I. Catalytic Allylic Oxidation to Generate Vinylogous Acyl Sulfonates From Vinyl Sulfonates II. Synthesis of the Cucumin a Ring System via a 5-Endo-Trig Heck Cyclization

Citation

Tucker, James K. 2019. I. Catalytic Allylic Oxidation to Generate Vinylogous Acyl Sulfonates From Vinyl Sulfonates II. Synthesis of the Cucumin a Ring System via a 5-Endo-Trig Heck Cyclization. Doctoral dissertation, Harvard University, Graduate School of Arts \& Sciences.

Permanent link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029783

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use\#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story.

Accessibility

I. Catalytic Allylic Oxidation to Generate Vinylogous Acyl Sulfonates from Vinyl Sulfonates

II. Synthesis of the Cucumin A Ring System via a 5-endo-trig Heck Cyclization

A dissertation presented by

James Karl Tucker
to

The Department of Chemistry and Chemical Biology
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
in the subject of
Chemistry

Harvard University
Cambridge, Massachusetts
May, 2019
© 2019 by James Karl Tucker
All rights reserved.

I. Catalytic Allylic Oxidation to Generate Vinylogous Acyl Sulfonates from Vinyl

Sulfonates

II. Synthesis of the Cucumin A Ring System via a 5-endo-trig Heck Cyclization

Abstract

The work presented in the first two chapters of this thesis culminated in a largely unprecedented allylic oxidation. Regioselective formation of vinylogous acyl sulfonates via allylic oxidation of the corresponding vinyl sulfonates was achieved with catalytic iron(III) chloride and stoichiometric tert-butyl hydroperoxide. The transformation exhibited tolerance of many different functional groups, including some other allylic and benzylic sites. Results were optimal for substrates with steric protection of the vinyl sulfonate moiety, although other classes of substrates were isolated in reduced yields.

The final chapter of this thesis describes the asymmetric synthesis of the cucumin A (43) ring system 174 via the 5-endo-trig Heck cyclization of 173. Intermediate 173 was derived from enantioenriched $\mathbf{1 6 0}$, which was forged from building blocks $\mathbf{1 5 8}$ and $\mathbf{1 5 9}$ via the chiral pryrrolidinyl sulfonamide promoter 156.

Table of Contents

Abstract iii
Table of Contents iv
Acknowledgements vi
List of Abbreviations viii
Chapter 1: Improvement of an Oxidative Step in a PPAP Synthesis Platform 1
Introduction 2
Allylic Oxidation Improvement 2
Synthesis of ent-Hyperforin 3
Conclusion and Future Directions 5
General Experimental Information 6
Experimentals 7
References 21
Chapter 2: Catalytic Allylic Oxidation to Generate Vinylogous Acyl Sulfonates from Vinyl Sulfonates 22
Introduction 23
Results 24
Conclusion and Future Directions 30
General Experimental Information 31
Experimentals 32
References 67
Chapter 3: Enantioselective Synthesis of the Cucumin A Ring System via a 5-endo-trig Heck Cyclization 69
Introduction 70
Linear Triquinane Sesquiterpene Overview 70
Identification of Cucumin A as a Synthetic Target 70
Biogenesis 71
Past Approaches to Linear Triquinane Sesquiterpene Synthesis 72
East-to-West 72
Center-Out 73
Stitching 75
Divide and Conquer 77
Cucumin A Retrosynthesis 78
Study of a Claisen Approach 80
Chiral Pyrrolidinyl Sulfonamide Application 81
Pursuit of Deoxygenation 83
Successful Route to a 5-endo-trig Heck Cyclization 83
A-Ring Oxidation 85
Conclusion and Future Directions 85
General Experimental Information 87
Experimentals 88
References 119
Appendix 1: Rationale to Pursue ent-Hyperforin 122
Appendix 2: Catalogue of Spectra 128

Acknowledgements

I thank my advisor, Prof. Matthew Shair, for the opportunity to work in his lab and all the support he has provided me during my studies. Additionally, I thank my graduate advising and thesis committee members, Profs. Andy Myers and Stuart Schreiber, for the guidance they provided me during our annual meetings. Discussing scientific ideas with these great minds has been a privilege.

I thank my undergraduate advisor, Prof. Marty Burke, for the invaluable experience of working in his lab at the University of Illinois. The interest he took in the development of my intellect and skill set led to this dissertation. I look upon the patience and enthusiasm with which Drs. Ian Dailey and Justin Struble mentored me during my time in the Burke group with a deep appreciation.

I thank the teachers, far too many to discuss in this space, who took an interest in my education while I attended the Kirkwood R7 school district. I remember each of your contributions to the fostering of my scientific inquiries and their clear communication.

When I first joined the Shair lab, the comraderie of Jaeyoung Ahn, Ioana Nitulescu, Diogo da Silva, Avi Khanna, Niyi Fadeyi and later, Alex Stuart, was fantastic and has led to lifelong friendships. Friday nights out with this group were some of the best! Rocco Policarpo has been exceedingly kind in his dealings with me; his warmly supportive nature is all but inimitable. Working with someone of his openness and intelligence has been an excellent experience. Hanna Tukachinsky has been a good friend and fellow curmudgeon-the "Half-Lives of Tritium" will one day reunite! Although in the Jacobsen lab, Dan Strassfeld has been a good friend since our G0 days, and our discussions have
always been intelligent and funny. Ethan Magno, of the Myers lab, has been a thoughtful contributor to discussions of many topics-chemistry, writing, and music, to name a few.

Some members on staff at Harvard have been indispensable. Specifically, I thank Dr. Shao-Liang Zhang for assistance with crystallography experiments and Jennifer Wang for her tireless analysis of my many mass spectrometry samples.

I thank my parents for all the unconditional, loving sacrifices they have made to get me to this point in my education. The example they set for me of hard work and determination cannot be understated. My sister, Sarah, and brother, Drew, have both been so loving and supportive, and I'm happy to see that we're maintaining strong familial bonds as we move through young adulthood.

List of Abbreviations

$\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}^{0}$	tetrakis(triphenylphosphine)palladium(0)
$\left(\mathrm{Ru}(\mathrm{p} \text {-cymene }) \mathrm{Cl}_{2}\right)_{2}$	dichloro(p-cymene)ruthenium(II) dimer
3,5-DMP	3,5-dimethylpyrazole
ACN	acetonitrile
AIBN	azobisisobutyronitrile
allyl-SnBu ${ }_{3}$	allyltributylstannane
Br_{2}	bromine
BTF	benzotrifluoride
CBr_{4}	carbon tetrabromide
CeCl_{3}	cerium trichloride
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or DCM	methylene chloride
$\mathrm{CH}_{2} \mathrm{O}$	fomaldehyde
CHCl_{3}	chloroform
$\mathrm{ClC}(\mathrm{S}) \mathrm{OC}_{6} \mathrm{~F}_{5}$	pentafluorophenyl chlorothionoformate
CrO_{3}	chromium trioxide
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	cesium carbonate
CSA	camphorsulfonic acid
CsF	cesium fluoride
$\mathrm{Cu}(\mathrm{OAc})_{2}$	cupric acetate
CuI	cuprous iodide
D-(-)-DET	(2S, 3S)-diethyltartrate
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCE	1,2-dichloroethane
DMAP	4-(dimethylamino)pyridine
DMDO	dimethyldioxirane
DMF	N,N-dimethylformamide

DMP	Dess-Martin periodinane
DMPE	1,2-Bis(dimethylphosphino)ethane
DMSO	dimethyl sulfoxide
DTBMP	2,6-di-tert-butyl-4-methylpyridine
EDCI	1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
equiv.	equivalent
$\mathrm{Et}_{3} \mathrm{~B}$	triethylborane
$\mathrm{Et}_{3} \mathrm{~N}$	triethylamine
EtOAc	ethyl acetate
EtOH	ethanol
$\mathrm{Fe}(\mathrm{acac})_{3}$	iron(III) acetylacetonate
FeCl_{2}	iron(II) chloride
FeCl_{3}	iron(III) chloride
$\mathrm{Hg}(\mathrm{OAc})_{2}$	mercuric acetate
HMDS	hexamethyldisilazide
HSnBu_{3}	tri- n-butylstannane
IBX	2-iodoxybenzoic acid
$\mathrm{iPr}_{2} \mathrm{NEt}$	ethyl diisopropylamine
$\mathrm{K}_{2} \mathrm{CO}_{3}$	potassium carbonate
KHMDS	potassium bis(trimethylsilyl)amide
KOAc	potassium acetate
KOH	potassium hydroxide
KOtBu	potassium tert-butoxide
LAH	lithium aluminum hydride
LDA	lithium diisopropylamide
LiCl	lithium chloride
$\mathrm{LiHAl}(\mathrm{OtBu})_{3}$	lithium tri-tert-butoxy aluminum hydride
LiHBEt_{3}	lithium triethylborohydride
LLS	longest linear sequence

LTS	linear triquinane sesquiterpene
M.S.	molecular sieves
mCPBA	3-chloroperbenzoic acid
MeOH	methanol
MoOPH	oxodiperoxymolybdenum(pyridine)-(hexamethylphosphoric triamide)
MsCl	mesyl chloride
$\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	hydrazine monohydrate
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	sodium carbonate
$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	sodium dichromate
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	sodium thiosulfate
NaBH_{4}	sodium borohydride
$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	sodium phosphate, monobasic
NaOH	sodium hydroxide
NfF	perfluorobutanesulfonyl fluoride
Nf	perfluorobutanesulfonyl
NH_{3}	ammonia
NHS	N-hydroxysuccinimide
Ox	oxidation
$\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$	palladium hydroxide on carbon
$\mathrm{PhB}(\mathrm{OH})_{2}$	phenylboronic acid
PhH	benzene
PhLi	phenyllithium
PhMe	toluene
PhNHLi	lithium anilide
PhSiH_{3}	phenylsilane
PIFA	(Bis(trifluoroacetoxy)iodo)benzene
PPAP	polycyclic polyprenylated acylphloroglucinol
PPh_{3}	triphenylphosphine
pyr	pyridine

quant.	quantitative
$\mathrm{Rh}_{2} \mathrm{cap}_{4}$	dirhodium tetracaprolactamate
RT	room temperature
s-BuLi	sec-Butyllithium
$\mathrm{Sc}(\mathrm{OTf})_{3}$	scandium(III) triflate
SeO_{2}	selenium dioxide
$\mathrm{SJW}^{\mathrm{TBAF}}$	tetra- n-butylammonium fluoride
TBHP	tert-butyl hydroperoxide
TBSCl	tert-butyl dimethylsilylchloride
tBuOH	tert-butanol
Tf	trifluoromethansulfonic anhydride
Tf	trifluoromethanesulfonyl
THF	tetrahydrofuran
$\mathrm{Ti}(\mathrm{OiPr})_{4}$	trimethylsilyl
TIPSOTf	triisopropyl trifluoromethanesulfonate
TIPS	triisopropylsilyl

Chapter 1: Improvement of an Oxidative Step in a PPAP Synthesis Platform

Coworkers: Dr. Brian A. Sparling \& Dr. David C. Moebius

Introduction

The following chapter traces the development of my interest in allylic oxidation chemistry in the context of a platform leveraged toward syntheses of analogues of the polyprenylated acylphloroglucinol (PPAP) known as hyperforin. Improvement of the oxidative formation of a vinylogous ester from a methyl-vinyl ether within this route would serve as inspiration for subsequent research pursuits.

Pursuit of Polyprenylated Acylphloroglucinol Synthesis

To date, there are some 717 molecules known as PPAPs. ${ }^{1}$ The structures are comprised of an acylphloroglucinol core with varying degrees of oxygenation and a varying number and location of isoprenyl or geranyl linkages. ${ }^{1}$ Several members of this class have been the targets of total synthesis, given their challenging structures and interesting bioactivities. One compound of particular interest given its putative antidepressive and anti-inflammatory properties is hyperforin (1), a constituent of the folk medicine known as St. John's Wort (SJW). ${ }^{2}$ Our lab had developed a bio-inspired, enantioselective route to $1 .{ }^{3}$ Two other closelyrelated compounds known as seco-hyperforin (2) and ent-nemorosone (3) were also synthesized in our lab through analogous chemistry (Figure 1.1). ${ }^{4}$ Analogues of 1 to probe the mechanism of its efficacy with regards to depression and improve its safety profile were of interest. In the context of analogue development, a key allylic oxidation step in the course of the syntheses of these molecules defined the first part of my studies.

2

3

Figure 1.1. The structures of hyperforin (bicycle positions numbered in red), secohyperforin (2), and ent-nemorosone (3)

Allylic Oxidation Improvement

My studies commenced with improving the route to 2 and 3. Even with the syntheses accomplished, the low yield and poor reproducibility of the C 2 oxidation of intermediate 4 stood athwart the efficiency of the route. Initial conditions a based on a protocol developed by Yeung et al. formed a mixture of side product $\mathbf{5}$ and desired product 6; additionally, yield of formation of $\mathbf{6}$ was as low as 18% on scale (Scheme 1.1). ${ }^{5}$ Application of Corey-Yu oxidation conditions led to a more consistent yield of $\mathbf{6}$ on scale than before;
additionally, treatment of a mixture containing 5 in neat 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) formed 6, cleanly. ${ }^{6}$ The overall yield of $\mathbf{6}$ from 4 was 50%. Given the improvements in yield and consistency of outcome, conditions \mathbf{b} were incorporated into the published route. ${ }^{4}$ After publication of conditions \mathbf{b}, further improvement in yield using conditions analogous to those developed by Baran et al. involving chromium (V) reagent $\mathbf{7}$ was realized with conditions $\mathbf{c} .{ }^{7}$ The relevant mechanism likely involves radical scission of the relevant allylic C-H bond concurrent with the formation of a $\mathrm{Cr}(\mathrm{IV})$-hydroxy species. ${ }^{7}$ One other advantage to these conditions is the lack of formation of $\mathbf{5}$.

Scheme 1.1. Evolution of the oxidative protocol to furnish 6 from 4 and a mechanistic proposal for conditions \mathbf{c}

Synthesis of ent-Hyperforin

Pursuit of the unnatural enantiomer of $\mathbf{1}$ was undertaken to interrogate a proposed mechanism of efficacy of $\mathbf{1}$ and attempt to improve its clinical safety profile (see Appendix 1 for the full rationale). The synthesis of ent1 drew on our previous synthesis of 1 while incorporating some improvements (Scheme 1.2). ${ }^{3}$ Specifically, the TIPSOTf-mediated cyclization protocol discovered during the approach to $\mathbf{2}$ and $\mathbf{3}$ extended with facility to the cyclization of $\mathbf{1 1}$ to give $3,3,1$ bicycle $\mathbf{1 2}$ in $\mathbf{7 4 \%}$ isolated yield on multigram scale. ${ }^{4}$ Given the similarity of A-values between a methyl group ($1.74 \mathrm{kcal} / \mathrm{mol}$) and an ethyl group ($1.79 \mathrm{kcal} / \mathrm{mol}$), it is unsurprising that the cyclization protocol tolerated the increased steric bulk from a methyl group to a masked homoprenyl moiety during formation of $12 .{ }^{8,4}$ Importantly, oxidation of 12 utilizing complex $\mathbf{7}$ afforded vinylogous ester 13 in 61% yield on multigram scale. A one-pot methanol extrusion followed by catalytic olefin isomerization drawing on conditions pioneered in the lab of Prof. R. A. Shenvi afforded 21. ${ }^{9}$ Intermediate 21 was formed during the approach to $\mathbf{1}$ developed by Ting et al. and was advanced to ent- $\mathbf{1}$ via the same chemistry. ${ }^{10}$ Characterization data for ent-1 matched those reported. ${ }^{11,3}$

Scheme 1.2. Fifteen step, asymmeytric synthesis of ent-1

Conclusion and Future Directions

A novel approach to C 2 oxidation via $\mathrm{Cr}(\mathrm{V})$ reagent 7 has been exploited during an enantioselective, 15-step approach to ent-1. Additionally, the TIPSOTf-mediated cyclization protocol discovered during the pursuit of $\mathbf{2}$ and $\mathbf{3}$ was useful in this context. Further discussion of the biological implications of this work is offered in Appendix 1. Development of the allylic oxidation described herein led naturally to the question of which other allylic oxidation methodologies might be worth pursuing, thus informing future research pursuits.

General Experimental Information

General Procedures. All reactions were performed in oven-dried glassware under a positive pressure of dinitrogen unless otherwise noted. Flash column chromatography was performed as described by Still et al. ${ }^{12}$ employing silica gel 60 ($40-63 \mu \mathrm{~m}$, Whatman). Analytical thin-layer chromatography (TLC) was performed using 0.25 mm silica gel 60 F254 plates (Merck).

Materials. Reagents and solvents used herein were purchased from commercial vendors and used as received, with these specifications: Tetrahydrofuran (THF), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, toluene (PhMe), 2,6lutidine, benzotrifluoride (BTF), pyridine, and triethylamine (NEt_{3}) were sourced from sureseal bottles. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) and triisopropylsilyloxy trifluoromethanesulfonate (TIPSOTf) were distilled over calcium hydride at reduced pressure. $5 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of tert-Butyl hydroperoxide (TBHP) were prepared according to a literature procedure. ${ }^{13} 5.5 \mathrm{M}$ solutions of TBHP in nonane over $3 \AA$ mol sieves were purchased from Aldrich. Chromium V complex $\mathbf{7}$ was prepared according to a literature procedure. ${ }^{14}$ The molarities of sureseal sec-butyllithium (sBuLi) cyclohexane solutions (Aldrich) were determined by titration with 1,10-phenanthroline as an indicator (average of three determinations). Sureseal THF solutions of tetrabutylammonium fluroide (TBAF) were purchased from Aldrich. 5 M solutions of triethylborane $\left(\mathrm{BEt}_{3}\right)$ in PhH were prepared via the addition of neat BEt_{3} to PhH . Hoyveda-Grubbs Generation II catalyst (19) was purchased from Aldrich. Camphorsulfonic acid (CSA) was recrystallized from EtOAc and dried in a vacuum oven overnight before use.
Instrumentation. ${ }^{1} \mathrm{H}$ NMR spectra were recorded with Varian INOVA-500, Agilent DD2-600, or JEOL400 spectrometers, are reported in parts per million (δ), and are calibrated using residual non-deuterated solvent as an internal reference: $\mathrm{CDCl}_{3}, \delta 7.26\left(\mathrm{CHCl}_{3}\right) ; \mathrm{C}_{6} \mathrm{D}_{6}, \delta 7.16\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, integration). Multiplicities are reported as follows: $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; $\mathrm{p}=$ pentet; $\mathrm{sx}=$ sextet, $\mathrm{m}=$ multiplet; br $=$ broad, or combinations thereof. ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Varian INOVA-500 or JEOL400 spectrometer, are reported in parts per million (δ), and are referenced from the central peak of the carbon resonance of the solvent: $\mathrm{CDCl}_{3}, \delta 77.16 ; \mathrm{C}_{6} \mathrm{D}_{6}, \delta 128.06 .{ }^{19} \mathrm{~F}$ NMR spectra were recorded with a JEOL-400 or a Varian INOVA-500 spectrometer and are reported in parts per million (δ). Infrared (IR) data were recorded on a Bruker Alpha FT-IR spectrometer outfitted with an Eco-ATR sampling module. High-resolution mass spectra (HRMS) were recorded using electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) mass spectroscopy using a Thermo Scientific Dionex UltiMate 3000 UHPLC coupled to a Thermo Q Exactive Plus mass spectrometer system equipped with either an HESI-II electrospray ionization source or an APCI probe.

Experimentals

(1S,5R,7S)-4-Methoxy-8,8-dimethyl-5-(3-methylbut-2-en-1-yl)-7-((triisopropylsilyl)oxy)bicyclo
[3.3.1] non-3-ene-2,9-dione (6): ${ }^{4}$
A colorless EtOAc $(30 \mathrm{~mL})$ solution of $4(6.49 \mathrm{~g}, 14.9 \mathrm{mmol}, 1$ equiv) in a $100-\mathrm{mL}$ recovery flask was placed in a $-40{ }^{\circ} \mathrm{C}$ dry ice/ACN bath. In quick succession, potassium hydroxide powder $(1.01 \mathrm{~g}, 17.9 \mathrm{mmol}, 1.2$ equiv) and palladium hydroxide ($20 \mathrm{wt} \%$ on carbon, $1.65 \mathrm{~g}, 3.0 \mathrm{mmol}, 0.2$ equiv) were added. tert-Butyl hydroperoxide (5.5 M in nonane, $13.5 \mathrm{~mL}, 74.5 \mathrm{mmol}, 5$ equiv) was then added dropwise over 35 min . The reaction was then warmed directly to $0{ }^{\circ} \mathrm{C}$ using an ice $/ \mathrm{H}_{2} \mathrm{O}$ bath. After stirring at $0{ }^{\circ} \mathrm{C}$ for 15 h , the reaction mixture was filtered through a plug of $\mathrm{SiO}_{2}(300 \mathrm{~mL})$, rinsing sequentially with EtOAc and 9:1 EtOAc: $[2 \mathrm{M} \mathrm{NH} 3$ in MeOH$]$. The combined organic fractions were concentrated in vacuo to a colorless oil. Flash column chromatography ($500 \mathrm{~mL} \mathrm{SiO}_{2}, 98: 2$ to $96: 4$ to $94: 6$ to $92: 8$ hexane:EtOAc) afforded 1.68 g of 6 as an off-white, waxy solid and 3.93 g of complex mixture of products containing 5 .

The complex mixture containing tert-butyl peroxide 5 was taken up in $\mathrm{DBU}(75 \mathrm{~mL})$ and stirred at rt for 25 h . The reaction mixture was then diluted with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted thrice with EtOAc. The combined EtOAc fractions were sequentially washed twice with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, once with sat. aq. NaHCO_{3}, once with $\mathrm{H}_{2} \mathrm{O}$, once with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to a dark orange oil. Flash column chromatography ($50 \mathrm{~mL} \mathrm{SiO}_{2}, 98: 2$ to $9: 1$ hexane:EtOAc) afforded an additional 1.68 g ($3.74 \mathrm{mmol}, 25 \%$ yield) of $\mathbf{6}$ as a white, waxy solid. A total of $3.36 \mathrm{~g}(7.48 \mathrm{mmol}, 50 \%$ yield) of $\mathbf{6}$ was obtained.
*For characterization data, consult Sparling et al. ${ }^{4}$

22
((2R,3R)-3-methyl-3-(4-methylpent-3-en-1-yl)oxiran-2-yl)methanol (22): ${ }^{3}$
A 5 M solution of TBHP in DCM ($37.4 \mathrm{~mL}, 187 \mathrm{mmol}, 1.7$ equiv) was added to a stirring solution of $\mathrm{Ti}(\mathrm{OiPr})_{4}(3.25 \mathrm{~mL}, 11 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, $\mathrm{D}-(-)-\mathrm{DET}(2.82 \mathrm{~mL}, 16.5 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(3.4$ g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(85 \mathrm{~mL})$ in a 250 mL 3-neck round-bottom flask cooled to $-22{ }^{\circ} \mathrm{C}$ in a dry ice/ACN bath (internal temperature). Following completion of the addition, the reaction mixture was stirred with the internal temperature maintained below $-20^{\circ} \mathrm{C}$ for 45 minutes. A solution of geraniol ($19.3 \mathrm{~mL}, 110 \mathrm{mmol}$, 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL})$ was added dropwise over 40 minutes, such that the internal temperature was maintained below $-20^{\circ} \mathrm{C}$. The reaction was kept below this temperature for 1 h and then allowed to warm to $-10{ }^{\circ} \mathrm{C}$ over 35 minutes. The reaction was quenched with 50 mL water, followed by 30 mL of 30% aqueous NaOH , saturated in NaCl . The resulting emulsion was warmed to room temperature and stirred for 45 minutes. The reaction was diluted with 150 mL MeOH and 30 mL brine and the layers were separated. The aqueous layer was extracted thrice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic fractions were washed with brine, dried over sodium sulfate, filtered, and concentrated at reduced pressure to give $\mathbf{2 2}$ (19.39 g , ca quantitative) as a clear, colorless oil. The crude material was judged to be free from major impurities and carried directly into the next step. Analysis of the reaction mixture enantiomeric excess was performed as in Sparling et al. stablished the enantiomeric excess of 22 to be $>90 \%$ ee. ${ }^{3}$
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 5.12-5.04(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}, \mathrm{J}=12.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, \mathrm{J}=12.1$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, \mathrm{J}=6.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.47(\mathrm{ddd}, \mathrm{J}=13.7,9.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(101 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ б: 132.3, 123.5, 63.0, 61.6, 61.3, 38.6, 25.9, 23.8, 17.8, 16.9.
FTIR (thin film) $\mathrm{v}_{\max }: 3412,2967,2927,2859,1451,1384,1100,1076,1033,864,814,551,459 \mathrm{~cm}^{-1}$.
HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}, 171.1380$; found, 171.1378.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.47$ (1:1 hexane:EtOAc).

(2R,3S)-3-(bromomethyl)-2-methyl-2-(4-methylpent-3-en-1-yl)oxirane (8): ${ }^{15}$
A solution of $22\left(5.00 \mathrm{~g}, 29.4 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(294 \mathrm{~mL})$ in a 500 mL round-bottom 3-neck flask was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath. Imidazole ($6.00 \mathrm{~g}, 88.1 \mathrm{mmol}, 3$ equiv) was added in one portion, followed by triphenylphosphine ($11.55 \mathrm{~g} 44.0 \mathrm{mmol}, 1.5$ equiv). Ten minutes later, $\mathrm{CBr}_{4}(14.61 \mathrm{~g}, 44.0$ mmol, 1.5 equiv) was added, and the reaction was protected from light and stirred at $0{ }^{\circ} \mathrm{C}$. After 2 h , the reaction was concentrated to ca $1 / 10$ volume in vacuo and applied directly to a 15 by 6 cm silica gel column. The column was eluted with $5 \%(1 \mathrm{~L})$ and then $10 \%(1 \mathrm{~L})$ EtOAc/hexane, generating 20100 mL fractions. Fractions 7-12 were combined and concentrated at reduced pressure to give $8(5.34 \mathrm{~g}, 22.9 \mathrm{mmol}, 78 \%)$ as a clear, colorless liquid.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 5.10(\mathrm{dd}, \mathrm{J}=8.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, \mathrm{J}=10.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, \mathrm{J}$ $=10.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, \mathrm{J}=7.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.45(\mathrm{ddd}, \mathrm{J}=13.7,9.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 132.4,123.4,63.2,61.6,38.5,29.9,25.8,23.9,17.8,16.2$.
FTIR (thin film) $\mathrm{v}_{\max }: 2968,2915,2858,1450,1385,1249,1217,1112,1070,890,848,834,745,695,652$, 452, $430 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{BrO}$, 233.0536; found, 233.0533.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.75$ (4:1 hexane:EtOAc).

9
(2R,3S)-3-(bromomethyl)-2-(4-methoxy-4-methylpentyl)-2-methyloxirane (9):
A stirring solution of $\mathbf{8}\left(5.13 \mathrm{~g}, 22 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{MeOH}(90 \mathrm{~mL})$ was treated with a solution of $\mathrm{Hg}(\mathrm{OAc})_{2}$ ($10.50 \mathrm{~g}, 33 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{MeOH}(60 \mathrm{~mL})$. The resulting solution was stirred for 20 minutes at room temperature and then cooled to $0{ }^{\circ} \mathrm{C}$ with an ice-water bath. To the reaction was added $3 \mathrm{~N} \mathrm{NaOH}(36 \mathrm{~mL})$ followed by a solution of $\mathrm{NaBH}_{4}(685 \mathrm{mg})$ in $3 \mathrm{~N} \mathrm{NaOH}(36 \mathrm{~mL})$. The reaction was diluted with 100 mL water and extracted thrice with $4: 1$ hexane:EtOAc. The combined organic layers were washed thrice with water and once with brine, dried over sodium sulfate, filtered, and concentrated at reduced pressure. The crude residue obtained was applied to a 12 by 4 cm silica gel column and eluted with 5% (0.25 L), then 10% (0.25 L) and finally $20 \%(0.5 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 3824 mL fractions, and fractions $15-24$ were combined and concentrated at reduced pressure to give $9(4.52 \mathrm{~g}, 17.0 \mathrm{mmol}, 78 \%)$ as a slightly yellow oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 3.54(\mathrm{dd}, \mathrm{J}=10.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, \mathrm{J}=10.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}$, $3 \mathrm{H}), 3.09(\mathrm{dd}, \mathrm{J}=7.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.38(\mathrm{~m}, 5 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 74.5,63.3,61.5,49.3,39.9,38.8,30.0,25.1,19.6,16.2$.
FTIR (thin film) $\mathrm{v}_{\max }$: 2971, 2945, 2909, 2826, 1464, 1431, 1382, 1364, 1258, 1220, 1204, 1148, 1082, 891, $852,746,652,433,423 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF (m/z): [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{BrO}_{2}$, 287.0617; found, 287.0614.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.33$ (9:1 hexane:EtOAc).

(2R,3R)-3-((2,6-dimethoxy-1-(3-methylbut-2-en-1-yl)cyclohexa-2,5-dien-1-yl)methyl)-2-(4-methoxy-4-methylpentyl)-2-methyloxirane (11): ${ }^{3,4}$
A solution of $\mathbf{1 0}^{\mathbf{3}}(3.12 \mathrm{~g}, 15 \mathrm{mmol}, 1$ equiv) in THF (75 mL) in a 250 mL two-neck round-bottom flask equipped with a stir bar and an internal thermometer was cooled to $-78{ }^{\circ} \mathrm{C}$ using a dry ice/acetone bath. A solution of sBuLi in cyclohexane ($1.42 \mathrm{M}, 11.1 \mathrm{~mL}, 15.75 \mathrm{mmol}, 1.05$ equiv) was added dropwise over ten minutes, maintaining an internal temperature below $-65^{\circ} \mathrm{C}$. The reaction was warmed to $-30{ }^{\circ} \mathrm{C}$ over 50 minutes and held at that temperature for 20 minutes. The reaction was cooled back to $-78{ }^{\circ} \mathrm{C}$, and a solution of $9(4.18 \mathrm{~g}, 15.75 \mathrm{mmol}, 1.1$ equiv) in THF (16 mL) was added dropwise over 20 minutes such that the internal temperature was kept below $-65^{\circ} \mathrm{C}$. The reaction was held at this temperature for 1.5 h and then was allowed to warm to $-20{ }^{\circ} \mathrm{C}$ over 1.5 h . The reaction was quenched by careful addition of saturated aqueous sodium bicarbonate solution directly to the mixture at this temperature and warmed to room temperature. The reaction mixture was poured into a separatory funnel, and the aqueous layer was extracted thrice with ethyl acetate. The combined organic fractions were washed with water and brine, dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was loaded onto a 12 by 6 cm silica gel plug and eluted with $4 \%(0.5 \mathrm{~L})$ and then $6 \%(0.5 \mathrm{~L})$ and then $8 \%(0.5 \mathrm{~L})$ and finally 10\% (1.3 L) EtOAc/hexane. The process generated 10624 mL fractions. Fractions 63-106 were combined and concentrated at reduced pressure to yield $11(2.46 \mathrm{~g}, 6.30 \mathrm{mmol}, 42 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta: 5.30(\mathrm{dd}, \mathrm{J}=8.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dt}, \mathrm{J}=14.6,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H})$, $3.20(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{dd}, \mathrm{J}=7.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{td}, \mathrm{J}=3.6,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.59(\mathrm{~m}, 2 \mathrm{H})$, $2.41(\mathrm{dd}, \mathrm{J}=13.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, \mathrm{J}=13.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.56(\mathrm{~m}$, $4 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 154.3,154.3,131.9,121.1,92.8,73.8,60.3,60.0,53.9,53.5,48.6,46.3,40.2$, $39.9,34.8,34.7,25.9,24.8,24.7,24.2,19.8,17.6,16.8$.

