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Slopes in eigenvarieties for definite unitary groups

Abstract

We generalize bounds of Liu-Wan-Xiao for slopes in eigencurves for definite unitary

groups of rank 2, which formed the core of their proof of the Coleman-Mazur-Buzzard-

Kilford conjecture about the decomposition of the eigencurve over the boundary of

weight space, to eigenvarieties for definite unitary groups of any rank. We show

that for a definite unitary group of rank n, the Newton polygon of the characteristic

power series of the Up Hecke operator has exact polynomial growth rate x1+ 2
n(n−1) ,

with constant proportional to the distance of the weight from the boundary of weight

space. This improves a previous lower bound of x1+ 1
2n−n−1 of Chenevier (which applied

only to the center of weight space). The proof goes through the classification of forms

associated to principal series representations. We also give a consequence for the

geometry of these eigenvarieties over the boundary of weight space.
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1. Introduction

1.1. Background and statement of main theorem. The study of eigenvarieties

began with the seminal work of Hida in the 1980s and Coleman and Mazur in the

1990s, culminating in Coleman-Mazur’s construction in [10] of the modular eigen-

curve, a rigid analytic space parametrizing p-adic modular Hecke eigenforms. The

eigencurve admits a natural projection map to weight space, a rigid analytic space

parametrizing possible weights of p-adic modular forms, as well as a map to Gm

corresponding to the modular forms’ Up-eigenvalues. Since then, further work and

generalizations by numerous authors have resulted in a massive collection of “eigen-

varieties” for p-adic automorphic forms on various groups. Particularly relevant for

our purposes are the papers of Buzzard [4], [5], Chenevier [9], and Belläıche-Chenever

[2], in which eigenvarieties are constructed for p-adic automorphic forms on definite

unitary groups of all dimensions.

The geometry of these eigenvarieties appears to be complicated. To discuss it,

we need to introduce some notation. Let p be a prime. Let q = 4 if p = 2 and

q = p otherwise. We write v for the p-adic valuation and | · | for the p-adic norm,

normalized so that v(p) = 1 and |p| = p−1. A weight of a p-adic modular form is

a continuous character of Z×p , and the weight space for modular forms is the rigid

analytic space W such that for any affinoid Qp-algebra A, W (A) is the set of contin-

uous characters Z×p → A×. The T -coordinate of an A-point w ∈ W (A) is the value

T (w) = w(exp(q)) − 1; the space W turns out to be a disjoint union of ϕ(q) open

unit discs with parameter T . For r ∈ (0, 1), we write W>r for the subset of W where

|T | > r.

We fix a tame level and let Z be the corresponding eigencurve. We let w : Z → W

be the map taking an eigenform to its weight, ap : Z → Gm be the map taking an

eigenform to its Up-eigenvalue, and Z>r be the preimage of W>r in Z . One thread

of approach to analyzing eigenvarieties has been to restrict analysis to the part of
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the eigenvariety lying over the “boundary” of weight space, in this case Z>r for r

sufficiently close to 1, where it is expected to be simpler. In particular, the following

folklore conjecture arose from a question of Coleman and Mazur [10], was suggested

by a computation of Buzzard and Kilford [6], and is given below in the form stated

by Liu, Wan, and Xiao [16].

Conjecture 1.1.1 (Coleman-Mazur-Buzzard-Kilford, as stated by Liu-Wan-Xiao

[16]). When r ∈ (0, 1) is sufficiently close to 1−, the following statements hold.

(1) The space Z>r is a disjoint union of (countably infinitely many) connected

components Z1, Z2, . . . , such that the weight map w : Zn → W>r is finite and

flat for each n.

(2) There exist nonnegative rational numbers α1, α2, . . . ∈ Q in non-decreasing

order and tending to infinity such that, for each n and each point z ∈ Zn, we

have

|ap(z)| = |T (w(z))|αn .

(3) The sequence α1, α2, . . . is a disjoint union of finitely many arithmetic progres-

sions, counted with multiplicity (at least when the indices are large enough).

Note that Part 2 of Conjecture 1.1.1 implies that as one approaches the boundary,

the slope v(ap(z)) approaches 0 in proportion to v(T (w(z))).

Following various explicit computations, Liu, Wan, and Xiao [16], building on the

work of Wan, Xiao, and Zhang [24], proved the equivalent version of this conjecture

for automorphic forms on definite quaternion algebras over Q. The essence of their

work, from which their result follows naturally, is their strong upper and lower bounds

on the Newton polygon of the characteristic power series of the Up-operator. For

consistency with future discussion, we state their bounds (with some imprecision, to

avoid unnecessary detail) for rank-2 definite unitary groups over Q, for which the

analysis is exactly the same.
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Let G be an algebraic group over Q such that G(R) ∼= U2(R) and G(Qp) ∼=

GL2(Qp), U ⊂ G(Af ) a compact open subgroup satisfying reasonable minor tech-

nical conditions, and Sw(G,U ) the space of p-adic automorphic forms on G of

weight w and level U . The basic idea is that we expect the Newton polygon of

det(I −XUp|Sw(G,U )) to be of shape approximately y = Av(T (w))x2.

Theorem 1.1.2 (Liu-Wan-Xiao, Corollary 3.16 and Proposition 3.20 of [16]). Fix

U .

(1) There are constants A1, C > 0 such that for all w such that T (w) > 1
p
, the

Newton polygon of the power series det(I − XUp|Sw(G,U )) lies above the

curve y = (A1x
2 − C)v(T (w)).

(2) Suppose that w(a) = atχ(a), where t ∈ Z≥0 and χ is a finite character of

conductor c. Then there is a constant h such that the Newton polygon of

det(I − XUp|Sw(G,U )) contains at least h(t + 1)pc−1 segments of slope at

most t+ 1, hence passes below the point

(
h(t+ 1)pc−1, h(t+ 1)2pc−1

)
=
(
x,A2x

2v(T (w))
)

for x = h(t+ 1)pc−1 and a constant A2 depending on h.

The lower bound, statement 1 above, has since been re-proven by Johansson and

Newton in [15] using a more conceptual method.

In this paper, we generalize Theorem 1.1.2 to definite unitary groups of all di-

mensions. Let G be an algebraic group over Q such that G(R) ∼= Un(R) and

G(Qp) ∼= GLn(Qp), and U ⊂ G(Af ) a compact open subgroup satisfying reason-

able minor technical conditions. The corresponding eigenvariety Z is now a rigid

analytic space of dimension n − 1 lying over the space W such that for any affinoid

Qp-algebra A, W (A) is the set of continuous characters (Z×p )n−1 → A×. This W is

a disjoint union of ϕ(q)n−1 open unit polydiscs of dimension n − 1 with parameters
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T1, . . . , Tn−1. Again let Sw(G,U ) be the space of p-adic automorphic forms on G of

weight w and level U .

The basic idea of our main theorem is that we expect the Newton polygon of det(I−

XUp|Sw(G,U )) to be of shape approximately y = Av(Ti(w))x1+ 2
n(n−1) , assuming

that all the v(Ti(w)) are not extremely different in size. Of course, this recovers the

Liu-Wan-Xiao approximation y = Av(T1(w))x2 for n = 2.

As far as we know, there is little prior work on the shape of the Newton polygon

of det(I − XUp|Sw(G,U )). The only prior result we have been able to find in

the literature is the following lower bound of Chenevier, which has an exponentially

smaller exponent and is valid only in the center of weight space.

Theorem 1.1.3 (Chenevier, Lemma 5.1.1 of [9]). Fix U . Suppose that for some

r < p−
1
p−1 , |Ti(w)| < r for all i. Then there are constants Ar, Cr > 0 such that the

Newton polygon of det(I −XUp|Sw(G,U )) lies above the curve

y = Arx
1+ 1

2n−n−1 − Crx.

As late as 2015, Andreatta, Iovita, and Pilloni said in Section 1.2.2 of [1] that

there were not even any conjectures about the shape of the Newton polygon in higher

dimensions in the literature.

Our precise theorem is as follows.

Theorem 1.1.4. Fix U .

(1) There are constants A1, C > 0 such that for all w such that each |Ti(w)| > 1
p
,

the Newton polygon of the power series det(I−XUp|Sw(G,U )) lies above the

curve

y =
(
A1x

1+ 2
n(n−1) − C

)
min
i
v(Ti(w)).
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(2) Suppose that w(a1, . . . , an−1) =
∏

i a
ti
i χi(ai), where (t1, . . . , tn−1) ∈ (Z≥0)n−1

with t1 ≥ · · · ≥ tn−1, and each χi is a finite character of conductor ci, satis-

fying technical restrictions. Let χ(1), . . . , χ(n−1) be the characters χ1, . . . , χn−1

reordered so that cond(χ(1)) ≤ cond(χ(2)) ≤ · · · ≤ cond(χ(n−1)), let c(i) =

cond(χ(i)), and let T(i) = T (χ(i)).

Then there is a constant h, a polynomial dt1,...,tn−1 of total degree n(n−1)
2

in

the tis, and a linear function l(t1, . . . , tn−1) such that the Newton polygon of

det(I −XUp|Sw(G,U )) contains at least

hpc(1)+2c(2)+···+(n−1)c(n−1)−
n(n−1)

2 dt1,...,tn−1

segments of slope at most l(t1, . . . , tn−1), hence passes below the point

(
hpc(1)+2c(2)+···+(n−1)c(n−1)−

n(n−1)
2 dt, hp

c(1)+2c(2)+···+(n−1)c(n−1)−
n(n−1)

2 dtl(t)
)

=
(
x,A2

(
v(T(1))

2
n(n−1) v(T(2))

2·2
n(n−1) · · · v(T(n−1))

2·(n−1)
n(n−1)

)
x1+ 2

n(n−1)

)
for x = hpc(1)+2c(2)+···+(n−1)c(n−1)−

n(n−1)
2 dt and a constant A2. Note that in

particular,

v(T(1))
2

n(n−1) v(T(2))
2·2

n(n−1) · · · v(T(n−1))
2·(n−1)
n(n−1) ≤ max

i
v(Ti).

We also leverage Theorem 1.1.4 to prove two statements that may be more geomet-

rically satisfying. First, we prove the following alternative version of the upper bound

which provides infinitely many upper bound points on the same Newton polygon.

Theorem 1.1.5. Suppose that w(a1, . . . , an−1) =
∏

i a
ti
i χi(ai), where (t1, . . . , tn−1) ∈

(Z≥0)n−1 with t1 ≥ · · · ≥ tn−1, and each χi is a finite character of conductor ci,

satisfying technical restrictions. Then there is a constant A2 such that for every radius

r > 0, there is a weight s such that |Ti(w) − Ti(s)| < r for all i, |Ti(χt)| = |Ti(s)|

for all i, and the Newton polygon of det(I − XUp|Sw(G,U )) lies below an infinite
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sequence of points lying on the curve parametrized by(
x,A2x

1+ 1

(n2) ·
(
v(T(1)(s))

2
n(n−1) v(T(2)(s))

2·2
n(n−1) · · · v(T(n−1)(s))

2·(n−1)
n(n−1)

))
.

We then use the lower bound of Theorem 1.1.4 to prove the following (vaguely

stated) decomposition result for the boundary of the eigenvariety.

Theorem 1.1.6. Let ap : Z → Gm be the map taking a point of Z to its Up-

eigenvalue. For α ∈ R≥0, let Z (α) be the subset of points z ∈ Z such that v(ap(z)) =

αv(Ti(z)). Then over certain open subsets of the weight polydisc boundary where v(Ti)

is much smaller than all the other v(Tj)s, Z (α) is disconnected from its complement

in Z .

1.2. Proof outline. The proof of Part 1 of Theorem 1.1.4 is a direct application of

the method of Johansson-Newton [15]. They construct families of automorphic forms

extending over the boundary of weight space, to points in what can be viewed as an

adic compactification of weight space, and show that the eigenvariety also extends

to those points. Consequently, the matrix coefficients of Up can be computed in an

explicit basis for the space of forms over the “points at infinity” given by monomials

in the matrix coefficients of the dimension-n(n−1)
2

maximal lower unipotent subgroup

of GLn(Qp). Explicit bounds on those matrix coefficients arise directly from the proof

of complete continuity of Up.

The proof of Part 2 of Theorem 1.1.4 requires a detailed analysis of p-adic auto-

morphic representations which may be of independent interest. As in the proof of

Proposition 3.20 of [16] (Part 2 of Theorem 1.1.2), we would like to carry out the

following steps:

(1) Construct a subspace S of Sw(G,U ) of dimension hpc(1)+2c(2)+···+(n−1)c(n−1)−
n(n−1)

2 dt

which can be thought of as the space of “classical forms of weight w and min-

imal level”.
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(2) Prove that Up is injective on S, so that all eigenforms in S have finite slope.

(3) Prove that finite-slope eigenforms in S have slope bounded above by l(t).

In general, it is a fact that a classical form f is finite-slope if and only if the local

component πf,p at p of its associated automorphic representation is a principal series

representation of GLn(Qp). For n = 2 as in Liu-Wan-Xiao, the upper bound then

follows from the fact that πf,p is a principal series if the level of f equals the conduc-

tor of its central character, which can be checked (as in Loeffler-Weinstein [18]) by

comparing its level to that of the new vectors in each of the three possible Bernstein-

Zelevinsky classes of representations (principal series, special, and supercuspidal),

those new vectors having been written down by Casselman [8]. The dimension of the

space of such f is easy to count.

To detect when πf,p is a principal series for all n without brute-forcing through

Bernstein-Zelevinsky classes, we use Roche’s analysis of principal series types for

GLn ([20]). For a character χ of T (Qp), Roche gives a subgroup J ⊂ GLn(Zp) and a

character ρ of J such that an irreducible representation π of GLn(Qp) is a principal

series associated to an unramified twist of χ if and only if π contains a vector on

which J acts by ρ (which we will call a (J, ρ)-vector).

To proceed, we construct S so that for any eigenform f ∈ S, πf,p admits a nontrivial

map from Ind
Iwp
J ρ, hence contains a (J, ρ)-vector and is a principal series. In order to

embed S inside Sw(G,U ), we have to prove that Ind
Iwp
J ρ is irreducible using Mackey

theory, where Iwp is the subgroup of GLn(Zp) of matrices that are upper triangular

mod p. The dimension of S is proportional to the product of dim Ind
Iwp
J χ, which is

a function of the valuations v(Ti), and the dimension of the algebraic representation

of GLn of highest weight corresponding to the algebraic part of (T1, . . . , Tn−1), which

is a polynomial of total degree n(n−1)
2

in the weight parameters by a combinatorial

calculation. This covers Steps 1 and 2. In fact, we can even show the following side

result.

