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ABSTRACT

Traditional quantum algorithms with guaranteed performance generally require fully coherent quantum

computers to operate, making error-correction a necessity. In contrast, variational quantum algorithms seek

to remove this requirement by formulating the computation as the approximate optimization of a functional.

This optimization is carried out in the space of heuristic functions defined by a parameterized (variational)

quantum circuit. Taking advantage of the flexibility in the definition of these heuristics, we can expand the

operability of variational algorithms within the regime of coherence times of noisy intermediate-scale

quantum devices, avoiding the necessity of error-correction. In this dissertation, we present the application

of the variational quantum computing approach to problems in quantum simulation, quantum state

preparation, quantum error-correction, and generative modeling.

In the first part, we investigate the use of the variational quantum eigensolver (VQE) for simulating the

ground state of fermionic systems. We start by studying the implementation of VQE using the unitary

coupled cluster (UCC) ansatz and propose strategies to reduce its cost. We use these insights to carry out

some of the first experimental quantum computations of molecular energies using simplified versions of this

ansatz. We also propose an extension of UCC to study problems in condensed matter physics, along with a

new low-depth circuit ansatz for preparing non-gaussian fermionic states on quantum computers. We show

the potential of our approach to describe strongly correlated fermionic systems.

In the second part, we develop three new variational quantum algorithms for problems in quantum

computing and machine learning, namely: 1) the quantum autoencoder, to compress ensembles of quantum

states, 2) the variational quantum error corrector, to find device-tailored quantum encoding and recovery

circuits for quantum error correction, and 3) the variational quantum generator, to generate classical

probability distributions. These techniques offer efficient ways to design new quantum circuits for state

preparation, to find more effective error-correcting codes and to perform generative modeling with quantum

computers. Our work provides insights into the design of variational quantum algorithms and establishes

practical guidelines to implement these methods on near-term quantum computers, as well as some future

research directions for this field.
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1
Introduction

Computers are machines designed to store and process information faster and more reliably than

humans by themselves could. Nowadays, we employ these machines for a wide range of activities,

including secure data storage, communication, prediction, and modeling. Computers are embedded

in almost every single human activity, becoming an essential driver for the economy, as evidenced

by the emergence and rapid growth of information technology companies59. What made this

revolution possible was the development of electronic computers, which work thanks to a rather

simple but powerful principle in computer science: that any possible computation can be broken

down into a series of Boolean operations acting on a register of bits67,178,243,337 (variables taking

values 0 or 1). Electronic computers employ electrical circuits to implement bits and Boolean

operations, and perform computations by compiling sets of instructions written by humans, also

called algorithms, all the way down to their set of fundamental physical operations *, which are

subsequently executed on hardware357.

However, the fact that electronic computers can implement universal computation does not

imply that they can always do this efficiently. The word efficiently in this context refers specifically

to how fast computational resources (memory and depth † required by the sequence of operations

composing the computation) grows as the size of the problem increases. It is asserted as a premise

in computer science that efficient algorithms employ resources that grow polynomially with the

size of the problem, meaning proportionally to a (rather low) power of the problem size. In

contrast, exponential scaling is considered inefficient. For some computational problems, the most

*Electronic computers implement a complete basis178 of Boolean functions. Any Boolean function can be expressed
as a composition of operations in this set.

†The depth of a Boolean circuit is the maximum number of gates on any path from the input to the output178.

1



efficient algorithms known scale exponentially with system size. One example of such problems is

factoring, for which the most efficient known algorithm scales proportionally to exp(cn1/3), with n

being the number of digits (in binary) of the number we want to factor260.

Another example of a problem with an exponential scaling is the simulation of the dynamics of

arbitrary quantum systems. Consider for example a system with n spins. Each spin is represented

with a binary basis, corresponding to basis states |0〉 and |1〉, such that a system of n spins requires

2n basis computational states, |x1,x2, . . . ,xn〉 with xi ∈ {0,1}. Correspondingly, the state of this

system is described by a vector of 2n complex amplitudes, cx1,x2,...,xn , whose squared norm is the

likelihood of finding the system in the corresponding computational state, |x1,x2, . . . ,xn〉. While

certain classes of quantum states admit a more efficient representation of the state vector (e.g.,

stabilizer122 or matrix product250 states), this is not always the case. Consequently, just storing

arbitrary quantum states becomes inefficient on a classical computer ‡. The problem gets worse if

we consider studying the dynamics of quantum states. For long time intervals, this requires

multiplication by unitary matrices of size 2n×2n. For this reason, it is believed that simulating the

dynamics of an arbitrary quantum system on classical computers is, in general, inefficient178.

Conversely, the hardness associated with quantum dynamics can constitute a resource. This

brings us to the question of whether or not quantum systems themselves can be used as computers.

The field of quantum computing grew out of this inquiry, originally addressed by the early works

of Manin217, Feynman108 and Deutsch88,89, among others. Their research answered this question

about quantum computing positively and derived a series of abstract models that formulate

quantum computation independently of a particular physical implementation. Among those

models, the most widely used and the basis for writing quantum programs nowadays is the

quantum circuit model. Quantum circuits comprise a set of qubits (two-level quantum systems,

with basis |0〉 and |1〉, just like spins) and quantum unitary operations, known as quantum gates. A

quantum circuit is a series of quantum gates acting on a set (or register) of qubits, where each

operation acts on a subset of the qubits.

Provided the correct set of quantum gates, a quantum circuit can implement universal

‡The number of classical resources needed to represent a given quantum state is related to the degree of entanglement
of the state. States with low entanglement admit low-rank representations and therefore require less classical resources.

2



Chapter 1. Introduction

computation, meaning it can implement any possible Boolean function178,309. The basis of the

procedure goes as follows. Suppose we wish to implement a function: F : Bn→ Bm, where n≤ m,

without loss of generality. For that purpose, we implement a quantum computation using a

quantum circuit U , such that:

U |x1, . . . ,xn,0, . . . ,0〉= ∑
y1,...,ym

cy1,...,ym |y1, . . . ,ym〉 (1.1)

Where we have assumed that we can initialize the qubits in a known initial state, for example, a

computational state |x1,x2, . . . ,xn〉. This initial state encodes the information regarding the input

for the function, and correspondingly, the states |y1, · · · ,ym〉 encode potential outputs. However,

unlike classical computers, the output of the quantum computer is a quantum state with an

exponential number of amplitudes. To read the answers from the quantum register, we need to

perform measurements on the output quantum state. A particular binary string, y1, . . . ,ym is

measured with probability |cy1,...,ym |2, as pointed out earlier. Therefore, to implement F we need to

design a sequence of quantum gates (a quantum algorithm) such that the resulting circuit, U ,

prepares an output state that produces F(x1, . . . ,xn) with probability close to 1 when measured.

Described this way, we see that a quantum model of computation is possible. However, does it

offer any advantage compared to classical computing?

It turns out there are problems for which it is possible to formulate a quantum algorithm that is

more efficient than its classical counterpart. An example of such problems is quantum simulation.

Consider, for example, a system of quantum spins as mentioned earlier. The quantum states of

such a system can be represented using only a linear number of qubits (one qubit per spin) in

contrast to the exponential number of bits needed to represent a general state of the system.

Furthermore, the evolution under a unitary operator e−iHt , where H is a qubit Hamiltonian, can be

efficiently implemented on a quantum computer when H is a sum of local interactions210. In recent

years, the prospect of simulating complex quantum systems using quantum computers has

motivated the development of sophisticated techniques for quantum simulation117 with application

in many research fields, including chemistry62.
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The other two prominent problems where quantum algorithms show advantage are unstructured

database search and integer factorization. In the first case, a quantum algorithm proposed by

Grover128 provides a quadratic speed-up compared to classical approaches. In the second case, an

algorithm proposed by Shor308 is capable of factoring an integer of bit-size n using approximately

n3 operations, an exponential speed-up compared to the best known classical algorithm, mentioned

earlier. Grover’s and Shor’s algorithms had a profound impact on the theoretical quantum

information community, constituting the blueprint for many quantum algorithms designed to

exhibit a quantum speed-up236. Shor’s algorithm especially had a significant impact within the

field of quantum computing, due to its potential for breaking the RSA protocol, widely used for

secure data transmission276. The disruptive potential of Shor’s method brought significant

attention from academia, industry, and government, leading to a substantial increase of the

resources devoted to quantum computing research.

The impact of Shor’s algorithm and the development of techniques to control quantum

systems136,364, set the stage for the first physical realizations of quantum computers in the

2000’s41,91,198,247,258,365. To be considered a quantum computer, a particular physical

implementation must meet the requirements established by DiVicenzo92, which are linked to the

ability to implement and execute quantum circuits accurately. The endeavor of building quantum

computers has advanced substantially in the last decade, delivering different types of scalable

physical implementation, also called quantum computing architectures or platforms. Nowadays, a

substantial part of the development of these platforms is carried out at big research facilities by

major technological companies. Their current focus is on building a quantum computing device

capable of executing a task that cannot be simulated using existing traditional computing

resources. This milestone has been coined quantum supremacy268. Some of the problems proposed

for quantum supremacy experiments are specially-crafted theoretical tasks without a practical

commercial application43,241. In this situation, one might ask the question: when will quantum

computers be able to execute useful algorithms? To answer this, we first need to know how what

quantum computational resources are required to implement a given practical algorithm, such as

Shor’s factoring, and then determine how long it will take for the emerging quantum computing
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industry to develop those capabilities. It turns out that for an algorithm such as Shor’s, current

estimates indicate that practical instances might require on the order of hundreds of millions of

physical qubits to factor a two thousand digit number111. At the moment of writing this document,

the biggest quantum processors reported does not comprise more than a hundred qubits129.

It might come as a surprise that implementing Shor’s algorithm requires such a large amount of

resources. The reason for this lies in the almost counter-intuitive logic behind building a quantum

computer. On the one hand, qubits need to be isolated from their environment to prevent

decoherence § to corrupt the information encoded in quantum states. On the other hand, we need to

be able to address qubits through external physical operations to implement gates and

measurements. As a result, decoherence is always present at a certain level, causing physical

implementations of unitary operations to have a finite error rate, ε . Correspondingly, errors

accumulate along the execution of the quantum circuit driving the probability of error close to 1

after only L∼ ε−1 operations178. Despite this, large scale quantum computing is still possible in

principle thanks to the development of quantum error-correction codes and the theory of

fault-tolerant quantum computation. These protocols encode the information of a single logical

qubit using several physical qubits and provide procedures to implement logical gates as well as to

detect and correct physical errors. Effective implementations of quantum error correction require

the error rate to be below a certain error level or threshold, which is determined by the specific type

of quantum-error correcting code and physical implementation.

The price to pay for error-correction is a significant overhead in qubit number and run time, as

illustrated by the example of Shor’s algorithm mentioned earlier. Consequently, it is believed that

achieving scalable error correction, although viable, is a long-term goal still decades away.

However, while industry and academia work to accomplish this goal, noisy digital quantum

computers with an increasing number of resources will become available. This period of quantum

technologies has been recently coined as the noisy intermediate-scale quantum (NISQ) era269.

NISQ devices will not have the resources to implement error correction and consequently will not

be capable of executing large instances of practical algorithms such as Shor’s. However, these

§Decoherence is the irreversible degradation of a quantum state caused by interactions with its environment. One
could describe this process, for example, as a superoperator acting on the pure state of a quantum register.
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machines will be big enough to implement quantum dynamics that cannot be simulated with

existing classical computing resources, allowing the first demonstrations of quantum supremacy43.

Given that current proposals for quantum supremacy do not have practical applications, one might

wonder if practical quantum supremacy is possible using NISQ devices.

Some tentative answers to the question of practical quantum supremacy, or quantum advantage,

have emerged through the development of new quantum algorithms which take into account the

limitations of NISQ devices. These approaches are the quantum variational eigensolver (VQE) for

quantum simulation and the quantum approximate optimization algorithm (QAOA) for solving

combinatorial optimization problems. QAOA, developed by Farhi et al.104, was initially conceived

as a method to approximately solve constraint satisfaction problems (CSP) using quantum circuits

with low-depth. The algorithm starts by mapping the cost function of the CSP to a diagonal

Hamiltonian on qubits. Solutions to the CSP problem are encoded as the state prepared by a

quantum circuit parameterized by two variables. Correspondingly, by minimizing the expectation

value of the Hamiltonian for these parameters, one gets an approximate solution to the problem.

Similarly, the VQE algorithm, initially proposed by Peruzzo and McClean et al.255, aims at finding

approximations to the ground state of a Hamiltonian using a parameterized quantum circuit. Here,

this circuit plays the role of a variational ansatz, such that approximate solutions are guaranteed by

the variational principle of quantum mechanics126. By computing the variational state and its

observables on the quantum computer, the original formulation of VQE offers efficient

approximate solutions to the time-independent Schrödinger equation.

The VQE and QAOA algorithms have paved the way for a new paradigm in quantum algorithm

design. Previous to these proposals, quantum algorithmic development mostly focused on

designing algorithms with a provable advantage over classical ones, such as Shor’s. These

algorithms were designed to be executed entirely on a fully coherent quantum computer for which

error-correction is a necessity. In contrast, VQE and QAOA, seek to remove this requirement by

formulating the computation as the approximate optimization of a functional in the space of

heuristic functions defined by a parameterized (variational) quantum circuit. The flexibility in the

definition of these heuristics allows to expands the operability of these approaches within the
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regime of the coherence times of noisy intermediate-scale quantum devices, avoiding the necessity

of error-correction. The strategies employed by both algorithms to achieve such robustness and

flexibility are similar, and so we present them together in the form of three basic concepts:

1. Approximate quantum computing: Both, QAOA and VQE offer approximate solutions to

their corresponding computational problems, as opposed to an exact solution guaranteed

within certain precision. In other words, we remove performance guarantees on the

algorithm in exchange for more flexibility in the number of resources required by the

algorithm to operate. The concept of approximate quantum computing captures the

possibility of finding a practical advantage for a given computational task even without those

performance guarantees. This advantage might come, for example, as a practical reduction

in the time required for solving a computational task, or as achieving a better accuracy for a

given instance of the problem compared to a classical approximation.

2. Variational quantum circuits: Variational quantum circuits (also called parameterized

quantum circuits) are quantum circuits where some of the unitary operations are tuned as

part of the algorithm execution. The tuning can be performed through a particular

parameterization of the quantum gates. Computational problems encoding solutions as

extreme values of a functional can be naturally described using variational circuits as

heuristic functions. The flexibility in the selection of the circuit offers a lot of operational

robustness, allowing to choose circuits that can operate even within the limits of the

coherence times of NISQ devices, thus removing the requirement of error correction.

3. Hybrid quantum-classical computing: QAOA and VQE require an optimization routine to

tune the parameters of the variational circuit. This optimization outer-loop is implemented

using a classical computer interfacing with the quantum computer via classical

communication. This feature motivates the concept of hybrid quantum-classical (HQC)

computing. In the HQC framework, we subdivide a computational task into subtasks, some

of which are executed by a quantum computer while the rest are solved classically. By

assigning to the quantum computer tasks for which it can offer an advantage, it might be
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possible to create algorithms that exhibit advantage using fewer resources than the

corresponding algorithm that implements the entire original task on a quantum device.

The principles described above constitute a new approach to computing using quantum devices

that we designate as variational quantum information processing. Correspondingly, we call the

algorithms developed using this approach variational quantum algorithms. This dissertation covers

original research on this topic. We divide our exposition in two parts: 1) progress in variational

algorithms for quantum simulation and 2) new variational algorithms for quantum computing and

statistical modeling.

The first part of this dissertation began with the VQE algorithm as a starting point. Our goal was

to improve the performance of VQE applied to problems in Chemistry and to study its

implementation on NISQ devices. To that aim, we introduced established techniques in traditional

quantum chemistry to improve the performance of the VQE algorithm when implemented with a

Unitary Coupled Cluster ansatz279. Along the same line of work, we designed some of the first

proof-of-principle scalable demonstrations of the VQE algorithm for molecules and implemented

them on superconducting qubits248 and trapped ions142 architectures. Simultaneously, we explored

the application of the UCC ansatz to problems in condensed matter physics, such as

superconductors. To that aim, we develop a variant of UCC that employs a general fermionic

gaussian state as reference state in the calculation. We proposed a method for preparing such

gaussian fermionic states with circuit depths that scale only linearly in the size of the system.

Using this circuit as the starting template, we developed a new VQE ansatz for studying

strongly-correlated fermionic systems78.

The research in the second part of this dissertation started as an exploration of the connections

and similarities between variational algorithms and techniques employed in machine learning and

statistical modeling39,120. As a result of this cross-pollination, we developed three new variational

algorithms. The first one was the quantum autoencoder (QAE) algorithm280, inspired by the

homonymous method in classical machine learning. QAE employs a quantum variational approach

to compress sets of quantum states, offering a practical way of learning new circuits for state

preparation, a task common to all quantum algorithms. QAE also provides a pragmatic view of the
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concept of quantum compression in quantum information theory. The parallel between classical

and quantum autoencoders kept inspiring new algorithm developments. In particular, the use of

classical autoencoders as de-noising models prompted us to explore the method of QAE for

mitigating errors on a quantum computer. This inception gave rise to a new variational algorithm

for designing encoding and recovery circuits for quantum error correction, called QVECTOR

(quantum variational error corrector)163. The main feature of this approach is that the generated

encoding and recovery circuits are tailored to the noise of the specific device.

Finally, inspired by recent advances in classical generative modeling119, we explore the use of

variational quantum circuits to model classical probability distributions, concluding in the

development of the variational quantum generator (VQG). This approach combines a variational

circuit with a method to encode a classical random variable into a quantum state to build a

generative model278. VQG integrates several classical machine learning techniques such as

adversarial learning121 and establishes a practical way of combining variational circuits with

neural networks, ultimately contributing to the nascent field of quantum machine learning38.

Throughout the rest of this dissertation, we will present in detail the concepts and research

results introduced above. We will start by describing the necessary background, which includes a

brief introduction to quantum computing basics (Section 1.1), followed by a general overview of

variational algorithms, and an outline of the main chapters (Section 1.2). Then, we will proceed to

Chapters 2 to 7, which correspond to the detailed research papers that compose this work. Each of

these chapters is mostly self-contained regarding its notation and technical background. Finally,

Chapter 8 will present a short perspective on the development of variational quantum algorithms,

emphasizing applications to quantum chemistry and machine learning. We will close our

exposition with some final remarks.

1.1 BASIC CONCEPTS IN QUANTUM COMPUTING

This section is a brief introduction to the basic concepts of quantum computing and the language

necessary to navigate this dissertation. For an in-depth introduction to the topics of quantum

information and quantum computing we refer the reader to Ref.178,243.
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QUANTUM INFORMATION

Information in quantum computers is encoded in quantum states. Instead of composing with the

direct product, as with classical states, quantum states are composed using the tensor product rule.

For example, in the quantum circuit model, general states are expressed as tensor products of

two-level quantum systems or qubits. The state of a single qubit can be conveniently represented

using a Bloch sphere (See Figure 1.1(a)). Correspondingly, an arbitrary state of a qubit can be

expressed as a superposition of two orthogonal basis states. By convention, the computational

basis corresponds to |0〉=
(

1
0

)
and |1〉=

(
0
1

)
, such that an arbitrary qubit state is written as

α |0〉+β |1〉, where α and β are normalized complex amplitudes. Correspondingly, a state vector

in n qubits is described by a unit vector in C2n
.

Another aspect of the quantum representation of information is measurement. Extracting

information from a quantum state requires measurement, whose outcome statistics are governed by

Born’s rule. To measure a quantum state we project it to a specific basis. One example is

measurement in the computational basis comprised of all the possible tensor products of states |0〉

and |1〉 in n qubits. The conventional one-qubit basis in quantum computing is given by the

eigenstates of Pauli matrices:

X =

0 1

1 0

 ; Y =

0 −i

i 0

 ; Z =

1 0

0 −1

 , (1.2)

where the eigenstates of the Z matrix correspond to the computational basis. An n qubit state in a

one-qubit basis can be written as |ψ〉= ∑x1,...,xn cx1,...,xn |x1, . . . ,xn〉 such that the state |x1, . . . ,xn〉 is

observed with probability |cx1,...,xn |2 when |ψ〉 is measured in this basis. Correspondingly, quantum

states can be interpreted as probability vectors with an `2-norm normalization condition, compared

to the `1-norm normalization condition of the corresponding discrete probability vector.

The theory of quantum information studies the use of quantum states to represent information,

establishing a connection to classical information theory243. Correspondingly, some of the

concepts in classical information theory such as entropy have their counterparts in quantum theory.
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Property Classical Quantum
Combining systems S1×S2 |S1〉⊗ |S2〉
Normalization ∑k pk = 1 Tr[ρ] = 1
Positivity pk ∈ R+ 〈k|ρ|k〉 ≥ 0
Expectation values ∑k pk f (k) Tr[ρF ] where F = F†

Marginals ∑k pkm = pm TrB[ρ
AB]

Entropy ∑k pk log pk Tr[ρ logρ]

Table 1.1: Comparison of properties of quantum and classical information. The normalization and positivity
properties are associated to a probabilistic interpretation of quantum states. We also compare the formulas
for expectation values, marginals, and entropy of classical probability distribution and quantum states. For a
diagonal density matrix, the classical and quantum formulas for entropy become equivalent. (Adapted from
Ref.358).

In quantum information theory, it is sometimes convenient to represent quantum states as density

operators. For a pure state, its density matrix is defined as ρ = |ψ〉〈ψ|. The density matrix

formalism enables the description of quantum ensembles, which correspond to classical probability

distributions over a set of quantum states, ρ = ∑k |ψk〉〈ψk|. Table 1.1 contrasts some of the basic

elements and properties of classical and quantum information in the density matrix formalism.

Another important aspect of quantum information is the property of entanglement. An entangled

quantum state of a joint system is a state that cannot be factored as a tensor product of states of the

individual components, independently of the basis used to represent the total system. An example

of an entangled state in two qubits is |00〉+ |11〉/
√

2. One way to quantify entanglement is through

the Schmidt rank, which can be calculated using Singular Value Decomposition given a specific

partitioning of the system243. Perturbative approaches or techniques based on matrix product states

can better approximate quantum states with relatively low entanglement but struggle with highly

entangled (strongly correlated) states64. This difficulty motivates the idea that quantum computers

can offer an advantage simulating strongly correlated systems, such as those arising naturally in

many problems of condensed matter physics and quantum chemistry. Entanglement is one of the

ingredients necessary for quantum computation to provide a computational advantage166.

QUANTUM CIRCUIT MODEL

There exist several abstract models of quantum computing, including quantum Turing machines88,

adiabatic quantum computing105, quantum cellular automaton218, among others. However, the
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Figure 1.1: Some basic elements of quantum computing: a) Bloch sphere representation of a qubit: the
state of a qubit can be described as |ψ〉 = cos(θ/2) |0〉+ eiφ sin(θ/2). X , Y and Z rotations can be pictured as
rotations in the corresponding axes. b) Example of a quantum circuit: the circuit acts on three qubits, repre-
sented by the wires labeled as qi, and comprises 3 two-qubits gates and 1 single-qubit gate, represented by
the rectangles. The ’meter’ symbol represents a measurement in the Z basis. c) Graphical representation of
single qubit rotations. d) Graphical representation of a CNOT gate.

most popular and the one we employ throughout this dissertation is the quantum circuit model.

As outlined above, a quantum circuit starts with a register of n qubits. The register is generally

initialized in some fiducial state, usually |0〉⊗n. A quantum algorithm is specified by a sequence of

unitary matrices acting on specific sets of qubits, Ui[Si], where Si represent the set of qubits

indexes. Correspondingly, the unitary matrix Ui has size 2|Si|×2|Si|, where |Si| is the number of

qubits in the set Si. These unitary operations are also called quantum gates. The output state

prepared by the quantum circuit corresponds to:

Ud [Sd ]Ud−1[Sd−1] . . .U0[S0] |0〉⊗n (1.3)

where the indexes of the unitary operations indicate the time order in which operations are

applied. We can write quantum circuits using a graphical representation similar to that of classical

Boolean circuits, as illustrated in Figure 1.1(b). Due to the unitary character of quantum gates,

quantum circuits are reversible, meaning that no information is lost during the circuit execution.

Correspondingly, it can be shown that quantum circuits with arbitrary unitary operations
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implement reversible classical Boolean functions, which in turn can perform any classical Boolean

function178,243. The demonstration of this result is what regards the quantum circuit model as a

universal model of computation. Furthermore, in analogy with the concept of complete basis in

classical Boolean logic, there are finite universal gate sets. Using only the operations within the

set, it is possible to approximate an arbitrary unitary operation in n qubits. Some of the universal

gate sets include gates with continuous parameters, for instance, the universal set comprising

arbitrary single qubit rotations and CNOT gates (defined below). Other universal sets contain

discrete operations, just as in classical Boolean logic. Universal discrete gate sets play an essential

role in the implementation of error-correction protocols.

The selection of a particular gate set depends on the types of physical interactions realizable in a

particular quantum computing architecture. Nonetheless, most of the modern architectures based

on a quantum circuit model implement arbitrary single qubit rotations and CNOTs, or another

two-qubit operation capable of composing a CNOT when combined with single-qubit gates. These

gates have the following definition:

RM(θ) = exp(−iθM/2) M ∈ {X ,Y,Z}; CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(1.4)

where θ is the rotation angle. 1.1(c)-(d) illustrate the graphical circuit representation of these

gates. In addition to a limited set of gates, physical realizations of quantum computers also have

constraints in the sets of qubits on which gates can be effected. Those constraints correspond to the

device connectivity. For example, a fully connected array of qubits can implement two-qubit gates

at the hardware level between all possible qubit pairs. In contrast, a linear connectivity allows to

implement two-qubit gates only on adjacent pairs of qubits for a given ordering of the qubits.

Then, an algorithm written in the abstract circuit model, needs to be compiled to the native set of

the architecture taking into account its connectivity, which has an impact on the final depth of the

algorithm.
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PHYSICAL REALIZATIONS OF QUANTUM COMPUTERS AND ERROR CORRECTION

As mentioned above, a physical realization of a quantum computer needs to have the capabilities

described by DiVicenzo’s criteria, listed below:

1. Scalable: the physical system implements well-characterized qubits and the cost of adding

more qubits or implementing more gates scales efficiently regarding physical resources.

2. Initializable: the ability to initialize the state of the qubits on a simple fiducial state, for

example, |0〉n.

3. Coherent: sufficiently long coherence times, such that we can implement algorithms with

success probabilities close to 1.

4. Universal: it should implement a universal set of quantum gates, meaning a set of unitary

operations that can generate any arbitrary unitary operations on the qubits.

5. Measurable: a measurement capability on individual qubits.

Quantum computing platforms meeting this criteria include superconducting qubits356, trapped

ions134,235, solid-state qubits156, photonic systems349, among others. Currently, superconducting

qubits and trapped ion platforms are ahead regarding the number of quantum resources offered285.

We present a more detailed description of the physics of these devices is Section 4.2.0.1. Some of

these early quantum computers are also available to the public via cloud-based services233.

As mentioned earlier, the physical implementation of quantum computers is inevitably noisy.

The theory of error correction and fault-tolerant quantum computing provides a series of protocols

to ameliorate the effects of imperfect preparation, encoding, processing, decoding and readout of

the computer. The central insight of these protocols is to represent the information of a single

physical qubit using multiqubit states, representing logical qubits. The quantum circuits

implementing the mapping from the space of physical qubits to logical ones are called encoders.

Information encoded in logical qubits can be protected errors in the quantum computer again by

implementing recovering operations: series of quantum operations that detect and correct physical
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errors. These two elements are the basis of error-correcting codes. So far, most of these codes have

been designed by decomposing noise processes into a discrete set of single-qubit errors. This

strategy has made possible the theoretical design of error-correcting codes. Along these, the theory

of fault-tolerant quantum computing has been developed to address the problem of implementing

fault-tolerant gates on logical qubits. For each specific choice of error-correcting code and

fault-tolerant protocol, there exists an error threshold required for the protocol to succeed. In order

to implement error-correction, a quantum computing platform needs to have enough physical

qubits and operations with errors below the error threshold. A more detailed introduction to the

principles of quantum error-correction is presented in Section 6.2. Traditional algorithms, such as

Shor’s, require fully coherent quantum circuits to properly function and therefore their practical

use is conditioned on the availability of error-corrected quantum computers. Variational

algorithms, on the other hand, try to get around the need of error-correction by introducing a new

paradigm for quantum algorithm design.

1.2 VARIATIONAL QUANTUM ALGORITHMS

Variational quantum algorithms are designed following the principles of variational quantum

information processing described above, which include 1) the approximate character of the

calculations, 2) the use of variational circuits and 3) the use of a hybrid-quantum classical

computing strategy. These three elements integrate a general approach that can be applied to find

approximate solutions to problems where the goal is to find a function that extremizes the value of

quantities that depend upon this function. For example, in VQE, the goal is to find a quantum

circuit that prepares a state that minimizes the energy of a Hamiltonian. In QAOA, the goal is to

find the quantum circuit that prepares the state that maximizes the cost function encoding the

constraints. Formally, this type of optimization problem is addressed by the calculus of

variations115, a field of mathematical analysis concerned with finding derivatives of functionals ¶.

From this perspective, variational quantum computing processing concerns a strategy for finding

extremes of quantum functionals, which we define as mappings from a space of quantum states to

¶A functional is a mapping that takes a function as the input and returns a scalar as output.

15



1.2. Variational quantum algorithms

a scalar. The problem specifies the specific form of this functional. For example, in VQE, the

functional corresponds to the expectation value of the problem Hamiltonian. If the Hamiltonian

can be expressed as a sum of a polynomial number of tensor products of Pauli matrices, the

expectation value can be estimated efficiently on the quantum computer226. In general, viable

quantum functionals need to be efficiently computable using quantum resources. A functional

implemented on a classical computer is not feasible because it requires exponential resources to

read the output quantum state.

The variational circuit provides the space of functions for the optimization. Recall that quantum

circuits implement Boolean functions, and correspondingly, by parameterizing a sequence of

quantum gates we generate a set of functions defined by these parameters. Correspondingly, we

could formulate the optimization of a quantum functional, C, as follows:

argmin
θi

C[Fθi(x)]; Fθ i : |z〉 U(θi)−−−→ |x〉 , (1.5)

where we write the optimization as a minimization without loss of generality and {Fθi(z)}

represents the set of functions to optimize over, where each function is indexed by its parameters

θi. The set of variational circuits defined by {U(θi)} acting on an initial state |z〉 implement the

functions. The parameters θi are classical, for example, angles of single-qubit rotations. Since the

value of the functional is also classical, we can employ a classical algorithm to carry out the

optimization, completing the general formulation of a variational algorithm. A second possibility

would be to perform the optimization using quantum resources. To the best of our knowledge, this

possibility has not been studied in the literature and constitutes an open research question not

addressed in this work.

In practice, variational quantum algorithms are carried out following an iterative procedure

comprised of the steps listed below and depicted in Figure 1.2:

1. Preparation of input states: we start by preparing the input state |z〉. Certain functionals

might require evaluating the function on several input states.

2. Application of the parameterized unitary: we apply the parameterized unitary to the input
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Figure 1.2: Implementation of a quantum variational algorithm using a hybrid quantum-classical
computer: the function Fθ (z) is implemented on the quantum computer by preparing the initial state |z〉 =
R(z) |0 . . .0〉 and executing the parameterized unitary U(θ). The circuit C implements the functional compu-
tation. To estimate C[Fθ (z)], the state preparation and necessary measurements are repeated several times
to accumulate sufficient statistics. The results are collected and post-processed on a classical computer.
Post-processing might include techniques such as statistical modeling. Also, circuit C could be replaced by
a circuit to compute derivatives of the functional, which are required by some optimization routines. An itera-
tion of the optimization algorithm generates a new candidate for the optimal variational parameters θnew. The
whole cycle between the quantum and classical modules is repeated until convergence. Here, discontinuous
arrows represent classical information.

state on the quantum device, preparing the output state U(θ(n)) |z〉. The parameterized

unitary is defined by choice of variational circuit ansatz, which should correspond to a

quantum circuit that cannot be efficiently computed using classical resources ||;

3. Functional estimation: The value of the functional is estimated using an efficient approach

implemented by a quantum circuit C. Ultimately, the functional estimation reduces to

performing measurements on the output state. To estimate the functional up to some

accuracy, we need to repeat the preparation of the output state several times to collect

sufficient measurement statistics;

4. Classical feedback: based on the previous estimations of the functional, a classical

optimization technique proposes a new candidate for the optimal variational parameters

θn+1;

||Certain sets of quantum gates compose quantum circuits that allow for efficient classical simulation. Examples are
Clifford gates (See Chapter 5) and matchgates on circuits with linear connectivity (See Chapter 2).
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1.2. Variational quantum algorithms

5. Steps 1-4 are repeated until convergence criteria (e.g. ∆C, ∆θ ) are satisfied.

The quantum variational approach has proven incredibly practical regarding its implementation,

establishing these algorithms as candidates for the first demonstrations of practical quantum

computing applications269. In particular, significant research efforts are currently devoted to the

development of VQE62,368 and QAOA46,106,130,211,373. The similarities of quantum variational

approaches with variational inference and neural network models have also caused significant

growth in the number of quantum machine learning approaches employing variational circuits298.

The relation between variational quantum circuits and neural networks is central to many of the

ideas proposed in this work, and therefore we describe it in more detail in the subsection below.

Other ideas developed for quantum computing with NISQ devices have also improved the

prospects of applying variational algorithms to practical problems in the near-term. In particular,

the development of error mitigation techniques98,169,331 will have a positive impact on the accuracy

of variational algorithms. These methods are different from error-correction in the sense that they

do not provide fault-tolerant quantum computing. Instead, their main goal is to reduce the impact

of errors in implementations at the physical level, without encoding quantum information into

logical qubits. It is important to point out as well that despite being motivated by the limitations of

NISQ devices, variational algorithms can be implemented using error-correction techniques.

Given that variational algorithms are heuristic and provide approximate solutions, one might

wonder whether there will be value in these approaches once error-correction becomes available,

especially compared to quantum algorithms with a proven advantage on the same tasks. The first

thing to consider is that designing algorithms with proven advantage is challenging and so far only

a relatively small number of such algorithms have been discovered236. Therefore, for many

applications, it is possible that variational algorithms will be the only quantum algorithms available

in the error-correction era. A second consideration is that variational algorithms are designed to

optimize the use of quantum resources, and therefore it is likely that their error-corrected

implementations are more efficient than implementations of their counterparts with proven

advantage. Consequently, quantum algorithms might be still competitive with traditional

algorithms regarding computational cost. Furthermore, since formal demonstrations of advantage
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are based on asymptotic considerations, there is a chance for variational algorithms to be more

efficient and sufficiently accurate for specific instances of a problem. Finally, the third

consideration is that variational algorithms can be combined with traditional quantum algorithms

to obtain even more powerful approaches. A concrete example of this can is VQE. Techniques

employed for simulating quantum systems with provable speed-up, such as quantum phase

estimation62,117,178, require the preparation of states with sufficient overlap with the eigenstates of

the Hamiltonian to measure eigenvalues with high probability. Using VQE, it will be possible to

prepare such states, ultimately boosting the success probability of phase estimation.

CONNECTION BETWEEN VARIATIONAL QUANTUM CIRCUITS AND NEURAL NETWORKS

Artificial neural networks are parameterized mathematical models that can be trained to mimic

high dimensional real functions. The simplest type of artificial neural network is the feed-forward

type, which consists of a series of non-linear transformations of an input vector x ∈ Rn. The

product of each transformation corresponds to a layer. Non-linear transformations are composed

by applying a non-linear function element-wise to a linear transformation of x. More specifically, a

single layer of a neural network is implemented by a mapping of the form F1
0 : Rd0 → Rd1 defined

as:

F1
0 (x) = f (W 1

0 x+b0), (1.6)

where the matrix W 1
0 ∈ Rd0×d1 and the vector b ∈ Rd1 act as parameters known as weights and

biases, respectively. The function f is the non-linear scalar function also called activation function.

Popular choices of activation functions include sigmoid and tanh, among many others39. The

output of applying one transformation can be fed as input in a second transformation, such that

layers with variable dimensions can be concatenated to compose very complex functions. For

example, a neural network with n layers and the same activation acting on each transformation has
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1.2. Variational quantum algorithms

Figure 1.3: Connection between neural networks and variational quantum circuits: a) Graphical rep-
resentation of a feed-forward neural network with three layers of sizes six, four and six respectively. After
the input layer, each new layer is the result of applying a linear transformation followed by the application of
a non-linear activation function. Internal layers are designated as hidden layers. b) Illustration of the con-
nection between variational circuits and neural networks. The controlled gate, shown as an example above
implements a linear unitary transformation indicated by the neural network graph below. Each layer repre-
sents a two-qubit state vector in C4. We only show weights with norm different from zero. Weights with norm
1 appear as solid edges while those with norm below one appear as discontinuous edges.

the form:

Fn
0 (x) = f

(
W n

n−1
(
. . . f (W 2

1 f (W 1
0 x+b0)+b1) . . .

)
+bn−1

)
(1.7)

This intricate composition can be more easily pictured as a graph, as illustrated in Figure 1.3(a).

Each layer is represented as a set of nodes in the graph. The edges connecting the nodes

correspond to the parameters in the weight matrix. This graphical representation immediately

resembles the quantum circuit model. Furthermore, variational quantum circuits correspond to

neural networks with unitary weight matrices acting on complex vectors of size 2n, where n is the

number of qubits, as shown in Ref.296. This connection is illustrated in Figure 1.3(b) for the case

of a two-qubit gate acting upon a two-qubit state. Notice that a variational quantum circuit on n

qubits implements a matrix of complex weights of dimensions 2n×2n, but, unlike typical neural

networks, not all the entries of this matrix act as parameters. The linear transformations

implemented by variational circuits are parameterized by only O(poly(n)) variables,
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corresponding to the tunable parameters of the gates. In this sense, variational quantum circuits

can be interpreted as efficient parameterization of linear transformations in high dimensions.

1.3 OUTLINE OF THE MAIN CHAPTERS

The research presented in this dissertation advances the field of variational quantum algorithms in

two directions:

1. Part I: Variational algorithms for quantum simulation: we developed improved

techniques for applying and implementing the VQE algorithm to compute the ground state

energies of molecules and systems in condensed matter physics. In the same direction, we

designed a new variational circuit for simulating fermionic systems. The depth of this new

ansatz scales only linearly with the size of the system.

2. Part II: Variational algorithms for quantum computing and statistical modeling: we

introduced three new variational quantum algorithms with application to the problems of

quantum compression, quantum error-correction, and classical generative modeling,

respectively.

The four algorithms studied here follow the blueprint for variational quantum algorithms

outlined in the previous section. Table 1.2 describes and contrasts these approaches according to

their application, initial state(s) employed, the general layout of the variational circuit used and

functional. In what follows we offer a summary of the content of the main chapters and its

significance.
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m
ain

chapters

Algorithm Application Initial state(s) Variational circuit layout Functional Chapter(s)

VQE
Quantum

simulation

Computational basis
state corresponding to

mean-field
approximation

Expected value of
the Hamiltonian,
〈ψ(θ)|H|ψ(θ)〉,

H = ∑i Hi

2-4

QAE∗
Compression of
quantum states;

state
preparation

Ensemble of states
∑i pi |zi〉 to compress.
Reference state |a〉.

Average fidelity,
∑i pi ·F(|zi〉 ,ρout

i,θ )
5

QVECTOR∗

Finding
device-tailored
encoding (V)

and recovering
(W) circuits for

quantum
error-correction

A set of states
approximately

sampled from the
Haar-measure using

an approximate
2-design circuit, Si,

Si |0 · · ·0〉= |zi〉

Average fidelity,
1
N ∑

N
i F(|zi〉 ,ρout

i,θ ),
where θ = [θ1,θ2]

6

VQG∗
Modeling
classical

probability
distributions

States generated by
encoding a random
variable z using a

parameterized
quantum circuit,

R(zi) |0 · · ·0〉= |zi〉

Probability of
fooling a

discriminator FD,
− 1

N ∑
N
i [logFD(xi)].

FD and FG are
trained with
adversarial
learning.

7

Table 1.2: Summary of the quantum algorithms presented in this dissertation: We compare VQE, QAE, QVECTOR and VQG in terms of the de-
scription of variational circuits presented in Section 1.2, which comprises the functions Fθi(z), implemented by the applying the variational quantum circuits
U(θi), to an initial state |z〉. Output states appear as |x〉 or as ρout

θ
. The circuit layout illustrates the disposition of the variational circuits during training; cir-

cuit wires do not necessarily correspond to a single qubit. Notice that the VQG model is hybrid, incorporating a classical neural network, and its final out-
put, x, is classical. VQG is trained using an adversarial learning approach, where a second model FD learns to discriminate samples generated by VQG
from those coming from the probability distribution to be modeled (See Chapter 7 for more details). FD can be either a classical or a quantum model. Algo-
rithms marked with ∗ are new algorithms developed as part of this dissertation.
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PART I: PROGRESS IN VARIATIONAL ALGORITHMS FOR QUANTUM SIMULATION

This part presents developments in the variational quantum eigensolver (VQE) algorithm applied

to problems in quantum chemistry and condensed matter physics. Table 1.2 describes the essential

elements of VQE, where a trial state is prepared by applying a parameterized unitary to a reference

state generally obtained using a mean-field method. The mean-field calculation provides the basis

for the second quantized representation of the system Hamiltonian. This Hamiltonian can be

mapped to a qubit Hamiltonian using a classical efficient mapping. Mean-field states can be

generally prepared using shallow depth quantum circuits.

VQE was proposed initially in Ref.255, as an alternative to phase estimation to compute

approximate ground state energies of molecules on near-term quantum devices. This early work

included a proof-of-principle non-scalable implementation ** of VQE using a two-qubit quantum

photonic chip. As part of this proposal, the Unitary Coupled Cluster ansatz, a classically

intractable model Chemistry, was postulated as a candidate ansatz for VQE369. While it was

known that UCC could be implemented using techniques similar to those employed for phase

estimation359, this approach had not been tested.

Chapter 2 summarizes the results of this assessment. Here, we studied the application of VQE to

the simulation of molecular energies using the unitary coupled cluster (UCC) ansatz. We

introduced new strategies to reduce the circuit depth for the implementation of UCC and improved

the optimization of the wavefunction using efficient classical methods to approximate the optimal

variational parameters. Additionally, we proposed an analytical approach to compute the energy

gradient. Our proposal reduces the sampling cost for gradient estimation by several orders of

magnitude compared to numerical gradients. To illustrate these improvements, we performed

numerical simulations for a system of four hydrogen atoms that exhibit strong correlation and

showed that we could reduce the depth of the UCC circuit ansatz without introducing significant

loss of accuracy in the final wavefunctions and energies.

**In the context of quantum computing, scalable implementations refer to implementations where the required classical
and quantum resources increase in the same way that they would for an arbitrarily large problem. In this case, the
experiment was not scalable because the Hamiltonian matrix was loaded into a classical computer and diagonalized as a
pre-processing step.
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1.3. Outline of the main chapters

Another realization of the UCC study was that despite heuristic improvements, the formal

scaling of this ansatz was significant for near-term devices, as also pointed out in other works137.

About the same time, quantum circuits with depths that scale at most linear in the size of the

register became the new goal in algorithm development. This situation prompted us to search for

improvements to the UCC ansatz that could reduce quantum resources and also expand its

application to problems in other fields apart from quantum chemistry. We started by looking at the

limitations of the original UCC formulation to describe systems in condensed matter physics, such

as superconductors, where the system Hamiltonian does not commute with the number operator.

Relaxing this requirement in mean-field theory leads to the generalized Hartree-Fock method338,

for which the mean-field solution is a general fermionic Gaussian state187. We reformulated UCC

with this new reference state as presented in Chapter 3, where we show how to prepare fermionic

gaussian states using a linear-depth circuit of quantum matchgates. By augmenting the set of

available gates with nearest-neighbor phase coupling (ZZ interactions), we engineered a low-depth

circuit ansatz (LDCA) that can accurately prepare the ground state of correlated fermionic systems.

We illustrated our approach with numerical simulations of LDCA applied to small instances of the

Hubbard model and to an extended Hubbard model Hamiltonian that mimics cyclobutadiene. Our

new variational circuit ansatz extended the range of applicability of VQE to systems with strong

pairing correlations such as superconductors, atomic nuclei, and topological materials.

As quantum devices became available, it was evident that progress in both the algorithmic and

the hardware side was going to require the realization of proof-of-principle implementations of

quantum algorithms. The modest resource requirements and flexibility of VQE compared to other

algorithms, positioned this approach as one of the first milestones in the pipeline of quantum

computing experiments. Based partially in the results of Chapter 2, we designed proof-of-principle

implementations of VQE that were carried out in collaboration with some of the leading groups in

superconducting qubits and trapped ions devices. In the first demonstration, we implemented VQE

to calculate the potential energy surface of the ground state of molecular hydrogen in a minimal

basis set, using an array of superconducting qubits. From these results, we predicted the correct

dissociation energy to within chemical accuracy of the numerically exact result. In the second
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demonstration, we implemented VQE to calculate the potential energy surface of the ground states

of molecular hydrogen and lithium hydride on a multi-qubit trapped ion device. We compared

different encoding methods using up to four qubits and analyzed the impact of varying error

sources in the results. Our analysis provided guidelines for mitigating errors and ways to

circumvent potential roadblocks in the execution of VQE on NISQ devices.

