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Platform for Quantum Computing

Abstract

There is a huge, worldwide effort to build a quantum computer due to its potential to perform

chemical and materials simulations and to break current cryptography schemes. While there has

been incredible progress in recent years, each potential platform still faces meaningful obstacles. The

singlet-triplet qubit in gallium arsenide, which is based on electric spin, boasts several advantages,

including fast single-gate times and readout, long lifetimes, and a clear path to large-scale integra-

tion using current semiconductor manufacturing techniques. However, it also suffers from electric

and magnetic field noise that limits coherence time and weak two-qubit interactions, which have

prevented the construction of multi-qubit systems so far. In this thesis, I will discuss my research

measuring and working to improve noise and entangling gates in singlet-triplet qubits and will ex-

amine the viability of the singlet-triplet qubit as the building block for a quantum computer.

By measuring the dynamics of the electric and magnetic field noise that the singlet-triplet ex-

periences, we can develop an understanding of their origins and how to reduce their impact. The

singlet-triplet can be operated rapidly enough to use it as a sensor and directly measure the fluctuat-

ing magnetic field arising from the nuclear spins in the semiconductor heterostructure surrounding

it. We use Hamiltonian parameter estimation, a technique that maximizes the rate at which we learn
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information, given the strange properties of quantum measurement, to measure magnetic noise

to within 15 μT at a rate of 2 kHz, and we use these measurements to provide real-time feedback

to system controls, increasing the coherence time by a factor of 30. Charge noise has much larger

high-frequency components than magnetic noise, and thus requires use of dynamical decoupling

methods borrowed from NMR to measure it. We measure its power spectrum up to 1 MHz and

find that it has a 1/f spectrum. We perform these measurements for several different devices and have

begun to determine how our growth and fabrication processes affect dephasing.

Placing a high-impedance resonator between two singlet-triplet qubits to mediate their interac-

tion shows promise as way to create long-distance entanglement and to increase the speed of the

entangling gate. We analyze this gate theoretically, finding that we expect the fidelity to be over

95%, with a straightforward path to increasing it to above 99% with improved resonator parameters.

However, because the singlet-triplet qubit is extremely sensitive to changes in its electrostatic envi-

ronment, which can be affected both by the resonator’s fabrication process and the presence of the

proximal resonator gate, implementing this gate experimentally is challenging. We have developed

processes for fabricating narrow, thin, NbN resonators directly adjacent to the double quantum

dots that compose singlet-triplet qubits. These processes yield quantum dots that can be tuned into

low-noise, stable singlet-triplet qubits, and superconducting resonators with impedances over 1 kΩ.
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0
Introduction

During the last two decades, there has been intense effort directed towards building a quantum

computer due to its numerous applications. A quantum computer that could provide useful appli-

cations requires millions of qubits, precisely engineered and with extremely low noise [71]. There

are number of different possible systems in which it might be implemented, including supercon-

ductors, quantum dots, and trapped ions, whose state-of-the-art systems vary from 2 to nearly 100
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qubits. Due to the intense requirements, while each platform has shown certain advantages, there

remains a huge amount of progress before it is clear if any of them can reach this incredible peak.

When I began graduate school, the team I was working with in the Yacoby Group was beginning

to take data showing that they had entangled two singlet-triplet (S-T0) qubits. With that, one might

say that the initial proof-of-principle set of experiments for the S-T0 in gallium arsenide (GaAs) had

been completed. In the years before that, The Yacoby group and others had demonstrated singlet-

triplet qubit initialization, readout, and universal quantum control. These properties were all quite

promising: loading took only nanoseconds for over 99% fidelity, and when using RF reflectometry,

readout was under a microsecond for 98% fidelity. The gate speeds were tunable, from DC to over a

GHz for both of the axes of control (with some caveats).

Yet of course, proof-of-principle is merely the first step. Building a functional quantum computer

is an immense undertaking, and requires extensive optimization of nearly every aspect of the system.

In the short term, though, we are simply trying to push forward so that we can perform somewhat

more complicated quantum gates. That requires that we determine the main limiting factors of the

S-T0 qubit, and then focus on attacking them. At the time, I think those would be described as:

1. Nuclear magnetic field noise. The fluctuating nuclear spin bath in GaAs couples to the
singlet-triplet qubit and causes dephasing. This was seen as one of the primary impediments
to spin qubits in GaAs.

2. Charge noise. Charge noise also couples to the S-T0 qubit, limiting the fidelity of both
single and two-qubit gates. It’s not clear how to reduce the amount of charge noise in semi-
conductors, though many proposals exist for different ways to instead reduce the qubit’s
sensitivity to charge noise.

3. Entangling gate. The capacitive entangling gate is far slower than single-qubit gates, and
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because it falls off dramatically quickly with distance, there was no clear path to scaling to
many qubits. The Bell state fidelity measured in the initial demonstration, 72% [86], is not
sufficient for performing algorithms.

4. Fabrication and tuning of devices. There are a few qubit designs with high yield in both
fabrication and tuning, but changing the design or process can lead to numerous side effects.
While for single and two-qubit devices, it is possible to perform experiments with low yield
fabrication and long periods of time tuning up quantum dots, the next generation of experi-
ments will require these to be improved.

This is not to say these are the only challenges these qubits faced, but that these were the ones

that most immediately impeded progress, and without solving these, we could not properly investi-

gate problems likely to arise later.

My PhD thus focused on studying these issues and developing experiments to test some of the

ideas we came up with solve them. In this thesis, I will highlight the work I did on these problems.

The first chapter introduces the concepts in quantum computing, quantum dots, and S-T0 qubits

needed to understand the remaining chapters. In the second chapter, we present the results of an

experiment we performed to use Hamiltonian estimation to quickly measure the nuclear magnetic

field bath that coupled to the qubit, and to use that information to extend the qubit’s T ∗
2 to almost

3µs. In the third chapter, we propose a scheme to couple S-T0 qubits to high-impedance resonators,

which would increase the speed and range of its entangling gate. In the fourth chapter, we describe

our work measuring S-T0 qubits with adjacent resonators. We found that the changes to the qubit

fabrication process needed to incorporate resonators led to a number of unanticipated issues in

tuning and measuring the quantum dots, and discuss them as well as the solutions we developed. In

the fifth chapter, we discuss the fabrication process for the resonators, and the various measurements
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we’ve performed to characterize them. Finally, in the conclusion, we will discuss some of the work

that the larger community has done to attack the major issues in the field over this time span.

We can also consider how the research in this thesis has advanced our understanding of the S-

T0 qubit and improved the performance of GaAs based qubits in regards the four challenges listed

above.

For the first item, nuclear magnetic field noise, our results in Chapter 2 have made it a “solved”

problem until the effects of charge noise are significantly reduced; it no longer prevents experiments

from moving forward.

For the second item, my research primarily worked around charge noise, rather than directly

engaging with it. The resonator and Hamiltonian estimation may be seen as approaches to reducing

its effects without actually reducing it. We did perform measurements of charge noise in devices

with resonators, and saw a sharp increase in high-frequency charge noise, and have hypothesized

that the inclusion of an ALD layer in the fabrication caused this. However, we have not tackled the

question of charge noise’s origins head on.

For the third item, the entangling gate, our theoretical proposal on coupling S-T0 qubits with

resonators is a promising approach to solving the issues of the entangling gate. We discuss our work

building an experiment to do that at length in this thesis. Initial qubit devices with resonators were

not tunable, but we were ultimately able to rectify these issues.

This connects to the fourth item, fabrication and tuning. In the process of making and measur-

ing a number of qubit devices with resonators, we have optimized many facets of the fabrication and

tuning process. Our fabrication yield is consistently above 80%. Device design remains heavily de-
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pendent on intuition and simple simulations, although our efforts in tuning have made testing the

different designs far quicker.

Experimental quantum computing research often follows a fine line between thinking about ab-

stract 0s and 1s and thinking about the more complicated system underneath. It’s often a cyclical

process, as we spend time building the experiment, grappling with all the details, and then as the ex-

periment is “running,” we can focus on the high-level values. But at some point, the building blocks

need to be improved. The first experiment discussed in this thesis, in Chapter 2 is a high level exper-

iment, and Chapter 3 is a proposal for another high-level one. Chapters 4 and 5, however, are about

the experimental details of how to get there. I believe this research has improved understanding of

the S-T0 qubit in GaAs and hope it paves the way for it to be developed further as a competitive

architecture for quantum computing.
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1
Singlet-Triplet Qubits

1.1 Quantum Information

We start with the briefest of introductions to quantum computing. Readers interested in learning

more about the topic should read some of the excellent teaching materials available, including [70,

65]

In this section, we’ll build up the framework for understanding single-qubit gates, loading, and
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measurement. More sophisticated concepts, such as entanglement fidelities, quantum metrology,

and dynamical decoupling are described as they are become relevant in the remainder of this disserta-

tion.

A qubit, or quantum bit, is a two-level quantum system. Qubits are analogous to classical bits,

which can be in the states 0 or 1, but because they are quantum systems, qubits can be not only in

the |0⟩ or |1⟩ states, but also any superposition of those. The state can be described as

ψ = α|0⟩+ β|1⟩, (1.1)

where |α|2 + |β|2 = 1. This can also be shown graphically using the Bloch sphere, show in Fig. 1.1a,

where the qubit’s state is described as a point on the surface of the sphere, with

ψ = cos(
θ

2
)|0⟩+ sin(

θ

2
)(cosϕ+ i sinϕ)|1⟩. (1.2)

Describing qubit states in this manner helps develop intuition for understanding the action of

single-qubit gates, which we can think of as being used to rotate the qubit’s state around the Bloch

sphere. We perform them by turning on energy splittings between states on the Bloch Sphere. This

can be solved for quantitatively using the Schrödinger equation,

i~
d|ψ⟩
dt

= Ĥ|ψ⟩, (1.3)

where Ĥ represents the qubit’s Hamiltonian. For two-level systems, there is a limited set of physical
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Figure 1.1: a. Schematic of a Bloch Sphere. b) Rotation around Bloch Sphere

Hamiltonians, and these can be written as:

Ĥ =
1

2

∑
i=x,y,z

Eiσ̂i, (1.4)

where σi are the Pauli matrices andEi is the difference in energy between the corresponding Pauli

vectors. For clarity of expression, we consider the Hamiltonian that is constant for a time t, but it

is trivial to extend to those that fluctuate with time. The Schrödinger equation can be solved for

two-level systems, with the unitary operator evaluating to

Û(t) = cos(
ωt

2
)I − i sin(

ωt

2
)(σ̂ · n̂), (1.5)

where we’ve written ω =
√
ω2
x + ω2

y + ω2
z/~, ni = ωi

ω , andEi = ~ωi. We can visualize this
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on the Bloch sphere as in Fig. 1.1b, with a splittingE01σz causing rotation around the z-axis at a rate

ω = E01/~. To perform quantum algorithms, we will need to be able to access the entire surface of

the Bloch sphere, which requires the ability to turn on splittings in two directions; this is known as

universal control.

We will now discuss an example of performing a quantum gate, known as a Ramsey pulse se-

quence, which might be used to measure the energy splitting in the z-direction. In general, all quan-

tum gates begin with loading a known state; in this case we will consider the |0⟩ state. Without the

ability to load with high-fidelity, it will be impossible to know what state the qubit ends up in. The

pulse sequence requires 3 pulses: the first is a “preparation,” π/2 pulse around the x-axis. Next, we

rotate around the z-axis for a time t. Finally, we perform a “readout,” another πx/2 pulse, to rotate

the state back to the z-axis. To find the final state of the qubit, we can multiply the pulses together,

and let them act on the initial state:

ψF = σ̂x,π/2σ̂z,tσ̂x,π/2|0⟩

σ̂x,π/2 = (I − iσ̂x)/
√
2 σ̂z,t = I cos(

ωt

2
)− iσ̂z sin(

ωt

2
)

⇒ ψF = sin(ωt/2)|0⟩+ cos(ωt/2)|1⟩ (1.6)

In order to experimentally determine the action of the gate, a measurement must be performed.

These measurements are quantum mechanical, which means that they are probabilistic. We will con-

sider measurements that are projective, meaning that they fully collapse the quantum wave function
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onto the measured eigenstates. In this case, the probability of measuring each state is equal to the

square of the inner product of the wave function with the measurement eigenstates. We measure in

the |0⟩,|1⟩ basis, and find:

P (0) =
1

2
(1 + sinωt) (1.7)

In an experiment measuring ω, we would vary t and then fit the collected data set to 1.7. We note

that each such experiment requires that we run the pulse above many times for each time t. We mea-

sure either 0 or 1 after each pulse, so to fully render the curve, we must average many measurements

together. Some applications of this Ramsey measurement will be discussed in Chapters 2 and 4.

Finally, we consider the effects of noise. Here, we will consider only quasistatic noise, which is

constant within a pulse but varies across them, for mathematical simplicity, but we note that the

concept also applies to higher frequency noise. We assume that ω follows a Gaussian distribution

with mean ω0 and standard deviation σ,

P (ω) =
1√
2πσ

exp(−(ω − ω0)
2/(2σ2)) (1.8)

We are interested in how this changes the signal we measure, (1.7), and we now write its average
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value as

P̄ (0) = 1/2

∫
P (ω) (1 + cosωt) dω

= 1/2(1 + cos(ω0t) exp(−σ2t2/2)) = 1/2(1 + cos(ω0t) exp(−(t/T ∗
2 )

2)). (1.9)

This can be calculated using a Fourier transform. We’ve now defined T ∗
2 =

√
2/σ, the so-called

inhomogeneous dephasing time, a name which arises from nuclear magnetic spectroscopy. We note

that in the remainder of this thesis, we are typically discussing frequencies instead of angular fre-

quencies, in which case T ∗
2 = 1/(

√
2πσf ). For higher frequencies of noise, the derivation becomes

more complicated (it is well-discussed in [18]), and certain special cases are discussed in Appendix B.

1.2 Quantum Dots

The discussion so far has not been specific to a given implementation of qubit. Now, we will start

considering how to isolate a two-level quantum system using quantum dots. Quantum dots are

systems in which particles confined in three dimensions, leading to an atom-like quantized energy

level spacing [5]. While there are several different ways they can be made, the one we discuss here is

known as lateral-gating. We start with a semiconductor heterostructure where electrons are confined

to the interface between two different semiconductors, known as a two-dimensional electron gas

(2DEG) [19]. Gates on the surface of the semiconductor are used to deplete the gas of electrons in

the remaining two dimensions, leaving them only in the small region between the gates. An SEM

image of three adjacent quantum dots is shown in Fig. 1.2a. When the resistance between the quan-
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Figure 1.2: a) SEM of a double quantum dot with an additional sensing quantum dot at left. b) Cartoon of a quantum

dot with one gate.

tum dot and the 2DEG adjacent to it (referred to from now on as the leads) becomes large enough,

R ≫ h/e2, the electrons become localized in the quantum dot. In this thesis, we discuss quantum

dots formed in a AlGaAs/GaAs heterostructure with the 2DEG 91 nm beneath the surface.

We can calculate the energy of quantum dot by treating it like a metallic object with total capaci-

tanceC and chargeQ = ne, where n is the number of electrons it contains. We consider it to have

a nearby gate with voltage Vg and capacitance to the quantum dotCg.A cartoon of this is shown in

Fig. 1.2b, whereCr is the rest of the capacitance,Cr = C − Cg . The energy of this is then

U(n, Vg) = (eN − eN0 − CgVg)
2/2C = Ec/2(N −N0 − CgVg/e)

2, (1.10)

whereN0 is the number of electrons in the dot when Vg is 0, and we’ve definedEc = e2/C , the

electrostatic cost of adding an electron to dot [94]. We can see this by considering the chemical po-

tential, the energy required to add the Nth electron to the dot.

µ(N,Vg) = U(N,Vg)− U(N − 1, Vg) = Ec(N −N0 − 1/2− CgVg/e) (1.11)

12



The difference between chemical potential for adding the Nth and Nth+1 electron is, as expected,

Ec.

The quantum dots are designed to be near the size of the Fermi wavelength of the 2DEG, about

50 nm. They have capacitance of about 100 aF, leading toEc ≈ 1meV. The orbital energy is ap-

proximatelyEn = n2~2
m∗R2 , whereR is the dot’s radius and n the number of electrons in the dot, and

for the last electron is about 50-500 µeV in GaAs dots [75]. Since the electron temperature of the

quantum dots is around 50-100 mK in most dilution refrigerators, under 10 µeV, we are well below

the point where excited states become thermally occupied, and from now on consider all electrons to

be in the orbital ground state with a well defined number of electrons. The electrons that are added

to the quantum dot come from the leads, which the quantum dot is tunnel-coupled, allowing elec-

trons to hop between the 2DEG and the quantum dot when the energy of an additional electron is

at the Fermi level of the 2DEG.

We now consider two quantum dots next to each other, known as a double quantum dot (DQD).

The equation for its potential energy is considerably more complicated than that for a single quan-

tum dot, because in addition to their being an additional dot and gate, the dots also have cross ca-

pacitance. A full explanation is given in van der Wiel et al. [94], and here we give a minimal version

to give some understanding. We ignore the effects of cross-capacitance. We consider two possible

charge states: 0 electrons in the left dot and two in the right dot, and 1 in each dot, which we will re-

fer to as the (0,2) and (1,1) states from now on. Because we are in the ground orbital state of this dot,

from here on we will describe the orbital state of the DQD as referring to its distribution between
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these two charge states. Their difference in energy is

∆E = U(0, 2)−U(1, 1) = e
Cg,L

CL
Vg,L− e

Cg,R

CR
Vg,R+Ec,L/2(1+N0,L)+Ec,R/2(3+N0,R)

(1.12)

We now define αi = e
Cg,i

Ci
, {i = L,R} as the lever arms for the Vg gates, which we now assume

are connected to coaxial cable, allowing us to change their values on sub-nanosecond time scales.

For our experiments, we also have a number of DC gates to tune the potential of the dots, and we’ll

assume that we use those to offset last two terms in the equation. Finally, we get

∆E = α1Vg,R − α2Vg,R = ϵ. (1.13)

We show the gates on the surface in Fig. 1.2a, and now define their difference to be the parameter

ϵ, which will be our main control knob in performing experiments. We note that there is a second

axis of control, αLVg,L + αRVg,R, which we will generally set to be constant at 0, so that in varying

ϵwe move along the line shown in the figure. We note while ϵ as defined above is more physically

meaningful in developing theory, in many experimental papers it is defined as the more directly

controllable Vg,L − Vg,R. In this thesis, we will try to be clear about which meaning we are using.

Now, we write this energy difference in a matrix with the basis of (0, 2) and (1, 1). We also turn

on tunnel coupling between the two dots, which takes the formHT = tc|(0, 2)⟩⟨(1, 1)|+ h.c). In

practice, this rate can be controlled by tuning the gates in between the quantum dots to change the

potential barrier between the two dots. We add a couple of clarifying comments. First, we have been
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Figure 1.3: Charge Diagram near (1,1)-(0,2) junction. Differentiated date from scan sweepingVgL,VgR gates near the

(1,1) and (0,2) charge junction. Yellow lines indicated chargesmoving into the DQD, and blue line represents charge

moving between dots. Most quantum operations will be controlled by changing the value of ϵ, perpendicular to the
junction.

discussing the difference in energy between the two orbital states. There is a choice in defining the

Hamiltonian how to divide the energy between the (0, 2) and (1, 1) states; we do so symmetrically

(with each state havingE = ±ϵ/2), but others will do so with (1, 1) having 0 energy and (0, 2)

having energy ϵ. Second, we have considered the energy states (1, 1) and (0, 2), but all of this is

applicable to any states (N,M − 1), (N − 1,M)whereN,M are integers greater than 0. The

simplest example is (0, 1) and (1, 0), which is often used for charge qubits.

H =

ϵ/2 tc

tc −ϵ/2

 . (1.14)
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The eigenstates of this matrix have energy

Ei = ∓
√
(ϵ/2)2 + t2c . i = {g, e} (1.15)

We will primarily be interested in the ground state, which has eigenstate

ψg = {

√
Eg + ϵ/2

2Eg
,

√
1

2
− ϵ

Eg
} (1.16)

While this is not the most intuitive equation, we see that ϵ passes through 0, then, the ground state

has equal weight in the (0,2) and (1,1) states to minimize its energy. We will be interested in the
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charge distribution of the ground state,

QL −QR = |⟨ψg|(0, 2)⟩|2 − |⟨ψg|(1, 1)⟩|2 =
ϵ

2Eg
(1.17)

We see that this is proportional to dEg

dϵ = ϵ
4Eg

.

