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Analytical Steps Towards
the Observation of High-Spin Black Holes

A

Ongoing astronomical e forts extract physical properties of a black hole from electromagnetic emis-

sions in its vicinity. In this dissertation, we analytically study such emissions from the near-horizon

region of high-spin black holes. Given the complexity of the Kerr metric, null geodesics in the space-

time of a rotating black hole are generally studied only numerically. Subsequent modelling involves

extensive numerical work. In the case of a high-spin black hole, however, a simpli cation occurs when

we zoom into its near-horizon region. This so-called Near-Horizon Extreme Kerr geometry has an

SL(2,R) × U(1) isometry. In particular, the time translation symmetry is enlarged to an SL(2,R)

global conformal symmetry, which includes dilations and special-conformal transformations. Our an-

alytical methods are based upon these enhanced symmetries. We rst solve for the near-superradiant

geodesics that extend from the near-horizon region to a distant observatory, expressing our results in

terms of elementary functions. Next we compute the broadening of electromagnetic line emissions

from the innermost part of an accretion disk. We obtain an analytic formula for the observed ux,

which is independent of the disk model and therefore universal. Finally, we investigate the polarized

near-horizon emissions and nd patterns of whorls aligned with the black hole’s spin.
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0
A Story (for non-physicists)

Physicists, please proceed to Chapter 1.

0.1 P

When you look at me, what you see is not a woman with East Asian features. No, I have no problem

with my gender or ethnicity. And no, I’m not out of my mind.
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It is light that you see.

Beautiful fall day in New England. You stroll across Harvard Yard, listening to the rustling trees,

glad your advisor is on her ight to Europe. You look up and see the bright sun. You look down and

see a blanket of fallen leaves. A pretty clear connection. But you haven’t paid attention to what you’re

actually seeing—light, the photons* exhausted from traveling 93 million miles to show you beautiful

colors. Maybe it’s time you did. But if you really want to marvel, stop and consider the journey of

light from other stars. The distances are so large that it’s easier to measure them using the light-year:

how far light travels in a year. Nearly six trillion miles, in other words.

Starlight is so dim that it doesn’t reveal dust bunnies in your room the way sunlight does, but

physicists describe them in the same way. Feel free to stare at the sun or the stars. (Nah, physicists

don’t care about eye damage.) In all such cases, there is

• a point of emission, e.g., the Sun, the stars, or a lightbulb,

• a point of observation, e.g., you, me, or a telescope, and

• the voyagers: the photons.

If the photons don’t make the trip from the point of emission to the point of observation, you

don’t see whatever you want to see. The photon is the hero of our tale.

And the heroine? The black hole.

What I have for you is the tale of a journey. The hero’s treacherous journey where he travels for

light-years to present the heroine to us, humans. Sit back, relax, but don’t shut your eyes. We have a

*Photons are particles of light. When I say “light,” I mean not only visible light, but the entire electro-
magnetic spectrum, including X-rays (high-energy photons) and radio waves (low-energy photons). X-ray tele-
scopes see light in the X-ray part of the spectrum; radio telescopes see light in the radio-wave part.
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lot of “seeing” to do.

Consider the stars residing in the vicinity of black holes. Stars, by de nition, emit photons. So do

we see their starlight the way we see sunlight? First take a step back. In the Milky Way alone, there

are hundreds of billions of stars, many of them interesting. Why do we place emphasis on the stars

near black holes? It’s not these stars themselves that are special, but their behavior. A black hole is

black; its gravity is so strong that not even light escapes. We have no chance to see a black hole itself.

Through certain behavior of stars (as well as other matter), however, we can infer the existence of a

nearby massive object—the black hole—thus seeing it indirectly.

So, I say, how do photons from these stars get here?

They just come, you say. Isn’t it straightforward?

Nope. Not so straight, and not always forward. Answering how photons get here from the region

near a black hole is the subject of my Ph.D. 1–3.

0.2 C :

In 1915, Albert Einstein formulated the general theory of relativity4. Through equations of great com-

plexity, later known as theEinstein field equations, his theory provided a framework for describing the

geometry of space and time. In general relativity, space and time are on equal footing—gravity curves

space and slows time. So I’ll use the term spacetime to include both three-dimensional space and one-

dimensional time.

Einstein’s idea that spacetime is curved by matter and radiation has revolutionized humanity’s un-
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Figure 1: The gravitational lensing effect. The blue galaxy is hiding behind the red galaxy---we aren't ``supposed'' to see

it. But the red galaxy curves spacetime. When photons from the blue galaxy pass the red galaxy, their paths bend, and

theymanage to reach us. The blue galaxy ends up appearing like a ring. Image taken by the Hubble Space Telescope.

Image credit: ESA/NASA.

derstanding of the universe. It has survived multiple tests, from the observation of the gravitational

lensing e fect (see Figure 1) 5 to the recent detection of gravitational waves6.

You curve spacetime. I curve spacetime. If we gain some weight, we curve spacetime a little more.

The Sun curves spacetime. And a black hole, as massive as it is, curves spacetime very much. This is

why photons emitted from the region near a black hole don’t travel to us in straight lines. “Straight” is,

in fact, a misleading word. If I live on Earth and you live near a black hole (sorry!), then my “straight”

isn’t quite your “straight.”

Beforewe can discuss this in detail, wemust properly invite our heroine to the stage and learn about

her past. How did we nd her? How did the idea of a black hole come about?

Einstein came up with an elegant theory; any solution of the Einstein eld equations would be a

spacetime. Yes, a spacetime. You may think that spacetime is an absolute concept, that we all live in

the same spacetime. Indeed, your notion of spacetime—our universe with every galaxy, black hole,
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star, and human taken into account—is a solution of the Einstein eld equations. But I doubt the

mental power of a trillion Einsteins would be enough to write down that solution.

A solution that can be easily written down is the trivial solution of at spacetime, a spacetime with

nothing in it. In general, however, writing down solutions of the Einstein eld equations is di cult.

Extremely so. The good news is that black hole spacetimes† are mathematical solutions we can write

down.

In December, 1915, German physicist Karl Schwarzschild wrote down an interesting solution of

the Einstein eld equations7. It is the spacetime of a non-spinning, (electrically) uncharged spherical

object. The term “black hole” was never mentioned in his original paper, but Schwarzschild’s work

launched our modern exploration of black holes. His solution is now known as the Schwarzschild

spacetime, and that non-spinning, uncharged object, the Schwarzschild black hole.

A few years later, Hans Reissner, Hermann Weyl, Gunnar Nordström, and George Je fery wrote

down a solution for the case of a non-spinning, charged spherical object 8–11. We now refer to it as the

Reissner-Nordström spacetime. To the real world, however, the Reissner-Nordström black hole is

irrelevant: Positive and negative charges cancel each other. Any positively charged black hole would

quickly attract negatively charged particles in the universe and become uncharged.

Is any black hole relevant to our universe? Af er the wave of theoretical work in mid to late 1910s,

things quietened. Decades went by, and not much happened. Perhaps there was a lack of urgency

because black holes remained mathematical constructs. Einstein himself thought that black holes did

†A black hole spacetime is the spacetime of one black hole. We can use it as a good approximation of the
real world if we want to study black holes, one by one.
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Figure 2: Left: See how the tarpaulin dips? Think of the boy or the tiger as the black hole and the tarpaulin as the space-

time. Copyright owned by Ang Lee, Gil Netter andDavidWomark. 2012. Life of Pi. Right: See how the batter twists?

Think of the beater as the black hole and the batter as the spacetime. Courtesy of struongdesn.com.

not exist, concluding in his 1939 paper that “matter cannot be concentrated arbitrarily” 12.

But then in 1963, something big happened. New Zealander mathematician Roy Kerr wrote down

a more general solution of the Einstein eld equations 13. Now known as the Kerr solution, it is the

spacetime of a spinning, uncharged spherical object. Charged black holes become uncharged, but spin-

ning ones keep spinning. We know that the Earth, the Moon, the Sun, the Milky Way—they are all

spinning. What doesn’t? If black holes existed, then chances are, they’d be spinning. The mass of

a black hole bends spacetime the way the tiger bends Pi’s tarpaulin; its spin twists spacetime like a

beater in the batter (see Figure 2). The Kerr spacetime is one of the most important discoveries of the

twentieth century.

To complete the picture, I mention also the solution of Ezra Newman et al. two years later. It is

the spacetime of a spinning, charged spherical object 14.
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Non-spinning Spinning
Uncharged Schwarzschild Kerr
Charged Reissner-Nordström Kerr-Newman

Table 1: Black hole solutions of the Einstein field equations.

Wait, what did I mean by “to complete the picture”? Are we done with black hole spacetimes that

solve the Einstein eld equations‡? Yes. Our heroine has only three features. Theoretically, every black

hole has amass, some of them spin, and some are charged. That’s all. The no-hair theorem, rst shown

by Werner Israel in 1967, states 20:

A black hole solution of the Einstein eld equations can be completely characterized by
its mass, charge, and spin.

As discussed earlier, charged black holes quickly become uncharged. So for all practical purposes,

mass and spin are the only properties for us to describe a black hole with. Hence, we focus on the Kerr

solution from this point onward, leaving charge out of the picture. I’ll be using the words “Kerr” and

“spinning” interchangeably.

So our heroine is a dancer. How fast can she spin? Is there a limit on a black hole’s spin? Yes. To

explain this, I rst need to introduce the terms singularity and event horizon. A singularity is a region

in spacetime where the amount of gravity is in nite and the Laws of Physics break down. You don’t

want to go there unless you want to be stretched into spaghetti (and spaghetti doesn’t convey the

“gravity” of the situation). Next, our heroine has a veil—the event horizon. It is the surface around

‡There are also non-trivial non-black hole solutions of the Einstein eld equations. A notable one is the
FLRW spacetime, developed by Alexander Friedmann, Georges Lemaître, Howard Robertson, and Arthur
Walker in the 1920s and 1930s 15–19. It describes a universe that’s uniform, looks the same from all directions, and
is expanding or contracting.
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a black hole beyond which not even light can escape. When light doesn’t escape, information doesn’t

either. The speed of light sets a fundamental limit on our universe. Now, any black hole’s singularity

always lies behind its event horizon. One that doesn’t is referred to as a naked singularity, and naked

singularities are believed to be non-existent. This is known as the cosmic censorship conjecture.

How does this relate to the spin of a black hole? It turns out that when the spin exceeds a certain

value (depending on the mass of that black hole), the event horizon disappears—the singularity be-

comes naked. And that’s not allowed. Conversely, as long as the singularity stays behind the event

horizon, the spin must be limited by a maximum value.

Our heroine cannot spin arbitrarily fast.

0.3 G : ’

We now have a description of the spacetime of our heroine—the spinning black hole—and we know

there is a limit on how fast she can spin. So how does our hero—the photon—travel from her all the

way to us, humans?

We need geod ics.

In daily life, a geodesic is the shortest path between twopoints; it is the path a person (who hates de-

tours) or a plane takes. Between two opposite corners of your square dining table, it’s the straight line

connecting them. Between your wrist and elbow, it runs along the length of your forearm. Between

two points on a longitude, it’s the corresponding segment on that longitude (unless you are capable

of drilling through Earth). And between two points on a latitude, it’s— Wait.
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Figure 3: As the crow flies= following a geodesic on Earth.

Only segments on the equator can be geodesics, not those on other latitudes. Beijing is at 39.9oN

and NYC is at 40.7oN, but no pilot would follow the ∼ 40oN latitude—it is not the shortest path

between the two cities. Chances are, the plane would pass over the Arctic circle. If you don’t believe

me, then get a globe and a string. Keeping the string tight, pin its two ends on the globe, one end

on NYC, the other on Beijing. You’d see that your string wouldn’t follow the ∼ 40oN latitude (see

Figure 4). Similarly, if you travel between Sydney andCapeTown, youmight just pass by theAntarctic

circle.

The notion of geodesics is straightforward in at space (table, forearm) and easy to visualize on a

sphere like the Earth. What about near a black hole§? We’ve established that spacetime around a black

hole is bent and twisted. There, the idea of the shortest path—the most natural path any particles

would take when gravity is the only force in action—isn’t nearly as simple as what we experience in

§Whenever I say “near a black hole,” what I mean is “near the event horizon of a black hole.”

9



Figure 4: The strings' endpoints are fixed at Beijing (39.9oN) andNYC (40.7oN). The red string represents the geodesic

between them; the blue string follows the∼ 40oN latitude. The equator is the only latitude whose segments can be

geodesics.

daily life. For particles to travel fromawarped regionof spacetime tous is complicated. Our hero—the

photon—isn’t an exception. How do we understand his treacherous journey?

Such geodesics are unimaginable. You cannot draw them the way you might draw a line on your

square dining table or your globe (see Figure 5).

You need to solve equations.

In general, the geodesics that particles follow are solutions of a given set of geodesic equations.

Where do the geodesic equations come from? If photons travel in the spacetime of a spinning black

hole, thenwe can readily obtain their geodesic equations from theKerr solution 21. This step is doable.

Thenext step is to solve these geodesic equations to get the geodesics. Given the complexity of theKerr

spacetime, this step had been impossible.

10



Figure 5: Awrong cartoon of our hero's journey from our heroine to us (see Figure 7 for a correct one). The ``straight

line'' is much too naïve.

Until 2016. Inourpaper 1, AchilleasPorfyriadis, AndrewStrominger, and I computed these geodesics

for the special case of photons emitted from the region near a fast-spinning black hole. For the rst

time, the journey photons take from such a black hole to a distant observer was written down analyt-

ically, in terms of elementary functions. I’ll explain in Section 0.5 how we did it. But why should you

care? In particular:

1. Do fast-spinning black holes even exist?

2. If so, are regions near them interesting?

3. Are analytical expressions really useful?

I’ll answer these questions one by one.

11



0.4 B :

We learned in Section 0.2 where our heroine comes from—theoretically. How about in reality? How

does a black hole form? Right now, we have observational evidence for three types of black holes

classi ed according tomass: stellar-mass black holes, intermediate-mass black holes, and supermassive

black holes.

A stellar-mass black hole forms from the death of a star. When a star runs out of fuel, it collapses

inwards due to its own gravity. If its mass is high enough, it turns into a black hole. Otherwise it may

become a white dwarf (the fate of the Sun) or a neutron star (heavier than a white dwarf and lighter

than a black hole). Stellar-mass black holes have masses typically ranging from ve to thirty times the

mass of the Sun, and there are millions of them in every galaxy 22.

There are several postulates on how an intermediate-mass black hole forms: the merging of stellar

mass black holes, neutron stars, or white dwarfs; the collision of massive stars; the collapse of a dense

region in the early universe—the case of primordial black holes 23.

The formation of a supermassive black hole is an open research topic. They grow bymerging with

other black holes and gravitationally accreting matter 24. Such black holes are found in the center of

galaxies 25. Sagittarius A* (in the direction of the constellation Sagittarius) is the supermassive black

hole residing in the center of the Milky Way 26. These black holes have masses typically ranging from

one hundred thousand to ten billion times the mass of the Sun.

How do we know so much about our heroine? Af er all, we are unable to access information from

behind her veil—the event horizon. We, diligent paparazzi, learn about a black hole through the be-

12



Mass (in solar masses) Example of a black hole
Stellar-mass < 100 Cygnus X- ,

Intermediate-mass 100− 100, 000 Hyper-Luminous X-ray source
Supermassive > 100, 000 Sagittarius A*

Table 2: Types of black holes classified bymass (1 solar mass= themass of the Sun).

havior of its neighboring stars and other matter—which emit light. Our hero brings her to us. In fact,

matter accreting around a black hole can form a bright disk 30. The photons emitted by such stars and

other matter travel to us, allowing us to see not only them, but also the black hole itself indirectly.

Wait, wouldn’t everything around the black hole be “sucked in”? Return to the solar system for a

minute. If the Sun is replaced by a black hole of the same mass and spin, what would happen to the

Earth? Nothing. The Earth will continue to orbit that black hole the way it orbited the Sun. Any

two objects with equal mass and spin have the same impact on the geometry of spacetime. General

relativity doesn’t care about other properties. Hence, there can be stars and other matter orbiting a

black hole, as long as they are outside its event horizon.

So how does a neighboring star help us measure the mass of a black hole? A common strategy is

to determine the star’s orbit: the size of the orbit and how long it takes for the star to go around the

black hole. The Laws of Gravitation would then allow us to compute the black hole’s mass. That is,

if we are able to make accurate observations of that orbiting star. This is doable and done for stellar-

mass black holes in the Milky Way, and we refer to our heroine’s friend—that neighboring star—as

the companion star 22.

The case of a supermassive black hole ismore complicated. Its size is incomparable to that of any in-
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dividual star—it takes forever to sample a su ciently large part of the star’s orbit around the enormous

black hole. To understand its entire orbit is thus di cult. The mass of Sagittarius A*, the supermas-

sive black hole in the center of Milky Way, has been determined from tracing the orbits of individual

stars around it 31. This was made possible through not only twenty- ve years of monitoring and data

collection, but also the proximity of Sagittarius A* to the Earth. The task is much tougher for “out-

of-galaxy” supermassive black holes.

What about spin? Measuring the spin of a black hole is more challenging because the twist of

spacetime caused by spin manifests itself in only the region near the black hole. For a black hole with

a disk of matter, the e fect is evident in the innermost part of that disk—the part that’s closest to the

event horizon. Astronomical processes in that region involve a lot of energy; the disk of a black hole

is nothing like the calm and cool rings of Saturn.