7



Theorem 1.2.1. S is precisely the space of finite-slope classical forms of weight w.

To show this, we slightly refine the setup of the Belläıche-Chenevier construction

of the eigenvariety in order to precisely define the sense in which S is “minimal level”.

Consequently, our upper bound is the best possible with existing methods, except

possibly for the size of l(t). Step 3 is relatively standard; we do it by constructing

companion forms fw of f for each w ∈ Sn such that the slopes of all the companion

forms sum to l(t).

In Section 2, we describe the construction of the eigenvarieties we are interested

in, primarily following Chenevier ([9]) and Belläıche-Chenevier ([2]), adding some

extra details in places of particular importance to us. For example, we give a slightly

more general definition of local analyticity of p-adic automorphic forms which allows

different radii of analyticity for different coordinates and prove that it works, which

aids in proving Theorem 1.2.1.

In Section 3, we analyze the subspaces of classical automorphic forms of locally al-

gebraic weights and the automorphic representations they generate, thus carrying out

Steps 1 and 2 above, and proving Theorem 3.6.6, a precise version of Theorem 1.2.1.

In Section 4, we carry out Step 3 to prove Theorem 1.1.4 and Theorem 1.1.5.

Finally, in Section 5, we state and prove a precise version of Theorem 1.1.6 and

discuss other geometric consequences of Theorem 1.1.4. Unlike in Liu-Wan-Xiao’s

setting, for higher-dimensional eigenvarieties, the lower and upper bounds do not

match at any point on the Newton polygon, and we cannot expect them to, because

there exist (probably) non-classical forms of slopes smaller than some classical forms.

As a result, we cannot prove the equivalent of Conjecture 1.1.1 for these higher-

dimensional eigenvarieties. However, we can prove that certain boundary sections

of the eigenvariety decompose into many disconnected components (with the caveat

that we cannot verify that those sections are nonempty, although in fact we expect

them to be everything).

8



2. Belläıche-Chenevier eigenvarieties for definite unitary groups

Let p be a prime. Let q = 4 if p = 2 and q = p otherwise. In this section,

we go through the construction of eigenvarieties for definite unitary groups in the

language of Chenevier and Belläıche-Chenevier. In Section 2.1, we define the groups

and the spaces of p-adic automorphic forms we are interested in, notably including

the spaces of classical forms whose interpolation was the original motivation for this

construction. In Section 2.2, we describe the properties of the space of p-adic weights.

In Section 2.3, we define certain coordinates on spaces of functions on the Iwahori,

using a convenient hybrid of the language of Chenevier and Belläıche-Chenevier.

In Section 2.4, we introduce systematic notation for certain subgroups of Iwp. In

Section 2.5, we define the space of families of p-adic automorphic forms over weight

space, along with subspaces of locally analytic families. In Section 2.6, we define

Up-operators and work through their various important properties in great detail. In

Section 2.7, we define the desired eigenvarieties.

2.1. p-adic automorphic forms. Let E be an imaginary quadratic field over Q, and

D a central simple E-algebra of rank n2 which has an involution x 7→ x∗ extending

the nontrivial automorphism of E over Q (for example, D could be GLn(E)). Let

G/Q be the group whose R-points, for a Q-algebra R, are

G(R) = {x ∈ D ⊗Q R | xx∗ = 1}.

G(Qp) is isomorphic to GLn(Qp) if p is split in E (since then Ep ∼= Qp ⊕ Qp with

the involution switching factors) and to Un(Qp) if p is inert; we will assume that p

is split in E and G(Qp) ∼= GLn(Qp). Also, G(R) ∼= Us,t(R) for (s, t) the signature of

Q(x) = xx∗; we will assume that Q(x) has signature (n, 0) or (0, n), so that G(R) is

compact.

9



As usual, we write B and B for the upper and lower triangular Borel subgroups

of GLn respectively, T for the diagonal torus, and N and N for the upper and lower

unipotent subgroups of GLn respectively.

Write A = AQ, Af for the finite adeles of A, and Ap
f for the finite adeles trivial

at p. Let U be a compact open subgroup of G(Af ) of the form Up × U p, where

Up is a compact open subgroup of G(Qp) (called the wild level structure) and U p

a compact open subgroup of G(Ap
f ) (called the tame level structure). We can now

define V -valued automorphic forms for any Up-module V .

Definition 2.1.1. If V is a k[Up]-module for any field k, write V (G,U ) for the

k-vector space of maps

f : G(Q)\G(Af )→ V

such that f(xu) = u−1
p f(x) for all x ∈ G(Q)\G(Af ) and u ∈ U . Equivalently,

V (G,U ) = (Hom(G(Q)\G(Af ), k)⊗ V )U

where the action of U on Hom(G(Q)\G(Af ), k) is right translation and the action

on V is through Up. For any subgroup U ′ ⊇ U of G(Af ) to which the action of U

on V extends, V (G,U ) is a U ′-module with action (uf)(x) = upf(xu).

We will frequently express examples using the following notation: if B ⊆ H are

groups, R is a ring, and s : B → R is a character, let

H

Ind
B
s = {f : H → R | f(hb) = s(b)f(h) for all h ∈ H, b ∈ B},

and if P is a property of some functions f ∈ IndHB s which is invariant under left

translation by H, let

H,P

Ind
B
s = {f ∈

H

Ind
B
s | f has property P}.

10



Then IndH,PB s is an R-module with a (left) action of H given by (hf)(x) = f(h−1x)

for all h, x ∈ H.

For example, if k is a field, t = (t1, . . . , tn) ∈ Zn, and we write diag(d1, . . . , dn)

for the diagonal matrix with entries d1, . . . , dn along the diagonal, we can interpret

t as the character of the diagonal torus T (k) of GLn(k) taking diag(d1, . . . , dn) to∏n
i=1 d

ti
i , and thus as the character of the upper triangular Borel B(k) obtained by

reducing to T (k) and applying t. In the event that t1 ≥ · · · ≥ tn, the k-vector space

GLn(k),alg

Ind
B(k)

t,

where alg stands for algebraic (i.e. f : GLn(k) → k comes from an element of

k[GLn]), is the irreducible algebraic representation of GLn over k of highest weight

t (See Section 12.1.3 of [13] and Proposition 2.2.1 of [9]). We call this representation

St(k). Then St(k)(G,U ) is the space of classical p-adic automorphic forms on G of

weight t and level U with coefficients in k.

One way to picture V (G,U ) is as follows. By the generalized finiteness of class

groups (see Theorem 5.1 of [3]), the set G(Q)\G(Af )/U is finite. Fix double coset

representatives x1, . . . , xh ∈ G(Af ). Then we have an isomorphism

V (G,U )
∼−→

h⊕
i=1

V x−1
i G(Q)xi∩U

f 7→ (f(x1), . . . , f(xh)).

Because G(R) ∼= Un(R) is compact, G(Q) is discrete in G(Af ) (see e.g. Proposition

1.4 of [14] or Proposition 3.1.2 of [17]). Since in addition U is compact, the group

x−1
i G(Q)xi ∩ U is always finite, and it is trivial if U p is sufficiently small. (For

example, by Proposition 4.1.1 of [9], there is an integer en depending only on n

such that x−1
i G(Q)xi ∩U is guaranteed to be trivial if the image of U p in G(Ql) is
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contained in Γ(l) = {g ∈ GLn(Zp) | g ≡ 1 (mod l)} for some prime l - en). It is this

fact that makes the construction of the eigenvariety for G so sleek.

When convenient, we will assume that U p is sufficiently small and thus V (G,U ) ∼=

V h. As in Remark 2.14 of [16], this is not important to us, because the eigenvariety

for any U p is a union of connected components of the eigenvariety for a sufficiently

small subgroup of U p.

2.2. Weight space. A weight is a continuous character of T (Zp) ∼= (Z×p )n. Such a

weight can be viewed as a character of B(Zp) by reduction to T (Zp). (In the intro-

duction, we defined a weight instead to be a character of (Z×p )n−1, that is, a character

of T (Zp) that is trivial on the last Z×p -factor. We will go back to restricting possible

weights to the subset that is trivial on the last Z×p -factor whenever it is convenient,

because any character of T (Zp) can be twisted by a central character to one in this

restricted subset, and central characters do not change spaces of automorphic forms

in an interesting way.)

The weight space W n is the rigid analytic space over Qp such that for any affinoid

Qp-algebra A, W n(A) is the set of continuous characters (Z×p )n → A×. Let ∆n =

((Z/qZ)×)n. We have

(Z×p )n ∼= ∆n × (1 + qZp)n

so an A-point of W n is determined by a character of ∆n and a character of (1 +

qZp)n. Furthermore, a character s of (1 + qZp)n is determined by the values Ti(s) =

s(1, . . . , 1, exp(q), 1, . . . , 1) − 1 (where the ith entry is exp(q) and all the others are

1), since exp(q) topologically generates 1 + qZp. By Lemma 1 of [4], the coordinates

(T1, . . . , Tn) ∈ An come from an A-point of W n precisely when they are topologically

nilpotent. Thus W n can be pictured as a finite disjoint union of wide-open unit

polydiscs with coordinates (T1, . . . , Tn), one for each tame character of ∆n.

We use

[·] : (Z×p )n → ZpJ(Z×p )nK

12



to denote the universal character of (Z×p )n and Λn to denote the Iwasawa algebra

Λn = ZpJ(Z×p )nK ∼= Zp[∆n]⊗Zp ZpJ(1 + qZp)nK ∼= Zp[∆n]⊗Zp ZpJT1, . . . , TnK

where Ti = [(1, . . . , 1, exp(q), 1, . . . , 1)] − 1 with the exp(q) in the ith position; then

continuous homomorphisms χ : Λn → A are in bijection with A-points of W n via

χ 7→ χ ◦ [·].

Example 2.2.1 (dominant algebraic weights). If t1 ≥ · · · ≥ tn are integers, the

algebraic character (d1, . . . , dn) 7→
∏n

i=1 d
ti
i is a Qp-point of W n with T -coordinates

(exp(t1q)− 1, . . . , exp(tnq)− 1)

which have valuations

v

((
1 + tiq +

(tiq)
2

2!
+ · · ·

)
− 1

)
= v(tiq).

If χ : Zp → C× is a smooth (i.e. finite-order) character, we will borrow the following

slightly nonstandard definition of the conductor cond(χ) of χ from Section 3 of [20]:

it is the least positive integer n such that 1 + pnZp ⊂ ker(χ). Thus the conductor

of the trivial character is 1 but the conductor of any other character is the same as

with the usual definition.

Example 2.2.2 (locally algebraic weights). If t1 ≥ · · · ≥ tn are integers and χ1, . . . , χn

are finite-order characters Z×p → C×p , the “locally algebraic” character

(d1, . . . , dn) 7→
n∏
i=1

χi(di)d
ti
i

13



is a Cp-point of W n. If χi is nontrivial with conductor ci, we have

v(Ti) = v(χi(exp(q)) exp(tiq)− 1) =



v(tiq) if p > 2 and ci = 1

q
pci−1(p−1)

if p > 2 and ci ≥ 2

v(tiq) if p = 2 and ci = 3

q
pci−1(p−1)

= 1
2ci−3 if p = 2 and ci ≥ 4.

For completeness, we quickly prove the second case above; the others are similar.

The value χi(exp(q)) = χi(exp(p)) is a primitive pcith root of unity, say ζpci . Let

f(X) =
Xpci − 1

Xpci−1 − 1
=

∏
a∈(Z/pciZ)×

(X−ζapci ) = Xpci−pci−1

+Xpci−2pci−1

+ · · ·+Xpci−1

+1.

Then f(1) = p =
∏

a∈(Z/pciZ)×(1 − ζapci ). Each term in the product has the same

valuation, since they are Galois conjugate, and there are pci−1(p − 1) such terms.

So v(χi(exp(q)) − 1) = 1
pci−2(p−1)

. The factor of exp(tiq) has no effect since it is 1

(mod p).

In general, if A is a Banach Qp-algebra, we say that a character s : Z×p → A× is

c-locally analytic if its restriction to 1 + pcZp is given by a convergent power series

with coefficients in A. Every continuous character s is c-locally analytic for some c:

let T = s(exp(q))− 1 and choose c such that ‖T pc/q‖ < q−1. Then we have

s(z) = s
(

exp(pc)
1
pc

log z
)

= [(1 + T )p
c/q]

1
pc

log z = [1 + ((1 + T )p
c/q − 1)]

1
pc

log z

if this converges. But by our choice of c, we have ‖(1 + T )p
c/q − 1‖ < q−1, and

if z ∈ (1 + pcZp) then
∣∣∣ 1
pc

log z
∣∣∣ ≤ 1. By Lemma 3.6.1 of [9], this expression is a

convergent power series in z.

Naturally, if s : (Z×p )n → A× is a character, we say that it is (c1, . . . , cn)-locally

analytic if it is ci-locally analytic in the ith factor.
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If W is any open affinoid subset of W , we use

[·]W : (Z×p )n → O(W )×

to denote the universal character of (Z×p )n with coefficients in O(W ). Note that [·]W

is (c1, . . . , cn)-locally analytic with ci depending on maxs∈W (Cp) |Ti(s)|.

2.3. Coordinates on spaces of functions on Iwp. If A is an affinoid Qp-algebra

and s : (Z×p )n → A is a weight, we can view any function f ∈ Ind
Iwp
B(Zp) s as a function

on Zn(n−1)/2
p by restricting f to the lower unipotent subgroup N and applying the

map

Zn(n−1)/2
p → N

z = (zij) 7→ N(z) =



1 0 0 · · · 0

pz21 1 0 · · · 0

pz31 pz32 1 · · · 0

...
...

...
...

...

pzn1 pzn2 pzn3 · · · 1


∈ N.

We say that f is continuous if it is continuous as a function on Zn(n−1)/2
p via z 7→ N(z).

Then Ss := Ind
Iwp,cts

B(Zp) (s), where cts stands for continuous, is an A[Iwp]-module. If

s0 : (Q×p )n → A is the trivial extension of s from (Z×p )n to (Q×p )n (that is, we set

s0(d) = 1 for any d ∈ (Q×p )n whose entries are powers of p), Ss is canonically

isomorphic to Ind
B(Qp) Iwp,cts

B(Qp) (s0) by restriction of functions from B(Qp) Iwp to Iwp.

Consequently it has an action by B(Qp) Iwp.