1.3 Singlet-Triplet Qubits

At this point, we’ve defined the quantum dot well enough to begin thinking about it as a qubit. The

idea of using quantum dots for quantum computation was first described in [52], and the singlet-

triplet qubit proposed by Jeremy Levy [50]. There are a wide variety of quantum-dot-based spin

qubits, defined primarily by the number of dots and electrons, but also by the spin states that make

up the logical subspace and the type of drives applied. Often the most meaningful properties of

the qubit arise from the extent to which it is ‘spin-like’ or ‘charge-like.’ In general, the charge-like

properties arise when there are multiple quantum dots, and the qubit states are defined by which

quantum dot the electrons are in. Typically, then the qubit’s Hamiltonian can be controlled by ap-

plying a voltage to gates defining the quantum dot, which has the benefit of being a simple means

of control, but the downside of coupling the qubit to charge noise. The ‘spin-like’ qubits are often

defined in single dots, though there are also certain multi-dot systems in which they have been imple-

mented. In these, both qubit states have the same spatial charge distribution, and the Hamiltonian

is not shifted by applying a voltage to local gates, which decouples the system from charge noise but

has the downside of making the qubit harder to control as well as making it susceptible to magnetic
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field noise. The singlet-triplet qubit has the somewhat unique property of being both a spin and

charge qubit, depending on how it is biased. We will describe how this works in the remainder of

this section.

Continuing with the tunnel-coupled double quantum dot from the previous section, we next

endow the electrons with spin [35]. There are four possible combinations of spin states for two-

electrons: the singlet state and three triplet states.

S =
1√
2
(| ↑↓⟩− ↓↑⟩) T0 =

1√
2
(| ↑↓⟩+ ↓↑⟩)

T+ = | ↑↑⟩ T− = | ↓↓⟩ (1.18)

The electrons’ state will be represented by the product of the orbital and spin state. The singlet

spin state is antisymmetric, so it must be in a symmetric orbital state. There are symmetric states

with both electrons in the same quantum dot and with the electrons in different quantum dots, so

the singlet state. The triplet spin states, however, are symmetric, so they must have an antisymmetric

orbital state, which requires the electrons to be in different quantum dots. Due to Pauli exclusion,

then, the triplet states cannot be in the same orbital state but the singlet can be. This means that that

while the singlet state can inhabit the ground state of the DQD from the Hamiltonian (1.14), the

triplet states must cannot be in that hybridized (0,2)-(0,1) state.

The triplet energy can be solved for easily, as it is simply the energy for the (1,1) orbital,ET = ϵ/2.

By turning on a magnetic field, we can separate the energies of the three triplet states, and for the

remainder of this thesis we will only consider the T0 state. The energies of these states as a function
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Figure 1.5: Energy diagram for singlet and triplet states. An in planemagnetic field is applied to separate the triplet

states by energyEZeeman. The singlet is in the ground state of the DQDwhile the triplet states are Pauli-blockaded in

(1,1).

of ϵ is shown in Fig. 1.5. We can see from the plot that the energy splitting between the singlet and

triplet states can be turned on by shifting ϵ to be positive, so that the singlet has two electrons in the

right dot. The gates controlling ϵ are connected to coaxial cable, so the splitting, known as the ex-

change energy or J(ϵ), can be turned on or off in nanoseconds. This is the region where the singlet-

triplet qubit is ‘charge-like’ and is useful not only as an axis of control around the Bloch sphere, but

also for measurement, loading, and entangling gates [68].

As noted in the Quantum Computing section, for universal control over the quantum state, we

need a second axis of control. When ϵ is set so that the qubit is in (1,1) for both states (the left of fig-

ure 1.5), exchange is turned off. A magnetic field gradient between the dots as shown in Fig. 1.6a,

would then split the | ↑↓⟩ and | ↓↑⟩ states gives the energyE↑↓ = gµB/2(BL − BR), and flip-

ping the spins changes the sign of the energy. This gives a controllable splitting in the σx direction,
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BL
BR J

∆Bz

a) b)

Figure 1.6: a) Cartoon of two quantum dots, each with one electron of opposite spin. The energy isE =
gµB/2(BL −BR). By flipping the spins we change the sign of the energy. b) Bloch sphere forS-T0 qubit.

which we define as ~∆Bz = gµB(BL − BR). In the GaAs qubits discussed in this work, the

gradient arises from the nuclei in the heterostructure: the nuclei of Al, Ga and As all have nuclear

spin I = 5/2, which form an Overhauser field that acts on the qubit through hyperfine coupling.

This field fluctuates in time, but can be fixed using dynamical nuclear polarization and a feedback

method, either one that uses the qubit itself [9] or software feedback, as discussed later in Chapter 4.

∆Bz can be changed over periods of milliseconds, but is considered constant within each set of ex-

periments. In this region of ϵ that the singlet-triplet qubit is effectively a spin qubit, with the states

differing only in their spin, and with small voltage pulses not changing the splitting. Of course, the

nice thing about the S-T0 qubit is that we can still use voltage pulses for control; it is simply that in

this narrow range of energy that the qubit is voltage-insensitive.

With∆Bz , we now have control over two different axes, as shown on the Bloch sphere in Fig. 1.6b.

Gates are performed by changing ϵ, as shown Fig. 1.7. At large ϵ, the total splitting is dominated by

the exchange energy. By changing ϵ adiabatically (with respect to the energy splitting from (1.14)),

the qubit stays coherent while the splitting changes.
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∆Bz

Figure 1.7: Energy diagram forS-T0 qubit showing regions whereJ(ϵ) and∆Bz are dominant. By changing ϵ, we
change the speed and axis of rotation.

There are several remaining ingredients necessary for performing experiments. First is loading

the qubits, for which we change the voltages (in this case not just ϵ; we need 2 independent gates) so

that the energy of one of the quantum dots is at the Fermi level and so that |S⟩ is the ground state.

Then the electrons in the quantum dot can tunnel to the l lead and a |S⟩ state will be loaded. The

load time can be tuned from under a nanosecond to microseconds, but we typically set it to a few

nanoseconds, which allows fast loading without allowing relaxation when tuned away from the

resonance. The other quantum dot is also tunnel coupled to the lead, but much slower to avoid

relaxation.

Next, we need to measure the quantum state. A quantum dot fabricated adjacent to the DQD is

sensitive to the number of electrons in each dot. By moving to large ϵ, on the graph, we fully localize

the singlet state in (0,2), while the triplet remains Pauli-blockaded in (1,1). Then, by measuring the
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number of electrons in each dot, we can determine if it is a singlet or triplet. To measure states on

the x and y-axes, we perform readout pulses after the pulse, either a∆Bz π/2 pulse or an adiabatic

ramp of ϵwhich projects | ↑↓⟩ to S and | ↓↑⟩ to T0. The measurement circuit will be discussed

further in Chapter 4.
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2
Suppressing qubit dephasing using

real-time Hamiltonian estimation

Unwanted interaction between a quantum system and its fluctuating environment leads to deco-

herence and is the primary obstacle to establishing a scalable quantum information processing ar-

chitecture. Strategies such as environmental and materials engineering, quantum error correction
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and dynamical decoupling can mitigate decoherence, but generally increase experimental complexity.

Here we improve coherence in a qubit using real-time Hamiltonian parameter estimation. Using

a rapidly converging Bayesian approach, we precisely measure the splitting in a singlet-triplet spin

qubit faster than the surrounding nuclear bath fluctuates. We continuously adjust qubit control

parameters based on this information, thereby improving the inhomogenously broadened coher-

ence time (T ∗
2 ) from tens of nanoseconds to above 2 µs. Because the technique demonstrated here is

compatible with arbitrary qubit operations, it is a natural complement to quantum error correction

and can be used to improve the performance of a wide variety of qubits in both metrological and

quantum-information-processing applications.

2.1 Introduction

Hamiltonian parameter estimation is a rich field of active experimental and theoretical research that

enables precise characterization and control of quantum systems [104]. For example, magnetome-

try schemes employing Hamiltonian learning have demonstrated dynamic range and sensitivities

exceeding those of standard methods [99, 66]. Such applications focused on estimating parameters

that are quasistatic on experimental timescales. However, the effectiveness of Hamiltonian learning

also offers exciting prospects for estimating fluctuating parameters responsible for decoherence in

quantum systems.

The quantum system that we study is a singlet-triplet (S-T0) qubit [68, 55] which is formed by

two gate-defined lateral quantum dots (QDs) in a GaAs/AlGaAs heterostructure (Fig. 2.1a), similar
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to that of refs. [20, 86]. The qubit can be rapidly initialized in the singlet state |S⟩ in≈ 20 ns and

read out with 98% fidelity in≈ 1 µs [4, 74] (Supplemenatry Fig. 2). Universal quantum control is

provided by two distinct drives [26]: the exchange splitting, J , between |S⟩ and |T0⟩, and the mag-

netic field gradient,∆Bz , due to the hyperfine interaction with host Ga and As nuclei. The Bloch

sphere representation for this qubit can be seen in Fig. 2.1b. In this work, we focus on qubit evolu-

tion around∆Bz (Fig. 2.2a). Due to statistical fluctuations of the nuclei,∆Bz varies randomly in

time, and consequently oscillations around this field gradient decay in a time T ∗
2 ≈ 10 ns [68]. A

nuclear feedback scheme relying on dynamic nuclear polarization [9] can be employed to set the

mean gradient, (g∗µB∆Bz/h ≈ 60MHz in this work) as well as reduce the variance of the fluc-

tuations. Here, g∗ ≈ −0.44 is the effective gyromagnetic ratio in GaAs, µB is the Bohr magneton

and h is Planck’s constant. In what follows, we adopt units where g∗µB/h = 1. The nuclear feed-

back relies on the avoided crossing between the |S⟩ and |T+⟩ states. When the electrons are brought

adiabatically through this crossing, their total spin changes by∆ms = ±1, which is accompanied

by a nuclear spin flip in order to conserve angular momentum. With the use of this feedback, the

coherence time improves to T ∗
2 ≈ 100 ns [9] (Fig. 2.2b), limited by the low nuclear pumping effi-

ciency [26]. Crucially, the residual fluctuations are considerably slower than the timescale of qubit

operations [10].

In this work we employ techniques from Hamiltonian estimation to prolong the coherence of

a qubit by more than a factor of 30. Importantly, our estimation protocol, which is based on re-

cent theoretical work [84], requires relatively few measurements (≈100) which we perform rapidly

enough (total time≈ 100µs) to resolve the qubit splitting faster than its characteristic fluctuation

25



time. We adopt a paradigm in which we separate experiments into “estimation” and “operation”

segments, and we use information from the former to optimize control parameters for the latter in

real-time. Our method dramatically prolongs coherence without using complex pulse sequences

such as those required for non-identity dynamically decoupled operations [39].

Results

Rotating frame S − T0 qubit

To take advantage of the slow nuclear dynamics, we introduce a method that measures the fluctu-

ations and manipulates the qubit based on precise knowledge but not precise control of the envi-

ronment. We operate the qubit in the rotating frame of∆Bz , where qubit rotations are driven

by modulating J at the frequency ΩJ
2π = ∆Bz [16, 42]. This is in contrast to traditional modes

of opeation of the S-T0 qubit, which rely on DC voltage pulses. To measure Rabi oscillations,

the qubit is adiabatically prepared in the ground state of∆Bz (|ψ⟩=|↑ ↓⟩), and an oscillating J

is switched on (Fig. 2.2e), causing the qubit to precess around J in the rotating frame. Addition-

ally, we perform a Ramsey experiment (Fig. 2.2c) to determine T ∗
2 , and as expected, we observe

the same decay (Fig. 2.2d) as Fig. 2.2b. More precisely, the data in Fig. 2.2d represent the average of

1024 experimental repetitions of the same qubit operation sequence immediately following nuclear

feedback. The feedback cycle resets∆Bz to its mean value (60 MHz) with residual fluctuations of

(
√
2πT ∗

2 )
−1 ≈ 10MHz between experimental repetitions. However, within a given experimental

repetition,∆Bz is approximately constant. Therefore we present an adaptive control scheme where,
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Figure 2.1: Experimental Apparatus. a,A scanning electronmicroscope image of the double QDwith a schematic of

the apparatus used for adaptive qubit control. A floatingmetal gate protruding from the right can be seenwhich in-

creases the capacitance between the qubit and an adjacent qubit (not pictured), which is left inactive for this work.

The reflected readout drive signal is demodulated to DC, digitized by a correlated double sampler (CDS), and∆Bz

is estimated in real time by the field programmable gate array (FPGA). The FPGA updates the digital to analog con-

verter (DAC) in order to keep the voltage controlled oscillator (VCO) resonant with the estimated value of∆Bz . The

VCO controls the voltage detuning, ϵ(t) between theQDs, which, in turn, modulatesJ atΩJ . b, The Bloch sphere

representation for theS-T0 qubit showing the two axes of control,J and∆Bz .
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Figure 2.2:∆Bz oscillations. a, The pulse sequence used to estimate∆Bz . b,Using nuclear feedback,∆Bz oscilla-

tions decay in a coherence timeT ∗
2 = 66ns due to residual slow fluctuations in∆Bz . c, The Ramsey sequence used

to operate theS-T0 qubit in the rotating frame. d, The Ramsey contrast (blue dots) decays in a characteristic time

(solid line fitT ∗
2 = 68ns) similarly to the oscillations in (c) due to the same residual slow fluctuations in∆Bz . e, The

Rabi pulse sequence used to drive the qubit in the rotating frame. f, The rotating frameS-T0 qubit exhibits the typical
behavior when sweeping drive frequency and time (top). When driven on resonance (bottom), the qubit undergoes

Rabi oscillations, demonstrating control in the rotating frame.

following nuclear feedback, we quickly estimate∆Bz and tune ΩJ
2π = ∆Bz in order to prolong

qubit coherence (Fig. 2.3a).

2.1.1 Bayesian estimation

To estimate∆Bz , we repeatedly perform a series of singleshot measurements after allowing the

qubit to evolve around∆Bz (using DC pulses) for some amount of time (Fig. 2.2a). Rather than

fixing this evolution time to be constant for all trials, we make use of recent theoretical results in

Hamiltonian parameter estimation [84, 25, 42] and choose linearly increasing evolution times,

tk = ktsamp, where k = 1, 2, · · · , N . We choose the sampling time tsamp such that the estimation
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Figure 2.3: Adaptive control. a, For thesemeasurements we first perform our standard nuclear feedback, then quickly

estimate∆Bz and update the qubit control, then operate the qubit at the correct driving frequency. b,Using adaptive

control, we perform a Ramsey experiment (deliberately detuned to see oscillations) and obtain coherence times of

T ∗
2 = 2066 ns. c,Histograms of measured Ramsey detunings with (green) andwithout (blue) adaptive control.

For clarity, these data were takenwith a different mean detuning than those in (b). d,Raw data for 1024 consecutive

Ramsey experiments with adaptive control lasting 250 s in total. A value of 1 corresponds to |T0⟩ and 0 corresponds
to |S⟩. Stabilized oscillations are clearly visible in the data, demonstrating the effect of adaptive control.

bandwidth B = 1
2tsamp

is several times larger than the magnitude of the residual fluctuations in

∆Bz , roughly 10 MHz. With a Bayesian approach to estimate∆Bz in real-time, the longer evolu-

tion times (large k) leverage the increased precision obtained from earlier measurements to provide

improved sensitivity, allowing the estimate to outperform the standard limit associated with repeat-

ing measurements at a single evolution time. Denoting the outcome of the kth measurement asmk

(either |S⟩ or |T0⟩), we define P (mk|∆Bz) as the conditional probability formk given a value
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∆Bz . We write

P (mk|∆Bz) =
1

2
[1 + rk (α+ β cos (2π∆Bztk))] , (2.1)

where rk=1 (−1) formk=|S⟩ (|T0⟩), and α = 0.25 and β = 0.67 are parameters determined by

the measurement error and axis of rotation on the Bloch sphere (see Methods2.3). Since we assume

that earlier measurement outcomes do not affect later ones (i.e. that there is no measurement back-

action), we write the conditional probability for∆Bz given the results ofN measurements as:

P (∆Bz|mN ,mN−1, ...m1) = P (∆Bz|mN−1, ...m1) · P (∆Bz|mN ) (2.2)

=

N∏
k=1

P (∆Bz|mk). (2.3)

Using Bayes’ rule, i.e., P (∆Bz|mk) = P (mk|∆Bz)P (∆Bz)/P (mk), and eq. 2.1, we can rewrite

eq. 2.3 as:

P (∆Bz|mN ,mN−1, ...m1) = P0(∆Bz)N
N∏
k=1

(1 + rk (α+ β cos (2π∆Bztk))] , (2.4)

whereN is a normalization constant and P0(∆Bz) is a prior distribution to which the algorithm

is empirically insensitive, and which we take to be a constant over the estimation bandwidth. Af-

ter the last measurement, we find the value of∆Bz that maximizes the posterior distribution

P (∆Bz|mN ,mN−1, ...m1).
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2.1.2 Adaptive control

We implement this algorithm in real-time on a field-programmable gate array (FPGA), computing

P (∆Bz) for 256 values of∆Bzbetween 50 and 70MHz. With each measurementmk, the readout

signal is digitized and passed to the FPGA, which computes P (∆Bz) and updates an analog voltage

that tunes the frequency of a voltage controlled oscillator (Fig. 2.1a) (Supplementary Note 1). Fol-

lowing theN th sample, ΩJ
2π nearly matches∆Bz , and since the nuclear dynamics are slow, the qubit

can be operated with long coherence without any additional complexity. To quantify how well

the FPGA estimate matches∆Bz , we perform a Ramsey experiment (deliberately detuned to ob-

serve oscillations) with this real-time tracking of∆Bz and find optimal performance forN ≈ 120,

with a maximum experimental repetition rate, limited by the FPGA, of 250kHz and a sampling

time tsamp = 12 ns. Under these conditions, and making a new estimate after every 42 Ramsey

experiments, we observe T ∗
2 = 2066 ns, a 30-fold increase in coherence (Fig. 2.3b). We note that

these data are taken with the same pulse sequence as those in Fig. 2.2d. To further compare qubit

operations with and without this technique, we measure Ramsey fringes for≈ 250s (Fig. 2.3d), and

histogram the observed Ramsey detunings. With adaptive control we observe a stark narrowing of

the observed frequency distribution, consistent with this improved coherence (Fig. 2.3c).

2.2 Discussion

Although the estimation scheme employed here is theoretically predicted to improve monotonically

withN [84], we find that there is an optimum (N ≈ 120), after which T ∗
2 slowly decreases with
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Figure 2.4:∆Bz diffusion. a, The coherence time,T ∗
2 using the adaptive control and for a simulation show a peak, in-

dicating that there is an optimal number of measurements tomakewhen estimating∆Bz . b,Whenmany time traces

of∆Bz are considered, their variance grows linearly with time, indicating a diffusion process. c, The scaling ofT ∗
2

as a function ofTdelay for software scaled data is consistent with diffusion of∆Bz . The red line is a fit to a diffusion

model. d, The performance of the Bayesian estimate of∆Bz can be estimated using software post processing, giving

T ∗
2 = 2840ns, which corresponds to a precision ofσ∆Bz

= 80kHz.

increasingN (Fig. 2.4a). A possible explanation for this trend is fluctuation of the nuclear gradient

during the estimation period. To investigate this, we obtain time records of∆Bz using the Bayesian

estimate and find that its variance increases linearly in time at the rate of (6.7 ± .7kHz)2µs−1

(Fig. 2.4c). The observed linear behavior suggests a model where the nuclear gradient diffuses, which

can arise, for example, from dipolar coupling between adjacent nuclei. Using the measured diffusion

of∆Bz , we simulate the performance of the Bayesian estimate as a function ofN (see Methods2.3.1).