FTIR (thin film) $\mathrm{v}_{\max }: 2969,2938,2826,1693,1658,1451,1380,1364,1222,1205,1150,1122,1081,1055$, 1032, 973, 951, 849, 778, 750, 688, $433 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{4}, 393.2999$; found, 393.2994.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.41$ (9:1 hexane:EtOAc).

(1S,5S,6R,7R)-2-methoxy-6-(4-methoxy-4-methylpentyl)-6-methyl-1-(3-methylbut-2-en-1-yl)-7-((triisopropylsilyl)oxy)bicyclo[3.3.1]non-2-en-9-one (12): ${ }^{4}$

A solution of $\mathbf{1 1}\left(2.35 \mathrm{~g}, 5.99 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ in a 250 mL round bottom flask was cooled to $-78{ }^{\circ} \mathrm{C} .2,6$-Lutidine ($1.47 \mathrm{~mL}, 12.57 \mathrm{mmol}$, 2.1 equiv) was added, followed by dropwise addition of TIPSOTf ($3.22 \mathrm{~mL}, 11.98 \mathrm{mmol}, 2$ equiv). The reaction was allowed to warm slowly to ca $0{ }^{\circ} \mathrm{C}$ over 16 h . The reaction was quenched with saturated aqueous sodium bicarbonate, and the layers were separated. The aqueous layer was extracted thrice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic fractions were washed with brine, dried over sodium sulfate, filtered, and concentrated at reduced pressure. The crude material was applied to a 12 by 6 cm silica gel column and eluted with $50 \%(1 \mathrm{~L})$, and then $75 \%(0.5 \mathrm{~L})$ and then $100 \%(1.5 \mathrm{~L}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexane). The plug was further eluted with $2 \%(0.5 \mathrm{~L})$ and then $4 \%(2.5 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 16624 mL fractions, and fractions 109-166 were combined and concentrated at reduced pressure to give $12(2.37 \mathrm{~g}, 4.42 \mathrm{mmol}, 74 \%)$ as a clear, colorless, viscous oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 5.06(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, \mathrm{J}=4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, \mathrm{J}=11.1$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~m}, 4 \mathrm{H}), 2.21(\mathrm{dd}, \mathrm{J}=14.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{dd}, \mathrm{J}=13.1,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.65(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.13$ $(\mathrm{s}, 6 \mathrm{H}), 1.04(\mathrm{~m}, 21 \mathrm{H}), 1.02-0.94(\mathrm{~m}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 212.0,155.0,132.7,120.8,93.8,74.7,74.2,54.8,53.8,52.1,49.3,46.4,41.1$, $40.3,37.7,29.7,26.1,25.1,25.0,24.5,18.4,18.3,18.1,17.1,16.8,13.1$.

FTIR (thin film) $\mathrm{v}_{\max }: 2943,2866,1724,1662,1463,1381,1363,1213,1190,1161,1127,1100,1062,1014$, $997,882,843,677,471,465,458,444,436,418,409 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{32} \mathrm{H}_{58} \mathrm{O}_{4} \mathrm{Si}$, 535.4177; found, 535.4169.
TLC $\mathrm{R}_{\mathrm{f}}=0.43$ (9:1 hexane:EtOAc).

13
(1R,5S,7R,8R)-4-methoxy-8-(4-methoxy-4-methylpentyl)-8-methyl-5-(3-methylbut-2-en-1-yl)-7-((triisopropylsilyl)oxy)bicyclo[3.3.1]non-3-ene-2,9-dione (13): ${ }^{7}$

A stirring solution of $12(2.17 \mathrm{~g}, 4.06 \mathrm{mmol}, 1$ equiv) in BTF $(81 \mathrm{~mL})$ in a 500 mL recovery flask was charged with 7 ($4.79 \mathrm{~g}, 16.23 \mathrm{mmol}, 4$ equiv), and then 15 -crown- $5(1.61 \mathrm{~mL}, 8.12 \mathrm{mmol}, 2$ equiv) was added via syringe. The flask was outfitted with a reflux condenser, and the reaction was heated at reflux with stirring for 4 h . The reaction was cooled to room temperature and passed through a 10 by 6 cm silica gel plug, rinsing with 0.5 L EtOAc , and the eluted organic layer was concentrated at reduced pressure. The residue obtained was applied to an 11 by 6 cm silica gel plug and eluted with $10 \%(1 \mathrm{~L})$ and then $20 \%(0.75 \mathrm{~L})$ EtOAc/hexane. The process generated 6524 mL fractions. Fractions 26-42 were combined and concentrated at reduced pressure to give 14 (ca 80% pure, $0.49 \mathrm{~g}, 0.93 \mathrm{mmol}, 23 \%$). Fractions $43-64$ were combined and concentrated at reduced pressure to give $13(1.35 \mathrm{~g}, 2.48 \mathrm{mmol}, 61 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 5.65(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{tdd}, \mathrm{J}=6.1,3.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, \mathrm{J}=11.2,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{dd}, \mathrm{J}=14.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, \mathrm{J}=14.5,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.04(\mathrm{dd}, \mathrm{J}=13.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dd}, \mathrm{J}=13.3,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 8 \mathrm{H}), 1.51-1.41(\mathrm{~m}$, $1 \mathrm{H}), 1.33(\mathrm{ddd}, \mathrm{J}=14.1,10.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 6 \mathrm{H}), 1.02(\mathrm{~m}, 22 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 205.3,193.3,177.4,134.4,119.1,105.9,74.8,73.2,69.1,56.8,55.9,49.2$, $47.2,40.2,39.4,38.4,29.5,26.0,25.5,25.0,18.3,18.2,18.1,17.2,15.7,13.0$.

FTIR (thin film) $\mathrm{v}_{\max }: 2943,2866,1737,1655,1594,1461,1363,1349,1218,1195,1128,1102,1055,1013$, $997,917,882,840,826,780,733,705,678,647,606,466,445,433 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF (m/z): [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{Si}$, 549.3970; found, 549.3957.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.35$ (4:1 hexane:EtOAc).

14
(1R,5S,7R,8R)-8-(4-methoxy-4-methylpentyl)-8-methyl-5-(3-methylbut-2-en-1-yl)-7-
((triisopropylsilyl)oxy)bicyclo[3.3.1]non-3-ene-2,9-dione (14):
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.05(\mathrm{dd}, \mathrm{J}=9.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, \mathrm{J}=7.5$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, \mathrm{J}=11.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.96(\mathrm{dd}, \mathrm{J}=13.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=13.0,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 7 \mathrm{H}), 1.49-1.40(\mathrm{~m}$, $4 \mathrm{H}), 1.28-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 6 \mathrm{H}), 1.00(\mathrm{~m}, 21 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 206.8, ~ 200.6, ~ 146.5,134.7,132.3,119.5,74.5,72.0,66.1,56.3,49.3,45.2$, $42.2,41.1,39.9,38.6,28.9,26.0,25.1,24.9,18.3,18.3,18.1,17.6,16.0,12.9$.

FTIR (thin film) $\mathrm{v}_{\max }$: 2967, 2944, 2911, 2867, 1735, 1680, 1464, 1381, 1364, 1235, 1130, 1106, 1070, 998, $882,858,826,683,674,646,447,416 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{Si}$, 519.3864; found, 519.3850.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.53$ (4:1 hexane:EtOAc).

(1R,5S,7R,8R)-7-hydroxy-4-methoxy-8-(4-methoxy-4-methylpentyl)-8-methyl-5-(3-methylbut -2-en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione (15): ${ }^{3,4}$
A solution of $13(1.33 \mathrm{~g}, 2.42 \mathrm{mmol}, 1$ equiv) in THF $(24.2 \mathrm{~mL})$ was treated with TBAF (1 M in THF, $7.3 \mathrm{~mL}, 7.3 \mathrm{mmol}, 3$ equiv) and stirred at room temperature for 5 minutes. The reaction was quenched with saturated aqueous sodium bicarbonate and transferred to a separatory funnel. The aqueous layer was extracted thrice with EtOAc. The combined organic fractions were washed with water and brine, dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was applied to a 12 by 4 cm silica gel plug and eluted with $25 \%(0.5 \mathrm{~L})$ and then $75 \%(0.7 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 4724 mL fractions, and fractions 25-47 were combined and concentrated at reduced pressure to give $15(0.93 \mathrm{~g}, 2.37 \mathrm{mmol}, 98 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 5.65(\mathrm{~s}, 1 \mathrm{H}), 5.01-4.93(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{dd}, \mathrm{J}=11.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, $3 H), 3.19(\operatorname{apps}, 4 H), 2.49(\mathrm{dd}, \mathrm{J}=14.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, \mathrm{J}=14.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, \mathrm{J}=13.4$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 8 \mathrm{H}), 1.50-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H})$, $0.88(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 205.2,193.1,177.5,134.5,119.0,106.0,74.8,72.0,69.1,57.0,56.0,49.2$, $46.1,40.1,39.4,38.3,29.5,26.0,25.5,25.0,18.1,17.3,15.7$.

FTIR (thin film) $\mathrm{v}_{\max }: 3422,2970,2942,2911,1735,1654,1591,1459,1365,1351,1279,1228,1217,1188$, $1074,1051,1026,974,918,845,828,793,758,731,706,663,647,612,562,546,492,467,439,420 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{~S}, 391.2490$; found, 391.2490.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.16$ (1:1 hexane:EtOAc).

O-((1R,2R,3R,5S)-6-methoxy-2-(4-methoxy-4-methylpentyl)-2-methyl-5-(3-methylbut-2-en-1-yl)-8,9-dioxobicyclo[3.3.1]non-6-en-3-yl) O-(perfluorophenyl) carbonothioate (16): ${ }^{3,4}$

A solution of $15(0.91 \mathrm{~g}, 2.32 \mathrm{mmol}, 1$ equiv) and NHS ($267 \mathrm{mg}, 2.32 \mathrm{mmol}, 1$ equiv) in PhMe (29 mL) in a 500 mL recovery flask was charged with pyridine $(0.94 \mathrm{~mL}, 11.6 \mathrm{mmol}, 5$ equiv $)$, followed by pentafluorophenylchlorothiono formate $(1.86 \mathrm{~mL}, 11.6 \mathrm{mmol}, 5$ equiv $)$, both via syringe. The reaction was capped, sealed with teflon tape and parafilm, and heated with stirring in an aluminum shot bath at $80{ }^{\circ} \mathrm{C}$ for 3.5 h . The reaction was cooled to room temperature and partitioned between EtOAc (0.2 L) and water (0.1 L) in a separatory funnel. The organic layer was extracted once more with water and once with brine, dried over sodium sulfate, filtered, and concentrated at reduced pressure. The crude material was applied to a 12 by 6 cm silica gel column and eluted with $2 \%(0.5 \mathrm{~L})$ and then $5 \%(0.5 \mathrm{~L})$ and then $10 \%(0.5 \mathrm{~L})$ and finally 12.5% (1.5 L) EtOAc/hexane. The process generated 11324 mL fractions; fractions 73-112 were combined and concentrated at reduced pressure to give $16(1.30 \mathrm{~g}, 2.15 \mathrm{mmol}, 92 \%)$ as a golden oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{dd}, \mathrm{J}=11.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.39(\mathrm{~m}, 3 \mathrm{H}), 1.92(\operatorname{app} \mathrm{t}, \mathrm{J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 7 \mathrm{H})$, $1.47-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 203.5,191.9,191.6,176.9,135.1,118.4,106.2,87.1,74.6,69.3,57.4,55.5$, $49.3,45.5,39.9,37.9,33.9,29.3,27.1,26.1,25.6,25.0,18.1,17.3,17.1$.
${ }^{19}$ FNMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta:-152.23(\mathrm{~d}, \mathrm{~J}=18.7 \mathrm{~Hz}, 2 \mathrm{~F}),-156.16(\mathrm{t}, \mathrm{J}=21.8 \mathrm{~Hz}, 1 \mathrm{~F}),-161.67(\mathrm{t}, \mathrm{J}=$ $20.3 \mathrm{~Hz}, 2 \mathrm{~F})$.

FTIR (thin film) $v_{\max }: 2971,2915,1741,1658,1593,1519,1462,1376,1350,1328,1307,1283,1265,1221$, $1198,1150,1076,1044,997,964,910,848,826,731,647,545,497,447,419 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~F}_{5} \mathrm{O}_{6} \mathrm{~S}$, 619.2147; found, 619.2132.
TLC $\mathrm{R}_{\mathrm{f}}=0.14$ (9:1 hexane:EtOAc).

(1R,5S,7R,8S)-7-allyl-4-methoxy-8-(4-methoxy-4-methylpentyl)-8-methyl-5-(3-methylbut-2-en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione (18): ${ }^{3,4}$

A solution of $16(1.24 \mathrm{~g}, 2.05 \mathrm{mmol}, 1$ equiv) in $\mathrm{PhH}(2.3 \mathrm{~mL})$ and allyltributylstannane $(6.9 \mathrm{~mL})$ in a 250 mL round bottom flask was charged with $\mathrm{BEt}_{3}(5.0 \mathrm{M}$ in $\mathrm{PhH}, 0.41 \mathrm{~mL}, 2.05 \mathrm{mmol}, 1$ equiv) via syringe. With vigorous stirring (500 rpm) of the reaction mixture ca 1 cm off the center of the plate, the vessel was opened to the atmosphere by removal of the septum and stirred in this way for 30 minutes. The reaction was concentrated partially at reduced pressure and applied directly to a 14 by 5 cm silica gel column. The column was eluted with $2 \%(1 \mathrm{~L})$, and then $5 \%(1 \mathrm{~L})$, and then $10 \%(1 \mathrm{~L})$, and then $12 \%(1 \mathrm{~L})$ and finally $15 \% ~(1.5 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated ten 100 mL fractions followed by 17024 mL fractions. Of these 17024 mL fractions, fractions 100-137 were combined and concentrated at reduced pressure to give 18 ($0.39 \mathrm{~g}, 0.94 \mathrm{mmol}, 46 \%$). Fractions 138-170 were combined and concentrated at reduced pressure to give 17 ($0.11 \mathrm{~g}, 0.29 \mathrm{mmol}, 14 \%$).
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 5.71-5.58(\mathrm{~m}, 2 \mathrm{H}), 5.05-4.92(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~s}$, $1 \mathrm{H}), 2.45(\mathrm{dd}, \mathrm{J}=14.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{dd}, \mathrm{J}=13.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.61(\mathrm{~m}$, $9 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.12(\mathrm{~m}, 8 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 206.9,193.9,177.5,137.0,133.9,119.4,116.7,106.4,74.7,70.5,56.9,49.3$, 46.1, 40.0, 39.8, 39.2, 39.0, 33.8, 29.7, 26.0, 25.6, 25.0, 18.0, 17.8, 17.4.

FTIR (thin film) $\mathrm{v}_{\max }$: 2969, 2917, 2856, 2825, 1731, 1652, 1595, 1444, 1365, 1352, 1303, 1277, 1225, 1196, $1172,1109,1079,1056,993,913,845,828,794,774,732,663,645,595,547,485,446,433 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{4}, 417.2999$; found, 417.2985.
TLC $R_{f}=0.25$ (4:1 hexane:EtOAc).

17
(1R,5R,8S)-4-methoxy-8-(4-methoxy-4-methylpentyl)-8-methyl-5-(3-methylbut-2-en-1-yl)
bicyclo[3.3.1]non-3-ene-2,9-dione (17):
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 5.72(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{dd}, \mathrm{J}=7.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.99$ ($\mathrm{s}, 1 \mathrm{H}$), $2.50(\mathrm{dd}, \mathrm{J}=14.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, \mathrm{J}=14.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.61$ $(\mathrm{m}, 7 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.18(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}$, $6 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: ~ 206.9, ~ 194.1, ~ 177.1, ~ 133.9, ~ 119.5, ~ 106.3, ~ 74.7, ~ 72.0, ~ 56.8, ~ 49.3, ~ 43.4, ~ 42.2, ~$ $40.2,33.3,31.9,29.7,26.0,25.5,25.1,22.0,18.1,17.5$.

FTIR (thin film) $\mathrm{v}_{\max }: ~ 2967,2926,2854,1731,1655,1596,1459,1366,1221,1195,1153,1085,1055,846$ cm^{-1}.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4}, 399.2506$; found, 399.2497.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.15$ (4:1 hexane:EtOAc).

(1R,5S,7R,8S)-4-methoxy-8-(4-methoxy-4-methylpentyl)-8-methyl-5,7-bis(3-methylbut-2-en-1 -yl)bicyclo[3.3.1]non-3-ene-2,9-dione (20): ${ }^{3,4}$

A solution of $18\left(390 \mathrm{mg}, 0.94 \mathrm{mmol}, 1\right.$ equiv) and $19(88.4 \mathrm{mg}, 0.14 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ and 2-methyl-2-butene (13 mL) was capped, sealed with teflon tape and parafilm, and heated with stirring at $40{ }^{\circ} \mathrm{C}$ for 4 h . The reaction was cooled to room temperature and concentrated at reduced pressure. The residue obtained was applied to a 10 by 5 cm silica gel column and eluted with 5% (0.5 L) and then 10% (0.5 L) and then $12 \%(0.5 \mathrm{~L})$ and then $15 \%(1 \mathrm{~L})$ and finally $50 \%(200 \mathrm{~mL}) \mathrm{EtOAc} /$ hexane. The process generated 10524 mL fractions, and fractions 65-101 were combined and concentrated at reduced pressure to give $20(367 \mathrm{mg}, 0.825 \mathrm{mmol}, 88 \%)$ as a slightly brown oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 5.68(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{dd}$, $\mathrm{J}=14.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, \mathrm{J}=14.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, \mathrm{J}=11.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{dd}, \mathrm{J}=13.9$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 9 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.23-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.16$ $(\mathrm{d}, \mathrm{J}=1.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 207.2,194.0,177.6,133.8,133.2,122.7,119.5,106.4,74.7,70.6,57.0,56.9$, $49.3,46.2,40.9,40.1,39.4,39.0,29.8,27.8,26.0,26.0,25.6,25.0,18.1,18.0,17.8,17.4$.

FTIR (thin film) $\mathrm{v}_{\max }: 2968,2914,2856,2825,1731,1653,1596,1449,1366,1301,1278,1221,1195,1171$, $1109,1080,1056,973,919,849,827,792,731,545,473,432,418 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{4}, 445.3312$; found, 445.3299.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.28$ (4:1 hexane:EtOAc).

21
(1R,5S,7R,8S)-4-methoxy-8-methyl-5,7-bis(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1-yl) bicyclo[3.3.1]non-3-ene-2,9-dione (21):

A solution of $20(222 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv) in $\mathrm{PhH}(10 \mathrm{~mL})$ was treated with CSA ($116 \mathrm{mg}, 0.50$ $\mathrm{mmol}, 1$ equiv) and the resulting solution was heated at $80^{\circ} \mathrm{C}$ for 28 h . The reaction was cooled to room temperture and $\mathrm{Et}_{3} \mathrm{~N}(0.14 \mathrm{~mL}, 1 \mathrm{mmol}, 2$ equiv) was added. The reaction was stirred for five minutes and then $\mathrm{Co}^{\left({ }^{(\mathrm{tbu}, \mathrm{tbu})}\right.}$ salen acetate $\left(33 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.1\right.$ equiv) was added, followed by $\mathrm{PhSiH}_{3}(62 \mu \mathrm{~L}, 0.5$ mmol, 1 equiv). ${ }^{9}$ The reaction was stirred at room temperature for 20 h and then passed through an SiO_{2} plug with EtOAc, rinsing with EtOAc. The residue obtained was purified on an SiO_{2} column (2% to 5% to 10% EtOAc in hexane) to afford $21(134 \mathrm{mg}, 0.325 \mathrm{mmol}, 65 \%)$ as a clear, colorless oil. Characterization data matched those reported. ${ }^{10}$

References

[1] Yang, X.-W.; Grossman, R. B.; Xu, G. Chemical Reviews 2018, 118, 3508-3558.
[2] Friedland, K.; Harteneck, C. Reviews of Physiology, Biochemistry and Pharmacology Vol. 169; Springer, 2015; pp 1-24.
[3] Sparling, B. A.; Moebius, D. C.; Shair, M. D. Journal of the American Chemical Society 2012, 135, $644-647$.
[4] Sparling, B. A.; Tucker, J. K.; Moebius, D. C.; Shair, M. D. Organic Letters 2015, 17, 3398-3401.
[5] Zhao, Y.; Yeung, Y.-Y. Organic Letters 2010, 12, 2128-2131.
[6] Yu, J.-Q.; Wu, H.-C.; Corey, E. Organic Letters 2005, 7, 1415-1417.
[7] Wilde, N. C.; Isomura, M.; Mendoza, A.; Baran, P. S. Journal of the American Chemical Society 2014, 136, 4909-4912.
[8] Eliel, E. L.; Wilen, S. H. Stereochemistry of organic compounds; John Wiley \& Sons, 2008.
[9] Crossley, S. W.; Barabé, F.; Shenvi, R. A. Journal of the American Chemical Society 2014, 136, 16788-16791.
[10] Ting, C. P.; Maimone, T. J. Journal of the American Chemical Society 2015, 137, 10516-10519.
[11] Shimizu, Y.; Shi, S.-L.; Usuda, H.; Kanai, M.; Shibasaki, M. Angewandte Chemie International Edition 2010, 49, 11031106.
[12] Still, W. C.; Kahn, M.; Mitra, A. The Journal of Organic Chemistry 1978, 43, 2923-2925.
[13] Hanson, R. M.; Sharpless, K. B. The Journal of Organic Chemistry 1986, 51, 1922-1925.
[14] Krumpolc, M.; Rocek, J. Journal of the American Chemical Society 1979, 101, 3206-3209.
[15] Mitani, H.; Matsuo, T.; Kodama, T.; Nishikawa, K.; Tachi, Y.; Morimoto, Y. Tetrahedron 2016, 72, 7179-7184.

Chapter 2: Catalytic Allylic Oxidation to Generate Vinylogous Acyl Sulfonates from Vinyl Sulfonates

Introduction

Pursuit of the oxidation of a methyl-vinyl ether to a vinylogous ester during PPAP synthesis led to the question of which other substrates would be interesting for the development of allylic oxidation methodology. One class of substrates had been the subject of few studies: vinylogous acyl sulfonates. Vinylogous acyl sulfonates are versatile intermediates for organic synthesis, undergoing a variety of coupling and fragmentation processes. ${ }^{1}$ These substrates typically originate from treatment of the corresponding 1,3 -dicarbonyl with a weak base and sulfonate electrophile (Figure 2.1A). In the case of substrates lacking symmetrical substitution with respect to the 1,3 -dicarbonyl, a mixture of products results. ${ }^{2,3}$ Moreover, the 1,3 -dicarbonyl oxidation state must already be established, limiting the range of vinylogous acyl sulfonates rapidly accessible by this approach (Figure 2.1C). A regioselective synthesis of vinylogous acyl sulfonates via allylic oxidation of corresponding vinyl sulfonates would thus increase the diversity of such structures (Figure 2.1B).

B) Oxidative synthesis: Vinyl sulfonate gives one isomer (this work)

Figure 2.1. Proposed Utility of an Oxidative Approach to Vinylogous Acyl Sulfonates
C) Example of expanded diversity of vinylogous acyl sulfonate structures available based on this work (Scifinder result as of $4 / 9 / 19$)

5,476 hits

106 hits

To date, there are two examples of this oxidation, both of which rely on superstoichiometric quantities of toxic reagents while forming the product in moderate yield (Scheme 2.1). ${ }^{4,5}$ We sought to effect this transformation with greater facility under more benign conditions.

Scheme 2.1: Known approaches for oxidative vinylogous acyl sulfonate formation from vinyl sulfonates

Results

To study this transformation, we chose readily available vinyl triflate 28a because it lacked a competing allylic site (Figure 2.2). Application of Corey-Yu oxidation conditions and the dirhodium tetracaprolatamate ($\left.\mathrm{Rh}_{2} \mathrm{cap}_{4}\right)$-mediated allylic oxidation system developed by Doyle, both known to affect the oxidation of electron-deficient allylic sites, resulted in poor conversion (ca 20-30\%) following extended reaction times
(Figure 2.2). ${ }^{6,7}$

$0{ }^{\circ} \mathrm{C}$, 2d: $\sim 30 \%$ converted
rt, 1d: ~30\% converted

rt, 1d: $\sim 20 \%$ converted
$40^{\circ} \mathrm{C}$, 1d: $\sim 30 \%$ converted
Figure 2.2. Studies directed toward the oxidation of 28a to 29a using known systems

A preponderance of allylic oxidations in other settings are catalytic on a transition metal species in acetonitrile or acetone, with tert-Butyl hydroperoxide (TBHP) as the stoichiometric oxidant. ${ }^{8,9}$ We chose to evaluate a series of catalysts with these parameters in place. Under the conditions described above Table 2.1, the efficiency of $\mathrm{Rh}_{2} \mathrm{Cap}_{4}$ (entry 1) improved markedly. Catalysis under these conditions based on simple chromium and copper sources also converted 28a to an acceptable extent. Interestingly, iron(III) acetylacetanoate (iron(III) acac, entry 6) was capable of mediating the transformation in this setting, albeit at a reduced efficiency. ${ }^{10,11}$ Use of iron(III) chloride (entry 7) improved upon the efficiency of iron(III) acac and led to an overall superior reaction outcome. Despite being a well-known agent for oxidative C-C bond formation and a variety of allylic C-H bond oxidations, iron (III) chloride is yet to be reported as a catalyst for transformation of olefins to enones, to the best of our knowledge. ${ }^{12,13,14}$ The nearest example to its employment as such is as a complex in a polymer-bound Schiff base. ${ }^{15}$ We chose to investigate the substrate scope for iron (III) chloride catalysis, given the novelty of the catalyst for this transformation and the improvement of iron over more toxic or costly species often employed to affect allylic oxidations.

Table 2.1. Experiments concerning catalyst discovery. All yields are based on the use of dimethylsulfone as an internal standard. ${ }^{\mathrm{a}} 40^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}} 5$ equiv TBHP. ${ }^{\mathrm{c}}$ No TBHP. ${ }^{\text {d }}$ Percent conversion by NMR to 29a without an internal standard.

The scope for the oxidation of vinyl triflates is shown in Scheme 2.2. Aryl ring halide and methoxy substitution as shown for structures $\mathbf{2 9 b}$-d and 29 g was well tolerated. The system displayed a window of chemoselectivity for the desired oxidation over another olefin in cases $\mathbf{2 9 p}$ and $\mathbf{2 9 q}$. Products $\mathbf{2 9 e}, \mathbf{2 9 f}$ and $\mathbf{2 9}$ s were isolated despite containing benzylic centers. Interestingly, the oxidation of six-membered rings occurred with greater facility than that of analogous five-membered rings as shown in the relative ease of formation of $\mathbf{2 9 a}$ versus $\mathbf{2 9 h}$ and $\mathbf{2 9 o}$ versus $\mathbf{2 9 n}$. The method scaled well, forming $\mathbf{2 9 a}$ on gram scale in 79% isolated yield. In many cases, use of elevated catalyst loadings together with extended reaction times at lower temperatures served to improve the yield.

$$
\stackrel{28}{\mathrm{n}=1,2, \text { or } 3}
$$

29b-d \quad 29b-d
Method: A
Time: 16 h
b: $X=\mathrm{OMe}, 75 \%$
c: $X=\mathrm{Cl}, 72 \%$
d: $X=F=78 \%$ d: $X=F, 78 \%$

 29p
Method: B
Time: 20 h 60\%

29t Method: B
Time: 8 h Time: 8 h
24%

291 Method: B Time: 20 h 46\%

29e Method: B Time: 20 h 50\%

$29 f$

29a
Time: 16 h 87\%
79%, gram-scale

29g
Method: A
64\%

 Method: A
Time: 16 h 70\%

29k
Method: B
71%

29m Method: Time: 20 h 56\%

290 Method: A
Time: 16 h 72\%

29s
Method: B
Time: 24 h
Time:
48%

$\stackrel{29 \mathrm{u}}{\text { 2 }}$ Method: B
Time: 8 h
Time: 8
22%
Scheme 2.2. Vinyl triflate substrate scope. Method A: $5 \mathrm{~mol} \% \mathrm{FeCl}_{3}, 60^{\circ} \mathrm{C}$ Method B: $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}, 40^{\circ} \mathrm{C}$ Method C: $20 \mathrm{~mol} \% \mathrm{FeCl}_{3}, 30^{\circ} \mathrm{C}$

The transformation worked best for structures with quaternary centers immediately adjacent to the triflate. Competitive oxidation of the remaining allylic site of non-quaternary vinylogous acyl triflates was one issue. Additionally, as steric bulk adjacent to the triflate decreased, the yield of vinylogous acyl triflate generally decreased because of its hydrolysis under the reaction conditions. This is unsurprising given the use of acidic iron (III) chloride in a partially aqueous reaction mixture.

		\%)	
entry	cat.	base	nmr yield of $\mathbf{2 9 u}$ (\%
1	FeCl_{3}	none	23
2	CuI	none	19
3	$\mathrm{Cu}(\mathrm{OAc})_{2}$	none	20
4	$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	none	21
5	$\mathrm{Rh}_{2} \mathrm{cap}_{4}$	none	21
6	FeCl_{3}	2,6-diphenylpyridine	8
7	FeCl_{3}	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	<5
8	FeCl_{3}	KOAc	<5
$9{ }^{\text {a }}$	FeCl_{3}	none	19
$10^{\text {b }}$	FeCl_{3}	none	17
$11^{\text {c }}$	FeCl_{3}	none	ca $20{ }^{\text {d }}$

Table 2.2. Attempts to improve the process for $\mathbf{2 9} \mathbf{u}$. All yields are based on the use of dimethylsulfone as an internal standard. ${ }^{\text {a }}$ Anhydrous conditions. ${ }^{\mathrm{b}}$ In Acetone. ${ }^{\mathrm{c}}$ Nonaflate in lieu of triflate. ${ }^{\mathrm{d}}$ Isolated yield.