It will be useful to write out the natural action of Iwp on f ∈ Ss more explicitly

in terms of the coordinates zij. To do this, we interpret them as Plücker coordinates

on N(z). Recall that for any 1 ≤ j ≤ n and subset σ of {1, . . . , n} with #σ = j, the

Plücker coordinate Zj,σ associated to (j, σ) is the algebraic function on GLn given by
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the determinant of the minor associated to the rows corresponding to σ and the first

j columns.

Give Qn
p the standard basis e1, . . . , en and interpret elements of Qn

p as horizontal

vectors. Give ∧j(Qn
p ) the corresponding standard basis

{eσ = ek1 ∧ · · · ∧ ekj | σ = {k1 < · · · < kj} ⊂ {1, . . . , n}},

ordered lexicographically, and again interpret elements of ∧j(Qn
p ) as horizontal vec-

tors. Let 1j = {1, . . . , j}. If GLn(Qp) acts on Qn
p by right multiplication of horizontal

vectors (the transpose of the standard action), and ιj : GLn(Qp) ↪→ GL(∧j(Qn
p ))

gives the induced action of GLn(Qp) on ∧j(Qn
p ) (where again GL(∧j(Qn

p )) acts on

∧j(Qn
p ) by right multiplication of horizontal vectors), then for x ∈ GLn(Qp), Zj,σ(x)

is the coefficient of e1j in eσ · ιj(x), or the entry of ιj(x) in the σth row and first

column. If b = (bij) ∈ B(Qp), ιj(b) is also upper triangular, so the coefficient of e1j

in eσ · ιj(xb) = eσ · ιj(x) · ιj(b) is Zj,σ(x) times the top left entry of ιj(b), which is

b11 · · · bjj =: tj(b). That is, we have

Zj,σ(xb) = tj(b)Zj,σ(x).

So Zj,σ is invariant under right multiplication by N , and Zj,σ/1 := Zj,σ/Zj,1j is invari-

ant under right multiplication by B. Let

Zj,σ(u−1x) =
∑

#τ=j

aj,σ,τ (u)Zj,τ (x)

(note that aj,σ,τ (u) ∈ Zp, and if u ∈ Iwp then aj,1j ,1j(u) ∈ Z×p ) so that

Zj,σ/1(u−1x) =
aj,σ,1j +

∑
#τ=j,τ 6=1j

aj,σ,τ (u)Zj,τ/1(x)

aj,1j ,1j +
∑

#τ=j,τ 6=1j
aj,1j ,τ (u)Zj,τ/1(x)

.

For i ≥ j, let σij = {1, . . . , j − 1, i} (so σjj = 1j); then we can see that

Zj,1j(N(z)) = 1,
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Zj,σij(N(z)) = pzij.

Thus zij, or technically pzij, is indeed a Plücker coordinate for N(z). Now using the

Iwahori decomposition for Iwp, let

u−1N(z) = N(uz)T (u, z)N(u, z)

where T (u, z) ∈ T and N(u, z) ∈ N . So if f ∈ Ss, we have

(uf)(N(z)) = f(u−1N(z)) = f(N(uz)T (u, z)N(u, z))

= s(T (u, z))f(N(uz)).

We wish to write uz and T (u, z) in terms of u and z. But we have

Zj,σij(u
−1N(z)) = Zj,σij(N(uz)T (u, z)N(u, z))

= Zj,σij(N(uz))tj(T (u, z)) = p(uz)ijtj(T (u, z)).

So in fact, setting i = j, we find

tj(T (u, z)) = Zj,σjj(u
−1N(z)) =

∑
#τ=j

aj,1j ,τ (u)Zj,τ (N(z))

where Zj,τ (N(z)) is by definition a polynomial in the variables {zkl}l≤j,k>l with coef-

ficients in pZp. Similarly,

p(uz)ij = Zj,σij/1(u−1N(z)) =
aj,σ,1j +

∑
#τ=j,τ 6=1j

aj,σ,τ (u)Zj,τ/1(N(z))

aj,1j ,1j +
∑

#τ=j,τ 6=1j
aj,1j ,τ (u)Zj,τ/1(N(z))

where Zj,τ/1(N(z)) is again a polynomial in the variables {zkl}l≤j,k>l with coefficients

in pZp.

2.4. Notation for subgroups of Iwp. Since we will work with numerous subgroups

of Iwp, we will introduce some notation to identify them. If c = (cij) ∈ Zn×n≥0 is any

17



n× n matrix of nonnegative integers, we will write

Γ(c) = {(xij) ∈ GLn(Zp) | pcij | (xij − δij) for all i, j}.

One can compute that Γ(c) is a group precisely when cij ≤ cik + ckj for all i, j, k.

Note that this means that if Γ(c) is a group, then so is T (Zp)Γ(c). If we instead only

have half a matrix of nonnegative integers c = (cij)n≥i>j≥1 ∈ Zn(n−1)/2
≥0 , we will write

Γ1(c) = {(xij) ∈ Iw
p
| v(xij) ≥ cij∀i > j; v(xii − 1) ≥ min{cij|j < i} ∪ {cji|j > i}∀i}

Γ0(c) = {(xij) ∈ Iw
p
| v(xij) ≥ cij∀i > j} = T (Zp)Γ1(c) ⊂ Iw

p
.

Definition 2.4.1. We say that c = (cij)n≥i>j≥1 ∈ Zn(n−1)/2
≥0 is group-shaped if cij ≤

cik + ckj for all k, where we set cab to be 0 if a ≤ b.

Thus Γ1(c) and Γ0(c) are subgroups whenever c is group-shaped.

Definition 2.4.2. We call an n(n−1)/2-tuple c = (cij)n≥i>j≥1 ∈ Zn(n−1)/2
≥0 compatible

with an n-tuple (c1, . . . , cn) ∈ Zn≥0 if ci ≤ min{cij|j < i}∪{cji|j > i}∀i. Equivalently,

if we define c′ ∈ Zn×n≥0 by c′ij = cij for i > j, c′ii = ci, and c′ij = 0 for i < j, then Γ(c′)

is a group.

Then we see that if χ = (χ1, . . . , χn) : T (Zp) → C× is a character of T (Zp), and

c ∈ Zn(n−1)/2
p , χ extends to a well-defined character of T (Zp)Γ1(c) = Γ0(c), trivial on

Γ1(c), whenever c is compatible with (cond(χ1), . . . , cond(χn)).

In the calculations below, whenever we write Γ(c), Γ0(c), or Γ1(c) for a matrix

or half-matrix of nonnegative integers c, we will implicitly assume that c has been

chosen so that it is in fact a group.

Depending on convenience, we may also overload the above notation in the follow-

ing ways. First, if r = (rij) ∈ [0, 1]n×n is any n × n matrix of real numbers in [0, 1],
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we will write

Γ(r) = {(xij) ∈ GLn(Zp) | |xij − δij| ≤ rij for all i, j}.

Then Γ(r) is a group precisely when rij ≥ rikrkj for all i, j, k. We may define

Γ1(r),Γ0(r) similarly. Second, if c ∈ Z>0 is a single integer, we will write

Γ(c) = {(xij) ∈ GLn(Zp) | v(xij − δij) ≥ c for all i, j}.

This is always a group. We may define Γ1(c),Γ0(c) similarly. Finally, if r is a single

real number in [0, 1], we will write Γ(r),Γ1(r),Γ0(r) for the obvious final abuse of the

same notation.

2.5. The sheaf of p-adic automorphic forms on weight space. If c = (cij)n≥i>j≥1 ∈

Zn(n−1)/2
>0 , we say that f ∈ Ss is c-locally analytic if, for any a = (aij) ∈ Zn(n−1)/2

p ,

the restriction of f to

B(a, c) = {z = (zij)n≥i>j≥1 ∈ Zn(n−1)/2
p | zij ∈ aij + pcijZp∀i, j}

is given by a convergent power series in the variables zij with coefficients in A.

Definition 2.5.1. We call an n(n− 1)/2-tuple c = (cij)n≥i>j≥1 ∈ Zn(n−1)/2
≥0 analytic-

shaped if we have c(j+1)j = c(j+2)j = · · · = cnj for all j and cnj ≥ cn(j+1) for all j.

(Note that if c is analytic-shaped it is also group-shaped.) We call c compatible with

an n-tuple (c1, . . . , cn) ∈ Zn≥0 if cj ≤ minl≤j,k>l ckl for all j. That is, for each j0, all

the entries of (cij) corresponding to matrix entries appearing in or to the left of the

j0th column should be at least cj0 .

Definition 2.5.2. If c ∈ Zn(n−1)/2
>0 is analytic-shaped, we say that s : (Z×p )n → A× is

c-locally analytic if there is (c1, . . . , cn) such that s is (c1, . . . , cn)-locally analytic and

c is compatible with (c1, . . . , cn).
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Proposition 2.5.3. If s is (c1, . . . , cn)-locally analytic and f ∈ Ss is c-locally an-

alytic for c analytic-shaped and compatible with (c1, . . . , cn) (so that s is c-locally

analytic), then uf is also c-locally analytic for all u ∈ Iwp.

Proof. By the calculations in Section 2.3, we have (uf)(N(z)) = s(T (u, z))f(N(uz))

where

—(uz)ij is a power series in the variables {zkl}l≤j,k>l;

—the jth diagonal entry of T (u, z), or
tj(T (u,z))

tj−1(T (u,z))
, is also a power series in the

variables {zkl}l≤j,k>l.

So if we restrict to z ∈ B(a, c), the coefficient (uz)ij ranges over a ball of the form

a′ij + pminl≤j,k>l cklZp; since c is analytic-shaped, we have cij ≤ minl≤j,k>l ckl, and we

conclude that uz is also restricted to a ball of the form B(a′, c). Thus f(N(uz)) is

analytic for z ∈ B(a, c). Similarly,
tj(T (u,z))

tj−1(T (u,z))
ranges over a ball of the form a′′jj +

pminl≤j,k>l cklZp; since cj ≤ minl≤j,k>l ckl and sj is analytic on a′jj + pcjZp, we conclude

that sj(T (u, z)) is analytic for z ∈ B(a, c). Thus (uf)(N(z)) is analytic for z ∈

B(a, c), as desired. �

By Proposition 2.5.3, if s is c-locally analytic with c group-like, the space Ss,c =

Ind
Iwp,c−loc.an.
B(Zp) (s), where c − loc.an. stands for c-locally analytic, is well-defined and

has an action by Iwp.

We let S = S[·] = Ind
Iwp,cts

B(Zp) ([·]). If Up = Iwp, we call

S (G,U ) =
Iwp,cts

Ind
B(Zp)

([·])(G,U )

the space of integral p-adic automorphic forms for G of level U ; it has an action by

B(Qp)U . This gives a sheaf on W whose fiber over s is

Ss(G,U ) =
Iwp,cts

Ind
B(Zp)

(s)(G,U ).

20



Similarly, let SW,c = S[·]W ,c = Ind
Iwp,c−loc.an.
B(Zp) ([·]W ) (for any c such that [·]W is c-locally

analytic). If Up = Iwp, we call

SW,c(G,U ) =
Iwp,c−loc.an.

Ind
B(Zp)

([·]W )(G,U )

the space of c-locally analytic p-adic automorphic forms for G of level U ; this does

not have an action by B(Qp), as some elements of B(Qp) do not preserve the radius

of local analyticity, but we will see in the next section that it has an action by a

certain submonoid.

2.6. The operators Ua
p . If H is any locally compact, totally disconnected topologi-

cal group, we write H (H) for the k-algebra of compactly supported, locally constant

k-valued functions on H with the convolution product

(ϕ1 ? ϕ2)(g) =

∫
h∈H

ϕ1(h)ϕ2(h−1g)dµ

where µ is a Haar measure on H. This algebra usually has no identity, but many

idempotents. If K is a compact open subgroup of H, the idempotent eK = 1K

µ(K)

projects H (H) onto the subalgebra H (H �K) of K,K-bi-invariant functions. If V

is a smooth H-module, it is an H (H)-module via

ϕ(v) =

∫
H

ϕ(h)(hv)dh

and similarly V K is an H (H �K)-module.

In the particular case H = B(Qp)U , V = Ss(G,U ), K = U , we can rephrase

this as follows. We sometimes write [U ζU ] for the element 1U ζU of H (G(Af )�U ).

If ζ1, . . . , ζr are left U -coset representatives of U ζU , so that

U ζU =
r∐
i=1

ζiU ,
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then for any ϕ ∈ Ss(G,U ) and x ∈ G(Q)\G(Af ), we have

[U ζU ](ϕ)(x) =

∫
G(Af )

[U ζU ](g) · (g.ϕ)(x)dg

=

∫
U ζU

gpϕ(xg)dg =
r∑
i=1

(ζi)p.ϕ(xζi).

The following is Lemma 4.5.2 of [9], or Proposition 3.3.3 of [17].

Lemma 2.6.1. Fix coset representatives x1, . . . , xh of G(Q)\G(Af )/U , and thus an

isomorphism Ss(G,U ) ∼= S h
s . Then we have

[U ζU ](ϕ)(xj) =
r∑

k=1

∑
i|ζi∈x−1

j G(Q)xkU

(ζiu
−1
ij )p.ϕ(xk)

for some uij ∈ U . That is, the action of [U ζU ] on Ss(G,U ) is of the form∑
Tj ◦ σj, where the σjs are compositions of permutation operators on the entries of

vectors in S h
s with projections onto one of the coordinates, and the Tjs are diagonal

translations of S h
s by elements of U ζU .

Proof. Write xjζi in the form dijxkijuij where dij ∈ G(Q) and uij ∈ U . Then

[U ζU ](ϕ)(xj) =
r∑
i=1

(ζi)p.ϕ(xjζi)

=
r∑
i=1

(ζi)p.ϕ(dijxkijuij) =
r∑
i=1

(ζiu
−1
ij )p.ϕ(xkij).

The values of i for which kij = k are those for which ζi = x−1
j dxku for some d ∈ G(Q)

and u ∈ U , that is, ζi ∈ x−1
j G(Q)xkU . �

If a = (a1, . . . , an) ∈ Zn, we write

ua = diag(pa1 , . . . , pan)
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and define the subgroup

Σ = {ua = diag(pa1 , . . . , pan) | a = (a1, . . . , an) ∈ Zn} ⊂ GLn(Qp)

and its submonoids

Σ− = {ua = diag(pa1 , . . . , pan) | a1 ≥ a2 ≥ · · · ≥ an} ⊂ Σ

Σ−− = {ua = diag(pa1 , . . . , pan) | a1 > a2 > · · · > an} ⊂ Σ−.

