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Abstract

Entropy notions from information theory have many applications in cryptographic analyses

and constructions, where it is most common to consider adversaries with only (polynomially)

bounded computational power. Therefore, some computational relaxations of entropy, which

capture some properties of entropy from the view of computationally bounded parties are also

useful in cryptography and computational complexity. In this thesis, we study computational

notions of entropy from several different angles.

First, in many constructions of basic cryptographic primitives, computational entropies

serve as key ingredients. For instance, “next-block pseudoentropy” and “next-block accessible

entropy” are used in the best known constructions of pseudorandom generators and statistically

hiding commitments from one-way functions, respectively. We contribute along these lines in

two aspects:

• We introduce a new notion of hardness for one-way functions called KL-hardness,

which implies both next-block pseudoentropy and inaccessible entropy, and formalizes

the duality between them. By the new notion, we also obtain a more modular and

illuminating proof that one-way functions imply next-block inaccessible entropy, similar

in structure to the proof that one-way functions imply next-block pseudoentropy (Vadhan

and Zheng, STOC 2012).

• One common step in the constructions of basic primitives (including pseudorandom

generators, statistically hiding commitments, and universal one-way hash functions)

from one-way functions is entropy flattening, which converts an average-case entropy

(e.g., Shannon) to a worst-case entropy (e.g., min-entropy). We show that any flattening
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algorithm has to make Ω(n2) queries to the function serving as the entropy sources

(analogues to the one-way functions in the constructions of cryptographic primitives)

where n is the input length of the functions. The result can be viewed as a step towards

proving that the current best construction of pseudorandom generators from arbitrary

one-way functions (Vadhan and Zheng, STOC 2012) has optimal efficiency.

Then we study the complexity of the problem “simulating auxiliary input”: given a joint

distribution (X,Z) on X × {0, 1}` and a class of distinguishers F : X × {0, 1}` → {0, 1},

construct an “efficient” simulator h : X → {0, 1}` such that (X,Z) and (X, h(X)) are

indistinguishable by any distinguisher f ∈ F up to advantage ε. The efficiency of h is measured

by circuit size of relative to F , the optimal complexity was known to be poly
(
ε−1, 2`

)
The

existence of such a simulator implies many theorems connected to computational entropies

such as the Dense Model Theorem, Impagliazzo’s Hardcore Lemma, and the Leakage Chain

Rule for “relaxed-HILL pseudoentropy”. We improve the existing results from both directions

showing a tight complexity bound Θ̃
(
ε−2 · 2`

)
for h, which in particular improves the security

analysis of some stream-cipher protocols in leakage-resilient cryptography.

Finally, we initiate the study of computational entropies in the quantum setting by

proposing several quantum computational notions of entropy that generalize classical notions,

studying which classical properties of computational entropies extend to the quantum case

and which does not, and illustrating the application of quantum computational entropy in

post-quantum cryptography. Specifically, we develop the Quantum Nonuniform Min-max

Theorem to prove some properties of quantum computational entropies such as the equivalence

between quantum HILL entropy and metric entropy. Notably, we also solve the problem

of simulating auxiliary quantum input, which we further use for proving the security of

Dziembowski and Pietrzak’s (FOCS 2008) leakage-resilient stream-cipher against quantum

adversaries with quantum leakage in the bounded-quantum-storage model.
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Chapter 1

Introduction

Entropy notions can be used to measure the uncertainty in a random variable. They play

essential roles in cryptography for both upper bounds (e.g., arguing security) and lower

bounds (e.g., minimum key lengths needed). Specifically, traditional entropy notions can be

used to prove information-theoretic (unconditional) security properties, where adversaries are

modeled with unlimited computational power. Information-theoretic security is invulnerable

to future developments in computational power, algorithms, or even quantum computers.

However, many interesting cryptographic objects and systems in modern cryptography are

provably impossible under information-theoretic security. To bypass this barrier, in modern

cryptography, it is most common to study models where adversary’s computational power is

bounded and base security on the hardness of some computational problems for such adversaries.

For example, Goldwasser and Micali defined computational indistinguishability [GM84] as the

computational analogue of statistical distance to circumvent Shanon’s impossibility results on

perfectly secure encryption [Sha49]. Similarly, as entropy notions describe the uncertainty

of a random variable “information-theoretically”, computational notions of entropy (the

subjects of this dissertation) describe the uncertainty of a random variable from the eyes of

computationally bounded parties.

In this thesis, we study computational notions of entropy from three different angles.

First, computational entropies are the key ingredients in many constructions of cryptographic
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primitives. Second, the notions are connected to many results in cryptography and complexity

theory, where most of them can be derived from the Leakage Simulation Lemma. Finally,

we propose a number of computational entropy notions in the quantum setting and show

their applications. In the rest of the chapter, we first review some of the essential ideas of

computational entropies, then summarize our contributions for each of the three perspectives.

1.1 Background: Computational Notions of Entropies

Depending on purposes, there are many different kinds of computational notions of entropy,

where each of them tries to catch some properties of entropy from the view of computationally

bounded parties. We categorize these notions into three types:

1. Pseudoentropy: a distribution “behaves” like one with higher entropy form a view of a

computationally bounded adversary.

2. Accessible entropy: for a given distribution X, the entropy of the distribution X ′

generated by a computationally bounded adversary (under the constraint that the

support of X contains the support of X ′) is lower than the true entropy of X.

3. Computational KL-divergence: a generalization of pseudoentropy, which describes a

“distance” between two distributions from a view of a computationally bounded adversary.

Now we introduce the computational entropies in more details.

1.1.1 Pseudoentropies

One of the first proposed notions of pseudoentropy is due to Yao [Yao82], which is based

on efficient compression. Then, Håstad, Impagliazzo, Levin, and Luby introduced another

class of pseudoentropies [HILL99] based on computational indistinguishability. We call

them HILL-type entropies. For example, we say a distribution X has HILL (Shannon)

entropy at least k (written HHILL-Sh(X) ≥ k) if there exists a distribution X ′ such that

(1) X and X ′ are computationally indistinguishable, and (2) the Shannon entropy of X ′
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(written HSh(X ′) ≥ k) is at least k, namely E
x

r←X′
[
log(1/Pr[X ′ = x])

]
≥ k.1 The notions

by Håstad et al. [HILL99] were introduced as part of their construction of pseudorandom

generators (PRGs) from arbitrary one-way functions (OWFs). They also have inspired many

other pseudoentropy notions. One of them is a refined notion called next-block HILL entropy,

which was defined by [HRV10] to get simpler and more efficient constructions of PRGs from

OWFs (see Section 1.2).

Another natural class of definitions of pseudoentropies called metric-type entropies2 were

defined by Barak, Shaltiel, and Wigderson [BSW03], where the quantifiers in the definition

of HILL-type entropies are switched. That is, a distribution X has metric entropy at least

k if for every polynomial-size distinguisher D, there exists a distribution X ′ with entropy

at least k that is indistinguishable from X by D. Barak et al. also showed the equivalence

(up to some parameter losses) between HILL and metric entropies. With this equivalence,

metric-type entropy is a useful intermediate notion for obtaining tighter security proofs in

some applications [DP08, FOR15].

Most of the pseudoentropy notions we consider in this thesis are HILL-type and metric-type

entropies, both of which are based on computational indistinguishability. There are more

variants of pseudoentropy that are less relevant to our works. See [HLR07] and [FR12] for

more details about the definitions and the relationships between different notions.

1.1.2 Accessible entropy

On the other hand, an accessible entropy captures the forgeability of random variables by a

computationally bounded adversary. A random variable could have accessible entropy lower

than its true entropy. Here we provide some intuition of this type of notion through an

example [HRVW09].

Let f : {0, 1}2n → {0, 1}n be sampled from a family of collision-resistant hash functions.

1Thorough the thesis, all logarithms are binary unless specified. That is, information quantities are measured
in bits.

2The name “metric” is from considering distributions in a metric space, where the distance is defined by a
family of distinguishers.
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Suppose the random variable X is sampled from {0, 1}2n and Y = f(X). For a typical element

y ∈ Supp(Y ), there are 2n possible x such that f(x) = y, so the entropy of X given that

Y = y is n. Now consider the same process executed by a computationally bounded adversary.

After y is fixed, since f is collision-resistant, the adversary cannot find x′ 6= x such that

f(x′) = f(x) except negligible probability. Therefore, we say the (computational) “accessible

entropy” of X given Y is negligible. More specifically, we say that X has accessible entropy

at most k give Y if for every computationally bounded adversary cannot generate a random

variable X ′ with conditional entropy (given Y and the adversary’s coin toss) greater than k

and Supp(X) ⊆ Supp(X ′).

Accessible entropy is useful as an upper bound on computational entropy, and is interesting

when it is smaller than the real entropy. The gap between true entropy and accessible entropy

is called inaccessible entropy.

The intuitive concept of inaccessible entropy was used implicitly in [Rom90] and [HNO+09],

which were the first construction of universal one-way hash functions (UOWHFs) and

statistically-hiding commitment schemes (SHCs) from arbitrary one-way functions (OWFs),

respectively. Then the inaccessible entropy was formally defined in [HRVW09, HRVW19] to

improve the construction of SHC. Subsequent to that, a variant of inaccessible entropy is used

to have a more efficient construction of UOWHFs.

1.1.3 Computational KL-divergence

Let X and Y be distributions on X . The KL-divergence (a.k.a. relative entropy) from X

to Y is defined as DKL(X ‖Y ) def= E
x

r←X
[
log
(
Pr[X = x]/Pr[Y = x]

)]
. It is a generalization

of entropy as HSh(X) = log |X | − DKL(X ‖UX ) where UX is the uniform distribution over

X . For computational relaxations, we in particular consider the “worst-case” notion, max-

divergence (also called max-relative entropy in some literatures), defined as Dmax(X ‖Y ) def=

maxx∈X log
(
Pr[X = x]/Pr[Y = x]

)
.

Since max-divergence involves two random variables, there are more ways to define its

computational relaxations than for ordinary entropy. Here we only consider the relaxations that

4



follow the idea of defining HILL-type entropies. First, we say that the HILL-1 max-divergence

from X to Y is small if there exists a distribution X ′ that is computationally indistinguishable

from X, for which the max-divergence between X ′ and Y is small. Alternatively, the HILL-2

max-divergence between distributions X to Y is small if there exists a distribution Y ′ that

is computationally indistinguishable from Y , for which the max-divergence from X to Y ′ is

small.

With those definitions, the Dense Model Theorem [GT08, RTTV08] can be equivalently

stated as small HILL-2 max-divergence implies small HILL-1 max-divergence. Another appli-

cation of the computational max-divergence is in computational differential privacy [MPRV09].

The definition of differential privacy [DMNS06, DKM+06] can be stated using max-divergence.

That is, a mechanism M satisfies ε-differential privacy if for all data set x and x′ differing

only on single row, we have Dmax(M(x) ‖M(x′)) ≤ ε and Dmax(M(x′) ‖M(x)) ≤ ε.3 Analo-

gously, computational differential privacy can be described in the language of computational

max-divergence.

1.2 Application in Constructing Cryptographic Primitives

A one-way function (OWF) [DH76] is the most basic and unstructured object with crypto-

graphic hardness, and is the minimal assumption for complexity-based cryptography [IL89].

Yet a rich class of cryptographic primitives such as CCA-secure symmetric encryption [Lub94,

BDJR97], digital signature [DH76], pseudorandom function [GGM84], and zero-knowledge

proofs for NP [GMW86] are implied by one-way functions [GGM86, HILL99, Rom90, GMW91,

GMW87, Nao91, HNO+09]. The above constructions from OWFs start with one or more of

the following three basic but more structured building blocks: (1) pseudorandom generators

(PRGs) [BM82, Yao82] (2) statistically hiding commitments (SHCs) [BCC88], and (3) univer-

sal one-way hash functions (UOWHFs) [NY89]. Therefore, the constructions of PRGs, SHCs,

and UOWHFs from OWFs are fundamental and important research topics in complexity and

3In this definition, we use natural logarithms in max-divergence to match the convention in differential
privacy.
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cryptography.

The original constructions of those primitives [ILL89, Has90, Rom90, HNO+09] are rather

complicated and inefficient. Since then, a series of subsequent work improved and simplified the

constructions: [Hol06, HHR06, HRV10, VZ12] for PRGs, [HRVW19] for SHCs, and [HHR+10]

for UOWHFs. Our contribution is in making progress along these lines of work in two aspects:

1. Unifying computational entropies. (§2, [ACHV19])

In many constructions of the three basic primitives, the first step is to design a com-

putational entropy generator G based on OWF f , which creates a gap between real

entropy and some form of computational entropy. One of the keys for the improved

constructions is using a “good” notion of computational entropy, which on the one hand

can be obtained from one-way function efficiently, and on the other hand, characterizes

the essential properties of the target primitives. For example, next-block HILL entropy

and inaccessible entropy are used in recent state-of-the-art constructions of PRGs and

SHCs from OWFs, respectively.

We introduce a new notion of hardness called KL-hardness for search problems which

on the one hand is satisfied by all one-way functions (corresponding to the generator

G(x) = (f(x), x)) and on the other hand implies both next-block HILL entropy and

inaccessible entropy. Therefore our KL-hardness notion unifies those two computational

entropies and sheds light on the apparent duality between them. Additionally, it provides

a modular way to obtain next-block inaccessible entropy from one-way functions, which

is similar to the proof that one-way functions imply next-block HILL entropy in [VZ12].

2. Lower bound for flattening entropies. (§3, [CGVZ18])

One of the criteria to measure the efficiency of constructions of those basic cryptographic

primitives from OWFs is the number of queries to the OWF. The most expensive step

in those constructions is entropy flattening, which converts, an “average-type” entropy

(e.g., Shannon) to a “worst-type” entropy (e.g., min- or max-entropy). In particular,

this step has query complexity of Θ̃(n2), where n is the input length of the OWF, and
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this is the main efficiency bottleneck in the construction of PRGs.

We model this this problem with the notion of a flattening algorithm. A flattening

algorithm is also used in reductions between problems complete for statistical zero-

knowledge [Oka00, SV97, GSV99a, Vad99]. We show that any flattening algorithm has

to make Ω(n2) queries to the functions that provide entropy sources (analogous to the

OWFs in the constructions of cryptographic primitives) where n is the input length of

the source function. In particular, this result can be viewed as a step towards proving

that the current best construction of pseudorandom generators from arbitrary one-way

functions by Vadhan and Zheng [VZ12] has optimal efficiency.

1.3 Simulating Auxiliary Input (§4, [CCL18])

Besides their usage for constructing cryptographic primitives, computational entropies also

directly connect to a number of results in cryptography and computational complexity.

For instance, the security of the leakage-resilient stream-cipher in [DP08] relies on the

Leakage Chain Rule (Theorem 5.5.14) for conditional HILL min-entropy [DP08, RTTV08],

Impagliazzo’s Hardcore Lemma [Imp95] is a special case of the equivalence between conditional

HILL min-entropy and unpredictability entropy [HLR07, Zhe13], and the (complexity-theoretic

version of) Dense Model Theorem [RTTV08] can be viewed as an equivalence between HILL-1

and HILL-2 relative max-entropy. In fact, all these results can be obtained from the Leakage

Simulation Lemma [JP14].

In the leakage simulation lemma, we are given a joint distribution (X,Z) where Z is “short.”

The goal is to find an “efficient” randomized simulator h such that (X,Z) and (X, h(X)) are

indistinguishable by a family of distinguishers. The non-triviality comes from the efficiency

requirement on h. Otherwise, one can simply hardcode the conditional distribution of Z given

X = x for all x.

Besides the results mentioned above, in [TTV09, JP14], they showed that the Leakage

Simulation Lemma also implies the Regularity Theorem in [TTV09], Weak Szemerédi’s Regu-

larity Lemma [FK99], some connections between various zero-knowledge notions (e.g., every
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interactive proof system satisfies a weak notion of zero-knowledge) [CLP15].

Our results

The efficiency is measured in how much more complex the simulator h is than distinguishers

in the family, which we call its relative complexity. Specifically, let ` be the bit length of Z

and ε be a desired bound on the distinguishing probability. The relative complexity should be

polynomial in both ε and 2`. In this paper, we achieve Õ
(
2`ε−2) for the relative complexity

which is better than all previous results [VZ13a, JP14, Sko16a, Sko16b]. On the other hand,

we also prove that our simulator is almost optimal by proving a black-box lower bound,

where black-box means the simulator can only use distinguishers in a black-box way. We also

make a mild assumption that the simulator does not query the distinguisher with same input

x ∈ Supp(X), which are also assumed implicitly in [LTW11, Zha11, PS16].

An implication of our upper bound result is in leakage-resilient cryptography. In par-

ticular, for analyzing the provable security level of the leakage-resilient stream-ciphers by

Pietrzak [Pie09], our complexity bound is the first one that provides a non-trivial and security

guarantee in some legitimate parameters.

1.4 Computational Notions in QuantumWorld (§5, [CCL+17])

In this thesis, we initiate the study of computational notions of entropy in the quantum

setting. Some of our results consider the “post-quantum cryptography” setting where the

adversary has access to a quantum computer, but the object we measure entropies on remains

classical. However, we begin by investigating the more general settings where we consider the

computational entropies of quantum states instead of only classical random variables.

In more detail, we begin with defining some quantum extensions of computational pseu-

doentropy notions and study the connections between them. Most of the pseudoentropy

notions, including HILL-type, metric-type, and unpredictable entropies can be naturally

extended to the quantum setting by replacing the polynomial-size circuits by polynomial-size

quantum circuits. Then we study which classical theorems about computational entropy
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extend to the quantum setting. We show that metric (min-)entropy and HILL (min-)entropy

are also equivalent in the quantum setting (as shown in the classical case [BSW03, RTTV08]).

In the course of that, we develop the quantum analogue of the “Nonuniform Min-max The-

orem” [Zhe13], which we prove using the generalization bound for Rademacher complexity.

We also prove that the Leakage Simulation Lemma still holds when the “simulation part” is

quantum. Based on that, we prove that the construction of leakage-resilient stream-ciphers

in [DP08] is secure against a quantum adversary with logarithmic quantum storage even if

some quantum information is leaked during computations. Also, it implies that the Leakage

Chain Rule for relaxed-HILL entropy holds when the leakage is quantum. On the other

side, we have counterexamples showing that the natural quantum versions of Dense Model

Theorem do not hold in general. That implies the an inequivalence between different types of

computational max-divergence notions, while the notions are equivalent in the classical case

by the (classical) Dense Model Theorem.

1.5 Preliminaries

1.5.1 Notation and convention

For a random variable X over X , Supp(X) def= {x ∈ X : Pr[X = x] > 0} denotes the support

of X. A random variable is flat if it is uniform over its support. Random variables will

be written with uppercase letters and the associated lowercase letter and calligraphic letter

represent a generic element from its support and the sample space of the random variable.

For a distribution X over X , x r← X means x is a random sample drawn from X.

For a natural number n, [n] denotes the set {1, 2, . . . , n} and Un denotes the uniform

distribution over {0, 1}n. For a finite set X , |X | denotes its cardinality, and UX denotes the

uniform distribution over X .

poly denotes the set of polynomial functions and negl the set of all negligible functions.

That is ε ∈ negl if for all p ∈ poly and large enough n ∈ N, ε(n) ≤ 1/p(n). We will sometimes

abuse notations and write poly(n) to mean p(n) for some p ∈ poly and similarly for negl(n).
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For a function f , Õ(f) means O(f logk f) and Ω̃(f) means Ω
(
f/ logk f

)
for some constant

k > 0. ppt stands for probabilistic polynomial time and can be either in the uniform or

non-uniform model of computation.

1.5.2 Information theory

Definition 1.5.1 (entropies). For a random variable X and x ∈ Supp(X), the sample entropy

(also called surprise) of x is

H∗x(X) def= log 1
Pr[X = x] .

The (Shannon) entropy of X is

HSh(X) def= E
x

r←X

[
H∗x(X)

]
= E

x
r←X

[
log 1

Pr[X = x]

]
.

The min-entropy of X is

Hmin(X) def= min
x∈Supp(X)

H∗x(X) = min
x∈Supp(X)

log 1
Pr[X = x] .

The max-entropy of X is

Hmax(X) def= log
∣∣∣Supp(X)

∣∣∣ ≤ max
x∈Supp(X)

H∗x(X) ,

where Supp(X) =
{
x : Pr[X = x] > 0

}
.

Definition 1.5.2 (conditional (average) min-entropy [DORS08]). Let (X,Y ) be jointed dis-

tributed random variables. The average min-entropy of X conditioned on Y is

Hmin
(
X
∣∣Y ) def= log 1

Ey←Y
[
maxx Pr[X = x|Y = y]

]
Proposition 1.5.3 (chain rule for entropy). Let (A,X) be a pair of random variables, then

H(A,X) = H(A|X) + H(X) and for (a, x) ∈ Supp(A,X), H∗a,x(A,X) = H∗a,x(A|X) + H∗x(X).

Definition 1.5.4 (KL-divergences). For distributions X and Y on X , and x ∈ Supp(Y ), the

sample KL-divergence (log-probability ratio) is

D∗x
(
X
∥∥Y ) def= log Pr[X = x]

Pr[Y = x] .
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The KL-divergence (also called relative entropy) from X to Y is

DKL
(
X
∥∥Y ) def= E

x
r←X

[
D∗x(X ‖Y )

]
= E

x
r←X

[
log Pr[X = x]

Pr[Y = x]

]
.

The max divergence (also called max-relative entropy) between X and Y is

Dmax
(
X
∥∥Y ) def= max

x∈Supp(X)
D∗x
(
X
∥∥Y ) = max

x∈Supp(X)
log Pr[X = x]

Pr[Y = x] .

Proposition 1.5.5. Let X be a distribution on {0, 1}n. Then

HSh(X) = n−DKL(X ‖Un)

Hmin(X) = n−Dmax(X ‖Un)

1.5.3 Cryptography

Definition 1.5.6 (statistical distance). Let Random variable X1 and X2 be two random

variables on X . The statistical distance (a.k.a. total variation) is

dTV(X1 , X2) def= max
T⊆X

∣∣∣Pr[X1 ∈ T ]− Pr[X2 ∈ T ]
∣∣∣ .

We also say X1 and X2 are ε-close if dTV(X1 , X2) ≤ ε.

Definition 1.5.7 (computational indistinguishability [GM84]). Let X and Y be distribu-

tions over {0, 1}n, and f : {0, 1}n → {0, 1} be a distinguisher. We say X and Y are

ε-(computationally) indistinguishable by f if

∣∣∣Pr[f(X) = 1]− Pr[f(Y ) = 1]
∣∣∣ ≤ ε .

More generally, X and Y are ε-indistinguishable by a family of distinguishers F if X and Y

are ε-indistinguishable by f for all f ∈ F .

One common choice for the family of distinguishers is all distinguishers with bounded circuit

complexity. We say X and Y are (t, ε)-indistinguishable if X and Y are ε-indistinguishable

by all distinguishers of size t.

In the asymptotic setting, let n be a security parameter, we say X and Y are com-
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putationally indistinguishable if for some t(n) = nω(1) and ε(n) = n−ω(1), X and Y are

(t(n), ε(n))-indistinguishable.

Definition 1.5.8 (one-way function). Let n be a security parameter, t = t(n) and ε = ε(n).

A function f : {0, 1}n → {0, 1}n is a (t, ε)-one-way function if:

1. For all time t randomized algorithm A, Pr
x

r←Un

[
A
(
f(x)

)
∈ f−1(f(x)

)]
≤ ε, where Un is

uniform over {0, 1}n.

2. There exists a ppt algorithm B such that B(x, 1n) = f(x) for all x ∈ {0, 1}n.

If f is (nc, 1/nc)-one-way for every c ∈ N, we say that f is (strongly) one-way.
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Chapter 2

Unifying Computational Entropies

via Kullback–Leibler Divergence

In this chapter, we introduce a new notion of hardness called KL-hardness for search problems

which on the one hand is satisfied by all one-way functions and on the other hand implies

both next-block HILL entropy [HRV13] and inaccessible entropy [HRVW09, HV17]. Two

forms of computational entropy are used in the state-of-the-art constructions of pseudorandom

generators [VZ12] and statistically-hiding commitment schemes [HRVW19], respectively.

2.1 Introduction

2.1.1 One-way functions and computational entropy

One-way functions [DH76] are on one hand the minimal assumption for complexity-based

cryptography [IL89], but on the other hand can be used to construct a remarkable array

of cryptographic primitives, including such powerful objects as CCA-secure symmetric en-

cryption, zero-knowledge proofs and statistical zero-knowledge arguments for all of NP, and

secure multiparty computation with an honest majority [GGM86, GMW91, GMW87, HILL99,

Rom90, Nao91, HNO+09]. All of these constructions begin by converting the “raw hardness”

of a one-way function (OWF) to one of the following more structured cryptographic primi-
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tives: a pseudorandom generator (PRG) [BM82, Yao82], a universal one-way hash function

(UOWHF) [NY89], or a statistically hiding commitment scheme (SHC) [BCC88].

The original constructions of these three primitives from arbitrary one-way functions

[HILL99, Rom90, HNO+09] were all very complicated and inefficient. Over the past decade,

there has been a series of simplifications and efficiency improvements to these constructions

[HRVW09, HRV13, HHR+10, VZ12], leading to a situation where the constructions of two of

these primitives — PRGs and SHCs — share a very similar structure and seem “dual” to

each other. Specifically, these constructions proceed as follows:

1. Show that every OWF f : {0, 1}n → {0, 1}n has a gap between its “real entropy”

and an appropriate form of “computational entropy”. Specifically, for constructing

PRGs, it is shown that the function G(x) = (f(x), x1, x2, . . . , xn) has “next-block HILL

entropy” at least n + ω(log n) while its real entropy is HSh(G(Un)) = n [VZ12]. For

constructing SHCs, it is shown that the function G(x) = (f(x)1, . . . , f(x)n, x) has

“next-block accessible entropy” at most n − ω(log n) while its real entropy is again

H(G(Un)) = n [HRVW09]. Note that the differences between the two cases are whether

we break x or f(x) into individual bits (which matters because the “next-block” notions

of computational entropy depend on the block structure) and whether the form of

computational entropy is larger or smaller than the real entropy.

2. An “entropy equalization” step that converts G into a similar generator where the real

entropy in each block conditioned on the prefix before it is known. This step is exactly

the same in both constructions.

3. A “flattening” step that converts the (real and computational) Shannon entropy guaran-

tees of the generator into ones on (smoothed) min-entropy and max-entropy. This step

is again exactly the same in both constructions.

4. A “hashing” step where high (real or computational) min-entropy is converted to uniform

(pseudo)randomness and low (real or computational) max-entropy is converted to a

small-support or disjointness property. For PRGs, this step only requires randomness
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extractors [HILL99, NZ96], while for SHCs it requires (information-theoretic) interac-

tive hashing [NOVY98, DHRS07]. (Constructing full-fledged SHCs in this step also

utilizes UOWHFs, which can be constructed from one-way functions [Rom90]. With-

out UOWFHs, we obtain a weaker binding property, which nevertheless suffices for

constructing statistical zero-knowledge arguments for all of NP.)

This common construction template came about through a back-and-forth exchange of

ideas between the two lines of work. Indeed, the uses of computational entropy notions,

flattening, and hashing originate with PRGs [HILL99], whereas the ideas of using next-block

notions, obtaining them from breaking (f(x), x) into short blocks, and entropy equalization

originate with SHCs [HRVW09]. All this leads to a feeling that the two constructions, and

their underlying computational entropy notions, are “dual” to each other and should be

connected at a formal level.

In this paper, we make progress on this project of unifying the notions of computational

entropy, by introducing a new computational entropy notion that yields both next-block HILL

entropy and next-block accessible entropy in a clean and modular fashion. It is inspired by

the proof of [VZ12] that
(
f(x), x1, . . . , xn

)
has next-block HILL entropy n+ ω(log n), which

we will describe now.

2.1.2 Next-block HILL entropy from OWF

First, we review the definitions of next-block HILL entropy and next-block accessible entropy,

and how they are obtained from OWFs [VZ12, HRVW09]. For succinctness, we use the

notation z<i = (z1, . . . , zi).

Definition 2.1.1 (next-block HILL entropy [HRV10], informal). Let n be a security parameter,

and Z = (Z1, . . . , Zm) be a random variable distributed on strings of length poly(n). We say

that X has next-block HILL entropy at least k if there is a random variable Z̃ = (Z̃1, . . . , Z̃m),

jointly distributed with X, such that

1. For all i ∈ [m], (Z<i, Zi) is computationally indistinguishable from (Z<i, Z̃i).
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2.
m∑
i=1

HSh
(
Z̃i|Z<i

)
≥ k.

It was conjectured in [HRV10] and proven in [VZ12] that next-block HILL entropy can be

obtained from any OWF by breaking its input into bits:

Theorem 2.1.2 ([VZ12], informal). Let f : {0, 1}n → {0, 1}n be a one-way function, X be

uniformly distributed on {0, 1}n, and X = (X1, . . . , Xm) be a partition of X into m blocks

where block lengths are O(log n). Then
(
f(X), X1, . . . , Xm

)
has next-block HILL entropy at

least n+ ω(log n).

The intuition behind Theorem 2.1.2 is that since X is hard to sample given f(X), then it

should have some extra computational entropy given f(X). This intuition is formalized using

the following notion of being “hard to simulate”:1

Definition 2.1.3 (KL-hard for simulating). Let n be a security parameter, and (Y,X) be a

pair of random variables, jointly distributed over strings of length poly(n). We say that X is

∆-KL-hard for simulating given Y if for all probabilistic polynomial-time S, we have

DKL
(
Y,X

∥∥Y, S(Y )
)
≥ ∆ .

That is, it is hard for any efficient adversary S to simulate the conditional distribution of

X given Y , even approximately.

The first step of the proof of Theorem 2.1.2 is to show that X is ω(log n)-KL-hard for

simulating given f(X). Next, X is broken into short blocks (X = (X1, . . . , Xm)), and the

sum of “next-block KL-hardness for simulating” is preserved. That is, for all i ∈ [n] Xi

is ∆i-KL-hard to sample given f(X), X<i, where
∑
i ∆i = ω(log n). Finally, they showed

that the KL-hardness of X for simulating is equivalent to the gap between conditional HILL

entropy and real conditional entropy when the length of X is O(log n).

We remark that breaking X into short blocks is necessary for showing the equivalence

between the KL-hardness for simulating and conditional HILL entropy. Indeed, one cannot

1In [VZ12], it was called “KL-hard for sampling”. Here we emphasize that the algorithm is simulating the
randomness used by the one-way function.
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expect any X ′ with HSh(X ′|f(X)) noticeably larger than HSh(X|f(X)) and (X ′, f(X)) is

computationally indistinguishable from (X, f(X)). An algorithm can easily distinguish them

by checking whether f maps the first block to the second block.

2.1.3 Next-block accessible entropy from OWF

We say generator G̃ =
(
G̃1, . . . , G̃m

)
which takes a sequence of uniformly random string

R̃ =
(
R̃1, . . . , R̃m

)
is online if for all i ∈ [m], G̃i(R̃) = G̃i(R̃≤i) only depends on the first i

random strings of R̃.

Definition 2.1.4 (next-block inaccessible entropy, informal). Let n be a security parameter,

and Z = (Z1, . . . , Zm) be a random variable distributed on strings of length poly(n). We say

that Z has next-block accessible entropy at most k if for all online generator G̃ =
(
G̃1, . . . , G̃m

)
such that Supp

(
G̃(R̃)

)
⊆ Supp(Z), we have

m∑
i=1

HSh
(
G̃i(R̃≤i)

∣∣∣ R̃<i) ≤ k ,
where R̃ =

(
R̃1, . . . , R̃m

)
is uniformly distributed.

The accessible entropy adversary G̃ is trying to generate the random variables Zi conditioned

on the history rather than recognize them. Note that we condition on not only the previous

blocks
(
Z̃1, . . . , Z̃i−1

)
, but also the coin tosses

(
R̃1, . . . , R̃i−1

)
used previously.

Similarly to next-block HILL entropy (Theorem 2.1.2), it is known that one-wayness

implies next-block inaccessible entropy.

Theorem 2.1.5 ([HRVW09]). Let f : {0, 1}n → {0, 1}n be a one-way function, X be uni-

formly distributed in {0, 1}n, and (Y1, . . . , Ym) be a partition of Y = f(X) into blocks of length

O(log n). Then (Y1, . . . , Ym, X) has next-block accessible entropy at most n− ω(log n).

Unfortunately, the existing proof of Theorem 2.1.5 is not modular like that of Theorem 2.1.2

outlined above. In particular, it does not isolate the step of relating one-wayness to an entropic

hardness or the significance of having short blocks. Another unsatisfactory aspect is that when
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the random variable Z is not uniform on its support, there can be an adversary G̃ achieving

accessible entropy even higher than HSh(Z), for example by making Z̃ uniform on Supp(Z).

2.1.4 Our unified notion — KL-hardness

We remedy the above issues by proposing a new, more general notion of KL-hardness. This

notion provides a unified way to capture the hardness inside the jointly distributed random

variables G(X) = (f(X), X) = (Y,X), which allows us to obtain both next-block HILL

entropy and next-block inaccessible entropy.

In KL-hardness for simulating, the hardness is characterized by the KL divergence from the

true distribution (Y,X) to (Y, S(Y )), which produced by “simulator” S. On the other hand, for

next-block accessible entropy, we would like to capture the hardness in approximating the joint

distribution (Y,X). That is, we ask a generator G̃ to output
(
Ỹ , X̃

)
= G̃(R̃) =

(
G̃Y (R̃), G̃X(R̃)

)
such that Supp

(
(Ỹ , X̃)

)
⊆ Supp

(
(Y,X)

)
and

(
Ỹ , X̃

)
is “close” to (Y,X). We combine both

ideas by looking at the “distance” between distributions inferred from G̃ and S. Similar to the

definition of accessible entropy, where the measurement of accessible entropy is conditioned on

the coin tosses of the generator, we ask S to output the randomness of G̃ instead of X (which

can be seen as the randomness of G where G(x) = (f(x), x) as above). In our KL-hardness

definition, the adversary gets to choose both G̃ and S to reduce the KL-divergence.

Definition 2.1.6 (KL-hard, informal version of Definition 2.3.4). Let n be a security parame-

ter, and (Y,X) be a pair of random variables jointly distributed over strings of length poly(n).

We say that (Y,X) is ∆-KL-hard if for all probabilistic poly(n)-time algorithms G̃ =
(
G̃y, G̃x

)
and S such that Supp

(
G̃(R̃)

)
⊆ Supp

(
(Y,X)

)
, we have

DKL
(
G̃y(R̃), R̃

∥∥∥Y, S(Y )
)
≥ ∆ ,

where R̃ denotes uniformly distributed coin tosses for G̃.

Similar to KL-hardness for simulating, one can show that if f : {0, 1}n → {0, 1}n is a

OWF, then (f(X), X) is ω(n)-KL-hard (Theorem 2.3.5) with a one-line calculation.

The KL-hardness measures on both how well G̃y approximates the distribution of Y and
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how well S simulates the corresponding coin tosses of G̃y. Potentially, there is a trade-off

between the two criteria. In fact, we will see that one of each hardness leads to HILL entropy

or accessible entropy.

First, to focus on the hardness in the simulator S, we can fix G̃(R̃) = G(R̃) to be “honest”

by mimicking G. Then the definition reduces to KL-hardness for simulating (Definition 2.1.3).

Thus, (Y,X) being ∆-KL-hard implies X is ∆-KL-hard for simulating given Y , and then the

gap between next-block HILL entropy and true entropy follows as [VZ12] have shown.

On the other hand, to focus on the hardness in the generator G̃, a natural simulator

S on input y simply keeps guessing the coin tosses r for G̃ until G̃y(r) = y, and outputs

r. The simulator outputs ⊥ if it fails to find correct coin tosses. It can be shown that

DKL
(
G̃y(R̃), R̃

∥∥Y, S(Y )
)
≈ DKL

(
G̃y(R̃)

∥∥Y ) if S(Y ) outputs ⊥ with small probability.

Unfortunately, the probability that the simulator succeeds can be exponentially small in

general. Therefore, we break Y into short blocks Y = (Y1, . . . , Ym) and consider G̃ to be an

online generator as in the definition of accessible entropy. Then we can obtain a simulator

for G̃ in an “online fashion” as well: it guesses the coin toss r̃i one at a time by matching

G̃i(r̃≤i) to Ỹi, so it only fails with negligible probability in each step. As before, if it fails

in guessing within polynomial trials, it outputs ⊥ for all remaining r̃is (See Algorithm 2.4.1

for the formal definition of the simulator). We denote such a simulator as SimG̃ and define

next-block KL-hardness for generating as follows. (Note that the adversary can only choose G̃

but SimG̃(Y ) also depends on G̃.)

Definition 2.1.7 (next-block KL-hard for generating, informal version of Definition 2.4.1).

Let n be a security parameter, and (Y1, . . . , Ym, X) be a random variables, jointly distributed

over strings of length poly(n). We say that (Y1, . . . , Ym, X) is next-block ∆-KL-hard for

generating if for all probabilistic polynomial-time online generator G̃ =
(
G̃y1 , . . . , G̃ym , G̃x

)
such that Supp

(
G̃
)
⊆ Supp

(
(Y1, · · · , Ym, X)

)
, we have

DKL
(
Ỹ1, . . . , Ỹm, R̃

∥∥∥Y1, . . . , Ym, SimG̃(Y )
)
≥ ∆ ,

where R̃ is uniformly distributed and Ỹi = G̃yi
(
R̃≤i

)
for all i ∈ [m].
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It can be shown that if (Y,X) is ∆-KL-hard and we break Y = (Y1, . . . , Ym) into blocks

of length O(log n), then (Y1, . . . , Ym, X) is next-block ∆-KL-hard for generating. Once we

have the next-block KL-hardness for generating, the next step is to deduce the next-block

inaccessible entropy among (Y1, . . . , Ym, X) from “next-block KL-hardness for generating”.

In fact, we obtain the slightly more general notion, which we call “next-block inaccessible

relative entropy”:

Definition 2.1.8 ((next-block) inaccessible relative entropy, informal version of Defini-

tion 2.4.4). Let n be a security parameter, and Z = (Z1, . . . , Zm) be a random variable

distributed on strings of length poly(n). We say that Z has next-block-inaccessible relative

entropy at least ∆ if for all probabilistic polynomial-time online generator G̃ =
(
G̃z1 , . . . , G̃zm

)
such that Supp

(
G̃
)
⊆ Supp(Z), we have

m∑
i=1

DKL
(
Z̃i|R̃<i, Z̃<i

∥∥∥Zi|R<i, Z<i) ≥ ∆ ,

where R̃ is uniformly distributed, Z̃i = G̃zi(R̃≤i) and R = (R1, . . . , Rm) is a dummy random

variable independent of Z.

A nice property of the definition of next-block inaccessible relative entropy compared to

next-block inaccessible entropy is that it is meaningful even for non-flat random variables,

as KL-divergence is always nonnegative. Moreover, for flat random variables (which is the

case for Z = (f(X), X)), both definitions are equivalent. Intuitively, this is an analogue of

the equality HSh
(
Z̃
)

= HSh(Z)−DKL
(
Z̃
∥∥Z) when Z is flat and Supp

(
Z̃
)
⊆ Supp(Z).

With these new notions, we obtain a new, more modular proof of Theorem 2.1.5, which

outlined as:

f is a one-way function

⇒
(
f(X), X

)
is ω(log n)-KL-hard

⇒
(
f(X)1, . . . , f(X)n, X

)
is next-block ω(log n)-KL-hard for generating

⇒
(
f(X)1, . . . , f(X)n, X

)
has next-block inaccessible (relative) entropy at least ω(log n) .
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The reduction implicit in the second-to-last step is the same as the one in [HRVW09], but

the analysis is different (In particular, [HRVW09] makes no use of KL-divergence.). Similar

to the existing proof of Theorem 2.1.2 in [VZ12], this proof separates the move from one-

wayness to a form of KL-hardness, the role of short blocks, and the move from KL-hardness

to computational entropy. Moreover, this further illumination of and toolkit for notions of

computational entropy may open the door to other applications in cryptography.

2.2 Preliminaries

2.2.1 Information theory.

Definition 2.2.1 (Conditional KL-divergence). For pairs of random variables (A,X) and

(B, Y ), and (a, x) ∈ Supp(A,X), the conditional sample KL-divergence is:

D∗a,x
(
A|X

∥∥B|Y ) def= log Pr[A = a|X = x]
Pr[B = a|Y = x] ,

and the conditional KL-divergence is:

DKL
(
A|X

∥∥B|Y ) def= E
(a,x) r←(A,X)

[
log Pr[A = a|X = x]

Pr[B = a|Y = x]

]
.

Definition 2.2.2 (smooth min∗-KL-divergence). For distributions X and Y , the min∗-

divergence2 between X and Y is

Dmin∗(X ‖Y ) def= min
x∈Supp(Y )

D∗x(X ‖Y ) = min
x∈Supp(Y )

log Pr[X = x]
Pr[Y = x] .

For δ ∈ [0, 1], we define the δ-smooth min∗-divergence from X to Y , Dδ
min∗(X ‖Y ) to be the

quantile of level δ of D∗x(X ‖Y ). Equivalently it is the smallest ∆ ∈ R satisfying

Pr
x

r←X

[
D∗x(X ‖Y ) ≤ ∆

]
≥ δ ,

2This is not the standard Rényi divergence Dα with α = 0. We use min∗ to emphasize the difference and
indicate that the minimum is taken over sample notions.

21



and it is characterized by

Dδ
min∗(X ‖Y ) > ∆⇔ Pr

x
r←X

[
D∗x(X ‖Y ) ≤ ∆

]
< δ .

Proposition 2.2.3 (chain rule for KL-divergence). For pairs of random variables (X,A) and

(Y,B),

DKL
(
A,X

∥∥B, Y ) = DKL
(
A|X

∥∥B|Y )+ DKL
(
X
∥∥Y ) .

For (a, x) ∈ Supp(A,X),

D∗a,x
(
A,X

∥∥B, Y ) = D∗a,x
(
A|X

∥∥B|Y )+ D∗x
(
X
∥∥Y ) .

Proposition 2.2.4 (data-processing inequality). Let (X,Y ) be a pair of random variables

and let f be a function defined on Supp(Y ), then:

DKL
(
X
∥∥Y ) ≥ DKL

(
f(X)

∥∥ f(Y )
)
.

2.2.2 Block generators.

Definition 2.2.5 (block generator). An m-block generator is a function G : {0, 1}s →∏m
i=1{0, 1}`i . Gi(r) denotes the i-th block of G on input r and |Gi | = `i denotes the bit length

of the i-th block.

Definition 2.2.6 (online block generator). An online m-block generator is a function G̃ :∏m
i=1{0, 1}si →

∏m
i=1{0, 1}`i such that for all i ∈ [m] and r ∈ ∏m

i=1{0, 1}si , G̃i(r) only depends

on r≤i. We sometimes write G̃i(r≤i) when the input blocks i+ 1, . . . ,m are unspecified.

Definition 2.2.7 (support). The support of a generator G is the support of the random

variable Supp
(
G(R)

)
for uniform input R. If (Gy,Gw) is an online block generator, and Π is

a binary relation, we say that (Gy,Gw) is supported on Π if Supp
(
Gy(R),Gw(R)

)
⊆ Π.

The subscripts we use for a block generator often match the random variables they

correspond to.
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2.3 Search Problems and KL-hardness

In this section, we first present the classical notion of hard-on-average search problems and

introduce the new notion of KL-hardness. We then relate the two notions by proving that

average-case hardness implies KL-hardness.