Given that the simulation has no free parameters, we find good agreement with the observed T ∗
2 ,

indicating that indeed, diffusion limits the accuracy with which we can measure∆Bz (Fig. 2.4a).
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This model suggests that increasing the rate of measurements during estimation will improve the

accuracy of the Bayesian estimate. Because our FPGA limits the repetition rate of qubit operations

to 250 kHz, we demonstrate the effect of faster measurements through software post-processing

with the same Bayesian estimate. To do so, we first use the same estimation sequence, but for the

operation segment, we measure the outcome after evolving around∆Bz for a single evolution time,

tevo, rather than performing a rotating frame Ramsey experiment, and we repeat this experiment a

total ofNtot times. In processing, we perform the Bayesian estimate of each∆Bz,i, sort the data by

adjusted time τi =
∆Bz,itevo,i

⟨∆Bz⟩ (for i = 1, 2, · · · , Ntot), and average together points of similar τ

in order to observe oscillations (see Methods 2.3.2). We fit the decay of these oscillations to extract

T ∗
2 and the precision of the Bayesian estimate, σ∆Bz =

(√
2πT ∗

2

)−1. For the same operation

and estimation parameters, we find that T ∗
2 extracted from software post-processing agrees with

that extracted from adaptive control (Fig. 2.4a). Using a repetition rate as high as 667kHz, we show

coherence times above 2800 ns, corresponding to an error of σ∆Bz=80kHz (Fig. 2.4d), indicating

that improvements are easily attainable by using faster (commercially available) FPGAs.

Additionally, we use this post-processing to examine the effect of this technique on the duty cycle

of experiments as well as the stability of the∆Bz estimate. To do so we introduce a delay Tdelay

between the estimation of∆Bz and the single evolution measurement performed in place of the

operation. We find T ∗
2 = (a + bT c

delay)
−0.5, where c = 0.99 (Fig. 2.4c), consistent with diffusion of

∆Bz . Indeed, this dependence underscores the potential of adaptive control, since it demonstrates

that after a single estimation sequence, the qubit can be operated for> 1ms with T ∗
2 > 1µs. Thus,

adaptive control need not significantly reduce the experimental duty cycle.
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In this work, we have used real-time adaptive control based on Hamiltonian parameter estima-

tion of a S − T0 spin qubit to prolong T ∗
2 from 70ns to more than 2 µs. Dephasing due to nuclear

spins has long been considered a significant obstacle to quantum information processing using semi-

conductor spin qubits [82], and elimination of nuclear spins is an active and fruitful area of research

[3, 103, 62]. However, here we have shown that with a combination of nuclear feedback, rotating

frame S-T0 spin resonance, and real-time Hamiltonian estimation, we are able to achieve ratios

of coherence times to operation times in excess of 200 without recourse to dynamical decoupling

[32, 93, 10]. If the same adaptive control techniques were applied to gradients as high as 1 GHz [26],

ratios exceeding 4000 would be possible, and longer coherence times may be attainable with more

sophisticated techniques [84]. Though the observed coherence times are still smaller than the Hahn

echo time, T echo
2 [10], the method we have presented is straightforward to implement, compatible

with arbitrary qubit operations, and general to all qubits that suffer from non-Markovian noise.

Looking ahead, it is likely, therefore, to play a key role in realistic quantum error correction efforts

[65, 72, 100, 90], where even modest improvements in baseline error rate greatly diminish experi-

mental complexity and enhance prospects for a scalable quantum information processing architec-

ture.
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2.3 Methods

Bayesian Estimate

We wish to calculate the probability that the nuclear magnetic field gradient has a certain value,

∆Bz , given a particular measurement record comprisingN measurements. We follow the technique

in Sergeevich et. al.[84] with slight modifications. Writing the outcome of the kth measurement as

mk, we write this probability distribution as

P (∆Bz|mN ,mN−1, ...m1) . (2.5)

To arrive at an expression for this distribution, we will write down a model for the dynamics of the

system, i.e. P (mN ,mN−1, ...m1|∆Bz). Using Bayes’ rule we can relate the two equations as

P (∆Bz|mN ,mN−1, ...m1) · P (mN ,mN−1, ...m1) (2.6)

= P (mN ,mN−1, ...m1|∆Bz) · P (∆Bz) . (2.7)

First, we seek a model that can quantify P (mN ,mN−1, ...m1|∆Bz) that accounts for realistic

errors in the system, namely measurement error, imperfect state preparation, and error in the axis

of rotation around the Bloch sphere. For simplicity, we begin with a model that accounts only for
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measurement error. Denoting the error associated with measuring a |S⟩ (|T0⟩) as ηS (ηT ), we write

P (S|∆Bz) = (1− ηS) cos
2 (2π∆Bztk/2) + ηT sin2 (2π∆Bztk/2) (2.8)

P (T0|∆Bz) = (1− ηT ) sin
2 (2π∆Bztk/2) + ηS cos 2 (2π∆Bztk/2) (2.9)

We combine these two equations and write

P (mk|∆Bz) =
1

2
[1 + rk (α+ β cos (2π∆Bztk))] (2.10)

where rk=1 (-1) formk = |S⟩(|T0⟩) and α and β are given by

α = (ηT − ηS) , β = (1− ηS − ηT ) . (2.11)

Next, we generalize the model to include the effects of imperfect state preparation, and the presence

of nonzero J during evolution, which renders the initial state non-orthogonal to the axis of rotation

around the Bloch sphere (see above). We assume that the angle of rotation around the Bloch sphere

lies somewhere in the x-z plane and makes an angle θ with the z-axis. We define δ = cos 2(θ). Next,

we include imperfect state preparation by writing the density matrix ρinit = (1 − ϵ) |S⟩ ⟨S|) +

ϵ |T0⟩ ⟨T0|. With this in hand, we can write down the model

P (S|∆Bz) = ηT +
1

2
(1− ηS − ηT ) {1 + (1− 2ϵ) [δ + (1− δ) cos (2π∆Bztk)]} , (2.12)
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P (T0|∆Bz) = ηS +
1

2
(1− ηS − ηT ) {1− (1− 2ϵ) [δ + (1− δ) cos (2π∆Bztk)]} . (2.13)

Using the same notation for rk=1 (-1) formk = |S⟩(|T0⟩), we rewrite this in one equation as

P (mk|∆Bz) =
1

2
[1 + rk (α+ β cos (2π∆Bztk))] , (2.14)

where we now have

α = ηT − ηS + (1− ηS − ηT )(δ − 2ϵδ) (2.15)

β = (1− ηS − ηT )(1− δ)(1− 2ϵ). (2.16)

We find the best performance for α = 0.25 and β = 0.67, which is consistent with known values

for qubit errors.

We next turn our attention to implementing Bayes’ rule to turn this model into a probability

distribution for∆Bz . First, we assume that all measurements are statistically independent, allowing

us to write

P (∆Bz|mN ,mN−1, ...m1) = P (∆Bz|mN ) · P (∆Bz|mN−1, ...m1)

=
N∏
k=1

P (∆Bz|mk) . (2.17)
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We next use Bayes rule (2.7) and rewrite this equation as

P (∆Bz|mN ,mN−1, ...m1) =
N∏
k=1

P (mk|∆Bz)
P (∆Bz)

P (mk)
. (2.18)

Using our model (2.14) we can rewrite this as

P (∆Bz|mN ,mN−1, ...m1) = NP0(∆Bz)

N∏
k=1

[1 + rk (α+ β cos (2π∆Bztk))] , (2.19)

whereN is a normalization constant, and P0(∆Bz) is a prior distribution for∆Bz which we take

to be a constant over the estimation bandwidth, and to which the estimator is empirically insensitive.

With this formula, it is simple to see that the posterior distribution for∆Bz can be updated in real

time with each successive measurement. After theN th measurement, we choose the value for∆Bz

which maximizes the posterior distribution (2.19).

2.3.1 Simulation with diffusion

We simulate the performance of our software scaling and hardware (FPGA) estimates of∆Bz using

the measured value of the diffusion rate. We assume that∆Bz obeys a random walk, but assume

that during a single evolution time tk,∆Bz is static. This assumption is valid when
√
tNDT ∗

2 ≪ 1,

whereD is the diffusion rate of∆Bz . For an estimation of∆Bz withN different measurements,

we generate a random walk ofN different values for∆Bz (using the measured diffusion), sim-

ulate the outcome of each measurement, and compute the Bayesian estimate of∆Bz using the
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simulated outcomes. By repeating this procedure 4096 times, and using the mean squared error,

MSE = ⟨
(
∆Bz −∆Bz

estimated
)2⟩ as a metric for performance, we can find the optimal number

of measurements to perform. To include the entire error budget of the FPGA apparatus, we add

to this MSE the error from the phase noise of the VCO, the measured voltage noise on the analog

output controlling the VCO, and the diffusion of∆Bz during the “operation” period of the experi-

ment.

2.3.2 Software Post Processing

The estimate of∆Bz can be independently verified using software analysis. In this experiment, we

use the same method to estimate∆Bz as in the adaptive control experiment, but in the operation

segment perform oscillations around∆Bz for verification. We choosem different evolution times

and measure each n times for a total ofNtot = m×nmeasurements of∆Bz . In the ith experiment

(i = 1, 2, . . . Ntot), we evolve for a time tevo,i, accumulating phase ϕi = ∆Bz,itevo,i. Because we

make a precise measurement of∆Bz at the start of each experiment, we can employ it to rescale the

time, tevo,i, so that the phase accumulated for a given time is constant using the equation,

τi ≡ tevo,i
∆Bz,i

⟨∆Bz⟩

This sets ϕi(τi) = ⟨∆Bz⟩τi, with residual error arising from inaccuracy in the estimate of∆Bz,i.

The data are then sorted by τ , and points of similar τ are averaged using a Gaussian window with

στ = 0.5 ns ≪ T ≈ 16 ns, where T is the period of the oscillations.
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Figure 2.5: a. An electronmicroscope image of the device used. Two qubits each comprising a double quantum dot

and an additional quantum dot for charge sensing are fabricated in close proximity. A floatingmetal gate is fabricated

between the qubits to increase the inter-qubit capacitance. The right qubit is left inactive for this work. b. The Bloch

sphere representation for theS-T0 qubit. c. The Bloch sphere representation for theS-T0 qubit in the rotating frame,

where rotations are drivenmymodulatingJ .

2.4 The device

The work presented here was performed on a two-qubit device with one qubit left inactive. An

SEM microcgraph can be seen in Fig. 2.1a. We operate the S-T0 qubit in two different ways: static

operation with DC pulses (Fig. 2.1b) and the new, rotating frame, resonant operation with RF pulses

(Fig. 2.5c).
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2.5 Singleshot Sensor Response

In order to effectively sample∆Bz oscillations without having to measure each evolution time tk

more than once, we rely on high fidelity readout, which is based on standard RF-reflectometry tech-

niques [74, 4]. The readout fidelity is routinely better than 0.98. Though the Bayesian estimate of

∆Bz has parameters to account for readout error (see below), it nevertheless requires that this error

be small. Moreover, in order to effectively process and compare data with both the FPGA and with

software rescaling, we must achieve high fidelity readout with both the data acquisition card (DAQ)

and with the FPGA. Fig. 2.6a shows histograms of all of the measured values. The double-peaked

structure indicates that, indeed, high fidelity readout is achieved with both the DAQ and the FPGA.

The difference in the heights of the two peaks is caused by residual exchange (J ) during evolution,

which causes the axis of evolution around the Bloch sphere to be non-orthogonal to the initial state

(see section 2.3). For the Bayesian estimate, which requires discretized data (rk = ±1), we choose a

threshold corresponding to the minimum between the peaks for the adaptive control on the FPGA.

2.6 FPGA and experimental apparatus

The reflected readout drive signal returns to room temperature through a cryogenic circulator and

amplifier at 4K. The signal is amplified again at room temperature before being demodulated to DC.

This DC signal is split and sent to a digitizing card (AlazarTech 660) in a computer and a home built

correlated double sampler (CDS). The CDS digitizes the signal and performs a local reference sub-

traction to reject low frequency noise. The resulting 16 bit signal is converted to a low voltage digital
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Figure 2.6: a. A histogram of values measured by the data acquisition card (DAQ) and the FPGA/CDS show nearly

identical double peaked structures, indicating that they are capable of consistent singleshot readout. The dashed line is

chosen as the threshold for estimating∆Bz with the FPGA.

signal and sent to the FPGA for processing. The FPGA is a National Instruments model PXI-7841R

and is clocked at 40MHz to maximize processing speed. The probability P (∆Bz|mk) is computed

for 256 consecutive frequencies in the estimation bandwidth, B, in two parallel processes on the

FPGA to decrease calculation time. Since B ≈ 40MHz is larger than the residual fluctuations of

∆Bz , we increase the frequency resolution by computing the Bayesian estimate of∆Bz for the the

middle 256 frequencies inside of B. For these parameters, the minimum calculation time is 3.7µs for

a single tk. The probability distributions are stored and updated as single-precision floating-point

numbers, since we find that single-precision improves the accuracy of the estimator over fixed-point

numbers.

After estimating∆Bz , the FPGA returns the index (an integer between 1 and 256) of the most

probable frequency, which must be converted to a voltage to control the VCO. To do so, we apply a
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Figure 2.7: a. T ∗
2 changes with the gain,G, converting a frequency index into a control voltage for the VCO. This allows

for the optimal gain to be found.

linear transformation to the index, V = G× index+O, where theO controls the detuning of the

driving frequency. We tune theG to maximize T ∗
2 using adaptive control (Fig. 2.7a).

2.7 Bayesian Estimate

We wish to calculate the probability that the nuclear magnetic field gradient has a certain value,

∆Bz , given a particular measurement record comprisingN measurements. We follow the technique

in Sergeevich et. al.[84] with slight modifications. Writing the outcome of the kth measurement as

mk, we write this probability distribution as

P (∆Bz|mN ,mN−1, ...m1) . (2.20)

43



To arrive at an expression for this distribution, we will write down a model for the dynamics of the

system, i.e. P (mN ,mN−1, ...m1|∆Bz). Using Bayes’ rule we can relate the two equations as First,

we seek a model that can quantify P (mN ,mN−1, ...m1|∆Bz) that accounts for realistic errors in

the system, namely measurement error, imperfect state preparation, and error in the axis of rotation

around the Bloch sphere. For simplicity, we begin with a model that accounts only for measurment

error. Denoting the error associated with measuring a |S⟩ (|T0⟩) as ηS (ηT ), we write

P (S|∆Bz) = (1− ηS) cos
2 (2π∆Bztk/2) + ηT sin2 (2π∆Bztk/2) (2.21)

P (T0|∆Bz) = (1− ηT ) sin
2 (2π∆Bztk/2) + ηS cos 2 (2π∆Bztk/2) (2.22)

We combine these two equations and write

P (mk|∆Bz) =
1

2
[1 + rk (α+ β cos (2π∆Bztk))] (2.23)

where rk=1 (-1) formk = |S⟩(|T0⟩) and α and β are given by

α = (ηT − ηS) , β = (1− ηS − ηT ) . (2.24)

Next, we generalize the model to include the effects of imperfect state preparation, and the presence

of nonzero J during evolution, which renders the initial state non-orthogonal to the axis of rotation

around the Bloch sphere (see above). We assume that the angle of rotation around the Bloch sphere

lies somewhere in the x-z plane and makes an angle θ with the z-axis. We define δ = cos 2(θ). Next,
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we include imperfect state preparation by writing the density matrix ρinit = (1 − ϵ) |S⟩ ⟨S|) +

ϵ |T0⟩ ⟨T0|. With this in hand, we can write down the model

P (S|∆Bz) = ηT +
1

2
(1− ηS − ηT ) {1 + (1− 2ϵ) [δ + (1− δ) cos (2π∆Bztk)]} , (2.25)

P (T0|∆Bz) = ηS +
1

2
(1− ηS − ηT ) {1− (1− 2ϵ) [δ + (1− δ) cos (2π∆Bztk)]} . (2.26)

Using the same notation for rk=1 (-1) formk = |S⟩(|T0⟩), we rewrite this in one equation as

P (mk|∆Bz) =
1

2
[1 + rk (α+ β cos (2π∆Bztk))] , (2.27)

where we now have

α = ηT − ηS + (1− ηS − ηT )(δ − 2ϵδ) (2.28)

β = (1− ηS − ηT )(1− δ)(1− 2ϵ). (2.29)

We find the best performance for α = 0.25 and β = 0.67, which is consistent with known values

for qubit errors.

We next turn our attention to implementing Bayes’ rule to turn this model into a probability
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distribution for∆Bz . First, we assume that all measurements are independent, allowing us to write

P (∆Bz|mN ,mN−1, ...m1) = P (∆Bz|mN ) · P (∆Bz|mN−1, ...m1)

=
N∏
k=1

P (∆Bz|mk) . (2.30)

We next use Bayes rule (2.7) and rewrite this equation as

P (∆Bz|mN ,mN−1, ...m1) =

N∏
k=1

P (mk|∆Bz)
P (∆Bz)

P (mk)
. (2.31)

Using our model (2.27) we can rewrite this as

P (∆Bz|mN ,mN−1, ...m1) = NP0(∆Bz)
N∏
k=1

[1 + rk (α+ β cos (2π∆Bztk))] , (2.32)

whereN is a normalization constant, and P0(∆Bz) is a prior distribution for∆Bz which we take

to be a constant over the estimation bandwidth, and to which the estimator is empirically insensitive.

With this formula, it is simple to see that the posterior distribution for∆Bz can be updated in real

time with each successive measurement. After theN th measurement, we choose the value for∆Bz

which maximizes the posterior distribution (2.32).
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2.8 Simulation with diffusion

We simulate the performance of our software scaling and hardware (FPGA) estimates of∆Bz using

the measured value of the diffusion rate. We assume that∆Bz obeys a random walk, but assume

that during a single evolution time tk,∆Bz is static. This assumption is valid
√
tNDT ∗

2 ≪ 1,

whereD is the diffusion rate of∆Bz . For an estimation of∆Bz withN different measurements,

we generate a random walk ofN different values for∆Bz (using the measured diffusion), sim-

ulate the outcome of each measurement, and compute the Bayesian estimate of∆Bz using the

simulated outcomes. By repeating this procedure 4096 times, and using the mean squared error,

MSE = ⟨
(
∆Bz −∆Bz

estimated
)2⟩ as a metric for performance, we can find the optimal number

of measurements to perform. To include the entire error budget of the FPGA apparatus, we add

to this MSE the error from the phase noise of the VCO, the measured voltage noise on the analog

output controlling the VCO, and the diffusion of∆Bz during the “operation” period of the experi-

ment.

2.9 Software Post Processing

The estimate of∆Bz can be independently verified using software analysis. In this experiment, we

use the same method to estimate∆Bz as in the adaptive control experiment, but in the operation

segment perform oscillations around∆Bz for verification. We choosem different evolution times

and measure each n times for a total ofNtot = m×nmeasurements of∆Bz . In the ith experiment

(i = 1, 2, . . . Ntot), we evolve for a time tevo,i, accumulating phase ϕi = ∆Bz,itevo,i. Because we
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Figure 2.8: a. When using the same estimation sequence, post-processed oscillations (blue) and data taken using

adaptive control (red) show the same decay, indicating similar performance of the estimation. The post-processing

technique allows us to explore estimation sequences that are too fast for the FPGA.

make a precise measurement of∆Bz at the start of each experiment, we can employ it to rescale the

time, tevo,i, so that the phase accumulated for a given time is constant using the equation,

τi ≡ tevo,i
∆Bz,i

⟨∆Bz⟩

This sets ϕi(τi) = ⟨∆Bz⟩τi, with residual error arising from inaccuracy in the estimate of∆Bz,i.

The data are then sorted by τ , and points of similar τ are averaged using a Gaussian window with

στ = 0.5 ns ≪ T ≈ 16 ns, where T is the period of the oscillations.

To compare post-processing with adaptive control, we first perform the same estimation se-

quence for both software post-processing and adaptive control, with a 250 kHz repetition rate,

48



tsamp = 12 ns andN =120, followed by an operation sequence of 30 measurements. We find

T ∗
2 = 2148 ± 30 ns with software and T ∗

2 = 2066 ns with adaptive control, showing good agree-

ment between the two approaches (Fig. 2.8a).