We will frequently choose ζ to be an element of Σ−. Let

Ua
p = [U diag(pa1 , . . . , pan)U ].

Proposition 2.6.2. If f ∈ Ss and a = (a1, . . . , an) ∈ Zn, ua acts on f by zij 7→

pai−ajzij.

Proof. We have

f((ua)−1N(zij)) = f




p−a1 · · · 0

0
... 0

0 · · · p−an





1 0 0 · · · 0

pz21 1 0 · · · 0

pz31 pz32 1 · · · 0

...
...

...
...

...

pzn1 pzn2 pzn3 · · · 1





= f



p−a1 0 0 · · · 0

p−a2+1z21 p−a2 0 · · · 0

p−a3+1z31 p−a3+1z32 p−a3 · · · 0

...
...

...
...

...

p−an+1zn1 p−an+1zn2 p−an+1zn3 · · · p−an


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= f





1 0 0 · · · 0

pa1−a2+1z21 1 0 · · · 0

pa1−a3+1z31 pa2−a3+1z32 1 · · · 0

...
...

...
...

...

pa1−an+1zn1 pa2−an+1zn2 pa3−an+1zn3 · · · 1




p−a1 · · · 0

0
... 0

0 · · · p−an




= f(N(pai−ajzij))s

0(ua) = f(N(pai−ajzij)).

�

Corollary 2.6.3. If f ∈ Ss is c-locally analytic and ua ∈ Σ−, then uaf is also c-

locally analytic. So translation by Iwp u
a Iwp preserves Ss,c (and hence, by Lemma 2.6.1,

Ua
p preserves Ss,c(G,U )).

Proof. When ua ∈ Σ−, we have ai − aj ≥ 0 for all i > j; thus if (zij) varies in a ball

B(a, c), so does (pai−ajzij) = (uazij). �

Let c0 ∈ Zn(n−1)/2
>0 be minimal such that s is c0-locally analytic.

Corollary 2.6.4. If f ∈ Ss is c-locally analytic and ua ∈ Σ−−, then uaf is c−− :=

(max{cij−1, c0
ij})-locally analytic. So translation by Iwp u

a Iwp takes Ss,c into Ss,c−−

(and hence, by Lemma 2.6.1, Ua
p takes Ss,c(G,U ) into Ss,c−−(G,U )).

Proof. When ua ∈ Σ−−, we have ai − aj > 0 for all i > j; thus if (zij) varies in a ball

B(a, c), then (pai−ajzij) = (uazij) varies in a smaller ball B(a′, c+ 1). �

Ss,c is an orthonormalizable A-module, for which we choose the following or-

thonormal basis: for each a ∈
∏

n≥i>j≥1 Zp/pcijZp, we choose the set of monomials∏
n≥i>j≥1 z

eij
ij as an orthonormal basis for the restriction of Ss,c to B(a, c); then for

Ss,c, we may choose as orthonormal basis the set of monomials
∏

n≥i>j≥1(zaij)
eij , with

one copy for each a ∈
∏

n≥i>j≥1 Zp/pcijZp.
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Corollary 2.6.5. When a ∈ Σ−−, the operator of translation by ua acts completely

continuously on Ss,c, in the sense that it is a uniform limit of operators with finite-

dimensional images. So by Lemma 2.6.1, Ua
p is completely continuous on Ss,c(G,U ).

Proof. By Proposition 2.6.2, ua scales
∏

n≥i>j≥1(zaij)
eij by

∏
n≥i>j≥1 p

(ai−aj)eij , which

goes to ∞ as any eij goes to ∞. Furthermore, since the formulas in Section 2.3 all

have integer coefficients, it is clear that translation by Iwp is norm 1. �

Since Ua
p is completely continuous on Ss,c(G,U ), for any k, the matrix of the

action of Ua
p (in any basis) has a finite number of nonzero rows mod pk. Suppose

that this matrix has rk rows that are zero mod pk but nonzero mod pk+1. Then for

any N ≥ r0 + r1 + · · ·+ rk, the coefficient of XN in the characteristic power series

P a
s,c(X) = det(1−XUa

p |Ss,c(G,U ))

of Ua
p acting on Ss,c(G,U ), being a linear combination of minors of size N ≥ r0 +

r1 + · · ·+ rk, is divisible by r1 + 2r2 + · · ·+ krk. Since this lower bound grows faster

than any linear function of N , P a
s,c(X) is an entire function of X.

Proposition 2.6.6. P a
s,c(X) is independent of c. (So we will henceforth call it

P a
s (X).)

Proof. This follows from applying Corollary 2 of Proposition 7 of [22] to the map

Ua
p : Ss,c(G,U ) → Ss,c−−(G,U ) from Corollary 2.6.4 and the obvious inclusion

Ss,c−−(G,U ) ↪→ Ss,c(G,U ). �

Let UΣ
p be the subring of H (G(Af )�U ) generated by the elements Ua

p for a ∈ Σ−.

By Proposition 6.4.1 of [2], the map from k[Σ] to UΣ
p sending ua to U b

p(U
c
p)
−1 where

ub, uc are any elements of Σ− such that ua = ub(uc)−1 is a well-defined isomorphism of

rings. So, in particular, UΣ
p is abelian. Let H be a subalgebra of H (G(Af )�U ) given

by the product of Z[UΣ
p ] at p and some commutative subalgebra of H (G(Ap

f )�U p)

away from p.
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We write ui for the image of diag(1, . . . , 1, p, 1, . . . , 1) ∈ k[Σ] in UΣ
p . If f ∈

Ss,c(G,U ) is a simultaneous eigenvector for H , let ui(f) = λif . We call these

the λ-values associated to f .

Unless otherwise specified, we will generally set U to be a compact open subgroup

of G(Af ) given by the product of Iwp at p and a fixed tame level structure away from

p chosen so that x−1G(Q)x ∩ U0(p) = 1 for all x. Call this subgroup U0(p). (Note

that for the same reason as in Proposition 3.1.2 below, our choice of Iwp as the wild

level structure does not actually affect P a
s (X).)

2.7. The eigenvariety. Given our setup so far, the eigenvariety is easy to define. For

a given ua ∈ Σ−−, let Z a be the subvariety of W ×Gm which, in any subset W ×Gm

where W ⊂ W is open affinoid, is cut out by the characteristic power series P a
W (X)

of Ua
p acting on SW (G,U0(p)). Let w : Z a → W be the first projection (weight)

map, and sa : Z a → Gm the inverse of the second projection (slope) map. Then for

any point z ∈ Z a, sa(z) is a nonzero eigenvalue of Ua
p acting on Sw(z)(G,U0(p)), and

for any w ∈ W , all nonzero eigenvalues of Ua
p acting on Sw(G,U0(p)) can be found

in the fiber of Z a over w. We call Z a the spectral variety associated to Ua
p .

It is convenient to fix a particular choice of ua ∈ Σ−−; we will choose a =

(n − 1, n − 2, . . . , 1, 0). From now on, we will write Up = U
(n−1,n−2,...,1,0)
p and Z =

Z (n−1,n−2,...,1,0). We call an eigenform f ∈ Sw(G,U0(p)) finite-slope if Upf 6= 0

(i.e. the slope of the Up-eigenvalue is finite, and f appears on the eigenvariety), and

infinite-slope otherwise.

Since H is commutative, we can construct the space D whose points correspond

to systems of eigenvalues of all Hecke operators in H , including in particular all Ua
p s

simultaneously, by simply taking D to be the finite cover of Z which, over an affinoid

W ⊂ W , is given by the MaxSpec of the image of H ⊗ Λn in the endomorphism

ring of SW (G,U0(p)). Then D inherits the weight map w : Z a → W and each slope

map sa : D → Gm. Note that D → Z a is degree 1 away from multiple roots of
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P a
W (X), hence degree 1 away from a Zariski-closed subset of W of lower dimension.

So in general, the bounds and geometric properties we get for Z a will also apply to

D . For most of this paper, we will focus on the properties of Z a for a fixed a.

For additional details on properties of Z a and D and their proofs, see [9] or [5].

3. Locally algebraic weights

In this section, we analyze classical automorphic forms of locally algebraic weights

and their associated automorphic representations. In Section 3.1, we define these

spaces of classical forms and check their basic properties, including that they em-

bed into the infinite-dimensional spaces of Section 2.1. In Section 3.2, we repro-

duce Belläıche-Chenevier’s slope criterion guaranteeing that a given form is classical,

phrased to work for locally algebraic weights instead of just algebraic weights; while

this is not directly needed for our purposes, it is useful to give a sense of where clas-

sical forms fit in among the world of all p-adic automorphic forms. In Section 3.3,

we explain the standard translation between classical forms and automorphic repre-

sentations. In Section 3.4, we analyze certain Iwahori subrepresentations that may

appear in the local component at p of such an automorphic representation, including

a particularly important irreducible subrepresentation. In Section 3.5, we apply the

work of Roche to a calculation of Hecke eigenvalues in ramified principal series. In

Section 3.6, we identify a subspace of the classical forms whose associated automor-

phic representations have ramified principal series as their local components at p,

and compute their Up-eigenvalues in terms of the parameters of the corresponding

principal series.

3.1. p-adic automorphic forms of locally algebraic weights. In Section 2.1,

we defined classical forms of algebraic weights via the algebraic representation St(k)

of GLn(Qp). This construction may be generalized to locally algebraic weights as

follows. Let χ = χ1 · · ·χn be a finite character of (Z×p )n. Then tχ is a locally
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algebraic character of (Z×p )n, in the sense that it is algebraic upon restriction to∏n
i=1(ai + pmiZp) for some choice of mis and any nonzero ais. Similarly to earlier

notation, for a positive integer c, let

B(a, c) = {z = (zij)n≥i>j≥1 ∈ Zn(n−1)/2
p | zij ∈ aij + pcZp∀i, j}

Then there are two equivalent definitions of the space

Stχ,c =
Iwp,c−loc.alg.

Ind
B(Zp)

(tχ)

where c−loc.alg. stands for c-locally algebraic. The first is through the usual induction

operator above, as follows. We say that f ∈ Ind
Iwp
B(Zp)(tχ) is c-locally algebraic if it has

an algebraic extension to B(a, c) for all a ∈ Zn(n−1)/2
p of degree bounded as follows:

writing f as a polynomial in the variables Zi,k/1 as in Section 2.3, we require that

for each fixed i, the degree of f as a polynomial in all the variables Zi,k/1 should be

at most ti − ti+1 =: mi. As in Proposition 2.5.3, one can see using the formulas in

Section 2.3 that assuming cond(χi) ≤ c for all i, this condition is invariant under

right translation by Iwp.

The second definition, coming from the perspective of Loeffler (Section 2.5 of [17]),

is (
Iwp,alg

Ind
B(Zp)

t

)
⊗

(
Iwp /Γ(c)

Ind
B(Zp)/B(Zp)∩Γ(c)

χ

)
.

Note that Γ(c) is normal in Iwp because it is the kernel of the reduction map from

Iwp to the corresponding group with coefficients in Zp/pcZp.

Except for an annoying technical distinction which we will discuss at the end of

this subsection, the space Ind
Iwp,alg

B(Zp) t is the same (as an Iwp-representation) as the

space St(k) defined in Section 2.1, since Iwp is Zariski-dense in GLn. Let dt =

dim Ind
Iwp,alg

B(Zp) t.
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Proposition 3.1.1. The natural map(
Iwp,alg.

Ind
B(Zp)

t

)
⊗

(
Iwp /Γ(c)

Ind
B(Zp)/B(Zp)∩Γ(c)

χ

)
→

Iwp,c−loc.alg.
Ind
B

(tχ)

f ⊗ g 7→ fg

is an isomorphism.

Proof. To construct an inverse, let ϕ ∈ Ind
Iwp,c−loc.alg.
B(Zp) χ. Let ϕalg : Iwp → C be

defined by

ϕalg(bn) = t(b)ϕ′(n)

for all b ∈ B, n ∈ N ∩ Iwp, where ϕ′ is the unique algebraic extension of ϕ|N∩Γ(c) to

N ∩ Iwp. Let ϕsm : Iwp / Iwp ∩Γ(c)→ C be defined by

ϕsm(bn) = χ(b)(ϕ/ϕ′)(n)

where b, n are any lifts of b ∈ B/B ∩Γ(c), n ∈ (N ∩ Iwp)/(N ∩Γ(c)). This suffices to

prove surjectivity.

Injectivity follows from dimension counting: both sides have dimension dtp
c(n2). �

Remark 1. There is a simple isomorphism of Iwp-representations

Iwp /Γ(c)

Ind
B(Zp)/B(Zp)∩Γ(c)

χ
∼−→

Iwp

Ind
Γ0(c)

χ

so we could just as easily have phrased this section in terms of Ind
Iwp
Γ0(c) χ. For now,

we have no particular reason to do this, but it may be more convenient for future

work.

We call

Stχ,c(G,U ) =
Iwp,c−loc.alg.

Ind
B

(tχ)(G,U )

the space of classical p-adic automorphic forms on G of weight tχ, radius c, and level

U . By the definitions, it embeds into Stχ(G,U ), and we call its image a classical
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subspace of Stχ(G,U ). The following proposition is a quick generalization of part 4

of Lemma 4 of [4].

Proposition 3.1.2. For any positive integers c, d, and e with d ≤ e and c+d−e ≥ 1,

we have a natural vector space isomorphism

Stχ,c(G,U
pΓ0(d)) ∼= Stχ,c+d−e(G,U

pΓ0(e)).

such that systems of H -eigenvalues (where H is obtained with respect to U pΓ0(d))

on the left go to identical systems of H -eigenvalues on the right (where H is obtained

with respect to U pΓ0(e)).

Proof. For the purposes of this proposition, let X = G(Q)\G(Af ). The left-hand

side is the subset of (*)

(Hom(X,Cp)⊗
Iwp,c−loc.alg.

Ind
B

(tχ))Γ0(e)

that remains invariant under a set of coset representatives A for Γ0(e)\Γ0(d). This

subset has a map by restriction of the second factor to

(Hom(X,Cp)⊗ O)Γ0(e)

where O is the space of functions on B((pe−dZp)n(n−1)/2, c) that are algebraic on each

ball B(a, c). The map is an isomorphism: if ϕ ∈ (Hom(X,Cp) ⊗ O)Γ0(e), its inverse

ψ may be defined by

ψ(x)(z) = ϕ(xa−1)(N
−1

(N(z)a−1)) for a ∈ A such that za−1 ∈ B
(
(pe−dZp)n(n−1)/2, c

)
.

