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Trees, Berkovich spaces and the barycentric extension in complex dynamics

Abstract

A metric space T is called an R-tree if any two points x, y ∈ T can be connected by a unique topologi-

cal arc [x, y] ⊂ T which is isometric to an interval in R. R-trees are natural generalizations to finite trees

and simplicial trees, and have many applications in mapping class groups, Teichmüller theory, hyperbolic

3-manifold and Kleinian groups and etc.

In this work, we will give a new construction of R-trees in complex dynamics using barycentric exten-

sions. We will establish the relation between the barycentric construction and the Berkovich construction

via the complexified Robison’s field. As an application, we will also use our construction to classify all

hyperbolic components that admits degenerating sequences with bounded multipliers.
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1
Introduction

Let Ratd(C) denote the space of rational maps of degree d, i.e., the set of maps

f(z : w) = (P (z, w) : Q(z, w))

where P , Q are homogeneous polynomials of degree d with no common factors. A sequence fn ∈ Ratd(C)

is called a degenerating sequence of rational maps if fn escapes any compact set of Ratd(C). The group

of Möbius transformations PSL2(C) naturally acts on Ratd(C) by conjugation. The quotient spaceMd =

Ratd(C)/PSL2(C) is called the moduli space of rational maps. We call a sequence [fn] ∈ Md degenerat-

ing as conjugacy classes if [fn] escapes any compact set ofMd.

In this work, we shall study the limiting dynamics of fn : P1
C −→ P1

C via investigating its barycentric
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extension E fn : H3 −→ H3 (see Section 1.1). A metric space T is called an R-tree if any two points

x, y ∈ T can be connected by a unique topological arc [x, y] ⊂ T which is isometric to an interval in

R. We will construct a limiting branched covering map on an R-tree for the sequence of barycentric exten-

sions of a degenerating sequence of rational maps. The construction is in the same spirit of the isometric

group actions on an R-tree studied in [MS84] [Bes88] [Pau88] for Kleinian groups, and is a generaliza-

tion of the Ribbon R-tree for degenerating sequence of Blaschke products introduced by McMullen in

[McM09b] (see Section 1.3).

R-trees also appear in Berkovich projective spaces of a non-Archimedean field, which have many appli-

cations in the study of degenerating families of rational maps (see [Kiw15]). One of our main result is the

establishment of the relation between the barycentric construction and the Berkovich construction via the

complexified Robison’s field (see Section 1.2).

As an application, we will use our constructions to study hyperbolic components that admits degenerat-

ing sequences with bounded multipliers. We will show that these hyperbolic components are exactly those

with ‘nested Julia sets’ (see Section 1.4).

We now turn to detailed statement of results.

1.1 Barycentric extension and limiting dynamics

Let (Hn, dHn) := ({x = (x1, .., xn) ∈ Rn : |x| < 1}, 2|dx|
1−|x|2 ) be the Hyperbolic n-space in the standard

ball model. Denote Sn−1 := {x ∈ Rn : |x| = 1} as the conformal boundary of Hn.

Given a continuous map f : Sn−1 −→ Sn−1, the barycentric extension / Douady-Earle extension,

which was first introduced in dimension 2 in [DE86], is a continuous extension to E f : Hn −→ Hn.

Indeed, given a point p ∈ Hn, one can associate a visual measure vp on Sn−1. The barycentric extension

E f sends p to the barycenter of the measure f∗(vp).

In dimension n = 1, if f : S1 −→ S1 is the restriction of a finite Blaschke product, or more generally,
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an inner function, the barycentric extension E f : H2 ∼= ∆ −→ ∆ ∼= H2 satisfies E f = f . Hence,

the Schwarz lemma implies that, with respect to the hyperbolic metric, the extension E f is uniformly 1-

Lipschitz. Our first result is a generalization of the Schwarz lemma to higher dimensions*:

Theorem 1.1. Let f : P1
C

∼= S2 −→ S2 ∼= P1
C be a rational map of degree d, then the barycentric

extension of f

E f : H3 −→ H3

is uniformly Cd-Lipschitz, for some universal constant C.

Branched covering on the asymptotic cone of H3

Let fn ∈ Ratd(C) be a sequence of rational maps, and

rn := max
y∈E f−1

n (0)
dH3(y,0),

where 0 is the origin of the ball model of H3. Then fn is degenerating as rational maps if and only if rn →

∞. To capture the large scale dynamics for the sequence of extensions E fn, we rescale the metrics on

H3 by rn. For technical reasons, we will fix a non-principal ultrafilter ω on N, which is a finitely additive

measure on N taking values in {0, 1}. We will consider the ultra-limit (rH3, x0, d) of the pointed metric

spaces (H3,0, d3H/rn). This metric space (rH3, x0, d) is also known as the asymptotic cone of H3. It is

well known that the asymptotic cone of H3 (or any Gromov hyperbolic metric space) is an R-tree (see

[Roe03]).

Theorem 1.1 allows us to construct a limiting map Ebc(fn) on rH3. We will prove the following in Sec-

tion 3.8.

*See Chapter 2 for more general result
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Theorem 1.2. Let fn ∈ Ratd(C) be a degenerating sequence,

rn := max
y∈E f−1

n (0)
dH3(y,0)

and rH3 be the asymptotic cone of H3 with rescaling rn. Then the limiting map

Ebc(fn) :
rH3 −→ rH3

is a branched covering† of degree d.

1.2 Connections to Berkovich dynamics

LetK be a non-Archimedean field, then the Berkovich affine line A1
Berk(K) ofK is the space of mul-

tiplicative semi-norms on the polynomial ringK[T ] extending the absolute value onK. The elements

ofK embed into A1
Berk(K) by evaluation, and the one point compactification is the Berkovich projec-

tive line P1
Berk(K). The space P1

Berk(K) − P1(K) is called the Berkovich hyperbolic space, and is de-

noted by HBerk(K). There is a natural metric one can put on HBerk(K) so that it is an R-tree. A Ratio-

nal map f : P1
K −→ P1

K naturally extends to a map on HBerk(K), which we denote it by EBerk(f) :

HBerk(K) −→ HBerk(K).

Recall for a non-principal ultrafilter ω on N, we defined (rH3, x0, d) as the ultralimit of the sequence

of pointed metric spaces (H3,0, dH3/rn). The sequence ρn := e−rn also naturally gives a spherically

complete non-Archimedean field ρC which is a complexified version of the Robinson’s field [LR75]. As a

set, ρC is the quotientM0/M1, where

M0 = {(zn) : There exists some N ∈ N such that |zn| < ρ−N
n ω-almost surely}

†The definition of branched coverings on an R-tree can be found in Section 3.1.
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and

M1 = {(zn) : For all N ∈ N, |zn| < ρNn ω-almost surely}

By choosing representatives of the coefficients, we can associate a sequence of rational maps fn ∈ Ratd(C)

to a rational map f ∈ Ratd(ρC). Conversely, if fn ∈ Ratd(C), then by representing coefficients, we can

associate a rational map f potentially of lower degrees.

In Section 4.3, we will prove that

Theorem 1.3. Let rn → ∞ be a positive sequence and ρn = e−rn , there is a canonical isometry

Φ : HBerk(
ρC) −→ rH3

If f ∈ Ratd(ρC), the limit of the associated sequence of barycentric extensions satisfies

Φ ◦ EBerk(f) = Ebc(fn) ◦ Φ

Conversely, if fn ∈ Ratd(C) with rn = maxy∈E f−1
n (0) dH3(y,0), then the associated rational map

f ∈ Ratd(ρC) and

Φ ◦ EBerk(f) = Ebc(fn) ◦ Φ

Let T ⊂ rH3 be the minimal tree containing x0, JBerk be the Berkovich Julia set in P1
Berk(

ρC), then

JBerk ⊂ Φ−1(T ∪ ϵ(T )).

A version for holomorphic families

Let ft is a holomorphic family of rational maps of degree d > 1 defined over the punctured unit disk

∆∗ = {t ∈ C : 0 < |t| < 1}. We also assume that all the coefficients of ft extend to meromorphic

functions on the unit disk∆. We may also view f = ft as a rational map with coefficients in the field of
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formal Puiseux series L. The field L embeds into ρC, and this allows us to show

Theorem 1.4. Let ρn → 0 and rn = | log |ρn||, there is an isometric embedding

Φ : HBerk(L) ↪→ rH3

Moreover, if f = ft is a holomorphic family of rational maps of degree d > 1 defined over ∆∗, the limit

of the associated sequence of barycentric extensions Ebc(fρn) : H3 −→ H3 satisfies

Φ ◦ EBerk(f) = Ebc(fρn) ◦ Φ

1.3 The minimal trees and Blaschke products

It is natural to consider the minimal tree T ⊂ rH3 containing x0, that is, the smallest closed tree which is

invariant under Ebc(fn) and Ebc(fn)−1 that contains x0. We say the sequence fn : H3 −→ H3 converges

geometrically to F : T −→ T if there exists hn : (T, x0) −→ (H3,0) such that

1. Rescaling: We have
d(x, y) = lim dH3(hn(x), hn(y))/rn

for all x, y ∈ T .

2. Conjugacy: We have for all x ∈ T ,

dH3(hn(F (x)), fn(hn(x)))/rn → 0

as n → ∞.

In Section 3.10, we will show that

Theorem 1.5. Let fn be a degenerating sequence rational maps of degree d, rn := maxy∈E f−1
n (0) dH3(y,0)

and rH3 be the asymptotic cone of H3 with rescaling rn. Let T be the minimal tree containing x0, then
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possibly passing to a subsequence, the minimal tree T is the union of Gromov-Hausdorff limit of convex

hulls of
k⋃

i=−k

E f i
n({0})

rescaled by rn and E fn converges geometrically to Ebc(fn) on T .

In [McM09b], McMullen constructed a branched covering on a Ribbon R-tree as geometric limits of

divergent sequence Blaschke products. The tree (TRibbon, p) is the union of Gromov-Hausdorff limit of a

sequence of hyperbolic polygons in∆ ∼= H2, namely the convex hulls of finite sets of the form

k⋃

i=−k

f i
n({0}).

The hyperbolic plane H2 bounded by the equator in the ball model of H3 is totally invariant under the

barycentric extension E f of a Blaschke product f . In Section 3.11, we will prove

Theorem 1.6. Let fn(z) = z
∏d−1

i=1
z−ai,n
1−ai,nz

be a degenerating sequence of Blaschke products which

converges to a branched covering fRib : (TRib, p) −→ (TRib, p) in the sense as in [McM09b]. Let

rn := maxy∈E f−1
n (0) dH3(y,0) and rH3 be the asymptotic cone of H3 with rescaling rn. Let T be the

minimal tree containing x0, then

Ebc(fn) : (T, x
0) −→ (T, x0)

is isometrically conjugate to

fRib : (TRib, p) −→ (TRib, p).

The ends of a tree and translation lengths

A ray α in the R-tree T is a subtree isometric to [0,∞) ⊂ R. Two rays are equivalent if α1 ∩ α2 is still

a ray. The collection ϵ(T ) of all equivalence classes of rays forms the set of ends of T . We will let α de-
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note both a ray and the end it represents. We also say a sequence of points xi converges to an end α ⊂ T ,

denoted by xi → α, if d(x1, xi) → ∞ and xi ∈ α for all sufficiently large i.

For the asymptotic cone rH3 of H3, an end α ∈ ϵ(rH3) can be represented by a sequence of points in

the conformal boundary xn ∈ P1
C
∼= S2. The limiting map Ebc(fn) : rH3 −→ rH3 determines a degree d

map on the the set of ends ϵ(rH3). We define the translation length of an end α by

L(α,Ebc(fn)) = lim
xi→α

d(xi, x
0)− d(Ebc(fn)(xi), x

0)

We will show the translation length is well-defined and < +∞ (possibly equals to −∞). If C = {α1, ...,αq}

is a periodic cycle of ends, we define the translation length of the periodic cycle C by

L(C,Ebc(fn)) =
q∑

i=1

L(αi,Ebc(fn))

Theorem 1.7. Let fn ∈ Ratd(C) be a degenerating sequence,

rn := max
y∈E f−1

n (0)
dH3(y,0)

and rH3 be the asymptotic cone of H3 with rescaling rn.

If Cn = {z1,n, ..., zq,n} ⊂ P1
C is a sequence of periodic cycles of fn, then there exists a periodic cycle of

ends C = {α1, ...,αq} ⊂ ϵ(rH3) so that after passing to a subsequence

lim
n→∞

log |(f q
n)′(z1,n)|
rn

= L(C,Ebc(fn))
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1.4 Applications

Let [f ] ∈ Md, we define

r([f ]) := min
x∈H3

max
y∈E f−1

n (x)
dH3(y, x)

where f is a representative rational map of [f ]. We will show that a sequence [fn] is degenerating as conju-

gacy classes if and only if r([fn]) → ∞. We can choose representative fn for each each conjugacy class

[fn] so that

r([fn]) = max
y∈E f−1

n (0)
dH3(y,0).

This allows us to construct a limiting dynamics Ebc(fn) on the R-tree for the sequence of conjugacy classes

[fn]. In the following, we will use the limiting dynamics to study hyperbolic components.

Marking on the Julia set and Length Spectra

A conjugacy class of rational map [f ] is called hyperbolic if the orbit of every critical point converges to

some attracting periodic cycle. The space of hyperbolic rational maps is open inMd, and a connected com-

ponent of it is called a hyperbolic component. For each hyperbolic componentH , there is a topological

dynamical system

σ : J −→ J

such that for any [f ] ∈ H , there is a homeomorphism

φ(f) : J −→ J(f)

which conjugates σ and f . A particular choice of such φ(f) will be called a marking of the Julia set.

Let [f ] ∈ H ⊂ Md be a hyperbolic rational map with a marking φ : J −→ J(f). We let S be the space

of periodic cycles of the topological model σ : J −→ J . We define the length on [f ] of a periodic cycle

9



C ∈ S by

L(C, [f ]) = log |(f q)′(z)|,

where q = |C| and z ∈ φ(C). The collection (L(C, [f ]) : C ∈ S) ∈ RS
+ will be called the marked

length spectrum of [f ]. As [f ] varies over the hyperbolic component, we are interested in understanding

how the length spectrum changes. In particular, we will investigate the behavior of the length spectrum for

a degenerating sequence [fn].

Bounded escape and nested Julia sets

Let [fn] ∈ H be a sequence of conjugacy classes of marked rational maps inH . One way for [fn] to be de-

generating is that the length L(C, [fn]) is going to infinity for some periodic cycle C. In fact, for Kleinian

groups, this is the only way to get degeneracy: a sequence of representation of a finitely generated group

in PSL2(C) is degenerating if and only if the lengths of some closed geodesic are going to infinity. As we

shall see, in the rational map setting, it is possible that L(C, [fn]) stays bounded for every C ∈ S. Hence,

we define

Definition 1.8. Let H be a hyperbolic component, we say H admits bounded escape if there exists a se-

quence [fn] ∈ H (with a marking φn) so that

1. [fn] is degenerating;

2. For any periodic cycle C ∈ S of the topological model σ : J −→ J , the sequence of lengths
L(C, [fn]) is bounded.

Since there are only finitely many periodic points of a fixed period, we can formulate the definition

without using the markings and replace the second condition by

10



2’ For any p ∈ N and any sequence of periodic points xn of fn with period p, the multipliers of fn at
xn stay bounded.

The sequence fn(z) = z2 + 1
nz3 provides such an example (or more precisely, the subsequence of

conjugacy classes of this sequence with n ≥ N for some large N ). The Julia set J for this hyperbolic

component is homeomorphic to a Cantor set of circles [McM88]. In particular, any Julia component sepa-

rates the two points 0,∞, and the Julia set is disconnected. We will show these two characteristics actually

classify all examples of hyperbolic components admitting bounded escape:

Definition 1.9. Let f ∈ Ratd(C) be a hyperbolic rational map, we say J(f) is nested if

1. There are two points p1, p2 ∈ P1
C such that any component of J(f) separates p1 and p2;

2. J(f) contains more than one component.

A hyperbolic componentH is said to have nested Julia set if the Julia set of any rational map inH is

nested.

Theorem 1.10. Let H be a hyperbolic component. H admits bounded escape if and only ifH has nested

Julia set.

In Chapter 5, we will see that any example of rational maps of nested Julia set can be essentially built

from 2 hyperbolic polynomials via a ‘nested mating’ procedure. Using this, one can prove the direction

nested Julia set implies bounded escape.

To prove the other direction, we get a degenerating sequence of rational maps with bounded multipliers

from the bounded escape condition. This gives a limiting dynamics on an R-tree with no repelling periodic

ends. We will classify these dynamics in Chapter 5, and use our classification to conclude the topological

properties of the Julia set. In the course of the proof, we will also show
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Theorem 1.11. Let H be a hyperbolic component which does not have nested Julia set, and [fn] ∈ H

be a degenerating sequence with markings. Let r([fn]) := minx∈H3 maxy∈E f−1
n (x) dH3(y, x), then after

passing to a subsequence, we have

L(C,Ebc(fn)) = lim
n→∞

L(C, [fn])/r([fn])

and there exists some C ∈ S with L(C,Ebc(fn)) ̸= 0.

In other words, if H does not have nested Julia set and [fn] is degenerating in H , then any periodic

cycles escape to infinity at most comparable to r([fn]), and there exist some periodic cycles escaping to

infinity comparable to r([fn]).

We end our discussion with the following open question:

Question. Is the length spectrum bounded throughout a hyperbolic component with nested Julia set?
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This question is related to the conjecture the hyperbolic components with Sierpinski carpet Julia set is

bounded. See Chapter 5 for more discussions on this.

1.5 Notes and references

The use of Berkovich space of formal Puiseux series and ‘rescalings’ to understand asymptotic behaviors

for a degenerating sequence of rational maps was introduced and made precise in [Kiw15]. Similar ideas

have been also explored in [Sti93], [Eps00], [DeM07] and [Arf17]. Other application of trees in complex

dynamics can be found in [Shi89] and [DM08].

Barycentric extension for rational maps has also been studied in [Pet11]. The construction of limit-

ing branched coverings on an R-tree suggests that, at least in the asymptotic sense, the barycentric ex-

tension of a rational map plays similar role as a hyperbolic 3-manifold to a Kleinian group. For other 3-
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dimensional objects associated to a rational map, see [LM97]. Other applications of barycentric extensions

in negatively curved Riemannian manifold can be found in [?] [BCG96].

R-trees also arise naturally in the study of degenerating sequences of representations of Isom(Hn): in

[MS84], based on the study of valuations on the function field of the character variety of representations of

a finitely generated group G into SL2(C), Morgan and Shalen showed how to assign an isometric action

of a surface group on a R-tree to such a sequence of representations that ‘degenerate’. Bestvina and Paulin

gave a new, and more geometric point of view of this theory in [Bes88] and [Pau88]. The equivalence of

various constructions in Kleinian groups is analogous to the connections between the barycentric construc-

tion and Berkovich constructions for rational maps explained in Theorem 1.3. The use of asymptotic cone

and the connection of R-trees with the nonstandard analysis are developed and explained in [KL95] and

[Chi91].

Rational maps with disconnected Julia sets are studied in details in [PT00], and some examples of ra-

tional maps with nested Julia sets also appear there. Many examples of degenerating families of rational

maps with bounded multipliers are studied in [FRL10] using Berkovich dynamics. The geometric limit

as a branched covering on an R-tree for a sequence of degenerating Blaschke products is first introduced

[McM09b], where the boundary of B2 under this compactification is also studied there. We also refer to

[McM08] [McM09a] [McM10] for more comparisons between the space of Blaschke products and the

Teichmüller spaces.

14



2
Barycentric extensions

2.1 The definition of the barycentric extension

The theory of Barycentric extension was extensively studied for circle homeomorphisms in [DE86]. The

construction can be easily generalized to any continuous maps on sphere Sn−1, (see [McM96][Pet11]).

Given a probability measure µ on Sn−1 with no atoms of mass ≥ 1/2, then there is a unique point

β(µ) ∈ Hn called the barycenter of µ for which the measure is balanced (see [DE86], [Hub06] or [Pet11]

for a proof). A measure is said to be balanced at a point x if one moves x to the origin in the ball model of

hyperbolic space using isometry, the push forward of the measure has Euclidean barycenter at the origin.

We fix a ball model of the hyperbolic space Hn, in other words, we choose a base point, which we call
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it 0 and a base frame at 0. Let µSn−1 be the probability measure coming from the spherical metric on

Sn−1, and we say a map is admissible if f∗µSn−1 has no atoms.

Let f : Sn−1 −→ Sn−1 be an admissible continuous map, then the barycentric extension E f is a map

from Hn −→ Hn which sends the point x ∈ Hn to the barycenter of the measure f∗(Mx)∗(µSn−1), where

Mx is any isometry sending the origin 0 of the ball model to x.

The extension is conformally natural in the sense ifM1,M2 ∈ IsomHn, then they are conformal maps

of the conformal boundary Sn−1, and the extension satisfies

M1 ◦ E (f) ◦M2 = E (M1 ◦ f ◦M2)

Computing the derivatives

Given a point x ∈ Hn ∼= B(0, 1) ∈ Rn, the map

Mx(y) =
y(1− |x|2) + x(1 + |y|2 + 2 < x,y >)

1 + |x|2|y|2 + 2 < x,y >

is an isometry sending the origin 0 to x. In fact, this is the unique isometry preserving the frame along the

geodesic connecting 0 to x with respect to the Levi-Civita connection. Note thatM−1
x = M−x. Restrict-

ingMx to Sn−1, an easy computation shows that the Jacobian

JacMx(ζ) = (
1− |x|2

|ζ + x|2 )
n−1

with ζ ∈ Sn−1.
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Let F (x,y) denote the function

F (x,y) =

∫

Sn−1
M−1

y (f(Mx(ζ)))dµSn−1(ζ)

=

∫

Sn−1
M−y(f(ζ))(Mx)∗dµSn−1(ζ)

=

∫

Sn−1
M−y(f(ζ))(

1− |x|2

|ζ − x|2 )
n−1dµSn−1(ζ)

With the notations as above, the barycentric extension of f is the unique solution of the implicit formula:

F (x,E f(x)) = 0⃗.

With this formula, implicit differentiation allows us to compute the derivative of the extension:

DE (f)(x) = −F−1
y (x,E (f)(x))Fx(x,E (f)(x))

We can compute this derivative very explicitly. Since Isom+(Hn) × Isom+(Hn) acts transitively on

pairs of points in Hn, we can assume that E (f)(0) = 0, i.e.,

∫

Sn−1
f(ζ)dµSn−1(ζ) = 0⃗ (2.1.1)

and compute the derivative at the origin 0.

Proposition 2.1. Assume that
∫
Sn−1 f(ζ)dµSn−1(ζ) = 0⃗, then we have

Fy (⃗0, 0⃗)(v⃗) = −2v⃗ + 2

∫

Sn−1
< v⃗, f(ζ) > f(ζ)dµSn−1(ζ)

Similarly,

Fx(⃗0, 0⃗)(v⃗) = 2(n− 1)

∫

Sn−1
< v⃗, ζ > f(ζ)dµSn−1(ζ)
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Proof. For the first equality, we have

Fy (⃗0, 0⃗)(v⃗) = lim
t→0

F (⃗0, tv⃗)

t

= lim
t→0

∫
Sn−1 M−tv⃗(f(ζ))dµSn−1(ζ)

t

= lim
t→0

∫

Sn−1

1

t
· f(ζ)(1− t2|v⃗|2)− tv⃗(1 + |f(ζ)|2 − 2 < tv⃗, f(ζ) >)

1 + t2|v⃗|2|f(ζ)|2 − 2t < v⃗, f(ζ) >
dµSn−1(ζ)

= lim
t→0

∫

Sn−1

1

t
· (f(ζ)− 2tv⃗ +O(t2))(1 + 2t < v⃗, f(ζ) > +O(t2))dµSn−1(ζ)

= −2v⃗ + 2

∫

Sn−1
< v⃗, f(ζ) > f(ζ)dµSn−1(ζ)

Similarly, for the second equality, we have

Fx(⃗0, 0⃗)(v⃗) = lim
t→0

F (tv⃗, 0⃗)

t

= lim
t→0

∫
Sn−1 f(ζ)(

1−|tv⃗|2
|ζ−tv⃗|2 )

n−1dµSn−1(ζ)

t

= lim
t→0

∫

Sn−1

1

t
· f(ζ)(1 + t2|v⃗|2)n−1(1− 2t < v⃗, ζ > +t2|v⃗|2)1−ndµSn−1(ζ)

= lim
t→0

1

t
· f(ζ)(1 +O(t2))(1 + 2(n− 1)t < v⃗, ζ > +O(t2))dµSn−1(ζ)

= 2(n− 1)

∫

Sn−1
< v⃗, ζ > f(ζ)dµSn−1(ζ)

In order to bound the norm of the derivative, it is now sufficient to bound Fx from above and Fy from

below. Since f(ζ), ζ has norm 1, and µSn−1 is a probability measure, it is easy to see that ||Fx|| ≤ 2(n −

1).