PART II: NEW VARIATIONAL ALGORITHMS FOR QUANTUM COMPUTING AND STATISTICAL MOD-

ELING

The general formulation of variational quantum computing offers a blueprint for designing

variational quantum algorithms to fit different purposes. The connection between variational

circuits and neural networks provided us with a source of inspiration for models that admitted a

formulation in the language of quantum variational algorithms. The first of such models was the

autoencoder approach employed in machine learning. Classical autoencoders are neural networks

that can learn efficient low dimensional representations of data in higher dimensional space. The

task of an autoencoder, given a set of inputs {xi} ∈ Rd1 , is to map each of this points to a lower

dimensional point {yi} ∈ Rd2 , such that xi can likely be recovered from yi. This transformation can

be modeled using a neural network with intermediate layers of size d2 and input and output layers

with size d1. By training the model to reproduce the value the input at the end of the network, it is

possible to obtain the desired transformation. Inspired by this idea, we introduced the model of a

quantum autoencoder (QAE) to perform similar tasks on quantum data. Table 1.2 summarizes the

basic elements QAE, where a quantum ensemble of states is compressed using a unitary operation

implemented with a variational circuit. To optimize the circuit parameters, we sampled from the

ensemble and performed a cycle of compression and decompression, such that the functional

corresponds to the average fidelity of reconstructing the input states. In our original proposal, this

fidelity is estimated using a technique called SWAP test52. In further developments of the

algorithms, we employed a simpler circuit inversion method to estimate such fidelity311. We

applied the QAE algorithm in the context of quantum simulation to compress ground states of the

Hubbard model and molecular Hamiltonians. The encoding circuits learned with QAE can be used
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to design new circuits for state preparation, which in this particular case, allows generating new

variational circuits for VQE.

Another use of classical autoencoders is as de-noising models. In this case, noise is added to the

input layer, such that the network learns to remove noise from noisy data. Typically, this

application requires a neural network comprising hidden layers with more dimensions than the

input layer. The strategy of mapping information to a higher dimensional space to build a

denoising map is also the basis of error-correction. This realization inspired us to explore the

application of the variational quantum approach to the problem of error correction. Specifically, we

designed a variational algorithm where variational circuits are trained as encoding and recovery

circuits by optimizing the average fidelity of performing these operations on a quantum device.

Therefore, the error-correcting protocols obtained with this approach are expected to optimally

address the actual noise in the machine, as opposed to that of an artificial or approximate noise

model. The essential elements of this algorithm, called variational error corrector (QVECTOR),

are summarized in Table 1.2. QVECTOR is presented in Chapter 6, where we develop this

approach for the task of preserving quantum memory and analyzed its performance with numerical

simulations. Our results showed that subject to phase damping noise; the simulated QVECTOR

algorithm can learn a three-qubit encoding and recovery which extend the effective T2 of a

quantum memory six-fold. Subject to a continuous-time amplitude- plus phase-damping noise

model on five qubits, the simulated QVECTOR algorithm learned encoding and decoding circuits

which exploit the coherence among Pauli errors in the noise model to outperform schemes that do

not leverage such coherence. As described earlier, current proposals for fault-tolerant quantum

computation require a significant overhead on quantum resources and will not enable useful

quantum computation on near-term devices of 50 to 100 qubits. With QVECTOR we aimed at

reducing this overhead, providing an approach that can be implemented in existing quantum

hardware and on a myriad of quantum computing platforms.

Finally, in Chapter 7, we explored the use of variational quantum circuits in a classical task:

modeling classical probability distributions. To do this, we developed the quantum variational

generator (VQG) approach. The architecture of this model incorporates two elements: a quantum
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circuit employed to encode a classical random variable into a quantum state, called the quantum

encoder, and a variational circuit whose parameters are optimized to mimic a target probability

distribution. Samples are generated by measuring the expectation values of a set of pre-defined

operators. Our quantum generator can be complemented with a classical function, such as a neural

network, as part of the classical post-processing, as described in Table 1.2. To train the VQG

model we employed an adversarial learning approach, where the quantum generator learns through

its interaction with a discriminator model that compares the generated samples with those coming

from the real data distribution. We showed that our quantum generator could learn target

probability distributions using either a classical neural network or a variational circuit as the

discriminator. In developing VQG, we introduced software tools and techniques from traditional

machine learning, such as automatic differentiation, to perform the optimization of the variational

circuits. The strategies developed for VQG can be applied to other problems in machine learning,

serving as a blueprint for designing quantum machine learning models for NISQ devices.

SIGNIFICANCE OF THIS WORK

The introduction of VQE and QAOA in 2014 coincided with the transition of experimental

quantum computing from mostly an academic and public endeavor to an industrial enterprise. In

the last five years, we have witnessed a rapid development of quantum computing architectures

towards the goal of commercializing quantum computing services233. Many businesses now look

at quantum computing as a potential source of disruption, which has attracted more public and

private investment in quantum technologies. As a result, a quantum computing ecosystem

incorporating hardware and algorithm developers as well as potential users of the first NISQ

devices has emerged. Many of these potential users expect quantum computers to provide answers

to difficult practical problems; stakes on quantum computing are at its highest. The inevitable

question is: will these early imperfect quantum computers deliver such answers? We hope this is

the case, and we believe that a viable path towards a definite affirmative answer lies in the further

development and perfecting of quantum variational approaches.

This dissertation collects some of the early works on variational algorithms, which provides
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examples of the type of challenges we will face to push variational approaches to the practical

frontier, along with some strategies to tackle these challenges. Specifically, the work of part I

highlights the importance of bringing specific domain knowledge into the design of the algorithms.

While the variational quantum framework is very general, its practical application to a field

requires adaptation of the algorithm to the problem. A lot of the specific domain knowledge can be

incorporated through the design of the variational circuit. Examples of this are the application of

efficient classical approximations to improve the efficiency and performance of VQE with a UCC

ansatz in Chapter 2 and to simplify the experimental implementation of this algorithm in Chapter

4. An example of a variational circuit tailored to a particular application is the low-depth circuit

ansatz of Chapter 3. Currently, a general strategy for designing variational algorithms to general

problems does not exist. A good starting point to start building this strategy is to develop metrics to

assess the "quality" and "representation power" of several variational circuits. Some fellow

scientists have begun to work in this direction.

Optimization is another critical aspect of variational algorithms. The field of numerical

optimization is large246, and therefore identifying and adapting existing optimization techniques

that are suited to quantum variational approaches requires significant effort. Another part of this

challenge is finding efficient quantum schemes to evaluate the corresponding functional and their

derivatives. Our work made progress in this direction by proposing techniques to evaluate

gradients of variational circuits in Chapter 2, and adopting optimization strategies and software

tools from classical machine learning, as illustrated by the use of adversarial learning techniques

and automatic differentiation in Chapter 7. In this sense, exploiting the parallels between neural

networks and variational circuits can also help to build a better theoretical understanding of the

representation power of quantum circuits and the difficulties associated with the learning process.

Underlying the comparison between the representation power of neural networks and quantum

circuits is the permanent question of quantum advantage. This question haunts Chapter 7, where

we develop the variational quantum generator approach. This method combines a classical neural

network and a quantum circuit to perform a task that could be accomplished exclusively with a

classical neural network. Can the hybrid quantum-classical approach provide an advantage? For
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specific generative tasks, variational circuits have been shown to offer a formal advantage using

complexity theory arguments94. The difficulty of simulating certain probability distributions

generated by quantum circuits is also the argument behind quantum supremacy experiments43.

How these results apply to the VQG model is still an open question. It is also an open question

whether any proven formal difference bare a practical advantage compare to what classical

computers can do today. Nonetheless, the formulation of hybrid quantum-classical machine

learning models such as VQG not only allow us to formulate these questions, but also provide the

practical means to start testing these type of models on real quantum devices. If a model like VQG

proves useful for research and commercial applications, the range of applications of NISQ devices

will expand tremendously.

Finally, we point out that the success of variational approaches ultimately depends on the quality

of the quantum devices and the quantum operations they implement. Therefore, maximizing the

utility of quantum devices, in particular, early machines, is another way to push quantum

computing towards the practical frontier. These improvements can be introduced at the software

level by finding more efficient protocols to implement quantum operations common to many

algorithms. Tasks within this category are what the algorithms presented in Chapters 5 (QAE), and

6 (QVECTOR) can accomplish. These methods are autonomous and data-driven approaches to

design more efficient protocols for quantum state preparation and quantum error-correction, and as

such, they work as tools that can serve other quantum algorithms to improve their performance and

reduce their resource requirements. Just as happened with classical computers, quantum computers

might help design themselves. QAE and QVECTOR enable these machines to do so.

The work presented here is only a part of the continuously growing body of research in

variational algorithms129. The history of this field has just started, and many exciting

developments await for us.
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2
Variational quantum simulation of chemistry using

the unitary coupled cluster ansatz

Apart from minor modifications, this chapter originally appeared as279:

“Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz”.
Jonathan Romero, Ryan Babbush, Jarrod R. McClean, Cornelius Hempel, Peter J. Love and Alán
Aspuru-Guzik. Quantum Sci. Technol., 4, 014008 (2018). Copyright (2018) by IOP Publishing.

2.1 INTRODUCTION

The solution to the time-independent Schrödinger equation for molecular systems allows for the

prediction of chemical properties, holding the key to materials discovery and catalyst

design76,101,133,154. Despite advances in the field of quantum chemistry, many relevant problems

such as the prediction of chemical rates and the description of transition-metal complexes remain

challenging29,219. These difficulties stem from the approximate nature of classically tractable

quantum chemistry approaches, which often fail in the description of strongly correlated

systems214,328. In addition, the application of exact methods, such as exact diagonalization of the

electronic Hamiltonian, require exponential resources with current classical algorithms, limiting

the exact simulation of molecular energies to systems comprising only a few atoms140,141.

Feynman envisioned that quantum computers could provide a tractable way to simulate quantum

systems108. This idea, formalized by Abrams and Lloyd a decade later4, has been developed into a

series of quantum algorithms for quantum simulation117,171,370. The first algorithm extending these
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approaches to the calculation of molecular energies was proposed by Aspuru-Guzik et al.14. This

first proposal, further developed in359, combines Trotterization of the molecular Hamiltonian and

phase estimation (PEA) to compute the ground state energy of a molecule.

Early studies on the quantum resources required by this algorithm showed that the circuit depth

scales as O(N8)137, where N the total number of spin-orbital functions. Fortunately, numerical

studies indicated that the scaling for real molecules is closer to O(N6)265 or O(Z3
maxN4) when

trying to simulate ground states. Here, Zmax is the largest nuclear charge of the molecule18. Recent

proposals have developed new algorithms for this problem by considering simulation based on

Taylor series methods as opposed to Trotterization16,179, performing simulations in a fixed particle

number manifold17,47,324,334, and considering specialized basis functions19,179. Despite these

recent theoretical improvements, all phase estimation based algorithms for this problem are

unlikely to solve classically intractable molecules without error-correction. The variational

quantum eigensolver (VQE)226,255,353 is a an alternative algorithm that is closer to near-team

applicability due to lower coherence time requirements.

The VQE algorithm finds the best variational approximation to the ground state of a given

Hamiltonian for a particular choice of ansatz. This task is achieved by two subroutines. The first

subroutine employs a quantum computer to prepare a parameterized wavefunction ansatz and

measure the expectation value of the Hamiltonian given a set of values for the parameters. The

second subroutine consists of an optimization algorithm running on a classical computer. The

optimization algorithm employs the quantum subroutine as an objective function and finds the

parameters that minimize the energy of the ansatz. This procedure offers several advantages that

make it a candidate for exploiting the performance of near-future quantum devices: adaptability to

different quantum architectures, intrinsic robustness to quantum errors224,248 and a smaller

coherence time requirements226.
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The VQE approach was first applied to the simulation of molecular energies. In this case, a trial

wavefunction is prepared by the application of a parametrized unitary, followed by the calculation

of the energy via Hamiltonian averaging222,226. The value of the energy is minimized using a

classical optimization routine that updates the variational parameters. Accordingly, the final cost of

the calculation depends on the number of iterations required for convergence and the amount of

operations involved in each preparation and measurement cycle of the quantum subroutine. This

optimization scheme has been experimentally demonstrated in different quantum platforms,

including photonic chips255, ion traps142,304 and superconducting circuits168,248.

Traditionally, a unitary coupled cluster (UCC) approach has been used as the ansatz for the state

preparation226,255,369. This method provides a hierarchy of wavefunctions that can be prepared on a

quantum computer using a polynomial number of gates and it is believed to provide better accuracy

than classical coupled cluster25,72,103,150,189, which is generally regarded as the “gold standard" of

quantum chemistry26. Despite these advantages, recent studies have pointed out that the number of

parameters in UCC might be still too large to allow practical calculations for large molecules353.

In this chapter, we aim to describe in more detail the implementation of VQE approaches for

molecular systems using a UCC ansatz and introduce strategies to improve its efficiency. In

Section 2.2, we describe the approaches commonly used in classical quantum chemistry

calculations and introduce the UCC ansatz in this context. In Section 2.3, we discuss in detail the

implementation of VQE with a UCC ansatz, including the generation of initial guesses and the

reduction of computational resources using pre-screening of the cluster amplitudes and active

space approaches. In addition, we introduce a method to compute the gradient of the energy with

respect to the variational parameters that can be combined with gradient-based optimization

methods. In Section 2.4, we illustrate the proposed strategies through numerical simulations of the

VQE approach for a variety of chemical systems. Finally, in Section 2.5 we present a brief

34



Chapter 2. Variational quantum simulation of chemistry using the unitary coupled cluster ansatz

discussion of the results.

2.2 BACKGROUND

2.2.1 QUANTUM CHEMISTRY IN SECOND QUANTIZATION

Within the Born-Oppenheimer approximation, a molecule is comprised of a system of η electrons

interacting in the potential produced by nuclei located at fixed positions. We may describe this

problem using the formalism of second quantization, where N single-particle spin orbitals can be

either empty or occupied. Any interaction between electrons can be represented using annihilation

and creation operations, ap and a†
p, that obey the following anti-commutation relations, associated

with fermionic statistics:

[a j,ak]+ = 0 [a†
j ,a

†
k ]+ = 0 [a j,a

†
k ]+ = δ jk (2.1)

where [a,b]+ ≡ ab+ba. In the absence of external fields the non-relativistic molecular

Hamiltonian can be written as:

H = hnuc +∑
pq

hpqa†
paq +

1
2 ∑

pqrs
hpqrsa†

pa†
qaras (2.2)

where hnuc corresponds to the classical electrostatic repulsion between nuclei, and the constants hpq

and hpqrs correspond to the one- and two-electron integrals. Using atomic units, where the electron

mass me, the electron charge e, Bohr radius a0, Coulomb’s constant and h̄ are unity, we may write:

hpq =
∫

dσϕ
∗
p(σ)

(
−∇2

~r
2
−∑

i

Zi

|~Ri−~r|

)
ϕq(σ) (2.3)
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hpqrs =
∫

dσ1 dσ2
ϕ∗p(σ1)ϕ

∗
q (σ2)ϕs(σ1)ϕr(σ2)

|~r1−~r2|
(2.4)

hnuc =
1
2 ∑

i 6= j

ZiZ j

|~Ri−~R j|
(2.5)

Here Zi represents the nuclear charge,~r and ~R denote electronic and nuclear spatial coordinates,

respectively, and σ is now a spatial and spin coordinate with σi = (~ri;si). Summations run over all

nuclei. The function ϕ(σ) represent one-electron functions (spin-orbitals) that are often obtained

from a mean field calculation such as Hartree-Fock (HF).

After removing the translational and rotational degrees of freedom, the electronic energy of a

molecular system is a function of 3q−6 parameters (3q−5 for linear molecules) that we will

denote by ~R, where q is the number of atoms. The function E(~R) is called the potential energy

surface (PES). The accurate calculation of the PES is one of the main challenges of quantum

chemistry as it is required for predicting and understanding a wide range of chemical processes,

such as reaction dynamics, bond-breaking and chemical kinetics.

The prediction of thermochemical properties such as reaction rates determines the accuracy

required from ab initio calculations of the PES257. Chemical rates, for instance, are exponentially

sensitive to changes in the Gibbs free energy, and thus changes in the PES. This sensitivity can be

seen from the Erying equation for chemical rates,

rate ∝
e−β∆G‡

β
, (2.6)

where ∆G‡ is the difference in free energy between reactants and transition state and β is the

inverse temperature in atomic units. At room temperature and atmospheric pressure, an error ε in

∆G‡ of 1.4 kcal/mol translates to a chemical rate error of a factor of ten. This leads to the definition
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of chemical accuracy which sets ε to the order of 1 kcal/mol or approximately 1.59×10−3

Hartrees (43.3 meV)141.

2.2.2 CLASSICAL AB INITIO APPROACHES TO QUANTUM CHEMISTRY

The inherent difficulty of solving the Schrodinger equation for many-electron systems has

motivated the development of a series of standard models for the construction and calculation of

approximate electronic wavefunctions in quantum chemistry. The simplest approach is to represent

the wavefunction as a single anti-symmetrized product of one-electron functions, known as a Slater

determinant. The Hartree-Fock method provides such a single-determinant solution. In this

scheme, the molecular orbitals are expressed as a linear combination of atomic orbital functions.

The combination coefficients are then optimized by a self-consistent variational procedure in

which each particle is made to interact with the average density of the other particles. The output

of this calculation provides a mean-field approximation to the molecular wavefunction.

Unfortunately, the Hartree-Fock method is incapable of approximating the electron correlation

effects that are essential for computing energies within or close to chemical accuracy141.

To correct for this problem, one can expand the wavefunction as a superposition of all the

determinants in the η-electron Fock space. The coefficients in the expansion can be parametrized

in different ways, defining different models for the description of electron correlation. Two popular

parametrizations are the configuration interaction (CI) and the coupled-cluster (CC) methods.

In the full configuration interaction (FCI) approach, which is exact within a given basis, the

wavefunction is expanded as a linear combination of all the determinants in the η-Fock space. The

coefficients of the expansion can be solved for by variational minimization of the energy, providing

the exact wavefunction for a given orbital basis. Unfortunately, the FCI wavefunction becomes

rapidly intractable due to the factorial dependence on the number of determinants N related to the

total number of spin orbitals141.
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To generate classically-tractable CI approaches one can truncate the CI expansion to include

only determinants with a fixed number of excitations with respect to a reference configuration. The

reference is usually chosen to be the Hartree-Fock state. This idea can be formalized by defining

excitation operators as follows:

T =
η

∑
i=1

Ti (2.7)

T1 = ∑
i∈occ
a∈virt

t i
aa†

aai (2.8)

T2 = ∑
i> j∈occ
a>b∈virt

t i j
aba†

aa†
baia j (2.9)

where the occ and virt spaces are defined as the occupied and unoccupied sites in the reference

state. In this construction, the operator T1 generates single excitations from the reference, T2

generates double excitations and the definition of higher order excitations follows naturally. t i
a and

t i j
ab correspond to expansion coefficients. The exact full CI wavefunction is thus,

|FCI〉= (1+T ) |HF〉 (2.10)

EFCI = min
~t

〈FCI|H |FCI〉
〈FCI〉FCI

where |HF〉 is the reference state (for instance, the Hartree-Fock solution) and~t is the vector

comprising the expansion coefficients. The maximum number of excitations allowed, defines the

order of truncation, k. The FCI solution can be systematically approached by increasing k. The
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computational cost of truncated single-reference CI approaches scales as O(ηk(N−η)k+2),

assuming N,η >> k, as discussed in Ref.306. Tractable classical CI truncation is generally limited

to single and double excitation operators, which define the CI singles and doubles method (CISD).

The truncated CI expansion suffers from two major problems. First, the method converges

slowly when applied to highly correlated systems. To circumvent this problem we can use an

entangled reference state that captures the main computational states contributing to the total

wavefunction. This is the base of multireference methods in quantum chemistry141,328, which are

generally more involved than truncated single reference CI approaches.

The second complication is that configuration interaction is not size-extensive. A method that is

size-extensive for a system of non-interacting fragments has a wavefunction that is multiplicatively

seperable and an energy that is proportional to the size of the system141. This means that the total

wavefunction factorizes as a product of the wavefunctions of the independent fragments and the

corresponding energy is the sum of the energies of the fragments. These conditions assure that the

energy scales linearly with the size of the system. Size-extensivity is a desirable feature for

approximate methods in quantum chemistry because many chemical properties, such as the

atomization energy, are obtained by subtracting the energy of systems with different sizes. In

addition, we expect that higher order expansions must be used for larger molecules if the method is

not size-extensive.

The lack of size-extensivity of the truncated CI wavefunction can be overcome by recasting the

linear FCI parametrization in the form of a product wavefunction. This is done in the CC method

by means of an exponential ansatz:

|Ψ〉= eT |HF〉 (2.11)

where the operator T is defined as for CI. Notice that in this scheme the parameters~t constitute
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excitation amplitudes instead of expansion coefficients. As with CI, CC is usually truncated at

some fixed level of excitation. For instance, the method known as coupled cluster singles and

doubles (CCSD) is based on the ansatz,

|CCSD〉= eT1+T2 |HF〉 . (2.12)

Whereas truncated CI wavefunctions contain contributions from a polynomial number of

determinants at a given truncation level, truncated CC wavefunctions have support on all the

determinants in the η-Fock space. Tractable implementations of the coupled-cluster theory rely on

projecting the Schrödinger equation in the form

e−T HeT |HF〉= ECC |HF〉 (2.13)

against a set of configurations {〈µ|}. This set spans the space of all the states that can be reached

by applying the truncated cluster operator T linearly to the reference state26. This treatment

generates the following set of non-linear equations for the CC energy and amplitudes:

〈HF|e−T HeT |HF〉= E (2.14)

〈µ|e−T HeT |HF〉= 0 (2.15)

The key point in establishing the size-extensivity of CC theory is to note that the operator e−T HeT ,

known as the similarity-transformed Hamiltonian, is additively separable and produces additively

separable energies. Similarly, it can be shown that the operator eT is multiplicatively separable and

thus generates multiplicatively separable wavefunctions141.

In practice, the similarity-transformed Hamiltonian is expanded using the
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Baker-Campbell-Hausdorff (BCH) formula:

e−T HeT =H +[H,T ]+
1
2
[[H,T ] ,T ]

+
1
3!

[[[H,T ]T ] ,T ]+
1
4!

[[[[H,T ]T ] ,T ] ,T ] . (2.16)

The expansion terminates at fourth order due to the commutation properties of excitation operators

for the special case that the reference is a single determinant26,141. This fact allows for an efficient

evaluation of the projected CC equations without further approximation.

While truncated CC is classically tractable and more accurate than truncated CI, there are two

substantial weaknesses to the theory. The first weakness is the BCH expansion of the

similarity-transformed Hamiltonian is only convergent under the assumption of a single reference

state. Consequently, single reference coupled cluster generally performs poorly for strongly

correlated systems. This means that coupled cluster is fairly reliable when computing energies at

equilibrium configurations but likely to fail for transition states or near dissociation limits of

multiple bonds. At those geometries, excited surfaces may become nearly degenerate with the

ground state and a single determinant (e.g. the Hartree-Fock state) may have very small overlap

with the ground state. Although the field of multireference coupled cluster methods has expanded

in the last years, current approaches are still far from being practical for large molecular

systems214.

The second weakness of the projected coupled-cluster formulation is that the operator eT is not

unitary and therefore the energy obtained from Eq. (2.14) is not variational. In the next section we

discuss a formulation of coupled cluster theory that is variational and can be made multireference.

While this formulation is not classically tractable, it can be implemented using a quantum

computer.
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2.2.3 UNITARY COUPLED CLUSTER

The shortcomings of the traditional coupled cluster ansatz described in the previous section can be

overcome by redefining the excitation operator to be unitary, an approach known as unitary

coupled cluster (UCC)25,150,189:

|Ψ〉= eT−T † |HF〉 . (2.17)

the total energy of the system is obtained from the variational principle as:

E = min
~t
〈HF|e−(T−T †)HeT−T † |HF〉 (2.18)

while this ansatz is variational and spans the same Hilbert space as the original coupled cluster

ansatz, Eq. (2.17) does not lead to equations which can be tractably solved on a classical

computer190,330. To see this we can examine the BCH expansion of the similarity transform

hamiltonian for UCC:

eT †−T HeT−T †
=H +[H,T ]+

[
T †,H

]
+

1
2
([[H,T ] ,T ]

+
[
T †,
[
T †,H

]]
+
[
H,
[
T,T †]])+ · · · (2.19)

In contrast with the expansion for CC (Eq. (2.16)), Eq. (2.19) involves terms that depend on the

commutators between T and T † operators, for which there is no natural termination point190,330.

Therefore, the BCH series for UCC is infinite and thus there is currently no known method for

efficiently evaluating the energy and amplitude equations on a classical computer without further

approximation.

Nonetheless, the minimization of the UCC ansatz is of great interest to the quantum chemistry

community that has been trying to develop tractable approximations to this theory for many
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years25,72,103,150,189. Fortunately, the operator eT−T †
can be readily applied on a quantum

computer, which makes it possible to prepare UCC wavefunctions with truncated cluster

expansions, as shown in226,255,369.

2.3 VARIATIONAL QUANTUM EIGENSOLVER FOR UCC

The VQE algorithm comprises three iterative steps: 1) preparation of the wavefunction by

application of parameterized state preparation unitaries; 2) determination of the expectation value

of every term in the Hamiltonian via an efficient partial tomography222 and 3) calculation of the

total energy and determination of a new set of state preparation parameters in a classical computer.

This scheme avoids the substantial overhead of quantum phase estimation that causes other

quantum algorithms for chemistry to require very long coherent evolution. It also offers flexibility

in the length of the circuit for state preparation, that depends on the choice of ansatz for the state

preparation.

In the specific case of UCC, the preparation of the wavefunction encompasses two steps:

preparation of the reference state, |Φ0〉, and application of the UCC unitary, U(~t), that prepares the

UCC wavefunction. The algorithm starts with a guess of the UCC amplitudes,~t (0), and iteratively

converges to a final set of parameter by variationally minimizing the energy. At the n-th iteration,

the UCC wavefunction is prepared using~t (n) and the expectation value of the Hamiltonian, H, is

obtained as the sum of the expectation values of all the terms, 〈H〉= ∑i〈Hi〉. The classical

optimization routine produces a new estimate of the UCC amplitudes,~t (n+1). The algorithm

convergences when the changes in both, total energy and~t, become smaller than suitable

thresholds. In the following sections, we describe in detail the steps involved in the VQE

implementation of the UCC ansatz. A graphical summary of the procedure is shown in Figure 2.1.
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Figure 2.1: Schematic representation of the Variational Quantum Eigensolver algorithm applied to the UCC
ansatz. The classical optimization routine adds the expectation values of the Hamiltonian terms to calculate
the energy and estimates a new value for the coupled cluster amplitudes,~t. The process is repeated until
achieving convergence on the total energy and~t.

2.3.1 IMPLEMENTATION OF UCC ON A QUANTUM COMPUTER

To prepare the UCC ansatz on a quantum computer we need to map the UCC operator (Eq. (2.17))

onto operations that can be performed on the quantum computer. We start by rewriting the cluster

operator as

U(~t) = e∑ j t j(τ j−τ
†
j ) (2.20)

where τ j represent an excitation operator and t j the corresponding CC amplitude. Since excitation

operators do not necessarily commute, the UCC unitary can be approximated using trotterization:

U
(
~t
)
≈UTrot

(
~t
)
=

(
∏

j
e

t j
ρ
(τ j−τ

†
j )

)ρ

(2.21)
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where ρ is the trotter number. We emphasize that the goal of VQE is the approximation of the

ground state of the problem Hamiltonian, and in that sense the purpose of Trotterizing UCC is to

obtain a physically motivated ansatz that can be implemented on a quantum computer and not to

approximate the exact UCC unitary. Correspondingly, the error of our ansatz is determined by the

difference in energy with the ground state and not by the difference with the solution of the exact

(non-Trotterized) UCC ansatz. In addition, these two quantities are expected to be different

because the optimal amplitudes for both ansatzes do not necessarily coincide as a result of the

variational optimization. This contrasts with algorithms for simulating Hamiltonian dynamics,

where the goal is to approximate as closely as possible unitary time evolution and therefore the

quality of the approximation is directly related to the Trotter error.

In this work we will employ the approximations with ρ = 1 and ρ = 2 as our state preparation

unitaries. For ρ = 1:

U1
(
~t
)
|Φ0〉= ∏

j
et j(τ j−τ

†
j ) |Φ0〉 (2.22)

In the following section we will present numerical evidence that shows that these types of ansatzes

are as effective as the one in Eq. 2.20. To implement Eq. 2.22 on a quantum computer, we need to

map every unitary in the previous product to operations in the quantum computer. For this purpose

we can use either the Jordan-Wigner (JW) or the Bravyi-Kitaev (BK) mappings165,300,336 (See

Appendix 2.6.2), obtaining:

(τ j− τ
†
j ) = i

22l j−1

∑
k

P j
k (2.23)

where Pi
j represents a product of Pauli matrices with real coefficients and i is the imaginary unit.

The index k runs over 22l j−1 products, where l j is the excitation rank of the j-th excitation operator
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τi (See Appendix 2.6.1). We will refer to each P j
k in Eq. 2.23 as a subterm. For instance, a double

excitation operator minus its complex conjugate will comprise eight subterms. Using the previous

notation we can write:

U1
(
~t
)
= ∏

j
exp

(
it j

22lk−1

∑
k

Pk
j

)
(2.24)

Furthermore, we can show that the subterms derived from the same (τ j− τ
†
j ) operator commute

(See Appendix 2.6.1), which allow us to simplify the expression of the complex cluster unitary as

follows:

U1
(
~t
)
= ∏

j

22lk−1

∏
k

exp(it jP
j

k ) (2.25)

The terms in Eq. 2.25 can be implemented in a quantum computer using the digital model of

quantum computation. In this chapter we will focus on the universal sets of gates typically

employed for superconducting circuit (SQC) and trapped ion (TI) quantum computers23,34: single

qubit rotations and CNOT or Mølmer-Sørensen (MS) gates, respectively. Thanks to their

capabilities in number of qubits and coherent control, the SQC and TI architectures have allowed

the first scalable demonstrations of digital quantum simulation24,40,192.

Using the first set of gates, the exponentiation of a n-fold tensor product of Pauli-Z matrices can

be done with O(N) CNOT gates and a single single qubit (SQ) rotation. If there are Pauli-X or Y

matrices in the tensor product we must apply the single-qubit Hadamard or Rx(
π

2 ) gate to rotate to

the X or Y basis, respectively, before we compute the parity of the set of qubits with CNOTs, and

also apply the inverse gates as part of the uncomputing stage300,336,359.

We point out that employing the BK transformation, the number of operations required for

implementing a single τ j− τ
†
j term scales as O(log(N))300, which represent a most advantageous
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mapping when compared to the JW transformation that scales as O(N). However, for architectures

with limited connectivity (e.g. SQC), we will need extra SWAP operations to implement the

exponentiation, which may eliminate the advantage of the BK transformation. In addition, there is

recent evidence that the JW implementation is more robust to errors due to noise in the quantum

computer, compared to BK288, presumably because occupations are stored non-locally in the case

of BK, which amplifies the impact of a local single qubit error on the representation of the

fermionic operators. In contrast, each qubit stores a single occupation number in the JW

representation.

The key for retaining a polynomial number of operations to perform VQE with a UCC ansatz is

to truncate the CC expansion. A popular truncation in quantum chemistry is to consider only single

and double excitations (UCCSD):

T ≈ T1 +T2 (2.26)

This approximation suffices to accurately describe many molecular systems and is exact for

systems with two electrons. Employing UCCSD, the number of parameters grows as(N−η

2

)(
η

2

)
+
(N−η

1

)(
η

1

)
< O(N2η2) where N is the number of spin orbitals (mapped to qubits) and

η the number of electrons in the system. Combining the scaling of the number of parameters with

upper bounds for the number of gates required to implement a single parameter we can estimate

upper bounds for the total number of operations involved in preparing the UCCSD ansatz for

single iteration of the VQE algorithm. In the case of the BK transformation, the number of gates

scales as O(N2η2), up to logarithmic factors, compared to O(N3η2) using the JW transformation.

If non-local gates are available (e.g. in TI), the circuit depth for the JW implementation can be

reduced by a factor of O(N) using the ordering and parallelization techniques described in137.

An alternative to CNOT gates, especially suited for ion trap architectures, is the
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Mølmer-Sørensen (MS) gate317,318, that has been previously employed in the context of quantum

simulation of fermions63,229. Its unitary evolution can be represented by the sum over all joint

rotations on qubit j and k of the register for an angle θ around an axis φ , which can be freely

chosen:

UMS(θ ,φ) = exp

(
−i

θ

2 ∑
j<k

σ
φ

j σ
φ

k

)
, (2.27)

where σ
φ

j = cos(φ)σ x
j + sin(φ)σ y

j . For θ = π/2 and φ = 0 the action of UMS creates a fully

entangled state under σ xσ x operation. This non-local gate can be made to act on arbitrary subsets

of qubits in various ways: (a) by spectroscopic decoupling of unwanted qubits from the

interaction289, (b) by selectively focussing laser beams on the desired qubits86 or (c) the use of

refocussing techniques238.

Depending on the way in which the entangling operations on subregisters are implemented, this

leads to a scaling of two entangling operations per parameter, largely reducing their number with

respect to the implementation using CNOTs. This is a significant advantage as they remain the

limiting factor in the current-day leading architectures, while single qubit operations can already

be achieved with very high fidelities far beyond fault-tolerance thresholds. In addition, MS gates

are particularly attractive when used with the Bravyi-Kitaev transformation, because the gate only

needs to act on O(logN) qubits rather than O(N) for the Jordan-Wigner transformation.

2.3.2 CHOICE AND PREPARATION OF THE REFERENCE STATE

In the limit of the complete cluster expansion, the UCC ansatz provides the exact solution for the

many body problem. In practice, having a reference state with a high overlap with the exact

wavefunction facilitates convergence214. Generally, the Hartree-Fock solution of the many-body
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problem provides such reference. The Hartree-Fock state can be written as:

|Φ0〉= a†
ηa†

η−1 . . .a
†
1|〉 (2.28)

where |〉 is the fermionic vacuum state. Using the molecular orbital basis, the Hartree-Fock state

corresponds to a single product state in the computational basis after the BK or JW mappings are

applied. For instance, in the JW mapping the HF state corresponds to the state |0〉⊗N−η ⊗|1〉⊗η ,

where the the single-particle basis is organized according to the one-particle energy from lowest to

highest, the so-called canonical order. In this case the Hartree-Fock state can be constructed by

initializing the qubit register with the first η qubits in |1〉 and N−η in |0〉, which can be achieved

with a single layer of single qubit rotations. In general, preparing a Hartree-Fock state in an

arbitrary basis can be achieved using circuits of depth O(N), even in quantum processors with

limited connectivity179.

In cases where the molecular wavefunction exhibits strong correlations, the Hartree-Fock state

provides a poor starting guess. This problem arises in the description of bond breaking/formation,

excited states, ground states of transition metal complexes, among other chemical phenomena214,

and can be helped by using a multireference approach. One possibility is to employ an entangled

reference states obtained from a classical Multiconfigurational Self-Consistent Field (MCSCF)

calculation328 or a DMRG calculation with a small active space. As long as this state comprises of

only a polynomial number of computational states, it can be prepared efficiently on a quantum

computer combining the techniques proposed in249,316,351 for preparing superpositions of Slater

determinants with the most recent techniques for preparing individual Slater determinants179.

Using these reference states, Eq. (2.17) can be applied without modification after redefining the

space of virtual orbitals according to the occupation of each orbital, which can be determined by

measuring the corresponding occupation-number operator. The UCC approach can be also
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|q3〉

|q2〉 Rx(−π

2 )

|q1〉

|q0〉 H

Figure 2.2: Circuit illustrating the measurement of the term σ
z
3σ

y
2 σ

z
1σ x

0 in the Z basis. We must apply H or
Rx(− π

2 ) gates (or equivalent) to change basis when measuring Pauli-Y and Pauli-X operations.

extended to multireference cases by adopting an agnostic unitary coupled cluster ansatz, where the

definition of the excitation operators is not linked to a specific reference state, as described in226.

In this case, the indexes of the excitation operators in Eq. (2.7) run over the set of all possible

spin-orbitals.

2.3.3 ENERGY MEASUREMENT

Once the state preparation has been performed, the next step in the VQE algorithm is the

calculation of the objective function that corresponds to the energy measurement

E = 〈Φ0|e−(T−T †)HeT−T † |Φ0〉. To avoid performing phase estimation, which has a prohibitively

large circuit depth for current and near-future quantum devices, we employ the Hamiltonian

averaging procedure, introduced in222,226. In this case the energy is calculated by measuring the

expectation value of every term in the Hamiltonian and adding them to obtain the total energy:

E =
M

∑
i

hi〈Oi〉 (2.29)

where every Hamiltonian term, Oi, comprises of a tensor product of Pauli matrices obtained from

the JW or the BK transformations, multiplied by the corresponding Hamiltonian coefficient, hi.

The expectation value of a string of Pauli matrices, can be measured as illustrated in Figure 2.2
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using projective measurements.

We can estimate the number of measurements required to converge the total energy to a

precision ε following a frequentist approach, as shown in353. Assuming each term in the

Hamiltonian is measured mi times, the precision achieved in each term, εi, is given by:

ε
2
i =
|hi|2Var[〈Oi〉]

mi
(2.30)

where Var[〈Oi〉] represents the variance of the expectation value of the operator Oi, which is

upper-bounded by 1 in the case of Pauli terms. To achieve precision ε in the total energy we can

choose ε2
i = |hi|

∑
M
j |h j|ε

2. Taking into account the bound in the variances, we can estimate the total

number of measurements, m, as:

m =
∑

M
j |h j|∑M

i |hi|Var[〈Oi〉]
ε2 ≤

(∑M
j |h j|)2

ε2 (2.31)

2.3.4 PARAMETER OPTIMIZATION

The final step of the VQE algorithm involves the minimization of the total energy with respect to

the wavefunction parameters, that in the case of UCC correspond to the cluster amplitudes,~t. This

is a non-linear optimization problem for which a variety of optimization algorithms has been

proposed367. However, we note that in early demonstration of the VQE algorithm the objective

function might exhibit a highly non-smooth character due to experimental noisy conditions. In this

scenario, we might expect that direct search algorithms, which are more robust to noise, have an

advantage over optimization methods that rely on gradients183.

The optimization performance will also depend on the quality of the starting parameters.

Fortunately, it is possible to generate starting guesses for the cluster amplitudes based on classical

quantum chemistry approaches. For instance, classical CCSD employ the CC amplitudes obtained
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|0〉 H • • H Rx(−π

2 )

|Φ0〉 / eit1P1
1 · · · eit jP

j
k P j

k eit jP
j

k+1 · · · Pi

Figure 2.3: Circuit for measuring the imaginary part of 〈Φ0|V j†
k (~t)OiU(~t)|Φ0〉 required in the calculation of the

partial derivative ∂E(~t)
∂ t j

. The Rx(
π

2 ) gate rotates to the Y -basis.

from second order Møller-Plesset perturbation theory (MP2) as starting guesses to solve for the CC

equations. The MP2 guess amplitudes are given by the equations:

ta
i = 0; tab

i j =
hi jba−hi jab

εi + ε j− εa− εb
(2.32)

where εp stands for the Hartree-Fock energy of the orbital p and hpqrs represent the two electron

integrals (Eq. (2.4)). This information is obtained directly from the Hartree-Fock calculation. As

the solutions of truncated CC or truncated CI are also efficient, it is possible to use cluster

amplitudes obtained from methods such as CCSD. One can easily compute both cluster amplitudes

and MP2 amplitudes using modules provided in OpenFermion225.

Classical approximations to the cluster amplitudes also serve as a criteria to reduce the number

of parameters in the optimization. Before starting the VQE optimization, we can remove from the

UCC unitary those excitation operators that have a small amplitude according to the classical

estimate, as they are likely to also have a small contribution to the final wavefunction. Once the

first optimization has been completed, we might include more excitation operators and repeat the

optimization until a desired convergence threshold is achieved. The same strategy could be

employed during the optimization process, discarding those operators for which the cluster

amplitudes remain small after certain number of VQE iterations.
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2.3.5 GRADIENT EVALUATION FOR UCC

Direct search algorithms can be more robust to noise than gradient-based approaches, but this

generally comes at the cost of demanding a larger number of function evaluations to achieve

convergence183. As the accuracy of quantum computers increases, the possibility of computing

energy gradients in the quantum computer becomes more feasible. One possibility is to compute

the gradient numerically, using for instance a finite difference formula. In this case, the accuracy of

the gradient depends on the step size chosen, which would be limited by the precision of the

experimental control over the parameters and by shot-noise limited measurements.

Alternatively, one might evaluate the gradient directly on the quantum computer given that an

analytical implementation is available. Here we propose a method to compute the analytical

gradient of the energy when a product of parametrized unitaries is employed in the state

preparation.

Consider a unitary ansatz analogous to the one defined in Eq. (2.25):

U
(
~t
)
=

NP

∏
j

N j
S

∏
k

exp(ic j
kt jP

j
k ) (2.33)

where NP stands for the number of parameters and N j
S stands for the number of subterms that

depend on the j-th parameter. P j
k is a string of Pauli matrices. c j

k is a constant, that in the case of

the UCC ansatz corresponds to the constant factors obtained arising from the mapping of fermionic

operators to qubit operators. Consider the state Ψ
(
~t
)
, prepared as Ψ

(
~t
)
=U

(
~t
)
|Φ0〉, where |Φ0〉

is a reference wavefunction that do not depend on~t. Also consider a Hamiltonian, H, which is

independent of the parameters~t. In this case, the derivative of the expectation value of the energy,
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E(~t) = 〈Ψ
(
~t
)
|H|Ψ

(
~t
)
〉, with respect to the parameter t j will be given by

∂E(~t)
∂ t j

= 〈Φ0|U†(~t)H
∂U(~t)

∂ t j
|Φ0〉+ 〈Φ0|

∂U(~t)†

∂ t j
HU(~t)|Φ0〉 (2.34)

= i
N j

S

∑
k
〈Φ0|U†(~t)HV j

k (~t)|Φ0〉−〈Φ0|V j†
k (~t)HU(~t)|Φ0〉 (2.35)

= 2
N j

S

∑
k

c j
k Im(〈Φ0|V j†

k (~t)HU(~t)|Φ0〉) (2.36)

Where the operator V j
k (~t) is defined as the unitary of Eq. (2.33) but with the operator P j

k interleaved

between the unitaries exp(it jP
j

k−1) and exp(it jP
j

k ). Explicitly:

V j
k (~t) =exp(it jP1

1 ) · · ·exp(it jP
j

k−1)P
j

k exp(it jP
j

k )

exp(it jP
j

k+1) · · ·exp(itNPPNP

NNP
S

) (2.37)

Combining Eq. (2.36) with the decomposition of the Hamiltonian in Eq. (2.29), we obtain a

working expression for computing ∂E(~t)
∂ t j

:

∂E(~t)
∂ t j

= 2
M

∑
i

hi

N j
S

∑
k

c j
k Im(〈Φ0|V j†

k (~t)OiU(~t)|Φ0〉)

 (2.38)

We can evaluate the imaginary part of 〈Φ0|V j†
k HiU(~t)|Φ0〉 with the circuit of Figure 2.3, which

follows the approach introduced in Ref.249 to measure expectation values of the form 〈V †U〉. We

use a state register initialized with the reference state tensor an ancilla qubit initialized in |+〉.

First, we apply the unitaries of Eq. (2.33) to the state register up to exp(it jP
j

k ), after which we

apply the operator P j
k controlled by the ancilla qubit. Subsequently, we apply the remaining

unitaries to the state register, followed by the local operator Hi controlled by the ancilla qubit.
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Finally, we apply a Hadamard gate in the ancilla qubit to obtain the state

|0〉⊗ (U |Φ0〉+OiV
j

k (~t) |Φ0〉)+ |1〉⊗ (U |Φ0〉−OiV
j

k (~t) |Φ0〉)
2

(2.39)

The imaginary part of 〈Φ0|V j†
k (~t)OiU(~t)|Φ0〉 can be recovered by measuring the ancilla qubit in

the Y -basis. The variance of the j-th component of the gradient as computed with the circuit of

Figure 2.3 will be given by:

Var
[

∂E(~t)
∂ t j

]
= 4

M

∑
i
|hi|2

N j
S

∑
k
|c j

k|2Var
[
〈σ y〉Oi,P

j
k

]
(2.40)

where

〈σ y〉Oi,P
j

k
=

〈
0⊗Φ0

∣∣∣∣C†
Oi,P

j
k
(σ y⊗ I)COi,P

j
k

∣∣∣∣0⊗Φ0

〉
(2.41)

and COi,P
j

k
represents the circuit for gradient estimation for the subterm P j

k and the observable Oi.

To estimate the number of measurements required to achieve precision ε̃ j in the j-th component of

the gradient, we will first consider the number of measurements required to estimate the

contribution of the circuit COi,P
j

k
to precision ε̃ i

j,k:

m̃i
j,k =

|c j
k|2Var

[
〈σ y〉Oi,P

j
k

]
(ε̃ i

j,k)
2 (2.42)

For the UCC ansatz, the constants ci
j,k have the same norm, |ci

j,k|= |c j| and fulfill ∑
N j

S
k |ci

j,k|= 1.