In N(z)a−1, a should be interpreted as a coset representative for Γ0(e− d+ 1)\ Iwp.

Note that this inverse depends on the choice of coset representatives A. Now

B((pe−dZp)n(n−1)/2, c) is isomorphic to B(Zn(n−1)/2
p , c + d − e) via multiplication by

pd−e, so (Hom(X,Cp)⊗ O)Γ0(e) is the desired right-hand side.
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To check that the Hecke operator action is preserved, it suffices to note that the

Hecke operator action on the left-hand side can be calculated on its inclusion into

(*). �

Corollary 3.1.3. For all positive integers c and group-like d ∈ Zn(n−1)/2
≥0 , we have a

vector space embedding

Stχ,c(G,U
pΓ0(d)) ↪→ Stχ(G,U0(p))

preserving systems of H -eigenvalues.

Proof. Let d = max dij. Then we have an embedding

Stχ,c(G,U
pΓ0(d)) ↪→ Stχ,c(G,U

pΓ0(d)).

By Proposition 3.1.2, we have an isomorphism

Stχ,c(G,U
pΓ0(d)) ∼= Stχ,c+d−1(G,U pΓ0(1)) = Stχ,c+d−1(G,U p Iw

p
).

The space on the right certainly embeds into Stχ(G,U p Iwp) = Stχ(G,U0(p)) as

discussed above. �

For future reference, it will be important to note the following distinction between

the space St(G, 1, U0(p)) defined above and the space St(k)(G,U0(p)) of classical

algebraic automorphic forms defined in Section 2.1, which is that they are identical

except for the normalization of the action of the Up-operator. This is because, as in

the beginning of Section 2.3, the action of ua on St = Ind
Iwp,alg

B(Zp) t = Ind
B(Qp) Iwp,alg

B(Qp) t0

implicitly arises from the extension of t to t0 : (Q×p )n → C where t0(ua) = 1, whereas

the action of ua on St(k) arises from the algebraic character t : (Q×p )n → C, for which

we can compute t(ua) = p
∑
i aiti . Thus we have

Ua
p |St(G, 1, U0(p)) = p

∑
i aitiUa

p |St(k)(G,U0(p)).
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3.2. A classicality theorem following Belläıche-Chenevier. This is essentially

Proposition 7.3.5 of [2]. We will just summarize the proof with modifications so that

it also works for locally algebraic weights.

Theorem 3.2.1. Let f ∈ Stχ(G,U ) where tχ = (t1χ1, . . . , tnχn), in which the ti

are integers such that t1 ≥ · · · ≥ tn and the χi are finite, such that f is an eigenform

for all operators U
(a1,...,an)
p . Let λ1, . . . , λn−1 be the λ-values associated to f as defined

at the end of Section 2.6. If

v(λ1λ2 · · ·λi) < ti − ti+1 + 1

for all i = 1, . . . , n − 1, then f is classical (i.e. lies in the image of Stχ,c(G,U ) for

any c such that this is well-defined).

Proof. Let V = Qpv ⊕ QpR be a finite-dimensional vector space generated by a

nonzero vector v and a lattice R. In some basis whose first vector is v, we define

P =

a B

0 D


Qp

⊂ GLQp(V )

N =

1 0

C IR


Zp

, J =

 a B

pC D


Zp

⊂ GLZp(V )

so that

J = (N ∩ J)× (P ∩ J) =

 1 0

pC IR


Zp

×

a B

0 D


Zp

.

We have an isomorphism α : N ∩ J → R given by

α

 1 0

pC Ir

 = C.
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We also define

U− =

pk 0

0 p≤kGLZp(R)


Zp

,U−− =

pk 0

0 p≤k−1GLZp(R)


Zp

.

We define M = 〈U−, J〉. Let χ : P → Q×p be the character of P acting on Qpv. We

have a Cp[H]-equivariant isomorphism

m

Sym(V ⊗Qp Cp)
∨ →

H,alg

Ind
P

(χm)

ϕ 7→ (h 7→ ϕ(h(e))).

We get a natural M-equivariant map

H,alg

Ind
P

(χm)→
JP,an

Ind
P

(χm)

by restriction. Let δ : M→ C×p be the character such that δ(J) = 1 and δ(u) = pa if

u =

pa 0

0 U

 ∈ U−.

Let e1, . . . , en be the standard basis of Qn
p . Let Vi = ∧i(Qn

p ), vi = e1 ∧ e1 ∧ · · · ∧ ei,

mi = ti− ti+1 if i < n and mn = tn, and Ri be the Zp-span of the elements ej1 ∧· · · eji
with j1 < · · · < ji and (j1, . . . , ji) 6= (1, . . . , i). Then for i = 1, . . . , n, we get

Hi, Pi, χi, N i, Ji, αi,U
−
i ,U

−−
i ,Mi, δi

as defined above.

Write Si(Cp)
∨ for the space IndHi,algPi

(χmii ) viewed as a representation of G(Qp)

via ∧i : G(Qp) → Hi. Write Si(mi) for the space IndHi,anPi
(χmii ) ⊗ δmii viewed as a

representation of M via ∧i. We have surjections

m⊗
i=1

Si(Cp)
∨ → St(Cp)

∨
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⊗̂m

i=1
Si(mi)→ St

which are equivariant with respect to G(Qp) and M respectively, both given by the

formula

(f1, . . . , fm) 7→ (g 7→
m∏
i=1

fi(∧i(g))).

Let

Q = St/(St(Cp)
∨ ⊗ δt)⊗

(
Iwp / Iwp ∩Γ(c)

Ind
B(Zp)/B(Zp)∩Γ(c)

χ

)
,

Q′ =
⊗̂m

i=1
Si(mi)/(

m⊗
i=1

Si(Cp)
∨ ⊗ δmii )⊗

(
Iwp / Iwp ∩Γ(c)

Ind
B(Zp)/B(Zp)∩Γ(c)

χ

)
,

Q′i =

(⊗̂
j 6=i

Sj(mj)

)
⊗ (Si(mi)/Si(Cp)

∨ ⊗ δmii )⊗

(
Iwp / Iwp ∩Γ(c)

Ind
B(Zp)/B(Zp)∩Γ(c)

χ

)
.

Then we have a surjection

Q′(G,U ) � Q(G,U )

and an injection

Q′(G,U ) ↪→
n∏
i=1

Q′i(G,U ).

We wish to show that if w ∈ Q(G,U ) satisfies the hypotheses of the theorem, that

is, ui(w) = λiw with the λi satisfying the given inequalities, then w = 0. We can

instead check this claim for w′ ∈ Q′(G,U ) satisfying the same condition, and for

this it suffices to check that the image w′i of w′ vanishes in Q′i(G,U ) for each i. Let

Ui =
∏i
j=1 ui

pmi+1 , so that w′i has Ui-eigenvalue λ1λ2···λi
pmi+1 w, which has norm > 1. Thus it

suffices to check that Ui has norm ≤ 1 on Q′i(G,U ), which follows from the claim

that any element of the form

g
(∏i

j=1 ui

)
g′

pmi+1

for g, g′ ∈ Iwp has norm ≤ 1 on Q′i. This follows from Lemma 7.3.6 of [2]. �

3.3. Automorphic representations associated to automorphic forms of lo-

cally algebraic weights. Fix an isomorphism ιp : Qp
∼−→ C. Let f ∈ Stχ(G,U0(p))
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be a p-adic automorphic form coming from some classical subspace Stχ,c(G,U0(p)).

Let W = Ind
Iwp,c−loc.alg.
B(Zp) (tχ), so that f is a function G(Q)\G(Af ) → W . Follow-

ing the proof of Proposition 3.8.1 of [17], let W = W sm,c(χ) ⊗ St(C), where, as in

Section 3.1,

W sm,c(χ) =
Iwp / Iwp ∩Γ(c)

Ind
B(Zp)/B(Zp)∩Γ(c)

χ,

St(C) =
Iwp,alg

Ind
B(Zp)

t,

and let ρsm, ρalg denote the actions of Iwp on W sm,c(χ) ⊗ St(C) given by acting on

only the first factor and only the second factor respectively. Then we can define a

function f∞ : G(A)→ W by f∞(g) = ρalg(g
−1
∞ ιp(gp))f(gf ) which satisfies the relation

f∞(gu) = ρsm(up)
−1ρalg(u∞)−1f∞(g)

for all u ∈ G(R)U0(p). Equivalently, f∞ can be viewed as the function

f∨∞ : (W sm,c(χ)∨ ⊗ St(C)∨)×G(Q)\G(A)→ C

(ϕ, x) 7→ ϕ(f∞(x))

which satisfies

f∨∞(ϕ, xu) = ϕ(f∞(xu)) = ϕ(ρsm(up)
−1f∞(x)) = f∨∞(upϕ, x)

for all u ∈ U0(p). Thus for each ϕ ∈ W sm,c(χ)∨ ⊗ St(C)∨, the function f∨∞(ϕ, ·) is an

element of C(G(Q)\G(A),C) which generates under right translation by Iwp a repre-

sentation containing an irreducible component of W sm,c(χ)∨ . The right translates of

f∨∞(ϕ, ·) under G(A) generate an automorphic representation πf of G(A) which de-

composes as a tensor product
⊗′

p πf,p. We are interested in describing the structure

of πf,p.
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Note that this process is reversible, in that given ψ ∈ C(G(Q)\G(A),C) which

generates a representation containing an irreducible component of W sm,c(χ)∨ under

right translation by Iwp, we get a unique fψ ∈ Stχ,c(G,U0(p)).

3.4. Structure of W sm,c(χ). We are interested in the representation

W sm,c(χ) =
Iwp /Γ(c)

Ind
B(Zp)/B(Zp)∩Γ(c)

χ

of Iwp. Note that there is an obvious embedding W sm,c(χ) ↪→ W sm,c+1(χ) which

takes f ∈ W sm,c(χ) to the composition of f with the reduction map Iwp /Γ(c+ 1)→

Iwp /Γ(c).

Let J be the compact open subgroup of GLn(Qp) corresponding to χ defined in

Section 3 of [20]; we have J = Γ(c) where cii = 0, cij =
⌊
cond(χiχ

−1
j )/2

⌋
if i < j, and

cij =
⌊
[cond(χiχ

−1
j ) + 1]/2

⌋
if i > j. Then χ extends to a character of J which we

will also call χ; it is defined by the equation χ(j−jj+) = χ(j) when j− ∈ J ∩N(Zp),

j ∈ T (Zp), and j+ ∈ J ∩N(Zp).

Now note that W sm,c(χ) contains the vector

f(x) =


χ(j)χ(b) if x = jb with j ∈ J and b ∈ B(Zp),

0 otherwise.

Note furthermore that for any j ∈ J and x ∈ Iwp /Γ(c), we have

(jf)(x) = f(j−1x) = χ(j−1)f(x) = χ−1(j)f(x)

so that f is (J, χ−1)-isotypic.

Proposition 3.4.1. Assume χ = (χ1, . . . , χn) satisfies

(1) for all i 6= j, cond(χiχ
−1
j ) = max(cond(χi), cond(χj)); and

(2) for all i 6= j with i, j 6= n, cond(χi) < 2 cond(χj).

Then U sm(χ) := Ind
Iwp
J χ is irreducible.
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Proof. Recall that J = Γ(c) where cij =
⌊
[cond(χiχ

−1
j ) + 1]/2

⌋
if i > j, or⌊

[cond(χiχ
−1
j )]/2

⌋
if i < j. By Mackey’s criterion, it is necessary and sufficient to

show that for any s ∈ Iwp \J , the characters χ and χs : j 7→ χ(sjs−1) are not

identically equal on J ∩ s−1Js. If s ∈ Iwp \J , let t = s−1. Then there is a pair i 6= j

such that tji is not divisible by pcji . Among all such i 6= j, choose a pair such that

either

—among the integers ckj + cjk − v(tjk), 1 ≤ k ≤ n, k 6= j, cij + cji − v(tji) is the

unique maximal one;

—or, if this is not possible, among the integers ckj + cjk− v(tjk), 1 ≤ k ≤ n, k 6= j,

cij + cji − v(tji) is maximal and i is minimal such that this is the case.

Let x ∈ J be the identity except for the ijth entry; let xij = b. Note that

we must have pcij |b. We will show that we can choose b such that sxt ∈ J and

1 = χ(x) 6= χ(sxt), and hence χ(x) 6= χs(x), as desired.

The matrix xt is the same as t except for the ith row, which is

(ti1 + btj1, . . . , tin + btjn).

The kkth entry of sxt is

sk1t1k + · · ·+ ski(tik + btjk) + · · ·+ skntnk = sk1t1k + · · ·+ skntnk + bskitjk = 1 + bskitjk.

Because of condition 1, one can check that for all j ∈ J , we have χ(j) = χ1(j11) · · · · ·

χn(jnn). So we wish to choose b such that

χ1(1 + bs1itj1) · · ·χi(1 + bsiitji) · · ·χj(1 + bsjitjj) · · ·χn(1 + bsnitjn) 6= 1.

Note that for all k 6= i, j, we have

v(ski) + cij + cji − v(tji) > cjk + ckj − v(tjk).
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This is just because we chose i, j such that cij + cji − v(tji) ≥ cjk + ckj − v(tjk), and

such that if equality holds then k > i, in which case v(ski) ≥ 1 since s ∈ Iwp. So if

we choose b such that v(b) = cij + cji − v(tji)− 1 ≥ cij, then we have

v(bskitjk) ≥ cjk + ckj = cond(χkχ
−1
j )

for all k 6= i, j, hence χk(1 + bskitjk) = 1. Then we have

χ1(1 + bs1itj1) · · ·χi(1 + bsiitji) · · ·χj(1 + bsjitjj) · · ·χn(1 + bsnitjn)

= χi(1 + bsiitji)χj(1 + bsjitjj) = χi(1 + bsiitji)χj

(
1 + b

(∑
k 6=i

skitjk

))
since v(bskitjk) ≥ cond(χj), but this is

χi(1 + bsiitji)χj(1− bsiitji)

since
∑

k skitjk =
∑

k tjkski = (ts)ji = 0, and this can be rewritten as

χi
χj

(1 + bsiitji)χj(1− b2s2
iit

2
ji) =

χi
χj

(1 + bsiitji)

because if i > j then v(b2) ≥ 2cij ≥ cij+cji and if i < j then v(b2) ≥ 2cij ≥ cij+cji−1

and v(tji) ≥ 1. But since v(b) < cij + cji − v(tji), we have v(bsiitji) < cond(χiχ
−1
j ),

so we can choose b to make χi
χj

(1 + bsiitji) 6= 1.