Note that Fy is a self-adjoint operator, to bound the norm F−1
y , it is sufficient to bound the eigenvalues

of Fy from below, or equivalently, bound the eigenvalues of
∫
Sn−1 < v⃗, f(ζ) > f(ζ)dµSn−1(ζ) away

from 1.
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Note that the quantity
∫
Sn−1 < v⃗, f(ζ) > f(ζ)dµSn−1(ζ) can be thought of the second moment of the

function f(ζ). Hence, the bound we are going to get can be interpreted as bounding the second moment of

f(ζ) under the condition that f is balanced, i.e.,
∫
Sn−1 f(ζ)dµSn−1(ζ) = 0⃗.

2.2 Quasiregular maps

We shall follow [Ric93] as our main reference for quasiregular maps. Roughly speaking, quasiregular

maps are natural extensions of the concept of quasiconformal maps, similar to holomorphic maps to con-

formal maps, i.e., away from critical locus it is locally quasiconformal.

Let U be a domain in Rn, andW 1
n(U) be the Soblev space, consisting of all real valued functions u ∈

Ln(U) with weak first order partial derivatives which are themselves in Ln(U). ByW 1
n,loc(U) we denote

functions which locally belong toW 1
n . By considering component functions, we can extend these defini-

tions to Rm-valued mappings without separate notation.

Definition 2.2. A mapping f : U −→ Rn of a domain U ⊂ Rn is quasiregular if

1. f ∈ C0(U) ∩W 1
n,loc(U)

2. there exists K, 1 ≤ K < ∞ such that

|f ′(x)|n ≤ K Jac f(x) a.e.

The smallestK is called the outer dilatationKO(f) of f . If f is quasiregular, then it is also true that

Jf (x) ≤ K ′l(f ′(x))n a.e.

for someK ′ ≥ 1 where l(f ′(x)) := inf |h|=1 |f ′(x)h|. The smallestK ′ is called the inner dilatation KI(f)

of f . The maximal ofKO andKI is called the dilatation of f , and denoted byK(f). A quasiregular map
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is calledK-quasiregular ifK(f) ≤ K. In dimension 2, the inner dilatation coincides with the outer dilata-

tion.

A quasiregular map shares many nice properties with holomorphic functions. A non-constant quasireg-

ular map is discrete and open, i.e., the preimage of a point is discrete, and the image of open set is open.

This allows us to define the local degree i(f, x) at a point x by considering the induced action on the ho-

mology. A non-constant quasiregular map always has positive local degrees. A domainD ⊂ U is called

normal if f(∂D) = ∂f(D).

Similar to the study of quasiconformal and conformal maps in dimension 2, the moduli of curve systems

play an essential role in controlling the geometry of the image of quasiregular maps. For our purpose, we

will be considering an equivalent formulation of capacity of a condenser.

Definition 2.3. A condenser in Rn is a pair E = (A,C) where A is open in Rn and C ̸= ∅ is a compact

subset of A.

The (conformal) capacity of E is defined by

capE := inf
u

∫

A
|∇u|ndm

where the infimum is taken over all nonnegative functions u ∈ C0(A) ∩ W 1
n,loc(A) with compact support

and u|C ≥ 1.

It is not hard to see that we can restrict to u ∈ C∞
c (A) or u as piecewise linear maps in the definition

without changing the value (see Section 5 and 7 in [Geh61]).

Let E = (A,C) be a condenser with A bounded. We say a closed set σ is separating if σ ⊂ A− C and

if there are two open sets U1 and U2 of A with C ⊂ U1, ∂A ⊂ U2 and A− Σ = U1 ∪ U2.

Definition 2.4. Let Σ be the set of all separating sets of a bounded condenser E = (A,C) in Rn, the
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modulus of separating sets is defined by

M(Σ) := inf
f∧Σ

∫

Rn
f

n
n−1dm

where f ∧ Σ means f is a nonnegative Borel function on Rn such that

∫

σ
fdHn−1 ≥ 1 for all σ ∈ Σ

where dHn−1 is the n− 1-dimensional Hausdorff measure.

It can be seen that if we denote Σ′ to be the set of separating with infinite n − 1-dimensional Hausdorff

measure, thenM(Σ′) = 0 (See Section 3.1 in[Zie67]).

We may also assume that the separating sets are piecewise linear without changing the value (See Sec-

tion 3.3 in [Zie67] and Section 7 in [Geh61]).

We have the following theorem proved in [Zie67] [Geh62]

Theorem 2.5. Let E = (A,C) be a bounded condenser in Rn and Σ be the set of all separating sets, then

M(Σ) = cap(E)−
1

n−1 .

This theorem is more well-known in dimension 2. Assuming that A is a topological disk, and C is a

closed disk in A, then A − C is an open annulus. Let Γ1 be the family of curves connecting two com-

ponents of the boundary of A − C, and Γ2 be the family of curves homotopic to the core of the annulus

A−C. Then the capacity cap(E) = 1/L (Γ1), whereL (Γ1) is the extremal length of family Γ1. And the

modulus of separating setsM(Σ) = L (Γ2). The theorem says that 1/L (Γ1) = L (Γ2).

Let f : U −→ Rn be a quasiregular map, and E = (A,C) be a condenser. Since the map f is open,

f(E) = (f(A), f(C)) is another condenser. The following two theorems allows us to control the geome-

try of the image of the condensers. The proofs can be found in [Ric93].
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Recall that A is normal domain if f(∂A) = ∂f(A). Let

N(f,A) := sup
y

|f−1(y) ∩A|

be the maximal number of preimages in A.

Theorem 2.6. Let f : U −→ Rn be a non-constant quasiregular map and E = (A,C) be a condenser in

U with A normal and N(f,A) < ∞. Then

cap(E) ≤ KO(f)N(f,A) cap(f(E))

Recall that i(f, x) is the local degree at x. Let

M(f, C) := inf
y∈C

∑

x∈f−1(y)∩C

i(x, f)

be the minimal multiplicity of f on C.

Theorem 2.7. Let f : U −→ Rn be a non-constant quasiregular map and E = (A,C) be a condenser in

U . Then

cap(f(E)) ≤ KI(f)

M(f, C)
cap(E)

2.3 Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1 by proving the following more general result which is interest-

ing in its own right:

Theorem 2.8. Let f : Sn−1 −→ Sn−1 be a properK-quasiregular map of degree d, then the barycentric
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extension of f

E f : Hn −→ Hn

is uniformly C(n) · (Kd)
1

n−2 -Lipschitz, where the constant C(n) only depends only on n.

Note that Theorem 1.1 follows from Theorem 2.8 by settingK = 1 and n = 3.

Recall that

F (x,y) =

∫

Sn−1
M−1

y (f(Mx(ζ)))dµSn−1(ζ)

We will first use the theory developed in the previous sections to prove the following proposition which

controls the norm of ||Fy (⃗0, 0⃗)−1|| under the balanced condition 2.1.1.

Proposition 2.9. Let f : Sn−1 −→ Sn−1 be a properK-quasiregular map of degree d such that

∫

Sn−1
f(ζ)dµSn−1(ζ) = 0⃗.

then

||Fy (⃗0, 0⃗)
−1|| ≤ C(Kd)

1
n−2 (2.3.1)

for some constant C = C(n) only depends on the dimension n.

Proof. Recall from the computation in Section 2.1, we have

Fy (⃗0, 0⃗)(v⃗) = −2v⃗ + 2

∫

Sn−1
< v⃗, f(ζ) > f(ζ)dµSn−1(ζ)

Hence, we need to bound the norm of the linear operator

T : v⃗ →
∫

Sn−1
< v⃗, f(ζ) > f(ζ)dµSn−1(ζ)
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away from 1 subject to the balanced condition.

Since the operator T is self-adjoint, after change of variable, we may assume the largest eigenvalue is

associated to e0 ∈ Rn.

Let A′ = B(0,
√
3) ∈ Rn−1 and C ′ = B(0, 1√

3
) ⊂ A′. Equivalently, A′ − C ′ is the image under

stereographic projection of ’belt’ −1
2 < e0 < 1

2 . Let E = (A,C) = (f−1(A′), f−1(C ′). We may assume

that the preimage of A does not contain∞ so E is a condenser in Rn.

Recall that µSn−1 is the probability measure induced by the spherical metric on Sn−1. Let V := µSn−1(A−

C), V1 := µSn−1(C) and V2 := µSn−1(Sn−1 −A) be the (normalized) spherical volumne of the A− C, C

and Sn−1 −A (under the stereographic projection) respectively. Then there are two cases to consider:

1. V ≥ 1
3

2. V < 1
3

Note that we have

< e0, T (e0) > =< e0,

∫

Sn−1
< e0, f(ζ) > f(ζ)dµSn−1(ζ) >

=< e0,

∫

Sn−1
< e0, ζ > ζf∗dµSn−1(ζ) >

=< e0,

∫

A′−C′
< e0, ζ > ζf∗dµSn−1(ζ) > +

+ < e0,

∫

(Sn−1−A′)∪C′
< e0, ζ > ζf∗dµSn−1(ζ) >

≤ (
1

2
)2 · V + 1 · (1− V ) = 1− 3

4
V (2.3.2)

Hence in the first case, we have

< e0, T (e0) >≤ 3

4
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In the second case, by the balanced condition, we have

0 =< e0,

∫

Sn−1
f(ζ)dµSn−1(ζ) >

=< e0,

∫

Sn−1
ζf∗dµSn−1(ζ) >

=< e0,

∫

Sn−1−A′
ζf∗dµSn−1(ζ) +

∫

A′−C′
ζf∗dµSn−1(ζ) +

∫

C′
ζf∗dµSn−1(ζ) >

≤ 1 · V2 +
1

2
· V + (−1

2
) · V1 = V2 +

1

2
V − 1

2
(1− V2 − V )

=
3

2
V2 + V − 1

2
≤ 3

2
V2 −

1

6

Hence V2 ≥ 1
9 , similarly, V1 ≥ 1

9 . By exchange the role of the set associated to V1 and V2, we may assume

that V1 < 1/2.

Note that f(E) is the condenser E′ = (A′, C ′), which has capacity

cap(f(E)) =
ωn−2

(log 3)n−2

where ωn−2 is the n − 2-measure of the unit sphere Sn−2. Since f has degree d, we know N(f,A) ≤ d.

Hence by Theorem 2.6, we have

cap(E) ≤ ωn−2Kd

(log 3)n−2
(2.3.3)

Let Σ be the set of separating sets associated to E, and Σ′ ⊂ Σ be the set of separating sets which

is piecewise linear. Let φn−1dm be the push forward of the spherical measure under the stereographic

projection. The isoperimetric inequality for sphere (Troisième Partie, Chapitre I in [Lév22] and [Sch39])

says that if E ⊂ Sn−1 is a measurable set, then

P(E) ≥ P(Bθ)
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where Bθ is a geodesic ball of the same volume as E and P(E) is the perimeter of E (See [Mag12]). If

the boundary of E is smooth enough, in particular, if ∂E is piecewise linear, then P(E) = Hn−2
Sn−1(∂E).

HereHn−2
Sn−1 is the n− 2 dimensional Hausdorff measure on the sphere.

Let σ ∈ Σ′ and let E denote the set bounded by σ containing C. Then |E| ∈ (19ωn−1,
8
9ωn−1). There-

fore, we have that
∫

σ
φn−2dHn−2

Rn−1 = Hn−2
Sn−1(σ) ≥ Ωn−2(

1

9
ωn−1).

Here Ωn−2(V ) denotes the n − 2-measure of the boundary of a ball of volume V . Hence if we consider

the function

g(x) :=
φn−2

Ωn−2(
1
9ωn−1)

for x ∈ A− C

and g(x) = 0 elsewhere, then
∫

σ
gdHn−2

Rn−1 ≥ 1 for all σ ∈ Σ′.

Hence we have

M(Σ) = inf
h∧Σ

∫

Rn−1
h

n−1
n−2dm

= inf
h∧Σ′

∫

Rn−1
h

n−1
n−2dm

≤
∫

Rn−1
g

n−1
n−2dm

= (
1

Ωn−2(
1
9ωn−1)

)
n−1
n−2

∫

A−C
φn−1dm

= (
1

Ωn−2(
1
9ωn−1)

)
n−1
n−2V · ωn−1

By Theorem 2.5, we have

M(Σ) = cap(E)−
1

n−2
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so we have

cap(E) = M(Σ)−(n−2) ≥
(Ωn−2(

1
9ωn−1))n−1

V n−2ωn−2
n−1

(2.3.4)

Now combining inequality 2.3.3 and 2.3.4, we get

ωn−2Kd

(log 3)n−2
≥

Ωn−2(
1
9ωn−1))n−1

V n−2ωn−2
n−1

which gives

V ≥
log 3 · (Ωn−2(

1
9ωn−1))

n−1
n−2

(Kd)
1

n−2ωn−1

Now plug this in inequality 2.3.2, we get

< e0, T (e0) >≤ 1−
3 · log 3 · (Ωn−2(

1
9ωn−1))

n−1
n−2

4 · (Kd)
1

n−2ωn−1

so we have

||T || ≤ max(
3

4
, 1−

3 · log 3 · (Ωn−2(
1
9ωn−1))

n−1
n−2

4 · (Kd)
1

n−2ωn−1

)

Since Fy (⃗0, 0⃗) = 2I − 2T , we have

||Fy (⃗0, 0⃗)
−1|| ≤ max(2,

2 · (Kd)
1

n−2ωn−1

3 · log 3 · (Ωn−2(
1
9ωn−1))

n−1
n−2

) (2.3.5)

which proves the result.

Proof of Theorem 2.8. We assume that E f(0) = 0 first.

Note that under this condition, we have the bound on

||Fx(⃗0, 0⃗)|| ≤ 2(n− 1),

27



combining this with the bound 2.3.1, we get

||DE f(0)|| ≤ ||Fx(⃗0, 0⃗)||||Fy (⃗0, 0⃗)
−1|| ≤ C(Kd)

1
n−2

Since Isom+Hn × Isom+Hn acts transitively on pairs of points in Hn, and the extension is natural, we

get the result.

2.4 Asymptotic translation length

Let f : P1 −→ P1 be a rational map of degree d and ζ ∈ S2. We define the asymptotic translation length

of f at point ζ to be

L(ζ) := lim
t→∞

dH3(xt,0)− dH3(E f(xt),0)

where 0 is the origin in the ball model of H3, and xt is the point distance t away from 0 on the geodesic

along the direction of ζ.

We have the following basic but important proposition:

Proposition 2.10. Let f : P1 −→ P1 be a rational map of degree d and ζ ∈ S2. The asymptotic transla-

tion length

L(ζ) = log |f ′(ζ)|S2

where |f ′(ζ)|S2 is the spherical derivative of f on the sphere S2.

Proof. First we assume that ζ is not a critical point of f . Under a change of variable by the action of

SO(3), we may assume that ζ ∈ S2 is mapped to 0 ∈ C under stereographic projection, and f(0) = 0.

Then the isometryMt(z) = z
et sends 0 to xt. We denote N−1

t (z) = etz
a where a is the derivative f at 0,

and consider the family

Ft(z) = N−1
t ◦ f ◦Mt

28



Note that Ft converges uniformly on compact subset of C to the identity map. Let Ut be the isometry such

that

E (Ft)(0) = Ut(0)

Hence, we have the balanced condition:

∫

S2
U−1
t ◦ Ft(ξ)dµ(ξ) = 0⃗

If Ut converges to a constant map, then (U−1
t ◦ Ft)∗dµ converges weakly to a delta measure supported

at the constant value. This will be a contradiction to the balanced condition.

Therefore, Ut converges to an isometry, which is necessarily the identity map by the balanced condition.

Hence, by naturality of the extension we have

E f(xt) = Nt ◦ Ut(0)

Since Ut → id, we have

dH3(E f(xt),0) = dH3(Nt ◦ Ut(0),0)

= dH3(Ut(0), N
−1
t (0))

= dH3(0, N−1
t (0)) + o(1)

= t− log |a|+ o(1)

This implies the asymptotic translation length is log |a| = log |f ′(ζ)|S2 .

If ζ is a critical point, similar argument shows that

lim
t→∞

dH3(xtn ,x0)− dH3(E (f)(xt),x0)
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exists and finite where n is the order of the critical point. So the asymptotic translation length is −∞,

which proves the proposition.

2.5 Examples of degree 2 rational maps

In this section, we will consider some examples of the barycentric extensions of a rational map on S2.

We have not tried to state our result in the most general form, and for simplicity of the presentation, we

will now restrict ourselves to the case of degree 2. In this case, IsomH3 × IsomH3 acts transitively on

Rat2(C), so by naturality, there is only one map f(z) = z2 to study.

Let (r, θ, h) be the cylindrical coordinate system for the hyperbolic 3-space H3. In the ball model, r and

h represents the hyperbolic distance to z-axis and xy-plane, and θ is the angle to the positive x-axis pro-

jected to the xy-plane. We identify P1(C) with the unit sphere in R3 via standard stereographic projection

sending 0, 1,∞ to (0, 0, 1), (1, 0, 0), (0, 0,−1) respectively. In the coordinate (r, θ, h), the extension of

f(z) = z2 has the following form:

Proposition 2.11. Let f(z) = z2, then in the cylindrical coordinate system, the extension has the form

E f : H3 −→ H3

(r, θ, h) +→ (log(cosh(r))− δ(r), 2θ, 2h)

where δ(r) > 0 when r > 0, and δ(r) → 0 as r → ∞.

Note that in (r, θ) coordinate, z2 has the form

(r, θ) +→ (log(cosh(r)), 2θ)
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Since δ(r) > 0, E f |H2
0
is not isometrically conjugate to z2|H2 . Since IsomH3 × IsomH3 acts transitively,

we have the following immediate corollary, which answers the question asked by Petersen in [Pet11]:

Corollary 2.12. Let f(z) be a degree 2 Blaschke product, and H2
0 be the hyperbolic plane bounded by the

invariant unit circle, then the barycentric extension preserves this hyperbolic plane E f : H2
0 −→ H2

0, but

E f |H2
0
is not isometrically conjugate to f .

Proof. Since the extension is natural, and e2tf(z/et) = f(z), so E f sends the hyperbolic plane of h = t

to h = 2t. Hence, E f preserves the hyperbolic plane H2
0 of h = 0. Also by naturality, the restriction of E f

on each hyperbolic plane h = t to h = 2t is the same as E f |H2
0
. Hence, in order to prove the proposition,

we only need to show

E f |H2
0
: H2

0 −→ H2
0

(r, θ) +→ (log(cosh(r))− δ(r), 2θ)

Since f(z) = e2π2θif(z/e2πθi), by naturality, E f |H2
0
(r, θ) = (g(r), 2θ) for some function g. Hence, we

only need to figure out the E f |H2
0
(r, 0). To compute this, we need the following lemma:

Lemma 2.13. Let ft(z) = z z−t
1−tz for t ∈ (0, 1), then there exists a positive function δ : (0, 1) −→ R+ such

that E f(0) = (−δ(t), 0, 0) for all t ∈ (0, 1).

Proof. Let

P : C −→ C× R ∼= R3

z +→ (
2z

1 + |z|2 ,
|z|2 − 1

|z|2 + 1
)
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be the stereographic projection By definition, E ft(0) = 0 if and only if

∫

S2
P (ft(P

−1(x⃗)))dµS2(x⃗) = 0⃗

We will compute this integral and it is of the form (−v, 0, 0). Note that by symmetry, the second compo-

nent of the integral is always 0. Changing the variables to z, we get the first component of the integral

equals to

It :=

∫

C

2z z−t
1−tz

1 + |z z−t
1−tz |2

4

(1 + |z|2)2
i

2
|dz|2

Using a simple change of variables in polar coordinate, we may express the integral as

It =

∫ ∞

0

∫ 2π

0

2z z−t
1−tz

1 + |z z−t
1−tz |2

4

(1 + |z|2)2 rdθdr

=

∫ ∞

0
(

∫

∂Br

2z z−t
1−tz

1 + |z z−t
1−tz |2

4

(1 + |z|2)2
|z|dz
iz

)dr

where Br is the disk centered at 0 of radius r. Let Jt,r be the inner integral, we will show that Jt,r is nega-
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tive for all r ̸= 1. Note that on ∂Br, z̄ = r2/z, so we have

Jt,r =

∫

∂Br

2z z−t
1−tz

1 + |z z−t
1−tz |2

4

(1 + |z|2)2
|z|dz
iz

=

∫

∂Br

2z z−t
1−tz

1 + r2 (z−t)(z̄−t)
(1−tz)(1−tz̄)

4

(1 + r2)2
rdz

iz

=
8r

i(1 + r2)2

∫

∂Br

z−t
1−tz

1 + r2 (z−t)(r2/z−t)
(1−tz)(1−tr2/z)

dz

=
8r

i(1 + r2)2

∫

∂Br

(z − t)(z − tr2)

(1− tz)(z − tr2) + r2(z − t)(r2 − tz)
dz

=
16rπ

(1 + r2)2
Resz∈Br

(z − t)(z − tr2)

(1− tz)(z − tr2) + r2(z − t)(r2 − tz)

Let F (z) = (z − t)(z − tr2) and G(z) = (1 − tz)(z − tr2) + r2(z − t)(r2 − tz), note that G(r) =

r(1−tr)2+r3(r−t)2 > 0 as t ∈ (0, 1) and r > 0. Since the coefficient of z2 in G(z) is negative, there are

two real roots x1, x2 with x1 < r < x2. Note that G(t) = t(1−t2)(1−r2) and G(tr2) = tr4(r2−1)(1−t2)

have different sign when r ̸= 1, and G(max{t, tr2}) > 0, so the smaller root x1 is in between t and tr2.

Hence, F (x1) < 0. Therefore, when r ̸= 1

Resz∈Br

(z − t)(z − tr2)

(1− tz)(z − tr2) + r2(z − t)(r2 − tz)
=

F (x1)

−t(1 + r2)(x1 − x2)
< 0

Hence, Jt,r < 0 for all r ̸= 1, so It < 0. So

∫

S2
P (ft(P

−1(x⃗)))dµS2(x⃗) = (−v(t), 0, 0)

for some positive function v(t) > 0. This means that the barycenter of (ft)∗dµS2 is in the negative x-axis,

so

E f(0) = (−δ(t), 0, 0)
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for some positive function δ(t) > 0 which proves the lemma.

LetMt(z) = z−t
1−tz , thenMt2 ◦ f ◦ M−1

−t (z) = f 2t
1+t2

(z). Note that the the distance dH3(0,Mt(0)) =

log 1+t
1−t . Hence, by the previous lemma and naturality and the fact that E f |H2

0
(r, 0) = E f |H2

0
(r,π), we

have

E f |H2
0
(r, 0) = ((log(cosh(r))− δ(r), 0)

Note that the spherical derivative of 1 ∈ P1(C) ∼= S2 is 2, so by Proposition 2.10

log
1

2
= lim

r→∞
dH3(E f |H2

0
(r, 0),0)− dH3((r, 0),0)

= lim
r→∞

(log(cosh(r))− δ(r)− r)

Note that

lim
r→∞

log(cosh(r))− r = log
1

2

Therefore δ(r) → 0 as r → ∞.
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3
Limiting branched coverings on R-trees

3.1 R-trees and branched coverings

In this section, we give various definitions and notations related to branched coverings between R-trees.