For the software post-processing, we can reduce the amount of diffusion that occurs during

the operation sequence by performing only one verification measurement following the same es-

timation sequence, enhancing T ∗
2 , to 2580 ± 40 ns. For the software rescaling in Fig. 4d, the 109

estimations were performed in 225 µs instead of the 440 µs used by the FPGA, yielding T ∗
2 =

2840± 30 ns. This is likely limited by diffusion and the precision of the estimator withN=109.
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3
Coupling Two Spin Qubits with a

High-Impedance Resonator

Fast, high-fidelity single and two-qubit gates are essential to building a viable quantum information

processor, but achieving both in the same system has proved challenging for spin qubits. We pro-

pose and analyze an approach to perform a long-distance two-qubit controlled phase (CPHASE)
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gate between two singlet-triplet qubits using an electromagnetic resonator to mediate their inter-

action. The qubits couple longitudinally to the resonator, and by driving the qubits near the res-

onator’s frequency they can be made to acquire a state-dependent geometric phase that leads to a

CPHASE gate independent of the initial state of the resonator. Using high impedance resonators

enables gate times of order 10 ns while maintaining long coherence times. Simulations show average

gate fidelities of over 96% using currently achievable experimental parameters and over 99% using

state-of-the-art resonator technology. After optimizing the gate fidelity in terms of parameters tune-

able in-situ, we find it takes a simple power-law form in terms of the resonator’s impedance and

quality and the qubits’ noise bath.

3.1 Introduction

Spin qubits with gateable charge-like states have many desirable features for quantum computing,

and have been pursued through a range of qubit implementations including singlet-triplet (S-

T0) and hybrid qubits in a double quantum dot (DQD) as well as exchange-only qubits in triple

dots[67, 105, 23, 41, 57]. Coupling to charge speeds up many crucial operations, including single and

two-qubit operations and measurement, compared with a solely magnetic control, but they retain

coherence times that are orders of magnitude above those of pure charge qubits. For instance, im-

plementations of S-T0 qubits in GaAs boast> 98% fidelity single gate operations up to several

GHz as well as 98%measurement fidelity in 1 µs[14, 63, 86]. However, the spin-like nature of these

qubits typically leads two-qubit gates to be much slower than single-qubit gates and to have speeds
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that fall off sharply with distance, making scaling to more than two qubits challenging[86]. One

way to remedy both of these issues is to couple two distant qubits using a resonator[98, 60, 81, 44].

We consider electric coupling between the resonator field and a charge-like state of a spin qubit, fo-

cusing on the S-T0 qubit, although we note that it is possible to use any of the spin qubits with

gateable charge-like states.

The S-T0 qubit’s logical subspace consists of the hyperfine-degenerate singlet and triplet states of

two electrons in a tunnel coupled DQD. While electrons in the singlet state are hybridized between

the two dots in the ground state, with a distribution determined by the dots’ relative energies and

their tunnel coupling, the electrons in the triplet state are Pauli-blockaded with one electron in each

dot. The S-T0 energy splitting, J , is thus controlled by the difference in chemical potentials of the

two dots, ϵ, which can be tuned by proximal RF gates on nanosecond timescales. A magnetic field

gradient between the dots drives rotations around σx, but will be neglected for the remainder.

The qubit’s electric dipole operator is diagonal in the energy basis, so the qubit-resonator cou-

pling is a longitudinal interaction, as has been investigated in Refs. [8, 37, 83, 7, 21, 76, 79]. The re-

sulting gate that we describe in this paper has a number of advantages over transverse-coupled gates.

It is not necessary to bring the qubits into resonance with one another or the resonator, making the

gate quite simple; it relies on applying a single tone near the resonator’s frequency to each of the

qubits, with no direct control of the resonator required. Moreover, this makes it compatible with re-

maining at sweet spots for enhanced dephasing time. The gate speed is a linear function of the drive,

so it can be turned completely off and does not require high powers for fast gates. Furthermore,

there is no Purcell effect and no dispersive approximation is necessary, so the drive frequency can be
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near the resonator’s frequency and the drive amplitude is unconstrained, enabling faster gates. An-

other advantage is that the gate is independent of the resonator’s initial state, and only depends on

its dynamics (e.g., its decay rate). As a result, cross-talk to the resonator and elevated temperatures

are not barriers to implementing the gate, as noted in [83].

3.2 Geometric Phase Gate

We begin by outlining the essential physics underlying the two-qubit gate. By driving ϵ of the first

qubit near the resonator’s frequency, we cause electrons in the singlet state to oscillate between the

two quantum dots while electrons in the triplet state remain stationary due to Pauli blockade. The

resonator is thereby excited in a qubit-state-dependent manner, which in turn acts to drive ϵ in the

far qubit. When the two qubits are driven at the same frequency, the interaction with the resonator

has a non-zero average, and the qubits accrue a resonator-dependent geometric phase that lets us

perform a CPHASE gate. We can now consider the main noise processes of this interaction. Driving

the qubits closer to the resonator’s frequency excites the resonator more, which makes the gate faster,

but causes more photons to be lost from the resonator. For similar coupling mechanisms in other

systems with a far larger resonator decay rate than qubit dephasing rate, fidelity can be optimized

by driving at a frequency that equalizes dephasing through the qubits and the resonator[22, 28, 83].

However, in the case of an S-T0 qubit coupled to a superconducting resonator, the resonator decay

rate is comparable to the qubit dephasing rate. In this regime of large qubit dephasing, noise from

the resonator is relatively unimportant, and it is essential to perform the gate as fast as possible. The
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Figure 3.1: a, Schematic of the two-qubit-resonator device. A double quantum dot is placed at either end of a high-

impedance resonator. A nanowire resonator is shown, but other types have similar dimensions; the resonator can

be further meandered to reduce its footprint, or straightened to transport information over larger distances. b-c,

Proposed designs for Si-SiGe quantum-dot-resonator devices. Accumulation gates are shaded pale blue, depletion

gates gold, and the resonator gray. In b, the resonator replaces one of the accumulation gates, so it is separated by

an additional 50 nm oxide, cr = 0.02. In c, the resonator is at the depletion gates layer, cr = 0.25. d, A circuit

schematic of a qubit resonator system (the left qubit is not shown, but is identical to the right qubit). The left and right

quantum dots,QL andQR , have capacitanceCi,r to the resonator and total capacitanceCi = Ci,r + Ci,p,

i = {L,R}. The resonator has inductanceL and capacitanceC .

maximum fidelity is achieved when the detuning is set so that the CPHASE gate is performed in a

small, integral number of oscillations. This approach is known as a geometric phase gate[47, 49, 77].

We quantify the strength of the qubit-resonator coupling by analyzing the effect of the resonator

on the qubit’s splitting. The voltage along a high-impedance resonator is much larger than for a con-
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ventional 50Ω resonator [89, 80]; the voltage at the resonator’s antinode due to a single photon is

V0 =
√
~Zrωr, where ωr is the resonator’s frequency andZr its impedance. Quantum-dot-based

qubits are compatible with high impedance resonators because they have only tens of attofarads of

capacitance and thus have little parasitic effect on the impedance,Zr =
√
L/C , whereL andC are

the total inductance and capacitance in the system, respectively. We consider exciting the resonator

near its fundamental frequency, i.e., a half-wave resonator, and place qubits at its antinodes (Fig. 1a).

The voltage at each antinode can be written Vr = V0(a + a†). This voltage shifts the chemical

potentials of the quantum dots, which are characterized by a capacitance matrix describing the in-

teractions between each dot and its electrostatic environment [94]. Denoting the DC contributions

to this chemical potential by ϵ0, we can write ϵ = ϵ0 + ecgVg + ecrVr, where e is an electron

charge, and cg and cr represent the lever arms between the double quantum dot and the RF gate

and resonator, respectively, and which determine the shift in chemical potential of the DQD caused

by a voltage shift on those gates. We define the drive on the RF gate as eVgcg = ϵd cosωdt. We then

expand J around ϵ0 to second order:

J(ϵ) ≈ J(ϵ0) +
dJ

dϵ

∣∣∣
ϵ0

(
crV0(a+ a†) + ϵd cosωdt

)
+

1

2

d2J

dϵ2

∣∣∣
ϵ0

(
crV0(a+ a†) + ϵd cosωdt

)2
+ . . . (3.1)

The Hamiltonian for a qubit-resonator system isHQR = ~ωra
†a+ 1

2J(ϵ)σz . We move to an in-

teraction picture with respect toH0 = ~ωda
†a+ 1

2 J̃(ϵ0)σz , where J̃ = J(ϵ0)+
1
2

d2J
dϵ2

∣∣∣
ϵ1

(
c2rV

2
0 +

ϵ2d/2) includes second-order corrections to the DC value of J . Considering the first two orders of
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expansion and averaging over oscillating terms yields:

Hint = ~∆a†a+
1

4

d2J

dϵ2

∣∣∣
ϵ0

(
crV0ϵd(a+ a†) + 2c2rV

2
0 a

†a
)
σz

= ~∆a†a+ 1
2g(a+ a†)σz +

1
2χa

†aσz, (3.2)

where∆ = ωr − ωd is the detuning, and g = 1
2
d2J
dϵ2

∣∣
ϵ0
crV0ϵd and χ = d2J

dϵ2

∣∣
ϵ0
c2rV

2
0 are coupling

strengths. The second coupling χ is smaller than g by a factor of crV0/ϵd ≪ 1 for the optimal

drive that we will consider, and so we will ignore it for the remainder. Higher order terms do not

add additional terms to the equation, they only change their relative magnitude.

To create a two-qubit coupling, we now add a second qubit to the model at the opposite antin-

ode of the resonator, and drive it at the same frequency ωd and 180◦ out of phase as the first qubit,

giving the two-qubit HamiltonianH2 = ~∆a†a+ g1
2 (a+a

†)σz1+
g2
2 (a+a

†)σz2. The technique

of driving two qubits in resonance to enlarge the longitudinal coupling to the resonator and in turn

one another is also employed in [79]. Following Roos et al.[77], it can be shown thatH2 generates

a time-dependent phase space displacementU(t) = exp[−i∆ · ta†a]D̂[α(t)] exp[Φ12σz1σz2],

where D̂ is a qubit-dependent displacement operator, α(t) = (1− ei∆·t)(g1σz1 + g2σz2)/(2~∆),

andΦ12(t) = g1g2
2~2∆2 (∆ · t − sin∆ · t). When α(t) = 0, the resonator disentangles from

the qubits. A CPHASE gate occurs on the qubits whenΦ12 = π/4. Together, this requires that

∆ · tg = 2πn and g1g2
2~2∆ tg = π/4, where n is a positive integer. This yields a requirement on the

detuning ~∆ = 2
√
ng1g2, and a CPHASE gate time tg = π~

√
n/(g1g2). While n = 1, corre-

sponding to a single oscillation of the resonator, yields the fastest gate, we will also consider n > 1
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gates to allow compatibility with dynamical decoupling, described below.

We now turn to an analysis of the main decoherence processes of this gate. There are two main

sources of loss in the system: dephasing of the qubits and loss of photons from the resonator. A

master equation that governs the time evolution of the total system is:

ρ̇ = −i[H2, ρ] + 2κD[a]ρ+ γϕ,1D[σz1]ρ/2 + γϕ,2D[σz2]ρ/2, (3.3)

where κ = ωr/(2Q) is the cavity decay rate, γϕ,i = 1/T2,i is the dephasing rate of qubit i, and

D[c]ρ = cρc† − c†cρ/2 − ρc†c/2 is the usual damping superoperator. We neglect T1 effects

because T1 exceeds T2 by several orders of magnitude in most S-T0 systems. We note that, while T2

is limited by charge noise with a 1/f spectrum, the damping superoperator implements white noise.

As a result, we expect the fidelities from solving this master equation to be slightly lower than in an

exact simulation based on 1/f noise.

In this master equation, it is straightforward to analytically solve the dephasing of the qubits be-

cause all terms in the Hamiltonian commute with σz . Each qubit therefore dephases at the rate γϕ,i

throughout the gate. For dephasing due to loss of photons from the resonator, it is illustrative to

solve the master equation analytically using a quantum trajectory approach. We make the simplify-

ing assumption that g1 = g2 = g and γϕ,1 = γϕ,2 = γϕ. In general, if the qubits differ, we can

replace g and γϕ in equations below with the geometric mean of the terms in the different qubits.

The resulting dephasing process on the two qubits can be viewed as a stochastic process depending

on whether an even or odd number of photons are lost from the cavity. Odd numbers of lost pho-
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tons result in a random π phase shift of one of the qubits, whereas even numbers of lost photons

result in a correlated π phase shift of both qubits. The full analytical derivation of the system’s evolu-

tion is provided in Appendix 3.7.

3.3 Average Gate Fidelity

We can use the analytical derivation of the density matrix at the conclusion of the gate to find the

average gate fidelity. The average gate fidelity F̄g , as defined in Refs. [69, 64], is used as a measure

to assess the performance of a noisy quantum gate compared with an ideal (unitary) gate. It can be

related to the fidelity of entanglement Fe, which is a simpler quantity to directly calculate, through

the relation F̄g = dFe+1
d+1 , where d is the dimension of the Hilbert space (d = 4 in the case of a

two-qubit gate).

We define a map to represent the action of our noisy CPHASE gate on a density matrix of two

qubits as ρ′ = Ng[ρ]. This map can be expressed as a matrix that acts on the space of density

operators for 2 qubits. To calculate the fidelity of entanglement for this two-qubit gate, we con-

sider a maximally entangled state of four qubits, with two of the qubits acted on by the gate. Let

|Ψ⟩ = 1
2

∑
i,j=0,1 |ij, ij⟩ be the maximally entangled state of four qubits, with density matrix

given by ρΨ = |Ψ⟩⟨Ψ| = 1
4

∑
i,j,k,l=0,1 |ij, ij⟩⟨kl, kl|. Then ρ′Ψ = (Ng ⊗ I)[ρΨ ] is a 4-qubit

density matrix where the mapNg has been applied to qubits 1 and 2, and nothing has been done to

qubits 3 and 4. We define |Ψ′⟩ = (Ug ⊗ I)|Ψ⟩ as the state of the system after it has evolved under
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the ideal gate, so the fidelity of entanglement is

Fe = ⟨Ψ′|(Ntg ⊗ I)[ρΨ ]|Ψ
′⟩ = ⟨Ψ|(N ′

tg ⊗ I)[ρΨ ]|Ψ⟩ , (3.4)

where we have definedN ′
tg = U−1

g ◦ Ntg with U−1
g being the inverse ideal gate. That is,N ′

tg

describes only the noise in the gate.

This expression for the fidelity of entanglement can be made more explicit by using a trace-

orthonormal basis of 2-qubit operators, such as the 2-qubit Pauli operators, to resolve the inner

product of Eq. (3.4). Let {ρµ, µ = 1, . . . , 16} be such a basis. Then

Fe =
1

16

∑
µ

Tr
[
ρ†µ
(
N ′

tg(ρµ)
)]
, (3.5)

We can then analytically calculate the gate fidelity using the basis of 2-qubit operators ρµ as initial

states ρ(0) in the solution of Eq. (3.29). Note that, for our numerical simulations, we use physical

density matrices ρk constructed from all two-qubit combinations of single qubit states |0⟩ , |1⟩ , 1√
2
(|0⟩+

|1⟩), 1√
2
(|0⟩+ i |1⟩) states, which can easily be shown to form an orthonormal basis of the operator

space.

Given the analytical expression for the noisy CPHASE gate given in Eq. (3.29), and including

qubit dephasing as described by Eq. (3.59), we can analytically calculate the average gate fidelity.

Specifically, the terms in Eq. (3.29) corresponding to zero, odd, and even numbers of lost photons

provide Kraus operators for an operator product expansion of the mapNtg . The average gate fi-
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delity evaluates to

F̄g =
1

10
(4 + 4b(tg)e

−γϕtg + (b(tg)
4 + 1)e−2γϕtg) , (3.6)

where b(tg) represents the effect of photons lost from the resonator during the gate and remaining

in the resonator at its completion and is defined in (3.33) If we take the first order Taylor expansion

of this around κtg and γϕtg , we find:

1− F̄g ≈ 4
5(γϕtg + κtg/(2n)). (3.7)

In the limit of small dephasing, the optimal gate time is tg =
√
nπ~/g, and the corresponding

gate fidelity F̄g becomes

1− F̄g ≈ 4
√
nπ

5g
(γϕ + κ/(2n)) =

8
√
nπϵ20

5crJ
√
~Zrωrϵd

(γϕ +
ωr

4nQ
) . (3.8)

This simple expression for the fidelity enables us to find the optimal values of J and ϵd, giving a

clearer picture of how the fidelity of the gate depends on the resonator’s parameters and charge noise

in the system.

3.4 Effect of Charge Noise on Optimal Drive and Fidelity

To optimize the parameters for driving the qubits with respect to their noise baths, we consider how

spin qubits dephase under the influence of charge noise [20, 18]. Charge noise has a power spectrum
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described by S(f) = Sϵ/f
β , where β is between 0.6 and 1.4 for a “1/f” spectrum[43]. In the

singlet-triplet qubit, we find that the noise is best understood as fluctuating charges affecting the

chemical potentials of the quantum dots, which can be quantified by Sϵ, a function of the substrate,

the dots’ geometry and the qubit’s wave function. To understand how this couples to the qubits’

splitting, we perform a Taylor expansion similar to that in 3.1, but we include an error term, δϵ,

that is time-dependent but negligible at the resonator’s frequency due to the 1/f nature of charge

noise. Retaining terms linear in δϵ in the third-order expansion and setting terms oscillating at the

resonator frequency, we find:

δJ ≈ δϵ
( dJ
dϵ

∣∣∣∣
ϵ0

+
1

4

d3J

dϵ3

∣∣∣∣
ϵ0

ϵ2d

)
. (3.9)

We can then find SJ using the relation SJ = 1/2( δJδϵ )
2Sϵ. Empirical studies show that J is an

exponential of ϵ, J(ϵ) ≈ J0 exp(ϵ/ϵa),where J0 and ϵa are tuning-dependent but can be treated

as constants throughout multiple experiments where tuning is not substantially changed.

We consider the possibility of employing dynamical decoupling pulses, despite the added com-

plexity and requirement to perform the gate during multiple resonator oscillations, as they dramat-

ically improve coherence times. Most gains come from a single echo, applied half-way through the

gate time, which increases coherence times by about a factor of 30 [20]. For this reason, previous

implementations of two-qubit gates in this system [86, 63] have employed a Hahn echo or rotary

echo. Both gates rely on the same σz ⊗ σz interaction, so by performing simultaneous echoes on the

qubits, we cancel noise but not the coupling. We intend to use the same technique in performing
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this gate, but to do this without affecting the CPHASE gate requires more care when the qubits are

entangling with a resonator. One must perform echo π pulses when the qubit is fully disentangled

with the resonator, which can be achieved by performing the gate over multiple oscillations of the

resonator.

To understand how T2 varies with J , we consider previous work studying the effect of dynami-

cal decoupling for colored noise [18]. If we implement dynamical decoupling with Gaussian charge

noise, the resultant decay of qubit coherence takes the formA(t) ∝ exp(−(t/T2)
1+β). In gen-

eral, T2 = mβ/(ηS
1/(β+1)
ϵ ), where η is a constant of order 1 andm is the number of pulses

performed. For certain pulse types, η can be solved for analytically; for instance, for a Hahn echo,

η = 1
(2π)(2

1−β − 1)Γ(−1− β) sin(πβ2 ). Combining the equations above, we find

1/T2 =

(
ηSϵ

J2

ϵ2a

(
1 +

ϵ2d
4ϵ2a

)2
) 1

β+1

≡ γϕ,0

(
1 +

ϵ2d
4ϵ2a

) 2
β+1

, (3.10)

where we’ve defined the term γϕ,0 to represent the dephasing rate at a given value of J with no drive

applied. For the values of Sϵ and β used in simulations for this paper, and with no drive applied,

T2(J) takes on the same set of values as in Ref [20]. We optimize ϵd assuming exact 1/f noise to

simplify the solution and from numerical solutions we find that this gives an accurate result, with

the infidelity about 2% lower when the exact form is used.