2.3.1 Search problems

For a binary relation Π ⊆ {0, 1}∗ × {0, 1}∗, we write Π(y, w) for the predicate that is true

iff (y, w) ∈ Π and say that w is a witness for the instance y.3 To each relation Π, we

naturally associate (1) a search problem: given y, find w such that Π(y, w) or state that

no such w exist and (2) the decision problem defined by the language LΠ
def= {y ∈ {0, 1}∗ :

∃w ∈ {0, 1}∗, Π(y, w)}. FNP denotes the set of all relations Π computable by a polynomial

time algorithm and such that there exists a polynomial p such that Π(y, w)⇒ |w| ≤ p(|y|).

Whenever Π ∈ FNP, the associated decision problem LΠ is in NP. We now define average-case

hardness.

Definition 2.3.1 (distributional search problem). A distributional search problem is a pair

(Π, Y ) where Π ⊆ {0, 1}∗ × {0, 1}∗ is a binary relation and Y is a random variable supported

on LΠ.

The problem (Π, Y ) is (t, ε)-hard if Pr
[
Π
(
Y,A(Y )

)]
≤ ε for all time t randomized algorithm

A, where the probability is over the distribution of Y and the randomness of A.

Example 2.3.2. For f : {0, 1}n → {0, 1}n, the problem of inverting f is the search problem

associated with the relation Πf def=
{
(f(x), x) : x ∈ {0, 1}n

}
. If f is a (t, ε)-one-way function,

then the distributional search problem
(
Πf , f(X)

)
of inverting f on a uniform random input

X ∈ {0, 1}n is (t, ε)-hard.

Remark 2.3.3. Consider a distributional search problem (Π, Y ). Without loss of generality,

there exists a (possibly inefficient) two-block generator G = (Gy,Gw) supported on Π such that

3We used the unconventional notation y for the instance (instead of x) because our relations will often be
of the form Πf for some function f ; in this case an instance is some y in the range of f and a witness for y is
any preimage x ∈ f−1(y).
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Gy(R) = Y for uniform input R. If Gw is polynomial-time computable, it is easy to see that

the search problem
(
ΠGy ,Gy(R)

)
is at least as hard as (Π, Y ). The advantage of writing the

problem in this “functional” form is that the distribution (G1(R), R) over (instance, witness)

pairs is flat, which is a necessary condition to relate hardness to inaccessible entropy.

Furthermore, if Gy is also polynomial-time computable and (Π, Y ) is (poly(n), negl(n))-

hard, then R 7→ Gy(R) is a one-way function. Combined with the previous example, we see

that the existence of one-way functions is equivalent to the existence of
(
poly(n), negl(n)

)
-hard

search problems for which (instance, witness) pairs can be efficiently sampled.

2.3.2 KL-hardness

Instead of considering an adversary directly attempting to solve a search problem (Π, Y ),

the adversary in the definition of KL-hardness comprises a pair of algorithm
(
G̃, S

)
where

G̃ =
(
G̃y, G̃w

)
is a two-block generator outputting valid (instance, witness) pairs for Π and S

is a simulator for G̃: given an instance y, the goal of S is to output randomness r for G̃ such

that G̃y(r) = y. Formally, the definition is as follows.

Definition 2.3.4 (KL-hard). Let (Π, Y ) be a distributional search problem. We say that

(Π, Y ) is (t,∆)-KL-hard if

DKL
(
R̃, G̃y(R̃)

∥∥∥ S(Y ), Y
)
> ∆ (2.1)

for all pairs
(
G̃, S

)
of time t algorithms where G̃ =

(
G̃y, G̃w

)
is a two-block generator supported

on Π and R̃ is uniform randomness for G̃y. Similarly, (Π, Y ) is (t,∆)-Dδ
min∗-hard if for all

such algorithm pairs:

Dδ
min∗

(
R̃, G̃y(R̃)

∥∥∥ S(Y ), Y
)
> ∆ .

Note that a pair (G̃, S) achieves a KL-divergence of zero in Equation (2.1) if G̃y(R) has

the same distribution as Y and if G̃y
(
S(y)

)
= y for all y ∈ Supp(Y ). In this case, we have

that G̃w
(
S(Y )

)
is a valid witness for Y since G̃ is supported on Π.

More generally, the composition G̃w ◦ S solves the search problem (Π, Y ) whenever

G̃y
(
S(Y )

)
= Y . When the KL-divergences in Equation (2.1) are upper-bounded, we can
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lower bound the probability of the search problem being solved (Lemma 2.3.7). This immedi-

ately implies that hard search problems are also KL-hard.

Theorem 2.3.5. Let (Π, Y ) be a distributional search problem. If (Π, Y ) is (t, ε)-hard, then

it is (t′,∆′)-KL-hard and (t′,∆′′)-Dδ
min∗-hard for every δ ∈ [0, 1] where t′ = Ω(t),∆′ = log(1/ε)

and ∆′′ = log(1/ε)− log(1/δ).

Remark 2.3.6. As we see, a “good” simulator S for a generator G̃ =
(
G̃y, G̃w

)
is one for

which G̃y
(
S(Y )

)
= Y holds often. It will be useful in Section 2.4 to consider simulators S

which are allowed to fail by outputting a failure string r /∈ Supp
(
R̃
)
, (e.g., r = ⊥) and adopt

the convention that G̃y(r) = ⊥ whenever r /∈ Supp(R̃). With this convention, we can without

loss of generality add the requirement that G̃y
(
S(y)

)
= y whenever S(y) ∈ Supp

(
R̃
)
: indeed, S

can always check that it is the case and if not output a failure symbol. For such a simulator

S, observe that for all r ∈ Supp(R̃), the second variable on both sides of the KL-divergences

in Definition 2.3.4 is obtained by applying G̃y on the first variable and can thus be dropped,

leading to a more concise definition of KL-hardness: DKL
(
R̃
∥∥ S(Y )

)
> ∆.

Theorem 2.3.5 is an immediate consequence of the following lemma.

Lemma 2.3.7. Let (Π, Y ) be a distributional search problem and (G̃, S) be a pair of algorithms

with G̃ =
(
G̃y, G̃w

)
a two-block generator supported on Π. Define the linear-time oracle

algorithm AG̃w,S(y) def= G̃w
(
S(y)

)
. For ∆ ∈ R+ and δ ∈ [0, 1]:

1. If DKL
(
R̃, G̃y(R̃)

∥∥∥ S(Y ), Y
)
≤ ∆ then Pr

[
Π
(
Y,AG̃w,S(Y )

)]
≥ 1/2∆.

2. If Dδ
min∗

(
R̃, G̃y(R̃)

∥∥∥ S(Y ), Y
)
≤ ∆ then Pr

[
Π
(
Y,AG̃w,S(Y )

)]
≥ δ/2∆.

Proof. We have:

Pr
[
Π
(
Y,AG̃w,S(Y )

)]
= Pr

[
Π
(
Y, G̃w(S(Y ))

)]
≥ Pr

[
G̃y
(
S(Y )

)
= Y

]
(G̃ is supported on Π)

=
∑

r∈Supp(R̃)

Pr
[
S(Y ) = r ∧ Y = G̃y(r)

]
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= E
r

r←R̃

[
Pr
[
S(Y ) = r ∧ Y = G̃y(r)

]
Pr
[
R̃ = r

] ]

= E
r

r←R̃
y←G̃y(r)

[
2−D∗r,y

(
R̃,G̃y(R̃)

∥∥ S(Y ),Y
)]
.

Now, the first claim follows by Jensen’s inequality (since x 7→ 2−x is convex) and the second

claim follows by Markov’ inequality when considering the event that the sample-KL is smaller

than ∆ (which occurs with probability at least δ by assumption).

Relation to KL-hardness for simulating. In [VZ12]4, the authors introduced the notion

of KL-hardness for simulating: for jointly distributed variables (Y,W ),W is hard for simulating

given Y if it is hard for a polynomial time adversary to approximate—measured in KL-

divergence—the conditional distribution W given Y . Formally:

Definition 2.3.8 (KL-hard for simulating, Def. 3.4 in [VZ12]). Let (Y,W ) be a pair of random

variables, we say that W is (t,∆)-KL-hard to sample given Y if for all time t randomized

algorithm S, we have:

DKL
(
Y,W

∥∥Y, S(Y )
)
> ∆ .

It was shown in [VZ12] that if f : {0, 1}n → {0, 1}n is a one-way function, then(
f(X), X1, . . . , Xn

)
has next-bit HILL entropy for uniform X ∈ {0, 1}n (Theorem 2.1.2).

The first step in proving this result was to prove that X is KL-hard to simulate given f(X).

We observe that when (Y,W ) is of the form
(
f(X), X

)
for some function f : {0, 1}n →

{0, 1}n and variable X over {0, 1}n, then KL-hardness for sampling is implied by KL-hardness

by simply fixing G̃ to be the “honest simulator” G̃(X) =
(
G̃y(X), G̃x(X)

)
=
(
f(X), X

)
. Indeed,

in this case we have:

DKL
(
X, G̃y(X)

∥∥∥ S(Y ), Y
)

= DKL
(
X, f(X)

∥∥∥ S(Y ), Y
)
.

Corollary 2.3.9. Consider a function f : {0, 1}n → {0, 1}n and define Πf def= {(f(x), x) :

4In their work, they named it KL-hardness for sampling. We call it KL-hardness for simulating as S is more
specifically simulating the conditional distribution of “randomness” W .
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x ∈ {0, 1}n} and Y def= f(X) for X uniform over {0, 1}n. If f is (t, ε)-one-way, then (Πf , Y )

is
(
t′, log(1/ε)

)
-KL-hard and X is

(
t′, log(1/ε)

)
-KL-hard for sampling given Y with t′ = Ω(t).

Witness KL-hardness. We also introduce a relaxed notion of KL-hardness called witness-

KL-hardness. In this notion, we further require (G̃, S) to approximate the joint distribution of

(instance, witness) pairs rather than only instances. For example, the problem of inverting a

function f over a random input X is naturally associated with the distribution
(
f(X), X

)
.

The relaxation in this case is analogous to the notion of distributional one-way function for

which the adversary is required to approximate the uniform distribution over preimages.

Definition 2.3.10 (witness KL-hardness). Let Π be a binary relation and (Y,W ) be a pair

of random variables supported on Π. We say that (Π, Y,W ) is (t,∆)-witness-KL-hard if for

all pairs of time t algorithms (G̃, S) where G̃ = (G̃y, G̃w) is a two-block generator supported on

Π, for uniform R̃,

DKL
(
R̃, G̃y(R̃), G̃w(R̃)

∥∥∥ S(Y ), Y,W
)
> ∆ .

Similarly, for δ ∈ [0, 1], (Π, Y,W ) is (t,∆)-witness-Dδ
min∗-hard, if for all such pairs,

Dδ
min∗

(
R̃, G̃y(R̃), G̃w(R̃)

∥∥∥ S(Y ), Y,W
)
> ∆ .

We introduced KL-hardness first, since it is the notion which is most directly obtained

from the hardness of distribution search problems. Observe that by the data processing

inequality for KL divergence (Proposition 2.2.4), dropping the third variable on both sides of

the KL divergences in Definition 2.3.10 only decreases the divergences. Hence, KL-hardness

implies witness-KL-hardness as stated in Theorem 2.3.11. As we will see in Section 2.4

witness-KL-hardness is the “correct” notion to obtain inaccessible entropy from: it is in fact

equal to inaccessible entropy up to 1/ poly losses.

Theorem 2.3.11. Let Π be a binary relation and (Y,W ) be a pair of random variables

supported on Π. If (Π, Y ) is (t, ε)-hard, then (Π, Y,W ) is (t′,∆′)-witness-KL-hard and

(t′,∆′′)-witness-Dδ
min∗-hard for every δ ∈ [0, 1] where t′ = Ω(t), ∆′ = log(1/ε) and ∆′′ =
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log(1/ε)− log(1/δ).

We cannot actually get the parameter for Dmin∗ in Theorem 2.3.11 simply by data processing

inequality. That is, it does not follow with the claimed parameters in a black-box manner

from Theorem 2.3.5. However, the proof essentially identical to the one for Theorem 2.3.5

gives the result.

Proof. Let
(
G̃, S

)
be a pair of algorithms with G̃ =

(
G̃y, G̃w

)
a two-block generator supported

on Π. Define the linear-time oracle algorithm AG̃w,S(y) def= G̃w
(
S(y)

)
. Then

Pr
[
Π
(
Y,AG̃w,S(Y )

)]
= Pr

[
Π
(
Y, G̃w(S(Y ))

)]
≥ Pr[G̃y(S(Y )) = Y ][2] (G̃ is supported on Π)

=
∑

r∈Supp(R̃)

Pr
[
S(Y ) = r ∧ Y = G̃y(r)

]

≥
∑

r∈Supp(R̃)
w∈Supp(G̃w(R̃))

Pr
[
S(Y ) = r ∧ Y = G̃y(r) ∧W = w

]

= E
r

r←R̃
w←G̃w(r)

[
Pr
[
S(Y ) = r ∧ Y = G̃y(r) ∧W = w

]
Pr
[
R̃ = r ∧ G̃w(r) = w

] ]

= E
r

r←R̃
(y,w)←G̃(r)

[
2−D∗r,y,w

(
R̃,G̃y(R̃),G̃w(R̃)

∥∥ S(Y ),Y,W
)]
,

The witness-KL-hardness then follows by applying Jensen’s inequality (since x 7→ 2−x is

convex) and the witness-Dmin∗-hardness follows by Markov’s inequality by considering the

event that the sample-KL is smaller than ∆ (this event has density at least δ).

2.4 Inaccessible Entropy and Witness KL-hardness

In this section, we relate our notion of witness KL-hardness to the inaccessible entropy

definition of [HRVW19].

In the KL-hardness definition, the adversary can choose both G̃ and S. Contrary to the

fixing G̃ to be honest in the definition of KL-hardness for simulating, now we fix S to be the
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sampler that generate the randomness of G̃ by rejection sampling for defining KL-hardness for

generating. In order to have the simulator runs in polynomial time and succeeds in finding

the randomness with high probability, we restrict G̃ to be online and its the output blocks

to be short, so the sampler S generates the randomness of the online generator G̃ block by

block. The hardness we obtain via making G̃ online and fixing S called next-block (witness)

KL-hardness for generating.

By next-block witness KL-hardness for generating, we show it implies the next-block

(min∗-)inaccessible relative entropy (Definition 2.4.4), which is equivalent to (min-)inaccessible

entropy defined in [HRVW19] when the joint distribution is flat (Proposition 2.4.5). Together,

these results provides a modular proof of that if f is a one-way function, the generator

Gf (X) =
(
f(X)1, . . . , f(X)n, X

)
has super-logarithmic inaccessible entropy.

Next-block KL-hardness for generating

Consider a binary relation Π and a pair of random variables (Y,W ) supported on Π. For

an online (m+ 1)-block generator G̃ =
(
G̃y, G̃w

)
=
(
G̃y1 , . . . , G̃ym , G̃w

)
supported on Π, it is

natural to consider the simulator SimG̃y
T that exploits the block structure of G̃y: on input

Y
def= (Y1, . . . , Ym), SimG̃y

T (Y ) generates randomness R̂ =
(
R̂1, . . . , R̂m

)
block by block using

rejection sampling until G̃i
(
R̂≤i

)
= Yi. The subscript T is the maximum number of attempts

after which SimG̃y
T gives up and outputs ⊥. The formal definition of SimG̃y

T is given in

Algorithm 2.4.1.

Algorithm 2.4.1: Rejection sampling simulator SimG̃y
T

Input: y1, . . . , ym ∈
(
{0, 1}∗

)m
Output: r̂1, . . . , r̂m ∈

(
{0, 1}v ∪ {⊥}

)m
For i = 1→ m

1. Repeat sampling r̃i
r← {0, 1}v until G̃yi(r̃≤i) = yi or ≥ T attempts

2. If G̃yi(r̃≤i) 6= yi then r̃j = ⊥ for all j ≥ i. return
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Once we fix the simulator to be SimG̃y
T for a given G̃, we can define next-block KL-hardnesses

for generating:

Definition 2.4.1. Let Π be a binary relation, (Y,W ) be a pair of random variables supported

on Π. and Y = (Y1, . . . , Ym). We say that (Y1, . . . , Ym,W ) is (t,∆, T )-next-block witness-

KL-hard for generating if for every time t online (m + 1)-block generator G̃ =
(
G̃y, G̃w

)
=(

G̃y1 , . . . , G̃ym , G̃w
)
supported on

(
Y1, . . . , Ym,W

)
, we have

DKL
(
R̃, G̃y

(
R̃
)
, G̃w

(
R̃, R̃w

) ∥∥∥ SimG̃y
T , Y,W

)
> ∆,

where R̃ =
(
R̃1, . . . , R̃m

)
and R̃w are uniformly random. Similarly, (Y1, . . . , Ym,W ) is

(t,∆, T )-next-block witness-Dδ
min∗-hard for generating if for such online generator, we have

Dδ
min∗

(
R̃, G̃y

(
R̃
)
, G̃w

(
R̃, R̃w

) ∥∥∥ SimG̃y
T , Y,W

)
> ∆.

In the definition of next-block witness-KL-hardness for generating, we consider special

cases for adversarial
(
G̃, S

)
. Thus, the implication from KL-hardness to next-block witness

KL-hardness for generating is straightforward.

Theorem 2.4.2. Let Π be a binary relation and let (Y,W ) be a pair of random variables sup-

ported on Π. Let Y = (Y1, . . . , Ym). For every T ≤ t/m, if (Π, Y,W ) is (t,∆)-witness KL-hard,

then (Y1, . . . , Ym,W ) is
(
O(t/(mT )),∆, T

)
-next-block witness-KL-hard for generating. Simi-

larly, if if (Π, Y,W ) is (t,∆)-witness Dδ
min∗-hard, then (Y1, . . . , Ym,W ) is

(
O(t/(mT )),∆, T

)
-

next-block witness-Dδ
min∗-hard for generating.

Proof. In Definition 2.4.1, let the running time of the online generator G̃ be t′. Without

loss of generality, the maximum length of an input block v for simulator SimG̃y
T is at most t′.

Therefore, the running time of the simulator is O(mTt′).

Inaccessible relative entropy

We first recall the definition of inaccessible entropy from [HRVW19], slightly adapted to our

notations.
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Definition 2.4.3 (inaccessible entropy). Let Z = (Z1, . . . , Zm) be a joint distribution. We

say that (Z1, . . . , Zm) has t-inaccessible entropy ∆ if for all m-block online generators G̃

running in time t and consistent with Z:

m∑
i=1

(
H
(
Zi
∣∣ Z<i)−H

(
Z̃i
∣∣ R̃<i)) > ∆ .

where (Z̃1, . . . , Z̃m) = G̃(R̃1, . . . , R̃m) for a uniform R̃≤m+1. We say that (Z1, . . . , Zm) has

(t, δ)-min-inaccessible entropy ∆ if for all m-block online generators G̃ running in time t and

consistent with (Z1, . . . , Zm):

Pr
r≤m

r←R̃≤m
y≤m←G̃(r≤m)

[
m∑
i=1

(
H∗zi,z<i

(
Zi
∣∣ Z<i)−H∗yi,r<i

(
Z̃i
∣∣ R̃<i)) ≤ ∆

]
< δ .

One unsatisfactory aspect of Definition 2.4.3 is that inaccessible entropy can be negative

since the generator G̃ could have more entropy than Z = (Z1, . . . , Zm): if all the Zi are

independent biased random bits, then a generator G̃ outputting unbiased random bits will

have negative inaccessible entropy. We introduce the notion of inaccessible relative entropy,

which remedies the above issue. Also, we will soon see that this notion more directly connects

to our KL-hardness for generating.

Definition 2.4.4 (inaccessible relative entropy). The joint distribution Z = (Z1, . . . , Zm) has

t-inaccessible relative entropy ∆, if for every time t online m-block generator G̃ supported on

Z, writing Z̃ = (Z̃1, . . . , Z̃m) def= G̃(R̃) for uniform R̃ = (R̃1, . . . , R̃m), we have

m∑
i=1

DKL
(
Z̃i
∣∣ R̃<i, Z̃<i ∥∥∥Zi ∣∣ R<i, Z<i) > ∆ ,

where Ri is a “dummy” random variable over the domain of G̃i and independent of Z. Similarly,

for δ ∈ [0, 1], we say that (Z1, . . . , Zm) has (t, δ)-min∗-inaccessible relative entropy, if for

every G̃ as above, we have

Pr
r

r←R̃, z←G̃(r)

[
m∑
i=1

D∗zi,r<i,z<i
(
Z̃i
∣∣ R̃<i, Z̃<i ∥∥∥Zi ∣∣ R<i, Z<i) ≤ ∆

]
< δ ,

where Z̃, R, R̃ are defined as above.
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In the definition, since Z̃<i is a function of R̃<i, the first conditional distribution in the

KL is effectively Z̃i|R̃<i. Similarly the second distribution is effectively Zi|Z<i. The extra

random variables are there for syntactic consistency.

In the case where Z is a flat distribution, then no distribution with the same support can

have higher entropy. Moreover, (min-)inaccessible entropy Definitions 2.4.4 and 2.4.3 coincide

to (min∗-)inaccessible relative entropy as stated in the following observation. For example, the

distribution Z = (f(X), X) for a function f and uniform input X is always a flat distribution

even if f itself is not regular.

Proposition 2.4.5. Let Z = (Z1, , . . . , Zm) be a flat distribution and G̃ be an m-block

generator consistent with Z≤m. Then for Z̃ = G̃(R̃) for uniform R̃ = (R̃1, . . . , R̃m) we have

that for every z, r ∈ Supp(Z,R),

m∑
i=1

(
H∗zi,z<i

(
Zi
∣∣ Z<i)−H∗zi,r<i

(
Z̃i
∣∣ R̃<i)) =

m∑
i=1

D∗zi,z<i,r<i
(
Z̃i
∣∣ R̃<i, Z̃<i ∥∥∥Zi ∣∣ R<i, Z<i) .

In particular, (Z1, . . . , Zm) has (t, δ)-min∗-inaccessible relative entropy at least ∆ iff it has

(t, δ)-min-inaccessible entropy at least ∆; (Z1, . . . , Zm) has t-inaccessible relative entropy at

least ∆ iff it has t-inaccessible entropy at least ∆.

Proof. For the sample notions, the chain rule (Proposition 2.2.3) gives:

m∑
i=1

H∗zi,z<i(Zi | Z<i) = H∗z(Z≤m) = log |Supp(Z)|

for all z since Z is flat. Hence:

log
∣∣∣Supp(Z)

∣∣∣− m∑
i=1

H∗yi,y<i
(
Z̃i
∣∣ R̃<i) =

m∑
i=1

(
H∗zi,z<i

(
Zi
∣∣ Z<i)−H∗yi,r<i

(
Z̃i
∣∣ R̃<i))

=
m∑
i=1

D∗zi,z<i,r<i
(
Z̃i
∣∣ R̃<i, Z̃<i ∥∥∥Zi ∣∣ R<i, Z<i) .

Taking the expectation over (Z,R) on both sides yields the equivalence between inaccessible

entropy and inaccessible relative entropy.
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KL-hardness to inaccessible relative entropy

The last piece of the main result of this section is to show that next-block witness-

KL-hardness for generating implies inaccessible relative entropy. The “approximation

error” of the pair
(
G̃, SimG̃

T

)
for next-block witness KL-hardness for generating, namely

DKL
(
R̃, G̃y(R̃), G̃w(R̃, R̃w)

∥∥ SimG̃
T (Y ), Y,W

)
, can be decomposed into two terms:

1. How well G̃y approximates the distribution Y in an online manner.

2. The success probability of the rejection sampling procedure.

The second term can be made arbitrarily small by setting the number of trials T in SimG̃
T to

be a large enough multiple of m · 2` where ` is the length of the blocks of G̃y (Lemma 2.4.7).

This leads to a poly(m) time algorithm whenever ` is logarithmic in m. That is, given an

online block generator G̃ for which G̃y has short blocks, we obtain a corresponding simulator

“for free”. This let us connect the definition to inaccessible relative entropy, which makes no

reference to simulators.

Theorem 2.4.6. Let Π be a binary relation and let (Y,W ) be a pair of random variables

supported on Π. Let Y = (Y1, . . . , Ym) where the bit length of Yi is at most `. Then we have:

1. If (Y1, . . . , Ym,W ) is (t,∆, T )-next-block witness-KL-hard for generating, then

(Y1, . . . , Ym,W ) has t-inaccessible relative entropy
(
∆−m · 2`/(T ln 2)

)
.

2. If (Y1, . . . , Ym,W ) is (t,∆, T )-next-block witness-Dδ
min∗-hard for generating, then for

every δ′ ∈ [0, 1 − δ], (Y1, . . . , Ym,W ) has (t, δ + δ′)-min∗-inaccessible relative entropy(
∆−m · 2`/(Tδ′ ln 2)

)
.

Proof. We will prove by contradiction: assume there exists an online generator that breaks the

conditions of having (min∗-)inaccessible relative entropy, then show that the same generator

also breaks the next-block witness-KL(Dmin∗)-hardness for generating.

Let G̃ =
(
G̃y, G̃w

)
=
(
G̃y1 , . . . , G̃ym , G̃w

)
be an (m + 1)-block online generator. Define

Ỹ
def= G̃y(R̃) for uniform R̃ =

(
R̃1, . . . , R̃m

)
and W̃ def= G̃w

(
R̃, R̃w

)
where R̃w is also uniform.

We also define R̂ def= SimG̃
T (Y ) and Ŷ def= G̃(R̂).

33



First, we ignore the witness block and focus on sample notions. For every r ∈ Supp(R̃)

and y def= G̃(r), we have

D∗r,y
(
R̃, G̃y(R̃)

∥∥∥ SimG̃y
T (Y ), Y

)
= D∗r,y

(
R̃, Ỹ

∥∥∥ R̂, Ŷ )
=

m∑
i=1

(
D∗r,y

(
R̃i
∣∣ R̃<i, Ỹ≤i ∥∥∥ R̂i ∣∣ R̂<i, Ŷ≤i)+ D∗r,y

(
Ỹi
∣∣ R̃<i, Ỹ<i ∥∥∥ Ŷi ∣∣ R̂<i, Ŷ<i))

=
m∑
i=1

D∗r,y
(
Ỹi
∣∣ R̃<i, Ỹ<i ∥∥∥ Ŷi ∣∣ R̂<i, Ŷ<i)

=
m∑
i=1

D∗r,y
(
Ỹi
∣∣ R̃<i ∥∥∥ Ŷi ∣∣ R̂<i) ,

The first equality is by the fact that G̃y
(
SimG̃y

T (y)
)

= y whenever SimG̃y
T (y) 6= ⊥ (See Re-

mark 2.3.3. The penultimate equality is by definition of rejection sampling: R̃i|R̃<i, Ỹ≤i

and R̂i|R̂<i, Ŷ≤i are identical on Supp(R̃i) since conditioning on Ŷi = y implies that only

non-failure cases (R̂i 6= ⊥) are considered. The last equality is because Ỹ<i (resp. Ŷ<i) is a

deterministic function of R̃<i (resp. R̂<i).

We now relate Ŷi|R̂<i to Yi|Y<i:

Pr
[
Ŷi = yi|R̂<i = r<i

]
= Pr

[
Ŷi = yi, Yi = yi|R̂<i = r<i

]
(Ŷi = yi ⇔ Ŷi = yi ∧ Yi = yi)

= Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]
· Pr

[
Yi = yi|R̂<i = r<i

]
(Bayes’ Rule)

= Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]
· Pr

[
Yi = yi|Y<i = y<i

]
,

where the last equality is because when r ∈ Supp
(
R̃
)
, R̂<i = r<i ⇒ Y<i = y<i and because Yi

is independent of R̂<i given Y<i (as R̂<i is simply a randomized function of Y<i). Combining
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the previous two derivations and putting back the witness block we obtain

D∗r,y,w
(
R̃, G̃y(R̃), G̃w(R̃, R̃w)

∥∥∥ SimG̃
T (Y ), Y,W

)
= D∗r,y

(
R̃, G̃y(R̃)

∥∥∥ SimG̃
T (Y ), Y

)
+ D∗r,y,w

(
G̃w(R̃, R̃w)

∣∣ R̃, G̃y(R̃)
∥∥∥W ∣∣ SimG̃

T (Y ), Y
)

=
m∑
i=1

D∗r,y
(
Ỹi
∣∣ R̃<i, Ỹ<i ∥∥∥Yi ∣∣ R<i, Y<i)+ D∗r,y,w

(
W̃
∣∣ R̃, Ỹ ∥∥∥W ∣∣ R, Y )

+
m∑
i=1

log 1
Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

] .
(2.2)

When taking the expectation the last logarithmic term by the following lemma.

Lemma 2.4.7. Let G̃ be an online m-block generator, and let Li
def= 2|G̃i| be the size of the

codomain of G̃i, i ∈ [m]. Then for all i ∈ [m], r<i ∈ Supp
(
R̃<i

)
and uniform R̃i:

E
yi

r←G̃i(r<i,R̃i)

[
log 1

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]] ≤ log
(

1 + Li − 1
T

)
≤ Li
T ln 2 .

Now, the first claim of the main lemma follows by taking expectations on both sides of

Equation 2.2 and directly applying Lemma 2.4.7.

DKL
(
R̃, G̃y

(
R̃
)
, G̃w

(
R̃, R̃w

) ∥∥∥ SimG̃
T (Y ), Y,W

)
≤

m∑
i=1

DKL
(
Ỹi
∣∣ R̃<i, Ỹ<i ∥∥∥Yi ∣∣ R<i, Y<i)+ DKL

(
W̃
∣∣ R̃, Ỹ ∥∥∥W ∣∣ R, Y )+ m · 2`

T ln 2 .

For the second claim, assume for contradiction. That is, when sampling r r← R̃, rw
r← R̃w

and letting y ← G̃y(r), w ← G̃w(r, rw), the following inequality holds with probability at least

δ + δ′

m∑
i=1

D∗y,r
(
Ỹi
∣∣ R̃<i, Ỹ<i ∥∥∥Yi ∣∣ R<i, Y<i)+ D∗y,r,w

(
W̃
∣∣ R̃, Ỹ ∥∥∥W ∣∣ R, Y ) ≥ ∆− m · 2`

Tδ′ ln 2 .

Applying Markov’s inequality on Lemma 2.4.7 we have

Pr
(y,r) r←(Ỹ ,R̃)

[
m∑
i=1

log 1
Pr
[
Ŷi = yi|R̂<i = r<i, Ŷ<i = y<i

] ≥ m · 2`

Tδ′ ln 2

]
≤ δ′

35



Combining these inequality along with Equation 2.2, we have that

Pr
r

r←R̃,rw
r←R̃w

y←G̃(r),w←G̃w(r,rw)

[
D∗r,y,w

(
R̃, G̃y(R̃), G̃w(R̃, R̃w)

∥∥∥ SimG̃
T (Y ), Y,W

)
≥ ∆

]
≥ δ ,

which breaks the next-block witness-Dδ
min∗-hardness for generating.

Proof of Lemma 2.4.7. By definition of SimG̃
T , we have:

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]
= 1−

(
1− Pr[G̃yi(r<i, R̃i) = yi]

)T
.

Applying Jensen’s inequality, we have:

E
yi

r←G̃yi (r<i,R̃i)

[
log 1

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]]

≤ log E
yi

r←G̃yi (r<i,R̃i)

[
1

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]]

= log
(∑

y∈Image
(

G̃yi (r<i,·)
) py

1− (1− py)T
)

where py = Pr
[
G̃yi(r<i, R̃i) = y

]
. Since the function x 7→ x/

(
1− (1− x)T

)
is convex (see

Fact 2.4.8 below), the maximum of the expression inside the logarithm over probability

distributions {py} is achieved at the extremal points of the standard probability simplex.

Namely, when all but one py → 0 and the other one is 1. Since limx→0 x/1− (1− x)T = 1/T :

log
(∑

y∈Image
(

G̃yi (r<i,·)
) py

1− (1− py)T
)
≤ log

(
1 + (Li − 1) · 1

T

)
.

Fact 2.4.8. For all t ≥ 1, f : x 7→ x
1−(1−x)t is convex over [0, 1].

Proof. We instead show convexity of f̃ : x 7→ f(1− x). A straightforward computation gives:

f̃ ′′(x) =
xt−2t

(
t(1− x)(xt + 1)− (1 + x)(1− xt)

)
(1− xt)3

so that it suffices to show the non-negativity of g(x) = t(1− x)(xt + 1)− (1 + x)(1− xt) over

[0, 1]. The function g has second derivative t(1− x)(t2 − 1)xt−2, which is non-negative when
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x ∈ [0, 1], and thus the first derivative g′ is non-decreasing. Also, the first derivative at 1

is equal to zero, so that g′ is non-positive over [0, 1] and hence g is non-increasing over this

interval. Since g(1) = 0, this implies that g is non-negative over [0, 1] and f is convex as

desired.

Remark 2.4.9. For fixed distribution and generators, in the limit where T grows to infinity,

the error term caused by the failure of rejection sampling in time T vanishes. In this case,

KL-hardness implies block-KL-hardness without any loss in the hardness parameters.

By chaining the reductions between the different notions of hardness considered in this

work (witness-KL-hardness, block-KL-hardness and inaccessible entropy), we obtain a more

modular proof of the theorem of Haitner et al. [HRVW19], obtaining inaccessible entropy

from any one-way function.

Theorem 2.4.10. Let n be a security parameter, f : {0, 1}n → {0, 1}n be a (t, ε)-one-way

function, and X be uniform over {0, 1}n. For ` ∈ {1, . . . , n}, decompose f(X) def=
(
Y1, . . . , Yn/`

)
into blocks of length `. Then:

1. For every 0 ≤ ∆ ≤ log(1/ε),
(
Y1, . . . , Yn/`, X

)
has t′-inaccessible entropy at least

(log(1/ε)−∆) for t′ = t/O
(
n2·2`
∆`2

)
.

2. For every 0 < δ ≤ 1 and 0 ≤ ∆ ≤ log(1/ε)− log(2/δ), (Y1, . . . , Yn/`, X) has (t′, δ)-min-

inaccessible entropy at least (log(1/ε)− log(2/δ)−∆) for t′ = t/O
(
n2·2`
δ∆`2

)
.

Proof. Since f is (t, ε)-one-way, the distributional search problem
(
Πf , f(X)

)
where Πf ={

(f(x), x) : x ∈ {0, 1}n
}
is (t, ε)-hard.

For the first claim, clearly (f(X), X) is supported on Πf , so by Theorem 2.3.11,(
Πf , f(X), X

)
is
(
Ω(t), log(1/ε)

)
-witness KL-hard. Then by Theorem 2.4.2,

(
Y1, . . . , Yn/`, X

)
is (Ω(t`/nT ), log(1/ε), T )-next-block witness-KL-hard for generating. Take T = n · 2`/`∆ ln 2

and apply Theorem 2.4.6.
(
Y1, . . . , Yn/`, X

)
has Ω

(
t · ∆`2/(n2 · 2`)

)
-inaccessible relative

entropy at least
(
log(1/ε)−∆

)
, and hence inaccessible entropy (Proposition 2.4.5).

Proving the second claim is similar. By Theorem 2.3.11,
(
Πf , f(X), X

)
is(

Ω(t), log(1/ε)− log(2/δ)
)
-witness Dδ/2

min∗-hard. Then by Theorem 2.4.2,
(
Y1, . . . , Yn/`, X

)
is
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(Ω(t`/nT ), log(1/ε), T )-next-block witness-Dδ/2
min∗-hard for generating. Take T = 2n·2`/δ`∆ ln 2

and apply Theorem 2.4.6.
(
Y1, . . . , Yn/`, X

)
has

(
Ω
(
t ·∆`2/(δ · n2 · 2`)

)
, δ
)
-min∗-inaccessible

relative entropy at least
(
log(1/ε) − ∆ − log(2/δ)

)
, and hence min-inaccessible entropy

(Proposition 2.4.5).

Remark 2.4.11. For comparison, the original proof of [HRVW19] shows that for every

0 < δ ≤ 1, (Y1, . . . , Yn/`, X) has (t′, δ)-min-inaccessible entropy at least
(
log(1/ε)−2 log(1/δ)−

O(1)
)
for t′ = t/Õ

(
n2·2`
δ`2

)
, which in particular for fixed t′ has quadratically worse dependence

on δ in terms of the achieved inaccessible entropy: log(1/ε)− 2 · log(1/δ)−O(1) rather than

our log(1/ε)− 1 · log(1/δ)−O(1).

Corollary 2.4.12 ([HRVW19, Theorem 4.2]). Let n be a security parameter, f : {0, 1}n

→ {0, 1}n be a strong one-way function, and X be uniform over {0, 1}n. Then for every

` = O(log n), (f(X)1...`, . . . , f(X)n−`+1...n, X) has nω(1)-inaccessible entropy ω(log n) and

(nω(1), negl(n))-min-inaccessible entropy ω(log n).
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Chapter 3

Entropy Flattening

We study entropy flattening: given a circuit CX implicitly describing an n-bit source X

(namely, X is the output of CX on a uniform random input), construct another circuit CY

describing a source Y such that (1) source Y is nearly flat (uniform on its support), and (2)

the Shannon entropy of Y is monotonically related to that of X. The standard solution is

to have CY evaluate CX altogether Θ(n2) times on independent inputs and concatenate the

results (correctness follows from the asymptotic equipartition property). In this paper, we

show that this is optimal among black-box constructions: any circuit CY for entropy flattening

that repeatedly queries CX as an oracle requires Ω(n2) queries.

Entropy flattening is a component used in the constructions of pseudorandom generators

and other cryptographic primitives from one-way functions [HILL99, Rom90, Hol06, HHR06,

HRVW09, HRV13, HHR+10, VZ12]. It is also used in reductions between problems complete

for statistical zero-knowledge [Oka00, SV97, GSV99a, Vad99]. The Θ(n2) query complexity is

often the main efficiency bottleneck. Our lower bound hints that the current best construction

of pseudorandom generator from arbitrary one-way functions by Vadhan and Zheng [VZ12] is

likely to be optimal in terms of query complexity.
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3.1 Introduction

We say a source X is flat if it is uniform over its support. Then a source X is flat iff its

Shannon entropy, min-entropy, and max-entropy (written HSh(X),Hmin(X), and Hmax(X),

respectively) are all equal.

The task. The entropy flattening is defined as the following task: given a circuit CX

implicitly describing an n-bit source X (namely, X is the output of CX on a uniform random

input), efficiently construct another circuit CY describing a “flattened” version Y of X. The

goal is to have the output source Y (or a small statistical modification of it) be such that its

min- and max-entropies are monotonically related to the Shannon entropy of X. Concretely,

one interesting range of parameters is:

− if input sources XH and XL exhibit a 1-bit Shannon entropy gap, HSh(XH) ≥ HSh(XL)+1,

− then the respective output sources YH and YL must witness Hmin(YH) ≥ Hmax(YL) + 1

(modulo a small modification to YH and YL).

XL XH YL YH

min

sh

max

min

sh

max

max

min

Shannon
gap

min/max
gapflattening

 

Entropy flattening is not only an ingredient in constructions of cryptographic primitives

from one-way functions as mentioned before, it is also used in reductions between problems

complete for (non-interactive) statistical zero-knowledge [Oka00, SV97, GSV99a, Vad99].

A solution: repeat X. The standard strategy for entropy flattening is to construct Y

as the concatenation Xq of some q i.i.d. copies of the input source X. That is, in circuit

language, CY (x1, . . . , xq) =
(
CX(x1), . . . ,CX(xq)

)
. The well-known asymptotic equipartition
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property in information theory states that Xq is ε-close1 to having min- and max-entropies

closely approximated by q · HSh(X). (It is common to say that Xq has a certain ε-smooth

min- and max-entropy [RW04].)

Lemma 3.1.1 ([HILL99, HR11]). Let X be an n-bit random variable. For any q ∈ N and

ε > 0 there is an nq-bit random variable Y ′ that is ε-close to Y = Xq such that

Hmin(Y ′), Hmax(Y ′) ∈ q ·HSh(X)±O
(
n
√
q · log(1/ε)

)
.

In particular, it suffices to set q = Θ̃(n2) in order to flatten entropies in the aforementioned

interesting range of parameters (1-bit Shannon gap implies at least 1-bit min/max gap). The

analysis here is also tight by a reduction to standard anti-concentration results: it is necessary

to have q = Ω(n2) in order for the construction Y = Xq to flatten entropies.

3.1.1 Our result

We show that any black-box construction for entropy flattening—that is, a circuit CY which

treats CX as a black-box oracle—requires Ω(n2) oracle queries to CX . This is formalized in

Theorem 3.1.2 below.

In particular, the simple “repeat-X” strategy is optimal among all black-box constructions.

Besides querying CX on independent inputs, a black-box algorithm has the freedom to perform

adaptive queries, and it can produce outputs that are arbitrary functions of its query/answer

execution log (rather than merely concatenating the answers). For example, this allows the

use of hash functions and randomness extractors, which is indeed useful for variations of the

flattening task (e.g., Lemma 3.2.2).

Query model. In our black-box model, the input source is now encoded as the output

distribution of an arbitrary function f : {0, 1}n → {0, 1}m where m = Θ(n) (not necessarily

computed by a small circuit); namely, the input source is f(Un) where Un denotes the uniform

1Random variables Z1 and Z2 on Z are ε-close if dTV(Z1 , Z2) ≤ ε where dTV(Z1 , Z2) is the usual statistical
(or total variation) distance, given by dTV(Z1 , Z2) = maxT⊆Z |Pr[Z1 ∈ T ]− Pr[Z2 ∈ T ]|.
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distribution over n-bit strings. We consider oracle algorithms Af that have query access to f .

Given an n′-bit input w (thought of as a random seed) to Af , the algorithm computes by

repeatedly querying f (on query x ∈ {0, 1}n it gets to learn f(x)), until it finally produces some

m′-bit output string Af (w). We denote by Af : {0, 1}n′ → {0, 1}m′ the function computed by

Af . Thus Af (Un′) is the output source.

Inputs/outputs. Our input sources come from the promise problem Entropy-

Approximation; the circuit version of this problem is complete for the complexity class

prBPL (non-interactive statistical zero-knowledge), as shown by Goldreich, Sahai, and

Vadhan [GSV99a]. The Entropy-Approximation promise problem is (here τ ∈ N is a

threshold parameter):

• YES input: (f, τ) such that HSh
(
f(Un)

)
≥ τ + 1.

• NO input: (f, τ) such that HSh
(
f(Un)

)
≤ τ − 1.

The goal of a flattening algorithm Af (which also gets τ as input, but we supress this in

our notation) is to produce an output distribution that is statistically close to having high

min-entropy or low max-entropy depending on whether the input source f is a YES or a NO

instance. We say that Af is an (ε,∆)-flattening algorithm if (here κ = κ(τ) is a parameter

that Af gets to choose):

• (f, τ ) is a YES input ⇒ Af (Un′) is ε-close to a distribution ZH with Hmin(ZH) ≥ κ+ ∆.

• (f, τ) is a NO input ⇒ Af (Un′) is ε-close to a distribution ZL with Hmax(ZL) ≤ κ−∆.

Main theorem. Our main result is the following theorem.

Theorem 3.1.2. There exist constants ε,∆ > 0 such that every (ε,∆)-flattening algorithm

for n-bit oracles f requires Ω(n2) oracle queries.

In fact, our proof yields an even more fine-grained lower bound. Suppose we allow ε and

∆ to vary subject to n/25 ≥ ∆ ≥ log(1/ε). Then our lower bound becomes Ω
(
n2 log(1/ε)

)
,

which is tight in both n and ε.
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3.1.2 Relevance to cryptographic constructions

Many constructions of PRG [HILL99, Hol06, HRV10, VZ12], SHC [HNO+09, HRVW09,

HRVW19], and UOWHF [Rom90, KK05, HHR+10] use the flattening technique to transform

Shannon-like entropies to min or max-like entropies. To illustrate the usage of flattening, we

take HILL’s construction [HILL99] as an example, which was also the first use of flattening in

complexity-based cryptography.