Therefore we can choose (ε̃ i
j,k)

2 = |c j|(ε̃ i
j)

2, where ε̃ i
j is the precision for estimating the

contribution of the operator Oi to the gradient variance. In addition, we can apply the same

sampling strategy chosen for estimating the energy (Eq. (2.31)), and choose (ε̃ i
j)

2 =
|hi|ε̃2

j

∑
M
l |hl |

.
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Introducing these considerations into Eq. (2.42), we obtain:

m̃ j =

(
4

M

∑
l
|hl|
)

∑
M
i ∑

N j
S

k |hi||c j
k|Var

[
〈σ y〉Oi,P

j
k

]
ε̃2

j
(2.43)

We can get an upper bound to Eq. (2.43) by considering the upper bound of the variance and

including the properties of the coefficients ci
j,k:

m̃ j ≤ 4

(
∑

M
i |hi|

)2

ε̃2
j

(2.44)

For comparison, consider the simplest central finite difference formula that requires two energy

evaluations to compute each gradient component:

∂E(~t)
∂ t j

≈ E(t1, .., t j +δ , .., tNP)−E(t1, .., t j−δ , .., tNP)

2δ
(2.45)

where δ is the step size. As in the case of the analytical gradient, we choose to estimate the j-th

gradient component to precision ε̃ j. The precision in the numerical gradient will depend on the

precision of the numerator and denominator of Eq. (2.45). Assuming no error in the denominator

and a non-zero numerator, the precision for estimating the energies in the numerator, ε j, can be

chosen to guarantee that the relative precisions of the gradient component and the numerator are

the same. This condition requires ε j =
2δ ε̃ j√

2
. Combining this requirement with Eq. (2.31), we can

bound the number of measurements for estimating the j-th component of the gradient as:

m̃ j ≤ 4

(
(∑M

i |hi|)2

(2δ )2ε̃2
j

)
, (2.46)

where the estimate considers two energy evaluations per gradient component. To achieve precision

ε̃ in the norm of the gradient, we could choose ε̃2
j =

ε̃2

NP
, allowing us to bound the sampling cost of
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gradient approximations as:

m̃≤CNP

(
(∑M

i |hi|)2

ε̃2

)
, (2.47)

where C = 4
(2δ )2 for the simplest central difference formula and C = 4 for the analytical gradient

estimated using Figure 2.3. The same bounds can be derived for the UCC approximations with

more than one Trotter step, ρ > 1. In this case, the factor 1
ρ

appears multiplying the constants ci
j,k,

but the number of circuits contributing to N j
S also increases by factor of ρ , canceling out the 1

ρ

factor in the estimation of the bound.

The previous analysis indicates that the sampling cost of the numerical gradient increases

quadratically with decreasing the step size. From the analysis of Eq. (2.47), we expect that for

δ < 0.5 the numerical gradient will have a larger sampling cost than the analytical gradient

approach. In addition, the accuracy of the numerical gradient depends on the step size used in the

central difference formula and sets a lower bound to the precision that can be obtained from the

numerical gradient.

From Eq. (2.47), we also conclude that the gradient estimation is more expensive than

estimating the energy by a factor proportional to the number of parameters. However, the relative

cost of gradient-based and gradient-free optimization is ultimately determined by the number of

iterations required for convergence. Usually, gradient based methods employ a number of gradient

evaluations much smaller than the number of energy evaluations employed by derivative-free

methods.

Finally, we point out that the sampling cost can be reduced by adapting the precision required in

each optimization step according to the norm of the gradient, instead of employing a fixed gradient

precision throughout the optimization. With this strategy, the first steps would require less

measurements compared to the final steps, where the gradient norm is smaller.
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2.3.6 VQE-UCC WITH AN ACTIVE SPACE APPROXIMATION

Several approximations that have been designed to reduce the computational cost of classical

quantum chemistry algorithms can be extrapolated to the quantum implementation. A particular

strategy that could be exploited to reduce the number of quantum resources for a VQE-UCC

calculation is the complete active space (CAS) approach281. The CAS approximation consists in

dividing the orbital space into a set of inactive (I) and active (A) orbitals such as the occupation of

the orbitals in the inactive space remains unchanged. This idea exploits the fact that for most of the

quantum chemistry Hamiltonians, including those cases with a strong multireference character, the

wavefunction is qualitatively dominated by a relatively small number of Slater determinants that

can be effectively captured by expanding the wavefunction in a subspace defined by the active

orbitals.

In most quantum chemistry applications, the CAS approximation is employed to treat static

correlation effects, meaning that a relatively small active space is selected to obtain a qualitatively

correct wavefunction that serves as reference state for further perturbation theory or Coupled

Cluster refinements214,328. Nonetheless, one might also consider the choice of an active space that

is sufficiently large such as both static and dynamical correlation effects can be described up to

certain accuracy.

In the case of the CAS approximation applied to single reference UCC, one selects an active

space comprised of ηA electrons distributed among NA spatial orbitals. This choice of active space

is denoted as CAS(ηA,NA). The active orbitals usually correspond to a selection of the highest

occupied orbitals and the lowest virtual orbitals. The cluster operators are then redefined such as

excitations are only allowed among active orbitals,

T A =
ηA

∑
i

Ti (2.48)
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Considering the separation between active and space orbitals, we can rewrite the reference state as

|Φ0〉= |ΦA
0 〉⊗ |ΦI

0〉, where |ΦI
0〉 and |ΦA

0 〉 are defined over the inactive space and active space,

respectively. Consequently we can write the total energy as:

E = 〈ΦA
0 |e−(T

A−T A†)H̃AeT A−T A† |ΦA
0 〉 (2.49)

where the effective Hamiltonian H̃A is obtained by evaluating the following expression:

H̃A = 〈ΦI
0|H|ΦI

0〉 (2.50)

Since the reference state corresponds to a product state, the calculation of the effective

Hamiltonian can be performed efficiently on a classical computer. In this case, we can obtain an

approximate solution to the VQE problem by performing a VQE-UCC calculation for the effective

active space Hamiltonians, HA
j j′ . The CAS-UCC approach reduces the number of qubits required

for a calculation by a factor of NA/N. Similarly, the number of parameters for the preparation of

the UCCSD wavefunction is reduced by a factor of (ηANA)
2/(Nη)2 with respect to full-UCCSD,

as the scaling becomes O(ηA
2N2

A).

A number of strategies for selecting active spaces to describe static correlation have been

proposed in the context of quantum chemistry. Generally, these strategies employ the occupation

of approximate natural orbitals, which are the orbitals that diagonalize the one particle density

matrix, as a criteria to choose the active space. Orbitals with integer occupation are generally

discarded, and only those with fractional occupation within certain thresholds are considered as

part of the active space. The approximate one particle density matrix is obtained from methods that

include some amount of correlation and that are relatively inexpensive, such as MP2159. Another

commonly used approach employs the unrestricted natural orbitals (UNO) obtained from
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unrestricted Hartree-Fock calculations5,174. More recently, a scheme based on entanglement

measurement among orbitals has been also proposed323.

We can take advantage of one of these approaches to define an initial active space in a suitable

basis for the UCC calculation. The solution obtained with the initial active space can be employed

as an initial guess for another CAS-UCC calculation with a larger active space. This process can be

repeated until the simulation is performed on the entire basis, in which case we expect the

algorithm to converge faster as in each iteration a better approximation to the exact UCC

wavefunction is obtained. One can also stop the optimization after the energy does not improve

beyond a pre-defined threshold. In the later case, we also achieve a reduction in the number of

qubits required for the calculation.

2.4 NUMERICAL ASSESSMENT

2.4.1 CLASSICAL SIMULATION OF VQE-UCC

To illustrate the algorithmic details of the the scalable VQE-UCC algorithm, we simulated the

VQE-UCC calculation of small molecules. The molecular integrals were obtained using the PSI4

package292 and the molecular Hamiltonian was mapped using the Jordan-Wigner transformation.

The UCC unitary was constructed with a truncated cluster operator and the symbolic

representation was transformed into unitaries comprising strings of Pauli matrices, following the

same procedure employed for the Hamiltonian. To assist these transformations, we employed the

OpenFermion (www.mcclean2017openfermion.org) library225.

The simulation of the circuit proceeds by calculation of the UCC wavefunction from the the

matrix representation of the UCC unitary and the reference state. The optimization was performed

using three direct search algorithms available in the scipy.optimize library, namely the

Nelder-Mead242, Powell266 and COBYLA267 algorithms. We also employed the L-BFGS-B
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method55 with numerical gradients for comparison, using the central finite difference formula

(Eq. (2.45)). The energy and parameter thresholds for convergence were fixed at 10−5 a.u 10−4 a.u

respectively. For the L-BFGS-B algorithm, the convergence threshold for the projected gradient

was fixed at 10−4. In all cases the maximum number of function evaluations was fixed to 20,000.

Finally, we point out that all our numerical experiments assume that function evaluations are

performed in double precision arithmetic, unless indicated otherwise.

2.4.2 VQE-UCC RESULTS FOR H4 MOLECULAR SYSTEMS

A practical and informative assessment of quantum chemistry simulation involves the study of

chemical transformations, such as bond-breaking, isomerization or configurational changes. These

processes are generally described through scanning geometries along certain directions of a PES.

Along the PES, the amount of entanglement of the wavefunction varies greatly and this impacts the

performance of the ansatz employed to approximate the wave function.

In order to illustrate these aspects, we selected a model in which the amount of entanglement in

the wavefunction can be continuously varied and which is simple enough to enable simulations.

We have considered the PES of a system comprising four hydrogen atoms investigated along three

different paths: rectangular (R), trapezoidal (T), and linear (L), as described in Figure 2.4. These

systems have been widely employed by the quantum chemistry community as a benchmark for

multireference methods158,214. We studied 19 different geometries for the trapezoidal path

generated by varying the parameter θ between 90and180. For the linear and the parallel paths, we

studied 24 different geometries generated by varying the parameter r between 0.6Å and 5.0Å.

2.4.2.1 INFLUENCE OF THE OPTIMIZATION METHOD IN THE VQE PERFORMANCE

We evaluated the effectiveness of the strategies proposed to generate the initial guess for the cluster

amplitudes and optimization methods based on three criteria:
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Figure 2.4: Description of geometries for the H4 model systems studied in this work. The potential energy
surfaces are defined as a function of the variable r for the rectangular (R) and linear (L) geometries and as a
function of θ for the trapezoidal (T) geometry. The value of the parameter d is kept fixed at 2.0 Å.

1. the error in the calculated energy with respect to the FCI solution, EFCI−EVQE,

2. the accuracy of the wavefunction evaluated as the infidelity (1−|〈ΨVQE|ΨFCI〉|2) and

3. the number of function evaluations required for convergence.

We compared the four optimization methods described in the previous section using three different

starting guesses:

1. random, in which random values are chosen uniformly in the interval -0.25 to 0.25,

2. starting with all the amplitudes set to zero, which corresponds to using the Hartree-Fock

solution as initial guess and

3. the MP2 approximation to the cluster amplitudes.

The full optimization is comprised of a total of 52 parameters. To evaluate the performance of the

random guess approach we ran the algorithm 10 times and averaged the results.

Figure 2.5 compares the average number of function evaluations and energy error along the

rectangular, trapezoidal, and linear paths of the H4 system. We observe that the Nelder-Mead and
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a)

b)

c)

Figure 2.5: Average performance of the VQE algorithm applied to the H4 system along the a) trapezoidal b)
linear and c) parallel paths using four optimization methods (L-BFGS-B, COBYLA, Powell and Nelder-Mead)
and three different methods to initialize the parameters: Randomly (Random), set to zero (Zeros) and set to
the MP2 amplitudes (MP2). We compare the number of function evaluation required for convergence (left
panel) and the error in the final energy with respect to the FCI solution (right panel). Error bars indicate one
standard deviation. The range in the energy plots is truncated to 35 kcal/mol to facilitate comparison.

the Powell methods exhibit a high variability in their performances when the parameters are

initialized at zero or randomly, as indicated by the large standard deviations in the wavefunction

accuracy. In particular, Nelder-Mead fails to converge in less than 20000 function evaluations and

performs poorly, with energy errors beyond 10 kcal/mol and overlaps with the exact wavefunction

below 0.8. The Powell method has a better performance in the number of function evaluations but

is still outperformed by L-BFGS and COBYLA. On the other hand, the COBYLA and the

L-BFGS-B methods converge to almost the same minimum for most of the points of the PES,
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independent of the method employed to generate the initial guess. This is indicated by the much

larger energy accuracies compared to the results of Nelder-Mead and Powell.

The use of the MP2 guesses for the cluster amplitudes significantly reduces the number of

function evaluations for all the optimization methods as observed in the left panel of Figure 2.5.

MP2 guesses also improve the average accuracy of the energy obtained with the Nelder-Mead and

Powell methods, as observed in the right panel of Figure 2.5. We point out that for systems that

experience strong correlation the MP2 amplitudes might be a poor starting point, although still

better than the random or zeros guesses. In those cases, more reliable methods such as Density

Matrix Renormalization Group (DMRG) with a small active space and a small bond dimension

could provide better initial guesses at the expense of classical computation time340. These results

illustrate how the incorporation of classical approaches can improve the performance of quantum

simulation by providing physically meaningful starting guesses and also highlight the importance

of the choice of the optimization method.

2.4.2.2 EFFECT OF TROTTERIZATION IN THE OPTIMIZATION

Table 2.1 compares the performance of the trotterized UCC ansatz (Eq. (2.21)) using 1 and 2

trotter steps with the performance of the non-trotterized ansatz (Eq. (2.20)). For these calculations

we employed the COBYLA and the L-BFGS-B optimization methods with the MP2 guess. To

measure the quality of the results we use the average infidelity with respect to the FCI

wavefunction as well the non-paralellism error (NPE). The NPE is calculated according to the

formula:

NPE = max(EUCCSD−EFCI)−min(EUCCSD−EFCI) (2.51)
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which quantifies the maximum error obtained when computing energy differences between points

in the PES using the UCCSD approach. As observed in Table 2.1, the quality of the results

obtained with the trotterized unitaries is almost identical to the that of the exact implementation of

Eq. (2.20) when using the L-BFGS-B optimization method. We also notice that the approximation

with 2 trotter steps converges faster in average than the unitary with only one trotter step.

Using COBYLA, the trotterized unitaries produce results similar to those obtained with

Eq. (2.20) for the trapezoidal and the parallel paths. In contrast, COBYLA exhibits a lower average

performance for the linear system, as shown in Table 2.1. A better insight into this result is offered

by Figure 2.6, where we plot the error in the wavefunction along r for the linear path as computed

with the COBYLA and the L-BFGS-B methods. The error in the wavefunction is quantified as the

difference between 1.0 and the absolute value of the overlap of the UCCSD and the FCI

wavefunctions. We observe that the COBYLA algorithm provides wavefunctions with overlaps

below 0.95 and as low as 0.78 between 0.8−1.6 Å, which corresponds to a section of the PES

with strong multireference character. For these geometries, the COBYLA algorithm reaches the

maximum number of functions evaluations when using Eq. (2.21) with 1 trotter step. Increasing

the number of trotter steps seems to partially alleviate this problem. In contrast, a gradient based

approach such as L-BFGS-B provides better results in the 0.8−1.6 Å range. Interestingly, as the

distance increases beyond 2.6 Å, the difference between the trotterized and the exact unitary

becomes more prominent. We point out, however, that in all these cases the overlap is larger than

0.999 with a single trotter step.

65



2.4.
N

um
ericalassessm

ent

Table 2.1: Comparison of the VQE results obtained with the ansatz from Eq. (2.20) and Eq. (2.25) with one and two trotter steps, for the calculation of the
PES of the H4 systems. We compared the average overlap with the FCI wavefunction, non-parallelism error and average number of function evaluations
along the trapezoidal, parallel and linear paths of the H4 system, obtained using the L-BFGS-B and COBYLA optimization methods. The molecular Hamil-
tonian was obtained with a STO-6G basis set.

Optimization
method

System Approximation Average Overlap
NPE in PES∗

(kcal/mol)
Number of energy

evaluations
L-BFGS-B Trapezoidal Eq. (2.25) ρ = 1 0.994 ± 0.006 1.4 861 ± 73

Eq. (2.25) ρ = 2 0.995 ± 0.005 1.5 615± 32
Eq. (2.20) 0.995 ± 0.005 1.5 703 ± 51

Parallel Eq. (2.25) ρ = 1 0.996 ± 0.008 2.0 590 ± 144
Eq. (2.25) ρ = 2 0.997 ± 0.007 2.0 436 ± 149

Eq. (2.20) 0.997 ± 0.006 2.0 467 ± 142
Linear Eq. (2.25) ρ = 1 0.998 ± 0.006 7.1 710± 99

Eq. (2.25) ρ = 2 0.999 ± 0.005 6.9 487 ± 158
Eq. (2.20) 0.999 ± 0.005 6.5 534 ± 182

COBYLA Trapezoidal Eq. (2.25) ρ = 1 0.994 ± 0.006 1.0 3703 ± 1023
Eq. (2.25) ρ = 2 0.995 ± 0.005 1.5 2753 ± 340

Eq. (2.20) 0.995 ± 0.005 1.5 3468 ± 622
Parallel Eq. (2.25) ρ = 1 0.998 ± 0.006 2.0 2431 ± 857

Eq. (2.25) ρ = 2 0.999 ± 0.005 2.0 2047 ± 665
Eq. (2.20) 0.999 ± 0.005 2.0 2820 ± 1086

Linear Eq. (2.25) ρ = 1 0.968 ± 0.068 5.1 5115 ± 5475
Eq. (2.25) ρ = 2 0.990 ± 0.030 6.9 2882 ± 3620

Eq. (2.20) 0.997 ± 0.006 6.5 4231 ± 3880
∗ Non-parallelism error.
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(a) (b)

Figure 2.6: Comparison between the error in the wavefunctions obtained using a) COBYLA and b) L-BGFG-
B optimizations along the linear path of the H4 system. The UCCSD wavefunctions were obtained using the
exact UCC unitary (Eq. (2.20), red dots) and the trotterized version (Eq. (2.25)) with one trotter step (blue
triangles up) and two trotter steps (green triangles down). The error in the wavefunction is quantified as 1−
|〈ΨUCCSD|ΨFCI〉|.

2.4.2.3 REDUCTION IN THE NUMBER OF PARAMETERS BY PRE-SCREENING OF CLUSTER AM-

PLITUDES

Classical approximations can provide a criterion to discard excitation operators with small

amplitudes, which have a minor contribution to the wavefunction expansion. MP2 amplitudes, for

instance, provide an approximation of the amplitudes of double excitation operators, which are

responsible for the scaling of the number of parameters in the UCCSD method as a function of the

system size. Given the set of MP2 amplitudes, {tab(MP2)
i j }, we can discard all the excitation

operators such as |tab(MP2)
i j |< d, where d is a suitable threshold. Table 2.2 displays the average

performance of UCCSD calculations in the H4 systems using a reduced number of parameters for

different values of d.
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Table 2.2: Results of VQE calculations for the H4 systems using prescreening with the MP2 amplitudes. We compared the results obtained for different
values of the threshold (d) with the calculation including all the parameters. The L-BFGS-B optimization method was used. For d < 10−3 the results are the
same as for d = 10−3.

System Number of parameters Max. difference in PES ∗ (kcal/mol) Energy evaluations x 103

d = 10−2 d = 10−3 All d = 10−2 d = 10−3 d = 10−2 d = 10−3 All
Trapezoidal 24 26 52 <7x10-4 <7x10-4 1.17±0.11 1.20±0.13 3.5±0.6

Parallel 24 26 52 0.07 <7x10-4 1.12±0.44 1.17±0.43 2.8±1.0
Linear 24 26 52 0.76 0.20 1.26±0.43 1.37±0.37 4.2±3.8

∗ Maximum difference between the PES calculated with all the parameters and the PES obtained from the pre-screened calculation.
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Figure 2.7: Number of parameters in the VQE unitary for different values of the threshold d for some
molecules. We employed two different basis sets: a) STO-6G and b) 3-21G. The results are plotted against
the product of the number of basis set functions and electrons, ηN. The correlation coefficient (R) and slope
(m) of the linear regressions are shown in the legend. The list of molecules include: hydrocarbons (C1-C8),
BeH2, Benzene, N2, O2, B2H6, ethanol and water.

For the H4 systems, only 10 out of the 34 double excitation operators have a significant effect on

the total energy. The errors in the energy associated to the discarded parameters are in all cases

smaller than chemical accuracy. Via this pre-screening process, we discard excitation operators

that are expected to have small amplitudes and therefore small contributions to the accuracy of the

wavefunction. Due to the elimination of non-critical excitation operators, the number of gates and

thereby the circuit depth is reduced when compared to an implementation of the full, non-truncated

UCC ansatz. The smaller number of parameters also facilitates the convergence of the optimization

method. For the H4 systems, the number of function evaluations decreases by a factor of 3.
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2.4. Numerical assessment

To gain insights into the effect of the screening in the scaling of the number of parameters for

UCC, we applied our reduction strategy to a series of small molecules for different values of the

threshold d. The results are shown in Figure 2.7 as a function of the product of the number of

electrons and the number of orbitals of the system, Nη . We observe that the number of parameters,

and consequently the depth of the VQE circuit, decreases by almost one order of magnitude using

a threshold of 10−5. In addition, for thresholds above 10−5, it is also possible to achieve a

subquadratic scaling in Nη , compared to the formal quadratic scaling of the full UCCSD ansatz.

2.4.2.4 GRADIENT BASED OPTIMIZATION

Finally, we studied the performance of UCC optimizations with the analytical and numerical

gradient approaches proposed in Section 2.3.5. First, we compared the sampling cost of the

analytical and numerical gradient via numerical simulation. We calculated the error in the

estimated gradient, ∆g, as a function of the number of samples employed in the gradient

estimation. The gradient error is quantified as the norm of the difference between the estimated

gradient, g̃, and the exact gradient, g, ∆g = ||g̃−g||2. In our numerical simulations, the exact

gradient corresponds to the analytical gradient computed to machine precision. To compute the

number of measurements, we employed the equality of Eq. (2.31) for the numerical gradient and

Eq. (2.43) for the analytical one.

Figure 2.8 illustrates the behavior of the error in the gradient as a function of the number of

measurements for a single instance of the H4 system in a linear configuration. Each point in the

plot corresponds to an average over 100 gradient estimations for randomly sampled amplitudes.

We compare the numerical gradient with different values of the step size, δ , and the analytical

gradient. For δ = 0.5 and high error rates, the numerical gradient has a sampling cost comparable

to the analytical gradient. However, increasing the sampling cost beyond 108 does not further

improve the quality of the numerical approach as the the method reaches its accuracy limit. A
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Figure 2.8: Average error of the numerical gradient as a function of the number of measurement employed
for the gradient estimation. We compare the analytical gradient and the the numerical gradient for several
step sizes. Averages were calculated over 100 random amplitudes drawn uniformly from the interval [0,2π]
for the linear H4 system with r = 1.2. Error bars correspond to one standard deviation.

similar behavior is observed for the numerical gradient with δ = 0.1 for errors below 10−3. Using

smaller step sizes guarantees the same error rate achieved with analytical gradient but with an

exceedingly larger sampling cost. Our results confirms the analysis presented in Section 2.3.5,

indicating that the analytical gradient might be order of magnitudes cheaper than numerical

gradients in experimental realizations of VQE.

To further understand the relative performance of the analytical and numerical gradients, we

numerically simulated the impact of control errors on these methods. Control errors refer to the

difference between the formal specification of a variational circuit U(~p), and the actual operation

that this specification effects on the quantum computer, Ũ(~p). For simplicity, we will model the

control errors as Ũ(~p) =U(~p+∆~p). In our numerical simulations, ∆~p is described as a normal

random variable with standard deviation ∆Θ.

Figure 2.9 shows the magnitude of ∆g for the analytical and the numerical gradients as a

function of the parameter ∆Θ. We fixed the value of δ such as the contribution of the control errors

is dominant in the numerical gradient for the ranges of ∆Θ explored. Our results show that ∆g

scales linearly with ∆Θ, in contrast with the quadratic scaling in δ . In experimental
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2.4. Numerical assessment

Figure 2.9: Average error of the numerical gradient as a function of the standard deviation of control errors
in the quantum circuit (∆Θ). m and b correspond to the slope and intercept of the linear regression. Averages
were calculated over 100 random amplitudes drawn uniformly from the interval [0,2π] for the linear H4 system
with r = 1.2. The same scaling was observed for other instances of the H4 system.

implementations of VQE, ∆Θ imposes a practical lower bound to the value of δ employed in the

estimation of the numerical gradient and consequently the contribution of control errors will

dominate ∆g.
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Table 2.3: Average error in the UCC energy (hartrees) and average number of gradient calls employed for the optimization using analytical and numerical
gradients (with δ = 0.05 and δ = 0.10) under the effect of control errors. The error in the energy corresponds to the difference between the optimal en-
ergy obtained for 150 VQE runs under control noise and the optimal value for the noiseless optimization with the analytical gradient. All the calculations
employed a trotterized ansatz with one trotter step and the same stopping criteria for L-BFGS-B. The UCC amplitudes were initialized with the MP2 ampli-
tudes. The parameter ∆Θ was fixed to 0.01. The calculations were performed for instances of the trapezoidal, linear and parallel H4 system with the UCC
ansatz (r = 1.2 and θ = 135.0o).

Trapezoidal Parallel Linear
Grad.
calls

Energy
error

Grad.
calls

Energy
error

Grad.
calls

Energy
error

Gradient Grad. 26±4 0.024±0.008 33±9 0.083±0.086 32±8 0.13±0.08
Numerical Grad. (δ = 0.05) 32±8 0.019±0.006 42±13 0.083±0.095 40±11 0.13±0.08
Numerical Grad. (δ = 0.1) 32±8 0.019±0.007 41±13 0.074±0.083 40±12 0.11±0.07
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2.5. Discussion

Finally, we explore how control errors influence the optimization with numerical and analytical

gradients. Assuming that control errors dominate ∆g, we performed 150 runs of the VQE

optimization under the influence of control errors, with ∆Θ = 0.01. Our results, summarized in

Table 2.3, compare the average error in the final energy and average number of gradient calls for

carrying out the optimization. We observe that the analytical and the numerical gradients provide

accuracies in similar ranges. However, the optimization with analytical gradients requires 20% less

gradient evaluations in average compared to optimization with numerical gradients. These results

suggest that the analytical gradient might have a better convergence under the influence of control

errors, in addition to a much lower sampling cost.

2.5 DISCUSSION

We have presented a series of strategies for the calculation of molecular energies using the VQE

algorithm combined with a UCC ansatz for carrying out the state preparation. The UCC method

provides a hierarchy of wavefunction ansatze that can be prepared using quantum circuits with a

size that scales polynomially in the number of orbitals and particles of the system. In particular, the

approximation up to double cluster operators provides a good compromise between cost and

accuracy for applications in quantum chemistry, with a number of parameters that scales as

O(N2η2). The number of parameters in the approximation determines the size of the circuit and

impacts the cost of the classical optimization required for wavefunction optimization.

Additionally, we have illustrated how efficient classical approximations to the amplitudes of the

cluster operators, such as those obtained from perturbation theory, can be used to reduce the cost of

the VQE algorithm for chemistry. In particular, we showed that classical amplitudes provide

effective initial guesses for the optimization process and serve as a pre-screening mechanism to

remove cluster operators that have negligible contribution to the optimal wavefunction. This
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strategy is an example of a hybrid quantum-classical scheme for quantum simulation, where

efficient classical approximations are employed to reduce quantum resources and boost the

efficiency of the quantum subroutine. These hybrid schemes are more likely to be the first quantum

algorithms to exploit the power of small quantum computers for quantum simulation.

Our numerical analysis also highlights the deficiencies of some derivative-free methods, such as

Nelder-Mead and Powell, that have been previously employed in numerical and experimental

demonstrations of VQE255,353. These methods performs poorly for a relatively large number of

parameters, failing to converge to the correct wavefunctions unless a physically meaningful initial

guess is employed. Among the methods tested, COBYLA showed a much better performance.

Finally, we introduced an analytical approach to compute the energy gradient for variational

circuits and evaluated its performance for the UCC ansatz. This approach allows us to employ

gradient based methods to minimize the energy. Our numerical simulations show that our

analytical approach provides solutions of the same quality obtained with derivative-free and

numerical gradient approaches. In addition, analytical gradients have a much smaller sampling cost

than numerical gradients as well as better convergence behavior under the effect of control noise.

We point out that our formulation of the analytical gradient can be adapted to other algorithms that

employ a quantum-classical hybrid scheme such as the quantum approximate optimization

algorithm104 and some methods proposed in the context of quantum machine learning20,280,350.

Future work will be devoted to evaluating the performance of gradient-based and gradient-free

optimizations under non-coherent errors and state preparation and measurement (SPAM) errors.
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2.6 APPENDIX

2.6.1 COMMUTATIVITY OF SUBTERMS IN EXCITATION OPERATORS

Assuming real cluster amplitudes, the JW transformation of the single and double cluster operators

for UCC can be written as follows:
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where we assume without lost of generality that b > a > j > i. The commutativity among the

terms in Eq. (2.52) and Eq. (2.53) can be verified by inspection. In general, the JW transformation

of an UCC operator of order n will comprise 22n−1 terms, composed by the same string of Z

operators multiplying the sum of all the possible strings of X and Y operators acting on 2n qubits,

such as the numbers of X and Y operators are both odd. The commutativity between any of this

terms reduces to the commutativity of the strings containing x and y operators only.

Consider two arbitrary strings of x and y operators of length 2n, PA =
⊗2n

i=1 σ
ai
i and
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PB =
⊗2n

i=1 σ
bi
i , acting on the same set of qubits. The commutator is given by:

[PA,PB] =
2n⊗

i=1

(σai
i σ

bi
i )−

2n⊗
i=1

(σbi
i σ

ai
i ) (2.54)

where the product σ
ai
i σ

bi
i can take three values:

σ
ai
i σ

bi
i =


1 i f ai = bi

iσz i f ai = x bi = y

−iσz i f ai = y bi = x.

(2.55)

Applying Eq. (2.55) to Eq. (2.54), we can write:

[PA,PB] =
[
(−i)nA

y−cy(i)nA
x−cx− (−i)nB

y−cy(i)nB
x−cx

]
P,

where P is the string of Pauli matrices obtained from the multiplication and nA
x and nA

y are the

numbers of X and Y operators in string A, respectively. nB
x and nB

y are defined analogously. cx is

the number of times ai = bi = x; cy is defined accordingly. Rearranging the previous equation, we

obtain:

[PA,PB] = (−1)nA
y−cy

(
1− (−1)nB

y−nA
y

)
i2n−cx−cyP (2.56)

Now recall that for the UCC operators, nA
y and nB

y are both odd and thus nB
y −nA

y is even.

Consequently, [PA,PB] is zero. We conclude that the subterms comprising a single UCC operator

commute.
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2.6.2 MAPPING FERMIONIC OPERATORS TO QUBIT OPERATORS

In order to implement the a fermionic Hamiltonian on a quantum computer or prepare a

wavefunction according to a given ansatz expressed in terms of fermionic second quantized

operators, we need to map the algebra of fermionic operators to qubit operations. The occupation

basis employed in second quantization can be mapped directly to a qubit basis, where the same

space is represented by the space spanned by the tensor product of N qubits300:

| fN−1, · · · , f0〉 → |qN−1〉⊗ · · ·⊗ |q0〉 (2.57)

In the qubit occupation basis, a natural choice of second quantized operators would be the qubit

creator and annihilation operator defined as: σ
+
j ≡ 1

2(σ
x
j − iσ y

j ) and σ
−
j ≡ 1

2(σ
x
j + iσ y

j ),

respectively. However, these operators do not obey the fermionic anticommutation relations and

therefore cannot be employed to map the fermionic creation and annihilation operators. To account

for the anticommutation properties, we employ the Jordan-Wigner (JW) transformation instead165,

where the fermionic second quantized operators are mapped according to the rules:

a†
j ≡

1
2
(σ x

j − iσ y
j )⊗σ

z
j−1⊗·⊗σ

z
0 (2.58)

a j ≡
1
2
(σ x

j + iσ y
j )⊗σ

z
j−1⊗·⊗σ

z
0 (2.59)

The effect of the string of σz gates is to introduce the correct phase associated with the application

of fermionic operators, which depends on the parity of the set of qubits with index less than j. In

the JW mapping the occupancy of the orbitals is stored locally in every qubit while the parity is a

non-local property that needs to be determined by performing σz operations on a subset of the

qubits. Consequently, this mapping generates local terms with length O(N). An alternative

mapping known as the Bravyi-Kitaev (BK) transformation, use an intermediate approach, where
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some qubits store information in the occupation number representation while others store

information in the parity representation, achieving scaling O(logN) in the length of the local terms

in the Hamiltonian. The details about the derivation of the BK transformation can be found

in300,336. Using either the JW transformation or the BK transformation the quantum chemistry

Hamiltonian can be transformed to a sum of local qubit terms, expressed as strings of Pauli

matrices.
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3
A low-depth circuit ansatz for variational quantum

simulation of fermionic systems

Apart from minor modifications, this chapter originally appeared as279:

“Low-depth circuit ansatz for preparing correlated fermionic states on a quantum computer”.
Pierre-Luc Dallaire-Demers, Jonathan Romero, Libor Veis, Sukin Sim and Alán Aspuru-Guzik.
arXiv:1801.01053 (2018). Reproduced with permission of the authors.

3.1 INTRODUCTION

The macroscopic properties of matter emerge from its microscopic quantum constituents whose

massive components are mostly fermions. Understanding and modeling the behavior of a large

number of interacting fermions is a central and fundamental problem in Physics and Chemistry

which requires a large investment in computational resources as the memory required to represent

a many-body state scales exponentially with the number of particles. Therefore, a computer

operating on quantum mechanical principles have the potential to revolutionize the simulation of

quantum systems4,108. Such a machine would improve our ability to design new molecules such as

drugs and catalysts272, build new superconducting27,79,355 and topological materials and improve

our understanding of nuclear matter. Algorithm leveraging the advantages of quantum computers

for quantum simulations have steadily been developed in the past two

decades14,16,24,27,143,170,171,194,248,249,255,265,341,355,359,374 as quantum processors are scaling in
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size206,237,241. Variational quantum eigensolvers (VQE) have recently appeared as a promising

class of quantum algorithms designed to prepare states for quantum simulations226,248,353.

However, near-term devices will suffer from limited coherence as a consequence of noise and finite

experimental precision202,331. This incentives the search for low-depth circuits for quantum

simulations and state preparation19,168.

In this chapter, we present a new type of low-depth VQE ansatz motivated by the Bogoliubov

coupled cluster theory277,310,325. Our approach can be used to prepare the ground state of correlated

fermions with pairing interactions by systematically appending variational cycles composed of

linear-depth blocks of 2-qubit gates. In section 3.2, we first review the formulation of the strong

correlation problem for fermions in the context of second quantization. We then present the unitary

version of Bogoliubov coupled cluster theory and review how the generalized Hartree-Fock (GHF)

reference state can be computed as a fermionic Gaussian state. Using the theory of matchgates, we

show how pure fermionic Gaussian states can be exactly prepared on a quantum computer using a

linear-depth circuit. Finally, we introduce the low-depth circuit ansatz (LDCA), consisting of the

previous matchgate circuit plus additional nearest-neighbor phase coupling. We numerically

benchmark the LDCA in section 3.3 for the prototypical examples of the Fermi-Hubbard model in

condensed matter and the automerization reaction of cyclobutadiene in quantum chemistry,

showing its potential to describe the exact ground state of strongly correlated systems.

3.2 GENERALIZED VARIATIONAL QUANTUM EIGENSOLVER

In this section, we review and extend the theoretical foundations of VQE. Specifically, in

subsection 3.2.1, we review the definition of finding the ground state of fermionic Hamiltonians as

found in quantum chemistry, condensed matter, and nuclear physics. In subsection 3.2.2 we

introduce the Bogoliubov unitary coupled cluster (BUCC) theory as a variational ansatz to the
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ground state problem. In subsection 3.2.3 we review the formalism of the GHF theory as this is the

starting point of the BUCC optimization method as well as the new method presented in the

following subsection. In subsection 3.2.4 we show how a GHF state can be prepared on a quantum

processor using matchgates and introduce a LDCA which can be used to prepare the ground state

of fermionic Hamiltonian with surprisingly high accuracy. Finally, in subsection 3.2.5, we outline

an implementation to compute the analytical gradient of the LDCA using quantum resources.

3.2.1 FORMULATION OF THE PROBLEM

Many systems in quantum chemistry327, condensed matter197,274,303, and nuclear structure

physics31,275 can be modeled by an ensemble of interacting fermions (electrons, nucleons)

described by a second quantized Hamiltonian of the form

H = ∑pq
(
tpqa†

paq +∆pqa†
pa†

q +∆∗pqaqap
)

+∑pqrs vpqrsa†
pa†

qasar

+∑pqrstu wpqrstua†
pa†

qa†
r auatas.

(3.1)

In general, the p,q,. . .,u indices run over all relevant quantum numbers (e.g. position,

momentum, band number, spin, angular momentum, isospin, etc) which define M fermionic

modes. The fermionic mode operators follow canonical anti-commutation relations
{

ak,a
†
l

}
= δkl

and {ak,al}=
{

a†
k ,a

†
l

}
= 0. The kinetic energy terms tpq and the interaction vpqrs are ubiquitous

in most theories, while pairing terms ∆pq often appear in the context of mean-field

superconductivity, and the three-body interaction term wpqrstu can be phenomenologically

introduced in nuclear physics213.

As a prerequisite to calculating various observable quantities, we are interested in finding the

ground state ρ0 = |Ψ0〉〈Ψ0| of the Hamiltonian (3.1) such that the energy E is minimized over the
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set of all possible states ρ in a given Hilbert space:

E0 ≡ E (ρ0)

= minρE (ρ)

= minρ tr(Hρ) .

(3.2)

When this minimization cannot be done either analytically or with numerically exact methods, we

have to resort to approximate methods such as variational ansatzes. One such ansatz, the BUCC

method, is defined in the next subsection.

3.2.2 BOGOLIUBOV UNITARY COUPLED CLUSTER THEORY

Coupled cluster methods are used in ab initio quantum chemistry calculations to describe

correlated many-body states with a better accuracy than the Hartree-Fock method. Bogoliubov-

and quasiparticle-based coupled cluster methods extends the range of applicability of those

methods to systems with mean-field paired states277,310,325. Anticipating the implementation on

quantum computers, we present the formalism for the unitary version of the Bogoliubov coupled

cluster theory. We first review the Bogoliubov transformation and the parametrization of the ansatz.

The most general linear transformation acting on fermionic creation and annihilation operators

that preserves the canonical anti-commutation relation is the Bogoliubov transformation. In this

transformation, the quasiparticle operators
(

β
†
p′ ;βp′

)
are related to the single-particle operators(

a†
p;ap

)
by a unitary matrix

β
†
p′ = ∑p

(
Upp′a†

p +Vpp′ap
)

βp′ = ∑p

(
U∗pp′ap +V ∗pp′a

†
p

)
.

(3.3)

This transformation preserves the canonical anti-commutation relation such that
{

βk,β
†
l

}
= δkl
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and {βk,βl}=
{

β
†
k ,β

†
l

}
= 0. By introducing the vector notation~a> =

(
a1, . . . ,aM,a†

1, . . . ,a
†
M

)
and ~β> =

(
β1, . . . ,βM,β †

1 , . . . ,β
†
M

)
, it is easy to express (3.3) in matrix notation as ~β = U~a where

the Bogoliubov transformation is unitary U−1 = U† and its matrix is defined as

U =

 U∗ V∗

V U

 . (3.4)

The ground state of a quadratic Hamiltonian (all vpqrs = 0 and wpqrstu = 0) is a product state

|Φ0〉=C
M

∏
k=1

βk |vac〉 , (3.5)

where |vac〉 is the Fock vacuum and C is a normalization factor. If the ground state is not

degenerate, (3.5) acts as a quasiparticle vacuum β j |Φ0〉= 0.

We can define the quasiparticle cluster operator T = T1 +T2 +T3 + . . . where

T1 = ∑k1k2 θk1k2β
†
k1

β
†
k2

T2 = ∑k1k2k3k4 θk1k2k3k4β
†
k1

β
†
k2

β
†
k3

β
†
k4

T3 = ∑k1k2k3k4k5k6
θk1k2k3k4k5k6β

†
k1

β
†
k2

β
†
k3

β
†
k4

β
†
k5

β
†
k6
.

(3.6)

The θk1k2... ∈ C are variational parameters which are fully antisymmetric such that

θk1k2... = (−1)ξ (P)
θP(k1k2...), where ξ (P) is the signature of the permutation P. The BUCC ansatz is

defined as

|Ψ(Θ)〉= ei(T (Θ)+T †(Θ)) |Φ0〉 . (3.7)

where Θ corresponds to the set of variational parameters θk1k2... and |Φ0〉 is a reference state. Since

the transformation is unitary |〈Ψ(Θ) |Ψ(Θ)〉|= 1, |Ψ(Θ)〉 is always normalized. The BUCC

ansatz is said to be over single (BUCCS) or double excitations (BUCCSD) if the cluster operator T

84



Chapter 3. A low-depth circuit ansatz for variational quantum simulation of fermionic systems

is truncated at the first or second order.

To variationally optimize the BUCC ansatz, we aim to find the angles Θ that minimize the

energy

min
Θ

E (Θ) = 〈Ψ(Θ)|H |Ψ(Θ)〉 (3.8)

subject to the constraint that the number of particles

〈N (Θ)〉 = 〈Ψ(Θ)|N |Ψ(Θ)〉

= ∑
M
p=1 〈Ψ(Θ)|a†

pap |Ψ(Θ)〉
(3.9)

should be kept constant, as the quasiparticles operators generally do not preserve the total particle

number. In the next subsection we will explicitly show how to compute the reference state from the

generalized Hartree-Fock theory before describing the details of the implementation of the

quantum algorithm.

3.2.3 GENERALIZED HARTREE-FOCK THEORY

Here we show how to obtain the Bogoliubov matrix (3.4) used to define the reference state (3.5).

The method relies on the theory of fermionic Gaussian states187,188 for which we review the

formalism and a method to obtain the covariance matrix of the ground state without a

self-consistent loop. Fermionic Gaussian states are a useful starting point for quantum simulations

as they include the family of Slater determinants from Hartree-Fock theory and

Bardeen-Cooper-Schrieffer (BCS) states found in the mean-field theory of superconductivity21,73

and can be easily prepared on a quantum computer344.
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For M fermionic modes, it is convenient to define the 2M Majorana operators

γ j = γA
j = a†

j +a j

γ j+M = γB
j = −i

(
a†

j −a j

) (3.10)

as the fermionic analogues of position and momentum operators. Let’s note that we used either the

extended index notation (from 1 to 2M) or the A,B superscript notation interchangeably throughout

the chapter to make the equations clearer. Their commutation relation satisfies {γk,γl}= 2δkl such

that γ2
k = 1. It is useful to define the vector notation~γ> = (γ1, . . . ,γM,γM+1, . . . ,γ2M) and write

~γ = Ω~a where

Ω =

 1 1

i1 −i1

 . (3.11)

In this case, 1 is the M×M identity matrix. A general fermionic Gaussian state188 has the form of

the exponential of a quadratic product of fermionic operators

ρ =
1
Z

e−
i
4~γ
>G~γ , (3.12)

where Z is the normalization factor and G is a real and antisymmetric matrix such that G> =−G.

It can be fully characterized by a real and antisymmetric covariance matrix which is defined by

Γkl =
i
2

tr(ρ [γk,γl]) , (3.13)

where [·, ·] is the commutator. For a pure Gaussian state, Γ 2 =−1, where 1 is the 2M×2M

identity matrix. In general, the purity is given by χ =− 1
2M tr

(
Γ 2
)
. In order to extract U given a
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covariance matrix Γ , we make use of the complex covariance matrix representation

Γc =
1
4

Ω
†
Γ Ω

∗ =

 Q R

R∗ Q∗

 , (3.14)

where Qkl =
i
2 〈[ak,al]〉 and Rkl =

i
2

〈[
ak,a

†
l

]〉
(expectation values are defined as 〈O〉= tr(Oρ)).

From there, we can define the single-particle density operators κ ≡−iQ and ρ ≡ 1
2 1− iR> and

recast the Gaussian state in the form of a single-particle density matrix

M=

 ρ κ†

κ 1−ρ>

 (3.15)

such thatM2 =M for pure states42. If we define the matrix E =

 0 0

0 1

, then it is possible to

find the Bogoliubov transformation (3.4) with the eigenvalue equation

MU† = EU†. (3.16)

Next, we show how to compute the covariance matrix (3.13) approximating the ground state of the

Hamiltonian (3.1).

3.2.3.1 FINDING THE GROUND STATE

These steps are a review of the method found in187 aimed at calculating the covariance matrix

approximating the ground state of an interacting Hamiltonian without a self-consistent loop.
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The Hamiltonian (3.1) can be rewritten with Majorana operators in the form

H = i∑pq Tpqγpγq

+∑pqrsVpqrsγpγqγsγr

+i∑pqrstuWpqrstuγpγqγrγuγtγs,

(3.17)

where T> =−T and V and W are antisymmetric under the exchange of any two adjacent indices.

Expectation values over gaussian states can be efficiently calculated using Wick’s theorem which

has the form

iptr
(
ργ j1 . . .γ j2p

)
= Pf

(
Γ | j1... j2p

)
, (3.18)

where 1≤ j1 < .. . < j2p ≤ 2M, Γ | j1... j2p is the corresponding submatrix of Γ and

Pf(Γ ) = 1
2MM! ∑s∈S2M

sgn(s)∏
M
j=1 Γs(2 j−1),s(2 j)

=
√

det(Γ )

(3.19)

is the Pfaffian of a 2M×2M matrix defined from the symmetric group S2M where sgn(s) is the

signature of the permutation s. Assuming that Wick’s theorem holds, we can write an effective but

state dependent quadratic Hamiltonian

h(Γ) = T +6trB (V Γ)+45trC (WΓΓ) , (3.20)

where trB (V Γ)i j = ∑kl Vi jklΓlk and trC (WΓΓ)i j = ∑klmnWi jklmnΓknΓml . To get the covariance matrix

of the reference state, we use the imaginary time evolution starting from a pure state Γ(0)2 =−1:

Γ(τ) = O(τ)Γ(0)O(τ)> , (3.21)
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where the orthogonal time evolution operator is given by

O(τ) = Te2
∫

τ

0 dτ ′[h(Γ(τ ′)),Γ(τ ′)], (3.22)

with T being the time ordering. The steady state is reached when [h(Γ) ,Γ] = 0. This is guaranteed

to lower the energy of an initial state and keep the purity of the initial Γ(0) but the imaginary time

evolution may get stuck in a local minimum. A second complementary approach consists in

minimizing the free energy of (3.17). The procedure simply involves fixed point iterations on the

transcendental equation

Γ = lim
β→∞

tanh [2iβh(Γ)] . (3.23)

In our numerical experiments, we find that an imaginary time evolution (3.21) followed by a fixed

point evolution (3.23) is numerically stable and consistently reaches the desired GHF ground state.

In the following subsection, we will show how the theory of matchgates can be used to prepare a

pure Gaussian state on a quantum computer as a reference state for a variational procedure.

3.2.4 THE QUANTUM SUBROUTINE

It is expected that quantum computer will enable the simulation of quantum systems beyond the

reach of classical computers. An important challenge for practical simulations is to prepare the

ground state of interesting Hamiltonians with high accuracy. The VQE protocol168,226,248,255,353

suggests a general procedure to reach this ground state. However, current implementations of the

protocol have to trade long circuit depth for accuracy in a non-controllable manner. In this

subsection, we introduce a composable VQE ansatz which is both accurate and hardware efficient

with the added advantage of being able to represent states with BCS-like pairing correlations. Our

method relies on the theory of matchgates and its relation to fermionic linear

optics48,49,167,333,339,344 to both prepare a reference Gaussian state and parametrize an ansatz with a
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transformation analogous to fermionic non-linear optics. After a brief review of the theory of

matchgates, we show how a given pure Gaussian state can be prepared on a quantum register with

a linear-depth algorithm. A different algorithm with the same scaling was recently proposed in160.

Unlike the procedure in160 that relies on a gate decomposition strategy, our method has a fixed

circuit structure with variable parameters. We then proceed to introduce a low-depth circuit ansatz

with inherited properties of the BUCC ansatz and the apparent accuracy of the full configuration

interaction method.

3.2.4.1 MATCHGATE DECOMPOSITION OF A BOGOLIUBOV TRANSFORMATION

In the computational basis of a 2-qubit Hilbert space, matchgates339 have the general form

G (A,B) =



p 0 0 q

0 w x 0

0 y z 0

r 0 0 s


, (3.24)

where A =

 p q

r s

 and B =

 w x

y z

 are SU (2) matrices with the same determinant

detA = detB. They form a group which is generated by the tensor product of nearest-neighbor

Pauli operators

σ
j

x ⊗σ
j+1

x = −iγB
j γA

j+1

σ
j

x ⊗σ
j+1

y = −iγB
j γB

j+1

σ
j

y ⊗σ
j+1

x = iγA
j γA

j+1

σ
j

y ⊗σ
j+1

y = iγA
j γB

j+1

σ
j

z ⊗ I j+1 = −iγA
j γB

j

I j⊗σ
j+1

z = −iγA
j+1γB

j+1,

(3.25)
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which also correspond to the Jordan-Wigner transformed product of all products of

nearest-neighbor Majorana operators, therefore establishing the connection with fermionic

gaussian operations. The Bogoliubov transformation (3.3) can be written as an SO(2M)

transformation of the Majorana operators (3.10) as~γ ′ =R~γ , where

R=

 Re(U+V) −Im(U−V)

Im(U+V) Re(U−V)

 . (3.26)

To implement this transformation on a quantum processor, there exists a quantum circuit of

nearest-neighbor matchgates UBog acting on M qubits167 such that

UBogγ jU
†
Bog =

2M

∑
k=1
Rk jγk. (3.27)

An example of such a circuit known as the fermionic fast Fourier transform is described in344. In

general, the Hoffman algorithm149 can be used to decompose UBog in 2M (M−1) SO(4) rotations

between pairs of modes and M SO(2) local phases. In total, these 2M2−M angles correspond to

the same number of quantum gates. Using the fact that quantum gates can be operated in parallel in

a linear chain of qubits, any transformationR can be implemented in circuit depth 8
⌈M

2

⌉
+1, as

detailed in Figure 3.1.

Since the Hoffman method assumes sequential operations on each pair of modes, we used an

optimal control scheme177,215 in SO(2M) to allow an easy parametrization of gates acting in

parallel. This is generally efficient on a classical computer since the matchgates only operate on a

much smaller subspace of the full SU
(
2M
)

transformation allowed on M qubits. The
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transformationR can be decomposed in local and nearest-neighbor mode rotations such that

R = ∏
dM

2 e
k=1

{
∏µ,ν ∏ j∈odd rµν

j, j+1

(
θ

µν(k)
j, j+1

)
×∏µ,ν ∏ j∈even rµν

j, j+1

(
θ

µν(k)
j, j+1

)}
×∏

M
j=1 rAB

j j

(
θ AB

j j

)
,

(3.28)

where µ,ν ∈ {A,B} and j ∈ {1, . . . ,M}. The mode rotations are parametrized by the 2M2−M

angles θ
µν(k)
i j

rµν

i j = e2θ
µν

i j hµν

i j (3.29)

with SO(2M) Hamiltonians

hµν

i j = δiµ, jν −δ jν ,iµ . (3.30)

The optimal control method maximizes the fidelity function

Φ =
1

2M
tr
{
R>targetR(Θ)

}
(3.31)

using the gradient

∂ rµν

i j

∂θ
αβ

kl

= 2hµν

i j rµν

i j δαµδβνδkiδl j. (3.32)

As shown in Figure 3.1 on a 8-qubit example, this decomposition explicitly translates into a

quantum circuit of single qubit phase-rotations

RZ
j = eiθ AB

ii σ i
z (3.33)

and nearest-neighbor matchgates
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G(k)
i j = RXX(k)

i j R−YY (k)
i j RXY (k)

i j R−Y X(k)
i j , (3.34)

where each rotation corresponds to

R−Y X(k)
i j = e−iθ AA(k)

i j σ i
y⊗σ

j
x

RXY (k)
i j = eiθ BB(k)

i j σ i
x⊗σ

j
y

R−YY (k)
i j = e−iθ AB(k)

i j σ i
y⊗σ

j
y

RXX(k)
i j = eiθ BA(k)

i j σ i
x⊗σ

j
x .

(3.35)

Each parallel cycle interleaves gates between even and odd nearest neighbors

U (k)
MG = ∏

i∈odd
G(k)

i,i+1 ∏
i∈even

G(k)
i,i+1 (3.36)

and there are
⌈M

2

⌉
cycles in total:

UNN
MG =

dM
2 e

∏
k=1

U (k)
MG. (3.37)

Finally, the unitary Bogoliubov transformation can be composed as

UBog =UNN
MG

M

∏
i=1

RZ
i (3.38)

and is also a gaussian operation of the form UBog = ei∑pq τpqγpγq , where τ> =−τ . In the case where

the reference state is a Slater determinant, only number-conserving matchgates are required to

prepare the state and the depth of the circuit would scale as 4
⌈M

2

⌉
+1 (since all θ

AA(k)
i j and θ

BB(k)
i j

are set to zero). It should be noticed that a unitary coupled cluster ansatz truncated at first order

ei(T1(Θ)+T †
1 (Θ))
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Figure 3.1: Example on 8 qubits of the decomposition of UBog in a circuit of local phase rotations and

nearest-neighbor matchgates. In (a), each G(k)
i j is a 2-local operation between qubits i and j composed of

4 rotations for a layer k. As shown in (b), the unitary U (k)
MG for each layer k is built by operating G(k)

i j ’s in parallel
first on the even pairs of qubits and then on the odd pairs. Then in (c), the complete sequence of nearest-
neighbor matchgates UNN

MG is composed by a sequence of
⌈M

2
⌉

layers. In (d), single qubit phase rotations RZ
j

are used to complete the UBog circuit.

is also a gaussian transformation and can be implemented in the same way as UBog with no
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trotterization. In what follows, we introduce a VQE scheme that builds on this observation by

introducing non-matchgate variational terms into a gate sequence similar to the UBog

decomposition.

3.2.4.2 A LOW-DEPTH CIRCUIT ANSATZ

The Bogoliubov transformation (3.38) acts as a change of basis of the fermionic modes. Therefore,

one can simply follow the VQE protocol255 to implement the BUCC ansatz (3.7) and measure the

expectation values
〈
H̃
〉
=
〈

UBogHU†
Bog

〉
and

〈
Ñ
〉
=
〈

UBogNU†
Bog

〉
in the modified basis to

prepare an approximate ground state of (3.1). This has the advantage of extending the range of

Hamiltonians that can be processed to those with non-number conserving terms (like pairing

fields) when compared to the traditional unitary coupled cluster ansatz. However, the change of

basis may significantly increase the number of terms that have to be measured. In order to reduce

the number of measurements in the VQE protocol, one can start in the product state (3.5) and carry

out the variational unitary (3.7) in the quasiparticle basis, followed by an inverse Bogoliubov

transformation using matchgates and measurement of the expectation values of the Hamiltonian

(3.1) and the number operator N in the original fermionic orbital basis. In the quasiparticle basis,

we can map the Bogoliubov operators to qubit operators with the Jordan-Wigner

transformation164,249,300 since they follow the canonical anti-commutation relation

β †
p = (−1)p−1

(⊗p−1
j=1 σz

)
⊗σ+

βp = (−1)p−1
(⊗p−1

j=1 σz

)
⊗σ−

(3.39)

and use the same mapping for Fermionic operators a†
p and ap after the Bogoliubov transformation.

Still, assuming that the number of fermionic particles is proportional to the number of orbitals, a

major caveat of BUCCSD-like schemes is that the number of variational parameters will scale as
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O
(
M4
)
. In the Jordan-Wigner picture, these terms can be implemented with O

(
M6
)

gates137,279.

It is expected that near-term quantum processor will continue to suffer from error rates that make

this type of scaling impractical, and therefore more hardware-efficient VQE schemes must be

sought168.

Given that the gate decomposition of UBog can also exactly parametrize a BUCCS VQE protocol

in linear circuit depth, we propose using a scheme augmented with nearest-neighbor phase

coupling σz⊗σz rotations to mimic the effects of the quartic variational terms of T2. Related ideas

have already been explored in efficient classical non-gaussian variational methods with great

success307. In a loose sense, our scheme is a parametrized fermionic non-linear optics circuit that

does not involve any trotterization of the variational terms. The algorithm is illustrated in Figure

3.2. As a first step, the quasiparticle vacuum (3.5) is prepared in the Bogoliubov picture with

X =

 0 1

1 0

 gates acting on each qubits to yield the state |1〉⊗M in the computational basis. In

what follows, we will define a L-cycle ansatz built from nearest-neighbor variational matchgates

augmented with σz⊗σz rotations. The measurement of the expectation values can be done in the

original basis by applying the inverse Bogoliubov transformation U†
Bog defined previously.

In a cycle l of the low-depth circuit ansatz (LDCA), the nearest-neighbor matchgates (3.34) are

replaced by

K(k,l)
i j

(
Θ

(k,l)
i, j

)
= RXX(k,l)

i j R−YY (k,l)
i j

×RZZ(k,l)
i j RXY (k,l)

i j R−Y X(k,l)
i j ,

(3.40)
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where the rotations are defined as

R−Y X(k,l)
i j = e−iθ−Y X(k,l)

i j σ i
y⊗σ

j
x

RXY (k,l)
i j = eiθ XY (k,l)

i j σ i
x⊗σ

j
y

RZZ(k,l)
i j = eiθ ZZ(k,l)

i j σ i
z⊗σ

j
z

R−YY (k,l)
i j = e−iθ−YY (k,l)

i j σ i
y⊗σ

j
y

RXX(k,l)
i j = eiθ XX(k,l)

i j σ i
x⊗σ

j
x .

(3.41)

Each layer k applies those variational rotations in parallel first on the even pairs and then on the

odd pairs such that

U (k,l)
VarMG

(
Θ(k,l)

)
= ∏i∈odd K(k,l)

i,i+1

(
Θ

(k,l)
i,i+1

)
×∏i∈even K(k,l)

i,i+1

(
Θ

(k,l)
i,i+1

)
.

(3.42)

A cycle l is composed of
⌈M

2

⌉
layers such that the variational ansatz is equivalent to a BUCCS

transformation when the θ
ZZ(k,l)
i j are equal to zero:

UNN(l)
VarMG

(
Θ

(l)
)
=
dM

2 e
∏
k=1

U (k,l)
VarMG

(
Θ

(k,l)
)
. (3.43)

Finally, the L cycle are assembled sequentially to form the complete variational ansatz

UVarMG (Θ) =
L

∏
l=1

UNN(l)
VarMG

(
Θ

(l)
) M

∏
i=1

RZ
i
(
θ

Z
i
)
, (3.44)

with only one round of variational phase rotations

RZ
i
(
θ

Z
i
)
= eiθ Z

i σ i
z . (3.45)
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Figure 3.2: Gate decomposition of the L-cycle LDCA on a linear chain of 8 qubits. In (a), each K(k,l)
i j is a

2-local operation between qubits i and j composed of 5 rotations for a layer k. In (b), we build the unitary
U (k,l)

VarMG for each layer k by applying K(k,l)
i j ’s in parallel first on the even pairs and then on the odd pairs. In

(c), a cycle UNN(l)
VarMG is composed by a sequence of

⌈M
2
⌉

layers. In (d), we show the L-cycle construction of
UVarMG with one round of variational phase rotations. The full LDCA protocol is shown in (e) with the initial
preparation of the quasiparticle vacuum and the transformation to the original fermionic basis U†

Bog.
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The variational state therefore has the form

|Ψ(Θ)〉=U†
BogUVarMG (Θ)

M

∏
i=1

Xi |0〉⊗M , (3.46)

where it can be noticed that the L = 0 case is simply equivalent to producing the GHF state. There

are 5 variational angles per K(k,l)
i j and M−1 of those terms per layer. Since each cycle has

⌈M
2

⌉
layers, a L-cycle circuit has 5L(M−1)

⌈M
2

⌉
+M variational angles, the extra term arising from the

round of phase rotations. Since gates can be operated in parallel in a linear chain of qubits, the

circuit depth is (10L+8)
⌈M

2

⌉
+4 when we account for U†

Bog and the initial round of single-qubit X

gates (this includes the final single-qubit rotations, Ry(
π

2 ) or Rx(−π

2 ) gates (or equivalent), to

measure the terms of the Hamiltonian in the form of Pauli strings). Therefore, this VQE scheme is

hardware efficient in the sense that the circuit depth is linear in the number of qubits. The accuracy

can also be systematically improved by increasing the number of cycles until either convergence is

reached or errors dominate the precision of the result.

In the following section, we outline an implementation to compute the analytical gradient of the

LDCA using quantum resources, which could be useful during the optimization procedure in VQE

by guiding the search for the ground state and its energy.

3.2.5 GRADIENT EVALUATION FOR LDCA

When optimizing the ansatz parameters to minimize the total energy, there may be a need to

implement gradients depending on the selected optimization procedure. While direct search

algorithms are generally more robust to noise than gradient-based approaches, they may require

larger numbers of function evaluations183. On the other hand, numerical implementations of

gradients rely heavily on the step size for accuracy. However, step sizes that are too small may lead

to numerical instability and higher sampling cost. In addition, implementation of step sizes
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corresponding to desired accuracy are limited by experimental errors.

An alternative approach that exhibits high accuracy while maintaining reasonable computational

cost may be to evaluate the gradient directly on the quantum computer given that the analytical

form of the gradient is available. Here we employ a scheme similar to one outlined in279 tailored to

implement the analytical gradient of the LDCA unitary using an extra qubit and controlled

two-qubit rotations. Recall the unitary for the complete variational ansatz shown in (3.44), which

we called UVarMG(Θ) parametrized by angles Θ. For this derivation, we will ignore the products of

Z-rotations in the definition but computing the gradient with respect to these angles should be more

straightforward. These initial Z-rotations are not as "nested" within the LDCA framework, so the

gradient corresponding to one of such angles, say θ j, simply involves inserting a controlled-Z gate

following the unitary exp(−iθ jZ), to the circuit (where we use an ancilla qubit as the control

qubit). Thus, we will instead focus on finding the gradients of the term ∏
L
l=1UNN

VarMG(Θ
(l)), which

we will call U
′
VarMG(Θ).

Consider the state Ψ(Θ), prepared by applying UVarMG(Θ) to |Φ0〉, where |Φ0〉 corresponds to a

reference state that does not depend on Θ. Here we wish to compute the derivative of the

expectation value of the energy E(Θ) = 〈Ψ(Θ)|H|Ψ(Θ)〉 with respect to each parameter in Θ. We

will use the label θ
(k,l)
j,n for each parameter where j refers to the index of the qubit in the register, l

to the circuit cycle, k to the circuit layer, and n to the appropriate Pauli string (in this case,

n ∈ {−Y X ,XY,ZZ,−YY,XX}). Considering a Hamiltonian H that is independent of Θ, the

derivative with respect to θ
(k,l)
j,n is given by
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Figure 3.3: Circuit using an ancilla qubit to measure the imaginary component of 〈Φ0|V (k,l)†
j,n OiU

′
VarMG|Φ0〉

required to compute ∂E(Θ)

∂θ
(k,l)
j,n

. This figure illustrates an instance of the circuit where j = 2 and n = ZZ.

∂E(Θ)

∂θ
(k,l)
j,n

= 〈Φ0|U† H
∂U

∂θ
(k,l)
j,n

|Φ0〉+ 〈Φ0|
∂U†

∂θ
(k)
j,n

H U |Φ0〉 (3.47a)

= i
(
〈Φ0|U† H V (k,l)

j,n |Φ0〉−〈Φ0|V (k,l)†
j,n H U |Φ0〉

)
(3.47b)

= 2 Im
(
〈Φ0|V (k,l)†

j,n H U |Φ0〉
)

(3.47c)

where the operator V (k,l)
j,n (Θ) is nearly identical to the unitary U

′
VarMG except with a string of Pauli

matrices Pk,l
j,n inserted after the rotation term Rn(k,l)

j, j+1 = exp(iθ k,l
j,nPk,l

j,n) included in the

nearest-neighbor matchgate term K(k,l)
j, j+1 and so on.

To compute the expectation value of the energy, we can employ the Hamiltonian averaging
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procedure222,226. This involves measuring the expectation value of every term in the Hamiltonian

and summing over them as shown in (3.48). Note that each term, which we call Oi, is a product of

Pauli matrices obtained by performing the Jordan-Wigner or Bravyi-Kitaev transformation on the

corresponding term in the second quantized Hamiltonian from (3.1).

E = ∑i hi〈Oi〉. (3.48)

Substituting (3.48) into (3.47c), the gradient can be expressed as:

∂E(Θ)

∂θ
(k,l)
j,n

= 2∑i hi Im
(
〈Φ0|V (k,l)†

j,n (Θ)OiU(Θ)|Φ0〉
)

(3.49)

Each of the terms in the sum above can be computed using the circuit shown in Figure 3.3. For a

practical physical implementation of the analytical gradient, a circuit layout similar to one

highlighted in80 could be used, in which the control qubit of the gradient circuit is connected to all

qubits in the register.

In the following section, we numerically benchmark the BUCC ansatz and LDCA on small

instances of the Fermi-Hubbard model and the automerization reaction of cyclobutadiene, where

we find that LDCA is able to prepare the exact ground state of those systems.

3.3 NUMERICAL EXAMPLES

In this section, we numerically test the performance of the previously described algorithms on

instances of strongly correlated systems in condensed matter and quantum chemistry. Specifically,

in subsection 3.3.1, we analyze the behavior of the ansatz on the Fermi-Hubbard model at

half-filling at different interaction strengths. In subsection 3.3.2, we study the automerization

reaction of cyclobutadiene modeled using the Pariser-Parr-Pople (PPP) Hamiltonian251,252,261. In

102



Chapter 3. A low-depth circuit ansatz for variational quantum simulation of fermionic systems

both cases, the Hamiltonians are mapped to 8-qubit registers and we compare the energy and

wavefunction accuracies for approximating the exact ground state for the following methods

ansatzes: GHF, BUCCSD, and LDCA with 1 and 2 cycles.

In these cases, the state initialization has 8 single qubit X gates operated in parallel and the

inverse Bogoliubov transformation has one layer of single qubit phase rotations and 112

nearest-neighbor matchgates. The state initialization and U†
Bog circuit add up to a circuit depth of

34. The LDCA method adds a layer of variational phase rotations and 140 nearest-neighbor gates

per cycle. Therefore 1-cycle LDCA adds 41 to the circuit depth (for a total of 75 with 148

variational parameters) and 2-cycle LDCA adds 81 to the circuit depth (for a total of 115 with 288

variational parameters).

For the numerical examples presented here, we find that 2-cycle LDCA is able to exactly recover

the ground state of the simulated systems while 1-cycle LDCA performs better than the GHF

solution but is not as accurate as BUCCSD. An important caveat is that the 2-cycle LDCA has

more variational parameters (288) than the dimensions of the Hilbert space (28 = 256) but we still

consider the result relevant for experimental implementations since the depth of the circuit is much

shorter than what could be achieved with BUCC up to fourth order, which is required to recover

the exact ground state of systems studied.

3.3.1 FERMI-HUBBARD MODEL

The Fermi-Hubbard model152 is a prototypical example of correlated electrons. It is described by a

tight-binding lattice of electrons interacting through a local Coulomb force. The Hamiltonian is

given by

HFH = −t ∑〈p,q〉∑σ=↑,↓
(

a†
pσ aqσ +a†

qσ apσ

)
−µ ∑p ∑σ=↑,↓

(
npσ − 1

2

)
+U ∑p

(
np↑− 1

2

)(
np↓− 1

2

)
,

(3.50)
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where t is the kinetic energy between nearest-neighbor sites 〈p,q〉, U is the static Coulomb

interaction and µ is the chemical potential. The number operator is npσ = a†
pσ aqσ . While the

one-dimensional Fermi-Hubbard model can be solved exactly with the Bethe ansatz102,204, the

two-dimensional version can only be solved exactly for very specific values of the parameters and

a general solution remains elusive. The phase diagram of the 2D model is known to be very rich

and there are strong arguments that a better understanding of the model could yield the key to

explain the physics of high-temperature cuprate superconductors7,8,196.

Hybrid quantum-classical methods to systematically approximate the phase diagram of the

Fermi-Hubbard model in the thermodynamical limit are known79,80 but they require preparing the

ground state of a large cluster of the model with an accuracy that cannot be reached by previously

proposed methods355. Here, we investigate the performance of the ansatz detailed in section 3.2 on

an example of a 2×2 cluster of the Fermi-Hubbard model at half-filling (µ = 0) that can be

implemented on a 8-qubit quantum processor. As shown in figure 3.4, the GHF method performs

well for small values of the interaction strength U
t and exactly describes the tight-binding case

where the Hamiltonian is quadratic. The BUCCSD ansatz offers a significant improvement over

the GHF solution but fails to reach the exact ground state at strong interaction strengths. While

1-cycle LDCA offers an intermediate solution between GHF and BUCCSD, the 2-cycle LDCA

solution performs surprisingly well as it is able to reach the exact ground state up to numerical

accuracy for all values of the interaction strength. In all cases the preparation fidelity

|〈Ψ(Θ) |Ψ0〉|2 is directly correlated with the energy difference δE between the prepared state and

the exact ground state |Ψ0〉. We also show that all methods are able to handle Hamiltonians with

pairing terms by introducing an artificial ∆∑i

(
a†

i↑a
†
i↓+ai↓ai↑

)
. The accuracy of all methods

improves with increasing ∆

t as the ground state gets closer to a fermionic Gaussian state.

We also tested a simpler one dimensional cluster of the Fermi-Hubbard model with 2 sites and
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Figure 3.4: In (a), we show the fidelity of the ground state preparation of a 2×2 cluster of the Fermi-Hubbard
model as a function of the interaction parameter U . The energy difference with the exact ground state with
respect to the various methods is shown in (b). The energies are normalized by the hopping term t. In (c)
and (d), we show respectively the fidelity and the energy difference in the case of an attractive cluster U

t =−8
with an additional s-wave pairing term ∆.

found that it was possible to reach the exact ground state with both BUCCSD and the 1-cycle

LDCA method for all values of the parameter U . This is expected for the BUCCSD method as this

is equivalent to a full configuration interaction parametrization in this specific case. We do not have

sufficient information to determine the number of cycles L required by LDCA to reach the ground

state as a function of the cluster size since it would require much more intense numerics. However,

the fact that a 2×1 cluster requires only 1 cycle and that the 2×2 case reaches the ground state in

2 cycles leave open the possibility that the scaling is not an exponential function of the cluster size.

3.3.2 CYCLOBUTADIENE

As an example of a quantum chemistry application, we studied the accuracy of the proposed

methods in the description of cyclobutadiene automerization. The study of this reaction has been
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particularly challenging for theoretical chemists due to the strongly correlated character of the

open-shell D4h transition state in contrast with the weakly correlated character of the closed-shell

D2h ground state (1A1g)328. An accurate theoretical treatment of the transition state would allow to

confirm several observations about the mechanism, such as the alleged change in the aromatic

character of the molecule between its ground and transition states as well as the involvement of a

tunneling carbon atom in the reaction10–12,328. In addition, it would serve as a confirmation of the

energy barrier for the automerization, for which experimental reports vary between 1.6 and 12.0

kcal/mol360.

Although the Hamiltonian for cyclobutadiene can be obtained from a Hartree-Fock or a

Complete Active Space (CAS) standard quantum chemistry calculation, we opted to describe the

reaction using a Pariser-Parr-Pople (PPP) model Hamiltonian251,252,261. The PPP model captures

the main physics of π-electron systems such as cyclobutadiene and also establishes a direct

connection to the Fermi-Hubbard Hamiltonian studied in the previous section. Using this model,

the Hamiltonian of cyclobutadiene can be written as

HPPP = ∑i< j ti jEi j +∑iUiniαniβ +Vc

+ 1
2 ∑i j γi j(niα +niβ −1)(n jα +n jβ −1),

(3.51)

where Ei j = ∑σ=α,β a†
iσ a jσ +a†

jσ aiσ , niσ = a†
iσ aiσ , and the variables γi j are parameterized by the

Mataga-Nishimoto formula220

γi j(ri j) =
1

1/U + ri j
. (3.52)

The ti j, U , and Vc parameters were obtained from290,291 as a function of the dimensionless reaction

coordinate, λ , and the geometries of the ground as well as transition states were optimized at this

level of theory.

Figure 3.5 compares the accuracies of different ansatzes for the cyclobutadiene automerization
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Figure 3.5: In (a), we show the fidelity of the ground state preparation along the automerization reaction path
of cyclobutadiene. Subfigure (b) shows the difference with the exact ground state for the various ansatzes.
Chemical accuracy is approximately 0.043 eV (dashed line).

reaction. We observe that GHF ansatz is considerably improved by BUCCSD close to the D2h

ground state but the improvement is less prominent as we approach the strongly correlated D4h

transition state. As in the 2×2 Fermi-Hubbard case, the 1-cycle LDCA method yields accuracies

between those of GHF and BUCCSD while the 2-cycle LDCA method produces the numerically

exact ground state for all values of λ . This surprising result suggests that LCDA is potentially

useful for treating cases of strong correlation in quantum chemistry.
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3.4 DISCUSSION

The results presented in the previous section suggest that the LDCA could outperform other

ansatzes employed for VQE calculations, such as BUCC, both in accuracy and efficiency. Being a

method inspired by BUCC, the LDCA scheme inherits some properties of this ansatz. For instance,

in the limit of 1-cycle LDCA with all θ
ZZ(k,1)
i j set to zero, we recover the BUCC ansatz with single

excitations. We point out that this choice of parameters cannot improve the GHF solution since it

only amounts to a basis rotation of the fermionic mode for which the Bogoliubov transformation

has already been optimized. Since the mapping (3.35) between the Bogoliubov transformation and

the matchgate circuit relies on the Jordan-Wigner transformation which associates Pauli strings of

length O(M) to fermionic operators, it may be possible to further reduce the length of the

measured Pauli strings by working out a similar mapping in the Bravyi-Kitaev basis48 where

operators are represented by strings of length O(logM). For completeness, we also numerically

benchmarked the traditional UCCSD scheme226,255,279 and found that it provides the same results

as BUCCSD. This is expected in the case of Hamiltonians with no explicit pairing terms. However,

such terms may appear in variational self-energy functional theory79,262,263,301,302 where fictitious

pairing terms are added to a cluster Hamiltonian to recover the magnetic and superconducting

phase diagram in the thermodynamic limit.

Regarding the number of variational parameters, LDCA scales as O
(
LM2

)
compared to O

(
M4
)

for UCCSD and BUCCSD with Gaussian basis set. There may exist constraints on the variational

parameters of LDCA that reduce their total number. To explore whether it was possible to only

measure 〈H〉 in the variational procedure, we tried the ansatz with only number conserving terms

(such that all θ
XY (k,l)
i j = θ

−Y X(k,l)
i j = 0) on the Fermi-Hubbard model but found a reduced overlap

with the exact ground state. This implies that a reconfiguration of the pairing amplitudes with

respect to the GHF reference state is an important condition to reach an accurate ground state.
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Our estimates of the circuit depth assume a quantum architecture consisting of a linear chain of

qubits, which allows to maximize the parallel application of gates through the algorithm. We leave

open the question of whether it is possible to achieve further improvements by using an architecture

with increased connectivity. We also assumed that nearest-neighbor two-qubit gates could be

implemented directly (as proposed for a linear chain of polar molecules144). Although this is not

the case on current ion trap and superconducting circuit technologies, the required gates can be

implemented as long as tunable nearest-neighbor entangling gates are available. In this case, only

additional single-qubit basis rotation suffices, adding only a a small overhead in circuit depth243.

Due to its better accuracy and reduced scaling in depth and number of parameters compared to

previous ansatzes, we believe that the LDCA approach is a feasible alternative for studying

strongly correlated systems in near-term quantum devices. In this case, we propose some strategies

to ensure a better performance of the ansatz on real quantum processors with control inaccuracies.

For instance, we could calibrate the angles θ
µν

i j of the gate sequence of U†
Bog by minimizing the

difference between the values of 〈H〉 and 〈N〉 measured on the quantum computer and the values

obtained numerically for the GHF reference state. Similarly, it should be possible to

experimentally estimate the errors on the energy and the number of particles for a given L-cycle

LDCA by comparing the values of 〈H〉 and 〈N〉 obtained with all θ
ZZ(k,1)
i j set to zero with the exact

classical results computed as described in section 3.2.3. Instead of setting θ
ZZ(k,1)
i j to zero, one

might also replace the ZZ rotations with equivalent time delays.

Finally, we point out that our formalism should be general enough to implement the simulation

of nucleons310. However, we abstained from venturing in the numerical simulation of such

systems as it is beyond our fields of expertise. Similarly, our method could be employed to study

the ground state of gauge theories in the quantum link model56,81,375.
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3.5 CONCLUSION

In this work, we generalized the Bogoliubov coupled cluster ansatz to a unitary framework such

that it can be implemented as a VQE scheme on a quantum computer. We showed how the required

GHF reference state can be computed from the theory of fermionic Gaussian states. Those states

include Slater determinants used in quantum chemistry as well as mean field superconducting BCS

states. We described a procedure to prepare fermionic Gaussian states on a quantum computer

using a circuit of nearest-neighbor matchgates with linear depth on the size of the system. By

augmenting the set of available gates with nearest-neighbor σz⊗σz rotations, we constructed a

low-depth circuit ansatz (LDCA) that can systematically improve the preparation of approximate

ground states for fermionic Hamiltonians. Each added cycle increases linearly the depth of the

quantum circuit, which makes it practical for implementations in near-term quantum devices.

We used a cluster of the Fermi-Hubbard model and the automerization of Cyclobutadiene as

examples to assess the accuracy of the BUCC and LDCA ansatzes. Our results showed that LDCA

has the potential to accurately described the exact ground state of strongly correlated fermionic

systems on a quantum processor. In addition, our proposed BUCC and LDCA approaches can be

used to approximate the ground states of Hamiltonians with pairing fields. This feature, not present

in previous ansatzes such as UCC, extends the range of applicability of VQE to problems in

condensed matter and nuclear physics. Since the number of particles is not conserved in BUCC

and LDCA, we must impose constraints on the number of particles to carry out the optimization in

the classical computer. Future work will be devoted to benchmarking the accuracy of the LDCA

method for a larger variety of molecular systems and determining the scaling in the number of

cycles required to describe the ground states of general systems.
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4
Towards computing molecular energies on

near-term quantum devices

The results presented in this chapter originally appeared in the following papers142,248:

“Scalable Quantum Simulation of Molecular Energies”. Peter O’Malley, Ryan Babbush, Ian
Kivlichan, Jonathan Romero, Jarrod R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N.
Ding et al. Phys. Rev. X., 6, 031007 (2016). Copyright (2018) by American Physical Society.

“Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator”. Cornelius Hempel,
Christine Maier, Jonathan Romero, Jarrod R. McClean, Thomas Monz, Heng Shen, Petar Jurcevic,
Ben P. Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer Blatt and Christian F.
Roos. Phys. Rev. X., 8, 031022 (2018). Copyright (2018) by American Physical Society.

4.1 INTRODUCTION

Quantum simulation is one of the most compelling applications for quantum computers117. A

quantum simulator aims to utilize controlled quantum evolutions to simulate the behavior of a

quantum system of interest. One approach to building such a machine is to engineer a quantum

system to closely match the interactions in the Hamiltonian of the system of interest, an approach

known as analog simulation. An alternative approach, known as digital simulation, employs a set

of quantum operations or gates that can implement the time evolution of arbitrary Hamiltonians.

Consequently, a quantum simulator manipulated in a programmable fashion210 can implement

error correction203,332, becoming equivalent to a quantum computer. The most basic advantage of a
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quantum simulator compared to a classical computer is its ability to efficiently represent a quantum

system. In contrast, storing and manipulating arbitrary quantum states on a classical computer

requires exponential resources. While certain quantum systems admit efficient classical

approximations, many problems of interest in Chemistry and material sciences, for example, still

require daunting resources on a classical computer117, establishing quantum simulators as valuable

tools for researchers in many fields.

Among the disciplines that can benefit from a quantum simulator, Chemistry has perhaps the

highest impact due to its wide range of industrial applications that include the design of new drugs,

materials, catalysts, among other types of molecules of high industrial value61,148. This prospect

has motivated the development of a variety of algorithms for simulating chemical phenomena with

quantum computers62,368. Most of these approaches belong to two categories: algorithms for

error-corrected quantum computers, based on Hamiltonian simulation techniques, and variational

algorithms. For a given Hamiltonian H, Hamiltonian simulation is an efficient and accurate

implementation on a quantum computer of a quantum operation which has eigenvalues that are a

known function of the eigenvalues of H, e.g. e−iHt . In practice, this typically results in quantum

circuits with a significant number of gates, which demands access to an error-corrected quantum

computer.

Alternatively, variational algorithms exploit the variational principle to compute approximations

to the ground state226 or the dynamics202 of a quantum system using a quantum circuit as a

variational ansatz. Consequently, these approaches can be implemented using relatively short

depth circuits as ansatzes. Besides, they have shown robustness against certain types of errors226.

These features enable variational algorithms to be implemented even without quantum error

correction, positioning them to as the de facto practical algorithm for near-term quantum devices.

Currently, quantum devices based on trapped ions134,235 and superconducting qubits356
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incorporate several qubits and can perform quantum gates with fidelities nearing 99%. Such

machines constitute the foundation of intermediate-scale quantum (NISQ) computers269, which are

programmable arrays of tens to hundreds of qubits, capable of executing circuits with depths in the

order of thousands of elementary two-qubit operations269. Such specifications provide a perfect

test bed for variational algorithms applied to Chemistry simulation. Naturally, to make progress in

this direction, it is indispensable to test these algorithms on existing quantum hardware, such that

they can be improved and adapted to the ever-evolving quantum machines.

In this Chapter, we summarize the results of two proof of principle implementations of the

variational quantum eigensolver (VQE) algorithm on prototype quantum computing devices142,248.

As described in Chapter 1, the VQE algorithm computes the ground state of a quantum system

using the time-independent variational principle226. More specifically, VQE postulates a quantum

circuit as variational ansatz and computes an approximation to the ground state of the Hamiltonian

of interest by minimizing the expectation value of this Hamiltonian with respect to the circuit

parameters255. In the first experiment, we implement VQE to simulate the ground state of

molecular hydrogen (H2) at different internuclear separations on a reconfigurable array of

superconducting qubits. In the second experiment, we implement VQE to simulate molecular

hydrogen and lithium hydride (LiH) on a multi-qubit trapped ion device. These experiments

constitute the first scalable simulations of chemistry using these types of quantum computing

architectures, respectively. *

This chapter is organized as follows: in Section 4.2, we review the steps of the VQE algorithm

and describe details of the quantum devices employed in the experiments. We also present in detail

the classical pre-computations needed for the implementation of VQE for H2 and LiH. In Section

4.3, we present the results and analysis of the proof of principle experiments for both devices. In

*In the context of quantum computing, scalable implementations refer to an implementation where the required clas-
sical and quantum resources increase in the same way that they would for an arbitrarily large problem.
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Section 4.4, we analyze the significance of these results and offer some final remarks.

4.2 VQE IMPLEMENTATION ON NEAR-TERM QUANTUM DEVICES

Figure 4.1 summarizes the algorithmic steps for implementing VQE on a quantum computer,

which we described in detail for a UCC ansatz in Section 2.2. We follow this procedure to perform

VQE calculations of two small chemical systems, molecular Hydrogen (H2) and Lithium hydride

(LiH), using two different quantum processors. In our experimental demonstrations, we describe

the chemical systems using a minimal basis set (STO-nG). In this case, each Hydrogen atom is

assigned two Slater-type orbitals with angular momentum zero (l = 0), each of them approximated

as a combination of n primitive Gaussian-type orbitals (GTOs). Similarly, each Lithium atom is

described using 5 Slater-type orbitals, each of them approximated as a linear combination of

GTOs. Although such small basis sets do not provide property predictions within chemical

accuracy of experimental values, they serve to illustrate the implementation of the algorithm. A

Hartree-Fock calculation executed on a classical computer provides the optimal molecular orbitals

used for building the corresponding Hamiltonians in second quantization.

To quantify the accuracy of the results, we employ the absolute difference between the energy

calculated with the VQE procedure and the energy corresponding to the exact diagonalization of

the Hamiltonian. We also compare relative energy differences calculated along the PES. We

performed experiments using two different quantum platforms: 1) a programmable array of

superconducting qubits, and 2) a programmable array of trapped ions. We will designate these

devices as SQD (superconducting qubit device) and TID (trapped ion device). Both devices fulfill

the DiVicenzo’s criteria93, described in Section 1.1, and therefore correspond to quantum

computers. However, they do not implement error correction.
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Figure 4.1: Steps of a VQE-based quantum chemistry calculation: 1) In the classical pre-processing step,
the molecular Hamiltonian is generated and subsequently mapped into a qubit Hamiltonian using the Bravyi-
Kitaev (BK) or Jordan Wigner (JW) transformations. This step also involves the generation of the varia-
tional circuit (U(θ)) and the initial state (|Φ0〉) and its compilation to the native gate set and architecture of
the quantum processor employed for the calculation. 2) The execution of the algorithm comprises a hybrid
quantum-classical feedback loop, where the quantum computer is employed to execute the state preparation
and measurement of the expectation value of the target Hamiltonian, while the classical computer computes
the energy and propose a new set of variational parameters using a classical optimization routine. 3) The re-
sults obtained from the variational loop are post-processed to reconstruct the potential energy surface of the
target chemical system.
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4.2.0.1 DESCRIPTION OF THE QUANTUM DEVICES

In the superconducting qubit architecture, the energy levels of an artificial atom realized with an

electric LC circuit encode the qubits. In superconducting conditions, the charge carriers are

Cooper pairs (pairs of electrons) which condense into a macroscopic quantum state. The collective

motion of this condensate is described by the flux threading the inductor, which plays the role of

the center-of-mass position in a mass-spring mechanical oscillator, as described in90. An electrical

component known as Josephson tunnel junction provides a non-dissipative and non-linear

inductance that creates an anharmonic potential, generating an artificial atom with addressable

states †. Excitation energies in these devices are typically in the microwave range. Varying the

inductance, capacitance, and properties of the junction, it is possible to realize different potentials.

Furthermore, a superconducting qubit can be coupled to photons in a microwave cavity

(microwave resonator) to accomplish single-qubit gates and perform qubit readout. Several qubits

can be coupled using intermediate coupling circuit components, such as a capacitor, or through

additional microwave cavities, to realize two-qubit gates.

In our experiments, we employed a linear array of Xmon qubits22. The Xmon is a variant of a

charge qubit where different energy levels correspond to a different integer number of Cooper

pairs. As described in248, the qubit array is kept in a dilution refrigerator with a base temperature

of 20 mK. Each qubit consists of a superconducting quantum interference device (SQUID), which

provides a tunable nonlinear inductance, and a large X-shaped capacitor; the qubits are

capacitively coupled to their nearest neighbors in a linear chain pattern. Single-qubit quantum

gates are implemented with microwave pulses and tuned using closed-loop optimization with

randomized benchmarking175. Qubit state measurement is performed in a dispersive readout

scheme with capacitively coupled resonators. Details on the device fabrication are provided in176.

†As the potential becomes anharmonic, the energy difference between states is no longer the same as in a harmonic
oscillator. This allows addressing a pair of states selected as computational states
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The entangling operation in the SQD architecture is a controlled-phase (CZφ ) gate, which has

the form:

CZφ =



1 0 0 0

0 1 0 0

0 0 e−i φ

2 0

0 0 0 ei φ

2


. (4.1)

The CZφ gate is accomplished using an adiabatic qubit frequency tuning procedure described in23.

The CZφ gate is implemented in a range of 0.25-5.0 rad; for φ outside this range, the total rotation

is accomplished with two physical gates. Details of the implementation of the circuit for VQE and

experimental conditions of the execution can be found in Ref.248.

In the case of trapped ion architectures, two addressable electronic states or Zeeman states of

isolated atomic ions encode a qubit. As described in142, the trapped ion system employed in our

experiments consists of a linear Paul trap in which a variable number of 4Ca+ ions are confined

using an electrical field. Each atom encodes a qubit in a pair of Zeeman states chosen from the

4S1/2 electronic ground and 3D5/2 metastable states, corresponding to states |1〉 and |0〉,

respectively. The qubits are manipulated via a set of global, tightly focused, addressed laser beams.

Single-qubit gate operations are implemented via a three-pulse sequence that combines two global

qubit rotations with an intermediate addressed laser pulse manipulating only the targeted qubit289.

Multi-qubit entangling operations are realized through laser-driven interactions that are mediated

by the collective motional modes of the ions within their common trapping potential.

The setup described above provides the elements necessary to implement the following universal

117



4.2. VQE implementation on near-term quantum devices

set of quantum gates192:

R j
r(θ) = exp

(
−i

θ

2
σ

j
R

)
r ∈ {x,y,z} (Single qubit rotations); (4.2)

US
2 (θ) = exp

(
−i

θ

2 ∑
j∈S

σ
j

z

)
(Collective single qubit gate); (4.3)

US
3 (θ ,φ) = exp

(
−i

θ

2 ∑
j∈S

σ
j

φ

)
(Global carrier rotation); (4.4)

MSS(θ ,φ) = exp

(
−i

θ

2 ∑
{ j<k}∈S

σ
j

φ
σ

k
φ

)
(MS entangling gate); (4.5)

where σ
j

k denotes the k-th Pauli matrix acting on the j-th qubit and σ
j

φ
= cos(φ)σ j

x + sin(φ)σ j
y . S

represents the subset of ions on which the gate acts. Mølmer-Sørensen (MS) gates on subsets of

ions can be achieved either by applying hiding pulses, that transfer ions into decoupled electronic

levels, or by employing refocusing techniques238. In our implementation, φ = 0, such that our MS

gates correspond to evolution under a Hamiltonian of pairwise XX interactions. The MS gate with

θ = π

2 corresponds to a fully-entangling gate as it prepares a maximally entangled state in the

subset S of qubits in the initial state |1〉⊗n.

4.2.0.2 ERROR SOURCES IN THE VQE IMPLEMENTATION

The quantum devices used in our experiments do not implement quantum error correction. Instead,

operations are executed directly on physical qubits and are subject to noise processes arising from

the interaction with the environment and quantum control imperfections, e.g., laser fluctuations

coupling to the motion of the ions in TID or parasitic interactions among the qubits in SQD. These

noise processes are usually characterized in terms of the energy relaxation (T1) and dephasing (T2)

times of the qubits and fidelities of the quantum gates.

Energy relaxation quantifies the time it takes for a qubit to decay from its excited state |1〉 to the

ground state |0〉 (a bit-flip error) while dephasing times correspond to the time it takes for a
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quantum superposition state |+〉= (|0〉+ |1〉)/
√

2 to lose its phase relationship between |0〉 and

|1〉 (a phase-flip error). Shorter times indicate reduced accuracy of the quantum operations. The

gate fidelity measures the overlap between the quantum channel employed to implement a

quantum gate in a specific architecture and its ideal unitary channel. Correspondingly, fidelity

values range from 0 to 1 (0 to 100%), with 1 (100%) corresponding to perfect overlap.

In addition to environmental noise, the information extracted from the quantum computer is also

subject to fluctuations in the statistics of the measurements collected from the device. This error,

known as quantum projection noise (QPN), limits the precision ε to which we can estimate the

expectation values required in the VQE algorithm, as described in Section 2.3.3. The QPN scales

as O(1/
√

M), where M is the number of measurements taken per data point.

4.2.1 H2 IN A MINIMAL BASIS

The molecular Hamiltonian for H2 in the STO-nG minimal basis can be mapped from its

Fermionic form to qubits yielding:

HBK = f0I+ f1σ
z
0 + f2σ

z
1 + f3σ

z
2 + f4σ

z
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z
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z
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z
0, (4.6)

where the coefficients fi depend on the internuclear separation (R) between the hydrogen atoms

and are derived from the molecular integrals obtained from the Hartree-Fock calculation. To

perform such calculations we employed the OpenFermion library available in Python225.

The reference state for the calculation corresponds to the Hartree-Fock solution in the molecular

orbital basis, which in the Jordan Wigner mapping corresponds to a computational state

|ϕHF〉= |0001〉. We observe that the terms in the Hamiltonian only act with the identity and σ z

operations on qubits 1 and 3. This fact allows us to rewrite our reference state as
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|ϕHF〉= |0〉1|0〉3⊗|0〉2|1〉0. As qubits 1 and 3 will not experience population changes under this

Hamiltonian, we can reduce Eq. (4.6) to an effective Hamiltonian acting on two qubits, with

reference state |ϕHF〉= |01〉:

HBK =c0I+ c1σ
z
0 + c2σ

z
1 + c3σ

z
0σ

z
1 + c4σ

x
0 σ

x
1 + c5σ

y
0 σ

y
1 , (4.7)

where we have relabeled qubits 0 and 2 as 0 and 1. The coefficients ci are given by:

c0 = f0 + f2 + f6 c3 = f5 + f9 + f10 + f14 (4.8)

c1 = f1 + f4 c4 = f7 + f12

c2 = f3 + f11 c5 = f8 + f13

This reduction of the problem for the hydrogen molecule was first noted in248, developed into a

general method in Ref.47 and used in superconducting implementations of several problems in

Ref.168, as accounted in142. All the required expectation values of the BK H2 Hamiltonian can be

measured with three different sets of projective measurements.

In contrast, the molecular Hamiltonian under the Jordan-Wigner transformation gets mapped to:

HJW =c0I+ c1(σ
z
0 +σ

z
1)+ c2(σ

z
2 +σ

z
3)+ c3σ

z
3σ

z
2 + c4σ

z
1σ

z
0 + c5(σ

z
2σ

z
0 +σ

z
3σ

z
1)+ c6(σ

z
2σ

z
1 +σ

z
3σ

z
0)

+ c7(σ
x
3 σ

y
2 σ

y
1 σ

z
0 +σ

y
3 σ

x
2 σ

x
1 σ

y
0)− c7(σ

x
3 σ

x
2 σ

y
1 σ

y
0 +σ

y
3 σ

y
2 σ

x
1 σ

x
0), (4.9)

with coefficients ci again derived from the molecular integrals. Under the Jordan-Wigner

transformation all the qubits are used to store occupation numbers while in in the Bravyi-Kitaev

transformation even qubits store occupations and odd qubits keep track of the parity of all the

qubits with smaller indices. Hence, four qubits are needed to encode the ansatz state
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|ϕHF〉= |0011〉. All the required expectation values of the Jordan-Wigner H2 Hamiltonian can be

measured with five different sets of projective measurements.

Once the Hamiltonian is established, we need a variational ansatz to execute VQE. We choose to

employ the Unitary Coupled Cluster (UCC) ansatz described in detail in Chapter 1. For H2 in the

minimal basis, the second quantized formulation of the UCC operator for single and double

excitations corresponds to

U = exp[θ 23
01 (a

†
2a†

3a1a0−a†
0a†

1a3a2)], (4.10)

where θ 23
01 is the coupled cluster amplitude that is variationally optimized. Note that in this case the

single-excitation operators are effectively incorporated in the basis we are using (i.e. the single

excitations rotate the basis and do not need to be applied explicitly in the circuit). Using the BK

mapping this operator is expressed as follows:

U(θ 23
01 ) =exp

(
i
θ 23

01
8

[
−σ

x
2 σ

y
0 +σ

y
2 σ

x
0 −σ

x
2 σ

z
1σ

y
0 +σ

y
2 σ

z
1σ

x
0

−σ
z
3σ

x
2 σ

y
0 +σ

z
3σ

y
2 σ

x
0 −σ

z
3σ

x
2 σ

z
1σ

y
0 +σ

z
3σ

y
2 σ

z
1σ

x
0

])
. (4.11)

As the terms in U(θ 23
01 ) only act with the identity and σ z on qubits 1 and 3, the operator can be

reduced to

U(θ 23
01 ) = exp

(
i
θ 23

01
2

[−σ
x
1 σ

y
0 +σ

y
1 σ

x
0 ]

)
= exp

(
−i

θ 23
01
2

σ
x
1 σ

y
0

)
exp
(

i
θ 23

01
2

σ
y
1 σ

x
0

)
, (4.12)

where we have relabeled qubit 2 as 1 and used the fact that the two operators commute. Finally, we

observe that the two exponentials in U(θ 23
01 ) perform the same operation when applied to the
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reference state |01〉, explicitly:

exp
(

i
θ 23

01
2

σ
y
1 σ

x
0

)
|01〉

=

(
cos(

θ 23
01
2

)I + isin(
θ 23

01
2

)σ y
1 σ

x
0

)
|01〉

=

(
cos(

θ 23
01
2

)I + isin(
θ 23

01
2

)σ x
1 σ

y
0 σ

z
1σ

z
0

)
|01〉

=

(
cos(

θ 23
01
2

)I− isin(
θ 23

01
2

)σ x
1 σ

y
0

)
|01〉

= exp
(
−i

θ 23
01
2

σ
x
1 σ

y
0

)
|01〉. (4.13)

This allows us to define the ansatz via the U(θ 23
01 ) operator simply as:

U(θ 23
01 ) =exp

(
−iθ 23

01 σ
x
1 σ

y
0

)
. (4.14)

Note that this form is only valid when the operator acts on the reference state |01〉 and when no

other excitation operators are incorporated into the circuit. We also notice that this variational

ansatz suffices to compute the exact ground state of H2 in a minimal basis. In order to implement

the UCC operator (4.14) above using Mølmer-Sørensen gates, we employ a technique first

demonstrated in Müller et al.238, formulae 10-12. If we consider arbitrary tensor products of qubit

Pauli operators A and B with [A,B] 6= 0 we have:

exp(−iαA)exp(iθB)exp(iαA) = exp(iθB′), (4.15)

with B′ = exp(−iαA)Bexp(iαA) and using the fact that Pauli operators are self-inverse:

B′ = (I cosα− iAsinα)B(I cosα + iAsinα), (4.16)
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Figure 4.2: Circuits for VQE simulation of H2 with the variational ansatz exp
(
−iθσ x

1 σ
y
0
)

applied on the initial
state |01〉, corresponding the Hartree-Fock state: a) Implementation on TID with MS gates and the Bravyi-
Kitaev encoding. b) Pre-compiled circuit using CNOT gates for the SQD architecture. c) Compilation of a
CNOT gate to the native CZπ for the X-mon device. d) Implementation for TID with MS gates and the JW
encoding, implementing the variational unitary exp

(
−iθσ x

3 σ x
2 σ x

1 σ
y
0
)

action on the initial state |0011〉. The gate
Rt represent the rotations employed to measure a specific string of Pauli matrices.
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using the fact that A and B do not commute and therefore must anticommute we obtain:

B′ = Bcos2α− i
2
[A,B]sin2α. (4.17)

Specifically, for α = π/4 and the case above

exp(− iθσ
1
y σ

j
x ) = sin

(
iθ

i[σ1
x σ

j
x ,σ1

z ]

2

)

= exp(−i
π

4
σ

1
x σ

j
x )exp(−iθσ

1
z )exp(i

π

4
σ

1
x σ

j
x )

= exp
(

i
π

4
σ

1
x σ

j
x

)
exp
(
−i(θ +π)σ1

z
)

exp
(

i
π

4
σ

1
x σ

j
x

)
= MS{0,1}(

π

2
,0)R1

Z(α)MS{0,1}(
π

2
,0). (4.18)

Figure 4.2(a) depicts the final circuit for implementing VQE with this approximation. To

achieve the same circuit in the SQD, we first derived the circuit using CNOT gates, following the

method described in243. Figure 4.2(b) shows the pre-compiled circuit for the implementation on

the SQD. The circuit expressed in CNOT gates can be compiled into the native CZπ using the gate

equivalence shown in 4.2(c). Finally, Figure 4.2(d) displays the circuit for implementing the same

excitation operator in the JW representation using two global MS gates acting on four qubits.

4.2.2 LIH IN A MINIMAL BASIS

We obtained the molecular integrals for LiH at different internuclear separations using a

Hartree-Fock calculation with an STO-6G basis set. For this particular application, we used the

integrals in the natural orbital basis (NMO). NMOs are obtained by diagonalizing the exact

one-electron reduced density matrix (1-RDM) of the system and are ordered by natural orbital

occupation numbers (NOONs). It has been shown that NMOs with small NOONs or NOONs close

to full-occupancy have a negligible effect in the electron correlation and therefore can be
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Figure 4.3: Natural orbital occupation numbers at four different internuclear separations for LiH, calculated at
the CISD level. Copyright (2018) by American Physical Society.

discarded85. Consequently, approximate NMOs and NOONs, obtained from perturbation theory or

truncated configuration interaction (CI) calculations, are usually employed to reduce the

computational cost of more involved correlated calculations and for the selection of active

spaces345.

After the BK transformation, the Hamiltonian for LiH comprises 193 terms with amplitudes

more significant than 10−10 Hartree. A VQE simulation using the UCC ansatz truncated to single

and double excitations requires 12 qubits and involves 32 single-excitation operators and 168

double-excitation operators (without imposing spin constraints). To reduce the number of

excitation operators in the calculation, we employed the NOONs derived from a configuration

interaction calculation with single and double excitations (CISD) to select an appropriate active

space. Fig. 4.3 shows the NOONs for the six molecular orbitals of LiH, calculated using CISD for

four different internuclear separations. Based on the variations in the NOONs, we establish orbitals

1 to 4 as an appropriate active space.

A reasonable choice of excitation operators in the selected active space would be the singlet
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double excitations from orbital 1 to orbitals 2, 3 and 4, respectively. Based on the NOONs, we

expect the amplitude of the excitation operator from orbital 1 to orbital 2 to be largest. Similarly,

we expect excitation operators from orbital 1 to orbitals 3 and 4 to have the same or similar

amplitudes. Due to constraints in circuit depth, we consider only excitations from orbital 1 to

orbitals 2 and 3, explicitly the operators: a†
5a†

4a3a2−a†
2a†

3a4a5 and a†
7a†

6a3a2−a†
2a†

3a6a7, where

a†
i (ai) denote the creation (annihilation) operator in the i-th spin-orbital. In our notation,

spin-orbitals with odd (even) indices correspond to spin-up (spin-down) electrons, with indices

starting at 0.

Using the BK mapping, these operators can be expressed as:

a†
5a†

4a3a2−a†
2a†

3a4a5 ≡
i
8
(σX

2 σ
Y
4 +σ

Z
1 σ

X
2 σ

Z
3 σ
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4 −σ

Y
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4 −σ

Z
1 σ
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2 σ
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3 σ
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4 −σ

Y
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X
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Z
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Z
1 σ

Y
2 σ

Z
3 σ

X
4 σ

Z
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X
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Y
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Z
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Z
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X
2 σ

Z
3 σ

Y
4 σ

Z
5 ), (4.19)

and
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2a†

3a6a7 ≡
i
8
(σX
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Y
6 +σ

Z
1 σ

X
2 σ

Z
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Y
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Y
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X
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Z
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Y
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Z
3 σ

X
6

−σ
Y
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Z
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Z
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X
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X
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Z
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X
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Z
3 σ

Z
5 σ

Y
6 σ

Z
7 +σ

Z
1 σ

X
2 σ

Z
5 σ

Y
6 σ

Z
7 ).

(4.20)

The initial state of the simulation, corresponding to the Hartree-Fock wavefunction, is the state

|000000000101〉, which simplifies to |000001〉 in the active space required for the selected

excitation operators. A full-simulation of LiH with the two double excitation operators listed above

would require at most 32 MS gates for a single Trotter step if all the subterms were going to be

implemented. To make the simulation affordable in the current device we approximated each of the

operators using only the first subterm, corresponding to σX
2 σY

4 and σX
2 σY

6 , respectively. The
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absolute error in the total energy introduced by this approximation is smaller than chemical

accuracy within the basis set used, when compared to the full configuration interaction (FCI)

reference solution. The two selected subterms can be implemented using MS gates and single qubit

rotations as follows:

exp[−iασ
X
2 σ

Y
4 ]≡MS{2,4}(

π

2
,0)R2

z (α)MS{2,4}(−π

2
,0), (4.21)

and

exp[−iβσ
X
2 σ

Y
6 ]≡MS{2,6}(

π

2
,0)R2

z (β )MS{2,6}(−π

2
,0). (4.22)

As the entangling operations involve only qubits 2, 4 and 6, we can efficiently construct an

effective Hamiltonian involving only operations on these qubits. The corresponding 3-qubit

Hamiltonian has the form:

H =c0I + c1Z0 + c2Z1 + c3Z2 + c4Z1Z0 + c5Z2Z0 + c6Z2Z1 + c7X1X0

+ c8Y1Y0 + c9X2X0 + c10Y2Y0 + c11X2X1 + c12Y2Y1. (4.23)

As described in142, this reduction is related to the previously observed fact that BK computational

basis states naturally reflect certain spin symmetries, in some cases allowing for a more compact

representation than the corresponding JW mapping. The expectation value of the final Hamiltonian

can be measured by performing three rounds of projective measurements at each point in the

parameter space.
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Figure 4.4: Implementation of the VQE simulation of LiH on trapped ion quantum computers with the variational ansatz of Eq. (4.21): a) Pre-compiled cir-
cuit with MS gates and the BK encoding. b) Actual circuit implemented on the TID, compiled using a refocusing technique with half-entangling MS gates.
The gates Rt represent the rotations employed to measure a specific string of Pauli matrices.
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Figure 4.4(a) depicts the circuit for implementing VQE for LiH with the ansatz and initial states

described above. We chose to implement it in the experiment using the circuit shown in Figure

4.4(b), based on a refocusing technique238. Here, an addressed π-phase shift between two

half-entangling MS gates decouples the addressed qubit from the two remaining qubits, effectively

implementing an entangling operation only among the target qubits. The initial state for the

calculation is rotated to |111〉, which corresponds to the lowest energy state of the qubit register for

the TID architecture.

4.3 EXPERIMENTAL RESULTS

4.3.1 H2 SIMULATIONS

Given the simplicity of our variational ansatz for H2, which contains a single variational parameter

θ , we performed exploration of the parameter space by executing the variational circuit and

estimating the expectation values of the terms of the Hamiltonian for several values of θ . In the

SQD experiment, we scanned 1000 points in the interval [−π,π]. Each expectation value was

estimated using 10000 samples per point. In the FID experiment, we scanned 100 points in the

interval [0,2π], and each expectation value was determined using 100 repetitions per data point. In

terms of absolute times, operations in the superconducting qubit architecture are approximately

three orders of magnitudes faster than operations with trapped ions, which facilitates executing

experiments with more circuit repetitions.

Figure 4.5 shows the expectation values obtained from the SQD and TID experiments on the BK

Hamiltonian for H2. We observe that expectation values follow the correct patterns but fluctuate as

a result of the noise sources affecting the device. A particularly informative aspect of the plot is the

expectation value of the Z0Z1 operator, that happens to be a stabilizer of the state prepared by the

chosen variational ansatz. As a result, the expectation value of this operator is constant with
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Figure 4.5: Expectation values of the Hamiltonian terms for H2 in two qubits, using the BK mapping as mea-
sured in a) SQD and b) TID experiments for different values of the variational parameter θ . The solid black
lines nearest to the data indicate the theoretical values. Values were estimated using a 100 repetitions per
point in the TID experiment and 1000 repetitions per point in the SQD experiment. Each plot presents only
100 equally spaced points clarity.

respect to theta, with an expectation value of −1.0. Any deviation from this expectation value is a

result of errors that do not commute with the unitary used as ansatz, in addition to QPN error. In

both experiments, we observe a slight deviation from the ideal behavior confirming the presence of

such non-commutative spurious terms in the evolutions implemented by the devices. The results

for both devices also present a systematic shift in the experimental expectation values towards the

right compared to the theoretical values. The lowest statistical error of the SQD experiments

allows us to observe this pattern more clearly.

From the scans of the expectation values it is possible to compute the potential energy surface by
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using the expression:

E(R,θ) = ∑
i

hi(R)expOi(θ), (4.24)

where we have made explicit the dependence of the Hamiltonian coefficients on the molecular

coordinates (R) and the dependence of the expectation values on the variational parameters, θ . If

the scan contains a sufficiently large number of points, it is possible to carry out the VQE

optimization at each internuclear distance, R, by directly selecting the minimum energy in the grid.

We can also apply statistical techniques such as Gaussian processes regression or a simple

sinusoidal fit to model either the expectation values or the potential energy surface itself to

estimate the value of these properties at any point in the parameter space. To evaluate the overall

performance of the quantum simulator, we can compare the direct measurements or their fitted

functions against classical numerical simulations, i.e. full diagonalization of the Hamiltonian. We

notice that full diagonalization is not scalable but affordable for the small systems studied here and

we only use it as a reference for comparison and not as part of the VQE implementation.

Given the number of grid points employed in the SQD experiment, we opted for directly

computing the minimum energy at each internuclear distance from the grid. Error bars were

calculated with a GPC fitting procedure to remove systematic statistical biases in the data and to

reduce the statistical uncertainty at each point. Figure 4.6 presents the result of this procedure.

Specifically, Figure 4.6(a) compares the PES of the ground state of H2 estimated on the quantum

computer with the theoretical PES. The energies computed with the VQE procedure are higher, as

expected from the variational nature of the method. As noticed earlier, the variational ansatz used

for H2 suffices to obtain the ground state in a minimal basis and therefore the discrepancies

observed between the experimental and theoretical values can be associated to errors in the

quantum computer.
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Figure 4.6: Results of the SQD experiment: a) PES of molecular hydrogen in a minimal basis obtained in
the experiment, compared with the exact theoretical value. b) Errors in VQE energy surface. Red dots show
error in the experimentally determined energies. Green dots correspond to errors in the energies that would
have been obtained experimentally by running the circuit at the theoretical optimal value of θ instead of the
optimal θ from the experiment. The discrepancy between green and red dots provides experimental evi-
dence for the robustness of VQE against certain experimental errors. The gray band encloses the chemically
accurate region relative to the experimental energy of the atomized molecule. The dissociation energy is
calculated with respect to the energy at the equilibrium geometry, indicated by the arrow.

4.6(b) displays the absolute difference between the theoretical energy and the optimal

variational energy along the PES, showing that the latter is considerably above the quantum

chemistry threshold (≈ 1.5 mHartree). However, errors have similar magnitudes at the equilibrium

point and at the dissociation limit, which allow us to estimate the dissociation energy of H2 with an

error of (8±5)×10−4 mHartree compared to the theoretical result. This result constitutes the first

estimation of a molecular property within chemical accuracy using a quantum computer, reported

in248. 4.6(b) also compares the errors in the energies that would have been obtained experimentally

by running the circuit at the theoretical optimal value of θ instead of the optimal θ from the

experiment. The significant difference between these values and the actual experimental error is an

indication of the robustness of the VQE procedure against specific errors of the quantum device. In

this particular case, this difference can be partly associated with the systematic shift in the

expectation values observed in Figure 4.5(a).

For the TID experiments, we implemented VQE for H2 for the two-qubit BK Hamiltonian and

the four-qubit JW Hamiltonian as well. The initial states for these simulations are |01〉 and |0011〉,
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respectively. When the corresponding variational unitaries act upon these states, as shown in

Figures 4.2(a) and 4.2(d), the entangled states generated belong to a decoherence-free subspace

(DFS) protected against correlated dephasing - a significant source of error in trapped ion qubit

devices142. To investigate the impact of this decoherence channel in the implementation, we

performed simulations with initial states outside this DFS. To implement these simulations we

applied a unitary rotation of the Hamiltonian that effectively changes the signs of the Hamiltonian

coefficients, hi(R). For the BK implementation, this accounts to using the state |11〉 as the initial

state while maintaining the same unitary for state preparation and performing the energy

calculation with the modified Hamiltonian.

The results of the experiments described above can be seen in Figure 4.7(a) and 4.7(b). The

experiments include two simulations for the BK Hamiltonian, the first corresponding to a

DFS-protected initial state (|01〉) and the second corresponding to an unprotected (|11〉) one. Both

experiments were executed with MS gates of the same fidelity ∈99(3)% ‡. The remaining

experiments correspond to simulations for the JW Hamiltonian for H2 executed with MS gates

with fidelities 97(3) and 93(3) respectively. 4.7(a) shows the PES calculated for all these

experiments from the parameter scan while 4.7(b) compares the magnitude of the dissociation

energy for H2 (displayed as binding energy). The results showed an increasing error with

decreasing fidelity and increased correlated dephasing error. Interestingly, the unprotected BK

experiment with MS fidelity of 99(3)% has similar accuracy to the protected JW experiment with

MS fidelity of 97(3)%, which is a strong indication of the effect of DFS protection, especially

taking into account that the JW experiment involves twice as many qubits as the BK one.

‡MS gate entanglement fidelity was estimated from population averages and the parity contrast relating to the coher-
ence of the respective Bell or GHZ state generated from |11〉 or |1111〉 at the conclusion of the operation34,199,284.
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Figure 4.7: a) Potential energy curves of the molecular hydrogen ground state. The black line corresponds to the theoretical value calculated in the cho-
sen minimal basis. All other lines are derived from weighted sinusoidal fits to the energy surfaces formed from the experimentally obtained expectation
values. The data sets vary the number of qubits, the Hartree Fock input states, encodings and gate fidelities as listed in the legend below the figures. b)
Data from panel a) normalized to the theoretical dissociation energy at large internuclear separations R. The dashed and dotted lines indicate the well
depth associated with the binding energy of the molecule and the position of the energy minimum, respectively. c) VQE implementation. The BK HF = |01〉
parameter scan fit result is shown as experimental reference with its 1σ confidence band. Points with error bars indicate the five VQE runs performed.
The inset shows the last iterations of one particular run that failed to converge to the target value (blue line) with experimental data depicted by red and a
noise-free circuit simulation by black symbols. Copyright (2018) by American Physical Society.
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Finally, we implemented the full VQE algorithm at five different internuclear separations R as

described in Figure 4.1, yielding the results shown in Figure 4.7(c). The optimization procedure is

performed by passing the measurement results of the quantum circuit to a Nelder-Mead simplex

algorithm242 running on a classical computer. The optimization is initialized by choosing a

random initial value of θ0, and the energy is calculated at each iteration according to Equation

4.24. In parallel, we execute a noise-free simulation of the circuit at each iteration to monitor the

convergence towards the theoretically expected energy.

Generally, the algorithm converges in simulation and experiment. Figure 4.8(a) illustrates the

convergence process, while Figure 4.8(b) compares the experimental and theoretical results of the

optimization process. The observed statistical fluctuations are a result of the QPN errors and noisy

gate operations described in Subsection 4.2.0.2. To determine the optimal value from the

Nelder-Mead iterations, we implemented a sinusoidal fit to the 1D parameter space of the energy

explored throughout all iterations, with each point weighted according to the QPN contributions

from its constituent expectation value measurements, as described in142. Figure 4.7(c) shows each

run’s result superimposed on the previously discussed parameter scan. Error bars for the VQE

points are derived from the above fitting procedure. In most cases, the full VQE optimization

converges to a value close to the energy estimated from the grid scan (Figure 4.7(a)).

4.3.1.1 DECOHERENCE SIMULATION FOR H2 EXPERIMENT IN TID

To understand the effect of various decoherence channels, we performed a simulation of the entire

circuit of the two-qubit H2 experiment using the open source framework OpenFermion225 and

in-house code to simulate the noise channels. We simulated the experiments based on the actual

experimental times.

We assume that throughout the execution of the entire state preparation circuit, the qubits

experience dephasing, e.g. due to magnetic field fluctuations induced by the environment. We

135



4.3. Experimental results

0 5 10 15 20

0.4

E
ne

rg
y

 

 

Experiment
Simulation
Reference

0 10 20
2

3

4

5

Iteration

 (R
ad

)

0.0

-0.4

-0.8

-1.2

Iteration
E

ne
rg

y
25

a)

b)

1.5 2 2.5 3 3.5 4 4.5 5 5.5

-1

-0.6

-0.2

0.2

0.6
Experiment
Sine fit exp
Simulation
Sine fit sim

Figure 4.8: Online VQE runs for R = 0.5 Å. a) Energy vs. Iteration number (target = blue line, simulated re-
sult = black, experimental result = red) Inset: Rotation angle α vs. Iteration number. Error bars derived from
quantum projection noise. b) Energy vs. Rotation angle α with sinusoidal fitting (simulation = black, experi-
ment = red). Copyright (2018) by American Physical Society.

model the dephasing via an i.i.d. channel of the form

ε(ρ) = εi1 ◦ εi2(ρ)

where

εi(ρ) = (1− pd)ρ + pdσ
z
i ρσ

z
i ,

is a Kraus map and pd is the probability for a single phase flip. In our simulations, we applied the

dephasing channel to all the qubits after the application of each gate in the circuit of Figure 4.2(a),

with probability pd = 1.0− exp(−Tg/T2), where Tg is the physical time of the gate and T2 is the

dephasing time. We employed T2 = 40 ms, as determined from Ramsey experiments on a single
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Figure 4.9: a) Simulation of decoherence channels in H2 under the BK mapping. The plot compares the
simulated energy curves for different values of the fidelity of the MS gate and the experimental results. The
reference curve corresponds to the exact diagonalization of the Hamiltonian. The decoherence channels in-
clude one-qubit dephasing acting on all the qubits during the state preparation and two-qubit depolarizing
errors in the MS gate. b) Energy errors of the reconstructed H2 potential energy surface and the influence
of decoherence. A full configuration interaction (FCI) calculation performed in the chosen molecular basis
serves as reference value. The red line corresponds to a full simulation of the quantum circuit, including mul-
tiple decoherence channels and the experimentally determined gate fidelity. Copyright (2018) by American
Physical Society.

ion. In addition to dephasing, we model the effect of errors in the MS gates using a two-qubit

depolarizing channel.

Here, we consider all single- and two-qubit errors with the same probability. For a 2-qubit MS

gate, the noise is described by the quantum operation

εMS(ρ) =(1− pMS)ρ +
pMS

15 ∑
i∈Λa

∑
α∈Λα

σ
α
i ρσ

α
i

+
pMS

15 ∑
j1, j2∈Λa

∑
α,β∈Λα

σ
α
j1σ

β

j2ρσ
α
j1σ

β

j2 ,

where pMS is the probability of a MS depolarizing error, and Λa and Λα correspond to the set of

indexes for the active ions and Pauli matrices, respectively. For the 2-qubit MS gate, there are 15

possible Pauli errors (6 single-qubit and 9 two-qubit), resulting in the prefactor 1/15. The

probability pMS is related to the fidelity of the gate as F = 1− 14
15 pMS

37. The experimental fidelity
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estimated for the 2-qubit MS gate is 0.99. In the simulation, the two-qubit depolarizing channel is

applied with probability pMS after the MS gate.

Figure 4.9 display the results of the simulation for H2 under the BK mapping. Our simulation

appears to account for the observed experimental errors along with a significant portion of the

energy curve. We observe an uneven upshift of the energy values that effectively reduces the

estimated well depth (dissociation energy) estimate. While our simulation is close in magnitude to

the observed results, we note that other factors such as faulty measurement operators (related to

basis rotations and detection fidelity) could also contribute to the discrepancies.

4.3.2 LIH SIMULATION ON A MULTIQUBIT TRAPPED-ION QUANTUM COMPUTER

We performed the experiment for LiH only on TID. We started by performing a parameter scan for

the variational ansatz depicted in Figure 4.4(a). We scan the expectation values for the operations

in the Hamiltonian of Equation 4.23 sequentially in a grid determined by the intervals α = [1.5,6]

and β = [2,5]. Each term in the Hamiltonian was estimated using 500 circuit runs. We combined

these results using Equation 4.24 to compute the energy landscape for each internuclear separation

R. An example for R = 1.6Åis shown in Figure 4.10(a) along with a section of the parameter space

estimated from theory. To compute the PES from the experimental data, we applied two different

fitting procedures: (1) a two-dimensional quadratic fit to the energy minimum and (2) a Gaussian

process regression (GPR) git. From the fitted function, we calculate the minimum energy at each

internuclear separation, yielding the results shown in Figure 4.10(b). We observe that the GPR

results lie above the theoretical PES while the quadratic fit lies below, illustrating the sensibility of

the results to the statistical treatment.
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We also implemented the full VQE algorithm for LiH. As described in detail in Ref.142, the use

of the bare Nelder-Mead optimization in this calculation usually fails due to statistical fluctuations

that stops the algorithm before reaching the true minimum. To address this issue, we switch the

optimization to a hybrid algorithm346 that also incorporates an element of simulated annealing by

introducing random perturbations, sampled from a distribution D and added to the cost function in

Equation 4.24. These perturbations force the VQE algorithm to continuously sample the

surroundings of the minimum as shown in Figure 4.10(a) without converging any further. The

minimum’s location is then estimated from a fitting procedure applied to the sampled points, as

described in Ref.142. The distribution D is chosen to be a uniform distribution with a range in the

same order as the magnitude of the QPN. Once the fluctuations in the VQE algorithm become of

the same order as the perturbations, the algorithm samples 10-20 additional points using the

procedure described above. The energy is then calculated using a quadratic or a GPR fitting

procedure, yielding the results shown in Figure 4.10(b). We observe that the results are consistent

with the baseline PES obtained from the scan and highlight the discrepancy between the two fitted

functions. It is likely that we can reduce this discrepancy by taking a larger number of

measurements per data point at the expense of increasing the execution time of the algorithm.

4.3.3 DISCUSSION

The VQE experiments presented above in both SQD and TID illustrate one of the remarkable

features of this algorithm: its resilience against certain types of errors in pre-error corrected

quantum devices. These variationally suppressible errors, as characterized in Ref.226, correspond

to errors that can be mitigated by changes of the variational parameters and therefore are naturally

suppressed by the classical optimization loop incorporated into VQE, i.e., calibration errors in

some of the gates, such as the one observed in Figure 4.5 for the H2 implementation.

Despite this resilience, the VQE algorithm relies on expectation values and therefore the
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Chapter 4. Towards computing molecular energies on near-term quantum devices

precision to which operators are measured have a significant impact on the quality of the results, as

illustrated by the challenges faced in the LiH simulations. Furthermore, this makes VQE

particularly sensitive to errors in the measurement step. Apart from the improvement that can be

done at the level of the physical implementation in order to enhance measurements227, a couple of

algorithmic improvements are also possible: for example, one might incorporate a second

optimization loop to variationally correct the rotations employed in the measurement step, as

described in142. Another improvement is the incorporation of post-selection techniques that discard

measurements that violate known symmetries of the Hamiltonian as described in Ref.205,221,226.

4.4 CONCLUSIONS

In this chapter, we summarized the first scalable demonstrations of quantum simulation of

Chemistry using superconducting qubits248 and multi-qubit trapped ion142 quantum devices. We

demonstrated the application of the VQE algorithm to compute the PES of the H2 and LiH

molecules, employing a minimal basis set and both BK and JW representations of the

Hamiltonians. Our implementation employs a variational ansatz inspired by unitary coupled

cluster (UCC) and takes advantage of the particular symmetries of the molecules to simplify the

number of qubits and circuit depths compared to the regular UCC approach. Our simulation

achieved the first calculation of a molecular property within chemical accuracy using a quantum

computer and offered the first experimental evidence of noise resilience of the VQE algorithm

against experimental errors. Our results also illustrate some of the challenges of implementing

VQE on NISQ devices. In particular, we showed the instabilities caused by different error sources

in the optimization process and proposed methods to circumvent them.

Our experiments also illustrate the importance of incorporating domain knowledge from

quantum chemistry and experimental quantum computing in the implementation of the VQE
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algorithm. In particular, we show the utility of standard quantum chemistry techniques, such as

active space selection, in VQE. This strategy could be exploited in VQE calculations for much

larger systems where only the more strongly correlated orbitals of a molecule are modeled on the

quantum computer, leaving the weakly correlated part to efficient classical techniques such as

density functional theory53 and perturbation theory141. This type of calculation could be

accomplished using a variation of the hybrid quantum-classical scheme employed for VQE (Figure

4.1). The knowledge of the natural noise processes of the quantum platforms is also crucial in the

VQE implementation. An example of this is the use of DFS for protecting the calculation against

correlated decoherence noise in trapped ions.

Since the realization of these experiments, quantum simulation with variational methods has

experienced tremendous progress in both theoretical and experimental sides. On the theory front,

the introduction of new variational ansatzes with more favorable circuit depth78,179, more efficient

representations of the quantum chemistry Hamiltonian19, and general techniques for error

mitigation on NISQ devices98,169,331, promise to reduce the implementation cost of VQE and

increase the accuracy of the calculations. On the experimental front, the race for achieving the first

demonstration of quantum advantage is delivering ever growing quantum chips with lower error

rates51,113,233.

Along with this experimental progress, the field has experienced significant improvements in the

infrastructure for accessing and controlling the devices. Nowadays, a variety of cloud-based

platforms69,270,313,322 offer software for quick prototyping and deployment of quantum algorithms

on NISQ computers, providing a test bed for all the recent algorithm improvements. Along with

this, libraries for manipulating quantum chemistry Hamiltonians and implementing specific

variational ansatzes for Chemistry have also been consolidated225,270. We hope that the progress

observed in the last couple of years will bring us closer to the simulation of molecules with tens of
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spin orbitals (qubits) soon.
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5
Quantum autoencoders for efficient compression of

quantum data

Apart from minor modifications, this chapter originally appeared as279:

“Quantum autoencoders for efficient compression of quantum data”. Jonathan Romero, Jonny
Olson and Alán Aspuru-Guzik. Quantum Sci. Technol., 2, 045001 (2017). Copyright (2018) by
IOP Publishing.

5.1 INTRODUCTION

Quantum technologies, ranging from quantum computing to quantum cryptography, have been

found to have increasingly powerful applications for a modern society. Quantum simulators for

chemistry, for example, have been recently shown to be capable of efficiently calculating

molecular energies for small systems248; the capability for larger scale simulations promises to

have deep implications for materials design, pharmacological research, and an array of other

potentially life-changing functions14. A limiting factor for nearly all of these applications,

however, is the amount of quantum resources that can be realized in an experiment. Therefore, for

experiments now and in the near future, any tool which can reduce the experimental overhead in

terms of these resources is especially valuable.

For classical data processing, machine learning via an autoencoder is one such tool for

dimensional reduction38,207,208, as well as having application in generative data models118. A

146



Chapter 5. Quantum autoencoders for efficient compression of quantum data

classical autoencoder is a function whose parameters are optimized across a training set of data

which, given an (n+ k)-bit input string x, attempts to reproduce x. Part of the specification of the

circuit, however, is to erase some k bits during the process. If an autoencoder is successfully

trained to reproduce x at the output at least approximately, then the remaining n bits immediately

after the erasure (referred to as the latent space) represent a compressed encoding of the string x.

Thus, the circuit “learns" to encode information that is close to the training set.

In this chapter, we introduce the concept of a quantum autoencoder which is inspired by this

design for an input of n+ k qubits. Because quantum mechanics is able to generate patterns with

properties (e.g. superposition and entanglement) that is beyond classical physics, a quantum

computer should also be able to recognize patterns that are beyond the capabilities of classical

machine learning. Thus, the motivation for a quantum autoencoder is simple; such a model allows

us to perform analogous machine learning tasks for quantum systems without exponentially costly

classical memory, for instance, in dimension reduction of quantum data. A related work proposing

a quantum autoencoder model establishes a formal connection between classical and quantum

feedforward neural networks where a particular setting of parameters in the quantum network

reduces to a classical neural network exactly350. In this work, we provide a simpler model which

we believe more easily captures the essence of an autoencoder, and apply it to ground states of the

Hubbard model and molecular Hamiltonians.
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5.2. Quantum Autoencoder Model

Figure 5.1: a) A graphical representation of a 6-bit autoencoder with a 3-bit latent space. The map E en-
codes a 6-bit input (red dots) into a 3-bit intermediate state (yellow dots), after which the decoder D attempts
to reconstruct the input bits at the output (green dots). b) Circuit implementation of a 6-3-6 quantum autoen-
coder.

5.2 QUANTUM AUTOENCODER MODEL

In analogy with the model of classical autoencoders, the quantum network has a graphical

representation consisting of an interconnected group of nodes. In the graph of the quantum

network, each node represents a qubit, with the first layer of the network representing the input

register and the last layer representing the output register. In our representation, the edges

connecting adjacent layers represent a unitary transformation from one layer to the next.

Autoencoders, in particular, shrink the space between the first and second layer, as depicted in

Figure 5.1a.

For a quantum circuit to embody an autoencoder network, the information contained in some of

the input nodes must be discarded after the initial “encoding" E . We imagine this takes place by

148



Chapter 5. Quantum autoencoders for efficient compression of quantum data

tracing over the qubits representing these nodes (in Figure 5.1b, this is represented by a

measurement on those qubits). Fresh qubits (initialized to some reference state) are then prepared

and used to implement the final “decoding" evolution D, which is then compared to the initial state.

The learning task for a quantum autoencoder is to find unitaries which preserve the quantum

information of the input through the smaller intermediate latent space. To this end, it is important

to quantify the deviation from the initial input state, |ψi〉, to the output, ρout
i . Here, we will use the

expected fidelity361 F(|ψi〉 ,ρout
i ) = 〈ψi|ρout

i |ψi〉. We thus describe a successful autoencoding as

one in which F(|ψi〉 ,ρout
i )≈ 1 for all the input states.

A more formal description of a quantum autoencoder follows: Let {pi, |ψi〉AB} be an ensemble

of pure states on n+ k qubits, where subsystems A and B are comprised of n and k qubits,

respectively. Let {U~p} be a family of unitary operators acting on n+ k qubits, where

~p = {p1,p2, . . .} is some set of real parameters defining a unitary quantum circuit. Also let |a〉B′ be

some fixed pure reference state of k qubits. Using classical learning methods, we wish to find the

unitary U~p which maximizes the average fidelity, which we define to be the cost function,

C1(~p) = ∑
i

pi ·F(|ψi〉 ,ρout
i,~p ), (5.1)

where,

ρ
out
i,~p = (U~p)†

AB′
TrB

[
U~p

AB

[
ψiAB⊗a

B′

]
(U~p

AB
)†
]
(U~p)

AB′ , (5.2)

and we have abbreviated |ψi〉〈ψi|AB = ψiAB and |a〉〈a|B′ = aB′ . Equivalently, the goal is to find the

best unitary U~p which, on average, best preserves the input state of the circuit in Figure 5.2 where

instead of tracing over the B system, we employ a swap gate and trace over the B′ system.

If we denote U |ψi〉= |ψ ′i 〉, then it is clear that that we are comparing two systems in the primed

basis that differ only by a swap on the B and B′ systems. More precisely, the global state after the

149



5.2. Quantum Autoencoder Model

Figure 5.2: A quantum autoencoder circuit. The goal is to find ~p such that the averaged F(|ψ〉i ,ρout
i,~p ) is maxi-

mized.

swap is |ψ ′i 〉AB′⊗|a〉B. It is then compared via the fidelity to |ψ ′i 〉AB, and the fidelities in the cost

function C1 arise by tracing out over B′,

F(|ψ ′i 〉AB ,TrB′ [ψ
′
iAB′
⊗aB ]) =

F(|ψ ′i 〉AB ,ρ
′
iA⊗aB), (5.3)

where ρ ′iA = TrB′
[
|ψ ′i 〉〈ψ ′i |AB′

]
. The proof that the fidelities in Eq. (5.1) and Eq. (5.3) are equal is

shown explicitly in Appendix 5.6.1. Note that both sides of the fidelity in Eq. (5.3) involve the

subscript i; this is a result of considering a swap test specific to an input state that is indexed with i.

Such knowledge about the input states may be unrealistic in some settings. To get around this, we

might consider instead tracing over the AB system and computing the fidelity of the “trash system”

of B′ compared to the reference state,

F(|a〉B′ ,TrAB
[
ψ
′
iAB′
⊗aB

]
) =

F(|a〉B′ ,ρ ′iB′ ), (5.4)

where ρ ′iB′ = TrA[|ψ ′i 〉〈ψ ′i |AB′ ]. We henceforth refer to ρ ′iB′ as the “trash state” of the circuit. Note

that this now simplifies the matter of employing a swap test, since it is no longer conditioned on

the input’s index. It is straightforward to see in the above circuit that perfect fidelity (i.e. C1 = 1)
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can be achieved by a unitary U if and only if, for all i:

U |ψi〉AB = |ψc
i 〉A⊗|a〉B . (5.5)

where |ψc
i 〉A is some compressed version of |ψi〉. This follows because, if the B and B′ systems are

identical when the swap occurs, the entire circuit reduces to the identity map. However, this occurs

precisely when the trash state is equal to the reference state, i.e., F(|a〉B′ ,ρ ′iB′ ) = 1. This implies

that it is possible to accomplish the learning task of finding the ideal U~p by training only on the

trash state. Furthermore, because Eq. (5.5) is completely independent of U†, this suggests that the

circuit of Figure 5.2 can be reduced further. We then consider an alternative definition of the cost

function in terms of the trash state fidelity,

C2(~p) = ∑
i

pi ·F(TrA

[
U~p |ψi〉〈ψi|AB (U

~p)†
]
, |a〉B), (5.6)

Note, however, that the cost functions of Eq. (5.1) and Eq. (5.6) are not in general the same (in fact,

C1 ≤C2). However, in practice, one must consider resource limitations; it is not hard to see that

preparing copies of a fixed reference state would be easier than requiring identical copies of the

input state to use in a SWAP test on the entire output state. For some applications of a quantum

autoencoder, it may also be the case that one has limited access to or limited knowledge of the

input state.
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Figure 5.3: Two programmable circuits employed as autoencoder models: a) Circuit A: a network of all the possible two-qubit gates (denoted by Ui)
among the qubits. b) Circuit B: a network comprising all the possible controlled general single-qubit rotations (denoted by Ri) in a qubit set, plus single
qubit rotations at the beginning and at the end of the unit-cell. All the circuits are depicted in the case of a four-qubit input. The unit-cell is delimited by the
red dotted line.
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It is interesting to note that, if we only care about circuits where C2 ≈ 1, we can re-imagine the

problem to being one of finding a particular disentangling. It has been shown that, employing a

circuit of exponential depth, one is always able to perform a disentangling operation305, but to

perform this operation in constant or polynomial depth is hard, and so classical heuristics are often

used to find quantum circuits that are as close to optimal as possible. Also, information-theoretic

bounds have been explored in this context before, both in the context of one-shot compression and

one-shot decoupling84,96. In particular, it may be possible to apply the decoupling methods used in

the "mother of all protocols"3. However, because the heuristics involved in choosing

efficient-to-implement families of unitaries are largely ad-hoc, it is difficult to say if these bounds

are meaningful in the context of a quantum autoencoder.

5.3 IMPLEMENTATION OF THE QUANTUM AUTOENCODER MODEL

To implement the quantum autoencoder model on a quantum computer we must define the form of

the unitary, U~p (Eq. (5.2)) and decompose it into a quantum circuit suitable for optimization. For

the implementation to be efficient, the number of parameters and the number of gates in the circuit

should scale polynomially with the number of input qubits. This requirement immediately

eliminates the possibility of using a (n+ k)-qubit general unitary as U~p due to the exponential

scaling in the number of parameters needed to generate them.

One alternative for the generation of U~p is to employ a programmable quantum circuit83,319.

This type of circuit construction consists of a fixed networks of gates, where a polynomial number

of parameters associated to the gates i.e. rotation angles, constitute ~p. The pattern defining the

network of gates is regarded as a unit-cell. This unit-cell can ideally be repeated to increase the

flexibility of the model. For the numerical assessment presented in this work, we employed two

simple programmable circuits illustrated in Figure 5.3.
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Circuit A has a unit-cell comprising a network of general two-qubit gates where we have

considered all the possible pairings between qubits, as illustrated in Figure 5.3a for the four-qubit

case. Accordingly, this model requires 15n(n−1)/2 training parameters per unit-cell. Recalling

that an arbitrary n-qubit unitary requires 22n−1 real parameter to specify, we see that for n = 4,

one unit cell of our circuit is far from universal, requiring only 90 real parameters compared to

255. A network of arbitrary two qubit gates can be easily implemented using state of the art

superconducting qubit technologies23 and the standard decomposition of a two-qubit gate into

three CNOT gates and single-qubit rotations186. Arbitrary two qubit-gates have been also

implemented using ion traps135 and quantum dots342.

Circuit B has a unit-cell comprising all the possible controlled one-qubit rotations among a set

of qubits, complemented with a set of single qubit rotations at the beginning and at the end of the

unit-cell, as shown in Figure 5.3b for the four-qubit case. We start considering the rotations

controlled by the first qubit, followed by the rotations controlled by the second qubit and so on.

Accordingly, our second model comprises 3n(n−1)+6n (totaling 60 for n = 4) training

parameters per unit-cell and can be implemented in state of the art quantum hardware using the

standard decomposition of controlled unitaries into two CNOT gates and single-qubit rotations243.

This model is also general and can be modified by adding constraints to the parameters. For

instance, one could consider the initial and final layers of rotations to be all the same.

Once the circuit model has been chosen, we must train the network by maximizing the

autoencoder cost function Eq. (5.6), in close analogy to classical autoencoders. Our training

procedure adopts a quantum-classical hybrid scheme in which the state preparation and

measurement are performed on the quantum computer while the optimization is realized via an

optimization algorithm running on a classical computer. Such hybrid schemes have been proposed

in the context of quantum machine learning20,114 and variational algorithms for quantum
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Figure 5.4: Schematic representation of the hybrid scheme for training a quantum autoencoder. After prepa-
ration of the input state, |ψi〉, the state is compressed by the application of the parameterized unitary, U~p.
The overlap between the reference state and the trash state produced by the compression is measured via a
SWAP test. The results for all the states in the training set are collected to compute the cost function that is
minimized using a classical optimization algorithm. The process is repeated until achieving convergence on
the cost function and/or the values of the parameters, ~p = (p1,p2, . . .).

simulation202,226,255,353. In the later case, several experimental demonstrations have been

successfully carried out248,255,287.

As described in Section 5.2, the cost function of the quantum autoencoder is defined as the

weighted average of fidelities between the trash state produced by the compression, and the

reference state. These fidelities can be measured via a SWAP test52 between the reference state and

the trash state. Accordingly, our quantum register must comprise the input state, |ψi〉, and the

reference state. In a single iteration of our training algorithm, we perform the following steps for

each of the states in the training set:

1. Prepare the input state, |ψi〉, and the reference state. We assume these preparations to be

efficient.

2. Evolve under the encoding unitary, U~p, where ~p is the set of parameters at a given

optimization step.
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Figure 5.5: Graphical representation of Hilbert space compression. Given that the states of interest have
support on only a subset S of the Hilbert space (gray pieces), the quantum autoencoder finds an encoding
that uses a space of size |S|.

3. Measure the fidelity between the trash state and the reference state via a SWAP test.

With the estimates of all the fidelities, the cost function (Eq. (5.6)) is computed and fed into a

classical optimization routine that returns a new set of parameters for our compression circuit.

These steps are repeated until the optimization algorithm converges. Given that the value of the

cost function is upper bounded by 1, we performed the optimization by minimizing the value of the

function log10 (1−C2). This procedure is widely used in machine learning applications and helps

prevent numerical instabilities39. A graphical summary of the hybrid scheme for training a

quantum autoencoder is shown in Figure 5.4.

156



Chapter 5. Quantum autoencoders for efficient compression of quantum data

Figure 5.6: Potential energy surface for the hydrogen molecule using a STO-6G basis set. The ground
states at the red dots where used as training set for the quantum autoencoder. The ground states at the blue
dots were used for testing.

5.4 APPLICATION TO QUANTUM SIMULATION

Consider a set of states, {|ψi〉}, with support on a subset of a Hilbert space S ⊂H. Using a

quantum autoencoder, we could find an encoding scheme that employs only log2 |S| qubits to

represent the states instead of log2 |H|, with a trash state of size log2 |H−S|. This idea is

graphically depicted in Figure 5.5. This situation is usually encountered for eigenstates of

many-body systems due to special symmetries.

Fermionic wavefunctions, for instance, are eigenfunctions of the particle number operator, same

as the fermionic state vectors. Consequently, an eigenstate of a system with η particles is spanned

exclusively by the subspace of fermionic state vectors with the same number of particles141, that

has size
(N

η

)
with N the number of fermionic modes. This result has direct implications for the

design of quantum algorithms for simulation, suggesting that the number of qubits required to

store fermionic wavefunctions could be reduced up to log
(N

η

)
if an appropriate mapping can be

found. The same situation is encountered for the spin projection operator, thus reducing the size of
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the subspace spanning a specific fermionic wavefunction even further.

Generally, the number of particles of the system is part of the input when finding eigenstates of

many-body systems. In quantum chemistry simulations, the spin projection of the target state is

also known. Many classical algorithms for simulating quantum systems take advantage of these

constraints to reduce their computational cost141. However, the standard transformations employed

to map fermionic systems to qubits, namely the Bravyi-Kitaev (BK) and the Jordan-Wigner (JW)

mappings300,336, do not exploit these symmetries and thus employ more qubits than formally

needed.

In this scenario, a quantum autoencoder could be trained to compress fermionic wavefunctions

obtained using a quantum simulation algorithm that has been run using the standard

transformations. The compression schemes obtained through this procedure could be employed to

reduce the use of quantum memory, if the wavefunction needs to be stored. It also could save

quantum resources for the simulation of systems with similar symmetries. To illustrate this idea,

we simulated a quantum autoencoder applied to molecular wavefunctions.

Within the Born-Oppenheimer approximation, the non-relativistic molecular Hamiltonian can be

written as

H = hnuc +∑
pq

hpqa†
paq +

1
2 ∑

pqrs
hpqrsa†

pa†
qaras (5.7)

where hnuc corresponds to the classical electrostatic repulsion between nuclei, and the constants

hpq and hpqrs correspond to the one- and two-electron integrals (see Section 2.2). The operators a†
p

and ap creates and annihilates an electron in the spin-orbital p. After applying either the JW or the

BK transformation, the molecular Hamiltonian can be expressed as H = ∑
M
i ciHi, with M scaling

as O(N4). In this case, the operators Hi correspond to tensor products of Pauli matrices and the real

coefficient ci are linear combinations of the one- and two-electron integrals. For a fixed set of
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nuclei and a given number of electrons, the molecular integrals as well as the coefficients ci are

functions of the internal coordinates of the molecule, ~R.

For instance, consider the Hamiltonian of molecular hydrogen in the STO-6G minimal basis

set141. Using the JW transformation, the corresponding Hamiltonian acting on four qubits adopts

the generic form300:

H = c0I + c1(Z0 +Z1)+ c2(Z2 +Z3)+ c3Z0Z1+

c4(Z0Z2 +Z1Z3)+ c5(Z1Z2 +Z0Z3)+ c6Z2Z3

+ c7(Y0X1X2Y3−X0X1Y2Y3−Y0Y1X2X3 +X0Y1Y2X3)

(5.8)

In this case, the coefficients ci are a function of the internuclear distance, r. By solving the

Schrödinger equation for the Hamiltonians at different values of r, we can obtain the ground state

energy for molecular hydrogen and construct the potential energy surface (PES) shown in

Figure 5.6. We expect that the ground state wavefunctions along the PES conserve the same

number of particles and projection spin symmetries, turning this set of states into an excellent

target for compression.

To illustrate the previous idea, we classically simulated a quantum autoencoder taking six

ground states of the hydrogen molecule at different values of r, {|Ψ(ri)〉}6
i=1, as our training set. In

this case, the weights of the states are chosen to be all equal. In real applications, we can imagine

that the ground states are obtained using a quantum algorithm such as the quantum variational

eigensolver255. We trained the circuit model described in Figure 5.3 to compress the training set of

four-qubit states to two qubits and to one qubit, using |0〉⊗2 and |0〉⊗3 as reference states,

respectively. Once the circuits were trained we tested them on 44 ground states corresponding to

values of r different from those of the training set. This selection of the training and testing sets is

shown in Figure 5.6.
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Table 5.1: Average fidelity (F ) error after one cycle of compression and decompression using the quantum
autoencoder trained from ground states of the Hydrogen molecule. We also report the error in the energy of
the decoded state. (Maximum and minimum errors shown within parenthesis). 6 states were used for training
and 44 more were used for testing. These results were obtained with the L-BFGS-B optimization.

Circuit
Final size
(# qubits)

Set
− log10(1−F)

MAE

-log10 Energy
MAE

(Hartrees)
Model 2 Training 6.96(6.82-7.17) 6.64(6.27-7.06)

A 2 Testing 6.99(6.81-7.21) 6.76(6.18-7.10)
1 Training 6.92(6.80-7.07) 6.60(6.23-7.05)
1 Testing 6.96(6.77-7.08) 6.72(6.15-7.05)

Model 2 Training 6.11(5.94-6.21) 6.00(5.78-6.21)
B 2 Testing 6.07(5.91-6.21) 6.03(5.70-6.21)

1 Training 3.95(3.53-5.24) 3.74(3.38-4.57)
1 Testing 3.81(3.50-5.38) 3.62(3.35-4.65)

∗ MAE: Mean Absolute Error. Log chemical accuracy in Hartrees ≈-2.80

The classical simulation was performed using a Python script supplemented with the QuTiP

library161,162. To simulate general two-qubit gates we employed the decomposition described in

Ref.135. Arbitrary single-qubit rotations were implemented by decomposing them into Pauli-Z and

Pauli-Y rotations, R = Rz(θ1)Ry(θ2)Rz(θ3), ignoring global phases243. The optimization was

performed using the SciPy implementation of the Basin-Hopping (BS) algorithm347. We also

employed the L-BFGS-B method55 with a numerical gradient (central finite difference formula

with step size h = 10−8). In the optimization of both circuit models, the parameters were

constrained to the range [0,4π). The optimization of each circuit was initialized by setting the

parameters to randomly selected values.

Table 5.1 shows the average error in the fidelities and the energies obtained after a cycle of

compression and decompression through the optimal quantum autoencoder. We observe that both

circuit models are able to achieve high fidelities for the encoding, producing decoded

wavefunctions with energies that are close to the original values within chemical accuracy

(1kcal/mol≡ 1.6×10−3 Hartrees ≡ 43.4 meV). This accuracy requirement assures that quantum

chemistry predictions have enough quality to be used for the estimation of thermochemical

160



Chapter 5. Quantum autoencoders for efficient compression of quantum data

Table 5.2: Average fidelity (F ) error after one cycle of compression and decompression using the quantum
autoencoder trained from ground states of the Hydrogen molecule. We also report the error in the energy of
the decoded state. (Maximum and minimum errors shown within parenthesis). 6 states were used for training
and 44 more were used for testing. These results were obtained with the L-BFGS-B optimization.

Circuit
Final size
(# qubits)

Set
1−F
MAE

Energy
MAE

(Hartrees)
Model 2 Training < 10−6 < 10−6

A 2 Testing < 10−6 < 10−6

1 Training < 10−6 < 10−6

++ 1 Testing < 10−6 < 10−6

Model 2 Training < 10−6 < 10−6

B 2 Testing < 10−6 < 10−6

1 Training < 10−3 < 10−3

1 Testing < 10−3 < 10−3

∗ MAE: Mean Absolute Error. Chemical accuracy in Hartrees ≈0.0016

properties such as reaction rates257.

Figure 5.7 illustrates the optimization process of a quantum autoencoder. We compared two

different optimization algorithms, L-BFGS-B and Basin-Hopping. The parameters were initialized

at random and the same guess was employed for both optimizations. As observed in Figure 5.7,

both algorithms required a similar number of cost function evaluations to achieve similar precision

and exhibit a monotonic reduction of the difference between the cost function and its ideal value

with the number of function evaluations. The implementation of the quantum autoencoder in state

of the art architectures can benefit from the use of algorithms that do not require gradient

evaluations and have a larger tolerance to the presence of noise in the hardware, such as

Basin-Hopping.

To gain insight into the compression process, we plotted the density matrices of the compressed

states and compared them with the density matrix of the original state in Figure 5.8, for three

different values of r. The sparsity of the original input density matrix is due to the symmetry of the

Hamiltonian for molecular hydrogen, whose eigenvectors have support on only 2 computational

basis states, allowing for a compression up to a single qubit. Although the quantum autoencoder
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5.4. Application to quantum simulation

Figure 5.7: A plot of the cost function versus the number of cost function evaluations during the training pro-
cess. This example corresponds to a quantum autoencoder for compression of wavefunction of H2 from 4 to
2 qubits using circuit A with a training set of six ground states. We compared the L-BFGS-B and the Basin-
Hopping algorithms for optimization.

achieves high fidelity with both types of circuit, the structure of the density matrices indicates that

the forms of the compressed space and therefore the forms of the encoding unitaries differ between

the two circuit models. As the values of r change, the relation between the features of the input

space, here represented by the elements of the density matrix, and the features of the compressed

space become apparent.

In addition to the example of molecular hydrogen, we tested the autoencoder compression

scheme with ground states of the Hubbard model and the H4 molecule. We considered half-filled

Hubbard models with 2-sites and 4-sites arranged in a two-leg ladder (2×1 and 2×2 lattices,

respectively). The Hamiltonian for these systems is given by

H =−t ∑
<i, j>

∑
σ

a†
i,θ a j,σ +U ∑

i
a†

i,↑ai,↑a
†
i,↓ai,↓ (5.9)

where a†
i,θ and ai,σ create and annihilate an electron at site i with spin σ , respectively. The

summation in the first term runs over all the interacting sites, denoted as < i, j >. We used periodic
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Figure 5.8: Visualization of the input space and the latent (compressed) spaces for three different testing
instances of the H2 compression, corresponding to three different bond distances, r. The input and latent
spaces are characterized as the density matrices of the input and compressed states. Letters (A) and (B)
denote the type of circuit employed to construct the encoding unitary. The size of the register (in qubits) ap-
pears within parenthesis. Integer labels starting at 1 denote the computational basis states in ascending
order from |00 · · ·0〉 to |11 · · ·1〉.
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5.4. Application to quantum simulation

Figure 5.9: H4 molecule in a parallel configuration, with the hydrogen atoms forming a rectangle. We ob-
tained the ground states of this system at different values of d, with the bond distance in the two hydrogen
molecules fixed to 2 atomic units (a.u.).

boundary conditions along the horizontal direction and open boundary conditions in the vertical

direction. As in the case of molecular Hamiltonians, Hubbard Hamiltonians can be mapped to

qubits using either the JW or the BK transformation, requiring two qubits per site.

We trained the two circuits of Figure 5.3 to compress the ground states of the Hubbard

Hamiltonians obtained by setting t to six different values equally spaced between 0.9 and 1.1, with

U = 2.0. The optimization process was repeated three times starting at randomly selected values.

The same procedure was applied to the ground states of the H4 system at six different values of the

bond distance d (0.6, 1.4, 2.2, 3.0, 3.8 and 4.6 atomic units) for the geometry described in

Figure 5.9.

Table 5.3 shows the lowest errors obtained for the compression of the Hubbard models and the

H4 system. Errors are quantified as the difference between the final value of the cost function

(Eq. (5.6)) and the ideal value of 1. Recall that the cost function corresponds to the average fidelity

over the training set. We observe that the ground states of the two-sites Hubbard model can be

compressed from 4 to 3 qubits using both circuit types. However, only circuit B is able to compress

these these states from 4 to 2 qubits and 4 to 1 qubits with an error below 10−3. The same

circuit-type achieves an error smaller than 10−4 when compressing the ground states of the H4

system from 8 to 7 qubits. In contrast, circuit A is unable to obtain errors below 10−3 for H4. In the

case of the 4-sites Hubbard model, none of the circuit models proposed here was able to obtain
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Table 5.3: Final error in the cost function (Eq. (5.6)) obtained after training a quantum autoencoder for com-
pression of the ground states of two-sites and four-sites Hubbard models and the H4 molecule along a par-
allel path. Six ground states were used for training each system. These results were obtained with the L-
BFGS-B optimization.

Circuit System
Compression rate∗

no→ nl
− log10(1−C2)

Model Hubbard 4→ 3 7.52
A 2x1 sites 4→ 2 1.15

4→ 1 1.13
Hubbard 8→ 7 2.28
2x2 sites 8→ 6 1.42

H4 8→ 7 1.53
8→ 6 1.6

Model Hubbard 4→ 3 6.82
B 2x1 sites 4→ 2 3.92

4→ 1 4.02
Hubbard 8→ 7 2.29
2x2 sites 8→ 6 2.31

H4 8→ 7 4.33
8→ 6 1.15

∗ no and nl stand for the number of qubits in the original register

and the number of qubits in the latent space, respectively.

errors below 10−3.

The differences between the performances of the two circuit models described above

exemplifies how the ansatz employed for the autoencoder unitary impacts the degree of

compression achievable with the autoencoder model. Compression of a particular set of states

could be achieved more easily with a dedicated ansatz designed for that purpose. One form of

unitary that can serve as a template to design such dedicated ansatzes is given by the expression

U(~α) = e−i∑i αiHi (5.10)

where the real numbers αi are the parameters for optimization and the terms Hi are local

interactions consisting of tensor products of Pauli matrices. The experimental implementation of

Eq. (5.10) would benefit from the techniques developed for quantum simulation algorithms117.
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Another interesting direction is to employ circuits for the preparation of tensor network

states293,294,299 as the autoencoder ansatz. Such circuits could provide a systematic way of

adapting the circuit complexity to particular applications by changing parameters such as the bond

dimension.

Finally, we point out that the maximum rate of lossless compression achievable with a quantum

autoencoder is predetermined by the size of the subspace spanning the training set. Consequently,

a given set of states might only admit a small or null compression rate. For instance, consider a

fermionic system with 8 fermionic modes and 4 particles, such as a half-filled 4-sites Hubbard

model or the H4 molecule in a minimal basis set studied here. Based solely on the constrain in the

number of particles, these 8-qubits systems could be compressed to log2
(8

4

)
≈ 7 qubits.

Compression beyond this point could be achieved if an extra symmetry constraint is present. In

general, we expect fermionic systems where the number of fermionic modes is considerably larger

than the number of particles to be good candidates for compression.

5.5 DISCUSSION

We have introduced a general model for a quantum autoencoder – a quantum circuit augmented

with learning via classical optimization – and have shown that it is capable of learning a unitary

circuit which can facilitate compression of quantum data, particularly in the context of quantum

simulations. We imagine that the model can have other applications, such as compression

protocols for quantum communication, error-correcting circuits, or perhaps to solve particular

problems directly. A natural application for quantum autoencoders is state preparation. Once a

quantum autoencoder has been trained to compress a specific set of states, the decompression

unitary (U†) can be used to generate states similar to those originally used for training. This is

achieved by preparing a state of the form |ΨI〉⊗ |a〉 and evolving it under U†, where |ΨI〉 has the
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size of the latent space and |a〉 is the reference state used for training.

Autoencoders as state preparation tools have direct application in the context of quantum

variational algorithms202,226,255,353. These algorithms approximate the energy or the time evolution

of an eigenstate by performing measurements on a quantum state prepared according to a

parameterized ansatz. A quantum autoencoder could be trained with states of size no qubits,

obtained from a given ansatz, and later be used as a state preparation tool as described above.

Because the autoencoder parameters are fixed after training, the only active parameters in the

variational algorithm would be those associated to the preparation of a state in the latent space (nl).

Since nl < no, the state preparation with autoencoders would require fewer parameters than the

original ansatz.

In our specification of the autoencoder, we define the input states to be an ensemble of pure

states, and the evolution of those states to be unitary. The most generalized picture of the

autoencoder, however, would allow for inputs to be ensembles of mixed states and the set {U~p} to

be a set of quantum channels. In the case of mixed state inputs, we remark that this formulation

can in principle be captured by our model already. More specifically, one can consider the case

where a set of ancillas (denoted A′) representing a purification of the mixed state is input into the

autoencoder along with the original input. Ulhmann’s theorem361 guarantees that there exists a

purification whose fidelity is identical to that of the mixed state generated from tracing out the

purification; namely, it is a maximum over a unitary V acting on the purification alone (although

finding this unitary can be a difficult computational problem itself). Consider then the encoding

U~p
AB⊗VA′ , where the original latent space is expanded to contain all of A′ (i.e. none of the ancilla

qubits are traced out). This purified system will recover the behavior of the mixed system. The

autoencoder structure as defined here cannot completely capture the structure for general quantum

channels, though we expect other computational tasks may be solved by considering specific
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channel instances.

Are there any obvious limitations to the quantum autoencoder model? One consideration is that

the von-Neumann entropy361 of the density operator representing the ensemble {pi, |ψi〉AB} limits

the number of qubits to which it can be noiselessly compressed. However, finding the entropy of

this density operator is not trivial – in fact, given a circuit that constructs a density operator ρ , it is

known that, in general, even estimating the entropy of ρ is QSZK-complete30. This then opens the

possibility for quantum autoencoders to efficiently give some estimate of the entropy of a density

operator. ÂăIn a similar vein, the unitary of the autoencoder could be defined to include the action

of a quantum channel, and the autoencoder used to give both an encoding for and some lower

bound for the capacity of a quantum communication channel (although the trash state may no

longer be useful for training the autoencoder in some of these cases).

It is natural to consider whether the quantum autoencoder structure we have defined is actually a

generalization of its classical counterpart, as in the construction of350. It may certainly be possible

that some particular family of unitaries, together with certain choices for n and k, can be

constructed so that a mapping exists. However, it is unclear that such a correspondence would even

be desirable. Rather, we believe the value of autoencoders in general lies in the relatively simple

structure of forcing a network to preserve information in a smaller subspace, as we have defined

here.

Another topic of interest for any quantum computing model is the computational complexity

exhibited by the device. For our construction, it is clear that any complexity result would be

dependent upon the family of unitaries that is chosen for the learning to be optimized over. As the

training itself is based on classical optimization algorithms (with no clear ‘optimal’ learning

method), this further obfuscates general statements regarding the complexity of the model.
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5.6 APPENDIX

5.6.1 FIDELITY DERIVATION

Here, we show explicitly that the expression in Eq. (5.1) is the same as the fidelity term in

Eq. (5.3). We may neglect the index i and ~p, since the proof holds for all i and ~p individually. First,

let us expand the fidelity in Eq. (5.1), recalling that F(|ψ〉 ,ρ) = 〈ψ|ρ |ψ〉 when |ψ〉 is a pure state

and ρ is mixed361,

F(|ψ〉 ,ρout) = 〈ψ|ρout |ψ〉

= 〈ψ|U†
AB′ TrB

[
UAB(|ψ〉〈ψ|AB⊗|a〉〈a|B′)U†

AB

]
UAB′ |ψ〉

= 〈ψ ′|TrB

[
(|ψ ′〉〈ψ ′|AB⊗|a〉〈a|B′)

]
|ψ ′〉 , (5.11)

again using the earlier notation UAB |ψ〉AB = |ψ ′〉AB. Now, expanding Eq. (5.3),

F(|ψ ′〉AB ,ρ
′
A⊗|a〉B) = F(|ψ ′〉 ,TrB′

[
|ψ ′〉〈ψ ′|AB′

]
⊗|a〉B)

= 〈ψ ′|TrB′
[
(|ψ ′〉〈ψ ′|AB′⊗|a〉〈a|B)

]
|ψ ′〉 . (5.12)

Clearly, Eq. 5.11 and Eq. 5.12 are identical with the exception that the subsystem names of B and

B′ are reversed, which does not affect the equality.
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6
A variational algorithm for device-tailored quantum

error correction

Apart from minor modifications, this chapter originally appeared as:

“QVECTOR: an algorithm for device-tailored quantum error correction”. Peter D Johnson,
Jonathan Romero, Jonathan Olson, Yudong Cao and Alán Aspuru-Guzik, arXiv:1711.02249
(2017). Reproduced with permission from the authors.

6.1 INTRODUCTION

Uncontrollable environmental errors have remained the primary roadblock on the route to useful

quantum information processing. Nevertheless, there is hope for achieving fault-tolerant quantum

computation by implementing quantum error correction58,87,122,181. Fault-tolerant threshold

theorems6 show that, for a given degree of environmental noise, if each elementary operation can

perform below a certain error rate, then concatenated quantum error correction schemes will

out-pace error accumulation, enabling quantum computation to an arbitrary degree of accuracy.

The leading approaches to quantum error correction make use of topological stabilizer

codes45,87. A major advantage of this approach is that the measurements used to diagnose errors

may be performed on just a few neighboring qubits. Leading candidates for topological quantum

error correction are the surface code87,112, color code45, and gauge color code44. Progress towards

implementing surface and color codes experimentally has been demonstrated in23,147 and245,

170



Chapter 6. A variational algorithm for device-tailored quantum error correction

respectively. Recent simulations have shown that the gauge color code50 is expected to exhibit

performance comparable to the previous schemes, though with the added benefit of transversal

implementation of a universal gate set.

Unfortunately, these codes are not likely to be practical in near-term devices. Current estimates

predict that the surface code will require 103 to 104 physical qubits to protect a single logical

qubit112. In order to perform useful, fault tolerant quantum computation with near term devices, it

seems that this number of physical qubits needs to be drastically reduced. We propose a path

towards reducing such error-correction overhead via the design of device-tailored quantum error

correcting codes.

In an actual device, quantum information is subject to hardware-specific quantum noise

processes. Stabilizer codes are not optimal, in general, because they are not tailored to the specific

noise of a given device200. Significant work in quantum error correction has investigated codes

outside of the stabilizer formalism, which are tailored to noise beyond the Pauli error

model57,66,68,200,273. Various schemes have been developed to numerically optimize encoding and

decoding procedures with respect to a fixed noise model109,110,184,185,329.

However, these optimization schemes are not applicable to useful quantum processing devices.

First, they require a specific noise model as input to the optimization. Significant effort has been

devoted to characterizing the noise of near-term devices54,182,256 and quantum error correcting

codes have been implemented as a tool for such characterization191. But, as larger systems are

considered, the accuracy of these noise models is expected to drop rapidly172.

Second, even if a sufficiently accurate noise model were known, existing classical processors are

unable to handle the storage needed to carry out such optimization for near-term devices with 50

qubits43. The task of performing such an optimization seems better suited for a quantum processor.

Finally, even in cases where these optimizations can be performed, the optimized encoding and

171



6.1. Introduction

recovery processes must be decomposed into a sequence of gates that are available on the device. It

may be favorable, rather, to employ an optimization strategy which naturally integrates the

constraints of the device’s native gate set.

Recently, several hybrid quantum-classical (HQC) algorithms for solving specific optimization

tasks have been developed. Two representative variational HQC algorithms are the variational

quantum eigensolver (VQE)255 and the quantum approximate optimization algorithm (QAOA)104.

The former of these algorithms has been implemented experimentally on several quantum

computing architectures168,248,255,304. Additionally, much theoretical work has been done to

develop this genre of quantum algorithms131,224,226,279,352,355. A major appeal to such algorithms is

that they operate successfully without the need for active quantum error correction and even show

signs of suppressing certain types of errors71,224,226.

Variational HQC algorithms are implemented by preparing quantum states as the output of a

parameterized quantum circuit U(~p). Various ansatz states are repeatedly prepared and measured

to collect outcome samples. The measurement data is classically processed and used to update the

circuit parameters so as to optimize a particular cost function. As in the quantum autoencoder

algorithm280, the variational optimization of a circuit constitutes a quantum analogue of training a

neural network in machine learning.

We propose a variational HQC algorithm for designing device-tailored error corrected quantum

memories. This approach naturally points to an extension for designing error corrected gates. The

algorithm solves a number of problems which hamper the classical optimization schemes for the

same task. First and foremost, our proposal forgoes the need for a noise model because the

optimization is carried out in situ and the noise perfectly simulates itself on the device. Second, the

optimization step is not necessarily hindered by the exponential scaling of the Hilbert space

dimension in the same way that the previous proposals are. Measurement statistics, obtained using
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the device as a quantum sampler, are used to approximate the average fidelity of the

encoding-decoding scheme. This average fidelity serves as the cost function for the classical

optimization algorithm. Finally, by constructing the variational circuits out of a device-native gate

set, the optimized encoding and recovery processes are manifestly decomposed into an

implementable sequence of gates.

6.2 BACKGROUND: QUANTUM ERROR CORRECTION

The Pauli group stabilizer formalism of quantum error correction122 has earned its place as the

most popular approach to quantum error correction. By describing all mathematical objects in

terms of elementary gates, the formalism has enabled significant theoretical analysis and

experimental implementation. Our proposal, however, is not based on the Pauli group stabilizer

formalism. Accordingly, we review a more general framework of quantum error correction.

The general mathematical formalism of subspace code quantum error correction180 is

summarized as follows. First, k qubits of logical quantum informationHL 'Q⊗k are encoded via

an encoding process E into n physical qubitsHP 'Q⊗n. Next, the physical qubits are subjected to

some noise process N . Finally, the quantum information is attempted to be recovered by a

decoding process D. The quality of the quantum error correction scheme can be characterized by

how well the sequence of processes approximates the identity channel D◦N ◦E ≈ I , which may

be quantified by either the average fidelity or worst-case fidelity of the quantum process, or by

some other figure of merit.

It is standard to use an encoding in which encoded states are pure: E(|ψ〉〈ψ|) = |ψ〉〈ψ|. The

linear span of state vectors in the range of E is referred to as the code space C. The code space is a

2k-dimensional subspace of the physical Hilbert space, C ≤HP. It is instructive to factor the code
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space into a logical subsystemHL̄ and a syndrome subsystemHS,

C 'HL̄⊗ span(|s0〉)≤HP 'HL̄⊗HS, (6.1)

where |s0〉 is a fixed state ofHS. This factorization does not correspond to a separation of physical

qubits, but rather to a separation of virtual subsystems264,371, and is the key structure of the

subsystem principle of quantum error correction180.

The encoding should be chosen to match the features of the noise model. It is standard to model

the noise as a completely positive trace-preserving map, expressed in Kraus representation as

N (·) = ∑ j K j ·K†
j . Perfect recovery is possible if and only if there exists an encoding C such that

each Kraus operator satisfies

K j |ψ〉=V †(|ψ〉⊗ |τ j〉) (6.2)

for all |ψ〉 ∈ C and for a fixed unitary V † and some unnormalized |τ j〉 which depend on K j; note

that this is simply a rephrasing of the Knill-Laflamme condition181 for exact correctability.

Conditional upon the syndrome systemHS being initialized in |s0〉, the logical quantum

information is protected from the noise in the virtual subsystemHL̄. If errors are to be corrected

while the quantum information is still encoded, V † is inverted by the application of V and the

syndrome system is reset back to |s0〉. To decode, the logical subsystem is mapped back into the

k-qubit systemHL, and the syndrome qubits are simply traced out.

To briefly make contact with the stabilizer formalism, the code is defined by the intersection of

eigenvalue-1 subspaces of the Pauli stabilizer operators {S j}, which admit the decomposition

S j = IL̄⊗ (S̃ j)S, while the logical operators {Zi,X i} of the code decompose as Zi = (Zi)L̄⊗ IS. For

a more thorough account of this connection, see264 or180.
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Figure 6.1: Training stage schematic of the QVECTOR algorithm. a) QVECTOR uses a classical optimizer to optimize a function whose output value is
determined by calling a quantum subroutine, the quantum average fidelity estimator. b) The quantum average fidelity estimator uses a variational quantum
circuit to send random-sampled states S |0〉⊗k through the circuit W~q ◦V~p and records the measured channel fidelity of each state as 0 or 1. The average of
these measured channel fidelities is output and fed back to the classical optimizer. c) Within each call to the average fidelity estimator, the quantum circuit
is run L times. In each run, the state |0〉⊗n is initialized on k logical qubits and n− k syndrome qubits, the k logical qubits are transformed by the 2-design
sampled unitary S, the noisy encoding-decoding circuits V~p and W~q are applied, the inverse of S is applied, and the k logical qubits are measured in the
computational basis. d) The variational circuit V~p and W~q may be parameterized as seen fit by the particular device. One example of V~p, constructed from
single-qubit X- and Z-rotations, and 2-qubit controlled-Z rotations is depicted; here, the variational parameters, p1, p2, . . ., are the rotation angles of each
circuit element.

175



6.3. Quantum variational error correction algorithm (QVECTOR)

6.3 QUANTUM VARIATIONAL ERROR CORRECTION ALGORITHM (QVECTOR)

The objective of the quantum variational error corrector (QVECTOR) algorithm is to output an

encoding and recovery circuit which sufficiently correct errors in a quantum memory. First we

describe the protocol used for optimizing, or training, the encoding-recovery circuits, then we will

describe their implementation as an error correction scheme.

The physical qubits are divided into two sets, qubits which will encode k logical qubits and r

qubits which facilitate the non-unitary error-recovery process. The encoding and recovery are

implemented with a circuit of tunable gates. Before encoding, the first k qubits are prepared in a

to-be-encoded state |ψ〉 and the remaining n− k qubits are initialized in a fiducial state |0〉⊗n−k.

The sequence of gates V (~p) then acts to encode the state of the first k qubits into n qubits. The

recovery process is aided by an additional register of r “refresh” qubits, and is implemented by a

sequence of gates W (~q) coupling all n+ r qubits.

The figure of merit, or cost function, we use to evaluate an encoding-recovery pair is the average

code fidelity, based on the quantum channel Haar average fidelity82. For a (possibly) noisy

recovery operationR, the average code fidelity is defined as

〈F〉 ≡
∫

ψ∈C
〈ψ|R(|ψ〉〈ψ|) |ψ〉dψ, (6.3)

where the integral is performed with respect to the Haar distribution of states in the code space. In

addition to evaluating the preservation of the logical qubits, it scores the ability of the encoded

recovery circuit W (~q) to properly return the quantum information to the code space. A

well-performing encoded recovery operation can be applied in sequence to extend the lifetime of

the quantum memory.

As a hybrid quantum-classical algorithm, QVECTOR uses a quantum and a classical processing
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Chapter 6. A variational algorithm for device-tailored quantum error correction

unit working in tandem. The objective of the classical processing unit is to optimize the average

code fidelity with respect to the tunable circuit parameters (~p,~q), while the quantum information

processing unit is called by the classical processor as a subroutine to estimate the average code

fidelity associated with the given encoding-recovery pair (V (~p),W (~q)).

The average code fidelity estimation procedure we use is inspired by the the sampling approach

of82,97. Assuming S and S† are efficient to implement, the input-output fidelity of any term in

Eq. (6.3) can be efficiently computed by preparing |0〉⊗k |0〉⊗n−k, applying state preparation S on

the first k qubits, performing the encoding-decoding operation (V (~p)†
n⊗ Ir)W (~q)(V (~p)n⊗ Ir),

applying the inverse of S, and then measuring the first n qubits in the computational basis. After N

trials, the fraction of all-0 outcomes estimates the fidelity ofR(|ψ〉〈ψ|) with respect to |ψ〉〈ψ|

with standard deviation O( 1√
N
).

To obtain an estimate of the average code fidelity, we could vary the state preparation circuit S,

and obtain code fidelity data for sufficiently many samples S drawn from the Haar distribution.

However, because Haar-random sampling is not efficient243 and because the average code fidelity

depends only on the second moment of the distribution, we instead sample S from an efficiently

implementable unitary 2-design82. A unitary 2-design is a measure µ on the unitary group U(d)

satisfying ∫
U(d)

S⊗2⊗S†⊗2
dµ(S) =

∫
U(d)

U⊗2⊗U†⊗2
dU. (6.4)

With a 2-design µ , the average code fidelity of the encoding-decoding is written as

〈F〉 ≡
∫
U(d)
〈0(n)|S†V†

~pW~qV~p
(

S |0(n)〉〈0(n)|S†
)

S |0(n)〉dµ(S), (6.5)

where V~p andW~q denote the physically implemented quantum channels—noisy versions of the

parameterized circuits. This quantity may be estimated with standard deviation N after O( 1√
N
)
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6.3. Quantum variational error correction algorithm (QVECTOR)

trials as follows. In each trial, S is sampled from the 2-design and implemented in the process

S†V†
~pW~qV~pS that is applied to the initial state |0〉⊗n. In each trial, the first n qubits are measured in

the computational basis and the number of all-0 outcomes over N constitutes an unbiased estimator

for the average code fidelity.

In some cases, it may be favorable to implement an approximate unitary 2-design. A good

candidate is the recent construction of an ε-approximate 2-design239, which is particularly simple

to implement. Using this approximate 2-design, each quantum measurement is interpreted as

returning a binary sample from a biased estimator of the true average fidelity. As shown in

Appendix 6.6.3, using ` applications of the randomization circuit in239, the bias of this estimator is

upper bounded by 2k(`+1)+2k`−2
22k`(2k−1) ∼O(1/2k`). Thus, after N samples from this biased estimator, the

estimated average fidelity is expected to deviate from the true average fidelity as O( 1√
N
+ 1

2k` ).

A schematic of this fidelity estimation algorithm is depicted in Figure 6.1a. The quantum fidelity

estimation algorithm serves as a cost function evaluation subroutine which is called by the classical

processor that performs an optimization such as LBFGS246 or SPSA320. Any “quantum speedup”

realized by this algorithm is due to the efficiency with which a quantum circuit can be used to

estimate its own average fidelity*.

After the circuit is trained to a sufficient average fidelity, it is ready to be used as a quantum

error correction scheme for preserving a quantum memory. Once the quantum information is

encoded using V (~p), the recovery circuit W (~q) may be applied at regular time intervals to recover

from errors accrued in the memory. Before each recovery step, the refresh qubits must be reset to

the fiducial state |0〉⊗r.

*Note that the analysis in this chapter does not unequivocally prove that such a speedup is possible with this approach.
As this method is not easily amenable to theoretical analysis, a proper evaluation of its effectiveness will come from
physical implementation.

178



Chapter 6. A variational algorithm for device-tailored quantum error correction

6.4 NUMERICAL SIMULATIONS

Towards evaluating the effectiveness of this algorithm, we simulate its performance on several

few-qubit examples in the presence of simple noise models. Against three qubit phase-damping

error, we find that the algorithm is able to learn an encoding and recovery map which perform

nearly as well as the optimal phase-error code and recovery process. Considering a more realistic

noise process by incorporating amplitude damping116 on five qubits, we find that our algorithm can

learn useful error correction which exploits coherence in the Pauli errors where the five-qubit code

fails to improve the physical-qubit fidelity.

All noise in the system is modeled as a quantum channel which acts after the encoding map and

before the recovery process. As such, the state preparation, parameterized circuit gates, and

measurements are taken to be ideal. For a noise channel N , the optimization cost function is

defined as the average code fidelity of the quantum process V†
~pW~qNV~p.

The variational circuits consist of layers of single qubit rotations interleaved with two-qubit

entangling operations. An example is shown in Figure 6.1.d., where the variational circuits consist

of single-qubit Pauli-X and Pauli-Z rotations as well as nearest-neighbor controlled-Z rotations,

whereby the variational parameters ~p and~q control the rotation angles of each of these gates. The

specific form of the variational circuits we use is described in Appendix 6.6.2. As the QVECTOR

algorithm is agnostic with respect to the choice of variational circuit structure, we chose to

simulate circuits which can be implemented natively in existing hardware23. The classical

optimization can be performed using a variety of methods, including SPSA320, basin-hopping347,

or Bayesian optimization232. However, the reported data was obtained using the quasi-Newton

method L-BFGS246.

Three-qubit phase-damping- In the first simulation, our goal is to analyze the performance of a

quantum memory with active recovery learned by the QVECTOR algorithm. We consider a setting
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Figure 6.2: QVECTOR-learned quantum memory. The average fidelities after each 1.8 µs recovery step
are plotted for various procedures, showing that the QVECTOR-learned recovery nearly matches that of
the optimal recovery procedure, as given by the standard phase damping code. In the no-recovery case
(i.e. decoherence of a single physical qubit), the noise process in each step is modeled by a probabilistic
phase damping with error probability p = 0.045, corresponding to T2 = 19 µs23. To account for additional error
due to noisy gates in the optimal and QVECTOR recoveries, the noise here is modeled by a probabilistic
phase damping with error probability p = 0.091. Despite the addition of gate error, the QVECTOR recovery
extends the effective T2 by nearly six-fold to ∼ 110 µs, while the optimal recovery extends this to ∼ 165 µs.
The QVECTOR recovery circuit uses just 30 layers of two-qubit gates, which is comparable to the number
used in the optimal recovery circuit. The inset depicts the many-recovery limit, where the QVECTOR average
fidelity eventually drops below the no-recovery average fidelity after roughly 150 recovery steps, possibly due
to systematic over-rotation in the learned recovery process.

where a single qubit is encoded into three qubits which are subject to independent probabilistic

phase damping. Two additional (noise-free) qubits are used to facilitate an encoded recovery

operation. As described in Appendix 6.6.1, the phase-flip error rate is chosen to match the

specifications of a sequence of realistic one- and two-qubit gates implemented with Xmon qubits23

corresponding to the particular parameterized circuit we employ (see Appendix 6.6.2). We find

that this corresponds to a single qubit phase-flip probability of p = 0.091 and requires a duration of

1.8 µs. There are two points of reference for assessing the performance of QVECTOR. The first is

the case of no error correction, where a single physical qubit is used as a quantum memory. As

outlined in Appendix 6.6.1, to account for the lack of noisy gates in this case, the error rate in the

no-encoding case is decreased to p = 0.045 per time step. The second point of reference is the case
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of optimal encoding and recovery with respect to the p = 0.091 phase-damping process. The

standard phase-error code and corresponding recovery optimize the average fidelity metric with

respect to a general phase-damping process.

As described in detail in Appendix 6.6.2, V (~p) and W (~q) are trained with respect to the above

noise model. The encoding and recovery pair we use was selected as the optimally performing

scheme among twelve distinct training attempts. To simulate the performance of these optimized

circuits as a quantum memory, we compute the average fidelity of the process V†
~p(W~qN )MV~p for a

various number of iterations M. As shown in Fig. 6.2, we find that, with respect to phase-damping

noise, the simulated QVECTOR algorithm results in a quantum memory that has an effective T2

time of approximately 110 µs, nearly six times that of the bare physical qubit. This shows that,

although the gates used to implement the QVECTOR recovery circuit are modeled as to incur

additional noise, there is, nonetheless, an improvement in the lifetime of the quantum memory.

For the first ten or so recovery steps, the QVECTOR average fidelity remains comparable to that

of the optimal recovery. However, as shown in the inset of Figure 6.2, the QVECTOR average

fidelity equilibrates to 〈F〉= 1/2 as opposed to 〈F〉= 2/3, dropping below the no-encoding curve

after roughly 150 iterations. We conjecture that this is due to a systematic over-rotation in the

recovery process which accrues over many repeated recoveries. We obtained evidence for this

explanation by examining the zero-noise limit and finding that the average fidelity in this case

undergoes damped harmonic oscillation with a period of 1089 recovery steps. By training on just a

single recovery step, such an over-rotation is indistinguishable from incoherent error. This points

to the possibility of mitigating such over-rotation error by training on multiple recoveries, as

discussed in the outlook section.

Five-qubit communication setting with amplitude- plus phase-damping error- The goal of the

second simulation is to test the simulated QVECTOR performance against a more realistic noise

181



6.4. Numerical simulations

model and in a different error-correction setting. In some instances of a quantum memory, such as

during transmission of a quantum state during communication, active error recovery is impractical

or unavailable. This situation arises, for instance, if one were attempting to relay qubits through an

optical fiber or transport qubits between two neighboring quantum processors. If one cannot

repeatedly apply a recovery channel during transmission, the best error-reduction one can hope to

achieve is an optimized encoding at the source followed by a single decoding at the destination.

We investigate the performance of the QVECTOR algorithm in such a case, determining the

average fidelity for various “wait times” corresponding to the delay between transmission and

reception when the state is subject to error.

In the single decoding scenario, the quantum information does not need to be returned to the

code by the recovery step. Rather, the encoded quantum information only needs to be decoded

back to the first physical qubit. Thus, a unitary correction suffices, and the refresh qubits are

unnecessary (i.e. r = 0). In this setting, we analyzed QVECTOR’s performance where k = 1,

n = 5, and r = 0 subject to independent continuous amplitude- plus phase-damping (APD) for

various wait times with T1 = 57 µs and T2 = 19 µs, as described in Appendix 6.6.1.

As shown in Fig. 6.3, the simulated QVECTOR algorithm learns an encoding and recovery pair

with average fidelity greater than a physical qubit subject to the same noise process. We also

compare to the standard five qubit code, which is known to be optimal for depolarizing noise273.

We find that, although the five qubit code fails to be useful after t = 3.5 µs, by training QVECTOR

for a 4 µs wait time, the encoding-decoding circuit learned by QVECTOR outperforms the

no-encoding average fidelity for all wait times considered. The numerically-optimized average

fidelity is obtained using the iterated semi-definite programming method of184 (see Appendix

6.6.2), and plotted for comparison. Through training, the encoding-decoding pair was selected as

the optimally performing scheme among three distinct training attempts.
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Figure 6.3: QVECTOR-learned encoding-decoding. We consider a quantum communication setting,
where only a single recovery-decoding step is available after a pre-determined “wait time”. For each
wait time, the average fidelities of various encoding-decoding procedures are plotted, showing that the
QVECTOR-learned encoding-decoding scheme continues to be useful beyond the time at which the stan-
dard five-qubit code fails to be so. Between encoding and decoding, the noise is modeled as a continu-
ous amplitude- plus phase-damping channel with T2 = 19 µs and T1 = 57 µs (see Appendix 6.6.1). The
numerically-optimized encoding-decoding pairs are obtained using the iterated semi-definite programming
method of184. The QVECTOR-learned encoding-decoding pair were initially trained for the 4 µs wait time.
This QVECTOR-optimized encoding-decoding pair for 4 µs was used as an initial point for gradient-based op-
timization of the remaining wait times. The QVECTOR encoding-decoding pairs continue to be useful beyond
the point at 3.5 µs where the five-qubit code drops below the no-encoding average fidelity.

Finally, we investigated the potential of the QVECTOR algorithm for discovering

encoding-decoding circuits which exploit structure in the noise in ways that stabilizer codes do not.

In the amplitude- plus phase-damping model, the Kraus operators are coherent superpositions of

Pauli operators. A common technique in simulating noise is to ignore such coherences, and

represent the process as an incoherent mixture of Pauli errors. This simplification is referred to as

the Pauli-twirling approximation (PTA)116.

There is mounting evidence in the literature that, in order to compute the performance of

stabilizer codes under realistic noise processes, it suffices to compute their performance against a

PTA version of the corresponding noise channel132,335. However, this condition holds only for

small error rates173. At higher error rates and in the presence of coherent errors, error correction
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Exploiting coherence between Pauli errors
Scheme Exact APD PTA-APD

QVECTOR∗ 0.912 0.832
Numerically optimized 0.920 0.904

No-encoding 0.898
Five qubit code 0.890

∗ The same encoding-decoding is used for both Exact APD and PTA-APD.

Table 6.1: This table compares the average fidelities achieved by various error correction schemes for
the amplitude- plus phase-damping noise model at wait time 4 µs. The right-most column reports the per-
formance of the scheme against an approximate noise model, which ignores coherence among Pauli er-
rors, obtained by Pauli-twirling116 the noise channel (see Table 6.2). While the five qubit code (red) clearly
does not take advantage of the coherence in the amplitude- plus phase-damping (APD) channel, the
encoding-decoding obtained by QVECTOR can be shown to genuinely make use of this coherence. The
average fidelity achieved by the QVECTOR encoding-decoding (green) is, not surprisingly, diminished
when computed against a Pauli-twirling approximation (PTA) of the APD noise. To show that the QVEC-
TOR encoding-decoding unequivocally exploits the Pauli error coherence, we compare to the average fidelity
of the numerically-optimized encoding-decoding, subject to the PTA-APD noise model, where Pauli-error
coherence is removed (orange). The discrepancy between these two shows that the QVECTOR encoding-
decoding exploits the coherence between Pauli errors in the noise model to achieve an average fidelity that
could not be reached without such coherence.

schemes constructed around the Pauli-error model can lead to fidelities even worse than those

obtained without encoding (c.f. Fig. 6.3).

We considered the APD noise model acting for 4 µs with T1 = 57 µs and T2 = 19 µs, matching

the parameters used in Fig. 6.3. As found in Table 6.2, the Kraus operators of the APD channel are

coherent superpositions of Pauli errors, while the Pauli-twirled approximation of the APD channel

(PTA-APD) constitutes an incoherent mixture of Pauli errors. An important physical difference

between these two channels is that the former is non-unital, enabling T1 decay to the ground state.

As shown in Table 6.1, we computed the average fidelity for various encoding-decoding

schemes subject to APD and to PTA-APD. For the QVECTOR case we used the

encoding-decoding obtained for the 4 µs APD noise model as reported in Fig. 6.3. The

performance of this scheme (green) relies significantly on the coherence between the Pauli errors

in the APD noise model, as evidenced by the discrepancy between its APD and PTA-APD average

fidelities. In contrast, the five qubit code does not utilize the coherence among the Pauli errors
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(red). It remains to verify that the average fidelity achieved by QVECTOR cannot be obtained by

any encoding-decoding if the Pauli-error coherence is removed from the noise model. We

performed the bi-convex optimization method of184 to numerically determine the maximal average

fidelity that can be achieved among all encoding-decoding schemes subject to PTA-APD (orange).

Comparing this to the QVECTOR value, we find that the QVECTOR encoding-decoding exploits

the coherence between Pauli errors in that this average fidelity cannot be achieved by any

encoding-decoding scheme if Pauli-error coherence were removed from the noise process.

This finding highlights the fact that codes designed to be agnostic to coherence among Pauli

errors, such as many stabilizer codes, fail to exploit such structures. In contrast, the QVECTOR

methodology does not build in this limitation, as it does not assume a noise model a priori.

Therefore, this approach may be able to outperform other approaches by exploiting structure, such

as Pauli-error coherence, in the noise processes.

6.5 CONCLUSIONS AND OUTLOOK

We developed a hybrid quantum-classical algorithm which learns encoding and error-recovery

processes tailored to the noise of the target quantum device. The opportunities for improvement

over leading quantum error correction techniques are three-fold. First, by using a native

parameterized gate set, this approach may facilitate a more-effective use of available resources for

realizing quantum error correction. Second, compared to previous optimization-based approaches,

the optimization algorithm in QVECTOR is, in principle, scalable: the simulation of the noise

process is efficient and accurate, as the device perfectly simulates its own noise, while the average

code fidelity estimation for assessing performance is efficient by using randomized

benchmarking-like techniques. Finally, unlike other approaches to error correction, QVECTOR

does not assume any error model a priori. In contrast, it tailors the encoding and recovery
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processes to the noise inherent in the device, which might allow to correct errors beyond the

Pauli-error model used by stabilizer codes.

We simulated two distinct five-qubit examples of the QVECTOR algorithm which can be

performed with existing hardware. In the first case, we simulated an encoding of a single qubit into

three physical qubits subject to realistic rates of phase damping noise. Two ancillary qubits are

used to implement the encoded recovery. The simulated QVECTOR algorithm learns an encoding

and recovery process which extends the T2 of the quantum memory from ∼ 19 µs to ∼ 110 µs.

Additionally, we considered a quantum communication setting, in which there is no active error

correction, but, instead, the quantum information is recovered after a known wait time. Here, we

simulated five qubits subject to a combination of continuous amplitude- plus phase-damping noise

for various durations. We found that the QVECTOR-learned encoding-decoding pairs continue to

bear an advantage beyond wait times of 3.5 µs, the point where the five qubit code fails to be

useful. By testing the QVECTOR-learned encoding-decoding pairs under a Pauli-twirled

approximation of the same error model, we found that QVECTOR may outperform standard

stabilizer codes by exploiting coherence among Pauli errors.

Although promising, the simulation results neither prove the algorithm’s scalability nor render it

impractical. Reaching such conclusions will likely require an empirical approach. The outcome

will be largely dependent on the nature of the cost function landscape (i.e. the estimated average

code fidelity as a function of the circuit parameters) and the classical optimization methods that are

used to explore it. It is possible that, as the system size is scaled up, the cost function landscape

becomes increasingly proliferated with poor local optima or saddle points.

Conversely, and more optimistically, it is possible that realistic noise processes will possess

more structure to exploit than the simulated noise models. This could result in a cost function

landscape with many favorable local optima. An inspiring example is given in recent work where
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the structure of correlated noise is exploited to design non-standard quantum error correction

schemes for quantum sensing195. Crucially, the nature of this cost function landscape is highly

dependent on the choice of variational circuit structure, highlighting the importance of designing

effective variational circuits.

There are several issues which remain to be investigated. First, the algorithm should be

simulated against a more realistic noise model which takes into account the error of each gate,

including those of state preparation and measurement. There will be stochastic errors in the cost

function estimation not yet accounted for due to finite sampling error and state preparation and

measurement (SPAM) errors. For the latter, it may be favorable to use randomized benchmarking

techniques216, fitting a function of the fidelity estimation for various circuit iterations to obtain a

more accurate error rate per iteration estimate, mitigating the offset due to SPAM errors.

There are several other metrics for scoring the performance of a quantum error correction

scheme in addition to the simple-to-compute average fidelity. One figure of merit, known as the

worst-case fidelity, or simply the error rate286, is considered to be a more faithful metric for the

quality of a quantum process348, although much more difficult to calculate. However, recent work

has shown that worst-case fidelity, along with average fidelity fail to properly assess the

performance of error correcting schemes in some cases362. It remains to determine which metrics

will ultimately be the most useful in practice.

The most important future direction is the augmentation of the existing QVECTOR algorithm to

enable learning error-corrected quantum gates for fault-tolerant quantum computation. Towards

this, we may view the current work as a step in this direction, as it provides evidence that simple

error-corrected gates (i.e. the identity gate) may be variationally constructed. One could imagine

training the encoded recovery circuit to be able to apply a target elementary logical gate, such as a

two-qubit CNOT gate. In principle, a polynomially-sized universal gate set could be learned in this
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manner, and then implemented for quantum computation. The efficacy of this approach will be

determined by the performance of such gates under composition.

Concatenation of quantum error correcting codes provides the basis for the standard model of

quantum computation. It remains to explore concatenated variational error correcting codes. As an

example, one could imagine learning several five-qubit variational codes and corresponding

recovery circuits, placing five of these in parallel, and applying another round of variational

encoding on these twenty-five qubits.

Finally, the most encouraging feature of this approach to quantum error correction is that it can

be implemented with existing hardware. Although it lacks the beauty of stabilizer QEC and does

not boast any theoretical promises à la threshold theorems, QVECTOR is sufficiently different

from standard approaches that it may provide a fresh avenue of exploration towards realizing

quantum computation.

6.6 APPENDIX

6.6.1 NOISE MODELS

We simulated the action of noise channels using the standard Kraus operator formalism. In the one

qubit case, the action of the channel in the density matrix is given by the operation

N (ρ) =
m

∑
j=1

K jρK†
j (6.6)

where ρi is the initial density matrix and K j are the corresponding Kraus operators satisfying the

completeness relation ∑
m
j=1 K†

j K j = I. To simulate the effect of noise on an n-qubit register, we

assumed an independent noise model, where the Kraus operators correspond to a tensor products
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of single qubit Kraus operators. The effect of noise on the n-qubit register can be written as:

N⊗n(ρ) = ∑
j1,..., jN

(
n⊗

i=1

K ji

)
ρ

(
n⊗

i=1

K†
ji

)
, (6.7)

where the sum runs over all the possible mN tuples of j1, · · · , jN indexes.

We consider two different noise channels in our QVECTOR simulations: phase-damping (PD)

and a combination of amplitude damping and phase damping (APD). Both are captured by

standard T1,2 decoherence according to the following map:

ρ =

1−ρ11 ρ01

ρ∗01 ρ11

→ (6.8)

 1−ρ11e−t/T1 ρ01e−t/2T1e−t/Tφ

ρ∗01e−t/2T1e−(t/Tφ ) ρ11e−t/T1

 (6.9)

where 1
Tφ

= 1
T2
− 1

2T1
. The Kraus operators for each channel are described in Table 6.2. The

parameters γ and λ are computed with respect to the experimental parameters corresponding to the

wait time of the decoherence, (tstep), the decay time, (T1), and the dephasing time, (T2), according

to the equations γ = 1− e−tstep/T1 and λ = e−tstep/T1 + e−2tstep/T2 . We also employed the Pauli-twirled

version of the APD channel, denoted as PTA-APD, as described in116. The PD channel is obtained

by assuming tstep,T2� T1 and the phase-error probability per time step is p = (1− e−tstep/T2)/2.

This assumption does not fully capture the specifications of the Xmon qubits which we are basing

the simulations on22,23. This model, therefore, is chosen as a simple starting point from which

more-sophisticated explorations should be carried out.

In our simulations, we chose noise specifications to match error rates of the physical processes

arising in state of the art superconducting qubit architectures. In the first simulation, we modeled

189



6.6. Appendix

Noise channel Kraus Operators
Phase damping

(DP)
K1 =

√
pI; K2 =

√
1− pZ

Amplitude- plus
Phase-Damping

(APD)
K1 =

[
1 0
0
√

1− γ−λ

]
;K2 =

[
0
√

γ

0 0

]
;K3 =

[
0 0
0
√

λ

]
Pauli twirled -

APD (PTA-APD)
K1 = (1− pX − pY − pZ)I; K2 = pX X ; K3 = pYY ; K4 = pZZ

Table 6.2: Kraus Operators for common one-qubit error channels employed in classical simulations of the
QVECTOR protocol. p is the error rate for the phase damping process. The parameters γ and λ are asso-
ciated to the amplitude damping and phase damping processes, respectively, and are computed from the
process time tstep and the T1 and T2 times as γ = 1− e−tstep/T1 and λ = e−tstep/T1 + e−2tstep/T2 . The parameters

for the Pauli-twirled approximation (PTA) of APD are calculated as pX = pY = γ

4 and pZ = 1
2 −

γ

4 −
√

1−γ−λ

2
116.

the noise as independent single-qubit PD channels, acting on the three code-carrying qubits prior

to the recovery circuit. The single-qubit phase-error probability per recovery step was set so as to

incorporate the error incurred by each gate in the recovery circuit as follows.

The three-qubit noise process N was constructed from a circuit of single qubit phase-flip

processes, which correspond to the unitary gates in the recovery circuit. To each single-qubit gate

in the recovery circuit, we associated a corresponding single-qubit phase-flip noise process. The

phase-flip probability of this noise process was set to p′ = 0.00110 to match the single-qubit gate

error rate reported in23. To each two-qubit gate in the recovery circuit, we associated a

corresponding pair of parallel single-qubit phase-flip noise processes. This phase flip probability

was set to p′′ = 0.00113, as computed from the two-qubit gate error rate of23.

Taking the product of these sequences of phase-flip noise processes, we compute that,

throughout the recovery circuit, each qubit incurs a probabilistic phase-error rate of p = 0.091. The

global noise process N , then, consists of three independent PD channels, each with error

probability p = 0.091.

In the case where a single physical qubit is used as a quantum memory without error correction,

the error rate will be smaller, as the noisy gates are not present. The error model in this case is
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single-qubit phase damping with T2 = 19 µs. The performance of the no-encoding case is fairly

compared to the error correction case by choosing the duration of this phase-damping decay to

match the duration of the recovery circuit. Taking the single-qubit and two-qubit gate times to be

10 ns and 40 ns, respectively, as reported in23, and taking the specifications of the variational

recovery circuit described in Appendix 6.6.2, the recovery duration is computed to be 1.8 µs.

Accordingly, the no-encoding physical qubit noise process over this time step is probabilistic phase

damping with error probability p = 0.045.

In the second simulation, we considered a setting where no active recovery is available and APD

noise acts continuously during the wait time between encoding and decoding. We chose the value

T2 = 19 µs to match the dephasing rates reported in23. Although the T1 times in this work were

roughly twice that of T2, we consider a model in which T1 = 57 µs, three times that of T2. We

choose this regime so that the error model differs sufficiently from isotropic depolarizing noise, in

which the five-qubit code is known to be optimal273. In this regime, the dephasing errors are more

dominant than the amplitude damping errors (which are coherent combinations of Pauli X and Y

errors).

6.6.2 NUMERICAL SIMULATION OF QVECTOR

We simulated the QVECTOR protocol using a Python script supplemented with the QuTiP

library161,162. Since our simulations involve a single logical qubit, average fidelities were

computed over the one qubit stabilizer states |si〉: |+〉, |−〉, |0〉, |1〉, |+ i〉 and |− i〉, which form a

2-design. For systems with 2 or more logical qubits, we could use an approximate 2-design circuit

such as the one described in239 (See Appendix 6.6.3).

The simulation of the QVECTOR protocol comprises: 1) preparation of the initial state for the

code register ρsi = |si〉〈si|⊗ |0(n−k)〉〈0(n−k)|, 2) application of the encoding channel V~p, 3)

application of the noise process N , 4) application of the recovery channelW~q with r refresh qubits
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and 5) decoding by application of V†
~p. The final average fidelity is computed as:

〈F〉= 1
Ns

Ns

∑
i=1

F
(

ρsi ,V†
~pTrR

[
W~q

(
NV~p (ρsi)⊗|0(r)〉〈0(r)|

)])
(6.10)

where Ns stands for the number of states employed to compute the average fidelity and

F(ρ,σ) = tr(
√

σ1/2ρσ1/2)2. The partial trace is performed over the refresh qubits used for

recovery, which are initialized in the state |0(r)〉. In the simulations presented in this work Ns = 6,

corresponding to state 2-design formed by the six one-qubit stabilizer states. For our example of

the phase damping channel, n = 3, k = 2 and r = 2. In our example of APD, we explored an

approach without recovery, such that n = 5, k = 4, and r = 0.

The encoding V~p and recoveryW~q were implemented using programmable circuits83,319. These

types of circuits generally comprise a fixed networks of gates, where the parameters associated to

the gates, i.e. rotation angles, constitute the variables for optimization. The pattern defining the

network of gates is regarded as the unit-cell, which can be repeated to increase the flexibility of the

model. The programmable circuits employed in this work are illustrated in Figure 6.4. The

unit-cells of these circuits follow a pattern consisting of layers of single qubit rotations interleaved

with entangling blocks. This heuristic construction is very amenable to current quantum

hardware168,234.

Our first programmable circuits, shown in Figure 6.4(a), are comprised of two layers of

single-qubit rotations and two entangling layers. The layers of single-qubit rotations contain Xθ

and Zθ rotations applied on each qubit, where the notation Aθ stands for exp(−i θ

2 A). The

entangling layers comprise all the possible adjacent controlled-Zθ gates, with controls in the odd

(even) qubits, and targets in the even (odd) qubits. The total number of parameters in this circuit is

2n+ l(5n−1) where l is the number of repetitions of the unit cell. The unit-cell of our second

programmable circuit, shown in Figure 6.4(b), comprises layers of single qubit arbitrary rotations
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Figure 6.4: Unit-cells of programmable circuits employed for QVECTOR simulations for a three-qubit reg-
ister. Both circuits comprise alternating layers of single-qubit rotations (red) and entangling operations
(blue). a) Unit-cell of adjacent controlled-Zθ rotations interleaved with layers of Zθ and Xθ rotations, where
Zθ = exp(−i θ

2 Z) (Analogous for X). b) Unit-cell comprises all the possible controlled-arbitrary single-qubit
rotations (denoted by R~p) in a given register, interleaved with layers of arbitrary single qubit rotations. Here
R~p = Zp1 Xp2 Zp3 . The index j runs from 1 to l, where l is the number of repetitions of the unit-cell. All the cir-
cuits are complemented with a single-qubit rotation layer after the last repetition.

interleaved with controlled- single qubit arbitrary rotations from the i-th qubit to the rest of the

qubits in the register. Arbitrary single-qubit rotations were implemented as R~p = Zp1Xp2Zp3 . The

total number of parameters of this circuit is 3ln(2n−1)+3n. In the simulations of the phase

damping channel, we represented the circuit for V~p anW~q using 10 and 15 repetitions of the circuit

of Figure 6.4(a). For the encoder of the APD example, we employed three repetitions of the

unit-cell of Figure 6.4(b).

After determining the form of the unitaries for V~p andW~q, the QVECTOR simulation proceeds

by optimizing the fidelity in Eq. 6.10. For our numerical simulations, we employed the L-BFGS

method55 with a numerical gradient (central finite difference formula with step size h = 10−6). The

circuit parameters were initialized by generating 100 random parameter settings, drawn uniformly
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from the range [0,4π), and selecting the set with the highest fidelity. Several optimizations were

launched in parallel and the best result was selected. Our numerical explorations indicated that the

average fidelity cost function might contain several local optima, and sampling different initial

points for the optimization might benefit the success of the procedure.

We point out that in experimental implementations of QVECTOR, the fidelity cost function will

be affected by errors introduced by sampling, as well as SPAM errors. In this scenario, the

procedure might benefit from the use of optimization algorithms more tolerant to noise, such as

Simultaneous Perturbation Stochastic Approximation (SPSA)234, as well as from global

optimization techniques such as Basin-Hopping347. Additionally, we expect that, in order to

more-effectively estimate the average fidelity in the presence of these unwanted fluctuations,

randomized benchmarking techniques should be employed (as outlined in the outlook section).

Lastly, we describe the bi-convex optimization routine which was used to compute the optimal

average fidelities for the APD noise processes at different wait times. This method developed in184

takes advantage of the fact that the average fidelity metric is a bi-linear, and, therefore, bi-convex

function of the encoding and decoding channels,

〈F(pD+(1− p)D′,N ,qE+(1−q)E ′)〉 ≥ p〈F(D,N ,qE+(1−q)E ′)〉+(1− p)〈F(D′,N ,qE+(1−q)E ′)〉

〈F(pD+(1− p)D′,N ,qE+(1−q)E ′)〉 ≥ q〈F(pD+(1− p)D′,N ,E)〉+(1−q)〈F(pD+(1− p)D′,N ,E ′)〉,

(6.11)

where, although these hold with equalities, the inequalities suffice to enable the convex

optimization method. The method proceeds by first choosing a random initial encoding E (chosen

as an isometry), and then performing semidefinite programming to optimize the average fidelity

with respect to the decoding D, which is implemented using CVX, a package for specifying and

solving convex programs124,125. Then, setting the decoding to this optimized variable, the average

fidelity is convex-optimized with respect to the encoding map E . This process is iterated, with

194



Chapter 6. A variational algorithm for device-tailored quantum error correction

Figure 6.5: Unit-cell of the quantum circuit that implements an approximate unitary 2-design according to239

in an n-qubit register. Layers are separated by colors. The one- and two-qubit gates in the first two layers
correspond to diag(1, eiφ j,p ) and diag(1, 1, 1, eiθ j,p,q ), respectively. The phases φ j,p and θ j,p,q are chosen from
{0,2π/3,4π/3} and {0,π}, respectively, uniformly at random. The third layer comprises Hadamard gates (H)
applied to all the qubits. All the gates in the first and the second layers are diagonal in the Pauli-Z basis and
can be applied simultaneously. The index j runs from 1 to `, where ` is the number of repetitions of the unit-
cell.

average fidelity increasing in each step until the improvement in a step falls below a chosen

threshold value. In practice, the optimized average fidelity varies from one run to the next

depending on the initial encodings (the procedure is, otherwise, deterministic). To improve

confidence that the obtained vale is sufficiently close to the optimal value, we perform many runs,

decreasing the threshold value until the obtained average fidelities become sufficiently independent

of the choice of threshold. Accordingly, although we can build substantial evidence for the value

being close to optimal, this method can only definitively obtain a lower bound on the optimal

average fidelity.

6.6.3 ACCURACY OF AVERAGE FIDELITY ESTIMATE FROM APPROXIMATE UNITARY 2-DESIGN

First we prove that the approximate 2-design of239 (See Figure 6.5), with ` applications of the

randomization circuit, leads to an estimator of the true average fidelity with bias upper bounded by

2k(`+1)+2k`−2
22k`(2k−1) ∼O(1/2k`). Let ν` be the measure on the unitary group that is sampled from using the

approximate 2-design of239 with ` repetitions. In the average fidelity estimation scheme, if we
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draw from ν` instead of an exact 2-design (such as the Haar measure), we will be sampling from a

biased estimator with mean

〈E`〉=
∫
〈0|U†M

(
U |0〉〈0|U†)U |0〉dν`(U), (6.12)

whereM= V†
~pW~qV~p. We give an upper bound on the bias |〈F〉−〈E`〉|. The 2-design average over

this measure may be renormalized in order to interpret it as a quantum channel

R`(σ) = d
∫

U⊗2σU⊗2†dν`(U). As shown in239, this quantum channel can be written as a convex

combination of two quantum channels,

R`(σ) = (1− p`)G(σ)+ p`C`(σ), (6.13)

where G is the renormalized average of an exact 2-design, C` is a quantum channel, and

p` = d`+1+d`−2
d2`(d−1) , with d = 2k being the Hilbert space dimension. To leverage this quantum channel

interpretation of the 2-design, we rewrite the expression in Equation 6.12 as follows,

〈E`〉=
∫

Tr
[
M⊗I

(
U⊗U |00〉〈00|U†⊗U†)F]dν`(U) (6.14)

=
1
d

Tr [M⊗I (R`(|00〉〈00|))F] , (6.15)

where F is the swap operator on the two systems. Replacing the channelR` with the convex

combination in Equation 6.13, we obtain an expression for the estimator mean in terms of the
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actual mean,

〈E`〉=
1
d
(1− p`)Tr [M⊗I (G(|00〉〈00|))F] (6.16)

+
1
d

p`Tr [M⊗I (C`(|00〉〈00|))F] (6.17)

= (1− p`)〈F〉+ p`δ`. (6.18)

The bias of the estimator is |〈F〉−〈E`〉|= p`|〈F〉−δ`|. To bound this value, we bound

δ` =
1
d

Tr [M⊗I (C`(|00〉〈00|))F] . (6.19)

From Equation (12) in239,

C`(|00〉〈00|) = αPsym +β ∑
i
|ii〉〈ii| , (6.20)

where α,β ≥ 0 and Psym is the projector into the symmetric subspace. Since C` is separable, it is

invariant under partial transpose of either system. The partial transpose of the swap operator is the

unnormalized Bell state FTB = ∑i, j |ii〉〈 j j| ≡ dΩ. Since the trace of a bipartite operator is equal to

the trace of the partial transpose of that bipartite operator, we can use

C`(|00〉〈00|)TB = C`(|00〉〈00|) and 1
dF

TB = Ω to obtain

δ` = Tr [M⊗I (C`(|00〉〈00|))Ω] . (6.21)

Observing that Tr [M⊗I (C`(|00〉〈00|))Ω] is the inner product of two quantum states, we can

upper bound this value by 1. Thus, the bias of the estimator is upper bounded by

p` = d`+1+d`−2
d2`(d−1) ∼O(1/d`).

After N samples from this biased estimator, our estimated average fidelity value is expected to
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deviate from the estimator mean 〈E`〉 by
√
〈E`〉(1−〈E`〉)/N. An upper bound on the expected

deviation of the sampling-estimated average fidelity from the true average fidelity is

1√
N
+

d`+1 +d`−2
d2`(d−1)

∼O
(

1√
N
+

1
d`

)
. (6.22)
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7
Generative adversarial quantum machine learning

for continuous distributions

Apart from minor modifications, this chapter originally appeared as:

“Variational quantum generators: Generative adversarial quantum machine learning for
continuous distributions”. Jonathan Romero and Alán Aspuru-Guzik, arXiv:1901.00848 (2018).
Reproduced with permission from the authors.

7.1 INTRODUCTION

Quantum computing, a technology that relies on the properties of quantum systems to process

information, is rapidly reaching maturity. Important problems that are hard to solve on classical

computers based on transistors, such as factoring and simulating quantum systems, can be solved

more efficiently using quantum computers210,308. These devices are nearing the noisy

intermediate-scale quantum (NISQ) era269, corresponding to machines with 50 to 100 qubits and

capable of executing circuits with depths on the order of thousands of elementary two-qubit

operations269,356. While NISQ devices will not be able to implement error-correction, as opposed

to fault-tolerant quantum computers (FTQC), they are expected to provide computational

advantages over classical supercomputers for certain problems, which includes sampling from

hard-to-simulate probability distributions1,43,269.

The limitations in the number of qubits and coherence times of NISQ devices have encouraged

199



7.1. Introduction

the adoption of the hybrid quantum-classical (HQC) framework as the de facto strategy to design

practical algorithms in the near term. The basic idea behind the HQC framework is that a

computational problem can be divided into several subtasks, several of which can be executed

more efficiently using a quantum computer while the rest can be deployed to a classical computer.

A subset of HQC algorithms called adaptive hybrid quantum-classical (AHQC) algorithms, use

classical resources to perform optimization of algorithm parameters. In this case, the quantum

subtask generally refers to the process of preparing a parameterized quantum state, followed by the

measurement of the expectation values of a polynomial number of observables that encode

information relevant to the problem-of-interest. The parameterized quantum state is obtained using

a variational quantum circuit, which consists of a set of tunable quantum gates whose parameters

are subject to optimization. Examples of HQC algorithms include the variational quantum

eigensolver (VQE)226,255, the quantum approximate optimization algorithm (QAOA)104, the

variational quantum error-correction scheme (QVECTOR)163, among others.

The HQC framework has also been adopted as the basis for designing quantum machine learning

algorithms for NISQ devices. One of the first algorithms of this type is the quantum autoencoder

(QAE)280,350, where a variational quantum circuit is optimized to compress a set of quantum states.

This is analogous to a classical autoencoder where an artificial neural network (ANN) is trained to

compress classical datasets. The connection between neural networks and variational circuits has

been further investigated, where it was shown that the HQC framework can approximate nonlinear

functions just as classical neural networks can60,231. Furthermore, variational circuits have

provided a new strategy for encoding classical information into quantum states, which is a

fundamental step for machine learning applications. In contrast with amplitude encoding, in which

the input vector is normalized and transformed directly into a quantum state, variational circuits

can encode classical data by taking the input vector as the circuit parameters138,231,297.
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In recent months, the combination of the strategies described above for encoding classical data

and designing HQC algorithms have led to an explosion of quantum machine algorithms for

performing both discriminative65,107,123,138,231,296,297,311 and generative tasks32,153,254,343 on

classical data using NISQ devices. In machine learning, discriminative models are trained to learn

the conditional probability distribution of a target variable y with respect to a set of observations x,

or p(y|x). In contrast, generative models are trained to learn the joint probability distribution

p(x,y), or alternatively, the conditional probability of the observed data with respect to the target

variable, p(x|y). Most HQC algorithms for discriminative modeling use a variational quantum

classifier107,123,138,231,296,311, where a variational circuit is optimized to directly model p(y|x) using

training data {xi,yi}. Another strategy is to use a variational circuit as a quantum feature map for

unsupervised classification with a support vector machine138,297. Meanwhile, HQC approaches to

generative modeling have focused on modeling discrete probability distributions by using a

variational circuit as a Born machine32,209,312,372. Born machines generate samples via projective

measurement on the qubits, for example, by measuring the qubits in the computational basis. While

this approach can learn probability distributions for small datasets used for benchmarking, such as

Bars-and-Stripes32,209, as well as quantum circuits for preparation of certain quantum states32, the

application of this model to general problems in generative modeling may be difficult due to the

exponential scaling of the number of measurements required for sampling the distribution32.

So far, HQC approaches for generative modeling of continuous probability distributions have

not been developed. Most industrial applications, such as image and sound processing fall into this

category. In this chapter we present a rather simple variational circuit architecture designed to

generate continuous probability distributions. This variational quantum generator (VQG)

comprises two quantum circuit components: the first one consists of a parameterized quantum

circuit used to encode a classical random variable to a quantum state. The second circuit
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corresponds to a variational circuit whose parameters are optimized to mimic the target classical

probability distribution. The output distribution is obtained by measuring the expectation values of

a set of predefined operators, whose values can be post-processed using a classical function. This

construction provides considerable flexibility in the design of the variational circuit, allowing to

easily incorporate VQG into classical neural network architectures. Furthermore, we show that our

VQG architecture can be trained using an adversarial learning approach121,212 leveraging automatic

differentiation28,35,240 to perform gradient-based optimization. That is, our VQG architecture

learns to generate samples from the data distribution based on feedback obtained from a

discriminator model, which simultaneously learns to distinguish between the samples coming from

the real data distribution and those produced by the generator. We show that VQG can be trained

using a classical neural network as well as a variational quantum classifier as discriminators.

This chapter is organized as follows: Section 7.2 briefly describes generative learning using

generative adversarial networks and summarizes some proposals for generative learning on

quantum computers. Section 7.3 describes the VQG architecture, its implementation, cost analysis,

and training process using adversarial learning. In Section 7.4 we provide a proof-of-principle

implementation and numerical simulation of a VQG example and describe the main challenges for

its implementation on NISQ devices. Section 7.5 offers some concluding remarks.

7.2 BACKGROUND

7.2.1 CLASSICAL AND QUANTUM GENERATIVE ADVERSARIAL LEARNING (GANS)

The machine learning literature provides a variety of generative models. Most of them are trained

using the principle of maximum likelihood, that consists of taking several samples from the data

generating distribution to form a training set and changing the parameters of the model to

maximize the likelihood of the observed data of being generated by the model. Generative models

202



Chapter 7. Generative adversarial quantum machine learning for continuous distributions

Figure 7.1: Depiction of the classical generative adversarial networks (GANs) scheme: the generator,
equipped with random samples from a prior distribution (noise source), produces samples that attempt to
mimic the real data samples. The discriminator outputs the probability that a given sample came from the
real distribution rather than the synthetic one.

in machine learning can be classified as explicit or implicit, depending on whether or not a explicit

form of the probability density function is used119. Very few tractable explicit models are known,

and most of them rely on approximations to the density function. On the other hand, most of the

implicit models consist of approximations that can mimic the process of sampling from the

generating distribution. Implicit models are further classified into models that require several steps

to generate a single sample, such as Markov chains, and models that can generate a sample in a

single step. Generative adversarial networks (GANs) belong to the latter category.

Generally, GANs consist of two neural networks, the discriminator and the generator, competing

against each other in a zero-sum game. Figure 7.1 illustrates the general framework of GANs.

Given a prior distribution over the noise parameters pz(z), the generator consists of a neural

network FG(z;Θg) over the parameters Θg that generates the distribution pg. On the other hand, the

discriminator is another neural network FD(x;Θd) that outputs a single scalar corresponding to the

probability of x coming from the real data distribution. Accordingly, FD is trained to maximize the

probability of assigning the correct label to both the training examples and examples coming from

FG. Simultaneously, FG is trained to minimize log(1−FD(FG(z))), related to the probability of
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fooling the discriminator. In summary, FD and FG play the following adversarial game:

min
G

max
D

(Ex∼pdata(x)[logFD(x)]+Ez∼pz(z)[log(1−FD(FG(z)))]). (7.1)

Assuming that the discriminator and the generator have infinite capacity, meaning that they can

represent any probability distribution, it is possible to show that the final stage of the game reaches

a Nash equilibrium where the generator produces data that corresponds to the observed probability

distribution, and the discriminator has 1/2 probability of discriminating correctly. Therefore, the

final result of the GAN is a generator model that produces samples from the observed distribution

by sampling the prior distribution pz(z). The space of z is usually called the latent space, and FG is

said to map samples from the latent space to the output space x. The adversarial framework has

proven very successful at training the generator to model a variety of probability distributions,

leading to practical applications in many fields, including image synthesis, semantic image editing,

molecular discovery, among others74,118,271. Nowadays, the application of GANs constitute an

exciting and fast growing research field that promises to impact many industries such as

self-driving cars, finance, and drug and materials discovery15,212.

Recently, different quantum adaptations of the GAN scheme have been proposed77,151,212,312,372.

These methodologies can be characterized according to whether the data source and the models

used as discriminator and generator are classical or quantum. The different scenarios considered so

far are summarized in Figure 7.2. In particular, Ref.212 offers a theoretical perspective on three

possible adversarial learning scenarios. The first of these settings corresponds to a purely quantum

version of GANs, where the data distribution is a quantum source and the models correspond to

quantum circuits. This proposal is further developed in77, and experimentally demonstrated for a

proof-of-principle quantum computation with a superconducting qubit architecture151. The second

scenario considers a classical generator that is trying to produce quantum data at an exponential
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Figure 7.2: Timeline of the development of quantum generative adversarial network models (Dallaire-
Demers et al.77, Lloyd et al.212, Zeng et al.372, Situ et al.312, Hu et al.151 and this work (VQG)). We de-
scribe each proposal in terms of the nature of the data, the discriminator and the generator, that can be ei-
ther classical or quantum. Lines indicate possible combinations of models and data type. For those models
where the type of the data generated is classical, we describe whether the type of variable is discrete or con-
tinuous. We also describe the type of implementation proposed, whether it is based on a fault-tolerant model
or a hybrid quantum-classical one.

cost. The third scenario corresponds to classical data encoded in the amplitudes of a quantum state,

such as quantum generators and discriminator can be employed. As described in212, these

proposals are designed for error-corrected quantum computers. More recently, some groups have

proposed hybrid-quantum classical adversarial learning schemes that could be implemented on

NISQ devices. These approaches utilize a classical data source and a classical discriminator

combined with a variational circuit sampled as a Born machine as generator312,372. As noted

earlier, the Born machine approach consists of generating a discrete distribution via projective

measurement on the qubits.
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7.3 THE VARIATIONAL QUANTUM GENERATOR ARCHITECTURE

7.3.1 ARCHITECTURE

Existing quantum models for generative learning collect data by measuring the system as a Born

machine, which is convenient for discrete distributions but can cannot be easily adapted for

continuous cases. We propose a scheme to generate continuous distributions that builds on the

principles of HQC computing. Consider a real data source that outputs observations of an

unknown distribution, represented by the variable x ∈ RN . The purpose of our variational quantum

generator is to produce classical samples xFake that mimic the observed distribution. To achieve

this, we propose the construction depicted in Figure 7.3, that includes two variational circuits, a

quantum encoding circuit R(z) acting on r qubits and the generator circuit G(Θg) acting on n

qubits with n≥ r.

The quantum encoding circuit, which we describe in detail in the next subsection, takes as input

a classical random variable z∼ pz(z);z ∈ RO as a parameter and prepares the state

R(z) |0⊗r〉= |φ(z)〉. This is the equivalent to the random source employed in classical GANs,

where the space of the variable z would correspond to the latent space in the language of generative

models. Correspondingly, the manifold of states {|φ(z)〉} would constitute the quantum latent

space. The second circuit, G(Θg) acts as the generator model, mapping from the latent manifold to

the manifold of observed data x: G(Θg) |φ(x)〉= |ψ(z,Θg)〉. To map this state to a classical value

we employ a measurement decoding scheme, where the sample P ∈RM is generated by measuring

the expectation value of a fixed set of observables expressed as strings of Pauli strings {Pi}i=1,··· ,M:

P = [〈P1〉,〈P2〉, · · · ,〈PM〉] (7.2)

where 〈Pi〉= 〈ψ(x;Θg)|Pi|ψ(x;Θg)〉. (7.3)
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Figure 7.3: Circuit architecture of the proposed quantum generator, comprising a circuit that generates
states from a latent space (z) using the variational circuit G(Θg). The random variable z is mapped to a quan-
tum state using the quantum encoding circuit R. By measuring a fixed set of operators on the generated
state, the quantum circuit produces a classical vector P = [〈P1〉, · · · ,〈PM〉], that passes through a classical
function f (P;Ωg), to produce the fake sample xFake.

P is then transformed by a classical function to generate xFake:

xFake = fg (P;Ωg) , (7.4)

(7.5)

where Ωg represents a vector of real parameters associated to the classical function. In what

follows, we describe each of the components of VQG in greater detail.

7.3.1.1 QUANTUM ENCODING CIRCUIT

The process of encoding classical inputs in a quantum state can be interpreted as applying a

nonlinear feature map that maps data to a quantum Hilbert space, a process also called quantum

feature map or quantum encoding, as described by Schuld et al.297. The quantum circuit

implementing this mapping on a digital quantum computer corresponds to the quantum feature

circuit or encoding circuit. We distinguish between two classes of quantum encoding in this
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chapter:

1. Amplitude encoding: In the first case, a vector x ∈ RN , corresponding to the data to be

encoded, undergoes a transformation under a feature map: ψ : RN → C2n
that maps the

information to a quantum state in n qubits. Since the length of the data vector is not

necessarily a power of 2, the feature map might require some padding and appropriate

normalization. Once the corresponding input state is obtained, we need to prepare this state

on the quantum register of n qubits, |φ(x)〉 using a preparation circuit Sx such that

Sx |0〉⊗n = |ψ(x)〉.

2. Variational encoding: In this case, a fixed variational circuit E( fE(x)) encodes the data by

inputting the classical information as the circuit parameters. Here, f is a classical feature

map: fE : RN → RM, such as the final input state is prepared as E( f (x)) |0〉⊗n = |φ(x)〉.

Notice that in amplitude encoding, the vector is mapped classically to a quantum state.

Consequently, we need to find the corresponding circuit that prepares the state to a desired

accuracy. This can be done using general purpose compilation routines for preparing general

quantum states on quantum registers127,244,259,315. In the case of amplitude encoding, the number

of qubits required scales as O(log(N)) while the depth of the circuit for state preparation is

O(N)259, with N being the size of the classical vector to be mapped. The number of gates required

for state preparation of these circuits (In the order of thousands for ten qubits244) might constitute

a challenge for NISQ devices.

In contrast, the variational encoding strategy encodes the classical vector as the parameters of a

fixed variational circuit. This implies that the circuit layout employed for all the input vectors is the

same, which simplifies compilation. It is also likely that the errors introduced by this encoding

procedure are mostly systematic and therefore can be more easily mitigated. Most of the

variational encodings proposed so far employ circuits with O(N) qubits and only O(1) circuit
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depth123,123,153,231,296,297, which makes encoding more amenable to NISQ devices at the cost of

increasing requirement in the number of qubits compared to amplitude encoding.

Both amplitude encoding and variational encodings have been used in machine learning

proposals for classification38,107,138,231,296,297, and can be employed as part of the VQG

architecture. In the space of variational encodings, some specific classes of circuits have been

proposed. Some examples include product encoding, in which each element of the vector x is

mapped to a one qubit state by a specific quantum circuit123,153,296,297. Other approaches

incorporate more layers of single qubit gates whose parameters are given by the elements of the

feature vector, followed by circuit blocks made out of fixed entangling operations138. A particular

strategy that can be used to introduce non-linearity is the so-called tensorial mapping, which

consists of preparing several copies of the quantum state encoding the data231,297. An example of a

variational encoding combining product encoding and tensorial mapping is the following

preparation circuit:

U(x) =
N

∏
k

nk

∏
i

Ri
Z( f (xk))Ri

Y (g(xk)), (7.6)

where each element of the vector x is mapped by a circuit acting on a fixed number of qubits, nk,

and f and g correspond to non-linear activation functions. The notation RI
V (α) = e−i α

2 VI indicates a

general rotation under the operator V acting on the set of qubits I. Notice that in the map of

equation 7.6, non-linearities are introduced via the use of non-linear functions as part of the

mapping and by application of the tensorial map.

7.3.1.2 VARIATIONAL CIRCUIT

G(Θg) plays the role of the variational circuit in our VQG architecture. Most variational circuits

are designed to prepare strongly entangled quantum states. This follows the general intuition that

the variational circuits employed should be able to map the input data into quantum states that are
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hard to manipulate on classical computers. In addition, variational circuits must be able to spot

different types of correlations in the input data, which requires circuits with the ability to explore

Hilbert space sufficiently. Variational algorithms such as QAE and QVECTOR have been

implemented using quantum circuits composed by a fixed networks of a polynomial number of

gates, usually restricted to single-qubit and two-qubit operations, with angles that serve as

variational parameters. The pattern defining the network of gates can be seen as a unit-cell or

circuit block that can be repeated to increase the flexibility of the model. The term Multilayer

Quantum Circuit (MPQC) has been recently coined to describe this type of variational circuit

architecture95. MPQC circuits have been widely used as quantum models for classification

tasks138,296 and has been shown to generate discrete probability distributions that cannot be

efficiently simulated by classical neural networks95. We describe the specific architecture of some

of these circuits in Appendix 7.6.1.

Apart from MPQC circuits, it is also possible to use a circuit implementing the evolution under a

family of Hamiltonians known to generate strongly correlated states. In this case, the coefficients

of the Hamiltonian terms can be used as variational parameters. For instance, Mitarai et al.231 used

the evolution under a transverse Ising Hamiltonian to perform simulations of quantum

classification and to model nonlinear functions using variational circuits231. The circuits

implementing evolution under a given Hamiltonian may require Trotterization. In this case, each

Trotter step might be interpreted as a circuit block, in analogy with the Hamiltonian variational

approach described in Ref.353.

7.3.1.3 MEASUREMENT DECODING AND POST-PROCESSING

The process of measurement decoding generates samples from the generator by estimating the

vector of expectation values P = [〈P1〉,〈P2〉, · · · ,〈PM〉]. The choice of operators for decoding

depends on the problem at hand and constitutes a hyper-parameter of the model. The cost of
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estimating the vector P with measurement averaging, assuming each operator is measured

independently and with fixed precision ε , is O
(

∑
M
i=1

Var[Pi]
ε2

)
. The associated measurement cost is

not different from other HQC algorithms such as VQE, where the expectation value of the

Hamiltonian is computed by a weighted average of the expectation value of a polynomial number

of observables226. Here we assume that ε is independent of subsequent transformations of the

vector P and is small enough to carry out the optimization and the generation of samples x

successfully.

If the training of the VQG model is carried out with gradient-based optimization, this will

require the estimation of ∇ΘGP. In this case, the total number of measurements employed depends

on the number of circuit runs used per gradient estimation (Ngrad) and the total number of gradient

evaluations required by the optimization (Nopt). As described in Appendix 7.6.1,

Ngrad ∼ O(Np/ε2) where Np is the total number of parameterized gates in the variational circuit.

To generate the final sample x, the generator can incorporate a classical function that transforms

the measurement vector, P. In general, we can express fg as fg(x) = h(WP+b), where

W ∈ RN×M, b ∈ RN and h is a function that can be nonlinear h : RN → RN . To unify the notation,

we designate Ωg = (W,b) as in Figure 7.3. This construction makes VQG a hybrid

quantum-classical architecture and therefore the evaluation of the model and its derivatives will

require feedback between the classical computer and the quantum processor. We describe this

process in more detail in the next section, where we discuss how to train the VQG model.

7.3.2 TRAINING AND COST FUNCTION

The VQG architecture could be trained by direct maximization of the log-likelihood. However we

have chosen to use an adversarial learning approach, which has certain advantages as described in

Section 7.2.1. The adversarial setting requires a discriminator function FD(x;Θd), parameterized

by Θd , that receives the sample x as input and outputs an approximation to the probability of the
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Scheme I

Scheme II

Figure 7.4: Two different schemes for training a quantum generator of classical data using an adversarial
learning approach: the first scheme (Scheme I) employs a classical discriminator (e.g. classical neural net-
work), whereas the second scheme employs a quantum discriminator (Scheme II), which consists of a quan-
tum circuit that encodes the classical sample (E(x)) and a variational circuit (D(Θd)), whose parameters are
optimized such as the measured observable (σZ

p ) describes the probability of the sample to come from the
real distribution.

sample originating from the real distribution. We will describe the architecture of the discriminator

shortly, but assuming we can compute the necessary gradients, this discriminator could be trained

using the same cost function employed in classical GANs (Eq. 7.1). We rewrite this expression to

make explicit the dependency in the parameters:

Cd(Θd ,Θg) =−
1
2
Ex∼pdata(x)[logFD(x;Θd)]−

1
2
Ez∼pz(z) log[1−FD((FG(z;Θg,Ωg);Θd)], (7.7)
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where FG(z;Θg,Ωg) is the function corresponding to VQG. The first term in Equation 7.7

corresponds to the probability of the discriminator to succeed at classifying data coming from the

real source correctly, while the second term represents the probability of the discriminator to

succeed at identifying the sample created by the generator as fake. Notice that the discriminator

needs to be trained on two batches of data: one corresponding to real samples (for which the

discriminator should output 1) and a second batch created by the generator (for which the

discriminator should output 0). In classical GANs, the original choice of the cost function of the

generator is just the negation of the cost function of the discriminator, such as

Cg(Θd ,Θg) =−Cd(Θd ,Θg), and therefore the final optimization consists of a minimax game:

min
Θg

max
Θd

Cd(Θd ,Θg). (7.8)

At each step of the optimization, the parameters of each player are optimized while the parameters

of the other player are kept fixed. One alternative to the cost function in Equation 7.7 is to use the

inverse of the discriminator cost function for the generator, such that Cg becomes:

Cg(Θd ,Θg) =−Ez∼pz(z)[logFD((FG(z;Θg,Ωg);Θd))]. (7.9)

In this case, the generator minimizes the probability of the discriminator of being correct. This

proposal, although heuristically motivated, has demonstrated the ability to facilitate the training

process in classical GANs119.

As in the case of other quantum machine learning approaches, we propose to use gradient based

methods for the optimization. Most recent numerical and experimental demonstrations for

classifiers based on variational circuits have employed methods such as simultaneous perturbation

stochastic approximation (SPSA)320,321 and stochastic gradient descent (SGD)120. SPSA is based
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on numerical gradients and has been already employed in experimental demonstrations of VQE168

and QML algorithms for classification138. The difficulty with SPSA is that the number of

measurements required increases substantially as the gradient vanishes. In this case, the heuristic

cost function for the generator (Equation 7.9) might require fewer measurements as it prevents

vanishing gradients. In contrast, algorithms such as SGD generally work with analytical gradients

in the context of classical neural networks. Employing these algorithms for our VQG requires

computing gradients with respect to the circuit parameters Θg, Ωg and Θd .

In order to compute gradients for the discriminator we need to define its structure. Since the

VQG is designed to generate classical data, it is possible to perform the training using both

classical and quantum discriminators. These two possible schemes are pictorially described in

Figure 7.4. In the first scheme, the classification is performed by a classical discriminator, for

example, a classical feed-forward neural network. Consequently, the discriminator can be trained

by maximizing the cost function (Eq. 7.7) using standard back-propagation techniques for

feed-forward neural networks.

In the second scheme, the classification is performed by quantum discriminator model, for

example, a variational quantum classifier (VQC)138,231,296,311. As the input data is classical, the

quantum discriminator comprises a quantum encoding circuit, E(x), that maps the data point x to a

quantum state, and a variational circuit D, with parameters Θd . A set of measurements provide the

final values indicating the classification. Correspondingly, the structure of this quantum

discriminator becomes analogous to the structure of the quantum generator, with the difference that

the classical output produced by measurement needs to be transformed such that it corresponds to a

probability distribution instead of an arbitrary vector. For the GAN implementation, the

discriminator performs only binary classification and therefore p(y|x) can be modeled by

measuring a single observable, e. g. σZ
a , with a being the index of the designated qubit.
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Correspondingly, the probability of x coming from the true distribution of the data can be estimated

simply as pReal =
1+〈σZ

p 〉D
2 , where:

〈σZ
p 〉D = 〈0|E†(x)D†(Θd)σ

Z
p D(Θd)E(x)|0〉. (7.10)

Consequently the gradient of the discriminator takes the form:

∂FD(x;Θd
i )

∂θ d
i

=
1
2

∂ 〈0|E†(x)D†(Θd)σ
Z
p D(Θd)E(x)|0〉

∂θ d
i

, (7.11)

Eq. 7.11 can be evaluated using the standard techniques for computing gradients in variational

circuits described in Appendix 7.6.2. On the other hand, training the generator implies computing

gradients of both Eq. 7.8 and Eq. 7.9 with respect to the generator parameters, which ultimately

requires the calculation of the following derivatives:

∂FD(FG(z;Θg,Ωg);Θd)

∂θ i
g

= ∑
l

∑
k

∂FD(xl)

∂xl

∂xl

∂ 〈Pk〉
∂ 〈Pk〉
∂θ i

g
, (7.12)

∂FD(FG(z;Θg,Ωg);Θd)

∂ω i
g

= ∑
l

∂FD(xl)

∂xl

∂xl

∂ω i
g
, (7.13)

where we have used the following notation:

Θd = [θ 1
d ,θ

2
d , · · · ,θ

|Θd |
d ]; (7.14)

Θg = [θ 1
g ,θ

2
g , · · · ,θ

|Θg|
g ]; (7.15)
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Ωg = [ω1
g ,ω

2
g , · · · ,ω

|Ωg|
g ];x = [x1,x2, · · · ,xN ]. (7.16)

Notice that the partial derivatives appearing in Eq. 7.12 are estimated differently depending on the

type of discriminator used. In scheme I, ∂FD(xl)
∂xl

, ∂xl
∂ω i

g
and ∂FD(xl)

∂xl
correspond to derivatives of

classical functions and can be computed using established backpropagation techniques. In this

case, only ∂ 〈Pk〉
∂θ i

g
corresponds to a derivative of a variational circuit. In contrast, ∂FD(xl)

∂xl
is also a

derivative of a variational circuit in the case of Scheme II:

∂FD(x;Θd
i )

∂xi
=

1
2

∂ 〈0|E†(x)D†(Θd)σ
Z
p D(Θd)E(x)|0〉

∂xi
, (7.17)

which implies taking derivatives of the encoding circuit or the corresponding encoding scheme. In

case of variational encodings, the same techniques applied to compute the gradients of circuits G

and D can be employed for computing Eq. 7.17. If the encoding involves pre-processing x with a

classical function, the calculation of the gradient requires further unfolding as with Eq. 7.12.

In summary, to train the VQG model using adversarial learning, we need to compute gradients

of variational circuits and apply backpropagation for classical functions. We review the calculation

of existing techniques for computing analytical gradients of variational circuit in Appendix 7.6.2.

To compute gradients of classical functions, we exploit state of the art automatic differentiation

(AD) techniques95,240. AD is an algorithmic strategy to extend a program that computes numerical

values of a function such as it can also compute arbitrary derivatives of the same function, as

described in Appendix 7.6.3. This technique is widely used in machine learning to perform

automatic calculation of derivatives for gradient-based optimization of models such as neural

networks. AD also offers a convenient framework to propagate gradients between classical and

quantum functions, as described in Ref.35,295.

Figure 7.5 illustrates the calculation of gradients for a hybrid-quantum classical function, such
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Figure 7.5: Application of reverse accumulation (See Appendix 7.6.2) for automatic differentiation of a hy-
brid quantum-classical architecture. The quantum module implements a function computed from a variational
circuit (VC), Q(x,θq), as well as derivatives of this function with respect to x and θq. The classical module im-
plements a classical function e.g. a neural network (NN), L(y,θc), and its derivatives with respect to y and θc.
In the forward pass, L(Q,θc) is calculated by first computing Q(z,θq) using the quantum module and passing
its value to the classical module. In the backward pass, the classical module computes ∂L

∂Q and passes this

information to the quantum module. The quantum module estimates ∂Q
∂θq

using the quantum processor and

computes ∂L
∂θq

by application of the chain rule: ∂L
∂θq

= ∂L
∂Q

∂Q
∂θq

.

as a VQG module, using AD. The example shows two functions: the first one corresponds to the

output of a variational circuit, Q(z,θq), where z and θq are both classical inputs (e.g. classical

information encoded into the circuit and variational parameters, respectively). The second function

is classical (e.g. a feed-forward neural network), taking as inputs the value of the function Q(x,θq)

and parameters θc and producing the output L(Q,θc). At the computational level, these functions

are implemented as programming functions or instances of a computational class and are executed

separately by quantum and classical modules, respectively. The quantum module can be

interpreted as a classical computer that has access to a quantum processor, while the classical

module incorporates only classical computing resources.

Suppose we want to compute ∂L
∂θq

using AD. In the forward pass, L(Q,θc) is calculated by first

computing Q(z,θq) using the quantum module. This value is passed onto the classical module,

which computes the final output given some value of θc. In the backward pass, the classical

module estimates ∂L
∂Q and passes this information backwards to the quantum module. The quantum

module estimates ∂Q
∂θq

using the techniques described in Appendix 7.6.2 and uses the value of ∂L
∂Q

provided by the classical module to compute ∂L
∂θq

by application of the chain rule: ∂L
∂θq

= ∂L
∂Q

∂Q
∂θq

. An

analogous procedure can be applied to compute all the derivatives required for training the VQG
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Result: Optimal Θg, Ωg and Θd
Data: Ns, Ne, Sd , Sg, Initial Θg, Ωg and Θd ;
for n := 1 to Ne do

for s1 := 1 to Sd do
Sample Ns times from pz(z): {z(1),z(2), · · · ,z(Ns)};
Sample Ns times from the data distribution: {x(1),x(2), · · · ,x(Ns)};
Update Θd by ascending discriminator’s gradient: ∇Θd

1
M ∑

M
i Cd(z(i),x(i),Θg,Ωg,Θd) ;

end
for s2 := 1 to Sg do

Sample Ns times from pz(z): {z(1),z(2), · · · ,z(Ns)};
Update Θg and Ωg by descending generator’s gradient: ∇Θd

1
Ns

∑
Ns
i Cg(z(i),Θg,Ωg,Θd) ;

end
end

ALGORITHM 1. Adversarial learning of a variational quantum generator (VQG). Training pro-
ceeds for Ne epochs. At each epoch, the parameters of the discriminator and the generator are
updated separately, Sd and Sg times respectively. Cost functions are estimated by taking Ns

samples of the real and the synthetic data distributions.

architecture using adversarial learning (Eqs. 7.12-7.13). With this infrastructure in place, the

optimization of all the parameters of the model can be performed using standard gradient-based

optimizers such as Adam or SGD. Algorithm 1 summarizes the pseudocode for the adversarial

learning of the VQG model.

7.4 IMPLEMENTATION

7.4.1 NUMERICAL SIMULATIONS

To illustrate the implementation of the VQG model and demonstrate its feasibility, we designed a

controlled experiment where the real data source is generated by a VQG instance with the same

structure as the generator. This guarantees that a solution to the learning problem exists, allowing

us to focus on studying the convergence of the training process. This also facilitates the assessment

of the success of the training process by directly comparing the two distributions. In our

experiment, the adversarial learning process incorporates the following elements, illustrated in

218



Chapter 7. Generative adversarial quantum machine learning for continuous distributions

Figure 7.6(a):

1. Generator: Our generator corresponds to a VQG model composed of a product encoding

circuit with two layers of one qubit gates incorporating the tensorial mapping strategy to

introduce non-linearities. The variational circuit of the generator is a two qubit circuit with a

layer of single-qubit Y rotations followed by evolution under the operator XX , for a total of

three parameters. The measurement decoding is performed with a single operator [σ1
Z ]

without classical post-processing. This generator produces a probability distribution pG(x),

with x ∈ R, x ∈ [−1,1]. At the beginning of the training, the variational circuit is

initialized with parameters Θg = [2.3,2.3,1.0].

2. Discriminator: We tested the two schemes described in Figure 7.4 for training the generator.

In scheme I, we employed the classical feed-forward neural network described in Figure

7.6(a) as discriminator. In scheme II, we used a quantum discriminator comprising a product

encoding circuit and a variational circuit on three qubits. The variational circuit for the

discriminator corresponds to a single B(3,1) block encompassing a layer of arbitrary single

qubit rotations, followed by parameterized C-Phase gates and finally a layer of single qubit

X rotations. This type of variational circuit has been used in combination with amplitude

encoding for classification tasks such as MNIST296. As in many application of classical

GANs, we chose the discriminators to be more complex than the generator, having in this

case more qubits, which is equivalent to a bigger size of the hidden layer.

3. Real data source: To generate the real data distribution, we employed a VQG model with the

same structure as the one used in the generator and parameters fixed to

Θg = [2.48,2.52,2.0]. This corresponds to the classical univariate probability distribution,

pData(x), x ∈ R, x ∈ [−1,1], shown in Figure 7.6(a).
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Figure 7.6: Example of the implementation and training of a VQG instance following the algo2qpu ap-
proach311. (a) Architecture of the generator and discriminators used in the numerical experiments. The
part of the circuits corresponding to encoding circuits and variational circuits are shown in blue and red, re-
spectively. The real distribution corresponds to the quantum generator architecture with parameters fixed at
Θg = [2.48,2.52,2.0] and Pauli set [σ1

X ]. (b) Details of the implementation and execution of the experiments.
We performed noiseless simulations using a QVM. The generator is initialized at Θg = [2.3,2.3,1.0]. (c) Train-
ing dynamics using schemes I (left panel) and II (right panel). Each panel shows from top to bottom: loss
functions (Cd and Cg) as a function of the number of epochs, Kullback-Leibler (KL) divergence between the
target distribution and the generator (DKL(pData||pG)), mean (µx) and standard deviation (σx) of the two distri-
butions as the optimization progresses.
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To implement adversarial learning for the VQG instances described above, we followed the

algo2qpu framework311, which provides a guideline for the implementation and deployment of

quantum algorithms in near-term quantum devices. We started by implementing our variational

circuits using the PyQuil programming language313, part of the Forest platform which allows for

deployment on both quantum virtual machines (QVM) and quantum processing units (QPUs). The

functions for computing expectation values and gradients of the expectation values of variational

circuits were encapsulated using the autograd function class available in the PyTorch library253.

This enables integration with the PyTorch modules for implementing classical neural networks,

applying automatic differentiation and performing gradient-based optimization. In our

experiments, we performed simulation of the quantum circuits on the QVM and carried out

adversarial learning with the Adam optimizer. We applied typical strategies employed in classical

GANs to improve convergence, such as one-sided label smoothing and random flip noise for the

discriminator, as described in 7.6(b). In our numerical experiments, the expectations values

produced by the generator and quantum discriminator were estimated with 10000 noiseless circuit

runs per data point. The real data distribution was generated with expectation values computed up

to working precision, as this plays the role of a classical data source.

Figure 7.6(c) illustrates the training of our VQG instance with schemes I (right panel) and II

(left panel). We show the dynamics of the discriminator and generator losses during training as

well as the Kullback-Leibler (KL) divergence between the generated and the target distributions,

computed from the discretized distributions obtained from sampling. We also track the mean and

standard deviation during the optimization. For both training schemes, we observe the convergence

of the losses to the expected equilibrium point located around ln(0.5)≈ 0.7. At the beginning of

the training, the learning signal from the discriminator is relatively low and the KL divergence is

mostly constant, however, it starts decreasing as the the learning signal rises. We observe that both
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Figure 7.7: Histogram of the data distribution produced by the generator, pG, at different epochs of the train-
ing process (green histograms), compared to the target data distribution, pData, (blue histogram). We observe
how as the optimization progresses, the generated distribution starts resembling the target one. The data
corresponds to the optimization with a quantum discriminator (scheme II). All the histograms were computed
using the same one thousand samples drawn from pz(z)∼U(−1,1) as noise source.

schemes achieve convergence to an approximation of the target distributions, as evidenced by the

evolution of the KL divergence and the distribution moments plotted on Figure 7.6(c). Figure 7.7

compares the distribution produced by the generator with the target distribution, at different

moments of the training process for scheme II.

During the simulation, we also tracked the gradients of the the discriminator and generator,

noticing that the gradient components in scheme II (quantum discriminator) were around an order

of magnitude larger compared to scheme I. Such large gradients can lead to convergence issues

during the optimization. In particular, we observe a non-converging oscillatory behavior of the

training dynamics in some of the first numerical experiments. This behavior is well documented on

the classical GAN literature and is associated to the lack of an incentive for the discriminator to

converge once the generator reaches the target distribution228. We alleviated this problem by

reducing the learning rates for the Adam algorithm, which shifted the dynamics to a damped
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oscillation, like the one observed in the right panel of Figure 7.6(c). Standard approaches for

treating this problem involves introducing regularization terms for the discriminator cost function

on the real data228,282

The observation about the magnitude of the gradients can be linked to the difference in the

parameterization of variational circuits compared to neural networks. As pointed out in296, a

variational circuits acting on n qubits can be interpreted as a linear unitary layer acting on a vector

of size 2n. Correspondingly, in the language of neural networks, this unitary can be seen as a

matrix of complex weights of dimensions 2n×2n, parameterized by only O(poly(n)) variables,

corresponding to the tunable parameters of the variational circuit. In contrast, each of the 4n entries

of the weight matrix is a parameter in a typical layer of a feed-forward neural network. Since

gradients are calculated with respect to all the parameters, a learning signal passing through a

dense layer of size 2n×2n is distributed among all the 4n weights. In contrast, the same signal

would distribute among only a polynomial number of parameters in the case of the variational

circuit, leading to much larger gradient components. This comparison also offers insights into the

utility of variational circuits for machine learning as efficient parameterizations of linear

transformations of high dimension.

7.4.2 IMPLEMENTATION ON NISQ DEVICES

Our proposed VQG model can be implemented on a fault-tolerant quantum computer, but its

variational nature makes it especially suitable for implementation on a noisy-intermediate scale

quantum devices. As others HQC approaches, the cost of the algorithm is associated to the number

of samples required for evaluating and training the model. As pointed out in Section 7.3.1.3, the

repetition cost of evaluating the model scales as O(M/ε2), where M is the number of operators

measured in the decoding step and ε is the precision for each expectation value. A single gradient

evaluation scales as O(ngM/ε2), where ng is the number of parameterized gates in the variational
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circuit. For many of the variational circuits discussed here, the number of parameters is linear in

the number of qubits, ng ∈O(N). The minimal number of qubits required for the implementation is

determined by the number of qubits required by the quantum encoder. For the product encoders

used in this work, the number of qubits scales linearly with the size of the noise vector, z. while the

depth of the encoding circuit is only constant. One could envision more general variational

encoding circuits that trade circuit depth by number of qubits. In the case of amplitude encoding,

the number of qubits used is only O(log(n)) and O(n) two-qubit gates are required for state

preparation.

In addition to the sampling cost, the estimation of the gradients of the variational circuits faces

two important challenges: 1) the impact of noise on the estimation of expectation values and 2) the

recent observation that the gradients of near-random variational circuits tend to vanish with a

probability exponential on the number of qubits, an phenomenon known as barren plateau of the

quantum neural network training landscapes223. To address the issue of noise in the VQG

implementation, we could apply some of the recent proposals for error mitigation in the estimation

of expectation values on NISQ devices. The basic principle of these proposals is that the first order

contributions of the noise to the expectation values can be removed by introducing a controllable

source of noise in the circuit of interest98,331. The expectation values are estimated at different

error levels and an extrapolation to zero noise is performed using simple regression techniques.

These methods have been already applied in experiments for VQE and variational quantum

classification169. While error mitigation could benefit the gradient estimation, we also point out

that noise is generally included in practice to improve convergence during the GAN training228.

Most likely, the training process will be able to tolerate moderate levels of noise, as observed in the

case of variational circuits and tensor networks employed in classifications tasks123,153,296. Error

mitigation will likely play a more crucial to generate high quality samples after training is

224



Chapter 7. Generative adversarial quantum machine learning for continuous distributions

complete.

In our proof of principle experiments, we did not observe vanishing gradients most likely due to

the small size of the circuits used in the example. In larger scale implementation of the VQG

model, barren plateaus might become an issue. In this case, several strategies could be employed to

mitigate the problem. One of them, especially suitable for variational circuits built on circuit

blocks, is block-by-block training. In this case, the optimization starts with a variational circuit

with a single or a few circuit blocks, which are less likely to suffer from the barren plateau issue

due to the relatively small number of parameters. In subsequent rounds, we add more blocks to the

variational circuit and use the optimal variational parameters of the previous round to initialize the

new round of training. This procedure can improve convergence, as shown in the case of classical

deep neural networks33,139.

Another strategy is to use circuits with subcomponents that admit classical simulation or

inspired by classically simulable circuits. An example of such circuits is the low-depth circuit

ansatz (LDCA) proposed in Ref.78 for quantum simulation of fermions. The basic building block

of the circuit is composed of matchgates339, that can be simulated classically, augmented with a set

ZZ rotations that increase the complexity of the circuit. Therefore, we could run classical

simulations of the VQG training with an LDCA variational circuits without the ZZ interactions.

The optimal parameters obtained from the classical simulation can be then employed to initialize

the training with the full LDCA circuit using the quantum computer. A similar procedure can be

applied to variational circuits based on tensor networks, that admit simulation on classical

computers with small bond dimensions, as suggested in Refs.123,153.
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7.5 CONCLUSION AND OUTLOOK

In this chapter we have presented a hybrid quantum-classical architecture, comprising variational

quantum circuits and classical functions, for modeling continuous probability distributions. Our

variational quantum generator incorporates two quantum circuits: a quantum circuit encoding a

classical random variable into a quantum state, R(z), and a variational circuit G(Θg), whose

parameters are optimized to mimic the target classical probability distribution. A sample, xFake

from the VQG architecture is generated sampling z from a noise distribution z∼ pz(z), encoding

this variable into a quantum state using the encoding circuit, applying the variational circuit and

measuring the expectation values of a set of predefined operators. The vector of expectation values,

P, can be post-processed using a classical function, fg(P), such as a neural network, to generate the

sample fg(P) = xFake. The VQG architecture can be trained using a gradient-based adversarial

learning strategy, where a second model, known as discriminator, compares the quality of the

samples generated by the VQG model with samples from the real data distribution. We show that

the required gradients can be calculated using existing techniques for evaluating gradients of

variational functions and exploiting the established infrastructure for automatic differentiation of

classical functions. We illustrate this process with a simple proof-of-principle experiment where a

VQG instance with fixed parameters serves as the target distribution.

Our proposal contributes to an increasing body of work exploring the use of hybrid

quantum-classical computing in machine learning, offering an approach to perform generative

modeling of continuous probability distributions with quantum computers. Furthermore, the same

architecture employed in VQG can be used to build models for classification, as illustrated in

Section 7.3.2. We also present a strategy for training our proposed generator with both classical

and quantum discriminators, taking advantage of the integration of gradient estimation of

variational circuits and automatic differentiation strategies. The incorporation of these tools can
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also benefit the implementation of other HQC algorithms, such as VQE. Nowadays, the availability

of libraries for programming and executing quantum circuits69,270,313,322 that are compatible with

standard libraries for machine learning2,253, facilitate this integration. Recently, specialized

libraries for automatic differentiation of variational circuits has been also developed35.

There are several open questions that remain to be investigated. Perhaps the most significant one

is whether this approach can offer an advantage with respect to purely classical models for

generative learning. Some theoretical works43,95 indicate that variational circuits might bear an

advantage for discrete generative tasks, however the extent to which this impacts practical

applications such as image, sound and language generation will require extensive computational

studies on real instances. A second aspect that needs to be studied is the role of noise the

performance of the VQG model implemented on NISQ devices. As discussed in Section 7.4.2, one

of the strategies to improve convergence during classical GAN training is to introduce noise in the

data, which generally prevents over-fitting in the discriminator and improve the robustness of the

final model. The extent to which noise on NISQ devices can be tolerated or can benefit the training

process, as well as the overall quality of the the distributions generated by VQG, most likely

depends on the specific noise process and the nature of the target distribution. Finally, a third

research direction is the study of adversarial learning of classical generators using quantum

discriminators, in particular how this particular arrangement could impact the convergence of the

training process.

An important advantage of the VQG model is its flexibility, allowing for exploring multiple

choices of variational circuits and encodings. This also allows for designing new strategies to

incorporate non-linearities through hybrid quantum-classical architectures. The architecture

presented in this work incorporates non-linearities through pre-processing classical data with

non-linear functions and through the tensorial mapping approach. The variational circuit acts as a
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linear layer but non-linearities can be incorporated after measurement via classical post-processing.

Both, variational circuits and classical post-processing can be considered together as a single

non-linear layer and can be repeated to build deep hybrid quantum-classical architectures. Another

important future research direction is the design of new circuits for variational encodings that can

balance the cost of number of qubits and depth while incorporating non-linearities. In the specific

case of VQG, the quantum encoder, R(z), plays the role of noise source, sampling randomly a state

from the manifold defined by the encoding circuit. An alternative strategy could be replacing the

encoding circuit with an efficient circuit to approximately sample from the Haar measure, for

example, an efficiently implementable unitary 2-design82.

Finally, the most thrilling aspect of the VQG approach is the prospect of realizations of the

algorithm on quantum devices to tackle standard problems in generative learning. As NISQ

devices approach sizes that surpass the possibility of classical simulation, quantum algorithms that

allow for gradually incorporating quantum capabilities into the established quantum machine

learning pipelines will be required. The VQG model offers such a framework, establishing a

strategy to combine increasingly large variational circuits with standard neural networks to model

data distributions. Future work will be dedicated to exploring the utility of the VQG approach in

specific scientific and industrial applications, including image processing, finance, medicine,

cybersecurity, and drug and materials design.

7.6 APPENDIX

7.6.1 VARIATIONAL CIRCUITS ARCHITECTURES

Figure 7.8 describes some examples of variational circuits employed in HQC algorithms. Figure

7.8(a) shows a circuit block containing all the possible controlled one-qubit rotations among a set

of qubits, interleaved with a set of single qubit rotations. We start considering the rotations
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Figure 7.8: Examples of variational circuit blocks employed in quantum machine learning: a) Circuit block
employed for HQC algorithms such as QAE and QVECTOR163,280. b) Generalization of circuit blocks pro-
posed by Schuld et al.296. The depicted blocks corresponds to 3 qubits with range 2 (B(3,2)). c) Variational
circuit corresponding to quantum evolution under a Hamiltonian with tunable parameters (θ j) and single-qubit
rotations. R j represents a generic single-qubit gate.

controlled by the first qubit, followed by the rotations controlled by the second qubit and so on.

The number of parameters in this circuit block scales as O(n2). More simplified circuit blocks,

where entangling operations are not parameterized, has been used for experimental demonstration

of QML for classification138. In this case, the disposition of the entangling gates is generally

dictated by the constraints in the qubit connectivity of the processor.

Families of circuit blocks have been also proposed. In particular, Schuld et al. proposed a series

of circuit blocks for classification, generically referred to as code blocks B(n,r)g296. An example

of these blocks is depicted in 7.8(b). A block B(n,r) comprises a layer of general single-qubit

rotations R = R(α,β ,γ) applied to each of the n qubits of the register followed by a layer of

n/gcd(n,r) controlled-R gates, where r is the range of the two-qubit gates and gcd(n,r) is the

greatest common divisor of n and r. The target and control qubits of the j-th two-qubit gate in the

block are given by the integers t j = ( jr− r) mod n and c j = jr mod n, respectively. This
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Figure 7.9: Circuit for measuring ∂ 〈0|U(Θ)†PiU(Θ)|0〉
∂θ j . The gate X( π

2 ) rotates to the Y -basis.

definition guarantees a number of parameters that scales linearly with the size of the qubit register,

n. In general, B-blocks are capable of entangling/unentangling all the qubits with numbers that are

multiple of gcd(n,r). If n and r are co-prime, the network of entangling gates forms a cycle graph

capable of entangling/unentangling all the qubits in the register. Finally, 7.8(c) presents and

example of a generic circuit implementing evolution under a local Hamiltonian, where the

coefficient of the Hamiltonian terms serve as variational parameters.

7.6.2 ESTIMATION OF ANALYTICAL GRADIENTS FOR VARIATIONAL CIRCUITS

Recently, it has been shown that gradients of expectation values of variational circuits can be

estimated analytically using slight modifications of the initial quantum circuit. Specifically,

consider a variational circuit U(Θ) of the form:

U(Θ) =U1(θ
1)U2(θ

2) · · ·UNg(θ
|Θ|), (7.18)

where U j(θ
j) = exp(−iθ jVj/2) with {Vj} being a Pauli operator. One strategy for computing

gradients with respect to the parameter θ i is using the circuit of Figure 7.9, which requires one

additional qubit compared to the original variational circuit279,296. Taking measurements on this

ancilla qubit provides an estimate to one element of the Jacobian of the vector P, ∇Pi, j.

Alternatively, the same component can be estimated using two separate evaluations of the

expectation values where the original variational circuit is replaced by the modified circuits
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+U j(Θ) and −U j(Θ)231 defined as:

+U j(Θ) =U(θ 1) · · ·U j

(
θ

j +
π

2

)
· · ·U(θ |Θ|), (7.19)

−U j(Θ) =U(θ 1) · · ·U j

(
θ

j− π

2

)
· · ·U(θ |Θ|). (7.20)

such as:

∂ 〈U(Θ)†|Pi|U(Θ)〉
∂θ j =

Re
(
〈+U j(Θ)†|Pi|+U j(Θ)〉−〈−U j(Θ)†|Pi|−U j(Θ)〉

)
(7.21)

This approach has been recently coined as a classical linear combination of unitaries (CLCU)295.

Compared to the circuit of Figure 7.9, the CLCU strategy requires twice as many measurements to

estimate the gradient to the same accuracy. However, it does not require an ancilla qubit and

employs the same circuit as the objective function, U(Θ). The later implies that the compiled of

+U(Θ) and −U(Θ) are the same as U(Θ), which might simplify the implementation.

7.6.3 AUTOMATIC DIFFERENTIATION

Automatic differentiation (AD)95,240 is an algorithmic strategy to extend a program that computes

numerical values of a function such as it can also compute arbitrary derivatives of the same

function. Unlike numerical differentiation, AD provides exact derivatives up to working

computational precision. AD also differs from symbolic differentiation in the sense that it

computes numerical values of the derivatives instead of analytical expressions. To achieve its goal,

AD extends the domain of variables in the computation to incorporate derivative values and

introduces a programming semantics to enable the propagation of the derivatives using the chain

rule. This allows to compute arbitrary derivatives of any function by applying differentiation to the
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sequence of elementary operations and elementary functions that implement the function on the

computer. The process is performed automatically during execution time and has only a constant

overhead in computational cost compared to the execution of the original function.

There exist different strategies for implementing AD. For the work presented in this chapter, we

implemented a strategy known as reverse mode accumulation95, which is a generalization of the

back-propagation procedure employed in feed-forward neural networks120. In this case, the

calculation of a function is broken down into a series of intermediate steps with results stored by

intermediate variables. The inter-dependence of these variables constitutes a directed graph known

as computational graph. In reverse mode, the function and its derivatives are calculated in two

steps known as the forward and backward passes. In the forward pass, the original function code is

run, computing the values of all the intermediate variables and recording the dependencies of the

computational graph using a book-keeping procedure. In the backward pass, derivatives are

calculated by computing the derivatives of each intermediate variable with respect to its immediate

inputs and propagating the derivatives in reverse through the computational graph, from outputs to

inputs.
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8
Future research directions

As expressed in the introduction to this dissertation, the field of variational quantum algorithms is

still in his infancy and is currently mainly driven by the need to find useful applications for NISQ

devices. Achieving useful quantum computing in the near-term is vital to secure the resources and

maintain the momentum necessary for building full-error corrected quantum computers, as

indicated by the most recent report in the progress of quantum information technologies by the

National Academy of Sciences129. Along the path towards useful quantum computing with

variational algorithms, many fundamental scientific and engineering problems need to be solved.

Here we describe what we believe are some of the main challenges in variational quantum

algorithms as well as research directions that might help to overcome them, having as starting

point the research presented in the primary research chapters. We have grouped these directions

into two categories: 1) research directions that impact the entire family of variational quantum

algorithms and 2) research directions for applications of variational quantum algorithms.

In the first category, we include ideas that we consider to a specific extend independent of a

particular application and pertain to the general scheme of variational algorithms described in

Section 1.2. In the second category, we include specific research directions for variational

algorithms in a particular niche of applications, such as quantum simulation or machine learning.

While this separation is somewhat arbitrary, it highlights that variational algorithms, independent

of their application, follow approximately the same blueprint and therefore identifying
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improvements to that blueprint can bring benefits to the entire family of variational algorithms.

Naturally, this way of thinking does not exclude the possibility that certain improvements

developed initially for a particular application niche could be generalized or even directly applied

in other niches.

FUTURE RESEARCH DIRECTIONS IN QUANTUM VARIATIONAL ALGORITHMS

As described in Section 1.2, variational algorithms incorporate three elements: 1) a variational

circuit, 2) functional estimation and 3) an optimization loop. We identify research directions to

improve in these three fronts:

Variational circuits: most variational circuit ansatzes were originally conceived for a particular

functional, for example UCC for VQE in Chemistry (Chapter 2). An important question around

ansatz design is if there are general properties that define a "good" variational ansatz somewhat

independent of the application. For example, given that entanglement is a resource for quantum

algorithms, one might want a variational circuit to generate entanglement effectively using the set

of gates that better suits the experimental constraints of a particular platform. The entangled states

generated are likely to have certain structure or reflect specific symmetries, as opposed to being

completely random. There is also a certain notion of variational freedom in circuits, meaning how

much of the Hilbert space can be explored by a specific circuit parameterization, as well as how

sensible the circuit is to changes in the parameters. Properties like these might determine the

effectiveness of the circuit and influence our ability to optimize it. Defining useful metrics to

qualify variational circuits independently of the functional is an important line of research in

variational quantum computing.

The problem of designing variational circuits can also be tackled from a more practical

perspective using adaptive techniques to generate variational circuits on the fly. We could achieve
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this, for instance, by adopting hyperparameter optimization techniques from classical machine

learning. In this case, hyperparameters are parameters of the model fixed before starting the

optimization, for example, the number of layers and their side in a classical neural network. In

variational circuits, the layout of the gates and set of gates composing a circuit can play this role.

By using classical methods such as Bayesian optimization36,155,314 and evolutionary

strategies157,230, we could design variational circuits layouts given a set of gates and a particular

connectivity. In practice, we could obtain a general layout of the circuit by benchmarking small

problem instances on small quantum computers or through classical simulators. The designs

obtained in this first stage can be the starting point for subsequent refinements obtained from

computations on larger devices.

Functional estimation: Although the particular application of the algorithm defines the form of

the functional, functional estimation involves general aspects that are common to all the variational

approaches. Ultimately, the evaluation of any functional reduces to collecting measurements from

the device. For many applications, the goal is to measure observables up to some accuracy, which

in cases like VQE is very costly, as described in Chapter 2. Finding methods that make the most

out of a limited number of noisy measurements can improve general performance. One direction

we started to explore in Chapter 4 was the use of classical statistical models to make inference on

the data obtained from the device; specifically, we employed regression techniques to remove

systematic biases and partially reconstruct the functional landscape to help optimization. In that

spirit, exploring the potential application of classical statistical inference tools in the

post-processing step of variational algorithms constitutes a promissory research direction.

An already ongoing research direction for functional estimation is error mitigation. These

techniques aim at correcting first order errors in observables estimated on NISQ devices employing

regression techniques applied to data collected at different noise levels98,169,331. Finding the most
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effective way to integrate these techniques into the general workflow of variational algorithms is a

natural next step. A topic related to error mitigation is the observation that variational algorithms

can be robust to specific errors in the device. While this is intuitive in the case of calibration errors

in gates, whether this is true for other types of errors and the mechanism behind such corrections

are research questions that might lead to insights for designing variational circuits that exhibit such

robustness.

Optimization techniques: As mentioned in the introduction, the field of non-linear optimization

methods is vast246. Since optimization is a critical aspect of variational algorithms, investigating

both theoretically and numerically the performance of a variety of optimization methods for

variational algorithms is of vital importance. Optimizers that can handle noisy data are particularly

important. Along the same lines, the incorporation of techniques for reducing the cost of

estimating functionals and their derivatives is critical. Methods such as stochastic gradient descent

could help in the case of functionals expressed as weighted averages of many observables, which is

the case of Hamiltonians in VQE, for example. Finally, a central problem in the development of

optimization techniques for variational algorithms is the existence of barren plateaus in the

functional landscape of variational circuits223. While we have mentioned some strategies that

might help to fight this problem in Chapter 7, this will continue being an issue especially as we

scale variational algorithms to bigger quantum devices. Finding effective methods to combat the

vanishing gradient problem in variational circuits is of vital importance for the field.

FUTURE DIRECTIONS IN APPLICATIONS FOR VARIATIONAL ALGORITHMS

We identify four important application areas for variational algorithms: quantum simulation,

quantum optimization, machine learning, and quantum computing. We briefly describe the current

state of these application areas along with some tentative directions.
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Quantum simulation: Research in this area has focused on the development of the VQE

algorithm. Some of the recent advances in this matter include the development of new

ansatzes19,78,179, extensions of the algorithm to study quantum dynamics using some formulations

of the time-dependent variational principle368, the development of different schemes for error

mitigation98,169,221,331, extensions of the algorithm to compute excited states70,99,146,224,283,287, and

integration with existing techniques in quantum chemistry to tackle larger systems366. Most of

these advances have been tested using numerical simulations. Implementing these proposals on

actual quantum processors is a non-straightforward next step necessary to assess the practical value

of these proposals. Another important research direction concerns the calculation of molecular

properties using VQE, for example, the study of thermochemistry and kinetics. In the same

direction, the software infrastructure to scale up VQE calculations and interface them with existing

simulations tools in Chemistry will require further development as well. Finally, the application of

VQE to problems in condensed matter physics, such as superconductivity, is another promissory

area of research that is underdeveloped compared to Quantum Chemistry.

Quantum Optimization: Here, most of the recent advances have focused on developments of

QAOA. Recently, there have been extensive studies on the applicability of QAOA to Max-Cut

problems and its relation to quantum annealing, indicating that the optimal parameters for QAOA

tend to concentrate around specific values46,373 and showing a separation between QAOA and

quantum annealing75,211,326. The variational circuit employed in QAOA has been applied to

specific problems in machine learning354,363 and more recently, to solve the factoring problem,

leading to a new algorithm called Variational Quantum Factoring (VQF)9, able to run on NISQ

devices. In this direction, there is significant room for exploring the application of QAOA to other

constraint optimization problems.

Quantum machine learning: Recently, the field of quantum machine learning with variational
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circuits have experienced considerable growth. Most of the work in this direction has focused on

using variational circuits for classification tasks298. As shown in Chapter 7, a few proposals in

generative algorithms using variational circuits have also appeared, including VQG. From this

body of work, it is clear that variational algorithms can solve a wide range of tasks in machine

learning. Whether these variational approaches can offer a practical or proven asymptotic

advantage is a matter of ongoing research. From a practical point of view, an essential direction

towards this goal is the application of these approaches to established machine learning

benchmarks datasets. While it would be hard to test these approaches on real quantum devices, a

way to systematically perform such tests is by the use of simulators and the study of hybrid

architectures, such as VQG, that interface a small quantum computer with a large neural network.

In the theory front, recent work has shown complexity separations between variational circuits and

neural networks in generative tasks95. An important research direction would be to design simple

machine learning models where the power of variational algorithms can be studied analytically.

These small toy problems might not be practical but could lead to a better understanding of the

learnability and expressiveness of variational circuits compared to classical machine learning

models.

Quantum computing: Despite being a natural niche for applications pertaining operations on

quantum computers (that by definition can be executed naturally on quantum devices) variational

algorithms in this domain reduce to techniques for engineering quantum gates145,201 and to study

quantum foundations13, in addition to QVECTOR and QAE. A significant challenge for the

assessment of these approaches is the need for larger quantum computers, particularly in the case

of QVECTOR. In this case, the goal is to train a model that learns from the particular noise

processes happening on the device. While we get to the point of testing these techniques in

sufficiently large quantum computers, the use of classical high-performance simulators
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Chapter 8. Future research directions

implementing very general noise models might offer a first testbed to develop working

implementations of the algorithms, which can be subsequently deployed on medium to sizeable

real quantum processors when these become available.

Other applications: variances of the VQE algorithms have been proposed to address

computational problems such as matrix-matrix multiplication100 and diagonalization of quantum

states193. Developing variational quantum algorithms for new areas of application is a constant

driver for the field.

As a final remark, we point out the importance that all the theoretical and practical developments

in variational algorithms come with implementations on robust software frameworks. The

simultaneous development of theory and software allows for quick benchmarking and deployment

of these techniques on quantum hardware, ultimately accelerating progress towards the practical

frontier.
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9
Conclusions

Quantum computing is a computational model that employ quantum systems to encode and

process information. The unique properties of these systems allow for computational speed-ups for

many significant problems, including quantum simulation, factoring, among others. The prospect

of solving these problems and the development of techniques to control quantum systems

motivated the experimental realization of quantum computers. Nowadays, these machines are

improving quickly. However, building fault-tolerant quantum computers require a significant

number of resources, establishing this goal as a still long term promise. In the process of reaching

this goal, we are building quantum devices that will soon surpass the limit of simulability with

classical supercomputers. How do we harness the computational power of these NISQ devices?

The answer might lie in variational quantum algorithms, a new paradigm in quantum algorithm

design. These approaches aim at solving computational problems that encode their solutions as

extreme values of a functional. By representing functions as parameterized quantum circuits and

finding a set of parameters that optimize the functional value, variational algorithms find

approximate solutions to these problems. The flexibility in the choice of heuristic for the

variational circuit allows to expands the operability of these approaches within the regime of the

coherence times of NISQ devices, avoiding the necessity of error-correction.

In this dissertation, we presented a general formulation of variational algorithms and provided

examples of the application of this paradigm to tackle problems in multiple fields, including

242



Chapter 9. Conclusions

quantum simulation, quantum computing, and statistical modeling. In the first part, we study the

application of the variational quantum eigensolver, the first variational quantum algorithm to be

proposed255, to the calculation of the ground state of molecular systems. We investigated the

implementation of VQE using a method called unitary coupled cluster to build the variational

circuit. We exploited existing techniques in the area of quantum chemistry to improve the cost of

implementing this approach and developed a method for estimating gradients of variational circuits

to aim optimization. We also demonstrated some of these techniques on real quantum processors,

realizing some of the first scalable quantum computations of molecular energies. Finally, we

improved the prospects of achieving VQE calculation for larger systems, both in chemistry and

condensed matter physics, by proposing a new variational ansatz with more modest resource

requirements that can describe strongly correlated fermionic systems.

In the second part, we expanded the potential applications of the variational algorithm paradigm

to problems in quantum computing and statistical modeling. Inspired by the autoencoder model of

machine learning, we develop a new variational algorithm called the quantum autoencoder (QAE).

This method is capable of learning quantum circuits to compress an ensemble of quantum states

efficiently. When applied to problems in quantum simulation, QAE provides an unsupervised

technique to design more efficient state preparation circuits. Drawing similar inspiration from

machine learning, we created another quantum algorithm for finding quantum encoding and

recovery circuits for error-correction, called the variational quantum error corrector (QVECTOR).

By training variational circuits as encoding and recovery maps based on the behavior of the actual

quantum device, QVECTOR provides mappings tailored to the needs of a particular quantum

processor, opening a path to potentially more efficient and effective protocols to protect quantum

computers from errors.

Finally, we explored the applications of the variational quantum computing paradigm to
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problems in classical machine learning. Specifically, we proposed a quantum model called

variational quantum generator (VQG), that combines a variational circuit with a classical neural

network to model classical probability distributions. We showed that VQG could be trained using

an adversarial learning approach, where another neural network or variational circuit judge the

quality of the samples generated by the model. Our method is a blueprint for creating hybrid

quantum-classical models in machine learning, opening a new practical path to study the potential

of quantum computers to solve classical machine learning problems.

The research presented in this work provides insights into the challenges of developing and

implementing variational quantum algorithms for near-term quantum computers and offers

examples of strategies to address some of these challenges. We hope that our work inspires other

researches to explore the path of variational quantum algorithms, providing some practical tools to

help them advance the algorithms studied here or propose their own. We believe that by leveraging

the variational approach to quantum computing, we will be able to push this field towards the

practical frontier.
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