Attempts to circumvent these issues in studies of $\mathbf{2 9 u}$ formation such as buffering with inorganic or amine bases, employing anhydrous reaction conditions, substituting other catalysts, or changing the sulfonate identity failed to improve the reaction outcome. While the system allowed for variance of R " from hydrogen in case $\mathbf{2 9 k}$, homoallylic steric bulk was tolerated poorly. Additionally, the process failed for linear substrates and those containing nitrogeneous moieties.

29v
Decomposition

29w
Clean conversion, but sulfide also oxidized

29x
Complex mixture

29bb

29cc
Mixed conversion to enone, alcohol, and hydrolyzed product

29y
Extremely facile hydrolysis of
the product

29dd
Slow conversion
to a complex mixture

29z
Decomposition

Highly competitive
vinyl triflate hydrolysis

Figure 2.3. Substrates not tolerated under the reaction conditions \& reasons for failure

Given the limitations observed with vinyl triflates, we turned our attention to a survey of the oxidation of vinyl tosylates to vinylogous acyl tosylates, and the results are shown in Scheme 2.3. The transformation progressed under slightly gentler conditions than in the case of vinyl triflates and delivered the vinylogous acyl tosylate in a similar yield to that of the analogous vinylogous acyl triflate. The slightly more forceful conditions necessary for the oxidation of vinyl triflates might be because the shift on the vinylic proton on a
vinyl triflate is slightly downfield that of the analogous vinyl tosylate. Hydrolysis and overoxidation of the desired products were the issues again as steric bulk immediately adjacent to the tosylate decreased.

\quad 31a
Time: 24 h
86%

\quad 31b
Time: 26 h
58%

\quad 31c
Time: 51 h
41%

31d
Time: 47
h

31e
Time: 52 h
26\%
Scheme 2.3. Brief survey of vinyl tosylates.

As a demonstration of the proposed utility of this method, we generated vinylogous acyl nonaflate $\mathbf{3 4}$ selectively from vinyl nonaflate 35 in 54% yield (Scheme 2.4A). Conditions employed in the literature from 1,3-dicarbonyl 32 gave an isomeric mix of products. In fact, these conditions favored vinylogous acyl nonaflate 33 (54% yield) over formation of desired product 34 (20% yield). ${ }^{3}$ A second advantage of this oxidation was demonstrated in the two-pot synthesis of 1,3-dicarbonyl compound $\mathbf{3 7}$ from ketone $\mathbf{3 6}$, representing an improvement over lengthier sequences typical in the literature (Scheme 2.4B). ${ }^{16,17}$

35
34
54%
B) Two-pot formation of 1,3-dicarbonyl compounds from ketones

Scheme 2.4. Adavntages associated with an oxidative approach to vinylogous acyl sulfonates

Product 29a underwent the addition/fragmentation process described by Dudley et al. to generate products 38a-b in good yield (Scheme 2.5). ${ }^{18}$ Sterically demanding couplings of 29a in Sonogashira and

Suzuki reactions formed 39 and 40 in high yield. ${ }^{19,20}$ Additionally, formation of alcohol 41 in a hydridemediated reductive ring opening was achieved in 58% yield. ${ }^{18}$ The formation of $\mathbf{3 8 - 4 1}$ serves as a brief illustration of the utility of vinylogous acyl sulfonates for diverse derivatization.

Preliminary mechanistic investigations are underway. Substitution of iron (III) chloride with iron (II) chloride or a variety of other transition metal sources still allowed the reaction to proceed (Table 2.1). Based on these results, we propose an iron II/III catalytic cycle operating with analogy to the canonical Fenton oxidation pathway first discussed by Haber and Weiss (Scheme 2.6A). ${ }^{21}$ Performance of the reaction under conditions free from atmospheric oxygen had no effect on yield of the desired product. Analysis of the gas formed by this reaction following its completion by a glowing splint test offered evidence that an oxidizing gas had been generated. Production of oxygen from tert-butyl peroxy radicals (Scheme 2.6B) might explain the formation of an oxidizing atmosphere. ${ }^{22,23}$ Therefore, we propose that intermediate \mathbf{A} may combine with either molecular oxygen or tert-butyl peroxy radical to generate intermediates \mathbf{B} or \mathbf{C} en route to the vinylogous acyl sulfonate. Given the highly reactive tert- butoxy radical postulated by this mechanism, the window of chemoselectivity for the desired transformation over alternative allylic and benzylic positions is surprising.
A) Fenton-type mechanism

B) Generation of oxygen
$2 \mathrm{tBuOO} \rightleftharpoons \mathrm{tBuOOOOtBu} \longrightarrow \mathrm{O}_{2}+2 \mathrm{tBuO}^{\circ}$

Scheme 2.6. Mechanistic proposal

Conclusion and Future Directions

We have accomplished the regioselective formation of vinylogous acyl sulfonates through an iron(III) chloridemediated oxidation of the corresponding vinyl sulfonates. The most favorable vinyl sulfonates for this transformation contained quaternary centers immediately adjacent to the vinyl sulfonate, although other classes of products were isolated at lower yields. The vinylogous acyl sulfonates produced were useful for an assortment of subsequent transformations. Future studies will improve the process for less sterically protected vinyl sulfonates, achieve the oxidation of linear substrates, and address substrates with steric hindrance around the allylic site.

General Experimental Information

General Procedures. All reactions were performed in oven-dried glassware under a positive pressure of dinitrogen unless otherwise noted. Flash column chromatography was performed as described by Still et al. ${ }^{24}$ employing silica gel 60 (40-63 $\mu \mathrm{m}$, Whatman). Analytical thin-layer chromatography (TLC) was performed using 0.25 mm silica gel 60 F254 plates (Merck).

Materials. Reagents and solvents used herein were purchased from commercial vendors and used as received, with these specifications: Tetrahydrofuran (THF), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, toluene (PhMe), diisopropylamine, and N-ethyldiisopropylamine were sourced from sureseal bottles. The molarities of sureseal butyllithium hexane solutions (Aldrich) were determined by titration with 1,10-phenanthroline as an indicator (average of three determinations). THF solutions of lithium diisopropylamide (LDA) and lithium anilide were prepared by addition of a hexane solution of butyllithium (1 equiv) to a THF solution of the appropriate amine (1.1 equiv) cooled to $-78{ }^{\circ} \mathrm{C}$ and stirring the solution for 30 min at $0{ }^{\circ} \mathrm{C}$. Sureseal THF solutions of sodium hexamethyldisilazide (NaHMDS) and lithium triethylborohydride $\left(\mathrm{LiHBEt}_{3}\right)$ were purchased from Aldrich and used without further modification. Sureseal ethereal solutions of phenyllithium (PhLi) were purchased from Aldrich and used without further modification.

Instrumentation. ${ }^{1} \mathrm{H}$ NMR spectra were recorded with Varian INOVA-500, Agilent DD2-600, or JEOL-400 spectrometers, are reported in parts per million (δ), and are calibrated using residual non-deuterated solvent as an internal reference: $\mathrm{CDCl}_{3}, \delta 7.26\left(\mathrm{CHCl}_{3}\right)$. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, integration). Multiplicities are reported as follows: $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; $\mathrm{p}=$ pentet; $\mathrm{sx}=$ sextet, $\mathrm{m}=$ multiplet; $\mathrm{br}=$ broad, or combinations thereof. ${ }^{13}$ C NMR spectra were recorded with a Varian INOVA-500 or JEOL-400 spectrometer, are reported in parts per million (δ), and are referenced from the central peak of the carbon resonance of the solvent: CDCl_{3}, $\delta 77.16 .{ }^{19} \mathrm{~F}$ NMR spectra were recorded with a JEOL-400 or a Varian INOVA-500 spectrometer and are reported in parts per million (δ). Infrared (IR) data were recorded on a Bruker Alpha FT-IR spectrometer outfitted with an Eco-ATR sampling module. High-resolution mass spectra (HRMS) were recorded using electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) mass spectroscopy using a Thermo Scientific Dionex UltiMate 3000 UHPLC coupled to a Thermo Q Exactive Plus mass spectrometer system equipped with either an HESI-II electrospray ionization source or an APCI probe.

Experimentals

A full description of the syntheses of compounds $\mathbf{2 8}, \mathbf{3 0}$, and $\mathbf{3 5}$, including the procurement or synthesis of all precursors thereto, is available in the supporting information of the published version of this work. ${ }^{25}$

Oxidative Synthesis of Vinylogous Acyl Sulfonates

General Sulfonate Oxidation Procedure (A). The following was performed open to air and moisture. A vial equipped with a stir bar was charged with the vinyl sulfonate and acetonitrile. Reactions on vinyl triflates $\mathbf{1}$ and vinyl nonaflate $\mathbf{8}$ were performed on a 0.8 M solution in acetonitrile of the substrate. Reactions on vinyl tosylates 3 were performed on a 0.4 M solution in acetonitrile of the substrate. Ten equivalents of TBHP ($70 \% \mathrm{wt}$ solution in water) were added, followed by the proscribed equivalents of iron (III) chloride as a 0.1 M aqueous solution. The vial was closed with a teflon-lined cap, sealed with teflon tape and parafilm, and heated (if necessary) at the indicated temperature for the indicated time in an aluminum shot bath. The reaction was cooled to room temperature and poured into a saturated aqueous sodium thiosulfate solution. The aqueous layer was extracted thrice with EtOAc or ether as indicated. The combined organic fractions were washed with saturated aqueous sodium bicarbonate solution, water, and brine, dried over sodium sulfate, filtered, and concentrated at reduced pressure. Concentration of EtOAc fractions was performed with a 50 ${ }^{\circ} \mathrm{C}$ water bath; of ethereal fractions, a room temperature bath. The residue obtained was separated by silica gel chromatography as described (column reported in "length" by "width") to afford the pure vinylogous acyl sulfonate.

Note on vinyl triflate ${ }^{13} \mathrm{C}$ characterization. In cases in which the carbon quartet (appearing at ca 123, $120,117$, and 114 ppm$)$ of the $-\mathrm{CF}_{3}$ group is partially visible, the peak(s) associated with this resonance (typically the tallest two at ca 120 and 117 ppm) are reported individually.

1-methyl-4-oxo-1,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate (29a):
General procedure A was executed upon $69.0 \mathrm{mg}(0.215 \mathrm{mmol})$ of $\mathbf{2 8 a}$, using $5 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $60{ }^{\circ} \mathrm{C}$ with a 16 h reaction time. After workup with EtOAc , the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(50 \mathrm{~mL})$ and then $30 \%(100 \mathrm{~mL}) \mathrm{EtOAc} /$ hexane. The process generated 1212 mL fractions. Fractions 7-11 were combined and concentrated at reduced pressure to give 29a $(62.4 \mathrm{mg}, 0.187 \mathrm{mmol}, 87 \%)$ as a clear, colorless oil. Repetition of the same procedure on $1.03 \mathrm{~g}(3.23$ $\mathbf{m m o l}$) of $\mathbf{2 8 a}$ afforded $855 \mathrm{mg}(2.56 \mathrm{mmol}, 79 \%)$ of $\mathbf{2 9 a}$.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.45-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 1 \mathrm{H})$, $2.35-2.22(\mathrm{~m}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 197.3,170.2,140.8,129.2,127.9,125.9,119.8,118.2,116.7,44.7,38.4,34.1$, 24.7.
${ }^{19}$ FNMR (400 MHz; $\left.\mathrm{CDCl}_{3}\right)$ §: -73.81.
FTIR (thin film) $\mathrm{v}_{\max }$: 2980, 1691, 1632, 1602, 1497, 1461, 1446, 1414, 1325, 1247, 1209, 1134, 1083, 1036, 1017, 941, 917, 899, 877, 852, 805, 762, 756, 700, 609, 579, 552, 534, 508, 445, $432 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$, 335.0559; found, 335.0559.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.44$ (4:1 hexane:EtOAc).

4'-methoxy-1-methyl-4-oxo-1,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate (29b):

General procedure A was executed upon $70.8 \mathrm{mg}(0.202 \mathrm{mmol})$ of $\mathbf{2 8 b}$, using $5 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $60{ }^{\circ} \mathrm{C}$ with a 16 h reaction time. After workup with EtOAc, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.1 \mathrm{~L})$ and then $15 \%(0.2 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 2312 mL fractions. Fractions $13-20$ were combined and concentrated at reduced pressure to give 29b (55.2 $\mathrm{mg}, 0.151 \mathrm{mmol}, 75 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.23(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 2.41(\mathrm{dt}, \mathrm{J}=16.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.18(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; $\left.\mathrm{CDCl}_{3}\right) \delta: 197.5,170.5,159.1,132.6,127.1,119.9,118.1,116.7,114.5,55.5,44.1,38.5$, 34.1, 24.8.
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-73.81$.
FTIR (thin film) $v_{\max }$: 2937, 2840, 1694, 1631, 1611, 1582, 1514, 1463, 1414, 1383, 1326, 1313, 1298, 1248, $1211,1187,1135,1103,1076,1034,1021,936,902,878,856,829,809,797,766,752,694,663,625,606,579$, $560,513,409 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}, 365.0665$; found, 365.0660.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.25$ (4:1 hexane:EtOAc).

4'-chloro-1-methyl-4-oxo-1,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate

(29c):
General procedure A was executed upon $76.1 \mathrm{mg}(0.214 \mathrm{mmol})$ of $\mathbf{2 8 c}$, using $5 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $60{ }^{\circ} \mathrm{C}$ with a 16 h reaction time. After workup with EtOAc, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.1 \mathrm{~L})$ and then $15 \%(0.2 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 2412 mL fractions. Fractions 14 -21 were combined and concentrated at reduced pressure to give 29c (56.9 $\mathrm{mg}, 0.154 \mathrm{mmol}, 72 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.38(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 2.48-2.36$ $(\mathrm{m}, 1 \mathrm{H}), 2.34-2.16(\mathrm{~m}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 196.9,169.5,139.4,134.0,129.4,127.4,118.4,44.4,38.4,34.0,24.6$.
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-73.73$.
FTIR (thin film) $\mathrm{v}_{\max }: 2928,1694,1632,1492,1462,1415,1325,1247,1210,1134,1100,1072,1038,1022$, 1011, 940, 902, 877, 854, 825, 804, 758, 733, 687, 598, 579, 550, 523, 478, $409 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClF}_{3} \mathrm{O}_{4} \mathrm{~S}$, 369.0170; found, 369.0168.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.28$ (4:1 hexane:EtOAc).

4'-fluoro-1-methyl-4-oxo-1,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate (29d):

General procedure A was executed upon $69.0 \mathrm{mg}(0.204 \mathrm{mmol})$ of $\mathbf{2 8 d}$, using $5 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $60{ }^{\circ} \mathrm{C}$ with a 16 h reaction time. After workup with EtOAc , the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.1 \mathrm{~L})$ and then $15 \%(0.2 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 2412 mL fractions. Fractions 13-22 were combined and concentrated at reduced pressure to give 29d (56.2 $\mathrm{mg}, 0.159 \mathrm{mmol}, 78 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{ddd}, \mathrm{J}=15.9$, $5.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, \mathrm{J}=8.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; $\left.\mathrm{CDCl}_{3}\right) \delta: 197.0,169.8,162.2(\mathrm{~d}, \mathrm{~J}=249.5 \mathrm{~Hz}), 136.6(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}), 127.8(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}), 118.3,116.1(\mathrm{~d}, \mathrm{~J}=22.2 \mathrm{~Hz}), 44.3,38.5,34.0,24.7$.
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-73.79,-114.33$.
FTIR (thin film) $\mathrm{v}_{\max }: 2929,1694,1632,1606,1511,1462,1414,1324,1211,1168,1135,1091,1073,1038$, $1022,1013,938,903,878,859,834,803,753,725,694,660,625,606,579,557,530,494,433,409 \mathrm{~cm}^{-1}$.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{4} \mathrm{O}_{4} \mathrm{~S}, 353.0465$; found, 353.0462.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.30$ (4:1 hexane:EtOAc).

1,4'-dimethyl-4-oxo-1,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate (29e):
General procedure A was executed upon $69.0 \mathrm{mg}(0.207 \mathrm{mmol})$ of $\mathbf{2 8 e}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $40{ }^{\circ} \mathrm{C}$ with a 20 h reaction time. After workup with EtOAc, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $5 \%(0.1 \mathrm{~L})$ and then $10 \%(0.2 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 2412 mL fractions. Fractions 13-21 were combined and concentrated at reduced pressure to give 29e (35.9 $\mathrm{mg}, 0.103 \mathrm{mmol}, 50 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.22-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{dt}, \mathrm{J}=15.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}$, $3 \mathrm{H}), 2.31(\mathrm{dd}, \mathrm{J}=10.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 197.5,170.5,137.7,137.6,129.8,125.9,119.9,118.1,116.7,44.4,38.5,34.1$, 24.8, 21.1.
${ }^{19}$ FNMR (400 MHz; CDCl_{3}) $\delta:-73.80$.
FTIR (thin film) $\mathrm{v}_{\max }: 2926,1694,1632,1515,1419,1327,1314,1247,1214,1137,1074,1039,1025,1015$, $940,903,878,855,815,765,753,696,606,579,528,495 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}, 349.0716$; found, 349.0712.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.43$ (4:1 hexane:EtOAc).

4'-butyl-1-methyl-4-oxo-1,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate (29f):

General procedure A was executed upon $74.8 \mathrm{mg}(0.199 \mathrm{mmol})$ of $\mathbf{2 8 f}$, using $20 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $30{ }^{\circ} \mathrm{C}$ with a 23 h reaction time. After workup with EtOAc , the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $5 \% ~(0.1 \mathrm{~L})$, then $8 \%(0.2 \mathrm{~L})$ and then $20 \%(0.25 \mathrm{~L}) \mathrm{EtOAc} / \mathrm{hexane}$. The process generated 4112 mL fractions. Fractions 14-18 were combined and concentrated at reduced pressure to give $29 \mathrm{f}(17.0 \mathrm{mg}, 44 \mu \mathrm{~mol}, 22 \%)$ as a clear, colorless oil. Fractions $30-39$ were combined and concentrated at reduced pressure to give $42(29.2 \mathrm{mg}, 72 \mu \mathrm{~mol}, 36 \%)$ as a clear, colorless oil.
${ }^{\mathbf{1}} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.24-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.35(\mathrm{~m}$, $1 \mathrm{H}), 2.35-2.18(\mathrm{~m}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.29(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 197.5,170.6,142.6,137.8,129.1,125.8,118.1,44.5,38.4,35.2,34.1,33.6$, 24.8, 22.5, 14.1.
${ }^{19}$ FNMR (400 MHz; CDCl_{3}) $\delta:-73.80$.
FTIR (thin film) $\mathrm{v}_{\max }: 2958,2929,2859,1693,1631,1511,1459,1413,1381,1364,1322,1247,1210,1135$, $1107,1075,1037,1024,1013,941,901,878,854,830,804,754,696,607,577,533,508,445,409 \mathrm{~cm}^{-1}$.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}, 391.1185$; found, 391.1181.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.49$ (4:1 hexane:EtOAc).

4'-butyryl-1-methyl-4-oxo-1,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate (42):
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ ס: $7.99(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 2.94(\mathrm{t}, \mathrm{J}$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.20(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 199.7,196.8,169.4,145.9,136.7,128.9,126.3,119.8,118.5,116.7,44.9$, 40.7, 38.3, 34.0, 24.5, 17.8, 14.0.
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-73.70$.
FTIR (thin film) $\mathrm{v}_{\max }$: 2963, 2930, 2875, 1686, 1632, 1607, 1459, 1410, 1366, 1324, 1301, 1247, 1213, 1135, $1105,1073,1038,1024,1014,991,943,904,879,855,805,757,704,607,576,492,406 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}$, 405.0978; found, 405.0979.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.21$ (4:1 hexane:EtOAc).

3',5'-dimethoxy-1-methyl-4-oxo-1,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl
trifluoromethanesulfonate $(29 \mathrm{~g})$:
General procedure A was executed upon $85.0 \mathrm{mg}(0.223 \mathrm{mmol})$ of $\mathbf{2 8 g}$, using $5 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $60{ }^{\circ} \mathrm{C}$ with a 16 h reaction time. After workup with EtOAc , the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.1 \mathrm{~L})$ and then $20 \%(0.2 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 2312 mL fractions. Fractions $14-21$ were combined and concentrated at reduced pressure to give $\mathbf{2 9 g}$ (56.4 $\mathrm{mg}, 0.143 \mathrm{mmol}, 64 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.45(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $6 \mathrm{H}), 2.47-2.15(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 197.4,170.0,161.4,143.3,119.9,118.2,116.7,104.7,99.1,55.5,44.9,38.3$, 34.2, 24.8.
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-73.80$.
FTIR (thin film) $\mathrm{v}_{\max }$: $2938,2841,1691,1631,1595,1458,1422,1326,1295,1247,1205,1158,1135,1092$, $1046,1021,942,929,901,869,840,817,799,763,700,657,637,605,577,509,446 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}$, 395.0771; found, 395.0766.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.23$ (4:1 hexane:EtOAc).

5-methyl-3-oxo-5-phenylcyclopent-1-en-1-yl trifluoromethanesulfonate (29h):
General procedure A was executed upon $63.1 \mathrm{mg}(0.206 \mathrm{mmol})$ of $\mathbf{2 8 h}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $40{ }^{\circ} \mathrm{C}$ with a 20 h reaction time. After workup with EtOAc , the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $5 \% ~(0.2 \mathrm{~L})$ and then $8 \% ~(0.2 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 46 9 mL fractions. Fractions $28-38$ were combined and concentrated at reduced pressure to give $\mathbf{2 9 h}(21.5 \mathrm{mg}$, $67 \mu \mathrm{~mol}, 33 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.39(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 2.87(\mathrm{~d}, \mathrm{~J}=$ $18.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, \mathrm{~J}=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 201.9,181.4,140.6,129.3,128.0,125.6,120.0,116.8,115.5,53.6,48.5,23.1$.
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-72.77$.
FTIR (thin film) $\mathrm{v}_{\max }: 2925,2853,1727,1616,1498,1432,1381,1300,1286,1214,1130,1082,1057,1030$, $1003,943,923,911,835,809,763,731,700,665,607,585,540,509,488,445 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}, 321.0403$; found, 321.0400 .
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.38$ (4:1 hexane:EtOAc).

1-isobutyl-4-oxo-1,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate (29i):
General procedure A was executed upon $74.1 \mathrm{mg}(0.204 \mathrm{mmol})$ of $\mathbf{2 8 i}$, using $5 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $60{ }^{\circ} \mathrm{C}$ with a 16 h reaction time. After workup with EtOAc, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \% ~(0.1 \mathrm{~L})$ and then $15 \% ~(0.15 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 2012 mL fractions. Fractions $13-18$ were combined and concentrated at reduced pressure to give 29i (54.2 $\mathrm{mg}, 0.144 \mathrm{mmol}, 70 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ ס: $7.42-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 2.55-2.34(\mathrm{~m}, 2 \mathrm{H})$, $2.28-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{dp}, \mathrm{J}=11.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{dd}, \mathrm{J}=16.5,6.7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 197.4,170.0,141.1,129.1,127.8,126.3,119.8,118.3,116.4,49.2,46.5,34.1$, 34.0, 25.7, 25.1, 24.3.
${ }^{19}$ FNMR (400 MHz; $\left.\mathrm{CDCl}_{3}\right) \delta:-73.84$.
FTIR (thin film) $\mathrm{v}_{\max }$: 2961, 2874, 1691, 1628, 1601, 1512, 1497, 1467, 1447, 1413, 1369, 1327, 1246, 1213, $1168,1134,1070,1035,984,917,858,835,807,757,725,700,639,616,597,566,539,517,482 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$, 377.1029; found, 377.1027.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.45$ (4:1 hexane:EtOAc).

6,6-dimethyl-3-oxocyclohex-1-en-1-yl trifluoromethanesulfonate (29j):

General procedure A was executed upon $58.7 \mathrm{mg}(0.225 \mathrm{mmol})$ of $\mathbf{2 8 j}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $40{ }^{\circ} \mathrm{C}$ with a 20 h reaction time. After workup with ether, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.1 \mathrm{~L})$ and then $20 \%(0.2 \mathrm{~L})$ ether/pentane. The process generated 2212 mL fractions. Fractions $15-22$ were combined and concentrated at reduced pressure to give $\mathbf{2 9 j}$ (36.9 $\mathrm{mg}, 0.136 \mathrm{mmol}, 60 \%)$ as a clear, colorless oil.
${ }^{\mathbf{1}} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.01(\mathrm{~s}, 1 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ CNMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta: 197.5,172.9,116.3,36.3,35.9,34.1,25.1$.
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-73.69$.
FTIR (thin film) $\mathrm{v}_{\max }: 2927,1693,1633,1418,1326,1248,1213,1137,1041,1022,936,920,882,811,760$, $711,606,577,532 \mathrm{~cm}^{-1}$.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$, 273.0403; found, 273.0401.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.33$ (4:1 hexane:EtOAc).

2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl trifluoromethanesulfonate (29k):

General procedure A was executed upon $61.4 \mathrm{mg}(0.223 \mathrm{mmol})$ of $\mathbf{2 8 k}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $40{ }^{\circ} \mathrm{C}$ with a 20 h reaction time. After workup with ether, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.1 \mathrm{~L})$ and then $20 \%(0.2 \mathrm{~L})$ ether/pentane. The process generated 2312 mL fractions. Fractions 12-18 were combined and concentrated at reduced pressure to give 29k (45.7 $\mathrm{mg}, 0.160 \mathrm{mmol}, 71 \%$) as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 2.58-2.54(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 5 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 197.7,168.4,127.4,120.3,117.1,37.0,36.7,34.0,25.2,10.4$.
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-72.62$.
FTIR (thin film) $\mathrm{v}_{\max }: 2973,2936,1692,1647,1451,1408,1379,1371,1333,1297,1242,1207,1136,1100$, $1051,1003,916,883,799,764,710,672,609,574,544,503 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$, 287.0559; found, 287.0556.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.48$ (4:1 hexane:EtOAc).

8-oxospiro[4.5] dec-6-en-6-yl trifluoromethanesulfonate (291):
General procedure A was executed upon $61.4 \mathrm{mg}(0.216 \mathrm{mmol})$ of $\mathbf{2 8 1}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $40{ }^{\circ} \mathrm{C}$ with a 20 h reaction time. After workup with ether, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.1 \mathrm{~L})$ and then $15 \%(0.25 \mathrm{~L})$ ether/pentane. The process generated 2712 mL fractions. Fractions 17-25 were combined and concentrated at reduced pressure to give 291 (29.5 $\mathrm{mg}, 99 \mu \mathrm{~mol}, 46 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.02(\mathrm{~s}, 1 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.68(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ CNMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta: 197.6,172.4,116.1,46.7,36.0,34.8,34.3,25.9$.
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-73.76$.
FTIR (thin film) $\mathrm{v}_{\max }: 2959,2874,1690,1630,1449,1415,1345,1331,1247,1213,1137,1080,1031,987$, $963,918,869,810,760,650,603,579,517 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$, 299.0559; found, 299.0559.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.43$ (4:1 hexane:EtOAc).

methyl 1-methyl-4-oxo-2-(((trifluoromethyl)sulfonyl)oxy)cyclohept-2-ene-1-carboxylate (29m): General procedure A was executed upon $64.3 \mathrm{mg}(0.203 \mathrm{mmol})$ of $\mathbf{2 8 m}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $40{ }^{\circ} \mathrm{C}$ with a 20 h reaction time. After workup with EtOAc, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.1 \mathrm{~L})$ and then $15 \%(0.25 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 2712 mL fractions. Fractions 18-27 were combined and concentrated at reduced pressure to give 29m (37.4 $\mathrm{mg}, 0.113 \mathrm{mmol}, 56 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.16(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.85$ $(\mathrm{m}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta: 198.9,172.2,162.0,123.2,119.9,116.7,54.2,53.3,43.7,37.0,23.6,18.1$.
${ }^{19}$ FNMR (400 MHz; CDCl_{3}) $\delta:-74.49$.
FTIR (thin film) $\mathrm{v}_{\max }: 2956,1743,1672,1643,1457,1417,1385,1345,1247,1210,1180,1136,1103,1066$, $997,978,870,823,804,759,671,608,576,550,515 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}$, 331.0458; found, 331.0455.
TLC $\mathrm{R}_{\mathrm{f}}=0.20$ (4:1 hexane:EtOAc).

ethyl 1-methyl-4-oxo-2-(((trifluoromethyl)sulfonyl)oxy)cyclopent-2-ene-1-carboxylate (29n):
General procedure A was executed upon $65.9 \mathrm{mg}(0.220 \mathrm{mmol})$ of $\mathbf{2 8 n}$, using $20 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $30{ }^{\circ} \mathrm{C}$ with a 48 h reaction time. After workup with EtOAc, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.1 \mathrm{~L})$ and then $15 \%(0.2 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 479 mL fractions. Fractions 22 - 35 were combined and concentrated at reduced pressure to give 29n (16.6 $\mathrm{mg}, 52 \mu \mathrm{~mol}, 24 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.14(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~d}, \mathrm{~J}=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, \mathrm{~J}=$ $18.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.16(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 199.9,177.3,170.6,120.1,117.0,116.6,62.8,51.3,47.9,21.1,14.0$.
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-72.74$.
FTIR (thin film) $\mathrm{v}_{\max }$: 2923, 2853, 1733, 1621, 1434, 1381, 1368, 1308, 1274, 1214, 1186, 1132, 1068, 1020, $941,899,857,821,805,762,699,605,580,532,502,458 \mathrm{~cm}^{-1}$.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}, 317.0301$; found, 317.0299.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.31$ (4:1 hexane:EtOAc).

ethyl 1-methyl-4-oxo-2-(((trifluoromethyl)sulfonyl)oxy)cyclohex-2-ene-1-carboxylate (29o):
General procedure A was executed upon $68.1 \mathrm{mg}(0.215 \mathrm{mmol})$ of $\mathbf{2 8 0}$, using $5 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $60{ }^{\circ} \mathrm{C}$ with a 16 h reaction time. After workup with EtOAc, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.1 \mathrm{~L})$ and then $20 \%(0.15 \mathrm{~L}) \mathrm{EtOAc} / \mathrm{hexane}$. The process generated 2012 mL fractions. Fractions 11-18 were combined and concentrated at reduced pressure to give 29o (51.1 $\mathrm{mg}, 0.155 \mathrm{mmol}, 72 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.13(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.46(\mathrm{~m}, 3 \mathrm{H}), 2.10-1.95(\mathrm{~m}$, $1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 196.5,171.1,166.2,118.1,62.8,47.7,34.4,33.5,21.8,14.1$.
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-73.92$.
FTIR (thin film) $v_{\max }: 2985,2929,1737,1694,1637,1422,1384,1367,1325,1249,1212,1188,1136,1099$, $1043,1028,945,905,859,802,763,684,608,517,423 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}$, 331.0458; found, 331.0455.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.33$ (4:1 hexane:EtOAc).

ethyl 1-allyl-4-oxo-2-(((trifluoromethyl)sulfonyl)oxy)cyclohex-2-ene-1-carboxylate (29p):
General procedure A was executed upon $73.2 \mathrm{mg}(0.213 \mathrm{mmol})$ of $\mathbf{2 8 p}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $40{ }^{\circ} \mathrm{C}$ with a 20 h reaction time. After workup with EtOAc , the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.1 \mathrm{~L})$ and then $15 \%(0.2 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 2312 mL fractions. Fractions 12-18 were combined and concentrated at reduced pressure to give 29p (45.7 $\mathrm{mg}, 0.127 \mathrm{mmol}, 60 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{dddd}, \mathrm{J}=16.4,10.6,7.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.17(\mathrm{~m}$, $2 \mathrm{H}), 4.27(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{dt}, \mathrm{J}=13.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.07(\mathrm{~m}$, $1 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 196.6,170.3,164.8,130.8,121.4,119.9,119.0,116.7,62.9,51.1,39.5,34.4$, 29.8, 14.1 .
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-74.13$.
FTIR (thin film) $\mathrm{v}_{\text {max }}$: 2927, 1737, 1694, 1636, 1426, 1368, 1331, 1283, 1248, 1211, 1180, 1137, 1043, 1016, 989, 920, 881, 858, 803, 759, 642, 600, 551, $518 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}$, 357.0614; found, 357.0612.
TLC $\mathrm{R}_{\mathrm{f}}=0.40$ (4:1 hexane:EtOAc).

