 25%) on

MHLC-Internal

Count							
		MHLC_I	nternal_C	hange_	String		
		Decrea	ased	Increa	sed	Total	
Pain_Constant_Change_	Decreased		27a		19ь	46	;
String	Increased		19a		33ь	52	!
Total			46		52	98	
	c	hi-Squa	Asymp	ototic	Evart 9	Sig (2-	Evact Sig. (1-
	Value	thi-Squa		ototic ance	Exact S		Exact Sig. (1- sided)
Pearson Chi-Square			Asymp Signific	ototic ance			
· · ·	Value	df	Asymp Signific	ototic :ance ded)			
Continuity Correction ^b	Value 4.811 ^ª	df 1	Asymp Signific	ototic ance ded) .028			
Continuity Correction ^b Likelihood Ratio	Value 4.811 ^a 3.963	df 1 1	Asymp Signific	ototic cance ded) .028 .047			
Pearson Chi-Square Continuity Correction ^b Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association	Value 4.811 ^a 3.963	df 1 1	Asymp Signific	ototic cance ded) .028 .047		ed)	sided)

Figure 4.119. Chi-square test for effect of "Pain as Constant" (Top and Bottom 25%) on

MHLC-Chance

Count							
		MHLC_C	Chance_C	hange_	Strin		
		Decrea	g sed	Increas	sed	Total	
Pain_Constant_Change_	Decreased		20a		32a	52	2
String	Increased		22a		27a	49)
Total			42		59	101	
whose column proportions		gnificantly fr :hi-Squar	e Tests	;	the .05	level.	
whose column proportions				totic ance	Exacts	level. Sig. (2- ed)	Exact Sig. (1- sided)
	c	hi-Squar	e Tests Asympt Significa	totic ance	Exacts	Sig. (2-	
Pearson Chi-Square	C Value	c hi-Squar	e Tests Asympt Significa	totic ance ed)	Exacts	Sig. (2-	
Pearson Chi-Square Continuity Correction ^b	Value .430ª	chi-Squar	e Tests Asympt Significa	totic ance ed) .512	Exacts	Sig. (2-	
Pearson Chi-Square Continuity Correction ^b Likelihood Ratio	Value .430ª .206	thi-Squar	e Tests Asympt Significa	totic ance ed) .512 .650	Exacts	Sig. (2-	
whose column proportions Pearson Chi-Square Continuity Correction ^b Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association	Value .430ª .206	thi-Squar	e Tests Asympt Significa	totic ance ed) .512 .650	Exacts	Sig. (2- ed)	sided)

Figure 4.120. Chi-square test for effect of "Pain as Constant" (Top and Bottom 25%) on

MHLC-Doctors

ount						
		MHLC_	Doctors_Cha	ange_Strin		
			g			
		Decrea	ased Ir	ncreased	Total	
Pain_Constant_Change_	Decreased		14a	34a	48	3
String	Increased		14a	33;	47	7
Total			28	67	95	5
whose column proportions			re Tests Asymptoti	ic		Evact Sig (1-
whose column proportions			re Tests	ic ce Exa	of level. ct Sig. (2- sided)	Exact Sig. (1- sided)
whose column proportions Pearson Chi-Square	с	hi-Squa	re Tests Asymptoti Significan (2-sided	ic ce Exa	ct Sig. (2-	
	C Value	hi-Squa	re Tests Asymptoti Significan (2-sided	ic ce Exa)	ct Sig. (2-	
Pearson Chi-Square Continuity Correction ^b	C Value .004 ^a	hi-Squa df	re Tests Asymptoti Significan (2-sided .s	ic ce Exa) 947	ct Sig. (2-	
Pearson Chi-Square Continuity Correction ^b Likelihood Ratio	C Value .004 ^a .000	hi-Squa df 1 1	re Tests Asymptoti Significan (2-sided .s	ic ce Exa) 947 000	ct Sig. (2-	
Pearson Chi-Square	C Value .004 ^a .000	hi-Squa df 1 1	re Tests Asymptoti Significan (2-sided .s 1.(ic ce Exa) 947 000	ct Sig. (2- sided)	sided)