One method to determine a black hole’s spin is by examining light emitted by a particular type of

atom in its disk. Iron atoms are abundant, and their emissions are the easiest to observe 32. Say there

are iron atoms sitting on your dining table, and they emit a bunch of photons. What do youmeasure

the energy of those photons to be? It should be about 6,400 electron-volts¶. What if, instead of

your table, the iron atoms are in the disk around a black hole? In this case, rather than measuring

one value for that energy, you’ll get a range of values for the many emitted photons. This is a result

of gravitational e fects. In particular, the twist of spacetime due to the black hole’s spin widen the

range of values. Hence, by examining the disk around a black hole, focusing on one type of atom, and

measuring the observed energies of its emitted photons, you can determine its spin.

¶An electron-volt is a tiny unit of energy. 6,400 electron-volts is about 0.00000000000000024 calories.
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All of this relies on both our sof ware (theoretical understanding) and our hardware (telescopes).

How are humans doing with the observational side of things?

In the 1940s, when radio astronomywas advancing andX-ray astronomywasn’t quite there yet, the

galaxy Cygnus A stood out as a bright radio source 33. But it was not recognized until decades later that

the supermassive blackhole at its centerwas the cause of the source 34. Thediscovery of neutron stars in

the 1960s con rmed the physical relevance of compact astronomical objects 35. And in the early 1970s,

X-ray astronomyprovided uswith the rst indirect observation of a black hole: CygnusX-1 27,28. Since

the Earth’s atmosphere blocks X-rays, it was discovered using a rocket that carried X-ray instruments.

The discovery of Cygnus X-1 led to a friendly wager between British physicist Stephen Hawking

and American physicist Kip Thorne (the 2017 Physics Nobel Prize winner—the physicist behind In-

terstellar). Hawking, who had bet that the source was not a black hole, conceded his defeat two and a

half decades later.

Today, we have an unprecedented amount of observational evidence for black holes. Below are

some notable telescopes.

• The Hubble Space Telescope (launched in 1990), which detects light in the near ultraviolet,
visible, and near infrared parts of the spectrum. It provided a signi cant amount of evidence
that galaxies center around supermassive black holes 36,37.

• The Chandra X-ray Observatory (launched in 1999), which detects light in the X-ray part of
the spectrum. It was the rst to see X-ray emissions from Sagittarius A* 38.

• The Event Horizon Telescope ( rst data capture in 2006), which detects light in the radio part
of the spectrum. It aims to resolve the event horizons around Sagittarius A* and the black hole
centering the galaxy Messier 87 39.

• XMM Newton (launched in 1999), Suzaku (launched in 2005), and NuSTAR (launched in
2012), which all detect light in the X-ray part of the spectrum (see Figure 6). These three tele-
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Figure 6: Artists' concepts of the X-ray telescopes XMM-Newton (top left), NuSTAR (bottom left), and Suzaku (right) in

orbit. Image credit: D. Ducros/ESA, NASA/JPL-Caltech, and ISAS/JAXA, respectively.

scopes, by looking at high-energy photons emitted from the regions near black holes, provided
an enormous amount of data for spinning black holes (see Table 3). In fact, they gave us evi-
dence that our heroine is generally good at spinning.

In Section 0.2, we discussed the limit on a black hole’s spin, which depends on its mass. As sup-

ported by data, a large proportion of the black holes in our universe are likely to be spinning near the

maximum rate.

To answer uestion 1:

Yes, fast-spinning black holes are likely to be abundant.
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Black hole Spin rate (max.= 1) Black hole Spin rate (max.= 1)
MCG- - - ≥ 0.98 SWIFT J . - ≥ 0.96

Fairall ∼ 0.52 Ton S ∼ 0.91
SWIFT J . + ∼ 0.6 RBS ≥ 0.98

H - ≥ 0.98 Mrk ∼ 0.66
Mrk ∼ 0.70 Mrk ≥ 0.52
Mrk ∼ 0.70 IRAS - ≥ 0.995

NGC ≥ 0.98 Mrk ∼ 0.58
Ark ∼ 0.94 IRAS - ≥ 0.84
C ≥ 0.95 NGC ≥ 0.99

H - ≥ 0.88 NGC ∼ 0.97
Ark ∼ 0.96 Mrk ≥ 0.99

Table 3: A list of spinning black holes that we have observational evidence for. Taken from Laura Brenneman's review

paper 40, with data from the X-ray telescopes Suzaku, XMM-Newton, and NuSTAR. Notice the large proportion of fast-

spinning black holes.

0.5 S : ’

You are assigned yourCalculus homework today, but you can’t be bothered to look at it yet. You think

you are smart. You think you can get it done if you do it on the due date. Why not wait? You have

arthritis. You want to exercise to stay healthy, so you hit the pool. Water exercises are gentle on your

joints, and compared to exercising on the ground, you can burn the same amount of calories. Why

not go for the pool?

These examples remotely capture what physicists mean by symmetri . You get your homework

done whether you do it today or on the due date—today is “symmetrical” to the due date. (If you

don’t nish it though, you’ll have more trouble than no symmetry.) You get your workout done

whether you do it on the ground or in a pool—the ground is “symmetrical” to the pool. Here are
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some more examples: The speed of light remains the same to you whether you are on a bullet train

or taking a walk with your pet turtle. The Laws of Physics remain unchanged regardless of where or

when you do your experiments.

Isn’t it convenient that general relativity holds today and tomorrow, in your house and near a black

hole? Today is “symmetrical” to tomorrow; your house is “symmetrical” to the region near a black

hole (yes, I mean it). This is why physicists love symmetries.

In 1915, the sameyearEinstein formulated general relativity,GermanmathematicianEmmyNoether

showed that every symmetry corresponds to a conserved quantity—a quantity that remains the same

nomatter howother things change41. For example, a temporal symmetry—same regardless ofwhen—

corresponds to the conservationof energy; a spatial symmetry—same regardless ofwhere—corresponds

to the conservation of momentum.

What symmetries are present in the Kerr spacetime? The Earth is nothing like a black hole, but it

a spinning, uncharged spherical object. So return to the Earth for a minute—well, not quite—chill

in a satellite. Pretend that there are no continents on Earth (only uniformly blue ocean) and forget

the clouds. From the satellite, if you watch the Earth for ten minutes, could you do a before-versus-

af er comparison of the planet? No. If the side of the Earth that you faced has spun away so you

are facing a di ferent side now, could you tell any di ference? No. The “Earth without continents

or clouds” has temporal symmetry and rotational symmetry, corresponding to the conservation of

energy and angular momentum, respectively. The same goes for a spinning black hole. In the Kerr

spacetime, there are two more conserved quantities we have at hand. One wasn’t derived through

physical considerations42 and the other depends on themass of the particle traveling in the spacetime.
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If it is our hero—the photon—then this quantity is zero because the photon weighs nothing.

In general, symmetries and conserved quantities simplify equations. Intuitively, same is easier to

understand than di ferent; a non-change is easier to understand than a change.

In Section 0.3, we learned that the Kerr solution of the Einstein eld equations allows us to write

downgeodesic equations for anyparticles traveling in theKerr spacetime. The solutions to the geodesic

equations, in turn, would give us geodesics—the answers to how the particles travel. Despite the four

conserved quantities, however, the Kerr geodesic equations are di cult to solve.

Interestingly, in the region very close to our heroine, the symmetries are enhanced. In 1999, Amer-

ican physicists James Bardeen and Gary Horowitz zoomed in on the region near a fast-spinning black

hole and examined it in detail43. Treating that region as its own spacetime, they discovered two sym-

metries, which include a dilation symmetry—same regardless of how far you go “down the road” to

the black hole’s event horizon. In other words, any point on that road is “symmetrical” to any other

point.

The enhanced symmetries greatly simplify the geodesic equations in that region. Certain terms

in the unsolvable geodesic equations become negligible. Af er they drop out, the equations become

much nicer-looking—and analytically solvable.

Fundamentally, symmetries inform us of the underlying order and structure of nature. This is

the reason behind their use in solving equations. Isn’t it elegant that near fast-spinning black holes,

symmetries are enhanced?

To answer uestion 2:

Yes, regions near fast-spinning black holes are extremely interesting.
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We now know how photons travel in the vicinity of a fast-spinning black hole, but that’s only one

side of the story. How do they travel to , humans? Once they leave that region, the symmetries are

no longer enhanced.

Physicists like spherical cows‖—we like to approximate. Compared with the warped spacetime

around a fast-spinning black hole, the world we and our telescopes live in can be approximated as

at. In at spacetime, there exist ten symmetries. If you take the Kerr geodesic equations and set the

distance from the black hole to be large, again terms become negligible and can be dropped out. These

are not the same terms as in the case near the black hole. Nevertheless, the geodesic equations can now

be analytically solved.

So, we are equipped with solutions to the geodesic equations—geodesics—in both the region near

a fast-spinning black hole and the region near us (far from the black hole). How do they connect?

There is a mathematical method, called thematched ymptotic expansions, which allows us to bridge

our geodesics. This is how my collaborators and I wrote down the geodesics describing the journeys

photons take from fast-spinning black holes to a distant observer, expressed in terms of elementary

functions 1 (see Figure 7).

But wait a minute. As soon as the Kerr geodesic equations were written down in the 1960s, numer-

ical solutions of the geodesics were readily available. Why did we go through so much trouble to nd

these analytical solutions? What’s the di ference between numerical and analytical solutions anyway?

Go back to your square dining table and roll a tennis ball from one of its corners to the opposite.

‖A dairy farmer seeks advice from a physicist regarding increasing milk production. The physicists goes
home, thinks hard on the problem, then calls the farmer. “I have a solution,” he says. “Let’s assume the cows
were spherical and lived in a vacuum . . .”
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Figure 7: A cartoon of our hero's treacherous journey where he travels for light-years to present our heroine (who really

warps spacetime) to us, humans.

Having an analytical solution of the ball’s geodesic means you know exactly where it is at any point on

its journey. You can draw the journey—a continuous line—without lif ing your marker o f the table.

A numerical solution, on the other hand, corresponds to a bunch of dots instead of a continu-

ous line. It has limitation. Is there a number between 0.55 and 0.56? Of course. For example, 0.551,

0.553647. There is an in nite number of numbers between any two numbers. Doing numerical com-

putations to an in nite accuracy would take an in nite amount of time. It’s unfeasible. But isn’t

knowing where the ball is 0.55 seconds and 0.56 seconds into its journey on your table good enough?

Can’t you guess where it is in between? Not necessarily. Without an analytical equation to guide you,

between 0.55 seconds and 0.56 seconds, your tennis ball could jump up and crack your chandelier and

come back and journey on without you realizing. You’d have no idea because all you know is how it
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behaves at two discrete points: 0.55 seconds and 0.56 seconds.

Hence, analytical solutions are superior—by far. Most of the time, only when they are unavailable

do we rely on numerics. It is only through analytical expressions that we gain the deepest, fullest

understanding.

To answer uestion 3:

Yes, analytical expressions are extremely useful.

Photons travel from fast-spinning black holes to our telescopes. Our analytical solutions for their

geodesics opened a door to tackling various problems and led to further computations in the recent

two years. For example: the observed image of a light-emitting particle orbiting a black hole44; the

observed energies of photons emitted by iron atoms in the disk around a black hole 2. In the long run,

we hope for our analytical solutions to complement numerical methods in astronomy.

0.6 E

In Einstein’s 1936 paper on the gravitational lensing e fect, he wrote45:

“Of course, there is no hope of observing this phenomenon directly.”

But we did, forty-three years later 5. Never in Einstein’s wildest dreams would he have imagined the

amount of observational evidence for black holes that we have today. Neither did he have nearly as

much theoretical understanding of our universe as physicists do now.

We are tiny beings on the planet called Earth. Earth is one of the many celestial bodies orbiting the

Sun. The solar system is one of the hundreds of billions of star systems in the Milky Way. Then
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there are galaxy groups, galaxy clusters, and superclusters containing many galaxies like the Milky

Way. For the insigni cant to hear stories of our distant, enormous, and invisible heroine—the

black hole—isn’t it awe-inspiring? We must thank our messenger, our hero—the photon.

Refreshing fall night inNewEngland. You lookupand see the stars. Andyou ndyourself thinking

about what you are seeing, how you are seeing them. Youmarch across Harvard Yard, listening to the

crisp sound of your shoes crunching dead leaves, and you tell me: The photons are tired. No, not just

tired. They’ve completed their mission, traveled heroically from light-years away just to hit our eyes,

to cease to exist. Did they “die”? Well, they carried energy, and energy is conserved. They did not

come here in vain—they’ve become a part of us, their energy transferred to us. Across spacetime.

It’s humbling, isn’t it?

On our long road to reality, we laugh, we cry, we work with patience and photons and spherical

cows. And we see something breathtaking, even in the black night. Light.
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1
Introduction

T in observational black hole astrophysics. With the detection

of gravitational waves from a binary black hole merger, LIGO has established gravitational-wave ob-

servation as a new tool to study these “unseeable” objects6,46–49. The majority of present methods,

however, still rely on electromagnetic emissions in the vicinity of black holes.
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In the last two decades, among others, the X-ray telescopes XMM Newton, Suzaku, andNuSTAR

have provided an enormous amount of data on black holes, especially supermassive ones in active

galactic nuclei. In particular, their data have enabled astrophysicists to determine the spins of the

observed black holes, leading to the conclusion that a large number of them are likely to have high

spin40,50. Examples include the black holes centering the galaxies NGC 4051, NGC 1365, andMCG-6-

30-15. Today, the Event Horizon Telescope (EHT) is expected to soon deliver unprecedented up-close

images of the supermassive black holes at the centers of Milky Way (Sagittarius A*) and Messier 87

(M87) 39,51–56. The latter, too, is a candidate high-spin black hole 57. Therefore, extreme Kerr black

holes, which spin at the maximally allowed theoretical limit, are of observational relevance.

Such black holes are also of particular interest from a theoretical perspective, which is the focus of

this dissertation. Extreme Kerr is a critical point of the Kerr family: The region of spacetime in the

immediate vicinity of its event horizon—theNear-HorizonExtremeKerr (NHEK) region—solves the

Einstein eld equations on its own43.

To obtain the NHEK metric, rst consider the Kerr metric, which describes neutral rotating black

holes ofmassM and angularmomentumJ = aM . InBoyer-Lindquist coordinatesxa ∼ (t̂, r̂, θ, ϕ̂),

it is given by

ds2 = −∆

ρ̂2

(
dt̂− a sin2 θdϕ̂

)2
+

sin2 θ
ρ̂2

(
(r̂2 + a2)dϕ̂− adt̂

)2
+

ρ̂2

∆
dr̂2 + ρ̂2dθ2 , (1.1)
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where

∆(r̂) = r̂2 − 2Mr̂ + a2 , ρ̂2(r̂, θ) = r̂2 + a2 cos2 θ .

This metric admits two Killing vectors, ∂ϕ̂ and ∂t̂, generating axisymmetry and time-translation sym-

metry, respectively. Along every geodesic in Kerr, in addition to the conserved angular momentum

and energy, the Carter constant is another conserved quantity.

Now we take the extreme Kerr limit

a = M, (1.2)

and introduce dimensionless Bardeen-Horowitz coordinates

t =
t̂

2M
, ϕ = ϕ̂− t̂

2M
, r =

r̂ −M

M
. (1.3)

Then the NHEK region is at

r ≪ 1, (1.4)

and the leading piece of the resulting metric takes the form43

ds2 = 2M2Γ(θ)

(
−r2dt2 +

dr2

r2
+ dθ2 + Λ(θ)2(dϕ+ rdt)2

)
, (1.5)
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where

Γ(θ) =
1

2
(1 + cos2 θ) , Λ(θ) =

2 sin θ
(1 + cos2 θ)

. (1.6)

The NHEK geometry has an enhanced SL(2,R) × U(1) isometry, generated by the Killing vector

elds

W0 = ∂ϕ, (1.7)

H+ = ∂t, (1.8)

H0 = t ∂t − r ∂r, (1.9)

H− =

(
t2 +

1

r2

)
∂t − 2tr ∂r −

2

r
∂ϕ. (1.10)

In particular, the time-translation symmetry is enlarged to an SL(2,R) global conformal symmetry,

which includes dilations and special-conformal transformations. These enhanced symmetries greatly

constrain and simplify gravitational dynamics in the NHEK region.

Over the past few years, they have rendered feasible a number of analytical computations of po-

tentially observable astrophysical processes that could not otherwise be performed 1–3,44,58–75. Such

computations form the core of this dissertation. We consider exclusively high-spin black holes (ex-

treme Kerr and near-extreme Kerr) and electromagnetic emissions in the near-horizon region. All our

calculations are performed analytically.
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In Chapter 2, we lay the groundwork for an exploration of the consequences of the enhanced sym-

metries on electromagnetic emissions from NHEK. The intense frame-dragging in this region leads

to the expectation that such emissions peak near the superradiant bound, at which the ratio of the

angular momentum to the energy is the Schwarzschild radius. We solve analytically, to leading order

in the deviation from the superradiant bound, the equations for null geodesics that connect emission

points in the NHEK region to observation points in the region far from the black hole. These are the

trajectories of photons that start near the horizon and end at the telescope. Our solutions are obtained

in terms of elementary functions only.