6-allyl-3-oxocyclohex-1-en-1-yl trifluoromethanesulfonate (29q):
General procedure A was executed upon $112.7 \mathrm{mg}(0.417 \mathrm{mmol})$ of $\mathbf{2 8 q}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $40{ }^{\circ} \mathrm{C}$ with a 6 h reaction time. After workup with ether, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.5 \mathrm{~L})$ ether/pentane. The process generated 539 mL fractions. Fractions 27-43 were combined and concentrated at reduced pressure to give $\mathbf{2 9 q}(27.7 \mathrm{mg}, 99 \mu \mathrm{~mol}, 23 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.76$ (dddd, J $\left.=17.4,9.7,7.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.24-5.13(\mathrm{~m}$, $2 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{ddt}, \mathrm{J}=14.3,9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.02-1.91(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 197.4,169.4,133.6,120.1,119.2,119.0,116.9,38.0,35.0,34.3,25.2$.
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-73.42$.
FTIR (thin film) $\mathrm{v}_{\max }: 2925,2854,1692,1639,1423,1366,1348,1330,1312,1247,1209,1137,1033,995$, $975,900,872,801,759,604,576,506,491 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}, 285.0403$; found, 285.0403.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.44$ (4:1 hexane:EtOAc).

(1R,5S)-6,6-dimethyl-4-oxobicyclo[3.1.1]hept-2-en-2-yl trifluoromethanesulfonate (29r):
General procedure A was executed upon $59.1 \mathrm{mg}(0.219 \mathrm{mmol})$ of $\mathbf{2 8 r}$, using $20 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $30{ }^{\circ} \mathrm{C}$ with a 50 h reaction time. After workup with ether, the crude residue obtained was loaded onto an 10 by 3 cm silica gel column and eluted with $7.5 \%(0.5 \mathrm{~L})$ ether/pentane. The process generated 559 mL fractions. Fractions $33-52$ were combined and concentrated at reduced pressure to give $\mathbf{2 9 r}(29.8 \mathrm{mg}, 0.105 \mathrm{mmol}, 48 \%)$ as a clear, colorless oil.
${ }^{\mathbf{1}} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 5.86(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dt}, \mathrm{J}=9.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, \mathrm{J}=5.7$, $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 200.2,174.4,120.1,116.9,112.0,57.8,55.0,48.9,41.1,26.3,22.2$.
${ }^{19}$ FNMR (400 MHz; CDCl_{3}) $\delta:-73.18$.
FTIR (thin film) $\mathrm{v}_{\max }: 2965,2927,1697,1625,1470,1428,1392,1375,1332,1278,1247,1211,1137,1081$, $1066,1000,981,910,896,866,831,796,764,749,727,677,605,574,530,502,483,428 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}, 285.0403$; found, 285.0403.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.48$ (4:1 hexane:EtOAc).

4-oxo-1,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate (29s):
General procedure A was executed upon $132.8 \mathrm{mg}(0.434 \mathrm{mmol})$ of $\mathbf{2 8 s}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $40{ }^{\circ} \mathrm{C}$ with a 24 h reaction time. After workup with EtOAc , the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.1 \mathrm{~L})$ and then $15 \%(0.4 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 569 mL fractions. Fractions $30-49$ were combined and concentrated at reduced pressure to give 29s (66.5 $\mathrm{mg}, 0.208 \mathrm{mmol}, 48 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.45-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 4.06-3.97(\mathrm{~m}$, $1 \mathrm{H}), 2.58-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.07(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 197.3,167.3,136.8,129.4,128.3,127.9,120.3,45.1,34.3,30.6$.
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-73.53$.
FTIR (thin film) $\mathrm{v}_{\max }: 2926,1690,1640,1602,1495,1455,1423,1365,1325,1245,1210,1135,1075,1042$, 1003, 977, 928, 899, 878, 797, 759, 701, 651, 605, 519, 508, $488 \mathrm{~cm}^{-1}$.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$, 321.0403; found, 321.0405.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.43$ (4:1 hexane:EtOAc).

4-oxo-[1,1'-bi(cyclohexan)]-2-en-2-yl trifluoromethanesulfonate (29t):

General procedure A was executed upon $106.2 \mathrm{mg}(0.340 \mathrm{mmol})$ of $\mathbf{2 8 t}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $40{ }^{\circ} \mathrm{C}$ with an 8 h reaction time. After workup with EtOAc, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $8 \%(0.3 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 2512 mL fractions. Fractions $15-24$ were combined and concentrated at reduced pressure to give $\mathbf{2 9 t}$ ($25.4 \mathrm{mg}, 78 \mu \mathrm{~mol}, 24 \%$) as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.07(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{q}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, \mathrm{J}=17.2,8.6,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.39(\mathrm{ddd}, \mathrm{J}=17.2,8.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{ddt}, \mathrm{J}=14.0,8.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.75$ $(\mathrm{m}, 3 \mathrm{H}), 1.75-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.18(\mathrm{~m}, 3 \mathrm{H}), 1.18-1.03(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 197.8,170.0,120.1,119.6,116.9,44.1,39.2,35.1,31.2,29.3,26.7,26.5$, 26.2, 22.5.
${ }^{19}$ FNMR (400 MHz; CDCl_{3}) $\delta:-73.50$.
FTIR (thin film) $\mathrm{v}_{\max }: 2929,2855,1691,1636,1451,1423,1246,1209,1169,1137,1029,992,911,889,805$, $757,606,575 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$, 327.0872; found, 327.0874.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.53$ (4:1 hexane:EtOAc).

3-oxocyclohept-1-en-1-yl trifluoromethanesulfonate (29u):

General procedure A was executed upon $123.5 \mathrm{mg}(0.506 \mathrm{mmol})$ of $\mathbf{2 8 u}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $40{ }^{\circ} \mathrm{C}$ with an 8 h reaction time. After workup with ether, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $0 \%(0.1 \mathrm{~L})$ and then $1 \%(0.1 \mathrm{~L})$ and finally $2 \%(0.1 \mathrm{~L}) \mathrm{EtOAc} / \mathrm{PhH}$. The process generated 3612 mL fractions. Fractions $25-30$ were combined and concentrated at reduced pressure to give $\mathbf{2 9} \mathbf{u}(28.6 \mathrm{mg}, 0.111 \mathrm{mmol}, 22 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.11(\mathrm{~s}, 1 \mathrm{H}), 2.80(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.73-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{p}, \mathrm{J}=5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 199.6,164.6,124.1,120.1,117.0,43.7,34.5,24.4,21.6$.
${ }^{19}$ FNMR (400 MHz; CDCl_{3}) $\delta:-73.53$.
FTIR (thin film) $\mathrm{v}_{\max }: 2935,2873,1673,1655,1455,1419,1367,1312,1246,1203,1135,1035,988,915$, $866,789,757,606,572,512,453,421 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$, 259.0246; found, 259.0246.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.50$ (4:1 hexane:EtOAc).

6,6-dimethyl-3-oxocyclohex-1-en-1-yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (34):
General procedure A was executed upon $88.7 \mathrm{mg}(0.220 \mathrm{mmol})$ of $\mathbf{3 5}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at $40{ }^{\circ} \mathrm{C}$ with a 24 h reaction time. After workup with ether, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.1 \mathrm{~L})$ and then $25 \%(0.2 \mathrm{~L})$ ether/pentane. The process generated 2212 mL fractions. Fractions $14-19$ were combined and concentrated at reduced pressure to give $\mathbf{3 4}$ (50.0 $\mathrm{mg}, 0.118 \mathrm{mmol}, 54 \%)$ as a clear, colorless oil. Characterization data were consistent with those published. ${ }^{3}$ ${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.03(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{t}, \mathrm{J}=7.4,2 \mathrm{H}), 1.97(\mathrm{t}, \mathrm{J}=7.4,2 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ CNMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta: 197.5,173.1,116.3,36.4,36.0,34.1,25.1$.
${ }^{19}$ FNMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta:-80.49(\mathrm{t}, \mathrm{J}=10.0 \mathrm{~Hz}, 3 \mathrm{~F}),-109.08(\mathrm{t}, \mathrm{J}=14.0 \mathrm{~Hz}, 2 \mathrm{~F}),-120.77(\mathrm{~m}, 2 \mathrm{~F})$, -125.67 (m, 2F).

FTIR (thin film) $\mathrm{v}_{\max }: 2927,1694,1631,1474,1418,1370,1353,1326,1291,1228,1199,1143,1126,1039$, $1020,955,936,920,884,794,769,749,736,710,699,651,635,588,575,539,529,483,453 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{9} \mathrm{O}_{4} \mathrm{~S}$, 423.0307; found, 423.0307.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.36$ (4:1 hexane:EtOAc).

1-methyl-4-oxo-1,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (31a):
General procedure A was executed upon $71.7 \mathrm{mg}(0.210 \mathrm{mmol})$ of $\mathbf{3 0 a}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at room temperature with a 24 h reaction time. After workup with EtOAc, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $20 \%(0.1 \mathrm{~L})$ and then $40 \%(0.2 \mathrm{~L}) \mathrm{EtOAc} / \mathrm{hexane}$. The process generated 2212 mL fractions. Fractions 11-15 were combined and concentrated at reduced pressure to give 31a ($64.7 \mathrm{mg}, 0.182 \mathrm{mmol}, 86 \%$) as an off-white solid.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.71(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H})$, $7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{td}, \mathrm{J}=11.6,11.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 3 \mathrm{H})$, $1.55(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 198.7,170.6,146.3,142.0,132.7,130.2,128.8,128.5,127.3,126.1,115.0$, 44.5, 38.4, 34.0, 25.1, 21.9.

FTIR (thin film) $\mathrm{v}_{\max }$: 2926, 1681, 1618, 1597, 1496, 1458, 1446, 1417, 1380, 1364, 1328, 1295, 1212, 1195, $1180,1137,1111,1083,1062,1024,942,897,851,815,801,781,763,744,701,668,647,607,596,575,548$ cm^{-1}.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}, 357.1155$; found, 357.1155.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.18$ (4:1 hexane:EtOAc).

8-oxospiro[4.5]dec-6-en-6-yl 4-methylbenzenesulfonate (31b):

General procedure A was executed upon $66.3 \mathrm{mg}(0.216 \mathrm{mmol})$ of $\mathbf{3 0 b}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at room temperature with a 26 h reaction time. After workup with EtOAc , the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(200 \mathrm{~mL})$ and then $20 \%(400 \mathrm{~mL}) \mathrm{EtOAc} / \mathrm{hexane}$. The process generated 699 mL fractions. Fractions $40-57$ were combined and concentrated at reduced pressure to give $\mathbf{3 1 b}(39.9 \mathrm{mg}, 0.125 \mathrm{mmol}, 58 \%)$ as an off-white solid.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.84(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 2.47(\mathrm{~s}$, $3 \mathrm{H}), 2.36(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 198.9,173.1,146.2,132.9,130.3,128.3,113.1,46.6,36.0,34.8,34.3,26.0$, 21.9.

FTIR (thin film) $\mathrm{v}_{\max }$: $2954,2869,1673,1615,1597,1448,1379,1363,1331,1311,1294,1223,1193,1178$, 1107, 1082, 1064, 1019, 990, 917, 869, 815, 802, 787, 750, 715, 670, 642, 601, 574, 548, $517 \mathrm{~cm}^{-1}$.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}$, 321.1155; found, 321.1155.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.18$ (4:1 hexane:EtOAc).

4-oxo-1,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (31c):
General procedure A was executed upon $66.1 \mathrm{mg}(0.201 \mathrm{mmol})$ of $\mathbf{3 0 c}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at room temperature with a 51 h reaction time. After workup with EtOAc, the crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.2 \mathrm{~L})$ and then 20% (0.4 L) EtOAc/hexane. The process generated 689 mL fractions. Fractions 41-60 were combined and concentrated at reduced pressure to give $31 \mathbf{c}(28.0 \mathrm{mg}, 82 \mu \mathrm{~mol}, 41 \%)$ as an off-white solid.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.62(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H})$, $3.81(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.26(\mathrm{~m}, 3 \mathrm{H}), 2.08-1.96(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta 198.6,167.6,146.2,137.9,132.4,130.1,129.0,128.4,128.0,127.6,117.4$, 44.6, 33.6, 30.1, 21.9.

FTIR (thin film) $\mathrm{v}_{\text {max }}: 2924,2854,1685,1628,1597,1494,1454,1379,1363,1328,1296,1241,1194,1179$, $1107,1085,1066,1033,1018,979,928,900,879,815,758,738,701,670,646,623,607,587,569,548,521$, $501 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}$, 343.0999; found, 343.0999.
TLC $R_{f}=0.18$ (4:1 hexane:EtOAc).

4-oxo-[1,1'-bi(cyclohexan)]-2-en-2-yl 4-methylbenzenesulfonate (31d):

General procedure A was executed upon $142.6 \mathrm{mg}(0.430 \mathrm{mmol})$ of $\mathbf{3 0 d}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at room temperature with a 47 h reaction time. After workup with EtOAc, the crude residue obtained was loaded onto an 14 by 5 cm silica gel column and eluted with $1 \%(0.4 \mathrm{~L})$, then $2 \%(0.4 \mathrm{~L})$ and finally $3 \%(0.6 \mathrm{~L})$ EtOAc/PhH. The process generated 6412 mL and then 649 mL fractions. Fractions 101-128 were combined and concentrated at reduced pressure to give $\mathbf{3 1 d}(34.3 \mathrm{mg}, 98 \mu \mathrm{~mol}, 23 \%)$ as a yellow semisolid.
${ }^{\mathbf{1}} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.82(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 2.53-2.35$ $(\mathrm{m}, 6 \mathrm{H}), 2.32-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.35-0.95(\mathrm{~m}, 6 \mathrm{H})$. ${ }^{13}$ CNMR (126 MHz; $\left.\mathrm{CDCl}_{3}\right)$ б: 199.0, 170.5, 146.2, 132.8, 130.1, 128.4, 117.1, 43.8, 39.1, 35.2, 31.3, 29.4, 26.8, 26.6, 26.3, 22.4, 22.0.

FTIR (thin film) $\mathrm{v}_{\max }$: 2927, 2853, 1682, 1623, 1598, 1450, 1380, 1331, 1308, 1194, 1180, 1076, 909, 889, $815,803,768,746,707,692,669,569,549 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}$, 349.1468; found, 349.1465.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.23$ (4:1 hexane:EtOAc).

3-oxocyclohept-1-en-1-yl 4-methylbenzenesulfonate (31e):

General procedure A was executed upon $55.5 \mathrm{mg}(0.208 \mathrm{mmol})$ of $\mathbf{3 0 e}$, using $10 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ at room temperature with a 52 h reaction time. After workup with EtOAc , the crude residue obtained was loaded onto an 8 by 4 cm silica gel column and eluted with $1 \%(0.2 \mathrm{~L})$, then $2 \%(0.2 \mathrm{~L})$ and then $3 \%(0.4 \mathrm{~L})$ EtOAc/PhH. The process generated 919 mL fractions. Fractions 62-77 were combined and concentrated at reduced pressure to give $\mathbf{3 1 e}(15.4 \mathrm{mg}, 55 \mu \mathrm{~mol}, 26 \%)$ as a yellow oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 2.69-2.64$ $(\mathrm{m}, 2 \mathrm{H}), 2.61-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.73(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}$ CNMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) δ 201.1, 165.4, 146.0, 132.8, 130.2, 128.4, 122.9, 43.4, 34.4, 24.3, 21.9, 21.6.
FTIR (thin film) $\mathrm{v}_{\text {max }}$: 2928, 2870, 1667, 1644, 1597, 1454, 1420, 1374, 1308, 1266, 1191, 1178, 1155, 1121, 1093, 1064, 1048, 1018, 915, 857, 816, 740, 686, 666, 567, $552 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$, 281.0842; found, 281.0841 .
TLC $\mathrm{R}_{\mathrm{f}}=0.19$ (4:1 hexane:EtOAc).

Synthesis of Vinylogous Acyl Sulfonate Derivatives

4-methyl-4-phenylcyclohexane-1,3-dione (37):
A modification of general procedure A was executed upon $76.1 \mathrm{mg}(0.237 \mathrm{mmol})$ of 29a, using $5 \mathrm{~mol} \%$ FeCl_{3} at $60^{\circ} \mathrm{C}$ with a 16 h reaction time. After this timeframe, the reaction was cooled to room temperature, treated with 883 mg (3.56 mmol , 15 equiv) of powdered sodium thiosulfate pentahydrate, and stirred at room temperature for 2 h . Then, 10% aqueous NaOH was added ($1.9 \mathrm{~mL}, 4.74 \mathrm{mmol}, 20$ equiv) and the mixture was stirred at room temperature for 2 h . The reaction was poured into a saturated ammonium chloride solution, and the aqueous layer was extracted thrice with EtOAc. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated at reduced pressure. The crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with 2:1 (250 mL) EtOAc/hexane. The process generated 2012 mL fractions. Fractions 8-19 were combined and concentrated at reduced pressure to give $37(24.2 \mathrm{mg}, 0.119 \mathrm{mmol}, 50 \%)$ as a white solid.
*The behavior of this compound in CDCl_{3} is as a $\sim 7: 1$ ratio of diketone to enol isomers; only the diketone resonances are reported in the NMR data.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.40(\mathrm{t}, \mathrm{J}=7.6,2 \mathrm{H}), 7.31(\mathrm{td}, \mathrm{J}=6.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, \mathrm{J}=7.4,1.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.51(\mathrm{~d}, \mathrm{~J}=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, \mathrm{~J}=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{ddd}, \mathrm{J}=14.8,5.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-$ $2.53(\mathrm{~m}, 2 \mathrm{H}), 1.87$ (ddd, $\mathrm{J}=14.8,13.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (126 MHz; CDCl_{3}) $\delta: 205.5,203.7,140.9,129.6,127.7,125.9,57.3,53.2,37.8,29.9,27.3$.
FTIR (thin film) $\mathrm{v}_{\max }: 2924,2854,1720,1577,1495,1456,1445,1408,1377,1359,1339,1302,1269,1244$, $1200,1189,1157,1103,1079,1029,908,868,847,763,732,698,545 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$, 203.1067; found, 203.1068.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.36$ (1:3 hexane:EtOAc).

4-methyl-1,4-diphenylhex-5-yn-1-one (38a): ${ }^{18}$
A 1.8 M solution of PhLi in ether ($55 \mu \mathrm{~L}, 98 \mu \mathrm{~mol}, 0.95$ equiv) was added dropwise to a stirring solution of 29a ($34.6 \mathrm{mg}, 0.103 \mathrm{mmol}$, 1 equiv) in THF (1 mL) cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath. The reaction was allowed to warm to $-10{ }^{\circ} \mathrm{C}$ over 60 minutes and then removed from the bath. Fifteen minutes after removal from the cooling bath, the reaction was placed in a $60^{\circ} \mathrm{C}$ aluminum shot bath and stirred at that temperature for 30 minutes. The reaction was then cooled to room temperature and poured into a saturated sodium bicarbonate solution, and the aqueous layer was extracted thrice with EtOAc. The combined organic fractions were washed with brine, dried over sodium sulfate, filtered, and concentrated at reduced pressure. The crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $2 \% ~(50 \mathrm{~mL}$) and then $5 \%(150 \mathrm{~mL}) \mathrm{EtOAc} /$ hexane. The process generated 1512 mL fractions. Fractions 8-13 were combined and concentrated at reduced pressure to give $\mathbf{3 8 a}(21.9 \mathrm{mg}, 83 \mu \mathrm{~mol}, 81 \%)$ as a clear, colorless oil. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.88(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{ddd}, \mathrm{J}=17.0,10.4,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.76(\mathrm{ddd}, \mathrm{J}=17.0,10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H}), 2.37-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 200.1,144.0,137.0,133.1,128.7,128.6,128.2,126.9,126.1,88.7,72.7,40.3$, 37.9, 35.4, 31.1.

FTIR (thin film) $\mathrm{v}_{\max }: 3297,2973,2928,2854,1685,1598,1581,1492,1448,1413,1377,1362,1316,1293$, $1244,1212,1180,1158,1141,1076,1028,1002,983,762,742,700,690,643,592,568 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}, 263.1430$; found, 263.1431.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.70$ (4:1 hexane:EtOAc).

4-methyl-N,4-diphenylhex-5-ynamide (38b): ${ }^{18}$
A freshly prepared 0.5 M solution of lithium anilide in THF ($0.42 \mathrm{~mL}, 0.208 \mathrm{mmol}, 2.1$ equiv) was added dropwise to a stirring solution of 29a ($33.1 \mathrm{mg}, 99 \mu \mathrm{~mol}, 1$ equiv) in THF (0.4 mL) cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath. Following the addition, the reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for ten minutes, $0{ }^{\circ} \mathrm{C}$ for ten minutes, room temperature for 30 minutes, and finally $60^{\circ} \mathrm{C}$ for 30 minutes. The reaction was then cooled to room temperature and poured into a saturated ammonium chloride solution, and the aqueous layer was extracted thrice with EtOAc. The combined organic fractions were washed with water and brine, dried over sodium sulfate, filtered, and concentrated at reduced pressure. The crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $5 \%(0.1 \mathrm{~L})$ and then $10 \%(0.5 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 4412 mL fractions. Fractions 21-40 were combined and concentrated at reduced pressure to give $\mathbf{3 8 b}(24.5 \mathrm{mg}, 88 \mu \mathrm{~mol}, 89 \%)$ as a yellow oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.56(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.09(\mathrm{~m}$, 1H), 1.63 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 170.9,143.8,138.0,129.1,128.6,127.0,126.1,124.3,119.8,88.5,72.8,40.3$, 38.9, 34.2, 30.9 .

FTIR (thin film) $\mathrm{v}_{\max }: 3294,3199,3138,3060,2973,2926,2854,1657,1618,1598,1544,1498,1442,1378$, $1325,1307,1276,1252,1198,1176,1157,1141,1099,1076,1029,964,904,840,755,698,642,598,544,506$, $436 \mathrm{~cm}^{-1}$.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}, 278.1539$; found, 278.1540.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.38$ (4:1 hexane:EtOAc).

1-methyl-6-((triisopropylsilyl)ethynyl)-2,3-dihydro-[1,1'-biphenyl]-4(1H)-one (39): ${ }^{19}$

A vial containing a stir bar was charged with tetrakis(triphenylphosphine)palladium(0) ($5.2 \mathrm{mg}, 4.5 \mu \mathrm{~mol}$, 0.05 equiv) and cuprous iodide ($2.6 \mathrm{mg}, 13.5 \mu \mathrm{~mol}, 0.15$ equiv). The vial was evacuated and backfilled thrice with dinitrogen, and THF (0.25 mL) was added via syringe. A solution of triisopropylsilylacetylene ($30 \mu \mathrm{~L}$, $0.135 \mathrm{mmol}, 1.5$ equiv) and 29 a ($30.1 \mathrm{mg}, 90 \mu \mathrm{~mol}, 1$ equiv) in THF (0.25 mL) and N-ethyldiisopropylamine $(0.45 \mathrm{~mL})$ was then added with a syringe, followed by a 0.1 mL THF wash. The vial was sealed with a teflonlined cap, teflon tape, and parafilm and heated in a $70^{\circ} \mathrm{C}$ aluminum shot bath for 14 h . The reaction was cooled to room temperature and loaded directly onto an 8 by 3 cm silica gel column followed by elution with $5 \%(50 \mathrm{~mL})$ and then $10 \%(100 \mathrm{~mL}) \mathrm{EtOAc} /$ hexane. The process generated 1312 mL fractions. Fractions 6-10 were combined and concentrated at reduced pressure to give $39(33.0 \mathrm{mg}, 90 \mu \mathrm{~mol}, 100 \%)$ as a clear, colorless oil.
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.37(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.41(\mathrm{~s}, 1 \mathrm{H}), 2.44-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 0.99-0.95(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 198.8,149.8,144.5,133.9,128.5,126.9,126.7,105.5,104.8,43.9,38.8,34.7$, $27.3,18.6,11.2$.

FTIR (thin film) $\mathrm{v}_{\max }: 2942,2891,2864,1676,1579,1462,1445,1328,1306,1262,1210,1121,1072,996$, $882,760,692,675,661,626,461 \mathrm{~cm}^{-1}$.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{OSi}$, 367.2452; found, 367.2452.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.60$ (4:1 hexane:EtOAc).

1'-methyl-5', 6^{\prime}-dihydro- $\left[1,1^{\prime}: 2^{\prime}, 1^{\prime \prime}\right.$-terphenyl]-4'(1'H)-one (40): ${ }^{20}$
A 10 mL recovery flask open to ambient atmosphere containing a solution of $\mathbf{2 9 a}$ ($35.5 \mathrm{mg}, 0.106 \mathrm{mmol}$, 1 equiv) in 3:1 PhMe:ethanol (2.8 mL) was charged sequentially with phenylboronic acid ($19.4 \mathrm{mg}, 0.159$ mmol, 1.5 equiv), a 2.0 M aqueous solution of sodium carbonate ($0.48 \mathrm{~mL}, 0.954 \mathrm{mmol}, 9$ equiv), and finally tetrakis(triphenylphosphine)palladium $(0)(6.2 \mathrm{mg}, 5.3 \mu \mathrm{~mol}, 0.05$ equiv). The reaction was sparged with dinitrogen for 2 minutes and stirred at room temperature for 3 hours. The mixture was diluted with ether and then washed with water and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.1 \mathrm{~L})$ and then $20 \%(0.25 \mathrm{~L})$ ether/hexane. The process generated 2712 mL fractions. Fractions 16-24 were combined and concentrated at reduced pressure to give $40(24.5 \mathrm{mg}, 94 \mu \mathrm{~mol}, 88 \%)$ as a white solid.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.48(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24$ $(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 2.41-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.16-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 199.9,166.0,143.7,139.2,129.7,129.0,128.8,128.3,127.9,127.0,126.9$, 43.8, 42.0, 34.2, 28.1.

FTIR (thin film) $\mathrm{v}_{\max }$: 2929, 2854, 1670, 1596, 1569, 1493, 1456, 1444, 1414, 1381, 1329, 1309, 1262, 1238, $1209,1149,1077,1069,1028,995,967,911,890,850,763,732,699,579,552,485,436 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}, 263.1430$; found, 263.1430.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.41$ (4:1 hexane:EtOAc).

4-methyl-4-phenylhex-5-yn-1-ol (41): ${ }^{18}$
A 1.0 M solution of LiHBEt_{3} in THF ($0.23 \mathrm{~mL}, 0.226 \mathrm{mmol}, 2.2$ equiv) was added dropwise to a stirring solution of 29a ($34.3 \mathrm{mg}, 0.103 \mathrm{mmol}, 1$ equiv) in THF (0.41 mL) cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath. Following the addition, the reaction was stirred at $-78^{\circ} \mathrm{C}$ for ten minutes, $0^{\circ} \mathrm{C}$ for ten minutes, and finally room temperature for 3 h . The reaction was poured into a saturated ammonium chloride solution, and the aqueous layer was extracted thrice with EtOAc. The combined organic fractions were washed with water and brine, dried over sodium sulfate, filtered, and concentrated at reduced pressure. The crude residue obtained was loaded onto an 8 by 3 cm silica gel column and eluted with $10 \%(0.1 \mathrm{~L})$ and then $15 \%(0.1$ $\mathrm{L})$ and finally $20 \%(0.2 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 3012 mL fractions. Fractions 23-28 were combined and concentrated at reduced pressure to give $41(12.0 \mathrm{mg}, 60 \mu \mathrm{~mol}, 58 \%)$ as a clear, colorless oil. ${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.54(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.37(\mathrm{~m}$, 1H).
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 144.7,128.4,126.7,126.1,89.3,71.9,63.1,40.4,40.4,30.5,29.1$.
FTIR (thin film) $\mathrm{v}_{\max }: 3300,2927,2855,1492,1446,1413,1376,1317,1254,1215,1056,1023,910,764$, $732,698,634,587,570,512,484 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}, 189.1274$; found, 189.1275.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.20$ (4:1 hexane:EtOAc).