R-trees

An R-tree is a nonempty metric space (T, d) such that any two points x, y ∈ T are connected by a unique

topological arc [x, y] ⊂ T , and every arc of T is isometric to an interval in R.

We say x is an endpoint of T if T − {x} is connected; otherwise x is an interior point. If T − {x}

has three or more components, we say x is a branch point. The set of branch points will be denoted B(T ).

35



We say T is a finite tree if B(T ) is finite. Note that we allow a finite tree to have an infinite end, so a fi-

nite tree may not be compact. We will write [x, y) and (x, y) for [x, y] with one or both of its endpoints

removed.

A ray α in the R-tree T is a subtree isometric to [0,∞) ⊂ R. Two rays are equivalent if α1 ∩ α2 is

still a ray. The collection ϵ(T ) of all equivalence classes of rays forms the set of ends of T . We will let

α denote both a ray and the end it represents. We also say a sequence of points xi converges to an end

α ⊂ T , denoted by xi → α, if d(x1, xi) → ∞ and xi ∈ α for all sufficiently large i.

Let x ∈ T , two segments [x, y1] and [x, y2] are said to represent the same tangent vector at x if [x, y1] ∩

[x, y2] is another non-degenerate segment. The set of equivalence classes of tangent vectors at x is called

the tangent space at x, and denoted by Tx T . Equivalently, the tangent space Tx T can be identified with

the set of components of T − {x}. Let v⃗ ∈ Tx T , we will use Uv⃗ to denote the component of T − {x}

corresponding to v⃗. More generally, we will use Ua1,...,an to denote a connected open set with finitely

many boundary points a1, ..., an ∈ T .

Convexity and subtrees

A subset S of T is called convex if x, y ∈ S =⇒ [x, y] ⊂ S. The smallest convex set containing

E ⊂ T is called the convex hull of E, and is denoted by hull(E). More generally, we can easily extend

the definition of convex, convex hull to subset S ⊂ T ∪ ϵ(T ). Note that subset S ⊂ T is convex if and

only if S is connected if and only if S is a subtree. Moreover, S is a finite subtree of T if and only if S is

the convex hull of a finite set E ⊂ T ∪ ϵ.

Branched coverings between R-trees

We now give the definition of a branched covering between R-trees:

Definition 3.1. Let f : T1 −→ T2 be a continuous map between two R-trees, we say f is a degree d
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branched covering if there is a finite subtree S ⊂ T1 such that

1. S is nowhere dense in T1, and f(S) is nowhere dense in T2.

2. For every y ∈ T2 − f(S), there are exactly d preimages in T1.

3. For every x ∈ T1 − S, f is a local isometry.

4. For every x ∈ S, and any sufficiently small neighborhood U of f(x), f : V − f−1(f(V ∩ S)) −→
U − f(V ∩ S) is an isometric covering, where V is the component of f−1(U) containing x.

Local degree and critical sets

Let f : T1 −→ T2 be a degree d branched covering, and x ∈ T1, we define the local degree at x, denoted

as degx(f) as the degree of the isometric covering of f(x), f : V − f−1(f(V ∩ S)) −→ U − f(V ∩ S)

for sufficiently small neighborhood U of f(x). We define C(f) = {x ∈ T1 : degx(f) ≥ 2}. Note that

C(f) ⊂ S. The image of C(f) are called the critical values of f and denoted by CV (f)

Here are some properties which can be easily verified using definitions:

Proposition 3.2. Let f : T1 −→ T2 be a degree d branched covering, then

1. C(f) is a closed set.

2. For y ∈ T2,
∑

f(x)=y degx(f) = d.

3. If degx(f) = 1, then f is a local isometry near x.

4. For every x ∈ T1, and any sufficiently small neighborhood U of f(x), f : V − f−1(f(V ∩
C(f))) −→ U − f(V ∩ C(f)) is an isometric covering where V is the component of f−1(U)

containing x.

5. If U is a subtree disjoint from C(f), then f maps U isometrically to f(U).
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Tangent maps

Let f : T1 −→ T2 be a degree d branched covering, note that if [x, y] is sufficiently small, f([x, y]) is

contained in a connected component of T − {x}. Hence, we define the tangent map for f at x

Dxf : Tx T1 −→ Tf(x) T2

v⃗ +→ w⃗

if f([x, y]) ⊂ Uw⃗ where [x, y] is any segment representing v⃗. Given v⃗, we define the local degree of x ∈ T

at direction v⃗, denoted as degv⃗(Dxf), as the degree of the local isometric covering

f : Uv⃗ ∩ (V − f−1(f(V ∩ C(f)))) −→ UDxf(v⃗) ∩ (U − f(V ∩ C(f)))

for sufficiently small neighborhood U of f(x).

The following can be easily verified from the definitions:

Proposition 3.3. Let f : T1 −→ T2 be a degree d branched covering, and Dxf : Tx T1 −→ Tf(x) T2 be

the tangent map at x, and w⃗ ∈ Tf(x) T2, then

∑

Dxf(v⃗)=w⃗

degv⃗(Dxf) = degx(f)

In particular, Dxf is surjective.

3.2 Algebraic limit of rational maps

The space Ratd(C) of rational maps of degree d is an open variety of P2d+1
C . More concretely, fixing a co-

ordinate system of P1
C, then a rational can be expressed as a ratio of homogeneous polynomials f(z : w) =
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(P (z, w) : Q(z, w)), where P and Q have degree d with no common divisors. Using the coefficients of P

and Q as parameters, we have

Ratd(C) = P2d+1
C − V (Res)

where Res is the resultant of the two polynomials P and Q.

One natural compactification of Ratd(C) is Ratd(C) = P2d+1
C . We will call this compactification the

algebraic compactification. Every map in f ∈ Ratd(C) determines the coefficients of a pair of homoge-

neous polynomials, and we write

f = (P : Q) = (Hp : Hq) = Hϕf

where H = gcd(P,Q) and ϕf = (p : q) is a rational map of degree at most d. A zero of H is called a hole

of f and the set of zeros ofH is denoted byH(f). We will also define the degree of f ∈ Ratd(C) as the

degree of ϕf .

The following lemma is standard (see Lemma 4.2 in [DeM05]):

Lemma 3.4. Let fn ∈ Ratd(C) be a sequence converges algebraically to f = Hϕf ∈ Ratd(C), then fn

converges compactly to ϕf on P1
C −H(f).

The following lemma is also standard (Cf. Lemma 4.5 and Lemma 4.6 in [DeM05]):

Lemma 3.5. Let fn ∈ Ratd(C) be a sequence converges algebraically to f = Hϕf ∈ Ratd(C), and h is

a hole of f .

1. If ϕf ≡ c, then for any neighborhood U of h, any point a ∈ P1
C − {c}, there exists a N such that for

all n ≥ N , f−1
n (a) ∩ U ̸= ∅.

2. If deg(ϕf ) ≥ 1, then for any neighborhood U of h, there exists a N such that for all n ≥ N ,
fn(U) = P1

C, and U contains some critical points of fn.
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We also have a similar result for barycentric extensions:

Lemma 3.6. Let fn ∈ Ratd(C) be a sequence converges algebraically to f = Hϕf ∈ Ratd(C), and

assume deg(ϕf ) ≥ 1, then E fn converges compactly to Eϕf .

Proof. We first claim that E fn coverges to Eϕf pointwise. By naturality, it suffices to show that E fn(0)

converges to 0 under the assumption that Eϕf (0) = 0.

LetMn(0) = E fn(0). First note thatMn is bounded in PSL2(C), as otherwise, there is a subsequence

so that (M−1
n ◦ fn)∗µS2 converges weakly to a delta measure, which is a contradiction as (M−1

n ◦ fn)∗µS2

is balanced (see 2.1.1) for all n. We claimMn(0) converges to 0, as otherwise, there is a subsequence so

thatM−1
n converges toM−1 ∈ PSL2(C) withM(0) ̸= 0. This means that (M−1 ◦ ϕf )∗µS2 is balanced

(see 2.1.1), so Eϕf (0) = M(0) ̸= 0 which is a contradiction. Hence E fn coverges to Eϕf pointwise.

Now by Theorem 1.1, the sequence E fn is Cd-Lipschitz, so the pointwise convergence can be pro-

moted to uniform convergence on any compact set. Therefore, E fn converges compactly to Eϕf .

We define a notion of convergence of annulus as follows (Cf. Carathéodory topology in Section 5 of

[McM94]).

Definition 3.7. Let Un be topological disks of C, and Kn be a compact and connected subset of Un respec-

tively. Let An = Un −Kn and un ∈ Kn. We say (An, un) converges to the annulus (A, u) if A = U −K

where U is a topological disk andK ⊂ U is compact and connected such that

1. un converges to u.

2. Kn converges in the Hausdorff topology on compact subset of P1
C toK.

3. P1
C − Un converges in the Hausdorff topology on compact subset of the sphere to D, and U is a

component of P1
C −D containing u.

40



Equivalently, the annuli An = Un −Kn and un ∈ Kn converges to A = U −K and u ∈ K if (Un, un)

converges to (U, u) in Carathéodory topology andKn converges toK in Hausdorff topology.

The proof of the following lemma can be found in the proof of Theorem 5.8 in [McM94].

Lemma 3.8. The space of pairs (A, u) withm(A) ≥ m is compact up to affine conjugacy.

More precisely, any sequence (An, un) withm(An) ≥ m, normalized so that un = 0 and the diameter

of the bounded component of C−An is 1, has a convergent subsequence.

The following lemma will be used to give criterions to bound the degree of the algebraic limit.

Lemma 3.9. Let fn ∈ Ratd(C), and A ⊂ C− {0} be an annulus of modulus ≥ m. Let An be an annulus

of C − {0} such that the diameter of the bounded component of C − An is 1 and fn : An −→ A is

a degree en covering map. Then after passing to a subsequence and perturbing A if necessary, we have

f = limn→∞ fn = Hϕf , en = e for all n, (An, 0) converges to an annulus (A∞, 0), and ϕf : A∞ −→ A

is a degree e covering map. In particular deg(limn→∞ fn) ≥ e.

Proof. After passing to a subsequence, we may assume f = limn→∞ fn = Hϕf , e = en for all n. Since

m(An) ≥ m/d, by Lemma 3.8, we may also assume that (An, 0) converges to an annulus (A∞, 0).

Perturb A if necessary, we may assume there are no holes of f on ∂A∞. We will now show that ϕf :

A∞ −→ ϕf (A∞) is a degree e covering map. First we claim A∞ ∩ H(f) = ∅. Otherwise, there is an

open set U ⊂ A∞ and a point a ∈ P1
C − A so that a ∈ fn(U) for all sufficiently large n by Lemma 3.5.

This is a contradiction to fn(U) ⊂ A. Hence fn converges uniformly on a neighborhood of A∞ to ϕf by

Lemma 3.4, so ϕf is proper on A∞. We note that A∞ contains no critical point of ϕf as otherwise there is

a critical point of fn near c for all sufficiently large n which is not possible. Hence ϕf is a covering map.

The degree is e as fn converges uniformly on a neighborhood of A∞ to ϕf .
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3.3 Ultrafilters and ultralimits

In this section, we review the theory of ultrafilter on a set. Refer to [KL95, LR75, Roe03] for more details.

Given a countable set I , a subset ω ⊂℘(I) of the powerset of I is called an ultrafilter if

1. If A,B ∈ ω, then A ∩B ∈ ω;

2. If A ∈ ω and A ⊂ B, then B ∈ ω;

3. ∅ /∈ ω;

4. If A ⊂ I , then either A ∈ ω or I −A ∈ ω

By the virtue of the 4 properties of an ultrafilter, one can think of a ultrafilter ω as defining a finitely

additive {0, 1}-valued probability measure on I: the sets of measure 1 are precisely those belonging to the

filter ω. We will call such sets as ω-big or simply big. Its complement is called ω-small or simply small. If

a certain property is satisfied by a ω-big set, then we will also say this property holds ω-almost surely.

Example. Let a ∈ I , we define

ωa := {A ⊂℘(I) : a ∈ A}.

It can be easily verified that ωa is an ultrafilter on I .

An ultrafilter of the above type will be called a principal ultrafilter. It can be shown that an ultrafilter is

principal if and only if it contains a finite set. An ultrafilter which is not principal is called a non-principal

ultrafilter. The existence of a non-principal ultrafilter is guaranteed by Zorn’s lemma.

Limit of a sequence of points with respect to an ultrafilter

Let ω be a non-principal ultrafilter on N. If xn be a sequence in a metric space (X, d) and x ∈ X , we say

x is the ω-limit of xn, denoted by

lim
ω

xn = x
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if for every ϵ > 0, the set {n : d(xn, x) < ϵ} is big.

It can be easily verified (see [KL95]) that

1. If the ω-limit exists, then it is unique.

2. If xn is contained in a compact set, then the ω-limit exists.

3. If x = limn→∞ xn in the standard sense, then x = limω xn.

4. If x = limω xn, then there exists a subsequence nk such that x = limk→∞ xnk in the standard
sense.

From these properties, one should intuitively think (as one of the benefits) of the non-principal ultra-

filter ω as performing all the subsequence-selection in advance, and all sequences in compact spaces will

automatically converge without the need to pass to any further subsequences.

From now on and throughout the rest of the thesis, we will fix a non-principal ultrafilter ω on N.

3.4 Barycentric extensions of a sequence on ∗H3

We define two sequences (xn), (yn) of H3 to be equivalent if

lim
ω

dH3(xn, yn) < ∞

The space of equivalence classes is denoted as ∗H3. We will abuse the notation a little bit and use a se-

quence (xn) to denote a point in ∗H3. We will also use x0 to denote the point (0) ∈ ∗H3.

Given a sequence fn ∈ Ratd(C), Theorem 1.1 immediately implies the map

E (fn) :
∗H3 −→ ∗H3

(xn) +→ (E fn(xn))

43



is well defined.

We first note that

Lemma 3.10. Let fn ∈ Ratd(C), x, y ∈ ∗H3, and Mn, Ln ∈ PSL2(C) be such that x = (Mn(0)) and

y = (Ln(0)). Then E (fn)(x) = y if and only if

deg(lim
ω

L−1
n ◦ fn ◦Mn) ≥ 1

Moreover, deg(limω L−1
n ◦ fn ◦Mn) is well-defined, and for any (yn) representing y ∈ ∗H3, there is a

sequence (xn) representing x ∈ ∗H3 such that E fn(xn) = yn ω-almost surely.

Proof. By naturality of the barycentric extension, it suffices to prove that E (fn)(x0) = x0 if and only

if deg(limω fn) ≥ 1. Note that since the algebraic compactification Ratd(C) = P2d+1
C is compact, so

limω fn always exists.

If E (fn)(x0) = x0, let yn = E fn(0), and Ln(0) = yn, Since (yn) represents x0 ∈ ∗H3, we know

lim
ω

Ln ∈ PSL2(C) (3.4.1)

By naturality of the extension, we have E (L−1
n ◦ fn)(0) = 0. This means that the push forward of the

spherical measure (L−1
n ◦ fn)∗µS2 is balanced. Hence the degree of limω L−1

n ◦ fn cannot be 0. Therefore,

combining with equation (3.4.1), we have

deg(lim
ω

fn) ≥ 1.

Conversely, if E (fn)(x0) ̸= x0, let Ln ∈ PSL2(C) be such that Ln(0) = E (fn)(0). Then deg(limω Ln) =

0. Hence we have

deg(lim
ω

L−1
n ◦ fn) ≥ 1.
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Suppose for contradiction that limω fn = Hϕf with deg(ϕf ) ≥ 1, then by Lemma 3.4, after passing

to a subsequence, fn converges compact to ϕ away from finitely many points. So L−1
n ◦ fn converges

compactly to a constant map away from finitely many points, which is a contradiction.

Since changing representatives x and y only changesMn and Ln by elements of a compact subset of

PSL2(C), the degree is well-defined.

To prove the last statement, by naturality, it suffices to prove if E (fn)(x0) = x0, then there is a se-

quence (xn) representing x0 ∈ ∗H3 and E fn(xn) = 0. Let f := limω fn = Hϕf , by Lemma 3.6, E fn

converges compactly (as ultralimit) to Eϕf . Recall that we identify H3 with the unit ball in R3 and we

choose a Euclidean ball B(0, r) ⊂ R3 with r < 1 such that (Eϕf )−1(0) ∩ (B(0, 1)− B(0, r)) = ∅. This

is possible as Eϕf is proper.

Now we claim that (E fn)−1(0) ∩ B(0, r) ≠ ∅. Indeed, suppose for contradiction that (E fn)−1(0) ∩

B(0, r) = ∅, we can define a sequence of new maps

Fn : B(0, r) −→ S2

x +→ E fn(x)/|E fn(x)|R3

and

F : ∂B(0, r) −→ S2

x +→ Eϕf (x)/|Eϕf (x)|R3

Since E fn converges uniformly (as ultralimit) to Eϕf on ∂B(0, r), Fn|∂B(0,r) is homotopic F ω-

almost surely. But F is homotopic to ϕf , and since ϕf has degree ≥ 1, Fn|∂B(0,r) has degree ≥ 1. So

Fn cannot extend to a continuous map from B(0, r) to S2, which is a contradiction.

We now choose xn ∈ B(0, r) such that E fn(xn) = 0, then (xn) gives the sequence in the last state-
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ment.

Definition 3.11. Let fn ∈ Ratd(C), x, y ∈ ∗H3, with E (fn)(x) = y. Let Mn, Ln ∈ PSL2(C) be such that

x = (Mn(0)) and y = (Ln(0)). We define the multiplicity of E (fn) at x as deg(limω L−1
n ◦ fn ◦Mn).

We will now prove the following:

Proposition 3.12. Let fn ∈ Ratd(C), then every point y ∈ ∗H3 has exactly d preimages under E (fn)

counted multiplicities.

Proof. By naturality, we only need to consider the preimages of the point x0 ∈ ∗H3.

Let

CV = {lim
ω

zn : zn is a critical value of fn}

Note that |CV | ≤ 2d−2. Let A ⊂ P1
C−CV be an annulus of modulusm. We choose A so that A contains

no critical values of fn ω-almost surely. By Riemann-Hurwitz formula, each component of f−1
n (A) is an

annulus ω-almost surely, and there are at most d components.

In the following, to avoid cumbersome notations, the definitions should be understood as for an ω-big

subset of N. We label the components f−1
n (A) as A1,n, A2,n, ..., Ak,n. Each component Ai,n is a covering

of A, and we denote di,n as the degree of the cover. Note that
∑k

i=1 di,n = d.

We first show that there are at most d preimages of x0 counted multiplicities. Let xn = Mn(0) and as-

sume that E fn(xn) = 0. Let f := limω fn◦Mn = Hϕf , then by Lemma 3.10, we have q := deg(ϕf ) ≥ 1.

Let A1, ..., Ap denote the component of ϕ−1
f (A). Note that each Ai is an annulus as A contains no critical

values of ϕf .

Perturbing A if necessary, we may assume that ∂Ai contains no holes of f . We claim that Ai ∩H(f) =

∅. Indeed, if not, then there is an open ball U ⊂ Ai such that fn(U) = P1
C ω-almost surely by Lemma 3.5.

By Lemma 3.4, there is an index j, such that limω M−1
n (∂Aj,n) = ∂Ai in the sense of Hausdorff distance.

Then U ⊂ M−1
n (Aj,n) ω-almost surely, which is a contradiction to fn(Aj,n) = A.
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Therefore, we can associate each component Ai an index ji such that limω M−1
n (Aji,n) = Ai with

∑p
i=1 dji,n = q ω-almost surely. So there are at most d preimages of (0) counted multiplicities.

To show there are at least d preimages of x0 counted multiplicities, for each i, we choose sequence

Mi,n ∈ PSL2(C) so thatM−1
i,n (Ai,n) is an annulus in C, 0 is in the bounded componentKi,n of C −

M−1
i,n (Ai,n) and diam(Ki,n) = 1. Let x = (Mi,n(0)), then by Lemma 3.9, E (fn)(x) = x0 and has

multiplicity at least di. Note that if (Mi,n(0)) and (Mj,n(0)) represent the same point in ∗H3, then the

multiplicity of that point is at least di + dj . So there are at least d preimages counted multiplicities.

Therefore, there are exactly d preimages counted multiplicities.

Given two points x, y ∈ H3, we can associate an annulus, denoted by A(x, y), defined as follows. Let

H1 and H2 be two geodesics planes perpendicular to the geodesic segment [x, y] and passing though x and

y respectively. The boundary ofH1 and H2 in P1
C
∼= ∂H3 are two circles C1 and C2. The annulus A(x, y)

is defined as the region bounded by C1 and C2. Note that the modulusm(A(x, y)) = dH3(x, y)/2π. We

say a sequence of annuli An approximates A′
n if there is a sequence of annuli Cn ⊂ An ∩ A′

n such that

limω m(Cn)/m(An) and limω m(Cn)/m(A′
n) exist and are not zero.

The following lemma will be used later:

Lemma 3.13. Let fn ∈ Ratd(C), xn, yn ∈ H3 such that (xn), (yn) represents different points x ̸= y ∈
∗H3 and A(xn, yn) contains no critical values of fn ω-almost surely. Let a1 = (a1,n), ..., ak = (ak,n) and

b1 = (b1,n), ..., bl = (bl,n) be the preimages of x and y with multiplicity e1, ..., ek and e′1, ..., e
′
l respectively.

Let I = {1, ..., k} and J = {1, ..., l}. Then there exists a local degree function d : I × J −→ N such that

1. If d(i, j) ̸= 0, then fn is a degree d(i, j) covering on the component f−1
n (A(xn, yn)) approximating

A(ai,n, bj,n) (defined for ω-big set).

2. ei =
∑l

j=1 d(i, j) and e′j =
∑k

i=1 d(i, j)

3. If d(i, j) ̸= 0, then limω dH3(ai,n, bj,n)/dH3(xn, yn) = 1/d(i, j).
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Proof. We will construct the local degree function for i = 1. Other values of i can be treated in a similar

fashion. By naturality of the extension, we may assume xn = 0 and a1,n = 0. Applying a sequence of

rotations, we can also assume that one of the boundary of An := A(xn, yn) is the unit circle S1, and the

other boundary is denoted by Cn. Since (yn) ̸= (xn) ∈ ∗H3, the modulusm(An) = dH3(0, yn)/2π is

unbounded.

In the following, to avoid cumbersome notations, the definitions should be understood as for an ω-big

subset of N. Since An contains no critical values of fn, by Riemann-Hurwitz formula, each component of

f−1
n (An) is an annulus. Denote these annuli by A1,n, ..., Ak,n.

Let f = limω fn = Hϕf . Note that e1 = deg(ϕf ) ≥ 1 by Lemma 3.10. Perturb S1 if necessary, we

may assume there is no holes of f on ϕ−1
f (S1). Relabeling the indices if necessary, and we assume that

A1,n, ..., Ak1,n correspond to the sequences of components so that one of the boundaries converges to a
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component of ϕ−1
f (S1).

For u = 1, ..., k1, we denote Cu,n be the boundary component of Au,n which is mapped to Cn and C ′
u,n

be the boundary component which is mapped to S1. By applying a bounded sequence in PSL2(C), we

may assume that 0 and∞ are in the component of P1
C − Au,n bounded by Cu,n and C ′

u,n respectively. We

let e = e(u) denote the degree of the covering fn : Au,n −→ An. We let Du,n = maxz∈Cu,n |z|. Since

each C ′
u,n converges to a component of ϕ−1

f (S1) and there are no holes on ϕ−1
f (S1), so minz∈C′

u,n
|z| ≥

c > 0 is bounded below. Hence,m(Au,n) = log(1/Du,n)
2π + O(1) (see Theorem 2.1 in [McM94]). Let

Mu,n ∈ PSL2(C) be hyperbolic transformation fixing 0 and∞ such thatmaxz∈M−1
u,n(Cu,n)

|z| = 1. Let

b = (Mu,n(0)), by Lemma 3.9 and naturality of the extension, b is mapped to y. So there is an index j ∈ J

so that b = (bj,n) ∈ ∗H3. We define d(1, j) = e.

Note that

lim
ω

dH3(0, bj,n)/dH3(0, yn) = lim
ω
(log(1/Du,n) +O(1))/dH3(0, yn)

= lim
ω
(2πm(Au,n) +O(1))/2πm(An)

= lim
ω
(2πm(An)/e+O(1))/2πm(An) = 1/e

The last equality holds as limω 2πm(An) = ∞.