Using the model of the spectrum for charge noise with β < 1, we can find optimal values ϵd,opt

and Jopt for the drive : ϵd,opt = 2ϵa
√

1 + κ
2nγϕ,0

and Jopt = ( β
2n(1−β)κ)

(1+β)/2 ϵa√
Sϵη

.The value

Jopt has a strong dependence on β, going to∞ for true 1/f noise and 0 for white noise. Because
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J is limited to between about 50 MHz, where it becomes too small to drive effectively, and tens

of GHz, we will not always be able to achieve the optimal value, but for values of β ≈ 0.7 that

have been measured previously, those limits are not reached [20]. Upon substituting in the optimal

values ϵd,opt and Jopt, we find that

1− F̄g ≈
4/5π

(
23n
β

)β/2
(1− β)(1−β)/2

√
Sϵη

√
~ZrcrQ(1−β)/2ω

(1+β)/2
r

. (3.11)

We note that (3.11) does not apply for n = 1, because there Sϵ takes on a much larger, low-

frequency value.

3.5 Expected Gate Performance

To estimate the gate time and fidelity, we now look at the range of possible values taken by the pa-

rameters in the above expressions. We first consider the impedance of the resonator. While transmis-

sion lines relying on magnetic inductance are limited to approximately the impedance of free space,

Z ≈ 377Ω, kinetic inductance has no such physical limitation. Kinetic inductance, which arises

from the inertia of electrons, can be found in several types of superconducting devices, including

nanowires formed from type II superconductors and chains of SQUIDs. Using superconducting

nanowires has yielded impedances up to 4000Ωwith quality 200,000 and chains of SQUIDs up to

50,000Ω [80, 6]. Such large impedances preclude addressing or measuring the qubit using the res-

onator. The qubits we consider, however, allow for universal control and 98% measurement fidelity

independent of the resonator, and this has the added benefit of not requiring additional high fre-
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Figure 3.2: a, Average gate fidelity simulated by a numeric solution of themaster equation with optimal values of J

and ϵd as a function of resonator quality for resonator impedances of 50Ω (standard), 500Ω (maximum formagnetic

impedance), 5000Ω (typical nanowire), 50,000Ω (SQUID array). b, CPHASE gate time for the same parameters as

in a. c and d, Average gate fidelity and gate time as ϵd is varied around its optimal value withZr = 5000 Ω and

Q = 20, 000. As quality increases, the gate time for themaximum fidelity gate increases as well, but by adjusting the

drive, faster gate times can be achievedwithminor loss of fidelity.

quency lines for resonators. High-impedance nanowires are typically much more compact than tra-

ditional resonators: for instance, a 5 GHz nanowire is of order 1 mm in length, but because it is only

100 nm wide, it can be folded so that it occupies a (20µm)2 area, or it can be extended to transport

information over longer distances. Because S-T0 qubits are typically a few µm2 in size, this retains

the small size of a quantum dot based quantum processor, necessary for scaling to large numbers on

chip.

We next turn to the qubit-resonator coupling. Because the S-T0 qubit has a dipole-like charge
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distribution, to generate a large coupling, we must maximize the coupling to one of the dots com-

prising the qubit while minimizing the coupling to the other dot. This is quantified by the lever

arm, cr = CR,r/CR − CL,r/CL, withCi,r the capacitance between the resonator and each dot

andCi the total capacitance of each dot. COMSOL simulations predict its value can range from 0

to 0.3, with cr = 0.05 for previously measured functioning S-T0 qubits in GaAs. In Fig. 3.1b-c, we

show two proposals for resonator and qubit geometries in silicon-silicon germanium (Si-SiGe) quan-

tum well devices. In Fig. 3.1c, the resonator is at the same layer as the depletion gates and laterally

adjacent to the near quantum dot, for which we predict cr to be 0.25. This large coupling relies on

precise knowledge of the location of the dot, as a small shift would substantially reduce the coupling.

In Fig. 3.1b, we replace one of the accumulation mode gates, which are vertically separated by an ad-

ditional oxide layer, with the resonator, for which we predict cr to be 0.02. An ideal coupler would

be as large as the gate in Fig. 3.1b, making it robust to different quantum dot locations, but would

need to be separated by a much thinner layer of oxide, as has been used in recent experiments with

aluminum gates separated with alumina [59].

We perform simulations of the density matrix to predict the expected average gate fidelity and

gate time, as well as to confirm the power law behavior in Eq. (3.11). To solve the differential equa-

tion for the density matrix of the system, we use a 4th order Runge-Kutta equation. The resonator

can be populated up to 5 photons; the 5th level has a population of lower than 10−4 for all simu-

lations. We use time spacing of 20 ps unless this gives more than 10,000 or under 200 time steps,

in which case we use those limiting values. We use parameters Sϵ = 1.4 × 10−16 eV2/Hz1−β ,

β = 0.67, cr = 0.18, the lever arm for devices that have been measured in GaAs,wr/(2π) = 6.5
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GHz and η = 0.086, which corresponds to a Hahn echo pulse. The value of Sϵ was measured in a

GaAs device, as it has not available for any silicon devices at this time.

In Fig. 3.2a-b, we plot the simulated fidelity as a function of resonator quality and impedance.

Fidelity ranges from 96% to 99.3%, an improvement of a factor of 5 to 25 compared to the maxi-

mum Bell state fidelity of 72% achieved for the static capacitive gate reported in Ref. [86]. The

dephasing experienced by the qubit increases by a factor of close to 3; dephasing through the res-

onator increases the total rate by only about 50%, however driving J doubles the total noise. Gate

times near 10 ns are readily achievable, as can be seen by inspection of Fig. 3.2b,d. The dependence

of ϵd,opt and Jopt on the resonator’s quality and the qubits’ noise bath acts to equalize the effective

noise from the two noise sources, the qubits and the resonator, for whatever the absolute values of

noise may be. For instance, an increase in Sϵ requires that we decrease J and ϵd to keep the total

noise originating with the qubit constant. As a result, the optimal gate time increases with quality,

as that dictates a reduction of Jopt and ϵd,opt. We can decrease the gate time at the cost of fidelity, as

is shown in Fig. 3.2c-d. Here, we sweep ϵd while keeping all other parameters constant, and see that

gate time has an inverse linear dependence on it, while the infidelity has a quadratic relationship on

it, so the gate time can be substantially decreased without a corresponding excessive decrease in the

fidelity. We note that the values of g we find are generally larger than those in recent experimental

works [60, 45, 81], which we attribute to increased coupling to charge in the singlet-triplet qubit and

the ability to increase g by driving the qubit in our model.

While our focus has been on the coupling between two qubits, it is straightforward to include

more qubits. Because the resonator does not require additional wiring, incorporating a resonator
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for each qubit pair does not impose scaling challenges. Another benefit of using resonators for two-

qubit gates arises from the relative ease of fabricating and characterizing resonators compared to spin

qubits. Improving the static capacitive gate’s fidelity requires reducing charge noise in the system,

which remains poorly understood and is challenging and time-consuming to measure. By compar-

ison, resonator fabrication is an area of extremely active research, and dozens of resonators can be

made and tested at once. High-impedance resonators will enable entangling gates to be performed

in noisier samples than the pristine GaAs heterostructures that have been used in the past, an asset

in the endeavor to scale to larger numbers of qubits.

3.6 Lever Arms

For singlet-triplet qubits, it is common to define ϵ = VL−VR
2 , with VL and VR the voltages on the

RF gates directly over the left and right quantum dots, because that can be directly set. Here, we

have defined ϵ = µL − µR, the difference in chemical potential between the left and right dots.

Two terms are affected by this change of definition: dJ
dϵ and Sϵ. To convert these values, we first

define Vϵ = VL−VR
2 . Then dJ

dϵ = dJ
dVϵ

dVϵ
dϵ and Sϵ = SVϵ(

dϵ
dVϵ

)2. We defineCi, i = {L,R},

to be the total capacitance of the left and right quantum dot, andCi,j , i, j = {L,R} to be the

capacitance between dot i and gate j. Then dϵ
dVϵ

= e
(
CLL−CLR

CL
− CRL−CRR

CR

)
, where e is an

electron charge. To find these capacitances, we perform a COMSOL simulation using a CAD file

of the device, which allows us to extract a capacitance matrix for the system. We find that for the

device in [20], with which Sϵ was measured, dϵ
dVϵ

= 0.182e, which allows us to transform the power
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spectrum given in the paper, in terms of voltages on the gates, to the power spectrum of the dots’

chemical potentials.

3.7 Geometric Phase Gate

3.7.1 Ideal gate operation

The ideal operation of our phase gate has been widely discussed in the ion trapping literature [46,

77]. We now give a brief outline of these results so that the discussion here is self-contained and to

establish notation. This discussion follows [77] closely.

Consider first a driven oscillator of oscillation frequency ωr. For our purposes it will be conve-

nient to work in an interaction picture at the oscillator frequency. In this picture, there will only be

a linear drive of the oscillator, which makes it easier to find the explicit time-evolution operator. A

linear drive of the oscillator takes the general form

Hint = −i[E∗(t)a− E(t)a†], (3.12)

whereE(t) is a complex amplitude describing the linear drive.

The resulting time-evolution operator generated by this Hamiltonian satisfies the differential

equation

d

dt
U(t) = −iHint(t)U(t)/~. (3.13)

There is a particularly straightforward solution to this equation using Glauber’s displacement opera-
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tors,D[α] = exp
(
αa† − α∗a

)
. The time-evolution operator forHint is

U(t) = D[α(t)] exp[Φ(t)], (3.14)

where

α(t) =

∫ t

0
dt′E(t′)/~ (3.15)

Φ(t) = Im
∫ t

0
dt′E(t′)

∫ t′

0
dt′′E∗(t′′)/~2. (3.16)

This can be checked using standard facts about displacement operators. The phase factorΦ can

be interpreted as the area enclosed in phase space by the oscillator dynamics; this can be seen by

modifying the arguments at the end of the supplementary material of [49] and is discussed in [46].

We are interested in a system of two qubits longitudinally coupled to a single oscillator, in which

case the interaction picture Hamiltonian involves only qubit-state-dependent forces on the oscillator

and can be written

Hint = −i[E∗
1(t)σz1 + E∗

2(t)σz2]a+ h.c. (3.17)

As noted in [77], because σzi is a constant of the motion and commutes with a and a†, we can ob-

tain the solution for the full unitary by replacing the drive amplitudeE(t) by the qubit operator

E1(t)σz1 + E2(t)σz2 everywhere in the solution. Realistically, there would also be some direct

drive of the oscillator of the form given by equation (3.12), but we defer consideration of this to a
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later section. The resulting time-evolution operator generated by this Hamiltonian is

U(t) = D̂[α1(t)σz1 + α2(t)σz2] exp[Φ12(t)σz1σz2] exp[Φ0(t)], (3.18)

where

αj(t) =

∫ t

0
dt′Ej(t

′)/~ (3.19)

Φ0 =Im

(∫ t

0
dt′E1(t

′)

∫ t′

0
dt′′E∗

1(t
′′) +

∫ t

0
dt′E2(t

′)

∫ t′

0
E∗

2(t
′′)

)
/~2,

Φ12 =Im(

∫ t

0
dt′E1(t

′)

∫ t′

0
dt′′E∗

2(t
′′) +

∫ t

0
dt′E2(t

′)

∫ t′

0
E∗

1(t
′′))/~2. (3.20)

We have introduced the notation

D̂[α1σz1 + α2σz2] = exp
[
(α1σz1 + α2σz2)a

† −(α∗
1σz1 + α∗

2σz2)a] .

D̂ is a qubit-state-dependent displacement of the oscillator, so it is an entangling operation that

acts on both qubits as well as the oscillator. We reserve the notationD[α] for the usual displacement

operators that act nontrivially on the oscillator alone.

In the main text, we worked in an interaction picture with respect to the drive frequency ωd,

which has the Hamiltonian described by (3.2). When we move to the interaction picture used above,
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we find that the resulting interaction picture Hamiltonian is a special case of the one in (3.17):

Hint = − i

2

[
g1e

−i∆tσz1 + g2(t)e
−i∆tσz2

]
a+ h.c. (3.21)

Thus for the purposes of the main text we are interested in the case whereEj = gje
i∆t/2. In this

case,

αj(t) = i
gj
2~∆

(
1− ei∆t

)
(3.22)

Φ12 =
g1g2
2~2∆2

(∆t− sin∆t) , (3.23)

and we want to choose a gate time such that |∆|tg = 2πn, for which αj = 0 and the gate acts only

on the qubits withΦ12 = ±ng1g2/2~2∆2, as stated in the main text.

Ultimately, we are interested in the time evolution operator generated by the HamiltonianH2 in

the original interaction picture. This is straightforward to find from the textbook discussion of the

interaction picture:

U(t) = exp[−i∆ta†a]D̂[α1(t)σz1 + α2(t)σz2] exp[Φ12(t)σz1σz2] exp[Φ0(t)].

3.7.2 Dephasing due to cavity decay

We now consider the effects of dephasing on the two-qubit gate. It is illustrative to first study the ef-

fect of the decay of photons from the resonator on its own and how this decay affects the geometric
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phase acquired. Qubit dephasing is straightforward to incorporate later because it commutes with

the gate. The restricted master equation is:

ρ̇ = −i[Hint, ρ] + 2κD[a]ρ . (3.24)

We first write the solution of this master equation for the oscillator initially in its ground state

and the pair of qubits in an initial state ρq , so that the initial state of the system is ρ(0) = |0⟩⟨0| ⊗

ρq . At the conclusion of the gate, we average (trace) over the state of the cavity. Initial coherent and

thermal states of the cavity are also tractable and will be discussed in a later section. We will restrict

attention to the case whereE1(t) = E2(t); one could write analogous expressions with different

driving on the two qubits, but certain simplifications would not occur.

We begin by defining α(t) so that it satisfies

α̇ = −κα+ E(t)/~ , (3.25)

describing the amplitude of the oscillator subject to the decay rate κ. Associated with this differen-

tial equation we define a phase, analogous to the two-qubit phase acquired in the lossless case,

Φ12(t) = 2Im
∫ t

0
dt′E(t′)α∗(t′)/~. (3.26)
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Continuing the analogy, we define a two-qubit gate performed at time tg ,

Ug = exp[iΦ12(tg)σz1σz2]. (3.27)

It can be shown that state of the qubits after evolving according to the master equation (3.24) and

averaging over the oscillator is then

ρq(tg) = UgE [ρq(0)]U †
g , (3.28)

where E is a correlated dephasing process associated with residual excitations in the oscillator at the

end of the gate and the excitations lost from the oscillator during the gate. The dephasing process E

commutes with the action of the unitary gateUg so the order of operations in equation (3.28) can be

changed as required.

The correlated dephasing process can be described as

E [ρq(0)] = ρ0 + ρodd + ρeven. (3.29)

The three contributions correspond to, respectively, zero photons, an odd number of photons, and

an even number of photons either lost from the cavity or remaining in it at the end of the pulse.
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They are defined as follows:

ρ0 = [(1 + b)I − (1− b)σz1σz2]ρq(0)[(1 + b)I − (1− b)σz1σz2]/4 , (3.30)

ρodd =
1

2

(
1− b4

)
[σz1 + σz2]ρq(0)[σz1 + σz2]/4 , (3.31)

ρeven =
1

2

(
1− b2

)2
[I + σz1σz2]ρq(0)[I + σz1σz2]/4 , (3.32)

where

b(tg) = exp

(
−4κ

∫ tg

0
dt′|α(t′)|2 − 2|α(tg)|2

)
. (3.33)

Together, the equations (3.30-3.32) provide a Kraus operator expansion for E .

As in the ideal case, we are most interested in the specific drive whereE = gei∆t/2. In this case

we find

α(t) = − g

2~
1

i∆+ κ
(e−κt − ei∆t). (3.34)

Substituting this into (3.33) yields

b(tg) = exp

[
−κtgg2

~2(∆2 + κ2)
+

g2(∆2 − κ2)

~2(∆2 + κ2)2
(cos∆tge

−κtg − 1)

+
2g2e−κtgκ∆

~2(∆2 + κ2)2
sin∆tg

]
. (3.35)

At tg = π
√
n~/g and ~∆ = 2

√
ng, this simplifies to b(tg) = exp(−π~κ/(2g

√
n))when

κ≪ ∆.
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3.7.3 Explicit solution to the master equation

In this subsection we will justify the expression for the state of the qubits at the conclusion of the

gate (3.28). Recall that this arises from solving the dynamics according to the master equation (3.24)

with the initial state ρ(0) = |0⟩⟨0| ⊗ ρq and then averaging over the state of the oscillator. The

correlated dephasing of the qubits described by (3.29) arises from both the operation of the gate and

the entanglement of the qubits with the oscillator at the conclusion of the gate. These two contribu-

tions can be seen in the two terms in the exponent on the right hand side of equation (3.33).

Our approach in this section will be to first state the solution ρ(t) to the master equation (3.24)

with the initial condition given above. We will then outline an argument that verifies that this pro-

posed solution satisfies the master equation (although we originally found the solution by solving

the master equation explicitly, the details are unnecessarily complicated to repeat here). In the sec-

ond step of the calculation, we will average over the oscillator to obtain the reduced density matrix

ρq for the qubits alone, recovering the claimed solution (3.29). Readers willing to trust this solution

may wish to skip the rest of this subsection.

It will be simpler to write various intermediate expressions as members of a one-parameter family

of correlated dephasing processes Eb that we define as follows:

Eb[ρq(0)] = ρ0 + ρodd + ρeven. (3.36)
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The terms on the right hand side are defined as

ρ0 = [(1 + b)I − (1− b)σz1σz2]× ρq(0)[(1 + b)I − (1− b)σz1σz2]/4 , (3.37)

ρodd =
1
2

(
1− b4

)
[σz1 + σz2]ρq(0)[σz1 + σz2]/4 , (3.38)

ρeven = 1
2

(
1− b2

)2
[I + σz1σz2]ρq(0)[I + σz1σz2]/4 , (3.39)

For this to be a valid quantum operation, the parameter b needs to satisfy 0 ≤ b ≤ 1. This

definition has the useful property that

Eb1 [Eb2 [ρ]] = Eb1b2 [ρ]. (3.40)

The value of b for the solution is given in (3.33).

Given that notation, the solution to the master equation with our desired initial state is

ρ(t) = UgD̂[α(σz1 + σz2)]
(
|0⟩⟨0| ⊗ Ebl [ρq]

)
D̂†[α(σz1 + σz2)]U

†
g , (3.41)

where α, andUg are defined above in equations (3.25), and (3.27) respectively and bl, which repre-

sents the contribution to qubit dephasing arising from the loss of excitations from the oscillator

during the operation of the gate, is defined as

bl(t) = exp

(
−4κ

∫ t

0
dt′|α(t′)|2

)
. (3.42)
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There are several ways to establish this solution. In our original approach we found analytical

solutions to the quantum trajectory equations that describe the dynamics of the system as the oscil-

lator emits excitations into the bath[104, 13] and then summed over the number of emissions and

averaged over the various emission times. In this solution, ρ0 is associated with trajectories in which

no emissions occur, ρodd with an odd number of emissions, and ρeven with an even number of emis-

sions. While this calculation gives a nice physical picture, the details are tedious and to verify the

solution we just need to check that it satisfies the master equation and has the appropriate initial

condition as we do in the following.

We begin by performing the well-known polaron transform, often used to analyze the master

equations for longitudinal coupling of qubits to oscillators [28]. This transformation simplifies

the dynamics by essentially decoupling the qubits and the oscillator. The “polaron picture” density

matrix is defined as follows:

ρ̃(t) = D̂[−α(σz1 + σz2)]ρ(t)D̂
†[−α(σz1 + σz2)]. (3.43)

Since α(0) = 0, the initial condition for this master equation is ρ̃ = |0⟩⟨0| ⊗ ρq(0). Our proposed

solution for ρ̃(t), from (3.41), is

ρ̃(t) = |0⟩⟨0| ⊗
(
UgEbl [ρq]U

†
g

)
. (3.44)

In the polaron picture, the oscillator remains in the ground state at all times.
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The master equation for ρ̃ is

d

dt
ρ̃ =

(
d

dt
D̂[−α(σz1 + σz2)]

)
ρD̂†[−α(σz1 + σz2)]

+ D̂[−α(σz1 + σz2)]ρ

(
d

dt
D̂[−α(σz1 + σz2)]

)†

+ D̂[−α(σz1 + σz2)]

(
d

dt
ρ(t)

)
D̂†[−α(σz1 + σz2)]. (3.45)

Standard techniques can be used to show that

d

dt
D̂[−α(σz1 + σz2)] =[(α̇∗a− α̇a†)(σz1 + σz2) + (α̇α∗ − α̇∗α)(σz1σz2 + I)]

×D̂[−α(σz1 + σz2)]. (3.46)

After some calculations relying on the fact that the oscillator remains in its ground state, we find

˙̃ρ = −i[H̃int, ρ̃] + 2κ|α(t)|2D[σz1 + σz2]ρ̃, (3.47)

where

H̃int = −i[E(t)α∗(t)− E∗(t)α(t)]σz1σz2 (3.48)

and α(t) is a solution to equation (3.25).