References

[1] Chassaing, S.; Specklin, S.; Weibel, J.-M.; Pale, P. Tetrahedron 2012, 68, 7245-7273.
[2] Martinez, A.; Fernandez, A.; Alvarez, R.; Munoz, G. Anales De Quimica Serie C-Quimica Organica Y Bioquimica 1981, 77, 28-30.
[3] Batsomboon, P.; Gold, B. A.; Alabugin, I. V.; Dudley, G. B. Synthesis 2012, 44, 1818-1824.
[4] Danishefsky, S. J.; Bornmann, W. G.; Queneau, Y.; Magee, T. V.; Krol, W. J.; Masters, J. J.; Jung, D. K. Total synthesis of taxol and analogues thereof. 1996; US Patent 5,488,116.
[5] Elkin, M.; Szewczyk, S. M.; Scruse, A. C.; Newhouse, T. R. Journal of the American Chemical Society 2017, 139, 1790-1793.
[6] Yu, J.-Q.; Wu, H.-C.; Corey, E. Organic Letters 2005, 7, 1415-1417.
[7] Catino, A. J.; Forslund, R. E.; Doyle, M. P. Journal of the American Chemical Society 2004, 126, 13622-13623.
[8] Nakamura, A.; Nakada, M. Synthesis 2013, 45, 1421-1451.
[9] Weidmann, V.; Maison, W. Synthesis 2013, 45, 2201-2221.
[10] Kimura, M.; Muto, T. Chemical and Pharmaceutical Bulletin 1979, 27, 109-112.
[11] Kimura, M.; Muto, T. Chemical and Pharmaceutical Bulletin 1980, 28, 1836-1841.
[12] Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chemical Reviews 2004, 104, 6217-6254.
[13] Bauer, I.; Knölker, H.-J. Chemical Reviews 2015, 115, 3170-3387.
[14] Sarhan, A. A.; Bolm, C. Chemical Society Reviews 2009, 38, 2730-2744.
[15] Islam, S. M.; Paul, S.; Roy, A. S.; Banerjee, S.; Ghosh, K.; Dey, R. C.; Santra, S. Transition Metal Chemistry 2013, 38, 675-682.
[16] Cole, K. P.; Hsung, R. P. Organic Letters 2003, 5, 4843-4846.
[17] Krueger, A. C. Bioorganic Medicinal Chemistry Letters 2007, 17, 2289-2292.
[18] Kamijo, S.; Dudley, G. B. Journal of the American Chemical Society 2006, 128, 6499-6507.
[19] Nakatsuji, H.; Ueno, K.; Misaki, T.; Tanabe, Y. Organic Letters 2008, 10, 2131-2134.
[20] Luo, Y.; Carnell, A. J. Angewandte Chemie International Edition 2010, 49, 2750-2754.
[21] Haber, F.; Weiss, J. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences 1934, 147, 332-351.
[22] Kirsch, L. J.; Parkes, D. A. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1981, 77, 293-307.
[23] Bartlett, P. D.; Günther, P. Journal of the American Chemical Society 1966, 88, 3288-3294.
[24] Still, W. C.; Kahn, M.; Mitra, A. The Journal of Organic Chemistry 1978, 43, 2923-2925.
[25] Tucker, J. K.; Shair, M. D. Organic Letters 2019, 21, 2473-2476.

Chapter 3: Enantioselective Synthesis of the Cucumin A Ring System via a 5-endo-trig Heck Cyclization

Introduction

With the allylic oxidation conditions in the previous chapter developed, application of the process to the multistep synthesis of a target was a logical next step. The target chosen was a natural product known as cucumin A. Although the oxidative chemistry developed in the previous chapter was not useful in this context, pursuit of this synthesis became interesting in its own right on account of how the ring system was constructed-via an anti-Baldwin 5-endo-trig Heck cyclization.

Linear Triquinane Sesquiterpene Overview

The linear triquinane sesquiterpenes (LTSs) encompass any and all compounds composed of 15 carbons in total containing three consecutive five-member rings arranged as shown in Figure 3.1. There are 8 LTS carbon skeletons that bear a variety of oxidation patterns, giving way to a diverse array of natural products. As of 2018, at least 118 compounds within the LTS umbrella were known. ${ }^{1}$ Overall, many members within this class of natural products display cytotoxic, antimicrobial, or anti-inflammatory activities. ${ }^{1}$ The two most common carbon skeletons appearing within this class of natural products, the hirsutanes and capnellenes, are shown below (Figure 3.1).

Figure 3.1. Common linear triquinane scaffolds

Identification of Cucumin A as a Synthetic Target

Within the hirsutane subset of LTSs, I identified a series of eight compounds containing a diene within the "A" and "B" rings and became interested in accomplishing their total syntheses, given this unique oxidation state (Figure 3.2). Specifically, I decided to target the formation cucumin A (43), named for the Macrocystidia cucumis mushroom from which it was isolated. This natural product exhibited cytotoxicity against an array of bacterial and fungal cell lines. Notably, 43 exhibited greater potency against some of the lines studied in this context than $\mathbf{4 4}$, suggesting the Michael acceptor on the A ring is important for cytotoxicity. ${ }^{2}$

Figure 3.2. A subset of oxidized hirsutanes bearing an A / B ring diene. Numbering of the carbons of Cucumin A is presented in red.

Biogenesis

One point of inspiration for synthetic approaches to a target is the postulated biosynthesis of said target. A reasonable explanation for the formation of 43 is via the oxidation of a hirsutene (57) scaffold (Scheme 3.1). Hirsutene is thought to be derived ultimately from trans, trans-farnesyl pyrophosphate (51). ${ }^{3}$ This structure ionizes and undergoes transannular cyclization followed by a series of carbocationic shifts to give 57. ${ }^{4}$ Following cyclization, a series of oxidations of 57 would lead to $\mathbf{4 3} .^{2}$

Scheme 3.1. Postulated biosynthesis of cucumin A (43)

Past Approaches to Linear Triquinane Sesquiterpene Synthesis

No approach to 43 is known. Nonetheless, the chemical literature is rich with synthetic routes to LTSs from which lessons learned may inform an approach to $43 .{ }^{5,6,1}$ This section addresses the approaches to the two of the most common targets for LTS syntheses: hirsutene (57) and capnellene (58). At least one representative synthesis for each of these two natural products is discussed for the four general approaches: east-to-west, center-out, stitching, and divide-and-conquer (Scheme 3.2). The ultimate end of this survey is to contextualize the pursuit of 43. Sequences described in this section may be racemic or enantioselective.

East-to-West

An exemplary east-to-west approach to 57 came from the lab of Prof. D. H. Hua. ${ }^{7}$ The approach leveraged the addition of the lithium sulfinallyl ion of chiral sulfoxide 59 to 2-methyl-2-cyclopentenone followed by a series of annulative steps. The process achieved the enantioselective synthesis of $\mathbf{5 7}$ in a 16 step longest-linear-sequence (LLS) (Scheme 3.3).

Scheme 3.3. Asymmetric approach to (+)-hirsutene via a chiral sulfoxide

The lab of Prof. J. K. Stille reported an 8-step approach to racemic 58 involving iterative carbonylative Stille couplings followed by Nazarov cyclizations (Scheme 3.4). ${ }^{8}$ This approach bears some resemblance to that reported by Paquette et al. to construct the same natural product. ${ }^{9}$

Scheme 3.4. Racemic approach to capnellene via iterative nazarov cyclizations

Center-Out

A rapid center-out approach to racemic 57 came from the lab of Prof. J. Cossy (Scheme 3.5). ${ }^{10}$ The first ring formation stemmed from a palladium-catalyzed $3+2$ annulation of cyclopentenone and 73. Completion of the tricycle occurred via application of photoreductive cyclization conditions to the mixture of $\mathbf{7 8} \mathbf{a}$ and 78b. Notably, 78b failed to cyclize under these conditions on account of steric encumbrance, so intermediate

79 was isolated as the lone product. Overall, the title compound $\mathbf{5 7}$ was rendered in a 9 step LLS.

Scheme 3.5. Center-out approach to hirsutene

The radical-mediated approach to racemic 58 via penultimate 84 developed by Prof. D. P. Curran and coworkers is one of the most acclaimed routes to this structure (Scheme 3.6). ${ }^{11}$ Overall, the synthesis progressed in 13 steps, LLS, from lactone $\mathbf{8 0}$. An enantioselective approach to $\mathbf{5 8}$ inspired by this mode of cyclization later was developed in the lab of Prof. A. I. Meyers. ${ }^{12}$

A palladium-catalyzed, asymmetric approach to (-)-58 came from the lab of Prof. M. Shibasaki (Scheme 3.7). ${ }^{13}$ The palladium pi-allyl intermediate formed upon cyclization of vinyl triflate $\mathbf{8 6}$ underwent attack by malonate nucleophile $\mathbf{8 7}$ to afford bicyclic intermediate $\mathbf{8 8}$ with 87% ee. The overall route to (-)-58 was achieved from 85 in 19 steps, LLS.

Scheme 3.7. Palladium-catalyzed, asymmetric center-out approach to capnellene

Stitching

Formation of endo-57 from linear precursor 91 was described by V. K. Rawal et al. (Scheme 3.8). ${ }^{14}$ DielsAlder adduct 92 underwent an intramolecular Paterno-Buchi reaction to form oxetane 93. Opening of 93, followed by oxidation and a second base-mediated fragmentation, afforded the completed tricyclic system 95. The formation of endo- $\mathbf{5 7}$ from $\mathbf{9 1}$ occurred in a sequence of 7 steps.

An asymmetric approach to (+)-57 via an enantioselective Pauson-Khand reaction through the influence of a chiral auxiliary has been developed (Scheme 3.9). ${ }^{15}$ The bicyclic intermediate $\mathbf{9 9}$ sufficed for a claim of the formal synthesis of $(+)-\mathbf{5 7}$ in a LLS of 16 steps from $\mathbf{9 6} .{ }^{16}$

A Rhodium-mediated cascade from linear precursor 100 served as a rapid means for the synthesis of racemic 57 as reported by the lab of Prof. Z. Yu (Scheme 3.10). ${ }^{17}$ Formation of 100 required several steps, but its conversion to $\mathbf{5 7}$ occurred over just 4 steps, including formation of all three rings in one pot.

Scheme 3.10. Simultaneous formation of all three rings of (+/-)-57 from a sngle linear precursor

The rapid approach to 58 from diazine precursor 102 was disclosed from the lab of Prof. J. L. Petersen (Scheme 3.11). ${ }^{18}$ Although the yield of intermediate 103 was low, completion of the approach to racemic 58 was accomplished in just from 3 steps from 102.

Scheme 3.11. Diazine-mediated approach to racemic capnellene

Similar in many respects to the approach just described, work disclosed from the lab of Prof. K. N. Houk led to the generation of racemic 58 from linear precursor 108 (Scheme 3.12). ${ }^{19}$ The synthesis progressed in 8 steps from this starting material.

Scheme 3.12. Generation of racemic capnellene from a linear ester-substituted fulvene

In an approach from the lab of R. H. Grubbs, a Diels-Alder reaction followed by an olefin metathesis
cascade furnished tricyclic intermediate 106 from precursor 104 (Scheme 3.13). ${ }^{20}$ Following functional group interconversions and ring expansion, the formation of $\mathbf{5 8}$ was accomplished from $\mathbf{1 0 4}$ in 12 steps.

Divide and Conquer

An exceptionally short synthesis of racemic $\mathbf{5 7}$ from simple precursors 111 and 112 over just 4 synthetic operations was disclosed by the lab of Prof. M. Oda (Scheme 3.14). ${ }^{21}$ Following the $2+2$ addition of these two materials to form 113, fragmentation mediated by TMSI delivered tricyclic intermediate $\mathbf{1 1 4}$ in 95% yield.

Exploitation of a $[2+1+2]$ cyclopentannulation process utilizing building blocks 115, 116, and 118 led to a rapid assembly of the tricyclic hirsutene ring system as reported by Prof. T. Cohen (Scheme 3.15). ${ }^{22}$ The synthesis of natural product was achieved in a 10 step LLS.

(+/-)-57 (96\%)
Scheme 3.15. Generation of hirsutene via a $[2+1+2]$ cyclopentannulation process

An approach to racemic 57 and 58 via a formal homoiodo allylsilane annulation was disclosed by the lab of W. L. Li (Scheme 3.16). ${ }^{23}$ Generation of racemic 57 was accomplished in a 7 step LLS from cyclopropane 123. By analogy, formation of racemic 58 was achieved from the analogous cyclopropane precursor of $\mathbf{1 2 8}$ in a 9 step LLS. This successful approach is reminiscent of a previous attempted approach to LTSs. ${ }^{24}$

Cucumin A Retrosynthesis

Asymmetric retrosynthetic disconnection of 43 progressed within the divide-and-conquer paradigm, with a focus on route convergence (Scheme 3.17). Center-out and east-to-west approaches often require lengthier
sequences, with the approach of Prof. J. K. Stille to 58 as a notable exception. ${ }^{8}$ While the somewhat biomimetic stitching approaches from linear precursors may indeed be rapid and dramatic, the formation of the linear precursors themselves often requires lengthy synthetic sequences. Furthermore, formation of the A, B-ring diene motif and oxidation state of 43 would require multiple synthetic operations following cyclization.

Scheme 3.17. Retrosynthesis of cucumin A (43)

I envisioned synthesis of the diene motif via a 5-endo-trig Mizoroki-Heck cyclization of vinyl triflate 133, which would originate from dione 134. Alternately, oxidation of vinyl triflate 133 via the conditions developed in the previous chapter followed by a Heck cyclization of the resultant vinylogous acyl sulfonate could also have been possible. Some precedent exists for palladium(0)-catalyzed, 5 -endo-trig Mizoroki-Heck cyclizations, including one system in which this cyclization progressed in preference to a 6-exo-trig cyclization (Scheme 3.18). ${ }^{25,26}$ Additionally, a handful of oxidative palladium(II)-catalyzed 5-endo-trig Fujiwara-Moritani-Heck cyclizations are known. ${ }^{27,28,29,30}$

Scheme 3.18. Preference for a 5-endo Heck cyclization over a 6-exo cyclization

Formation of 134 was envisioned via a Claisen reaction of 135 , which would be formed from diol 136 (Scheme 3.17, middle sequence). Stereocontrol of the Claisen reaction outcome might be possible via the "-OPG" biasing element of 135 such that structure 141 forms exclusively (Scheme 3.19).

via:

[steric clash with protecting group]

Scheme 3.19. Proposed rationale for a stereoselective Claisen cyclization

Alternately, dione 134 is a retron for an addition-elimination sequence utilizing 137 and an appropriate nucleophile (Scheme 3.17, bottom sequence). Thus, the formal annulation to form the tricyclic ring system could be accomplished in multiple ways. Ultimately, all disconnections work back to alcohol 138.

Study of a Claisen Approach

The formation of $\mathbf{1 3 8}$ was possible via two different methods, both on multigram scale. Although intermediate 143 was available in principle commercially, its prohibitive cost necessitated genesis of the route from 142. A bromination-elimination sequence followed by a Morita-Bayliss-Hillman (MBH) reaction (Scheme 3.20, upper sequence) afforded 138 in 45% yield over 3 steps. ${ }^{31,32,33}$ Alternately, a Nicolau oxidation-(MBH) sequence afforded 138 in 38% yield over 2 steps (Scheme 3.20, lower sequence). ${ }^{34,33}$ Both approaches were applicable to the formation of pure $\mathbf{1 3 8}$ on multigram scale.

Scheme 3.20. Useful approaches to alcohol 138

The initial pursuit of Claisen precursor 135 occurred with a racemic route; enantioselective carbonyl reduction was to be pursued if success in the racemic context transpired. Formation of the allyl vinyl ether linkage present in 135 was troublesome. Alkylation of tosylate $\mathbf{1 4 5}$ with equilibrated potassium enolate $\mathbf{1 4 4}$ under a variety of conditions failed to produce 146 (Scheme 3.21). ${ }^{35}$ Attempts to couple vinyl boronate 147 and alcohols 138 or 148 (formation of 148 in Scheme $\mathbf{3 . 2 2}$) in a process developed in the lab of Prof.
C. A. Merlic failed to progress. ${ }^{36}$ Linkage of vinyl triflate 150 with 138 or 148 under conditions described by Prof. S. L. Buchwald also failed (Scheme 3.21). ${ }^{37}$

Scheme 3.21. Initial attempts to form a racemic Claisen precursor

A second approach to $\mathbf{1 3 5}$ began with the formation of $\mathbf{1 5 2}$ from $\mathbf{1 3 8}$ in 32% yield over 3 steps. ${ }^{38,39}$ Attempts to cyclize $\mathbf{1 5 2}$ to allyl-vinyl ether $\mathbf{1 3 5}$ via protocols developed by Nicolau ${ }^{40}$, Ranier ${ }^{41}$, and Schindler ${ }^{42}$ all failed; the only structure observed during any of these efforts was 153. Attempts to cyclize 153 to 135 with a variety of ruthenium-based olefin metathesis catalysts also failed. At this juncture, pursuit of an addition-elimination sequence began.

Scheme 3.22. Attempts to form a racemic Claisen precursor via carbonyl-olefin metathesis

Chiral Pyrrolidinyl Sulfonamide Application

A highly enantioselective addition-elimination procedure was reported for the formation of 157 from 154 and 155 via a chiral pyrrolidinyl sulfonamide (CPS) promoter 156. ${ }^{43}$ Under quite similar conditions, the coupling of $\mathbf{1 5 8}{ }^{\mathbf{4 4}}$ and $\mathbf{1 5 9}{ }^{\mathbf{4 5}}$ to form structure $\mathbf{1 6 0}$ transpired in 60% yield with greater than 98% enantioselectivity and a 2.4:1 diastereomeric ratio at the aldehydic position (Scheme 3.23). These two diastereomers are quite
sensitive, requiring rapid purification; thus, their separation from one another was not pursued. Consistent with the proposed mechanism of such a transformation, mixing of only 156 and 159 led to the formation of quaternary ammonium salt 163 , where the mixing of only 156 and 158 led to no other observable adduct. ${ }^{43}$ An array of attempts to replace 158 with enolsilanes 161 in coupling with 159 failed, as did attempts to add equilibrated enolates 162 into salt adduct 163. Therefore, it was clear that reduction of the aldehyde moiety in $\mathbf{1 6 0}$ would be the next problem to solve.

Application to Cucumin Synthesis:

Scheme 3.23. Connection of A and C rings via a CPS promoter

Chemoselective reduction of the aldehyde of $\mathbf{1 6 0}$ occurred with $\mathrm{LiHAl}(\mathrm{OtBu})_{3}$ to afford partially separable minor diastereomer 164a and major diastereomer 164b (Scheme 3.24). ${ }^{46}$ Esterification of minor diastereomer 164a yielded adduct 165, the crystals of which were suitable for diffraction. ${ }^{47}$ Crystallographic evidence supported the conclusion that the CPS-promoted reaction favored the undesired diastereomer; however, given the high level of enantioinduction in 160 and easy access to 158 (1 step) and 159 (3-4 steps) from commercial materials at multigram scale, pursuit of cucumin A via this route continued.

Scheme 3.24. Solution of the stereochemical outcome of the CPS addition

Pursuit of Deoxygenation

The next task at hand was transformation of the neopentyl aldehyde moiety in 160 to a methyl group. Subjection of $\mathbf{1 6 0}$ or $\mathbf{1 6 6}{ }^{48}$ to the deoxygenation procedure described by the lab of Prof. A. G. Myers failed to deliver desired adducts $\mathbf{1 3 4}$ or $\mathbf{1 6 8 .}{ }^{49}$ Treatment of $\mathbf{1 6 4}$ or $\mathbf{1 6 7}$ under the conditions described by the lab of Prof. C. Li likewise failed. ${ }^{50}$ Subjection of iodide $\mathbf{1 6 9}$ to radical scission in the presence of $\mathrm{HSnBu}_{3}{ }^{51}$ failed to promote formation of 168; instead, Dowd-Beckwith products 170a-b formed in 93% yield. ${ }^{52}$ The lesson of the studies here described is that radical-mediated reduction of the neopentyl primary aldehyde in $\mathbf{1 6 0}$ or derivatives thereof is intractable; hydride-mediated reduction would be the next pursuit.

Scheme 3.25. Unsuccessful attempts to deoxygenate

Successful Route to a 5-endo-trig Heck Cyclization

The mixture of alcohols $164 \mathbf{a}-\mathrm{b}$ underwent mesylation to afford the mixture of adducts $171 \mathbf{a}-\mathbf{b}^{53}$; preparative separation of these two products was successful, and well over 1 gram of 171a has been isolated to date (Scheme 3.26). Reduction of mesylate 171a with LAH followed by DMP oxidation of the resulting diols was the best way to produce dione 172 (structure 134 in Scheme 3.17), despite its impure isolation. ${ }^{54}$ Attempts to displace the mesylate or alternative activating groups without reducing either of the two carbonyls of 171a all met with failure. Formation of vinyl triflate 173 (structure 133 in Scheme 3.17) with
$\mathrm{Tf}_{2} \mathrm{O}$ and DTBMP from 172 proceeded in 54% yield (Scheme 3.26). ${ }^{55,56}$ All other conditions employed to tackle this problem such as canonical hard enolization/triflimide quench led only to decomposition of $\mathbf{1 7 2}$ to a complex mixture. ${ }^{57}$ Notably, structure 173 decomposed under the conditions developed for oxidative vinylogous acyl sulfonate formation described in the previous chapter; presence of the enone moiety was the culprit for this failure. ${ }^{58}$ Nonetheless, the formal annulation proposed transpired via the intramolecular Heck reaction of 173 . Use of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{Pd}^{0}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in ACN at $60{ }^{\circ} \mathrm{C}$ led to formation of $\mathbf{1 7 4}$ in 53% yield from 173 and 20% yield from 171a (Scheme 3.26). ${ }^{59}$ Employment of inorganic bases, other palladium sources, or alternative phosphine ligands truncated the observed reactivity greatly. Completion of $\mathbf{1 7 4}$ achieves the goal of establishing the carbocylic framework of cucumin A.

Major mesylate diastereomer 171b underwent the analogous sequence described previously to form vinyl triflate 175 in 40% yield over 3 steps (Scheme 3.27). Interestingly, the analogous Heck reaction on this substrate was less successful than the cyclization of $\mathbf{1 7 3}$. Only through switch of the reaction solvent to THF was $\mathbf{1 7 6}$ isolated in low yield; employment of ACN gave little to no product (Scheme 3.27).

Scheme 3.27. Heck cyclization of the vinyl triflate derived from 171b to form $\mathbf{1 7 6}$

An explanation of the difference in the success of the Heck reactions of $\mathbf{1 7 3}$ and $\mathbf{1 7 5}$ is offered in Scheme
3.28. During the cyclization of $\mathbf{1 7 5}$, transition state structure $\mathbf{1 8 1}$ picks up an additional syn-pentane-like clash en route to palladium sigma complex 182. This clash would be absent in transition state structure 178 during the cyclization of $\mathbf{1 7 3}$. The likelihood of the reaction proceeding through a trans-(5-5)-bicyclic analogue of either $\mathbf{1 7 9}$ or $\mathbf{1 8 2}$ is relatively low (Scheme 3.28). ${ }^{60}$

A-Ring Oxidation

With ring system 174 in place, the next task at hand was introduction of the final oxygen atom on the A ring to give penultimate 183. Oxidation of the allylic site directly (Scheme 3.29, top sequence), whether by $\mathrm{SeO}_{2}{ }^{61,62}, \mathrm{Cr}(\mathrm{VI})$ reagents ${ }^{63,64}$, or the Corey-Yu oxidation, ${ }^{65}$ has failed to produce $\mathbf{1 8 3}$ thus far. We hypothesized that structures such as $\mathbf{1 8 4}$ or $\mathbf{1 8 5}$ could serve as stepping stones to $\mathbf{1 8 3}$ via acid-catalyzed rearrangement followed by further oxidation (Scheme 3.29, middle and bottom sequences). ${ }^{66,67}$ However, attempts at the formation of 184 and 185 have been fruitless to this point.

Scheme 3.29. Attempts to form cucumin A penultimate $\mathbf{1 8 3}$ via oxidation of $\mathbf{1 7 4}$

Conclusion and Future Directions

The ring system of cucumin A, intermediate $\mathbf{1 7 4}$, has been synthesized in a 10 -step LLS from commercial materials via a CPS-mediated addition-elimination sequence followed by a 5-endo-trig Heck cyclization.

Further investigation into the differential facilities of Heck reactions of $\mathbf{1 7 3}$ versus $\mathbf{1 7 5}$ via calculations of the relevant transition states will be an enlightening pursuit. Further studies concerning the formation of 183 are ongoing.

General Experimental Information

General Procedures. All reactions were performed in oven-dried glassware under a positive pressure of dinitrogen unless otherwise noted. Flash column chromatography was performed as described by Still et. al. ${ }^{68}$ employing silica gel $60(40-63 \mu \mathrm{~m}$, Whatman). Analytical thin-layer chromatography (TLC) was performed using 0.25 mm silica gel 60 F 254 plates (Merck).

Materials. Reagents and solvents used herein were purchased from commercial vendors and used as received, with these specifications: Bromine $\left(\mathrm{Br}_{2}\right)$, Tetrahydrofuran (THF), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, dimethylformamide (DMF), thiophenol, 1,2-dichloroethane (DCE), pyridine, acetonitrile (ACN) and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ were sourced from sureseal bottles. Aside from these, all other solvents used herein were reagent grade with no protection from air/moisture. 2-iodoxybenzoic acid (IBX) was sourced from Oakwood as a $30 \mathrm{wt} \%$ solid. Dry lithium chloride (LiCl) was purchased from Aldrich and used without further modification. Sureseal Tebbe reagent solutions (0.50 M in PhMe) were purchased from Aldrich. Lithium tris(tert-butoxy) aluminum hydride $\left(\mathrm{LiHAl}(\mathrm{OtBu})_{3}\right)$ was purchased from Alfa Aesar and stored in a drybox in between uses. Sureseal lithium aluminum hydride (LAH) solutions (1.0 M in THF) were purchased from Aldrich. Dess-Martin Periodinane (DMP) was purchased from Oakwood. 2,6-di-tert-butyl-4-methylpyridine (DTBMP) was purchased from Oakwood. Triflic anhydride $\left(\mathrm{Tf}_{2} \mathrm{O}\right)$ was purchased and used as received. Tetrakis(triphenylphosphine)palladium $(0)\left(\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}^{0}\right)$ was purchased from Strem and stored at $-80{ }^{\circ} \mathrm{C}$ in between uses.

Instrumentation. ${ }^{1} \mathrm{H}$ NMR spectra were recorded with Varian INOVA-500, Agilent DD2-600, or JEOL400 spectrometers, are reported in parts per million (δ), and are calibrated using residual non-deuterated solvent as an internal reference: $\mathrm{CDCl}_{3}, \delta 7.26\left(\mathrm{CHCl}_{3}\right) ; \mathrm{C}_{6} \mathrm{D}_{6}, \delta 7.16\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, integration). Multiplicities are reported as follows: $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; $\mathrm{p}=$ pentet; $\mathrm{sx}=$ sextet, $\mathrm{m}=$ multiplet; br $=$ broad, or combinations thereof. ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Varian INOVA-500 or JEOL400 spectrometer, are reported in parts per million (δ), and are referenced from the central peak of the carbon resonance of the solvent: $\mathrm{CDCl}_{3}, \delta 77.16 .{ }^{19} \mathrm{~F}$ NMR spectra were recorded with a JEOL-400 or a Varian INOVA-500 spectrometer and are reported in parts per million (δ). Infrared (IR) data were recorded on a Bruker Alpha FT-IR spectrometer outfitted with an Eco-ATR sampling module. High-resolution mass spectra (HRMS) were recorded using electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) mass spectroscopy using a Thermo Scientific Dionex UltiMate 3000 UHPLC coupled to a Thermo Q Exactive Plus mass spectrometer system equipped with either an HESI-II electrospray ionization source or an APCI probe.

Experimentals

2-(hydroxymethyl)-5,5-dimethylcyclopent-2-en-1-one (138):

A stirring solution of 2,2-dimethylcyclopentanone ($5.0 \mathrm{~mL}, 40 \mathrm{mmol}, 1$ equiv) in DMSO (200 mL) in a 500 mL recovery flask open to the air was charged with $\mathrm{IBX}(30 \mathrm{wt} \%, 56 \mathrm{~g}, 60 \mathrm{mmol}, 1.5$ equiv). The flask was capped, sealed with teflon tape and parafilm, and heated to $85{ }^{\circ} \mathrm{C}$ with stirring for $44 \mathrm{~h} .{ }^{34}$ The reaction was cooled to room temperature and treated with 100 mL pentane and 100 mL water, followed by stirring for five minutes. The reaction mixture was filtered through a Whatman grade 42 filter paper-equipped Buchner funnel (pentane washes). Following transfer of the filtered reaction mixture to a separatory funnel (pentane washes), the layers were separated. The aqueous layer was extracted ten times with 70 mL pentane. The combined organic fractions were washed four times with water $(200 \mathrm{~mL})$, dried over sodium sulfate, filtered, and concentrated at reduced pressure with a room temperature water bath, affording 3.18 g of crude 5,5-dimethylcyclopent-2-en-1-one (28.4 mmol assumed for the next step). This material was transferred to a 500 mL recovery flask and suspended in water (57 mL). A solution of formaldehyde (37% aqueous, 4.70 mL , 42.5 mmol , 1.5 equiv) was added, followed by DMAP ($697 \mathrm{mg}, 5.7 \mathrm{mmol}, 0.2$ equiv).Basavaiah et al. ${ }^{[33]}$ The resulting mixture was stirred vigorously off-center at room temperature for 2 h . The reaction was poured into a separatory funnel containing 100 mL water and 100 mL EtOAc, and the layers were separated. The aqueous layer was extracted twice more with EtOAc. The combined organic layers were dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was applied to a 13 by 4 cm silica gel column and eluted with $33 \% \mathrm{EtOAc} /$ hexane (1.3 L), generating 5124 mL fractions. Fractions 20-48 were combined and concentrated at reduced pressure to give $\mathbf{1 3 8}(2.11 \mathrm{~g}, 15.1 \mathrm{mmol}, 38 \%$ from 2,2-dimethylcyclopentanone) as a slightly yellow liquid.