We set d(1, j) = 0 if the index j does not appear after all k1 constructions as above. Since e1 equals to

the sum of the local degree of coverings of ϕf on ϕ−1
f (S1), we immediately get e1 =

∑l
j=1 d(1, j). We

can define the local degree functions for other values of i’s. ei =
∑l

j=1 d(i, j) and e
′
j =

∑k
i=1 d(i, j) can

be checked in a similar fashion.

Using similar proof, we also have

Lemma 3.14. Let fn ∈ Ratd(C), xn, yn ∈ H3 such that (xn), (yn) represents different points x ̸= y ∈
∗H3 and A(xn, yn) contains no critical points of fn ω-almost surely. Then there are (an) and (bn) repre-
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senting E (fn)(x),E (fn)(y) ∈ ∗H3 so that fn is a degree e covering on the component of f−1
n (A(an, bn))

approximating A(xn, yn) (defined for ω-big set) and

lim
ω

dH3(E fn(xn),E fn(yn))/dH3(xn, yn) = e

3.5 Criterions for degenerating sequences

Recall that a sequence fn ∈ Ratd(C) is called degenerating if fn escapes every compact subset of Ratd(C).

We first give a criterion for a sequence of rational maps to be degenerating

Lemma 3.15. Let fn ∈ Ratd(C), then fn is degenerating if and only if

rn := max
y∈E f−1

n (0)
dH3(y,0) → ∞

Proof. If fn is degenerating, and suppose for contradiction that rn ̸→ ∞. Then after passing to a sub-

sequence, we can assume that rn is bounded. After passing to a further subsequence, we can assume

limn→∞ fn = f ∈ Ratd(C). Note that deg(f) < d as fn is degenerating. Hence x0 ∈ ∗H3 has multi-

plicity deg f < d under E (fn) : ∗H3 −→ ∗H3. But by Lemma 3.10 and Proposition 3.12, we know there

exists a sequence (xn) such that E fn(xn) = 0 and (xn) ̸= x0 ∈ ∗H3. Therefore, limω dH3(xn,0) = ∞,

which is a contradiction to rn is bounded.

Conversely, if rn → ∞, and suppose for contradiction that fn is not degenerating. Then f = limω fn ∈

Ratd(C), so x0 ∈ ∗H3 has multiplicity d. Let xn be such that E fn(xn) = 0 and dH3(xn,0) → ∞. Note

that (xn) ̸= x0 ∈ ∗H3. By Proposition 3.12, x0 has exactly d preimages in ∗H3 counted multiplicities, so

this is a contradiction.

Recall that the group of Möbius transformations PSL2(C) acts on Ratd(C) by conjugation and the mod-

uli space of rational maps is its quotientMd(C) = Ratd(C)/PSL2(C). Given a sequence [fn] ∈ Md(C),
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it is degenerating as conjugacy classes if for every sequence gn of representatives for [fn], gn is degen-

erating as rational maps. Equivalently, [fn] escapes every compact subset ofMd(C) equipped with the

quotient topology. We define

r([f ]) := min
x∈H3

max
y∈E f−1

n (x)
dH3(y, x)

and note that the definition does not depend on the choice of representatives, and the minimum is achieved

as maxy∈E f−1(x) dH3(y, x) → ∞ as x → S2. The following is an easy corollary of Lemma 3.15 and the

definitions:

Lemma 3.16. Let [fn] ∈ Md(C) be a sequence of conjugacy classes of rational maps, then [fn] is degen-

erating (as conjugacy classes) if and only if

r([fn]) → ∞

3.6 Ultralimit and asymptotic cone of metric spaces

For most of the applications, ∗H3 is too big to work with. In this section, we will introduce a quotient of a

subspace of ∗H, which can be naturally equipped with a metric.

Let (Xn, pn, dn) be a sequence of pointed metric spaces with basepoints pn. Let X denote the set of

sequences (xn), xn ∈ Xn such that dn(xn, pn) is a bounded function of n. We also define an equivalence

relation ∼ by

(xn) ∼ (yn) ⇔ lim
ω

dn(xn, yn) = 0

Let Xω = X/ ∼, and we define

dω((xn), (yn)) = lim
ω

dn(xn, yn)
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We shall abuse notation a little bit and use the sequence (xn) to denote a point in Xω, even though

strictly speaking one should deal with equivalence classes of sequences. The distance function dω makes

(Xω, (pn), dω) a pointed metric space, and is called the ultralimit of (Xn, pn, dn), and is written as

lim
ω
(Xn, pn, dn)

or simply limω Xn for short.

The ultralimit of Xn has many of the desired properties (see Section 7.5 in [Roe03] and [KL95] for

associated definitions and proofs):

1. The ultralimitXω is always a complete metric space.

2. The ultralimit of a length space is a length space.

3. The ultralimit of a geodesic space is a geodesic space.

4. If Xn are proper metric spaces, with (Xn, pn) → (Y, y) in the sense of Gromov-Hausdorff, then

(Y, y) ∼= lim
ω
(Xn, pn).

Now let (X, p) be a fixed pointed metric space. Given a positive sequence rn with limω rn = ∞, which

will be called a rescaling, the asymptotic cone of X with respect to the rescaling rn and the base point p is

the ultralimit of the sequence (X, p, 1
rn
d), and is denoted by (rX, (p), dω) or simply rX for short.

Asymptotic cone of H3

Let rn → ∞ be a rescaling, we let rH3 to be the asymptotic cone of H3 with rescaling rn. It is well known

that rH3 is an R-tree (see [KL95] and [Roe03]).

Let z ∈ P1
C

∼= S2, we denote γ(t, z) ∈ H3 as the point at distance t away from 0 in the direction
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corresponding to z. Then given any sequence zn ∈ P1
C, the ray

s(t) = (γ(t · rn, zn))

is a geodesic ray parameterized by arc length in rH3. So we can associate a sequence (zn) to an end in

ϵ(rH3). Conversely, if s(t) is a geodesic ray starting from (0). Let (γ(k · rn, zk,n)) represent the point

s(k), then the geodesic ray s′(t) = (γ(t · rn, zn,n)) represents the same end as s(t). It is not hard to work

out in detail when two sequences (zn) and (wn) represent the same end. As we shall see in Chapter 4, the

set of ends corresponds to the projective space of a non-Archimedean field ρC.

Given x ∈ rH3, the tangent space Tx
rH3 is uncountable. For example, the geodesic rays s(t) = (γ(t ·

rn, z)) represents different tangent vectors at x0 for different z ∈ P1
C, so Tx0

rH3 contains P1
C. In Chapter

4, we shall see that the tangent space corresponds to the projective space of the residual field of ρC.

Let v⃗ ∈ Tx
rH3, recall that Uv⃗ is the component of rH3 − {x} corresponding to the direction v⃗. We can

associate a sequence of hyperbolic half space to Uv⃗ as follows. Let y ∈ Uv⃗, and (xn), (yn) representing

x, y ∈ rH3. Let H v⃗
n ⊂ H3 be the hyperbolic half space bounded by the hyperbolic plane passing through

xn and perpendicular to the geodesic [xn, yn] that contains yn. Let S v⃗
n, D

v⃗
n ⊂ P1

C
∼= S2 denote the bound-

ary circle and disk in S2 associated to H v⃗
n. Note that the definitions require a lot of choices, but to avoid

cumbersome notations, we will drop the dependence of choices in the notations.

If Ua1,...,ak is an open connected subset of rH3 with finitely many boundary points a1, ..., ak. We let

Ha1,...,ak
n =

k⋂

j=1

H
v⃗j
n

where v⃗j is the tangent vector at aj associated to U . We define similarly for Sa1,...,ak
n and Da1,...,ak

n . Using

the definition, we have

Lemma 3.17. Let Ua1,...,ak be an open connected subset of rH3 with boundary points a1, ..., ak, then x ∈
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U if and only if for any representative x = (xn) and any choiceHa1,...,ak
n , xn ∈ Ha1,...,ak

n ω-almost surely.

The following definition will be useful to study the limiting maps on rH3.

Definition 3.18. Let Ua1,...,ak be an open connected subset of rH3 with boundary points a1, ..., ak, we say

Dn ⊂ P1
C
∼= S2 is a domain approximating U if there exist two choices 1Ha1,...,ak

n , 2Ha1,...,ak
n so that

1Ha1,...,ak
n ⊂ hullDn ⊂ 2Ha1,...,ak

n

ω-almost surely. Or equivalently,
1Da1,...,ak

n ⊂ Dn ⊂ 2Da1,...,ak
n

ω-almost surely.

3.7 Barycentric extensions of a sequence on rH3

In this section, we will construct a map on rH3. Let fn ∈ Ratd(C) be a degenerating sequence of ratio-

nal maps which will be fixed throughout this section. Lemma 3.15 gives us a natural choice of rescalings

rn := maxy∈E f−1
n (0) dH3(y,0). Let rH3 be the asymptotic cone of (H3,0) with respect to the rescaling rn.

We define the map

Ebc(fn) :
rH3 −→ rH3

(xn) +→ (E fn(xn))

We will first show that it is well defined:

Lemma 3.19. Ebc(fn) is well defined and Lipschitz.
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Proof. Let xn ∈ (E fn)−1(0), then (xn) represents a point in rH3 as dH3(0, xn)/rn is bounded. If (yn) ∈
rH3, then limω dH3(xn, yn)/rn < ∞. By Theorem 1.1, E fn is Cd-Lipschitz, so their image

lim
ω

dH3(0,E fn(yn))/rn = lim
ω

dH3(E fn(xn),E fn(yn))/rn ≤ Cd lim
ω

dH3(xn, yn)/rn < ∞

Therefore (E fn(yn)) represents a point in rH3.

If two sequences (an), (bn) represents the same point in rH3, then limω dH3(an, bn)/rn = 0. Hence

their image

lim
ω

dH3(E fn(an),E fn(bn))/rn ≤ Cd lim
ω

dH3(an, bn)/rn = 0

Therefore Ebc(fn) is well defined.

The fact that Ebc(fn) is Lipschitz follows from the fact that E fn is Cd-Lipschitz for a universal C.

Local degrees

We will now give a definition of multiplicity of the map Ebc(fn) using the multiplicities of E (fn) : ∗H3 −→
∗H3. Let x = (xn), y = (yn) ∈ rH3 be such that Ebc(fn)(x) = y. Note (yn) represents a point in ỹ ∈ ∗H3,

and we let x1, ..., xk ∈ ∗H3 be its preimages with multiplicities e1, ..., ek. We define the multiplicity of

Ebc(fn) at x, denoted by degx Ebc(fn) as

degx Ebc(fn) =
∑

xi∈∗H3 represents x∈rH3

ei

Proposition 3.20. degx Ebc(fn) is well defined, and every y ∈ rH3 has exactly d preimages counted

multiplicities.

Proof. We will show that the definition of the multiplicity does not depend on the choice of representa-

tives. Let (yn), (wn) represents the same point in y ∈ rH3 but different points ỹ ̸= w̃ ∈ ∗H3, and
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(a1,n), ..., (ak,n) and (b1,n), ..., (bl,n) be the preimages of ỹ and w̃ in ∗H3 repectively, with index set I =

{1, ..., k} and J = {1, ..., l}. We also assume that first u points (a1,n), ..., (au,n) represent the same point

as x in rH3.

Assume first that the annulus A(yn, wn) contains no critical values of fn ω-almost surely, then by

Lemma 3.13, there exists a local degree function d : I × J −→ N. We let S ⊂ J be the set of index j

such that d(i, j) ̸= 0 for some i = 1, ..., u. By property (2) of the local degree function in Lemma 3.13, for

j ∈ S, (bj,n) represents the same point as x in rH3. Note that for j ∈ S and i > u d(i, j) = 0, as other-

wise (ai,n) represents x in rH3 by property (2) in Lemma 3.13. Therefore, we have
∑u

i=1 ei =
∑

j∈S e′j
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by property (1) in Lemma 3.13. Therefore, the definition of the degree agrees for (yn) and (wn).

More generally, we can choose a finite points p1,n := yn < q1,n < p2,n < ... < pk,n < qk,n := wn on

the geodesic segment [yn, wn] such that

1. dH3(pi,n, qi,n) ≤ 1

2. The annulus A(qi,n, pi+1,n) contains no critical values of fn

Then the definition of multiplicity at x agrees for (qi,n) and (pi+1,n) by the previous argument. Note

that (pi,n) and (qi,n) represent the same point in ∗H3, so the definition of multiplicity also agrees. There-

fore, degx Ebc(fn) is well defined.

Let y = (yn) ∈ rH3, if A(0, yn) contains no critical values ω-almost surely, then Lemma 3.13 implies

that for any preimage (xn) ∈ ∗H3 of (yn), limω dH3(0, xn)/rn < ∞. Hence (xn) represents a point in

rH3. More generally, we can cut the geodesic segment [0, yn] into finite pieces and argue as above. There-

fore, every point y has exactly d preimages counted multiplicities in rH3 by Proposition 3.12.

Critical subtree

Let c1,n, ..., c2d−2,n be the 2d − 2 critical points of fn. Then κ1 = (c1,n), ...,κ2d−2 = (c2d−2,n) represent

2d−2 ends (which may be the same) of the tree rH3. Let S = hull(κ1, ...,κ2d−2), then S is a finite subtree

of rH3. We will call S the critical subtree.

The following lemma gives criterions for points in the convex hull.

Lemma 3.21. Let x ∈ rH3 and assume x = (Mn(0)) withMn ∈ PSL2(C). Let E = {(a1,n), (a2,n)} ⊂

ϵ(rH3), and ai = limω M−1
n (ai,n) ∈ P1

C. If a1 ̸= a2, then x ∈ hull(E).

Proof. Note that it suffices to prove the case for xn = 0. Consider the geodesic rays s1(t) = (γ(t ·

rn, a1,n)) and s2(t) = (γ(t·rn, a2,n)). Since limω a1,n ̸= limω a2,n, s1((0,∞)) is disjoint from s2((0,∞)).

Hence x0 = s1(0) = s2(0) is in the convex hull of E.
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3.8 Proof of Theorem 1.2

We will now prove Theorem 1.2 by proving three lemmas.

Lemma 3.22. Let U be a subtree of rH3 − S, then Ebc(fn) : U −→ Ebc(fn)(U) is an isometry.

Proof. Let x, y ∈ U with d(x, y) = l ̸= 0, we will show that d(Ebc(fn)(x),Ebc(fn)(y)) = l.

If the projection of S onto the geodesic segment [x, y] ⊂ rH3 is one of the two end points, we can

choose representatives of (xn) and (yn) of x, y so that only one component of P1
C − A(xn, yn) contains

critical points ω-almost surely. Therefore, fn is an isomorphism on an annulus approximating A(xn, yn),

so by Lemma 3.14, d(Ebc(fn)(x),Ebc(fn)(y)) = l

If the projection of S onto the geodesic segment [x, y] ⊂ rH3 is an interior point a, then by naturality,

we may assume that a = x0 and E fn(0) = 0. We claim that deg(limω fn) = 1. Indeed, by Lemma 3.10,

deg(limω fn) ≥ 1. If deg(limω fn) > 1, then there are at least two distinct limits of critical points of fn

in P1
C, contradicting Lemma 3.21. Therefore, the images of [x, a) and (a, y] are disjoint. Now apply the

previous argument to the geodesic segment [x, a] and [a, y] separately, we get the result.

Therefore, Ebc(fn) is an isometry on U .

Lemma 3.23. Let y ∈ rH3 − Ebc(fn)(S), then it has exactly d preimages.

Proof. Let x ∈ Ebc(fn)−1(y), by Lemma 3.13, if the the local degree at x is strictly greater than 1, then

Ebc(fn) is not a local isometry near x. Hence by Lemma 3.22, we conclude that the local degree at x is 1.

Therefore, there are exactly d preimages by Proposition 3.20.

Lemma 3.24. Let x ∈ rH3, then for sufficiently small neighborhood U of Ebc(fn)(x),

Ebc(fn) : V − Ebc(fn)
−1(Ebc(fn)(V ∩ S)) −→ U − Ebc(fn)(V ∩ S)

is an isometric covering of degree degx Ebc(fn) where V is the component of Ebc(fn)−1(U) containing x.
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Proof. Since Ebc(fn)(x) has exactly d preimages counted multiplicities, in particular, there are at most d

preimages. We choose a neighborhood U of Ebc(fn)(x) so small so that the component V of Ebc(fn)−1(U)

containing x contains no other preimages of Ebc(fn)(x).

Let y ∈ U − Ebc(fn)(S), we will show that y has exactly deg(xn) Ebc(fn) preimages in U (each with

multiplicity 1 by Lemma 3.23).

Let x = (xn) and y = (yn), if A(E fn(xn), yn) contains no critical values of fn ω-almost surely,

since V contains no other preimages of Ebc(fn)(x), so by Lemma 3.13, there are exactly degx Ebc(fn)

preimages in V counted multiplicities.

More generally, we choose p1,n := E fn(xn) < q1,n < p2,n < ... < pk,n < qk,n := yn on the geodesic

segment [E fn(xn), yn] such that

1. dH3(pi,n, qi,n) ≤ 1

2. The annulus A(qi,n, pi+1,n) contains no critical values of fn

Inductively, there are exactly degx Ebc(fn) preimages in V for (pi,n) = (qi,n). Hence there are exactly

degx Ebc(fn) preimages of y in V and each has multiplicity 1 by Lemma 3.23.

The covering map is isometric follows from Lemma 3.22.

Combining the three Lemmas above, we proved Theorem 1.2:

Proof of Theorem 1.2. It is easy to check that S and Ebc(fn)(S) are both no where dense in rH3. So by

Lemma 3.23 and Lemma 3.24, Ebc(fn) is a branched covering of degree d. Note that by Lemma 3.24, the

multiplicity of Ebc(fn) agrees with the definition of local degree of a branched covering on an R-tree.
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3.9 Expanding property and the tangent map Ebc(fn)

In this section, let fn be a degenerating sequence of rational maps of degree d with

rn := max
y∈E f−1

n (0)
dH3(y,0)

and rH3 be the asymptotic cone of H3 with rescaling rn. We will prove the expanding property and study

the tangent map of Ebc(fn) on rH3.

Let U ⊂ rH3, we say a critical end κ is persistent if κ is an end in U . Similarly, we define persis-

tent end for critical values. If U = Ua1,...,ak is an open connected subset of rH3 with boundary points

a1, ..., ak, we can always choose Da1,...,ak
n so that it only contains persistent critical points or critical val-

ues.

Proposition 3.25. Let U = Ua1,...,ak be an open connected subset of rH3 with boundary points a1, ..., ak,

and V be a component of Ebc(fn)−1(U). If Da1,...,ak
n associated to U contains only persistent critical val-

ues, then there is a component Dn of f−1
n (Da1,...,ak

n ) which is a domain approximating V .

Moreover, the degree of the branched coverings of fn on Dn agrees with the degree of Ebc(fn) on V .

Proof. We may assume k = 1, the general case can be proved by taking intersections.

By naturality of the extension, we may assume x0 ∈ V is mapped to x0 ∈ U . We may further assume

that E fn(0) = 0. Let Sn denote the boundary of Da1
n , we may assume there is an annulus neighborhood

An so that each component of An − Sn has modulusK sufficiently large, and An contains no critical

values of fn ω-almost surely. Choose b ∈ U close to a1 so that no end for critical values projects to the

interior of [a1, b]. Since Da1
n contains only persistent critical values, we letDa1,b

n ⊂ Da1
n contains no

critical values ω-almost surely. Let x1, ..., xj be the preimages of a1 that are also the boundary points of V ,

and y1, ..., yj be the preimages of b in V , then [xi, yi] is mapped to [a1, b]. Let Dk,n denote the preimages

of Da1,b
n , where Di,n are associated to [xi, yi] for i = 1, ..., j. Since x0 ∈ V , the diameters of annuli Dk,n
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all converge to 0. We claim that the outermost annuli are exactly those associated to [xi, yi] for i = 1, ..., j.

Indeed, in order to access the geodesic segment associated to the inner annuli from x0 ∈ rH3, one has to

go through the segment [xi, yi] associated to the outer ones. Conversely, if x is a preimage of a1 such that

[xi, yi] ⊂ [x0, x], then the annulus associated to x is nested inside of the annulus Di.

Now let Dn be the component f−1
n (Da1

n ) containing these outermost annuli. Let Si,n denote the preim-

age of Sn associated to these outermost annulus. Note that the preimages Ai,n of An satisfy that each com-

ponent Ai,n − Si,n has large modulus, so Si,n is contained in some annulus with circular boundaries and

with modulus bounded above by 2K. Replace each boundary of Dn by these round circles, we conclude

that Dn is a domain approximating V .

Let e be the degree of the branched covering fn on Dn . Since there are exactly e preimages of x ∈

U − F (S) in V , the two degrees agree.

Theorem 3.26. Let E ⊂ rH3 be a segment such that the projection of critical ends are not in the interior.

Then Ebc(fn) is linear with derivative e on E, where e = degx Ebc(fn) for any (and all) interior point of

E.

Proof. Since the projection of a critical end κi = (ci,n) ∈ ϵ(rH3) to E is not an interior point, so if x =

(xn), y = (yn) are two distinct interior points of S, the annulus A(xn, yn) contains no critical points of fn

ω-almost surely. By Lemma 3.14, there exists an e ∈ N such that d(Ebc(fn)(x),Ebc(fn)(y)) = ed(x, y).

This is true for any pairs of interior points, so Ebc(fn) has to be linear with derivative e.

We will now show that e = degx Ebc(fn) for an interior point of E. Let y ∈ E close to x so that no

ends of critical values projects to (a = Ebc(fn)(x), b = Ebc(fn)(y)). Hence, we can choose representatives

(an) and (bn) for a, b so that A(an, bn) contains no critical values of fn ω-almost surely. Let An be the

component of f−1
n (A(an, bn)) approximating Dx,y. Then any other component of f−1

n (A(an, bn)) does

not intersect A(un, vn) ω-almost surely. Hence by Lemma 3.13, e = degx Ebc(fn).

If E is an edge of the critical tree S, then the projection of critical ends are not in the interior of E, so
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we get

Corollary 3.27. If E is an edge of the critical tree S, then Ebc(fn) is linear with derivative e on S, where

e = degx Ebc(fn) for any interior point of E.

We will now prove some properties for the tangent maps. Recall the definition of tangent maps for a

branched covering on an R-tree is given in Section 3.1.

Lemma 3.28. Let a ∈ rH3, and E be a segment with an end point a. Let v⃗ ∈ Ta
rH3 be the tangent vector

associated to E, then

degv⃗(DaEbc(fn)) = degx(Ebc(fn))

for x ∈ E sufficiently close to a.

Proof. Let x ∈ E be sufficiently close to a so that we can choose a neighborhood U containing Ebc(fn)(a)

and Ebc(fn)(x) and V of Ebc(fn)−1(U) containing a such that V ∩Uv⃗ contains no other preimages Ebc(fn)(x)

than x. Then degx(Ebc(fn)) and degv⃗(DaEbc(fn)) both equal to the number of preimages of y ∈ U ∩Uv⃗ −

Ebc(fn)(V ∩ Uv⃗ ∩ S) in V ∩ Uv⃗ − Ebc(fn)−1(Ebc(fn)(V ∩ Uv⃗ ∩ S)), so they are equal.

Lemma 3.29. Let a ∈ rH3 with e = dega(Ebc(fn)), then

∑

degv⃗(DaEbc(fn))≥2

degv⃗(DaEbc(fn))− 1 = 2e− 2

Proof. Let v⃗i ∈ Ta
rH3 be those vectors associated to the critical tree, i = 1, ..., k. Note that v⃗i contains all

vectors with degree ≥ 2. Choose xi ∈ Uv⃗i close to a so that degv⃗i(DaEbc(fn)) = degxi
(Ebc(fn)). Denote

yi = Ebc(fn)(xi), and let U be the component of rH3 − {y1, .., yk} containing Ebc(fn)(a), and let V be the

component of Ebc(fn)−1(U) containing a. Note that the critical ends project to the boundary of V , so we

can choose Dx1,...,xk
n such that the component Dn of f−1

n (Dx1,...,xk
n ) approximating V contains no critical

points. Note the boundary of Dn associated to xi is mapped as degree degv⃗i(DaEbc(fn)) covering to the
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boundary of Dx1,...,xk
n associated to yi. Therefore, by Riemann-Hurwitz formula for the degree e coverings

on Dn we have

e(k − 2) = (k · e−
∑

(degv⃗i(DaEbc(fn))− 1))− 2

so rearrange, we get
∑

degv⃗(DaEbc(fn))≥2

degv⃗(DaEbc(fn))− 1 = 2e− 2.