In Chapter 3, we surround the black hole with a geometrically thin, stationary, axisymmetric, equa-

torial disk of slowly accreting matter, and we assume that every particle in the disk emits monochro-

matic light isotropically in the form of photons that follow null geodesics. We use geometric optics

developed in76 and build upon themethods in Chapter 2 to treat photon trajectories originating from

theNHEK region. The analytic formula we obtain for the observed ux, up to a proportionality con-

stant, is independent of the disk model and therefore universal. We also propose a model for a radiant

disk that respects the symmetries of NHEK. Due to the logarithmic divergence of the disk’s proper

length at extremality, this model implies a logarithmically divergent overall proportionality constant

in the observed ux. Our result is directly relevant for the pro le of FeKα line emissions that have

been extensively analyzed in 32,77–80.

In Chapter 4, we start by assuming some physical process in NHEK capable of producing highly

energetic photons and that it is invariant under the emergent symmetries of the background geom-

etry. We predict the polarization pro le of near-horizon emissions from M87, a candidate high-spin
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black hole. Our analytical computations produce polarimetric images measured by a distant observer

stationed at a xed polar angle (15◦ for M87) relative to the black hole’s axis of symmetry. The po-

larization lines form a distinctive whorl that spirals into a central point inside the black shadow. An

in nite series of subsidiary whorls also appear nearer the edge of the shadow, arising from photons

that librate around the black hole multiple times before escaping to in nity. Moreover, we nd that

for any observation angle, the polarimetric images of these emissions lie within the black hole shadow

and are not obscured by light from bright sources behind the black hole. Despite our focus on M87,

whose polarization will be measured by the EHT 81–90, our methods and results apply to all high-spin

black holes.
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2
Photon Emission near Extreme Kerr

I , we study the electromagnetic emissions from the near-horizon region of an ex-

treme Kerr black hole and analytically compute the geodesics of the corresponding photons.

Our analytical methods are an immediate consequence of the enhanced SL(2,R)×U(1) isometry

group in the near-horizon geometry of extreme Kerr black holes. The intense frame-dragging in this
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region leads to the expectation that such emissions peak near the superradiant bound, at which the

ratio of the angular momentum to the energy is the Schwarzschild radius. We solve analytically, to

leading order in the deviation from the superradiant bound, the equations for null geodesics that

connect emission points in the near-horizon region of an extreme Kerr to observation points in the

region far from the black hole.* These are trajectories of photons that start near the horizon and end

at the telescope. Our solutions are obtained in terms of elementary functions only.

Previously such geodesics were only known in terms of elliptic integrals and their inverse functions

and were of en studied numerically. For a general Kerr spacetime91 collects the basic results in terms

of elliptic integrals and92,93 obtain the null geodesics in terms of elliptic and generalized hypergeomet-

ric functions respectively. These general results in terms of elliptic functions are highly complex and

numerical codes95–97 have been developed for astrophysical applications which require inversion with

respect to various of their arguments.

The results in this chapter have been useful for the study of a variety of problems related to observa-

tions of electromagnetic radiation that originates fromor passes through theNHEK region. Examples

include the observed image of a light-emitting particle orbiting a black hole44 and the pro le of iron

line emissions from an accretion disk 2.

The rest of the chapter is organized as follows. In Section 2.1 we set up the geodesic equations in

Boyer-Lindquist and Bardeen-Horowitz coordinates and divide the spacetime into the near and the

far regions. In Section 2.2 we analytically solve for the radial null geodesic motion in the r − θ plane.

And in Section 2.3 we do the same for themotion in the r−ϕ and r− t planes. Finally we summarize

*The r, ϕ and t equations are solved generically while the θ equation is solved only in special cases.
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the results Section 2.4.

2.1 G

The Kerr metric in Boyer-Lindquist coordinates xa ∼ (t̂, r̂, θ, ϕ̂) is given by:

ds2 = gabdx
adxb

= −∆

ρ̂2

(
dt̂− a sin2 θdϕ̂

)2
+

sin2 θ
ρ̂2

(
(r̂2 + a2)dϕ̂− adt̂

)2
+

ρ̂2

∆
dr̂2 + ρ̂2dθ2 ,(2.1)

where

∆(r̂) = r̂2 − 2Mr̂ + a2 , ρ̂2(r̂, θ) = r̂2 + a2 cos2 θ .

This describes neutral rotating black holes ofmassM and angularmomentumJ = aM . The general

form of the geodesic equation for xa(τ)with a ne parameter τ is

∂2
τx

a + Γa
bc∂τx

b∂τx
c = 0 , gab∂τx

a∂τx
b = −µ2 , (2.2)
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where µ = 0 for null geodesics and µ = 1 for time-like geodesics. In the Kerr spacetime there are

three additional conserved quantities along every geodesic:

Ê = −gt̂a∂τx
a ,

L̂ = gϕ̂a∂τx
a , (2.3)

Q = Yab∂τx
a∂τx

b − (L̂− aÊ)2 .

Ê and L̂ are the energy and axial angularmomentum. TheCarter constantQ here is constructed from

the Killing tensor (square of Killing-Yano),

Yabdx
adxb = a2 cos2 θ

[
∆

ρ̂2
(dt̂− a sin2 θdϕ̂)2 − ρ̂2

∆
dr̂2
]

+ r̂2
[
sin2 θ
ρ̂2

(
adt̂− (r̂2 + a2)dϕ̂

)2
+ ρ̂2dθ2

]
. (2.4)

These conservation laws enable integration of the geodesic equation into the form42

∫ r̂ dr̂′√
R̂

=

∫ θ dθ′√
Θ̂

, (2.5)

ϕ̂ =

∫ r̂ aÊr̂′
2
+ (L̂− aÊ)(∆− a2)

∆
√

R̂
dr̂′ +

∫ θ L̂ cot2 θ′√
Θ̂

dθ′ , (2.6)
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t̂ =

∫ r̂ Êr̂′
2
(r̂′

2
+ a2) + a(L̂− aÊ)(∆− r̂′

2 − a2)

∆
√

R̂
dr̂′ +

∫ θ a2Ê cos2 θ′√
Θ̂

dθ′ , (2.7)

where

R̂ =
(
Ê(r̂′

2
+ a2)− L̂a

)2
−∆

(
µ2r̂′

2
+ (L̂− aÊ)2 +Q

)
, (2.8)

Θ̂ = Q− cos2 θ′
(
a2(µ2 − Ê2) + L̂2/ sin2 θ′

)
. (2.9)

The integrals are understood to be path integrals along the trajectory. At every point of the trajec-

tory the conditions R̂ ≥ 0 , Θ̂ ≥ 0 must hold but the signs of dr̂′ , dθ′ and
√

R̂ ,
√

Θ̂ change at

corresponding turning points in such a way that dr̂′/
√

R̂ and dθ′/
√

Θ̂ are always positive.

We consider null geodesics,

µ = 0 , (2.10)

in the extreme Kerr spacetime,

a = M, (2.11)

which are near the so-called superradiant bound:

λ = 1− L̂

2MÊ
≪ 1. (2.12)
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In this case wewill nd that, to leading order inλ, the radial integrals in (2.5—2.7) are soluble in terms

of elementary functions. As already noted by Bardeen in98, λ = 0 is a special point in the parameter

space of extreme Kerr geodesics and one expects many photons emitted from the near-horizon region

to have small λ. It is therefore gratifying that this case is explicitly soluble.

It is convenient to introduce the dimensionless Bardeen-Horowitz coordinates,

t =
t̂

2M
, ϕ = ϕ̂− t̂

2M
, r =

r̂ −M

M
. (2.13)

The near-horizon region is then r ≪ 1, and the metric takes the form43

ds2 = 2M2Γ(θ)

(
−r2dt2 +

dr2

r2
+ dθ2 + Λ(θ)2(dϕ+ rdt)2

)
+ . . . , (2.14)

where

Γ(θ) =
1

2
(1 + cos2 θ) , Λ(θ) =

2 sin θ
(1 + cos2 θ)

, (2.15)

and the subleading corrections are suppressed by powers of r. The leading term displayed on the

right hand side solves the Einstein equation on its own. It is referred to as the Near-Horizon Extreme

Kerr or ‘NHEK’ metric and has an enhanced symmetry group43,99. The coordinates (2.13) are partic-

ularly well-suited for studying near horizon physics in extreme and near-extreme Kerr. For example,

they may be used to resolve the prograde circular photon and innermost stable orbits whose Boyer-

Lindquist radial coordinates degenerate in the extreme limit with that of the horizon (see, e.g., the
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appendix in65). We are interested in trajectories of photons emitted near the horizon and observed by

a distant telescope. These are geodesics which start at (tn, rn, θn, ϕn) with rn ≪ 1 in the NHEK

region and end at (tf , rf , θf , ϕf )with rf ≫ 1 in the far asymptotically at region.

In the null case Ê may be scaled out of the geodesic equation, whose solutions are labeled by λ and

the convenient dimensionless shif ed Carter constant

q2 = 3− Q

M2Ê2
< 4(1− λ+ λ2) , (2.16)

where the last inequality expresses positivity of the kinetic energy in a local frame. Wewill show below

that, given (2.12), a geodesic that originates in NHEK and reaches out to the far asymptotically at

region must have a positive q2. We will take q > 0 and hold it xed while expanding in small λ.

Motion in the equatorial plane has q =
√
3.

In terms of the coordinates (2.13) and parameters (2.12) and (2.16) the geodesic equations (2.5—2.7)

become:

∫ rf

rn

dr√
R

=

∫ θf

θn

dθ√
Θ

, (2.17)

ϕf − ϕn = −1

2

∫ rf

rn

Φ

r
√
R
dr +

1

2

∫ θf

θn

(3 + cos2 θ − 4λ) cot2 θ√
Θ

dθ , (2.18)

tf − tn =
1

2

∫ rf

rn

T

r2
√
R
dr +

1

2

∫ θf

θn

cos2 θ√
Θ

dθ , (2.19)
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where

R = r4 + 4r3 + (q2 + 8λ− 4λ2)r2 + 8λr + 4λ2 , (2.20)

Θ = 3− q2 + cos2 θ − 4(1− λ)2 cot2 θ , (2.21)

Φ = r3 + 4r2 + (3 + 4λ)r + 4λ , (2.22)

T = r4 + 4r3 + 7r2 + 4(1 + λ)r + 4λ . (2.23)

The integrals in (2.17—2.19) are of elliptic type and are of en manipulated numerically. In this

chapter we will perform the radial integrals analytically to leading order in small λ using the method

of matched asymptotic expansions (MAE) for all geodesics extending from the near to the far region.

Our solutions are obtained in terms of elementary functions only. We will proceed in the small λ

regime by dividing the spacetime into two regions:

Near Region r ≪ 1 , (2.24)

Far Region r ≫
√
λ . (2.25)

The two regions overlap in the

Overlap Region
√
λ ≪ r ≪ 1 . (2.26)

37



We now proceed to solve the equations in the near and far regions and match the solutions in the

overlap region.

2.2 T r–θ

In this section we solve the radial integral

I =

∫ rf

rn

dr√
R(r)

, (2.27)

to leading order in λ via MAE. Given (2.12) we have that

R ≈ r4 + 4r3 + q2r2 + 8λr + 4λ2 . (2.28)

In the near region (2.24) we have

Rn(r) = R(r ≪ 1) = q2r2 + 8λr + 4λ2 , (2.29)

while in the far region (2.25) we have

Rf (r) = R(r ≫
√
λ) = r2(r2 + 4r + q2) . (2.30)

We rst check the conditions under which small λ geodesics in the near and far regions connect.
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Turning points in the radial motion occur at the zeroes ofR(r). In the far region these are located at

rf± = −2±
√

4− q2 . (2.31)

If q2 is positive, this has no turning points with positive r. On the other hand, if q2 is negative, there is

a turning point at positive r, and the geodesic bounces o f the black hole before it penetrates the near

region. We therefore take

q2 > 0 , (2.32)

ignoring the measure zero case q = 0. In the near region the zeroes are at

rn± =
2λ

q2

(
−2±

√
4− q2

)
. (2.33)

Since 0 < q2 < 4 to leading order inλ, the square root is always a positive number less than 2. Hence

there is a positive root if and only if λ is negative. In that case, a geodesic emanating from the horizon

will turn around before it reaches the far region at r ∼
√
λ. This is due to the fact that photons on

such trajectories exceed the superradiant bound. On the other hand, there are two turning points, and

if the geodesic originates in the near region but outside both turning points, r > rn±, it can reach the

far region. Hence λ can have either sign but geodesics with negative λ cannot get all the way to the

horizon.
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To leading order in λ the near and far radial integrals can now be performed explicitly:

In(r) =

∫ r dr′√
Rn(r′)

=
1

q
ln
(
q
√

Rn(r) + q2r + 4λ
)
+ Cn , (2.34)

If (r) =

∫ r dr′√
Rf (r′)

= −1

q
ln

1

r2

(
q
√

Rf (r) + q2r + 2r2
)
+ Cf , (2.35)

whereCn, Cf are integration constants. In the overlap region (2.26) we have:

In(r) =
1

q

(
ln r + ln 2q2 + q Cn +

4λ

q2r
+ . . .

)
, (2.36)

If (r) =
1

q

(
ln r − ln 2q2 + q Cf − 2r

q2
+ . . .

)
. (2.37)

Matching In = If in the overlap region we nd:

Cf = Cn +
2

q
ln 2q2 . (2.38)

The integral (2.27) is given by I = If (rf )− In(rn) and using (2.34), (2.35), and (2.38) we nd:

I = −1

q
ln
(
qDn + q2rn + 4λ

) (
qDf + 2rf + q2

)
4q4 rf

, (2.39)

where,

Dn =
√

Rn(rn) =
√

q2r2n + 8λrn + 4λ2 , (2.40)

Df =
1

rf

√
Rf (rf ) =

√
r2f + 4rf + q2 . (2.41)
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2.3 T r–ϕ r–t

Given (2.12) we have that

Φ ≈ r3 + 4r2 + 3r + 4λ , (2.42)

T ≈ r4 + 4r3 + 7r2 + 4r + 4λ , (2.43)

and we can perform the radial integrals for the r–ϕ and r–tmotion in (2.18) and (2.19),

Iϕ =

∫ rf

rn

Φ(r)

r
√

R(r)
dr , It =

∫ rf

rn

T (r)

r2
√

R(r)
dr , (2.44)

via MAE as follows.

In the near region (2.24) we have

Φn(r) = Φ(r ≪ 1) = 3r + 4λ , (2.45)

Tn(r) = T (r ≪ 1) = 4r + 4λ , (2.46)

while in the far region (2.25) we have

Φf (r) = Φ(r ≫
√
λ) = r(r2 + 4r + 3) , (2.47)

Tf (r) = T (r ≫
√
λ) = r(r3 + 4r2 + 7r + 4) . (2.48)
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All integrals are now doable:

Iϕn(r) =

∫ r Φn(r
′)

r′
√
Rn(r′)

dr′ =
3

q
ln
(
q
√

Rn(r) + q2r + 4λ
)
− (2.49)

−2 ln
1

r

(√
Rn(r) + 2r + 2λ

)
+ Cϕ

n ,

Iϕf (r) =

∫ r Φf (r
′)

r′
√

Rf (r′)
dr′ = −3

q
ln

1

r2

(
q
√
Rf (r) + q2r + 2r2

)
+ (2.50)

+2 ln
1

r

(√
Rf (r) + r2 + 2r

)
+

1

r

√
Rf (r) + Cϕ

f ,

Itn(r) =

∫ r Tn(r
′)

r′2
√
Rn(r′)

dr′ = − 1

λr

√
Rn(r) + Ct

n , (2.51)

Itf (r) =

∫ r Tf (r
′)

r′2
√

Rf (r′)
dr′ = −7q2 − 8

q3
ln

1

r2

(
q
√

Rf (r) + q2r + 2r2
)
+ (2.52)

+2 ln
1

r

(√
Rf (r) + r2 + 2r

)
+

q2r − 4

q2r2

√
Rf (r) + Ct

f ,

whereCϕ,t
n , Cϕ,t

f are integration constants. In the overlap region (2.26) we have:

Iϕn(r) =
1

q

(
3 ln r + 3 ln 2q2 + q

(
Cϕ
n − 2 ln(q + 2)

)
− 4λ(q2 − 3)

q2r
+ . . .

)
, (2.53)

Iϕf (r) =
1

q

(
3 ln r − 3 ln 2q2 + q

(
Cϕ
f + 2 ln(q + 2)

)
+ q2 +

2(2q2 − 3)r

q2
+ . . .

)
,(2.54)

Itn(r) = −1

q

(
q2

λ
− q Ct

n +
4

r
+

2λ(q2 − 4)

q2r2
+ . . .

)
, (2.55)

Itf (r) = −1

q

(
4

r
− 7q2 − 8

q2
ln r − q4 − (7q2 − 8) ln 2q2 − 8

q2
− (2.56)

−q
(
Ct
f + 2 ln(q + 2)

)
− 4(q4 − 4q2 + 6)r

q4
+ . . .