The first step is to show any one-way function f : {0, 1}n → {0, 1}m is also a HILL entropy

generator. That is, Y = f(Un) is computationally indistinguishable from a random variable

Y ′ such that HSh(Y ′) is noticeably higher than HSh(Y ). In other words, for some threshold τ

and a non-negligible gap parameter ∆ it holds that:

1. HHILL-Sh
(
f(Un)

)
≥ τ + ∆, and

2. HSh
(
f(Un)

)
≤ τ −∆.

Then the recipe of flattening algorithm is applied. Specifically evaluating f on many

independent inputs yields a distribution that is close to having low max-entropy yet is

computationally indistinguishable from having high min-entropy. Note that even thought

the flattening algorithm we stated is for real entropies, it also applies to HILL-type entropies

(which can be a simple reduction.).

After flattening, universal hashing (or randomness extraction) is applied to obtain a

pseudorandom generator Gf : {0, 1}n′ → {0, 1}m′ , where Gf (Un′) is computationally indistin-

guishable from Um′ (i.e. indistinguishable from min-entropy at least m′) yet has max-entropy

at most n′ ≤ m′ − 1 (due to having a seed length of n′). Note that in HILL’s construction,

the query complexity due to the flattening step is Θ̃(n4), rather than Θ̃(n2) in Lemma 3.1.1

since the gap ∆ is Θ̃(1/n) in this case.

A series of subsequent works [Hol06, HHR06, HRV10, VZ12] improved the efficiency of

the HILL construction. The state-of-the-art constructions [HRV13, VZ12] replace the HILL

entropy with the more refined pseudoentropy notion next-block HILL entropy introduced

previously and thereby obtain ∆ = Θ̃(1) in the entropy gap. In the best constructions the
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query complexity is Θ̃(n3), an extra cost of Θ̃(n) due to the fact that how the entropy is

spread out among the bits of the output of the next-block HILL entropy generator.

In the best constructions, there is still an exact cost of Θ̃(n) due to the fact that we don’t

know how the entropy is spread out among the bits of the output of the next-bit HILL entropy

generator f .

Overall, with the most efficient constructions to date, the pseudorandom generator makes

Θ̃(n3) queries to the one-way function, of which a Θ̃(n2) factor is due to flattening. This

complexity renders the constructions too inefficient for practice, and thus it is important to

know whether a more efficient construction is possible.

Lower bound in constructing PRG. The work of Gennaro, Gertner, Katz, and Tre-

visan [GGKT05] gave the first lower bound on constructing pseudorandom generators from

one-way functions. Specifically they proved that any “black-box” construction of a pseudo-

random generator Gf : {0, 1}n′ → {0, 1}m′ from a one-way function f : {0, 1}n → {0, 1}m

requires Ω((m′ − n′)/ log n) queries to f . Thus, many queries are needed to construct a pseu-

dorandom generator with large stretch. However, their lower bound says nothing about the

number of queries needed to obtain a pseudorandom generator with small stretch (i.e., where

m′ = n′+O(log n)), and indeed it applies even to one-way permutations f , where no flattening

is needed and a pseudorandom generator with small stretch can be obtained with a single

query to the one-way function [GL89].

For constructing pseudorandom generators with small stretch from one-way functions,

Holenstein and Sinha [HS12] proved that any black-box construction requires Ω̃(n) queries.

Their lower bound is also independent to flattening, as it applies even to regular one-way

functions, which directly (with one query) give a separation between HILL min-entropy and

max-entropy. Rather, their lower bound corresponds to the efficiency costs coming from not

knowing the entropy thresholds τ (or how the entropy is spread across the bits in the case of

next-bit HILL entropy).

Our lower bound for flattening (Theorem 3.1.2) can be viewed as a first-step towards

proving that any black-box construction of pseudorandom generators from one-way functions
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requires Ω̃(n2) queries. One might hope to also combine this with [HS12] and obtain a lower

bound of Ω̃(n3) queries, which would match the best-known construction of [VZ12].

Seed length. Another important and well-studied efficiency criterion for pseudorandom

generator constructions is how the seed length n′ of the pseudorandom generator Gf :

{0, 1}n′ → {0, 1}m′ depends on the input length n of the one-way function f : {0, 1}n →

{0, 1}m. The standard method for flattening (Lemma 3.1.1) requires independent samples

from the distribution being flattened, and thus the query complexity of flattening contributes

a multiplicative factor to the seed length of the pseudorandom generator. For example, the

construction of [VZ12] gives a pseudorandom generator with seed length Θ̃(n2) · n = Θ̃(n3),

as Θ̃(n2) independent evaluations of the one-way function (or corresponding pseudoentropy

generator) are used for flattening. An interesting open problem is to show that independent

evaluations are indeed necessary, and extend our lower bound on query complexity to a

lower bound on the input length n′ of the flattening algorithm Af : {0, 1}n′ → {0, 1}m′ .

This could be a first step towards proving a superlinear lower bound on the seed length

of pseudorandom generators constructed (in a black-box way) from one-way functions, a

long-standing open problem. We note that the existing lower bounds on query complexity of

[GGKT05, HS12]cannot be turned into seed length lower bounds, as there are constructions

of large-stretch pseudorandom generators from regular one-way functions with seed length

Õ(n) [HHR06]. That is, although those constructions make polynomially many queries to the

one-way functions, the queries are highly correlated (and even adaptive).

Other cryptographic primitives. Flattening is also an efficiency bottleneck in the con-

structions of other cryptographic primitives from arbitrary one-way functions, such as univer-

sal one-way hash functions [Rom90, KK05, HHR+10] and statistically hiding commitment

schemes [HNO+09, HRVW09, HRVW19]. In both cases, the state-of-the-art constructions

begin by constructing a function f where there is a gap between its output entropy HSh(f(Un))

and a computational analogue of Shannon entropy (namely, a form of “inaccessible entropy”).

Then flattening is applied, after which some (possibly interactive) hashing techniques are
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used to obtain the final cryptographic primitive. Again, our lower bound on flattening can be

viewed as a first step towards proving an efficiency lower bound on black-box constructions.

We note that there was a very fruitful interplay between this sequence of works on construc-

tions of cryptographic primitives from one-way functions and general results about SZK and

prBPL, with inspirations going in both directions (e.g., [NV06, HRVW09, OV08, HRVW09]).

This reinforces the feeling that our lower bound for flattening the prBPL-complete problem

Entropy-Approximation can help in understanding the PRG constructions.

3.2 Proof Overview

Our proof builds on the recent result of Lovett and Zhang [LZ17], who showed that

there is no efficient black-box reduction (making polynomially many queries) from

Entropy-Approximation to its complement, thereby giving evidence that prBPL is not

closed under complement and hence that prBPL 6= SZK. The result of [LZ17] a qualitative

one, whereas here we are concerned with a quantitative question: What is the exact query

complexity of flattening? Nevertheless, we use a similar construction of hard instances

as [LZ17] and make use of a variation of their key lemma.

3.2.1 Simplification: the SDU problem

We find it convenient to work with a slightly simplified version of the flattening task, having

one fewer parameter to worry about.

Definition 3.2.1 (statistical distance from uniform (SDU)). We say an algorithm Af :

{0, 1}n′ → {0, 1}m′ is a k-SDU algorithm if for all f : {0, 1}n → {0, 1}m, we have

• If (f, τ) is a YES input to Entropy-Approximation, then Af (Un′) is 2−k-close to

Um′.

• If (f, τ) is a NO input to Entropy-Approximation, then |Supp(Af (Un′))| ≤ 2m′−k.

Note that a k-SDU algorithm is a (2−k, k/2)-flattening algorithm (with threshold κ =

m′ − k/2). Conversely, we can transform any flattening algorithm to a SDU algorithm using
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hashing techniques similar to [GSV99a]:

(see Section 3.5.3 for the proof)

Lemma 3.2.2. If there exists a (ε,∆)-flattening algorithm Af : {0, 1}n′ → {0, 1}m′ for

function f : {0, 1}n → {0, 1}m with query complexity q, then there exists a k-SDU algorithm

Af : {0, 1}n′′ → {0, 1}n′′−3k where n′′ = O(n′ + m′) for function f : {0, 1}n → {0, 1}m with

query complexity q and k = Ω
(
min{∆, log(1/ε)}

)
. In particular, there exists such a k-SDU

algorithm with query complexity O
(
k ·min{n,m}2

)
.

Remark 3.2.3. Note that Lemma 2.2 guarantees not only that A is a k-SDU algorithm but

also that its output length is only 3k bits shorter than its input length. This additional property

will be useful in our proof.

By Lemma 3.2.2, for our main result (Theorem 3.1.2), it suffices to prove an Ω(kn2)

query lower bound for any k-SDU algorithm Af : {0, 1}n′ → {0, 1}m′ with m′ = n′ − 3k and

k ≤ n/25.

Theorem 3.2.4. Let k ≤ n. Every k-SDU algorithm Af : {0, 1}n′ → {0, 1}m′ for function

f : {0, 1}n → {0, 1}m has query complexity Ω(kn2).

3.2.2 Hard instances

We consider two input distributions FH and FL over functions f : {0, 1}n → {0, 1}3n such that

the entropies of most functions in FH and FL are at least τ + 1 and at most τ − 1 (where

τ = Θ(n)), respectively. To sample a function from FH, we randomly partition the domain of

f into many blocks B1, B2, . . . , BS , each of size T = 2n/S where S = 23n/4. For each block

Bi,

• with probability 1/2 + Θ(1/n) we insert a high-entropy block: f |Bi will be a uniformly

random mapping from Bi to {0, 1}3n; and

• with the remaining probability 1/2−Θ(1/n), we insert a low-entropy block: all elements

of Bi are mapped to the same random element of {0, 1}3n.
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The distribution FL is the same, except we swap the two 1/2±Θ(1/n) probabilities.

Note that since the range {0, 1}3n is much larger than the domain {0, 1}n, with high

probability f will be injective on the high-entropy blocks and have no collisions between

different blocks. Under this condition, if we let Blo(x) denote the block containing x (which

is determined by f(x)) and p be the fraction of high entropy blocks, we have

HSh
(
f(Un)

)
= HSh

(
Blo(Un)

)
+ HSh

(
f(Un)

∣∣ Blo(Un)
)

(3.1)

= logS + p · log 2n

S
+ (1− p) · 0 = 3n

4 + p · n4 . (3.2)

Under FH we have p = 1
2 + Θ( 1

n) whp, and under FL we have p = 1
2 −Θ( 1

n) whp, which yields

a constant gap in Shannon entropies, as desired.

3.2.3 Basic intuition—and a warning!

The first natural instinct—but too naive, we argue—is that since the bias between observing

a high-entropy block versus a low-entropy block is only Θ(1/n), an anti-concentration bound

should imply that distinguishing the two distributions takes Ω(n2) queries.

This intuition indeed applies to simple bounded-error randomized decision trees (which

output just a 1-bit answer). Concretely, suppose for simplicity that our input is just an

n2-bit string x (instead of an exponentially large oracle f): each bit xi represents either a

high-entropy block (xi = 1) or a low-entropy block (xi = 0). We are given the following

gap-majority promise: the relative Hamming weight |x|/n2 is either 1/2 + 1/n or 1/2− 1/n. It

is a well-known fact that any bounded-error query algorithm needs Ω(n2) queries to distinguish

these two cases.

But surprisingly enough, there does exist2 a flattening/SDU algorithm Ax that solves the

gap-majority promise problem with only O(n) queries! This suggests that any superlinear

2Consider the following algorithm Ax on input a random seed w: query a sequence of random positions i
(according to w) until a position with xi = 1 is found, output Ax(w) = i. It is easy to verify that this is an
(0,Θ(1/n))-flattening algorithm with expected query complexity O(1). Repeating the algorithm Θ(n) many
times yields an (0,Ω(1))-flattening algorithm with expected query complexity O(n). Finally, we can make the
algorithm abort if any run exceeds the expected query complexity by a large constant factor; this results in an
(ε,Ω(1))-flattening algorithm of worst-case query complexity O(n).
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lower bound must somehow hide from the algorithm the type (high vs. low) of a queried

block. Our choice of distributions FH and FL does indeed achieve this: since there are so

many blocks, a single run of the algorithm is unlikely to query more than one point in a single

block, and the marginal distribution of such a single query is the same in both FH and FL.

The more precise way in which we exploit the hidden type of a block is in invoking the main

result of [LZ17]: when switching a high-entropy block in an f to a low-entropy block, the

support of an SDU algorithm’s output distribution, Supp
(
Af (Un′)

)
, cannot increase by much.

3.2.4 Technical outline

Recall that Af (Un′) is almost-uniform when f has high entropy. For almost all z ∈ {0, 1}m′ ,

most of the high-entropy functions f make the algorithm Af output z (on some random seed):

Pr
f

r←FH

[
∃w ∈ {0, 1}n′ ,Af (w) = z

]
≥ 1− 2−Ω(k). (3.3)

On the other hand, since the support of Af (Un′) is small when f has low entropy, there should

be many z such that when we sample f from FL, with high probability Af (w) does not output

z:

Pr
f

r←FL

[
∃w ∈ {0, 1}n′ ,Af (w) = z

]
≤ 2−Ω(k). (3.4)

To connect the high-entropy and low-entropy cases, we essentially prove that for many

z ∈ {0, 1}m′ and every algorithm A making o(kn2) queries, we have

Pr
f

r←FH

[∃w ∈ {0, 1}n′ ,Af (w) = z] ≤ 2o(k) · Pr
f

r←FL

[∃w ∈ {0, 1}n′ ,Af (w) = z] +O(2−k). (3.5)

As long as there exists z such that Equation (3.3), (3.4) and (3.5) hold, combining those

equations contradict inequality (3.5).

Our inequality (3.5) is similar to the key lemma of Lovett and Zhang [LZ17]. However,

the inequality is reversed, we have an extra multiplicative factor of 2o(k), and our lemma

(necessarily) only applies to algorithms making o(kn2) queries (where the [LZ17] lemma applies

even to exponentially many queries).
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One key step toward Inequality (3.5) is to reverse the direction of the inequality by the

following trick. We name elements of {0, 1}n′ as w1, . . . , w2n′ in some arbitrarily fixed order.

Then

Pr
f

r←F

[
∃w ∈ {0, 1}n′ ,Af (w) = z

]

=
2n′∑
`=1

Pr
f

r←F

[
Af (w`) = z and @w ∈ {w1, . . . , w`−1},Af (w) = z

]

=
2n′∑
`=1

(
1− Pr

f
r←F

[
∃w ∈ {w1, . . . , w`−1},Af (w) = z

∣∣∣ Af (w`) = z
])
· Pr
f

r←F

[
Af (w`) = z

]
.

Having a negative sign, now we wish to relate the probability of

Pr
f

r←F

[
∃v ∈ {w1, . . . , w`−1},Af (w) = z

∣∣∣ Af (w`) = z
]

over FH and FL in the same direction as [LZ17]. It is not a direct application of their lemma

due to the fact that the block size is constant in their construction and our probability is

conditioned on the event Af (w`) = z, but we prove a generalization (Lemma 3.5.3) of their

lemma that suffices for our purpose. In fact, the proof we provide in Section 3.5.2 is potentially

simpler than the one in [LZ17] and yields better parameters.

Like in [LZ17], instead of considering the event ∃w,Af (w) = z in all the probabilities

above, we further impose the restriction that Af (w) queries each block Bi of the domain

at most once, since this event happens with high probability. Furthermore (unlike [LZ17]),

we also restrict to the case that the number of high-entropy block queries is in the range

q ·
(
1/2 ±

(
O(1/n) + O(1/√q)

))
out of a total of q queries, which also occurs with high

probability.

3.3 The Hard Distribution

Let Af : {0, 1}n′ → {0, 1}m′ be a potential k-SDU algorithm for functions f : {0, 1}n → {0, 1}m.

Throughout, we will consider a fixed oracle algorithm Af with query complexity q, and will

omit the dependency of A in most notations. For a vector #»X , we use #»X (j) to denote the j-th
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element of #»X , and #»X means the unordered set
{

#»X (j) : j ∈
[∣∣ #»X

∣∣]}.
It is equivalent to interpret an element {0, 1}n as an integer in [N ] where N = 2n, since

we do not make a use of any structure in {0, 1}n. Under this notation, we are considering a

fixed oracle algorithm Af : [N ′] → [M ′] for functions f : [N ] → [M ] where N ′ = 2n′ ,M ′ =

2m′ , N = 2n and M = 2m. Actually, we will allow N,M,N ′ and M ′ to be arbitrary positive

integers (not necessary a power of 2).

Partition. Given parameters S, T ∈ N where ST = N , and a function f : [N ] → [M ],

we will partition the domain [N ] into S blocks X1, . . . ,XS each of size T . We will also

fix an order for the blocks and the elements in each block: #»X =
( #»X 1, . . . ,

#»X S
)
. So #»X i(j)

denotes the j-th element of the i-th block. Given a vector #»Y i ∈ [M ]T , we use the shorthand

f
( #»X i

)
= #»Y i to denote the assignments f

( #»X i(j)
)

= #»Y i(j), for all j ∈ [T ]. Therefore, once

vectors #»Y 1, . . . ,
#»YS ∈ [M ]T and a partition #»X are determined, the function f is fully defined

as f( #»X i) = #»Y i for all i ∈ [S].

Distributions.

• Let XS be a uniform distribution over an ordered partitions #»X = ( #»X 1, . . . ,
#»X S) of [N ]

where | #»X i| = N/S = T for all i ∈ [S].

• Let Y0 and Y1 be distributions on vectors #»Y ∈ [M ]T defined as follows,

For Y0, uniformly sample an element y ← [M ], and output #»Y (1) = · · · = #»Y (T ) = z.

For Y1, uniformly and independently sample #»Y (1), . . . , #»Y (T ) from [M ].

• Given a vector #»

b ∈ {0, 1}S and a partition #»X = ( #»X 1, . . . ,
#»X S) of [N ], we define the

distribution F
( #»X ,

#»

b
)
of function f : [N ]→ [M ] such that f

( #»X i
)

= #»Y i where
#»Y i ← Y #»

b (i)

for all i ∈ [S]. Essentially, #»

b indicates whether each block is “high entropy” or “low

entropy”.

• For 0 ≤ α ≤ 1, let Bα be a distribution over vectors #»

b ∈ {0, 1}S , so that each entry of
#»

b is sampled from the Bernoulli distribution Bern(α) independently.
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• For 0 ≤ α ≤ 1, Fα is a distribution on functions f : [N ] → [M ], a partition #»X , and

an indicator vector #»

b , where (f, #»

b ,
#»X ) r← Fα means that #»

b
r← Bα,

#»X r← XS and

f
r← F

( #»X ,
#»

b
)
.

Block-Compatibility. When an algorithm A runs with input w ∈ [N ′] and oracle f :

[N ]→ [M ], let Queryf (w) ⊆ [N ] be the set of the queries made by the algorithm Af (w) to f .

We say w is block-compatible with (f,X ) if
∣∣Queryf (w) ∩ X

∣∣ ≤ 1 for all blocks X ∈ X . The

set of block-compatible inputs with (f,X ) is denoted

BC(f,X ) =
{
w : w is block-compatible with (f,X )

}
Construction. Set m = 3n, so M = N3. Also, set S = 23n/4 = N3/4 and T = 2n/4 = N1/4.

Let the high entropy distribution be FH
def= F1/2+5/n and the low entropy distribution be

FL
def= F1/2+5/n. We claim that with high probability, a function f from FH and FL has entropy

at least τ + 1 and at most τ − 1 for τ = 7n/8.

Lemma 3.3.1. Let the parameters be as above. Then we have

Pr
(f, #»

b ,
#»X ) r←FH

[HSh(f) ≥ τ + 1] ≥ 1− 2−0.9n

Pr
(f, #»

b ,
#»X ) r←FL

[HSh(f) ≤ τ − 1] ≥ 1− 2−0.9n

Proof. For any pair of independent and random mappings to M , the collision probability is

1/M . There are no more than N2 pairs of inputs, so with probability at least 1−N2/M =

1−2−n, there is no collision when two images are sampled independently. Under that condition,

as shown by Equation (3.1), let p be the fraction of high entropy blocks, namely p is the

hamming weight of #»

b divided by S, the entropy of the function f is

HSh
(
f(Un)

)
= 3n

4 + p · n4 .

Recall that when we sample #»

b from FH,
#»

b (i) r← Bern(1/2 + 5/n) for all i ∈ [S]. By the
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Chernoff bound,

Pr
(f, #»

b ,
#»X ) r←FH

[
p ≥ 1

2 + 4
n

]
≥ 1− 1

42S·(1/n)2
,

which implies

Pr
(f, #»

b ,
#»X ) r←FH

[
HSh(f) ≥ 3n

4 +
(1

2 + 4
n

)
· n4 = 7n

8 + 1
]
≥ 1− 2−

1
4 ·S·(1/n)2 − 2−n = 1− 2−0.9n.

Similarly, when sampling from FL,

Pr
(f, #»

b ,
#»X ) r←FL

[
HSh(f) ≤ 3n

4 +
(1

2 −
4
n

)
· n4 = 7n

8 − 1
]
≥ 1− 2−

1
4 ·S·(1/n)2 − 2−n = 1− 2−0.9n.

Taking τ = 7n
8 concludes the lemma.

3.4 Query Lower Bound for SDU Algorithms

Let Af be a k-SDU algorithm making exact q oracle queries to f and all the query positions

are distinct. We may assume that since it is useless to query same positions, and if the number

of queries is less than q then we simply make some dummy queries. We derive the lower

bound (Theorem 3.2.4) from the following two lemmas.

Lemma 3.4.1. Let Af be a k-SDU algorithm making q queries. For every n > 25k and

z ∈ [M ′] that satisfies

E
(f, #»

b ,
#»X ) r←FH

[ ∣∣∣{w : Af (w) = z
}∣∣∣ ] ≤ 24k, (3.6)

we have

Pr
(f, #»

b ,
#»X ) r←FH

[
∃w ∈ BC(f,X ),Af (w) = z

]

≤ 2
O

(
q

n2 +
√

kq

n2

)
· Pr

(f, #»
b ,

#»X ) r←FL

[
∃w ∈ BC(f,X ),Af (w) = z

]
+O

(
2−k

) (3.7)

Lemma 3.4.2. There exists a universal constant c > 0 such that for every sufficiently large

n and k ≤ n, there is an output z ∈ [M ′] that satisfies

1. Pr
(f, #»

b ,
#»X ) r←FH

[
∃w ∈ BC(f,X ),Af (w) = z

]
≥ 1− 2−ck ≥ 1

2 .
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2. Pr
(f, #»

b ,
#»X ) r←FL

[
∃w ∈ BC(f,X ),Af (w) = z

]
≤ 2−ck.

3. E
(f, #»

b ,
#»X ) r←FH

[ ∣∣∣{w : Af (w) = z
}∣∣∣ ] ≤ 24k.

Theorem 3.2.4 follows by plugging z that satisfies the inequalities in Lemma 3.4.2 into

Inequality (3.7). If q = o(kn2), then the exponent in Equation (3.7) is o(k), which yields a

contradiction.

In the following section, we prove that most inputs are block-compatible and hence we

can only consider the block-compatible inputs rather than the whole domain [N ′]. Then we

prove Lemma 3.4.1 and 3.4.2 in Section 3.4.2 and 3.5.1, respectively.

3.4.1 Block-compatible inputs

As in [LZ17], we only consider block-compatible inputs, where each block is queried at most

once. In that case, it is easier to compare the behavior of the SDU algorithms. Since there are

exponentially many blocks but only polynomially many queries, intuitively, the probability of

having block-compatible property is overwhelming if we randomly partition the domain of f .

Formally,

Lemma 3.4.3. For every w ∈ [N ′] and α ∈ [0, 1],

Pr
(f, #»

b ,
#»X ) r←Fα

[
w /∈ BC(f,X )

]
≤ q2

S
≤ 2−0.6n.

Proof. In order to handle adaptive algorithms, we consider Procedure 3.4.1 for sampling

(f, #»

b ,
#»X ), which is equivalent to sampling from Fα. The essential idea is sampling the parts

that are related to w first. By the principle of deferred decisions, it can be verified that the

joint distribution of
(
f,

#»

b ,
#»X
)
is identical to Fα.

Notice that w ∈ BC
(
f,

#»

b ,
#»X
)
if and only if the sequence of q values of i selected in Step 2(a)

are all distinct. The probability that the (r + 1)st value of i is the same one comparing to

the previous r values is at most rT/(ST − r) ≤ q/S, since r ≤ q − 1 and qr ≤ ST . So the

probability that there are any repetitions is at most q2/S.

By Markov’s inequality, almost all inputs are block-compatible:
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Procedure 3.4.1

1. Initially, #»X i(j) = ∗ and #»

b (i) = ∗ for all i ∈ [S], j ∈ [T ].

2. Simulate Af (w) handling the r-th oracle query xr as follows. For r = 1, . . . , q,

(a) Based on previous queries and results as well as w, let the r-th query be
xr. Select (i, j) uniformly at random from [S]× [T ] subject to Xi(j) = ∗
and assign #»X i(j) = xr.

(b) If #»

b (i) = ∗, then assign #»

b (i) r← Bern(α) and #»Y i
r← Y #»

b (i).

(c) Set f(xr) = #»Y i(j) and return f(xr) as the answer to the query.

3. Assign the rest of the vectors #»X and #»

b by executing Step 2(a)–2(c) for all
x ∈ [N ] \ {x1, . . . , xq}.

Corollary 3.4.4. For every α ∈ [0, 1],

Pr
(f, #»

b ,
#»X ) r←Fα

[ ∣∣BC(f,X )
∣∣ > N ′ ·

(
1− 2−0.3n)] ≥ 1− 2−0.3n

3.4.2 Proof of Lemma 3.4.1

Lemma 3.4.1 (restatement). Let Af be a k-SDU algorithm making q queries. For every

n > 25k and z ∈ [M ′] that satisfies

E
(f, #»

b ,
#»X ) r←FH

[ ∣∣∣{w : Af (w) = z
}∣∣∣ ] ≤ 24k, (3.6)

we have

Pr
(f, #»

b ,
#»X ) r←FH

[
∃w ∈ BC(f,X ),Af (w) = z

]

≤ 2
O

(
q

n2 +
√

kq

n2

)
· Pr

(f, #»
b ,

#»X ) r←FL

[
∃w ∈ BC(f,X ),Af (w) = z

]
+O

(
2−k

) (3.7)

Proof. Define the set

Wz(f,X ) =
{
w : w ∈ BC

(
f,X

)
, Af (w) = z

}
.

Let w1, · · · , wN ′ be all possible inputs sorted in arbitrary but fixed order. The first step is to
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break the event ∃w ∈ Wz(f,X ) to the events that w` is the “first” one in Wz(f,X ) for all

` ∈ [N ′].

Pr
(f, #»

b ,
#»X ) r←Fα

[
∃w ∈Wz(f,X )

]

=
N ′∑
`=1

Pr
(f, #»

b ,
#»X ) r←Fα

[
w` ∈Wz(f,X ) ∧ w1, . . . , w`−1 /∈Wz(f,X )

]

=
N ′∑
`=1

Pr
(f, #»

b ,
#»X ) r←Fα

[
w1, . . . , w`−1 /∈Wz(f,X )

∣∣∣ w` ∈Wz(f,X )
]
· Pr

(f, #»
b ,

#»X ) r←Fα

[
w` ∈Wz(f,X )

]
Our goal is to switch the distribution from FH to FL and see how the probability changes. We

switch using the following two claims.

Claim 3.4.5. For every w` ∈ [N ′], Pr(f, #»
b ,

#»X ) r←Fα

[
w` ∈ Wz(f,X )

]
does not depend on α ∈

[0, 1]. In particular,

Pr
(f, #»

b ,
#»X ) r←FH

[
w` ∈Wz(f,X )

]
= Pr

(f, #»
b ,

#»X ) r←FL

[
w` ∈Wz(f,X )

]
.

Claim 3.4.6. For every w` ∈ [N ′] and z ∈ [M ′],

Pr
(f, #»

b ,
#»X ) r←FH

[
w1, . . . , w`−1 /∈Wz(f,X )

∣∣∣ w` ∈Wz(f,X )
]

≤ 2
O

(
q

n2 +
√

kq

n2

)
· Pr

(f, #»
b ,

#»X ) r←FL

[
w1, . . . , w`−1 /∈Wz(f,X )

∣∣∣ w` ∈Wz(f,X )
]

+O
(q2

S

)
+ 2−5k

The intuition behind Claim 3.4.5 is that as long as w` is block-compatible, the query results

are independently uniform over [M ] in both FH or FL case. Note that unlike Lemma 3.4.1,

Claim 3.4.6 refers to non-membership in Wz(f,X ), which allows us to use the main lemma of

Lovett and Zhang [LZ17], which provides an inequality in the opposite direction of Lemma 3.4.1.

See the formal proofs of those Claims after the main proof.

Once we have the above claims, we can prove the lemma:

Pr
(f, #»

b ,
#»X ) r←FH

[
∃w ∈Wz(f,X )

]

≤ 2
O

(
q

n2 +
√

kq

n2

)
· Pr

(f, #»
b ,

#»X ) r←FL

[
∃w ∈Wz(f,X )

]
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+
(
O
(q2

S

)
+ 2−5k

)
·

2n′∑
`=1

Pr
(f, #»

b ,
#»X ) r←FH

[
w` ∈Wz(f,X )

]

≤ 2
O

(
q

n2 +
√

kq

n2

)
· Pr

(f, #»
b ,

#»X ) r←FL

[
∃w ∈Wz(f,X )

]
+
(
O
(
2−n/5

)
+ 2−5k

)
· E

(f, #»
b ,

#»X ) r←FH

[ ∣∣{w : Af (w) = z}
∣∣ ]

≤ 2
O

(
q

n2 +
√

kq

n2

)
· Pr

(f, #»
b ,

#»X ) r←FL

[
∃w ∈Wz(f,X )

]
+O(2−k).

The second inequality is by the assumption of n > 25k, and the last inequality is by

Inequality (3.6).

Proof of Claim 3.4.5

Claim 3.4.5 (restatement). For every w` ∈ [N ′], Pr(f, #»
b ,

#»X ) r←Fα

[
w` ∈ Wz(f,X )

]
does not

depend on α ∈ [0, 1]. In particular,

Pr
(f, #»

b ,
#»X ) r←FH

[
w` ∈Wz(f,X )

]
= Pr

(f, #»
b ,

#»X ) r←FL

[
w` ∈Wz(f,X )

]
.

Proof. We factorize the probability into two parts and prove that both of them are independent

of α.

Pr
(f, #»

b ,
#»X ) r←Fα

[
w` ∈Wz(f,X )

]
= Pr

(f, #»
b ,

#»X ) r←Fα

[
Af (w`) = z

∣∣∣ w` ∈ BC(f,X )
]
· Pr

(f, #»
b ,

#»X ) r←Fα

[
w` ∈ BC(f,X )

]

We use Procedure 3.4.1 to sample (f, #»

b ,
#»X ). We will prove the second factor is independent

of α by induction over r. Conditioning on the first (r − 1) values of i selected in Step 2(a)

being all distinct, that is, the block-compatible property has not been violated in the first r

rounds, we have #»

b (i) = ∗ at the beginning of Step 2(b) in the r-th round. Thus no matter

what α is and what #»

b (i) is assigned, #»Y i(j) is uniform over [M ] in the r-th round. Therefore,

under the assumed condition, the distribution of xr and f(xr) are independent of α and the

probability of maintaining the block-compatible property in the r-th round is independent of

α. By induction, we know that the probability of maintaining the block-compatible property
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in all q rounds is independent of α.

For the first factor, as discussed above, conditioning on the block-compatible property,

the distributions of xr and f(xr) are independent of α, so the probability of getting z as the

output of Af (w`) is also independent of α.

Proof of Claim 3.4.6

Claim 3.4.6 (restatement). For every w` ∈ [N ′] and z ∈ [M ′],

Pr
(f, #»

b ,
#»X ) r←FH

[
w1, . . . , w`−1 /∈Wz(f,X )

∣∣∣ w` ∈Wz(f,X )
]

≤ 2
O

(
q

n2 +
√

kq

n2

)
· Pr

(f, #»
b ,

#»X ) r←FL

[
w1, . . . , w`−1 /∈Wz(f,X )

∣∣∣ w` ∈Wz(f,X )
]

+O
(q2

S

)
+ 2−5k

Proof. We consider the Procedure 3.4.2 for sampling (f, #»

b ,
#»X ), which is equivalent to sampling

from Fα conditioned on w` ∈Wz(f,X ) (Namely, Af (w`) = z and w` ∈ BC(f,X )). We denote

such a distribution as (f, #»

b ,
#»X ) r← Fα(w`, z). It follows the same idea as in Procedure 3.4.1

— sampling the blocks that are queried by Af (w`) first, and using the rejection sampling to

handle the condition w` ∈ Wz(f,X ). Notice that until Step 5, information (including the

partition #»X ∗, function mapping f∗ and the indicator #»

b ∗) on exactly q blocks is decided.

The probability we consider then can be written as

Pr
(f, #»

b ,
#»X ) r←Fα

[
w1, . . . , w`−1 /∈Wz(f,X )

∣∣∣ w` ∈Wz(f,X )
]

= Pr
(f, #»

b ,
#»X ) r←Fα(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X )

]
=

∑
(f∗, #»

b ∗,
#»X ∗)

Pr
(f, #»

b ,
#»X ) r←Fα(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X )

∣∣∣ (f∗, #»

b ∗,
#»X ∗)

]
× Pr
F ∗α(w`,z)

[
(f∗, #»

b ∗,
#»X ∗)

]

Now we introduce a property of a partial indicator. We say a partial indicator is balanced if

the number of zeros (low entropy block) and ones (high entropy block) are about the same.

Definition 3.4.7 (balanced). Let #»

b ∗ ∈ {0, 1, ∗}S be a “partial” indicator vector where there

are q non-star entries. We say it is balanced if the number of 1’s is in [q · (1/2 − 5/n −√
25k/q), q · (1/2 + 5/n+

√
25k/q)].

58



Procedure 3.4.2: proc:w-first-bc

1. Initially, #»X i(j) = ∗ and #»

b (i) = ∗ for all i ∈ [S], j ∈ [T ] and f(x) = ∗ for all
x ∈ [N ].

2. Simulate Af (w`) handling the r-th oracle query xr as follows. For r = 1 . . . , q,

(a) Based on previous queries and results as well as w, let the r-th query be
xr. Select (i, j) uniformly at random from [S]× [T ] subject to #»X i(j) = ∗
and assign #»X i(j) = xr.

(b) If #»

b (i) = ∗, then assign #»

b (i) r← Bern(α) and #»Y i
r← Y #»

b (i).

(c) Set f(xr) = #»Y i(j) and return f(xr) as the answer to the query.

3. If q values of i in Step 2(a) are not all distinct, or Af (w`) 6= z, restart.

4. For all (i, j) such that #»

b (i) 6= ∗ and #»X i(j) = ∗, randomly sample x ∈ [N ] that
has not been assigned to any partition. Set #»X i(j) = x and f(x) = #»Y i(j).

5. Denote the partially assigned (some of them are mapped to ∗) function and
vectors sampled so far as

(
f∗,

#»

b ∗,
#»X ∗
) r← F ∗α(w`, z).

6. Assign the rest of the vectors #»X , #»

b and the mapping f by executing Step
2(a)–(c) for all x ∈ [N ] \ {x1, . . . , xq} (instead of xr).

According to Procedure 3.4.2, each non-star entry of #»

b ∗ is sampled uniformly and inde-

pendently from Bern(α). When α ∈ [1/2− 5/n, 1/2 + 5/n], by Chernoff bound, we have

Pr
(f∗, #»

b ∗,
#»X ∗) r←F ∗α(w`,z)

[
#»

b ∗ is balanced
]
≥ 1− 2−5k .

And thus we can sum over only balanced #»

b ∗ by paying an additive term.

Pr
(f, #»

b ,
#»X ) r←Fα

[
w1, . . . , w`−1 /∈Wz(f,X )

∣∣∣ w` ∈Wz(f,X )
]

≤ 2−5k +
∑

(f∗, #»
b ∗,

#»X ∗)
where #»

b ∗ is balanced

Pr
(f, #»

b ,
#»X ) r←Fα(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X )

∣∣∣ (f∗, #»

b ∗,
#»X ∗)

]

× Pr
Fα(w`,z)∗

[
(f∗, #»

b ∗,
#»X ∗)

]
(3.8)

Now we use the following two claims (proved in the later paragraphs) to connect the high
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entropy case (FH) and the low entropy case (FL) on those two factors.

Subclaim 3.4.8. For every w` ∈ [N ′], z ∈ [M ′] and (f∗, #»

b ∗,
#»X ∗) ∈ Supp

(
F ∗H(w`, z)

)
, we

have

Pr
FH(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X )

∣∣∣ (f∗, #»

b ∗,
#»X ∗)

]
≤ Pr

FL(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X )

∣∣∣ (f∗, #»

b ∗,
#»X ∗)

]
+O

(
q2

S

) (3.9)

Subclaim 3.4.9. For every w` ∈ [N ′], z ∈ [M ′] and every (f∗, #»

b ∗,
#»X ∗) where #»

b ∗ is balanced,

Pr
F ∗H (w`,z)

[
(f∗, #»

b ∗,
#»X ∗)

]
≤ 2

O

(
q

n2 +
√

kq

n2

)
· Pr
F ∗L (w`,z)

[
(f∗, #»

b ∗,
#»X ∗)

]
(3.10)

Inserting Inequalities (3.9) and (3.10) to Equation (3.8) with α = 1/2 + 5/n, we conclude

the claim.

Proof of Subclaim 3.4.8. This claim is heavily relied on a variant of the main lemma (Lemma 3)

in [LZ17] (see the proof in Section 3.5.2):

Lemma 3.4.10. Let Âf̂ : [N̂ ′] → [M̂ ′] be an algorithm making at most q oracle queries to

f̂ : [N̂ ] → [M̂ ]. Let F̂H = F̂1/2+5/n and F̂L = F̂1/2−5/n be the distribution over a function

f̂ : [N̂ ]→ [M̂ ], a partition
#»

X̂ ∈
(
[N̂ ]T̂

)Ŝ where T̂ Ŝ = N̂ , and an indication vector ~̂b ∈ {0, 1}Ŝ

defined in Section 3.3. Then for all z ∈ [N̂ ′],

Pr
(f̂ ,~̂b,

#»

X̂ ) r←F̂L

[
∃w ∈ BC(f̂ , X̂ ), Âf̂ (w) = z

]
− Pr

(f̂ ,~̂b,
#»

X̂ ) r←F̂H

[
∃w ∈ BC(f̂ , X̂ ), Âf̂ (w) = z

]
≤ O(q2)

Ŝ
.

For a fixed (f∗, #»

b ∗,
#»X ∗), apply the above lemma in the following way:

• Let Ŝ = S − q, T̂ = T , and so N̂ = Ŝ · T̂ = N − qT .

• Let Z = {x | f∗(x) = ∗} ⊆ [N ], I = {i | #»

b ∗(i) = ∗} ⊆ [S] and πx : Z → [N̂ ],
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πi : I → [Ŝ] be arbitrary bijection mappings. Then we define f̂ , ~̂X and ~̂b as follows.

∀ x̂ ∈ [N̂ ] , f̂(x̂) def= f(π−1
x (x̂))

∀ (̂i, ĵ) ∈ [Ŝ]× [t̂] ,
#»

X̂ î(ĵ)
def= πx( #»X π−1

i (̂i)(ĵ))

∀ î ∈ [Ŝ] ,
#»

b̂ (̂i) def= #»

b (π−1
i (̂i))

.

• For ŵ ∈ [N̂ ], define Âf̂ (ŵ) to simulate Af (w) and w ∈ {w1, . . . , w`−1} in the following

way. It first check that if w /∈ {w1, . . . , w`−1}, output something not equal to z.

Otherwise simulate Af (w) and when A makes a query x ∈ X ∗, Â hardwire the result

f(x) as the answer. When x ∈ Z, return f̂(πx(x)) as the answer.

By the above mapping, we have

Pr
(f, #»

b ,
#»X ) r←Fα(w`,z)

[
∃w ∈ BC(f,X ) ∩ {w1, . . . , w`−1},Af (w) = z

∣∣∣ (f∗, #»

b ∗,
#»X ∗)

]
= Pr

(f̂ ,~̂b, ~̂X ) r←F̂α

[
∃w ∈ BC(f̂ , X̂ ), Âf̂ (w) = z

]
.

By Lemma 3.4.10,

Pr
FH(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X )

∣∣∣ (f∗, #»

b ∗,
#»X ∗)

]
= 1− Pr

FH(w`,z)

[
∃w ∈ BC(f,X ) ∩ {w1, . . . , w`−1},Af (w) = z

∣∣∣ (f∗, #»

b ∗,
#»X ∗)

]
= 1− Pr

(f̂ ,~̂b, ~̂X) r←F̂H

[
∃w ∈ BC(f̂ , X̂ ), Âf̂ (w) = z

]

≤ 1− Pr
(f̂ ,~̂b, ~̂X) r←F̂L

[
∃w ∈ BC(f̂ , X̂ ), Âf̂ (w) = z

]
+O

(
q2

Ŝ

)

= 1− Pr
FL(w`,z)

[
∃w ∈ BC(f,X ) ∩ {w1, . . . , w`−1},Af (w) = z

∣∣∣ (f∗, #»

b ∗,
#»X ∗)

]
+O

(
q2

S

)

= Pr
FL(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X )

∣∣∣ (f∗, #»

b ∗,
#»X ∗)

]
+O

(
q2

S

)
.

Proof of Subclaim 3.4.9. We restate the subclaim:
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Subclaim 3.4.9 (restatement). For every w` ∈ [N ′], z ∈ [M ′] and every (f∗, #»

b ∗,
#»X ∗) where

#»

b ∗ is balanced,

Pr
F ∗H (w`,z)

[
(f∗, #»

b ∗,
#»X ∗)

]
≤ 2

O

(
q

n2 +
√

kq

n2

)
· Pr
F ∗L (w`,z)

[
(f∗, #»

b ∗,
#»X ∗)

]
(3.10)

Proof. The only difference between distributions FL(w`, z) and FH(w`, z) is when sampling
#»

b ∗. Recall that a balanced partial indicator means the hamming weight is within the range

q ·
(
1/2±

(
1/n+

√
25k/q

))
. Since we only consider the cases where #»

b ∗ is balanced, the ratio

can be bounded as follows.

PrF ∗H (w`,z)
[
(f∗, #»

b ∗,
#»X ∗)

]
PrF ∗L (w`,z)

[
(f∗, #»

b ∗,
#»X ∗)

] ≤ ( 1
2 + 5

n
1
2 −

5
n

)q( 1
2 +
(

1
n

+
√

25k
q

)) ( 1
2 −

5
n

1
2 + 5

n

)q( 1
2−
(

1
n

+
√

25k
q

))

≤
(

1 + 10
n

)2q
(

1
n

+
√

25k
q

) (
1− 10

n

)−2q
(

1
n

+
√

25k
q

)

≤ 2
O

(
q

n2 +
√

kq

n2

)
(3.11)

3.5 Appendix

3.5.1 Proof of Lemma 3.4.2

Lemma 3.4.2 (restatement). There exists a universal constant c > 0 such that for every

sufficiently large n and k ≤ n, there is an output z ∈ [M ′] that satisfies

1. Pr
(f, #»

b ,
#»X ) r←FH

[
∃w ∈ BC(f,X ),Af (w) = z

]
≥ 1− 2−ck ≥ 1

2 .

2. Pr
(f, #»

b ,
#»X ) r←FL

[
∃w ∈ BC(f,X ),Af (w) = z

]
≤ 2−ck.

3. E
(f, #»

b ,
#»X ) r←FH

[ ∣∣∣{w : Af (w) = z
}∣∣∣ ] ≤ 24k.

Proof. In this proof, we abuse notation by denoting BC(f,X ) also to be the uniform distri-

bution over the set BC(f,X ). We will show that that for a random z sampled from [M ′], it

satisfies each property with probability at least 1− 2−Ω(k), and hence by the union bound, it
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satisfies all three properties with probability at least 1− 2−Ω(k). In particular, there exists

z ∈ [M ′] satisfying all three conditions simultaneously.

1.

Pr
z

r←{0,1}m′

[
z /∈ Af (BC(f,X )

]
= 1−

∣∣Supp
(
Af (BC(f,X ))

)∣∣
[M ′]

≤ dTV
(
Af
(
BC(f,X )

)
, Um′

)
≤ dTV

(
Af (Un′) , Um′

)
+ dTV

(
BC(f,X ) , Um′

)
= dTV

(
Af (Un′) , Um′

)
+ 1− |BC(f,X )|

[N ′]

(3.12)

Take the expectation over (f, #»

b ,
#»X ) from FH for Equation (3.12). By Lemma 3.3.1,

Definition 3.2.1 and Corollary 3.4.4 we have

Pr
(f, #»

b ,
#»X ) r←FH

z
r←[M ′]

[
z /∈ Af

(
BC(f,X )

)]
≤ Pr

(f, #»
b ,

#»X ) r←FH

[
HSh(f) < τ + 1

]
+ 2−k + 2−0.3n (3.13)

≤ 2−0.9n + 2−k + 2−0.3n ≤ 2−0.2k (3.14)

By the Markov inequality,

Pr
z∈[M ′]

[
Pr

(f, #»
b ,

#»X ) r←FH

[
∃w ∈ BC(f,X ),Af (w) = z

]
≥ 1− 2−0.1k

]
≥ 1− 2−0.1k.

2. By Lemma 3.3.1 and Definition 3.2.1, we have

Pr
(f, #»

b ,
#»X ) r←FL,z

r←[M ′]

[
∃w ∈ BC(f,X ),Af (w) = z

]
≤ Pr

(f, #»
b ,

#»X ) r←FL,z
r←[M ′]

[
∃w ∈ [N ′],Af (w) = z

]
≤ Pr

z
r←[M ′]

[
∃w ∈ [N ′],Af (w) = z

∣∣∣ HSh(f) ≤ τ − 1
]

+ Pr
(f, #»

b ,
#»X ) r←FL

[
HSh(f) > τ − 1

]
≤ 2−k + 2−0.9n ≤ 2−0.8k.

By the Markov inequality,

Pr
z∈[M ′]

[
Pr

(f, #»
b ,

#»X ) r←FL

[
∃w ∈ BC(f,X ),Af (w) = z

]
≤ 2−0.1k

]
≥ 1− 2−0.7k .
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3. Since m′ = n′ + 3k,

E
z∈[M ′]

[ ∣∣∣{w : Af (w) = z
}∣∣∣ ] = 2n′ · 2−m′ = 23k .

In particular,

E
(f, #»

b ,
#»X ) r←FH,z∈[M ′]

[ ∣∣∣{w : Af (w) = z
}∣∣∣ ] = 23k.

By the Markov inequality,

Pr
z

r←[M ′]

[
E

(f, #»
b ,

#»X ) r←FH

[ ∣∣∣{w : Af (w) = z
}∣∣∣ ] ≤ 24k

]
≥ 1− 2−k .

3.5.2 Entropy Reversal Lemma

We restate the Lemma 3.4.10 with simplified notation for clarity. Note that it is unnecessarily

that N = 2n or being a power of two (and similarly for M,N ′ and M ′).

Lemma 3.5.1. Let Af : [N ′] → [M ′] be an algorithm making at most q oracle queries to

f : [N ] → [M ]. Let FH = F1/2+5/n and FL = F1/2−5/n be the distribution over a function

f : [N ]→ [M ], a partition #»X ∈ ([N ]T )S where TS = N , and the indication vector #»

b ∈ {0, 1}S

as defined in Section 3.3. Then for all z ∈ [N ],

Pr
(f, #»

b ,
#»X ) r←FL

[
∃w ∈ BC(f,X ),Af (w) = z

]
− Pr

(f, #»
b ,

#»X ) r←FH

[
∃w ∈ BC(f,X ),Af (w) = z

]
≤ O(q2)

S
.

Besides the parameters difference, a key difference between Lemma 3.5.1 and the key

lemma in [LZ17] is that in our construction, the indicator vectors #»

b consist of S independent

Bernoulli random variables, while in their case, the number of ones, namely the Hamming

weight is fixed. Formally, they consider the following distribution.

Definition 3.5.2. For i ∈ [S], F̃i is the distribution over functions f : [N ] → [M ] and

partitions #»X defined as follows. Let ~bi = (1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
S−i

). Then (f, #»X ) r← F̃i denotes that

#»X r← XS and f r← F ( #»X , ~bi).
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A more direct analogue of the main lemma in [LZ17] with improved parameters stated

using our notation:

Lemma 3.5.3. Let Af : [N ′]→ [M ′] be an algorithm, which makes at most q queries to its

oracle f : [N ]→ [M ]. If 2q2 < i, then for all z ∈ {0, 1}m′,

Pr
(f, #»X ) r←F̃i−1

[
∃w ∈ BC(f,X ),Af (w) = z

]
− Pr

(f, #»X ) r←F̃i

[
∃w ∈ BC(f,X ),Af (w) = z

]
≤ O(q2)

i2
.

The improved parameters is also proved implicitly in [LZ17]. For completeness we also

provide a (arguably simpler) proof of Lemma 3.5.3 below. Now we prove Lemma 3.5.1 using

Lemma 3.5.3.

Proof of Lemma 3.5.1. By telescoping over i in Lemma 3.5.3, we get that for 1
4 ≤ α < β ≤ 1

where αS and βS are integers, we have

Pr
(f, #»X ) r←F̃αS

[
∃w ∈ BC(f,X ),Af (w) = z

]
− Pr

(f, #»X ) r←F̃βS

[
∃w ∈ BC(f,X ),Af (w) = z

]
≤
O
(
q2(β − α)

)
S

.

Conditioning on the Hamming weight of #»

b being αS when we sample D1/2−5/n or D1/2+5/n, the

probability of the event ∃w ∈ BC(f,X ),Af (w) = z is same as sampling from F̃αS , because this

event is invariant to permuting the indices of the S blocks, so the vector #»

b = (1, . . . , 1︸ ︷︷ ︸
αS

, 0, . . . , 0︸ ︷︷ ︸
S−αS

)

is equivalent to any other vector of the same Hamming weight. Hence, we have

Pr
(f, #»

b ,
#»X ) r←D1/2±5/n

[
∃w ∈ BC(f,X ),Af (w) = z

]

=
S∑
h=0

Pr
(f, #»X ) r←F̃h

[
∃w ∈ BC(f,X ),Af (w) = z

]
· Pr

[
Bin(S, 1/2± 5/n) = h

]
,

where Bin denotes the binomial distribution. By the Chernoff bound,

Pr
(f, #»

b ,
#»X ) r←D 1

2−
5
n

[
∃w ∈ BC(f,X ),Af (w) = z

]
− Pr

(f, #»
b ,

#»X ) r←D 1
2 + 5

n

[
∃w ∈ BC(f,X ),Af (w) = z

]

≤ 2−Ω(s) +
∑

S/4<h<3S/4
Pr

(f, #»X ) r←F̃h

[
∃w ∈ BC(f,X ),Af (w) = z

]
· Pr

[
Bin(S, 1/2 + 5/n) = h

]
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−
∑

S/4<h<3S/4
Pr

(f, #»X ) r←F̃h

[
∃w ∈ BC(f,X ),Af (w) = z

]
· Pr

[
Bin(S, 1/2− 5/n) = h

]
.

Then by symmetry (Pr[Bin(S, p) = h] = Pr[Bin(S, 1− p) = s− h]) and the bound we got at

the beginning by telescoping, the difference is bounded by

∑
S/4<h<3S/4

(
Pr

(f, #»X ) r←F̃h
[∃w ∈ BC(f,X ),Af (w) = z]− Pr

(f, #»X ) r←F̃S−h
[∃w ∈ BC(f,X ),Af (w) = z]

)

× Pr[Bin(S, 1/2− 5/n) = h] + 2−Ω(S)[2]

≤
∑

S/4<h<S/2

O
(
q2(S − 2h)/S

)
S

· Pr[Bin(S, 1/2− 5/n) = h] + 2−Ω(S) ≤ O(q2)
S

.

Proof of Lemma 3.5.3. Distributions F̃i−1 and F̃i differ only on the block #»X i. So an equivalent

way to sample both distributions is that we can first sample the partition #»X , and the mapping

except on the set Xi. In particular, we sample #»Y 1, . . . ,
#»Y i−1

r← Y0 and #»Y i+1, . . . ,
#»YS

r← Y1.

After that, for fixed #»X and #»Y 1, . . . ,
#»Y i−1,

#»Y i+1, . . . ,
#»YS , we sample #»Y i from Y1 or Y0 for

distribution F̃i or F̃i−1, respectively.

For notational convenience, we define

#»X−i
def= ( #»X 1, . . . , ~Xi−1, ~Xi+1, . . . ,

#»X s)
#»X≤i

def= ( #»X 1, . . . ,
#»X i)

#»X>i
def= ( #»X i+1, . . . , ~Xn)

We denote the difference of the probabilities by ∆i to be

E
#»Y−i,

#»X

[
Pr

#»Y i
r←Y0

[
∃w ∈ BC(f,X ),Af (w) = z

]]
− E

#»Y−i,
#»X

[
Pr

#»Y i
r←Y1

[
∃w ∈ BC(f,X ),Af (w) = z

]]
.

(3.15)

Conditioning on Xi being not queried, Af (w) behaves identically under the two distributions.

Thus, to compare two probabilities better, we refine the event ∃w ∈ BC(f,X ),Af (w) = z
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based on the block Xi. For given f,
#»X and z, we define the following events.

∀j ∈ [T ] , Ef, #»X ,z(j)
def=
[
∃w ∈ BC(f,X ) s.t. Af (w) = z ∧ #»X i(j) ∈ Queryf (w)

]
Ef, #»X ,z(⊥) def=

[
∃w ∈ BC(f,X ) s.t. Af (w) = z ∧Queryf (w) ∩Xi = ∅

]
,

where Queryf (w) denotes the set of the queries made by Af (w) to the f with input w.

The main events that we care about is the union of the above events we defined, so for

Y ∈ {Y0,Y1}

Pr
#»Y i

r←Y

[
∃w ∈ BC(f,X )

]
= Pr

#»Y i
r←Y

[
Ef, #»X ,z(⊥) ∨

(∨t
j=1Ef, #»X ,z(j)

)]

= Pr
#»Y i

r←Y

[
Ef, #»X ,z(⊥)

]
+ Pr

#»Y i
r←Y

[
¬Ef, #»X ,z(⊥) ∧

(∨t
j=1Ef, #»X ,z(j)

)]
.

An important observation is that the event Ef, #»X ,z(⊥) does not depend on f(Xi), so sampling
#»Y i from Y0 or Y1 does not affect the probability of the event. Hence, Equation (3.15) can be

written as

∆i = E
#»Y−i,

#»X

[
Pr

#»Y i
r←Y0

[
¬Ef, #»X ,z(⊥) ∧

(∨t
j=1Ef, #»X ,z(j)

)]]

− E
#»Y−i,

#»X

[
Pr

#»Y i
r←Y1

[
¬Ef, #»X ,z(⊥) ∧

(∨t
j=1Ef, #»X ,z(j)

)]]
.

Now, for the probability over Y0 part, we apply the union bound.

E
#»Y−i,

#»X

[
Pr

#»Y i
r←Y0

[
¬Ef, #»X ,z(⊥) ∧

(∨t
j=1Ef, #»X ,z(j)

)]]
≤ E

#»Y−i,
#»X

 t∑
j=1

Pr
#»Y i

r←Y0

[
¬Ef, #»X ,z(⊥) ∧ Ef, #»X ,z(j)

]
For the Y1 part, we bound the probability via the inclusion-exclusion principle.

E
#»Y−i,

#»X

[
Pr

#»Y i
r←Y1

[
¬Ef, #»X ,z(⊥) ∧

(∨t
j=1Ef, #»X ,z(j)

)]]

≥ E
#»Y−i,

#»X

 t∑
j=1

Pr
#»Y i

r←Y1

[
¬Ef, #»X ,z(⊥) ∧ Ef, #»X ,z(j)

]
− E

#»Y−i,
#»X

[
Pr

#»Y i
r←Y1

[
∃j 6= j′,¬Ef, #»X ,z(⊥) ∧ Ef, #»X ,z(j) ∧ Ef, #»X ,z(j

′)
]]

Observe that Af (w) only queries Xi at most once for all w ∈ BC(f,X ), and the marginal
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distributions of the mapping on #»X i(j) for every j ∈ [T ] are the same in both Y1 and Y0 cases,

so for every j ∈ [T ]

Pr
#»Y i

r←Y0

[
¬Ef, #»X ,z(⊥) ∧ Ef, #»X ,z(j)

]
= Pr

#»Y i
r←Y1

[
¬Ef, #»X ,z(⊥) ∧ Ef, #»X ,z(j)

]
Therefore, the difference between two cases is bounded as

∆i ≤ E
#»Y−i,

#»X

[
Pr

#»Y i
r←Y1

[
∃j 6= j′,¬Ef, #»X ,z(⊥) ∧ Ef, #»X ,z(j) ∧ Ef, #»X ,z(j

′)
]]

= Pr
(f, #»X ) r←F̃i

[
∃j 6= j′,¬Ef, #»X ,z(⊥) ∧ Ef, #»X ,z(j) ∧ Ef, #»X ,z(j

′)
]
. (3.16)

To bound the term, we consider another way to sample (f, #»X ) from F̃i. Given (f, #»X ), we

define the function Blo : X≤i → [i] by

Blo(x) = the block that x is in = the unique i′ ≤ i s.t. ∃j, #»X i′(j) = x.

We will re-sample the “block structure for X≤i” after getting (f, #»X ). Namely, we will sample

Blo given fixed f and #»X>i) using principle of deferred decisions. Note that conditioned on f

and #»X>i, Blo is a uniformly random regular mapping from #»X≤i to [i] where regular means

that all preimage sets B−1(i′) are of size t.

Along the way of sampling Blo, we abuse the notation and consider a more general block

assignment Blo : #»X≤i → [i] ∪ {∗} where “∗” represent values not yet determined as before.

Initially, Blo(x) = ∗ for all x ∈ #»X≤i. For an input w ∈ [N ′], we say w is partially block

compatible, written as w ∈ PBC(f, #»X>i,Blo) if Af (w) queries each block (defined by #»X>i or

Blo) at most once (among the queries whose block is determined).

The procedure for sampling Blo given fixed f and #»X>i is as follows.
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Procedure 3.5.1

1. Set Blo(x) = ∗ for all x ∈ [N ] \X>i.

2. While ∃w s.t. w ∈ PBC(f, #»X>i,Blo) and Af (w) = z,

(a) Randomly assign Blo on undetermined element of Queryf (w) conditional

on assignment to Blo so far. That is, for each x ∈ Queryf (w) s.t.

Blo(x) = ∗ set Blo(x) = i′ with probability T−|{x′:Blo(x′)=i′}|
iT−|{x′:Blo(x′) 6=∗}| .

3. Randomly assign Blo on all undetermined elements conditioned on assignment

to Blo so far.

By considering the above sampling procedure, let w` be the value of w chosen in the `-th

iteration of the while loop (Step 2). Then we define the following events for ` ∈ N.

E
(0)
` =

[
None of the new assignments to Blo in `-th iteration equal i

∧ after `-th iteration, w` 6= PBC(f, #»X>i,Blo).
]

E
(1)
` = [Exactly one of the new assignments to Blo in `-th iteration equals i.]

E
(≥2)
` = [At least two of the new assignments to Blo in `-th iteration equals i.]

Denote the assignments of Blo after the first `−1 rounds in the while loop as Blo`−1. Suppose

q` ≤ iT/2 and q2 ≤ i/2, then we have

Pr
[
E

(0)
` | Blo`−1

]
≤
(
q

2

)
· T

iT − q · (`− 1) ≤
1
2

Pr
[
E

(1)
` | Blo`−1

]
≤ q · T

iT − q · (`− 1) ≤
2q
i

Pr
[
E

(≥2)
` | Blo`−1

]
≤

q∑
j=2

(
q

j

)
·
(

T

iT − q · (`− 1)

)j
≤ 2q
i3

≤
q∑
j=2

(
q

2

)j (2
i

)j
≤

q∑
j=2

(
q

i

)j
≤ 2q2

i2

(3.17)

Let L be a parameter to be chosen later. The event in Equation (3.16) happens only if
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the event E(1) happens at least twice in the while loop and for the rest of the while loops,

E(0) or E(≥2) happens. We focus on the sampling procedure for the first L rounds. Then

Equation (3.16) can be bounded as

Pr
(f, #»X ) r←F̃i

[
∃j 6= j′,¬Ef, #»X ,z(⊥) ∧ Ef, #»X ,z(j) ∧ Ef, #»X ,z(j

′)
]

≤
∑

0<`1<`2≤L
Pr
[(
E

(0)
1 ∧ · · · ∧ E(0)

`1−1

)
∧ E(1)

`1
∧
(
E

(0)
`1+1 ∧ · · · ∧ E

(0)
`2−1

)
∧ E(1)

`2

]
(3.18)

+
∑

0<`≤L
Pr
[(
F1 ∧ · · · ∧ E(0)

`−1

)
∧ E(1)

` ∧
(
E

(0)
`+1 ∧ · · · ∧ E

(0)
L

)]
(3.19)

+
∑

0<`≤L
Pr
[(
E

(0)
1 ∧ · · · ∧ E(0)

`−1

)
∧ E(≥2)

`

]
(3.20)

+ Pr
[
E

(0)
1 ∧ · · · ,∧E(0)

L

]
(3.21)

As long as qL ≤ iT/2, we can bound Equation (3.18), (3.19), (3.20) and (3.21) using

Equation 3.17:

Equation (3.18) ≤
∑

0<`1<`2≤L

1
2`2−2 ·

4q2

i2
≤ 16

∑
0<`2≤L

`2
2`2 ·

q2

i2
= O

(
q2

i2

)

Equation (3.19) ≤
∑

0<`≤L

1
2L−1 ·

2q
i

= O
(
2−L

)

Equation (3.20) ≤
∑

0<`≤L

1
2`−1 ·

2q2

i2
= O

(
q2

i2

)

Equation (3.19) ≤ O
(
2−L

)
If we choose L = 2 log(i/q) (which satisfies qL ≤ iT/2q), then all Equation (3.18), (3.19),

(3.20) and (3.21) is at most O
(
q2/i2

)
, and so is ∆i.

3.5.3 From flattening to SDU algorithm (Lemma 3.2.2)

Lemma 3.2.2 (restatement). If there exists a (ε,∆)-flattening algorithm Af : {0, 1}n′ →

{0, 1}m′ for function f : {0, 1}n → {0, 1}m with query complexity q, then there exists a k-SDU

algorithm Af : {0, 1}n′′ → {0, 1}n′′−3k where n′′ = O(n′+m′) for function f : {0, 1}n → {0, 1}m

with query complexity q and k = Ω
(
min{∆, log(1/ε)}

)
. In particular, there exists such a k-SDU
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algorithm with query complexity O
(
k ·min{n,m}2

)
.

Proof. The Lemma follows directly by chaining Claim 3.5.4 and 3.5.5.

Claim 3.5.4. If there exists a (ε,∆)-flattening algorithm Af : {0, 1}n′ → {0, 1}m′ for function

f : {0, 1}n → {0, 1}m with query complexity q, then there exists an k-SDU algorithm Bf :

{0, 1}n′′ → {0, 1}m′′ where n′′ = O(n′ +m′) and m′′ = O(n′ +m′) for function f : {0, 1}n →

{0, 1}m with query complexity q and k = Ω(min{∆, log(1/ε)}).

Proof. This proof mostly follows the idea in [GSV99b]. It suffices to prove the existence of Ω(k)-

SDU algorithm for k = min{∆, log(1/ε)}. Let Ha,b be a family of 2-universal hash function

from a bits to b bits. We sample hash functions h1 and h2 from Hm′,κ and r← Hn′,n′−κ−k/3,

respectively, where κ is the parameter chosen by the flattening algorithm Af . We will show

that

Bf (w, h1, h2) =
(
h1, h1(Af (w)), h2, h2(w)

)
is a Ω(k)-SDU algorithm. We denote the output of Bf (w, h1, h2) as a jointly distributed

random variables (H1, Z1, H2, Z2) when w r← Un′ , h1
r← Hm′,κ and h2

r← Hn′,n′−κ−k/3.

1. When (f, τ) ∈ Entropy-ApproximationY , there exists a distribution ZH with

HSh(ZH) ≥ κ + ∆ such that dTV(Af (Un′) , ZH) ≤ ε. First, we show that (H1, Z1) is

close to uniform. By the Leftover Hash Lemma, dTV((H1, H1(ZH) , (H1, Uκ)) ≤ 2−∆/3,

and so

dTV
(
(H1, Z1) , (H1, Uκ)

)
≤ dTV

(
Af (Un′) , ZH

)
+ dTV

(
(H1, H1(ZH)) , (H1, Uκ)

)
≤ 2−∆/3 + ε ≤ 2−Ω(k).

For the (H2, Z2) of part, we will show that with high probability over sampling (h1, z1)

from (H1, Z1), the distribution (H2, Z2) conditioned on (h1, z1) is close to uniform. Since

(H1, Z1) is 2−Ω(k)-close to uniform, by the Markov inequality, with probability at least

1− 2−Ω(k) over choosing (h1, z1) from (H1, Z1), we have

Pr
[
h1(Af (Un′)) = z1

]
= Pr

[
Z1 = z1

∣∣∣H1 = h1
]
≥ 1

2 · 2
−κ.
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Thus, except for 2−Ω(k) probability over (h1, z1), the number of w such that h1(Af (w)) =

z1 is at least 2n′−κ−1. Again, by the Leftover Hash Lemma, (H2, Z2) is 2−Ω(k)-close to

uniform conditioned on any such (h1, z1). We then can conclude that (H1, Z1, H2, Z2)

is 2−Ω(k)-close to uniform.

2. When (f, τ) ∈ Entropy-Approximation, there exists a distribution ZL with

Hmax(ZL) ≤ κ−∆ such that dTV(Af (Un′) , ZL) ≤ ε. For every fixed h1 and h2, we will

bound the support size of (Z1, H2, Z2) conditioned on H1 = h1 and H2 = h2. We divide

Supp(Z1, Z2) into three subset according to z1 ∈ Supp(Z1).

S1 = {(z1, z2) : z1 ∈ Supp(ZL)}

S2 = {(z1, z2) : Pr[Z1 = z1] ≥ 2−κ−2k/3 and z1 /∈ Supp(ZL)}

S3 = {(z1, z2) : Pr[Z1 = z1] < 2−κ−2k/3 and z1 /∈ Supp(ZL)}

Since, Supp(Z1, Z2) = S1 ∪ S2 ∪ S3, it suffices to show that |Si| ≤ 2−Ω(k) · |{0, 1}κ ×

{0, 1}n′−κ−k/3| for all i = 1, 2, 3.

(a) For S1, by definition, Hmax(ZL) ≤ κ−∆ implies that |Supp(ZL)|/|{0, 1}κ| ≤ 2−∆,

and so

∣∣S1
∣∣ ≤ 2−∆ ·

∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣ ≤ 2−Ω(k) ·
∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣.

(b) For S2, since dTV(Af (Un′) , ZL) ≤ ε,
∑
z1 /∈Supp(ZL) Pr[Z1 = z1] ≤ ε. Each z1 such

that Pr[Z1 = z1] ≥ 2−κ−2k/3 contributes at least 2−κ−2k/3 towards ε, so

∣∣∣{z1 : Pr[Z1 = z1] ≥ 2−κ−2k/3 and z1 /∈ Supp(ZL)
}∣∣∣ ≤ ε · 2κ+2k/3.

Then we have |S2| ≤ 2−Ω(k) ·
∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣, since k ≤ log(1/ε).

(c) For S3, if Pr[Z1 = z1] < 2−κ−2k/3, then the number of w ∈ {0, 1}n′ such that

h1(Af (w)) = z1 is at most 2n′−κ−2k/3, which is at most a 2−k/3 fraction of

{0, 1}n′−κ−k/3. Therefore, |S3| ≤ 2−Ω(k) ·
∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣.

Thus, we conclude that Bf is a Ω(k)-SDU algorithm.
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Claim 3.5.5. If there exists a k-SDU algorithm Af : {0, 1}n′ → {0, 1}m′ for function f :

{0, 1}n → {0, 1}m with query complexity q, then there exists an (k − 1)-SDU algorithm Bf :

{0, 1}n′′ → {0, 1}m′′ where n′′ = O(n′) and m′′ = n′′ − 3k for function f : {0, 1}n → {0, 1}m

with query complexity q.

Proof.

Lemma 3.5.6 (Generalized Leftover Hash Lemma [DORS08, Lemma 2.1]). Let (X,Y ) be

a jointed distributed random variables such that HSh(X|Y ) ≥ k. Let Hn,m = {h : {0, 1}n →

{0, 1}m} be a family of universal hash function where h can be described in (n+m) bits and

m = k − 2 log(1/ε) + 2. Then

dTV
(
(h(X), Y, h) , (Um, Y, h)

)
≤ ε

where Um is a uniform m bits string.

Let Hn′,n′−m′−3k =
{
h : {0, 1}n → {0, 1}m

}
be a family of universal hash function

where h can be described in d = 2n′ −m′ − 3k bits. Based on the given k-SDU algorithm

Af : {0, 1}n′ → {0, 1}m′ , we define the algorithm Bf : {0, 1}n′+d → {0, 1}n′+d−3k as

Bf (w, h) def= (Af (w), h(w), h) .

By the chain rule of average min-entropy ([DORS08, Lemma 2.2b])

HSh
(
w
∣∣A(w)

)
≥ HSh(w)− len(A(w)) = n′ −m′ ,

and hence

dTV
((

A(w),Ext(w, v)
)
,
(
A(w), Un′−m′+d−2k−O(1)

))
≤ 2−k .

Therefore, when HSh(f) ≥ τ + 1

dTV
(
Bf (Un′+d) , Un′+d−3k

)
= dTV

(
(Af (w), h(w), h) , (Um′ , Un′−m′+d−3k)

)
= dTV

(
Af (w) , Um′

)
+ dTV

(
(Af (w), h(w), h) , (Af (w), Un′−m′+d−3k)

)
≤ 2−k + 2−k = 2−(k−1) .
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The last inequality is by the property of k-SDU algorithm and Lemma 3.5.6.

On the other hand, if HSh(f) ≤ τ − 1,

∣∣∣Supp(Bf (Un′+d))
∣∣∣ ≤ 2m′−k · 2n′−m′+d−3k ≤ 2(n′+d−3k)−k .

Therefore, Bf is an (k − 1)-SDU algorithm with desired parameter.
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Chapter 4

Simulating Auxiliary Input

In this Chapter, we study the complexity of the problem “simulating auxiliary input” defined

in [JP14]. We construct a simulator with complexity better than all previous results and prove

the optimality up to logarithmic factors by establishing a black-box lower bound. Specifically,

let ` be the length of the auxiliary input and ε be the indistinguishability parameter. Our

simulator is Õ
(
2`ε2) more complicated than the distinguisher family. For the lower bound, we

show the relative complexity to the distinguisher of a simulator is at least Ω̃
(
2`ε−2) assuming

the simulator is restricted to use the distinguishers in a black-box way and satisfy a mild

restriction.

4.1 Introduction

In the leakage simulation lemma, we are given a joint distribution (X,Z) where Z is “short”.

The goal is to find an “low complexity” simulator h such that (X,Z) and (X, h(X)) are

indistinguishable by a family of distinguishers. The non-triviality comes from the efficiency

requirement. Otherwise, one can simply hardcode the conditional distribution Z given x for

all x.

Theorem 4.1.1 (Leakage Simulation Lemma, informal). Let F be a family of deterministic

distinguisher from X × {0, 1}`. There exists a simulator function h : {0, 1}n → {0, 1}` with
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relative complexity poly
(
2`, ε−1) relative to F1 such that for all f ∈ F ,

∣∣∣Pr
[
f(X,Z) = 1

]
− Pr

[
f(X, h(X))

]∣∣∣ ≤ ε .
The Leakage Simulation Lemma implies many theorems in computational complexity and

cryptography. For instance, Jetchev and Pietrzak [JP14] used the lemma to give a simpler

and quantitatively better proof for the leakage-resilient stream-cipher[DP08]. Also, Chung,

Lui, and Pass [CLP15] applied the lemma (also an interactive version) to study connections

between various notions of Zero-Knowledge. Moreover, the leakage simulation lemma can

be used to deduce the technical lemma of Gentry and Wichs [GW11] (for establishing lower

bounds for succinct arguments) and the Leakage Chain Rule[JP14] for relaxed HILL min-

entropy [HILL99].

Before Jetchev and Pietrzak formally described the Leakage Simulation Lemma as in

Theorem 4.1.1, Trevisan, Tulsiani and Vadhan proved a similar lemma called Regularity

Lemma [TTV09], which can be viewed as a special case of the Leakage Simulation Lemma

by restricting the family of distinguishers in certain forms. In [TTV09], they also showed

that all Dense Model Theorem [RTTV08], Impagliazzo’s Hardcore Lemma [Imp95], and Weak

Szemérdi Regularity Lemma [FK99] can be derived from the Regularity Lemma. That means

the Leakage Simulation Lemma also implies all those theorems.

As the Leakage Simulation Lemma has many implications, it is essential to understand

what is the best relative complexity of h to F in terms of 2` and ε−1 that we can achieve and

how to achieve. In particular, the provable security level of a leakage-resilient stream-cipher

can be improved significantly using better complexity bound for Leakage Simulation Lemma.

We provide an improved complexity bound Õ(2`ε−2) and also show that it is almost optimal.

1The “relative complexity” means the circuit complexity of h when it has an access to oracle gates that
compute functions in F .
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4.1.1 Upper bound

In [TTV09], they provided two different approaches for proving the Regularity Lemma. One

is by the Non-uniform Min-max Theorem, and another one is via boosting. Although it is

not known whether the Regularity Lemma implies the Leakage Simulation Lemma directly,

[JP14] adopted both techniques and used them to show the Leakage Chain Rule with relative

complexity bound Õ(24`ε−4)2. Later on, Vadhan and Zheng derived the Leakage Simulation

Lemma [VZ13a, Lemma 6.8] using so-called “Uniform Min-max Theorem”, which is proved

via multiplicative weight update (MWU) method incorporating with KL-projections. The

circuit complexity of the simulator they got is Õ
(
t · 2`ε−2 + 2`ε−4) where t is the size of

the distinguisher circuits. After that, Skórski also used a boosting-type method to achieve

the bound Õ
(
25`ε−2) [Sko16a]. It was further improved to Õ

(
23`ε−2) later by another

boosting-type algorithm called subgradient method [Sko16b]. Note that the complexity bound

in [VZ13a] has an additive term, so their result is incomparable to the others.

Our Results. In this paper, we achieve Õ
(
2`ε−2) for the relative complexity, which contains

the best components out of two worlds. The core algorithm in our proof is also the multiplicative

weight update (MWU) method as in [VZ13b]. The additive term 2`ε−4 in [VZ13a] is due to

the precision issue when performing multiplication of real numbers. The saving of the additive

term is based on the observation mentioned in [VZ13a] — the KL-projection step in their

MWU algorithm is not necessary when proving the Leakage Simulation Lemma. We make use

of that and prove that proper truncations on weights help in reducing the circuit complexity,

yet accurate enough for h to simulate the auxiliary input.

Implication in leakage-resilient cryptography Leakage Simulation Lemma can be

used to prove the security of Pietrzak’s leakage-resilient stream-cipher [Pie09]. However, the

previous security proofs suffer from the term ε−4 or 23` (additively or multiplicative) in the

complexity bound for the Leakage Simulation Lemma mentioned above. In particular, in

2In the original paper, they claimed to achieve the bound Õ(23`ε−2). However, Skórski pointed out some
analysis flaws [Sko16a].
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Literature Techinque Complexity of
simulator

[JP14] Min-max / Boosting t · Õ
(
24`ε−4)

[VZ13a] Boosting with KL-projection t·Õ
(
2`ε−2)+Õ(2`ε−4)

[Sko16a] Boosting with self-defined projection t · Õ
(
25`ε−2)

[Sko16b] Boosting with Subgradient Method t · Õ
(
23`ε−2)

This work
Boosting t · Õ

(
2`ε−2)

Black-box lower bound t · Ω
(
2`ε−2)

Table 4.1: Summary of exisiting upper bound results and our results.

some legitimate examples mentioned by [Sko16a], the security parameters obtained from the

complexity bounds provided in [JP14] and [VZ13a] only guarantee trivial security when ε is

set to be 2−40. On the other hand, the factor 23` (or even 25`) is significant and makes the

guaranteed security bound trivial when the leakage is longer. Consider the following concrete

settings. We use the block cipher AES-256 as the underlying block cipher for Dziembowski

and Pietrzak’s construction. Suppose the target security to be 2−40 and the stream cipher

runs for 16 rounds. Let the complexity bound for the Leakage Simulation Lemma is 2a`/ε2,

then it can prove to against adversarial circuit of size ≈ 284/2(a+1)` [JP14, Lemma 2]. One

can see that only our complexity bound (a = 1) can provide a non-trivial security guarantee.

4.1.2 Lower bound

Our results. We show that the simulator must have the relative complexity Ω(2`ε−2) to

the distinguisher family by establishing a black-box lower bound, where a simulator can only

use the distinguishers in a black-box way. Our lower bound requires an additional assumption

that the simulator on a given input x, does not make a query an x′ 6= x to distinguishers.3

Querying at points different from the input does not seem helpful. Indeed, all the known

upper bound algorithms (including the one in this work) satisfy the above assumption. Still,

3Many black-box lower bounds in related contexts [LTW11, Zha11, PS16] make the same mild assumption
(implicitly). See Section 4.3.2 for more details.
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we leave it as an open problem to formalize this intuition and close this gap completely.

Comparison to related results. In [JP14], they proved a Ω(2`) lower bound for relative

complexity under a hardness assumption for one-way functions. Besides, there are also lower

bound results on the theorems that implied by the Leakage Simulation Lemma, including

Regularity Lemma [TTV09], Hardcore Lemma [LTW11], Dense Model Theorem [Zha11],

Leakage Chain Rule [PS16] and Hardness Amplification [SV10, AS14]. The best lower bound

one can obtain before this work is Ω(ε−2) [LTW11, SV10, Zha11] and Ω(2`ε−1) [PS16]. Thus

our lower bound is the first tight lower bound Ω(2`ε−2) for Leakage Simulation Lemma. See

Section 4.3.2 for more detailed comparisons.

4.2 Efficient Simulating Auxiliary Inputs

The formal description of Leakage Simulation Lemma with our improved parameters is as

follows.

Theorem 4.2.1 (Leakage Simulation Lemma). Let n, ` ∈ N, ε > 0 and F be a collection of

deterministic distinguishers f : {0, 1}n × {0, 1}` → {0, 1}. For every joint distribution (X,Z)

on {0, 1}n × {0, 1}`, there exists a (randomized) simulation circuit h : {0, 1}n → {0, 1}` such

that

1. h has complexity Õ(2`ε−2) relative to F . That is, h can be computed by an oracle-aided

circuit of size Õ(2`ε−2) with oracle gates computing functions in F .

2. (X,Z) and (X, h(X)) are ε-indistinguishable by F . That is, for every f ∈ F ,∣∣∣∣∣ E
(x,z) r←(X,Z)

[f(x, z)]− E
h,x r←X

[F(x, h(x))]
∣∣∣∣∣ ≤ ε .

In particular, let F be a set of boolean circuits of size at most t, then we have the following

corollary.
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Corollary 4.2.2. Let s, n, ` ∈ N and ε > 0. For every distribution (X,Z) over {0, 1}n ×

{0, 1}`, there exists a simulator circuit h of size t′ = t·Õ
(
2`ε−2) such that (X,Z) and (X, h(X))

are (t, ε)-indistinguishable.

The proofs of Leakage Simulation Lemma [JP14, Sko16a, Sko16b] are purely based on the

Nonuniform Min-max Theorem or some “boosting-type” argument. In order to apply the

Nonuniform Min-max Theorem, we have to Approximate a distribution over circuits by a

small circuit (see Section 5.5.2 for an example), which incurs the ε−2 factor in the complexity

additional to the ε−2 from the Nonuniform Min-Max Therefore, boosting-type of proofs are

more favorable, which we also adopt in this work.

Proofs via boosting. The structure of a boosting-type proof for constructing h is as

follows:

Meta Algorithm 4.2.1: Boosting-type Simulator h

Input: x ∈ {0, 1}n

1. Maintain the weights {wz}z∈[2`] and let h be a randomized function such that

Pr[h(x) = z] ∝ wz

2. For i = 1→ T

(a) Let f ∈ F be some function that violates the indistinguishability require-

ment. (or the one distinguishes (X,Z) and (X, h(X)) the most)

(b) Use f to update the weights {wz} (and h).

Basically, it keep updating h until the first requirement (indistinguishability) is satisfied.

Th keys to have a small complexity h are how to bound the number of round and how to

update h efficiently.

Starting from [TTV09], then followed by [JP14] and [Sko16a], they use additive update

on the probability mass function of each h(x). However, additive update may cause negative

weights, so it takes extra efforts (both algorithm-wise and complexity-wise) to fix it. Vadhan

and Zheng use multiplicative weight update instead [VZ13a], which not only avoids the issue

above but also converges faster. However, the number of bits to represent weights increases
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drastically after multiplications, and that causes the O(2`ε−4) additive term in the complexity.

Since the backbone of our algorithm is same as in [VZ13a], we review their idea first in the

next section, and then show how the additive term can be eliminated in Section 4.2.2.

4.2.1 Simulate leakage with multiplicative weight update

In this section, we review that by using the MWU algorithm as the update rule, we obtain an

algorithm with low round complexity. It is convenient to think Z as a randomized function of

X. That is, we can define g : {0, 1}n → {0, 1}` such that Pr[g(x) = z] = Pr[Z = z|X = x],

then (X,Z) = (X, g(X)). Essentially, the goal is to find an “small circuit” h to simulate g.

First, we recall the multiplicative weight algorithm and the main theorem of it.

Multiplicative weight update

One canonical usage of the multiplicative weight update is in the following prediction game.

The game consist of T rounds of predicting. There are L experts who also make there

prediction that we can refer to in each round. Our goal is to minimize the difference between

the error to the best expert and ours, which usually called regret in literatures. That is, we

want to minimize
T∑
i=1

E
j

r←D(i)

[
f (i)(j)

]
−max

j∈[L]

T∑
i=1

f (i)(j)

where f (i)(j) is the error of the j-th expert’s strategy in the i-th round, and D(i), a distribution

on [L] is our strategy in the i-th round.

The multiplicative weight update algorithm stated in Algorithm 4.2.2 provides a good way

to minimize the regret. The regret of the multiplicative weight update algorithm is guaranteed

by following theorem.

Theorem 4.2.3 (e.g., [AHK12]). For given error functions f (i) : [L]→ [0, 1] for all i ∈ [T ],

let D(i) be distributions defined in Algorithm 4.2.2 with the parameter η ∈ (0, 1/2). Then for

every j∗ ∈ [L], we have

T∑
i=1

E
j

r←D(i)

[
f (i)(j)

]
−

T∑
i=1

f (i)(j∗) ≤ logL
η

+ Tη .
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Algorithm 4.2.2: Multiplicative weight update
Parameter: η ∈ (0, 1/2)
Set w(0)

j = 1 for all j ∈ [L].
For i = 1→ T

1. ∀j ∈ [L], w(i)
j = w(i−1)

j · (1− η)f (i)(j).
2. Let D(i) be such that Pr[D(i) = j] ∝ w(i)

j .

In particular, if we set η =
√

logL/T , we have

T∑
i=1

E
j

r←D(i)

[
f (i)(j)

]
−

T∑
i=1

f (i)(j∗) ≤ O
(√

T logL
)
.

An important phenomena of Theorem 4.2.3 is that the regret grows sub-linear to T .

Therefore, the predictor can achieve arbitrarily small “average” regret for large enough T .

Corollary 4.2.4. For the same setting as in Theorem 4.2.3, there exists T = O
(
logL/ε2)

such that for all j∗ ∈ [L],

T∑
i=1

E
j

r←D(i)
[f (i)(j)]−

T∑
i=1

f (i)(j∗) ≤ ε .

Now we show how to construct a simulator for the Leakage Simulation Lemma via MWU

algorithm. The first step is to remove the one-sided error constraint. Let F ′ denote the

closure of F under complement, namely, f ′ = {f, 1−f : f ∈ F}. Then the indistinguishability

constraint is equivalent to

∀f ∈ F ′ , E
h,x r←X

[
f(x, h(x))

]
− E
g,x

r←X

[
f(x, g(x))

]
≤ ε.

One can see that the simulating auxiliary input has a similar structure as the task that

MWU tries to solve. The output of the simulator h is the strategy for prediction, and g is the

error criteria. The challenging part is there exists an input x, and our strategy should handle

different x’s. Tackling them separately would be trivial but the circuit complexity will be too

high.

While the framework Vadhan and Zheng’s considered is more general, the proof is also

more complicated. Below we give a simpler proof which only uses the no-regret property of
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MWU.4 Note that any no-regret algorithms for making prediction based on experts works

for this proof. Indeed, by applying online gradient descent instead of MWU we will get an

additive boosting simulator. Nevertheless, multiplicative weight update is optimal in expert

learning, which explains why MWU converges faster than additive boosting proofs.

Algorithm 4.2.3: Simulator h

Input: x ∈ {0, 1}n

Parameter: ε > 0

1. Let T = O
(
`/ε2) and η =

√
logL/T .

2. ∀z ∈ {0, 1}`, w(0)
z (x) = 1.

3. Let h(0) be a randomized function such that Pr[h(0)(x) = z] ∝ w(0)
z (x).

4. For i = 1→ T

(a) Define adv(i)(f) def= E
h(i−1)

[f(X, h(i−1)(X))]− E
g
[f(X, g(X))].

(b) Let f (i)
max = arg maxf∈F ′ adv(i)(f).

(c) If adv(i)(f (i)
max
)
≤ ε Return h(i−1)(x)

(d) ∀z ∈ {0, 1}`, set w(i)
z (x) = w

(i−1)
z (x) · (1− η)f

(i)
max(x,z)

(e) Let h(i) be a randomized function such that Pr[h(i)(x) = z] ∝ w(i)
z (x).

5. Return h(T )(x)

Note that since f (i)
max depends on h(i−1)(x) for all x ∈ {0, 1}n, we have to run the simulator

h “in parallel” to properly define f (i)
max. However, f (i)

max does not depend on any particular x.

That is, no matter which x ∈ {0, 1}n is the input of h, f (i)
max’s are the same. This is crucial

since we will hard code f (i)
max’s as advice to the simulator h. It would be too long if it does

depend on x.

Lemma 4.2.5. Let X be a distribution over {0, 1}n and g : {0, 1}n → {0, 1}` be a randomized

function. For a given error parameter ε, the function h defined by Algorithm 4.2.3 satisfies

∀f ∈ F ′ , E
h,x r←X

[
f(x, h(x))

]
− E
g,x

r←X

[
f(x, g(x))

]
≤ ε .

4We say an online decision-making algorithm is no-regret if the average regret tends to zero as T approaches
infinity. See, e.g., [RW16].
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Proof. If there exists i such that adv
(
f

(i)
max
)
≤ ε, let i∗ be the smallest one, then h = h(i∗)

satisfies the requirement.

Otherwise, ∀i ∈ [T ] , adv
(
f

(i)
max
)
> ε . By Corollary 4.2.4, for every x ∈ {0, 1}n and

z ∈ {0, 1}`,
1
T

T∑
i=1

E
h(i)(x)

[
f (i)(x, h(i)(x))

]
− 1
T

T∑
i=1

f (i)(x, z) ≤ ε.

Taking (x, z) over the distribution (X, g(X)), we have

1
T

T∑
i=1

adv
(
f (i)

max
)

= 1
T

T∑
i=1

E
x

r←X,h(i)(x)

[
f (i)(x, h(i)(x)

)]
− 1
T

T∑
i=1

E
x

r←X,g(x)

[
f (i)(x, g(x)

)]
≤ ε,

which contradict the assumption.

4.2.2 Efficient approximation

Algorithm 4.2.3 provides a simulator which fools all distinguishers in F by error up to ε.

However, we have only proved a bound for the number of iterations, but not for the complexity

of h itself. In fact, the circuit complexity of a naive implementation of Algorithm 4.2.3 is not

better than using additive boosting due to the precision issue. We provide another way to

approximates h, which has complexity not much worse than evaluating the distinguishers T

times.

Define s(x, z) =
∑T
i=1 f

(i)(x, z). Then h(x) effectively outputs z with probability propor-

tional to (1− η)s(x,z), Note that T and f (1), . . . , f (T ) can be provided by advice string and

here we define T as the number of rounds that h actually runs since it may terminate early.

A natural way to approximate h is to compute (1−η)s(x,z) for each z and output the result

randomly using rejection sampling. It takes O
(
log(1/η)

)
bits to represent (1− η), and thus it

takes at most O
(
k log(1/η)

)
to represent (1−η)k for k ∈ N. Also, because s(x, z) is at most T ,

it takes O
(
Tt+ T 2 log2(1/η)

)
complexity to compute (1− η)s(x,z) by naive multiplication, or

O
(
Tt+ T 2 log T log(1/η)

)
via lookup table. Therefore, there exists an approximation of hT of

size O
(
(T 2 log2(1/η) + Tt) · 2`

)
, which is Õ

(
t · 2`ε−2 + 2`ε−4)

)
after expanding T and η. This

is the complexity claimed in [VZ13a]. As mentioned in [Sko16a], this bound is incomparable

to the ones in [JP14, Sko16a, Sko16b], and the Õ
(
2`ε−4) term may dominate in some settings.
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Now we state the idea of approximating normalized weights efficiently. Observe that

weights are of the form (1− η)s(x,z). If the total weight is guaranteed to be at least 1, then

intuitively, truncating the weight at each z ∈ {0, 1}` a little amount does not influence the

result distribution too much. Hopefully, if the truncated values can be stored with a small

number of bits, a lookup table which maps s(x, z) to the truncated value of (1− η)s(x,z) is

affordable.

By the above idea, we define ĥ to approximate h as follows:

Algorithm 4.2.4: Simulator ĥ

Input: x ∈ {0, 1}n

Parameter: ε > 0

1. ∀z ∈ {0, 1}`, compute s′(x, z) = s(x, z)−minz′ s(x, z′).

2. Let k be the smallest integer such that 2−k ≤ η
2`(1+η) . Then let ŵz(x) be

(1− η)s(x,z) truncated down to the closest multiple of 2−k.

3. Build a lookup table consists of truncated value of (1− η)j for j ∈ [τ ] where τ

is large enough such that it contains all ŵz(x).

4. Output ĥ(x) such that Pr
[
ĥ(x) = j

]
∝ ŵj(x) by rejection sampling up to η

accuracy (in terms of statistical distance).

First we show that ĥ can be implemented by a circuit of size Õ
(
2`ε−2). Recall that

T = O(`/ε2) and η = O(ε). For the step 1, since s(x, z) ∈ {0} ∪ [T ], F ′(x, z) for all z ∈ [2`]

can be calculated by a circuit of size O(2` · (tT + T log T )) = t · Õ
(
2`2ε

)
. For step 2 and 3, we

have that k = O
(
` log(1/η)

)
and τ = O(k/η) and storing one truncated value takes k log τ

bits. Therefore, the size of the table is O(kτ log τ) = Õ(ε−1). In the last step, to achieve the η

accuracy, each rejection sampling step takes O
(
` log(1/η)

)
time, so the total time complexity

for this step is Õ(2`).

Now we want to show that ĥ is indeed a good approximation of h.

Claim 4.2.6. For every x, dTV
(
ĥ(x) , h(x)

)
≤ 2η.
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Proof. Since ĥ(x) is η-close to the distribution defined by
{
ŵz(x)

}
z∈[2`], it suffices to show

that
{
ŵz(x)

}
z∈[2`] is η-close to h(x), which is the distribution defined by {wz(x)}z∈[2`].

First we have the following subclaim.

Subclaim 4.2.7. Suppose there are two sequences of positive real numbers {γz}z∈[L], {wz}z∈[L]

such that ∀z ∈ [L], γz ≤ wz. Let r =
∑
z γz/

∑
z wz and Z,Z ′ be a distribution on [L] such

that Pr[Z = z] ∝ wz and Pr[Z ′ = z] ∝ (wz − γz), respectively. Then dTV(Z , Z ′) ≤ r
1−r .

Proof. By the definition of statistical distance (total variance),

dTV(Z , Z ′) = 1
2
∑
z

∣∣∣∣ wz∑
z′ wz′

− wz − γz∑
z′(wz′ − γz′)

∣∣∣∣
= 1

2
∑
z

∣∣∣∣γz∑z′ wz′ − wz
∑
z′ γz′

(
∑
z′ wz′)2(1− r)

∣∣∣∣
≤ 1

2
∑
z

wz
∑
z′ γz′ + γz

∑
z′ wz′

(
∑
iwz′)2(1− r)

=
∑
z′ wz′

∑
z′ γz′

(
∑
z′ wz′)2(1− r) = r

1− r

By the definition of ŵz(x), ŵz(x) = wz(x)− γz(x) where

γz(x) ≤ min
{

(1− η)s(x,z) , η

2`(1 + η) ·
∑
z′

(1− η)s(x,z)
}
.

Clearly,
(∑

z γz
)
/
(∑

z wz
)
≤ 2` · η

2`(1+η) ≤ η. Apply Subclaim 4.2.7, we conclude the claim.

By Claim 4.2.6, we have

E
ĥ,x←X

[
f(x, ĥ(x))

]
− E
g,x←X

[
f(x, g(x))

]
≤ E

h,x←X

[
f(x, h(x))

]
− E
g,x←X

[
f(x, g(x))

]
+ 2η

≤ ε+ 2η = O(ε) ,

which conclude Theorem 4.2.1.
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4.3 Lower Bound for Leakage Simulation

We have seen that there exists an MWU algorithm which combines only O(`ε−2) distinguishers

to make a good simulator h. Besides, for every chosen distinguisher f the algorithm queries

f(x, z) for every z ∈ {0, 1}` when computing h(x). Therefore the algorithm makes O(` · 2`ε−2)

queries in total. In the previous section, we also showed that evaluating the O(`ε−2) chosen

distinguishers is the bottleneck of the simulation. Then a natural question arises: can we

construct a simulator which makes fewer queries? It might be possible to find a boosting

procedure using fewer distinguishers, or maybe we can skip some z ∈ {0, 1}` when querying

f(x, z) for some f . However, in this section we will show that the MWU approach is almost

optimal: any black-box simulator which satisfies an “independence restriction” has to make

Ω(2`ε−2) queries to fool the distinguishers.

4.3.1 Black-box model

To show the optimality of the MWU approach, we consider black-box simulation, which means

simulators only use the distinguishers as black-boxes. Note that all known results of leakage

simulation ([VZ13a, JP14, Sko16a, Sko16b]) are black-box. Indeed, all the leakage simulation

results are in the following form: first find a set of distinguishers {f1, . . . , fq} which does not

depend on input x, then query fi(x, z) for every z ∈ {0, 1}` and i ∈ [q]. Finally combine the

results to obtain the distribution of h(x). Formally, we define a black-box simulator as follows.

Definition 4.3.1 (black-box simulator). Let `,m, a ∈ N and ε > 0. A black-box construction

of a simulator h(·) : {0, 1}n × {0, 1}a → {0, 1}` takes two inputs: x ∈ {0, 1}n and an advice

string α ∈ {0, 1}a. h(·) : {0, 1}n × {0, 1}a → {0, 1}` is a ε-black-box simulator for F if for

every joint distribution (X,Z) on {0, 1}n × {0, 1}`, there exists α ∈ {0, 1}a such that

∀f ∈ F ,
∣∣∣E[f(X,Z)

]
− E

[
f(X, h(X))

]∣∣∣ < ε .

We call a black-box simulator same-input if for, for every f ∈ F , α ∈ {0, 1}a, h(·;α) only

queries f(x, ·).
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The lower bound we prove in this paper is for same-input black-box simulator. The

same-input assumption is also made in related works including [LTW11, Zha11, PS16]. See

the next section for more discussions about the black-box models in related results.

It is not hard to see that all the boosting approaches we mentioned above are in this model:

the advice α is of length O(q log |F|) and is used for indicating “which distinguishers should

be queried”, and h queries every chosen distinguisher f with input (x, z) for every z ∈ {0, 1}`

when computing hF (x;α). Moreover, these simulation algorithms are non-adaptive. We can

write the MWU approach as the following corollary:

Corollary 4.3.2. For every 0 < ε < 1
2 , `,m ∈ N, there exists a non-adaptive same-input

ε-black-box h : {0, 1}n × {0, 1}a → {0, 1}` for F with query complexity q = O(`2`ε−2) and

a = Õ
(
q log|F|

)
.

Besides capturing all known simulators, our lower bound also rules out the adaptive

approaches. Whether there exists a faster simulation not satisfying the same-input restriction

is left open, but intuitively, querying oracles on different inputs does not seem useful.

4.3.2 Main theorem and related results

Theorem 4.3.3. Let n be the security parameter. For every 2−o(n) < ε < 0.001, ` = o(n),

and a = 2o(n), there exists a family of distinguisher F of ω(2`/ε3) < |F| < 22o(n) such that

a same-input ε-blakc-box simulator h : {0, 1}n × {0, 1}a → {0, 1}` for F must have query

complexity q = Ω(2`ε−2).

Note that the lower bound of the size of F is needed so the simulator must “simulate” the

function instead of fooling distinguishers one by one.

Before this paper, there were some lower bounds for Leakage Simulation Lemma itself or

its implications. We discuss some of the results based on their models:

• Non-adaptive same-Input black-box lower bounds. Recall that Leakage Simu-

lation Lemma implies Impagliazzo’s Hardcore Lemma and Dense Model Theorem. Lu,
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Tsai and Wu [LTW11] proved an Ω
(
log(1/δ)/ε2) query complexity lower bound for Im-

pagliazzo’s Hardcore Lemma where δ is the density of the hardcore set. Taking δ = Θ(1)

yields an Ω(1/ε2) query complexity lower bound for Leakage Simulation. Similarly,

Zhang [Zha11] proved a lower bound for query complexity in Dense Model Theorem

proof which implies the Ω(1/ε2) lower bound as well. The black-box models considered

in both works have some restrictions. In fact, the black-box model in [LTW11] does not

contain Holenstein’s proof [Hol05]. Nevertheless, after converting to the lower bound

for Leakage Simulation Lemma, their models fit into our setting. Also, Pietrzak and

Skórski [PS16] proved a Ω(2`/ε) lower bound for Leakage Chain Rule for relaxed HILL

entropy, which also implies a Ω(2`/ε) lower bound for Leakage Simulation Lemma.

These lower bounds assume both the non-adaptivity and the independence of inputs.

Interestingly, in the reduction from Leakage Chain Rule to Leakage Simulation, there

exists a distinguisher in the reduction which only need to be queried on one adaptively

chosen input. In this case the non-adaptivity causes a 2` additive loss. This can be

viewed as an evidence that adaptivity might be useful.

• Non-Adaptive Black-Box Lower Bounds. Impagliazzo [Imp95] proved that the

Hardcore Lemma implies Yao’s XOR Lemma [Yao82, GNW11], which is an important

example of hardness amplification. Since the reduction is black-box, it is not hard to see

that the Ω(log(1
δ )/ε2) lower bound for hardness amplification proved by Shaltiel and

Viola [SV10] is also applicable to Hardcore Lemma. Again, by setting δ = Θ(1) we get

a Ω(1/ε2) lower bound for Leakage Simulation. Their model is incomparable to ours as

they do not require the “same-input” assumption, but require the non-adaptivity.

• General Black-Box Lower Bounds. Artemenko and Shaltiel [AS14] proved an

Ω(1/ε) lower bound for a simpler type of hardness amplification, and removed the non-

adaptivity. Their result implies a general black-box lower bound for Leakage Simulation

Lemma, but with less optimal parameters.

• Non-Black-Box Lower Bounds. Trevisan, Tulsiani and Vadhan show that the
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simulator cannot be much more efficient than the distinguishers [TTV09, Remark 1.6].

Indeed, for any large enough t ∈ N they construct a function g such that any simulator

h of complexity t can be distinguished from g by a distinguisher of size Õ(nt). Jetchev

and Pietrzak [JP14] also show an Ω(2` · t) lower bound under some hardness assumptions

for one-way functions.

None of the existing results imply an optimal lower bound for Leakage Simulation. However,

proving a lower bound for Leakage Simulation Lemma might be a simpler task, and it turns

out that we can prove a lower bound of Ω(2`ε−2). The ideas for proving the lower bound are as

follows. To capture the 2` factor, for each distinguisher f and input x we hide information at

f(x, z) for a random z, similar to the idea in [PS16]. Then checking all z over {0, 1}` is necessary.

Although the claim is quite intuitive, a formal analysis is more involved in an adaptive model.

The ε−2 factor is from the anti-concentration bound — it takes Ω(1/ε2) samples to distinguish

Bernoulli distributions Bern(1/2 + ε) and Bern(1/2) with constant probability. The concept

is also used in the some related lower bound, e.g., [Fre95, LTW11, PS16]. Note that in [PS16]

they only require an advantage of ε when distinguishing such Bernoulli distribution from

uniform, which causes an O(1/ε) loss in complexity.

4.3.3 Proof of the lower bound

Overview. We would like to show the existence of function g and a set of distinguisher F

such that any simulator h with limited queries to F cannot approximate g well by probabilistic

method. More specifically, we first consider a randomly-chosen function g randomized

distinguishers and show that with high probability, a black-box simulator with fixed advice

cannot simulate well. Then show the existence of a fixed g and derandomize the distinguisher

by union bound over all possible advice string of the black-box simulator.

Let G be the uniform distribution of a function g : {0, 1}n → {0, 1}`. Given g, let fg(x, z)

be a random bit drawn from Bern(1/2 + c1ε) for some constant c1 if z = g(x), or from Bern(1
2)

otherwise. In other word, fg(x, z) “leak” some information about g if and only if the “correct”

z is provided. Providing g and distinguishers in this way, f provides very little information
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about g, yet it can distinguish g from trivial functions (the ones do not know what g(x)

is) with advantage ε. Intuitively, since f(x, g(x)) is only Θ(ε) away from uniform, f can

distinguish g and any bad simulator h which does not approximate g with constant probability.

To approximate g well, we need to test O
(
2`
)
keys to find the correct one. Besides, it requires

Ω(1/ε2) samples to distinguish Bern(1/2 + Θ(ε)) and Bern(1/2) with constant probability, so

Ω
(
1/ε2) queries are required for each key to make sure we can distinguish the real key from

other fake keys. Therefore a successful simulator h should make at least Ω(ε−22`) queries.

Now we proceed to the formal proof. Assume for contradiction that h : {0, 1}n → {0, 1}`

is a ε-black-box simulator with query complexity q ≤ c2 · 2`ε−2, where c2 = 1
360000 . Let

g : {0, 1}n → {0, 1}` be a function randomly chosen from G. Thus for every x ∈ {0, 1}n, g(x)

is chosen uniformly at random from {0, 1}`. Let F be a set of random function defined above

with c1 = 30. First, we prove that given any fixed advice string α, the hF (, α) cannot guess g

correctly with high enough probability over the choice of g and the randomness of f ∈ F .

Lemma 4.3.4. For every x ∈ {0, 1}n and α ∈ {0, 1}a, we have

Pr
g

r←G

[
hF (x;α) = g(x)

]
≤ 1− 3

c1
,

where the probability is taken over the choice of g(x), f(x, ·) for every f ∈ F (abbreviated as

F(x)), and the randomness of h.

Proof. Without loss of generality, assume that h has no randomness other than oracle queries

(We can obtain the same bound for probabilistic h by taking average over deterministic

circuits.), and h always make q different queries. Now h is fully decided by the q query

answered it makes to the oracle denoted as b = (b1, . . . , bq) ∈ {0, 1}q where bi is the answer to

the i-th query. Let B be a random variable for randomized b (due to the random distinguishers

f ∈ F). Here we use h′ : {0, 1}q → {0, 1}` to denote the function maps query results to the

output of hF (x;α). Then we have

Pr
g

r←G,F

[
hF (x;α) = g(x)

]
= Pr

B,g
r←G

[
h′(B) = g(x)

]
=
∑
b,k

Pr
g

r←G

[
B = b, g(x) = k, h′(b) = k

]
.

Use F∗ to denote the set of distinguishers with uniform random function (with no bias) and let
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B∗ be the corresponding “ideal” transcript (basically Uq). For every (b, k) ∈ {0, 1}q × {0, 1}`,

Pr
B∗,g

r←G[B∗ = b, g(x) = k] = 2−(q+`). Since for b uniquely determines h′(b), only 2q pairs

(b, k) are correct. In the ideal case, we have PrF∗,g r←G
[
hF∗(x;α) = g(x)

]
= 2−` where h∗

denotes the ideal variant of h. while in the real case, Pr
B,g

r←G[B = b, g(x) = k] can be as large

as 2−`(1
2 + c1ε)q (when h queries with correct key in every query and all the responses are 1).

However, for most b that is not the case. Also, most of the pairs (b, k) ∈ {0, 1}q × {0, 1}` do

not satisfy h′(b) = k. Therefore we can expect that a large fraction of pairs are chosen with

probability Θ(2−(q+`)) and h′(b) 6= k. The above statement provides an intuition of the lower

bound for PrF ,g r←G[hF (x;α) 6= g(x)].

Next we formally prove the above statement. Consider any b = {b1, b2, . . . , bq}. Recall

that the queries made by h are uniquely determined by b: the first query is fixed, the second

query is determined by the first bit of b, and so on. Let (z1, z2, . . . , zq) be the sequence of key

such that the i-th query is f (i)(x, zi) for some f (i) ∈ F . For any k ∈ {0, 1}`, b ∈ {0, 1}q, let ui

denote the index of the i-th “useful query”, which means the i-th index satisfying zui = k.

Then we define Nβ(b, k) def=
∑
i[aui = β] for β ∈ {0, 1}, which represents the number of useful

queries with response β. For convenience, we also define

N(b, k) def= N0(b, k) +N1(b, k) and N∆(b, k) def= N0(b, k)−N1(b, k) .

We further define more refined notation: for j ≤ N(b, k), we defineNβ(b, k, j) def=
∑j
i=1[aui = β]

for β ∈ {0, 1} and N∆(b, k, j) def= N0(b, k, j)−N1(b, k, j). That is, only first j useful queries

are considered. Recall that for fg ∈ F , fg(x, z) is uniform when z 6= g(x) and biased when

z = g(x). For every fixed (b, k),

Pr
B,g

r←G
[g(x) = k,B = b] =

(1
2

)(`+q−N(b,k)) (1
2 − c1ε

)N0(b,k) (1
2 + c1ε

)N1(b,k)

=
(1

2

)(`+q)
(1− 2c1ε)N∆(b,k)

(
1− 4c2

1ε
2
)N1(b,k)

≥
(1

2

)(`+q)
(1− 2c1ε)N∆(b,k)

(
1− 4c2

1ε
2
)N(b,k)

(4.1)
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We say a pair (b, k) is normal if N∆(b, k) = O(1/ε) and N(b, k) = O(1/ε2). We claim that a

large enough fraction of pairs over {0, 1}q × {0, 1}` are normal and h′(b) 6= k:

Claim 4.3.5. Let q′ = 5q/2` ≤ 5c2ε
−2. Then for at least 1/5 fraction of pairs (b, k) over

{0, 1}q × {0, 1}` satisfy (1) h′(b) 6= k, (2) N(b, k) < q′, and (3) N∆(b, k) <
√

5q′.

Proof of Claim. We consider each condition one by one.

(1) Only 2−` of pairs satisfies h′(b) = k: This is obvious since h′ is a deterministic function.

(2) At most 1
5 of pairs (b, k) satisfy N(b, k) ≥ q′: For any b we have Ek←U` [N(b, k)] = q

2` .

By Markov’s inequality, at most q
2`q′ = 1

5 of pairs satisfy N(b, k) ≥ q′.

(3) For at most 1
10 of pairs (b, k), N(b, k) < q′ and N∆(b, k) >

√
5q′:

Let B∗ be a random transcript which is uniform over {0, 1}q. For a fixed k, consider a

sequence of random variable {Yj} depending on B∗ such that

Yj =


N∆(B∗, k, j) if j < N(B∗, k)

N∆(B∗, k) otherwise.

It’s not hard to see that {Yi} is a martingale with difference at most 1. By Azuma’s

inequality, we have Pr[Yq′ ≥
√

5q′] ≤ e−5q′/2q′ < 0.1. Since B∗ is uniform, the statement

above is the same as saying for at most 0.1 fraction of t ∈ {0, 1}q, Yq′(b) ≥
√

5q′.

Restricting b to satisfy N(b, k) < q′ we have N∆(b, k) = Yq′(b) ≥
√

5q′.

By union bound, all three conditions in the claim hold simultaneously for at least 1
5 of pairs

over {0, 1}q × {0, 1}`.

Now consider any pair (b, k) which satisfies condition (2) and (3) in the claim above, in

other word a normal pair. By inequality (4.1), we have

Pr[g(x) = k,B = b] ≥ (1/2)`+q (1− 2c1ε)N∆(b,k)(1− 4c2
1ε

2)N(b,k)

≥ (1/2)`+q (1− 2c1ε)
√

5q′(1− 4c2
1ε

2)q′ (4.2)

= (1/2)(`+q) (1− 2c1ε)5√c2ε−1(1− 4c2
1ε

2)5c2ε−2
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≥ (1/2)`+q (0.3)10c1
√
c2(0.3)20c21c2 (4.3)

≥ (1/2)`+q · 0.5 . (4.4)

The inequality (4.3) holds because (1 − δ)1/δ ≥ 0.3 for any 0 < δ ≤ 0.1. Since 1
5 of pairs

satisfy the conditions above, we have

Pr[h(x) 6= g(x)] =
∑
k,b

g(x) = k,B = b, h′(b) 6= k ≥ 0.1 .

Therefore Pr[h(x) = g(x)] ≤ 0.9 = 1− 3
c1
.

With the lemma above, we can finish the proof by a concentration bound and probabilistic

method. We extend the distinguisher class F such that each randomized distinguisher fg ∈ F

is replaced by many deterministic distinguisher {fg,r}r with different random coins as input.

Fix an advice α. For every x ∈ {0, 1}n, fg ∈ F such that fg,r is not queried by h(x), we have

E
g

r←G,r[fg,r(x, h(x))] = 1
2 + Pr

g
r←G
[
hF (x;α) = g(x)

]
· c1ε by definition of f . Since h makes

at most q query when computing h(x), when fg,r is sampled randomly, it chooses a query

coincident with queries in h with probability q/|F|. Even in the worst case that fg,r returns 1

in all these cases, we still have

E
g

r←G,r
[fg,r(x, h(x;α))] ≤ 1

2 + Pr
g

r←G
[g(x) = hF (x;α)] · c1ε+ q

|F|
(4.5)

≤ 1
2 + (c1 − 2)ε (4.6)

when |F| > q/ε by Lemma 4.3.4. Also we have E
g

r←G,r[fg,r(x, g(x))] = 1
2 + c1ε by def-

inition. Therefore, E
g

r←G,r
[
fg,r(x, g(x)) − fg,r(x, h(x;α))

]
≥ 2ε. Let X be the uniform

distribution. Note that for different x, g(x) and F(x) are chosen independently. There-

fore Eh,g,r[fg,r(x, g(x)) − fg,r(x, h(x))]5 for different x are independent since it is only de-

cided by randomness of g(x) and F(x). By Chernoff-Hoeffding bound, E
x

r←X [fg,r(x, g(x))−

fR(x, hF (x;α))] < ε holds with probability 2−Ω(ε22n) over the choice of g and r. By taking

5The expectation is taken over the local randomness of h, which does not need to be considered in the
probabilistic argument.

94



union bound over α ∈ {0, 1}a, we have

∀α ∈ {0, 1}2o(n)
, E
x

r←X
[fg,r(x, g(x))− fg,r(x, hF (x;α))] ≤ ε (4.7)

with probability 2−Ω(ε22n)+2o(n) , which is less than 1 for large enough n. Thus, there exists a

function g and a set F such that

E
x

r←X

[
fg,r(x, g(x))− fg,r(x, hF (x, α))

]
> ε. (4.8)

By averaging argument, for all α, there exists fg,r ∈ F such that fg,r can distinguish

(X, hF (X,α)) and (X, g(X)). Therefore the simulation fails no matter what α is, which

contradicts to the assumption. Thus there is no ε-simulator with query complexity c2(2`ε−2).

To summarize, we proved an Ω(2`ε−2) for black-box simulator, while the upper bound

is only O(`2`ε−2). Note that in order to apply Chernoff bound, we need the same-input

assumption (i.e. h(x;α) cannot query F(x′) for x′ 6= x) to guarantee the independence of

different x, even though querying with different input does not seem helpful. A general

black-box tight lower bound is left for future work.
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Chapter 5

Computational Notions of

Quantum Min-Entropy

Computational notions of entropy have many applications in cryptography and complexity

theory. In particular, we consider the notions that measure how much (min-)entropy a source

X has from the eyes of a computationally bounded party who may hold certain “leakage

information” Z that is correlated with X. They have several applications in cryptography,

such as leakage-resilient cryptography [DP08], memory delegation [CKLR11], deterministic

encryption [FOR15], zero-knowledge [CLP15], pseudorandom generators [HILL99] and other

cryptographic primitives [HRVW09, HHR+10, HRVW19], and also have close connections to

important results in complexity theory, such as Impagliazzo’s hardcore lemma [Imp95], and

in additive number theory, such as the Dense Model Theorem [GT08, TZ08, RTTV08].

In this chapter, we initiate the study of computational entropy in the quantum setting,

where X and Z may become quantum states and the computationally-bounded observer is

modeled as a small quantum circuit. We find that some classical phenomena have (nontrivial)

extensions to the quantum setting, but others in the quantum setting behave quite differently

and we can even prove that the natural analogues of classical theorems are false. As an

application of some of our results, we construct a quantum leakage-resilient stream cipher in the

bounded-quantum-storage model, assuming the existence of a quantum-secure pseudorandom

96



generator. We expect that computational notions of quantum entropy will find other natural

applications in quantum cryptography. Moreover, by blending quantum information theory

and quantum complexity theory, our study may provide new insights and perspectives in both

of these areas.

5.1 Introduction

5.1.1 Brief review of quantum information and computation

Recall that a pure state in an n-qubit quantum system is a unit vector |ψ〉 ∈ C2n . The

standard (“computational”) basis is denoted by {|x〉 : x ∈ {0, 1}n} and it represents the set of

classical bit strings x ∈ {0, 1}n. Until they are measured (observed), quantum systems evolve

via unitary operations (2n × 2n complex matrices U such that U †U = UU † = I, where U † is

the conjugate transpose of U). A projective binary measurement on the quantum system is

given by a linear subspace A ⊆ C2n . If the system is in state |ψ〉 ∈ C2n , then the result of

the measurement is determined by the decomposition |ψ〉 = |ψ〉A + |ψ〉A⊥ , where |ψ〉A is the

orthogonal projection of |ψ〉 to A. With probability ‖|ψ〉A‖22, the measurement returns 1 and

the system collapses to state |ψ〉A/‖|ψ〉A‖2, and with probability ‖|ψ〉A⊥‖22, the measurement

returns 0 and the system collapses to state |ψ〉A⊥/‖|ψ〉A⊥‖2. We write DA(|ψ〉) to denote the

{0, 1} random variable that is the outcome of the measurement defined by the space A. Here

DA can be viewed as a (randomized) distinguisher. There is a more general form of binary

measurement (described by a “projective operator value measurement” (POVM)), but we

only need a projective binary measurement to discuss most concepts in the introduction, and

defer the definition of POVMs to where we need it.

A mixed state ρ of a quantum system can be specified by a probability distribution

{pi} over pure states {|ψi〉}. If we evolve ρ by applying a unitary transformation U , it

will be in the mixed state given by distribution {pi} over the pure states {U |ψi〉}. If

instead we perform a measurement defined by the space A on such a mixed state ρ, then by

definition, Pr
[
DA(ρ) = 1

]
=
∑
i pi · Pr

[
DA(|ψi〉) = 1

]
=
∑
i pi · ‖|ψi〉A‖22. The representation
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of a mixed state as a probability distribution over pure states is not unique, in that two

such representations can yield exactly the same behavior under all sequences of unitary

transformations and measurements.1 For example, the maximally mixed state ρmm is defined

as the uniform distribution over the standard classical basis {|x〉 : x ∈ {0, 1}n}, but using any

orthonormal basis of C2n yields an equivalent mixed state (and thus all of them are regarded

as the same mixed state ρmm).

Recall that the min-entropy of a classical random variable X is given by

Hmin(X) = min
x

log 1
Pr[X = x] = log 1

maxx Pr[Dx(X) = 1] ,

where Dx is the indicator function for x. When we have a mixed quantum state ρX instead

of a classical random variable X, we generalize from indicator functions to one-dimensional

binary measurements [RW05]. That is, if ρX is a mixed quantum state, then:

Hmin(X)ρ = log 1
max|ψ〉 Pr[D|ψ〉(ρX) = 1] ,

where D|ψ〉 is the binary measurement given by the one-dimensional subspace spanned by

|ψ〉. This generalizes the classical definition. If ρ is given by a distribution {px} over the

classical basis {|x〉}, then Pr[D|ψ〉(ρ) = 1] =
∑
x px|〈ψ|x〉|2 where 〈ψ|x〉 denotes the standard

(Hermitian) inner product between vectors |ψ〉 and |x〉. This is maximized by taking |ψ〉 = |x∗〉

for x∗ = arg maxx px. On the other hand, if ρ is a pure state, with all of its probability

on a single unit vector |φ〉, then the maximum probability is 1 (yielding zero min-entropy),

obtained by taking ψ = φ.

Informally, a quantum circuit computes on a quantum state (which may be a classical input

|x〉 for x ∈ {0, 1}n) by applying a sequence of local gates, which are unitary transformations

and measurements that apply to only a constant number of qubits in the state. Quantum

circuits are also allowed extra ancilla qubits (in addition to the n input qubits). We usually

require those ancilla qubits to be initialized to |0n〉. The size of a quantum circuit is the

1A unique representation of a mixed state is given by its density matrix
∑

i
pi|ψi〉〈ψi|, which is a 2n × 2n

positive semidefinite matrix of trace one, and thus we use the density matrix formalism in the technical sections
of the paper.
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number of gates in the circuit.

5.1.2 Quantum computational notions

Quantum indistinguishability. In many applications of cryptography and complexity

theory, we only require the security against adversaries with restricted power. Here we consider

adversaries with only polynomial-time circuits/algorithms.

In the classical world, there are two different computational models that are widely studied.

First, in the nonuniform computation model, circuits can depend on the input size, while

in the uniform computation model, the same algorithm is used for inputs of any size, or

equivalently, there is a uniform algorithm that can generate the ensemble of circuits. Once

the universal gate set is fixed, we can define the size of a circuit. Then both models can

be extended to the quantum setting naturally by replacing circuits with quantum circuits.

In this article, we mostly focus on the nonuniform settings, as adversaries have more power

in this model. Consider two quantum state ensembles {ρn} and {σn} where n bounds the

number of qubits in ρn and σn and serves as the security parameter. We say {ρn} and {σn}

are quantum-indistinguishable if for every poly(n)-size family of quantum circuits nonuniform

quantum algorithm {Dn}, we have
∣∣Pr[Dn(ρn) = 1]− Pr[Dn(σn) = 1]

∣∣ ≤ negl(n). Sometimes,

we consider the asymptotic setting implicitly by omitting the index n. A quantum state ρ

on n-qubits is quantum-pseudorandom if it is quantum-indistinguishable from the maximally

mixed state ρmm.

Classically, an equivalent way to define a nonuniform circuit ensemble is giving a uniform

algorithm (e.g., a Turing machine) an advice string that only depends on the input length. In

the quantum setting, this formation of uniform algorithms with advice matches the above

definition of nonuniform quantum circuits if we restrict the advice strings to be classical. But

one can consider an even more general computational model by giving the circuits arbitrary

advice, for example by allowing some of the quantum ancilla bits to be initialized to the

quantum advice. In this model, the quantum analogue of the classical complexity class P/poly

is BQP/qpoly, which was defined by Nishimura and Yamakami [NY04]. An intriguing and
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well-known question is whether quantum advice provides more power for solving decision

problems. That is, does BQP/qpoly = BQP/poly?2 Analogously, one can also define

indistinguishability with respect to quantum advice. Some of our results hold in this model

as well. However, for the sake of simplicity, in the rest of the introduction, we only consider

classical advice.

An interesting fact about quantum indistinguishability (with classical advice) is that

there exist pure states that are pseudorandom (i.e., indistinguishable from the maximally

mixed state ρmm), as shown by Bremner, Mora and Winter [WW08], and Gross, Flammia and

Eisert [GFE09]. This is a sharp contrast from the classical setting, as a classical distribution

needs min-entropy at least ω(log n) to be pseudorandom, but a pure quantum state has zero

entropy.

Quantum pseudoentropies In this paper, we investigate computational notions of entropy

in the quantum setting. One of the most natural ways to define pseudoentropy is that we

say a state has computational (min-)entropy at least k if it is quantum-indistinguishable

from a state with (min-)entropy at least k. If k equals n, the number of qubits of the state,

then this is simply the definition of pseudorandomness described above, as the maximally

mixed state is the unique state of (min-)entropy n. In the classical setting, this definition of

pseudoentropy was proposed by Håstad, Impagliazzo, Levin and Luby [HILL99], who used it

as an intermediate step for constructing pseudorandom generators from arbitrary one-way

functions and thus it is hereafter referred to as “HILL-type entropy”.

Metric-type entropy [BSW03] is another natural definition of computational entropy,

which switches the quantifiers in the definition of HILL-type entropy. We say a state

ρX has metric (min-)entropy at least k if, for every efficient distinguisher, there exists

another quantum state σX′ with (min-)entropy at least k such that ρX and σX′ cannot be

distinguished by a polynomial-size quantum distinguisher. In the classical case, it is known

that the HILL and metric entropies are interchangeable up to some degradation in the size of

2A related questions is whether QMA = QCMA, i.e., whether quantum witnesses are more powerful than
classical ones for quantum verifiers? [AK07]
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distinguishers [BSW03]. With this equivalence, metric entropy is a useful intermediate notion

to obtain tighter security proof in a number of cases (e.g., [DP08, FOR15]). We similarly

can show the equivalence in the quantum setting (Theorem 5.3.12) using the “Quantum

Nonuniform Min-max Theorem”.

There are a number of notions of computational entropy (e.g., Yao-type pseudoen-

tropy [BSW03], inaccessible entropy [HRVW09]) with many different applications and inter-

esting connections to other fields. As the HILL and metric-type entropies are equivalent and

they are more natural and widely used notions in the classical setting, we will focus primarily

on the HILL-type computational notions.

5.1.3 Quantum nonuniform min-max theorem

Nonuniform Min-max Theorem is formalized in [Zhe13] and it is useful not only in proving

the equivalence between HILL and metric (min-)entropies, but also the Leakage Simulation

Lemma, Impagliazzo’s Hardcore Theorem, and Dense Model Theorem.3 Here we formulate

the Quantum Nonuniform Min-Max Theorem and also use it to prove the equivalence between

quantum HILL and metric (min-)entropies and the Quantum Leakage Simulation Lemma

later.

Theorem 5.1.1 (informal version of Theorem 5.3.8). Consider a zero-sum game

between two players where the strategy space of Player 1 is a convex set A ⊆

{N -dimensional density matrix} and the strategy space of Player 2 is B, a set of N -

dimensional Hermitian matrix Π with 0 ≤ Π ≤ 1N . For strategies ρ ∈ A and Π ∈ B, the

payoff to Player 2 is g(ρ,Π) def= Tr(Πρ). Suppose that for every strategy ρ ∈ A of Player

1, there exists a pure strategy b ∈ B such that g(Π, ρ) ≥ p. Then for every ε ∈ (0, 1/2),

there exists a mixed strategy Π̂ of Player 2 such that for every strategy ρ ∈ A of Player 1,

EΠ←Π̂[g(ρ,Π)] ≥ p− ε. Moreover, Π̂ is the uniform distribution over a multi-set S consisting

of at most O
(

logN/ε2) strategies in B.
3In [Zhe13], they proved the uniform versions of these theorems using “Uniform Min-max Theorem”, which

is more general.
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Note that, if we restrict the matrices in A to be diagonalized, namely a ∈ A represent

a distribution over [N ], then the theorem reduces to the classical Nonuniform Min-Max

Theorem [Zhe13].

By von Newmann’s Min-max Theorem, we already know that there exists a mixed strategy

B such that EΠ←Π̃[g(ρ,Π)] ≥ p for all ρ ∈ A. So the key is to show the existence of

“low-complexity” strategy Π̂ to “approximate” Π̃. Inspired by the connection between the

Nonuniform Min-max Theorem and statistical learning theory observed by Skórski [Sko17], the

task reduces to the problem “how many samples from quantum measurements are sufficient for

learning quantum states.” In [Aar07], Aaronson used the fat-shattering dimension to bound

the number of samples needed, while in [CHY15] they used Rademacher complexity to yield

a better bound. We use a different method to bound the Rademacher complexity and achieve

an even tighter bound, especially when the entropy of ρ ∈ A is lower bounded.

5.1.4 Simulate quantum auxiliary input

As introduced in Section 1.3, The (classical) Leakage Simulation Lemma (Theorem 4.2.1)

implies many theorems in computational complexity and cryptography which connect to

computational entropies. We prove a generalize the Lemma, where the auxiliary input (namely

the “Z part”, cf., Theorem 4.1.1) becomes a quantum state till holds.

Theorem 5.1.2 (Quantum Leakage Simulating Lemma (informal)). Let ρXZ =∑
x∈{0,1}n px|x〉〈x| ⊗ ρxZ be a cq-state consist of n classical bits and ` qubits. Leg D

be a family of quantum distinguisher. There exists a quantum circuit C with relative complexity

poly(n, 2`, ε) mapping from n classical bit to ` qubits such that for all distinguisher D ∈ D,∣∣∣∣E[D (∑x∈{0,1}n px|x〉〈x| ⊗ C(x)
)]
− E

[
D
(
ρXZ

)]∣∣∣∣ ≤ ε .
The main challenge of proving the lemma is that unlike ` classical bits, there are infinity

many different `-qubit pure states, so we cannot enumerate all possible outputs. We resolved

the issue using techniques from quantum tomography and again, the generalization bound for

Rademacher complexity as we proved the Quantum Nonuniform Min-max Theorem.
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Despite in classical settings, the Leakage Simulation Lemma implies a rich class of theorems.

Many of the quantum extensions of the implications do not come with the Quantum Leakage

Simulating Lemma we have. One of the obstacles is that some implications rely on conditioning

on Z part, which only makes sense when Z is classical. Still, the Quantum Leakage Simulating

Lemma immediately implies the Leakage Chain Rule for (relaxed)-HILL min-entropy of

ccq-state. Also, we have an application of the Quantum Leakage Simulating Lemma in

leakage-resilient cryptography—the provable security of Dziembowski and Pietrzak’s stream-

cipher [DP08] against quantum leakage to a quantum adversary with logarithmic quantum

storage.

Leakage Chain Rule

Most entropy notions H satisfies the chain rule in the following form

H(X|Z) ≥ H(X)− len(Z)

where len(Z) is the length of the variable Z measured in bits/qubits. It is called a “Leakage”

Chain Rule because it quantifies how much uncertainty is left in a source X after a short piece

of information Z is “leaked”. In cryptographic applications, we often consider adversaries that

have prior information Y , in which case the leakage chain rule is generalized to

H(X|Y Z) ≥ H(X|Y )− len(Z).

In the classical case, computational analogues of Leakage Chain Rule have a number of

applications in cryptography, such as leakage-resilient cryptography [DP08], memory dele-

gation [CKLR11], and deterministic encryption [FOR15]. Before starting our new Leakage

Chain Rule for Quantum HILL min-entropy, we review the conditional min-entropies in both

classical and quantum setting.

Conditional Min-Entropy. A popular and useful measure of conditional min-entropy

in the classical setting is the notion of average min-entropy by [DORS08], which has a

nice operational interpretation in terms of the guessing probability: Let (X,Z) be a joint
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distribution over {0, 1}n+`. The guessing probability of X conditioned on Z is defined as the

maximum probability that an algorithm can guess X correctly given Z. That is, P guess(X|Z) def=

maxA Pr[A(Z) = X], where the maximum is taken over all (even computationally unbounded)

algorithms A. Then the conditional min-entropy (also known as average min-entropy) of X

given Z is defined as Hmin(X|Z) = − log(P guess(X|Z)).

The definition of conditional min-entropy Hmin(X|Z)ρ for bipartite quantum states ρXZ

was given by [RW04], which generalizes the aforementioned definition of average min-entropy.

For the special case of classical X and quantum Z, which is called a classical-quantum-

state (cq-state), König, Renner and Schaffner proved that the generalized guessing game

described above captures conditional min-entropy [KRS09]. When two parts are quantum (a

qq-state), the guessing probability may give higher entropy then Renner’s definition. (Instead,

an operational interpretation of Renner’s definition is as the maximum achievable singlet

fraction [KRS09].) In fact, when ρXZ is entangled, the conditional min-entropy can be

negative, which is impossible to capture by a guessing probability.

The cq-state case is particularly useful in quantum cryptography, such as quantum key

distribution (QKD) [BB14, Ren08, VV19], device-independent cryptography [VV12, MS16,

CSW14] , and quantum-proof randomness extractors [DPVR12]. Also it has a more natural

operational interpretation. Thus, we focus on conditional min-entropy for cq-states in this

paper, and leave the study of conditional min-entropy for qq-states and computational

analogues for future work.

Conditional Pseudoentropy. Classically, for a joint distribution (X,Z), we say that

X conditioned on Z has conditional relaxed HILL pseudo(min-)entropy at least k if there

exists a distribution (X ′, Z ′) that is computationally indistinguishable from (X,Z) with

Hmin(X ′|Z ′) ≥ k. (This definition is called relaxed HILL (min-)entropy because we do not

require that Z ′ is identically distributed to Z. For short, we will write rHILL to indicate that

we are working with the relaxed definition.)

In the quantum setting, let ρXZ ∈ X ⊗ Z be a bipartite state with n + m qubits. We

say that X conditioned on Z has conditional quantum relaxed HILL min-entropy at least
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k (informally written as Hr-HILL-min(X|Z)ρ ≥ k) if there exists a quantum state σXZ such

that (i) Hmin(X|Z)σ ≥ k and (ii) ρXZ and σXZ are computationally indistinguishable by all

poly(κ)-size quantum distinguishers.

Leakage Chain Rule for quantum HILL entropy. The classical Leakage Chain Rule

for relaxed HILL entropy, first proved by [DP08, RTTV08] states that for a joint distribution

(X,Y, Z) where Z consists of ` = O(log κ) bits,

Hr-HILL-min(X|Y ) ≥ k ⇒ Hr-HILL-min(X|Y,Z) ≥ k − `.

(Note that under standard cryptographic assumptions, the analogous statement for (non-

relaxed) HILL entropy is false [KPWW16].)

As the corollary of the Quantum Leakage Simulation Lemma, the Leakage Chain Rule can

be generalized to handle quantum leakage Z when both the source X and the prior knowledge

Y remain classical.

Theorem 5.1.3 (Quantum Leakage Chain Rule (Theorem 5.5.14); informal). Let ρXY Z be a

ccq-state, where X and Y are classical, and Z consists of ` qubits, for ` = O(log κ), where κ

is the security parameter. Then

Hr-HILL-min(X|Y )ρ ≥ k ⇒ Hr-HILL-min(X|Y, Z)ρ ≥ k − `.

An interesting open question is to prove the Leakage Chain Rule when the source X and/or

the prior leakage Y are quantum. In particular, handling a prior quantum leakage Y seems

important for applications to leakage-resilient cryptography with quantum leakage (see the

following paragraph). This is not likely to be a direct generalization of Theorem 5.1.3 as the

information theoretic Leakage Chain Rule loses 2` rather than ` bits of entropy [WTHR11]. In

Section 5.7.2, we discuss a general barrier to further generalize our proof to handle quantum

X and Y as well as many other proofs of classical theorems.
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Leakage-resilient stream-cipher against quantum adversary.

In leakage-resilient (or side-channel resilient) cryptography (see [KR19] for a survey), we seek

to construct cryptographic protocols that maintain the security even if the side information

about the honest parties’ secrets leak to an adversary. Here we particularly consider a quantum

leakage.

A stream cipher is an online and stateful analogue of a pseudorandom generator, where

the output length is not determined in advance. It is defined by a function SC : {0, 1}m →

{0, 1}m × {0, 1}n. Initially, the internal state S(0) is uniformly random over {0, 1}m. In

the i-th round, (S(i), X (i)) = SC(S(i−1)) is computed, where the output of this round is X(i)

and the internal state evolves to be S(i). The security requirement is that for all i, X(i) is

pseudorandom given X(1), . . . , X (i−1).

Classical leakage-resilient stream ciphers were investigated in the seminal work of Dziem-

bowski and Pietrzak [DP08], where they consider the security of a stream cipher SC in the

“only computation leaks” model [MR04] with continual leakage. Specifically, let S(i−1) be

the secret state of SC at the beginning of the i-th round. When stream cipher evaluates

(S(i), X (i)) = SC(S(i−1)), an adversary can learn the leakage λ(i), which only depends on

the part of S(i−1) involved in the computation of SC(S(i−1)). They assume that the leakage

functions are efficient and of bounded output length ` = O(log κ),4 and proved the following

security property: the output of the i-th round remains pseudorandom given the output and

leakage from the first i − 1 rounds. Note that even though the length of each leakage is

bounded, the adversary can collect a long leakage accumulated over many rounds.

Dziembowski and Pietrzak [DP08] gave the first construction of leakage-resilient stream-

cipher based on randomness extractors and pseudorandom generators, and proved its security

using the classical Leakage Chain Rule for HILL entropy. Pietrzak [Pie09] gave a sim-

pler construction based on any family of weak pseudorandom functions, and Jetchev and

Pietrzak [JP14] gave an improved analysis of Pietrzak’s construction using the (classical)

4Both assumptions are necessary. Without the efficiency assumption, the leakage function can invert the
secret state and leak on the initial secret s0 bit by bit; without the length bound, the adversary can learn the
entire new secret state.
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Leakage Simulation Lemma.

Now we consider the case where the leakage is quantum (the construction of the stream-

cipher remains classical). Namely, the outputs of the leakage functions are bounded-length

quantum states. It is conceivable that such an attack may exist in the future with the

emergence of quantum computers. We prove that the construction of Dziembowski and

Pietrzak [DP08] remains secure against quantum leakage in the bounded-quantum-storage

model [DFSS08, KT08, WW08], where the adversary has a limited quantum memory (but no

restriction on its classical memory).

The reason that we can only prove the security under the bounded-quantum-storage

limitation is that we only know how to a simulate quantum auxiliary input when the given

jointly distributed string is classical. If the adversary can accumulate the quantum information

with unlimited quantum storage, then we need a leakage simulation lemma where the simulator

takes quantum inputs.

When proving the quantum security of classical cryptographic constructions, it often

suffices to assume the quantum security of the underlying primitives, since typically the

security reductions can be directly carried through in the quantum setting. For example,

using a classical construction from OWFs to PRGs, a “quantum-proof” OWFs also yields a

quantum-proof PRG. Song gives a nice framework to formalize this observation and show a

class of reductions satisfies this property [Son14]. However, the leakage-resilient stream-cipher

is not the case here due to the presence of quantum side information.5

5.1.5 Dense Model Theorem

First, we recall the “computational complexity version” of the Dense Model Theorem by

Reingold, Trevisan, Tulsiani, and Vadhan.

Theorem 5.1.4 (Dense Model Theorem [RTTV08]). Let X,Y, Y ′ be three distributions on

{0, 1}n such that Y, Y ′ are computationally indistinguishable and X is δ-dense in Y ′. That

5There are several other challenging cases such as when the reduction needs to rewind the adversary [Wat09,
Unr12], or when the setting involves oracles [BDF+11, Zha12] (Leakages from previous rounds).
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is, for all x ∈ Supp(X), Pr[X = x] ≤ 1
δ Pr[Y ′ = x]. Then there exists a distribution X ′ such

that X and X ′ are computationally indistinguishable and X ′ is δ-dense in Y .

The Dense Model Theorem can also be used to prove the Leakage Chain Rule for conditional

HILL min-entropy, and thus the security of leakage-resilient stream-cipher by [DP08]. Another

application is in the study of computational differential privacy [MPRV09]. See [Tre11] for

more discussions about the applications of Dense Model Theorem.

Using the definitions of HILL-type relative max-entropies (see Definition 5.1.5 for general-

ized definitions), the Dense Model Theorem can be equivalently stated as

DHILL-2-max(X ‖Y ) ≤ λ ⇒ DHILL-1-max(X ‖Y ) ≤ λ

for λ = O(log κ), where κ is the security parameter. Also, we can prove the converse

(Lemma 5.4.14): DHILL-1-max(X ‖Y ) ≤ λ ⇒ DHILL-2-max(X ‖Y ) ≤ λ . Therefore, the two HILL-

type computational relative max-entropies are equivalent in the classical setting.

In the quantum settings, first, the definitions of HILL-type computational relative max-

entropies can be naturally generalized to quantum states.

Definition 5.1.5 (HILL-type relative max-entropies). We say the HILL-1 relative max-

entropy between quantum states ρ and σ is at most λ (written DHILL-1-max(ρ ‖σ) ≤ λ) if there

exists a quantum state ρ′ such that ρ and ρ′ are quantum-indistinguishable and Dmax(ρ′ ‖σ) ≤ λ;

we say the HILL-2 relative max-entropy between quantum states ρ and σ is at most λ (written

DHILL-2-max(ρ ‖σ) ≤ λ) if there exists a quantum state σ′ such that σ and σ′ are quantum-

indistinguishable and Dmax(ρ ‖σ′) ≤ λ.

Interestingly, we can show a separation between those two notions, which can be interpreted

as the impossibility of the “Quantum Dense Model Theorem”: there exists quantum states

ρ, σ such that

DHILL-2-max(ρ ‖σ) ≤ 1 but DHILL-1-max(ρ ‖σ) =∞.

The counterexample is based on the existence of a pure states that is pseudoran-

dom [BMW09, GFE09], which is an interesting phenomenon. As in the classical settings,
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a random variable must have entropy ω(κ) to be pseudorandom where κ is the security

parameter.6 Note that out negative result does not contradict to the existence of the

Leakage Chain rule for conditional relaxed HILL-entropy (Theorem 5.5.14) since in our

counterexample, σ is not a maximally mixed state.

5.2 Preliminaries

5.2.1 Quantum information

Quantum state. We begin with some notation. Let X be a finite-dimensional complex

vector space with a Hermitian inner product. A vector in X is denoted by |v〉 and its conjugate

transpose is denoted by 〈v| = |v〉†. The inner product and outer product of two vectors

|v〉, |w〉 ∈ X are denoted by 〈v|w〉 and |v〉〈w|, respectively. The norm of |v〉 is defined by

∥∥|v〉∥∥2 =
√
〈v|v〉 .

The set of all unit vectors in X is denoted by Ball(X ). Let Lin(X ) denote the set of all

linear operators on X . Let Herm(X ) denote the set of all Hermitian operators on space X ,

i.e., Herm(X ) def= {T ∈ Lin(X ) : T † = T}, where T † is the conjugate transpose of T . The

Hilbert-Schmidt inner product on Lin(X ) is defined by

〈
S , T

〉
= Tr

(
S†T

)
, ∀S, T ∈ Lin(X ) .

A Hilbert space of a quantum system X is denoted by the corresponding calligraphic letter

X . When the quantum system consists of m qubits, the space is the complex Euclidean vector

space X = C2m . An m-qubit quantum state is represented by a density operator ρ ∈ Herm(X ),

which is a positive semidefinite Hermitian operator on X with trace one. When ρ is of rank

one, it refers to a pure quantum state, which can also be represented by a unit vector |v〉 in

Ball(X ). In that case, the density operator ρ can be written as |v〉〈v|. Otherwise, the density

operator ρ refers to a mixed quantum state. Thus in any basis that diagonalizes ρ, we can

6If we consider quantum distinguishers with quantum advice, then similar to the classical case, a random
variable must have entropy ω(κ) to be quantum pseudorandom.
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think of ρ as a classical distribution on the pure states corresponding to the basis elements.

In general, the expression is not unique. The set of all quantum density operators on X is

denoted by

Dens(X ) def=
{
ρ ∈ Herm(X ) : ρ ≥ 0,Tr(ρ) = 1

}
= Conv

({
|v〉〈v| : |v〉 ∈ Ball(X )

})
,

where Conv(S) is the convex hull of set S and ρ ≥ 0 means that ρ is positive semidefinite.

Likewise, σ ≥ ρ means that σ− ρ is positive semidefinite. Let 1X denote the identity operator

on X (or 1d when the dimension of X (denoted as dim(X )) is known to be d), ρmm
X = 1

dim(X )1X

denotes the maximally mixed state in Dens(X ) (or ρmm
d when dim(X ) = d).

Composite system and partial trace. The Hilbert space of the composite system of

two quantum systems X and Y is their tensor product space X ⊗ Y, and similarly for

multiple systems. For a multi-partite state, e.g., ρXY Z ∈ Dens(X ⊗ Y ⊗ Z), its reduced

state on some subsystem is represented by the same state with the corresponding subscript.

For example, the reduced (marginal) state on system X of ρXY Z is ρX = TrY Z(ρXY Z),

where TrY Z(·) denotes the partial trace operation over the composite system Y Z. That is,

TrY Z
(
|x1〉〈x2| ⊗ |y1〉〈y2| ⊗ |z1〉〈z2|

)
= |x1〉〈x2| ∈ Dens(X ), where |xi〉, |yi〉, |zi〉 for i = 1, 2 are

vectors in Ball(X ),Ball(Y),Ball(Z), respectively, and TrY Z is a trilinear map on Y Z. When

all subscript letters are omitted, the notation represents the original state (e.g., ρ = ρXY Z).

A bipartite state ρXY is call a product state if and only if ρXY = ρX ⊗ ρY . A bipartite state

ρXY is separable if and only if ρXY can be written as
∑
k pk · ρkX ⊗ ρkY .

A classical discrete random variable X with distribution px = Pr[X = x] can be represented

by a density operator ρ =
∑
x px|x〉〈x| over state space X with orthonormal basis {|x〉} of

X . When restricted to the basis |x〉, we will say that the system X is classical. A classical-

quantum-state, or cq-state ρ ∈ Dens(X ⊗ Y) indicates that subsystem X is classical and

subsystem Y is quantum. We use lower case letters to denote specific values assigned to

the classical part of a state. Then a cq-state can be represented (uniquely) in the form

ρXY =
∑
x px|x〉〈x| ⊗ ρxY , where px = Pr[X = x] and ρxY ∈ Dens(Y). The marginal state ρY

is
∑
x pxρ

x
Y .
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Quantum measurements. A positive-operator valued measure (POVM) on the Hilbert

space X with outcomes in [k] is a collection of Hermitian and positive semidefinite operators

{Πi}i∈[k] such that
∑
i∈[k] Πi = 1X . Each POVM element Πi can serves as an instrument to

perform a yes-no measurement. We denote the space of possible POVM elements Π as

Meas(X ) def=
{

Π : Π ∈ Herm(X ), 0 ≤ Π ≤ 1X
}
.

When this POVM is applied to a quantum state ρ ∈ Dens(X ), the probability of obtaining

outcome i ∈ [k] is 〈Πi , ρ〉. If outcome i is observed, the quantum state ρ will collapse to the

state
√

Πiρ
√

Πi/〈Πi , ρ〉, where
√

Π is the unique positive semidefinite operator T such that

T 2 = Π.

Matrix Norms. The trace norm of T ∈ Lin(X ) is defined as

∥∥T∥∥1
def= Tr

(√
T †T

)
.

One important measure on the distance between two quantum states ρ, σ ∈ Dens(X ) is the

trace distance, defined as

dTr
(
ρ , σ

) def= 1
2
∥∥ρ− σ∥∥1 ,

which equals the total variation distance between ρ and σ if they are both classical. Similar

to the classical case, the trace distance of two quantum states is an upper bound on the

difference of their probabilities of obtaining the same measurement outcome [NC02]:

dTr
(
ρ , σ

)
= max

Π∈Meas(X )
Tr
(
Π(ρ− σ)

)
.

Also, trace distance is contractive under applying a general quantum circuits (a.k.a. TPCP

maps or quantum operations).

Proposition 5.2.1. Let ρ, σ ∈ Dens(X ) and let C be a general quantum circuits mapping

from Dens(X ) to Dens(Y). Then we have

dTr
(
C(ρ) , C(σ)

)
≤ dTr

(
ρ , σ

)
.
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The operator norm of T ∈ Lin(X ) is

‖T‖op
def= sup

{∥∥T |v〉∥∥2 : |v〉 ∈ Ball(X )
}
.

When T is Hermitian, the operator norm of T equals the magnitude of the largest eigenvalue

of T . Once we fix an orthonormal basis {|i〉} of X , the max norm of T ∈ Lin(X ) is defined as

‖T‖max
def= max

i,j
|Tij | ,

where Tij = 〈i|T |j〉. We can connect ‖T‖max to ‖T‖op by the following inequality.

‖T‖op ≤ dim(X ) · ‖T‖max . (5.1)

For operational interpretation of these norms, see [HJ12].

Quantum circuits. The evolution of a closed quantum system X is described by a unitary

operator U ∈ Lin(X ), i.e., an operator U satisfying UU † = U †U = 1X . The quantum system

then evolves from state ρ ∈ Dens(X ) to UρU † ∈ Dens(X ). If ρ = |ψ〉〈ψ|, then UρU † = |φ〉〈φ|

for |φ〉 = U |ψ〉 ∈ Ball(X ). Herein we consider a multipartite system, where each subsystem

is a two-dimensional quantum system C2 with an ordered computational basis {|0〉, |1〉}. A

quantum state in Dens
(
C2) is called a qubit (quantum bit), as opposed to a classical bit 0 or

1. Thus an m-qubit state space is C2m with a computational basis
{
|x〉 : x ∈ {0, 1}m

}
. Simple

unitary operators that act non-trivially on a constant number of qubits are called elementary

quantum gates. A set of elementary quantum gates is called universal if any unitary operator

can be approximated arbitrarily closely by a composition of gates from this set. We fix one

universal gate set for the remainder of this paper.

Let W = X ⊗A = C2m denote the work space of a quantum circuit C, which is an m-qubit

space that consists of both an `-qubit input space X = C2` , taking some quantum/classical

input ρ ∈ Dens(X ), and some m − ` ancilla qubits initialized as τ ∈ Dens(A). Usually, we

assume τ = |0A〉, meaning that the circuit has only classical nonuniform advice (corresponding

to gates and wires). Occasionally, we allow for quantum advice, where τ could be an arbitrary

quantum state. A quantum circuit C is a sequence of elementary quantum gates from the
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universal gate set, followed by some measurements. (In general, measurements can be deferred

to the end of quantum circuits [NC02]). That is, C applies a unitary UC = U1U2 · · ·Ut where

Ui denotes the ith gate and s is the number of elementary quantum gates, and the performs

some measurements. We say the size of the quantum circuit C is t. The number of quantum

circuits of size t is tO(t).

Quantum distinguishers. In cryptography, we usually have a circuit with binary output

as a distinguisher between two random variables. Here we define the quantum analogue.

A quantum distinguisher is a quantum circuit with binary measurement outcome 0 or 1.

Without loss of generosity, we assume that we measure after applying a unitary UC. That is,

we measure ρ′ = UC
(
ρ⊗ τ

)
U †C according to the POVM {Π0,Π1}, where τ is the initial ancilla

state and Πi = |i〉〈i| ⊗ 12m−1 ∈ Meas(W). Thus

Pr[C outputs i on input ρ] =
〈
ρ′ , Πi

〉
=
〈
UC
(
ρ⊗ τ

)
U †C , |i〉〈i| ⊗ 12m−1

〉
=
〈
ρ⊗ τ , U †C

(
|i〉〈i| ⊗ 12m−1

)
UC
〉

=
〈
ρ , Π′i

〉
,

where Π′i = TrA
(
(1X ⊗ τ)U †C(|i〉〈i| ⊗ 12m−1)UC

)
.

Consequently, applying this quantum circuit is equivalent to applying a corresponding

POVM {Π′0,Π′1} on the input space X as above. For our purpose, a quantum distinguishers

will be considered as binary POVMs on the space X . Since Π0 + Π1 = 1X , the POVM can be

fully determined by Π1. Therefore, we can describe a quantum distinguisher by a measurement

operator Π and vice versa. In particular, we say the corresponding measurement operator of

the distinguisher D : Dens(X )→ {0, 1} is Π ∈ Meas(X ) if

∀ρ ∈ Dens(X ) , E
[
D(ρ)

]
=
〈
Π , ρ

〉
.

One can easily generalize the binary output to larger domains. In that case, any quantum

circuit can still be effectively deemed as a general POVM with a large outcome set. We also

consider more general quantum circuits that output general quantum states. These circuits

113



can be deemed as mappings from Dens(X ) to Dens(Y), where X is the input space and Y

is the output space. (In general, these mappings are called super-operators from Lin(X ) to

Lin(Y).) Similar to quantum distinguishers, a general quantum circuit C applies a unitary UC

on the space W = X ⊗A consisting of an input and ancillas, and perform some measurements

on W. Then it outputs a state in space Y where W = Y ⊗ B is the decomposition of the

space after applying UC. We abuse the notation for convenience as

ρ 7→ C(ρ) ∈ Dens(Y)

for input ρ ∈ Dens(X ), so

C(ρ) = TrB
(
UC
(
ρ⊗ τ

)
U †C

)
,

where τ is the ancilla state.

Uniformity. A family of uniform quantum circuits
{
Cn
}
n∈N is a set of circuits indexed by n

where the inputs length (measured in bit/qubit) of Cn is n, and there exists a polynomial time

classical algorithm A such that A(1n) = Cn. BQP is a class of language L for which there

exists a (family of) uniform quantum circuits {Cn}n∈N with binary outputs such that for all

n ∈ N and x ∈ {0, 1}n, if x ∈ L, then Pr[Cn(x) = 1] > 2/3, Otherwise, Pr[Cn(x) = 1] < 1/3.

5.2.2 Information-theoretic notions

Definition 5.2.2 (Quantum min-entropy). Let ρ be a density operator on state space X .

Then min-entropy of ρ is defined as

Hmin(ρ) = Hmin(X)ρ
def= log 1

λmax
,

where λmax is the largest eigenvalue of ρ.

To define the conditional quantum min-entropy [RW05], we first define the max-divergence

(a.k.a. max-relative entropy) between two quantum states. Max-divergence can be seen as a

distance between two quantum states, which measures, in log-scale, how much more likely an

event happens for one state than for the other.
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Definition 5.2.3 ((quantum) max-divergence). Let ρ and σ be two density operators on a

space X . The max-relative entropy between two quantum states ρ and σ is defined as

Dmax
(
ρ
∥∥σ) def= inf

{
λ ∈ R : ρ ≤ 2λσ

}
.

Equivalently, quantum max-divergence can be defined in an operational way using binary

measurement.

Proposition 5.2.4. Let ρ and σ be density operators on a state space X . Then

Dmax
(
ρ
∥∥σ) = log

(
sup

{ 〈Π , ρ〉
〈Π , σ〉

: Π ∈ Meas(X )
})

= log
(

sup
{Pr[D(ρ) = 1]

Pr[D(σ) = 1] : D is a quantum distinguisher
})

Proof. It suffices to show that for γ > 0, γ ·σ ≥ ρ iff γ ·〈Π , σ〉 ≥ 〈Π , ρ〉 for every Π ∈ Meas(X ).

If γ · σ − ρ ≥ 0, then 〈Π , γ · σ − ρ〉 ≥ 0, since 〈A , B〉 ≥ 0 for A and B are positive

semidefinite and Hermitian (Let A =
∑
i λi|ψi〉〈ψi|, then 〈A , B〉 =

∑
i λi〈ψi|B|ψi〉 ≥ 0). On

the other hand, suppose 〈Π , γ · σ − ρ〉 ≥ 0 for every Π ∈ Meas(X ). For every |ψ〉 ∈ Ball(X ),

taking Π = |ψ〉〈ψ|, we have

〈
|ψ〉〈ψ| , γ · σ − ρ

〉
=
〈
ψ
∣∣∣(γ · σ − ρ)

∣∣∣ψ〉 ≥ 0.

Thus γ · σ − ρ ≥ 0. The formulation in terms of quantum distinguishers D follows from the

fact that every distinguisher D has an associated measurement operator and conversely every

measurement operator can be approximated arbitrarily well by a distinguisher.

The definition of quantum max-divergence agrees with the definition of classical max-

divergence definition when the two quantum states are equivalent to classical random variables.

Proposition 5.2.5. If ρ and σ are mixed quantum states corresponding to two discrete

classical random variables Xρ and Xσ respectively. Then

Dmax
(
ρ
∥∥σ) = log

(
max

x∈Supp(Xρ)

Pr[Xρ = x]
Pr[Xσ = x]

)
.
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Proof. By the assumption, we can write ρ =
∑
x px|x〉〈x| and σ =

∑
x qx|x〉〈x| for Pr[Xρ =

x] = px,Pr[Xσ = x] = qx. Then

Dmax
(
ρ
∥∥σ) = inf

{
λ : ∀x px ≤ 2λqx

}
= log

(
max
qx>0

px
qx

)
= log

(
max

x∈Supp(Xσ)

Pr[Xρ = x]
Pr[Xσ = x]

)
.

Definition 5.2.6 (Conditional quantum min-entropy). Let ρ = ρXY ∈ Dens(X ⊗ Y) be a

density operator describing a bipartite quantum system (X,Y ). The min-entropy of system X

conditioned on system Y is defined as

Hmin
(
X|Y

)
ρ

def= log
(
dim(X )

)
− inf
σY ∈Dens(Y)

{
Dmax

(
ρXY

∥∥ ρmm
X ⊗ σY

)}
.

Similar to the conditional von Newman entropy, the quantum min-entropy can be negative

as opposed to the classical cases [CA97]. In particular, when a bipartite state has entanglement,

the conditional min-entropy may be negative. For instance, let ρ ∈ Dens(X ⊗ Y) where its

systems X and Y are maximally entangled, Hmin(X|Y )ρ = − log dim(X ) [CA97, KRS09].

Proposition 5.2.7. If X and Y are discrete classical random variables, then

Hmin
(
X
∣∣Y )

ρ
= 1

log
∑
y maxx pxy

= Hmin
(
X
∣∣Y ),

where Hmin is the definition of average min-entropy in the classical case (Definition 1.5.2).

Proof. Since X,Y are classical random variables, we abuse the notation X ,Y to be the finite

spaces that X and Y are distributed over, respectively. Let UX be the uniform distribution

over the set X . The following claim shows that it suffices to only consider diagonal density

operator σY for the infimum in Definition 5.2.6 when ρXY is diagonal.

Claim 5.2.8. Let ρXY and σX be diagonal density matrices

inf
σy∈Dens(Y)

Dmax
(
ρXY

∥∥∥σX ⊗ σY ) = inf
σy∈Dens(Y)

σy is diagonalized

Dmax
(
ρXY

∥∥∥σX ⊗ σY )

Proof of Claim 5.2.8. Suppose σY ∈ Dens(Y) satisfies that γ · σX ⊗ σY − ρXY ≥ 0, Let σ′Y

be the diagonal matrix having the same diagonal entries as σy. Clearly, σ′Y ∈ Dens(Y).
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γ · σX ⊗ σ′Y − ρXY is diagonal. Moreover, γ · σX ⊗ σY − ρXY is positive semidefinite implies

the diagonal entries are non-negative. Thus, γ · σX ⊗ σ′Y − ρXY ≥ 0.

By Definition 5.2.6,

Hmin
(
X|Y

)
ρ

= log
(
dim(X )

)
− inf
σY ∈Dens(Y)

Dmax
(
ρXY

∥∥∥ ρmm
X ⊗ σY

)
= log

(
dim(X )

)
− inf
Y ′: dist. over Y

Dmax
(
X,Y

∥∥∥UX , Y ′) (Claim 5.2.8)

= log
(
dim(X )

)
− log inf

Y ′: dist. over Y

{
max
x,y

pxy
Pr[(UX , Q) = (x, y)]

}
= − log inf∑

y
qy=1

{
max
y

maxx pxy
qy

}
= − log

(∑
y

max
x

pxy
)

where qy = Pr[Y ′ = y]. The last equality is by

max
y

maxx pxy
qy

≥
∑
y maxx pxy∑

y qy
=
∑
y

max
x

pxy ,

with equality if and only if (maxx pxy)/qy is constant.

Another way to define min-entropy is through guessing probability. Here we only consider

the case that ρXY is a cq-state: ρXY =
∑
x px|x〉〈x| ⊗ ρxY ∈ Dens(X ⊗ Y). Recall that a

quantum circuit with classical output can be seen as a POVM. The probability of guessing X

correctly given Y by a given quantum circuit C is

P guess
C (X|Y )ρ

def=
∑
x

px
〈
Πx , ρ

x
Y

〉
,

where {Πx} is the effective POVM for C, demonstrating the guessing strategy. Accordingly,

the probability of guessing X correctly given Y is defined as

P guess(X|Y )ρ = sup
C
P guess

C (X|Y )ρ,

where the maximization is taken over arbitrary quantum circuits C of unbounded size. As

in the purely classical case [DORS08], the guessing probability captures the conditional
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min-entropy of X given Y :

Lemma 5.2.9 ([KRS09]). Suppose ρXY is a cq-state on the space X ⊗ Y. Then

Hmin(X|Y )ρ = log 1
P guess(X|Y )ρ

.

5.3 Quantum Pseudoentropy

One of the first proposed notions of (classical) pseudoentropy is by Yao [Yao82], which

based on efficient compression. Then, Håstad, Impagliazzo, Levin, and Luby introduced

another class of pseudoentropies [HILL99] based on computational indistinguishability. We

call them HILL-type entropies. Also, there is another class of pseudoentropy notion called

metric-type entropy defined by Barak, Shaltiel, and Wigderson [BSW03], which is also based

on computational indistinguishability. In this section, we extend those types of pseudoentropy

to quantum settings and study their properties. First, we define quantum (computational)

indistinguishability.

5.3.1 Quantum indistinguishability

Computational indistinguishability is a fundamental concept in computational complexity

and cryptography. It provides a relaxed way to describe the similarity of two random objects.

Informally, computational indistinguishability only requires that two random objects cannot

be distinguished by efficient algorithms/circuits. Two objects may be indistinguishable by

bounded algorithms even if they are statistically very far from each other (e.g., have very

different entropies).

We consider two variants of indistinguishability in the quantum setting, depending on

whether the ancilla bits are initialized to 0 (so the circuit can only have classical nonuniform

advice corresponding to the gates and wires) or whether the ancilla qubits can be initialized

to an arbitrary quantum state (corresponding to quantum advice).

Definition 5.3.1. Quantum states ρ and σ on Dens(X ) are (t, ε)-quantum-indistinguishable
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if for all quantum distinguishers D of size t with ancilla qubits all initialized to |0〉’s,

∣∣∣Pr[D(ρ) = 1]− Pr[D(σ) = 1]
∣∣∣ ≤ ε.

Moreover, we say that ρ is an (t, ε)-quantum-pseudorandom state if ρ is (t, ε)-quantum-

indistinguishable from the maximally mixed state on Dens(X ).

Definition 5.3.2. Quantum states ρ and σ on Dens(X ) are (t, ε)-quantum+-indistinguishable

if for all quantum distinguishers D of size t with arbitrary ancilla qubits,

∣∣∣Pr[D(ρ) = 1]− Pr[D(σ) = 1]
∣∣∣ ≤ ε.

Moreover, we say that ρ is an (t, ε)-quantum+-pseudorandom state if ρ is (t, ε)-quantum+-

indistinguishable from the maximally mixed state on Dens(X ).

Now we give an asymptotic formulation of the above definitions.

Definition 5.3.3. Let t : N → N and ε : N → R be two functions. Let {ρn}n∈N and {σn}n∈N

be two quantum state ensembles where ρn, σn ∈ Dens
(
C2n). We say {ρn}n∈N and {σn}n∈N

are (t(n), ε(n))-quantum-indistinguishable (resp., (t(n), ε(n))-quantum+-indistinguishable),

if for every n ∈ N, ρn and σn are (t(n), ε(n))-quantum-indistinguishable (resp., (t(n), ε(n))-

quantum+-indistinguishable).

We say that ρn and σn are quantum-indistinguishable (resp., quantum+-indistinguishable)

if they are (t(n), ε(n))-quantum-indistinguishable (resp., (s(n), ε(n))-quantum+-

indistinguishable) for some functions t(n) = nω(1), ε(n) = n−ω(1).

5.3.2 Pseudo (min-)entropy

Similar to the definition of pseudorandomness as a computational analogue of the uniform

distribution, one can naturally generalize the concept of entropy in information theory to

computational notions of entropy. In the classical setting, the definition of HILL-type entropy

says that a random variable X has HILL (min-)entropy at least k if it is indistinguishable

from some random variable X ′ with (min-)entropy at least k. Another natural definition of
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computational entropy is metric-type entropy which switches the quantifiers in the definition

of HILL-type entropy. That is, X has metric (min-)entropy at least k if for every efficient

distinguisher D, there exists a random variable X ′ with (min-)entropy at least k such that X

and X ′ cannot be distinguished by the D.

Recall that one can equivalently define the conditional min-entropy using guessing proba-

bility (cf., Lemma 5.2.9). We can also get a relaxed notion by restricting the complexity of

guessing algorithms, and we call it guessing pseudoentropy.

Below, we formally define the quantum analogues of those relaxed notions.

Definition 5.3.4 (Conditional (relaxed-)HILL (min-)entropy). Let ρ = ρXY be a bipartite

quantum state in Dens(X ⊗ Y). We say X conditioned on Y has (t, ε)-relaxed-HILL (min-

)entropy at least k (written “Ht,ε
r-HILL-min(X|Y )ρ ≥ k”) if there exists a bipartite quantum state

σXY ∈ Dens(X ⊗ Y) such that

1. Hmin(X|Y )σ ≥ k.

2. ρXY and σXY are (t, ε)-quantum-indistinguishable.

In addition, if TrX(ρXY ) = TrX(σXY ), we say X conditioned on Y has (standard) HILL

(min-)entropy at lease k (written “Ht,ε
HILL-min(X|Y )ρ ≥ k”).

As in the classical case [HLR07], we do not require the reduced states ρY and σY being

equal in relaxed-HILL (min-)entropy. In the classical case, the relaxed HILL notion satisfies a

chain rule even when a prior knowledge is present, while for standard HILL (min-)entropy, a

counterexample exists (under a standard assumption) [KPWW16]. Also, in the classical case,

when the length of Y is O(log n), the two definitions are equivalent up to a poly(n) factor in

s. However, we do not know whether that is still the case if Y is a quantum state of O(log n)

qubits.

We now state the quantum analogues of metric entropy and guessing pseudoentropy.

Definition 5.3.5 (conditional (relaxed-)metric (min-)entropy). Let ρ = ρXY be a bipartite

quantum state in Dens(X ⊗ Y). We say that X conditioned on Y has (t, ε)-relaxed-metric
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(min-)entropy at lease k (written “Ht,ε
r-metric-min(X|Y )ρ ≥ k”) if for every quantum distinguisher

D of size t, there exists a bipartite quantum state σXY ∈ Dens(X ⊗ Y) such that

1. Hmin(X|Y )σ ≥ k and

2.
∣∣E[D(ρXY )]− E[D(σXY )]

∣∣ ≤ ε.
In addition, if TrX(ρXY ) = TrX(σXY ), we say X conditioned on Y has (standard) metric

(min-)entropy at least k (written “Ht,ε
metric-min(X|Y )ρ ≥ k”).

Definition 5.3.6 (guessing pseudoentropy (cq-state)). Let ρXY =
∑
x∈{0,1}n px|x〉〈x| ⊗ ρxY ∈

Dens(X ⊗ Y) be a cq-state. We say that X conditioned on Y has (t, ε)-quantum guessing

pseudoentropy at least k (written “Ht,ε
guess(X|Y )ρ ≥ k”) if for every quantum circuit D of size

t, P guess
D (X|Y )ρ ≤ 2−k + ε.

HILL entropy v.s. metric entropy By definition, the metric (min-)entropy of the quan-

tum state is at least as large as its HILL (min-)entropy. In the classical case, it is known

that metric entropy implies HILL entropy [BSW03]. We will show the analogous implication

in the quantum setting in Section 5.3.4. As a useful intermediate step, we introduce the

quantum min-max theorem in Section 5.3.3 first, which is also an essential tool for proving

the Quantum Leakage Simulation Lemma (Theorem 5.5.1).

Guessing pseudoentropy v.s. HILL min-entropy As in the classical case, guessing

pseudoentropy implies HILL entropy.

Proposition 5.3.7. Let ρXY =
∑
x∈{0,1}n px|x〉〈x| ⊗ ρxY be a cq-state. If Ht,ε

HILL-min(X|Y )ρ ≥ k

then Ht−O(n),ε
guess (X|Y )ρ ≥ k.

Proof. Suppose for contradiction, there exists a quantum circuit A : Dens(Y) → {0, 1}n of

size t such that P guess
A (X|Y )ρ > 2−k + ε. Define A′ : Dens(X ⊗ Y)→ {0, 1} to be a quantum

distinguisher A′(ρXY ) = 1 iff A(ρY ) = X, then E[A′(ρXY )] ≥ 2−k + ε. Also, A′ can be

implemented by a size t+O(n) circuit.
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For every σXY with Hmin(X|Y )σ ≥ k, by Lemma 5.2.9, we know that P guess
A (X|Y )ρ ≤ 2−k,

which implies E[A′(ρXY )] ≤ 2−k. Therefore, σXY and ρXY are not (t + O(n), ε)-quantum-

indistinguishable. That is, Ht+O(n),ε
HILL-min (X|Y )ρ < k.

Vadhan and Zheng showed that in the classical case, HILL entropy and guessing pseudoen-

tropy are equivalent when n is logarithmic in the security parameter [VZ12]. Also, when n = 1,

the equivalence between HILL entropy and guessing pseudoentropy implies Impagliazzo’s

Hardcore Theorem [Imp95] and vice versa. [Zhe13]

However, in the quantum case, we do not know whether these two definitions are equivalent.

All the proofs suffer the same barrier discussed in Section 5.7.2. Briefly speaking, a proof

cannot be extended to the quantum case if it relies on estimating the acceptance probability

of a given quantum state. Therefore, connections between guessing pseudoentropy and other

pseudoentropy notions remain as interesting open problems.

5.3.3 Quantum nonuniform min-max theorem

We begin with von Neumann’s Min-Max Theorem for zero-sum game with two players. Let the

strategy spaces of Player 1 and Player 2 be A and B, respectively, and the payoff function be

g : A×B → [−1, 1]. The theorem says that if for every mixed strategy A ∈ Conv(A), Player 2

can respond b ∈ B so that the expected payoff Ea←A[g(a, b)] is at least p, then Player 2

has an universal mixed strategy B ∈ Conv(B) that guarantees the same payoff regardless

of the strategy of Player 1. Namely, for all a ∈ A,Eb←B[g(a, b)] ≥ p. In many applications

in cryptography and complexity theory, (e.g., [Imp95, RTTV08, DP08, GW11, VZ12], the

strategy space A is taken to be a convex set of distributions over {0, 1}n. Also, those

applications require not only the existence of a universal mixed strategy B, but also with low

complexity (measured in support size). In such settings, the theorem is called Nonuniform

Min-max Theorem [Zhe13] (contrary to the Uniform Min-Max Theorem where it further

requires an explicit construction of the universal mixed strategy B.). In this section, we

generalize the classical Nonuniform Min-max Theorem to the quantum setting where the

strategy space A becomes a set of quantum states.
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Theorem 5.3.8 (Quantum Non-uniform Min-Max Theorem). Consider a zero-sum game

between two players where the strategy space of Player 1 is a convex set A ⊆ Dens
(
Cd
)
and

the strategy space of Player 2 is B. For strategies a ∈ A and b ∈ B, the payoff to Player 2

is g(a, b) = 〈a , M(b)〉 where M : B → Meas
(
Cd
)
. Suppose that for every strategy a ∈ A of

Player 1, there exists a pure strategy b ∈ B such that g(a, b) ≥ p. Then for every ε ∈ (0, 1/2),

there exists a mixed strategy B̂ of Player 2 such that for every strategy a ∈ A of Player 1,

Eb←B̂[g(a, b)] ≥ p− ε. Moreover, B̂ is the uniform distribution over a multi-set S consisting

of at most

O

( log d−mina∈AHSh(a)
ε2

)
strategies in B.

Note that if we restrict Player 1’s strategies to be diagonal and set d = 2n, then the above

theorem replicates the classical Non-uniform Min-max Theorem.

Proof. By von Newmann’s Min-max Theorem, there exists a distribution B on B such that

for all a ∈ A, Eb←B
[
g(a, b)

]
≥ p. Therefore, it suffices to show that there exists a “small”

multi-set S = {b1, . . . , bT } such that for all a ∈ A,∣∣∣∣ E
b←B

[g(a, b)]− E
b←B̂

[g(a, b)]
∣∣∣∣ =

∣∣∣∣ E
b←B

[g(a, b)]− 1
T

T∑
i=1

g(a, bi)
∣∣∣∣ ≤ ε .

Observed by Skórski [Sko17], the above statement can be obtained from a generalization

error bounds in statistical learning theory. We particularly use the bound for Rademacher

complexity.

Recall the definitions of Rademacher complexity and the generalization error bound for it:

Definition 5.3.9 (Rademacher complexity ([BM02])). Let F be a class of functions from

W → R, and (w1, . . . , wT ) ∈ WT . The empirical Rademacher complexity of F is defined as

R̂w1,...,wT (F) def= E
[
sup
f∈F

1
T

T∑
i=1

γif(wi)
]
,

where the expectation is over γi’s, which are sampled from Rademacher distribution (uniformly
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over {1,−1}) independently.

Let W be a distribution on W. Then the Rademacher complexity of F is defined as

RW,T (F) def= E
[
R̂w1,...,wT (F)

]
,

where the expectation is over wi’s sampled from W independently, and independent to γi’s.

Theorem 5.3.10 (generalization bounds via Rademacher complexity [BM02]). Let F be a

class of functions from W → [0, 1] and W be a distribution on W. If w1, . . . , wT are drew

i.i.d. from W , then for every δ ∈ (0, 1),

Pr
w1,...,wT

∀f ∈ F , ∣∣∣∣ E
w∼W

[
f(w)

]
− 1
T

T∑
i=1

f(wi)
∣∣∣∣ ≤ RW,T (F) +O

(√ log(1/δ)
T

) > 1− δ .

In particular, there exists w1, . . . , wT ∈ W such that

∀f ∈ F ,
∣∣∣∣ E
w∼W

[
f(w)

]
− 1
T

T∑
i=1

f(wi)
∣∣∣∣ ≤ RW,T (F) +O

(√
1/T

)
.

Now we bound the Rademacher complexity of F by the following theorem:

Theorem 5.3.11. For d ∈ N, let W = Meas
(
Cd
)
, A ⊆ Dens

(
Cd
)
, and F =

{
〈· , ρ〉 : ρ ∈ A

}
.

For every distribution W on W and T ≥ log d−minρ∈AHSh(ρ),

RW,T (F) = 2 ·

√
log d−minρ∈AHSh(ρ)

T
.

Taking W = M(B), T = O
(
(log d−minρ∈AHSh(ρ))/ε2), δ = 0.5, and by Theorem 5.3.11

and Theorem 5.3.10, we have

Pr
w1,...,wT

[
∀f ∈ F ,

∣∣∣∣ E
w∼W

[
f(w)

]
− 1
T

T∑
i=1

f(wi)
∣∣∣∣ ≤ ε

]

= Pr
b1,...,bT

[
∀a ∈ A ,

∣∣∣∣ Eb∼B[〈a , M(b)
〉]
− 1
T

T∑
i=1

〈
a , M(bi)

〉∣∣∣∣ ≤ ε
]
> 0.5,

which implies there exists {b1, . . . , bT } such that for all a ∈ A∣∣∣∣ E
b←B

[
g(a, b)

]
− 1
T

T∑
i=1

g(a, bi)
∣∣∣∣ ≤ ε.
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Proof of Theorem 5.3.11. It suffices to bound the empirical Rademacher complexity for every

w1, . . . , wT ∈ W :

R̂w1,...,wT (F) = E
γ1,...,γT

[
sup
f∈F

1
T

T∑
j=1

γjf(wj)
]

= E
γ1,...,γT

[
sup
ρ∈A

Tr(Πρ)
]
,

where Π = 1
T

∑T
j=1 γjwj . Note that Π depends on random variables γj ’s.