Recall the critical locus C := {x ∈ rH3 : degx Ebc(fn) ≥ 2} ⊂ S. We will call an edge E of S a

critical edge if E is in C. We will show that

Theorem 3.30. Let C be the critical locus for the map Ebc(fn) : rH3 −→ rH3, then there is a partition

{κ1, ...,κi1} ∪ ... ∪ {κil−1+1, ...κ2d−2} of the critical ends so that each set has at least 2 elements and

C =
l⋃

j=1

hull(κij−1+1, ...,κij )

with the convention i0 = 0 and il = 2d− 2.

Proof. Let κ be a critical end, and let E be the (infinite) edge of S associated to κ. We will show that the

local degree is ≥ 2 at any interior point of E. Suppose not, then any interior point has degree 1. Let x ∈

E, and v⃗ ∈ Tx
rH3 is the tangent vector associated to the end κ. Then Uv⃗ is mapped isometrically to Uw⃗

for some w⃗ ∈ Ty
rH3 and y = Ebc(fn)(x) as every point in Uv⃗ has degree 1. This is a contradiction to

Proposition 3.25 as any Dv⃗
n contains critical points associated to κ ω-almost surely.

Let E be an edge where the local degree is ≥ 2 at any interior point of E, and assume a ∈ rH3 be its

end point. By Lemma 3.28 and Lemma 3.29, there is another edge E′ of S with a is an end point and the

local degree is ≥ 2 on any interior point of E′.
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Now one can start from any critical end, and follow critical edges of S. We will not stop at an interior

point by the argument in the previous paragraph. So we can define the partition by requiring critical ends

that can be connected via critical edges to form a single set. The convex hull of this partition gives the

critical locus.

3.10 The minimal tree

Let fn be a degenerating sequence of rational maps of degree d, with rn := maxy∈E f−1
n (0) dH3(y,0). Let

x0 = (0) ∈ rH3, and let T ⊂ rH3 be the minimal tree containing x0, i.e., smallest closed tree containing
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x0 that is invariant under Ebc(fn) and Ebc(fn)−1. We will show that the minimal tree T can be realized as

union of Gromov-Hausdorff limit of the rescaled convex hulls of

k⋃

i=−k

E f i
n({0})

Recall that the Hausdorff distance between a pair of sets A,B in a metric space is defined by

dH(A,B) = max(sup
a∈A

d(a,B), sup
b∈B

d(A, b)).

The Gromov-Hausdorff distance dGH(A,B) between a pair of abstract metric spaces is defined as the

infimum of dH(A,B) over all metrics on A ∪ B extending the given metrics on A and B. The following

compactness criterion is due to Gromov (See [Gro81] and Proposition 3.2 in [Bes88]):

Proposition 3.31. Let An be a sequence of connected compact metric spaces. Suppose for any ϵ > 0,

there exists an integer N(ϵ) such that each An can be covered by N(ϵ) ϵ-balls. Then there is a subse-

quence of An that converges to a compact metric space in Gromov-Hausdorff metric.

The following proposition is well known (See Proposition 11.2 in [McM09b] and Theorem 3.4 in [Bes88]):

Proposition 3.32. LetKn ⊂ H3 is a sequence of hyperbolic polyhedrons with k vertices. Let rn → ∞,

so that the metric spaces (Kn, dH3/rn) has bounded diameter, then (Kn, dH3/rn) converges in Gromov-

Hausdorff metric to a finite tree T .

We remark that a finite tree T is uniquely determined by the distances between its endpoints. Thus a

sequence of rescaled hyperbolic k-polyhedrons converges, in the Gromov-Hausdorff metric, as soon as the

k2 distances between its pairs of vertices converge.

LetW k
n = {(E fn)i(0) : i = −k, ..., k}, and let F k

n := hull(W k
n ) ⊂ H3. We will also denote

(Xk
n, dn) the abstract compact metric space that is set-wise equal to F k

n but dn(a, b) = dH3(a, b)/rn for

a, b ∈ Xk
n = F k

n .
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Lemma 3.33. Fix k > 0, there is a subsequence of Xk
n converges to a compact tree

T k = hull(
k⋃

i=−k

Ebc(fn)
i(x0)) ⊂ rH3

in Gromov-Hausdorff metric.

Proof. Since T k is compact, we can choose a finite set of points x1, ..., xk ∈ rH3 so that T k is contained

in the interior of the tree of Sk := hull(x1, ..., xk). Let xi = (xi,n), and we claimW k
n is contained in the

convex hull of x1,n, ..., xk,n ω-almost surely. Suppose not, then there exists a sequence xn ∈ W k
n such that

(xn) represents a point in
⋃k

i=−k E (fn)
i(x0) ⊂ ∗H3 but outside of T k, which is a contradiction.

Since limω dH3(xi,n, xj,n)/rn = d(xi, xj), passing to a subsequence, we may assume for all i, j,

lim
n→∞

dH3(xi,n, xj,n)/rn = d(xi, xj).

Therefore (hull(x1,n, ..., xk,n), dH3/rn) converges in Gromov-Hausdorff metric to the tree Sk by Propo-

sition 3.32 and the remark after it. We can assumeXk
n also converges in Gromov-Hausdorff metric to a

subspace of Sk by passing to a further subsequence as Xk
n satisfies the criterion of Proposition 3.31 (as it

is contained in the rescaled hyperbolic k-polyhedrons with bounded diameters).

Since for any point x ∈
⋃k

i=−k Ebc(fn)
i(x0) ⊂ rH3, there exist xn ∈ W k

n such that (xn) = x ∈ rH3 by

Lemma 3.10, so the Gromov-Hausdorff limit of Xk
n contains T k. It cannot contain more points by similar

argument in the first paragraph. Therefore,Xk
n converges to T k in Gromov-Hausdorff metric.

Hence, by a diagonal argument, we can pass to a subsequence, (which we still use index n to denote) so

that Xk
n converges to T k in the Gromov-Hausdorff metric for k = 1, 2, .... Since T =

⋃∞
k=1 T

k, we have
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Proposition 3.34. The minimal tree T is the union of Gromov-Hausdorff limit of convex hull of

k⋃

i=−k

E f i
n({0}).

Geometric limit

Recall that we say a sequence fn : H3 −→ H3 converges geometrically to F : T −→ T if there exists

hn : (T, x0) −→ (H3,0) such that

1. Rescaling: We have
d(x, y) = lim dH3(hn(x), hn(y))/rn

for all x, y ∈ T .

2. Conjugacy: We have for all x ∈ T ,

dH3(hn(F (x)), fn(hn(x)))/rn → 0

as n → ∞.

We will now construct the approximating maps hn. Recall that T k = hull(
⋃k

i=−k Ebc(fn)
i((0))) ⊂

rH3. Set T 0 = {x0}, and define

h0n : T 0 −→ H3

x0 +→ 0

Assume we have defined the map hkn : T k −→ H3, such that for any x ∈ T k, the sequence (hn(x))

represents x ∈ T k ⊂ rH3. We will construct hk+1
n T k+1 −→ H3 extending hkn. Since T k ⊂ T k+1 and

T k+1 is a compact tree, we can construct the sequence T k = T k
0 ⊂ T k

1 ⊂ ... ⊂ T k
m = T k+1 so that

T k
i+1 is constructed from T k

i by attaching a new edge. Let [a, b] be the attaching edge to T k
i , and say a is

the attaching point, we can represent a = (hn(a)). Choose a representative b = (bn) Let t denotes the
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point on [a, b] of distance t to a, and we define hk+1
n on [a, b] so that hk+1

n (t) is the point on the geodesic

[hn(a), bn] of distance t · rn away from an. Note that the sequence (hk+1
n (t)) represents the point t ∈ rH3.

So after finitely many steps, we construct the map hk+1
n : T k+1 −→ H3 such that for any x ∈ T k+1, the

sequence (hn(x)) represents x ∈ T k+1 ⊂ rH3.

Let hn : T −→ H3, we will now prove Theorem 1.5. The idea of the proof is that we can find a count-

able dense subsetW of T , and use a diagonal argument to construct a subsequence so that the limit of the

rescaled distance between any two points inW exists and equals to the ultralimit. The rest is to check the

rescaled distance actually converges to the ultralimit for any two points in T .

Proof of Theorem 1.5. The first statement follows from Proposition 3.34. To prove that E fn converges

geometrically to Ebc(fn), we will show that after passing to a subsequence, hn satisfies the rescaling and

conjugacy conditions.

LetW be a countable dense subset of T , for any x, y ∈ W ,

lim
ω

dH3(hn(x), hn(y))/rn = d(x, y)

and for any x ∈ W ,

lim
ω

dH3(hn(Ebc(fn)(x)),E fn(hn(x)))/rn = 0

Hence, after passing to a subsequence and using a diagonal argument, we can assume for any points x, y ∈

W ,

lim
n→∞

dH3(hn(x), hn(y))/rn = d(x, y)

and for any x ∈ W ,

lim
n→∞

dH3(hn(Ebc(fn)(x)),E fn(hn(x)))/rn = 0

68



Now if x, y ∈ T , and suppose for contradiction that

lim
n→∞

dH3(hn(x), hn(y))/rn ̸= d(x, y),

then there exists an ϵ > 0 and a subsequence (which we still use index n to denote) so that |dH3(hn(x), hn(y))/rn−

d(x, y)| > ϵ. We may now choose x′, y′ ∈ W such that

1. d(x, x′) < ϵ/8 and d(y, y′) < ϵ/8.

2. x, x′ (and y, y′) are in an edge of T k for some k.

Then by the definition of hn, we have dH3(hn(x), hn(x′)) = d(x, x′) · rn and similarly for y and y′.

Therefore, for all sufficiently large n,

|dH3(hn(x), hn(y))/rn − d(x, y)| ≤ |dH3(hn(x), hn(y))/rn − dH3(hn(x
′), hn(y

′))/rn|

+ |dH3(hn(x
′), hn(y

′))/rn − d(x, y)|

≤ dH3(hn(x), hn(x
′))/rn + dH3(hn(y), hn(y

′))/rn

+ |dH3(hn(x
′), hn(y

′))/rn − d(x, y)|

< ϵ

where the last inequality holds as dH3(hn(x′), hn(y′))/rn → d(x′, y′). This is a contradiction, so

lim
n→∞

dH3(hn(x), hn(y))/rn = d(x, y).

Let x ∈ T , and suppose for contradiction that

lim
n→∞

dH3(hn(Ebc(fn)(x)),E fn(hn(x)))/rn ̸= 0
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then there exists an ϵ > 0 and a subsequence (which we still use index n to denote) so that

dH3(hn(Ebc(fn)(x)),E fn(hn(x)))/rn > ϵ.

We choose x′ ∈ W such that

1. d(x, x′) < ϵ/3Cd where C is the constant in Theorem 1.1.

2. x, x′ are in an edge of T k for some k.

Then by the definition of hn, we have dH3(hn(x), hn(x′)) = d(x, x′) · rn. Therefore, for all sufficiently

large n,

dH3(hn(Ebc(fn)(x)),E fn(hn(x)))/rn ≤ dH3(hn(Ebc(fn)(x)), hn(Ebc(fn)(x
′)))/rn

+ dH3(hn(Ebc(fn)(x
′)),E fn(hn(x

′)))/rn

+ dH3(E fn(hn(x
′)),E fn(hn(x)))/rn

< ϵ

This is a contradiction, so

lim
n→∞

dH3(hn(Ebc(fn)(x)),E fn(hn(x)))/rn = 0

Therefore, E fn : H3 −→ H3 converges geometrically to Ebc(fn) : T −→ T .

3.11 Degenerating sequences of Blaschke products

Let fn(z) = z
∏d−1

i=1
z−ai,n
1−ai,nz

with |ai,n| < 1. Note that fn(z) commutes with z → z, so by naturality of the

barycentric extension, E fn preserves the hyperbolic plane bounded by the equator, which we denote it as
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H2.

In [McM09b], McMullen constructed a geometric limit of a branched covering on a Ribbon R-tree for a

degenerating sequence fn. The tree (TRib, p) =
⋃∞

k=1(T
k
Rib, p) where (T

k
Rib, p) is the Gromov-Hausdorff

limit of the hyperbolic convex hull (W k
n , 0) of

⋃k
i=−k f

i
n(0) ⊂ H2 rescaled by rn,Rib = dH2(0, f−1

n (0)).

The limiting map fRib : (TRib, p) −→ (TRib, p) is constructed by the limit of maps fn : (W k
n , 0) −→

(W k+1
n , 0). In [McM09b], it is proven that fRib : (TRib, p) −→ (TRib, p) is minimal.

We will show that this geometric limit as branched covering on a Ribbon R-tree coincide with the dy-

namics Ebc(fn) on the minimal tree T ⊂ rH3. First, we prove the following

Lemma 3.35. Let fn(z) = z
∏d−1

i=1
z−ai,n
1−ai,nz

with |ai,n| < 1 be a degenerating sequence of rational maps. If

fn(xn) = yn and let xn = Mn(0), yn = Ln(0) whereMn, Ln ∈ PSL2(C) preserving the unit circle, then

deg(limω L−1
n ◦ fn ◦Mn) ≥ 1.

Proof. Note that L−1
n ◦fn◦Mn is still of the form z

∏d−1
i=1

z−bi,n
1−bi,nz

for some |ai,n| < 1 as L−1
n ◦fn◦Mn(0) =

0. Hence the degree of the ultralimit is greater or equal to 1 follows from direct computation.

As a corollary, we have

Corollary 3.36. Let fn(z) = z
∏d−1

i=1
z−ai,n
1−ai,nz

with |ai,n| < 1 be a degenerating sequence of rational maps.

Let rn,Rib = dH2(0, f−1
n (0)) and rn = dH3(0, (E fn)−1(0)), then

lim
ω

rn,Rib/rn = 1

Proof. Let zn ∈ f−1
n (0) which achieves rn,Rib, andMn ∈ PSL2(C) preserving the unit circle and zn =

Mn(0), then deg(limω fn ◦Mn) ≥ 1 by Lemma 3.35. So E (fn)((Mn(0))) = x0 ∈∗ H3 by Lemma 3.10

and hence limω rn,Rib/rn ≤ 1.

Similarly, let zn ∈ E f−1
n (0) which achieves rn, andMn ∈ PSL2(C) preserving the unit circle and

zn = Mn(0). Then E (fn)((Mn(0))) = x0 ∈∗ H3, so deg(limω fn ◦ Mn) ≥ 1 by Lemma 3.10. Hence

71



we can choose a bounded sequence Ln preserving the unit circle so that fn ◦ Mn ◦ Ln(0) = 0. Hence

rn ≤ rn,Rib + C for some constant C ω-almost surely. Since limω rn = ∞, so limω rn,Rib/rn ≥ 1.

Hence limω rn,Rib/rn = 1

We will now prove Theorem 1.6:

Proof of Theorem 1.6. We will identify H2 with the hyperbolic plane bounded by the equator. We will

now construct the conjugacy map Ψ : (TRib, p) −→ (T, x0) as follows. Let x ∈ TRib, then x ∈ T k
Rib

for some k, and we let (xn) ∈ W k
n ⊂ H2 such that the Gromov-Hausdorff limit of xn is x. We de-

fine Ψ(x) = (xn) ∈ rH3. We first note that this is well defined as if x′n is another sequence, then

limn→∞ dH2(xn, x′n)/rn,Rib = 0 so limω dH3(xn, x′n)/rn = limω dH2(xn, x′n)/rn = 0 by Corollary

3.36. Ψ is an isometry and a conjugacy can be checked similarly.

Note that each point has exactly d preimages counted for multiplicities for the map fRib : (TRib, p) −→

(TRib, p), the image is invariant under Ebc(fn) and Ebc(fn)−1, so the image contains (T, x0). If the image

is not (T, x0), then Ψ−1((T, x0)) will be invariant under fRib and f−1
Rib. This is a contradiction to (TRib, p)

is minimal. Hence the image is the minimal tree (T, x0).

We remark that the minimal tree (T, x0) has a natural Ribbon structure as for any point x ∈ T , we can

choose representatives (xn) so that xn ∈ H2. The isometry Ψ preserves the Ribbon structure.

3.12 Periodic ends and translation lengths

Let α : [0,∞) −→ rH3 represents an end. If α is not a critical end, then Ebc(fn) is isometry on α([K,∞))

for a sufficiently largeK. This is because the end is eventually disjoint from the critical locus C. Hence

d(α(t), x0)− d(Ebc(fn)(α(t)), x0) is constant for t ≥ K, so

L(α,Ebc(fn)) = lim
xi→α

d(xi, x
0)− d(Ebc(fn)(xi), x

0)
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is well defined.

If α is a critical end, then by Corollary 3.27 and Theorem 3.30, Ebc(fn) is expanding with derivative

e ∈ N≥2 on α([K,∞)) for a sufficiently largeK. Hence,

(d(α(t), x0)− d(Ebc(fn)(α(t)), x
0))− (d(α(K), x0)− d(Ebc(fn)(α(K)), x0)) = (1− e)(t−K)

for all t ≥ K, so

L(α,Ebc(fn)) = lim
xi→α

d(xi, x
0)− d(Ebc(fn)(xi), x

0) = −∞

We will now give a description of the action of Ebc(fn) on the ends ϵ(rH3).

Proposition 3.37. Let fn be a degenerating sequence rational maps of degree d,

rn := max
y∈E f−1

n (0)
dH3(y,0),

and rH3 be the asymptotic cone of H3 with rescaling rn.

Let (zn) represents an end α ∈ ϵ(rH3), then (fn(zn)) represents the end Ebc(fn)(α) ∈ ϵ(rH3).

Proof. Let α : [0,∞) −→ rH3 be the end associated to (zn). Let Vt denote the component of rH3 −

{α(t)} associated to the end α. We choose t large enough so that there is no preimage of x0 in Vt. Let Ut

be the component of rH3 − {Ebc(fn)(α(t))} associated to the end Ebc(fn)(α). We claim that Vt is a com-

ponent of Ebc(fn)−1(Ut). Indeed, if there exists a ∈ Vt mapping to Ebc(fn)(α(t)), then by choosing the

component rH3 − {Ebc(fn)(α(t))} containing x0 and applying Proposition 3.25, we can find a preimage

of x0 in Vt which is a contradiction.

Let Vt,n and Ut,n be the domains approximating Vt and Ut, and fn : Vt,n −→ Ut,n is a covering. Hence

fn(zn) ∈ Ut,n ω-almost surely. Since this is true for all t, fn(zn) represents the end Ebc(fn)(α).

In particular, we have
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Corollary 3.38. If z1,n, ..., zq,n is a periodic cycles of fn of period q, then (zi,n) represents a periodic

cycle of ends with period q.

We now prove Theorem 1.7:

Proof of Theorem 1.7. We may prove the case when q = 1. The general case can be proved by considering

iterations.

By changing coordinates, we let 0 be the fixed point of fn, and α : [0,∞) −→ rH3 be the fixed end

associated to (0) and we may assume that α(0) = x0. We first consider the case when α is not a critical

end. LetMt,n(z) = et·rnz, then the sequenceMt,n represents α(t). Let Lt,n(0) = E fn ◦Mt,n(0) such that

Lt,n(0) = 0. Let ft = limω L−1
t,n ◦ fn ◦Mt,n = Htϕft with deg(ϕft) = 1 for sufficiently large t. Similar to

the proof of Propostion 3.37, for sufficiently large t, a neighborhood of 0 is mapped to a neighborhood of 0

by L−1
t,n ◦ fn ◦Mt,n, so 0 is not a hole of f . Therefore, we have

lim
ω
(L−1

t,n ◦ fn ◦Mt,n)
′(0) = ϕ′

ft(0) ̸= 0

Note that limω log |M ′
t,n(0)|/rn = d(α(t), x0) and limω log |L′

t,n(0)|/rn = d(Ebc(fn)(α(t)), x0), so we

get the result as log |ϕ′
ft
(0)| = O(1). Hence by passing to a subsequence, we get limn→∞

log |(fq
n)′(z1,n)|
rn

=

L(C,Ebc(fn)).

If α is a critical end, then we can show limn→∞
log |(fq

n)′(z1,n)|
rn

= −∞ in a similar way.
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4
Connections with Berkovich dynamics

4.1 Rational maps on Berkovich projective space P1
Berk

In this section, we will give a brief introduction of the Berkovich projective space P1
Berk for a complete,

algebraically closed non-Archimedean fieldK, and the dynamics of rational maps on it. We are going

to summarize some of the properties, and refer the readers to [BR10] for more detailed exposition of this

grand theory.

LetK be a complete, algebraically closed non-Archimedean field, we will use notations B(a, r) :=

{z ∈ K : |z − a| ≤ r} and B(a, r)− := {z ∈ K : |z − a| < r} to denote the closed ball and open ball

centered at a with radius r respectively. Recall that in an non-Archimedean field, any point z ∈ B(a, r)
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(or z ∈ B(a, r)−) is the center of the ball. If two balls intersect, then one is contained in the other.

The valuation ring ofK will be denoted asDK = B(0, 1), and its maximal ideal isMK = B(0, 1)−.

The residual field is K̃ = DK/MK .

Let a rational map f ∈ Ratd(K) with coefficients inK, after multiplying the denominator and numer-

ator by a common factor, we may assume that the maximum norm of the coefficients is 1. The reduction

map f̃ is given by taking the reduction on its coefficients.

The Berkovich affine space and the Berkovich projective space

As a topological space, A1
Berk can be defined as follows. The underlying point set is the collection of all

the multiplicative seminorms [ ]x on the polynomial ringK[T ] which extend the absolute value onK. The

topology on A1
Berk is the weakest one for which x → [f ]x is continuous for all f ∈ K[T ]. The fieldK can

be thought of as a subspace of A1
Berk, via the evaluation map. That is, we can associate to a point x ∈ K

the seminorm

[f ]x = |f(x)|

Those seminorms of this form will be called classical points.

The Berkovich projective space P1
Berk is the one point compactification of A1

Berk. The extra point,

which is denoted, as usual, by∞, can be regarded as the point∞ ∈ P1
K embedded in P1

Berk.

This definition, however, does not make clear why a rational map f ∈ Ratd(K) induces a map on

P1
Berk. We will now give many different but equivalent ways of viewing this space.

Before proceeding further, we note that given closed ball B(a, r), one can construct the supremum norm

[f ]|B(a,r) = sup
z∈B(a,r)

|f(z)|.

One of the miracles of the non-Archimedean universe is that this norm is multiplicative. More generally,
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given any decreasing sequence of closed balls x = {B(ai, ri)}, we can consider the limit seminorm

[f ]x = lim
i→∞

[f ]B(ai,ri).

Berkovich’s classification asserts that every point x ∈ A1
Berk arises in this way, and we can classify them

into 4 types:

1. Type I: Points in A1
K , which we will also call the classical points;

2. Type II: Points corresponding to a closed ball B(a, r) with r ∈ |K×|;

3. Type III: Points corresponding to a closed ball B(a, r) with r /∈ |K×|;

4. Type IV: Points corresponding to a nested sequence {B(ai, ri)} with empty intersection.

Type I, II and III can be thought of a special case of Type IV: the classical points correspond to a nested

sequence {B(ai, ri)} with lim ri = 0; the Type II points correspond to a nested sequence {B(ai, ri)} with

nonempty intersection and r = lim ri > 0 belongs to the value group |K×|; the Type III points correspond

to a nested sequence {B(ai, ri)} with nonempty intersection but r = lim ri > 0 does not belong to the

value group |K×|. We will call the point corresponding to B(0, 1) the gauss point and is denoted by xg.

Another way of viewing the Berkovich projective space P1
Berk is to use the ’Proj’ construction. This

point of view allows us to construct a natural action of f ∈ Ratd(K).