It is easy to check that ρ̃(t) as given in (3.44) satisfies the polaron picture master equation by sub-
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stituting ρ̃ into the left and right hand side of (3.47) and checking that they match. This therefore

shows that ρ(t) is the correct solution of the original master equation.

The final step to find the state of the qubits ρq(t) is to average over the oscillator by taking the

partial trace

ρq(t) = UgTrcav
[
D̂[α(σz1 + σz2)] ×

(
|0⟩⟨0| ⊗ ρ′q

)
D̂†[α(σz1 + σz2)]

]
U †
g , (3.49)

where ρ′q = Ebl [ρq]. To facilitate the calculation of the partial trace note that

D̂[α(σz1 + σz2)] =D[2α]⊗ |00⟩⟨00|+ I ⊗ |01⟩⟨01|

+ I ⊗ |10⟩⟨10|+D[−2α]⊗ |11⟩⟨11|. (3.50)

We can make use of the following identity for a pair of coherent states,

Tr[|α⟩⟨β|] = ⟨β|α⟩ = e−|α|2/2−|β|2/2+β∗α. (3.51)

It is then straightforward to verify that

Trcav
[
D̂[α1σz1 + α2σz2]

(
|0⟩⟨0| ⊗ ρ′q

)
D̂†[α1σz1 + α2σz2]

]
= Ebe [ρ′q],

where we have defined

be(t) = exp
(
−2κ|α(t)|2

)
. (3.52)
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be is the contribution to the dephasing of the qubits arising from the entanglement of the qubits

with the oscillator at the conclusion of the gate.

Therefore, using (3.40), we obtain the desired result

ρq(tg) = UgEb[ρq]U †
g , (3.53)

with b(t) = bl(t)be(t) given by equation (3.33).

3.7.4 Effect of direct oscillator drive and non-vacuum initial state

It may seem overly restrictive to restrict the initial oscillator state to the ground state. In practice, we

would like to understand the behavior of the gate for both initial coherent and initial thermal states

of the oscillator. Likewise, in practice the longitudinal coupling of the qubits to the oscillator will

involve some direct drive of the oscillator, and we would like to model this effect. In this section, we

explain how to extend the solution to these cases.

We consider an interaction picture Hamiltonian of the form

Hint = −i[E∗
c (t) + E∗(t)σz1 + E∗(t)σz2]a+ h.c. (3.54)

which includes a direct cavity driveEc. We consider initial states of the form ρ(0) = |β⟩⟨β| ⊗

ρq , where |β⟩ is a coherent state. Finding the solution for an initial coherent state also allows us to

model thermal states by averaging over a Gaussian probability distribution for β.
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In the limiting case where the longitudinal coupling is negligible, it is straightforward to show

that the solution is ρ(t) = |αc(t)⟩⟨αc(t)| ⊗ ρq where αc(t) satisfies

α̇c = −καc + Ec/~, (3.55)

and αc(0) = β. Following the approach used in the previous section, we define

ρ̃(t) = D[−αc]ρ(t)D
†[−αc], (3.56)

so that ρ̃(t) = |0⟩⟨0| ⊗ ρq at all times for negligible longitudinal coupling.

Working with a master equation for ρ̃, we have

˙̃ρ = Ḋ[−αc]ρD
†[−αc] +D[−αc]ρ

(
Ḋ[−αc]

)†
+D[−αc]ρ̇(t)D

†[−αc].

We find

˙̃ρ =− (α̇∗
ca+ α̇ca

†)ρ̃− ρ̃(α̇ca
† + α̇∗

ca)− i[−iE∗
ca+ iEca

†, ρ̃]− i[Hint, ρ̃] + 2κD[a+ αc]ρ̃

=− i[H̃int, ρ̃] + 2κD[a]ρ̃, (3.57)

where

H̃int = −i[E∗
c (t)a− Ec(t)a

†](σz1 + σz2)− i[α∗
c(t)E

∗
c (t)− αc(t)Ec(t)](σz1 + σz2).
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We see that the coherent state in the oscillator can be handled by adding a classical drive that af-

fects only the qubits. Since this drive term commutes with the terms that couple the qubits and the

cavity, we can infer the solution to this master equation from the solution with no extra drive by

adding an appropriate local unitaryU1q at the end of the calculation.

Again, we are interested in the reduced state of the qubits at the conclusion of the gate, which is

given by ρq(tg) = Trcav[ρ(tg)]. Because the displacement is a unitary that acts only on the oscil-

lator, it does not affect the partial trace, so ρq(tg) = Trcav[ρ̃(tg)] and we can work entirely in this

displaced picture to calculate the quality of the gate. We find as before

ρq(tg) = U1qUgEb[ρq]U †
gU

†
1q, (3.58)

with b(t) given by equation (3.33).

3.7.5 Adding qubit dephasing

The above analysis considered only the restricted master equation that describes dephasing due

to cavity decay. As we noted above, it is straightforward to include qubit dephasing because all of

the dephasing terms commute with one another. That is, the effect of intrinsic dephasing on each

qubit can be described as a noise map on the input density matrix that acts independently of, and

commutes with, the noise resulting from cavity decay.

As discussed in the main text, qubit dephasing for two qubits is described by a contribution to

the master equation ρ̇ = γϕ,1D[σz1]ρ + γϕ,2D[σz2]ρ, and in the absence of coupling to the
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oscillator (g = 0), this has the following solution:

ρq(t) =Eq[ρq(0)] = (1− p1)(1− p2)ρq(0) + p1(1− p2)σz1ρq(0)σz1

+ p2(1− p1)σz2ρq(0)σz2 + p1p2σz1σz2ρq(0)σz1σz2, (3.59)

where pj = 1
2(1−e

−γϕ,jt).This intrinsic dephasing of the qubits is independent of the coupling

to the cavity because all terms commute with σz1 and σz2, so the overall solution is

ρq(tg) = UgE [Eq[ρq(0)]]U †
g . (3.60)

The structure of this solution would be unchanged if the intrinsic qubit dephasing were non-

Markovian and therefore not described by a master equation. The effect of the dephasing would still

be described by some single qubit dephasing process of the same form as (3.59) with some values of

p1 and p2, so (3.60) holds.
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4
Quantum Dot and Singlet-Triplet Qubit

Tuning and Measurement

4.1 Drift

Surprisingly, drift proved to be the most challenging problem in tuning up S-T0 qubits with res-

onators. In the first generation of devices made from material provided by the Manfra group at
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Purdue, which did not have resonators, this was a minor problem, with the junction between the

(1,1) and (0,2) states slowly moving to more positive gate voltages over periods of months. However,

in resonator devices, there were shifts of hundreds of millivolt after performing a singlet set of one-

dimensional gate sweeps to check that all were working. Then, while quantum dots could typically

be tuned up, they were not in the correct place, and they were often over tunnel coupled to the leads

and could not be adjusted by local gates.

In troubleshooting, we made several devices using the same process but without the resonators,

and these had the same issues. A very similar gate design had been successfully tuned many times

previously. We had made some changes to the fabrication process to allow for the resonators. We

had found that depositing NbN on samples after using the image reversal photoresist AZ-5214E on

them, the NbN no longer superconducting. In one sample, we tried to remove this residue by with

an ozone clean of the sample before annealing the ohmics, and in other samples by using PMMA in

place of AZ-5214E in all parts of the recipe. We believe that the resist residue may have been acting as

a tunnel barrier on the surface, preventing charge from accumulating.

Similar types of effects had been seen by other groups using the material, and the Manfra group

investigated the physical cause was studied in Fallahi et al. [24]. They concluded that the electrons

were being trapped by a donor state in the heterostructure shallower than the DX state and pos-

sessing a barrier to emission. It is likely that this led to the issues with tuning: the trapped electron

created a electrical potential around the dots that we couldn’t control, the precision afforded by the

gates not sufficient to counteract the one internal to the material.

One approach to reducing this effect is to change the growth pattern to limit tunneling, and this
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may be the best approach in the long term. We took the short-term solution to solving this, growing

10 nm of HfO2 on the surface before depositing gates [12]. Devices made with this oxide layer did

not have drift issues, and in fact the incidence of “switches,” multiple microvolt level jumps in volt-

age that occur over hour or day long periods, completely disappeared. However, as will be discussed

at the end of this chapter, it had high-frequency noise levels about a factor of 10 higher than in pre-

vious devices. That HfO2 was grown at 130 C, and it is thought at higher temperatures, HfO2 is of

higher quality. We began growing it at 220 C, and are planning to measure a device soon to see if the

noise issues have been reduced.

4.2 Readout

Readout of the singlet-triplet qubit is performed using a nearby quantum dot, shown in Fig. 4.1a.

This quantum dot is tuned so that it is at the most sensitive point of a Coulomb blockade peak,

making its conductance maximally sensitive to its local charge environment. Then, when electrons

move into the double dot from the 2DEG, or between the two dots, they cause a measurable shift

in the quantum dot’s conductance. This is used both for differentiating singlet and triplet states,

used primarily when performing quantum information experiments and to measure the number of

electrons in the quantum dot, used for the initial tuning to get the correct number of electrons in

each dot and other parameters appropriately set.

To increase the speed of these measurements, we use RF reflectometry of the quantum with

a tank circuit. These measurements have been described well in other theses [92], but I will go
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Figure 4.1: a) SEM of double quantum dot with resonator. Resonator is the darker grey. The quantum dot for readout

is at far left, with its area highlighted in teal. The path throughwhichmeasurement current travels is highlighted in

yellow. b) Tank circuit shown at right. R represents the resistance of the quantum dot.

through the basic equations for comprehensiveness and discuss the practice of forming these cir-

cuits with quantum dots. The measurement circuit circuit used in these experiments is described in

more detail in [27, 85].

The reflected signal from an impedanceZin is

S11 =
Zin − Z0

Zin + Z0
, (4.1)

so the sensitivity to changes in impedance is

dS11
dZin

=
2Z0

(Z0 + Zin)2
(4.2)

These will only start to have meaningful sensitivity well under a conductance quanta (7.75e-5 S). If

we were to only send an RF signal down to the quantum dot and measure its reflection from it then,

we can see from (4.2), the sensitivity is approximately, 2Z0/R
2 ≈ 10−7 S, near zero.

Incorporating a tank circuit “steps” down the quantum dot’s impedance toZ0 on resonance,
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allowing matching. The circuit is shown in Fig. 4.1bwith the coaxial line connected to a printed

circuit board with a Coilcraft wire-wound ceramic (1206CS) inductor soldered onto it. This is con-

nected to the sensing quantum dot through wire bonds and then ohmic contacts. The capacitance

to ground arises from parasitic capacitance, whose source is discussed at the end of the section. The

input impedance of this circuit is:

Zin = iωL+R ||1/iωCp = iωL+
R

1 + iωCpR
=
iωL+R(1− ω2CpL)

1 + iωCpR
(4.3)

We will now defineZLC =
√
L/C . The resonance occurs when the imaginary part ofZin is 0, at

frequency

ω0 = 1/
√
LC
√

1− (ZLC/Rq)2 (4.4)

At ω0, the real part of the impedance is equal toZ2
LC/R. If the resistance of the sensor isR =

Z2
LC/Z0, we achieve matching, and S11 → 0, while the sensitivity from (4.2) is 0.5 S, a huge im-

provement over the measurement without a tank circuit.

There are a number of common issues that require troubleshooting when setting these up, and

I will now discuss some of the main ones. Our purpose here has been to maximize the sensitivity of

the measurement to the conductance of the quantum dot. To make comparisons, we solve for dS11
dG ,

whereG = 1/R. First, we calculate dZin
dG :

dZin

dG
= 1/(

√
1/Z2

LC/−G2 − iG)2 ≈ Z2
LC , (4.5)
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where we’ve made the approximation because we are working in the regime whereG ≈ 1/(25ZLC)

Putting everything together,

dS11
dG

=
dS11
dZin

dZin

dG
=

2Z0Z
2
LC

(Z0 + Z2
LCG)

2
(4.6)

When we are on matching,Z2
LCG = Z0, and the result is

dS11
dG

= Z2
LC/2Z0 =

1

2Gmatch
(4.7)

In the typical case, however, we are on resonance (Im(Z) = 0) but not at the matching resistance.

In those cases, it is simplest to write the conductance in terms of the matching resistance, so that

G = Gmatch/n. Then,

dS11
dG

= Z2
LC/2Z0 =

2

Gmatch(1 + 1/n)2
(4.8)

By moving to lower matching conductances, we increase the sensitivity. Perhaps more impor-

tantly, at lower conductances the quantum dot itself becomes more sensitive to the qubit. As a

metric, we use the change in reflection due to a change in the voltage of a gate next to the qubit. By

working at the maximum sensitivity, about 0.2 e2/h, we are at twice the sensitivity compared to

when the dot is tuned to be a quantum point contact, at about 0.5 e2/h.

In the current implementation of the tank circuit, we have two tank circuits multiplexed on one

line, with the target frequency of one at 220 MHz and the other at 240 MHz. Typically upon get-
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ting a new board, we will choose inductors to put the resonant frequencies in the correct range. Typ-

ical inductors will have values from 620 nH to 820 nH, and matching resistances range from about

20, 000 Ω to 30, 000 Ω. Both of these are above the matching conductance of a quantum point

contact, so we can do better measurements by increasing the tank circuit’s impedance.

It is useful to consider where the capacitance and resistance come from in this system. In GaAs,

the resistance is simple: the wire bonds and gates are negligible (a few ohms). Using the ohmic

process discussed in Appendix C, the contact resistance and undepleted 2DEG resistance across

the mesa are about 30Ω together. After the quantum dot, the current travels to ground through

a 2000 Ω resistor, for filtering, but is probably primarily grounded through shunt capacitance.

Thus, at the matching resistance, well over 90% of the resistance is at the quantum dot. In the case

of accumulation-mode SiGe devices, this ratio changes dramatically due to the increased resistance

of the 2DEG, making the conductance model we use above less useful.

We separate the capacitance into three sources: capacitance across the inductor, capacitance to

the PCB, and capacitance of the 2DEG. The inductors themselves have a capacitance of about 200

fF. The PCB typically has the largest share of the capacitance, due to the unavoidable presence of

metal on its surface. We saw an increase in that capacitance when we changed over to SMPM surface

mount connectors for the RF lines for qubit control instead of connecting coaxial cables directly to

the bonding pins. We have found that decreasing the board thickness by half decreased the capaci-

tance by 150 fF, and that removing the metal plating on vias for the tank circuit had a similar effect.

In this configuration, the capacitance is about 350 fF. On the device itself, we made two adjustments

to reduce the capacitance: first, moving bonding pads away from the bonding pad for readout, and
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second, reducing the size of the mesa. Together, these reduced the device’s capacitance to 140 fF

from about 250 fF. We include these numbers to give a useful reference for those developing their

own RF reflectometry systems.

This could certainly be reduced further, which, in addition to reducing the total capacitance,

would also have the effect of making it possible to tune the sensor gate closest to the input signal

more widely; as currently constituted, it must be set negative enough to deplete the 2DEG under-

neath it, or the capacitance of the ohmics is so high that no resonance can be seen. This wouldn’t

be necessary if the 2DEG were confined through etching only to the region they are meant to ulti-

mately travel in.

So what improvements can be made? It’s important to note that one of the major benefits of

these tank circuits is that they are easy to use. The inductors are inexpensive and can easily be changed

out to change the frequency. Their quality at 200 MHz is sufficient for the resistances we are match-

ing. The bandwidth is about 10 MHz, which allows for two tank circuits to be multiplexed within

the bandwidth of the circulator (the limiting feature in the circuit), reducing the amount of over-

head by a factor of two. The frequency is low enough that little care has to be taken in impedance

matching, and there are low losses in the coaxial lines going up the fridge. It is likely that improve-

ments in matching resistance of about 50% can be made by further optimizing the board and gate

design, but for more than that, a new approach is required. On the simpler end would be investing

more in boards made with Rogers instead of FR-4, and making the RF lines properly impedance

matched, allowing us to move the RF connectors away from the tank circuit. More invasive would

be putting the inductor on the device, requiring additional fabrication, losing tunability of fre-
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quency, and likely pushing the frequency of the circuit up. At this point, other sensing means al-

together, such as gate or resonator based dispersive sensing, become more appealing.

4.3 Software Feedback of Nuclear Magnetic Gradient

Because the nuclear bath fluctuates on the timescale of seconds, there are a number of techniques

that can be exploited to reduce its effect, such as the Hamiltonian estimation discussed in Chapter

2. To set the mean value of the gradient to our chosen value and reduce its fluctuations, we’ve typ-

ically used the technique of nuclear feedback described in Bluhm et al. [9] in the past, but recently

have begun using software feedback. In software feedback, we measure the gradient, then perform

singlet or triplet-plus pumping (in which we load a singlet, and adiabatically cross through the S-T+

crossing, causing a spin-flip in the nuclei, or vice versa) for an amount of time calculated to shift the

gradient to the desired value, then measure again, and repeat until the gradient is within a set tol-

erance of the given value. We have implemented this with using a Kalman filter, which lets us also

track the pumping rates over time, and see that when the device is centered, we pump at about 0.1

to 0.2 MHz per ms (this corresponds to 30 µT). To minimize the measurement time, we collect data

with the maximum time spacing possible that lets us resolve the frequency (we have used up to 4 ns,

but larger values are possible) and fitting the data with a fast Fourier transform. Performing all of

this in MATLAB, we can extend T ∗
2 to about 250 ns. It’s certainly possible to do better than this; for

instance, using an FPGA to analyze the data, we can achieve T ∗
2 of 1 µs.

However, this would increase the amount of overhead required, making basic experiments more
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difficult to set up and run. So unless experiments specifically are meaningfully improved by enlarg-

ing T ∗
2 , it’s unlikely to be worth using. For instance, increasing T ∗

2 also reduces the amount of data it

is possible to take before performing feedback again. We use the measurement of the diffusion rate

from Chapter 2,D = 45 kHz2/µs to approximate T ∗
2 as a function of the amount of time we run

experiments for. If we assume that we feedback until∆Bz has standard deviation σ0, and then run

experiments for a time t such that σ0 =
√
Dt, T ∗

2 ≈ 1/1.3(π
√
2Dt) ≈ 800 ns/

√
t where t is

the amount of time in milliseconds. If we assume that each feedback run takes a constant amount of

time (this is reasonable, because too achieve larger T ∗
2 , we must achieve proportionally tighter toler-

ance on the set point), then working with T ∗
2 = 1 µs takes 16 times longer than T ∗

2 = 250 ns, so it’s

important to make sure that the trade off is worth it.

4.4 Charge Noise

In measuring the S-T0-resonator device, after checking that it was tunable, we were interested in if it

had similar amounts of charge noise as had been measured in the past. We make two measurements

of charge noise, the so-called low-frequency and high-frequency quantities.

The low-frequency noise measurement is similar to the dephasing curve measured in the previous

section on Software Feedback (4.3). The pulse sequence is the Ramsey pulse sequence discussed in

Chapter 1, in which we load a |0⟩, perform an πx/2 gate to rotate the state onto the y-axis of the

Bloch Sphere, then turn on exchange, finally reading the state out with another πx/2 gate to the z-

axis, followed by measurement. We consider the noise to be quasistatic, and thus can use the decay
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function derived in Chapter 1, 1.9. We think of the noise as arising from charge fluctuations leading

to fluctuations in ϵ, δϵ. Then the amount of frequency noise is δJ = dJ
dϵ δϵ =

1√
2πT ∗

2

.Numerically

differentiating is quite noisy, so instead we make the empirically valid approximation that

J(ϵ) = J0 + J1 exp(−ϵ/ϵ0), (4.9)

and so we can write

dJ

dϵ
= −J1/ϵ0 exp(−ϵ/ϵ0). (4.10)

We can then fit

−J1/ϵ0 exp(−ϵ/ϵ0)δϵ+ σ0 =
1√
2πT ∗

2

, (4.11)

where we have included σ0 as a first-order approximation to noise not dependent on dJ
dϵ . Fitting this

equation gives us δϵ = 18 µV . Again, the shaky units of ϵ come out to play: this ϵ refers to the

voltages applied to the gates, not the chemical potential of the dot. To get a meaningful unit for the

fluctuations in the qubit energy, we need the lever arm, which we did not measure for this device.