In an alternative procedure ${ }^{31,32}$, a solution of $\mathrm{Br}_{2}\left(5.2 \mathrm{~mL}, 100 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$ was added to a stirring solution of 2,2-dimethylcyclopentanone ($12.6 \mathrm{~mL}, 100 \mathrm{mmol}, 1$ equiv) in CHCl_{3} (250 mL) in a 500 mL recovery flask over 3 h via a pressure-equalizing addition funnel. After stirring at room temperature for 20 h , the reaction mixture was transferred to a separatory funnel and washed twice with 1 L saturated aqueous sodium bicarbonate. The organic layer was dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was transferred to a 500 mL recovery flask equipped with a stir bar and treated with dry $\mathrm{LiCl}(11.44 \mathrm{~g}, 270 \mathrm{mmol}, 2.7$ equiv $)$. The flask was evacuated and
backfilled once with dinitrogen, and then dry DMF (132 mL) was added. The flask was outfitted with a reflux condenser, and the reaction was stirred at reflux in a copper shot bath for 17 h . The reaction was cooled to room temperature and diluted with $2.5 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted 10 times with 300 mL pentane. The combined organic fraction were dried over sodium sulfate, filtered, and concentrated at reduced pressure (bath temperature $<30^{\circ} \mathrm{C}$) to give 5,5-dimethylcyclopent-2-en-1-one ($7.59 \mathrm{~g}, 68.9 \mathrm{mmol}$, 69%) as a slightly brown liquid. To this intermediate in a 500 mL recovery flask equipped with a stir bar was added water (138 mL). A solution of formaldehyde (37% aqueous, $8.4 \mathrm{~mL}, 75.8 \mathrm{mmol}, 1.1$ equiv) was added, followed by DMAP ($421 \mathrm{mg}, 3.45 \mathrm{mmol}, 0.05$ equiv). ${ }^{33}$ The resulting mixture was stirred vigorously off-center at room temperature for 3 h . The reaction was poured into a separatory funnel containing 200 mL water and 200 mL EtOAc , and the layers were separated. The aqueous layer was extracted twice more with EtOAc. The combined organic layers were dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was purified with analogy to the process described above to give $\mathbf{1 3 8}$ (6.29 $\mathrm{g}, 44.9 \mathrm{mmol}, 65 \%$) as a yellow oil. The yield from 2,2-dimethylcyclopentanone was 45%.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.40(\mathrm{tt}, \mathrm{J}=2.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~m}, \mathrm{br}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 214.3,155.9,142.3,58.1,44.1, ~ 44.0,25.0$.
FTIR (thin film) $\mathrm{v}_{\max }: 3433,2962,2927,2868,1685,1637,1466,1436,1382,1360,1346,1305,1286,1253$, $1211,1154,1068,1036,995,980,958,932,902,837,763,676,663,610,582,545 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}, 163.0730$; found, 163.0726.
TLC $\mathrm{R}_{\mathrm{f}}=0.36$ (1:1 hexane:EtOAc).

2-(hydroxymethyl)-5,5-dimethylcyclopent-2-en-1-ol (148): ${ }^{38}$

A stirring solution of $138(280 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv) in methanol (10 mL) in a 50 mL recovery flask was charged with $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ ($986 \mathrm{mg}, 4 \mathrm{mmol}, 2$ equiv), and the resulting mixture was stirred for 5 minutes. The reaction was then cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath, and $\mathrm{NaBH}_{4}(84 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.1$ equiv) was added in three portions. The reaction was stirred at this temperature for 80 minutes and then warmed to $0{ }^{\circ} \mathrm{C}$, whereupon 4 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ were added. The reaction was then poured into a separatory funnel containing water, and the aqueous layer was extracted four times with EtOAc. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was applied to a 10 by 3 cm silica gel and eluted with $75 \% \mathrm{EtOAc} /$ hexane (0.4 L), generating 2120 mL fractions. Fractions 9-21 were combined and concentrated at reduced pressure to give 148 (209 mg, $1.47 \mathrm{mmol}, 74 \%$) as a clear, viscous, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 5.73(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 1.92$ (br s, 2H), $1.08(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta: 143.6,129.4,85.4,61.3,45.6,42.6,28.3,22.5$.
FTIR (thin film) $\mathrm{v}_{\max }$: 3321, 2954, 2922, 2899, 2867, 2846, 1466, 1382, 1363, 1288, 1043, 998, 684, 640 cm^{-1}.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}, 165.0886$; found, 165.0884.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.18$ (1:1 hexane:EtOAc).

(5-hydroxy-4,4-dimethylcyclopent-1-en-1-yl)methyl 5-methylhex-5-enoate (186): ${ }^{39}$

A stirring solution of $148(209 \mathrm{mg}, 1.47 \mathrm{mmol}, 1$ equiv $)$ and $151\left(188 \mathrm{mg}, 1.47 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was charged with EDCI•HCl ($338 \mathrm{mg}, 1.76 \mathrm{mmol}, 1.2$ equiv) followed by DMAP (few crystals), and the reaction was stirred at room temperature for 22 h . EDCI $\cdot \mathrm{HCl}(338 \mathrm{mg}, 1.76 \mathrm{mmol}, 1.2$ equiv $)$ and DMAP (few crystals) were added once more, and the reaction was stirred for 19 h . The reaction was poured into a separatory funnel containing 1 N HCl and the layers were separated. The aqueous layer was extracted thrice more with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic fractions were washed with 1 N HCl , saturated aqueous sodium bicarbonate, and brine sequentially, dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was applied to a 10 by 4 cm silica gel column and eluted with 5% (0.2 L), then 10% (0.2 L) and finally $15 \% ~(0.4 \mathrm{~L}) \mathrm{EtOAc} /$ hexane. The process generated 3920 mL fractions. Fractions $26-36$ were combined and concentrated at reduced pressure to give 186 ($201 \mathrm{mg}, 0.80 \mathrm{mmol}, 54 \%$) as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 5.81(\mathrm{~m}, 1 \mathrm{H}), 4.79-4.71(\mathrm{~m}, 2 \mathrm{H}), 4.69-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 2.33$ $(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{t}, \mathrm{J}=1.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 174.0,144.8,140.2,132.0,110.9,84.1,61.5,45.5,42.4,37.2,33.8,28.3$, 22.9, 22.6, 22.3.

FTIR (thin film) $\mathrm{v}_{\max }: 3434,2954,2934,2868,2848,1735,1650,1523,1450,1376,1364,1310,1225,1148$, $1112,1048,999,965,888,821,797,748,697,544,446,429,406 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}, 275.1618$; found, 275.1614.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.32$ (4:1 hexane:EtOAc).

(5-((tert-butyldimethylsilyl)oxy)-4,4-dimethylcyclopent-1-en-1-yl)methyl 5-methylhex-5-
enoate (152):
To a solution of $186(201 \mathrm{mg}, 0.80 \mathrm{mmol}, 1$ equiv) in DMF (8 mL) was added imidazole ($163 \mathrm{mg}, 2.40 \mathrm{mmol}$, 3 equiv), followed by TBSCl ($241 \mathrm{mg}, 1.60 \mathrm{mmol}, 2$ equiv). The flask was capped, sealed with teflon tape and parafilm, and heated to $45{ }^{\circ} \mathrm{C}$ with stirring for 17 h . The reaction was cooled to room temperature, poured into a separatory funnel containing 1 N HCl , and extracted thrice with ethyl acetate. The combined organic fractions were washed with water and brine, dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was applied to an 8 by 4 cm silica gel column and eluted with 10% $(0.25 \mathrm{~L})$ and then $40 \%(0.6 \mathrm{~L}) \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane. The process generated 3324 mL fractions, and fractions 17-32 were combined and concentrated at reduced pressure to give $152(236 \mathrm{mg}, 0.64 \mathrm{mmol}, 80 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 5.71(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.63(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.27$ $(\mathrm{m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{t}, \mathrm{J}=1.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 173.5,144.9,140.2,129.8,110.8,84.0,61.4,45.7,43.2,37.2,33.8,28.2$, $26.1,23.6,22.9,22.4,18.3,-3.9,-4.6$.

FTIR (thin film) $\mathrm{v}_{\max }: 2955,2929,2897,2857,1739,1651,1463,1382,1363,1308,1290,1251,1189,1148$, $1114,1095,1070,1007,966,939,888,866,836,799,773,671,423 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}, 389.2482$; found, 389.2476.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.73$ (9:1 hexane:EtOAc).

tert-butyl((5,5-dimethyl-2-(((6-methylhepta-1,6-dien-2-yl)oxy)methyl)cyclopent-2-en-1-yl) oxy)dimethylsilane (153):
A stirring solution of $152(76.4 \mathrm{mg}, 0.208 \mathrm{mmol}, 1$ equiv) and pyridine ($50 \mathrm{uL}, 0.62 \mathrm{mmol}, 3$ equiv) in THF (2.1 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath, and Tebbe reagent solution $(0.50 \mathrm{M}$ in $\mathrm{PhMe}, 1$ $\mathrm{mL}, 0.5 \mathrm{mmol}, 2.4$ equiv) was added dropwise. The bath was removed and the reaction was stirred at room temperature for 2 h . The reaction was applied to an 8 by 3 cm basic alumina plug directly and eluted with 70 mL hexane, generating 89 mL fractions. Fractions 2-6 were combined and concentrated at reduced pressure to give $153(75 \mathrm{mg}, 0.206 \mathrm{mmol}, 99 \%)$ as a yellow oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta: 5.65(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.26(\mathrm{~m}, 3 \mathrm{H}), 4.06-4.00(\mathrm{~m}, 2 \mathrm{H}), 2.20$ $(\mathrm{m}, 2 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.08$ $(\mathrm{s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 163.3,145.5,141.7,128.8,113.3,110.6,84.2,81.6,64.6,45.8,43.2,35.2$, $28.2,26.2,25.8,23.8,22.4,18.5,-4.0,-4.6$.

FTIR (thin film) $\mathrm{v}_{\max }: 2955,2929,2898,2857,1651,1597,1463,1382,1374,1363,1329,1257,1208,1151$, $1113,1095,1072,1011,982,964,939,888,868,836,799,774,732,669,442,418 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Si}, 365.2870$; found, 365.2867.
TLC $\mathrm{R}_{\mathrm{f}}=0.87$ (9:1 hexane:EtOAc).

2-(bromomethyl)-5,5-dimethylcyclopent-2-en-1-one (159): ${ }^{45}$

A stirring solution of $138(3.92 \mathrm{~g}, 28.0 \mathrm{mmol}, 1$ equiv) in dry ether (56 mL) in a 500 mL recovery flask was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{PBr}_{3}(1.35 \mathrm{~mL}, 14.0 \mathrm{mmol}, 0.5$ equiv) was added dropwise. After stirring for 15 minutes at $0{ }^{\circ} \mathrm{C}$, the reaction was treated with 14.6 mL methanol via syringe and then concentrated at reduced pressure, with a $35{ }^{\circ} \mathrm{C}$ water bath. The residue obtained was applied to a 12 by 4 cm silica gel column and eluted with $10 \% \mathrm{EtOAc} /$ hexane (0.55 L), generating 2324 mL fractions. Fractions $8-19$ were combined and concentrated at reduced pressure to give $159(4.93 \mathrm{~g}, 24.4 \mathrm{mmol}, 87 \%)$ and a slightly yellow liquid.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.57(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 210.9,159.0,140.1,44.0,43.7,25.0,22.4$.
FTIR (thin film) $\mathrm{v}_{\max }: 2962,2926,2867,1704,1633,1466,1430,1380,1361,1342,1320,1305,1258,1213$, $1010,992,958,930,831,670,606,560,534 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{BrO}$, 203.0066; found, 203.0064.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.50$ (4:1 hexane:EtOAc).

160a

160b
(1S,1'R)-4', 4'-dimethyl-2'-methylene-2,3'-dioxo-[1,1'-bi(cyclopentane)]-1-carbaldehyde (160a) and
(1R,1'R)-4',4'-dimethyl-2'-methylene-2,3'-dioxo-[1,1'-bi(cyclopentane)]-1-carbaldehyde (160b): ${ }^{43}$

A solution of 159 ($5.89 \mathrm{~g}, 29.2 \mathrm{mmol}, 1$ equiv) in acetone (292 mL) in a 500 mL recovery flask equipped with a stir bar and open to the air was charged with $\mathbf{1 5 8}^{\mathbf{4 4}}(3.93 \mathrm{~g}, 35.0 \mathrm{mmol}, 1.2$ equiv $)$ and $\mathbf{1 5 6}^{\mathbf{4 3}}$ (10.30 $\mathrm{g}, 29.2 \mathrm{mmol}, 1$ equiv). The flask was outfitted with a reflux condenser and heated at reflux with stirring for 23 h . The reaction was cooled to room temperature and hexane (200 mL) was added; stirring at room temperature was continued for three more hours. The reaction was filtered, and the white solid composed of the HBr salt of $\mathbf{1 5 6}, \mathbf{1 8 7}$, was dried under high vacuum to give recovery of the auxiliary $(9.44 \mathrm{~g}, 21.8 \mathrm{mmol}$, 75% recovery). The filtrate was concentrated at reduced pressure and the residue obtained was applied to a 16 by 6 cm column. The column was eluted over twenty minutes with $10 \%(1 \mathrm{~L})$ and then $12.5 \%(2 \mathrm{~L})$ $\mathrm{EtOAc} /$ hexane, generating 30100 mL fractions. Fractions 11-23 were combined and concentrated at reduced pressure to give a $2.4: 1$ mixture of $\mathbf{1 6 0 b}$ and $\mathbf{1 6 0 a}(4.12 \mathrm{~g}, 17.6 \mathrm{mmol}, 60 \%$, ca 95% pure) as a white wax. The two compounds described are quite sensitive and must be purified rapidly; as such, further exploration of their separation was not undertaken.

FTIR (thin film, mix of both compounds) $\mathrm{v}_{\max }$: 2962, 2928, 2869, 1726, 1709, 1633, 1466, 1406, 1383, 1364, $1318,1275,1257,1190,1145,1110,1056,1043,1029,1005,944,799,591,548 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}, 235.1329$; found, 235.1325.
TLC $\mathrm{R}_{\mathrm{f}}=0.33$ (4:1 hexane:EtOAc).
(1S,1'R)-4', 4'-dimethyl-2'-methylene-2,3'-dioxo-[1,1'-bi(cyclopentane)]-1-carbaldehyde (160a)
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; selected resonances) $\delta: 9.59(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ $(\mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{ddt}, \mathrm{J}=11.8,7.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 213.2,208.6,198.5,143.7,120.2,70.6,44.5,39.7,39.2,37.5,24.6,24.5$, 23.7, 19.5.
${ }^{\mathbf{1}} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; selected resonances) $\delta: 9.41(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ $(\mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{ddt}, \mathrm{J}=11.2,8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 214.3,208.7,196.6,142.6,121.3,71.9,44.6,39.7,38.8,38.2,24.9,24.1$, 23.4, 19.3.

A racemic sample of this product was generated by performance of the reaction with $E t_{3} \mathrm{~N}$ in lieu of 156. HPLC conditions: Chiralcel OJ-H column (Diacel); 90/10 hexane/2-propanol; Flow rate $1.0 \mathrm{~mL} / \mathrm{min}$; $\lambda=230 \mathrm{~nm} ; 25.7 \mathrm{~min}$ (minor), 29.8 min (minor), 36.1 min (major), 41.8 min (major). According to relative integration of the peaks, the enantioselective reaction progressed with greater than 98% ee.

Figure 3.3. Racemic reaction:

Figure 3.4. Enantioselective reaction:

(1S,1'R)-1-(hydroxymethyl)-4', 4'-dimethyl-2'-methylene-[1,1'-bi(cyclopentane)]-2,3'-dione (164a) and
(1R,1'R)-1-(hydroxymethyl)-4', 4'-dimethyl-2'-methylene-[1,1'-bi(cyclopentane)]-2,3'-dione (164b): ${ }^{46}$

A stirring solution of $\mathbf{1 6 0 a}$ and $\mathbf{b}(1: 2 \mathbf{1 6 0 a}: \mathbf{1 6 0 b}, 2.26 \mathrm{~g}, 9.65 \mathrm{mmol}, 1$ equiv) in THF (483 mL) in a 3 L 2-neck round-bottom flask was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath. A solution of $\mathrm{LiHAl}(\mathrm{OtBu})_{3}(2.94$ $\mathrm{g}, 11.57 \mathrm{mmol}, 1.2$ equiv) in THF (82 mL) was added dropwise to the reaction mixture over 25 minutes. The reaction was stirred at this temperature for 45 more minutes. Following this timeframe, 180 mL of MeOH were added via syringe pump at a rate of $2 \mathrm{~mL} /$ minute. The reaction was then warmed to $0{ }^{\circ} \mathrm{C}$, and 560 mL ether followed by $390 \mathrm{~mL} 5 \%$ aqueous AcOH were added. The reaction mixture was warmed to room temperature and poured into a separatory funnel containing saturated aqueous sodium bicarbonate (0.65L) and $\mathrm{EtOAc}(0.33 \mathrm{~L})$. The layers were separated and the aqueous layer was extracted twice more with 0.33 L EtOAc. The combined organic fractions were washed with brine and concentrated at reduced pressure. The residue obtained was applied to a 14 by 5 cm silica gel column. The column was eluted with 25% (1 L) and then $50 \%(1 \mathrm{~L}) \mathrm{EtOAc} /$ hexane, producing five 100 mL fractions and 5724 mL fractions. Of the final 57 fractions, fractions 25-43 were combined and concentrated at reduced pressure to give a 1:2.4 mixture of 164a and 164b ($1.73 \mathrm{~g}, 7.33 \mathrm{mmol}, 76 \%$ yield).

The following separation then occurred: A ca 100 mg sample of the diastereomeric mix was separated by reverse-phase preparative HPLC through use of a Kromasil 100-10-C18 column with dimensions of 250 by 21.2 mm . A gradient elution of $95 \% 0.1 \%$ TFA in $\mathrm{H}_{2} \mathrm{O} / 5 \% 0.1 \%$ TFA in ACN to $30 \% 0.1 \%$ TFA in $\mathrm{H}_{2} \mathrm{O} / 70 \%$ 0.1% TFA in ACN was employed over 60 minutes at a flow rate of $10 \mathrm{~mL} /$ minute. Then, the column was flushed with $5 \% 0.1 \%$ TFA in $\mathrm{H}_{2} \mathrm{O} / 95 \% 0.1 \%$ TFA in ACN for 10 minutes at a flow rate of $10 \mathrm{~mL} / \mathrm{minute}$. Peak-based collection $(\lambda=254 \mathrm{~nm})$ of 5 mL fractions led to a partial separation of $\mathbf{1 6 4 a}$ (retention time $=63.1$ min) and $\mathbf{1 6 4 b}$ (retention time $=61.0 \mathrm{~min}$). Fractions collected were each assayed for purity through use of an Accucore aQ 100 by 2.1 mm analytical column. A gradient elution of $95 \% 0.1 \% \mathrm{TFA}$ in $\mathrm{H}_{2} \mathrm{O} / 5 \% 0.1 \%$ TFA in ACN to $5 \% 0.1 \%$ TFA in $\mathrm{H}_{2} \mathrm{O} / 95 \% 0.1 \%$ TFA in ACN was employed over 7 minutes at a flow rate of $0.650 \mathrm{~mL} /$ minute, followed by elution at the same rate with $5 \% 0.1 \% \mathrm{TFA}$ in $\mathrm{H}_{2} \mathrm{O} / 95 \% 0.1 \%$ TFA
in ACN for 1 minute. UV detection $(\lambda=254 \mathrm{~nm})$ indicated with fractions were pure for 164a (retention time $=\mathbf{4 . 0 4} \mathbf{~ m i n}$) or $\mathbf{1 6 4 b}$ (retention time $=3.99 \mathrm{~min}$), and the two bands were combined and concentrated at reduced pressure to give both pure compounds.
(1S,1'R)-1-(hydroxymethyl)-4', 4'-dimethyl-2'-methylene-[1,1'-bi(cyclopentane)]-2,3'-dione (164a)
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.18(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{ddt}, \mathrm{J}=11.0,7.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.17(\mathrm{~m}$, $1 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 5 \mathrm{H}), 1.81(\mathrm{dd}, \mathrm{J}=12.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\operatorname{app} \mathrm{t}, \mathrm{J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.03$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 222.9,210.0,144.7,120.8,65.4,55.7,44.4,39.9,38.2,37.4,28.8,25.0,23.7$, 19.6.

FTIR (thin film) $\mathrm{v}_{\max }: 3456,2962,2871,1786,1725,1630,1465,1405,1383,1363,1322,1259,1161,1042$, $953,918,876,801,771,731,647,620,595,557,451 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}, 259.1305$; found, 259.1299.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.35$ (1:1 hexane:EtOAc).
(1R,1'R)-1-(hydroxymethyl)-4', 4'-dimethyl-2'-methylene-[1,1'-bi(cyclopentane)]-2,3'-dione (164b):
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.14(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 2 \mathrm{H}), 3.57$ (ddd, $\mathrm{J}=11.2,7.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{dd}, \mathrm{J}=12.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-$ $1.84(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{app} \mathrm{t}, \mathrm{J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 224.0,210.1,144.5,120.5,64.9,56.4,44.5,40.0,38.2,37.9,27.8,25.1,23.5$, 19.3.

FTIR (thin film) $\mathrm{v}_{\max }: 3435,2961,2929,2871,1724,1631,1465,1407,1363,1252,1163,1109,1051,1027$, $942,803,734,621,589,549,451,424 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$, 259.1305; found, 259.1299.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.35$ (1:1 hexane:EtOAc).

((1S, 1'R)-4',4'-dimethyl-2'-methylene-2,3'-dioxo-[1,1'-bi(cyclopentan)]-1-yl)methyl 4-bromobenzoate (165): ${ }^{47}$

A solution of 164 a $\left(10.2 \mathrm{mg}, 43 \mu \mathrm{~mol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.86 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath, and $\mathrm{Et}_{3} \mathrm{~N}(12 \mu \mathrm{~L}, 86 \mu \mathrm{~mol}, 2.0$ equiv $)$ was added. Then para-bromobenzoylchloride ($10.3 \mathrm{mg}, 47 \mu \mathrm{~mol}$, 1.1 equiv) followed by DMAP ($5.3 \mathrm{mg}, 43 \mu \mathrm{~mol}, 1.0$ equiv) was added, and the mixture was allowed to warm to room temperature and stirred for 18 h . The reaction was poured into saturated aqueous sodium bicarbonate and extracted with EtOAc. The organic layer was dried over sodium sulfate and concentrated at reduced pressure. The residue obtained was loaded onto a 6 by 2 cm silica plug and eluted with 10% (25 mL) and then $20 \%(100 \mathrm{~mL}) \mathrm{EtOAc} /$ hexane, generating 169 mL fractions. Fractions 8-12 were concentrated at reduced pressure to give $165(12.7 \mathrm{mg}, 43 \mu \mathrm{~mol}, 70 \%)$ as a white solid. This material was dissolved in a minimal amount of diethyl ether and layered with isooctane, which gave crystals suitable for diffraction following slow evaporation.
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.86-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.64(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{ddd}, \mathrm{J}=11.0,7.7$, 3.1 $\mathrm{Hz}, 1 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, \mathrm{J}=19.5,13.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}$, $3 \mathrm{H}), 1.89(\mathrm{ddd}, \mathrm{J}=12.4,7.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\operatorname{app} \mathrm{t}, \mathrm{J}=12.0, \mathrm{~Hz}, 2 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 219.5,209.4,165.7,144.1,132.1,131.2,128.7,128.6,121.1,67.8,53.9,44.3$, $39.4,39.3,38.3,29.2,24.8,23.7,19.5$.

FTIR (thin film) $\mathrm{v}_{\max }$: 2961, 2927, 2870, 1728, 1632, 1590, 1484, 1465, 1398, 1379, 1267, 1198, 1173, 1114, $1102,1069,1050,1012,957,848,756,683,511,477,466,451,408 \mathrm{~cm}^{-1}$.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BrO}_{4}, 419.0852$; found, 419.0857.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.15$ (7:1 hexane:EtOAc).
X-ray Crystallography: Performed by Dr. Shao-Liang Zhang. From a crystal mounted on a diffractometer was collected data at 100 K . The intensities of the reflections were collected by means of a Bruker APEX II CCD diffractometer ($\mathrm{Mo}_{\mathrm{K} \alpha}$ radiation, $\lambda=0.71073 \AA$), and equipped with an Oxford Cryosystems nitrogen
flow apparatus. The collection method involved 0.5 scans in ω at 28° in 2v. Data integration down to 0.78 \AA resolution was carried out using SAINT V8.37A (Bruker diffractometer, 2016) with reflection spot size optimization. Absorption corrections were made with the program SADABS (Bruker diffractometer, 2016). The structure was solved by the Intrinsic Phasing methods and refined by least-squares methods again F^{2} using SHELXT-2014 and SHELXL-2014 with OLEX 2 interface. ${ }^{69,70,71}$ Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. Crystal data as well as details of data collection and refinement are summarized in Table 3.1, and geometric parameters are shown in Table 3.2. The Ortep plots produced with SHELXL-2014 program, and the other drawings were produced with Accelrys DS Visualizer 2.0 (Accelrys, 2007).

Table 3.1. 165 crystallography experimental details

	JKT-779c
Crystal data	
Chemical formula	$\mathrm{C}_{2} \mathrm{H}_{23} \mathrm{BrOO}_{4}$
Mr	419.30
Crystal system, space group	Triclinic, $P 1$
Temperature (K)	100
$a, b, c(\AA)$	5.8557 (4), 9.5475 (7), 9.6957 (7)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	69.188 (2), 74.611 (2), 86.544 (2)
$V\left(\AA^{3}\right)$	488.18 (6)
Z	1
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	2.13
Crystal size (mm)	$0.18 \times 0.12 \times 0.10$
Data collection	
Diffractometer	Bruker D8 goniometer with CCD area detector
Absorption correction	$\begin{aligned} & \text { Multi-scan } \\ & \text { SADABS } \end{aligned}$
$T_{\text {min }}, T_{\text {max }}$	0.556, 0.746
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	20040, 4321, 4237
Rint	0.031
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.644
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.023, 0.045, 1.08
No. of reflections	4321
No. of parameters	264
No. of restraints	17
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.18, -0.24
Absolute structure	Flack x determined using 2014 quotients $[(\mathrm{I}+)-(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]$ (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Absolute structure parameter	-0.012 (3)

Computer programs: SAINT 8.37A (Bruker-AXS, 2015), SHELXT2014, SHELXL2014, Bruker
SHELXTL. ${ }^{69,70}$

Table 3.2. 165 crystallography geometric parameters $\left(\AA,{ }^{\circ}\right)$

Br1-C3	1.901 (3)	C15-C16	1.511 (8)
O1-C7	1.350 (3)	C16-O4	1.217 (8)
O1-C8	1.452 (3)	C16-C17	1.528 (8)
O2-C7	1.201 (3)	C17-C20	1.525 (9)
O3-C10	1.214 (3)	C17-C21	1.543 (9)
C1-C2	1.391 (4)	C17-C18	1.544 (10)
C1-C6	1.393 (4)	C18-H18A	0.9900
C1-H1	0.9500	C18-H18B	0.9900
C2-C3	1.381 (4)	C19-H19A	0.9500
C2-H2	0.9500	C19-H19B	0.9500
C3-C4	1.378 (4)	C20-H20A	0.9800
C4-C5	1.378 (4)	C20-H20B	0.9800
C4-H4	0.9500	C20-H20C	0.9800
C5-C6	1.392 (4)	C21-H21A	0.9800
C5-H5	0.9500	C21-H21B	0.9800
C6-C7	1.492 (4)	C21-H21C	0.9800
C8-C9	1.532 (3)	C14A-C15A	1.525 (19)
C8-H8A	0.9900	C14A-C18A	1.57 (2)
С8-H8B	0.9900	C14A-H14A	1.0000
C9-C10	1.530 (4)	C15A-C19A	1.33 (2)
C9-C13	1.542 (4)	C15A-C16A	1.486 (19)
C9-C14A	1.545 (4)	C16A-O4A	1.230 (19)
C9-C14	1.545 (4)	C16A-C17A	1.491 (18)
C10-C11	1.506 (4)	C17A-C20A	1.53 (2)
C11-C12	1.522 (4)	C17A-C18A	1.53 (2)
C11-H11A	0.9900	C17A-C21A	1.56 (2)
C11-H11B	0.9900	C18A-H18C	0.9900
C12-C13	1.540 (4)	C18A-H18D	0.9900
C12-H12A	0.9900	C19A-H19C	0.9500
C12-H12B	0.9900	C19A-H19D	0.9500
C13-H13A	0.9900	C20A-H20D	0.9800
C13-H13B	0.9900	C20A-H20E	0.9800
C14-C15	1.517 (8)	C20A-H20F	0.9800
C14-C18	1.553 (9)	C21A-H21D	0.9800
C14-H14	1.0000	C21A-H21E	0.9800
C15-C19	1.332 (10)	C21A-H21F	0.9800

Table 3.2, continued

C7-O1-C8	117.2 (2)	O4-C16-C17	124.2 (7)
C2-C1-C6	120.1 (3)	C15-C16-C17	108.6 (6)
C2- $\mathrm{C} 1-\mathrm{H} 1$	120.0	C20-C17-C16	112.9 (9)
C6- $\mathrm{C} 1-\mathrm{H} 1$	120.0	C20-C17-C21	111.2 (8)
C3-C2-C1	118.6 (3)	C16-C17-C21	107.5 (7)
C3-C2-H2	120.7	C20-C17-C18	111.1 (9)
C1-C2-H2	120.7	C16-C17-C18	101.9 (7)
C4-C3-C2	122.1 (3)	C21-C17-C18	111.9 (14)
C4-C3-Br1	118.3 (2)	C17-C18-C14	104.1 (8)
C2-C3-Br1	119.5 (2)	C17-C18-H18A	110.9
C3-C4-C5	119.0 (2)	C14-C18-H18A	110.9
C3-C4-H4	120.5	C17-C18-H18B	110.9
C5-C4-H4	120.5	C14-C18-H18B	110.9
C4-C5-C6	120.4 (3)	H18A-C18-H18B	108.9
C4-C5-H5	119.8	C15-C19-H19A	120.0
C6-C5-H5	119.8	C15-C19-H19B	120.0
C5-C6-C1	119.8 (3)	H19A-C19-H19B	120.0
C5-C6-C7	117.8 (2)	C17-C20-H20A	109.5
C1-C6-C7	122.4 (2)	C17-C20-H20B	109.5
O2-C7-O1	124.2 (2)	H20A-C20-H20B	109.5
O2-C7- C 6	124.7 (2)	C17-C20-H20C	109.5
O1-C7-C6	111.1 (2)	H20A-C20-H20C	109.5
O1-C8-C9	110.35 (19)	H20B-C20-H20C	109.5
O1-C8-H8A	109.6	C17-C21-H21A	109.5
C9-C8-H8A	109.6	C17-C21-H21B	109.5
O1-C8- H 8 B	109.6	H21A-C21-H21B	109.5
C9-C8-H8B	109.6	C17-C21-H21C	109.5
H8A-C8-H8B	108.1	H21A-C21-H21C	109.5
C10-C9-C8	107.0 (2)	H21B-C21-H21C	109.5
C10-C9-C13	104.3 (2)	C15A-C14A-C9	122.0 (14)
C8-C9-C13	114.0 (2)	C15A-C14A-C18A	100.5 (15)
C10-C9-C14A	108.6 (2)	C9-C14A-C18A	111.4 (16)
C8-C9-C14A	108.0 (2)	C15A-C14A-H14A	107.3
C13-C9-C14A	114.5 (2)	C9-C14A-H14A	107.3
C10-C9-C14	108.6 (2)	C18A-C14A-H14A	107.3