We consider S as the set of multiplicative seminorms on the two-variable polynomial ringK[X,Y ]

which extend the absolute value onK, and which are not identically zero on the maximal ideal (X,Y )

ofK[X,Y ]. We will use [[ ]] to emphasize that these are seminorms on the two-variable ring. We put an

equivalence relation on S by declaring that [[ ]]1 ∼ [[ ]]2 if and only if there exists a constant C > 0 such that

for all d ∈ N and all homogeneous polynomials G ∈ K[X,Y ] of degree d, [[G]]1 = Cd[[G]]2.

As a set, P1
Berk is the collection of equivalence classes of S. One can choose a representative [[ ]]

∗ so that

max([[X]]∗, [[Y ]]∗) = 1, which we will call it normalized. Note that by the equivalence relation, it is easy
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to check that for any normalized seminorm [[ ]]∗ in an equivalence class, it gives the same values on homo-

geneous polynomials. We put the topology on P1
Berk to be the weakest so that x → [[G]]∗x is continuous for

any homogeneous G ∈ K[X,Y ].

P1
K naturally embeds into P1

Berk via [a : b] → [[G]][a:b] = |G(a, b)|. It can be checked that P1
Berk − {∞}

and P1
Berk − {0} are both homeomorphic to A1

Berk, and one can construct P1
Berk by gluing two copies of

A1
Berk on their common intersection A1

Berk − {0}.

Rational maps on P1
Berk

Let f ∈ Ratd(K), we can write f is the ratio of two homogeneous f(T ) = F1(X,Y )/F2(X,Y ) where

T = X/Y . Let x ∈ P1
Berk, we can define [[ ]]f(x) by

[[G]]f(x) := [[G(F1(X,Y ), F2(X,Y ))]]x

for G ∈ K[X,Y ]. It can be checked that [[ ]]f(x) is a multiplicative seminorm onK[X,Y ] which extend

the absolute value onK, and which are not identically zero on the maximal ideal (X,Y ) ofK[X,Y ]. This

gives the natural action of f on P1
Berk. Note this defines the usual action on P1

K , hence we can regard this

natural action of f as an extension to P1
Berk. It can also be shown that this action preserves the types of the

points (see Proposition 2.15 in [BR10]).

IfM is a rational map of degree 1, i.e.,M ∈ PSL2(K), then this action can be viewed via the action on

the balls: if x ∈ P1
Berk corresponds to a nested sequence of balls {B(ai, ri)}, thenM(x) corresponds to

the nested sequence of balls {M(B(ai, ri))}. Given any Type II point x, there existsM ∈ PSL2(K) such

thatM(xg) = x. We will regardM as ’change of coordinates’. We now give another point of view of

the natural action of the rational map via change of coordinates. The following proposition can be proved

using Lemma 2.17 in [BR10]:

Proposition 4.1. Let f ∈ Ratd(K), x, y ∈ P1
Berk are two type II points. Assume that x = M(xg) and
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y = L(xg) withM,L ∈ PSL2(K), then f(x) = y if and only if L−1 ◦ f ◦M has non constant reduction.

The tree structure on HBerk and P1
Berk

The Berkovich hyperbolic space HBerk is defined by

HBerk = P1
Berk − P1

K = A1
Berk − A1

K

Note that HBerk is also the space of Type II, III and IV points.

Given two Type II or III points x, y corresponding to the balls B(a, r) and B(b, s) respectively, we let

B(a,R) be the smallest ball containing both B(a, r) and B(b, s). Note that R = max(r, s, |a − b|). We

define the distance function

d(x, y) = 2 logR− log r − log s

Note that if B(a, r) is contained in B(b, s), then d(x, y) = log s − log r = log s/r, which should be

interpreted roughly as the modulus of the open ‘annulus’ B(b, s)−−B(a, r). In general, the distance is the

sum of modulus of B(a,R)− −B(a, r) and B(b, R)− −B(b, s).

One can extend this distance formula continuously to arbitrary points x, y ∈ HBerk. The metric space

(HBerk, d) can be shown to be a complete R-tree (see Proposition 2.29 in [BR10]). Moreover, the finite

ends of the R-tree correspond to the Type IV points, while the infinite ends of the R-tree correspond to the

classical (Type I) points.

We should remark that the topology generated by the metric d is strictly finer than the subspace topol-

ogy of the Berkovich topology on HBerk.
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4.2 Robinson’s field

In this section, we will introduce a complete, algebraically closed, non-Archimedean field ρC. This field is

introduced by Robinson in the real case in the study of non-standard analysis. It should be thought of as a

complexified version of Robinson’s field.

Recall that we have fixed a non-principal ultrafilter ω of N. Consider CN consisting of all sequences in

C. We say two sequence (zn) and (wn) are equivalent if

zn = wn ω − alomost surely

The set of equivalence classes will be denoted by ∗C.

We define addition and multiplication as follows: let x, y ∈ ∗C be represented by (xn) and (yn), then

we define x+y and x·y as the class represented by (xn+yn) and (xn ·yn). It can be checked that these are

indeed well defined, and make ∗C a field. This field is usually referred to as the ultrapower construction

for C (Cf. Chapter 2 in [LR75]).

To simplify the notations, we will sometimes use a single roman letter to represent a number in ∗C.

Given two numbers x, y ∈ ∗C represented by (xn) and (yn), we write |x| ≤ |y| or |x| < |y| if |xn| ≤ |yn|

or |xn| < |yn| ω-almost surely.

The field ∗C is usually too big to work with in our applications, and is not equipped with a norm. We

will construct a more useful field ρC as the quotient of a subspace of ∗C, similar as rH3 to ∗H3 in Chapter

3.

Given a positive sequence ρn → 0, which we can regard as ρ ∈ ∗C. With the notations above, we

construct

M0 = {t ∈ ∗C : There exists some N ∈ N such that |t| < ρ−N}
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and

M1 = {t ∈ ∗C : For all N ∈ N, |t| < ρN}

It is easy to show that bothM0 andM1 form rings with respect to the addition and multiplication of

∗C. It can also be shown thatM1 is a maximal ideal of ringM0 (Cf. Chapter 3.3 in [LR75]). We define

ρC = M0/M1 as the quotient field. Note that C embeds into ρC via constant sequences.

Intuitively, the field ρC lies in between C and ∗C consisting of those large infinitesimals and small in-

finite numbers. We shall regard each member of t ∈ M1 as a small infinitesimal, and its multiplicative

inverse (provided that t ̸= 0) a large infinite number. Using the terminologies in [LR75], each number in

M1 will be called an iota and the multiplicative inverse of a non zero number inM1 will be called a mega.

We can define an equivalence relation on ∗C by declaring x ∼ y if x− y is an iota. Note that in particu-

lar, if y ∈ M0, then x ∼ y if and only if x ∈ [y] as a member of ρC.

Non-Archimedean norm on ρC

One of the many desired properties of ρC is that we can put a norm on it. Let x ∈ M0 − M1 and i ∈ M1

represented by (xn) and (in) respectively. Note that there exist n,m such that ρn ≤ |x| < ρ−m, hence the

ultralimit

logρ |x| := lim
ω

log |xn|/ log ρn

is finite. Since i ∈ M1, so |in| < ρnn for any n ∈ N. Note

logρ |x+ i|− logρ |x| = lim
ω

logρn |
xn + in

xn
| = lim

ω

log |1 + in/xn|
log ρn

Since xn /∈ M1, limω in/xn = 0, but limω | log ρn| = ∞. Hence logρ |x+ i|− logρ |x| = 0.
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We now define a valuation of an element [x] ∈ ρC by

ν([x]) = logρ |x|

where x ∈ ρC is a representative of [x].

To illustrate the definition, notice that

ν([ρ]) = 1

or more generally,

ν([ρn]) = n for n ∈ R

To simplify the notations, from now on, we will use a single roman letter to represent a number in ρC,

and drop the square bracket.

It can be easily checked that for x, y ∈ ρC (Cf. Chapter 3 Lemma 3.1 and 3.2 in [LR75]), we have

ν(x · y) = ν(x) + ν(y)

ν(x+ y) ≥ min(ν(x), ν(y))

Hence, ν defines a non-Archimedean valuation on ρC, and this valuation naturally gives rise to a non-

Archimedean norm via

|x|ν = e−ν(x)

The distance function is given by

d(x, y) = |x− y|ν
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(ρC, d) is complete and spherically complete

Recall that a metric spaceX is said to be spherically complete if for any nested sequence of (closed) balls

B0 ⊃ B1 ⊃ ..., their intersection
⋂

j Bj is non-empty. In this subsection, we will show that ρC is spheri-

cally complete:

Theorem 4.2. The field (ρC, d) is spherically complete.

Proof. Let B′
0 ⊃ B′

1 ⊃ ... be a decreasing sequence of closed balls. We consider a decreasing sequence of

open balls Bn so that B′
n ⊃ Bn ⊃ B′

n+1, and assume that Bi has radius ri, and denote qi = − log ri. Pick

αi ∈ Bi, and assume that αi is represented by (ai,n). Since Bj ⊂ Bi for all j ≥ i, we know

|αi − αj | < ri

Equivalently,

ν(αi − αj) = lim
ω

log |ai,n − aj,n|/ log ρn > qi

We can construct inductively a decreasing sequence N = N0 ⊃ N1 ⊃ ... such that

1. Nk is ω-big;

2.
⋂∞

k=1Nk = ∅;

3. For any i ≤ j ≤ k and l ∈ Nk, we have

νl(ai,l − aj,l) := log |ai,l − aj,l|/ log ρl > qi.

Indeed, we can set N0 = N as the base case. Assume that Nk is constructed, to construct Nk+1, we note

that for any i ≤ k + 1,

ν(αi − αk+1) = lim
ω

log |ai,n − ak+1,n|/ log ρn > qi.
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Hence, there exists an ω-big set N so that for all i ≤ k + 1 and l ∈ N ,

νl(ai,l − ak+1,l) > qi.

We define Nk+1 = N ∩Nk ∩ {n : n ≥ k + 1}, then Nk+1 ⊂ Nk is still ω-big. Property (3) is satisfied by

induction hypothesis and by the definition of N . Property (2) holds as Nk ⊂ {n : n ≥ k} by construction.

We now define the sequence an := ak,j for j ∈ Nk −Nk−1, and let α = (an). Note that for any l ∈ Ni,

by Property (2), l ∈ Nk −Nk−1 for some k ≥ i. Hence for any i ∈ N and l ∈ Ni,

νl(ai,l − al) = νl(ai,l − ak,l) > qi.

Therefore, ν(αi − α) > qi. This means that |αi − α| < ri, so α ∈ Bi.

Since this holds for any i, we conclude that α ∈
⋂

iBi, so
⋂

iBi ̸= ∅. Therefore,
⋂

iB
′
i ̸= ∅ as

well.

As an immediate corollary, we have (cf. Chapter 3 Theorem 4.1 in [LR75]):

Corollary 4.3. The field (ρC, d) is complete.

ρC is algebraically closed

Theorem 4.4. ρC is algebraically closed.

Proof. Let zd + ad−1zd−1 + ... + a0 be a monic polynomial with coefficients an = (an,k) ∈ ρC. We

assume thatM < min(0, ν(a0), ..., ν(ad−1)). Hence there is a ω-big set N ⊂ N so that for all k ∈ N and

n = 0, ..., d− 1,

|an,k| < ρMk
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Now let fk(z) = ad−1,kzd−1 + ...+ a0,k and g(z) = zd. Note that for any k ∈ N , we have on the circle

centered at 0 of radius d · ρMk (note that ρMk > 1 asM < 0) that

|fk(z)| ≤ |ad−1,k| · (d · ρMk )d−1 + ...+ |a0,k|

< ρMk · d · (d · ρMk )d−1 = |g(z)|

By Roché’s theorem, there are d solutions of g + fk(z) = 0 in the ball B(0, d · ρMk ). Let xk be such a root.

Note that xk is defined on an ω-big set N . So x = (xk) represents a point in ρC as |xk| < ρM+1
k for all

k ∈ N . Moreover, x satisfies the equation zd + ad−1zd−1 + ... + a0 = 0. Therefore, ρC is algebraically

closed.

The residue field of ρC and a cascade of Robinson’s fields

Recall that the residual field of a non-Archimedean fieldK is the quotient K̃ = DK/MK where DK =

B(0, 1) andMK = B(0, 1)−. For the field ρC, one can represent a non-zero element in the residual field

by a sequence (zn) with limω log |zn|/ log ρn = 0. Two sequences (zn) and (wn) are said to be equivalent

if limω log |zn − wn|/ log ρn > 0.

Let σn be a positive sequence with σ → 0, which we can regard as σ ∈ ∗C. We also assume that

limω log σn/ log ρn = 0, in other words, ρn goes to 0 super-polynomially compared to ωn.

We consider the following subset of ρ̃C

Mσ
0 = {[t] ∈ ρ̃C : t ∈ ∗C, |t| < σ−N for some N ∈ N}

Note thatMσ
0 is well defined. Indeed, if t′ ∈ ∗C is another representation of [t], then |t− t′| < ρα for some

α > 0. Therefore

|t′| < |t|+ |t− t′| < σ−N + ρα < σ−N−1
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Similarly, the set

Mσ
1 = {[t] ∈ ρ̃C : t ∈ ∗C, |t| < σN for any N ∈ N}

is well defined. It follows directly from the definition, the fieldMσ
0 /M

σ
1 is isomorphic to σC. Inductively,

we can construct another Robinson’s field as a quotient of the subset of the Residual field σC, we summa-

rize as follows.

Given a sequence of positive sequences ρn,k with limk ρn,k = 0, such that for any n,

lim
ω

log ρn+1,k/ log ρn,k = 0

We can construct a sequence of Robinson’s field ρnC. Each one ρnC can constructed as a quotient of the

subset of the Residual field of the previous one ρn−1C. We will call such a configuration a cascade of

Robinson’s field.

Embedding of the field of Puiseux series L

In this subsection, we will show how to embed the field of formal Puiseux series L into the Robinson’s

field ρC (Cf. Chapter 3 Section 6 in [LR75]).

The field L is the algebraic closure of the completion of the field of formal Laurent series C((t)). An

element in a ∈ L can be represented by a formal series

a =
∑

j≥0

ajt
λj

where aj ∈ C, λj ∈ Q if aj does not vanish for sufficiently large j, then λj → ∞ as j → ∞. The absolute

value is given by

|a| = exp(−min{λj : aj ̸= 0})

86



provided a ̸= 0.

To show we have an embedding we first prove the following lemma about convergence of series in ρC.

Lemma 4.5. Let aj ∈ C, and λj be an unbounded increasing sequence of R. Then the series

∞∑

j=0

ajρ
λj

converges in ρC.

Moreover, |
∑∞

j=0 ajρ
λj | = exp(−min{λj : aj ̸= 0}).

Proof. Let αj = ajρλj . If aj = 0, then ν(αj) = ∞. Otherwise, ν(αj) = ν(ρλj ) = λj . Since

limλj = ∞, so limν(αj) = ∞. Hence, the series
∑

αj converges in ρC by the convergence criterion

in non-Archimedean field.

For the moreover part, let σn =
∑n

j=0 ajρ
λj be the associated partial sums. Without loss of gener-

ality, we assume that a0 ≠ 0, then ν(σn) = λ0 for all n by the strong triangle inequality. Therefore

|
∑∞

j=0 ajρ
λj | = exp(−min{λj : aj ̸= 0}).

We will now define Ψ : L −→ ρC as follows. Let a =
∑

j≥0 ajt
λj ∈ L, we define

Ψ(a) =
∑

j≥0

ajρ
λj ∈ ρC

Note that the series converges by Lemma 4.5. One can easily verify that Ψ(a + b) = Ψ(a) + Ψ(b) and

Ψ(a · b) = Ψ(a) ·Ψ(b). Hence we have

Proposition 4.6. The map

Ψ : L −→ ρC

a =
∑

j≥0

ajt
λj +→

∑

j≥0

ajρ
λj
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is an embedding of fields and preserves the non-Archimedean norms.

4.3 Proof of Theorem 1.3 and 1.4

In this section, it is better to use the upper space modelH of the hyperbolic 3-space H3. We can identify

H = C× R>0, and a linear mapM(z) = Az +B extends to an isometry onH given by

M(z, h) = (Az +B, |A|h). (4.3.1)

The distance between two points (z1, h1) and (z2, h2) is given by the formula

d((z1, h1), (z2, h2)) = 2 log

√
|z1 − z2|2 + (h1 − h2)2 +

√
|z1 − z2|2 + (h1 + h2)2

2
√
h1h2

(4.3.2)

Since the field ρC is spherically complete (see Theorem 4.2) and has valuation group |ρC×| = R, we

know HBerk consists of only of Type II points. Hence, by Berkovich’s classification, every point x ∈

HBerk can be represented by a closed ball B(p,R). We consider a linear polynomial of the form

M(z) = az + b ∈ PSL2(
ρC),

withM(B(0, 1)) = B(p,R). Representing a and b by the sequences (an) and (bn), we get a sequence of

Möbius transformations

Mn(z) = anz + bn.

Let rH3 be the asymptotic cone of H3 with respect to rescaling rn = − log ρn. We define Φ : HBerk −→
rH3

Φ(x) = (Mn(0)) ∈ rH3.
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We will now check that this definition is well defined. If we have a different representation Ln(z) =

a′nz + b′n, where (a′n), (b′n) represent a′ and b′, then |a| = |a′| = R and |b − b′| ≤ R. Without loss of

generality, we may assume |an| ≥ |a′n| ω-almost surely. Hence we have given any ϵ > 0,

1. log |bn − b′n|/ log ρn > − logR− ϵ ω-almost surely;

2. |an|
|a′n|

< ρ−ϵ
n ω-almost surely.

Rearranging the first inequality and using the fact that |a′| = R, we conclude that for any ϵ > 0,

1. |bn − b′n|/|a′n| < ρ−ϵ
n ω-almost surely;

2. |an|
|a′n|

< ρ−ϵ
n ω-almost surely.

Consider L−1
n ◦Mn(z) =

an
a′n
z + (bn−b′n)

a′n
, then using equations 4.3.1 and 4.3.2, we conclude that for any

ϵ > 0, on an ω-big set,

d(Ln(0),Mn(0)) = d(0, L−1
n ◦Mn(0))

= d((0, 1), (|(bn − b′n)

a′n
|, |an

a′n
|))

< 2 log

√
ρ−ϵ + (ρ−ϵ − 1)2 +

√
ρ−ϵ + (ρ−ϵ + 1)2

2

< 2 log(2ρ−ϵ)

= 2 log 2 + ϵrn = O(ϵ · rn).

Since ϵ is arbitrary, we conclude (Ln(0)) and (Mn(0)) represent the same point in rH3. Therefore, Φ is a

well-defined map.

We will now show that Φ is bijective. To show this, we will construct the inverse map Ξ : rH3 −→

HBerk. Given a point x ∈ rH3, we can represent it as x = (Mn(0)), whereMn(z) = anz + bn. Using

equations 4.3.1 and 4.3.2, we conclude that |an| < ρ−N
n and |bn| < ρ−N

n for some N ∈ N ω-almost surely.
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Hence (an), (bn) represent a, b ∈ ρC, with a ̸= 0. DenoteM(z) = az + b ∈ PSL2(ρC), and we define

Ξ(x) = M(B(0, 1)) ∈ HBerk

In a similar fashion, we can easily check that Ξ is well defined, and Φ ◦ Ξ, Ξ ◦ Φ are identity maps. There-

fore Φ is bijective.

We will now show that Φ is an isometry. Note that given a, b ∈ ρC represented by (an) and (bn),

M(z) = az + b ∈ PSL2(ρC) and (xn) +→ (Mn(xn)) ∈ rH3 whereMn(z) = anz + bn are

isometries of HBerk and rH3 respectively. Hence to show d(x, y) = d(Φ(x),Φ(y)), it suffices to show

d(xg,M(xg)) = d((0), (Mn(0))).

IfM(xg) is represented by a closed ball contained or containing B(0, 1), then we can chooseM(z) =

az, and d(xg,M(xg)) = | log |a||. A direct computation using equation 4.3.2, we have d(0,Mn(0)) =

| log |an||, so d((0), (Mn(0))) = limω −| log |an||/ log ρn = | log |a||, where the last equality holds by the

definition of norm on ρC.

More generally, ifM(xg) is represented by a closed ball B(p,R) disjoint from B(0, 1), one can con-

struct a geodesic by connecting B(0, 1) to B(0, |p|) and then connecting B(0, |p|) to B(p,R). By the

above argument, one can show that Φ is an isometry on either geodesic segment. Since Φ is a bijection,

and rH3 is a tree, this means d(xg,M(xg)) = d((0), (Mn(0))). Therefore, Φ is an isometry.

Before proving Theorem 1.3 and Theorem 1.4, we need the following lemma.

Lemma 4.7. Let f ∈ Ratd(ρC), if the reduction of f has degree ≥ 1, then Ebcfn(x0) = x0, where fn is the

sequence associated to f .

Proof. Since the reduction of f has degree ≥ 1, we can represent

f(z) =
adzd + ...+ a0
bdzd + ...+ b0
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withmax{|ad|, ..., |a0|} = 1 and max{|bd|, ..., |b0|} = 1. We denote

fn(z) =
ad,nzd + ...+ a0,n
bd,nzd + ...+ b0,n

.

Note that (ak,n) and (bk,n) represent ak and bk in ρC. Let itop and ibot be the largest index so that |aitop,n| ≥

|aj,n| ω-almost surely and |bibot,n| ≥ bj,n ω-almost surely respectively.

If itop ̸= ibot, we let Ln(z) = bibot,n/aitop,nz, then

lim
ω

Ln ◦ fn

has degree ≥ 1, so limω dH3(0, Ln◦Ebcfn(0)) = 0. But since |bibot | = |aitop | = 1, so dH3(0, Ln(0)) < ϵrn

for any ϵ > 0. Hence we have Ebcfn(x0) = x0.

If itop = ibot, we let Ln(z) = z − aitop,n/bibot,n and consider gn = Ln ◦ fn. Since |bibot | = |aitop | = 1,

dH3(0, Ln(0)) < ϵrn for any ϵ > 0. Moreover, note that for g represented by gn has non trivial reduc-

tion, and the indices itop and ibot for gn will be different. Hence apply the previous argument for gn, we

conclude that Ebcfn(x0) = x0.

Proof of Theorem 1.3. Let Φ : HBerk −→ rH3 be the map defined as above, then Φ is an isometry. Let

f ∈ Ratd(ρC), then by representing the coefficients with sequences, we may associate a sequence fn ∈

Ratd(C) to f .

Given x ∈ HBerk represented by x = M(xg) whereM(z) ∈ PSL2(ρC). Assume y = EBerk(f) is

represented by y = L(xg) where L(z) ∈ PSL2(ρC). Then the reduction

L−1 ◦ f ◦M

has degree ≥ 1. By Lemma 4.7 and the definition of Φ, Ebc(fn)(Φ(x)) = Φ(y). Hence Φ is a conjugacy

between EBerk(f) and Ebc(fn).
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Conversely, if fn ∈ Ratd(C) with rn = maxy∈E f−1
n (0) dH3(y,0), and let f be the associated ratio-

nal map with coefficients in ρC. If the degree f is strictly smaller than d, then Ebc(fn) has degree strictly

smaller than d as Φ is a conjugacy. Hence, f ∈ Ratd(ρC). The fact that Φ is a conjugacy follows immedi-

ately.

The fact that the Berkovich Julia set is contained in the Φ−1(T ∪ ϵ(T )) follows immediately from the

fact that Julia set is the limit set of preimages of x0.

Proof of Theorem 1.4. By Proposition 4.6, the field L naturally embeds into ρC. Such an embedding also

gives an embedding of HBerk(L) into HBerk(ρC). A rational map f with coefficients in L can be naturally

thought of as a rational map with coefficients in ρC via the embedding. Its action on HBerk(L) naturally

extends to HBerk(ρC). The theorem now follows from Theorem 1.3.