Finally, we verify that for this choice of b, we actually have sxt ∈ J . The klth

entry of sbt is

sk1t1l + · · ·+ ski(til + btjl) + · · ·+ skntnk = δkl + bskitjl.

We have

v(bskitjl) = cij + cji − v(tji)− 1 + v(ski) + v(tjl)

= cij + cji − v(tji)− (clj + cjl − v(tjl)) + clj + cjl − 1 + v(ski)
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≥ clj + cjl − 1 + v(ski) ≥ ckl

by condition 2. �

Remark 2. We do not believe that either condition 1 or condition 2 of Proposi-

tion 3.4.1 should be strictly necessary. Notably, most of the proof of Proposition 3.4.1

can be easily rephrased to avoid references to condition 1. Our only sticking point is

the calculation of χ(j) in terms of j11, . . . , jnn.

We call χ “simple” if it satisfies the conditions of Proposition 3.4.1. By Frobenius

reciprocity, we conclude that if χ is simple, W sm,c(χ) contains U sm(χ). Also note

that if the conductors of the nontrivial components of χ = (χ1, . . . , χn−1, 1) are, in

order from least to greatest, c(1) ≤ c(2) ≤ · · · ≤ c(n−1), then rank(U sm(χ)) is the index

pc(1)+2c(2)+···+(n−1)c(n−1)−
n(n−1)

2 =: pj(χ)

of J in Iwp. So if cond(χi) = c for all i 6= n, then W sm,c(χ) and U sm(χ) have the

same dimension and must actually be isomorphic.

3.5. Hecke eigenvalues of ramified principal series. The representations we

are interested in will turn out to be ramified principal series of GLn(Qp), so we now

cover the properties of these that we will need. To harmonize with the literature,

for this section only, we will use different conventions from the rest of the paper. If

χ = (χ1, . . . , χn) : (Q×p )n → C is a smooth character of T (Qp) = (Q×p )n, we will write

i
GLn(Qp)

B(Qp) χ = {f : GLn(Qp)→ C | f(bg) = χ(b)f(g)∀g ∈ GLn(Qp) and b ∈ B(Qp)}

for the representation of GLn(Qp) with the given underlying vector space and the

right translation action of GLn(Qp). We let δ1/2 : (Q×p )n → C be the modulus

character

δ1/2 := (| · |(n−1)/2, | · |(n−3)/2, . . . , | · |(1−n)/2).
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Then we define

π(χ) := π(χ1, . . . , χn) := i
GLn(Qp)

B(Qp) (χδ1/2).

The representation π(χ) is called the normalized parabolic induction of χ. As-

sume that for all i 6= j, we have χi(p) 6= χj(p)p. Let J = Γ(c) be the sub-

group defined at the beginning of Section 3.4. Let H (GLn(Qp) � J, χ) be the sub-

space of H (GLn(Qp)) generated by the functions ϕ : GLn(Qp) → C satisfying

ϕ(j1xj2) = χ(j1)−1ϕ(x)χ(j2)−1 for all j1, j2 ∈ J and x ∈ GLn(Qp).

Lemma 3.5.1. The (J, χ)-isotypic piece of π(χ) is 1-dimensional.

Proof. By Theorem 6.3 of [20], H (GLn(Qp) � J, χ) is abelian. (To be precise, the

theorem gives an isomorphism between H (GLn(Qp)�J, χ) and H (W 0
χ , S

0
χ)⊗C[Ωχ],

where by our assumption that χi(p) 6= χj(p)p for i 6= j, we have W 0
χ = S0

χ = 1,

H (W 0
χ , S

0
χ) = C, and Ωχ = Zn.) Thus the (J, χ)-isotypic piece of π(χ) decomposes

as a representation of H (GLn(Qp)�J, χ) into 1-dimensional pieces. But by Theorem

9.2 of [20], because π(χ) is irreducible, the (J, χ)-isotypic piece of π(χ) is irreducible

as a representation of H (GLn(Qp) � J, χ). Thus it is itself 1-dimensional. �

Lemma 3.5.2. If a = (a1, . . . , an) is such that a1 ≥ a2 ≥ · · · ≥ an, the action of the

element [JuaJ ] of H (GLn(Qp) � J, χ) corresponding to ua = diag(pa1 , . . . , pan) on

the (J, χ)-isotypic piece of π(χ) is multiplication by

χ(ua) = χ1(pa1) · · ·χn(pan).

Proof. The (J, χ)-isotypic piece is generated by

f(g) =


(χδ)(b)χ(j) if g = bj with b ∈ B(Qp) and j ∈ J,

0 otherwise.

This is just because this function f satisfies the (J, χ)-isotypic condition by construc-

tion, and is well-defined because (χδ)(b) = χ(b) for any b ∈ B ∩ J . We claim that
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(*)

f(jua) = χ(j)χ(ua)δ(ua) = χ(j)χ(ua)δ(ua)f(1) for any j ∈ J.

The lemma follows from this, because if JuaJ =
∐r

i=1 jiu
aJ , then

([JuaJ ]f)(1) =
r∑
i=1

χ(ji)
−1f(jiu

a) =
r∑
i=1

χ(ua)δ(ua)f(1) = χ(ua)f(1)

because r = δ(ua)−1 (reason: the same calculation as in Proposition 2.6.2 shows that

the index of J in [(ua)−1Jua]J is

p
∑
i<j(ai−aj) = p(n−1)a1+(n−3)a2+···+(1−n)an .)

For (*), first write j = j−j0j+ where j− ∈ J∩N(Zp), j0 ∈ T (Zp), and j+ ∈ J∩N(Zp).

Then we have χ(j) = χ(j0). Let j+
1 = j0j+(j0)−1; then j+

1 ∈ J ∩ N(Zp) as well,

and j = j−j+
1 j

0. Use Lemmas 3.1 and 3.2 of [20] to write j−j+
1 = j+

2 j
−
2 c, where

j+
2 ∈ J ∩N(Zp), j−2 ∈ J ∩N(Zp), and c ∈ T (Zp) is a correction torus element in the

kernel of χ. Then we have

jua = j+
2 j
−
2 cj

0ua = ua[(ua)−1j+
2 u

a][(ua)−1j−2 u
a](j0c).

We have (ua)−1j+
2 u

a ∈ N(Qp), and by the same calculation as in Proposition 2.6.2,

we have (ua)−1j−2 u
a ∈ J ∩N(Zp). Therefore

f(jua) = f(ua[(ua)−1j+
2 u

a][(ua)−1j−2 u
a](j0c))

= (χδ)(ua[(ua)−1j+
2 u

a])χ([(ua)−1j−2 u
a](j0c)) = (χδ)(ua)χ(j0) = (χδ)(ua)χ(j)

as desired. �

3.6. Structure of automorphic representations of locally algebraic weights.

Let f ∈ Stχ,c(G,U0(p)) be a classical eigenform, and let πf,p be an irreducible com-

ponent of the local component at p of the automorphic representation πf associated
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to f in Section 3.3. We first verify a standard fundamental fact about the structure

of πf,p for those f associated to points on the eigenvariety D .

Proposition 3.6.1. f may be associated to a classical point x on D (equivalently,

f is finite-slope) if and only if πf,p has nonzero Jacquet module with respect to B, or

equivalently is a subquotient of a principal series.

To show this, we use the following proposition of Casselman in [7] on canonical

liftings. Recall the submonoid Σ−− from Section 2.6.

Proposition 3.6.2 (Casselman, Proposition 4.1.4). Let (π, V ) be an admissible

representation of GLn(Qp), P = MN a parabolic subgroup with Levi factoriza-

tion, and K0 = N0M0N0 a compact open subgroup with Iwahori factorization. If

ua ∈ Σ−−, then the projection from V K0 to V M0
N given by [K0u

aK0] is a surjection.

If uaN1(ua)−1 ⊆ N0, where N1 is a compact subgroup of N such that V K0 ∩ V (N) ⊆

V (N1), then the projection is an isomorphism.

Also see Sections 3 and 4 of [7] for more basic information about Jacquet modules.

Proof of Proposition 3.6.1. We apply Proposition 3.6.2 with P = B and M = T .

Suppose first that πf,p = (π, V ) has nonzero Jacquet module. Let v ∈ VN be a

nonzero vector and let M0 be a compact open subgroup of M fixing v. Let K0 be

a compact open subgroup of G such that K0 ∩ M = M0. By the proposition of

Casselman, [K0u
aK0]V surjects onto V M0

N 6= 0, so is itself nonzero. Thus [K0u
aK0]

has some nonzero eigenvalue, corresponding to an eigenvector in πf,p which must be

the image of an eigenform in Stχ,c(G,U0(p)) by the procedure of Section 3.3.

Now suppose in the other direction that π = πfx , so contains a vector im(fx) with

nonzero Hecke eigenvalue for [K0u
aK0] for some compact open subgroup K0 and all

a ∈ Σ−. Choose a compact subgroup N1 of N such that V K0 ∩ V (N) ⊆ V (N1). We

claim that for sufficiently large powers (ua)k of ua, we must have (ua)kN1(ua)−k ⊆ N0;
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this is just the effect of conjugation by (ua)k on the ijth entry of N1 is scaling by

pk(ai−aj), and k(ai − aj) becomes arbitrarily large as k does. Then [K0(ua)kK0]V ∼=

V M0
N , and we must have V M0

N 6= 0. �

Now assume χn is trivial and let c0 = max1≤i<n cond(χi). Let (W sm,c0(χ))⊥ be the

complement of W sm,c0(χ) in W sm,c(χ). We now observe that as c goes to infinity,

almost all eigenforms in Stχ,c(G,U0(p)) are infinite-slope.

Proposition 3.6.3. Suppose that f is an eigenform in ((W sm,c0(χ))⊥⊗St)(G,U0(p)) ⊂

Stχ,c(G,U0(p)). Then Upf = 0, f is not associated to a point on the eigenvariety,

and πf,p is not a subquotient of a principal series.

Proof. By Proposition 2.6.6, in order for Upf to be nonzero, f must lie in Stχ,c0(G,U0(p)).

But the intersection of Stχ,c0(G,U0(p)) with ((W sm,c0(χ))⊥ ⊗ St)(G,U0(p)) is triv-

ial. �

We now find a subspace of Stχ,c(G,U0(p)) in which all forms are finite-slope.

Proposition 3.6.4. Suppose that f is an eigenform in (U sm(χ)⊗St)(G,U0(p)). Then

πf,p is a subquotient of a principal series, in particular one of the form π(ψ1, . . . , ψn)

where ψi : Q×p → C are characters of Q×p whose restrictions to Z×p are the same as

χ1, . . . , χn in some order.

Proof. We know that πf,p is an irreducible subrepresentation of C(GLn(Qp),C) whose

restriction to Γ0(p) admits a nontrivial homomorphism from (U sm(χ))∨. By Frobe-

nius reciprocity, the restriction of πf,p to J admits a nontrivial homomorphism from

the representation of J given by χ; that is, it contains a (J, χ)-isotypic vector. By

Theorem 7.7 of [20], πf,p is a subquotient of π(ψ1, . . . , ψn). �

Remark 3. If χ is simple, one can also prove Proposition 3.6.4 by noting that if πf,p

admits a nontrivial homomorphism from the irreducible (U sm(χ))∨, it must in fact
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contain all of (U sm(χ))∨, in particular the (J, χ)-isotypic vector. We are grateful to

Jessica Fintzen for pointing out the more general proof above.

By Propositions 3.6.4 and 3.6.1, Up is injective on the space (U sm(χ)⊗St)(G,U0(p)).

Now assume that χ is simple; then by the end of Section 3.4, (U sm(χ)⊗St)(G,U0(p)) is

a subspace of Stχ,c(G,U0(p)). This means that the linear operator Up on Stχ,c(G,U0(p))

has rank at least

rank((U sm(χ)⊗ St)(G,U0(p))) = hdtp
j(χ)

where, as before, dt = dim Ind
Iwp,alg.

B(Zp) t, h = #(G(Q)\G(Af )/U0(p)), and j(χ) is

defined as at the end of Section 3.4.

Remark 4. Even if χ is not simple, if f ∈ (U sm(χ)⊗ St)(G,U0(p)), one can associate

to it the following f ′ ∈ Stχ,c(G,U0(p)): πf,p has an irreducible component which is

a principal series π(ψ) (assuming χ is such that π(ψ) is irreducible). This principal

series contains the (Γ0(c), χ)-vector f given by

f(x) =


(ψδ)(b)χ(γ) if x = γb with γ ∈ Γ0(c) and b ∈ B(Qp),

0 otherwise.

A preimage f ′ of this vector in C(G(Q)\G(A),C) lies in Stχ,c(G,U0(p)). However, it

is not obvious to us that f 7→ f ′ is one-to-one, and hence not obvious that it gives

rise to an appropriate lower bound on the rank of Up acting on Stχ,c(G,U0(p)). We

suspect this issue is easy to resolve, but we have not resolved it.

In fact, we can extend Proposition 3.6.3 to show that Up has rank exactly rank((U sm(χ)⊗

St)(G,U0(p))) when χ is simple.

Proposition 3.6.5. Suppose that χ is simple and f is an eigenform in (U sm(χ)⊥ ⊗

St)(G,U0(p)) ⊂ Stχ,c(G,U0(p)). Then Upf = 0, f is not associated to a point on the

eigenvariety, and πf,p is not a subquotient of a principal series.
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Proof. Let ci = cond(χi), and first assume that c1 ≥ · · · ≥ cn−1. Then the tuple c0 ∈

Zn(n−1)/2
>0 associated to χ defined immediately before Corollary 2.6.4 satisfies c0

ij = ci

for all i > j. We claim that the intersection of Stχ,c0(G,U0(p)) with Stχ,c(G,U0(p))

is precisely (U sm(χ)⊗ St)(G,U0(p)).

To show that (U sm(χ) ⊗ St)(G,U0(p)) is contained in Stχ,c0(G,U0(p)), it suffices

to note that U sm(χ)⊗St is contained in Stχ,c0 . This is because f ⊗ϕ ∈ U sm(χ)⊗St

is clearly contained in Stχ,c0 for the vector f ∈ U sm(χ) defined at the beginning of

Section 3.4 and any ϕ ∈ St, and U sm(χ)⊗ St is irreducible.