Table 3.2, continued

C8-C9-C14	108.0 (2)	C19A-C15A-C16A	129 (3)
C13-C9-C14	114.5 (2)	C19A-C15A-C14A	122 (4)
O3-C10-C11	126.1 (3)	C16A-C15A-C14A	108.9 (14)
O3-C10-C9	124.3 (3)	O4A-C16A-C15A	120.2 (18)
C11-C10-C9	109.6 (2)	O4A-C16A-C17A	128 (2)
C10-C11-C12	104.2 (2)	C15A-C16A-C17A	111.3 (15)
C10-C11-H11A	110.9	C16A-C17A-C20A	111 (2)
C12-C11-H11A	110.9	C16A-C17A-C18A	102.2 (16)
C10-C11-H11B	110.9	C20A-C17A-C18A	119 (2)
C12-C11-H11B	110.9	C16A-C17A-C21A	106 (2)
H11A-C11-H11B	108.9	C20A-C17A-C21A	108 (2)
C11-C12-C13	104.4 (2)	C18A-C17A-C21A	109 (3)
C11-C12-H12A	110.9	C17A-C18A-C14A	108.9 (17)
C13-C12-H12A	110.9	C17A-C18A-H18C	109.9
C11-C12-H12B	110.9	C14A-C18A-H18C	109.9
C13-C12-H12B	110.9	C17A-C18A-H18D	109.9
H12A-C12-H12B	108.9	C14A-C18A-H18D	109.9
C12-C13-C9	106.2 (2)	H18C-C18A-H18D	108.3
C12-C13-H13A	110.5	C15A-C19A-H19C	120.0
C9-C13-H13A	110.5	C15A-C19A-H19D	120.0
C12-C13-H13B	110.5	H19C-C19A-H19D	120.0
C9-C13-H13B	110.5	C17A-C20A-H20D	109.5
H13A-C13-H13B	108.7	C17A-C20A-H20E	109.5
C15-C14-C9	114.1 (6)	H20D-C20A-H20E	109.5
C15-C14-C18	103.5 (6)	C17A-C20A-H20F	109.5
C9-C14-C18	115.7 (8)	H20D-C20A-H20F	109.5
C15-C14-H14	107.7	H20E-C20A-H20F	109.5
C9-C14-H14	107.7	C17A-C21A-H21D	109.5
C18-C14-H14	107.7	C17A-C21A-H21E	109.5
C19-C15-C16	117.1 (15)	H21D-C21A-H21E	109.5
C19-C15-C14	135.6(15)	C17A-C21A-H21F	109.5
C16-C15-C14	107.1 (5)	H21D-C21A-H21F	109.5
O4-C16-C15	127.2 (6)	$\mathrm{H} 21 \mathrm{E}-\mathrm{C} 21 \mathrm{~A}-\mathrm{H} 21 \mathrm{~F}$	109.5
 $\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ $-0.3(4)$ $\mathrm{C} 18-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 19$ $-154(3)$			

Table 3.2, continued

C1-C2-C3-C4	-0.2 (4)	C9-C14-C15-C16	147.4 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 1$	-179.7 (2)	C18-C14-C15-C16	20.8 (18)
C2-C3-C4-C5	0.4 (5)	C19-C15-C16-O4	-2 (3)
Br1-C3-C4-C5	179.8 (2)	C14-C15-C16-O4	-177.7 (14)
C3-C4-C5-C6	0.0 (5)	C19-C15-C16-C17	179 (2)
C4-C5-C6-C1	-0.5 (5)	C14-C15-C16-C17	2.5 (17)
C4-C5-C6-C7	176.2 (3)	O4-C16-C17-C20	36.1 (17)
C2-C1-C6-C5	0.7 (5)	C15-C16-C17-C20	-144.1 (12)
C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	-175.8 (2)	$\mathrm{O} 4-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 21$	-86.8 (15)
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$	-6.8 (4)	C15-C16-C17-C21	93.0 (13)
C8-O1-C7-C6	171.6 (2)	O4-C16-C17-C18	155.4 (17)
C5-C6-C7-O2	2.7 (4)	C15-C16-C17-C18	-24.8 (17)
C1-C6-C7-O2	179.3 (3)	C20-C17-C18-C14	157.8 (13)
C5-C6-C7-O1	-175.7 (2)	C16-C17-C18-C14	37.3 (18)
C1-C6-C7-O1	0.9 (4)	C21-C17-C18-C14	-77.2 (15)
C7-O1-C8-C9	112.8 (2)	C15-C14-C18-C17	-36.4 (19)
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	57.5 (3)	C9-C14-C18-C17	-162.0 (11)
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 13$	-57.3 (3)	C10-C9-C14A-C15A	-158.5 (19)
O1-C8-C9-C14A	174.17 (19)	C8-C9-C14A-C15A	85.9 (19)
O1-C8-C9-C14	174.17 (19)	C13-C9-C14A-C15A	-42.4 (19)
C8-C9-C10-O3	54.7 (3)	C10-C9-C14A-C18A	-40 (3)
C13-C9-C10-O3	175.9 (2)	C8-C9-C14A-C18A	-156 (3)
C14A-C9-C10-O3	-61.6 (3)	C13-C9-C14A-C18A	76 (3)
C14-C9-C10-O3	-61.6 (3)	C9-C14A-C15A-C19A	-40 (6)
C8-C9-C10-C11	-125.2 (2)	C18A-C14A-C15A-C19A	-164 (6)
C13-C9-C10-C11	-4.1 (3)	C9-C14A-C15A-C16A	144 (2)
C14A-C9-C10-C11	118.5 (2)	C18A-C14A-C15A-C16A	20 (4)
C14-C9-C10-C11	118.5 (2)	C19A-C15A-C16A-O4A	2 (8)
O3-C10-C11-C12	-156.6 (3)	C14A-C15A-C16A-O4A	178 (3)
C9-C10-C11-C12	23.4 (3)	C19A-C15A-C16A-C17A	179 (6)
C10-C11-C12-C13	-33.1 (3)	C14A-C15A-C16A-C17A	-5 (4)
C11-C12-C13-C9	31.3 (3)	O4A-C16A-C17A-C20A	36 (4)
C10-C9-C13-C12	-16.7 (3)	C15A-C16A-C17A-C20A	-141 (3)
C8-C9-C13-C12	99.6 (3)	O4A-C16A-C17A-C18A	164 (4)
C14A-C9-C13-C12	-135.3 (2)	C15A-C16A-C17A-C18A	-13 (4)
C14-C9-C13-C12	-135.3 (2)	O4A-C16A-C17A-C21A	-82 (4)
C10-C9-C14-C15	-166.2 (8)	C15A-C16A-C17A-C21A	101 (3)

Table 3.2, continued

C8-C9-C14-C15	$78.2(8)$	C16A-C17A-C18A-C14A	$26(5)$
C13-C9-C14-C15	$-50.1(8)$	C20A-C17A-C18A-C14A	$149(3)$
C10-C9-C14-C18	$-46.2(11)$	C21A-C17A-C18A-C14A	$-86(4)$
C8-C9-C14-C18	$-161.9(11)$	C15A-C14A-C18A-C17A	$-29(5)$
C13-C9-C14-C18	$69.9(11)$	C9-C14A-C18A-C17A	$-160(3)$
C9-C14-C15-C19	$-28(3)$		

Figure 3.5. Perspective views showing 50% probability displacement

Figure 3.6. Three-dimensional supramolecular architecture viewed along the a-axis direction

(1S,1'R,2'S)-4',4'-dimethyl-2,3'-dioxo-2'-((phenylthio)methyl)-[1,1'-bi(cyclopentane)]-1carbaldehyde (166): ${ }^{48}$

To a stirring solution of a 1:2.4 mixture of $160 \mathrm{a}: 160 \mathrm{~b}(184 \mathrm{mg}, 0.785 \mathrm{mmol}, 1.0$ equiv) in DCE (7.9 mL) was added thiophenol ($0.16 \mathrm{~mL}, 1.57 \mathrm{mmol}, 2.0$ equiv) via syringe. The reaction was stirred at room temperature for 42 h and then concentrated at reduced pressure. The residue obtained was applied to a 9 by 5 cm silica gel plug and eluted with $5 \%(0.2 \mathrm{~L})$ and then $10 \%(0.4 \mathrm{~L})$ and finally $12.5 \%(0.6 \mathrm{~L}) \mathrm{EtOAc} / \mathrm{hexane}$. The process generated 1620 mL fractions followed by 10412 mL fractions. Fractions $69-96$ were combined and concentrated at reduced pressure to give $166(60.0 \mathrm{mg}, 0.174 \mathrm{mmol}, 22 \%)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 9.41(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, \mathrm{J}=8.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}$, $2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{dd}, \mathrm{J}=13.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.41-$ $2.32(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{dtt}, \mathrm{J}=12.2,7.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.37(\operatorname{app} \mathrm{t}, \mathrm{J}$ $=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 219.2,213.5,198.1,135.5,130.2,129.2,126.8,70.6,50.8,44.3,39.6,38.3$, $38.0,32.0,24.8,24.2,24.1,19.6$.

FTIR (thin film) $\mathrm{v}_{\max }: 2964,2928,2869,1740,1709,1481,1466,1439,1405,1383,1319,1275,1143,1114$, $1059,1025,1002,975,947,791,743,692,484,475 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}$, 345.1519; found, 345.1519.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.26$ (4:1 hexane:EtOAc).

(1S, $\left.1^{\prime} \mathrm{R}, 2^{\prime} \mathrm{S}\right)-1$-(hydroxymethyl)-4', 4^{\prime}-dimethyl-2'-((phenylthio)methyl)-[1,1'-bi(cyclopentane)] -2,3'-dione (167): ${ }^{46}$

A stirring solution of $166(60.0 \mathrm{mg}, 0.174 \mathrm{mmol}, 1$ equiv $)$ in THF $(8.7 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath. A solution of $\mathrm{LiHAl}(\mathrm{OtBu})_{3}(53 \mathrm{mg}, 0.209 \mathrm{mmol}, 1.2$ equiv) in THF (1.7 mL) was added dropwise to the reaction mixture over 10 minutes. The reaction was stirred at this temperature for 45 more minutes. Following this timeframe, 3.3 mL of MeOH were added dropwise via syringe over 5 minutes. The reaction was then warmed to $0^{\circ} \mathrm{C}$, and 11 mL ether followed by $8 \mathrm{~mL} 5 \%$ aqueous AcOH were added. The reaction mixture was warmed to room temperature and poured into a separatory funnel containing saturated aqueous sodium bicarbonate and EtOAc. The layers were separated and the aqueous layer was extracted twice more with EtOAc. The combined organic fractions were washed with brine and concentrated at reduced pressure. The residue obtained was applied to an 11 by 3 cm silica gel column. The column was eluted with $33 \%(0.12 \mathrm{~L})$ and then $50 \%(0.24 \mathrm{~L}) \mathrm{EtOAc} /$ hexane, producing 429 mL fractions. Fractions 25-34 were combined and concentrated at reduced pressure to give $\mathbf{1 6 7}(50.0 \mathrm{mg}, 0.144 \mathrm{mmol}, 83 \%$ yield $)$ as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~d}, \mathrm{~J}=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, \mathrm{J}=12.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, \mathrm{J}=12.9,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.82(\mathrm{td}, \mathrm{J}=11.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.84(\mathrm{dtd}, \mathrm{J}$ $=8.1,6.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dd}, \mathrm{J}=12.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\operatorname{app} \mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 222.9,220.8,136.1,130.0,129.1,126.6,65.5,55.0,50.7,44.4,39.5,38.5$, 37.6, 34.1, 28.9, 24.8, 24.2, 19.4.

FTIR (thin film) $\mathrm{v}_{\max }: 3480,2963,2931,2868,1734,1481,1466,1439,1160,1060,1025,742,691,432,418$, $410 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S}, 369.1495$; found, 369.1486.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.49$ (1:1 hexane:EtOAc).

(1R,1'R,2'S)-1-(iodomethyl)-4', 4^{\prime}-dimethyl-2'-((phenylthio)methyl)-[1,1'-bi(cyclopentane)]-2, 3'-dione (169): ${ }^{72}$
A stirring solution of $\mathbf{1 6 7}\left(79 \mathrm{mg}, 0.228 \mathrm{mmol}\right.$, 1 equiv) in THF (4.6 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath. In quick succession, imidazole ($59 \mathrm{mg}, 0.87 \mathrm{mmol}, 3.8$ equiv), $\mathrm{Ph}_{3} \mathrm{P}(163 \mathrm{mg}, 0.62 \mathrm{mmol}, 2.7$ equiv) and finally $\mathrm{I}_{2}(150 \mathrm{mg}, 0.59 \mathrm{mmol}, 2.6$ equiv) were added. The reaction was allowed to warm to room temperature and stirred for 14 h . The reaction was quenched with saturated aqueous sodium thiosulfate and extracted thrice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic fractions were dried over magnesium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was applied to a 7 by 4 cm silica gel column and eluted with $5 \%(0.15 \mathrm{~L})$ and then $10 \%(0.15 \mathrm{~L})$ and finally $15 \%(0.3 \mathrm{~L}) \mathrm{EtOAc} /$ hexane, generating 68 9 mL fractions. Fractions 43-63 were combined and concentrated at reduced pressure to give $\mathbf{1 6 9}$ (40.5 mg, $88 \mu \mathrm{~mol}, 39 \%)$ as a yellow oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 反: $7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.39$ $(\mathrm{m}, 2 \mathrm{H}), 3.30-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{td}, \mathrm{J}=11.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.19$ $-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=12.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\operatorname{app} \mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}$, $3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 220.2,218.8,136.0,130.2,129.2,126.8,53.1,50.5,44.3,41.3,38.9,38.8$, $34.6,33.2,24.7,24.0,18.8,11.7$.

FTIR (thin film) $\mathrm{v}_{\max }: 2961,2927,2867,1736,1481,1466,1438,1402,1382,1261,1210,1146,1096,1057$, 1025, $742,691 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{IO}_{2} \mathrm{~S}, 457.0693$; found, 457.0687.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.66$ (3:2 hexane:EtOAc).

(R)-3-((1S,2S)-4,4-dimethyl-3-oxo-2-((phenylthio)methyl)cyclopentyl)cyclohexan-1-one
(170a) and
(S)-3-((1S,2S)-4,4-dimethyl-3-oxo-2-((phenylthio)methyl)cyclopentyl)cyclohexan-1-one (170b): ${ }^{51}$

To a stirring solution of $\mathbf{1 6 9}(19.5 \mathrm{mg}, 43 \mu \mathrm{~mol}, 1.0$ equiv) in $\mathrm{PhMe}(0.43 \mathrm{~mL})$ at reflux in a copper shot bath was added a solution of $\mathrm{HSnBu}_{3}(35 \mu \mathrm{~L}, 0.129 \mathrm{mmol}, 3$ equiv) and $\operatorname{AIBN}(3.5 \mathrm{mg}, 22 \mu \mathrm{~mol}, 0.5$ equiv) in PhMe (0.43 mL) dropwise via syringe over 10 minutes. The reaction was stirred at this temperature for 10 more minutes and then cooled to RT and concentrated at reduced pressure. The residue obtained was applied to a 7 by 3 cm silica gel column and eluted with $5 \%(0.1 \mathrm{~L})$ and then $10 \%(0.1 \mathrm{~L})$ and finally 20% (0.3 L) EtOAc/hexane, generating 589 mL fractions. Fractions $38-52$ were combined and concentrated at reduced pressure to give $170 \mathrm{ab}(13.1 \mathrm{mg}, 40 \mu \mathrm{~mol}, 93 \%, 1: 1 \mathrm{mix}$ of inseparable diastereomers) as a clear, colorless oil.

FTIR (thin film, both compounds) $\mathrm{v}_{\max }$: 2957, 2925, 2864, 1735, 1710, 1583, 1481, 1466, 1439, 1381, 1361, $1345,1315,1265,1229,1196,1157,1087,1070,1055,1025,1000,978,954,869,741,692,510,474 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}, 331.1726$; found, 331.1720.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.22$ (4:1 hexane:EtOAc).

171a
\&

((1S,1'R)-4', 4'-dimethyl-2'-methylene-2,3'-dioxo-[1,1'-bi(cyclopentan)]-1-yl)methyl
methanesulfonate (171a) and

((1R, $\left.\mathbf{1}^{\prime} \mathrm{R}\right)-4^{\prime}, 4^{\prime}$-dimethyl-2'-methylene-2,3'-dioxo-[1, $\mathbf{1}^{\prime}$-bi(cyclopentan)]-1-yl)methyl

methanesulfonate (171b): ${ }^{53}$
A stirring solution of 1:2.4 164a and $\mathbf{1 6 4 b}(2.56 \mathrm{~g}, 10.83 \mathrm{mmol}, 1$ equiv) and DMAP ($66 \mathrm{mg}, 0.54 \mathrm{mmol}$, $5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(217 \mathrm{~mL})$ in a 500 mL recovery flask was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath. $\mathrm{Et}_{3} \mathrm{~N}$ ($1.96 \mathrm{~mL}, 14.08 \mathrm{mmol}, 1.3$ equiv) was added via syringe, followed by the dropwise addition of $\mathrm{MsCl}(1.09$ $\mathrm{mL}, 14.08 \mathrm{mmol}, 1.3$ equiv) via syringe. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h and then poured into 2 N $\mathrm{HCl}(0.15 \mathrm{~L})$. The layers were separated and the aqueous layer was extracted twice more with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was loaded onto a 12 by 5 cm silica plug and eluted with $25 \%(1 \mathrm{~L})$ and then 50% (0.75 L) EtOAc/hexane, producing five 100 mL fractions and 4924 mL fractions. Of the final 49 fractions, fractions 21-39 were combined and concentrated at reduced pressure to give a 1:2.4 mixture of 171a:171b ($2.91 \mathrm{~g}, 9.21 \mathrm{mmol}, 85 \%$ yield). The diastereomers were separated at this stage by successive rounds of purification, a representative example of which follows:

Two 120 gram silica cartridges ($20 \mu \mathrm{M}$ mesh) were connected in series to an Interchim puriflash system and packed in hexane (flow rate $=80 \mathrm{~mL} / \mathrm{min}$). Then, a 1.50 gram sample of a $2: 1$ mixture of 171b:171a dissolved in minimal $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was loaded onto the top of the upper column. The material was eluted using a linear gradient from 0% to $50 \% \mathrm{EtOAc} /$ hexane over 60 minutes at a flow rate of $45 \mathrm{~mL} / \mathrm{min}$ and then eluted with $50 \% \mathrm{EtOAc} /$ hexane at a flow rate of $45 \mathrm{~mL} / \mathrm{min}$ for 12 minutes. Presence of the products was evidenced by UV detection ($\lambda=254 \mathrm{~nm}$). The process generated 13225 mL fractions. Fractions 116-125 were assayed for purity using the same analytical HPLC method as described for the previous compounds. The two compounds had the following retention times according to this method: 171a retention time $=3.94 \mathrm{~min}$ and $\mathbf{1 7 1 b}$ retention time $=3.87 \mathrm{~min}$. Overall, fractions $109-115$ were pure 171a, $120-132$ were pure 171b, and 116-119 were mixed. Fractions 116-119 were concentrated at reduced pressure to give 450 mg of mixed product, which was subjected to the exact same protocol as was just described. At the conclusion of these two runs, 421 mg of 171a were isolated, 949 mg of $\mathbf{1 7 1 b}$ were isolated, and only 20 mg remained mixed.
((1S, $\left.1^{\prime} \mathrm{R}\right)-4^{\prime}, 4^{\prime}$ 'dimethyl-2'-methylene-2,3'-dioxo-[1,1'-bi(cyclopentan)]-1-yl)methyl
methanesulfonate (171a)
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.22(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.36(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.05$ $-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.84(\mathrm{dd}, \mathrm{J}=12.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\operatorname{app} \mathrm{t}, \mathrm{J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 219.0,208.9,143.5,121.4,72.2,53.6,44.2,39.3,39.1,38.2,37.3,28.8,24.7$, 23.6, 19.2.

FTIR (thin film) $\mathrm{v}_{\max }: ~ 2964,2871,1725,1631,1466,1407,1354,1260,1198,1173,1110,1050,1036,953$, $882,855,813,734,616,590,528,477 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}$, 337.1080; found, 337.1075.
TLC $\mathrm{R}_{\mathrm{f}}=0.45$ (1:1 hexane:EtOAc).
((1R,1'R)-4', 4'-dimethyl-2'-methylene-2,3'-dioxo-[1,1'-bi(cyclopentan)]-1-yl)methyl
methanesulfonate(171b):
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.17(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 2 \mathrm{H}), 3.32$ (ddt, $\mathrm{J}=11.1,8.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.89(\mathrm{~m}, 5 \mathrm{H}), 1.46$ $(\mathrm{dd}, \mathrm{J}=12.7,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 219.6,209.1,143.2,121.5,72.0,54.8,44.4,39.6,39.2,38.4,37.6,27.8,25.1$, 23.4, 19.0.

FTIR (thin film) $\mathrm{v}_{\max }: ~ 2963,2870,1725,1631,1466,1410,1354,1275,1255,1173,1110,1053,955,883$, $855,827,734,663,648,624,590,528,479,448 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}, 337.1080$; found, 337.1075.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.45$ (1:1 hexane:EtOAc).

(1S, $\left.1^{\prime} \mathrm{R}\right)-1,4^{\prime}, 4^{\prime}$-trimethyl-2'-methylene-[1,1'-bi(cyclopentane)]-2,3'-dione (172):
To a stirring solution of 171a ($380 \mathrm{mg}, 1.21 \mathrm{mmol}, 1.0$ equiv) in THF (24 mL) was added LAH (6.1 mL , 1 M in THF, 5.0 equiv) at room temperature. The reaction was placed in a $45^{\circ} \mathrm{C}$ copper shot bath and stirred for 6 h . The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath and quenched via careful addition of saturated aqueous sodium bicarbonate. The reaction was then poured into a separatory funnel containing more saturated aqueous sodium bicarbonate and EtOAc and the layers were separated. The aqueous layer was extracted twice more with EtOAc, and the combined organic fractions were dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was solvated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath. DMP ($2.05 \mathrm{~g}, 4.18 \mathrm{mmol}, 4.0$ equiv) was added, and the reaction was maintained at $0{ }^{\circ} \mathrm{C}$ for one hour. The bath was removed, and the reaction was stirred at RT for 2 h . The reaction was quenched with saturated aqueous sodium thiosulfate and the layers were separated. The aqueous layer was extracted twice more with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic fractions were dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was applied to an 8 by 4 cm silica gel column which was eluted with $5 \%(0.25 \mathrm{~L})$ and then $10 \%(0.5 \mathrm{~L}) \mathrm{EtOAc} /$ hexane, generating 37 20 mL fractions. Fraction 24 was concentrated individually for full characterization data. Overall, fractions 22-35 were combined and concentrated at reduced pressure to give $\mathbf{1 7 2}(220 \mathrm{mg}, 0.96 \mathrm{mmol}, 79 \%$, ca 70% pure) as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.18(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dt}, \mathrm{J}=2.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (dddd, $\mathrm{J}=$ $12.2,7.6,3.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.81(\mathrm{~m}$, $3 \mathrm{H}), 1.32(\operatorname{app} \mathrm{t}, \mathrm{J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 221.9,210.4,145.0,120.9,50.9,44.3,41.7,38.5,38.4,33.3,25.0,23.7,21.1$, 18.7.

FTIR (thin film) $\mathrm{v}_{\max }$: 2961, 2929, 2869, 1726, 1630, 1458, 1407, 1381, 1362, 1259, 1196, 1165, 1109, 1067, 1050, 1009, 942, 801, 547, $516 \mathrm{~cm}^{-1}$.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$, 221.1537; found, 221.1536.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.39$ (4:1 hexane:EtOAc).

(1S,1'S)-1, 4', 4'-trimethyl-2'-methylene-3'-oxo-[1,1'-bi(cyclopentan)]-2-en-2-yl trifluoromethanesulfonate(173): ${ }^{56}$

To a stirring room temperature solution of 172 ($189 \mathrm{mg}, 0.82 \mathrm{mmol}, 1.0$ equiv) and DTBMP (674 mg , 3.28 mmol , 4.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.1 \mathrm{~mL})$ was added $\mathrm{Tf}_{2} \mathrm{O}(0.55 \mathrm{~mL}, 3.28 \mathrm{mmol}, 4.0$ equiv $)$ via syringe. After stirring at room temperature for 21 h , the reaction was poured into a separatory funnel containing saturated aqueous sodium bicarbonate and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous layer was extracted twice more with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was applied to an 11 by 5 cm silica gel column and eluted with $20 \%(0.3 \mathrm{~L})$, then $30 \%(0.3 \mathrm{~L})$, then $40 \%(0.3 \mathrm{~L})$ and finally $50 \%(0.75 \mathrm{~L}) \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, generating 5100 mL and then 5420 mL fractions. Of these last 54 fractions, fraction 24 was concentrated individually for full characterization data. Then, $32-52$ were combined and concentrated at reduced pressure to give 173 ($156 \mathrm{mg}, 0.44 \mathrm{mmol}, 54 \%$, ca 70% pure) as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.18(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.92$ (ddt, $\mathrm{J}=10.9,7.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (dddd, $\mathrm{J}=16.6,9.1,6.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.31 (dddd, J = 16.6, $9.6,3.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{ddd}, \mathrm{J}=13.5,9.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.23(\mathrm{~m}$, $1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 210.2,153.1,144.9,121.6,120.1,117.0,113.6,49.4,44.3,43.3,38.8,31.0$, 25.9, 25.3, 25.0, 23.8.
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-73.73$.
FTIR (thin film) $\mathrm{v}_{\max }: 2964,2931,2869,1729,1658,1633,1459,1421,1382,1333,1250,1211,1141,1047$, $946,926,910,853,608,517 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$, 353.1029; found, 353.1030.
TLC $R_{f}=0.33$ (9:1 hexane:EtOAc).

(3aS,3bS)-2,2,3b-trimethyl-2,3,3a,3b,4,5-hexahydro-1H-cyclopenta[a]pentalen-1-one (174):
A recovery flask containing $173(156 \mathrm{mg}$, ca 70% pure, 0.44 mmol assumed, 1 equiv assumed) and a stir bar was charged with $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}^{0}(103 \mathrm{mg}, 89 \mu \mathrm{~mol}, 0.2$ equiv). The flask was evacuated and backfilled thrice with nitrogen, and $\mathrm{ACN}(8.8 \mathrm{~mL})$ was added, followed by $\mathrm{Et}_{3} \mathrm{~N}(0.31 \mathrm{~mL}, 2.22 \mathrm{mmol}, 5.0$ equiv $)$, both via syringe. The resulting mixture was capped, sealed with teflon tape and parafilm, and placed in a 60 ${ }^{\circ} \mathrm{C}$ copper shot bath with stirring for 14 h . The reaction was cooled to room temperature and poured into saturated aqueous sodium bicarbonate and $\mathrm{Et}_{2} \mathrm{O}$. The layers were shaken and separated, and the aqueous layer was extracted twice more with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic fractions were washed with water and brine, dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was applied to a 6 by 4 cm silica gel column and eluted with $50 \%(0.1 \mathrm{~L})$ and then 100% (0.3 L) $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, generating 3212 mL fractions. Fractions 11-22 were combined and concentrated at reduced pressure to give $174(47.8 \mathrm{mg}, 0.23 \mathrm{mmol}, 53 \%)$ as a yellow oil.
${ }^{\mathbf{1}} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.71(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.88$ $-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.61$ (dddt, $\mathrm{J}=16.3,5.6,3.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{dd}, \mathrm{J}=12.2,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.64(\mathrm{t}, \mathrm{J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 4 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 208.4,163.6,154.8,125.6,122.4,60.0,51.6,51.6,38.4,36.9,36.9,25.0$, 24.4, 18.9.

FTIR (thin film) $\mathrm{v}_{\max }: 2956,2930,2865,1739,1704,1579,1458,1379,1367,1296,1266,1186,1172,1144$, $1125,1108,1095,992,955,938,882,789,781,658,476 \mathrm{~cm}^{-1}$.

HRMS-APCI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$, 203.1430; found, 203.1428 .
TLC $\mathrm{R}_{\mathrm{f}}=0.45$ (9:1 hexane:EtOAc).

Key 1D NOE Correlations

174

(1R,1'R)-1, $4^{\prime}, 4^{\prime}$ '-trimethyl-2'-methylene-[1,1'-bi(cyclopentane)]-2,3'-dione (188):
To a stirring solution of $\mathbf{1 7 1 b}(941 \mathrm{mg}, 2.99 \mathrm{mmol}, 1.0$ equiv) in THF (60 mL) was added LAH (15 mL , 1 M in THF, 5.0 equiv) at room temperature. The reaction was placed in a $45^{\circ} \mathrm{C}$ copper shot bath and stirred for 6 h . The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath and quenched via careful addition of saturated aqueous sodium bicarbonate. The reaction was then poured into a separatory funnel containing more saturated aqueous sodium bicarbonate and EtOAc and the layers were separated. The aqueous layer was extracted twice more with EtOAc, and the combined organic fractions were dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was solvated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath. DMP ($5.07 \mathrm{~g}, 11.96 \mathrm{mmol}, 4.0$ equiv) was added, and the reaction was maintained at $0{ }^{\circ} \mathrm{C}$ for one hour. The bath was removed, and the reaction was stirred at RT for 2 h . The reaction was quenched with saturated aqueous sodium thiosulfate and the layers were separated. The aqueous layer was extracted twice more with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic fractions were dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was applied to an 10 by 5 cm silica gel column which was eluted with $5 \%(0.5 \mathrm{~L})$ and then $10 \%(1.0 \mathrm{~L}) \mathrm{EtOAc} /$ hexane, generating 5824 mL fractions. Fractions 29-42 were combined and concentrated at reduced pressure to give 188 (448 $\mathrm{mg}, 1.95 \mathrm{mmol}, 65 \%$) as a clear, colorless oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.13(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{ddt}, \mathrm{J}=11.3,8.0$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.62$ $(\mathrm{m}, 1 \mathrm{H}), 1.39(\mathrm{t}, \mathrm{J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 223.0,210.3,144.6,120.9,51.9,44.4,41.7,38.8,38.7,30.9,25.0,23.5,21.6$, 18.6.

FTIR (thin film) $\mathrm{v}_{\max }$: 2961, 2927, 2870, 1726, 1631, 1458, 1409, 1251, 1213, 1054, 1035, 1010, $940 \mathrm{~cm}^{-1}$.
HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}, 221.1536$; found, 221.1536.
$\mathbf{T L C} \mathrm{R}_{\mathrm{f}}=0.39$ (4:1 hexane:EtOAc).