As an immediate corollary, we have

Corollary 4.8. Let ρn → 0 and rn = − log ρn, then we have

1. If f ∈ Ratd(ρC), and fn represents f . Let sn := maxy∈E f−1
n (0) dH3(y,0), then limω sn/rn is

bounded. Moreover, if we assume the reduction of f has degree < d, then sn is comparable to rn.

2. If fn is a degenerating sequence withmaxy∈E f−1
n (0) dH3(y,0) = rn, then fn represents a rational

map f ∈ Ratd(ρC). Moreover, the reduction of f has degree < d.
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5
Applications on hyperbolic components

5.1 Markings and Length Spectra

Recall that for a conjugacy class [f ] ∈ Md(C), we define

r([f ]) := min
x∈H3

max
y∈E f−1

n (x)
dH3(y, x)

where f is a representative rational map of [f ]. In Lemma 3.16, we proved that a sequence [fn] is degener-

ating as conjugacy classes if and only if r([fn]) → ∞. We may choose a sequence of representatives fn of

[fn] so that

r([fn]) = max
y∈E f−1

n (0)
dH3(y,0).
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We construct a limiting dynamics associated to the degenerating sequence of conjugacy classes [fn]:

Ebc(fn) :
rH3 −→ rH3,

where the rescalings rn = r([fn]).

The limiting dynamics can tell us a lot about the asymptotic behaviors of the sequence fn, e.g, the

growth rate of the multipliers (see Theorem 1.7). To talk about the multipliers for a sequence [fn], it is

more natural to consider the case where all the rational maps [fn] come from a single hyperbolic compo-

nent, and we have a marking on their Julia sets.

Recall that a conjugacy class of rational map [f ] is called hyperbolic if any of the following equivalent

definition holds (see Theorem 3.13. in [McM94]):

1. The postcritical set P (f) is disjoint from the Julia set J(f).

2. There are no critical points or parabolic cycles in the Julia set.

3. Every critical point of f tends to an attracting cycle under forward iteration.

4. There is a smooth conformal metric ρ defined on a neighborhood of the Julia set such that |f ′(z)|ρ >

C > 1 for all z ∈ J(f).

5. There is an integer n > 0 such that fn strictly expands the spherical metric on the Julia set.

The space of hyperbolic rational maps is open inMd(C), and a connected component of it is called a

hyperbolic component. For each hyperbolic componentH , there is a topological dynamical system

σ : J −→ J

such that for any [f ] ∈ H , there is a homeomorphism

φ(f) : J −→ J(f)
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which conjugates σ and f . A particular choice of such φ(f) will be called a marking of the Julia set.

Let [f ] ∈ H ⊂ Md(C) be a hyperbolic rational map with a marking φ : J −→ J(f). We let S be the

space of periodic cycles of the topological model σ : J −→ J . We define the length on [f ] of a periodic

cycle C ∈ S by

L(C, [f ]) = log |(f q)′(z)|,

where q = |C| and z ∈ φ(C). The collection (L(C, [f ]) : C ∈ S) ∈ RS
+ will be called the marked length

spectrum of [f ].

Let [fn] ∈ H ⊂ Md(C) be a degenerating sequence with markings φn. Note that the ends ϵ(rH3) can

be represented by a sequence of points in the conformal boundary P1
C, so the sequence of markings φn also

provides a marking on the end of the tree via

φ∞ : J −→ ϵ(rH3)

t +→ [(φn(t))]

Hence a periodic cycle C ∈ S is identified with a periodic cycle of ends for rH3. Theorem 1.7 then im-

plies that after passing to a subsequence, we have for all C ∈ S,

L(C,Ebc(fn)) = lim
n→∞

L(C, [fn])

r([fn])
.

Note that it is possible to have a degenerating situation where L(C, [fn]) stay bounded for all C ∈ S. If

this is the case, then L(C,Ebc(fn)) = 0 for all C ∈ S. In the upcoming sections, we are going to classify

this degenerating case.
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5.2 Hyperbolic component with nested Julia set

In this section, we will study a special type of hyperbolic component. We begin with the following defini-

tion.

Definition 5.1. Let f ∈ Ratd(C) be a hyperbolic rational map, we say J(f) is nested if

1. There are two points p1, p2 ∈ P1
C such that any component of J(f) separates p1 and p2;

2. J(f) contains more than one component.

A hyperbolic componentH is said to have nested Julia set if the Julia set of any rational map inH is

nested.

A typical example of the Julia set may look like Figure 1.1. We remark that as soon as J(f) has more

than 1 component, it must have uncountably many components by taking preimages and their accumula-

tion points. We shall see in a moment that there is a continuous map π : J(f) −→ C, where C is a Cantor

set, such that π−1(x) is a continuum.

The first example of hyperbolic rational map with nested Julia set was introduced by McMullen in

[McM88], where the Julia set is homeomorphic to a Cantor set times a circle. In their study of rational

maps with disconnected Julia set (see Section 8 in[PT00]), Pilgrim and Tan constructed an example where

the Julia set is nested, but not homeomorphic to a Cantor set times a circle. In this section, we shall clas-

sify these hyperbolic rational maps with nested Julia sets. We begin by introducing some terminologies

and deduce some topological properties of the Julia sets.

Let J be a nested Julia set of a hyperbolic rational map f . Since each component of J(f) separates 2

points, it can be easily verified that any Fatou component of f is either simply connected, or isomorphic

to an annulus. We will call an annulus Fatou component a gap. Note that gaps are nested, and is backward

invariant. We will call a componentK of J an extremal if there is no other Julia component separatingK
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and p1 or p2. We sayK is buried ifK does not intersect the boundary of any gap. We sayK is unburied

otherwise.

Since f is hyperbolic, f is expanding in the hyperbolic metric on P1
C − P (f) where P (f) is the postcrit-

ical set. IfK is a buried component which is not extremal, thenK is the accumulation set of Julia compo-

nent from both sides. A standard argument using the expanding property and a converse of Jordan curve

theorem, one can show that any buried Julia component is a Jordan curve (see Section 5 of [PT00] and

Chapter 11.8 of [Bea91] for detailed arguements).

Since f is hyperbolic, a gap is eventually mapped to a simply connected Fatou component. We will call

those gaps which is mapped to simply connected Fatou component the critical gaps. By Riemann-Hurwitz

formula, those critical gaps are exactly those gaps containing critical points of f . Let U be a critical gap,

andK1,K2 be two component of the Julia set J containing ∂U . ThenK1 andK2 are both mapped toK, a

component of J . This componentK must be an extremal Julia component. Indeed,K cannot be unburied,

as otherwise,K contains a boundary component of a gap and the preimage of this gap must also be a gap,

which has to be U and we get a contradiction as U is mapped to a simply connected Fatou component. If

K is buried but not extremal, thenK is a Jordan curve, so it cannot contain a boundary of a Fatou compo-

nent. Therefore, any unburied component is eventually mapped to an extremal Julia component by a de-

gree e covering for some e. A similar argument also shows that the extremal Julia components are mapped

to extremal ones.

We summarize these topological properties in the following lemma.

Lemma 5.2. Let f be a hyperbolic rational map with nested Julia set J , then

1. A Fatou component is either simply connected, or isomorphic to an annulus, which will be called a
gap.

2. The gaps are nested, and backward invariant.

3. A critical gap is a gap which contains critical points, and a critical gap is mapped to a simply con-
nected Fatou component whose boundary is contained in an extremal Julia component.
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4. The extremal Julia components are mapped to extremal ones.

5. Any unburied Julia componentK is eventually mapped to an extremal Julia component by a degree
e = e(K) covering.

6. Any buried Julia componentK except for the extremal ones is a Jordan curve.

Shishikura tree for nested Julia set

We shall see that the dynamics on the gaps for a hyperbolic rational map f with nested Julia set can be

well explained using the Shishikura tree. The Shishikura tree was first introduced by Shishikura in [Shi89]

in the study of rational maps with Herman rings. We will give a brief introduction of the special case that

we are interested, and refer the readers to [Shi89] for details and more general theories.

Let A be an annulus of C with modulusM , then there is a conformal map unique up to post composing

with ratation φA : A −→ {z : 1 < |z| < e2πM} sending the inner boundary to the inner one, and outer to

the outer one. We define

A[z] := φ−1
A ({ζ : |ζ| = |φA(z)|})

A(x, y) = {z ∈ A : A[z] separates x and y}

Let f be a hyperbolic rational map with nested Julia set J of degree d, and let A be the collection of

gaps. We note that by sub-additivity of moduli,
∑

A∈A m(A) < ∞. We define a pseudo metric on P1
C by

d(x, y) =
∑

A∈A
A(x, y)

In the usual fashion, we identify two points x ∼ y if d(x, y) = 0. It can be easily verified that P1
C/ ∼ is
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isometric to a closed interval I as the gaps are nested, and we denote

π : P1
C −→ I

as the projection map.

The dynamics of f on P1
C determines an associated map on I via

f∗ : I −→ I

x +→ π ◦ f(∂π−1(x))

where ∂π−1(x) is the boundary of π−1(x) ⊂ P1
C. It can be verified that f∗ is well defined and continuous.

We will now prove some properties of the map f∗.

Lemma 5.3. Let I = [a, b], then there exists a = a1 < b1 < a2 < b2 < ... < ak < bk = b such that

1. f∗ : [ai, bi] −→ I is a linear isometry with derivative ±di and di ∈ Z≥2 and the ± sign alternating;

2. U is a critical gap if and only if U = π−1((bi, ai+1)) and f∗([bi, ai+1]) ⊂ {a, b};

3. d =
∑k

i=1 di, where d = deg(f), and
∑k

i=1 1/di < 1.

Proof. Consider the annulus A = π−1((a, b)), the boundary ∂A equals to the two extremal Julia compo-

nents. Since the Julia set is nested, each component Ai of f−1(A) is an annulus. Let ai, bi be the projec-

tion of the boundary π(∂Ai), and we order them so that a1 < b1 ≤ a2 < b2 ≤ ... ≤ ak < bk. We note

k ≥ 2, as otherwise, we have an invariant annulus, which is not possible as the map f is hyperbolic. Since

the extremal Julia components are mapped to extremal ones, we know a = a1 and bk = b. Suppose for

contradiction that bk = ak+1. Without loss of generality, we assume that f∗(bk) = a, and let C = π−1(bk)

Note that C does not intersect gap, and π is constant on a simply connected Fatou component, so ∂C is
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in the Julia set. ∂C is connected, as otherwise, C must contain a gap. Since there is a sequence of Julia

components accumulating to the extremal Julia component associated to a, taking the preimages of the

sequence, we conclude that there are two different sequences of Julia components accumulating to ∂C

from two different sides. Therefore ∂C is buried, so it is a Jordan curve by Lemma 5.2, which is a con-

tradiction as f(C) has interior (as f(C) contains the interior of π−1(a) by assumption). Hence, we have

a = a1 < b1 < a2 < b2 < ... < ak < bk = b.

Let dk = deg(f : Ai −→ A), since Ai ⊂ A, each di ≥ 2. Now restricting to U ⊂ Ai and U ∈ A ,

then f(U) ∈ A . The map f : U −→ f(U) is a degree di covering, so f∗ restricting to π(U) is linear with

derivative ±di. This is tree for any such U , so f∗ is a linear on [ai, bi] with derivative ±di.

Since the critical gap is mapped to a simply connected Fatou component with boundary contained in

the extremal Julia component, and all the other gaps are mapped to other gaps, the property (2) follows

immediately.

For the last property, we note that the gaps are backward invariant. Hence we pick an arbitrary gap,
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there are exactly d preimages counted multiplicities. Hence d =
∑k

i=1 di.
∑k

i=1 1/di < 1 follows as

|bi − ai| = |b− a|/di.

Let C =
⋂∞

i=1 f
−n((a, b)) ⊂ I , and P be the set of periodic points in I . By Proposition 5.3, C is a

Cantor set and P ⊂ C. We have the following corollary.

Corollary 5.4. The restriction π on J gives a surjective continuous map π : J −→ C with connected fiber.

Moreover, the repelling periodic points of f are contained in π−1(P ).

Proof. Since π is a semi conjugacy, it is easy to verify that I − C = π(∪A∈AA). Hence π : J −→

C is surjective and continuous. π−1(t) ∩ J is connected as otherwise, π−1(t) contains a gap which is a

contradiction. The moreover part follows directly from the fact π is a semi conjugacy.

Let f∗ : I = [a, b] −→ I . Switching a and b, and take the second iteration of f if necessary, we may

assume that f∗(a) = a. Note if k is even, then f∗(b) = a, and if k is odd, then f∗(b) = b.

Recall that g : U −→ V is called a polynomial like map if g is a proper holomorphic map, and U ⊂ V .

The degree of a polynomial like map is defined as the degree of the proper map. The filled Julia set of

the polynomial like map is defined asK = ∩∞
k=1g

−1(V ). IfK is connected, then g is quasiconformally

conjugate (in fact, hybrid conjugate) to a polynomial P of the same degree which is unique up to affine

conjugation.

For sufficiently small ϵ > 0, we have

f∗([a, a+ ϵ)) = [a, a+ d1ϵ).

Let U = π−1([a, a + ϵ)) and V = π−1([a, a + d1ϵ)), then U, V are open sets with U ⊂ V and f :

U −→ V is proper of degree d1. Hence, f : U −→ V is a polynomial like map, with connected filled

Julia setK = π−1(a). Let Pa be the polynomial for which f is quasiconformally conjugate to, then Pa

is hyperbolic with connected Julia set as f is hyperbolic. Similarly, if f∗(b) = b, then we may associate
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a hyperbolic polynomial with connected Julia set Pb to the end b. Note that if f varies in the hyperbolic

component, Pa (and Pb) also varies in the corresponding hyperbolic component of polynomials. Hence,

combining Lemma 5.3, we summarize the invariants that we can associate to a hyperbolic component with

nested Julia set in the following proposition.

Proposition 5.5. Let H be a hyperbolic component with nested Julia set inMd(C), and f ∈ H . Taking

the second iteration f2 if necessary, we assume that f fixes one of the two extremal Julia component. We

can associate the following set of invariants toH:

1. A natural number k ≥ 2, and a sequence d1, ..., dk such that
∑

di = d, and
∑

1/di < 1, where
these numbers are associated to H as in Lemma 5.3.

2. If k is even, a hyperbolic componentHa in Polyd1(C) with connected Julia set;

3. If k is odd, a hyperbolic componentHa in Polyd1(C) with connected Julia set, and a hyperbolic
component Hb in Polydk(C) with connected Julia set.

We shall see next that given any set of data as above, one can construct a hyperbolic component with

nested Julia set with that set of data as invariants. This set of invariants, however, is not complete. For ex-

ample, the critical gap may map to different Fatou component with boundary contained in the extremal Ju-

lia component. One can indeed introduce the itinerary of the critical points not included in the polynomial

like maps, and try to construct a full set of invariants. The combinatorics becomes harder to maneuver, and

we shall not pursue it here.

Construction of hyperbolic component with nested Julia set

In this subsection, we will prove the following using quasiconformal surgery.

Proposition 5.6. Given the set of data as in Proposition 5.5, there is a hyperbolic rational map f with

nested Julia set having the set of data as its invariants.
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Proof. Let k ≥ 2, and a sequence d1, ..., dk with
∑

1/di < 1. We may assume k is an even number,

the case k is an odd number can be treated in a similar way. Let P be a monic hyperbolic polynomial with

connected Julia set, we arrange so that

1. B(0, 1) is a contained in a bounded Fatou component of P .

2. Let R be large enough so that C − B(0, R) is contained in the unbounded Fatou component of P ,
and P−1(∂B(0, R)) ⊂ B(0, (1 + ϵ)R1/d1), where ϵ > 0 is a sufficiently small constant determined
in (3).

3. For i = 2, ..., k let Ai be a round annulus centered at 0 with modulus logR
2diπ

contained in B(0, R) −
B(0, (1 + ϵ)R1/d1). We assume Ais are arranged so that Ai is contained in the bounded component
of C−Ai+1 with disjoint closure, and Ak = B(0, R)−B(0, R1−1/dk).

Note for any ϵ > 0, (2) is possible to achieve, by choosing R large enough, as P is a monic polynomial

with degree di. Given a sufficiently small ϵ > 0, (3) is possible to achieve as
∑

1/di < 1.

We now define F = P on P−1(B(0, R)). For i = 2, ..., k − 1, we define F (z) = Ciz(−1)i+1di on

Ai where Ci > 0 is chosen so that F sends the boundary of Ai to the ∂B(0, 1) ∪ ∂B(0, R). Note this is

possible as Ai is a round annulus centered at 0 with modulus logR
2diπ

. Finally, we define F (z) = Ckz−dk on

P1
C − B(0, R1−1/dk), where Ck > 0 is chosen so that F sends ∂B(0, R1−1/dk) to ∂B(0, R). Note by our

construction, F sends P1
C −B(0, R) to B(0, 1).

Let

U := P−1(B(0, R)) ∪ (
k−1⋃

i=2

Ai) ∪ (P1
C −B(0, R1−1/dk)),

then F extends continuously to U .

Let Ui be a component of C − U , then each Ui is an annulus, and F maps ∂Ui to either ∂B(0, 1) or

∂B(0, R). One can extend F to a quasiregular map on Ui which sends Ui to either B(0, 1) or P1
C−B(0, R)

depending on where F sends the boundary ∂Ui. Therefore, we get a quasiregular map defined on P1
C.

Note that each Ui is mapped to B(0, 1) under either first iteration or the second iteration. Since we as-

sume B(0, 1) is contained in a bounded Fatou component of P , each Ui is eventually mapped to a periodic
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Fatou component of P . Therefore, using Shishikura’s principle on quasiconformal surgery (see Propo-

sition 5.2 in [BF14]), we conclude F is quasiconformally conjugate to a rational map f . Note that f is

hyperbolic. Indeed, the critical points of F are contained either in the bounded Fatou component of P or

one of Ui’s, and each Ui is mapped to a bounded Fatou component of P under second iteration.

Now it can be easily verified that the Julia set f is nested, and it has the invariants the set of invariants

k, d1, ..., dk and P .

We remark that in [QYY15], Qin, Yang and Yin have a similar result for rational maps with Cantor set

of circles.

5.3 Hyperbolic component with nested Julia set admits bounded

escape

Recall that we have the following definition of bounded escape:

Definition 5.7. Let H be a hyperbolic component, we say H admits bounded escape if there exists a se-

quence [fn] ∈ H with a marking φn so that

1. [fn] is degenerating;

2. For any periodic cycle C ∈ S of the topological model σ : J −→ J , the sequence of lengths
L(C, [fn]) is bounded.

In this section, we will show the following

Theorem 5.8. Let H be a hyperbolic component with nested Julia set, then it admits bounded escape.
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Proof. Let f ∈ H be such a hyperbolic rational map. We first construct a sequence fn which is degenerat-

ing.

Let A be a critical gap, and A is mapped to a simply connected Fatou componentD. We define a quasireg-

ular map Fn as follows. On a small neighborhood U of P1
C − A, we set Fn = f . On A, we can construct

Fn : A −→ D using interpolation so that

1. fn is quasiregular on A.

2. fn = f on A ∩ U .

3. If we pull back the standard complex structure onD to A, the modulus ofm(A) with respect to the
new complex structure satisfiesm(A) ≥ n.

Using Shishikura’s principle on quasiconformal surgery (see Proposition 5.2 in [BF14]), Fn is quasicon-

formally conjugate via φn to a rational map fn. By construction, fn ∈ H , and the modulus of the gap of

φn(A) goes to infinity. This implies that fn is degenerating.
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Note that the quasiconformal conjugacy also provides a marking φn : J(f) −→ J(fn). Let x be a

periodic point of f of period p. First assume that x is on the extremal Julia componentK. Then we can

find U containingK such that fp : U −→ V = fp(U) is a polynomial like map. We may choose U small

enough so that U, f(U), ..., fp−1(U) does not intersect the critical gap A, so fp|U is conjugate to fp
n|φn(U)

via φn. We let Un = φn(U) and Vn = φ(V ), then fp
n : Un −→ Vn is a polynomial like map. Note

that by construction, we havem(Vn − Un) → ∞. Since polynomial like map of degree e f : U −→ V

withm(V − U) bounded below is compact up to affine conjugacy (see Theorem 5.8 in [McM94]), so fp
n

converges compactly to f∞ : U∞ −→ V∞ of the same degree, so the multipliers of φn(x) stay bounded.

If x is on a buried Julia componentK, then we can find an annulus neighborhood U ofK with bound-

ary contained in two Julia components so that fp : U −→ U ′ is a degree e covering map. We may also

assume that U, f(U), ..., fp−1(U) do not intersect the gap A. Let Un = φn(U) and U ′
n = φn(U ′), then the

modulus of the two annulus Un − φn(K) both go to infinity and fp
n on Un is conjugate via φn to fp on U .

We normalize so that U ′
n separates two fixed points 0,∞ of fp

n, and φn(x) = 1. Since the modulus of the

two annulus Un − φn(K) both go to infinity, the two boundary components of Un go to 0 and∞ respec-

tively (and similarly for U ′
n). Hence, both Un and U ′

n converges to C − {0}. Using a similar argument as

in Lemma 3.9, one can show that after passing to a subsequence, fp
n converges compactly on C − {0} to a

non-constant rational map. This shows that the multiplier at φn(x) is bounded in the subsequence.

Since the set of periodic cycles is countable, a diagonal argument allows us to construct a subsequence

fnk so that for any periodic cycle C of f : J(f) −→ J(f), the multipliers of φnk(C) of fnk stay bounded.

So H admits bounded escape.
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5.4 Hyperbolic component which admits bounded escape has

nested Julia set

In this section, we shall prove the converse of Theorem 5.8. Let H ⊂ Md(C) be a hyperbolic component

which admits bounded escape. Let σ : J −→ J be the topological model for the actions on the Julia set for

H , and S be the set of periodic cycles of σ. Then we have a sequence fn ∈ H with markings φn which is

degenerating as conjugacy classes, and for any C ∈ S, the multipliers of φn(C) stay bounded. Since fn is

degenerating as conjugacy classes, r([fn]) → ∞ by Lemma 3.16. We construct a limiting dynamics

Ebc(fn) :
rH3 −→ rH3,

where the rescalings rn = r([fn]) as in Section 5.1. Recall that the markings provides a marking on the

end of the tree (see Section 5.1), so each periodic cycle C ∈ S represents a periodic cycle of ends for

Ebc(fn) on rH3. We say a periodic end α ∈ ϵ(rH3) a repelling periodic end if L(α,Ebc(fn)) > 0. If

Ebc(fn) has a repelling periodic end of period p, then there is a sequence of periodic points (xn) of period

p which has unbounded multipliers. Hence, Ebc(fn) has no repelling periodic ends. We shall now classify

those limiting dynamics with no repelling periodic ends.

We will assume fn is degenerating as conjugacy classes, rn = r([fn]) → ∞. We normalize each fn so

that r([fn]) = maxy∈E f−1
n (0) dH3(y,0) for all n. Let Ebc(fn) : rH3 −→ rH3 be the associated limiting

map on the R-tree.

Lemma 5.9. Let Ebc(fn) : rH3 −→ rH3, and x0, x1 ∈ rH3. Let v⃗0 ∈ Tx0
rH3 associated to x1, and

v⃗1 ∈ Tx1
rH3 such that

1. Ebc(fn)(x1) = x0;

2. Dx1Ebc(fn)(v⃗1) = v⃗0;

3. The component Uv⃗1 does not intersect the critical tree nor x1.
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Then Ebc(fn) has a repelling fixed end.

Proof. Since Uv⃗1 does not intersect the critical tree, Ebc(fn) is an isometry from Uv⃗1 to its image Uv⃗0 .

Since Uv⃗1 does not intersect x0, so Uv⃗1 ⊂ Uv⃗0 .

We let x2 be the preimage of x1 in Uv⃗1 , then d(x0, x1) = d(x1, x2), and x2 ∈ Uv⃗0 . Hence, we can

define xn inductively by taking the preimage of xn−1 in Uv⃗1 . The union of the geodesic segments α :=

∪∞
k=0[xk, xk+1] is an end which is fixed by Ebc(fn). It is repelling as L(α,Ebc(fn)) = d(x0, x1) > 0.

The following lemma follows from our Theorem 1.3 and Theorem 10.83 in [BR10] (see also Proposi-

tion 9.3 in [RL05] and Lemma 6.2 in [RL03]). For completeness, we produce a proof here as well.