To show that (U sm(χ)⊗St)(G,U0(p)) exhausts Stχ,c0(G,U0(p))∩Stχ,c(G,U0(p)), we

simply note that the latter space also has dimension hdtp
j(χ), since as a vector space

it is h copies of the locally algebraic vector subspace of Stχ,c0 . By Proposition 2.6.6,

in order for Upf to be nonzero, f must lie in Stχ,c0(G,U0(p)); this completes the

proof.

If the ci are not in decreasing order, by the beginning of Section 4.2, the finite-slope

subspace of Stχ,c(G,U0(p)) has the same dimension as that of Stχw,c(G,U0(p)) where

χw is χ with the components rearranged so that the ci are in decreasing order. This

completes the argument for all χ simple. �

The combination of Propositions 3.6.4 and 3.6.5 gives us the following precise

version of Theorem 1.2.1.

Theorem 3.6.6. If χ is simple, then the finite-slope classical subspace of Stχ,c(G,U0(p))

is precisely (U sm(χ)⊥ ⊗ St)(G,U0(p)).

In the following, for convenience, we will sometimes refer to the algebraic weight

(t1, . . . , tn−1, 0), t1 ≥ · · · ≥ tn−1, by its successive differences m1 = t1−t2, m2 = t2−t3,

..., mn−1 = tn−1.

Proposition 3.6.7. Suppose that χ is simple and f = fx is an eigenform in (U sm(χ)⊗

St)(G,U0(p)) ⊂ Stχ,c(G,U0(p)). Suppose that we have πf,p = π(ψ1, . . . , ψn) (note that
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this is an equality because when χ is simple, π(ψ1, . . . , ψn) is irreducible). The λ-

values associated to x as in Section 2.6 satisfy

λi = p(n−1)/2−i+1−mn−mn−1−···−mn−i+1ψi(p).

Proof. We are given that for all ua ∈ Σ−, we have Ua
p f = λa11 · · ·λann f . Since any

eigenvector of Ua
p = [U0(p)uaU0(p)] is also an eigenvector of [JuaJ ], we can calculate

its eigenvalue using [JuaJ ] instead. Let

JuaJ =
r∐
i=1

ζiJ.

Then for any ϕ ∈ U sm(χ)⊗ St, we have

(Ua
p f)∨∞(ϕ, x) = ϕ(ρalg(x

−1
∞ ιp(xp))(U

a
p f)(xf ))

= δ1/2(ua)p−
∑
aitiϕ

(
ρalg(x

−1
∞ ιp(xp(ζi)p))

r∑
i=1

ρsm((ζi)p)f(xζi)

)
.

Choose ϕ = ϕsm ⊗ ϕalg so that ϕsm is a (J, χ)-isotypic vector in U sm(χ). Then by

definition

ϕ(ρsm((ζi)p)f(xζi)) = ψ((ζi)p)ϕ(f(xζi))

so

(Ua
p f)∨∞(ϕ, x) = δ1/2(ua)p−

∑
aiti

r∑
i=1

ψ((ζi)p)ϕ
(
ρalg(x

−1
∞ ιp(xp(ζi)p))f(xζi)

)

= δ1/2(ua)p−
∑
aiti

r∑
i=1

ψ((ζi)p)f
∨
∞(ϕ, xζi).

That is, we have

r∑
i=1

ψ((ζi)p)f
∨
∞(ϕ, xζi) = δ−1/2(ua)p

∑
aitiλa11 · · ·λann f∨∞(ϕ, x).
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So the image of f∨∞(ϕ, ·) in πf,p is a J-new vector (H (J, ψ)-module). By Lemma 3.5.2,

we have

δ−1/2(ua)p
∑
aitiλa11 · · ·λann = ψ1(pa1) · · ·ψn(pan).

The proposition follows. �

One application of this structure theory is the following comparison theorem be-

tween Chenevier’s and Emerton’s eigenvarieties. This is similar to Proposition 3.10.3

of [17].

Proposition 3.6.8. There is a natural isomorphism from D as constructed in Sec-

tion 2 to Emerton’s eigenvariety, the space E(0,U p) in Definiton 0.6 of [12].

Proof. By Proposition 3.6.1, over a locally algebraic weight, the automorphic repre-

sentations that appear as classical points of D are precisely those whose p-parts have

nonzero Jacquet module. But Emerton’s eigenvariety also has this property built into

its construction. In particular, by Proposition 2.3.3(iii) of [12], E(0,U p) has a map

to the space T̂ of locally analytic characters of T (Qp) such that points in the fiber

over a character χ of T (Qp) correspond to χ-eigenspaces of Emerton’s locally analytic

Jacquet functor JB(H0(U p)Qp−loc.an.). For χ locally algebraic, by Section 0.13 of [11],

this is just the usual Jacquet module of H0(U p)Qp−loc.an.. So under the natural map

E(0,U p)→ W given by composing E(0,U p)→ T̂ with the projection T̂ → W , the

classical points in the fiber over a locally algebraic w ∈ W indeed correspond to au-

tomorphic representations of weight w whose p-parts have nonzero Jacquet module.

But Proposition 7.2.8 of [2] says that a space satisfying this property for automorphic

forms on G is unique up to unique isomorphism. �
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4. Bounds on the Newton polygon

In this section, we prove Theorem 1.1.4. We prove Part 1 in Section 4.1 and Part 2

in Section 4.2. In Section 4.3, we prove a modified version of Part 2 which generates

infinitely many upper bound points for the same Newton polygon.

Fix a character of ∆n, and thus a particular polydisc in W n. Over the subset of

this polydisc where Tn = 0, we have

det(I −XUp) =
∑
N≥0

cN(T1, . . . , Tn−1)XN ∈ ZpJT1, . . . , Tn−1KJXK

with c0(T1, . . . , Tn−1) = 1.

4.1. A lower bound on the Newton polygon. The following is Part 1 of Theo-

rem 1.1.4.

Theorem 4.1.1. There are constants A1, C (depending on n, p, and h) such that for

all T1, . . . , Tn−1 such that all |Tj| > 1
p
, the Newton polygon of

∑
N≥0 cN(T1, . . . , Tn−1)XN

lies above the points

(
x,
(
A1x

1+ 2
n(n−1) − C

)
·min v(Tj)

)
for all x.

Proof. We use the language of [15]. Fix an index a, and restrict to the subset |Ta| ≥

|Tj| for all j 6= a. Let R◦ be the Ta-adic completion of

ZpJT1, . . . , Tn−1K
[
p

Ta
,
T1

Ta
, . . . ,

Tn−1

Ta

]
and let R = R◦[1/Ta]. Give R the norm |r| = inf{p−n | r ∈ T na R

◦
η}. Let [·]R :

(Z×p )n → R× be the universal character with values in R. Let D be the continuous

R-dual of Ind
Iwp,cts

B(Zp) [·]R.

48



D is orthonormalizable with the following norm: choose topological generators n =

(n1, . . . , nn(n−1)/2) forN , for example the matrix coefficients pz21, pz31, pz32, . . . , pzn(n−1)

of Section 2.3. Let ni ∈ D be the Dirac distribution at ni onN . For η = (η1, . . . , ηn(n−1)/2) ∈

Zn(n−1)/2
≥0 , write nη :=

∏n(n−1)/2
i=1 nηii and |η| =

∑n(n−1)/2
i=1 ηi for short. Then {nη}η∈Zn(n−1)/2

is a basis for D, and the norm is∥∥∥∥∥∑
η

dηn
η

∥∥∥∥∥
r

= sup
η
|dη|r|η|.

Let Dr be the completion of D with respect to this norm. By Corollary 4.1.5

of [15],
∑

N≥0 cN(T1, . . . , Tn−1)XN can be computed by the action of Up on the space

D1/p(G,U0(p)).

By Section 3.3 of [15], Dr has a potential orthonormal basis given by the elements

er,η := T
−n(r,Ta,η)
a nη, where

n(r, Ta, η) =

⌊ |η| logp r

logp |Ta|

⌋
,

and correspondingly Dr(G,U0(p)) has a potential orthonormal basis given by the

elements

etr,η := (0, . . . , 0, er,η, 0, . . . , 0) ⊂
h⊕
t=1

Dr ∼= Dr(G,U0(p))

where the er,η is in the tth position. By Lemma 6.2.1 of [15], we have

Up(e
t
r,η) =

∑
u,µ

auµe
u
r,µ

with

|auµ| ≤ |Ta|n(r,Ta,µ)−n(r1/p,Ta,µ).

We have n(p−1, Ta, µ) = |µ| and n(p−1/p, Ta, µ) = b|µ|/pc. So whenever |µ| = N ,

every matrix entry of Up in the row eur,µ has coefficient auµ divisible by |Ta|N−bN/pc.

49



There are

h

(
N + n(n− 1)/2− 1

n(n− 1)/2− 1

)
choices of u and µ such that |µ| = N , and hence that many rows which we can

guarantee are divisible by T
N−bN/pc
a (not counting rows which we can guarantee are

divisible by higher powers of Ta). We conclude that NP
(∑

N≥0 cN(T1, . . . , Tn−1)XN
)

passes above the point(
h

M∑
N=0

(
N + n(n− 1)/2− 1

n(n− 1)/2− 1

)
, h

M∑
N=0

(
N + n(n− 1)/2− 1

n(n− 1)/2− 1

)
(N − bN/pc)v(Ta)

)

for every integer M ≥ 0. Since the x-coordinate of the above expression is a polyno-

mial in M of degree n(n− 1)/2 and the y-coordinate is v(Ta) times a polynomial in

M of degree n(n− 1)/2 + 1, the claim follows. �

4.2. Systems of eigenvalues associated to classical points. A “refined princi-

pal series” is a principal series representation π of GLn(Qp) together with an ordered

sequence of characters (ψ1, . . . , ψn) : (Q×p )n → C× such that π ∼= π(ψ1, . . . , ψn). So

there are n! possible refinements of each π. The language comes from Galois repre-

sentation theory. Assume χ is simple. From our setup so far, it is easy to see that an

eigenform f ∈ (U sm(χ)⊗ St)(G,U0(p)) is naturally associated to a particular refined

principal series: the principal series πf,p, together with, if f has λ-values λ1, . . . , λn,

the ordered sequence (ψ1, . . . , ψn) : (Q×p )n → C× such that π ∼= π(ψ1, . . . , ψn) and

λi = p(n−1)/2−i+1−mn−mn−1−···−mn−i+1ψi(p). Also note that this refined principal series

depends only on the point x on D that f is associated to.

For a character χ : (Z×p )n → C× or ψ : (Q×p )n → C×, and for any w ∈ Sn, we write

χw = (χw(1), . . . , χw(n)), and ψw similarly.

Now note that if fx ∈ (U sm(χ) ⊗ St)(G,U0(p)) ⊂ Stχ,c(G,U0(p)) is an eigenform

associated to a point x on D with associated refined principal series (π(ψ), ψid), then

the refined principal series (π(ψ), ψw) is also associated to a point xw on D and a form
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fwx ∈ (U sm(χw)⊗ St)(G,U0(p)) ⊂ Stχw(G, c, U0(p)) (arising from the unique (J, χw)-

vector in π(ψ)). The forms fwx are called companion forms of fx. Having defined

these companion forms, it is straightforward to show that the slopes appearing in

(U sm(χ) ⊗ St)(G,U0(p)) are not only finite but bounded above by a linear function

of t, as follows.

Proposition 4.2.1. If f ∈ (U sm(χ) ⊗ St)(G,U0(p)) ⊂ Stχ,c(G,U0(p)) is a Ua
p -

eigenform with eigenvalue aid
p , and each companion form fw has Ua

p -eigenvalue awp ,

then we have ∑
w∈Sn

v(awp ) = la(t)

where la(t) is a linear function of t1, . . . , tn.

In particular, let l(n−1,n−2,...,0)(t) = l(t). Then for each w, the Newton polygon of

∑
N≥0

cN(T1(tχw), . . . , Tn−1(tχw))XN

contains hpj(χ)dt slopes of size at most l(t), hence in particular passes below the point

(
hpj(χ)dt, hp

j(χ)dtl(t)
)
.

Proof. Let πf,p = π(ψ1, . . . , ψn). By Proposition 3.6.7, we have

∏
i

λi = p−(nmn+(n−1)mn−1+···+m1)
∏
i

ψi(p).

The λ-values of xw are given by

λwi = p(n−1)/2−i+1−mn−mn−1−···−mn−i+1ψw(i)(p)

for each w ∈ Sn. Then for a = (a1, . . . , an), the Ua
p -eigenvalue associated to xw is

∏
i

(λwi )an−i+1 =
∏
i

pan−i+1[(n−1)/2−i+1−mn−mn−1−···−mn−i+1]ψw(i)(p)
an−i+1
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so the product of the Ua
p -eigenvalues associated to all the xws is

p(n−1)!
∑
i an−i+1[(n−1)/2−i+1−mn−mn−1−···−mn−i+1]

(∏
i

ψi(p)

)(n−1)!
∑
i ai

= p(n−1)!
∑
i an−i+1[(n−1)/2−i+1−mn−mn−1−···−mn−i+1]

(
pnmn+(n−1)mn−1+···+m1

∏
i

λi

)(n−1)!
∑
i ai

.

But
∏

i λi is the eigenvalue associated to the operator U
(1,1,...,1)
p , which is just right

translation by the central matrix diag(p, p, . . . , p), which preserves f , so
∏

i λi = 1.

So the sum of the valuations of the Ua
p -eigenvalues associated to the companion points

is

(n− 1)!
∑
i

an−i+1[(n− 1)/2− i+ 1−mn −mn−1 − · · · −mn−i+1]

+(nmn + (n− 1)mn−1 + · · ·+m1)(n− 1)!
∑
i

ai

= (n−1)!

(∑
i

an−i+1((n− 1)/2− i+ 1)−
∑
j

mj(a1 + · · ·+ aj) +
∑
j

jmj

(∑
i

ai

))
.

Defining la(t) to be this last expression, we find that
∑

w∈Sn v(awp ) = la(t) as desired.