By the non-negativity of KL-divergence, we have for every t > 0,

DKL

(
ρ

∥∥∥∥ exp(tΠ)
Tr
(
exp(tΠ)

)) ≥ 0

⇒ Tr
(
ρ log

( exp(tΠ)
Tr(exp(tΠ))

))
≤ Tr

(
ρ log ρ

)
⇒ t · Tr

(
Πρ
)
≤ log

(
Tr(exp(tΠ))

)
+ Tr(ρ log ρ). (5.2)

By the Inequality (5.2), we have that for every t > 0,

R̂w1,...,wT (F) ≤ 1
t

E
γ1,...,γT

[
sup
ρ∈A

{
log
(
Tr
(
exp(tΠ)

))
+ Tr(ρ log ρ)

}]

= 1
t

(
E

γ1,...,γT

[
log
(
Tr
(
exp(tΠ)

))]
−min

ρ∈A
HSh(ρ)

)
≤ 1
t

(
log
(

E
γ1,...,γT

[
Tr(exp(tΠ))

])
−min

ρ∈A
HSh(ρ)

)
, (5.3)

where the last inequality is by Jensen inequality. Now we bound the term Eγ1,...,γT

[
Tr(exp(tΠ))

]
by Golden Thompson inequality:

E
γ1,...,γT

[
Tr
(
exp(tΠ)

)]
≤ E
γ1,...,γT

[
Tr
(

exp
( t
T
γ1w1

)
· · · exp

( t
T
γTwT

))]
= Tr

(
E
γ1

[
exp

( t
T
γ1w1

)]
· · · E

γT

[
exp

( t
T
γTwT

)])
(5.4)

Then by Taylor expansion, we have for all i ∈ [T ]

E
γi

[
exp

( t
T
γiwi

)]
= E

γi

 ∞∑
j=0

( t
T
γiwj

)j =
∞∑
j=0

(
t

T
wj

)2j
≤ 1d ·

∞∑
j=0

(
t

T

)2j
(5.5)

By the fact that B > C implies Tr(AB) > Tr(AC) when A,B,C are positive definite matrices,
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we can plug in Inequality (5.5) to Equation (5.4) to get

E
γ1,...,γT

[
Tr
(
exp(tΠ)

)]
≤Tr

(1d ∞∑
j=0

( t
T

)2j)T
= d ·

(exp(t/T ) + exp(−t/T )
2

)T
≤ d ·

(
1 + t2/T 2

)T
(5.6)

≤ d ·
(
exp

(
t2/T 2))T = d · exp

(
t2/T

)
(5.7)

for t/T ∈ [0, 1]. Finally, we put Inequality (5.7) back to Inequality (5.3), then have

Rw1,...,wT (F) ≤ 1
t

(
log d−min

ρ∈A
HSh(ρ) + t2/T

)
.

Take t =
√

(log d−minρ∈AHSh(ρ))/T , we concludes the proof.

5.3.4 Metric entropy implies HILL entropy

In the classical case, it is known that the HILL and metric pseudoentropies are interchangeable

up to some degradation in the size of distinguishers [BSW03]. With the equivalence, metric

entropy is a useful intermediate notion to obtain tighter security proof in a number of

cases (e.g., [DP08, FOR15]). Here we will show the equivalence in the quantum setting.

Theorem 5.3.12 ((relaxed-)HILL ⇔ (relaxed-)metric). Let ρXY be a bipartite quantum

system in Dens
(
X⊗Y

)
and dim

(
X⊗Y

)
= d. If Ht,ε

metric-min(X|Y )ρ ≥ k (resp., Ht,ε
r-metric-min(X|Y )ρ ≥

k), then for every δ > 0, we have Ht′,ε′
HILL-min(X|Y )ρ ≥ k (resp., Ht′,ε′

r-HILL-min(X|Y )ρ ≥ k), where

ε′ = ε+ δ and t′ = t/O
(
(log d− k)/δ2).

Proof. Consider the following zero-sum game between Player 1 and Player 2:

• The strategy space of Player 1 A = {σXY ∈ Dens(X ⊗ Y) : Hmin(X|Y )σ ≥ k, σY = ρY }.

• The strategy space of Player 2 B is a set of all quantum distinguishers D : Dens(X⊗Y)→

{0, 1} of size at most t′.

• For the payoff function g : A× B → [0, 1], we first define the auxiliary mapping M . For

an input distinguisher D ∈ B, let ΠD be the corresponding measurement operator, and
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define

M(D) = 1
2
((
E[D(ρXY )] + 1

)
· 1d −ΠD

)
.

Then for σXY ∈ A and D ∈ B,

g
(
σXY ,D

)
=
〈
σXY , M(D)

〉
= 1

2
(
E
[
D(ρXY )

]
+ 1− E

[
D(σXY )

])
.

Note that the strategy space A is convex. Also, since 0 ≤ ΠD ≤ 1d, we have 0 ≤M(D) ≤ 1d,

and so M(D) ∈ Meas(X ⊗ Y). Therefore, the above game satisfies the requirements in

Theorem 5.3.8.

Now suppose for contradiction, let Ht′,ε′
HILL-min(X|Y )ρ < k Then for all σXY ∈ A, there exists

a quantum distinguisher D : Dens(X ⊗ Y)→ {0, 1} of size t′ such that

E
[
D(ρXY )

]
− E

[
D(σXY )

]
> ε′,

namely, g(σXY ,D) > (1 + ε′)/2. By Theorem 5.3.8, there exists a quantum circuit D̂ of size

t′ ·O
(
(log d− k)/δ2) such that for all σXY with Hmin(X|Y )σ ≥ k,

g(σXY , D̂) > (1 + ε′)/2− δ/2 .

That is,

E
[
D̂(ρXY )

]
− E

[
D̂(σXY )

]
> ε′ − δ = ε,

which contradicts the assumption.

The proof for the case of Hr-HILL-min is identical except the requirement of σY = ρY in A is

removed.

Remark 5.3.13. In the above discussion, we define the computational entropies and state

the theorems only respect to quantum distinguishers with classical advice. One can also

consider HILL/metric entropy respect to quantum distinguishers with quantum advice. The

transformation between metric and HILL entropy can be extended to this model. Indeed, in

the proof of Theorem 5.3.12, we only use the fact that distinguishers (strategies of Player 2)
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can be given as measurement operator and that taking a distribution over a small number of

such operators incurs a small blow-up in circuit size.

5.4 Computational Quantum Max-divergence

In this section, we consider computational analogues of max-divergence, a.k.a max-relative

entropy in the quantum setting. Recall that the max-divergence is a generalization of

min-entropy. That is, the max-divergence between a quantum state ρ ∈ Dens(C2n) and a

2n-dimensional maximally mixed state ρmm
2n is exactly n minus the min-entropy of ρ. Similar

to min-entropy, we can also consider computational relaxations of max-divergence. Since

max-divergence involves between two states, there are more ways to define its computational

relaxations.

Classically, relations between some computational notions of relative min-entropies are

given by the Dense Model Theorem [RTTV08]. In Section 5.4.2, we review the theorem

and prove a variation that establishes more connections among the various notions. For the

quantum case, we show in Section 5.4.3 that some computational notions are not equivalent,

which can be interpreted as saying that a “Quantum Dense Model Theorem” does not hold.

5.4.1 Definition

Following the idea of defining HILL-type entropy, there are already two ways to relax

max-divergence (Definition 5.2.3) to computational notions. First, we can say ρ has small

computational max-divergence with respect to σ if there exists ρ′ that is indistinguishable

from ρ, but has small max-divergence with respect to σ entropy. Alternatively, we can ask that

there exists σ′ indistinguishable from σ such that ρ has small max-divergence with respect to

σ′.

Definition 5.4.1 (HILL-1 max-divergence). Let ρ and σ be density operators of the same

system. We say Dt,ε
HILL-1-max(ρ ‖σ) ≤ λ if there exists ρ′ that is (t, ε)-quantum-indistinguishable

from ρ and Dmax(ρ′ ‖σ) ≤ λ.
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Definition 5.4.2 (HILL-2 max-divergence). Let ρ and σ be density operators of the same

system. We say Dt,ε
HILL-2-max(ρ ‖σ) ≤ λ if there exists σ′ that is (t, ε)-quantum-indistinguishable

from σ and Dmax(ρ ‖σ′) ≤ λ.

By switching the quantifiers, we can also have two metric-type generalizations:

Definition 5.4.3 (metric-1 max-divergence). Let ρ and σ be density operators of the same

system. We say Dt,ε
metric-1-max(ρ ‖σ) ≤ λ if for all t-size quantum distinguishers A, there exists ρ′

such that (i) Dmax(ρ′ ‖σ) ≤ λ, and (ii)
∣∣E[A(ρ)]− E[A(ρ′)]

∣∣ < ε.

Definition 5.4.4 (metric-2 max-divergence). Let ρ and σ be density operators of the same

system. We say Dt,ε
metric-2-max(ρ ‖σ) ≤ λ if for all t-size quantum distinguishers A, there exists σ′

such that (i) Dmax(ρ ‖σ′) ≤ λ, and (ii)
∣∣E[A(σ)]− E[A(σ′)]

∣∣ < ε.

Another approach is to directly compare the behavior of distinguisher on the states ρ and

σ, by restricting the distinguishers in Proposition 5.2.4 to be small quantum circuits:

Definition 5.4.5 (pseudo max-divergence). Let ρ and σ be density operators of the same

system. Then Dt,ε
pseudo-max(ρ ‖σ) ≤ λ if for all t-size quantum distinguishers A, we have Pr[A(ρ) =

1] ≤ 2λ · Pr[A(σ) = 1] + ε.

Remark 5.4.6. When we restrict ρ, ρ′, σ, σ′ to be classical discrete random variables, and

distinguishers to be classical, we get the definitions of computational relative min-entropy

notions in the classical case.

Taking σ to be the maximally mixed states in Dt,ε
HILL-1-max(ρ ‖σ) and Dt,ε

metric-1-max(ρ ‖σ), recovers

our computational analogues of min-entropy.

Proposition 5.4.7. For s ∈ N, ε > 0, ρ ∈ Dens(Cd), and k ∈ [log d], we have

1. Dt,ε
HILL-1-max(ρ ‖ ρmm

d ) ≤ log d− k if and only if Ht,ε
HILL-min(ρ) ≥ k.

2. Dt,ε
metric-1-max(ρ ‖ ρmm

d ) ≤ log d− k if and only if Ht,ε
metric-min(ρ) ≥ k.

We also have the following relations:
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Proposition 5.4.8. For s ∈ N, ε, λ > 0, ρ ∈ Dens(Cd), we have

1. Dt,ε
HILL-1-max(ρ ‖σ) ≤ λ ⇒ Dt,ε

metric-1-max(ρ ‖σ) ≤ λ ⇒ Dt,ε
pseudo-max(ρ ‖σ) ≤ λ.

2. Dt,ε
HILL-2-max(ρ ‖σ) ≤ λ ⇒ Dt,ε

metric-2-max(ρ ‖σ) ≤ λ ⇒ Dt,ε′
pseudo-max(ρ ‖σ) ≤ λ, where ε′ = 2λ · ε.

Proof. Suppose Dt,ε
pseudo-max(ρ ‖σ) > λ. Let A be such that

Pr
[
A(ρ) = 1

]
> 2λ · Pr

[
A(σ) = 1

]
+ ε.

Then for all ρ′ with Dmax(ρ′ ‖σ) ≤ λ,

Pr
[
A(ρ) = 1

]
> 2λ · Pr

[
A(σ) = 1

]
+ ε ≥ Pr

[
A(ρ′) = 1

]
+ ε,

which implies Dt,ε
metric-1-max(ρ ‖σ) ≥ λ. On the other hand, for all σ′ with Dmax(ρ ‖σ′) ≤ λ,

Pr
[
A(σ′) = 1

]
≥ 1

2λ · Pr
[
A(ρ) = 1

]
≥ Pr

[
A(σ) = 1

]
+ ε

2λ ,

which implies Dt,ε/2λ
metric-2-max(ρ ‖σ) ≥ λ.

Similarly to Theorem 5.3.12, the HILL-type and metric-type relative min-entropies are

also interchangeable up to a small parameter loss.

Theorem 5.4.9. Let σ and ρ be quantum states in Dens(X ) where dim(X ) = d. If

Dt,ε
metric-1-max(ρ ‖σ) ≤ λ (resp., Dt,ε

metric-2-max(ρ ‖σ) ≤ λ), then Dt′,ε′
HILL-1-max(ρ ‖σ) ≤ λ (resp.,

Dt′,ε′
HILL-2-max(ρ ‖σ) ≤ λ), where ε′ = 2ε and t′ = t ·O(ε2/ log d).

Proof. Suppose for contradiction that Dt′,ε′
HILL-1-max(ρ ‖σ) > λ. That is for all ρ′ with

Dmax(ρ′ ‖σ) ≤ λ, there exists a distinguisher A of size t′ such that E[A(ρ)] − E[A(ρ′)] > ε′.

We consider the following zero-sum game:

• The strategy space of Player 1 A =
{
ρ′ ∈ Dens(X ) : Dmax(ρ′ ‖σ) ≤ λ

}
.

• The strategy space of Player 2 B a set of all distinguishers A : Dens(X )→ {0, 1} of size

at most t′.
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• For the payoff function g : A×B → {0, 1}, we first define the auxiliary mapping M . For

an input distinguisher A ∈ B, let ΠD be its corresponding measurement operator, and

define

M(A) = 1
2
((
E[A(ρ)] + 1

)
· 1d −ΠA

)
.

Then for ρ′ ∈ A and A ∈ B,

g
(
ρ′, D

)
=
〈
ρ′ , M(A)

〉
= 1

2
(
E[A(ρ)] + 1− E[A(ρ′)]

)
.

Note that the strategy space A is convex. Also, since 0 ≤ ΠA ≤ 1d, we have 0 ≤ M(A) ≤

1d, and so M(A) ∈ Meas(X ). Therefore, the above game satisfies the requirements in

Theorem 5.3.8.

By the nonuniform Quantum Min-max Theorem (Theorem 5.3.8), there exists a universal

distinguisher Â of size t = t′ ·O(log d)/ε2 such that for all ρ′ with Dmax(ρ′ ‖σ) ≤ λ,

E
[
Â(ρ′)

]
− E

[
Â(ρ)

]
> ε′ − ε = ε.

By the definition of metric relative entropy, we get Dt,ε
metric-1-max(ρ ‖σ) > λ, which yields a

contradiction.

Similarly for the type-2 notions, the strategy space of Player 1 becomes a convex set

A = {σ′ = Dens(X ) : Dmax(ρ ‖σ′) ≤ λ}, B remain the same, and for the payoff function,

we replace ρ, ρ′ by σ, σ′, respectively. The conclusion for type-2 notions follows the same

argument.

Because of this equivalence, in the rest of the section, we focus on the HILL-type and

pseudo notions.

5.4.2 Classical Dense Model Theorem

In the classical case, relations between HILL-1, HILL-2, and pseudo max-divergence are given

captured by the Dense Model Theorem [RTTV08, GT08] and variants. Specifically, the form

of the Dense Model Theorem by Reingold, Trevisan, Tulsiani, and Vadhan [RTTV08] says

131



HILL-2
Proposition 5.4.8
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Dense Model Theorem
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Strong Dense Model Theorem

// HILL-1

Lemma 5.4.14
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Figure 5.4.1: Relationships between computational relative min-entropies in the classical setting

that HILL-2 max-divergence implies HILL-1 when the divergence is λ = O(log κ) where κ

is the security parameter. The Strong Dense Model Theorem [MPRV09] says that pseudo

max-divergence implies HILL-1 max-divergence. Here we additionally show that HILL-1

max-divergence also implies HILL-2 max-divergence (Lemma 5.4.14). Therefore, all three

notions are equivalent in the classical setting. (See Figure 5.4.1 for their relationships)

Definition 5.4.10 (density (classical)). Let X and Y be distributions over X . For 0 < δ < 1,

we say X is δ-dense in Y if

∀x ∈ X , Pr
[
X = x

]
≤ 1
δ
· Pr

[
Y = x

]
.

Equivalently, Dmax(X ‖Y ) ≤ log(1/δ).

Definition 5.4.11 (pseudo-density (classical)). Let X and Y be distributions over X . For

0 < δ < 1, we say X is (δ, (t, ε))-pseudo-dense in Y Dt,ε
pseudo-max(X ‖Y ) ≤ log(1/δ).

The statement of the Strong Dense Model Theorem is as follows.

Theorem 5.4.12 (Strong Dense Model Theorem [MPRV09]). For every t, n ∈ N and

0 < ε, δ < 1, let X,Y be distributions over X such that X is (δ, (t, ε))-pseudo-dense in

Y . Then there exists a distribution X ′ over X such that X ′ is δ-dense in Y , and X ′ is

(t′, ε′)-indistinguishable from X where t′ = t/ poly(1/ε, log(1/δ)) and ε′ = O(ε/δ).

Corollary 5.4.13. For any t, n ∈ N, 0 < ε < 1 and λ > 0, let X,Y be two distributions over

X such that Dt,ε
pseudo-max(X ‖Y ) ≤ λ, then Dt′,ε′

HILL-1-max(X ‖Y ) ≤ λ where t′ = t/ poly(1/ε, λ) and

ε′ = O(ε · 2λ).
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Note that the dependency on λ in ε′ is exponential. Therefore we usually limit λ = log(κ)

where κ is the security parameter to maintain the negligibility of ε′.

Here we observe that that HILL-1 max-divergence also implies HILL-2 max-divergence

without any parameter loss, which is also true in the quantum case:

Lemma 5.4.14. Let ρ, ρ′, σ ∈ Dens(X ) such that ρ′ is δ-dense in σ, and ρ′ is (t, ε)-quantum-

indistinguishable from ρ. That is, Dt,ε
HILL-1-max(ρ ‖σ) < log(1/δ). Then there exists σ′ ∈ Dens(X )

such that ρ is δ-dense in σ′, and σ′ is (t, ε)-quantum-indistinguishable from σ. That is

Dt,ε
HILL-2-max(ρ ‖σ) < log(1/δ).

Proof. Define a state τ = (σ − δ · ρ′)/(1 − δ). Since ρ′ is δ-dense in σ, τ > 0, and so

τ ∈ Dens(X ). Let σ′ = δ · ρ + (1 − δ) · τ ∈ Dens(X ). Clearly ρ ≤ 1
δσ
′. Also, σ and σ′ are

(t, ε)-quantum-indistinguishable due to the quantum indistinguishability between ρ and ρ′.

Therefore, by Theorem 5.4.12 (Strong Dense Model Theorem), Lemma 5.4.14, and Propo-

sition 5.4.8, all the three notions, pseudo, HILL-1 and HILL-2 max-divergence are equivalent

up to some parameter losses in the classical case.

5.4.3 Impossibility of Quantum Dense Model Theorem

In this section, we will show a separation between the DHILL-1-max and DHILL-2-max max-divergence

for quantum states. More specifically, we show that there exist quantum states ρ and σ such

that DHILL-2-max(ρ ‖σ) ≤ 1 but DHILL-1-max(ρ ‖σ) is unbounded. To this end, we use the language

of density. We first generalize the notion of density for quantum states:

Definition 5.4.15 (density (quantum)). Let ρ and σ be quantum states on Dens(X ). For

0 < δ ≤ 1, we say ρ is δ-dense in σ if ρ ≤ 1
δσ. Equivalently, Dmax(ρ ‖σ) ≤ log(1/δ).

Recall the Dense Model Theorem statement and what the counterexample should achieve

to show the non-existence of Quantum Dense Model Theorem. Suppose σ and σ′ are two

computationally indistinguishable quantum states and ρ is a quantum state that is δ-dense in σ′.

That is DHILL-2-max(ρ ‖σ) ≤ log(1/δ). A Quantum Dense Model Theorem would imply that there

exists ρ′ that is δ-dense in σ and indistinguishable from ρ. That is DHILL-1-max(ρ ‖σ) ≤ log(1/δ).
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However, we show that this is false by constructing ρ, σ, and σ′ such that for every ρ′ that is

δ-dense in σ, it can be distinguished from ρ. That is DHILL-1-max(ρ ‖σ) =∞.

Our counterexample is based on the following two observations: 1) the only state that is

dense in a pure state is the pure state itself; 2) there exists a pure state that is pseudorandom.

We state the observations formally as follows.

Lemma 5.4.16. Let X ⊗ Y be a bipartite quantum state space. Suppose σ = |x〉〈x| ⊗ σY ∈

Dens(X ⊗Y) where |x〉 ∈ Ball(X ) and σY ∈ Dens(Y). For every 0 < δ ≤ 1, a density operator

ρ that is δ-dense in σ must be of the form |x〉〈x| ⊗ ρY , where ρY is δ-dense in σY .

Proof. Let σY =
∑
i pi|yi〉〈yi| be the spectral decomposition of σY . Then σ = |x〉〈x| ⊗ σY =∑

i pi|x, yi〉〈x, yi|. Suppose for contradiction, the spectral decomposition of ρ ∈ Dens(X ⊗ Y)

is
∑
i qi|ψi〉〈ψi| but for some j, qj > 0 and TrY

(
|ψj〉〈ψj |

)
6= |x〉〈x|.

Let |v〉 = |ψj〉−
∑
i〈x, yi|ψj〉 · |x, yi〉 Then 〈v|x, yi〉 = 0 for all i, and since TrY (|ψj〉〈ψj |) 6=

|x〉〈x|, |v〉 is non-zero and is not orthogonal to ψj . Let |φ〉 = |v〉/‖|v〉‖ ∈ Ball(X ⊗ Y). Then

〈φ|ρ|φ〉 ≥ ‖〈φ|ψj〉‖2 > 0, but 〈φ|σ|φ〉 =
∑
i〈φ| (|x, yi〉〈x, yi|) |φ〉 = 0, which contradicts the

assumption that ρ ≤ 1
δσ for some δ > 0.

Theorem 5.4.17 ([BMW09, GFE09]). There is a constant c > 0 such that for all t,m ∈ N,

ε > 0 such that m ≥ c · log(t/ε), there exists a pure state ρ = |ψ〉〈ψ| ∈ Dens(C2m) on m qubits

that is (t, ε)-quantum-pseudorandom.

Remark 5.4.18. In [BMW09, GFE09], they showed that a uniformly random pure state

ρ = |ψ〉〈ψ| ∈ Dens(C2m) is (t, ε)-quantum-indistinguishable with all but 2−Ω(2m) probability.

We can show that sampling a pure state |ψ〉 uniformly at random from
{∑

i∈{0,1}m αi|i〉 :

αi ∈
{
±2−m/2

}}
is (t, ε)-quantum-indistinguishable with all but 2−Ω(2m) probability. See

Appendix 5.7.1 for the formal statement and proof.

The following theorem says that a Quantum Dense Model Theorem does not exist.

Theorem 5.4.19. For t, n ∈ N, ε, δ ∈ (0, 1), and integers m1,m2 > O
(
log(t/ε)

)
with m1 +

m2 = n. Let X = C2m1 ,Y = C2m2 . There exist quantum states ρ, σ, σ′ ∈ Dens(X ⊗ Y) with

Hmin(σ) = m2,Hmin(σ′) = m1 such that
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1. ρ is δ-dense in σ′.

2. σ′ and σ are (t, ε)-quantum-indistinguishable.

3. ρ and ρ′ are not (O(n), ε′)-quantum-indistinguishable where ε′ = 1
2δ −

1
2 − ε.

Proof. Let d1 = 2m1 = dim(X ) and d2 = 2m2 = dim(Y). First, we have the following claim:

Claim 5.4.20. Let ρX ∈ Dens(X ) and σY ∈ Dens(Y) be two quantum states that are (t, ε)-

quantum pseudorandom. Then the quantum states
(
ρX ⊗ ρmm

d2

)
,
(
ρmm
d1
⊗ σY

)
∈ Dens(X ⊗ Y)

are
(
t−O

(
log(max{d1, d2})

)
, 2ε
)
-quantum-indistinguishable.

Proof of Claim 5.4.20. Since it only takes O(m) ancilla qubits and O(m) many Hadamard

gates to prepare a 2m-dimensional maximally mixed state, ρX ⊗ ρmm
d2

and ρmm
d1
⊗ ρmm

d2

are (s − O(log(d1)), ε)-quantum-indistinguishable. Similarly, ρmm
d1
⊗ ρ2 and ρmm

d1
⊗ ρmm

d2

are (s − O(log(d2)), ε)-quantum-indistinguishable. Therefore, ρ1 ⊗ ρmm
d2

and ρmm
d1
⊗ ρ2 are

(s−O(log(max{d1, d2})), 2ε)-quantum-indistinguishable from each other.

By Theorem 5.4.17, there exists pure states σX ∈ Dens(X ) and σ′Y ∈ Dens(Y) that both

are (t+O(log(d1d2)), ε/2)-quantum-pseudorandom. Then by Claim 5.4.20,

σ = σX ⊗ ρmm
d2 and σ′ = ρmm

d1 ⊗ σ
′
Y

are (t, ε)-quantum-indistinguishable. Moreover, the min-entropies of σ and σ′ are log d2 = m2

and log d1 = m1, respectively. Let

ρ = 1
2δ
(
|0〉〈0| ⊗ ρmm

d1/2

)
⊗ σ′Y +

(
1− 1

2δ
)(
|1〉〈1| ⊗ ρmm

d1/2

)
⊗ σ′Y .

Then ρ is δ-dense in σ′. By Lemma 5.4.16, for every ρ′ that is δ-dense in σ, ρ′ must be of

the form σX ⊗ ρ′Y for some ρ′Y ∈ Dens(Y). Now we define a quantum distinguisher A whose

corresponding measurement operator is

Π = |0〉〈0| ⊗ 1d1/2 ⊗ 1d2 ,
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which essentially measures the first input qubit in the standard basis and output its complement.

Thus it can be implemented by a circuit of size O(log d1 + log d2) = O(n). Then

Pr
[
A(ρ) = 1

]
=
〈
Π , ρ

〉
= 1

2δ .

On the other hand,

Pr
[
A(ρ′) = 1

]
= Pr

[
A(σX ⊗ ρ′Y ) = 1

]
= Pr

[
A(σX ⊗ ρmm

d2 ) = 1
]

≤ Pr
[
A(ρmm

d1 ⊗ ρ
mm
d2 ) = 1

]
+ ε = 1

2 + ε .

Therefore,
∣∣Pr[A(ρ) = 1]− Pr[A(ρ′)] = 1

∣∣ > 1
2δ −

1
2 − ε.

Corollary 5.4.21. Given t ∈ N, n > O(log(t/ε)), and ε ∈ (0, 1/4), there exist quantum states

ρ, σ ∈ Dens(C2n) such that Dt,ε
HILL-2-max(ρ ‖σ) ≤ 1 but DO(n),1/4

HILL-1-max (ρ ‖σ) =∞.

Summarily, in the quantum setting, HILL-1 max-divergence being small does imply HILL-2

max-divergence being small (Lemma 5.4.14, and then pseudo max-divergence being small

(Proposition 5.4.8. However, we show an counter example where HILL-2 max-divergence is

small, but HILL-2 max-divergence is unbounded.

Remark 5.4.22. The existence of a pseudorandom pure state (Theorem 5.4.17) only holds

when we consider quantum distinguishers without quantum advice. Otherwise, for a pure

state ρ, one can hardwire the same state as advice, allowing it to be distinguished from a

maximally mixed state by using a Swap Test. (See Appendix 5.7.1 for more about pseudorandom

pure states against quantum distinguishers with quantum advice.) Therefore, the separation

between HILL-1 and HILL-2 type of computational relative entropies only holds when quantum

distinguishers do not have quantum advice.

5.5 Simulating Quantum Auxiliary Input

Let (X,Z) be a classical joint distribution over {0, 1}n × {0, 1}`. The classical Leakage

Simulation Lemma asserts the existence of “low complexity” simulator function h : {0, 1}n →
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{0, 1}` such that (X,Z) and (X, h(X)) are indistinguishable by a family of distinguishers.

The Leakage Simulation Lemma implies many theorems in computational complexity

and cryptography. For cryptographic applications, Jetchev and Pietrzak [JP14] used the

lemma to give a simpler and quantitatively better proof for the leakage-resilient stream

cipher by Pietrzak [Pie09]. Chung, Lui, and Pass [CLP15] also apply the lemma to study

connections between various notions of Zero Knowledge. Moreover, the Leakage Simulation

Lemma can be used to deduce the technical lemma of Gentry and Wichs [GW11] (for

establishing lower bounds for succinct arguments), and the Leakage Chain Rule [JP14] for

relaxed-HILL pseudoentropy [HILL99, GW11, Rey11]. For complexity theory, the Leakage

Simulation Lemma implies the Regularity Lemma [TTV09], thus also the Impagliazzo’s

Hardcore Lemma [Imp95] and the Dense Model Theorem [RTTV08].

Here we generalize the Leakage Simulation Lemma to the quantum setting where the

simulated system is quantum.

Theorem 5.5.1. Let ρXZ =
∑
x∈{0,1}n px|x〉〈x| ⊗ ρxZ ∈ Dens(X ⊗ Z) with dim(X ) = 2n and

dim(Z) = d. For every t ∈ N and ε > 0, there exists a quantum circuit C : {0, 1}n → Dens(Z)

of size t′ = poly(t, n, d, 1/ε) such that the cq-state ∑x∈{0,1}n px|x〉〈x| ⊗ C(x) and ρXZ are

(t, ε)-quantum-indistinguishable.

We will prove the theorem in Section 5.5.2. Before that, we introduce some basic lemmas

that will be used in the proof. In Section 5.5.3, we derive the Leakage Chain Rule for quantum

relaxed-HILL entropy as a corollary of the Quantum Leakage Simulation Lemma.

5.5.1 Basic Lemmas

Rademacher Complexity

Cheng, Hsieh, and Yeh showed the bound on the Rademacher complexity of quantum

measurements:

Theorem 5.5.2 ([CHY15, Theorem 4.2] (implicit)). For d ∈ N, let W = Dens(Cd), and

F = {〈Π , ·〉 : Π ∈ Meas(Cd)}. Then for every w1, . . . , wT ∈ W, the empirical Rademacher
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complexity of F is R̂w1,...,wT (F) = O(
√
d/T ).

It is straightforward to show the linear property of (empirical) Rademacher complexity:

Proposition 5.5.3. Given classes of functions F1, . . . ,FN mapping from W to R, use

p1F1 + · · ·+ pNFN to denote the class{
g :WN → R : g(w1, . . . , wN ) =

N∑
j=1

pj · fj(wj) where fj ∈ Fj ∀j ∈ [N ]
}
.

Let #»wi = (wi,1, . . . , wi,N ) ∈ WN for all i ∈ [T ]. If R̂w1,j ,...,wT,j (Fj) ≤ rj for all j ∈ [N ],

then R̂ #»w1,...,
#»wT (G) ≤

∑N
j=1 pjrj, where G = p1F1 + · · ·+ pNFN .

Proof.

R̂ #»w1,...,
#»wT (G) = E

γ1,...,γT

[
sup
g∈G

1
T

T∑
i=1

γi · g( #»wi)
]

= E
γ1,...,γT

[
sup

∀j∈[N ],fj∈Fj

1
T

T∑
i=1

γi ·
N∑
j=1

pj · fj(wi,j)
]

= E
γ1,...,γT

[ N∑
j=1

pj · sup
fj∈Fj

1
T

T∑
i=1

γifj(wi,j)
]

=
N∑
j=1

pj · R̂wj,1,...,wj,T (Fj) ≤
N∑
j=1

pjrj .

Tomography

In a quantum tomography problem, the goal is to learn the behavior or even a description

of a quantum circuit or quantum state. Our form of this will come up in the proof of the

Quantum Leakage Simulation Lemma (Theorem 5.5.1), where we would like to find a quantum

state that maximizes the acceptance probability of a given quantum distinguisher. This task

is formulated in Definition 5.5.9 below. Here we provide a solution with runtime poly(t, d),

which suffices for our applications.

Our tomography algorithm also uses a solution to the QCkt-Value Problem (Defini-

tion 5.5.4) and the QCkt-Tomography Problem (Definition 5.5.7), described as follows.
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Definition 5.5.4 (QCkt-Value Problem). The QCkt-Value(t, ε) problem is a computa-

tional problem defined as follows:

• Input: a description of a quantum distinguisher D with no input (only ancillas) of size t

with binary output {0, 1}, and an error parameter 0 < ε < 1.

• Task: output an estimate p̂ of the probability p = Pr[D() = 1] such that |p̂− p| ≤ ε.

Lemma 5.5.5. There exists a uniform quantum algorithm A that solves QCkt-Value(t, ε)

with probability at least 1− γ in time O
(
t · log(1/γ)/ε2)

)
.

Proof. The algorithm independently runs the circuit D t times (with fresh ancilla qubits each

time) and set p̂ to be the fraction of times D outputs 1. By a Chernoff bound, we have

Pr
[
|p− p̂| > ε

]
< 2−Ω(tε2) ≤ γ.

for t = O
(
log(1/γ)/ε2). Each trial takes O(t) time. Therefore, the total running time is

O
(
t · log(1/γ)/ε2).

Remark 5.5.6. It is worth mentioning that by using a quantum speed-up (e.g., [Mon15]),

one can improve the dependence on 1/ε quadratically, although this improvement is not crucial

for our purposes. On the other hand, there is a lower bound [HHJ+16] saying a significant

improvement on the dependency on t is impossible.

Definition 5.5.7 (QCkt-Tomography Problem). The QCkt-Tomography(t, d, ε) prob-

lem is a computational problem defined as follows:

• Input: a description of a quantum distinguisher D : Dens
(
Cd
)
→ {0, 1} of size t, and an

error parameter 0 < ε < 1.

• Task: let Π be the corresponding quantum measurement of C. Output an explicit

description (as a d× d matrix) of a quantum measurement Π̂ such that
∥∥Π− Π̂

∥∥
op ≤ ε.

Lemma 5.5.8. There exists a quantum algorithm running in time poly(t, d, 1/ε, log(1/γ))

that solves QCkt-Tomography(t, d, ε) Problem with probability at least 1− γ. .
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Proof. The strategy is to estimate each entry of the matrix Π by feeding special input states

to circuit C and observing the statistics of the output bit (i.e., a tomography process for the

POVM Π (e.g., [LFC+09])).

It only costs O(t log s) time for a quantum algorithm to execute C once [Val76]. The total

running time then depends on the number of executions of C for the desired efficiency. To

that end, we will leverage the following set of special input states, which suffice to determine

the value of any positive semidefinite operator over the input space. Let {|1〉, · · · , |d〉} be any

orthonormal basis in Cd. Define the following set of density operators:

∀n = 1, · · · , d, An,n = |n〉〈n|, (5.8)

∀1 ≤ n < m ≤ d, Are
n,m = |ψn,m〉〈ψn,m|, |ψn,m〉 = 1√

2
(
|n〉+ |m〉

)
, (5.9)

∀1 ≤ n < m ≤ d, Aim
n,m = |φn,m〉〈ψn,m|, |φn,m〉 = 1√

2
(
|n〉+ i|m〉

)
. (5.10)

Also let

αn,n(Π) = Tr(An,nΠ)

αre
n,m(Π) = Tr(Are

n,mΠ)

αim
n,m(Π) = Tr(Aim

n,mΠ)

The collection of values αn,n(Π) for n = 1, · · · , d, and αre
n,m(Π) and αim

n,m(Π) for 1 ≤ n < m ≤ d

uniquely determines any positive semidefinite operator Π.7 It suffices to collect these α values

to within small error to approximate Π. We will use Lemma 5.5.5 for this purpose. Overall,

by a union bound, with probability 1− γ, we can collect a set of α̃ values that approximate

the original α values each within an additive error η in time d2 · O
(
t · log(d/γ)/η2) =

7 It is not hard to see that αn,n(Π) determines all the diagonal entries. Every off-diagonal entries (n,m) (or
its conjugate at (m,n)) is then determined by αre/im

n,m (Π) together with the information about the diagonal
entree (n, n) and (m,m).
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poly(t, d, log(1/γ), 1/η). Namely, for all n,m, we have

|α̃n,n − αn,n(Π)| ≤ η

|α̃re
n,m − αre

n,m(Π)| ≤ η

|α̃im
n,m − αim

n,m(Π)| ≤ η

. (5.11)

We can thus solve the following semidefinite program (SDP) to recover an approximate Π̂:

Goal: find a Π̂

Subject to:



|α̃n,n − αn,n(Π̂)| ≤ η,

|α̃re/im
n,m − αre/im

n,m (Π̂)| ≤ η,

0 ≤ Π̂ ≤ 1d

By Equation 5.11, this SDP is feasible. We claim that any feasible solution Π̂ is a good

approximate of Π. Specifically, by Equation 5.11, the definition of the SDP and the triangle

inequality, we have 

|α̃n,n(Π̂)− αn,n(Π)| ≤ 2η

|α̃re
n,m(Π̂)− αre

n,m(Π)| ≤ 2η

|α̃im
n,m(Π̂)− αim

n,m(Π)| ≤ 2η

,

which implies ‖Π̂−Π‖max ≤
√

(2η)2 + (2η)2 = O(η). By Equation (5.1), we have

∥∥∥Π̂−Π
∥∥∥

op
≤ d ·

∥∥∥Π̂−Π
∥∥∥

max
= O(dη) .

It then suffices to choose η = O(ε/d). Overall, the above algorithm succeeds with probability

at least 1− γ and runs in poly(t, d, 1/ε, log(1/γ)) time.

Once we know how to approximate the quantum effect matrix of a given quantum

distinguisher, we are ready to solve the our main tomography problem:

Definition 5.5.9 (QCkt-Max-Sat Problem). The QCkt-Max-Sat(t, d, ε) problem is a

computational problem defined as follows:
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• Input: a description of a quantum distinguisher D : Dens(Cd)→ {0, 1} of size t, and an

error parameter 0 < ε < 1.

• Task: output an explicit description (as a density matrix) of a quantum state ρ ∈

Dens
(
Cd
)
such that D(ρ) > maxσ D(σ)− ε.

Theorem 5.5.10. There exists a (uniform) quantum algorithm A that solves QCkt-Max-Sat(t, d, ε)

with probably at least 1− γ in time poly(t, d, 1/ε, log(1/γ)).

Proof. The proof follows from Lemma 5.5.8 and an application of a spectrum decomposition.

Specifically, let Π be the corresponding quantum measurement of D. By Lemma 5.5.8, there

exists a quantum circuit of time complexity poly(t, d, 1/ε, log(1/γ)) and outputs a description

of Π̂ such that
∥∥Π̂−Π

∥∥
op ≤ ε/2 with probability 1− γ. That means for all τ ∈ Dens(Cd),

∣∣∣〈Π̂ , τ
〉
−
〈
Π , τ

〉∣∣∣ ≤ ε/2 . (5.12)

We then run a spectrum decomposition on Π̂ and choose ρ = |ψ〉〈ψ| to be the density operator

corresponding to the eigenvector |ψ〉 with the largest eigenvalue of Π̂. This step can be done

in poly(d) given that dimension of Π̂ is d. Thus, we have

〈
Π̂ , ρ

〉
≥ max

σ

〈
Π̂ , σ

〉
. (5.13)

By Equation (5.12), we have

〈
Π , ρ

〉
≥

〈
Π̂ , ρ

〉
− ε/2

≥ max
σ

〈
Π̂ , σ

〉
− ε/2

≥ max
σ

〈
Π , σ

〉
− ε/2− ε/2

= max
σ

〈
Π , σ

〉
− ε.

The overall complexity is poly
(
t, d, 1/ε, log(1/γ)

)
, which completes the proof.
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5.5.2 Proof of Quantum Leakage Simulation Lemma

Theorem 5.5.1 (restatement). Let ρXZ =
∑
x∈{0,1}n px|x〉〈x| ⊗ ρxZ ∈ Dens(X ⊗ Z) with

dim(X ) = 2n and dim(Z) = d. For every t ∈ N and ε > 0, there exists a quantum circuit C :

{0, 1}n → Dens(Z) of size t′ = poly(t, n, d, 1/ε) such that the cq-state∑x∈{0,1}n px|x〉〈x|⊗C(x)

and ρXZ are (t, ε)-quantum-indistinguishable.

Proof. Suppose for contradiction that for all size t′ quantum circuits C : {0, 1}n → Dens(Cd),

there exists a quantum distinguisher on the space Dens
(
C2n)×Dens

(
Cd
)
of size t such that

E
[
D(ρXZ)

]
− E

[
D
(∑

x px|x〉〈x| ⊗ C(x)
)]
≥ ε . (5.14)

We can characterize a quantum distinguisher D by a set of measurement operators {Πx}x∈{0,1}n

by letting the corresponding measurement operator of D(x, ·) be Πx.

Then Equation (5.14) can be written as

∑
x

px
〈
Πx , ρ

x
Z

〉
−
∑
x

px
〈
Πx , C(x)

〉
≥ ε.

First, we extend the above statement about circuits C of bounded size to distributions of

circuits C̄ of bounded size via the following claim.

Claim 5.5.11. For every distribution C̄ over size t′′ quantum circuit with t′′ = t′/O(d/ε2),

there exists a distinguisher D of size t such that

∑
x

px
〈

Πx , ρ
x
Z

〉
− E

C r←C̄

[∑
x px

〈
Πx , C(x)

〉]
≥ ε/2,

where Πx is the measurement operator of D(x, ·).

Proof of Claim 5.5.11. Suppose for contradiction, there is a distribution C̄ over size t′′ circuit

such that for all distinguisher D of size t,

∑
x

px
〈

Πx , ρ
x
Z

〉
− E

C r←C̄

[∑
x px

〈
Πx , C(x)

〉]
< ε/2 . (5.15)

As in the proof of Theorem 5.3.8, we will use the generalization bound of Rademacher

complexity (5.3.10) to argue the existence of a low complexity circuit Ĉ that approximates C̄.
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Define g{Πx} :
(
Dens(Cd)

)2n → [0, 1] to be g{Πx}
(
{ρx}

) def=
∑
x px

〈
Πx , ρ

x
〉
. Let Gt contains

the set of functions g{Πx} where {Πx} is the corresponding set of measurement operator of

some D on {0, 1}n × Dens(Cd) of size ≤ t, and W =
(
Dens(Cd)

)2n . By Theorem 5.5.2 and

Lemma 5.5.3, we know that for every w1 . . . wT ∈ W ,

R̂w1,...,wT (G∞) = R̂w1,...,wT (
∑
x pxF) =

∑
x

px ·O
(√

d/T
)

= O
(√

d/T
)
,

where F = {〈Π , ·〉 : Π ∈ Meas(Cd)}

Thus, for every distribution W on W, we have RW,T (G∞) = O
(√

d/T
)
. In particular,

lettingW = C̄(x), and by the monotonicity of Rademacher complexity, we have RC̄(x),T (Gs) =

O
(√

d/T
)
. Applying Theorem 5.3.10, there exist circuits C1, . . . ,CT of size at most t′′ such

that ∣∣∣∣∣ 1T
T∑
i=1

∑
x

px
〈

Πx , Ci(x)
〉
− E

C r←C̄

[∑
x

px
〈

Πx , C(x)
〉]∣∣∣∣∣ < ε/2

for some T = O(d/ε2). Let Ĉ be the quantum circuits that choose uniformly at random from

C1, . . . ,CT to run. Then the circuit size of Ĉ is t′′ ·O(d/ε2) = t′, and

∣∣∣∑
x

px
〈

Πx , Ĉ(x)
〉
− E

C r←C̄

[∑
x

px
〈

Πx , C(x)
〉]∣∣∣ < ε/2,

which together with 5.15 contradicts our assumption above that every circuit C of size t′ has

a distinguisher D of size t such that Equation 5.14 holds.

Once we have Claim 5.5.11, we apply the Nonuniform Quantum Min-Max Theorem

(Theorem 5.3.8) to the following game:

• The strategy space A of Player 1 is the convex hull of

{
cq-states

∑
x px|x〉〈x| ⊗ C(x)

∣∣∣ C : {0, 1}n → Dens
(
C2`) of size t′′} .

• The strategy space B of Player 2 is the set of all distinguishers of size at most t.

• For the payoff function g : A× B → [0, 1], we first define the mapping M to be

M(D) = 1
2
((
E[D(ρXZ)] + 1

)
· 1X⊗Z −ΠD

)
.
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where ΠD is the corresponding measurement operator of D. Then for σXZ ∈ A and

D ∈ B,

g(σXZ ,D) =
〈
M(D) , ρXZ

〉
= 1

2
(
E
[
D(ρXZ)

]
+ 1− E

[
D(σXZ)

])
Claim 5.5.11 tells us that for all σXZ ∈ A, there exists D ∈ B such that g(σXZ ,D) >

(1 + ε/2)/2. By the Nonuniform Quantum Min-Max Theorem, we deduce that there exists

a quantum distinguisher D̂ of size tD̂ = t · O
(

1
ε2 (n+ log d)

)
such that for all σXZ ∈ A,

g(σXZ , D̂) > (1 + ε/2)/2 − ε/8. That is, for all quantum circuit Ĉ : {0, 1}n → Dens(Cd) of

size t′′,

E
[
D̂
(
ρXZ

)]
− E

[
D̂
(∑

x px|x〉〈x| ⊗ Ĉ(x)
)]
> ε/8. (5.16)

Writing the corresponding measurement operator of D̂(x, ·) as Πx for x ∈ {0, 1}n, we have

E
[
D̂
(
ρXZ

)]
=

∑
x∈{0,1}n

px
〈

Πx , ρ
x
Z

〉
.