Lemma 5.10. Assume the degree d branched covering Ebc(fn) : rH3 −→ rH3 has no repelling periodic

ends, then it has a fixed point x ∈ rH3 which has multiplicity ≥ 2.

Proof. We say x is strongly involutive if either

1. x is fixed by Ebc(fn), or

2. x ̸= y := Ebc(fn)(x) and if the tangent vectors v⃗ at x associated to y and w⃗ at y associated to x
satisfies DxEbc(fn)(v⃗) = w⃗ and v⃗ is the only vector in Tx

rH3 that is mapped to w⃗.

We will consider two cases. If every point is strongly involutive, then by Theorem 3.30, the critical

locus is non empty. Let x be a point in the critical locus. If x is a fixed point, then we are done. Otherwise,

consider the geodesic segment [x, y := Ebc(fn)(x)]. Since x is strongly involutive, and the multiplier

at x is e ≥ 2, Ebc(fn) has derivative e near x on [x, y]. The isometry from [x, y] to [0, d(x, y)] gives a

natural ordering on [x, y], and we let t := sup{s ∈ [x, y] : Ebc(fn)(s) ∈ [x, y] and s ≥ Ebc(fn)(s)}.

Note that this set is non empty, and by continuity, Ebc(fn)(t) ∈ [x, y] and t ≥ Ebc(fn)(t). Since t is

strongly involutive, the maximal property guarantees that t is a fixed point. Hence Ebc(fn) maps [x, t]

homeomorphically to [y, t]. Since every point on s ∈ [x, t] is strongly involutive, the local multiplicity
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of DsEbc(fn) at v⃗s associated to t is e. Hence Ebc(fn) is linear and has derivative e on [x, t]. Hence t has

multiplicity at least e ≥ 2. This proves the first case.

Now assume that there is a point x1 ∈ rH3 which is not strongly involutive, let x0 := Ebc(fn)(x1).

Since x1 is not strongly involutive, by Lemma 3.29, there is v⃗ at x1 maps to w⃗ at x0 associated to x1

such that x0 /∈ Uv⃗. Hence by Proposition 3.25, we can construct a x2 ∈ Uv⃗ such that Ebc(fn) maps

[x1, x2] homeomorphically to [x0, x1]. Note that the vector v⃗2 at x2 associated to x1 is mapped to v⃗1

at x1 associated to x0, so x2 is not strongly involutive. Therefore, inductively, we construct xn so that

[xn−1, xn] is mapped homeomorphically to [xn−2, xn−1]. Consider the union of the geodesic segment

l := ∪∞
k=0[xk, xk+1], then l has finite length, as otherwise, we will have a repelling fixed end. Let x de-

note the end of l (other than x0), then x is a fixed point in rH3. It has multiplicity ≥ 2 as Ebc(fn) is locally

expanding in the direction associated to l. This proves the second case.

Proposition 5.11. Assume the degree d branched covering Ebc(fn) : rH3 −→ rH3 has no repelling

periodic ends, let x ∈ rH3 be a fixed point of multiplicity ≥ 2 (which exists by Lemma 5.10), then the set

P =
∞⋃

i=0

Ebc(fn)
−i(x)

is contained in a geodesic segment.

Proof. Since we define rn = r([fn]), the preimage of x contains more than 1 point. Note it suffices to

show P is contained in a line. If we prove this, and P escapes to one end, then replace Ebc(fn) by its sec-

ond iterate if necessary, we get a repelling fixed end which is a contradiction.

We will now argue by contradiction to prove P is contained in a line. Suppose not, then there are two

points y, y′ which are eventually mapped to x and the convex hull x, y, y′ is a ’tripod’. Replace Ebc(fn) by

some iterates, we may assume that

Ebc(fn)(y) = Ebc(fn)(y
′) = x.
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Let v⃗ be the tangent vector at x associated to y (or equivalently, y′). There are two cases to consider:

Case (1): The preimage of v⃗ under DxEbc(fn) in Tx
rH3 is infinite. Then we can construct a ‘fan’ as

follows (see Figure 5.4). Let z0 = y, z1, ..., zn, ... constructed inductively so that Ebc(fn) sends [x, zn+1]

homeomorphically to [x, zn]. Let w⃗k denote the tangent vector at x associated to zk. We let u⃗0,k be tan-

gent vectors at z0 = 0 which is mapped to w⃗k (there might be many such vectors, if that’s the case,

we just choose one). Inductively, we let u⃗n,k be vectors at zn which is mapped to u⃗n−1,k. Note that the

vectors u⃗n,k are all different. Since the critical tree for Ebc(fn) is a finite tree, there is aK, such that for

all k ≥ K and all n, the component Uu⃗n,k
does not intersect the critical set. Since u⃗n,K is mapped to

u⃗n−1,K , Ebc(fn)K+1 is an isometry from Uu⃗K,K
to its image Uw⃗K

. Since the critical tree intersect [x, y], so

x /∈ Uu⃗K,K
. Now by Lemma 5.9, we conclude that there exists a repelling periodic end of periodK, which

is a contradiction.

6B;m`2 8X9, h?2 ǵ7�MǶ 7Q` *�b2 (1)X
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Case (2): The preimage of v⃗ under DxEbc(fn) in Tx
rH3 is infinite. By Lemma 3.29, replace Ebc(fn)

by its second iterate if necessary, we may assume v⃗ is totally invariant under DxEbc(fn). Hence Ebc(fn)

is (locally) expanding in the direction v⃗ by Lemma 3.27. We choose [x, z1] and [x, z′1] which are mapped

homeomorphically to [x, y] and [x, y′] respectively. Let p be the middle point of the tripod hull(x, y, y′),

we may assume [x, q] := [x, z1] ∩ [x, z′1] is mapped homeomorphically to [x, p]. We note that either [x, z1]

is not contained in [x, y] or [x, z2] is not contained in [x, y′]. Indeed, since Ebc(fn) is (locally) expanding

in the direction v⃗, d(x, q) < d(x, p), so at least one of [x, z1] ∩ [x, z′1] must branch off [x, p] (note that

it may even happen before q). We assume [x, z1] is not contained in [x, y], and denote z0 = y. Then we

can construct a generalized ‘fan’ as follows (see Figure 5.4). Let z0 = y, z1, ..., zn, ... constructed induc-

tively so that Ebc(fn) sends [x, zn+1] homeomorphically to [x, zn], let qk denote the middle point of the

tripod hull(x, z0, zn). Note that by construction, Ebc(fn)(qn) = Ebc(fn)(qn−1). Since Ebc(fn) is (locally)

expanding in the direction v⃗, d(x, qn) < d(x, qn−1) and d(x, qn) → 0. Let w⃗k denote the tangent vector

at qk associated to zk. We define q0,k so that [z0, qo,k] is mapped homeomorphically to [x, qk], and let u⃗0,k

be a tangent vector at q0,k which is mapped w⃗k. Inductively, we define qn,k so that [zn, qn,k] is mapped

homeomorphically to [zn−1, qn−1,k], and let u⃗n,k be a tangent vector at qn,k which is mapped u⃗n−1,k. For

sufficiently large k, we may assume q1,k ∈ Uw⃗1 . Therefore, inductively, we can assume that qn,k ∈ Uw⃗n

for all n. Now the argument is similar to the Case (1). Note that the vectors u⃗n,k are all different. Since

the critical tree for Ebc(fn) is a finite tree, there is aK, such that for all k ≥ K and all n, the component

Uu⃗n,k
does not intersect the critical set. Since u⃗n,K is mapped to u⃗n−1,K , Ebc(fn)K+1 is an isometry from

Uu⃗K,K
to its image Uw⃗K

. Since the critical tree intersect [x, y], and qK,K ∈ Uw⃗K
, so qK /∈ Uu⃗K,K

. Now

by Lemma 5.9, we conclude that there exists a repelling periodic end of periodK, which is a contradiction.

Let I = [a, b] be the smallest geodesic segment containing P , then Ebc(fn) sends the boundary {a, b}

to the boundary {a, b}. As otherwise, we can find a point in P with preimage outside of [a, b], which is a
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contradiction.

Let J ⊂ I be a component of Ebc(fn)−1(I) intersecting I , then Ebc(fn) maps J homeomorphically to

I . Indeed, if the map is not injective, then there is a point t ∈ J with tangent vectors v⃗1, v⃗2 at t associated

to a and b respectively so that DtEbc(fn)(v⃗1) = DtEbc(fn)(v⃗2). But DtEbc(fn) is surjective by Lemma

3.29, so there is a tangent vector v⃗ which is mapped to the tangent vector at Ebc(fn)(t) associated to either

a or b. This means that P intersect non-trivially with Uv⃗, which is a contradiction. The map is surjective

by a similar argument: if the map is not surjective and let I ′ ⊂ I be the image, then by Lemma 3.29, the

preimage of I − I ′ is not contained in I , which is a contradiction as P intersect I − I ′ non-trivially.

We also note that Ebc(fn) has constant derivative on J . Indeed, if not, then we can find a point t ∈

J with tangent vectors v⃗1, v⃗2 at t associated to a and b respectively so that the local degrees at v⃗1 and v⃗2

are different. Then applying Lemma 3.29, one of DtEbc(fn)(v⃗i) has a preimage v⃗ in Tt
rH3 other than v⃗i.

113



Then there is a point of P in Uv⃗, which is a contradiction.

By looking at the local degrees at the preimages of the point x, we conclude the sum of the derivatives

on different components J equals to d.

To summarize, we have the following Proposition which describes the limiting dynamics with no re-

pelling periodic ends.

Proposition 5.12. Assume the degree d branched covering Ebc(fn) : rH3 −→ rH3 has no repelling

periodic ends. Let x ∈ rH3 be a fixed point with multiplicity ≥ 2 and P = ∪∞
i=0Ebc(fn)

−i(x). Let I =

[a, b] be the smallest geodesic segment that contains P , then there exists a = a1 < b1 ≤ a2 < b2 <≤ .. ≤

ak < bk = b such that

1. Ebc(fn) : [ai, bi] −→ I is a linear isometry with derivative ±di and di ∈ Z≥2 and the ± sign
alternating;

2. d =
∑k

i=1 di.

An immediate corollary of the above Proposition is the following:

Corollary 5.13. Let t ∈ I = [a, b] which is mapped into (a, b), then Uv⃗ contains no critical ends for all v⃗

at t not associated to a or b.

Remark 5.14. We remark that we did not use the fact that fn all come from a single hyperbolic component

yet. In our communication with Favre, this classification also appears in an unpublished manuscript by

Charles Favre and Juan Rivera-Letelier, though the author never had a chance to read the manuscript. We

would refer to [FRL10] where many such examples are studied.

We also remark the similarities and the distinctions of the classification with the induced map on the

Shishikura’s tree (see Lemma 5.3). In Proposition 5.12, it is possible for bk = ak+1, and
∑k

i=1 1/di = 1.

Neither equality can occur in Lemma 5.3.
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We will now further assume that the sequence fn is an example of bounded escape in the hyperbolic

component H . Then Ebc(fn) : rH3 −→ rH3 has no repelling periodic ends. Let I = [a, b] be the geodesic

segment as in Proposition 5.12, and x be a fixed point in (a, b). Then there exists an open set Ux−t,x+t ⊂
rH3 with boundary points x − t and x + t which is mapped to V x−et,x+et for some integer e ≥ 2. Note

that Ux−t,x+t does not contain critical ends. Let Vn be the sequence of annulus associated to V x−et,x+et,

then for all large n, there is a component Un approximating Ux−t,x+t so that Un ⊂ Vn, and is mapped

under fn to Vn as a degree e covering (see Proposition 3.25). Fix such a large N , we let U0,N = VN and

Uk,N be the component of f−1(Uk−1,N ) contained in Uk−1,N . LetK = ∩∞
k=0Uk,N . Note thatK ⊂ JN =

J(fN ), and fN is hyperbolic, so by an argument as in Section 5 of [PT00] or Chapter 11.8 of [Bea91],K

is a Jordan curve. Since all fn comes from a single hyperbolic component, we will abuse notations and

regardK as in the topological model σ : J −→ J of the Julia set. The realization ofK in Jn = J(fn) will

be denoted by φn(K), where φn is the marking.

Let Kn := ∪n
i=0σ

−i(K) and K := ∪∞
n=0Kn.

Lemma 5.15. K is a nested set of circles.

Proof. Indeed, this can be done by induction: we assume that Kn is a nested set of circles. Let Pn :=

∪n
i=0Ebc(fn)

−1(x), if y ∈ Pn−1 − Pn with Ebc(fn) = w ∈ Pn, then there is a open set Uy−t,y+t ⊂ rH3

with boundary points y − t and y + t which is mapped to V w−et,w+et for some integer e ≥ 2. We may

choose t small enough so that Uy−t,y+t ∩Pn = ∅, and note that Uy−t,y+t contains no critical ends. Similar

as before, let Vn be the sequence associated to V w−et,w+et, then for a sufficiently large N , there exists

UN approximating Uy−t,y+t which maps to VN by fN as a degree e covering. Since Uy−t,y+t ∩ Pn = ∅,

UN ∩ Kn = ∅. If we denote φN (C) be the component of φ−(n+1)
N (K) in UN , then φN (C) ∪ φN (Kn) is

still a nested set of circles, so C ∪Kn is a nested set of circles. We can now add more n+1-th preimage of

K into C ∪Kn in a similar way. Therefore, K is a nested set of circles.

From the construction above, we also have
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Proposition 5.16. The natural ordering on the nested set K is compatible with the linear ordering on P =

∪∞
n=0Pn, and the map π sending a component C of K to the associated point in P is a semi-conjugacy.

We are now ready to prove the main theorem of this section:

Theorem 5.17. Let H be a hyperbolic component, and [fn] ∈ H be degenerating such that

Ebc(fn) :
rH3 −→ rH3

has no repelling periodic ends, then H has nested Julia set.

Proof. Let fn be an example of bounded escape in the hyperbolic componentH . We shall use the nota-

tions in this section.

First, we will show the Julia set is disconnected. To show this, we will show
∑k

i=1 1/di < 1, where

di is defined as in Proposition 5.12. Replace Ebc(fn) by its second iterates and switch the role of a and b

if necessary, we may assume a is fixed by Ebc(fn). Let pn, qn ∈ P with pn → a, qn → b, and Cn =

π−1(pn), Dn = π−1(qn). We also define An be the annulus bounded by Cn and Dn, and A = ∪∞
n=1An

which is again an annulus. Let pi,n and qi,n be the i − th in the linear ordering on [a, b] of the preimages

of pn and qn, and Ci,n = π−1(pi,n) and Di,n = π−1(qi,n) respectively. Let Ai,n be the annulus bounded

by Ci,n and Di,n, and Ai = ∪∞
n=1Ai,n. Then each Ai ⊂ A and the inclusion map is an isomorphism on

fundamental group. Also note that Ai is mapped to A as a degree di covering, som(Ai) = m(A)/di. If
∑k

i=1 1/di = 1, then by the equality case of the subadditivity of moduli, Ai and Ai+1 shares a Jordan

curve boundary. This forces fn to have a critical point on this boundary, which is a contradiction as this

boundary is in the Julia set, and fn is hyperbolic.

Since
∑k

i=1 1/di < 1, we conclude that the P is not dense in I . This means that J = K is not con-

nected.

We will now prove the every component separates two points. Since fn is hyperbolic, K separates two

Fatou components. Since J = K, every component of J separates these two components.
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Remark 5.18. If we have a degenerating sequence of flexible Lattès maps of degree d2, the limiting map

Ebc(fn) also provides an example with no repelling periodic ends. In this case, we have k = d and each

di = d (so
∑k

i=1 1/di = 1). Furthermore, the nested set of circle K is dense in P1
C giving J = P1

C.

5.5 Proof of Theorem 1.10 and 1.11

Proof of Theorem 1.10. Combining Theorem 5.8 and Theorem 5.17, we get Theorem 1.10.

Proof of Theorem 1.11. Combining Theorem 1.7 and Theorem 5.17, we get Theorem 1.11

It is interesting to know

Question 5.19. Is the length spectrum bounded throughout a hyperbolic component with nested Julia set?

Let A1,n, ..., Ak,n denote the critical gaps of fn. If there is an i ∈ {1, ..., k} such that the moduli

m(Ai,n) are bounded from below, then a similar argument as in the proof of Theorem 5.8 can be used

to show that the lengths of a periodic cycle C stay bounded. Therefore, in order to get unbounded length

spectrum, all moduli of the critical gaps tend to 0. Conversely, if [fn] is degenerating and has bounded

length spectrum, the proof of Theorem 5.17 implies that some moduli of critical gaps have to tend to∞.

Therefore, the question above is equivalent to the following:

Question 5.20. Does there exist a degenerating sequence [fn] ∈ H with all moduli of the critical gaps

tend to 0?

If the answer to Question 5.20 is ‘Yes’, then such a sequence will provide an example where the length

spectrum is unbounded, and so the answer to Question 5.19 is ‘No’. Otherwise, the answer to Question

5.19 is ‘Yes’.

We conjecture the answer to Question 5.20 is ‘No’.

117



References

[Arf17] Matthieu Arfeux. Dynamics on trees of spheres. Journal of the London Mathematical Society,

95(1):177–202, 2017.

[BCG96] Gérard Besson, Gilles Courtois, and Sylvestre Gallot. Minimal entropy and mostow’s rigidity

theorems. Ergodic Theory and Dynamical Systems, 16(4):623–649, 1996.

[Bea91] Alan F Beardon. Iteration of rational functions. Graduate texts in mathematics; 132. Springer-

Verlag, New York, 1991.

[Bes88] Mladen Bestvina. Degenerations of the hyperbolic space. Duke Math. J., 56(1):143–161, 02

1988.

[BF14] Bodil Branner and Núria Fagella. Quasiconformal Surgery in Holomorphic Dynamics. Cam-

bridge Studies in Advanced Mathematics. Cambridge University Press, 2014.

[BR10] Matthew Baker and Robert S. Rumely. Potential Theory and Dynamics on the Berkovich

Projective Line. Mathematical surveys and monographs. American Mathematical Soc., 2010.

118



[Chi91] Ian Chiswell. Non-standard analysis and the morgan-shalen compactification. The Quarterly

Journal of Mathematics, 42(1):257–270, 1991.

[DE86] Adrien Douady and Clifford J. Earle. Conformally natural extension of homeomorphisms of

the circle. Acta Math., 157:23–48, 1986.

[DeM05] Laura DeMarco. Iteration at the boundary of the space of rational maps. Duke Math. J.,

130(1):169–197, 10 2005.

[DeM07] Laura DeMarco. The moduli space of quadratic rational maps. Journal of the American

Mathematical Society, 20(2):321–355, 2007.

[DM08] Laura G. DeMarco and Curtis T. McMullen. Trees and the dynamics of polynomials. Annales

scientifiques de l’École Normale Supérieure, Ser. 4, 41(3):337–383, 2008.

[Eps00] Adam Epstein. Bounded hyperbolic components of quadratic rational maps. Ergodic Theory

and Dynamical Systems, 20(3):727–748, 2000.

[FRL10] Charles Favre and Juan Rivera-Letelier. Théorie ergodique des fractions rationnelles sur un

corps ultramétrique. Proceedings of the London Mathematical Society, 100(1):116–154, 2010.

[Geh61] F. W. Gehring. Symmetrization of rings in space. Transactions of the American Mathematical

Society, 101(3):499–519, 1961.

[Geh62] F. W. Gehring. Extremal length definitions for the conformal capacity of rings in space. Michi-

gan Math. J., 9(2):137–150, 1962.

119



[Gro81] Michael Gromov. Groups of polynomial growth and expanding maps (with an appendix by

jacques tits). Publications Mathématiques de l’IHÉS, 53:53–78, 1981.

[Hub06] John H. Hubbard. Teichmüller Theory and Applications to Geometry, Topology, and Dynam-

ics: Teichmüller theory. Teichmüller Theory and Applications to Geometry, Topology, and

Dynamics. Matrix Editions, 2006.

[Kiw15] Jan Kiwi. Rescaling limits of complex rational maps. Duke Math. J., 164(7):1437–1470, 05

2015.

[KL95] Michael Kapovich and Bernhard Leeb. On asymptotic cones and quasi-isometry classes of

fundamental groups of 3-manifolds. Geometric & Functional Analysis GAFA, 5(3):582–603,

May 1995.

[Lév22] Paul Lévy. Lecons d’analyse fonctionnelle,. Collection de monographies sur la théorie des

fonctions. Gauthier-Villars, Paris, 1922.

[LM97] Mikhail Lyubich and Yair Minsky. Laminations in holomorphic dynamics. J. Differential

Geom., 47(1):17–94, 1997.

[LR75] A.H. Lightstone and Abraham Robinson. Nonarchimedean Fields and Asymptotic Expansions.

North-Holland Mathematical Library. Elsevier, 1975.

[Mag12] Francesco Maggi. Sets of Finite Perimeter and Geometric Variational Problems: An Introduc-

tion to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics. Cambridge

University Press, 2012.

120



[McM88] Curtis T. McMullen. Automorphisms of rational maps. In Holomorphic Functions and

Moduli I, volume 10 of Mathematical Sciences Research Institute Publications, pages 31–60.

Springer, 1988.

[McM94] Curtis T. McMullen. Complex Dynamics and Renormalization (AM-135). Princeton Univer-

sity Press, 1994.

[McM96] Curtis T. McMullen. Renormalization and 3-Manifolds Which Fiber over the Circle (AM-142).

Princeton University Press, 1996.

[McM08] Curtis T. McMullen. Thermodynamics, dimension and the Weil-Petersson metric. Inventiones

mathematicae, 173(2):365–425, Aug 2008.

[McM09a] Curtis T. McMullen. A compactification of the space of expanding maps on the circle. Geo-

metric and Functional Analysis, 18(6):2101–2119, Mar 2009.

[McM09b] Curtis T. McMullen. Ribbon R-trees and holomorphic dynamics on the unit disk. Journal of

Topology, 2(1):23–76, 2009.

[McM10] Curtis T. McMullen. Dynamics on the unit disk : short geodesics and simple cycles. Commen-

tarii Mathematici Helvetici, 85, 2010.

[MS84] John W. Morgan and Peter B. Shalen. Valuations, trees, and degenerations of hyperbolic struc-

tures, I. Annals of Mathematics, 120(3):401–476, 1984.

121



[Pau88] Frédéric Paulin. Topologie de Gromov équivariante, structures hyperboliques et arbres réels.

Inventiones mathematicae, 94(1):53–80, Feb 1988.

[Pet11] Carsten Lunde Petersen. Conformally natural extensions revisited, 2011.

[PT00] Kevin Pilgrim and Lei Tan. Rational maps with disconnected julia set. Asterisque, Société

Mathématique de France, 261:349–384, 01 2000.

[QYY15] WEIYUAN QIU, FEI YANG, and YONGCHENG YIN. Rational maps whose julia sets are

cantor circles. Ergodic Theory and Dynamical Systems, 35(2):499?529, 2015.

[Ric93] Seppo Rickman. Quasiregular mappings. Springer, 1993.

[RL03] Juan Rivera-Letelier. Espace hyperbolique p-adique et dynamique des fonctions rationnelles.

Compositio Mathematica, 138(2):199–231, 2003.

[RL05] Juan Rivera-Letelier. Points périodiques des fonctions rationnelles dans l’espace hyperbolique

p-adique. Commentarii Mathematici Helvetici, 80(3):593–629, 2005.

[Roe03] John Roe. Lectures on Coarse Geometry. American Mathematical Society, Providence, 2003.

[Sch39] Erhard Schmidt. Über das isoperimetrische problem im Raum von n dimensionen. Mathema-

tische Zeitschrift, 44:689–788, 1939.

[Shi89] Mitshuhiro Shishikura. Trees associated with the configuration of herman rings. Ergodic

Theory and Dynamical Systems, 9(3):543–560, 1989.

122



[Sti93] James Stimson. Degree two rational maps with a periodic critical point. PhD thesis, Univer-

sity of Liverpool, 1993.

[Zie67] William P. Ziemer. Extremal length and conformal capacity. Transactions of the American

Mathematical Society, 126(3):460–473, 1967.

123