The conclusion that each individual v(awp ) is bounded above by la(t) follows because

all the awp s are algebraic integers. �

Let ci = cond(χi), let χ(1), . . . , χ(n−1) be the characters χ1, . . . , χn−1 reordered so

that cond(χ(1)) ≤ cond(χ(2)) ≤ · · · ≤ cond(χ(n−1)), let c(i) = cond(χ(i)), and let

T(i) = T (χ(i)). To get from Proposition 4.2.1 to the statement of Theorem 1.1.4, we

just need to check that for all t and χ,
(
hpj(χ)dt, hp

j(χ)dtl(t)
)

lies below the curve

y = A2

(
v(T(1))

2
n(n−1) v(T(2))

2·2
n(n−1) · · · v(T(n−1))

2·(n−1)
n(n−1)

)
x1+ 2

n(n−1)

for a fixed constant A2 (depending only on n, p, and h). Note that by the formula

stated in Example 2.2.2, we have

v(T(i)) = v(T (χ(i))) = Ap−c(i)
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for a constant A (depending on p). Thus we have

pj(χ) = pc(1)+2c(2)+···+(n−1)c(n−1)−
n(n−1)

2 = A′v(T(1))
−1v(T(2))

−2 · · · v(T(n−1))
−(n−1).

Next we check the size of dt.

Proposition 4.2.2. The dimension dt is a polynomial of total degree n(n−1)
2

in

m1, . . . ,mn−1.

Proof. By Corollary 14.9 of [19], Ind
GLn(Zp),alg.

B(Zp) t has a basis indexed by chains in the

poset described in Section 14.2 of [19]. For a subset σ of {1, . . . , n}, let f(σ) =∑
k/∈σ(n+ 1− k). We claim that when you take one step down the poset, f(σ) goes

down by 1. This is because, if σ is one step below τ , there are two possibilities. The

first is that |τ | = |σ| and there is some i for which σi = τi − 1 and σj = τj for all j

with j 6= i; in this case the complements σc and τ c are the same except for σi ∈ τ c

and σi + 1 = τi ∈ σc, which contribute n − σi and n − σi − 1 to the sums f(σ) and

f(τ), so f(σ) = f(τ) − 1. The second is that |σ| = |τ | + 1 and σ contains n and τ

does not, so again f(σ) = f(τ)− 1.

So a maximal chain in this poset starts with {n}, which has f -value 2 + · · ·+ n =

n(n+1)
2
−1, and ends with {1, 2, . . . , n−1}, which has f -value 1; its length is therefore

n(n+1)
2
−1. A leading term of dm1,...,mn−1,0 comes from distributing m1, . . . ,mn−1 among

corresponding variables in a maximal chain. So it is a product
∏(mi+ci

ci

)
where the

ci + 1s sum to n(n+1)
2
− 1; that is, the cis sum to n(n+1)

2
− 1− (n− 1) = n(n−1)

2
. �

Fix ε > 0 and assume that for all i 6= j, we have mi ≥ εmj. Then we can find some

Aε such that l(t) ≤ Aεd
2

n(n−1)

t for all such m1, . . . ,mn−1. So if we let x = hpj(χ)dt and

y = hpj(χ)dtl(t), we have

y =
(
hpj(χ)dt

)1+ 2
n(n−1)

(
hpj(χ)dt

)− 2
n(n−1) l(t)

= Ax1+ 2
n(n−1)

(
pj(χ)

)− 2
n(n−1) d

− 2
n(n−1)

t l(t)
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≤ AAεx
1+ 2

n(n−1)
(
v(T(1))

−1v(T(2))
−2 · · · v(T(n−1))

−(n−1)
)− 2

n(n−1)

= A′
(
v(T(1))

2
n(n−1) v(T(2))

2·2
n(n−1) · · · v(T(n−1))

2·(n−1)
n(n−1)

)
x1+ 2

n(n−1)

as desired. This proves Part 2 of Theorem 1.1.4 for all tχ such that mi ≥ εmj for all

i 6= j and χ is simple.

4.3. Combining upper bound points. We show that Theorem 1.1.5 is a natural

consequence of Part 2 of Theorem 1.1.4. First we need the following lemma of Wan,

which is stated in [23] with Zp-coefficients but works identically with OCp-coefficients.

Lemma 4.3.1 (Wan 1998). Let Q1(X), Q2(X) be two elements in OCpJXK with

Q1(0) = Q2(0) = 1. Let Ni(x) be the function on R≥0 whose graph is the Newton poly-

gon of Qi(X). Assume that ν(x) is a strictly increasing continuous function on R≥0

such that ν(0) ≤ 0, Ni(x) ≥ xν(x) for 1 ≤ i ≤ 2 and x ≥ 1, and limx→∞ ν(x) = ∞.

Assume further that the function xν−1(x) is increasing on R>0, where ν−1(x) de-

notes the inverse function of ν(x) defined at least on R≥0. For x ≥ 0, we define the

integer-valued increasing function mν(x) = bxν−1(x)c. If the congruence

Q1(X) ≡ Q2(X) (mod pmν(α)+1)

holds for some α ≥ 0, then the two Newton polygons Ni(x) coincide for all the sides

with slopes at most α.

Proof of Theorem 1.1.5. By Corollary 4.2.1, NP(tχ) passes below the point

(
hpj(χ)dt, hp

j(χ)dtl(t)
)
.

Note that the slope of NP(tχ) at x-coordinate hpj(χ)dt is at most l(t). We may apply

Lemma 4.3.1 with ν(x) = A1x
2

n(n−1) mini v(T (χi)), so that

mν(x) � x1+
n(n−1)

2

(mini v(T (χi)))
n(n−1)

2

.
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Let t
(1)
i = ti+(n− i)pmν(l(t))+1. By Lemma 4.3.1 applied to P (X, tχ) and P (X, t(1)χ),

we find that NP(t(1)χ) also passes below this point. However, by Corollary 4.2.1,

NP(t(1)χ) also passes below

(
hpj(χ)dt(1) , hp

j(χ)dt(1)l(t
(1))
)
.

Repeating this, we find a sequence t = t(0), t(1), t(2), . . . of dominant algebraic weights

such that NP(t(k)χ) passes below

(
hpj(χ)dt(0) , hp

j(χ)dt(0)l(t
(0))
)
, . . . ,

(
hpj(χ)dt(k) , hp

j(χ)dt(k)l(t
(k))
)
.

Evidently the t(k) approach a limit t∞, and NP(t∞χ) passes below

(
hpj(χ)dt(k) , hp

j(χ)dt(k)l(t
(k))
)

for all k. The result follows as in the end of Section 4.2. (Note that since m
(k)
i =

m
(k−1)
i + pmν(l(t(k−1)))+1, if m

(k−1)
i ≥ εm

(k−1)
j for all i 6= j, the same is true for the

m
(k)
i .) �

5. Geometry of the eigenvariety over the boundary of weight space

Fix an index a, and let W<ν be the subset of characters w such that v(Ta(w)) < ν

and v(Ta(w)) < νv(Tj(w)) for all j 6= a (so in particular v(Ta) = mini v(Ti)). let Z<ν

be the preimage of W<ν in the eigencurve Z . For any real number α, let X(< α) be

the subset of Z of points x for which v(ap(x)) < αv(Ta(w(x))), and define X(= α),

X(> α) similarly.

As in the previous section, fix a polydisc in W . For T = (T1, . . . , Tn−1) in the

polydisc and m = (m1, . . . ,mn−1) ∈ Zn−1
≥0 , write Tm = Tm1

1 · · ·Tmn−1

n−1 for short. Let

det(1 − XUp) =
∑

N≥0 cN(T )XN , where cN(T ) =
∑

m=(m1,...,mn−1)∈Zn−1
≥0

bN,mT
m ∈

ZpJT1, . . . , Tn−1K. Let y = NP(T )(x) be the Newton polygon of
∑

N≥0 cN(T )XN .
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For the following theorem, the only input we need is a lower bound for y =

NP(T )(x) of the form y = v(Ta)f(x) where f(x) is a convex function, which we

have (with f(x) = A1x
1+ 2

n(n−1) ) from Part 1 of Theorem 1.1.4.

Theorem 5.0.2. For every α ∈ R≥0, there is some valuation ν(α) > 0 such that

X(= α)<ν(α) is disconnected from its complement in Z<ν(α).

Proof. Let d(α, T ) be the number of slopes in y = NP(T )(x) of value strictly less

than αv(Ta) (so the dimension of ST (G,U0(p))<αv(Ta)). Assume v(Ta) < 1.

We claim that the point (d(α, T ),NP(T )(d(α, T ))) lies inside the region bounded

by the line y = αv(Ta)x and the function y = v(Ta)f(x). It lies below y = αv(Ta)x

because all slopes of NP (T ) up to d(α, T ) are less than αv(Ta). It lies above y =

v(Ta)f(x) because this is a lower bound for y = NP(T )(x).

This region lies inside the box whose lower left corner is (0, 0) and whose upper

right corner is (d(α), αd(α)v(Ta)), where d(α) is the nonzero solution to αx = f(x).

We have (d(α, T ),NP(T )(d(α, T ))) = (j, v(cj(T ))) for some j. This is a vertex of

y = NP(T )(x). The vertex immediately preceding it is of the form (i, v(ci(T ))) for

some i. The slope between the two is

v(cj(T ))− v(ci(T ))

j − i
.

This is the largest slope of y = NP(T )(x) less than αv(Ta). We have 1 ≤ j−i ≤ d(α).

But cj(T ) =
∑

m≥0 bj,mT
m is a sum of terms bj,mT

m where v(bj,m) is an inte-

ger and v(Tm) = m1v(T1) + · · · + mn−1v(Tn−1). Thus v(cj(T )) = µj + λ1
jv(T1) +

· · · + λn−1
j v(Tn−1) where µj, λ

k
j are integers in the range [0, αd(α)] (since v(cj(T )) ≤

αd(α)v(Ta)). Similarly v(ci(T )) = µi + λ1
i v(T1) + · · · + λn−1

i v(Tn−1) where µi, λ
k
i ∈

[0, αd(α)] as well.
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Assume that v(Ta) <
1

αd(α)
, so that αd(α)v(Ta) < 1, and furthermore that v(Ta) <

1
αd(α)

v(Tj) for all j 6= a. Then in order to have v(ci(T )), v(cj(T )) ≤ αd(α)v(Ta), we

must have µi = µj = 0 and λk = 0 for all k 6= i.

So the largest slope of y = NP(T )(x) less than αv(Ta) is of the form
λj−λi
j−i v(Ta),

where λj −λi ∈ [0, αd(α)] and j− i ∈ [1, d(α)]. This is a finite, discrete set of points.

So the ratio of the largest slope of y = NP(T )(x) less than αv(Ta) to v(Ta) is bounded

away from α independently of Ta.

Setting ν(α) < 1
αd(α)

, we conclude that X(< α)<ν(α) is disconnected from its com-

plement in Z<ν(α).

This argument goes through exactly the same way if X(< α) is replaced by X(≤ α):

either the smallest slope greater than α is at least α+1, or, if not, the next endpoint is

again trapped in a box whose area is at most linear in v(T ), and the same argument

applies. So we can choose ν(α) such that X(= α)<ν(α) is disconnected from its

complement in Z<ν(α). �

As Liu-Wan-Xiao do in Theorem 3.19 of [16], we can also use Part 1 of Theo-

rem 1.1.4 to give a simple proof of the fact that the ordinary part of Z is finite and

flat over W and disconnected from its complement.

Theorem 5.0.3. X(= 0) is finite and flat over W and is a union of connected

components of Z .

Proof. The proof of Theorem 3.19 of [16] goes through almost word-for-word. By

Part 1 of Theorem 1.1.4, there is some maximal N such that cN(T1, . . . , Tn−1) is a unit

in ZpJT1, . . . , Tn−1K, or equivalently, the constant term of cN(T1, . . . , Tn−1) is a unit in

Zp. Then for each (T1, . . . , Tn−1), the Newton polygon of
∑∞

n=0 cN(T1, . . . , Tn−1)XN

starts with N segments of slope 0 followed by a segment of slope at least

max(1, Bminj v(Tj)) for some constant B. Since max(1, Bminj v(Tj)) is uniformly

57



bounded away from 0 over any affinoid subdomain, X(= 0) is disconnected from its

complement, and it is finite and flat of degree N . �
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324:1–314, 2009.

[3] A. Borel. Some finiteness properties of adele groups over number fields. Publ. Math. IHES,
16(1):5–30, 1963.

[4] K. Buzzard. On p-adic families of automorphic forms. Modular curves and abelian varieties,
pages 23–44, 2004.

[5] K. Buzzard. Eigenvarieties. L-functions and Galois representations, London Math. Soc. Lecture
Notes, 320:59–120, 2007.

[6] K. Buzzard and L. J. P. Kilford. The 2-adic eigencurve at the boundary of weight space.
Compositio Mathematica, 141(3):605–619, 2005.

[7] B. Casselman. Introduction to admissible representations of p-adic groups. unpublished notes,
1995.

[8] W. Casselman. On some results of Atkin and Lehner. Mathematische Annalen, 201(4):301–314,
1973.

[9] G. Chenevier. Familles p-adiques de formes automorphes pour GLn. J. reine angew. Math,
570:143–217, 2004.

[10] R. Coleman and B. Mazur. The eigencurve. London Mathematical Society Lecture Note Series,
pages 1–114, 1998.

[11] M. Emerton. Jacquet modules of locally analytic representations of p-adic reductive groups
i. construction and first properties. In Annales scientifiques de l’Ecole normale supérieure,
volume 39, pages 775–839. No longer published by Elsevier, 2006.

[12] M. Emerton. On the interpolation of systems of eigenvalues attached to automorphic Hecke
eigenforms. Inventiones mathematicae, 164(1):1–84, Apr 2006.

[13] R. Goodman and N. R. Wallach. Symmetry, representations, and invariants, volume 255.
Springer, 2009.

[14] B. H. Gross. Algebraic modular forms. Israel Journal of Mathematics, 113(1):61–93, 1999.

[15] C. Johansson and J. Newton. Extended eigenvarieties for overconvergent cohomology. arXiv
preprint arXiv:1604.07739, 2016.

58



[16] R. Liu, D. Wan, and L. Xiao. The eigencurve over the boundary of weight space. Duke Math.
J., 166(9):1739–1787, June 2017.

[17] D. Loeffler. Overconvergent algebraic automorphic forms. Proceedings of the London Mathe-
matical Society, 102(2):193–228, 2010.

[18] D. Loeffler and J. Weinstein. On the computation of local components of a newform. Mathe-
matics of Computation, 81(278):1179–1200, 2012.

[19] E. Miller and B. Sturmfels. Combinatorial commutative algebra, volume 227. Springer Science
& Business Media, 2004.

[20] A. Roche. Types and Hecke algebras for principal series representations of split reductive p-adic
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[22] J.-P. Serre. Endomorphismes complètement continus des espaces de Banach p-adiques. Publi-
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