However, the gate design is very similar to the device in Dial et al. [20], so we can directly compare

the measured amounts of noise. In that case, δϵ = 8µV , indicating low-frequency noise as increased

by about a factor of two. σ0 is found to be 1 MHz.

One useful metric isQ = JT ∗
2 , the number of coherent oscillations.

Q = ϵ0
J

J − J0
(4.12)
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Figure 4.2: a) The linear fit for the high frequency noise. b) Linear fit for low frequency noise.

The Q for this device is around 3, about 4 times smaller in this device than in the previous device.

Half of the reduction comes from increased noise, and half because ϵ0 is about half as large as in the

past. Qualitatively, this is probably related to a larger tunnel-coupling in this device than in the past.

The high-frequency measurement is slightly more complicated. We follow the protocol described in

Appendix B, assuming that the power spectral density has the form S(ω) = Sϵ/ω
β , so that

T 1+β
2 =

(
η(β)Sϵ

dJ

dϵ

2)−1

. (4.13)

Then, we measure T2, the Hahn echo coherence time, as a function of J, and extract the noise

power, β, and magnitude Sϵ. A summary of the data analysis is shown in Fig. 4.3. We note in par-

ticular that the fit for β is quite noisy. While this may be due to flaws in the data fit, it also may indi-

cate that power law noise is no longer the correct form for the noise seen in the device, and other

forms, such as the combination of white and 1/f noise, are worth examining. While the maxi-
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Figure 4.3: a) Numerically differentiated data for dJ
dϵ (red) and dJ

dϵ extracted from fit toJ(ϵ) (blue). b)T2 for echo data
plotted vs. J(ϵ). c) Number of coherent oscillations for Hahn echo data. d)β , the noise power, plotted vs. J(ϵ)

mum likelihood value of β, 0.75, is similar to the value of 0.7 measured in the past, the magnitude

of the noise at 1 MHz is much larger, at 4 nV/
√

Hz. We have measured 0.5 nV/
√

Hz [20] and

1.5 nV/
√

Hz with other material grown by Mike Manfra.

We solve forQe, the number of coherent oscillations in the Hahn Echo experiment, using equa-

tions (4.9), (4.10) and (B.12), to find

Qe = T2J =
J

[Sϵη(β)(J − J0)2/ϵ20]
1/(1+β)

. (4.14)
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While we largely don’t see the expected dependence on J , we can use this equation to compare these

values ofQe to those measured in the past. Values ofQe in the previous data set were almost 20

times higher, at up to 500. Again, while part of the reduction stems from the increase in noise, an-

other component comes from the change in ϵ0,which hasQ has a nearly nearly linear dependence

on. It would be interesting in the future to investigate if it would be possible to increase theQe val-

ues of the device by reducing ϵ0.
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5
Superconducting Nanowire Fabrication

and Measurements

Spin qubits have reduced coupling to charge compared to charge qubits, giving them far larger de-

phasing times and making them more viable for fault tolerant quantum computing. However, this

also makes coupling to other qubits challenging, as quantum-dot-based qubits typically require elec-
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tric charge in some form to mediate two-qubit interactions, as the magnetic fields generated by elec-

tron spins are too weak. As discussed in the previous chapter, using a resonator with characteristic

impedance larger than 50 Ω enhances the coupling between qubit and resonator, because the mag-

nitude of the voltage on the resonator antinode is proportional to the square root of the impedance.

Increasing the impedance is thus a way to increase the gate speed without directly increasing the gate

noise, making it an extremely valuable approach to improving gate fidelities.

To achieve large impedances of thousands of ohms, working with kinetic inductance is necessary,

because magnetic inductance is limited to approximately the impedance of vacuum, 377 Ω. Kinetic

inductance arises from the inertia of charge carriers in the system. We can derive it using the Drude

model, writing the equation of motion for charged particles in an electric field as

mv̇ = qE +mv/τ,

where τ is the mean free time,m the particle’s mass and q its charge. In superconductors, τ → ∞,

and the right term drops out. IfE is driven sinusoidally at frequency ω, we can solve for this easily,

finding

v0e
iωt =

qE0

iωm
eiωt, (5.1)

where we’ve used the ‘0’ subscript to describe the amplitude of oscillating terms. This has the same

linear dependence of velocity on electric field as magnetic inductance, though of course the coeffi-

cients and physical origin are completely different (and this breaks down as ω → 0, as the system
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will stop superconducting at some point). We make this more explicit by considering a wire made

out of a superconducting kinetic inductor with length l, cross-sectional areaA, and supercurrent

density ns, and describe the current density and voltage across it:

J0 = ns(2e)v0 =
2e2ns
iωm

E0, V =
iωme

2e2ns

l

A
I (5.2)

Thus the kinetic inductanceLkin is equal to l
A

me
2e2ns

. There are two clear properties of the wire,

then, that we can use to maximize the kinetic inductance: geometric dimensions and supercurrent

density. The former is controlled in fabrication, by growing thin films, typically under 20 nm, and

and writing the wires to be about 100 nm wide. The limitations to these dimensions come from the

breakdown of superconducting behavior, and are discussed in the following sections. The inverse

dependence on supercurrent density, can be understood by noting that the fewer charge carriers that

are being excited, the greater the speed each has to travel at to achieve a given current. These low den-

sity superconductors can be achieved in a number of ways, include chains of SQUIDs [6], granular

aluminum [31], and the approach we examine in this work, type-II superconductors. Titanium ni-

tride, niobium titanium nitride and niobium nitride (NbN) the most typically used; in this work we

focus on NbN.

Niobium nitride has been studied for decades, with Keskar [38] in 1974 describing sputtered

NbN films with upper critical fields of up to 290 kOe and transition temperatures (Tc) of 17.3 K.

Such high values of Tc are achieved by depositing above 600 °C on substrates such as MgO, which

is nearly lattice matched to NbN. GaAs is latticed mismatched by 27%, and the arsenic begins to
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evaporate above 400 °C, both of which lead to Tc being reduced to 14.7 K on GaAs [54].

The fabrication of NbN nanowires was pioneered in the field of hot-electron bolometry, in

which the narrow, thin superconducting films are meant to be easily turned normal, so that they

are effective single electron sensors [30]. As we learned quickly, changing the application, and hence

some of the fabrication techniques, can cause meaningful changes in results. The fabrication pro-

cesses for bolometers typically involve depositing NbN on a bare substrate, and proceeding from

there. By contrast, any resonators meant to be coupled with quantum dots will face other fabrica-

tion challenges. For example, the heterostructure will have a two-dimensional electron gas, which

will need to be removed to prevent dissipation. For this reason, one focus has been developing tech-

niques to put the resonator on a separate chip as the quantum dot, then connect them via indium

bumps [78]. In recent year, there has also been increasing interest in using them as resonators for

quantum computing purposes [80]. We present what we’ve learned about fabricating resonators in

quantum-dot-compatible processes below.

5.1 Sputtering and Film Tests

We sputter the NbN films in an AJA DC magnetron sputterer, with a 2” 99.999% Nb target at

power 200 W, pressure 3 mTorr, argon flow of 50 sccm, and N2 flow of about 5 sccm. The system

has a load lock, cryopump, and base pressure of about 10−8 Torr. We sputter with the sample

holder held at room temperature (through water cooling). We note that the most straightforward

qubit-resonator devices sputter the NbN sheet onto a substrate partially covered in a electron beam
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or photo resist, due to the potential for damaging the heterostructure when etching the region

where the quantum dot will be formed. The resists we work with cannot be heated above 180 °C,

at which point there are no benefits from heating the substrate, so we are content to work at room

temperature.

We perform regular characterizations of the Tc of films of NbN, in particular after opening the

chamber or other maintenance. While we are largely satisfied at this time that our protocols ensure

consistent results, we find that performing these measurements has allowed us to stay ahead of main-

tenance and other film issues.

To characterize films, we typically cut 4 mm square pieces of GaAs or high-resistivity silicon, per-

form a four-solvent clean, and then load them in the sputterer. Once sputtered, the film is glued to

a PCB that has a RuOx thermometer from Lakeshore Cryotronics connected to it. Contact is made

to the 4 corners using silver paint. We then measure the Tc by dipping the PCB into a helium de-

war while measuring the sample’s resistivity via a van der Pauw measurement. The temperature is

monitored at the same time and varies as a function of the height of the PCB in the dewar. While

this is clearly a noisy measurement, it suffices for our measurements, which are meant to determine

differences between films over time and for different processes. It has been invaluable in discovering

surprising degradations in process quality, and we find that the results we’ve gathered track those

acquired by members of the Lukin group measuring similar samples in a cryogenic probe station.

We believe that many of the small shifts we see in Tc over time come from variations in sputter

rate over time. While the rate is largely constant over short stretches of time, between a new tar-

get and a half-eroded target, the rate decreases by about 15%. Likewise, while small changes on the
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Figure 5.1: Tc measured for NbN films as a function of thickness, substrate, and preparation technique.

order of 10-20% in the rate of nitrogen gas flow into the chamber do not affect the rate, if the rate

is changed by a factor of 4, the rate is diminished by about 20%. For this reason, we limit usage of

the Nb target to thin films, to slow down erosion of the target, making recalibration necessary only

rarely.

We find that after closing and pumping down the chamber, we see an increase in Tc of about 1 K

by performing a titanium evaporation (using the electron beam evaporator in the system) at least

an hour before. While it’s not clear that it’s necessary to do this each time a sample is loaded, we

have adopted that procedure as a way to compensate for the frequent use of the chamber by other

users. However, we do not see any correlation between the pressure sputtered at and the film quality.

The Lukin group has performed extensive studies of different N2 percentage and pressure, but have

either found a reduction in Tc or no change. While we have seen enhanced Tc at higher powers,
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these seem to damage the target, leading to lower Tc over time.

With the Tc measurement method we use, transition width has not been a useful diagnostic,

likely due to the noisiness of our measurements. In general, we have not found that resistivity is

a useful metric. The resistivities we measure are higher than those found in the literature, but we

believe that this is largely because those are typically sputtered at elevated temperatures.

The film tests have also been helpful in understanding the effects of processing on the devices.

We performed a number of exploratory tests to get a sense of how Tc varied with substrate, thick-

ness, and preparation method, shown in Fig. 5.1. Along with the clear decrease of Tc with a decrease

in thickness, we also see negative effects from spinning the resist on the chip and adding ALD. How-

ever, later we did a more systematic test, cutting 7 samples from GaAs heterostructure, performed

a varied set of etches, anneals, resist spins, ALD growth, and cleans on them, then sputtered 22 nm

of NbN all at the same time. The measured Tc were all equal to within 0.2K, approximately the

sensitivity of the measurement. It’s possible that they were more similar because they were sputtered

at the same time, and thus lacked some of the variations discussed above, or it may be because these

are on the thicker side, and the surface may be unimportant in such cases. Finally, it’s possible that

other parts of the fabrication process, more difficult to replicate – developing the resist, performing

evaporation, have a far more meaningful effect.
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Figure 5.2: Tc is plotted for several nanowires in blue, with theTc for films of the same thickness plotted in red.

5.2 Nanowires

To etch the films into nanowires with substantial kinetic inductance, we use a reactive-ion-etching

process to define wires of width 100 or 150 nm. To test if the etch process has damaged them, we

measure the Tc and compare to that of the bare films, the results of which are shown in Fig. 5.2.

While the data at larger thicknesses tracks well, at lower thicknesses Tc is reduced by about 1 K.

There could be a number of explanations for this, in particular that the etched samples measured

here had undergone additional processing before film deposition in comparison to the bare films,

and this may have degraded the surface. We note that Tc is comparable for samples of 100 and 150

nm, an indication that the etch is not damaging the film.
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Figure 5.3: The circuit used tomeasure the inductance of the nanowire circuit.

5.3 Inductance Measurements

To measure the inductance of the nanowires, we use a similar technique as that described in Annun-

ziata et al. [1]. We use a PCB with a coplanar wave guide, and attach the inductor chip to the center

along with a 10 pF capacitor. We find this value of capacitor offers a good trade off of being large

enough to pull down the frequency to a workable level (about 100 MHz) while keeping the quality

large enough to make it a sensitive detector of inductance, and so that parasitic capacitance in the cir-

cuit does not have a large effect. We use a series circuit instead of a parallel circuit because we found

that having the sample directly connected to ground caused it to stay normal, presumably due to the

flow of currents. Our system was flaky enough that we found it best to measure signals in transition

rather than reflection, despite the increase in overhead of 2 coaxial lines instead of 1. We use two wire

bonds, finding that adding more does not further decrease their effective inductance or improve the

measured signal.

Because the supercurrent density increases as the temperature decreases, the kinetic inductance

will also decrease. Since our inductance measurements are typically performed by dipping the sam-
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Figure 5.4:Measurements of Inductance per square for several widths and thicknesses of nanowire.

ple into liquid helium, and hence are at 4.2 K, while our qubit experiments are performed at about

50 mK, we are interested in determining their zero-temperature value. Following Annunziata et al.

[1] and using Ginzburg-Landau theory, we can write ns(T ) ≈ ns(0)(1 − T/Tc), for T near Tc, so

that we can write

Lkin(0) = Lkin(T )(1− T/Tc). (5.3)

By combining Tc measurements with measurements ofL, we can findL0,which is plotted as a

function of thickness in Fig 5.4. Based on simulations performed in Sonnet, these inductances are

sufficient to achieve impedance around 2000Ω for our resonators in the qubit design. We find that

while the inductance (in units of pH-nm) does vary with thickness, it does not vary with nanowire

width, another indication that our etch process is not damaging the film. Using Ginzburg-Landau

theory, we expect that the room temperature resistivity should be linearly proportional to Tc. The
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Figure 5.5: Plotting the zero-temperature inductance (calculated using aTc measurement) versus the room tempera-

ture resistance. The red line is a linear fit to the data.

results are shown in Fig. 5.5, and we find that there is at least some correlation, so that it may be

possible to predict inductance without performing RF measurements.

5.4 Contact Resistance

The thick oxide that NbN forms can cause issues when making contact to it. The contact resistance

can grow to above 100 kΩ µm2. By etching it in dilute HF (BOE 5:1), and pumping it down in a

thermal evaporator within minutes, we find that it is reduced to under 5 Ω µm2 (with the lower

bounds limited by the measurement). This oxide is not self-limiting, and we’ve found that etching

for 5 s is adequate within a day, but after 10 days, this does not etch the full oxide. BOE 5:1 does not

measurably etch NbN (under a nanometer for 60 s of etching), so we have begun using 30 s BOE 5:1
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etches before applying contacts, though it remains a good idea to limit the amount of time between

depositing NbN and applying contacts.

These tests were performed using PMMA resist developed with MIBK:IPA 1:3. In general, TMAH-

based developers will also etch the oxide, reducing the need for HF.

109



6
Conclusion

In the introduction to this thesis, I discussed what I saw as the most pressing issues limiting the

growth of S-T0 qubits as a platform for quantum computing at the start of my PhD, and how I

tackled them during it. In this conclusion, I’d like to widen my perspective, both to other types of

quantum-dot-based qubits and to the work that other groups are doing around the world that are

pushing the field forward.
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I listed these major issues as being nuclear magnetic field noise, charge noise, entangling gate, and

fabrication and tuning of devices.

Our work in the Yacoby group on nuclear magnetic field noise substantially reduced it’s ill-effects

on coherence. Other groups working with S-T0 qubits in GaAs have used dynamical decoupling

to measure T2 of close to a millisecond [53], indicating that there are a number of approaches that

can reduce the impact of nuclear noise. In the world outside of S-T0 qubits, the move toward

isotopically-purified silicon has energized work into several varieties of single spin qubits, which

have generally not been amenable to use in GaAs due to nuclear noise, but which show dramatically

reduced coupling to charge due to their spin-like nature [96, 62]. An important phase of this re-

search investigates new technologies for isotopically purifying silicon, to increase the supply to levels

that allow many groups around the world to work in the field [56, 61, 36].

As research into silicon qubits has grown, it’s become clear that levels of low-frequency charge

noise in such qubits are comparable to those in GaAs [55, 105]. Excitingly, there has recently been a

number of studies probing charge noise in silicon at higher frequencies [106, 15]. As this becomes

more standard, it ought to provide a insight into the origins of charge noise.

There has also been a great deal of progress on entangling gates for quantum dots. In the Yacoby

group, we performed an experiment on S-T0 qubits that reduced the sensitivity of qubit to charge

noise by performing the entanglement in the regime where it is primarily a spin (rather than charge)

qubit [63], which increased the process fidelity of the entangling gate to 90%. In other groups, co-

herent coupling between spin qubits and resonators has been achieved, bringing us closer to using

resonators to couple two S-T0 qubits. Moreover, entangling gates have been demonstrated in a
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number of single-spin systems [97, 108, 101].

Some of the most exciting recent work in spin qubits has involved developing techniques that

will be essential in scaling up to larger systems. Automated tuning has become possible in recent

years, including the process of tuning quantum dots to the single-electron regime [2, 58, 48], tuning

of tunnel coupling [95, 91], and measurement of the energy spectrum and location of charge tran-

sitions [11]. There has also been progress in implementing fast readout using parametric amplifiers

[88] and tank circuits. Such technologies are crucial, because they dramatically speed up the time

it takes to test new devices, which will be essential in finding optimized materials and architectures.

There has been exploration of new gate architectures, such as those using overlapping gates, that are

more easily tuned than the traditional stadium architecture, and simulations have been used to aid

in designing such devices [107].

I would also add a new item to the list of limitations. Current architectures typically have large

numbers of gates, which is ideal for prototype systems, where having the ability to explore a wide

phase space is ideal. However, these systems, with up to 15 gates per qubit, and several RF lines, are

not sustainable as we scale to larger numbers of qubits. Developing architectures in which multiple

qubits can be controlled by each gate will be helpful, but will likely require not only accurate simula-

tion, but also improved materials [51]. Another approach is to reduce the overhead associated with

measurement, which typically requires several DC gates and ohmic contacts to form a sensing quan-

tum dot, by replacing it with readout through a gate [17, 102] or resonator [45, 109]. Furthermore,

as heating and cost become more central, considering the electronics that can be used will also be

increasingly important [34, 73] . That we are adding items to the list of imminent challenges should
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be seen as a triumph rather than as a failure; it means that we are making progress and pushing into

new regimes of study.
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A
Rotating Frame for Singlet-Triplet Qubits

This appendix derives the equations for the evolution of the singlet-triplet in the rotating frame, as is

used in Chapter 2 and Nichol et al. [63]. The Hamiltonian for the S-T0 qubit is

Ĥ = ~/2(∆Bzσx + J(ϵ)σz) (A.1)
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This is our conventional Hamiltonian for S-T0 qubits, but is non-standard for the rotating frame,

as the static part of the Hamiltonian will be oriented mostly in the x-direction. While it would be

ideal if the static part were solely the∆Bzσx component, because J(ϵ) is strictly positive, if the

static J(ϵ)were 0, we would not be able to turn on an oscillating J = J0 cos(ωt + ϕ). Instead, we

work at a value of ϵ = ϵ0 where J(ϵ0) ≪ ∆Bz . Then, if we add a small oscillating drive ϵd, the

Hamiltonian becomes

Ĥ = ~/2
[
∆Bzσx +

(
J(ϵ0) +

dJ

dϵ

∣∣
ϵ0
ϵd cos(ωt+ ϕ)

)
σz

]
(A.2)

= ~/2
[
∆Bzσx + (J0 + J1 cos(ωt+ ϕ))σz

]
. (A.3)

We’ve defined the terms J0 and J1 to simplify notation and ω and ϕ represent the frequency and

phase of the applied drive, and can be chosen arbitrarily. While in the first chapter I discussed how

the singlet-triplet qubit is notable in that it can be tuned to be primarily a spin or charge qubit, in

the rotating frame, it is fundamentally a hybrid spin-charge qubit. We must be in the region where

∆Bz is dominant to enter the rotating frame. However, if we are in the region of ϵwhere exchange

is fully off and small changes to the gates do not cause the singlet orbital state to shift, we cannot

turn on an oscillating J. Thus it is essential to consider the effects of both charge and magnetic noise

for all rotating-frame experiments.
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We now enter a rotated coordinate frame where the static splitting is in the direction of

σ̃x = ∆Bz/Bσx + J0/Bσz = σ̃x = cos(θ)σx + sin(θ)σz (A.4)

where we’ve definedB =
√
∆B2

z + J2
0 and tan(θ) = J0/∆Bz . Then, we end up with the

Hamiltonian

Ĥ = ~/2
[(
B + J1 sin(θ) cos(ωt+ ϕ)

)
σ̃x + J1 cos(θ) cos(ωt+ ϕ)σ̃z

]
. (A.5)

We see here that one penalty of working with larger values of J0 for a given value of∆Bz is that

it reduces the effective size of the oscillating drive. Now, we can enter the rotating frame of Ĥr =

~ω/2σ̃x. Using the standard unitary transformation, we now work with the Schrödinger equation

−i~dψ̃
dt

= Ĥ ′ψ̃, ψ̃ = exp(iω/2σ̃xt)ψ, (A.6)

where

Ĥ ′ =~/2
[(
B + J1 sin(θ) cos(ωt+ ϕ)− ω

)
σ̃x

+ exp(iω/2σ̃xt)J1 cos(ωt+ ϕ)σ̃z exp(−iω/2σ̃xt)
]
. (A.7)
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We can further simplify the second line of the equation:

J1 cos(ωt+ ϕ)
(
I cos(ωt/2) + iσ̃x sin(ωt/2)

)
σ̃z
(
I cos(ωt/2)− iσ̃x sin(ωt/2)

)
(A.8)

=J1 cos(ωt+ ϕ)
(
cos(ωt)σ̃z + sin(ωt)σ̃y

)
=J1/2

[(
cos(ϕ) + cos(ωt+ ϕ)

)
σ̃z +

(
sin(ϕ)− sin(ωt+ ϕ)

)
σ̃y

]
.

Assuming that ω−B ≪ ω+B, we can make the rotating-frame approximation, ignoring terms

that oscillate at frequency 2ω. These oscillate far faster than the precession frequencies remaining

in the Hamiltonian, J1/2 andB − ω, so we can safely treat them as their average value of 0. We

use this same analysis to assume that the term J1 sin(θ) cos(ωt + ϕ) in (A.7) can be averaged to 0.

Then, the equation becomes

Ĥ ′ = ~/2
[
(B − ω)σ̃x + J1/2 (cos(ϕ)σ̃z + sin(ϕ)σ̃y)

]
. (A.9)

We’ll consider only ϕ = 0 for the remainder of this section.

Next we include noise in this model. We expressB as a combination of its components’ mean
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values and fluctuating noise terms:

B =

√
(∆Bz + δ∆Bz)2 + (J0 + δJ0)2.

≈
√
B

2
+ 2∆Bzδ∆Bz + 2J0δJ0

≈ B +∆Bzδ∆Bz/B + J0δJ0/B

= B + δ∆Bz cos(θ) + δJ0 sin (θ). (A.10)

We’ve kept only the first order error terms, and we use tan(θ) = J0/B, as in (A.4), but now

having used the mean values for the splittings to define the angle. The total noise is thus

δB = δ∆Bz cos(θ) + δJ0 sin θ. (A.11)

Now, we will start considering Rabi and Ramsey experiments. In both Ramsey and Rabi experi-

ments, we start by loading a |+̃⟩ state, the ground state when J1 is off. Because we do not perform

any dynamical decoupling, the noise is effectively quasistatic.

For the Rabi, we use the pulse sequence shown in Fig. 2.2e: we turn on J1 for the entire experi-

ment, and set ω = B, so we evolve under the Hamiltonian

Ĥ ′ = ~/2
[
δB cos(θ)σ̃x + (J1 + δJ1) cos(θ)/2σ̃z

]
. (A.12)

We define the magnitude of the splitting for this Hamiltonian asΩ, and solve for amount of
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noise:

Ω =

√
(J1 + δJ1)2 cos2(θ)/4 + (δB cos(θ))2

≈ cos(θ)
(
(J1 + δJ1)/2 +

δB2

J1

)
.

δΩ = cos(θ)
(
δJ1/2 +

δB2

J1

)
(A.13)

Thus, in this experiment, we oscillate at a rate J1 cos θ and dephase at the rate δΩ. We note that

our goal in the experiment shown in Fig. 2.3b in Chap. 2 is to measure δ∆Bz , but in this experi-

ment we have a complicated dependence on it.

For the Ramsey experiment, we use the pulse sequence shown in Fig. 2.2c: first, turn on J1 at

a frequency ω offset fromB by∆ to perform a π/2σ̃z pulse, putting the qubit in the ψy,+ =

1√
2
(|0⟩+ i|1⟩) state. Then, we turn J1 off and let the qubit evolve under the Hamiltonian

Ĥ ′ = ~/2(∆ + δB)σ̃x (A.14)

for time t. Finally, we read out by again turning on J1 for a π/2σ̃z pulse. In this case, while there

is dephasing during the π/2 preparation and readout pulses, it is the same for all evolution times.

Thus, T ∗
2 =

√
2

δB . For the experiment discussed in Fig. 2.3 in Chap. 2, we are only interested in

measuring δ∆Bz . By examining (A.11) we see that to do so with this Ramsey experiment, we must

be careful to set J0 low for δB ≈ δ∆Bz . In that experiment, we made sure of that by varying ϵ0 to

reduce J0 until T ∗
2 stopped increasing.
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Again, this experiment is useful for demonstrating how well we’ve estimated∆Bz . For maxi-

mizing gate fidelities, however, it’s typically better to do Rabi-type experiments that will reduce the

effects of residual fluctuations in∆Bz . This is what we did in our group’s 2017 paper on entan-

gling two S-T0 qubits in a large magnetic field gradient, “High-fidelity entangling gate for double-

quantum-dot spin qubits” [63].

Finally, a quick note for my own understanding to quantitatively explain the difference between

the experiment we use to measure∆Bz using DC pulses and the Ramsey experiment just described.

In the∆Bz experiment, shown in Fig. 2.2a, we load a |0⟩, let the qubit evolve under∆Bzσx for

time t, then measure. The only difference with the rotating-frame Ramsey is that in the Ramsey case

we load a |+⟩, then prepare a |0⟩ by performing a π/2σ̃y pulse by turning on J1 sin(Bt) for the

appropriate time, and perform the same pulse for readout before measuring. (I note that here I’ve

changed the phase of the drive to perform a πy/2 pulse instead of πz/2, but this does not change

anything). While the state evolution is the same for the two experiments, the readout is different. In

general, in rotating-frame experiments, we are measuring in the basis of the static splitting; in this

case, the |+̃⟩ and |−̃⟩ states. These states are not affected by the rotating-frame transformation, so

that, e.g.

|⟨+̃|ψ̃⟩| = |⟨e−iωt/2σ̃x+̃|ψ⟩| = |⟨+̃|ψ⟩|, (A.15)

so our experimental measurements are those we expect from the calculated ψ̃.However, for the
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static experiment, we would be measuring in the |0⟩ and |1⟩ states. In this case,

|⟨0|ψ̃⟩| = |⟨e−iωt/2σ̃x0|ψ⟩| ̸= |⟨0|ψ⟩|. (A.16)

So while we have ψ̃ is largely static, rotating at only∆, the measurement basis is rotating at ω.
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B
Measuring Charge Noise using Hahn Echo

Data

In this appendix, we will derive the relationship between a singlet-triplet qubit’s T2, the dynamically

decoupled dephasing time, and the power spectral density (PSD) of the voltage noise in the system.

This technique is applied in Dial et al. [20], and is a useful metric for understanding the amounts of
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high frequency charge noise affecting different qubits.

B.1 Dependence of T2 on J

The initial derivation follows that provided in Cywiński et al. [18]. For Gaussian noise, we expect

decay to follow the formW (t) = e−χ(t),where

χ(t) =

∫ ∞

0

dω

2π
S(ω)|f̃(t;ω)|2 =

∫ ∞

0

dω

π
S(ω)

F (ωt)

ω2
. (B.1)

The filter function describes the effect of the pulse sequence on the qubit state, and is defined as

F (ωt) =
1

2

∣∣∣Σn
k=0(−1)k(eiωtk+1 − eiωtk)]

∣∣∣2 , (B.2)

where tk represents the times at which π pulses are performed. For a Hahn echo, it simplifies to

F (ωt) = 8 sin2(ωt/4).

For the remainder of this note, we will consider only power law noise, S(ω) = Sω/ω
β and

0 ≤ β ≤ 3. We will start by considering a PSD representing phase noise on the qubit, where S(ω)

has units of ϕ2/(rad/s). It’s defined as in [18] as

S(ω) =

∫ ∞

−∞
eiωtS(t)dt, (B.3)
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where S(t) is the two point correlation function,

S(t1 − t2) = ⟨υ(t1)υ(t2)⟩ (B.4)

and υ represents the noise term in the qubit’s Hamiltonian,

Ĥ =
1

2
[Ω + υ]σz. (B.5)

We start by converting units between S(ω) and S(f) (which we will ultimately use to quote the

noise level). Unitswise, S(f) = 2πS(ω).

Sf/f
β = Sf/(ω/(2π))

β = 2πSω/ω
β . (B.6)

Sf = (2π)1−βSω (B.7)

Next, because we are interested in the charge noise, we will write this in terms of the voltage noise

bath affecting the qubit. To convert Sw to Sϵ,ω , the voltage PSD, normalized as effective noise from

a nearby gate, we substitute in the Hamiltonian for the qubit undergoing exchange into (B.5):

Ĥ =
1

2
[Ω + υ(t)]σz =

1

2
(Jω +

dJω
dϵ

δϵ)σz, (B.8)
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so we can write υ = dJω
dϵ δϵ. Then, through examination of (B.6),

1

2

(
dJω
dϵ

)2

Sϵ,ω = Sω, (B.9)

where the factor of 1/2 stems from (B.3) being integrated being only from 0 to∞ for Sϵ.

Now, we use (B.9) and (B.6), to write Sϵ,f in terms of Sω:

Sϵ,f = 2(2π)1−β

(
dJω
dϵ

)−2

Sω (B.10)

This term has units of V2/Hz1−β . Next, we turn to (B.1). For power-law noise, there is a closed

solution for χ(t) for a Hahn echo pulse (and for small pulse numbers for some other sequences):

χHE(t) =
1

π
sin(

πβ

2
)Γ[−1− β]Sω(1− 21−β)t1+β . (B.11)

Since t = T2 when χ(t) = 1, we can write

T 1+β
2 =π

(
sin(

πβ

2
)Γ[−1− β]Sω(1− 21−β)

)−1

= (2π)−β

(
sin(

πβ

2
)Γ[−1− β]Sϵ,f (1− 21−β)

dJf
dϵ

2)−1

=

(
η(β)Sϵ,f

dJf
dϵ

2)−1

, (B.12)
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Figure B.1: Pi pulse

.

where we have now defined

η(β) = (2π)β sin(
πβ

2
)Γ[−1− β](1− 21−β). (B.13)

As a side note, Γ is infinite at integers, but if we perform the integral for each integral value of β,

they are solvable:

β = 0 : T2 =
dJf
dϵ

/Sϵ,f

β = 1 : T2 =

√
(2π)3

log(2)Sϵ,f

dJf
dϵ

β = 2 : T2 = 2π
3

√
12
dJf
dϵ

2

/Sϵ,f . (B.14)

B.2 Fitting data

To measure Sϵ,f , we measure T2 as a function of dJf
dϵ , and fit (B.12).
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To do this, we first, take Hahn echo data at a variety of dJ
dϵ by varying ϵ. We use the pulse sequence

shown in Figure B.1. Within each data set we vary τ , the total evolution time, and δτ , the difference

in evolution time before and after the pi pulse. We fit each two-dimensional data set using the fol-

lowing function:

A(τ, δτ) =y0,i +A0 cos(ωiδτ + ϕi) exp(−((δτ − τ0,i)/T
∗
2 )

2)× exp(−τ/T2)1+β

+A0,f cos(ωiδτ + ϕf,i) exp(−((τ/2 + δτ)/T ∗
2 )

2) (B.15)

where the terms with i subscripts are allowed to vary for different values of τ . The terms with f sub-

scripts represent the “fish-like” shape the data takes at short times: If τ/2 . T ∗
2 , then we will see in

the data the initial decay of amplitude over T ∗
2 that wasn’t echoed away (due to pulse imperfections)

as well as the refocusing that occurs with the echo pulse.

After analyzing the data sets for all values of ϵ, we can examine the values of β fit. In Dial et al.

[20], β was nearly constant for different values of ϵ, allowing us to conclude that we have power

law noise. We then take the mean of the values of β to get β0, and perform a linear fit T−(1+β0)
2 =

p(1)(dJ/dϵ)2 + p(2). We can read off the equation for (B.12) to see that p(1) = η(β)Sϵ, so

knowing β, it is simple to find Sϵ. The offset allows for background noise that doesn’t depend on J,

for instance (to first order) tunneling noise or magnetic noise.

To find dJ
dϵ , we measure J(ϵ) across the relevant range of ϵ, subtracting off∆Bz in quadrature,

then fit to an exponential, as discussed in Chapter 4. We then use the fit to calculate dJ
dϵ .

The data that we fit has units of [T2] = µs and [dJdϵ ] =MHz/µV. To get the units in V2/Hz1−β ,
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we write the fit equation with them having units of s and Hz / V, respectively.

(T2(µs))−(1+β) = p(1)
(

dJ(MHz)
dϵ(µV)

)2
+ p(2)

(T2(s))
−(1+β) = p(1) ∗ 10−18+6β

(
dJ(Hz)
dϵ(V)

)2

+ p(2) (B.16)

Combining this with (B.12), this is

p(1) ∗ 10−18+6β = η(β)Sϵ(V2/Hz1−β). (B.17)

The exact term for comparison with equations is

Sϵ = p(1) ∗ 10−18+6β(2π)−β

(
sin(

πβ

2
)Γ[−1− β](1− 21−β)

)−1

(B.18)

We note that in Dial et al. [20], an incorrect equation was given, which reduced Sϵ by a factor of

2π, thus reducing the amount of noise at 1 MHz by
√
2π ≈ 2.5, so in fact the amount of noise at 1

MHz should have been 0.5 nV/
√

Hz, not 0.2 nV/
√

Hz.

B.3 Quick Techniques to Estimate Noise

These data sets can take days to take in full, but while the data is coming in, you may want to get a

sense of how much noise the system has compared to previous systems by comparing T2 as a func-
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tion of J for the two. Let’s see how rigorous that is.

We will assume that we have J = J0 exp(ϵ/ϵ0), J ′ = J/ϵ0. We’ll assume that β is the same

across samples a and b. In that case, the same J implies the same dJ
dϵ , and by referencing (B.12):

(T2,a/T2,b)
1+β =

Sϵ,b
Sϵ,a

ϵ20,a
ϵ20,b

(B.19)

Our usual shorthand, noise at 1 MHz, is proportional to the square root of Sϵ:

Nb/Na = (T2,a/T2,b)
(1+β)/2 ϵ0,b

ϵ0,a
(B.20)

This is pretty close to a linear scaling with T2 for β ≈ 0.7.
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C
Ohmic Fabrication

C.1 Ohmics

Summary of section:

1. Ohmics don’t work if too much time passes between mesa etch and ohmic deposition.
Solution: Can deposit ohmics within 12 hours, but for minimum contact resistance with any
amount of time passing, dip sample in BOE 5:1 for 10 s.

2. Ohmics don’t work if graphite susceptor bad. Bare silicon wafer works well.
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3. Ohmics don’t work with material 4 mm from edge. Solution: move to at least 6 mm
from edge.

4. Ohmic contact can be checked by measuring resistance in room temperature probe station
with light and off.

To make contact to the 2DEG, we use a Ni/Au/Ge/Ni/Au stack, heated above eutectic tempera-

ture of Au/Ge.

Issues with ohmics seem to crop up periodically. For my first few years, we used an image-reversal

photo process and did not do any cleaning between developing the ohmic pattern and depositing

metal. I began having issues with the ohmics not making good contact; they would conduct at room

temperature but freeze out at 4 K. Mike Manfra’s student John Watson suggested that we try to do

the mesas and ohmics within about 12 hours, and this fixed the issue.

In the current recipe, the ohmics are one of the first steps out of many, so it makes sense to be cer-

tain that they work before continuing. We have not found that visual inspection is helpful (unless

the sample has been so underheated that the metal didn’t melt). However, wire bonding and cool-

ing to 4 K can introduce grime onto the chip and leave wire bond residue, while cutting of a piece

is time consuming and wastes material. Instead, after noting that the “bad” ohmics would increase

in resistance immediately after the probe was closed, we began testing the ohmics in a room temper-

ature probe station, comparing the resistance with the light on and off, and have thus far had 100%

success in determining if the ohmics will work. That said, it unsurprisingly is not effective at differ-

entiating excellent from merely good contacts. The first chart below shows data from a case in which

we performed tests because two weeks passed between etching mesas and depositing ohmics. we see

that the numbers vary only slightly as a function of the maximum temperature and time we sit at
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it. The reported resistances are the average of 3 two-probe measurements between three different

ohmic contacts

Temp (C) Time (s) Light (Ω) Dark (Ω) Cold (Ω) Ratio D-L

445 75 3480 4260 72 1.2

445 85 2500 4530 60 1.8

450 65 3000 5130 55 1.7

450 75 2560 4340 50 1.7

455 60 3550 4500 100 1.26

460 55 3450 4130 65 1.2

In the second chart, we show the results from two fabrication runs where there are some issues

with ohmics. In the first run (the first four measurements), no ohmics worked cold. We think the

issue is that the sample was taken from too close to the edge of the wafer. We can see that both the

light and dark resistances are elevated, but the dark in particular (the ohmics pattern is the same as

in the previous test). We were able to diagnose this issue by noting that the resistances did not vary

meaningfully with time and temperature, but the ohmics that were on the part of the chip more

central on the wafer were lower in resistance. In the second run, we took samples from a several

millimeters further in on the wafer, and here we can see that for poorly annealed sample (the fifth

in the list), where it’s light and dark resistances are close to as bad as those that didn’t conduct cold,

indeed has a high contact resistance. In either case, we see that there are clear signs differentiating

good and bad ohmics.
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Temp (C) Time (s) Light (Ω) Dark (Ω) Cold (Ω) Ratio D-L

440 60 7920 18,400 Inf 2.3

440 65 3650 14,500 Inf 4

450 75 5900 118,000 Inf 20

460 60 4350 59,000 Inf 13.5

440 60 5700 15400 875 2.7

450 60 3640 7860 210 2.15

450 75 3360 5310 70 1.6

460 60 3090 5660 100 1.8

At another point, the ohmics stopped working with no apparent process change. After a useful

conversation with members of Reilly Group, we began to suspect our susceptor, the graphite wafer

the sample sits on inside the rapid thermal processor (RTP). This is made of graphite, but according

to the person who runs the tool, it had become infused with oxygen due to the practices of other

users, and this may have affected its thermal conductivity. In conversation with Jingyee Chee of the

Ham group, who was also having issues, we changed to a silicon wafer as the base, and have not had

such issues since.

As we changed the recipe over to use electron beam lithography, we found that there were a few

issues with the cleaning step. HCl:H2O seemingly caused the resist to harden, as liftoff was not possi-

ble: all the gold stayed affixed to the surface. Using HNO3 worked, but if dipped for more than 2 -3

s, all of the resist will lift off. We have settled on using BOE 5:1, which seems to be able to etch all the
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oxide even with long gaps between the mesa etch and ohmics deposition. PMMA is also stable in it,

with no issues after a full minute of etching. It seems to not etch GaAs. Performing an etch test, we

see that 1.2 nm of ‘GaAs’ is etched after 10 s, and 1.5 nm after 50 s, suggesting that it is only etching

the oxide. Furthermore, we have achieved excellent ohmic contacts with a 30 s etch.
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