)
,
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so matching Iϕ,tn = Iϕ,tf in the overlap region we nd:

Cϕ
f = Cϕ

n +
6

q
ln 2q2 − 4 ln(q + 2)− q , (2.57)

Ct
f = Ct

n − q

λ
− q4 − (7q2 − 8) ln 2q2 − 8

q3
− 2 ln(q + 2) (2.58)

≈ Ct
n − q

λ
,

where in the last line we have used (2.12). The integrals (2.44) are given by Iϕ,t = Iϕ,tf (rf )−Iϕ,tn (rn)

and using (2.49—2.52) and (2.57—2.58) we nd:

Iϕ = −3

q
ln

1

rf

(
qDn + q2rn + 4λ

) (
qDf + 2rf + q2

)
+2 ln

1

rn
(Dn + 2rn + 2λ) + (Df + rf + 2) (2.59)

+Df +
6

q
ln 2q2 − 4 ln(q + 2)− q ,

It = 2 ln (Df + rf + 2)− 7q2 − 8

q3
ln

1

rf

(
qDf + 2rf + q2

)
(2.60)

+
q2rf − 4

q2rf
Df +

1

λrn
Dn − q

λ
.

In the special case of motion con ned to the equatorial plane the geodesic equations reduce to (2.18)

and (2.19) with the θ integrals dropped. In this case the shif s in the azimuthal angle ϕ and time t are
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given by ϕf − ϕn = −(1/2) Iϕ |q=√
3 and tf − tn = (1/2) It |q=√

3 respectively, or explicitly:

ϕf − ϕn =

√
3

2
ln

1

rf

(√
3Dn + 3rn + 4λ

)(√
3Df + 2rf + 3

)
− ln

1

rn
(Dn + 2rn + 2λ) (Df + rf + 2) (2.61)

−1

2
Df −

√
3 ln 6 + 2 ln(

√
3 + 2) +

√
3

2
,

tf − tn = ln (Df + rf + 2)− 13

6
√
3

ln
1

rf

(√
3Df + 2rf + 3

)
(2.62)

+
3rf − 4

6rf
Df +

1

2λrn
Dn −

√
3

2λ
,

with

Dn = Dn|q=√
3 =

√
3r2n + 8λrn + 4λ2 , (2.63)

Df = Df |q=√
3 =

√
r2f + 4rf + 3. (2.64)

These are the equations that relate an endpoint of an equatorial null geodesic near thehorizon (tn, rn, ϕn)

to its endpoint in the region far from the black hole (tf , rf , ϕf ) and the associated constant λ along

the geodesic.

For geodesics whichmove in the θ directionwe note that positivity of the shif edCarter constant q2

(derived in (2.32) for all geodesicswhich connect between thenear and far regions) restricts the values of

θ that these geodesicsmaypossibly explore. This is becauseΘ ≥ 0 then implies3+cos2 θ−4 cot2 θ ≥

0 which means that θ must lie between θ0 = arccos
√

2
√
3− 3 ≈ 47◦ and π − θ0 ≈ 133◦. This

fact has been derived previously from an analysis of the NHEK geodesics alone in 100.
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Finally, it is worth mentioning that while in our expansion in small λ we have been keeping q2

xed and nite, all of the equations and statements derived in this chapter are also true for the case

of small q2 provided that it remains q2 ≫
√
λ. In this case the only thing that needs to be modi ed

are the de nitions of the near region (2.24) to r ≪ min
(
1, q2

)
and the overlap region (2.26) to

√
λ ≪ r ≪ min

(
1, q2

)
.

2.4 S

In this chapter, we studied null geodesics in the extreme Kerr spacetime. We used the method of

matched asymptotic expansions to integrate, to leading order in the deviation from the superradiant

bound, all radial integrals in Carter’s integral geodesic equations. The key equations we derived are

(2.39), (2.59), and (2.60). In the special case ofmotion con ned to the equatorial plane, we derived the

equations (2.61, 2.62), which relate an endpoint of a null geodesic near the horizon to its endpoint in

the region far from the black hole and the associated angularmomentum constant along the geodesic.†

All our results are expressed in terms of elementary functions only. This is a critical improve-

ment over previous results in the literature, which were only known in terms of elliptic functions

and their generalizations. It enables one to solve explicitly for various parameters appearing in the

integral geodesic equations, a step that is of en necessary for various applications. For example, build-

ing upon the methods in this chapter and using geometrical optics developed in76,101, one may obtain

observables related to the propagation of electromagnetic radiation from the near-horizon region of

†App. 4.A3 explores θ-motions in terms of elliptic functions.
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extreme Kerr black holes. These include broadened FeKα emission lines 2 and images of orbiting hot

spots44.
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3
Accretion Disk Flux

I , we analytically compute the broadening of electromagnetic line emissions origi-

nating from the innermost part of a radiant accretion disk around a high-spin black hole.

The observational signatures of black holes depend sensitively on their surroundings and can be in-

uenced bymyriad other elements present in their environment (such as theirmagnetosphere, corona,
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jets, etc.), each of which carries its own degrees of freedom. Therefore, when making predictions for

observations by telescopes, the common strategy is to produce many templates covering as much of

this parameter space as possible. But we can also investigate the inverse problem: Is there a region in

parameter space that produces a distinctive signature so its observation would explain the nature of

the source?

A distinctive corner in the parameter space is occupied by rapidly spinning black holes that saturate

the Kerr bound for a black hole’s angular momentum with respect to its mass, J ≤ M2. In this

regime, an enhancement of symmetry in the immediate vicinity of the black hole’s horizon43,99 allows

for an analytic study of a variety of potentially observable phenomena 1–3,44,58–75, which of en exhibit

a striking universality. A characteristic example, which is relevant for the computation in this chapter,

is the observation 1,44,98 that all of the light emitted from the near-vicinity of a rapidly spinning black

hole is constrained to appear on the so-called NHEKline: a vertical line segment on the edge of the

shadow of every high-spin black hole.

We surround the black hole with a geometrically thin, stationary, axisymmetric, equatorial disk

of slowly accreting matter, and we assume that every particle in the disk emits monochromatic light

isotropically in the form of photons that follow null geodesics. Using geometric optics developed

in76 and building upon the methods in Chapter 2, we compute the broadening of electromagnetic

line emissions observed along the NHEKline. The resulting ux is independent of the disk’s surface

emissivity and therefore universal.

The rest of the chapter is organized as follows. In Section 3.1 we present the main result. In Sec-

tion 3.2 we review the method of geometric optics, which may be used to obtain the ux observed
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at in nity as a function of the photons’ redshif , Fo(g). In Section 3.3 we use this method to treat

photon trajectories originating from the NHEK region in extreme Kerr and obtain an analytic for-

mula for Fo(g). Up to a proportionality constant, the result is independent of the disk model. And

in Section 3.4 we generalize the result to the case of a near-extreme Kerr. In Section 3.5 we propose a

model for a radiant disk that respects the symmetries of NHEK. Due to the logarithmic divergence of

the disk’s proper length at extremality, this model implies a logarithmically divergent overall propor-

tionality constant in Fo(g). Finally we summarize the results Section 3.6.

3.1 M

We now present the main result of the chapter: the observed ux due to emissions from the accretion

disk of a high-spin black hole.

Suppose the observer’s screen has Cartesian coordinates (α, β) and is located at a dimensionless

coordinate distance ro ≫ 1 from the black hole, at a polar angle θo with respect to the hole’s rota-

tion axis. The observer receives nonvanishing ux Fo(g) provided θo ∈ (θc, π − θc), with θc =

arccos
√

2
√
3− 3, and g ∈

(
1/

√
3,
√
3
)
. The ux is given by

Fo ∝
1

M3r2o sin θo
g
(
g − 1/

√
3
) (

g +
√
3
)√

4g2 (3 + cos2 θo − 4 cot2 θo)− 3
(
g − 1/

√
3
) (

5g +
√
3
) . (3.1)

This result holds independently of the details of the disk (which only enter through the proportion-

ality constant). It is directly relevant for the pro le of FeKα line emissionswhich have been extensively
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Figure 3.1: The profile of line emissions from the near-horizon region of a (near-)extremal black hole [Eq. (3.1)]. This is
our main result: an analytic expression for the fluxFo measured by an observer at dimensionless radius ro and polar
angle θo from the hole as a function of the redshift g. The result is independent of the disk's surface emissivity and

therefore universal. This is an example of critical behavior in astronomy. Note that all the divergences in these plots are

integrable. They arise from emissions that are aimed directly at the observer, in that they appear at the center of the

NHEKline shown in Fig. (??).
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Figure 3.2: In the high-spin regime, the shadow that a black hole casts on a distant observer's screen develops a vertical

edge: the NHEKline [Eq. (4.33)], depicted in red in the left panel. All electromagnetic emissions from the near-horizon

region, including those from the innermost part of its accretion disk, are constrained to emerge on this vertical line

segment. The line emissions from the near-horizon region computed in this chapter may be thought of as brightness

profiles along the NHEKline andwe plot them as such on the right panel. The divergences are likely due to the caustics

discussed in Ref. 44, which should be regulated by diffraction effects beyond our geometric optics approximation.
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analyzed in 32,77–80 (see also, e.g., the reviews 102–104). Furthermore, we nd that the uxFo emerges on

the NHEKline, de ned on the observer’s screen by44

α = −2M csc θo, |β| < βmax = M
√
3 + cos2 θo − 4 cot2 θo, (3.2)

at an elevation β which is completely xed by the redshif g according to

β = ±M

√
3 + cos2 θo − 4 cot2 θo −

3

4g2

(
g − 1/

√
3
)(

5g +
√
3
)
. (3.3)

It follows that, for a suitable source line, a high-resolution telescope such as EHT might be able to

observe the critical ux 3.1 as a characteristic brightness pro le along the NHEKline.

3.2 E

The pro le of electromagnetic line emissions from a disk of matter accreting onto a black hole is com-

monly computed via the geometric optics methods developed by Bardeen and Cunningham76,98,101.

In this section, we review how this is done for the case of emissions originating from a slowly accreting

equatorial disk that is geometrically thin.

Astrophysically realistic black holes are described by the Kerr family of metrics, parameterized by

their mass M and angular momentum J = aM . In Boyer-Lindquist coordinates, the Kerr line
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element is

ds2 = −∆

Σ

(
dt− a sin2 θ dϕ

)2
+

Σ

∆
dr̂2 +Σ dθ2 +

sin2 θ
Σ

[(
r̂2 + a2

)
dϕ− a dt

]2
, (3.4)

where

∆(r̂) = r̂2 − 2Mr̂ + a2, Σ(r̂, θ) = r̂2 + a2 cos2 θ. (3.5)

A particle orbiting on a prograde, circular, equatorial geodesic at radius r̂ = r̂s has four-velocity21

us = uts (∂t +Ωs ∂ϕ) , (3.6)

where

uts =
r̂
3/2
s + aM1/2√

r̂3s − 3Mr̂2s + 2aM1/2r̂
3/2
s

, Ωs =
M1/2

r̂
3/2
s + aM1/2

. (3.7)

Here and hereaf er, the subscript s stands for source. Such an orbit is stable as long as

r̂s ≥ r̂ISCO = M
(
3 + Z2 −

√
(3− Z1) (3 + Z1 + 2Z2)

)
, (3.8)
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where r̂ISCO denotes the radius of the Innermost Stable Circular Orbit (ISCO), with

Z1 = 1 +
(
1− a2⋆

)1/3 [
(1 + a⋆)

1/3 + (1− a⋆)
1/3
]
, (3.9)

Z2 =
(
3a2⋆ + Z2

1

)1/2
, (3.10)

where a⋆ = a/M .

In this chapter, we consider a Kerr black hole (4.4) surrounded by a thin accretion disk consisting

of particles falling along the equatorial geodesics described by the four-velocity (3.6). Their actual

four-velocity may also have a vertical component for motion in and out of the equator, as well as a

radial component providing the disk with a nonzero accretion rate. However, we will assume these

components to be small relative to the angular velocity, so that we may treat the particles’ orbits as

circular. In the region outside the ISCO, this assumption is valid for slowly accreting disks (e.g., it has

been carefully established in the context of the Novikov-Thorne model 105–107).

Theparticles in the disk can emit radiation that ows alongnull geodesics to reach a distant observer

at radius ro and polar angle θo. Here and hereaf er, the subscript o stands for observer. By the re ec-

tion symmetry of the problem, we may assume without loss of generality that the observer lies in the

northern hemisphere, θo ∈ (0, π/2).* We also assume that the disk is stationary and axisymmetric,

in which case it su ces to consider the null geodesic motion in the (r, θ) plane only.

Let p denote the four-momentum of the null geodesic corresponding to a photon trajectory con-

necting a source point to the observer. For such geodesics, the energyE = −pt may be scaled out of

*In this chapter, we ignore the measure-zero, degenerate cases of a precisely face-on (θo = 0) or precisely
edge-on (θo = π/2) observer.
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the geodesic equation, whose solutions may therefore be labeled by

λ̂ =
L

E
, q̂ =

√
Q

E
, (3.11)

where L = pϕ denotes the component of angular momentum parallel to the axis of symmetry and

Q = p2θ − cos2 θ(a2p2t − p2ϕ csc2 θ) is the Carter constant.† The null geodesic equation in the (r, θ)

plane is given by

∫ r̂o

r̂s

dr̂

±
√

R̂(r̂)
=

∫ θo

θs

dθ

±
√

Θ̂(θ)
, (3.12)

where

R̂(r̂) =
(
r̂2 + a2 − aλ̂

)2 −∆
[
q̂2 + (a− λ̂)2

]
, (3.13)

Θ̂(θ) = q̂2 + a2 cos2 θ − λ̂2 cot2 θ. (3.14)

These integrals are line integrals along a trajectory connecting the source and observer, with the signs

chosen so that the integrals grow secularly. Since the emitted energy of the photon isEs = −p · us

and the energy at the distant observer is the conserved quantity Eo = E = −pt, the redshif factor

is76

g =
Eo

Es
=

√
r̂3s − 3Mr̂2s + 2aM1/2r̂

3/2
s

r̂
3/2
s +M1/2(a− λ̂)

. (3.15)

†Note that q̂ is manifestly real for photons emitted from the equatorial plane.
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This relation may be used to determine the conserved quantity λ̂ in terms of (r̂s, g). Then, in princi-

ple, the geodesic equation (3.12) may be used to determine q̂ also in terms of (r̂s, g).

At the observer, the standard procedure involves de ning impact parameters (α, β) in terms of

(λ̂, q̂) for every geodesic hitting the observer’s screen76,98:

α = − λ̂

sin θo
, β = ±

√
Θ̂(θo). (3.16)

A bundle of nearby geodesics that reach the screen from the disk then subtends a solid angle given by

dΩ =
1

r̂2o
dα dβ =

1

r̂2o

∣∣∣∣∣∂(α, β)∂(λ̂, q̂)

∣∣∣∣∣ dλ̂ dq̂ =
1

r̂2o

∣∣∣∣∣∂(α, β)∂(λ̂, q̂)

∣∣∣∣∣
∣∣∣∣∣ ∂(λ̂, q̂)∂(r̂s, g)

∣∣∣∣∣ dr̂s dg. (3.17)

The rst Jacobian is straightforward to compute from Eq. (3.16):

∣∣∣∣∣∂(α, β)∂(λ̂, q̂)

∣∣∣∣∣ = q̂

sin θo |β|
. (3.18)

On the other hand, the second Jacobian can typically only be computed numerically because no ana-

lytic expression relating r̂s, g, and q̂ has been derived in the most general setting considered here.

Finally, the speci c ux carried to the observer by the bundle of photons is given by

dFo = Io dΩ = g3Is dΩ, (3.19)

where Liouville’s theorem on the invariance of the phase space density of photons has been used to
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relate the observed speci c intensity Io to the emitted one Is. We take the disk’s speci c intensity to be

monochromatic at energyE⋆ (e.g.,EFeKα = 6.38keV), and isotropic with surface emissivity E(r̂s):

Is = E(r̂s)δ (Es − E⋆) = gE(r̂s)δ (Eo − gE⋆) . (3.20)

Plugging this expression into Eq. (3.19) and using Eqs. (3.17)–(3.18), the dg integral corresponds to

trivially setting g = Eo/E⋆, so we arrive at

Fo =
g4

r̂2o sin θo

∫
q̂

|β|

∣∣∣∣∣ ∂(λ̂, q̂)∂ (r̂s, g)

∣∣∣∣∣ E(r̂s) dr̂s, (3.21)

where we have absorbed a factor of E⋆ into E(rs). Here, it is understood that the integral is to be

evaluated over the radial extent of the accretion disk, typically starting from the ISCO. In the most

general setting discussed so far, the result of the integral (3.21) will depend, via the surface emissivity

E(r̂s), on the particular diskmodel (e.g., Novikov-Thorne) that one chooses to employ for describing

the accretion of matter into the black hole.‡

In the next sections, we will consider the regime where the black hole has (near-)maximal spin and

the emissions come from the innermost portion of the accretion disk lying near the ISCO. In this

regime, we will nd an analytic expression for the Jacobian ∂(λ̂, q̂)/∂(r̂s, g) which will enable us to

computeFo analytically. Moreover, we will nd that, up to an overall (possibly in nite) constant, the

answer is entirely independent of the disk’s surface emissivity and therefore universal.

‡In practice, a (broken) power law E(rs) ∝ r−p
s is of en implemented when tting data, with the power(s)

chosen to best t the data (see e.g., Ref. 32).
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3.3 C K

In this section, we specialize to the critical point of the Kerr family of metrics: the J = M2 extreme

Kerr. Small deviations from extremality are considered in the next section.

It is convenient to de ne shif ed dimensionless radial coordinate and parameters 1,44

r =
r̂ −M

M
, λ = 1− λ̂

2M
, q2 = 3− q̂2

M2
, (3.22)

in terms of which the geodesic equation (3.12) becomes

∫ ro

rs

dr√
R(r)

=

∫ θo

θs

dθ√
Θ(θ)

, (3.23)

where

R(r) = r4 + 4r3 +
(
q2 + 8λ− 4λ2

)
r2 + 8λr + 4λ2, (3.24)

Θ(θ) = 3− q2 + cos2 θ − 4(1− λ)2 cot2 θ. (3.25)

When the source point rs is near the horizon (rs ≪ 1) and the observation point ro is far in the

asymptotically at region of the spacetime (ro ≫ 1), an analytical solution for the radial integral was

recently found in Ref. 1. In the same regime, an analytical expression for the polar integral was also

recently obtained in Ref.44. The analysis in Refs. 1,44 shows that all electromagnetic signals from the
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near-horizon region rs ≪ 1 appear on the observer’s screen on the NHEKline with coordinates

α = −2M csc θo, (3.26)

β = ±M
√

3− q2 + cos2 θo − 4 cot2 θo. (3.27)

Moreover, a key observation that may be derived semi-analytically from the results in Ref.44 is that

for a xed redshif g, the dominant contribution to the ux measured from sources at rs is achieved

by photons emitted with conserved quantities (λ, q) such that rs is a near-region radial turning point

for the photon’s geodesic. The near-region radial turning point is given by 1,44

rs = −2λ

q2

(
2 +

√
4− q2

)
. (3.28)

On the other hand, for rs ≪ 1, we obtain from Eq. (3.15)

λ = −3rs
4g

(
g − 1/

√
3
)
. (3.29)

The parameter ranges are λ < 0, g ∈ (1/
√
3,
√
3), and q ∈ (0,

√
3 + cos2 θo − 4 cot2 θo). Note

that Eqs. (3.28)–(3.29) imply that q depends only on g:

q =

√
3

2g

√(
g − 1/

√
3
)(

5g +
√
3
)
. (3.30)
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Given Eq. (3.26), this implies that β also depends only on g according to

β = ±M

√
3 + cos2 θo − 4 cot2 θo −

3

4g2

(
g − 1/

√
3
)(

5g +
√
3
)
, (3.31)

meaning that the ux at di ferent points on the observer’s NHEKline is dominated by photons of

di ferent energy. From Eqs. (3.29)–(3.30), we may readily compute the Jacobian

∂(λ, q)

∂(rs, g)
= − 3

√
3

16qg4

(
g − 1/

√
3
)(

g +
√
3
)
. (3.32)

Using this in Eq. (3.21), we then nd

Fo =
3
√
3
(
g − 1/

√
3
) (

g +
√
3
)

8r2o sin θo |β|

∫
E(rs) drs. (3.33)

This remarkable equation is themain result of the chapter. Together with Eq. (3.31), it gives an explicit

analytic formula for the observed uxFo as a function of the redshif g [Eq. (3.1)], or equivalently, as a

function of the elevation β on theNHEKline. We plot these functions in Figs. 3.1 and ??, respectively.

The result is independent, up to an overall constant, of the particular disk model. The latter’s role is

merely to supply an emissivity function E , whose integral xes the overall scale of Fo. As we will see

in Section 3.5, this overall scale might in fact be diverging at extremality.

It is worth emphasizing that the factorization of Eq. (3.21) into the form of Eq. (3.33) is consistent

with expectations from conformal symmetry. Indeed, the SL(2,R) global conformal symmetry in-

cludes dilations and this implies that there are no special radii in the near-horizon part of the disk. As
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a result, one would expect that in the end the radial integration in Eq. (3.21) trivializes as manifested in

Eq. (3.33).

3.4 N - - K

In this section, we consider a near-extremal black hole with a small deviation from extremality mea-

sured by a parameter ϵ ≪ 1 such that

a = M
√
1− ϵ3. (3.34)

This choice of parametrization places the ISCO at anO (ϵ) coordinate distance from the horizon:

rISCO = 21/3ϵ+O
(
ϵ2
)
. (3.35)

As has been previously observed in Ref.65 for gravitational wave uxes from extreme-mass-ratio

inspirals, and in Ref.44 for electromagnetic wave uxes from an orbiting hot spot, the near-extreme

result is of en simply related to the extremal one by a natural identi cation of parameters. This is

believed to be a manifestation of the action of the in nite-dimensional conformal group, which can

relate extremal to near-extremal physics. Here the relevant identi cation of parameters is

r → ϵr, λ → ϵλ. (3.36)
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We have veri ed that with this identi cation, all the equations of the previous section concerning ex-

treme Kerr are valid to leading order in ϵ for the near-extreme case as well. In particular, Eq. (3.33)

gives the leading-order observed ux from the portion of the accretion disk that is located at anO (ϵ)

coordinate distance from the horizon of a near-extreme Kerr black hole, whose deviation from ex-

tremality is given by ϵ. Moreover, the ux from any other portion of the accretion disk that is at an

O (ϵp) coordinate distance from the horizon, with 0 < p < 3/2, may be similarly obtained via the

identi cation

r → ϵpr, λ → ϵpλ. (3.37)

3.5 S :

In the previous sections, wehave seen that the pro le of electromagnetic emissions from the innermost

parts of an accretion disk surrounding a (near-)extremal Kerr is independent of the disk model, up

to an overall constant that is given by the disk’s integrated emissivity function E . In this section, we

motivate and propose a symmetricmodel for a homogeneous radiant disk. This symmetric diskmodel

implies that the overall constant thatmultiplies the emissionpro le (3.1) diverges logarithmically as the

black hole approaches extremality.

The source particle number current for an equatorial, stationary, axisymmetric disk that terminates

62



at the ISCO takes the form

Js = ρ(r̂s)H(r̂ − r̂ISCO)δ (θ − π/2)us, (3.38)

where H is the Heaviside step function. We assume that this source current, which is completely

xed by the radial density pro le of emitters in the disk, ρ(r̂s), is conserved: ∇µJ µ
s = 0. We also

assume that every particle emits isotropically, so that the local emissivity at the surface of the disk is

E(r̂s) = ρ(r̂s).

Near extremality, the emergent conformal symmetry of the NHEK geometry includes dilations.

To preserve this symmetry, we assume that the disk has a uniform particle number density per unit

proper radial length. This completely xes the surface emissivity to

E(r̂s) =
1

utsr̂s
√

∆(r̂s)
=

√
r̂3s − 3Mr̂2s + 2aM1/2r̂

3/2
s

r̂s

(
r̂
3/2
s + aM1/2

)√
r̂2s − 2Mr̂s + a2

. (3.39)

Integrating this over radii rs that scale like rs ∼ ϵp produces a logarithmically divergent constant

∫
E(rs) drs ∼ log ϵ (3.40)

that multiplies the pro le (3.1). This is due to the logarithmic divergence of the disk’s proper length at

extremality.

In the terminology ofRef.67, the choice of emissivity function (3.39)makes the source current (3.38)

a vector eld of weight H = 0 on Kerr. As a result, its leading piece in a near-horizon expansion is
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completely determined by the symmetries of NHEK. Any other choice of disk model that has a well-

behaved near-horizon limit will also have a source current of weightH = 0 and therefore its leading

behavior in the NHEK limit will match that of our symmetric model, with deviations arising only

at subleading order (from near-horizon elds with larger conformal dimension). In particular, we

expect the same logarithmic divergence (3.40) in the ux received from any slowly accreting disk with

a well-behaved near-horizon limit.

3.6 S

In this chapter, we studied high-spin black holes with a geometrically thin, stationary, axisymmetric,

and equatorial disk of slowly accretingmatter. Using geometric optics and building upon themethod

developed in Chapter 2, we obtained the ux due to emissions from the disk observed at in nity as a

function of the photons’ redshif , Fo(g), given by 3.1.

This result holds independently of the disk model, which enters only through the proportionality

constant, and is therefore universal. Our computation is directly relevant for the pro le of FeKα line

emissions. Hence, it could pertain to spectral observations by experiments such as XMM Newton,

Suzaku, andNuSTAR,whichhave revealed emissions fromhigh-spin supermassive black holes center-

ing the galaxies MCG-6-30-15 (a ≳ 0.98M ), NGC 1365 (a ≳ 0.97M ), and NGC 4051 (a ≳ 0.99M )

among others 108–111.

Further, we proposed amodel for a radiant disk that respects the symmetries of NHEK.Due to the

logarithmic divergence of the disk’s proper length at extremality, this model implies a logarithmically
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divergent overall proportionality constant in Fo(g). Since the ux emerges on the NHEKline, it fol-

lows that, for a suitable source line, a high-resolution telescope might be able to observe the critical

ux 3.1 as a characteristic brightness pro le along the NHEKline.
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4
Polarization Whorls

I , we predict the polarization pro le of near-horizon emissions fromhigh-spin black

holes, in particular the black hole centering the galaxy Messier 87 (M87).

The Event Horizon Telescope (EHT) is preparing to deliver unprecedented up-close images of the

supermassive black holes at the center of the Milky Way (Sagittarius A*) and M87 56. It is expected to
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resolve the near-horizon regions of these black holes with a few dozen pixels at the horizon scale. This

o fers an opportunity for theorists to make predictions: What will the images look like?

The data collected by the EHT will provide a wealth of information about the electromagnetic

emissions from the black hole’s vicinity. The optical appearance of the black hole is determined by

the intensity of the surrounding electromagnetic emissions, and has been the focus of intense inves-

tigation 39,51–55. The EHT will also measure the polarization of the incident light, which is expected

to carry important information about dynamics in the region surrounding the black hole 81–90. The

present work concerns this polarimetric image, which has received comparatively less attention.

The determination of the optical and polarimetric image of a generic black hole is an arduous task,

as one must account for a multitude of complex astrophysical e fects. This task is further compli-

cated by the need tomake numerous assumptions regarding the black hole’s surroundings, such as the

matter distribution and its radiative properties. As a result, analytic computation is inmost cases com-

pletely infeasible. Instead, extensive numerical simulation is required in order to properly account for

myriad physical ingredients. The proliferation of tunable parameters and model-dependent assump-

tions can make it di cult to extract physical predictions or intuition from numerics.

In the special case of high-spin black holes, however, certain features exhibit universal critical behav-

ior that is independent of the detailed assumptions and parameters entering the model. This occurs

because general relativity dictates that a rapidly spinning black hole develops an emergent conformal

symmetry in its near-horizon region43,98,99. This conformal symmetry imposes strong constraints on

elds and matter near the horizon with observable astrophysical consequences. Over the past several
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years, this symmetry has been exploited in order to analytically compute several otherwise intractable*

astrophysically relevant processes 58,59,64,67,68,70,72,73,112–114.

To our great fortune, just such a high-spin black hole (likely within 2% of criticality 57) centers the

galaxyM87 and will soon be imaged by the EHT. The simplifying nature of the extremal limit allows

us to perform our calculations analytically, and we obtain a striking polarimetric image of its near-

horizon emissions. The polarization lines form a distinctive whorl that spirals into a central point

inside the shadow, and the image lies entirely within the shadow and are not obscured by emissions

from behind M87.

Our computations and predictions are valid for any high-spin black holes. We assume only that

there is some physical process in the near-horizon region of the black hole capable of producing highly

energetic photons and that it is invariant under the same emergent symmetries as the background

geometry. The latter assumption is standard for the more familiar cases of axisymmetry and time-

translation symmetry.

The rest of the chapter is organized as follows. In Section 4.1 we present the main result. In Sec-

tion 4.2 we review the Kerr geometry and the geometric optics approximation. In Section 4.3 we out-

line our calculation of the polarimetric image. Finally we summarize the results Section 4.4. Various

technical steps are relegated to the appendices.

*Numerical analyses are particularly problematic in this regime due to the critical behavior. Hence, the
analytic and numeric approaches have complementary domains of applicability.
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4.1 M

Wenowpresent themain result of the chapter: the predictions for the polarimetric images of high-spin

black holes, in particular M87 (Fig. 4.2).

Consider an observer located at a large distance ro → ∞ from an extreme black hole
(
|J | = M2

)
,

stationed at a xed polar angle θo relative to the black hole’s axis of symmetry. Photons emitted from

the vicinity of the black hole impinge upon the screen of the observer, which we label with Cartesian

coordinates (αo, βo) [Eqs. (4.27)].

A uniformly backlit black hole casts a shadow on the observer’s screen [Eqs. (4.30)–(4.34)]. We

nd that near-horizon emissions are con ned to appear within this shadow—that is, they cannot be

obscured by bright sources located behind the black hole [App. 4.A3].

Photons impinging on the observer’s screen register a polarization de ned by the direction of oscil-

lation of the transverse electric eld. For the symmetric choice of source polarization, this direction is

given by [Eqs. (4.29)& (4.79)]

E⃗ =
1

(β2
o + γ2o)

(βoβs + γoγs, γoβs − βoγs) , (4.1)

where the prefactor is xed by the normalization condition E⃗ · E⃗ = 1 (though its overall sign is

irrelevant), and

γi = −(αi +M sin θi), (4.2)
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αs =
sin θo
sin θs

αo, βs = (−1)mβo

√
1 +

γ2o − γ2s
β2
o

. (4.3)

Here,M denotes the mass of the black hole andm the number of librations (angular turning points)

of the geodesic connecting the source located at (rs ∼ M, θs) to the observer. Given a point (αo, βo)

on the observer’s screen, there is a single geodesic connecting it to a source point θs in the near-horizon

region. Solving for this geodesic allows us to eliminate both θs andm from Eq. (4.1). This is described

in detail in App. 4.A3, where we derive a formula [Eq. (4.126)] for θs as a function of the observer

parameters by solving the geodesic equation.

Example plots of the polarimetric image (4.1) at θo = 0◦ and θo = 90◦ are depicted in Fig. 4.1.

Both images display striking features. Atθo = 0◦, the integral curves, whose tangent elddescribes the

directionof local linear polarization, assume awhorlingpattern. They spiral outwards from theorigin,

which is anoptical image of thenorthpole of theblackhole, and reach an accumulationpoint at a circle

corresponding to an image of the south pole. At this point, the number of angular turning points of

the connecting geodesic jumps by one, and the integral curves spiral away from this circle towards

a second concentric circle corresponding to a second image of the north pole. This pattern repeats

inde nitely, with an in nite set of concentric circles demarcating an in nite number of coverings of

the horizon of the black hole.
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αo

βo

αo

βo

Figure 4.1: Polarimetric image observed by a face-on observer at the pole (θo = 0◦) and by an edge-on observer in the
equatorial plane (θs = 90◦). The inner red circle is the locusα2

o + β2
o = M2, corresponding to the location of the

event horizon, while the outer red contour is the edge of the shadow. The black hole's spin is counterclockwise about

the origin in the top image, and right-handed about theβo-axis in the bottom image. The top image, which is circularly

symmetric in accordance with the axisymmetry of the Kerr black hole, depicts a swirling pattern around the pole that

resembles a hair whorl. The bottom image, which is reflection symmetric in accordance with the equatorial symmetry

of the Kerr black hole, contains twowhorls because gravity bends light from both the northern and southern poles back

towards the observer. The colors indicate the numberm of angular turning points of the geodesic connecting the source

to the observer:m = 0 (direct) light appears in the green region, while the yellow, blue, and red regions correspond

to relativistic images withm = 1, 2, and 3, respectively. There are infinitely manymore regions (which correspond to

geodesics with divergingm) bunched up near the edge of the shadow (which corresponds to the photon orbit) but their

area rapidly decreases withm and they become indiscernible pastm > 3.
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αo

βo

Figure 4.2: Prediction for the polarimetric image of the black hole at the center ofM87 as seen at the EHT (θo = 15◦).
Regions of differentm are colored according to the same conventions as in Fig. 4.1. Small dots along the vertical axis

indicate the apparent locations of the poles.
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The image seen by an edge-on observer (θo = 90◦) is less symmetric, although the qualitative

features found in the face-on (θo = 0◦) case remain. The integral curves of the local polarization

whorl around special points on theαo = 0 axis corresponding to images of the north and south poles.

Domain walls corresponding to local extrema of the map θs(αo, βo) control the pattern farther away

from the origin, and accumulate near the shadow of the black hole.

In Fig. 4.2, we plot the corresponding polarimetric image for an observer situated 15◦ o f-axis,

which is the angle relevant for observations of the black hole at the center of the galaxy M87. This

generic image is more complicated than the special cases considered in Fig. 4.1, although it retains a

(distorted) distinctive whorl-like pattern that could serve as a diagnostic for a high-spin black hole.

4.2 P

In this section, we review the standard treatment of the propagation of light and its polarization in

the background of a rotating black hole91. We follow the conventions of Ref. 115.

4.2.1 K

The Kerr metric describes astrophysically realistic rotating black holes of mass M and angular mo-

mentum J = aM . In Boyer-Lindquist coordinates (t, r, θ, ϕ), the Kerr line element is

ds2 = −∆

Σ

(
dt− a sin2 θ dϕ

)2
+

Σ

∆
dr2 +Σ dθ2 +

sin2 θ
Σ

[(
r2 + a2

)
dϕ− a dt

]2
, (4.4)
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where

∆(r) = r2 − 2Mr + a2, Σ(r, θ) = r2 + a2 cos2 θ. (4.5)

This metric admits two Killing vectors ∂t and ∂ϕ generating time-translation symmetry and axisym-

metry, respectively. In addition to these isometries, the Kerr metric also admits the existence of an

irreducible symmetric Killing tensor†

Kµν = −Jµ
λJλν , (4.6)

where

J = a cos θ dr ∧
(
dt− a sin2 θ dϕ

)
− r sin θ dθ ∧

[
a dt−

(
r2 + a2

)
dϕ
]
. (4.7)

Many special properties of the Kerr geometry arise from the existence of a special complex null

†AKilling tensor satis es∇(λKµν) = 0. The antisymmetric tensor Jµν = −Jνµ satis es the Killing-Yano
equation∇(λJµ)ν = 0.
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tetrad {l, n,m, m̄}, where {l, n} is a pair of real null vectors andm is a complex null vector such that

l · l = n · n = m ·m = m̄ · m̄ = 0, (4.8)

l ·m = l · m̄ = n ·m = n · m̄ = 0, (4.9)

l · n = −1, (4.10)

m · m̄ = 1, (4.11)

and

gµν = 2
(
m(µm̄ν) − l(µnν)

)
. (4.12)

A possible choice of null tetrad obeying all these conditions in Kerr is‡

l =
1√
2∆Σ

[(
r2 + a2

)
∂t +∆ ∂r + a ∂ϕ

]
, (4.13)

n =
1√
2∆Σ

[(
r2 + a2

)
∂t −∆ ∂r + a ∂ϕ

]
, (4.14)

m =
1√

2(r + ia cos θ)

(
ia sin θ ∂t + ∂θ +

i

sin θ
∂ϕ

)
. (4.15)

Under the geometric optics approximation, photons propagate along null geodesics. In the Kerr

geometry (4.4), this implies that a photon passing through a point xµ in the spacetime has a four-

‡This choice is not unique: for instance, the conditions (4.8) are invariant under rescalings (l, n) →(
F−1l, Fn

)
for any scalar function F . The standard choice for Kerr is the Kinnersley tetrad {l′, n′,m, m̄},

where (l′, n′) =
(
F−1l, nF

)
with F =

√
∆/2Σ (see, e.g.: Ref. 91). We have performed this rescaling in

order to ensure that the tetrad (4.13) has the simple near-horizon limit (4.46).
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momentum p = pµ dxµ of the form

p(xµ, ω, ℓ, k) = −ω dt±r

√
R(r)

∆(r)
dr ±θ

√
Θ(θ) dθ + ℓ dϕ, (4.16)

where the two choices of sign ±r and ±θ determine the radial and polar directions of travel, respec-

tively. Here, we also introduced radial and polar potentials

R(r) =
[
ω
(
r2 + a2

)
− aℓ

]2 − k∆(r), (4.17)

Θ(θ) = k − (ℓ csc θ − aω sin θ)2 , (4.18)

with (ω, ℓ, k) denoting the photon’s energy, component of angular momentum parallel to the axis of

symmetry, and Carter constant, respectively:§

ω = −pt, (4.19)

ℓ = pϕ, (4.20)

k = Kµνpµpν = p2θ + 2aptpϕ + a2p2t sin2 θ + p2ϕ csc2 θ. (4.21)

§The Carter constant k and Carter integralQ = p2θ − cos2 θ
(
a2p2t − p2ϕ csc2 θ

)
are related by k = Q+

(ℓ− aω)2.
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These quantities are conserved along the photon’s trajectory, as is the Penrose-Walker constant¶

κ = 2pµfν
(
l[µnν] −m[µm̄ν]

)
(r − ia cos θ) (4.22)

= 2 [(p · l) (f · n)− (p ·m) (f · m̄)] (r − ia cos θ) ,

provided that the vector f is orthogonal to p and parallel transported along it,

f · p = 0, pµ∇µf
ν = 0. (4.23)

When f is a unit-norm spacelike vector, f · f = 1, wemay interpret it as the photon’s linear polar-

ization. Its parallel transport is then determined by the conservation of the Penrose-Walker constant

(4.22), which is typically rewritten as

κ = (A− iB)(r − ia cos θ) ≡ κ1 + iκ2, (4.24)

where

A = (p · l)(f · n)− (p · n)(f · l), (4.25)

iB = (p ·m)(f · m̄)− (p · m̄)(f ·m). (4.26)

¶The last step follows from the identity (4.12). The conserved quantity κ is associated with the existence of
a conformal Killing spinor, which every Petrov D spacetime admits. For the Kerr spacetime, one can show that
|κ|2 = κ2

1 + κ2
2 = k (f · f).
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When a photon ofmomentum (4.16) impinges upon the screen of a distant observer at polar angle θo,

it appears at Cartesian coordinates (αo, βo) on the observer’s screen given by44,76,98

αo = − ℓ

ω sin θo
, βo = ±o

√
Θ(θo)

ω
, (4.27)

where the sign±o is equal to that of pθ at the observer. With

γo = −(αo + a sin θo), (4.28)

the observed linear polarization of the photon (or equivalently, the direction of the electromagnetic

wave’s electric eld) is given by a vector with Cartesian components on the screen

E⃗ = (Eα, Eβ) =
1

(β2
o + γ2o)

(βoκ1 + γoκ2, γoκ1 − βoκ2) , (4.29)

which has unit norm because κ21 + κ22 = ω2
(
β2
o + γ2o

)
= k. The overall sign is irrelevant.

A backlit black hole casts a shadow on the observer’s screen. Provided 0 < a < M , the contour of

the shadow is traced by the curve (α (τ) , β (τ))where

α (τ) =
τ2 (τ − 3M) + a2 (τ +M)

a (τ −M) sin θo
, (4.30)

β (τ) = ±o

√
a2 cos2 θo −

τ3[τ (τ − 3M)2 − 4a2M ] + [τ2 (τ − 3M) + a2 (τ +M)]2 cot2 θo
a2 (τ −M)2

, (4.31)
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where

τ ∈ [τ−, τ+] , τ± ≡ 2M

[
1 + cos

(
2

3
arccos± a

M

)]
. (4.32)

The extremal regime a → M is subtle44. In that limit, the shadow develops a vertical edge at‖

α = −2M csc θo, |β| < M
√

3 + cos2 θo − 4 cot2 θo, (4.33)

with the remainder of the contour given by the curve

Mα (τ) =
(
τ2 −M2 − 2Mτ

)
csc θo, (4.34)

Mβ (τ) = ±o

√
τ3 (4M − τ) +M4 cos2 θo − (τ2 −M2 − 2Mτ)2 cot2 θo, (4.35)

where τ ∈ (M, 4M).

4.2.2 NHEK

When the angular momentum of a rotating black hole nears saturation of the Kerr bound |J | ≤ M2,

the region of spacetime in the vicinity of its event horizon develops a region of divergent proper

depth21. To resolve physics in this near-horizon region, one can introduce Bardeen-Horowitz coordi-

‖This vertical edge is visible to observers in the range θo ∈ [θc, π − θc] but disappears above the critical
angle θc = arctan (4/3)1/4 ≈ 47◦, which is why it only appears in the depiction of the edge-on case in Figs. 4.1
and 4.2.
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nates

t =
2M

ϵp
T, r = M(1 + ϵpR), ϕ = Φ+

T

ϵp
, (4.36)

and then zoom into the horizon by taking the scaling limit ϵ → 0, with either

Extremal limit : a = M, p = 1, (4.37)

Near-extremal limit : a = M
√

1− ϵ2, 0 < p < 1. (4.38)

Applying this procedure to the Kerr metric (4.4) produces the Near-Horizon Extreme Kerr (NHEK)

line element43

dŝ2 = 2M2Γ

[
−R2 dT 2 +

dR2

R2
+ dθ2 + Λ2 (dΦ+R dT )2

]
, (4.39)

where

Γ(θ) =
1 + cos2 θ

2
, Λ(θ) =

2 sin θ
1 + cos2 θ

, (4.40)

which forms a spacetime solution to Einstein’s equations in its own right. From now on, we denote

contractions with respect to this hatted metric by ◦ and reserve · for contractions in Kerr.

In the remainder of this chapter, we will study electromagnetic emissions from the near-horizon

region described by the NHEK geometry (4.39). For simplicity, we will restrict our attention to the
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case of a precisely extremal black hole with a = M and use the scaling limit (4.37). However, we

expect the polarimetric images we obtained to be identical to leading order in ϵ in the scaling limit

(4.38) relevant for the physically realistic case of a near-extremal black hole such asM87. Moreover, as

subleading corrections are power-suppressed in ϵ, we expect this leading-order result to be an excellent

approximation for M87 (ϵ < 0.2).

The NHEK geometry has an enlarged SL(2,R) × U(1) isometry group generated by the four

Killing vector elds

W0 = ∂Φ, (4.41)

H+ = ∂T , (4.42)

H0 = T ∂T −R∂R, (4.43)

H− =

(
T 2 +

1

R2

)
∂T − 2TR∂R − 2

R
∂Φ, (4.44)

thanks to an enhancement of the time translation symmetry H+ to an SL(2,R) global conformal

symmetry that also includes dilationsH0 and special conformal transformationsH−.

In the near-horizon limit, the irreducible Killing tensor (4.6) in Kerr becomes a reducible Killing

tensor in NHEK that is given (up to a mass term) by the Casimir of SL(2,R)× U(1),

K̂µν = M2ĝµν −Hµ
0H

ν
0 +

1

2

(
Hµ

+H
ν
− +Hµ

−H
ν
+

)
+Wµ

0 W
ν
0 . (4.45)
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Meanwhile, the extreme Kerr tetrad (4.13) descends to the NHEK tetrad

l̂ =
1

2M
√
Γ

(
1

R
∂T +R∂R − ∂Φ

)
, (4.46)

n̂ =
1

2M
√
Γ

(
1

R
∂T −R∂R − ∂Φ

)
, (4.47)

m̂ =
1√
2M

(
1

1 + i cos θ
∂θ +

cos θ + i

2 sin θ
∂Φ

)
, (4.48)

which also satis es the null tetrad conditions (4.8) with respect to the NHEK metric (4.39).

Under the geometric optics approximation, a photon passing through a point Xµ in the NHEK

geometry (4.39) has a four-momentum P = Pµ dXµ of the form

P (Xµ, E, L,K) = −E dT ±r

√
(E + LR)2 −KR2

R2
dR±θ

√
K − L2

Λ2
dθ + L dΦ, (4.49)

where the signs determine the direction of travel, and (E,L,K) denote the photon’s near-horizon

energy (with respect to NHEK time), component of angular momentum parallel to the axis of sym-

metry, and Carter constant, respectively:**

E = −PT , (4.50)

L = PΦ, (4.51)

K = K̂µνPµPν =

(
1− 1

2Γ

)[(
PΦ − PT

R

)2

− P 2
RR

2

]
+

1

2Γ

(
P 2
Θ +

P 2
Φ

Λ2

)
. (4.52)

**Observe that K − L2 = −h2
0 +

1
2 (h+h− + h−h+), where hi = Hµ

i uµ are the conserved quantities
associated with the generators of SL(2,R). Since these are not independent of each other, we use the SL(2,R)
CasimirK −L2, which is in involution with all the hi

100. This is exactly analogous to exploiting the conserva-
tion of Jz and J2, rather than (Jx, Jy, Jz), in a problem with SO(3) symmetry.
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These quantities are conserved along the photon’s trajectory, as is the Penrose-Walker constant††

K = M (A− iB) (1− i cos θ), (4.53)

where

A = (P ◦ l̂)(F ◦ n̂)− (P ◦ n̂)(F ◦ l̂), (4.54)

iB = (P ◦ m̂)(F ◦ ¯̂m)− (P ◦ ¯̂m)(F ◦ m̂), (4.55)

provided that the vector F is orthogonal to P and parallel transported along it,

F ◦ P = 0, P µ∇̂µF
ν = 0. (4.56)

As in Kerr, when the vector F is a unit-norm spacelike vector, F ◦ F = 1, we may interpret it as

the photon’s linear polarization. Its parallel transport is then determined by the conservation of the

Penrose-Walker constant (4.53).

††Note that M(1 − i cos θ) is the near-horizon limit (4.36) of its Kerr analogue r − ia cos θ. Up to some
factors of M , these are the Weyl tensor components Ψ2 (in the Newman-Penrose formalism) of NHEK and
Kerr, respectively.
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4.3 N - -

In the geometric optics approximation, a thin beam of photons is modeled by a narrow bundle of

rays. Together, these rays form a null geodesic congruence. If we give each photon in the beam the

same energy, then we can uniquely x the vector eld tangent to the congruence by setting it equal, at

every point xµ within the beam, to the momentum p(xµ) of the photon passing through that point.

For a light beam in Kerr, this results in the vector eld (4.16).

Additionally, we can also de ne a polarization vector eld f(xµ) at every point within the light

beam. This spacelike vector eld must have unit norm and be everywhere orthogonal to p(xµ), the

generator of the null congruence. Thus, a beam of radiation, which is completely characterized by its

intensity and polarization, can be described by two vector elds p and f obeying the null geodesic and

parallel transport equations‡‡

pµ∇µp
ν = pµ∇µf

ν = 0, p · p = p · f = 0, f · f = 1. (4.57)

Next, suppose that we shine such a beam of radiation out of (or into) the near-horizon region of an

extreme Kerr black hole. The NHEK portion of the beam is then described by a momentumP (Xµ)

and polarization F (Xµ) obeying the NHEK analogues of Eqs. (4.57),

Pµ∇̂µP
ν = Pµ∇̂µF

ν = 0, P ◦ P = P ◦ F = 0, F ◦ F = 1. (4.58)

‡‡In general, f is a complex vector eld subject to the normalization condition f · f̄ = 1. Here, we assume
the light is linearly polarized light, in which case f is real and f · f = 1.
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However, the converse is not true: not all NHEK vector elds P (Xµ) and F (Xµ) solving these

equations describe beams of radiation that escape theNHEK region and connect to a distant observer.

Those that do have to obey an additional constraint: they must arise as the near-horizon limits of

corresponding Kerr vector elds p(xµ) and f(xµ). As we will now show, this requirement imposes

additional symmetry constraints on P (Xµ) and F (Xµ). This is a speci c instance of a more general

phenomenon: the near-horizon limit of a eld in extremeKerr acquires a de nite scalingweight under

NHEK dilations67. Further details are presented in App. 4.A1.

4.3.1 G

Rotating black holes exhibit a surprising phenomenon known as superradiance: they can amplify the

energy of an object scattered o f the horizon, as long as its incident energy does not exceed the so-called

superradiant bound

ω − ΩHℓ ≤ 0, (4.59)

where ΩH denotes the angular frequency of the event horizon. For an extremal black hole, ΩH =

1/(2M), and we refer to photons not saturating the superradiant bound (ω ̸= ΩHℓ) as generic.

In the near-horizon limit (4.36), the Kerr four-momentum (4.16) of a generic photon entering the
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NHEK region is

p(xµ, ω, ℓ, k) = −2Mω−ℓ
ϵ d

(
T ±r

1
R

)
+O

(
ϵ0
)

(4.60)

= P
(
Xµ, 2Mω−ℓ

ϵ , 0, 0
)
+O

(
ϵ0
)
,

where the second line follows by comparison with the four-momentum (4.49) of a NHEK photon.

Hence, the conserved quantities (ω, ℓ, k) along the photon’s trajectory in Kerr are related to their

NHEK analogues (E,L,K) by

ω − ΩHℓ =
ϵE

2M
, L = 0, K = 0, (4.61)

in accordance with Eqs. (4.83) with H = 1. Note that this relation re ects the high energy cost

incurred by near-horizon photons that climb out of NHEK: an outgoing photon undergoes a para-

metrically large redshif as it escapes from the parametrically deep gravitational well of the black hole.

Conversely, from the perspective of an observer lying at a Boyer-Lindquist radius of order ϵ from the

horizon, an infalling particle with ω − ΩHℓ ̸= 0 in Kerr must necessarily have a NHEK energy that

diverges as the observer is pushed deeper into NHEK (E → ∞ as ϵ → 0). For this reason, NHEK is

naturally a site of high-energy collisions that can supply the highly energetic photons needed for our

signal67,116.
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Moreover, note that under a NHEK dilation (T,R) → (T ′, R′) = (T/ϵ, ϵR),

P (Xµ, E, 0, 0) = −E d
(
T ±r

1

R

)
(4.62)

−→ P (X ′µ, E, 0, 0) = −E

ϵ
d
(
T ±r

1

R

)
=

1

ϵ
P (Xµ, E, 0, 0). (4.63)

In nitesimally, this imposes a symmetry condition on a narrow bundle of rays surrounding the pho-

ton,

LH0P (Xµ, E, 0, 0) = P (Xµ, E, 0, 0), (4.64)

in agreement with Eq. (4.85) withH = 1. This proves that a generic beam of photons in Kerr enters

(or leaves) the near-horizon region along a null geodesic congruence with the largest allowed weight.

(We show thatH ≤ 1 in App. 4.A1.)

In fact, we can make a stronger statement: any generic beam of photons entering (or leaving) the

near-horizon region must do so along a principal null congruence (PNC) of the NHEK geometry.

There are two such congruences: the ingoing one generated by n̂ and the outgoing one generated by

l̂, where (l̂, n̂) are the real vectors in the NHEK tetrad (4.46). Indeed, note that

Outgoing PNC (±r = 1) : P (Xµ, E, 0, 0) = −E d
(
T +

1

R

)
=

E

MR
√
Γ
l̂, (4.65)

Ingoing PNC (±r = −1) : P (Xµ, E, 0, 0) = −E d
(
T − 1

R

)
=

E

MR
√
Γ
n̂. (4.66)
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4.3.2 P

Notice that if we ne-tune the Kerr photon to be at the superradiant boundω = ΩHℓ, then 2Mω−

ℓ = 0 and as such, the leading term in the expansion (4.60) vanishes. Note that the limits ℓ → 2Mω

and ϵ → 0 do not commute. In order to ensure that the superradiant photons solve the NHEK

geodesic equation, the limit ℓ → 2Mω must be taken rst. Hence, the expansion starts at the next

order, with

p(xµ, ω, ℓ, k) = ±r

√
ℓ2 − k

R
dR±θ

√
k − ℓ2

Λ2
dθ + ℓ dΦ+O (ϵ) (4.67)

= P (Xµ, 0, ℓ, k) +O (ϵ) ,

where the second line follows by comparison with the four-momentum (4.49) of a NHEK photon.

Hence, the conserved quantities (ω, ℓ, k) along the photon’s trajectory in Kerr are related to their

NHEK analogues (E,L,K) by

ω − ΩHℓ =
E

2M
= 0, ℓ = L, k = K, (4.68)
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in accordance with Eqs. (4.83) withH = 0. Moreover, note that under a NHEK dilation (T,R) →

(T ′, R′) = (T/ϵ, ϵR),

P (Xµ, 0, L,K) = ±r

√
L2 −K

R
dR±θ

√
K − L2

Λ2
dθ + L dΦ (4.69)

−→ P (X ′µ, 0, L,K) = P (Xµ, 0, L,K).

In nitesimally, this imposes a symmetry condition on a narrow bundle of rays surrounding the pho-

ton,

LH0P (Xµ, 0, L,K) = 0, (4.70)

in agreement with Eq. (4.85) with H = 0. Although such null geodesic congruences may appear

mathematically ne-tuned, they are abundantly realized in nature as the photon beams emitted by an

orbiting hot spot or the near-horizon portion of a slowly accreting disk 2,44.

4.3.3 S

Wenow imagine that every point in the near-horizon region of an extremeKerr black hole emits beams

of radiation in every direction with some (possibly vanishing) intensity. Thus, at every pointXµ, we

could have photons emitted with any momentum P (Xµ, E, L,K) and corresponding polarization

F (Xµ, E, L,K). From the preceding discussion, we know that such light beams may escape to the
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asymptotically at region with two qualitatively di ferent behaviors:

1). Photons in the beam have NHEK four-momentum P (Xµ, E/ϵ, 0, 0) aligned

with the outgoing PNC [Eq. (4.65)]. They have vanishing NHEK angular momentum

and Carter constant (L = K = 0), but parametrically large NHEK energy (E ∼ 1/ϵ).

They reach the far region as genericH = 1photonswith nite energy above extremality

ω−ΩHℓ = ϵE/2M ̸= 0 and arbitrary Kerr Carter constant k [Eqs. (4.61)]. They can

appear anywhere within the shadow of the black hole.

2). Photons in thebeamhaveNHEKfour-momentumP (Xµ, 0, L,K) [Eq. (4.67)]

and vanishing NHEK energy (E = 0). They reach the far region asH = 0 photons at

the superradiant bound ω = ΩHℓwith Kerr angular momentum and Carter constant

given by ℓ = L and k = K [Eqs. (4.68)]. (Note that this is true forH = 0 photons.

We neglect the measure-zero set of photons with H < 0, which may only come out

with ω = ℓ = k = 0.) They can only appear on the vertical edge of the black hole’s

shadow (the NHEKline).

In both cases, the near-horizon polarization must necessarily obey Eqs. (4.58) and (4.85),

Pµ∇̂µF
ν = 0, P ◦ F = 0, F ◦ F = 1, LH0F = 0. (4.71)

This last dilation-invariance condition is derived in App. (4.A1) from properties of the near-horizon

limit (4.36). It is one of the additional symmetry constraints alluded to below Eqs. (4.58).
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A spacetime tends to impart its symmetries to the physics it drives. For instance, since accretion

onto a black hole is a gravitational process, we expect accretion disks to inherit the stationarity and

axisymmetry of the Kerr metric (4.4)—this standard assumption is largely borne out by numerical

simulations (at least in the slow accretion regime). By this reasoning, we may also expect that the

physical processes responsible for electromagnetic emissions from NHEK (whatever they are) respect

the symmetries of the spacetime. Thus, we make the natural assumption that

LW0F = LH±F = 0. (4.72)

That is, we suppose that the near-horizon source con gurationproduces radiationpossessing the same

symmetries as the NHEK geometry (4.39): stationarity, axisymmetry, dilation invariance, and special-

conformal symmetry. This will be our only physical assumption and it will lead us to a clear signature.

It would be interesting to nd an example of a physical mechanism that would produce such a polar-

ization pro le at the source—in the interim, we simply note that traditional simulations also appear

to predict a whorl-like pattern in certain regimes 85–87,90.

ForH = 1photonswith four-momentum (4.60), we nd that there is a unique choice (up to an ir-

relevant overall sign) of source polarization inNHEKobeying Eqs. (4.71) togetherwith the symmetry-

based assumption (4.72):

F =
1

2MΓ

(
∓r ∂θ +

cos θ
Λ

∂Φ

)
=

1√
2

(
cos θ ∓r i

cos θ + i
m̂+

cos θ ±r i

cos θ − i
ˆ̄m

)
. (4.73)
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Plugging this into Eqs. (4.53), one immediately sees thatA = B = 0 becauseF ◦ l̂ = F ◦ n̂ = 0 and

P ◦ m̂ = P ◦ ˆ̄m = 0 by Eqs. (4.8) and (4.65). As such, we obtain

K = 0. (4.74)

However, this result is misleading because it does not imply the vanishing of the Penrose-Walker

constant κ along the beam in Kerr. ForH = 1 geodesics (see App. 4.A2),

κ =
κ̂

ϵ
+ κ̃+O (ϵ) , κ̂ = K. (4.75)

Although we have found that the leading-order O
(
ϵ−1
)
piece of κ vanishes, its subleading O

(
ϵ0
)

piece does not: we show in App. 4.A2 that to leading-order in ϵ,

κ = κ̃ = ω (βs ±r iγs) , (4.76)

where, by analogy with Eqs. (4.27)–(4.29), we de ned source quantities

αs = − ℓ

ω sin θs
, βs = ±s

√
Θ(θs)

ω
, γs = −(αs +M sin θs). (4.77)

Here, the choice of sign±s corresponds to the initial direction of the photon’s polar motion.

We conclude that under our symmetry-based assumption (4.72), the formula for κ holds for all the

photons received by a distant observer from the near-horizon region of an extreme Kerr black hole.
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4.3.4 P

From Eq. (4.76), we can now read o f

κ1 = ωβs, κ2 = ±rωγs. (4.78)

Finally, plugging this into Eq. (4.29) yields the polarization pro le measured by a distant observer:

E⃗ =
1

(β2
o + γ2o)

(βoβs ±r γoγs, γoβs ∓r βoγs) . (4.79)

This quantity dependsonboth theobserverparameters (θo, αo, βo) and the sourceparameters (θs, αs, βs),

aswell as thediscrete sign choices (±r,±s,±o). Wewill noweliminate the variables (θs, αs, βs,±r,±s,±o)

in favor of (θo, αo, βo), which are the only variables parameterizing observations.

First, we have ±o = sign(βo) by de nition. Next, since we are interested in photons that are

eventually outgoing,we set±r = 1. (This choice does not exclude initially ingoingphotons that reach

a radial turning point before escaping to the far region and is therefore still completely general—see

App. 4.A3 for details.) Since the conserved quantities of the geodesics are the same at the observer and

the source, we can eliminate (αs, βs) in favor of (αo, βo):

αs = − ℓ

ω sin θs
=

sin θo
sin θs

αo, (4.80)

βs = ±s

√
Θ(θs)

ω
= ±s

√
β2
o + γ2o − γ2s ,
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where the last equality follows from the conservation of k/ω2 = β2
i + γ2i for i ∈ {o, s}. Finally, we

x θs and±s by solving the geodesic equation, as described inApp. 4.A3. Putting everything together

results in our prediction (4.1).

Finally, wewish to reiterate that although the calculations in this chapter were explicitly carried out

only for the precisely extremal black hole with a = M , we expect our results to still hold (to leading

order in ϵ) for near-extremal black holes with a small deviation from extremality a = M
√
1− ϵ2

with ϵ ≪ 1.

4.4 S

In this chapter, we determined the polarimetric images for the near-horizon emissions of high-spin

black holes. For a distant observer stationed at any xed polar angle relative to a black hole’s axis of

symmetry, we found that the polarization lines form a distinctivewhorl that spirals into a central point

inside the black hole’s shadow. An in nite series of subsidiary whorls also appear nearer the edge of

the shadow, arising from photons that librate around the black hole multiple times before escaping to

in nity. Further, the image lies entirely within the shadow and are not obscured by emissions from

behind the black hole.

In particular, we predicted the polarization pro le of the black hole centering the galaxy M87,

which corresponds to an observer at a 15◦ polar angle. The up-close images ofM87 is expected to soon

be delivered by the EHT, which will also measure the polarization of the incident light. Although

the signal might not be observable if it is obscured by emissions between M87’s near-horizon region
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and the telescope, our theoretical methods and results are applicable to any future experiment that

observes high-spin black holes.
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4.A1 G -

It is natural to ask what happens to the Kerrmomentum p and polarization f of a light beam entering

(or leaving) the NHEK region (4.39). To answer this question, we rst take the near-horizon limit

(4.36) of p and f , resulting in

p(xµ) = ϵ−H [p̂(Xµ) +O (ϵ)] , f(xµ) = ϵ−H′
[
f̂(Xµ) +O (ϵ)

]
, (4.81)

for some integersH andH ′. Note that as discussed in Section IV of Ref.67, these scaling powers may

become fractional powers in the context of a near-extremal black hole. We can then proceed along the

same lines as Ref.67. We begin by noting, based on physical grounds, that neither p nor f is allowed to

blow up on the event horizon. Demanding their regularity on the horizon requires thatH,H ′ ≤ 1.

Next, plugging the leading-order near-horizon expansions (4.81) into Eqs. (4.57) yields

p̂µ∇̂µp̂
ν = p̂µ∇̂µf̂

ν = 0, p̂ ◦ p̂ = p̂ ◦ f̂ = 0, ϵ−2H′
f̂ ◦ f̂ = 1, (4.82)

where all the contractions and covariant derivatives appearing in these leading-order expressions are

meant to be taken with respect to the NHEK metric (4.39), rather than the Kerr metric (4.4) that is

meant to be used in Eqs. (4.57).

These equations indicate that, for any allowed weightH ≤ 1, the NHEK vector eld p̂ describing

the leading-order near-horizon beam is also tangent to a null geodesic congruence, like its Kerr coun-

terpart p. This was to be expected: at every NHEK coordinate Xµ within the beam, p̂(Xµ) must
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by de nition equal the momentum of the photon passing throughXµ. However, it is important to

note that the Kerr conserved quantities (4.19) of the photons in the beam need not equal their NHEK

counterparts (4.50)—in general, their precise relation is given by

ω − ΩHℓ = ϵ−H+1 Ê

2M
=

ϵE

2M
, ℓ = ϵ−HL̂ = L, k = ϵ−2HK̂ = K, (4.83)

where ΩH = 1/(2M) denotes the angular velocity of the horizon at extremality and the hatted

conservedquantities are de ned relative to p̂ (so as to always be nite)while theunhattedquantities are

de ned relative to P = ϵ−H p̂ (and therefore may be parametrically large or small). These nontrivial

relations follow directly from the infrared limit (4.36) and the near-horizon expansions (4.81), with

the various factors of ϵ arising from the scaling to a region of in nite redshif near the horizon.

Note that these relations also appear in App. B of Ref.67. As an example, note from the de nitions

(4.19) and (4.50) that ℓ = p · ∂ϕ and L̂ = p̂ ◦ ∂Φ, where ϕ and Φ are the Kerr and NHEK angular

coordinates, respectively. One can check that ∂ϕ = ∂Φ +O (ϵ), so to leading order in ϵ,

ℓ = p · ∂ϕ = ϵ−H
[
p̂+O

(
ϵ1
)]

◦ ∂Φ = ϵ−H
[
L̂+O

(
ϵ0
)]

. (4.84)

On the other hand, the near-horizon limit of the polarization vector eld ismuchmore constrained

by Eqs. (4.82), which are manifestly inconsistent unlessH ′ = 0: indeed, ifH ′ ̸= 0, then the norm of

the near-horizon polarization vector f̂ either vanishes or diverges. Both situations are unphysical: the

latter because it is meaningless and the former because it requires the polarization to become longitu-
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dinal, or pure gauge. Note that since the physical photon polarization is invariant under longitudinal

shif s f → f + cp, we must in general relax the parallel transport condition pµ∇µf
ν = 0 to the

weaker condition pµ∇µf
ν ∝ pν , which still guarantees the parallel transport of the orthogonality

condition p · f = 0. In general, f will have a longitudinal component with weight H ′ = 1, but it

can always be removed by a gauge transformation.

The values of the weightsH andH ′ are signi cant because they determine the leading behavior of

the elds p and f under scale transformations of the near-horizon region: the Lie derivatives of p̂ and

f̂ along the generatorH0 of NHEK dilations (T,R) → (T/ϵ, ϵR) are xed to be

LH0 p̂ = Hp̂, LH0 f̂ = H ′f̂ = 0. (4.85)

4.A2 S

In this appendix, we extend the preceding discussion beyond leading order in the NHEK limit (4.36).

Working to subleading order in ϵ (and recalling from App. 4.A1 that H ′ = 0), the near-horizon

expansions (4.81) of the momentum p and polarization f of a light beam in Kerr are extended to

p(xµ) = ϵ−H
[
p̂(Xµ) + ϵp̃(Xµ) +O

(
ϵ2
)]

, (4.86)

f(xµ) = f̂(Xµ) + ϵf̃(Xµ) +O
(
ϵ2
)
, (4.87)
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where the limit requires that the following symmetry properties be satis ed:

LH0 p̂ = Hp̂, (4.88)

LH0 f̂ = 0, (4.89)

LH0 p̃ = (H − 1)p̃, (4.90)

LH0 f̃ = −f̃ . (4.91)

Likewise, in the NHEK limit (4.36), the Penrose-Walker constant (4.24) in Kerr has an expansion

κ = ϵ−H
[
κ̂+ ϵκ̃+O

(
ϵ2
)]

. (4.92)

We now focus on the caseH = 1 of relevance to the discussion in Section 4.3.3 of generic photons,

with leading momentum p̂ as given in Eqs. (4.65),

p̂ =
2Mω − ℓ

2M2Γ

(
1

R2
∂T ±r ∂R − 1

R
∂Φ

)
. (4.93)

There is a unique corresponding choice (4.73) of leading-order polarization obeying the symmetry-

based conditions (4.72),

f̂ =
1√
2

(
cos θ ∓r i

cos θ + i
m̂+

cos θ ±r i

cos θ − i
ˆ̄m

)
, (4.94)

which solves Eqs. (4.57) to leading order in ϵ. As claimed in Eq. (4.74), with these choices, we nd that
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the Penrose-Walker constant vanishes to leading order,

κ̂ = 0. (4.95)

Next, to subleading order in the near-horizon limit (4.36), theKerr four-momentum (4.16) of a generic

photon is

p̃ =
1

2M2Γ

(ℓδ + 4ωM(1− δ)

2RΓ
∂T ±r

R

Γ
(ℓ− ωMδ) ∂R (4.96)

+ωβs ∂θ +
ℓ
(
1
δ −

3
2

)
− ωM

(
2− 5

2δ +
1
4δ

2
)

Γ
∂Φ

)
,

where we introduced δ(θ) ≡ Γ(θ)Λ(θ) = sin2 θ and βs was de ned in Eq. (4.80). There is a unique

corresponding choice of subleading-order polarization obeying the conditions in Eq. (4.88),

f̃ =
R

4MΓ(2Mω − ℓ)

(
2ℓΓ cot θ + ω (M sin 2θ ∓r βs)

R
∂T

+ωR (βs ±r M sin 2θ) ∂R ±r
ℓ
(
2
δ − 3

)
+ ωM

(
2− δ + δ2

)
Γ

∂θ (4.97)

+

[
ℓ
(
2
δ − 1

)
− ωM(2 + δ)

tan θ
±r ωβs

]
∂Φ

)
,

which solves Eqs. (4.57) to subleading order in ϵ. Here, note that we cannot impose special-conformal

invariance—in fact, LH− f̃ ̸∝ f̃—but we do continue to impose the symmetries of Kerr, LH+ f̃ =

LW0 f̃ = 0. With this choice, we reproduce the expression (4.76) for the subleading piece of the

Penrose-Walker constant.
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4.A3 A -

Thepolarization vector (4.79) depends explicitly on the polar angle θs at the point of emission. There-

fore, inorder todetermine thepolarizationpro lemeasuredby adistant observer located at (to, ro, θo, ϕo),

we need to nd the null geodesic connecting a point (αo, βo) on the observer’s screen to the point

of emission (ts, rs, θs, ϕs) in the near-horizon region. Without loss of generality, we can set to =

ϕo = 0 and assume that the observer lies in the northern hemisphere, θo ∈ [0, π/2], because the

entire con guration is stationary, axisymmetric, and re ection-symmetric across the equatorial plane,

respectively.

The (r, θ) part of the equation is

∫ ro

rs

dr
±
√

R(r)
=

∫ θo

θs

dθ
±
√
Θ(θ)

, (4.98)

where the integrals are to be evaluated along the geodesic, with the signs of the integrands chosen to

match those of dr and dθ, respectively. Meanwhile, the t and ϕ components of the geodesic equation

determine the coordinate time elapsed ∆t = to − ts and the number of windings about the axis of

symmetry n = mod2π∆ϕ = mod2π(ϕo − ϕs). These quantities are both manifestly real whenever

the integrals in Eq. (4.98) are real, but we do not need to compute them in this problem thanks to the

assumed stationarity and axisymmetry of the polarization pro le at the source.

The ray-tracing problem has therefore reduced to a two-dimensional calculation in the poloidal
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plane: given a photon originating from the point (rs, θs) in the near-horizon region, we must solve

Eq. (4.98) in order to determine the corresponding point (αo(θs), βo(θs)) that the photon hits on

the observer’s screen, af er which we can plug into Eq. (4.79) to determine the observed polarization

at that point.

We are interested in light emitted from thenear-horizon regionof extremeblack holeswitha = M .

In that case, the entire NHEK region of emission is squeezed into the Boyer-Lindquist horizon radius

r = M . Generic H = 1 geodesics traverse this region at constant θ, since their leading-order four-

momentum is of the form (4.60), i.e., pθ = 0. Hence, these geodesics emerge from the near-horizon

region at (rs, θs), with rs = M and θs the angle of emission.

Having xed the parameters of the problem, it is helpful to introduce new energy-rescaled dimen-

sionless variables

R =
r −M

M
, (4.99)

λ =
ℓ

ωM
, (4.100)

q =
1

ωM

√
k − (ℓ− ωM)2 =

√
Q

ωM
, (4.101)

∆r =
1

2

√
q2 + (λ− 1)2. (4.102)

Note that the variables (λ, q) de ned here di fer from those introduced inRef.44, whichwere adapted

to the study ofH = 0 geodesics. The variableQ is the Carter integral mentioned in footnote §.

Geodesics that pass through the equatorial plane always satisfy q2 ≥ 0, whereas those that do

not have q2 < 0. Nonetheless, the necessary positivity of (ωM)−2Θ(θ) = q2 + (λ− 1)2 −
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(λ csc θ − sin θ)2 guarantees that ∆r is real, and moreover that an asymptotic observer situated at

angle θo only receives light with

∆r ≥
1

2
|sin θo − λ csc θo| . (4.103)

In termsof these dimensionless variables, the geodesic equation (4.98)now takes the form Ir = Gθ,

where

Ir =

∫ Ro

Rs

dR
±
√

R4 + 4R3 + (7− q2 − λ2)R2 + 4(2− λ)R+ (2− λ)2
, (4.104)

Gθ =

∫ θo

θs

dθ
±
√

q2 + cos2 θ − λ2 cot2 θ
, (4.105)

withRs = 0. The properties of the radial integral as a function of (λ, q) determine the points on the

observer’s screen that can receive light from the near-horizon region of the black hole. In particular,

the quartic polynomial

P(R) = R4 + 4R3 +
(
7− q2 − λ2

)
R2 + 4(2− λ)R+ (2− λ)2 (4.106)

appearing in the denominator of the integrand of Ir must remain non-negative at all points along the

geodesic.

Consider a photon emerging from the near-horizon region Rs = 0. In order for it to reach a

distant observer at large radius Ro → ∞, it cannot encounter any radial turning points along its
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trajectory outside ofNHEK.Note that photons emitted from a givenNHEK radius can still escape to

in nity if they are initially ingoing and reach a turning point at a smaller NHEK radius before turning

back out. This happens when one of the roots is near zero, or equivalently, only for photons near the

superradiant bound λ = 2. Af er such photons turn around and leave NHEK, they are thereaf er

always outgoing. Hence, we may restrict our attention to direct emissions.

Such a turning point occurs at the smallest positive radius Rt where P(R) becomes negative (i.e.

whereP(Rt) = 0 andP ′(Rt) < 0). The roots ofP(R) are given by

R1 = − (∆r + 1) +

√
(∆r + 1)2 + λ− 2, (4.107)

R2 = (∆r − 1)−
√

(∆r − 1)2 + λ− 2, (4.108)

R3 = (∆r − 1) +

√
(∆r − 1)2 + λ− 2, (4.109)

R4 = − (∆r + 1)−
√

(∆r + 1)2 + λ− 2. (4.110)

Since P(0) = (2 − λ)2 ≥ 0 and P(±∞) = +∞, there are two qualitatively di ferent classes of

geodesics which can connect to the observer at in nity. The rst class consists of geodesics with (λ, q)

such that all of the roots Ri are complex or negative. In this case, there are no zeroes of P(R) lying

on the contour of integration extending from R = 0 to R = ∞, so the radial integral converges to

a nite quantity and the geodesic encounters a nite number of angular turning points according to

Eq. (4.98). The second class consists of geodesics with (λ, q) such that P(R) develops a double root

on the positive real axis. (R4, if real, is always negative, so there can be at most one double root on the

positive real axis.) In this case, the radial integral diverges logarithmically, and the geodesic encounters
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a divergent number of angular turning points as it winds around the black hole. In fact, the second

class of geodesics is a limiting case of the rst, where complex or negative roots approach and pinch

the contour of integration as we vary (λ, q).

It is straightforward to determine the restricted range of (λ, q) labeling the geodesics that connect

the near-horizon region to the observer. First, note that if λ > 2 (that is, if the photon is below the

superradiant bound ω < ΩHℓ), then all of the roots are real,R1 andR3 are positive, and the photon

cannot escape to in nity. Conversely, a photon below the superradiant bound coming in from in nity

will bounce o f the black hole. We can therefore restrict our attention to the case λ ≤ 2. The roots

R1 andR4 may then be real but they can never be positive, so the only constraints come fromR2 and

R3. For ∆r < 1, these roots (if real) are negative. However, for ∆r − 1 ≥
√
2− λ ≥ 0, they are

real and positive, and the photon cannot escape to in nity.

In summary, a near-horizon photon can reach a distant observer at polar angle θo if and only if

λ ≤ 2 (it is above the superradiant bound), and moreover

1

2
|sin θo − λ csc θo| − 1 ≤ ∆r − 1 ≤

√
2− λ. (4.111)

This condition de nes a region on the observer’s screen which coincides identically with the shadow

cast by a uniformly backlit extremal black hole, as can be veri ed by substituting

λ = −αo sin θo
M

, q =
1

M

√
(α2

o −M2) cos2 θo + β2
o , (4.112)

105



and comparing to Eqs. (4.34). The interior of this region corresponds to geodesics of the rst class

discussed above,while near the boundary∆r−1 =
√
2− λ thepolynomialP(R)develops at double

root atR =
√
2− λ. (Note that the shadow’s vertical edge (4.33) lies on the lineλ = 2, corresponding

to the case when the double root emerges at the lower endpoint of integration.) Therefore, light rays

that impinge upon the observer’s screen near the edge of the shadow must have librated around the

black hole an in nite number of times before reaching the asymptotic region.

For the parameter range (4.111), the radial integral takes the form

Ir =
2

√
r12r34

[
F

(
arcsin

√
r12
r32

∣∣∣∣r14r32r12r34

)
− F

(
arcsin

√
R3

R1

r12
r32

∣∣∣∣r14r32r12r34

)]
, (4.113)

where rij ≡ Ri −Rj and F (ϕ|x) denotes the incomplete elliptic integral of the rst kind.

We have seen that light emitted from theNHEK regionmust always appear within the shadow cast

by the black hole on the observer’s screen. In order to nd the explicit map from the point of emission

to the corresponding point on the observer’s screen, we still have to solve the (r, θ) geodesic equation

(4.98). Aswas the case for the radial integral, one can reado f qualitative features of the angularmotion

from the nature of the roots of the polynomial appearing in the integrand of Gθ. Af er a change of

variables u = cos2 θ, that integrand becomes

sign
(
θ − π

2

) dθ√
Θ(θ)

=
1

2

du√
u(u+ − u)(u− u−)

, (4.114)
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where

u± = ∆θ ±
√

∆2
θ + q2, ∆θ =

1

2

(
1− q2 − λ2

)
. (4.115)

Geodesic motion in the angular direction is constrained by the requirement that the argument of the

square root remain positive. While we always have u+ ∈ [0, 1], there are two qualitatively di ferent

behaviors distinguished by the sign of u−. For q2 > 0, u− is negative and the geodesic oscillates

about the equatorial plane in the angular region cos2 θ ∈ [0, u+]. On the other hand, when q2 < 0,

then u− is also positive and the geodesic is constrained to the angular region cos2 θ ∈ [u−, u+] ⊂

[0, 1], de ning a cone either entirely above or entirely below the equatorial plane. We will ignore the

boundary case q = 0, as it corresponds to a measure-zero curve on the observer’s screen.

The angular integralGθ was evaluated for Kerr geodesics with q2 > 0 (and generic a) in Ref.44 in

terms of F (ϕ|x), the incomplete elliptic integral of the rst kind. We will adopt the convention

F (ϕ|x) =
∫ ϕ

0

dt√
1− x sin2 t

, (4.116)

and we introduce

Ψj = arcsin
(

cos θj√
u+

)
, Υj = arcsin

√
cos2 θj − u−
u+ − u−

(4.117)
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for notational convenience. For θo ∈ [0, π/2] in extreme Kerr,

Gq2>0
θ =

1√−u−

{
2mK

(
u+
u−

)
±o

[
(−1)mF

(
Ψs

∣∣∣∣u+u−
)
− F

(
Ψo

∣∣∣∣u+u−
)]}

, (4.118)

where m is the number of turning points in the polar motion and K(x) = F (π/2|x) denotes the

complete elliptic integral of the rst kind. Likewise, for q2 < 0, θo ∈ [0, π/2] and a = M , one can

show that

Gq2<0
θ =

1
√
u−

(
m±o

1− (−1)m

2

)
K

(
1− u+

u−

)
(4.119)

±o
1

√
u−

[
(−1)mF

(
Υs

∣∣∣∣1− u+
u−

)
− F

(
Υo

∣∣∣∣1− u+
u−

)]
. (4.120)

We can now solve the geodesic equation (4.98), Ir = Gθ, for θs. Af er some technical manipula-

tions, this results in

cos θs =


±o

√
u+(−1)msn

(
Xm

∣∣∣∣u+

u−

)
q2 > 0,

√
u−dn

(
Ym

∣∣∣∣1− u+

u−

)
q2 < 0,

(4.121)

where we introduced the Jacobi elliptic functions. Note that the elliptic function sn(u|x) inverts the

incomplete elliptic integral of the rst kind: sn (F (arcsinϕ|x)|x) = ϕ. The elliptic function dn(u|x)

satis es dn2(u|x) + xsn2(u|x) = 1. While sn(−u|x) = −sn(u|x) is odd in its rst argument,
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dn(−u|x) = dn(u|x) is even. sn(u|x) and dn(u|x) and de ned the quantities

Xm =
√
−u−Ir ±o F

(
Ψo

∣∣∣∣u+u−
)
− 2mK

(
u+
u−

)
, (4.122)

Ym =
√
u−Ir ±o F

(
Υo

∣∣∣∣1− u+
u−

)
−
(
m±o

1− (−1)m

2

)
K

(
1− u+

u−

)
. (4.123)

Although it is not immediately apparent, both expressions for cos θs are in fact independent of the

numberm of polar turning points along the trajectory. In order to see this, begin by noting that

Xm+1 = Xm − 2K

(
u+
u−

)
, (4.124)

Ym+1 = Ym − [1±o (−1)m]K

(
1− u+

u−

)
. (4.125)

Next, note that because of the periodicity conditions sn(u ± 2K(x)|x) = −sn(u|x) and dn(u ±

2K(x)|x) = dn(u|x), the quantities (−1)msn(Xm|u+/u−) and dn(Ym|1 − u+/u−) are both

invariant under integer shif s inm. It follows thatXm andYm can be respectively replaced byX0 and

Y0 in Eq. (4.121), from which them-dependence thereby disappears, as claimed.

Moreover, af er some further technical manipulations, the two expressions for cos θs in Eq. (4.121)

can be packaged together into the remarkably simple formula (valid for all q2 ̸= 0)

θs = arccos
[
±o

√
u+sn

( √
−u−

sign(−u−)
Ir ±o F

(
Ψo

∣∣∣∣u+u−
) ∣∣∣∣u+u−

)]
. (4.126)

Note that to further simplify the q2 < 0 expression and relate it to the q2 > 0 case, one repeatedly
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invokes the relation

K(x)− 1√
x
K

(
1

x

)
= −iK(1− x), (4.127)

valid for x = u+/u− ≥ 1, along with the nontrivial identity

1√
x
K

(
1

x

)
− F

(
arcsin

√
uj
u+

∣∣∣∣x) = iF

(
arcsin

√
uj − u−
u+ − u−

∣∣∣∣1− x

)
, x =

u+
u−

. (4.128)

While the above expression for θs is independent of the integerm, the sign±s does depend on its

parity,

±s = sign(pθ)|Rs = (−1)msign(βo) = (−1)m±o, (4.129)

and must be determined for each geodesic. If θo = 0, then ±o is ill-de ned and we take ±s =

(−1)m+1 by convention. Note that when θo = 0, the βo-axis becomes ill-de ned because the projec-

tion of the axis of symmetry onto the plane perpendicular to the observer’s line of sight degenerates to

a point. Moreover, the value ofm is also ill-de ned because the observer sits on a turning point of the

incoming photons’ trajectories. In drawing the edge-on case in Fig. 4.1, we adopted the convention

that the direct light should be labeledm = 0, in which case±s = (−1)m+1.

In practice, to produce polarization plots, we only need to nd the boundaries between regions of

di ferentm. Since the source dependent terms in Eqs. (4.118)-(4.119) are bounded, as the radial integral

grows, more turning points are necessary to satisfy the geodesic equation. Schematically, since the
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radial integral assumes small values near the center of the shadow and diverges near the boundary,

one expects nested regions of increasingm as one moves out towards the edge of the shadow. In the

q2 < 0 case, we nd thatm = 0whenever

0 < ±o
√
u−Ir + F

(
Υo

∣∣∣∣1− u+
u−

)
< K

(
1− u+

u−

)
, (4.130)

andm = 1 otherwise. In the q2 > 0 case, geodesics withm angular turning points obey

(2m− 1)K

(
u+
u−

)
<

√
−u−Ir ±o F

(
Ψo

∣∣∣∣u+u−
)

< (2m+ 1)K

(
u+
u−

)
. (4.131)

The contours of the regions satisfying this inequality for di ferent m are the boundaries of the re-

gions depicted with di ferent colors in Fig. 4.1. Mathematically, the existence of these regions can ulti-

mately be traced back to the periodicity of the elliptic function sn(u|x), which implies that its inverse

F
(
arcsin sn(u|x)

∣∣x) is multivalued (not equal to u everywhere). As such, when the formula (4.126)

for θs is substituted back into the geodesic integrals (4.118)-(4.119), one must choose the appropriate

branch of the elliptic integral to satisfy Eq. (4.98). This inverse has in nitely many branches labeled

bym, which correspond to the in nitely many coverings of the horizon in our polarimetric images.
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5
Conclusion

I , we examined astrophysical processes in the vicinity of the event horizonof an extreme

Kerr black hole. This region of spacetime has an SL(2,R) × U(1) isometry. We explored the conse-

quences of the enhanced symmetries on electromagnetic emissions from this region and performed a

number of analytical computations that are traditionally done only numerically.

112



We rst solved for the near-superradiant geodesics that extend from the near-horizon region to a

distant observatory, expressing our results in terms of elementary functions. We used the method of

matched asymptotic expansions to integrate, to leading order in the deviation from the superradiant

bound, all radial integrals in Carter’s integral geodesic equations. They relate an endpoint of a null

geodesic near the horizon to its endpoint in the region far from the black hole and the associated

angularmomentumconstant along the geodesic. Our results enabled one to solve explicitly for various

parameters appearing in the integral geodesic equations, a necessary step for various applications.

Building upon these methods and using geometrical optics, we computed the broadening of elec-

tromagnetic line emissions from the innermost part of an accretion disk. We obtained an analytic

formula for the ux observed at in nity as a function of the photons’ redshif . It is independent of

the disk model and therefore universal. Further, we proposed a model for a radiant disk that respects

the symmetries of the near-horizon region of an extremeKerr black hole. Due to the logarithmic diver-

gence of the disk’s proper length at extremality, this model implies a logarithmically divergent overall

proportionality constant in the ux.

Finally, we investigated the polarized near-horizon emissions from fast-spinning black holes and

found patterns of whorls aligned with the black hole’s spin. For a distant observer stationed at any

xed polar angle relative to a black hole’s axis of symmetry, the polarization lines form a distinctive

whorl that spirals into a central point inside the black hole’s shadow. An in nite series of subsidiary

whorls also appear nearer the edge of the shadow, arising from photons that librate around the black

hole multiple times before escaping to in nity. The image lies entirely within the shadow and are not

obscured by emissions from behind the black hole.
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Fast-spinningblackholes are of not only theoretical relevance, but observational. Our computation

inChapter 3 is directly relevant to the pro le of FeKα line emissions fromblack hole accretion disks. It

could pertain to spectral observations by experiments such asXMM Newton, Suzaku, andNuSTAR.

And our prediction for the polarization pro le of near-horizon emissions from M87 is relevant to

experiments like the Event Horizon Telescope, which is expected to measure the polarization of the

incident light.
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