Now, define the quantum circuit C : {0, 1}n → Dens(Cd) as follows on input x ∈ {0, 1}n.

1. Apply Lemma 5.5.10 to solve the (tD̂, d, ε/32)-QCkt-Max-Sat Problem (Defini-

tion 5.5.9) with the quantum circuit D̂(x, ·). Therefore, there exists an algorithm with

running time poly
(
tD̂, d, 1/ε

)
outputting the description (in density matrix) of σx such

that with probability at least 1− ε/32,

〈
Πx , σx

〉
≥ max

ρ
〈Πx, ρ〉 [2]− ε

16 .

2. Construct and output the quantum state σx based on the its density matrix description,

which can be done by a circuit of size poly(d) [SBM05].

The total running time of C is poly(t, n, d, 1/ε). Suppose the running time of C is at most t′′,

we have

E
[
D̂ (
∑
x px|x〉〈x| ⊗ C(x))

]
=

∑
x∈{0,1}n

px
〈

Πx , σx
〉
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≥
(

1− ε

32

) ∑
x∈{0,1}n

px max
ρ

〈
Πx , ρ

〉
− ε

32


≥
(

1− ε

32

)(
max

TrZ(ρ′XZ)=TrZ(ρXZ)
E
[
D̂(ρ′XZ)

]
− ε

32

)

≥E
[
D̂(ρXZ)

]
− ε

16 ,

which contradicts Equation (5.16).

5.5.3 Leakage Chain Rule

The Leakage Chain Rule for (classical) relaxed-HILL entropy have number of applications in

cryptography such as leakage-resilient cryptography [DP08], memory delegation [CKLR11],

and deterministic encryption [FOR15]. In this section, we will prove the leakage chain rule

for quantum relaxed-HILL pseudoentropy with quantum leakage.

First, we recall the generic statement of the leakage chain rule [DP08]. Let (X,Y, Z) be a

joint distribution (which will be a quantum state ρXY Z in the quantum setting) where X,

Y and Z are viewed as a source, prior knowledge, and leakage, respectively. The leakage

chain rule says that, if the entropy of X conditioned on Y is at least k, then the entropy

of X conditioned on both Y and Z retains at least k − len(Z), where len(Z) is the length

(measured in bit/qubit) of Z. That is

H(X|Y Z) ≥ H(X|Y )− len(Z) .

In the asymptotic setting, we will focus on the case that len(Z) = O(log κ) and the length of

len(X) and len(Y ) could be poly(κ), where κ is the security parameter.

The Leakage Chain Rule holds for quantum min-entropy when Z is separable from XY ,

which is a necessary step in our proof of the Leakage Chain Rule for computational notions.

Theorem 5.5.12 ([WTHR11, Lemma 13]). Let ρ = ρXY Z =
∑
k pkρ

k
XY ⊗ ρkZ be a separable

state on the space X ⊗ Y ⊗ Z. Then

Hmin(X|Y Z)ρ ≥ Hmin(X|Y )ρ − len(Z) .
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Remark 5.5.13. In the general case — System XY may not be separable from Z, [WTHR11]

also showed that Hmin(X|Y Z)ρ ≥ Hmin(X|Y )ρ − 2|Z|. Furthermore, the equality holds if and

only if ρXZ are maximally entangled.

For pseudoentropies, it is known that the Leakage Chain Rule holds for classical relaxed-

HILL min-entropy [DP08, RTTV08, GW11]. When there is no prior knowledge Y and Z is

short (logarithmic in the security parameter), classical HILL pseudoentropy and classical

relaxed-HILL pseudoentropy are equivalent. Thus the Leakage Chain Rule holds for classical

HILL pseudoentropy also holds when there is no prior knowledge Y . However, if prior

information Y is allowed, Krenn et al. [KPWW16] showed that the leakage lemma is unlikely

to hold for standard HILL pseudoentropy. Specifically, assuming the existence of a perfectly

binding commitment scheme, they constructed a joint distribution (X,Y, Z), where Z is a

single random bit, such that HHILL-min(X|Y ) ≥ n, but HHILL-min(X|Y, Z) ≤ 1. Therefore, we

aim to prove a quantum leakage chain rule for relaxed-HILL pseudoentropy. In particular,

we consider the case that only the leakage is quantum, namely the joint quantum state

ρXY Z =
∑
xy pxy|xy〉〈xy| ⊗ ρ

xy
Z is a ccq-state.

Theorem 5.5.14. Given n,m, `, t′ ∈ N and ε > 0, let ρXY Z =
∑

(x,y)∈{0,1}n+m pxy|xy〉〈xy| ⊗

ρxyZ ∈ Dens(X ⊗ Y ⊗ Z) be a ccq-state with dim(X ) = 2n, dim(Y) = 2m, and

dim(Z) = 2`. If Ht,ε
r-HILL-min(X|Y )ρ ≥ k, then we have Ht′,ε′

r-HILL-min(X|Y Z)ρ ≥ k − ` where

t′ =
(
t/ poly(n,m, 2`, 1/ε)

)O(1) and ε′ = 2ε.

We use the following lemma as an intermediate step to derive the Leakage Chain Rule.

Lemma 5.5.15 (quantum generalization of [GW11, Lemma 3.2]). Given n, `, t ∈ N and

ε > 0, let ρXZ =
∑
x∈{0,1}n px|x〉〈x| ⊗ ρxZ ∈ Dens(X ⊗Z) be a cq-state with dim(X ) = 2n and

dim(Z) = 2`. For every X ′ that is (t, ε)-quantum-indistinguishable from X, there exists a

quantum circuit C of size at most s/2 such that the cq-state

σX′Z′ =
∑

x∈{0,1}n
qx|x〉〈x| ⊗ C(x) and ρXZ

are (t′, ε′)-quantum-indistinguishable where qx = Pr[X ′ = x], t′ =
(
t/ poly(n, 2`, 1/ε)

)O(1),
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and ε′ = 2ε.

Proof. By Theorem 5.5.1, there exists a circuit C : {0, 1}n → Dens(C2`) with size

s/2 = poly(t′, n, 2`, 1/ε) such that ρXZ =
∑
x∈{0,1}n px|x〉〈x|⊗ρxZ and

∑
x∈{0,1}n px|x〉〈x|⊗C(x)

are (t′, ε)-quantum-indistinguishable. Since X and X ′ are (t, ε)-quantum-indistinguishable,∑
x∈{0,1}n px|x〉〈x| ⊗ C(x) and σX′Z′ =

∑
x∈{0,1}n qx|x〉〈x| ⊗ C(x) are (t/2, ε)-quantum-

indistinguishable. By the transitivity of indistinguishability, ρX′Z′ and σXZ are (t′, ε′)-

quantum-indistinguishable.

Once we have Lemma 5.5.15, we can derive the chain rule for quantum relaxed HILL pseu-

doentropy from the chain rule for quantum min-entropy of separable states (Theorem 5.5.12).

Proof of Theorem 5.5.14. Ht,ε
r-HILL-min(X|Y ) ≥ k implies there exists a joint distribution

(X ′, Y ′) such that (X,Y ) and (X ′, Y ′) are (t, ε)-indistinguishable and Hmin(X ′|Y ′) ≥ k. By

Lemma 5.5.15, there exists an `-qubit quantum circuit C : {0, 1}n+m → Dens(C`) such that

ρXY Z =
∑

(x,y)∈{0,1}n+m

pxy|xy〉〈xy| ⊗ ρxyZ and σX′Y ′Z′ =
∑

(x,y)∈{0,1}n+m

qxy|xy〉〈xy| ⊗ C(x, y),

where qxy = Pr[X ′ = x, Y ′ = y] are (t′, ε′)-indistinguishable for some t′ =
(
t/ poly(n, 2`, 1/ε)

)O(1)

and ε′ = 2ε. By the chain rule for quantum min-entropy of separable states (Theorem 5.5.12),

Hmin(X ′|Y ′Z ′)σ ≥ k − `, which implies Ht′,ε′
r-HILL-min(X|Y Z)ρ ≥ k − `.

We have proved the quantum leakage chain rule for ccq-states. However, due to some

barriers that we will mention in Appendix 5.7.2, our proof techniques do not extend to the

case of open for the cqq-states (where the prior knowledge Y is also quantum).

Open Problem 5.5.16. Let ρXY Z =
∑
x∈{0,1}n px|x〉〈x| ⊗ ρxY Z ∈ Dens(X ⊗ Y ⊗ Z) be a

cqq-state with dim(X ) = 2n, dim(Y) = 2m, and dim(Z) = 2` If Ht,ε
r-HILL-min(X|Y )ρ ≥ k, can we

show that Ht′,ε′
r-HILL-min(X|Y Z)ρ ≥ k − ` for some t′ =

(
t/ poly(n,m, 2`, 1/ε)

)O(1) and ε′ = O(ε)?

Additionally, we do not know whether quantum HILL and relaxed-HILL entropies are

equivalent, even for the case that Z is a single qubit. Thus our result does not imply a chain

rule for quantum HILL entropies without prior knowledge.
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Open Problem 5.5.17. Let ρXZ ∈ Dens(X⊗Z) be a cq-state with dim(X ) = 2n, dim(Z) = 1

If Ht,ε
r-HILL-min(X|Z)ρ ≥ k, can we show that Ht′,ε′

HILL-min(X|Z)ρ ≥ k for some t′ =
(
t/ poly(n, 1/ε)

)O(1)

and ε′ = O(ε)?

5.6 Application to Quantum Leakage-Resilient Cryptography

Classically, the Leakage Simulation Lemma and the Leakage Chain Rule have important

applications in Leakage-Resilient Cryptography, which aims to construct secure cryptographic

protocols even if side information about the honest parties’ secrets leak to an adversary. For

instance, the security of a leakage-resilient stream cipher based on a weak pseudorandom

function (weak PRF) was proved using the classical Leakage Simulation Lemma [Pie09, JP14],

and the security of the construction based on a pseudorandom generator (PRG) was proved

by the classical Leakage Chain Rule [DP08].

Here, we use our Quantum Leakage Simulation Lemma to obtain a stream cipher that is

secure against quantum adversary that can get quantum leakage as well as classical leakage,

provided that the adversary has bounded quantum storage. (The classical storage of the

adversary is unbounded.) The construction is the same as in [DP08] but instantiated with

a PRG secure against quantum adversaries with quantum advice. Our proof follows the

framework in [JP14], but with certain necessary modifications to make the proof go through

in the quantum setting.

5.6.1 Quantum leakage-resilient stream-cipher

In this section, we generalize the leakage-resilient stream cipher defined in [DP08] to capture

quantum leakage in the bounded-quantum-storage model. A stream cipher is given by a

function SC : {0, 1}m → {0, 1}m × {0, 1}n. Initially, the internal s(0) r← {0, 1}m. In the i-th

round, (s(i), x(i)) = SC(s(i−1)) is computed. When we iteratively apply the function SC, the

internal state evolves and generates the output X(1), X(2), . . . . In a quantum leakage-resilient

stream cipher, we consider adversaries with quantum power that also learn some bounded-

length quantum leakage λ(i) about the internal state s(i−1) that was used for generating x(i).
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More precisely, we assume the leakage λ(i) only depends on the part that was used for evaluating

SC(s(i−1)). That is, if we write s(i−1) as (s(i−1)
active, s

(i−1)
inactive), such that SC(s(i−1)) is independent

to s(i−1)
inactive, then λ(i) = λ(i)(sactive) (following the “only computation leaks” model [MR04]).

Informally, a quantum leakage-resilient stream cipher SC is secure within q rounds, if for all

i ∈ [q], X(i) is pseudorandom conditioned on the previous output X(1), . . . , X(i−1), and the

leakage states λ(i)(S(i−1)).

In this paper, we study the quantum leakage-resilient stream cipher in the bounded-

quantum-storage model [DFSS08, KT08, WW08], where an adversary’s quantum memory size

is bounded. In this model, an adversary is more restricted. For example, as the number of

rounds increases, it cannot store all quantum leakages in the memory. Instead, it has to

convert some of them to classical bits by measurement in order to get more quantum leakage.

For simplicity, in the below formal security definition, we assume the leakage occupies the

whole quantum memory.

Security definition. Let SC : {0, 1}m → {0, 1}m × {0, 1}n be a quantum leakage-resilient

stream cipher, and A be an adversary whose memory is a cq-state ρY Z =
∑
y py|y〉〈y| ⊗ ρ

y
Z ∈

Dens(Y ⊗Z) with dim(Y) = 2mA and dim(Z) = 2`. The adversary A is defined by a quantum

leakage circuit λ← {0, 1}n′+mA → Dens
(
C2`), and a quantum circuit CA : Dens(X ⊗Y⊗Z)→

{0, 1}mA of size t where dim(X ) = 2n.

We define a security game Gq0 in the bounded-quantum-storage model as described in

Game 5.6.1. We also define the game G̃q0, which is identical to the game Gq0, except that in

Step 2(c) of q-th round, x(q) is resampled from Um instead of produced by SC.

We use A(G) to denote the output of the adversary A in a game G, where G depends

on SC and A depends on LA and CA implicitly. The security of a quantum leakage-resilient

stream cipher is defined as follows.

Definition 5.6.1. A quantum leakage-resilient stream cipher SC : {0, 1}m → {0, 1}m×{0, 1}n

is (t, ε, q, `)-secure in the bounded-quantum-storage model if for every quantum adversary A

of size t with an `-qubit memory and every q′ ∈ [q], Gq0 and G̃q0 are ε-indistinguishable by A.
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Game 5.6.1: Gq0
1. Initially, s(0) r← Um, and the memory state of the adversary A is ρ(0)

Y Z =∑
y p

(0)
y |y〉〈y| ⊗ ρ

y
Z

(0).

2. For i = 1, . . . , q, in the i-th round,

(a) The stream cipher computes (s(i), x(i)) = SC(s(i−1)) ∈ {0, 1}n × {0, 1}m.
(b) If i < q, the adversary learns the leakage of s(i−1)

active via LA. That is, the
memory state becomes

ρY Z
(i−1/2) =

∑
y

p(i−1)
y |y〉〈y| ⊗ λ

(
s(i−1)

active, y
)
,

where p(i−1)
y = Pr[Y (i−1) = y]

(c) The adversary sees x(i). Its classical memory state becomes ρ(i)
Y Z =

CA
(∣∣x(i)

〉〈
x(i)
∣∣⊗ ρY Z (i−1/2)

)
.

3. The adversary outputs the first bit of y(q).

Namely ∣∣∣Pr[A(G̃q0) = 1]− Pr[A(Gq0) = 1]
∣∣∣ ≤ ε .

5.6.2 Construction

The construction follows the one in [DP08], but here we require the extractors and the

pseudorandom generators in the construction to be secure against quantum adversaries.

Concretely, first, we define a function f : {0, 1}k+n → {0, 1}k+n, which serves as a building

block of the construction:

f(k, x) = Prg
(
Ext(k, x), x

)
,

where Ext : {0, 1}k+n → {0, 1}m is a quantum-proof strong randomness extractor (e.g., Tre-

visan’s extractor [Tre99, DPVR12]) and Prg : {0, 1}m → {0, 1}k+n is a pseudorandom genera-

tor secure against quantum adversary with quantum advice. The existence of quantum-secure

PRGs is known to follow from the quantum-hardness of lattice problems (e.g., learning with

rounding [BPR12]). Formally,
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Definition 5.6.2 (Quantum-proof strong randomness extractor). We say Ext : {0, 1}k+n →

{0, 1}m is a (kExt, εExt)-quantum-proof extractor if for all cq-states ρKZ =
∑
k pk|k〉〈k| ⊗ ρkZ

in the state space X ⊗ Z with Hmin(K|Z)ρ ≥ kExt where dim(K) = 2n, then we have that the

trace distance between two ccq-state

∑
k,x

pk · 2−n
∣∣∣Ext(k, x)

〉〈
Ext(k, x)

∣∣∣⊗ ∣∣x〉〈x∣∣⊗ ρkZ and ρmm
Y ⊗ ρmm

X ⊗ ρZ

is at most εExt.

Theorem 5.6.3 ([DPVR12]). There exists a (kExt, εExt)-quantum-proof extractor

Ext : {0, 1}k+n → {0, 1}m with complexity poly(k) where m = kExt − 4 log(1/εExt)−O(1).

Definition 5.6.4. We say Prg : {0, 1}m → {0, 1}n is an (tPrg, εPrg)-quantum+-secure pseu-

dorandom generator if for all quantum distinguishers D of size tPrg with quantum advice,

∣∣∣Pr
[
D
(
Prg(Um)

)
= 1

]
− Pr

[
D(Un) = 1

]∣∣∣ ≤ εPrg.

Combining the extractor and the pseudorandom generator, we have the following claim

for our building block f.

Claim 5.6.5. Let Ext : {0, 1}k+n → {0, 1}m be a (kExt, εExt)-quantum-proof extractor, and

Prg : {0, 1}m+n → {0, 1}k+n be an (tPrg, εPrg)-quantum+-secure pseudorandom generator. The

the function f : {0, 1}k+n → {0, 1}k+n defined as f(K,X) def= Prg(Ext(K,X), X) satisfies the

follows. If a cq-state ρKZ ∈ K ⊗ Z satisfies Hmin(K|Z)ρ ≥ kExt, then

∑
k,x

pk · 2−n
∣∣∣f(k, x)

〉〈
f(k, x)

∣∣∣⊗ ρkZ and ρmm
K ⊗ ρmm

X ⊗ ρZ

are (tPrg, εExt + εPrg)-quantum+-indistinguishable.

Proof. For every quantum distinguisher D (with quantum advice) of size at most tPrg,∣∣∣∣∣Pr
[
D
(∑
k,x

pk · 2−n
∣∣∣f(k, x)

〉〈
f(k, x)

∣∣∣⊗ ρkZ) = 1
]
− Pr

[
D
(
ρmm
K ⊗ ρmm

X ⊗ ρZ
)

= 1
]∣∣∣∣∣

=
∣∣∣∣∣Pr
[
D
(∑
k,x

pk · 2−n
∣∣∣Prg(Ext(k, x), x)

〉〈
Prg(Ext(k, x), x)

∣∣∣⊗ ρkZ) = 1
]
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−Pr
[
D
(
ρmm
K ⊗ ρmm

X ⊗ ρZ
)

= 1
]∣∣∣∣∣

≤
∣∣∣∣∣Pr
[
D
(∑
y,x

2−m · 2−n
∣∣∣Prg(y, x)

〉〈
Prg(y, x)

∣∣∣⊗ ρkZ) = 1
]

−Pr
[
D
(
ρmm
K ⊗ ρmm

X ⊗ ρZ
)

= 1
]∣∣∣∣∣+ εExt

≤ εPrg + εExt.

The first inequality is because the trace distance between
∑
k,x pk · 2−n

∣∣Ext(k, x)
〉〈

Ext(k, x)
∣∣

and ρmm
Y is at most εExt and Proposition 5.2.1. The second inequality is due to the property

of the quantum-secure pseudorandom generator in Definition 5.6.4. The system Z part can

be seen as a quantum advice.

Based on f, we define the stream cipher SC as follows. Suppose the internal state right

before the i-th round be s(i−1) =
(
k(i−1)

L , x(i−1), k(i−1)
R

)
. In the i-th round, the state becomes

s(i) = (k(i)
L , x

(i), k(i)
R ), where

(
k(i)

L , x
(i)
)

= f
(
k(i−1)

L , x(i−1)
)
, k(i)

R = k(i−1)
R if i is odd;(

k(i)
R , x

(i)
)

= f
(
k(i−1)

R , x(i−1)
)
, k(i)

L = k(i−1)
L if i is even.

We repeat x(i) in the internal state s(i) to make the definition consistent with the definition

of stream cipher previously. Note only one of k(i)
R and k(i)

L is used when calculating (s(i), x(i))

from s(i−1), so

s(i)
active =


(
k(i)

R , x
(i)
)

if i is odd(
k(i)

L , x
(i)
)

if i is even
.

5.6.3 Security

The security game for the above construction in Section 5.6.2 is described in Security

Game 5.6.2. We also include the steps (marked with tildes) that will be used by hybrid games

to prove the security in the description. The whole system can be described by a ccccq-state

ρ in the state space KL ⊗X ⊗KR ⊗ Y ⊗ Z where Y ⊗ Z is the memory of an adversary.
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Games 5.6.2
1. Initially, let k(0)

L
r← Uk, x(0) r← Un, and k(0)

R
r← Uk. The adversary initialize its

memory as ρ(0)
Y Z =

∑
y p

(0)
y |y〉〈y| ⊗ ρ

y
Z

(0). Thus, ρ(0) = ρmm
KLXKR

⊗ ρ(0)
Y Z

2. For i = 1→ q − 1,
(Below we state for the case i being odd. Swap all L’s and R’s if i is even.)
(a) SC computes k(i)

L , x
(i) and the adversary learns the leakage via LA:

ρ(i−1/2) =
∑

kL,x,kR,y

p(i−1)
kLxkRy

∣∣∣f(kL, x), kR, y
〉〈

f(kL, x), kR, y
∣∣∣⊗ λ(kL, y) .

(ã) SC computes k(i)
L , x

(i) and adversary’s quantum memory is simulated by
C : {0, 1}n+k+mA → Dens(Z) of size tC = poly(t, tSC, ε

−1, q, 2`):

ρ(i−1/2) =
∑

kL,x,kR,y

p(i−1)
kLxkRy

∣∣∣f(kL, x), kR, y
〉〈

f(kL, x), kR, y
∣∣∣⊗ C (f(kL, x), y) ,

s.t. ρ(i−1/2)
KLXY Z

and “ρ(i−1/2)
KLXY Z

in Step (a)” are (t + tSC, ε/4q)-quantum-
indistinguishable. (by Theorem 5.5.1)

(˜̃a) f in Step (ã) is replaced by resampling from uniformly random strings:

ρ(i−1/2) =
∑

kL,x,kR,y

2−(k+n) · p(i−1)
y

∣∣∣kL, x, kR, y
〉〈
kL, x, kR, y

∣∣∣⊗ C (kL, x, y) ,

(b) x(i) is revealed, the adversary’s memory is updated by C:

ρ(i) =
∑

kL,x,kR

p(i−1/2)
kL,x,kR

|kL, x, kR〉〈kL, x, kR| ⊗ CA
(
|x〉〈x| ⊗ ρkLxkR

Y Z

(i−1/2))
.

3
(
k(q)

L , x(q)
)

= f
(
k(q−1)

L , x(q−1)
)
if q is odd. (replace L’s by R’s if q is even)

3̃ Resample x(q) r← {0, 1}n
4 The adversary outputs the first bit of CA

(
|x〉〈x| ⊗ ρ(q−1)

Y Z

)
.

Theorem 5.6.6. Let εExt = εPrg = ε/4q. There exists tPrg = poly(t, 2`, 1/ε, q, n, k) such that

if Prg : {0, 1}m → {0, 1}k+n is an (tPrg, εPrg)-quantum+-pseudorandom generator and Ext :

{0, 1}k+n → {0, 1}m is an (εExt, k − `)-quantum-proof extractor, then the above construction

for SC is a (t, ε, q, `)-secure quantum leakage-resilient stream cipher.

Proof. Let tPrg = t + tSC + tC where tSC is the circuit size of the q-round stream cipher

and tC = poly(t, tSC, n, k, 2`, q, 1/ε) is the circuit size of a “leakage simulator”, which will be

defined later.

We define following hybrid games (refer Game 5.6.2).
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• For i ∈ {0} ∪ [q − 1], Game Gqi executes Step 2(˜̃a) in the first i rounds, Step 2(a)

afterward.

• For i ∈ [q − 1], Game Gqi−1/2 executes Step 2(˜̃a) in the first i− 1 rounds, the Step 2(ã)

in the i-th round, and Step 2 afterward.

• For i ∈ {0} ∪ [q − 1], Game G̃qi is identical to Gqi , except it executes Step 3̃ instead.

• For i ∈ [q−1], Game G̃qi−1/2 is identical to Gqi−1/2, except in the q round, it runs Step (3̃)

instead.

The goal is to show that for all adversary A of size t,
∣∣E[A(Gq0)] − E[A(G̃q0)]

∣∣ ≤ ε. We

consider a sequence of games Gq0, G
q
1/2, . . . , G

q
q−1, G̃

q
q−1, G̃

q
q−1−1/2, . . . , G̃

q
0 and argue that every

neighboring games are indistinguishable.

Intuitively, the game Gqi−1/2 and Gqi (similarly for G̃qi−1/2 and G̃qi ) are indistinguishable

since the output f is pseudorandom if the states kL (or kR) has high HILL min-entropy from

the adversary’s view. For the game Gqi−1 and Gqi−1/2 (similarly for G̃qi−1 and G̃qi−1/2), they

are indistinguishable due to the Quantum Leakage Simulation Lemma. The argument is

formalized by the following two claims.

Claim 5.6.7. For every i ∈ [q − 1] and every adversary A of size t, we have

∣∣∣E[A(Gqi−1)]− E[A(Gqi−1/2)]
∣∣∣ ≤ ε

4q and
∣∣∣E[A(G̃qi−1)]− E[A(G̃qi−1/2)]

∣∣∣ ≤ ε

4q .

Claim 5.6.8. For every i ∈ [q − 1] and every adversary A of size t, we have

∣∣∣E[A(Gqi−1/2)]− E[A(Gqi )]
∣∣∣ ≤ ε

4q and
∣∣∣E[A(G̃qi−1/2)]− E[A(G̃qi )]

∣∣∣ ≤ ε

4q .

Also, ∣∣∣E[A(Gqq−1)]− E[A(G̃qq−1)]
∣∣∣ ≤ ε

4q

By the claims above and a triangle inequality with absolute value, we conclude the

theorem.
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Proof of Claim 5.6.7. Assume for contradiction, there exists i ∈ [q − 1] and an adversary adv

of size t such that ∣∣∣E[A(Gqi−1/2)]− E[A(Gqi )]
∣∣∣ > ε

4q .

We also assume i to be odd as the case of even i is symmetric. Consider the following quantum

distinguisher D of size t+ 2tSC for Gqi−1
(
ρ(i−1/2)
KLXY Z

)
and Gqi−1/2

(
ρ(i−1/2)
KLXY Z

)
where Gq(ρ) denotes

the state ρ in the game Gq. For a given input Gqj
(
ρ(i−1/2)
XKLY Z

)
with j = i − 1 or i − 1/2, the

distinguisher D simulates the game Gqj starting from Step 2(b) in the i-th round by randomly

sampling k(i)
R

r← {0, 1}k to form the state ρ(i−1/2) in Gqj . Therefore, we have

∣∣∣D(Gqi−1/2
(
ρXKLY Z

)
)− D(Gqi

(
ρXKLY Z

)
)
∣∣∣ =

∣∣∣E[A(Gqi−1/2)]− E[A(Gqi )]
∣∣∣ > ε

4q ,

which contradict the property we got from Step 2(b̃). The proof for games G̃q’s is similar.

Proof of Claim 5.6.8. Assume for contradiction there exists i and an adversary A of size t

such that ∣∣∣E[A(Gqi−1/2)]− E[A(Gqi )]
∣∣∣ > ε

4q .

We also assume i to be odd as the case of even i is completely symmetric. Consider the

following quantum distinguisher D of size t+ tSC + tC for the states after updating kL, x but

before simulating the leakage in the i-th round of Step 2(ã) in Gqi−1/2 and Step 2(˜̃a) in Gqi .
Namely,

Gqi−1/2(ρ(i−3/4)) def=
∑

kL,x,kR,y

p(i−1)
kLxkRy

∣∣∣f(kL, x), kR, y
〉〈

f(kL, x), kR, y
∣∣∣⊗ ρkLxkRy

Z

(i−1)
in Gqi−1/2 and

Gqi (ρ
(i−3/4)) def=

∑
kL,x,kR,y

2−(k+n) · p(i−1)
y

∣∣∣kL, x, kR, y
〉〈
kL, x, kR, y

∣∣∣⊗ ρkLxkRy
Z

(i−1)
in Gqi

Gqi−1/2

(
ρ(i−1/2)
KLXY Z

)
and Gqi

(
ρ(i−1/2)
KLXY Z

)
.

For a given input Gqj(ρ(i−3/4)) where j = i− 1/2 or i, We simulate the game Gqj starting from

Step 2(ã) (or 2(˜̃a)) of the i-th round, and output the result. To finish simulating the game,

we need the simulating circuit C to get the state Gqj(ρ(i−1/2)). Therefore, the distinguisher D
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is of size t+ tSC + tC and we have Then we have

∣∣∣E[D
(
Gqi−1/2

(
ρ(i−3/4)))]− E[D

(
Gqi
(
ρ(i−3/4)))]∣∣∣
≥
∣∣∣E[A(Gqi−1/2)]− E[A(Gqi )]

∣∣∣ > ε

4q .

Note that Gqi−1
(
ρ(i−3/4)
XKL

)
is in fact uniformly random. We will argue that Gqi−1/2

(
ρ(i−3/4)
XKL

)
is

pseudorandom given ρ(i−1)
Y Z (same in both Game Gqi−1/2 and Gqi ) and yields a contradiction.

In order to get the independence condition, we will actually prove that Gqi−1
(
ρ(i)
XKL

)
is

pseudorandom given ρ(j)
Y Z for all j ∈ [i− 1]. By Claim 5.6.5, it suffices to show that

1. K(i−1)
L and X(i−1) are independent given ρ(j)

Y Z for all j ∈ [i− 1].

2. Hmin
(
KL
∣∣Y Z)

ρ(i−1) ≥ k − `.

The first condition can be obtained by observing that the only “dependence path” between

K(i−1)
L and X(i−1) is

K(i−1)
L → ρ(i−2)

Y Z → ρ(i−1)
Y Z ← X(i−1) .

Note that only conditioning on ρ(i−1)
Y Z is not sufficient for arguing the independence condition.

The second condition is directly by the fact that K(i−1)
L is uniform and the leakage chain rule

for min-entropy (Theorem 5.5.12).

5.7 Appendix

5.7.1 Pseudorandom states

Theorem 5.7.1. For every t, d ∈ N, ε > 0 such that d ≥ (t/ε)4, if we sample |ψ〉 uniformly

at random from
{∑d

i=1 αi|i〉 : αi ∈ {±1/
√
d}
}
, then with all but 2−Ω(

√
d) probability, |ψ〉〈ψ| ∈

Dens(Cd) is an (t, ε)-quantum-pseudorandom pure state.

Proof. Let A : Dens(Cd) → {0, 1} be any fixed quantum distinguisher and ΠA be the

corresponding measurement operator. Then

Pr
[
A(ρmm

d ) = 1
]

= 1
d

〈
ΠA , 1d

〉
= 1
d

d∑
i=1

〈
i
∣∣∣ΠA

∣∣∣i〉 .
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For a pure state |ψ〉 =
∑d
i=1 αi|i〉, we have

Pr[A(|ψ〉〈ψ|) = 1] = 〈ΠA , |ψ〉〈ψ|〉 = 〈ψ|ΠA|ψ〉 =
∑

i,j∈[2m]
α∗iαj〈i|ΠA|j〉

=
∑
i

|αi|2〈i|ΠA|i〉+
∑
i 6=j

α∗iαj〈i|ΠA|j〉,

Taking expectation over |ψ〉 r←
{∑d

i=1 αi|i〉 : αi ∈ {±1/
√
d}
}
, we have

E
|ψ〉

[Pr[A(|ψ〉〈ψ|) = 1]] = E
|ψ〉

[
∑
i

|αi|2〈i|ΠA|i〉] + E
|ψ〉

[
∑
i 6=j

α∗iαj〈i|ΠA|j〉]

= 1
2m

∑
i

〈i|ΠA|i〉 = Pr[A(ρmm
d ) = 1].

For a fixed distinguisher A, define the function f :
{∑d

i=1 αi|i〉 : αi ∈ {±1/
√
d}
}
→ [0, 1] as

f(|ψ〉) = Pr[A(|ψ〉〈ψ|) = 1] = 〈ψ|ΠA|ψ〉.

Now we are going to show the concentration using Talagrand’s inequality. To that end, we

first find the Lipschitz constant η of the function f . For all |ψ〉, |φ〉 ∈ Ball(Cd), we have

|f(|ψ〉)− f(|φ〉)| = |〈ψ|ΠA|ψ〉 − 〈φ|ΠA|φ〉|

≤ |〈ψ|ΠA|ψ〉 − 〈ψ|ΠA|φ〉|+ |〈φ|ΠA|ψ〉 − 〈φ|ΠA|φ〉|

≤ ‖〈ψ|ΠA‖2 · ‖|ψ〉 − |φ〉‖2 + ‖〈ψ| − 〈φ|‖2 · ‖ΠA|φ〉‖2

≤ 2 · ‖ΠA‖op‖|ψ〉 − |φ〉‖2 ≤ 2 · ‖|ψ〉 − |φ〉‖2,

where the second inequality follows from the Cauchy-Schwartz inequality, and the last inequality

follows because 0 ≤ ΠA ≤ 1d Therefore the Lipschitz constant η of the function f is at most

2. Also, f is a convex function:

f

( |ψ〉+ |φ〉
2

)
≤ f

( |ψ〉+ |φ〉
2

)
+ f

( |ψ〉 − |φ〉
2

)
= 1

2
(
〈ψ|Π|ψ〉+ 〈φ|Π|φ〉

)
= 1

2
(
f(|ψ〉) + f(|φ〉)

)
.

Now we are ready to apply the Talagrand’s concentration inequality [Tal95]: If f is an

η-Lipschitz convex function on the hypercube H = {±K}d, D is a product distribution on H ,
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and µ = E|ψ〉 r←D[f(|ψ〉)], then for all t > 0, we have

Pr
|ψ〉 r←D

[
|f(|ψ〉)− µ| ≥ Kt

]
≤ 2−Ω(t2/η2) .

Taking K = 1/
√
d, t =

√
dε and η = 2, and D to be uniform on {±K}d, we have

Pr
|ψ〉

[∣∣∣Pr[A(|ψ〉〈ψ|) = 1]− Pr[A(ρmm
d ) = 1]

∣∣∣ ≥ ε] = Pr
|ψ〉

[
|f(|ψ〉)− µ| ≥ ε

]
≤ 2−Ω(dε2).

There are only sO(s) = 2O(s log s) many different quantum circuits of size s. By a union bound,

Pr
|ψ〉

[∃A of size s,
∣∣∣Pr[A(|ψ〉〈ψ|) = 1]− Pr[A(ρmm

d ) = 1]
∣∣∣ ≥ ε] ≤ 2O(s log s) · 2−Ω(dε2) ≤ 2−Ω(

√
d)

provided that d ≥ (s/ε)4.

An interesting follow-up question is that whether we can explicitly generate pseudorandom

pure states, say as the output of a small quantum circuit (with no measurements) on input

|0n〉 — which we could think of as a “seedless” pseudorandom generator. If the generator

is of polynomial size, then its output cannot be pseudorandom against all polynomial-sized

distinguishers, because (measurement-free) quantum computation is reversible. But if we

allow the generator circuit to be larger than the distinguishers then it is conceivable to have

a pseudorandom pure state as output. As aforementioned, in [BaHH16a, BaHH16b], they

use probabilistic method to show the existence of a generator circuit of size n11k+9 that can

fool all nk-size quantum distinguishers. It would be interesting to construct such generators

explicitly under plausible (quantum) complexity assumptions.

Pseudorandom state against quantum circuit with quantum advice

In the classical setting, a well known result in pseudorandomness is that if we randomly choose

2ω(logn) elements from {0, 1}n to form a set S where n is the security parameter. Then with

high probability, the set S is a pseudorandom set. Now we show that this phenomenon can

be extended to quantum distinguishers with quantum advice.

Theorem 5.7.2. There exists a set S ⊆ {0, 1}n with |S| = O
(
(t log t+ log d′)/ε2) such that

US is (t, ε)-quantum+-indistinguishable where US is the uniform distribution over the set S.
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The canonical proof in the classical case is that for a fixed circuit, the random S is

pseudorandom with overwhelming high probability by Chernoff bound. Then by union bound

over all bounded size circuits, with high probability, the random S is pseudorandom against

all bounded size circuits at the same time. However, in the quantum case, if we include

the quantum advice there are infinitely many bounded size quantum circuits. Therefore, we

cannot union bound over all of them. Here we will prove it again using the Rademacher

complexity.

Proof. Let 2n = d. We consider a fixed quantum distinguisher C : Dens(Cd×d′)→ {0, 1} with

a d′-dimensional advice input. For every x ∈ {0, 1}n, we define the POVM Πx to be the

corresponding measurement operator of C(x; ·). Then we have that Pr[C(x; τ)] = 〈Πx , τ〉.

Define the class of function

F def=
{
C(·; τ) = 〈 , τ〉 : τ ∈ Dens(Cd′)

}
.

By Theorem 5.5.2, we know that the Rademacher complexity RT (F) is O
(√

log d′T
)
. There-

fore, by the generalization bound (Theorem 5.3.10), we know that for every δ > 0, if we

sample x1, . . . , xT uniformly at random from {0, 1}n, then with 1− δ probability,

∀τ ,
∣∣∣∣∣ E
x

r←{0,1}n
[C(x; τ)]− 1

T

T∑
i=1

C(xi; τ)
∣∣∣∣∣ ≤ O(√log d′/T

)
+O

(√
log(1/δ)/T

)
. (5.17)

Choose δ = 1/tO(t) such that 1/δ is more than the number of circuits of size at most t, and

T = O
(
log(1/δ)/ε2). Then we have that if we randomly choose a set S ⊆ {0, 1}n of size T ,

then with 1− δ probability,

∀τ ,
∣∣∣∣∣ E
x

r←{0,1}n
[C(x; τ)]− E

x
r←US

[C(x; τ)]
∣∣∣∣∣ ≤ δ .

By union bound over all circuits of size at most t, we conclude the theorem.

5.7.2 Barrier for gap amplification

One of the main challenges in extending classical proofs to quantum cases is the celebrated

Wootters-Zurek no-cloning theorem [WZ82]. Here we exhibit another barrier — the gap
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amplification problem defined as follows. Given a quantum distinguisher A (whose input is

a quantum state ρ), where the acceptance probability is greater than p for YES instances

and less than q for NO instances, can we have another quantum distinguisher A′ where the

gap p′ − q′ is larger than that in A? If we were able to clone an arbitrary quantum state,

then the gap amplification would be easy (as discussed below). Thus, we can view the gap

amplification problem as a special case of the no-cloning theorem. Moreover, we will show

that the impossibility of amplifying the gap implies that imperfect cloning of a single qubit to

within a constant in trace distance is impossible.

In the classical case, gap amplification demonstrate the robustness of the definition of

the complexity class BPP in the that no matter what the constant we use for acceptance

probabilities for YES and NO instances, the definitions for BPP are equivalent. Similarly, in

the quantum setting, the gap amplification problem is connected to the amplification of the

acceptance probability of quantum proofs in QMA. The gap amplification problem is trivial

in the classical case, as there is no cloning restriction in the classical world. For a given input,

we can make copies of the input, run the original algorithm multiple times, and then use a

majority or threshold rule to reduce the error probability, as follows from a concentration

bound (e.g., a Chernoff bound). However, in the quantum case, due to the no-cloning theorem,

we cannot follow this strategy directly. Note that the no-cloning theorem does not directly

imply the impossibility of amplification,

First, we define the gap amplification problem as follows.

Definition 5.7.3 (Gap-Amplification Problem). Let D : Dens(CM )→ {0, 1} be q quantum

distinguisher, 0 < q < p < 1. We say that a quantum distinguisher D′ : Dens(CM )→ {0, 1} is

a (p, q)-amplified version of D if for every input |ψ〉 ∈ Ball(CM ),
Pr
[
D(|ψ〉〈ψ|) = 1

]
≥ p ⇒ Pr

[
D′(|ψ〉〈ψ|) = 1

]
> p

Pr
[
D(|ψ〉〈ψ|) = 1

]
≤ p ⇒ Pr

[
D′(|ψ〉〈ψ|) = 1

]
< p .

We show that such amplification is impossible in general.

Theorem 5.7.4. For every real numbers 0 < q < p < 1, there exists a quantum distinguisher

161



D : Dens(C2)→ {0, 1} such that no (p, q)-amplified version of D exists.

Proof. Let A be a single-qubit measurement in the computational basis {|0〉, |1〉}. Consider the

pure states |ψ〉 = (cosα)|0〉+ (sinα)|1〉 and |φ〉 = (cosβ)|0〉+ (sin β)|1〉, where α = sin−1(√p)

and β = sin−1(√q). Thus Pr[A(|ψ〉) = 1] = p and Pr[A(|φ〉) = 1] = q.

Let the BPOVM of A′ be Π =

 a −b+ ci

−b− ci d

 for 0 ≤ a, d ≤ 1 and appropriate real

numbers b and c such that that Π ≥ 0. Assume that A′ is a (p, q)-amplified version of A such

that 〈Π, |ψ〉〈ψ|〉 > sin2 α and 〈Π, |φ〉〈φ|〉 < sin2 β. That is,

a cos2 α− 2b sinα cosα+ d sin2 α > sin2 α,

a cos2 β − 2b sin β cosβ + d sin2 β < sin2 β.

After dividing the two inequalities by sin2 α and sin2 β, respectively, we obtain

a cot2 α+ d > 1 + 2b cotα, (5.18)

a cot2 β + d < 1 + 2b cotβ. (5.19)

Since d ≤ 1, we have a > 2b
cotα by Equation (5.18). On the other hand, subtracting Equa-

tion (5.18) from Equation (5.19) and dividing it by (cotβ − cotα), which is positive since

sinα = √p > √q > sin β, we get a < 2b
cotβ+cotα <

2b
cotα . That gives a contradiction.
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Chapter 6

Conclusion

In this thesis, we have seen that computational entropies are exceptionally useful in the

constructions of basic cryptographic primitives, including pseudorandom generators, universal

one-way hash functions, and statistically hiding commitment schemes, from one-way functions.

In fact, some definitions of computational entropies are motivated by seeking to make such

constructions more efficient. For constructing pseudorandom generators, even though a series

of works has made a great improvement in efficiency, there is still a gap between the upper and

lower bounds. Our lower bound for flattening entropies can be viewed as a step towards closing

the gap and may help in understanding the construction of those cryptographic primitives.

On the other hand, the construction of universal one-way hash functions is still relatively

inefficient. Our new notion for exploring the computational hardness inside one-way functions

provides a more modular way to obtain an inaccessible entropy, which may be useful for

further simplifying and improving the construction of universal one-way hash functions.

We have also initiated the study of computational entropies in the quantum setting. Most

of the positive results can be proved via the Non-uniform Quantum Min-max Theorems,

which we developed using the generalization bound for Rademacher complexity. A notable

one is the Quantum Leakage Simulation Lemma, which has applications in leakage-resilient

cryptography. On the other hand, we also show the natural quantum extensions of some

classical theorems about computational entropy do not hold. Interestingly, one of them is
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due to the existence of pseudorandom pure states. Roughly speaking, when quantum states

show up as side information, as in post-quantum cryptography, there are more chances that

results can be generalized. Otherwise, most of the barriers for proving desirable theorems

are due to the no-cloning theorem or more precisely, the hardness of gap amplification. We

expect that computational notions of quantum entropy will find other natural applications in

quantum cryptography. Also, studying their fundamental properties may provide new insights

in quantum complexity theory.
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