(1R,1'S)-1, 4', 4'-trimethyl-2'-methylene-3'-oxo-[1,1'-bi(cyclopentan)]-2-en-2-yl trifluoromethanesulfonate(175): ${ }^{56}$
To a stirring room temperature solution of 188 ($448 \mathrm{mg}, 1.95 \mathrm{mmol}, 1.0$ equiv) and DTBMP (1.60 g , 7.78 mmol, 4.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.7 \mathrm{~mL})$ was added $\mathrm{Tf}_{2} \mathrm{O}(01.31 \mathrm{~mL}, 7.78 \mathrm{mmol}, 4.0$ equiv) via syringe. After stirring at room temperature for 20 h , the reaction was poured into a separatory funnel containing saturated aqueous sodium bicarbonate and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous layer was extracted twice more with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was applied to a 12 by 6 cm silica gel column and eluted with $20 \%(0.5 \mathrm{~L})$, then $30 \%(0.5 \mathrm{~L})$, then $40 \%(0.5 \mathrm{~L})$ and finally $50 \%(1 \mathrm{~L}) \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, generating 5200 mL and then 6024 mL fractions. Of these last 60 fractions, $32-52$ were combined and concentrated at reduced pressure to give $175(416 \mathrm{mg}, 1.19 \mathrm{mmol}, 61 \%)$ as a clear, slightly yellow oil.
${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.21(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, \mathrm{J}=2.8,0.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.92(\mathrm{ddt}, \mathrm{J}=11.1,7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dddd}, \mathrm{J}=16.5,9.1,6.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dddd}, \mathrm{J}=$ $16.4,9.7,3.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dd}, \mathrm{J}=12.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{ddd}, \mathrm{J}=13.0,9.3,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 210.1,153.3,144.4,121.6,121.6,120.2,117.0,114.3,49.7,44.3,41.0,39.0$, 30.1, 25.6, 25.2, 23.9, 23.6.
${ }^{19}$ FNMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta:-73.62$.
FTIR (thin film) $\mathrm{v}_{\max }$: 2964, 2931, 2871, 1728, 1656, 1631, 1455, 1420, 1381, 1364, 1333, 1249, 1207, 1139, $1108,1092,1046,1015,946,925,911,866,840,803,767,669,606,580,515 \mathrm{~cm}^{-1}$.

HRMS-ESI (m/z): $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}, 370.1298$; found, 370.1294.
TLC $\mathrm{R}_{\mathrm{f}}=0.33$ (9:1 hexane:EtOAc).

(3aS,3bR)-2,2,3b-trimethyl-2,3,3a,3b,4,5-hexahydro-1H-cyclopenta[a]pentalen-1-one (176):
A recovery flask containing 175 ($81 \mathrm{mg}, 0.23 \mathrm{mmol}, 1$ equiv) and a stir bar was charged with $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}^{0}$ ($53 \mathrm{mg}, 46 \mu \mathrm{~mol}, 0.2$ equiv). The flask was evacuated and backfilled thrice with nitrogen, and THF (4.6 mL) was added, followed by $\mathrm{Et}_{3} \mathrm{~N}(0.16 \mathrm{~mL}, 1.15 \mathrm{mmol}, 5.0$ equiv $)$, both via syringe. The resulting mixture was capped, sealed with teflon tape and parafilm, and placed in a $60{ }^{\circ} \mathrm{C}$ copper shot bath with stirring for 6 h . The reaction was cooled to room temperature and poured into saturated aqueous sodium bicarbonate and $\mathrm{Et}_{2} \mathrm{O}$. The layers were shaken and separated, and the aqueous layer was extracted twice more with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic fractions were washed with water and brine, dried over sodium sulfate, filtered, and concentrated at reduced pressure. The residue obtained was applied to a 9 by 3 cm column and eluted with $50 \%(0.1 \mathrm{~L})$ and then $100 \%(0.2 \mathrm{~L}) \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, generating 369 mL fractions. Fractions 21-31 were combined and concentrated at reduced pressure to give $176(11.6 \mathrm{mg}, 58 \mu \mathrm{~mol}, 25 \%)$ as a slightly yellow oil. ${ }^{1} \mathbf{H N M R}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 6.63(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dd}, \mathrm{J}=3.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.79(\mathrm{~m}$, $2 \mathrm{H}), 2.53-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{dd}, \mathrm{J}=11.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.23(\operatorname{app} \mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.20(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ CNMR (101 MHz; CDCl_{3}) $\delta: 208.6,161.0,154.9,126.0,125.8,52.6,52.1,48.8,38.3,36.5,35.4,26.5$, 25.0, 24.5.

FTIR (thin film) $\mathrm{v}_{\max }$: $2955,2925,2860,1744,1712,1560,1455,1379,1362,1266,1240,1183,1165,1124$, $1098,1069,1011,978,939,888,793 \mathrm{~cm}^{-1}$.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}, 203.1430$; found, 203.1433.
$\mathbf{T L C ~} \mathrm{R}_{\mathrm{f}}=0.45$ (9:1 hexane:EtOAc).
Key 1D NOE Correlations

References

[1] Y. Qiu, W.-J. Lan, H.-J. Li, L.-P. Chen, Molecules 2018, 23, 2095.
[2] V. Hellwig, J. Dasenbrock, S. Schumann, W. Steglich, K. Leonhardt, T. Anke, European Journal of Organic Chemistry 1998, 1998, 73-79.
[3] G. A. Cordell, Chemical Reviews 1976, 76, 425-460.
[4] K. Hayano, Y. Ohfune, H. Shirahama, T. Matsumoto, Helvetica Chimica Acta 1981, 64, 1347-1364.
[5] F. Le Bideau, M. Kousara, L. Chen, L. Wei, F. Dumas, Chemical Reviews 2017, 117, 6110-6159.
[6] G. Mehta, A. Srikrishna, Chemical Reviews 1997, 97, 671-720.
[7] D. H. Hua, S. Venkataraman, R. A. Ostrander, G. Z. Sinai, P. J. McCann, M. J. Coulter, M. R. Xu, The Journal of Organic Chemistry 1988, 53, 507-515.
[8] G. Crisp, W. J. Scott, J. K. Stille, Journal of the American Chemical Society 1984, 106, 7500-7506.
[9] L. A. Paquette, K. E. Stevens, Canadian Journal of Chemistry 1984, 62, 2415-2420.
[10] J. Cossy, D. Belotti, J. Pete, Tetrahedron Letters 1987, 28, 4547-4550.
[11] D. P. Curran, M.-H. Chen, Tetrahedron Letters 1985, 26, 4991-4994.
[12] A. Meyers, S. Bienz, The Journal of Organic Chemistry 1990, 55, 791-798.
[13] T. Ohshima, K. Kagechika, M. Adachi, M. Sodeoka, M. Shibasaki, Journal of the American Chemical Society 1996, 118, 7108-7116.
[14] V. H. Rawal, A. Fabré, S. Iwasa, Tetrahedron Letters 1995, 36, 6851-6854.
[15] J. Castro, H. Sorensen, A. Riera, C. Morin, A. Moyano, M. A. Pericas, A. Greene, Journal of the American Chemical Society 1990, 112, 9388-9389.
[16] S. Nozoe, J. Furukawa, U. Sankawa, S. Shibata, Tetrahedron Letters 1976, 17, 195-198.
[17] Y. Wang, Z.-X. Yu, Accounts of Chemical Research 2015, 48, 2288-2296.
[18] R. D. Little, G. L. Carroll, J. L. Petersen, Journal of the American Chemical Society 1983, 105, 928-932.
[19] Y. Wang, D. Mukherjee, D. Birney, K. Houk, The Journal of Organic Chemistry 1990, 55, 4504-4506.
[20] J. R. Stille, R. H. Grubbs, Journal of the American Chemical Society 1986, 108, 855-856.
[21] M. Iyoda, T. Kushida, S. Kitami, M. Oda, Journal of the Chemical Society Chemical Communications 1986, 1049-1050.
[22] K. Ramig, M. A. Kuzemko, K. McNamara, T. Cohen, The Journal of Organic Chemistry 1992, 57, 1968-1969.
[23] S.-J. Shen, W.-D. Z. Li, The Journal of Organic Chemistry 2013, 78, 7112-7120.
[24] G. Majetich, J. Defauw, Tetrahedron 1988, 44, 3833-3849.
[25] H. Iida, Y. Yuasa, C. Kibayashi, The Journal of Organic Chemistry 1980, 45, 2938-2942.
[26] P. Vital, P.-O. Norrby, D. Tanner, Synlett 2006, 2006, 3140-3144.
[27] B. Åkermark, J. D. Oslob, U. Heuschert, Tetrahedron Letters 1995, 36, 1325-1326.
[28] H. Hagelin, J. D. Oslob, B. Åkermark, Chemistry-A European Journal 1999, 5, 2413-2416.
[29] H.-J. Knölker, N. O'Sullivan, Tetrahedron 1994, 50, 10893-10908.
[30] S. R. Kandukuri, J. A. Schiffner, M. Oestreich, Angewandte Chemie International Edition 2012, 51, $1265-1269$.
[31] J. Milic, H. Schirmer, B. L. Flynn, M. Noltemeyer, A. de Meijere, Synlett 2002, 2002, 0875-0878.
[32] J.-C. Han, L.-Z. Liu, Y.-Y. Chang, G.-Z. Yue, J. Guo, L.-Y. Zhou, C.-C. Li, Z. Yang, The Journal of Organic Chemistry 2013, 78, 5492-5504.
[33] D. Basavaiah, A. J. Rao, T. Satyanarayana, Chemical Reviews 2003, 103, 811-892.
[34] K. Nicolaou, Y.-L. Zhong, P. Baran, Journal of the American Chemical Society 2000, 122, 7596-7597.
[35] R. K. Boeckman, M. del Rosario Rico Ferreira, L. H. Mitchell, P. Shao, Journal of the American Chemical Society 2002, 124, 190-191.
[36] R. E. Shade, A. M. Hyde, J.-C. Olsen, C. A. Merlic, Journal of the American Chemical Society 2010, 132, 1202-1203.
[37] G. Nordmann, S. L. Buchwald, Journal of the American Chemical Society 2003, 125, 4978-4979.
[38] G.-B. Liu, J.-L. Xu, M. Geng, R. Xu, R.-R. Hui, J.-W. Zhao, Q. Xu, H.-X. Xu, J.-X. Li, Bioorganic Medicinal Chemistry Letters 2010, 18, 2864-2871.
[39] H. Bruss, H. Schuster, R. Martinez, M. Kaiser, A. P. Antonchick, H. Waldmann, Beilstein Journal of Organic Chemistry 2014, 10, 194-208.
[40] K. Nicolaou, M. H. Postema, C. F. Claiborne, Journal of the American Chemical Society 1996, 118, $1565-1566$.
[41] K. Iyer, J. D. Rainier, Journal of the American Chemical Society 2007, 129, 12604-12605.
[42] J. R. Ludwig, P. M. Zimmerman, J. B. Gianino, C. S. Schindler, Nature 2016, 533, 374.
[43] J. Xu, X. Fu, R. Low, Y.-P. Goh, Z. Jiang, C.-H. Tan, Chemical Communications 2008, 5526-5528.
[44] A. G. Myers, P. M. Harrington, E. Y. Kuo, Journal of the American Chemical Society 1991, 113, 694-695.
[45] H.-K. Yim, Y. Liao, H. N. Wong, Tetrahedron 2003, 59, 1877-1884.
[46] M. S. Reddy, H. Zhang, S. Phoenix, P. Deslongchamps, Chemistry-An Asian Journal 2009, 4, 725-741.
[47] T. Ling, C. Chowdhury, B. A. Kramer, B. G. Vong, M. A. Palladino, E. A. Theodorakis, The Journal of Organic Chemistry 2001, 66, 8843-8853.
[48] K. Yaji, M. Shindo, Tetrahedron 2010, 66, 9808-9813.
[49] M. E. Furrow, A. G. Myers, Journal of the American Chemical Society 2004, 126, 5436-5445.
[50] X.-J. Dai, C.-J. Li, Journal of the American Chemical Society 2016, 138, 5433-5440.
[51] T. Yoshizumi, H. Miyazoe, Y. Sugimoto, H. Takahashi, O. Okamoto, Synthesis 2005, 2005, 1593-1600.
[52] P. Dowd, S. C. Choi, Journal of the American Chemical Society 1987, 109, 6548-6549.
[53] J. F. King, Accounts of Chemical Research 1975, 8, 10-17.
[54] S. Krishnamurthy, H. C. Brown, The Journal of Organic Chemistry 1976, 41, 3064-3066.
[55] M. Hanack, G. Auchter, Journal of the American Chemical Society 1985, 107, 5238-5245.
[56] K. Michalak, J. Wicha, The Journal of Organic Chemistry 2011, 76, 6906-6911.
[57] D. L. Comins, A. Dehghani, C. J. Foti, S. P. Joseph, Organic Syntheses 1997, 77.
[58] J. K. Tucker, M. D. Shair, Organic Letters 2019, 21, 2473-2476.
[59] K. F. McClure, S. J. Danishefsky, Journal of the American Chemical Society 1993, 115, 6094-6100.
[60] M. Köck, A. Grube, I. B. Seiple, P. S. Baran, Angewandte Chemie International Edition 2007, 46, 6586-6594.
[61] M. Elkin, S. M. Szewczyk, A. C. Scruse, T. R. Newhouse, Journal of the American Chemical Society 2017, 139, $1790-1793$.
[62] T. Tahara, U. Streit, H. E. Pelish, M. D. Shair, Organic Letters 2017, 19, 1538-1541.
[63] P. Kok, P. J. De Clercq, M. E. Vandewalle, The Journal of Organic Chemistry 1979, 44, 4553-4557.
[64] C.-C. Li, C.-H. Wang, B. Liang, X.-H. Zhang, L.-J. Deng, S. Liang, J.-H. Chen, Y.-D. Wu, Z. Yang, The Journal of Organic Chemistry 2006, 71, 6892-6897.
[65] J.-Q. Yu, H.-C. Wu, E. Corey, Organic Letters 2005, 7, 1415-1417.
[66] J. A. Faraldos, J.-L. Giner, The Journal of Organic Chemistry 2002, 67, 4659-4666.
[67] N. Hashimoto, A. Kanda, Organic Process Research Development 2002, 6, 405-406.
[68] W. C. Still, M. Kahn, A. Mitra, The Journal of Organic Chemistry 1978, 43, 2923-2925.
[69] G. M. Sheldrick, Acta Crystallographica Section A: Foundational Advances 2014, 70, C1437.
[70] G. M. Sheldrick, Acta Crystallographica Section C: Structural Chemistry 2015, 71, 3-8.
[71] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, H. Puschmann, Journal of Applied Crystallography 2009, 42, 339-341.
[72] D. L. Clive, M. P. Pham, R. Subedi, Journal of the American Chemical Society 2007, 129, 2713-2717.

Appendix 1: Rationale to Pursue ent-Hyperforin

Background

An ongoing program in the lab at the time of my arrival was the development of truncated analogues of 1 to avoid the metabolic liabilities associated therewith while maintaining its efficacy against depression. The following section explores the rationale of this analogue program further and traces the evolution of my idea to render the unnatural enantiomer of $\mathbf{1}$ to address concerns of safety and mechanism of efficacy.

Depression Treatment Limitations

Major depressive disorder (MDD) affects about 6.7 percent of the U.S. population age 18 and older, and more than two-thirds of patients have an inadequate response to initial treatment with selective serotonin-reuptake inhibitors (SSRIs). ${ }^{1,2}$ As such, physicians face the dilemma whether to increase dose, switch treatments, or add agents to augment the antidepressant effect of SSRIs. Augmentation comes with an increased risk for adverse events. ${ }^{2}$ Furthermore, withdrawal symptoms after discontinuation of SSRIs are well-documented. ${ }^{3}$ Therefore, given the widespread occurrence of MDD and the limitations of existing treatments, additional therapeutic options are needed.

Efficacy of St. John's Wort

In a systematic review of 29 studies encompassing 5,489 patients with mild to moderate depression, Linde et al. compared treatment with various extracts of SJW for 4 to 12 weeks to treatment with placebo or standard antidepressants (active comparators). Overall, SJW was superior to placebo, was as effective as standard antidepressants, and had fewer side effects than standard antidepressants. ${ }^{4}$ Additionally, Fava et al. found that in patients with mild to moderate depression ($\mathrm{n}=135$), SJW was significantly more effective than fluoxetine (Prozac) and showed a trend toward statistically significant superiority over placebo. The authors concluded that the "total evidence from the accumulated trials in Europe and the United States continues to suggest that SJW agents may offer antidepressant efficacy for some individuals with mild to moderate depression." ${ }^{5}$

Hyperforin is Responsible for the Efficacy of St. John's Wort

Preclinical studies performed with mice and rats showed that (1) hyperforin content of the SJW extacts administered correlated directly with antidepressive behavior and (2) pure hyperforin was superior to SJW as an antidepressant. Studies in the clinic were consistent with these preclinical in vivo models. ${ }^{6,7}$ Laakmann et al. found that in patients with mild to moderate depression ($\mathrm{n}=147$), those who received SJW containing a higher percent hyperforin experienced a larger reduction in depression. ${ }^{8,9}$

Hyperforin as a Protonophore for Clinical Efficacy

Protonophore activity may account for the antidepressant activity of hyperforin. Since the discovery that hyperforin is the chief antidepressant component of SJW, numerous studies have centered on elucidating its mechanism of action. ${ }^{10}$ Experiments in vitro on isolated murine synaptosomes showed that hypeforin was able to inhibit the uptake of multiple neurotransmitters in a dose-dependent fashion. ${ }^{11}$ Since most pharmaceutical antidepressants work through targeting the reuptake of only single neurotransmitters, hyperforin appeared to show potential for a novel mechanistic approach for the treatment of depression.

Hyperforin elevates intracellular sodium, which disrupts the sodium gradient needed for uptake of neurotransmitters. ${ }^{12,13}$ In 2007, hyperforin was reported to elevate intracellular sodium by selective activation of transient receptor potential protein 6 (TRPC6), a nonselective cation channel, thereby providing a mechanism for the antidepressant activity of hyperforin. ${ }^{14}$ More recently, in 2014, hyperforin was instead reported to act as a protonophore to inhibit neurotransmitter reuptake in vitro. ${ }^{15}$ This effect of proton conductance appears to depend only on membrane potential and pH gradient and not on the presence of specific channel proteins including TRPC6. ${ }^{14}$ Key antidepressant effects of proton shuttling by hyperforin across the plasma membrane and vesicles are:

- Increased intracellular Na^{+}, which inhibits neurotransmitter uptake by Na^{+}co-transport. Decreased pH in the cytosol activates the plasma membrane $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchanger to pump protons out of the cell in exchange for sodium cations.
- Loss of an H^{+}gradient in neurotransmitter vesicles, which impairs vesicular uptake, storage and release of neurotransmitters.

The Liability Associated with Hyperforin Administration

Hyperforin usage as an antidepressant is limited by the potential for adverse drug-drug interactions. Hyperforin binds directly to the pregnane X receptor (PXR), a transcription factor that regulates expression of CYP3A4 and other enzymes involved in xenobiotic metabolism (Figure A1.1, panel A). ${ }^{16}$ Treatment of primary human hepatocytes with hyperforin induced CYP3A4 expression. ${ }^{17}$ Additionally, CYP2C9 was induced when HepG2 cells were treated with hyperforin. ${ }^{18}$ CYP3A4 and CYP2C9 metabolize 50\% and 20\% of all known drugs, respectively. ${ }^{19}$ Furthermore, in a clinical study in healthy volunteers, administration of SJW dramatically altered the pharmacokinetics of probes for CYP3A4 and CYP2D6. ${ }^{20}$ The prevalence of depression and various co-morbidities requiring pharmacological treatment increases with age, so CYP induction represents a serious limitation on usage of hyperforin, especially for elderly patients.

The Promise of ent-Hyperforin (ent-1)

Separation of the beneficial anti-depressant activity of hyperforin from its adverse PXR activation is necessary. Hyperforin has a clear safety limitation to its widespread use as an antidepressant-the chiral pairing between hyperforin and PXR. A proposed antidepressant mechanism of hyperforin, however, involves interaction with a non-chiral target, ' H^{+}', rather than a chiral target like PXR. Therefore, the enantiomer of hyperforin, ent-hyperforin (ent-1), will have the same protonophore activity as hyperforin but would be expected to have a different affinity for PXR. As shown in Figure A1.1, panel B, positioning ent-1 in the same orientation as $\mathbf{1}$ in the PXR binding pocket would eliminate key hydrogen bonding and hydrophobic interactions (in red), particularly with the isopropyl ketone at C1 and the prenyl chains at C5 and C8.

Interactions altered (in red) if ENT-HYP binds to PXR in same orientation as hyperforin
Figure A1.1. (A) Crystal structure of human PXR (cyan with certain residues in stick representation) in complex with hyperforin (purple, stick representation), with three hydrogen bonds (dashed lines) between the C1 isopropyl ketone and Ser247 and the vinylygous acid with Gln 285 and His 407. Nonpolar residues targeted for point mutation (Trp 299 and Leu 308) are also indicated. (B) Two dimensional rendering of the PXR-hyperforin interaction, showcasing all nonpolar interactions with the prenyl sidechains (barbed arrows) and the hydrogen-bonding network (dashed lines). Note that the vinylygous acid is the tautomer of structures drawn previously. Indicated in red are interactions that would be altered if ENT-HYP binds to PXR in the same orientation as hyperforin.

As precedent for enantiomeric compounds having different PXR affinities, only one enantiomer of the anticoagulant drug warfarin, R-warfarin, is associated with PXR and the upregulation of CYP3A4 and CYP2C9 mRNA target genes of PXR. ${ }^{21}$ In addition, the affinity of hyperforin for PXR is sensitive to single PXR amino acid substitutions. For example, PXR (W299M) reduced hyperforin affinity by 3-fold and hyperforin had no observable affinity for PXR (L308F). ${ }^{16,22}$ Each of these residues form key hydrophobic interactions with C3 and C8 substituents of $\mathbf{1}$, but ent-1 will not position substituents to maintain these contacts properly, thereby reducing affinity. Taken together, these results suggest that ent-1 is not expected to have the same high affinity for PXR as 1 .

Figure A1.2. Overall project rationale. Ent-hyperforin is the mirror image of hyperforin. It will have equivalent protonophore activity as hyperforin but may avoid unfavorable PXR binding. We propose to synthesize and test ent-hyperforin for antidepressant activity and PXR binding, with the results guiding the discovery of hyperforinlike antidepressant leads with reduced PXR binding.

Ent-1 is not available from SJW or natural sources. Therefore, synthesis of ent-1 could lead to a test of the protonophore mechanism for the antidepressant activity of 1. (Figure A1.2) If it demonstrates hyperforin-like antidepressant activity in vivo and has reduced PXR binding, it will represent a highly attractive preclinical lead for treatment of depression.

Evaluation of ent-Hyperforin and Future Directions

The evaluation of the affinity of ent- $\mathbf{1}$ for human PXR in vitro was accomplished using a competitive binding assay (LanthaScreen TR-FRET PXR Competitive Binding Assay, ThermoFisher Scientific). Where the affinity of $\mathbf{1}$ in this assay was 108 nM , the affinity of ent-1 was 717 nM , a seven-fold shift. Evaluation of ent-1 in other in vitro or in vivo experiments would be a useful pursuit to ascertain whether a protonophore mechanism of action is implicated for the clinical efficacy of 1.

References

[1] Kessler, R. C.; Chiu, W. T.; Demler, O.; Walters, E. E. Archives of General Psychiatry 2005, 62, 617-627.
[2] others,, et al. Psychiatry Research 2015, 229, 760-770.
[3] Fava, G. A.; Gatti, A.; Belaise, C.; Guidi, J.; Offidani, E. Psychotherapy and Psychosomatics 2015, 84, 72-81.
[4] Linde, K.; Berner, M. M.; Kriston, L. Cochrane database of Systematic reviews 2008,
[5] Fava, M.; Alpert, J.; Nierenberg, A. A.; Mischoulon, D.; Otto, M. W.; Zajecka, J.; Murck, H.; Rosenbaum, J. F. Journal of Clinical Psychopharmacology 2005, 25, 441-447.
[6] Bhattacharya, S.; Chakrabarti, A.; Chatterjee, S. Pharmacopsychiatry 1998, 31, 22-29.
[7] Chatterjee, S.; Nöldner, M.; Koch, E.; Erdelmeier, C. Pharmacopsychiatry 1998, 31, 7-15.
[8] Laakmann, G.; Dienel, A.; Kieser, M. Phytomedicine 1998, 5, 435-442.
[9] Laakmann, G.; Schüle, C.; Baghai, T.; Kieser, M. Pharmacopsychiatry 1998, 31, 54-59.
[10] Chatterjee, S.; Bhattacharya, S.; Wonnemann, M.; Singer, A.; Müller, W. Life Sciences 1998, 63, 499-510.
[11] Müller, W.; Singer, A.; Wonnemann, M.; Hafner, U.; Rolli, M.; Schäfer, C. Pharmacopsychiatry 1998, 31, 16-21.
[12] Wonnemann, M.; Singer, A.; Müller, W. Neuropsychopharmacology 2000, 23, 188-197.
[13] Singer, A.; Wonnemann, M.; Müller, W. Journal of Pharmacology and Experimental Therapeutics 1999, 290, $1363-1368$.
[14] Leuner, K.; Kazanski, V.; Müller, M.; Essin, K.; Henke, B.; Gollasch, M.; Harteneck, C.; Müller, W. E. The FASEB Journal 2007, 21, 4101-4111.
[15] Sell, T. S.; Belkacemi, T.; Flockerzi, V.; Beck, A. Scientific Reports 2014, 4, 7500.
[16] Watkins, R. E.; Maglich, J. M.; Moore, L. B.; Wisely, G. B.; Noble, S. M.; Davis-Searles, P. R.; Lambert, M. H.; Kliewer, S. A.; Redinbo, M. R. Biochemistry 2003, 42, 1430-1438.
[17] Moore, L. B.; Goodwin, B.; Jones, S. A.; Wisely, G. B.; Serabjit-Singh, C. J.; Willson, T. M.; Collins, J. L.; Kliewer, S. A. Proceedings of the National Academy of Sciences 2000, 97, 7500-7502.
[18] Chen, Y.; Ferguson, S. S.; Negishi, M.; Goldstein, J. A. Journal of Pharmacology and Experimental Therapeutics 2004, 308, 495-501.
[19] Zanger, U. M.; Schwab, M. Pharmacology \& therapeutics 2013, 138, 103-141.
[20] Markowitz, J. S.; Donovan, J. L.; DeVane, C. L.; Taylor, R. M.; Ruan, Y.; Wang, J.-S.; Chavin, K. D. Jama 2003, 290, 1500-1504.
[21] Rulcova, A.; Prokopova, I.; Krausova, L.; Bitman, M.; Vrzal, R.; Dvorak, Z.; Blahos, J.; Pavek, P. Journal of Thrombosis and Haemostasis 2010, 8, 2708-2717.
[22] Tirona, R. G.; Leake, B. F.; Podust, L. M.; Kim, R. B. Molecular Pharmacology 2004, 65, 36-44.

Appendix 2: Catalogue of Spectra

$\left.\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \underset{f 1}{100}(\mathrm{ppm})\end{array}\right)$

$\left.\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \underset{f 1}{100}(\mathrm{ppm})\end{array}\right)$

13
$\mathrm{H}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

16
${ }^{1} \mathrm{H}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\left.\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \underset{f 1}{100}(\mathrm{ppm})\end{array}\right)$

18
${ }^{1} \mathrm{H}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

18
${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

200	190	180	170	160	150	140	130	120	110	100	$\begin{array}{r} 90 \\ \text { pm) } \end{array}$	80	70	60	50	40	30	20	10	0	-10

， $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

¢	～	
¢゙	$\stackrel{1}{0}$	றัలั入入
\square	I	アくら

$\operatorname{jin}_{j}^{\infty} \tilde{m}_{n}^{\infty}$

29c
${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1																					
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	－10

${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

오 N

${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

42
${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

29i
${ }^{1} \mathrm{H}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$


```
~~~
```


${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{array}{lllllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10		10
200	190	180	170	160	150	140	130	120	110		pm)	80	70	60	50	40	30	20	10	0	-10

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10		-10
							130	120	110	f1 (p	m)	80	70	60	50	40	30	20	10	0	-10

${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											pm)							20			

200	190	180	170	160	150	140	130	120	110	100	$\begin{array}{r} 90 \\ \mathrm{pm}) \end{array}$	80	70	60	50	40	30	20	10	0	-10

${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^0]
29q

ふincm

29q
${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

| 1 | | | | | | | | | | | | | | | | | | | |
| :--- |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |

$29 t$


```
+
```


${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

200	190	180	170	160	150	140	130	120	110	100	$\begin{array}{r} 90 \\ \mathrm{pm}) \end{array}$	80	70	60	50	40	30	20	10	0	-10

$\begin{array}{llllllllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

$\underbrace{\infty}_{\sim} \underbrace{\infty}_{\sim}$

NNNTH

${ }^{1} \mathrm{H}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

31b
${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

31 c
${ }^{1} \mathrm{H}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$


```
~N~N~N
```


${ }^{1} \mathrm{H}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

~	\%	8	
$\stackrel{+}{\circ}$	-	¢	$\underset{\sim}{\sim} \sim \sim_{\sim}^{\sim} \stackrel{\sim}{\sim} \sim$
	$\stackrel{\rightharpoonup}{1}$	$\stackrel{\rightharpoonup}{1}$	-ーテ

31e
${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	0
												80						20		0	-10

${ }^{13} \mathrm{C}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

へ.

$$
\begin{aligned}
& \text { ৷ }
\end{aligned}
$$

38a
${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^1]

$$
{ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}
$$

${ }^{1} \mathrm{H}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1				1										,								
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

152 $400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$

187
$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

164a
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{\sim} \quad \stackrel{\infty}{\sim}$

Ji.

$01 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^2]

$\grave{\imath}_{220.78}^{222.90}$

in

167

[^3]

$<_{221.05}^{221.16}$
-211.08

1:1 170a:170b
$01 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$$
\begin{array}{lllllllllllllllllllllllllll}
120 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{l}
110 \\
\mathrm{f} 1 \\
(\mathrm{ppm})
\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10
\end{array}
$$


```
171a \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\)
```

~~
~~
$\stackrel{\sim}{\underset{\sim}{\sim}} \stackrel{\text { min }}{\substack{n \\ \sim}}$

172
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{array}{cc}\underset{\sim}{\underset{\sim}{\sim}} & \stackrel{N}{\tilde{0}} \\ \stackrel{\sim}{\sim} \\ 1\end{array}$

N-

172
${ }^{13} \mathrm{C}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$173 \mathrm{MHz}_{\mathrm{CDCl}}^{3}$

$\underset{\sim}{n}$
$\stackrel{\sim}{\sim}$
1
\sim

は夝

173
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

188
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

\circ
$\stackrel{\circ}{\infty}$
$\stackrel{+}{1}$

176
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^0]: $\begin{array}{llllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f}{100}(\mathrm{ppm}) & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^1]: $\begin{array}{llllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^2]: $\begin{array}{lllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{l}110 \\ \mathrm{f} 1 \\ (\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^3]:

