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The contribution of rare de novo and inherited coding variants in neurodevelopmental disorders 

Abstract 

High-throughput sequencing technologies allowed for studying rare (allele frequency 

<5%) genetic variation previously inaccessible through genotyping arrays used in genome-wide 

association studies.  While each rare variant explains a negligible amount of heritability, they can 

potentially better identify trait-associated genes.  In this dissertation, we identified rare de novo 

and inherited coding variation via exome sequencing to discover genes in complex 

neurodevelopmental traits. 

 First, we found that ~1/3 previously identified de novo variants were present as standing 

variation in the Exome Aggregation Consortium’s cohort of 60,706 adults; these recurrent de 

novo variants in aggregate did not contribute to risk for neurodevelopmental disorders.  We 

further used a loss-of-function (LoF)-intolerance metric, pLI, to identify a subset of LoF-

intolerant genes that contained the observed signal of associated de novo protein truncating 

variants (PTVs) in neurodevelopmental disorders.  LoF-intolerant genes also carried a modest 

excess of inherited PTVs; though the strongest de novo impacted genes contributed little to this, 

suggesting the excess of inherited risk resides lower-penetrant genes. 

 Working with the Autism Sequencing consortium, we analyzed rare de novo and 

inherited variants from the largest exome sequencing study of autism spectrum disorders (ASDs) 

to date (35,584 samples) to discover 26 Bonferroni significant genes and upwards of 102 genes 

(FDR<0.1).  Comparing the frequency of deleterious de novo variants in ascertained ASD and 

ascertained intellectual disability / developmental disorders (ID/DD) samples, half of the 

identified genes conferred more risk to ID/DD than ASD and these two groups of genes have 

different phenotypic outcomes. 
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 Finally, aggregating genetic and phenotypic data for ID/DD, ASD, and congenital heart 

disease (CHD) individuals, we evaluated the effect of severe ID/DD on both de novo variant 

frequencies and gene discovery in ASD and CHD.  Within ascertained ID/DD, comorbid ASD 

and CHD does not affect either the de novo variant frequency or the number of significant genes, 

but the converse was not true: ID/DD increased both the de novo variant frequency and the 

number of Bonferroni significant genes discovered in ASD and CHD. 
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Overview 

 The goal of statistical and medical genetics is to understand the genetic basis of human 

traits.  However, this lofty goal is complicated by the fact that not all traits have the same genetic 

architecture (i.e., the number of genetic loci, effect size and minor allele frequency [MAF] 

distribution), as well as the fact that the environment also contributes to many such traits1.  As 

such, traits are placed in groups based on similar genetic architectures.  Mendelian (named after 

the Austrian monk, Gregor Mendel) traits are governed by a single locus with large effects.  On 

the opposite end of spectrum are complex traits (e.g., height, type II diabetes, schizophrenia) for 

which a large number of distinct genetic loci influence the phenotypic variability.   

Restriction fragment length polymorphism genotyping coupled with linkage mapping 

was one of the earliest methods to identify trait-associated genetic loci2,3.  Linkage mapping 

required collecting large pedigrees with both affected and unaffected members.  Genetic loci 

were genotyped in all members in the pedigree(s), and researchers followed the segregation of 

these loci with the segregation of the trait under the assumption that the trait-associated loci 

would follow the trait’s inheritance pattern.  As such, linkage mapping worked very well for 

traits caused by large effect variants such as the trinucleotide repeat (CAG)n in HTT4 located on 

4p16.35 that causes Huntington’s Disease as well as DF508 in CFTR in cystic fibrosis6. 

While linkage mapping successfully identified the genetic components of Mendelian 

traits, it was by and large unsuccessful for complex traits7.  For complex traits, genome-wide 

association studies (GWAS) have become the standard approach to understand their genetic 

architecture.  In 2005, the first successful GWAS in a complex trait, age-related macular 

degeneration, identified two single-nucleotide polymorphisms (SNPs) in the intron of CFH that 

surpassed the study-wide significant threshold of 4.8 x 10-7 with 96 cases and 50 controls8.  As 
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with many early successful studies of their kind, not all subsequent GWAS would be as 

successful (especially at similar sample sizes in the hundreds).  To illustrate, one of the earliest 

schizophrenia GWAS in 2009 with 3,322 cases and 3,587 controls didn’t find any genome-wide 

significant loci9, but a later study in 2011 identified five genome-wide significant loci with 9,394 

cases and 12,462 controls10.  The largest study in 2014 identified 108 loci with 36,989 cases and 

113,075 controls11.  With the continued drop in genotyping costs, meta-analysis of GWAS have 

reached hundreds of thousands of samples enabling sufficient power to detect small effects at 

common single nucleotide variants (i.e., those with a minor allele frequency [MAF] ≥ 5%).  

These hypothesis-free genome-wide scans delivered many novel discoveries, including some 

particularly unexpected results such as implicating the hippocampus and limbic system in body 

mass index12, autophagy in Crohn’s Disease13, and the complement system in age-related 

macular degeneration14.  To date, GWAS have been used to study over 3,200 traits such as post-

traumatic stress disorder15, coffee consumption16, hoarding17, and type II diabetes18. To date, the 

catalogue of genome-wide significant associations contains over 126,000 variants19. 

 

Rare variants 

Current genotyping arrays commonly used in GWAS capture most common variants 

through imputation, but have limited capture of variants below a 5% MAF.  With decreased 

costs, and development of high throughput next generation sequencing (NGS) technologies to 

sequence both the exome (~1% of the genome that covers protein coding genes)20 and the entire 

genome, researchers could for the first time identify all variation in the genome, but most notably 

rare variants and perform rare variant association studies (RVAS).  With time and larger sample 

sizes, the MAF definition of rare variation has shifted from less than 5% for the earliest GWAS 
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to 0.5% or even 0.1% - with the term, low-frequency variant, being applied to the MAF range of 

5% - 0.5%21.  Furthermore, population based whole genome sequencing studies (WGS) such as 

the 1000 Genomes22 and UK10K Project23, verified that most genetic variation is rare.  What’s 

more, at current sample sizes the majority of variants are singletons, meaning that only one copy 

of the minor allele is observed in the entire sample (Figure 1.1).  Beyond capturing SNPs, NGS 

technologies also capture insertions/deletions (indels) of nucleotides, as well as more 

complicated structural variation such as copy-number variants (CNVs) and large-scale inversions 

or deletions.  Current sequencing technologies capture almost all SNPs, but accurate detection of 

indels and structural variants still poses a challenge. 

Whole exome sequencing (WES) and WGS identified many causal genes for Mendelian 

and monogenic disorders24-33.  Part of the initial motivation for looking at rare variants in 

complex traits came from targeted candidate gene studies that discovered rare coding variants of 

large effects.  For example, rare coding variants in NOD2 were linked to risk of Crohn’s 

Disease34, and rare variants in PCSK9 and ABCA1 were found to have large effects on low-

density lipoprotein (LDL)-cholesterol and high-density lipoprotein (HDL)-levels respectively35-

37.  Furthermore, successfully translating the discovery of PCSK9 to a therapeutic intervention 

has demonstrated the potential of taking rare variant association through to clinical 

application38,39. 
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Figure 1.1: Minor allele frequency distribution from exome sequencing of 2883 individuals of 
Swedish ancestry.  The vast majority of variants are rare (MAF < 0.1%) with 53% observed only 
once (singleton).  The inset figure expands out the fraction of variants observed at minor allele 
counts 1-10. 

While WGS is a powerful approach that enables the unbiased survey of genetic variants 

genome-wide, it has two main limitations.  First, the costs of sequencing are still considerable, 

resulting in smaller samples for any one study.  Second, as described above, interpreting the 

functional consequences of non-coding variants remains an ongoing challenge.  Nevertheless, as 
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costs continue to decline and technologies improve, WGS will likely be the standard approach 

for genetic investigation.  However, the single most important factor in driving discovery in 

genetic studies is sample size, meaning that more cost-effective approaches for large samples 

may successfully identify significant loci more rapidly. 

In contrast to WGS, WES targets the capture of the protein coding regions (~1% of the 

genome).  While WES is more expensive than genotyping arrays, it remains considerably less 

expensive than WGS.  This cost-reduction enables larger sample sizes and therefore higher-

powered studies.  Prior research suggests the exome will have more rare variants than the non-

coding region, because the coding region has a 10-fold greater selection coefficient than 

evolutionarily conserved non-coding regions40,41, and those variants are more directly 

actionable42.  This makes the discovery of associations from WES more likely to inform our 

understanding of the pathology of disease as well as increase the likelihood of identifying viable 

therapeutic targets.  Furthermore, our ability to interpret the functional impact of coding variants 

far outstrips our understanding of noncoding variation, meaning that extracting biological insight 

is much more straightforward (although not without its own challenges).  All together, these 

properties of the coding region increase power to identify novel associations as well as provide a 

better interpretation of those associations.  Nevertheless, WGS projects may likely have a longer 

shelf life than WES projects.  

 

Burden and variance components tests 

For individual rare variants, not enough copies of the minor allele are present to achieve 

sufficient levels of evidence to be convincingly associated in single marker analysis43.  To 

address this issue, grouping and burden tests have long been proposed in the analysis of rare 
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variants37,44-48.  These groupings aim to ensure that there are enough individuals carrying a rare 

variant to perform an association test.  There are two main classes of group-wise tests: burden 

tests, where the rare variants in a region are assumed to have the same direction of effect and 

variance component tests which allow for effects in opposite directions.  

The most straightforward of the gene-based tests44,45,49-51, burden tests function by 

comparing the number or burden (i.e., sum) of variants in cases and controls.  These tests 

collapse variants within a gene or a defined region of the genome into a single score and test for 

association between the score and the trait of interest.  One can simply consider all variants in the 

pre-specified grouping and apply either a threshold (0 or 1) or a weight based on their functional 

category and/or MAF in the model.  However, burden tests are limited by the assumption that all 

variants act in the same direction (i.e., all risk or all protective) and as such, lose power if there is 

a mixture of both protective and risk conferring variants in the same gene.  

Variance-component tests52,53, most notably the sequence based kernel association 

(SKAT)54 or C-alpha46 (which is a special case of SKAT), were designed to address this issue in 

which a gene may possess a mixture of risk and protective variants.  They test for association by 

evaluating whether individuals that carry the same rare variant tend to be more similar 

phenotypically.  By assessing the distribution of variants, rather than their combined additive 

effect, these tests are robust to instances where the rare variants affect phenotype in different 

directions55.  Thus, variance-component tests are more powerful than burden tests if there is a 

mixture of both risk and protective variation.  However, variance component tests lose power 

compared to burden tests when the majority of variants are in the same direction. 

 

Which region to test 
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One of the central questions in RVAS, especially for WGS, is what regional definitions 

should be used to group rare variants in an association-testing framework.  The most common, 

and arguably most intuitive, choice is to aggregate variants across a gene.  This is particularly 

appealing in exome sequencing studies where genetic variation is being captured specifically at 

genes.  This gene-based approach can be expanded to include particular functional classes (e.g., 

DNase hypersensitivity sites, nonsense variants), all genes within a pathway, or all genes within 

a gene set.  In the context of WGS however, the majority of rare variants fall outside of genes, 

and the decision of which regions to group them over for testing becomes less clear.  In this case, 

one could group variants by class of regulatory element such as promoter, enhancer, or 

transcription factor binding site.  One challenge with grouping in this manner is that regulatory 

elements tend to be small (100-200bp) and thus require more samples to achieve the same power 

as when testing a whole gene42.  Another way to consider aggregating rare variants, especially in 

the case of the noncoding region, is to use a sliding window of a specified genomic length56.  

However, determining the optimal size for a sliding window is tricky, as there is a tradeoff 

between using a few large windows which incurs a smaller multiple hypothesis testing burden, 

but comes at the cost of including variants that might be functionally unimportant or have 

negligible effect sizes to using a lot of small windows with a higher multiple testing burden.  The 

UK10K study applied this technique with a window size of 3kb to test 31 different traits for 

noncoding associations, but this analysis did not return any significant associations23. 

Once a specified region is chosen, one must determine which variants within that region 

to include in the analysis.  Each individual variant will either increase the probability of having 

the disease (risk-conferring), or decrease it (protective), or have no effect on risk (neutral).  

Ideally, we would only include the risk-conferring variants, or alternatively the protective 
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variants, since including neutral variants will reduce power.  However, this information is 

typically not known, so the challenge is to balance the chance of including the risk-conferring (or 

protective) variants and excluding neutral variants.  

 

Gene level testing 

When considering gene level analyses, one of the most natural approaches is to restrict to 

only variants predicted to truncate the protein57 or ablate it through nonsense-mediated decay58.  

Four different functional categories fit in this group: frameshift, splice donor, splice acceptor, 

and nonsense variants.  Collectively, these variants are referred to by a variety of descriptions: 

loss-of-function (LoF), likely gene disrupting (LGD), or protein truncating variants (PTVs58); we 

will use the term PTV for the remainder of this dissertation.  One of the most attractive features 

of PTVs is the expectation that all the variants will act in the same direction.  However, most 

genes in the genome are strongly conserved, meaning that natural selection keeps PTVs rare, and 

thus large sample sizes are necessary to observe a sufficient number of rare alleles to test for 

association with the trait of interest.   

One possible way to increase power without increasing sample size is to also include 

missense variants.  However, the classification of missense variants into risk, neutral, and 

protective is challenging.  A variety of different computational approaches for pathogenicity 

prediction of missense mutations have been proposed, such as SIFT59, PolyPhen260, 

MutationTaster61, MPC62, among others63,64.  Each of these tools leverages different indicators of 

deleteriousness for missense mutations; some measure conservation (e.g., GERP++65, SIFT59, 

phyloP66), while others evaluate the functional effect of alternate amino acids on protein 

structure (PolyPhen260).  Given the differences in information source, the predictions of 
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deleteriousness often differ.  Additionally, the various datasets used for training and testing these 

tools differ in how they define pathogenic or neutral variants, which further contributes to the 

inconsistency across tools64.  Regardless of the particular annotation method adopted, the 

resulting set of variants will likely contain a mixture of both risk and neutral variants. 

 

Population stratification 

For case-control and cohort association studies, population stratification is a major source 

of type I error67-69; principal components analysis (PCA) and linear mixed models (LMMs) have 

been applied with great success in correcting for these confounders70.  PCA-based correction 

assumes a smooth distribution of MAF over ancestry or geographical space, which is appropriate 

in the space of common variation.  However, this approach may not be appropriate for rare 

variation as the MAFs may be sharply localized and geographically clustered due to the fact that 

they have recently arisen, thus violating this assumption71.  One proposed method to correct for 

stratification in RVAS is Fast-LLM-Select72, which performs feature selection on the variants, 

retaining only those that are phenotypically informative to use in constructing the generalized 

relationship matrix (GRM).  Nevertheless, Fast-LLM-Select loses power when causal variants 

are geographically clustered72,73. 

 

Family studies 

In 1987, Falk and Rubinstein proposed a study design using trios (father, mother, and 

child) as a way to control for population substructure and admixture74.  Family-based studies 

avoid the problems of population stratification because the child is perfectly controlled by their 

parents.  Additionally, they enable the interrogation of both inherited and de novo variation.  
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Their primary disadvantage is that trio-based studies are harder to recruit for, as they require all 

three family members to obtain a single data point.  As such, issues of non-paternity are 

prohibitively expensive as the data from the remaining members of the family is of reduced 

value.  For family studies, two main analytic approaches are available: within family tests, (e.g., 

the transmission disequilibrium test [TDT]) and de novo (i.e., newly arising mutations).  

 

TDT 

The most commonly used association test in family designs75 is the transmission 

disequilibrium test (TDT)76.  The TDT can be thought of as a family-based case-control 

association procedure, in which the control is not a random unaffected individual but the alleles 

the affected child could have inherited but did not (i.e. a pseudo-control).  The TDT boils down 

to testing whether the frequency of transmitted alleles (case) is the same as alleles not 

transmitted to the affected child (control) from a heterozygous parent and uses McNemar’s chi-

squared test statistic77 to determine P-values.  Because the TDT relies on the variant allele 

having a 50% chance of being transmitted or untransmitted, parents who are homozygous variant 

are not used as the transmission is guaranteed.  

Arguably the greatest advantage of the TDT is that it is free from population stratification 

as the control (i.e. the untransmitted allele) is sampled from within the same family as the case.  

The TDT assumes Mendelian inheritance (i.e. that each allele is equally likely to be transmitted), 

and that a variant more often transmitted than not to the affected offspring indicates a disease-

associated locus that is linked with the marker.  Thus, both linkage and association are required 

to reject the null hypothesis; this dual hypothesis shields the TDT from population stratification.  

A recent study by Elansary and colleagues found that the TDT can produce false positive 
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associations with X-linked variants near the pseudo-autosomal region for traits with sex-limited 

expression and when the allele frequencies of the locus differs between the X and Y 

chromosomes.  These false positive associations arise because transmission is not equally likely 

in both sexes: fathers transmit the Y allele to their sons and the X allele to their daughters.  These 

false positives can be fixed by considering only maternal transmissions and removing trios in 

which the father and mother are both heterozygous at these sites78. 

 

De novo tests 

The scenario where studying de novo mutations for gene discovery is most effective is 

when the selective pressure against mutations is extremely strong and the effect size is quite 

large.  Strong selective pressure means that when deleterious mutations arise, they are rapidly 

removed from the population, keeping the frequency of those mutations in the population 

extremely low.  For instance, Hutchinson-Gilford progeria syndrome is a rare genetic disorder 

(incidence of ~1 in 4 million79) marked by accelerated aging, scleroderma, and hair loss with an 

average lifespan of 13 years79.  As these affected individuals do not live long enough to 

reproduce, the disorder is most commonly caused by de novo missense variants in LMNA, some 

of which create a cryptic splice site that leads to a truncated protein80.  Beyond childhood lethal 

disorders such as Hutchinson-Gilford progeria syndrome, de novo variants were successfully 

used to identify the causal genes in Mendelian disorders such as achondroplasia81, Bohring-Opitz 

syndrome82, Kabuki Syndrome27, KGB syndrome83, Miller syndrome28, and Schinzel-Giedion 

Syndrome84. 

Germline de novo mutations originate during DNA replication in both mitosis and the 

first half of meiosis.  Due to differences in the male and female germline, de novo mutations are 
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more often paternal in origin85.  While oocytes are created once and very early in a women’s life 

with a fixed 23 genome replications, spermatogonial stem cells are replicated every year after 

puberty throughout a man’s life86.  Thus, the germ line of a 20-year-old male has undergone 

~160 genome replications, rising to ~610 genome replications by the time the male reaches 40-

years-old87-89.  The fact that de novo mutations accumulate in the male germline as men age 

results in an increased risk of bearing children with genetic disorders caused by such mutations.  

In 1912, W. Weinberg observed that sporadic cases of achondroplasia occurred more often in the 

last-born child90 and J.B.S. Haldane discovered in 1947 that the hemophilia-associate gene’s 

mutation rate was higher in men91.  Furthermore, risk for achondroplasia92 and other disorders87 

were noted to increase with paternal age. 

The key to analyzing de novo variation is to understand the mutability of each potential 

mutation site in the genome.  Across the genome, the mutation rate has been show to vary as a 

function of a large number of factors including replication timing93-95, nucleosome position96, 

local base context97,98, and other large-scale phenomena99.  While the chance of mutation at any 

one gene is extremely rare (typically 2 x 10-4), we are all expected to carry ~75-100 de novo 

variants on average100,101.  In order to have sufficient power to test such variants for association 

without knowledge of whether the variant is de novo or without an expectation of how many de 

novo variants would be observed by chance, very large sample sizes would be required.  To 

illustrate, ~100,000 samples are required to detect a gene in which de novo PTVs confer a 20-

fold increase in risk42.  Building a mutation rate model for de novo variant analysis dramatically 

improves the gene discovery power because one can compare the number of observed de novo 

variants to what would be expected if de novo variants were randomly distributed across the 

genome98.  Prior to the work of the Samocha and colleagues98, studies of de novo variation 
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assumed the presence of at least 2 deleterious (i.e., missense, PTV) coding de novo variants were 

sufficient for association102-106.  With a null mutation model for each gene and each variant class, 

studies could statistically evaluate their findings (Table 1.1).  One will notice that while most 

studies followed the tried-and-true example laid down by GWAS of using a strict Bonferroni 

significance threshold, some (particularly studies of ASD) opt for a more permissive false 

discovery rate (FDR) with a varying (and arbitrary) cutoff to report more genes despite less 

confidence in each individual association. 

Table 1.1: Genes discovered in complex traits via de novo variation. Sample size indicates the 
number of trios (mother, father, child).  Abbreviations: ASD: autism spectrum disorder, CHD: 
congenital heart disease, DD: developmental delay, FDR: false discovery rate, ID: intellectual 
disability, NDD: neurodevelopmental disorders, O/E: observed vs. expected, TADA: 
transmission and de novo association 

Paper Phenotype Sample 
size 

Number 
of genes Method Significance 

Samocha 201498 ASD 1078 3 O/E98 Bonferroni (P<10-6) 
De Rubeis 2014107 ASD 2270 33 TADA108 FDR < 0.1 
De Rubeis 2014107 ASD 2270 107 TADA108 FDR < 0.3 
Sanders 2015109 ASD 3981 65 TADA108 FDR < 0.1 
DDD 2015110 DD 1133 21 O/E98 Bonferroni (P<10-6) 
DDD 2015110 DD-meta 3477 31 O/E98 Bonferroni (P<10-6) 
Homsy 2015111 CHD 1213 3 O/E98 Bonferroni (P<10-7) 
Sifrim 2016112 Severe CHD 1365 11 O/E98 Bonferroni (P<10-6) 
Lelieveld 2016113 ID/DD 2104 10 O/E98 FDR < 0.05 
DDD 2017114 DD-meta 7580 93 O/E98 Bonferroni (P<10-7) 
Kosmicki 2017115 ASD 3981 7 O/E98 Bonferroni (P<10-6) 
Yuen 2017116 ASD 5326 54 O/E98 FDR < 0.15 
Jin 201711 CHD 2645 7 O/E98 Bonferroni (P<10-6) 
Heyne 2018117 NDD w/epilepsy 1942 33 O/E98 Bonferroni (P<10-6) 
Satterstrom 2018118 ASD 6430 102 TADA108 FDR < 0.1 
 

Neurodevelopmental disorders 

 Neurodevelopmental disorders encompass a broad swath of disorders including, but not 

limited to: autism spectrum disorder (ASD), intellectual disability (ID), developmental delay 

disorders (DD), epilepsy, attention deficit hyperactivity disorder, tic disorders including 
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Tourette’s syndrome, and motor disorders119.  Many neurodevelopmental disorders occur early in 

childhood, have reduced fecundity120, and are highly heritable121.  In the next two sections, we 

will describe two neurodevelopmental disorders that we focused on in this dissertation: autism 

spectrum disorder (ASD) and intellectual disability (ID). 

 

Genetics of autism spectrum disorders 

 First described by Leo Kanner in 1943122, ASD is a phenotypically heterogeneous 

disorder that currently encompasses a range of disorders that are characterized by impairments in 

two core domains: (1) communication and social interaction and (2) restricted interests and 

repetitive behaviors123.  The clinical and diagnostic features of ASD has expanded over the 

years124 and with that change came increases in the prevalence of ASD, now at 1:59.  With the 

changing diagnostic criteria came changes in the comorbidity space in which ASD was most 

often diagnosed in individuals with comorbid ID/DD, but now this same segment comprises 

~30% of the ASD population.  ASD has a strong male to female bias with on average four males 

to every one female, but this ratio changes based on the IQ of the individual.  For the most severe 

ASD individuals, the male to female ratio drops to 2:1, while those on the high end of the IQ 

distribution reaches 7:1125-128. 

 One way to measure selection against a trait is to study the fecundity or number of 

offspring individuals with a given trait bare.  Traits under positive selection will have higher than 

average fecundity, while traits under negative selection will have lower than average fecundity 

and the magnitude of the difference is related to the strength of selection (s).  In a Swedish birth 

cohort, Power and colleagues measured the fecundity of individuals with a variety of different 

psychiatric traits, one of which was ASD.  They found that both males and females with ASD 
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had fewer children compared to their unaffected relatives and the fecundity of males and females 

were not the same with males having 75% fewer children and females having 48% fewer129.  

Because of the reduced fecundity in individuals with ASD, negative selection will keep the MAF 

of genetic variants with large effect very low.  However, because ASD is a phenotypically 

heterogeneous disorder, it may very well be that the fecundity also differs based on the severity 

of the phenotype as individuals with severe to profound ID rarely produce offspring130. 

Early twin studies demonstrated that ASD is a highly heritable trait with heritability 

estimates as high as 80%121,131,132, indicating a large genetic component.  However, identifying 

the genetic basis of ASD proved challenging.  Early ASD linkage association studies failed to 

identify large swaths of associated loci, largely due to ASD’s polygenic genetic architecture133, 

but managed to locate the causal genes for genetic syndromes (of which ASD was one, among 

many, phenotypic outcomes) including Rett syndrome134, tuberous sclerosis135, and fragile X 

syndrome136.  Outside of two loci that managed to replicate across studies, NRXN1137 and 

SHANK3138, most linkage studies produced lengthy lists of candidate genes for researchers to 

compile into “high-confidence” gene sets139 that never replicated98.  In a similar fashion, multiple 

underpowered ASD GWAS either failed to identify genome-wide significant loci or found loci 

that also never replicated140-142. 

The advent and adoption of CNV genotyping arrays allowed for the discovery of 

recurrent, large-scale de novo CNVs.  Beginning in 2009, Jonathan Sebat and colleagues 

performed a genome-wide survey of CNVs in 264 families and observed a 10-fold excess of de 

novo CNVs in simplex families of ASD (meaning 1 affected child with ASD and no other 

affected family members) and a 3-fold excess in multiplex ASD families (multiple children with 

ASD)143.  While they were underpowered to identify any specific CNVs, they demonstrated that 
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de novo CNVs contributed to ASD risk.  This initial discovery was replicated in larger samples 

while also identifying specific loci including 1q21.1144, 7q11.23144,145, 15q11.2-13.1144-147, 

15q13.2-13.3144, 16p11.2144-147, and 22q11.2144,146,147.  Although these large CNVs provided 

insight into underlying trait biology and genetic architecture, CNVs are often incompletely 

penetrant, rarely implicate a single gene, and confer risk to multiple traits143.  Given that many of 

these structural variants were de novo in origin, multiple groups, including ours, hypothesized 

that like de novo CNVs, de novo coding single nucleotide variants (SNVs) would also contribute 

to risk – with the added benefit of implicating specific genes.  It was fortuitous that sequencing 

entire families to identify de novo SNVs in an unbiased, genome-wide fashion was now feasible 

with the advent of whole exome sequencing20.  Given that de novo CNVs were mores strongly 

enriched in simplex ASD families, some groups specifically targeted simplex ASD families for 

their trio-based exome sequencing studies148 – although we later found no difference in the 

frequency of de novo SNVs between simplex and multiplex ASD families (Chapter 4).  As we 

discussed earlier, these trio-based exome sequencing studies102,105,149,150 were enormously 

successful at identifying genes with sample sizes as small as 175 trios, virtually unheard of for 

complex traits in the era of GWAS and case-control RVAS.  Thus, these studies ushered in a 

new approach for ASD genetics. 

 

The genetics of intellectual disability 

 The second neurodevelopmental disorder we examined in this dissertation is intellectual 

disability (ID), an early-onset disorder with a worldwide prevalence of ~1%151 characterized by 

significant deficiencies in adaptive behavior and cognitive functioning before 18-years-of-age.  

ID is formally defined as an intellectual quotient (IQ) < 70123, and the severity of ID varies based 
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on IQ and is split into bins denoted as mild, moderate, severe, and profound.  The majority of 

individuals with ID are identified early in childhood because of observed developmental delays 

in crawling, sitting, walking, and speaking130.  Both genetic and environmental influences 

contribute to ID; potential environmental risk factors include birth complications, lack of 

oxygen, severe malnutrition, infections, and maternal alcohol consumption during pregnancy130.  

ID occurs both by itself (referred to as isolated-ID) as well as in conjunction with many other 

disorders such as congenital heart disease, ASD, developmental disorders, epilepsy, 

and neuromuscular deficits (e.g. sensory/motor neuropathy, ataxia, muscular dystrophy, spastic 

paraplegia).  The fact that ID is often comorbid with other disorders can create issues with 

genetic studies focusing primarily on ID as well as studies of comorbid disorders117.  The 

frequency of sporadic ID cases is positively correlated with increasing severity, suggesting de 

novo or recessive contributions on top of the overall inherited genetic liability.  As such, most 

rare variant association studies of ID tend to focus on the severe and profound cases104,113,152-154. 

 In 1959, the first genetic association for ID155 was discovered: trisomy 21 - Down 

syndrome, which is currently the most common cause of ID comprising 15% of cases156.  Ten 

years later, Lubs and colleagues discovered the next genetic association for ID with a marker on 

the X-chromosome for fragile X syndrome157, and it took another 22 years before the causal gene 

(FMR1) was discovered158.  Fragile X syndrome currently accounts for 0.5% of ID cases159.  

With these two discoveries coupled with the cytogenic banding technologies, large-scale 

chromosomal aberrations were discovered and altogether comprise another 15% of ID cases156. 

 Beginning in the 1990s, the X-chromosome became the focus of ID studies due to a 

combination of factors: the causal gene for fragile X syndrome resided on the X-chromosome157, 

the hypothesis that the X-chromosome was partially responsible for the elevated frequency in ID 
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among males160, and lastly, larger (and therefore, more powered) linkage studies could be 

performed with affected males160.  This exploration reached its zenith in 2009 when Tarpey and 

colleagues performed targeted sequencing of all the exons of the X-chromosome and reported 

nine novel X-linked ID genes (albeit without rigorous statistical evidence)161.  There are now 

over 100 X-linked ID genes and while no individual gene explains even 0.1% of ID, collectively 

they account for 10% of ID in males162. 

 Homozygosity mapping using SNP microarrays with Sanger sequencing of candidate 

genes for follow-up studies were used to discovery over 300 recessive genes on the 

autosomes130.  However, ~97% of these recessive genes were pleiotropic in nature with ID as 

one of the many phenotypic outcomes.  Only a handful of recessive genes solely cause ID163.  As 

with ASD, the introduction of microarrays enabled genome-wide identification of ID-associated 

CNVs164-167 with higher resolution than was previously possible with the light microscope168.  

Roughly 10% of these CNVs were de novo in origin and the number of genes affected by CNVs 

was positively correlated with increasing severity of ID169. 

 Energized by the discovery of de novo CNVs, the development of WES, and prior 

successful efforts in identifying causal genes in rare syndromes via WES, trio-based WES in 

severe ID as well as severe developmental disorders (of which ID was in nearly all of the 

individuals)110 was carried out.  As with ASD, these studies were enormously successful and 

future studies are reaching more than 32,000 trios (unpublished). 

  

Summary 

  When I began my PhD, the first trio-based exome sequencing studies of 

neurodevelopmental disorders had just been published and the promising early results suggested 
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larger sample sizes could both identify more genes and provide deeper biological insights into 

these disorders.  Furthermore, rare variant association studies were still in their infancy and the 

contribution of rare variants to complex traits was very much unclear.  In this dissertation, we 

sought to explore the contribution of rare de novo and inherited coding variation in 

neurodevelopmental disorders and use this genetic variation to identify neurodevelopmental 

disorder associated genes.    

In chapter 2, we investigated the role of recurrent mutations in the ExAC database using 

published de novo variants in ASD, ID/DD, congenital heart disease, and schizophrenia.  We 

observed that ~1/3 de novo variants were present as standing variation in 60,706 individuals in 

ExAC and that these de novo variants were not associated with neurodevelopmental risk.  At the 

gene level, we applied a recently developed constraint method, pLI, to identify genes intolerant 

to PTVs and these highly constrained genes contained the previously observed enrichment.  

Using ExAC as a variant-level filter and pLI as the gene-level filter, we observed for the first 

time a significant enrichment in both inherited and case-control PTVs; as expected, this 

enrichment was not as strong as de novo PTVs. 

In chapter 3, we co-led the largest exome sequencing study of ASD to date, with more 

than 32,000 samples from 31 sampling sources.  Using a Bayesian framework that incorporated 

both de novo and case-control variation and leveraged gene and regional constraint, we 

discovered 26 Bonferroni significant genes and 102 genes (FDR<0.1) associated with ASD.  

Meta-analyzing our results with published de novo variants from 5264 intellectual disability / 

developmental disorder (ID/DD) trios indicated that 49 of the 102 ASD-associated were more 

strongly associated with ID/DD than ASD, as evidenced by a higher frequency of de novo 

variants in ascertained ID/DD individuals than ASD individuals.  We further demonstrated that 
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these 49 ID/DD-preferential genes were markedly different from the ASD-preferential genes in 

terms of the degree of negative selection and phenotypic presentation. 

Lastly in chapter 4, we delved into the genetic architecture of ASD, ID/DD, and 

congenital heart disease to evaluate how the comorbidity landscape of each disorder influenced 

the frequency of de novo coding SNVs and each ascertained trait’s power for gene discovery.  In 

contrast to previous studies, we failed to observe any evidence of an oligogenic model for ASD 

via de novo variants and also failed to observe any difference in the frequency of de novo SNVs 

between simplex and multiplex ASD families.  Furthermore, given that many genes are 

identified across each of these separate ascertainments, we statistically evaluated the degree of 

phenotypic specificity for each of these genes. 
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Abstract 

Recent research has uncovered a significant role for de novo variation in 

neurodevelopmental disorders.  Using aggregated data from 9246 families with autism spectrum 

disorder, intellectual disability, or developmental delay, we show ~1/3 of de novo variants are 

independently observed as standing variation in the Exome Aggregation Consortium’s cohort of 

60,706 adults, and these de novo variants do not contribute to neurodevelopmental risk.  We 

further use a loss-of-function (LoF)-intolerance metric, pLI, to identify a subset of LoF-intolerant 

genes that contain the observed signal of associated de novo protein truncating variants (PTVs) 

in neurodevelopmental disorders.  LoF-intolerant genes also carry a modest excess of inherited 

PTVs; though the strongest de novo impacted genes contribute little to this, suggesting the excess 

of inherited risk resides lower-penetrant genes.  These findings illustrate the importance of 

population-based reference cohorts for the interpretation of candidate pathogenic variants, even 

for analyses of complex diseases and de novo variation. 

 

Introduction 

Autism spectrum disorders (ASDs) are a phenotypically heterogeneous group of heritable 

disorders that affect ~1 in 68 individuals in the United States1.  While estimates of the common 

variant (heritable) contribution toward ASD liability are upwards of 50%2-4, few specific risk 

variants have been identified, in part because ASD GWAS sample sizes to date remain limited.  

Conversely, the field made substantial progress understanding the genetic etiology of ASD via 

analysis of de novo (newly arising) variation using exome sequencing of parent-offspring trios5-

10.  Severe intellectual disability and developmental delay (ID/DD) are considerably less 

heritable than ASDs11 (though frequently comorbid) and have demonstrated a stronger 
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contribution from de novo frameshift, splice acceptor, splice donor, and nonsense variants 

(collectively termed protein truncating variants [PTVs])12-14.  Furthermore, ASD cases with 

comorbid ID show a significantly higher rate of de novo PTVs than those with normal or above 

average IQ6,9,15-17, while higher IQ cases have a stronger family history of neuropsychiatric 

disease15, suggesting a greater heritable contribution. 

De novo variants comprise a unique component of the genetic architecture of human 

disease since, having not yet passed through a single generation, any heterozygous variants with 

complete or near-complete elimination of reproductive fitness must reside almost exclusively in 

this category.  Despite prior evidence of mutational recurrence18 (i.e., the same mutation 

occurring de novo in multiple individuals), most studies implicitly assumed each de novo variant 

was novel, in line with Kimura’s infinite sites model19, and thereafter analyzed de novo variants 

genome-wide without respect to their allele frequency in the population.  However, the mutation 

rate is not uniform across the genome, with some regions and sites experiencing higher mutation 

rates than others (e.g., CpG sites20).  A classic example comes from achondroplasia, in which the 

same G-to-C and G-to-T variant at a CpG site was observed de novo in 150 and 3 families, 

respectively18.  As such, it should not be surprising to observe a de novo variant at a given site 

and also observe the same variant (defined as one with the same chromosome, position, 

reference, and alternate allele) present as standing variation in the population. 

Given the strong selective pressure on neurodevelopmental disorders21-23, we expect most 

highly deleterious (high-risk conferring) de novo PTVs will linger in the population for at most a 

few generations.  Thus, the collective frequency of such variants in the population will 

approximate their mutation rate.  Individual PTVs tolerated to be seen in relatively healthy 

adults, and more generally PTVs in genes that tolerate the survival of such variants in the 
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population, may be less likely to contribute significant risk to such phenotypes, and are therefore 

permitted by natural selection to reach allele frequencies orders of magnitude larger than those of 

highly deleterious variants.  Given the current size of the human population (~7 billion), and the 

expectation of one de novo variant per exome (1 in ~30 million bases), every non-embryonic 

lethal coding mutation is likely present as a de novo variant at least once in the human 

population.  This reasoning, along with the availability of large exome sequencing reference 

databases, motivated our interest in searching for variants observed de novo in trio sequencing 

studies that are also present as standing variation in the human population, indicating a recurrent 

mutation.  We will herein refer to these de novo variants that are also observed as standing 

variation in the population as class 2 de novo variants, with the remaining de novo variants 

referred to as class 1 de novo variants (i.e., observed only de novo; Figure 2.1). 

 

Figure 2.1: Illustration of class 1 and class 2 de novo variants with the genotypes of each variant 
for 8 of the 60,706 individuals in ExAC. 
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With the release of the Exome Aggregation Consortium’s (ExAC) dataset of 60,706 adult 

individuals without severe developmental abnormalities24, we can now empirically investigate 

the rate and relative pathogenicity of recurrent mutations.  While there have been many studies 

examining de novo variation in human disease, the success in ASD and ID/DD, coupled with the 

large sample sizes published to date, led us to focus our evaluation on these phenotypes. 

 

Results 

Class 2 de novo variation 

We first asked how many of the 10,093 variants observed de novo in ID/DD cases13, 

ASD cases, and unaffected ASD siblings are also observed as standing variation in the 60,706 

reference exomes from ExAC24 (Figure 2.1).  We found that 1854 ASD (31.66%), 841 

unaffected ASD sibling (33.05%), and 410 ID/DD (24.23%) de novo variants are observed as 

standing variation in one or more ExAC individuals (class 2 de novo variants) (Figure 2.2A).  

When we removed the 15,330 exomes originating from psychiatric cohorts (many of which are 

controls), the rate of class 2 de novo variation drops to 28.47% (±1.03%, 95% CI), a rate 

statistically indistinguishable from the expected recurrence rate of 28.13% (±0.42%, 95% CI; 

binomial test P=0.45; Figure 2.2B).  We found similar rates of class 2 de novo variants in 

published trio studies of schizophrenia25 and congenital heart disease26,27.  While the presence of 

class 2 de novo variants is not a novel observation18,25, the rate is approximately three times 

larger than previous estimates25 owing to significantly larger reference datasets (Figure 2.2B). 
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Figure 2.2: Properties of class 2 de novo variants.  (a) The proportion of de novo variants across 
each cohort split between class 1 (left) and class 2 (right) with CpG variants marked in black. 
Class 2 de novo variants are strongly enriched for CpG variants (P < 10-20).  (b) Expected 
recurrence rate (rate of class 2 de novo variants across ID/DD, ASD, and unaffected ASD 
siblings) given the sample size of the reference dataset.  The red dot indicates the observed 
recurrence rate of the non-psychiatric version of ExAC.  (c) Allele frequency distribution of class 
2 de novo CpGs by cohort with the matching distribution of CpG variants in ExAC for 
comparison.  Allele frequency distributions do not significantly differ (P = 0.14; Wilcoxon rank 
sum test).  Error bars represent 95% confidence intervals throughout (a) – (c). 

 
We first sought confirmation that the observed recurrence rate – the proportion of 

variants observed both de novo and as standing variation in the population – was technically 

sound and not the result of some undetected contamination or missed heterozygote calls in 

parents (i.e., false de novo variants).  Five secondary analyses strongly support the technical 

validity of this work.  1) In line with previous publications, class 2 de novo variants, regardless 

of their functional impact, are enriched at CpG sites as compared to class 1 de novo variants (P < 

1x10-20; Fisher’s exact test).  2) As the exomes used to call de novo variants in De Rubeis et al. 

(2014) were used in the joint calling of ExAC, and many were sequenced at the same center as 

the majority of ExAC samples, it is possible that false class 2 de novo variants could be elevated 

in this dataset via contamination or joint calling artifacts.  However, we observe no difference in 

the rate of class 2 de novo variation between De Rubeis et al. (2014) and Iossifov, O’Roak, 

Sanders, Ronemus et al. (2014) (P=0.10; Fisher’s exact test).  3) The frequency distribution of 

class 2 de novo variants should be skewed dramatically upward towards common variation if 
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contamination or missed parental heterozygotes were contributing; however, the ExAC 

frequency of class 2 de novo variants at CpGs were indistinguishable from all such variants in 

ExAC compared to variants drawn at random with the same annotation and CpG content 

(P=0.14; Wilcoxon rank sum test; Figure 2.2C).  4) In fact, a subset of synonymous variants 

experimentally validated in the ASD studies showed nearly the same recurrence rate as the 

overall set, most definitively establishing that these mutations indeed arose independently 

(P=0.60; Fisher’s exact test).  5) Lastly, it is well documented that mutation rate increases with 

paternal age, thus rates of both class 1 and class 2 de novo variants should show association with 

paternal age if both classes were genuine de novo variants.  Indeed, for the 1861 unaffected ASD 

siblings with available paternal age information, rates of both class 1 and class 2 de novo variants 

are associated with increasing paternal age (class 1: β=0.002, P=4.11x10-9; class 2: β=0.0009, 

P=1.06x10-5; linear regression). 

We then sought to determine whether class 1 and class 2 de novo variants contribute 

equally to ASD and ID/DD risk.  As a control for the comparison of functional variants, rates of 

both class 1 and class 2 de novo synonymous variants are equivalent across ASD, ID/DD, and 

unaffected ASD siblings (Figure 2.3A) and remain unchanged when we removed the psychiatric 

cohorts within ExAC.  Thus, collectively neither class 1 nor class 2 de novo synonymous 

variants show association with ASD or ID/DD, consistent with previous reports that as a class, 

de novo synonymous variants do not contribute to risk5-10.  While previous reports implicated de 

novo PTVs as significant risk factors for ASD5,6,15,16 and ID/DD13, the class 2 de novo subset of 

PTVs show no such association for either ASD (0.015 per case vs. 0.023 per unaffected ASD 

sibling; P=0.98; one-sided Poisson exact test28) or ID/DD (0.016 per case vs. 0.023 per 

unaffected ASD sibling; P=0.94; one-sided Poisson exact test), with slightly higher rates in 
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unaffected ASD siblings (Figure 2.3B).  By contrast, after removing class 2 de novo PTVs, class 

1 de novo PTVs are significantly more enriched in individuals with ASD (0.13 per case) and 

ID/DD (0.19 per case) as opposed to unaffected ASD siblings (0.07 per control) (ASD vs. 

control: rate ratio =1.83; P=6.07x10-12, ID/DD vs. control: rate ratio=2.61; P=6.31x10-21; one-

sided Poisson exact test).  The lack of excess case burden in class 2 de novo variants was 

consistent with what would be expected if such variants did not contribute to ASD and ID/DD 

risk.  However, to ensure we were not losing causal variants by removing all de novo variants 

found in ExAC, we tested the class 2 de novo PTVs at three ExAC allele frequency (AF) 

thresholds: singletons (1 allele in ExAC), AF < 0.0001, and AF < 0.001.  We found no 

significant difference between the rate of class 2 de novo PTVs between individuals with ID/DD 

or ASD as compared to unaffected ASD siblings at any threshold (Figure 2.3C).  Furthermore, 

these results remain consistent regardless of whether the psychiatric exomes in ExAC are 

retained or excluded, demonstrating they are not driving the observed associations.  Thus, the 

data provides no evidence to suggest these class 2 de novo variants contribute to the previously 

observed enrichment of de novo variation in ASD and ID/DD cases, and removing those variants 

present in ExAC increases the effect size for de novo PTVs in ASD and ID/DD.  Moving 

forward, we focus our analyses solely on variation absent from ExAC. 
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Figure 2.3: Partitioning the rate of de novo variants per exome by class 1, class 2, and pLI.  
Within each grouping, the rate – variants per individual – is shown for ID/DD (left), ASD 
(middle), and unaffected ASD siblings (right) with the number of individuals labeled in the 
legends.  (a) Rate of de novo synonymous variants per exome partitioned into class 2 (middle) 
and class 1 (right).  No significant difference was observed for any grouping of de novo 
synonymous variants.  (b) Rate of de novo PTVs per exome partitioned into class 2 (middle) and 
class 1 (right).  Only class 1 de novo PTVs in ID/DD and ASD show association when compared 
to unaffected ASD siblings.  (c) Rate of class 2 de novo PTVs broken by different ExAC global 
allele frequency (AF) thresholds: singleton (observed once; left), AF < 0.0001 (middle), and AF 
< 0.001 (right). (d) Rate of class 1 de novo PTVs partitioned into class 1 de novo PTVs in pLI ≥ 
0.9 genes (right), and class 1 de novo PTVs in pLI < 0.9 genes (middle).  The entire observed 
association for de novo PTVs resides in class 1 de novo PTVs in pLI ≥ 0.9 genes. For all such 
analyses, the rate ratio and significance were calculated by comparing the rate for ID/DD and 
ASD to the rate in unaffected ASD siblings using a two-sided, two-sample Poisson exact test28 
for synonymous variants and one-sided, two-sample for the remainder (Materials and Methods).  
Error bars represent 95% confidence intervals throughout (a) – (d). 
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Gene level analyses 

Since observed risk to ASD or ID/DD was carried only by de novo variants absent from 

the standing variation of ExAC, we next sought to extend this concept by evaluating whether the 

overall rate of PTVs per gene in ExAC provided a similar guide to which ASD and ID/DD 

variants were relevant.  Specifically, we investigated whether the gene-level constraint metric, 

pLI16 (probability of loss-of-function intolerance), could improve our ability to decipher which 

class 1 de novo PTVs confer the most risk to ASD and ID/DD (Materials and Methods).  Using 

the same threshold as Lek et al. (2016), we used a threshold of pLI ≥0.9 to define loss-of-

function (LoF)-intolerant genes and investigated whether individuals with ASD had an increased 

burden of class 1 de novo PTVs in such genes.  When we restricted to solely class 1 de novo 

PTVs in LoF-intolerant genes, we observed a significant excess in individuals with ASD (0.067 

per exome) compared to their unaffected siblings (0.021 per exome; rate ratio=3.24; P=3.14x10-

16; one-sided Poisson exact test).  For individuals with ID/DD, the rate of class 1 de novo PTVs 

in LoF-intolerant genes becomes more striking, with a rate of 0.139 per exome, resulting in a 

6.70 rate ratio when compared to the control group of unaffected ASD siblings (P=6.34x10-38; 

one-sided Poisson exact test).  By contrast, the rate of class 1 de novo PTVs in LoF-tolerant 

genes (pLI <0.9) show no difference between individuals with ASD (0.063 vs. 0.051; P=0.06; 

two-sided Poisson test), or individuals with ID/DD (0.048 vs. 0.051; P=0.75; two-sided Poisson 

exact test; Figure 2.3D) when compared to unaffected ASD siblings.  Again, results remain 

unchanged when we exclude the ExAC psychiatric samples.  The same trend is observed in 

congenital heart disease26,27 and schizophrenia25: no association among de novo PTVs present in 

ExAC (congenital heart disease: P= 0.93; schizophrenia: P=0.93; one-sided Poisson exact test) 

or in LoF-tolerant genes (congenital heart disease: P=0.28; SCZ: P=0.67; one-sided Poisson 
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exact test).  Class 1 de novo PTVs in LoF-intolerant genes carried the observed association in 

congenital heart disease (rate ratio=2.31; P=2.12x10-5; one-sided Poisson exact test) and 

schizophrenia (rate ratio=1.76; P=0.04; one-sided Poisson exact test), although the latter does not 

survive Bonferroni correction.  Hence, all detectable de novo PTV signal in these phenotypes can 

be localized to 18% of genes with clear intolerance to PTVs in ExAC, with, consequently, 

substantially amplified rate ratios in this gene set. 

Recent studies inferred the presence of multiple de novo PTVs in the same gene as 

evidence of contribution to ASD risk5-10.  Of the 51 genes with ≥2 de novo PTVs, only 38 are 

absent in controls.  This not only reinforces the point that the mere observation of multiple de 

novo PTVs in a gene is not sufficient to define that gene as important5,16, but also provides an 

opportunity to explore whether the pLI metric can refine the identification of specific genes.  In 

fact, 32 of the 38 case-only genes, but only 5 of 13 control-only or case-control hit genes, are 

LoF-intolerant, a highly significant difference (OR=8.07; P=0.003; Fisher’s exact test) that 

greatly refines the list of genes to be pursued as likely ASD contributors. 

 

Phenotypic associations for class 1 de novo PTVs in LoF-intolerant genes 

While enrichment of de novo PTVs is one of the hallmarks of ASD de novo studies5-

10,15,16, another consistent finding is an increased burden of these variants among females with 

ASD6,15 and in ASD individuals with low full-scale IQ (FSIQ)6,15,16.  We investigated whether 

these hallmarks were present in the 6.55% of ASD cases with a class 1 de novo PTV in LoF-

intolerant genes (pLI ≥0.9).  Indeed, females are overrepresented in the subset (12.26% of 

females; 5.80% males; P=1.75x10-5; Fisher’s exact test). Importantly, for the 6.86% of ASD 

cases with a class 2 de novo PTV or a class 1 de novo PTV in a LoF-tolerant gene (pLI <0.9), 
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there is no difference between the sexes, with 6.86% of females and 6.83% of males falling in 

this category (P=1; Fisher’s exact test).  Furthermore, class 2 de novo PTVs and class 1 de novo 

PTVs in LoF-tolerant genes show no association with FSIQ (β=-0.001; P=0.76; Poisson 

regression), while class 1 de novo PTVs in LoF-intolerant genes predominately explain the 

skewing towards lower FSIQ (β=-0.023; P=7x10-8; Poisson regression; Figure 2.4A).  Given 

these observations, we split the ASD class 1 de novo PTV signal in LoF-intolerant genes by sex 

and intellectual disability status (Materials and Methods).  Females with comorbid ASD and 

intellectual disability have the highest rate of class 1 de novo PTVs in LoF-intolerant genes (rate 

ratio=8.71; P=2.73x10-12; one-sided Poisson exact test).  Despite the overwhelming enrichment 

in females and individuals with comorbid ASD and intellectual disability, males with ASD 

without intellectual disability still show enrichment of class 1 de novo PTVs in LoF-intolerant 

genes (rate ratio=2.95; P=1.31x10-9; one-sided Poisson exact test; Figure 2.4B).  These 

secondary analyses strongly support the implication of the primary analysis: that collectively, 

class 2 de novo PTVs and class 1 de novo PTVs in LoF-tolerant genes have little to no 

association to ASD or ID/DD and no observable phenotypic impact on those cases carrying 

them.  By contrast, the class 1 de novo variants occurring in LoF-intolerant genes contain the 

association signal and phenotypic skewing observed to date. 
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Figure 2.4: Phenotypic associations for ASD de novo PTVs.  (a) IQ distribution of class 1 de 
novo PTVs in pLI ≥ 0.9 genes (red) and remaining de novo PTVs (class 2 and class 1 pLI < 0.9; 
grey) in 393 individuals with ASD with a measured full-scale IQ.  Dots indicate the rate in 
unaffected ASD siblings for their respective categories of de novo PTVs.  P-values calculated 
using Poisson regression.  Only class 1 de novo PTVs show association with full-scale IQ.  (b) 
Rate of class 1 de novo PTVs (left set) and the remaining de novo PTVs (class 2 & class 1 in 
LoF-tolerant genes, right set) in ID/DD (left two bars) and ASD (middle four bars) split by sex 
and ID with the number of individuals labeled in the legends.  Error bars represent 95% 
confidence intervals, and P-values were calculated using one-sided, two-sample Poisson exact 
tests comparing to unaffected ASD siblings. 

 

Inherited variation 

As the effect size for de novo PTVs increased after removing those variants present in 

ExAC, we postulated a similar increase could be obtained from rare inherited PTVs.  Under the 

assumption that risk-conferring variants should be transmitted more often to individuals with 

ASD, we tested for transmission disequilibrium in a cohort of 4319 trios with an affected 

proband (Materials and Methods).  Without filtering by pLI or presence/absence status in ExAC, 

singleton PTVs, as a class, showed no over-transmission (P=0.31; binomial test).  After 

removing all of the variants present in ExAC or in a LoF-tolerant gene (pLI <0.9), we found a 

modest excess of transmitted PTVs in ASD cases (rate ratio=1.16; P=9.85x10-3; binomial test).  

As with all previous analyses, this result is virtually identical when the psychiatric cohorts in 

ExAC are removed (rate ratio=1.14; P=0.02; binomial test).  While there are far more inherited 
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PTVs than de novo PTVs, the inherited variant effect size (1.16 rate ratio) is paradoxically 

minute by comparison to that of de novo PTVs (3.24 rate ratio). 

Despite the different effect sizes between de novo and inherited PTVs, the data does not 

suggest the two classes of variation differ in penetrance.  Instead, the data suggest the excess of 

inherited PTVs resides in a different set of genes than those implicated by de novo variation.  

Specifically, the largest de novo variant excess resides in a limited and extremely penetrant set of 

genes that do not contribute substantially to inherited PTV counts.  If we consider the 11 genes 

with ≥3 class 1 de novo PTVs in ASD cases and none in controls (47 de novo PTVs in total), all 

11 are intolerant of truncating variation (pLI ≥0.9) (Table 2.1).  These variants confer risk to 

particularly severe outcomes: of the cases with available IQ data, 14 of the 29 individuals have 

IQ below 70 or were unable to complete a traditional IQ test15, while only 27% of all ASD 

individuals with available IQ data in this study fall into this group (P=0.008; Fisher’s exact test).  

Across this same gene set, there are only 4 inherited PTVs (from a total of 5 observed in the 

parents of the 4,319 ASD trios).  Of those 4 inherited PTVs, only the inherited frameshift in 

CHD8 bore evidence of mosaic transmission (P=5.49x10-3; binomial test) suggesting it may have 

arisen post-zygotically and not carried by a parent.  This ratio – that 80-90% of the observed 

variants are de novo rather than inherited in ASD cases – indicates enormous selective pressure 

against mutations in these genes, far greater than the direct selection against ASD in general 

(Table 2.1).  Indeed, despite ascertaining these 11 genes based on those with the most class 1 de 

novo PTVs in ASD, we observe a higher rate of de novo PTVs in these same genes in the ID/DD 

studies (37 mutations in 1284 cases).  This underscores that selection against these variants likely 

arises from more severe and widespread impact on neurodevelopment and cognition.  Despite the 
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minor contribution of inherited variation in these genes, some insights from studying families 

may be particularly useful.   

We investigated whether any de novo variants were observed in the transmission data 

(i.e., a variant that was both inherited and de novo in separate unrelated families).  We observed 

164 transmitted variants and 66 untransmitted variants that were also observed de novo in 

individuals with ASD and their unaffected siblings, respectively.  Of these 164 transmitted and 

66 untransmitted variants, 23 and 14 were absent in ExAC. Among the 23 transmitted variants 

absent from ExAC, two variant were of particular interest, a nonsense variant in ANK2, and a 

probably damaging missense variant in RGL1.  ANK2 is a gene previously implicated for risk for 

ASD due to having multiple de novo PTV mutations14,15 (Table 2.1).  In RGL1, a Ral guanyl-

nucleotide exchange factor, the PolyPhen216 probably-damaging missense variant was 

transmitted to an affected ASD proband in three separate unrelated trios, and observed de novo in 

a fourth ASD trio.  Thus, we now have observed 4 instances of this specific probably-damaging 

missense variant in RGL1 in individuals with ASD and none in 60,706 individuals in ExAC. 
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Table 2.1: Top 12 genes with ≥ 3 class 1 de novo PTVs in individuals with ASD. Twelve genes 
with ≥ 3 class 1 de novo PTVs in 3982 individuals with ASD.  Additionally, for each gene, we 
have listed the number of class 1 de novo PTVs in 2078 unaffected ASD siblings and in 1284 
individuals with ID/DD, as well as the number of singleton, LOFTEE high-confidence PTVs 
absent from ExAC that were transmitted (T) or untransmitted (U) to 4319 individuals with ASD 
and present in 404 cases of ASD and 3654 population controls.  P-values represent the Poisson 
probability of observing more than the expected number of class 1 de novo PTVs (Materials and 
Methods).  ID/DD, intellectual disability / developmental delay; ASD, autism spectrum disorder; 
PTV, protein truncating variant; pLI, probability of loss-of-function intolerance 
 
 Class 1 de novo PTVs Inherited Case-control   

Gene ASD 
Unaffected 
ASD siblings ID/DD T U Case Control pLI 

 
P-value 

CHD8 7 0 0 1 0 0 0 1 3.70E-13 
ARID1B 5 0 11 0 0 0 0 1 1.07E-08 
DYRK1A 5 0 2 0 0 0 0 0.9996 2.46E-11 
SYNGAP1 5 0 9 0 0 0 0 1 2.47E-10 
ADNP 4 0 4 0 0 1 0 0.9989 3.93E-09 
ANK2 4 0 0 1 1 0 0 1 7.07E-06 
DSCAM 4 0 0 2 0 1 0 1 3.62E-07 
SCN2A 4 0 7 0 0 1 0 1 1.25E-06 
ASH1L 3 0 0 0 0 0 0 1 1.67E-04 
CHD2 3 0 2 0 0 0 0 1 7.81E-05 
KDM5B 3 2 0 5 1 0 0 5.09E-05 7.22E-05 
POGZ 3 0 2 0 0 2 0 1 3.12E-05 

 

Case-control analysis 

Having observed a significant enrichment in both de novo and inherited PTVs absent 

from ExAC in LoF-intolerant genes (pLI ≥0.9), we applied this same methodology to case-

control cohorts.  Given that the variation present in a single individual will be a combination of 

de novo (both somatic and germline) and inherited variation, we expect to see an effect size for 

PTVs intermediate between that of the de novo and inherited PTVs absent from ExAC in LoF-

intolerant genes.  Using a published cohort of 404 ASD cases and 3654 controls from Sweden5, 

we first analyzed the rate of singleton synonymous variants as a control for further analyses.  We 

found no case-control difference among those present/absent from ExAC (P=0.59; Fisher’s exact 
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test).  Turning to the PTV category, we observe a slight excess of singleton PTVs in cases with 

ASD (917 PTVs in 404 cases) compared to controls (7259 PTVs in 3654 controls; OR=1.16; 

P=3.13x10-5; Fisher’s exact test).  This signal increases once we remove all singleton PTVs 

present in ExAC or in LoF-tolerant genes, providing the first instance of an exome-wide excess 

of PTVs demonstrated in ASD without the use of trios (128 PTVs in 404 cases, 447 PTVs in 

3654 controls; 2.63 OR; P=1.37x10-18; Fisher’s exact test).  Consistent with the previous de novo 

and inherited analyses, no signal exists for the remaining 7601 singleton PTVs (OR=1.06; 

P=0.11; Fisher’s exact test).  Lastly, removing the psychiatric cohorts from ExAC results in a 

2.42 OR for singleton PTVs absent from ExAC in LoF-intolerant genes (133 PTVs in 404 cases, 

506 PTVs in 3654 controls; P=1.06x10-16; Fisher’s exact test). 

 

Discussion 

Here we demonstrated that ~1/3 of de novo variants identified in neurodevelopmental 

disease cohorts are also present as standing variation in ExAC, indicating the presence of 

widespread mutational recurrence.  Reinforcing this, we demonstrated that these class 2 de novo 

variants are enriched for more mutable CpG sites. Most importantly, however, these class 2 de 

novo variants confer no detectable risk to ID/DD and ASDs, and eliminating them from our 

analysis improved all genetic and phenotypic associations by removing the “noise” of benign 

variation. 

We further refined the class 1 de novo PTV association using a gene-level intolerance 

metric (pLI) developed using the ExAC resource and identified that all detectable mutational 

excess resided in 18% of genes most strongly and recognizably intolerant of truncating mutation.  

Specifically, 13.5% (±2.0%, 95% CI) of individuals with ID/DD and 6.55% (±0.8%, 95% CI) of 
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individuals with ASD, but only 2.1% (±0.6%, 95% CI) of controls, have a de novo PTV absent 

from ExAC and present in a gene with a very low burden of PTVs in ExAC (pLI ≥0.9).  ASD 

cases with such a variant are more likely to be female and/or have intellectual disability than the 

overall ASD population.  For the remaining 93.45% of the ASD cohort, we fail to observe any 

meaningful phenotypic difference (i.e., IQ or sex) between the 6.86% of individuals with and the 

86.59% of individuals without a class 2 de novo PTV or a class 1 de novo PTV in a LoF-tolerant 

gene.  These results, taken together with an overall lack of excess case burden, suggest that 

collectively, neither class 2 nor class 1 de novo PTVs in LoF-tolerant genes (pLI <0.9) appear to 

confer significant risk toward ASD.  Thus, we have refined the role of de novo protein truncating 

variation in ASD, confining the signal to a smaller subset of patients than previously 

described6,29.  

This analysis framework, operating at the variant level, also enabled a careful 

examination of inherited variation in ASD.  While ASD is highly heritable3, few analyses30 have 

demonstrated specific inherited components.  By removing inherited PTVs present in ExAC or in 

LoF-tolerant genes, we discovered a modest signal of over-transmitted PTVs, in line with 

previous reports30.  The vast majority of inherited PTVs appear to affect genes that have yet to 

show signal from de novo variation, with only 1% residing in the strongest associated genes, 

indicating the inherited variants reside in genes with a somewhat weaker selective pressure 

against them.  Ultimately, however, as these variants occur in 15.4% of cases but carry only a 

1.16-fold increased risk as a group, they explain little of the overall heritability (<1% of the 

variance in liability). 

Given the current size of ExAC and the general scarcity of truncating variants, the pLI 

metric for constraint against loss-of-function variation does not yet provide precise resolution of 
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the selection coefficient acting on PTVs in that gene.  That is, even a pLI ≥0.9 does not 

guarantee a selection coefficient sufficiently high to ensure the vast majority of variation is de 

novo rather than inherited.  In fact, selection coefficients for pLI ≥0.9 genes range from 0.1–0.5 

(where the majority of variation will be inherited), all the way to selection coefficients 

approaching 1, in which the variants are almost completely reproductively null.  Only larger 

reference panels will enable refining these estimates, articulating a gradient from the strongest 

genes we currently flag (e.g., the 11 genes with ≥3 de novo PTVs in ASD and none in controls 

that make their contribution almost entirely through penetrant, single-generation de novo 

variation) to those genes we have yet to define clearly that will make their contribution largely 

through inherited, albeit less penetrant, variation.  The significant expansion of exome 

sequencing in ASD, alongside larger reference panels from which to draw more precise 

inferences about selective pressure against variation in each gene, will allow us to fill in the 

genetic architecture of ASDs in the region of the effect size spectrum between severe de novo 

variation at one end and common variation at the other. 

ExAC currently has 15,330 individuals from psychiatric cohorts, with the schizophrenia 

cohort being the largest24.  Given the shared genetics between ASD and 

schizophrenia2,5,16,17,25,31,32 , it is reasonable to hypothesize that the psychiatric cohorts within 

ExAC could influence our analyses.  As we have shown however, removing the psychiatric 

cohorts within ExAC does not change our results.  In fact, of the 16 de novo PTVs in LoF-

intolerant genes that were also variant in ExAC, only two reside solely in the 15,330 individuals 

from the psychiatric cohorts (CUX2 in ASD, LARP1 in unaffected ASD siblings).  This number 

being so small is in retrospect not surprising because it is so unusual to observe a deleterious 

variant both de novo and present as standing variation in individuals with the same ascertained 
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phenotype, let alone in different ascertained phenotypes.  The ANK2 nonsense variant was the 

only such instance of the same deleterious variant being de novo in one ASD trio and inherited in 

another. 

While we use ASDs and ID/DD here to explore this framework, it can certainly be 

applied toward any trait.  However, this framework is optimally powered in traits governed by 

genes under strong selection, as it will remove de novo variants that are more common when 

examined in the context of a larger reference population.  Our results reinforce the point that not 

all de novo variants are rare and contribute to risk, while highlighting the tremendous value of 

large population sequence resources even for the interpretation of de novo variation and complex 

disease.  This is especially important in the case of clinical sequencing, in which the paradigm 

has unfortunately become that if a protein-altering de novo variant is present in the gene of 

interest, then it is often considered the causal variant33,34.  Clearly, not all de novo variants are 

equal, and not all de novo variants in a gene contribute to risk in the same way. 

 

Materials and Methods 

Datasets and data processing 

Two versions of the Exome Aggregation Consortium (ExAC) database were used in this 

analysis: the full version of ExAC (N = 60,706) and the non-psychiatric version of ExAC (N = 

45,376).  The non-psychiatric version of ExAC has the following cohorts removed: Bulgarian 

trios (N = 461), sequencing in Suomi (N = 948), Swedish schizophrenia & bipolar studies (N = 

12,119), schizophrenia trios from Taiwan (N = 1505), and Tourette syndrome association 

international consortium for genomics (N = 297).  We used a combined set of 8401 published de 

novo variants from 3982 probands with ASD and 2078 of their unaffected siblings from two 
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recent large-scale exome sequencing studies: de Rubeis et al (NASD = 1474, Nunaffected_sib = 267)5, 

Iossifov, O’Roak, Sanders, Ronemus et al (NASD = 2508, Nunaffected_sib = 1911)6.  We also used 

1692 de novo variants from 1284 probands published in studies of intellectual disability (ID) (de 

Ligt et al: N = 10012, Rauch et al: N = 5114) and developmental delay (DD) (DDD: N = 1133)35.  

De novo variants from congenital heart disease26,27 and schizophrenia25 were also downloaded 

for additional confirmation of the recurrent mutation rate. Details of the sequencing and de novo 

calling can be found in the referenced publications. 

To ensure uniformity in variant representation and annotation across datasets and with 

respect to the ExAC reference database36, we created a standardized variant representation 

through a Python implementation of vt normalize37 and re-annotated all variants using Variant 

Effect Predictor (VEP)38 version 81 with GENCODE v19 on GRCh37.  VEP provided the 

Ensembl Gene IDs, gene symbol, the Ensembl Transcript ID for use in determining canonical 

transcripts, as well as PolyPhen2 and SIFT scores.  We used the canonical transcript when 

possible for cases when the variant resided in multiple transcripts, and the most deleterious 

annotation in cases of multiple canonical transcripts.  If no canonical transcript was available, the 

most deleterious annotation was used. 

 

Determining class 1 or class 2 de novo variants 

De novo variants were classified as class 1 or class 2 based on their respective absence or 

presence in ExAC.  Presence or absence in ExAC was defined if the variant had the same 

chromosome, position, reference, and alternate allele in both files.  Due to the heterogeneous 

nature of ExAC, and the different capture arrays used in the original exome sequencing studies 

incorporated into ExAC, we elected to use all of the variants in ExAC, not just those with a 
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PASS status in the GATK variant calling filter.  For insertions/deletions, we took a conservative 

stance that they must match exactly (i.e., a subset was not sufficient).  To illustrate, if a de novo 

variant on chromosome 5 at position 77242526 has a reference allele of AGATG and a de novo 

alternate allele where four nucleotides are deleted (AGATG to A), we would not say that variant 

is present in ExAC if there was another variant at the same genomic position in ExAC where 

only the first two of these nucleotides are deleted (AGA to A).  Lastly, for variants outside of the 

proportion of the genome covered by ExAC, we considered them to be class 1 de novo variants – 

as expected, none of these variants reside in the coding region (Table 2.2). 

Table 2.2: Variants residing in regions not covered by ExAC per functional class and cohort 

Functional class ASD Unaffected 
ASD siblings ID/DD 

3-prime UTR variant 4 1 1 
5-prime UTR variant 3 2 0 
Downstream gene variant 4 3 3 
Intergenic variant 5 5 14 
Intron variant 55 37 42 
Non-coding region transcript exon variant 6 4 2 
Regulatory region variant 2 1 10 
Upstream gene variant 1 6 4 
Splice region variant 0 0 3 
Total 80 59 79 

 
Variant calling for transmission and case-control analysis 

We used the Genome Analysis Toolkit (GATK v3.1-144) to recall a dataset of 22,144 

exomes from the Autism Sequencing Consortium (ASC)39 & Simons Simplex Collection (SSC)40 

sequencing efforts.  This call set contained 4319 complete trios (including all those from which 

the published and validated de novo mutations were identified), which we used to evaluate 

inherited variation, and a published case-control dataset of individuals of Swedish ancestry (404 

individuals with ASD and 3564 controls)5.  We applied a series of quality control filters on the 

genotype data, using the genome-wide transmission rate as a guide for filter inclusion/exclusion.  
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More specifically, we calibrated various genotyping filters such that synonymous singleton 

variants – where the alternative allele was seen in only one parent in the dataset – was 

transmitted at a rate of 50%, because we expect, as a class, synonymous variants to be 

transmitted 50% of the time.  As with the ExAC analysis36, we found GATK’s default Variant 

Quality Score Recalibration (VQSR) too restrictive due to the bias toward common sites.  In 

order to reduce the number of singleton variants being filtered out, we recalibrated the Variant 

Quality Score Log Odds (VQSLOD) threshold from -1.49 to -1.754, dropping the singleton 

synonymous transmission rate from 51.1% to 49.9998%.  Additional filtering was done at the 

individual level, in which we required a minimum read depth of 10 and a minimum GQ and PL 

of 25 for each individual’s variant call.  We also applied an allele balance filter specific for each 

of the three genotypes (homozygous reference, heterozygous, homozygous alternate), where 

allele balance is defined as the number of alternate reads divided by the total number of reads.  

We required the allele balance for homozygous reference individuals to be less than 0.1, allele 

balance for heterozygous individuals to be between 0.3 and 0.7, and the allele balance for 

homozygous alternate individuals to be greater than 0.9. Calls that did not pass these filters were 

set to missing. Lastly, for the transmission analysis, we removed variants in which more than 

20% of families failed one of our filters.  For the case-control analysis, we removed variants in 

which more than 5% of families failed one of our filters. 

 

On the use of the Poisson exact test for comparing rates of de novo variation between two 

samples 

As with many other papers6,8,41-43, we too were interested in testing whether the rate of a 

given class of de novo variation was significantly different between our cohorts of individuals 
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with ASD or ID/DD as compared to unaffected ASD siblings.  As the number of de novo 

variants per individual follows a Poisson distribution8, we tested 𝐻" ∶ 	 𝜆& ≠ 	 𝜆( vs. 𝐻) ∶ 	 𝜆& =

	𝜆(, where 𝜆+ is the rate of a given class of de novo variation in group i, using the Poisson exact 

test (also known as the C-test)28.  Note: we could not compare the rates to expectation, because 

the expectations published in Samocha et al., (2014) are for all de novo variants, not just de novo 

variants present/absent from ExAC.  An important consequence of our hypothesis test is that 

effect sizes are reported as rate ratios, which is simply the quotient of the two rates.  While more 

commonly reported, odds ratios require Bernoulli random variables (e.g., an individual either 

harbors or does not harbor a de novo variant), and as such, would be incorrect given the 

hypothesis we are testing.  Had we been interested in testing for a significant difference between 

the proportion of individuals harboring a de novo PTV, then an odds ratio would be appropriate 

(and Fisher’s exact test would suffice in this case).  Thus, only in using the Poisson exact test 

could we reject the null hypothesis that the rate of de novo PTVs is the same between individuals 

with ASD and their unaffected siblings and find evidence that individuals with ASD have a 

higher rate of de novo PTVs than their unaffected siblings.  The difference between the two tests 

is a subtle, but important one. 

 

On the use of pLI (probability of loss-of-function intolerance) 

Using the observed and expected number of PTVs per gene in the ExAC dataset, we 

developed a metric to evaluate a gene’s apparent intolerance to such variation24.  Briefly, the 

probability of loss-of-function intolerance (pLI) was computed using an EM algorithm that 

assigned genes to one of three categories: fully tolerant (in which PTVs are presumed neutral and 

occur, like synonymous variants, at rates proportional to the mutation rate), “recessive-like” 
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(showing PTV depletion similar to known severe autosomal recessive diseases) and 

“haploinsufficient-like” (showing PTV depletion similar to established severe 

haploinsufficiencies).  pLI is the posterior probability that a gene resides in the last, most loss-of-

function intolerant, category.  See section 4 of the supplement of Lek, et al. (2016) for more 

details. 

 

Phenotype analysis 

Full-scale deviation IQ scores were measured using several tests including the 

Differential Ability Scales, the Wechsler Intelligence Scale for Children, and the Wechsler 

Abbreviated Scale of Intelligence.  IQ has previously been associated with de novo PTV rate in 

the SSC6,15,44. In this analysis, we used Poisson regression to estimate the relationship between 

the rate of each of class 1 and class 2 PTVs and proband full-scale deviation IQ. 

 

Calculating the expected number of class 2 de novo variants in a reference database 

For a set of r de novo variants, each with the same allele count, K, in ExAC, we can 

estimate the number of those variants still observed at least once in a subset of size n using the 

hypergeometric distribution (Figure 2.5). That is to say, how many of those same sites will still 

be present as standing variation in a down-sampled version of ExAC?  Specifically, 

expected	count = r61 − P(k = 0)> = r?1 −
@K0B @

N − K
n − 0B

@NnB
D = r?1 −

@N − Kn B

@NnB
D 

where k is approximatelyhypergeometric	(N, K, n), and N is the number of chromosomes in the 

current version of ExAC (N=121,412).  This only holds when each down-sampled set of ExAC 

preserves the ancestry proportions of the total sample.  
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Figure 2.5: Recurrence rate is a function of allele frequency and reference-population size.  
Expected number of discovered class 2 de novo variants by size of the reference dataset, 
partitioned based on the number of copies of the variant currently present in ExAC.  The number 
of de novo variants found in the standing population is a function of the sample size of the 
reference dataset and the current estimated minor allele count (MAC). 
 

Calculating mutation rates for class 1 and class 2 de novo PTVs 

Samocha et al. calculated per gene mutation rates for ALL synonymous, missense, and 

PTVs, not for those present/absent in ExAC.  If we are interested in comparing the rate of class 1 

de novo PTVs to the expected depth-corrected mutation rate for class 1 de novo PTVs, we can 

roughly calculate it.  For a given gene, we can derive the class 1 and class 2 PTV mutation rate 

by breaking down the overall mutation rate for PTVs, denoted as �̂�MNO, using equation (1) 

�̂�MNO = 	 �̂�PQRSS	&	MNO + �̂�PQRSS	(	MNO (1) 
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In case the logic behind equation 1 isn’t completely clear, it may help to point out that the 

number of class 1 and class 2 PTVs is equal to the total number of PTVs.  Now, Samocha et al. 

provides us with �̂�MNO, so all we need to do is calculate �̂�PQRSS	&	MNO and �̂�PQRSS	(	MNO.  Given all of 

the PTVs in ExAC, and the probability of each trinucleotide-to-trinucleotide mutation, we can 

calculate �̂�PQRSS	(	MNO using equation (2) 

�̂�PQRSS	(	MNO = ∑ �̂�VWM+
MNOX
MNOY  (2) 

where 𝑖 indexes the 𝑛 PTVs for a given gene present in ExAC, and �̂�VWM+ is the mutation rate of 

that specific trinucleotide substitution that creates a PTV.  With �̂�PQRSS	(	MNO calculated, 

�̂�PQRSS	&	MNO follows from equation 1.  However, these per gene �̂�MNO calculations do not account 

for sequencing depth.  Correcting for depth of sequencing becomes tricky, as the depth of 

sequencing varies between studies and will not necessarily be the same as the depth of 

sequencing for ExAC.  However, we can roughly approximate the depth-corrected �̂�PQRSS	(	MNO 

for each gene using the following equation under the assumption that the fraction of the raw 

mutability from class 2 @𝑖. 𝑒., _̂`abcc	d	efg
_̂efg

B is equal to the fraction of the class 2 depth-corrected 

mutability h𝑖. 𝑒., _̂`abcc	d	efg,ijklm	`nooj`lji
_̂efg,ijklm	`nooj`lji

p  

�̂�PQRSS	(	MNO,qrstu	PvwwrPtrq = �̂�MNO,qrstu	PvwwrPtrq 	@
_̂`abcc	d	efg

_̂efg
B (3) 

The depth corrected �̂�PQRSS	&	MNO follows using the same logic as we used in equation (1). 

 

A note on semantics: de novo mutation vs. de novo variant 

The two terms – de novo mutation and de novo variant – can be interchangeable.  While 

one might admittedly consider the choice of which term to use largely a matter of taste, the word 

mutation can have different meanings; it can refer to both the process of nucleotide change, as 
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well as the end product.  Thus, the sentence, “a mutation creates a mutation” is a grammatically 

correct sentence, albeit an unlikely one to be heard.  In order to avoid any ambiguity throughout 

this paper, we use the term mutation to refer to the biological process and variant to refer to the 

corresponding change in the DNA.  As such, we would say, “a de novo mutation creates a de 

novo variant”.  This definition enables the use of the phrase, recurrent de novo mutation, to be 

logical, whereas a de novo variant cannot by our definition be recurrent. 
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Chapter 3 

Discovery and characterization of 102 genes associated with autism spectrum disorder from 

exome sequencing of 35,584 individuals 
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Abstract  

We present the largest exome sequencing study of autism spectrum disorder (ASD) to 

date (n=35,584 total samples, 11,986 with ASD). Using an enhanced Bayesian framework to 

integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery 

rate ≤ 0.1. Of these genes, 49 show higher frequencies of disruptive de novo variants in 

individuals ascertained for severe neurodevelopmental delay, while 53 show higher frequencies 

in individuals ascertained for ASD; comparing ASD cases with mutations in these groups reveals 

phenotypic differences. 

 

Introduction 

Autism spectrum disorder (ASD), a childhood-onset neurodevelopmental condition 

characterized by deficits in social communication and restricted, repetitive patterns of behavior 

or interests, affects more than 1% of individuals1. Multiple studies have demonstrated high 

heritability, much of it due to common variation2, although rare inherited and de novo variants 

are major contributors to individual risk3-5. When this rare variation disrupts a gene in 

individuals with ASD more often than expected by chance, it implicates that gene in risk6. ASD 

risk genes, in turn, provide insight into the underpinnings of ASD, both individually7,8 and en 

masse 3,5,9. However, fundamental questions about the altered neurodevelopment and altered 

neurophysiology in ASD—including when it occurs, where, and in what cell types—remain 

poorly resolved.  

Here we present the largest exome sequencing study in ASD to date. Through an 

international collaborative effort and the willingness of thousands of participating families, we 

assembled a cohort of 35,584 samples, including 11,986 with ASD. We introduce an enhanced 
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Bayesian analytic framework, which incorporates recently developed gene- and variant-level 

scores of evolutionary constraint of genetic variation, and we use it to identify 102 ASD-

associated genes (FDR ≤ 0.1). Because ASD is often one of a constellation of symptoms of 

neurodevelopmental delay (NDD), we identify subsets of the 102 ASD-associated genes that 

have disruptive de novo variants more often in NDD-ascertained or ASD-ascertained cohorts. 

Together, these insights form an important step forward in elucidating the neurobiology of ASD.  

 

Results 

We analyzed whole-exome sequence data from 35,584 samples that passed our quality 

control procedures (Materials and Methods). This included 21,219 family-based samples (6,430 

ASD cases, 2,179 unaffected controls, and both of their parents) and 14,365 case-control samples 

(5,556 ASD cases, 8,809 controls). Of these, 17,462 samples were either newly sequenced by our 

consortium (6,197 samples: 1,908 probands with parents; 274 ASD cases; 25 controls) or newly 

incorporated (11,265 samples: 416 probands with parents; 4,811 ASD cases and 5,214 controls 

from the Danish iPSYCH study10). 

From this cohort, we identified a set of 9,345 rare de novo variants in protein-coding 

exons (allele frequency ≤ 0.1% in our dataset as well as in the non-psychiatric subsets of the 

reference databases ExAC and gnomAD, with 63% of probands and 59% of unaffected offspring 

carrying at least one such rare coding de novo variant—4,073 out of 6,430 and 1,294 out of 

2,179, respectively). For rare inherited and case-control analyses, we included variants with an 

allele count no greater than five in our dataset and in the non-psychiatric subset of ExAC11,12.  

 

Impact of genetic variants on ASD risk 
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The differential burden of genetic variants carried by cases versus controls reflects the 

average liability they impart for ASD. For example, because protein-truncating variants (PTVs, 

consisting of nonsense, frameshift, and essential splice site variants) show a greater difference in 

burden between ASD cases and controls than missense variants, their average impact on liability 

must be larger6. Recent analyses have shown that measures of functional severity, such as the 

“probability of loss-of-function intolerance” (pLI) score11,12 and the integrated “missense 

badness, PolyPhen-2, constraint” (MPC) score13, can further delineate variant classes with higher 

burden. Therefore, we divided the list of rare autosomal genetic variants into seven tiers of 

predicted functional severity—three tiers for PTVs by pLI score (≥0.995, 0.5-0.995, 0-0.5), in 

order of decreasing expected impact; three tiers for missense variants by MPC score (≥2, 1-2, 0-

1), also in order of decreasing impact; and a single tier for synonymous variants, expected to 

have minimal impact. We further divided the variants by their inheritance pattern: de novo, 

inherited, and case-control. Unlike inherited variants, de novo mutations are exposed to minimal 

selective pressure and have the potential to mediate substantial risk to disorders that limit 

fecundity, including ASD14. This expectation is borne out by the substantially higher proportions 

of all three PTV tiers and the two most severe missense variant tiers in de novo variants 

compared to inherited variants (Figure 3.1A). 
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Figure 3.1: Distribution of rare autosomal protein-coding variants in ASD cases and controls.  
A, The proportion of rare autosomal genetic variants split by predicted functional consequences, 
represented by color, is displayed for family-based data (split into de novo and inherited variants) 
and case-control data. PTVs and missense variants are split into three tiers of predicted 
functional severity, represented by shade, based on the pLI and MPC metrics, respectively.  B, 
The relative difference in variant frequency (i.e. burden) between ASD cases and controls (top 
and bottom) or transmitted and untransmitted parental variants (middle) is shown for the top two 
tiers of functional severity for PTVs (left and center) and the top tier of functional severity for 
missense variants (right).  Next to the bar plot, the same data are shown divided by sex.  C, The 
relative difference in variant frequency shown in ‘B’ is converted to a trait liability z-score, split 
by the same subsets used in ‘A’.  For context, a z-score of 2.18 would shift an individual from 
the population mean to the top 1.69% of the population (equivalent to an ASD threshold based 
on 1 in 68 children15).  No significant difference in liability was observed between males and 
females for any analysis.  Statistical tests: B, C: Binomial Exact Test (BET) for most contrasts; 
exceptions were “both” and “case-control”, for which Fisher’s method for combining BET p-
values for each sex and, for case-control, each population, was used; P-values corrected for 168 
tests are shown.  
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Comparing probands to unaffected siblings, we observe a 3.5-fold enrichment of de novo 

PTVs in the 1,447 autosomal genes with a pLI ≥ 0.995 (366 in 6,430 cases versus 35 in 2,179 

controls; 0.057 vs. 0.016 variants per sample (vps); P = 4x10-17, two-sided, two-sample Poisson 

exact test; Figure 3.1B). A less pronounced difference is observed for rare inherited PTVs in 

these genes, with a 1.2-fold enrichment of transmitted versus untransmitted alleles (695 

transmitted versus 557 untransmitted in 5,869 parents; 0.12 vs. 0.10 vps; P = 0.07, binomial 

exact test; Figure 3.1B). The relative burden in the case-control data falls between the estimates 

for de novo and inherited data in these most severe PTVs, with a 1.8-fold enrichment in cases 

versus controls (874 in 5,556 cases versus 759 in 8,809 controls; 0.16 vs. 0.09 vps; P =4x10-24, 

binomial exact test; Figure 3.1B). Analysis of the middle tier of PTVs (0.5 ≤ pLI < 0.995) shows 

a similar, but muted, pattern (Figure 3.1B), while the lowest tier of PTVs (pLI < 0.5) shows no 

case enrichment.  

De novo missense variants are observed more frequently than de novo PTVs and, en 

masse, they show only marginal enrichment over the rate expected by chance3 (Figure 3.1). 

However, the most severe de novo missense variants (MPC ≥ 2) occur at a frequency similar to 

de novo PTVs, and we observe a 2.1-fold case enrichment (354 in 6,430 cases versus 58 in 2,179 

controls; 0.055 vs. 0.027 vps; P = 3x10-8, two-sided, two-sample Poisson exact test; Figure 

3.1B), with a consistent 1.2-fold enrichment in the case-control data (4,277 in 5,556 cases versus 

6,149 in 8,809 controls; 0.80 vs. 0.68 vps; P = 4x10-7, binomial exact test; Figure 3.1B). Of 

note, in the de novo data, this top tier of missense variation shows stronger enrichment in cases 

than the middle tier of PTVs. The other two tiers of missense variation are not significantly 

enriched in cases.  
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Sex differences in ASD risk 

The prevalence of ASD is higher in males than females. In line with previous 

observations of females with ASD carrying a higher genetic burden than males3, we observe a 2-

fold enrichment of de novo PTVs in highly constrained genes in affected females (N=1,097) 

versus affected males (N=5,333) (P = 3x10-6, two-sided Poisson exact test; Figure 3.1B). This 

result is consistent with the female protective effect (FPE) model, which postulates that females 

require an increased genetic load (in this case, high-liability PTVs) to reach the threshold for a 

diagnosis16. The converse hypothesis is that risk variation has larger effects in males than in 

females so that females require a higher genetic burden to reach the same diagnostic threshold as 

males; however, across all classes of genetic variants, we observed no significant sex differences 

in trait liability, consistent with the FPE model (Materials and Methods; Figure 3.1C). In the 

absence of sex-specific differences in liability, we estimated the liability z-scores for different 

classes of variants across both sexes together (Figure 3.1C) and leveraged them to enhance gene 

discovery. 
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Figure 3.2. Gene discovery in the ASC cohort. A, WES data from 35,584 samples are entered 
into a Bayesian analysis framework (TADA) that incorporates pLI score for PTVs and MPC 
score for missense variants. B, The model identifies 102 autosomal genes associated with ASD at 
a false discovery rate (FDR) threshold of ≤ 0.1, which is shown on the y-axis of this Manhattan 
plot with each point representing a gene. Of these, 78 exceed the threshold of FDR ≤ 0.05 and 26 
exceed the threshold family-wise error rate (FWER) ≤ 0.05. C, Repeating our ASD trait liability 
analysis (Figure 1C) restricted to variants observed within the 102 ASD-associated genes only. 
Statistical tests: B, TADA; C, Binomial Exact Test (BET) for most contrasts; exceptions were 
“both” and “case-control”, for which Fisher’s method for combining BET P-values for each sex 
and, for case-control, each population, was used; P-values corrected for 168 tests are shown.  
 
Gene discovery 
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In previous risk gene discovery efforts, we used the Transmitted And De novo 

Association (TADA) model6 to integrate protein-truncating and missense variants that are de 

novo, inherited, or from case-control populations and to stratify autosomal genes by FDR for 

association. Here, we update the TADA model to include pLI score as a continuous metric for 

PTVs, and MPC score as a two-tiered metric (≥2, 1-2) for missense variants (Materials and 

Methods). From family data we include de novo PTVs as well as de novo missense variants, 

while for case-control we include only PTVs; we do not include inherited variants due to the 

limited liabilities observed (Figure 3.1C). These modifications result in an enhanced TADA 

model with greater sensitivity and accuracy than the original model (Figure 3.2A; Materials and 

Methods). 

Our refined TADA model identifies 102 ASD risk genes at FDR ≤ 0.1, of which 78 meet 

the more stringent threshold of FDR ≤ 0.05, with 26 significant after Bonferroni correction 

(Figure 3.2B). Of the 102 ASD-associated genes, 60 were not discovered by our earlier 

analyses3-5, including 31 that have not been implicated in autosomal dominant 

neurodevelopmental disorders and were not significantly enriched for de novo and/or rare 

variants in previous studies, and that can therefore be considered novel. The patterns of liability 

seen for these 102 genes are similar to that seen over all genes, although the effects of variants 

are uniformly larger, as would be expected for this selected list of putative risk genes that would 

be enriched for true risk variants. 
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Figure 3.3: Genetic characterization of ASD genes. A, Count of PTVs versus missense variants 
(MPC ≥ 1) in cases for each ASD-associated gene (red points, selected genes labeled). These 
counts reflect the data used by TADA for association analysis: de novo and case/control data for 
PTVs; only de novo for missense. B, Location of ASD de novo missense variants in DEAF1.  
The five ASD mutations (marked in red) are in the SAND DNA-binding domain (amino acids 
193-273, spirals show alpha helices, arrows show beta sheets, KDWK is the DNA-binding motif) 
alongside ten NDD variants, several reduce DNA binding, including Q264P and Q264R17-19. C, 
Location of ASD missense variants in KCNQ3.  All four ASD variants resided in the voltage 
sensor (fourth of six transmembrane domains), with three in the same residue (R230), including 
the gain-of-function R230C mutation observed in NDD19.  Five inherited variants observed in 
benign infantile seizures reside in the pore loop20,21. D, Location of ASD missense variants in 
SCN1A, alongside 17 NDD and epilepsy de novo variants19. E, Location of ASD missense 
variants in SLC6A1, alongside 31 NDD and epilepsy de novo variants19,22. F, Subtelomeric 2q37 
deletions are associated with facial dysmorphisms, brachydactyly, high BMI, 
neurodevelopmental delay, and ASD23. While three genes within the locus have a pLI score ≥ 
0.995, only HDLBP is associated with ASD. G, Deletions at the 11q13.2−q13.4 locus have been 
observed in NDD, ASD, and otodental dysplasia24,25.  Five genes within the locus have a pLI 
score ≥ 0.995, including two ASD genes: KMT5B and SHANK2.  Statistical tests: F, G, TADA 
 

Patterns of mutations in ASD genes  
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Within the set of observed mutations, the ratio of PTVs to missense mutations varies 

substantially between genes (Figure 3.3A). Some genes, such as ADNP, reach our association 

threshold through PTVs alone, amongst which three genes have a significant excess of PTVs, 

relative to missense mutations, in the current dataset, based on gene mutability: SYNGAP1, 

DYRK1A, and ARID1B (P < 0.0005, binomial test). Because of the increased cohort size and 

availability of the MPC metric, we are also able for the first time to associate genes with ASD 

based primarily on de novo missense variation. We therefore examined four genes with four or 

more de novo missense variants (MPC ≥ 1) in ASD cases and one or no PTVs: DEAF1, KCNQ3, 

SCN1A, and SLC6A1 (Figure 3.3A). 

We observe five de novo missense variants and no PTVs in DEAF1, which encodes a 

self-dimerizing transcription factor involved in neuronal differentiation26. All five missense 

variants reside in the SAND domain (Figure 3.3B), which is critical for both dimerization and 

DNA binding26,27. A similar pattern of SAND domain missense enrichment is observed in 

individuals with intellectual disability, speech delay, and behavioral abnormalities17-19.  

Four de novo missense variants and no PTVs are observed in KCNQ3, which encodes a 

subunit of a neuronal voltage-gated potassium channel (Figure 3.3C). All four variants modify 

arginine residues in the voltage-sensing fourth transmembrane domain, with three at a single 

residue previously characterized as gain-of-function in NDD (R230C, Figure 3.3C)28. These 

data suggest gain-of-function mutations in KCNQ3 also confer risk to ASD. 

SCN1A encodes a voltage-gated sodium channel and has been associated, predominantly 

through PTVs, with Dravet syndrome29, a form of progressive epileptic encephalopathy which 

often meets diagnostic criteria for ASD30. We observe four de novo missense variants and no 
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PTVs in SCN1A (Figure 3.3A), with three located in the C-terminus (Figure 3.3D), and all four 

cases are reported to have seizures. 

The gene SLC6A1 encodes a voltage-gated GABA transporter and has been associated 

with developmental delay and cognitive impairment19,31, as well as myoclonic atonic epilepsy 

and absence seizures22. Here, we extend the phenotypic spectrum to include ASD, through the 

observation of eight de novo missense variants and one PTV, all in cases (Figure 3.3E). Four of 

these variants reside in the sixth transmembrane domain, with one recurring in two independent 

cases (A288V). Five of the six cases with available information on history of seizure had 

seizures, and all four cases with available data on cognitive performance have intellectual 

disability.  

 

ASD genes within recurrent copy number variants (CNVs) 

Large CNVs represent another important source of risk for ASD32, but these genomic 

disorder (GD) segments can include dozens of genes, complicating the identification of driver 

gene(s) within these regions. We sought to determine whether the 102 ASD genes could 

nominate driver genes within GD regions. We first curated a consensus GD list from nine 

sources, totaling 823 protein-coding genes in 51 autosomal GD loci associated with ASD or 

ASD-related phenotypes, including NDD.  

Within the 51 GDs, 12 GD loci encompassed 13 ASD-associated genes, which is greater 

than expected by chance when simultaneously controlling for number of genes, PTV mutation 

rate, and brain expression levels per gene (2.3-fold increase; P = 2.3x10-3, permutation). These 

12 GD loci divided into three groups: 1) the overlapping ASD gene matched the consensus 

driver gene, e.g., SHANK3 for Phelan-McDermid syndrome33; 2) an ASD gene emerged that did 
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not match the previously predicted driver gene(s) within the region, such as HDLBP at 2q37.3 

(Figure 3.3F), where HDAC4 has been hypothesized as a driver gene in some a analyses34; and 

3) no previous driver gene had been established within the GD locus, such as BCL11A at 2p15-

p16.1. One GD locus, 11q13.2-q13.4, had two of our 102 genes (SHANK2 and KMT5B, Figure 

3.3G), highlighting that GDs can result from risk conferred by multiple genes, potentially 

including genes with small effect sizes that we are underpowered to detect. 

 

 

Figure 3.4: Phenotypic and functional categories of ASD-associated genes. A, The frequency of 
disruptive de novo variants (e.g. PTVs or missense variants with MPC ≥ 1) in ASD-ascertained 
and NDD-ascertained cohorts  is shown for the 102 ASD-associated genes (selected genes 
labeled). Fifty genes with a higher frequency in ASD are designated ASD-predominant (ASDP), 
while the 49 genes more frequently mutated in NDD are designated as ASDNDD. Three genes 
marked with a star (UBR1, MAP1A, and NUP155) are included in the ASDP category on the 
basis of case-control data, which are not shown in this plot. B, ASD cases with disruptive de 
novo variants in ASD genes show delayed walking compared to ASD cases without such de novo 
variants, and the effect is greater for those with disruptive de novo variants in ASDNDD genes. C, 
Similarly, cases with disruptive de novo variants in ASDNDD genes and, to a lesser extent, ASDP 
genes have a lower full-scale IQ than other ASD cases. Statistical tests: B, C, t-test. 
 
Relationship between ASD and other neurodevelopmental disorders 
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Family studies yield high heritability estimates in ASD35, but comparable estimates of 

heritability in severe NDD are lower36. Consistent with these observations, exome studies 

identify a higher frequency of disruptive de novo variants in severe NDD than in ASD31. Because 

of the 30% co-morbidity between ASD subjects and intellectual disability/NDD, it is 

unsurprising that many genes are associated with both disorders37. Distinguishing genes that, 

when disrupted, lead to ASD more frequently than NDD may shed new light on how atypical 

neurodevelopment maps onto the core deficits of ASD. 

To partition the 102 ASD genes in this manner, we compiled data from 5,264 trios 

ascertained for severe NDD and compared the relative frequency, R, of disruptive de novo 

variants (which we define as PTVs or missense variants with MPC ≥ 1) in ASD- or NDD-

ascertained trios. Genes with R > 1 were classified as ASD-predominant (ASDP, 50 genes), while 

those with R < 1 were classified as ASD with NDD (ASDNDD, 49 genes). An additional three 

genes were assigned to the ASDP group on the basis of case-control data, totaling 53 ASDP genes 

(Figure 3.4A). For this partition, we then evaluated transmission of rare PTVs (relative 

frequency < 0.001) from parents to their affected offspring: for ASDP genes, 44 such PTVs were 

transmitted and 18 were not (P = 0.001, transmission disequilibrium test [TDT]), whereas, for 

ASDNDD genes, 14 were transmitted and 8 were not (P = 0.29; TDT). The frequency of PTVs in 

parents is significantly greater in ASDP genes (1.17 per gene) than in ASDNDD genes (0.45 per 

gene; P = 6.6x10-6, binomial test), while the frequency of de novo PTVs in probands is not 

markedly different between the two groups (95 in ASDP genes, 121 in ASDNDD genes, P = 0.07, 

binomial test with probability of success = 0.503 [PTV in ASDP gene]). The paucity of inherited 

PTVs in ASDNDD genes is consistent with greater selective pressure acting against disruptive 

variants in these genes.  
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Consistent with this partition, ASD subjects who carry disruptive de novo variants in 

ASDNDD genes walk 2.6 ± 1.2 months later (Figure 3.4B; P = 2.3x10-5, two-sided, two-sample t-

test, df=251) and have an IQ 11.9 ± 6.0 points lower (Figure 3.4C; P = 1.1x10-4, two-sided, two-

sample t-test, df=278), on average, than ASD subjects with disruptive de novo variants in ASDP 

genes. Both sets of subjects differ significantly from the rest of the cohort with respect to IQ and 

age of walking (Figures 3.4B, 3.4C). Thus, the data support some overall distinction between 

the genes identified in ASD and NDD en masse, although our current analyses are not powered 

for variant-level or gene-level resolution. 

 

Discussion 

By characterizing rare de novo and inherited coding variation from 35,584 individuals, 

including 11,986 ASD cases, we implicate 102 genes in risk for ASD at FDR ≤ 0.1, of which 31 

are novel risk genes. Notably, analyses of this set of risk genes lead to novel genetic, phenotypic, 

and functional findings. Evidence for several of the genes is driven by missense variants, 

including confirmed gain-of-function mutations in the potassium channel KCNQ3 and patterns 

that may similarly reflect gain-of-function or altered function in DEAF1, SCN1A, and SLC6A1. 

Further, we strengthen evidence for driver genes in genomic disorder loci and we propose a new 

driver gene (BCL11A) for the recurrent CNV at 2p15-p16.1. 

We perform a genetic partition between genes predominantly conferring liability for ASD 

(ASDP) and genes imparting risk to both ASD and NDD (ASDNDD). Two lines of evidence 

support the partition: first, cognitive impairment and motor delay are more frequently observed 

in our subjects—all ascertained for ASD—with mutations in ASDNDD than in ASDP genes; 

second, we find that inherited variation plays a lesser role in ASDNDD than in ASDP genes. 
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Together, these observations indicate that ASD-associated genes are distributed across a 

spectrum of phenotypes and selective pressure. At one extreme, gene haploinsufficiency leads to 

global developmental delay, with impaired cognitive, social, and gross motor skills leading to 

strong negative selection (e.g. ANKRD11, ARID1B). At the other extreme, gene 

haploinsufficiency leads to ASD, but there is a more modest involvement of other developmental 

phenotypes and selective pressure (e.g. GIGYF1, ANK2). This distinction has important 

ramifications for clinicians, geneticists, and neuroscientists, because it suggests that clearly 

delineating the impact of these genes across neurodevelopmental dimensions may offer a route to 

deconvolve the social dysfunction and repetitive behaviors that define ASD from more general 

neurodevelopmental impairment. Larger cohorts will be required to reliably identify specific 

genes as being enriched in ASD compared to NDD.  ASD must arise by phenotypic convergence 

amongst these diverse neurobiological trajectories, and further dissecting the nature of this 

convergence, especially in the genes that we have identified herein, is likely to hold the key to 

understanding the neurobiology that underlies the ASD phenotype. 

 

Materials and methods 

Samples 

The Autism Sequencing Consortium is a large-scale genomic consortium collecting and 

sequencing cohorts worldwide38. The analysis presented here drew from 35,584 samples 

collected from 32 distinct sample sets. These include cohorts sequenced by the Autism 

Sequencing Consortium (ASC) and published in our first3 or second study39 (Germany, Japan, 

PAGES, Pittsburgh, Seaver, Spain, TASC, and UCSF), as well as new collections (Boston, 

Brazil, CHARGE, Chicago, Hong Kong, Miami, Portugal, Rome, Siena, Turin, UC Irvine, and 
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Utah), with a total of 6,197 newly collected and sequenced samples included in our final 

analysis. We also sequenced samples from the Autism Genetic Resource Exchange (AGRE), the 

Boston Autism Consortium, two sites in Finland, and Swedish controls from epidemiological 

studies in schizophrenia and bipolar disorder. We imported exome sequence data from the 

Simons Simplex Collection4, as well as an unpublished Norwegian cohort, and included them in 

our dataset alongside ASC-sequenced samples. In addition, we incorporated published de novo 

variants from the UK10K consortium, the University of Pennsylvania, Vanderbilt University, 

and a collection of samples from the Middle East. Finally, we integrated gene-level variant 

counts from autism cases and matched controls from the iPSYCH research initiative10. 

The bulk of new ASC samples were sequenced at the Broad Institute on Illumina HiSeq 

sequencers using the Illumina Nextera exome capture kit. The remainder were sequenced at three 

other sites: the University of California, San Franciso (N=495), the Sanger Institute (N=443), 

and Johns Hopkins University (N=302), all using similar methods. Each sample’s sequencing 

reads were aggregated into a BAM file and processed through a pipeline based on the Picard set 

of software tools. The BWA aligner mapped reads onto the human genome build 37 (hg19). 

Single nucleotide polymorphism (SNPs) and insertions / deletions (indels) were jointly called 

across all samples using Genome Analysis Toolkit (GATK40) HaplotypeCaller package version 

3.4. Variant call accuracy was estimated using the GATK Variant Quality Score Recalibration 

(VQSR) approach. The VCF file was produced by the Broad sequencing and calling pipeline 

with GATK version 3.4 (g3c929b0) and was itself VCF format v4.1. 

 

Dataset QC 
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The VCF file, containing approximately 29,000 exomes, was loaded into Hail 0.1 

(http://hail.is; https://github.com/hail-is/hail) to perform basic quality control steps. Multi-allelic 

sites were split into bi-allelic sites and each variant was then annotated with the Variant Effect 

Predictor (VEP)41 by prioritizing coding canonical transcripts. VEP assigned properties such as 

gene name and consequence to each variant.  

To check the accuracy of reported pedigree information, relatedness was calculated 

between each pair of samples using Hail’s ibd() function and sex was imputed for each sample 

using Hail’s impute_sex() function. The relatedness values were input into the program 

PRIMUS, which inferred pedigree structure for every related group of samples. Combined with 

the imputed sex, these inferred pedigrees were compared to reported pedigrees and checked for 

discrepancies. Obvious errors in reporting were fixed (e.g., swapped mother and father labels in 

the same family, or swapped parent/proband labels in the same trio), and samples with a 

discrepancy that could not be resolved (~200) were dropped. Parents without a child in the 

dataset (~250) were also dropped, resulting in 28,547 samples and 5,420,608 variants. 

  During a first round of variant quality control (QC), low-complexity regions were 

removed (110,963 variants), as were SNPs that failed variant quality score recalibration (VQSR, 

265,130 variants), leaving 5,044,515 variants. For genotype QC, several genotype filters were 

applied: we filtered calls with a depth less than 10 or greater than 1000; for homozygous 

reference calls, we filtered genotypes with less than 90% of the read depth supporting the 

reference allele or with a genotype quality less than 25; for homozygous variant calls, we filtered 

genotypes with less than 90% of the read depth supporting the alternate allele or with a phred-

scaled likelihood (PL) of being homozygous reference less than 25; and for heterozygous calls, 

we filtered genotypes with less than 90% of the read depth supporting either the reference or 
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alternate allele, with a PL of being homozygous reference less than 25, with less than 25% of the 

read depth supporting the alternate allele (i.e. an allele balance less than 0.25), or with a 

probability of the allele balance (calculated from a binomial distribution centered on 0.5) less 

than 1x10-9. We additionally filtered any heterozygous call in the X or Y non-pseudoautosomal 

regions in a sample that imputed as male. For samples imputed as female, calls from the Y 

chromosome were removed. After applying these filters and removing sites that were no longer 

variant, the dataset contained 28,547 samples and 4,755,048 variants. 

Next, we applied sample quality control filters, removing samples with estimated 

contamination levels >7.5% (20 samples) or chimeric reads >7.5% (121 samples). Stratifying 

samples into 18 different groups (by exome capture/year/cohort/sequencing center), samples 

were filtered if their call rate was greater than 3 standard deviations from the group mean (300 

samples). Duplicate samples were then removed (761 samples), as were samples for which the 

imputed sex did not match the reported sex (59 samples). Following these sample filters, family 

structures were re-evaluated: if one or more parents of a proband had been filtered, the proband 

was reclassified as a case and the remaining parent (if any) was dropped; if the proband had an 

unaffected sibling, the sibling was kept as a “sibling of case;” if one or more parents were 

filtered and no proband remained, then data for remaining family members were dropped; second 

degree or greater relatives of probands were also dropped. After applying these rules, the dataset 

contained 5833 complete families, with 5924 affected probands, 2007 unaffected offspring, 5834 

fathers, and 5833 mothers (one family contained two probands, two fathers, and one mother). 

The dataset also contained 2388 cases, 106 siblings of cases, and 4324 controls, none of 

whom were part of a complete trio. From these categories, we filtered one of each related pair of 

samples (although each case was allowed to keep 1 sibling in the event this became interesting 
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for future study). We defined related samples as a pair of samples with a KING42 kinship value 

of 0.1 or greater, approximately corresponding to a PI_HAT value of 0.2 or greater. Following 

this filtering, the dataset contained 2353 cases, 100 siblings of cases, and 4316 controls, for a 

total of 26,367 samples. 

After filtering sites that were no longer variant, there were 4,605,130 variants. For a 

second round of variant QC, variants with call rate <10% (17,083 variants) or a Hardy-Weinberg 

equilibrium p-value less than 1x10-12 (27,862 variants) were filtered, leaving 26,367 samples and 

4,560,185 variants. This dataset was then used as the starting point for the de novo, inherited, and 

case-control workflows. Most of the remaining samples were ultimately used in our TADA 

analysis, but some were subject to additional filtration during these workflows. 

 

Tallying of variant classes 

De novo variants were called from the 26,367-sample dataset described above, including 

5924 affected probands and 2007 unaffected offspring. After filtering any genotype with a GQ < 

25, de novo variants were called using the de_novo() function of Hail 0.1, which implements the 

caller used in previous ASC work (https://github.com/ksamocha/de_novo_scripts). Population 

allele frequencies for variants were obtained from the non-psychiatric subset of gnomAD 

(http://gnomad.broadinstitute.org/), and these frequencies were used as the input priors. As 

additional parameters, parents’ homozygous reference genotypes were required to have no more 

than 3% of reads supporting the alternate allele, children’s heterozygous calls were required to 

have at least 30% of reads supporting the alternate allele, and the ratio of child read depth to 

parental read depth was required to be at least 0.3.  
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This process identified 44,562 de novo variants (26,577 distinct variants) in the 7931 

children in the dataset. Of the 7931 children, 519 were part of a whole genome sequencing 

project43, and we added 168 de novo variants called in these samples from the whole genome 

sequencing that were not called in the exome sequencing. We also incorporated 338 previously 

published and validated de novo variants in our samples that were not identified by our caller11. 

Thus, in total, we had 45,068 de novo variants (27,083 distinct variants) in 7931 children. For 

QC on the de novo variants, we retained variants if they were high confidence as indicated by the 

calling algorithm, medium confidence and a singleton in the dataset, or previously 

experimentally validated (removed 20,862 calls). To filter calls stemming from cell line artifacts, 

an allele balance of at least 0.4 was required for samples from immortalized cell lines (773 

probands and 40 siblings) (removed 2171 calls). Next, a call was removed if it had an allele 

frequency >0.1% in our dataset, in ExAC (r0.3, non-psychiatric subset, 

http://exac.broadinstitute.org/), or in gnomAD (non-psychiatric subset) (removed 5068 calls). 

Calls were removed if they appeared more than twice (removed 403 calls) and were then limited 

to one variant per person per gene (removed 570 calls), retaining calls with the most severe 

consequence when selecting which one to keep. Finally, samples whose DNA source was whole 

blood or saliva were dropped if they had more than 7 coding variants (removed 20/5143 

probands and 13/1967 unaffected children), and samples whose DNA source was immortalized 

cell lines were dropped if they had more than 5 coding calls (filtered 35/773 probands and 1/40 

unaffected children). Retained were 14,569 de novo variant calls from 5869 probands and 1993 

unaffected children. To maximize power, we supplemented this set with 933 and 287 

published de novo variants in 561 probands and 186 siblings3,5,11,44, respectively, for whom 

original sequence data were not available.  
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Inherited variation 

QC for inherited variants began with the dataset of 26,367 samples and 4,560,185 

variants. Any genotype call with a GQ < 25 was removed and heterozygous genotypes were 

required to have an allele balance ≥ 0.3. Variants were required to have a call rate ≥90%, 

insertions and deletions were required to pass VQSR, and SNPs were required to have a 

VQSLOD (variant quality score log odds) ≥ -2.085. The VQSLOD threshold for SNPs was 

determined by identifying the threshold at which synonymous variants with an allele count of 1 

amongst parents in the dataset were transmitted to the child 50% of the time, as described 

previously11,12. Protein-truncating variants were required to be high confidence (“HC”) by the 

LOFTEE plugin for VEP and to have no LOFTEE flags other than “SINGLE_EXON”.  

For purposes of gene-level counts, variants were tallied in the 5869 probands and 1993 

unaffected children who passed de novo QC. Variants were required to have an allele count ≤ 5 

in the combined parents, cases, and controls (18,153 people) in our dataset, as well as an allele 

count ≤ 5 in the non-psychiatric subset of ExAC. 

 

Case-control variation  

Variants in ASC cases and controls were QC’d in the same way as inherited variants. For 

purposes of gene-level counts, variants were again required to have an allele count ≤ 5 in the 

18,153 combined parents, cases, and controls in the dataset, as well as an allele count ≤ 5 in the 

non-psychiatric subset of ExAC.  

To ensure well-matched cases and controls, probable ancestry was calculated by merging 

our raw dataset with genotypes from the 1000 Genomes Project and conducting principal 
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components analysis (PCA) in Hail on a set of ~5000 common SNPs. A naive Bayes classifier 

was trained (using the naiveBayes function from the R package e1071) on the 1000 Genomes 

samples labeled as either European or East Asian and used to predict which of our samples fell 

into those populations. Synonymous rates were well-matched between cases and controls from 

the Swedish contributing site which were classified European (745 cases and 3595 controls), as 

well as between cases and controls from the Japanese contributing site which were classified 

East Asian (196 cases and 298 controls). For inclusion in TADA, we counted variants from the 

4340 Swedish samples. Overall variant rates were higher in the Japanese samples than the 

Swedish samples, possibly because our filtering was based on allele counts in ExAC, and ExAC 

has less representation from East Asian samples than European ones. 

 

Analysis of variant classes 

To model a qualitative trait—in this case, the presence or absence of ASD—using 

standard quantitative genetics concepts, we imagine that there is an unobserved, normally 

distributed variable called “liability” that determines whether or not an individual is diagnosed 

with ASD. We assume that liability, 𝐿, has mean 0 and variance 1 in the general population. 

Individuals with 𝐿 greater than some threshold 𝑡 are diagnosed with ASD and individuals with 

𝐿 < 𝑡 are considered “typical”. Under this model, the prevalence difference between males and 

females is viewed as a difference in thresholds for males and females. For a male to be diagnosed 

with ASD, his liability must be larger than 𝑡{. For a female to be diagnosed with ASD her 

liability must be larger than 𝑡|. Since ASD is more common in males than females, we conclude 

that 𝑡{ < 𝑡|. For all that follows we will assume that the prevalence of ASD, 𝛹{, is 1 in 42 in 

males (implying 𝑡{ ∼ 1.98), and the prevalence of ASD is 1 in 189 females, 𝛹| (implying 𝑡| ∼
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2.56). We model ASD+ID similarly, but with lower prevalence than all ASD (male prevalence 

0.00499, and female 0.00138). 

When considering the effects of individual alleles on liability, we employ an elaboration 

to the standard quantitative genetics model, which is sometimes called the “mixed model of 

inheritance”. We assume that individual alleles make additive contributions to liability, so that 

for some allele, 𝐴&, individuals with 0 copies of the allele have mean −𝜇, variance 1 liability, 

but individuals with 1 copy have mean 𝛼 − 𝜇, variance 1, and individuals with 2 copies have 

mean 2𝛼 − 𝜇, variance 1 liability. Assuming Hardy-Weinberg equilibrium for genotypes, and 

the frequency of 𝐴& equaling 𝑝, 𝜇 = 2𝛼𝑝( + 𝛼2𝑝𝑞 = 2𝛼𝑝. Here 𝜇 is a normalizing factor to 

ensure the overall population has mean liability 0. 

For several of our analyses we are interested in the effect, 𝛼, for variants of a particular 

type in a collection of genes, for instance de novo PTVs in genes with pLI scores > 0.9. If a 

variant is individually exceptionally rare, we have virtually no power to estimate its individual 

effect size, but over a large collection of such variants average properties are estimable. To do 

so, we model the entire collection of variants as if there were a single allele with frequency equal 

to the sum of the individual variant frequencies. This approach makes little sense for common 

variants, but for sufficiently rare variants, where single individuals seldom harbor more than one, 

this is a reasonable and helpful approximation. For some variant types, however, such as silent 

variants, the count of alleles can be substantial. For this reason, rather than standardize by 2𝑁, 

where 𝑁 is the number of subjects, we standardize by 2𝑁𝑀, where 𝑀 = 17,484 is the number of 

genes analyzed herein. This standardization has no material impact on calculations of parameters 

of interest. To distinguish between cases and controls, we write 𝑁PR and 𝑁Pv respectively. 
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Thus, for each type of variant we are interested in studying, de novo PTV mutations, say, 

we count the number of observations of this class of variant in cases (our probands in trios), and 

the number of observations of this class of variant in controls (our siblings in trios). For a given 

type of variant, 𝑉, we call 𝑃𝑟{𝑉|𝐷} the frequency of this type of variant in cases (observed 

number of variants divided by 2𝑁𝑀), and 𝑃𝑟{𝑉|¬𝐷} the corresponding value in controls. We 

make these calculations separately in males and females, which we denote as 𝑃𝑟{𝑉{|𝐷{}, 

𝑃𝑟{𝑉||𝐷|}, 𝑃𝑟{𝑉{|¬𝐷{}, and 𝑃𝑟{𝑉||¬𝐷|} where the 𝑚 and 𝑓 subscripts distinguish male and 

females. The overall frequency of the variant class can be found by 

𝑃𝑟{𝑉ó} = 𝑃𝑟{𝑉ó|𝐷ó}𝛹ó + 𝑃𝑟{𝑉ó|¬𝐷ó}(1 − 𝛹ó) 

where 𝑔 can be either 𝑓 or 𝑚, for females and males, respectively. From this the Penetrance 

(probability of disease given variant) of the variant class can be found immediately by Bayes rule 

 

To find the average effect, 𝛼Oô, of this variant class we note 

 

Thus, we can find the effect size by inverting a standard normal cumulative distribution, 𝛷(𝑥) 

𝛼Oô = 𝑡ó − 𝛷ú&(1 − 𝑃𝑟{𝐷ó|𝑉ó}). 

Empirically, the relative risk for the variant type is calculated as 𝑃𝑟{𝑉{|𝐷}/𝑃𝑟{𝑉|¬𝐷} 

for the contrast of cases versus controls. To assess whether or not there is any difference in this 

variant class between cases and controls, we perform an exact Binomial Test on the underlying 

observed counts, where the probability of success is given by 𝑁PR/(𝑁PR + 𝑁Pv). The odds ratio is 
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computed from four observations, the number of variants of the risk class in cases, 𝑎; the number 

of variants of the risk class in controls, 𝑏; the number of alleles not in the risk class in cases 

2𝑁PR𝑀 − 𝑎; and the parallel calculation for controls, 2𝑁Pv𝑀 − 𝑏.  

To estimate a confidence interval of 𝛼Oô, we note that in a very formal sense 𝛼Oô is the 

average effect on the liability scale of the variant. Were we able to observe those effects directly, 

we could have calculated the observed mean and standard error of those effects. Because we 

cannot observe liability directly here, we infer the standard error of 𝛼Oô by the following 

procedure: map the p-value from the Binomial test, described above, onto an equivalent z-value 

from the normal distribution, 𝑧; then 𝛼Oô/𝑧 is a reasonable estimator for the standard error of the 

estimator for 𝛼Oô.  

Calculations for “All Genes” and for “Other Genes” were performed separately for males 

and females and also separately for the PAGES and DBS samples. Inherited analysis calculations 

were also separated by male / female and by proband / sibling. To combine effects between 

males and females, we took inverse-variance weighted averages of male and female effect sizes. 

We performed analogous calculations for the populations of case-control samples. For these 

calculations for the 102 ASD genes, however, because the counts of events were often small, we 

combined data over males and females and over PAGES and DBS samples to compute overall 

parameters (i.e., performed mega- versus meta-analysis). When parameters could not be 

estimated, this is noted as NA. 

 

Transmission And De novo Association test (TADA) 

Published analyses of WES data using TADA have evaluated two categories of rare 

variation, namely protein truncating variants (PTV; i.e., frameshift, stop gained, splice site 
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acceptor or donor mutation) and probably damaging missense according to PolyPhen-2 (Mis3)45, 

in the context of three categories of inheritance pattern: de novo, inherited, and case-control. 

TADA requires a mutational model46 which accounts for gene size and sequence composition to 

obtain an expectation for mutations per gene, given sample size. It treats all PTV mutations 

within a gene as equivalent, although their impact on risk is allowed to vary across genes and 

inheritance patterns (likewise for Mis3). TADA first computes a gene-specific Bayes factor for 

each mutation category and inheritance pattern, and then it multiplies these Bayes factors to 

generate a statistic that summarizes all evidence of association for each gene. The total Bayes 

factor is finally converted to a q-value to control FDR3. As a Bayesian model, TADA requires 

prior parameters or hyperparameters, namely the fraction of genes in the genome affecting risk, 

thus far taken to be 0.05, and 𝛾, the relative risk for a particular mutation category. See He et al. 

(2013) for estimators. 

 

Evaluating TADA and False Discovery Rate (FDR) 

For downstream analysis it is critical to ensure reliable performance of TADA so that risk 

gene lists, such as those with FDR < 10%, are properly calibrated. Such guarantees are 

straightforward to prove in many settings47. In the WES setting, however, and especially for the 

relatively discrete counts of de novo events, a demonstration that the FDR rate holds is 

warranted. It is worth noting that, even though there are many genes that contain no mutations, 

the mutation rate is gene-specific and varies with gene length. Consequently, with the exception 

of the genes with a signal, the p-values from the TADA analysis of PTV and Mis3 mutations are 

almost uniformly distributed. 
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To evaluate the validity of the FDR framework in the context of TADA analysis, we 

conduct “empirical-known signal experiments” (EKSE). The idea is to perform TADA analyses 

in which the true signal is known a priori. To make the simulation as real as possible, it is 

performed using real de novo mutation counts as a base. These mutations are chosen to carry no 

detectable signal (i.e., mimicking the null distribution because they are believed to be non-

functional). Simulated signals for association are then generated for randomly selected genes. 

Once the data are generated, TADA is used to analyze them, and the resulting FDR and other 

features of the method are examined. 

 

EKSE Simulations to Assess the Properties of FDR.  

For these empirically-known signal experiments, we let synonymous variants play the 

role of Mis3 (denoted as Mis3new) and Mis1 play the role of PTV (denoted as PTVnew). Signals 

are layered onto genes that are randomly chosen. Below is the detailed procedure: 

1. Divide all 17,484 genes into 20 bins of equal size. Let 𝑏 = 1,… ,20. 

2. For each of the 20 bins, iteratively generate a signal for all genes in the bin; the remaining 19 

bins, with no signal, represent the null genes. The extra signal in the 𝑖th gene for both new 

kinds of de novo variants is simulated using 𝑋+|𝛾+ ∼ Poisson(2𝜇+(𝛾+ − 1)𝑁), where 𝛾+ ∼

Gamma(𝛾, 𝛽). The hyperparameters are selected to yield signals similar to the real data: 𝛽 =

0.2 and 𝛾 is set to be 2.4 and 5.4 for Mis3new and PTVnew respectively, and 𝑁 = 6430. 

The “-1" is to account for the observed de novo variants already included from the real data. 

The simulated de novo events are added to the observed Mis3new and PTVnew to create 

each of the 20 data sets. 

3. Perform TADA analysis for each of the 20 datasets. 
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4. Display the resulting q-FDR curves for 𝑏 = 1,… ,20, and q-FDR averaged over 𝑏. 

 

Pure Simulations to Assess the Properties of FDR.  

This simulation is closely related to EKSE. The only difference is that the null mutations are 

generated randomly from a multinomial distribution instead of adopted directly from the Syn and 

Mis1 variants. The procedure is described below. 

1. Randomly sample a fraction of all 17,484 genes as signal genes, denoted as set 𝑆. We set the 

fraction as 𝜋 = 0.05. The number of trios is 𝑁 = 6430. 

2. For both two new types of variants, Mis3new and PTVnew, the mutations of all the genes are 

randomly generated from a multinomial distribution, 𝐗 ∼ Multinom(M, 𝐩), where the 

probability vector 𝐩 is proportional to 𝐩 = {𝜇+𝛾+}+Æ&,…,&Ø∞±∞, where 𝛾+ ∼ Gamma(𝛾, 𝛽) if 𝑖 ∈

𝑆, otherwise equals 1. The total number of mutations is 𝑀 = 2𝑁∑ 𝜇+&Ø∞±∞
+Æ& 𝛾+. The mutation 

rates of Mis3new are taken from Syn, and the mutation rates of PTVnew are taken from 

Mis1. The hyperparameters 𝛾, 𝛽 are set to be the same as in EKSE. 

3. Perform TADA analysis on the two generated types of variants. Display the resulting q-FDR 

curve. 

4. Repeat steps 1-3 100 times. 

For q < 0.1 the average curve follows the diagonal line (roughly), which indicates that 

the actual FDR is well controlled in the region of primary interest. We do detect a slight bump in 

the actual FDR for q > 0.1. To understand this deviation, we compared the observed counts for 

synonymous (Mis3new) and Mis1 (PTVnew) to simulated counts generated from the model. 

The distribution of the number of genes with synonymous counts ≥3 and Mis1 counts ≥2 

is contrasted with the observed counts. The contrasts show that there is a slight excess of 
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multiple hits in the observed counts compared to the model. Adding counts of synonymous and 

Mis1 mutations we obtain a single distribution of mutations per gene and find that there is an 

excess of counts of 0, 2, 3, and >3 and a relative lack of counts of 1; overall the counts are fairly 

similar, but they differ significantly from expectations (chi-square P = 0.012). The 8 null genes 

with the strongest TADA signal are GNS, LRRFIP1, GALC, GRN, MYH9, FOXK2, AP1B1, and 

UNC45B, and these are the genes that contribute to the bump in the FDR. However, none of 

these genes are significant (𝑞 < 0.1) in the EKSE analysis or in the actual data analysis of Mis3 

and PTV mutations. From this EKSE experiment we conclude that the TADA model does not 

perfectly capture reality and the actual FDR deviates slightly from reported value for values of q 

> 0.1. This deviation is likely due to inexact estimates of the per gene mutation rate. 

TADA relies on a mutation rate model for genes, which is an estimated quantity. Hence, 

we evaluate the impact of misspecification of mutation rates. To quantify the deviation from the 

expected null distribution due to mutation rate misspecification, we use the theory of genomic 

control48, specifically estimating the inflation factor 𝜆µ∂ . In this experiment we randomly select 

10-50% of genes and artificially make the nominal mutation rates increasingly lower than their 

true mutation rates. This will make the observed mutation count larger than the expected count 

for a subset of genes. The result is that test statistics for association will tend to be increased for 

some genes, and the larger the discrepancy, the larger the set of test statistics that do not follow 

the expected null distribution. The genomic control factor, based on the z-statistics from the 

TADA analysis, quantifies this inflation. As expected, the genomic control factor increases as 

more genes are analyzed with lower nominal than true mutation rates. The inflation for 𝜆µ∂  is 

modest, however, even for these fairly notable misspecifications of the mutation rates. 
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Because TADA is a Bayesian method it is more natural to use FDR than a Family-Wise 

Error Rate (FWER) cutoff to determine significance. In this gene discovery setting it is 

informative to compare the numbers of true discoveries (TD), false discoveries (FD), and FDR 

for different p-value and FDR thresholds and to examine the impact of model mis-specifications 

on FDR. We measure discrepancies via the genomic control factor (𝜆µ∂). We simulate the Z-

value of 20,000 genes, 5% with a signal from 𝑁(𝜇, 𝜆µ∂) and 95% from the null 𝑁(0, 𝜆µ∂), where 

𝜆µ∂  varies from 1 to 1.2. The value of 𝜇 is chosen to be 2 to approximately mimic the real data. 

Based on 1,000 replications, we calculate the average TD, FD, and FDR for a Bonferroni 

adjusted p-value threshold and different FDR thresholds. As expected, FWER has considerably 

fewer FD but also notably fewer TD than FDR, and the observed FDR is well calibrated when 

𝜆µ∂ = 1. (For 𝜆µ∂ = 1, TD = 5, 52, 113, 334, and FD = 0.1, 3, 13, and 144 for the four 

thresholds examined. In each case the error rate is controlled at the expected rate.) However, as 

𝜆µ∂  increases the actual FDR increases rapidly, especially for larger q-values. In contrast, FWER 

is fairly well controlled even for model discrepancies. 

 

A more powerful TADA model 

TADA required input of several parameters, most notably the relative risk, 𝛾. To estimate 

the relative risk for a category of mutations, we used the burden-relative risk relationship derived 

in He et al. (2013): 𝛾 = 1 + (𝜆 − 1)/𝜋, where 𝜋 = 0.05 is the estimated fraction of risk genes 

and the burden 𝜆 is calculated by comparing mutation counts in probands and unaffected 

siblings. Because differences in sequencing depths and variant calling procedures may lead to 

systematic differences in mutation rates, we normalized the counts using synonymous mutations 
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counts. Let 𝑥 and 𝑆 be the number of mutations in the category of interest and compare the 

counts in cases (cs) and controls (cn) as 𝜆 = (𝑥PS𝑆P∑)/(𝑥P∑𝑆PS). 

Previous TADA analyses3,5 used two annotation categories, PTV and Mis3.  Here we 

developed a more powerful version of TADA, which used additional annotation information.  

For clarity we labeled the original version TADA0 and the refined model TADA+. 

Recent studies have refined our understanding of what variation was likely to be 

meaningful for risk in two ways.  Regarding PTVs, Kosmicki et al. (2017) demonstrated that 

signals carried by PTVs involve a subset of genes that are evolutionarily constrained.  For these 

genes, the population tends to have far fewer PTVs than would be expected based on gene size, 

base-pair content and evolutionary models.  This constraint feature of genes is embodied in pLI 

(the probability of being loss-of-function [aka PTV] intolerant)12, which is a metric ranging from 

zero to one, with a larger pLI representing a greater dearth of PTV variation.  Kosmicki et al. 

(2017) found that genes with pLI > 0.9 tend to harbor most of the ASD association signal from 

PTVs.  In this work, we modeled the relative risk (𝛾) of de novo PTVs as a continuous function 

of pLI.  We created seven bins of data and fit a logistic curve to the data. The dots are the data 

and the black line is the fitted curve.  Then we computed error bars based on the 95% prediction 

interval around the fitted curve. In the upcoming implementation, we truncated 𝛾 at the null 

value of one. 

More refined information was also available for missense variants. Samocha et al. (2017) 

recently introduced the MPC score, a missense deleteriousness metric composed of “Missense 

badness”, PolyPhen-245, and Constraint.  This metric also used the concept of evolutionary 

constraint and seeks to quantify the degree of constraint for all missense variation in the genome.  

To determine how MPC might be used in TADA, we computed the average relative risk (𝛾, the 
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hyperparameters for TADA) for a moving window of MPC in the ASC data.  Using a window 

over probands’ missense variants ordered by MPC score, and with a width of 7.5% of the 

variants, we obtained the curve showing the average relative risk as a function of MPC score.  

Three levels of 𝛾 naturally emerged from this relationship, with the first level (MPC < 1) being 

close to marginal relative risk and two levels showing evidence for excess burden in ASD.  

Based on the nature of these results, we chose to group missense mutations into two categories 

for TADA, using established thresholds of MPC13: 1	≤ MPC < 2 (MisA) and MPC ≥ 2 (MisB).  

Note that missense variation with MPC < 1 was treated as benign.  The relative risk for each of 

the two missense categories was computed directly from the data (He et al., 2013) as 𝛾π+S" = 

4.18 and 𝛾π+S∫ = 22.15. 

Besides the de novo variants, we also considered PTVs from case-control data by 

aggregating the iPSYCH (Danish) data and PAGES (Swedish) data.  Following the same 

procedure as for de novo PTVs, within seven bins, we estimated the relative risks for the two 

case-control datasets separately and combined them with a precision weight.  We then fit a 

logistic curve using the seven points to smooth 𝛾 as a continuous function of pLI. In the TADA 

analysis, we treated 𝛾 of each gene as fixed for case-control data to achieve closed-form 

solutions and thus facilitate the computation. 

These analyses defined three categories of mutation potentially meaningful for risk.  The 

gene-specific mutation rates for PTVs and missense variants have been reported previously12, 

and we further estimated the mutation rates for MisA and MisB.  With mutation rates and 

hyperparameters estimated above, the refined TADA model can be applied to the data to identify 

risk genes for ASD.  To allow for more variability in the prior for 𝛾, we set 𝛽 = 0.2. 
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To resolve an emerging issue with the model’s Bayes factor (BF) values, we 

implemented a floor adjustment that imposes a lower bound of 1 on all BF.  The issue is that for 

some genes with larger mutation rates and zero de novo MisB mutations, the MisB BF is << 1.  

Multiplying this with the other evidence rendered those genes not significant.  Indeed, with the 

mutation rates provided and the high relative risk of MisB, the model clearly expected to observe 

at least one de novo MisB variant.  (This happened for other categories as well, but most notably 

for MisB.)  We assumed the problem was heterogeneity of genes—some genes with a de novo 

PTV do not have MisB mutations in the data, even though these mutations are expected.  It did 

not make sense to have the observation of no mutations drive the model.  To circumvent the 

problem, we made a modification of the method so that BF is replaced by max(1, BF).  We 

tested this in simulations and the size of the modified test was satisfactory (see the discussion in 

the next section). 

TADA+ incorporated all of the refinements delineated here.  Using TADA+, 102 genes 

with q-value less than 0.1 were identified, including three genes that have excessive PTVs in 

siblings (EIF3G, KDM5B, RAI1).  By contrast, TADA0 identified only 79 genes when applied to 

the same data.  Clearly, the new relevant functional information embodied in the pLI and MPC 

scores improved the power of TADA by refining the model. 

 

Simulations to evaluate TADA+.  

Simulations illustrated the performance of TADA+ when applied to de novo mutations 

only.  In this setting, we simulated three types of de novo variants: PTV, MisA, and MisB, using 

the mean risks and mutation rates from real data.  Below is the detailed procedure. 
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1. Randomly select 5% of 17,484 genes as the signal genes; denote the set of signal genes as 

𝐺V and the null genes as 𝐺W. 

2. For each signal gene 𝑔 ∈ 𝐺V, generate risk 𝛾ó for each three types of variants from a Gamma 

distribution, , 𝑎 = (𝑃𝑇𝑉,𝑀𝑖𝑠𝐴,𝑀𝑖𝑠𝐵), where 𝛽 = 0.2 and the hyper 

parameters 𝛾ó
Rs are set to match the empirical counts.  Note that 𝛾ó

π+S" and 𝛾ó
π+S∫ are the same 

across all genes, but 𝛾ó
MNO are different. 

3. For the null genes 𝑔 ∈ 𝐺W, set 𝛾óMNO = 𝛾óπ+S" = 𝛾óπ+S∫ = 1  

4. For each variant, generate the counts from a Multinomial distribution, where the total number 

is the expected total counts 2𝑁∑ 𝜇óRó 𝛾óR, 𝑁 = 6430, and the probability is proportional to 

{𝜇óR𝛾óR}óÆ&π .  The mutation rates are taken from the real data. 

5. Apply TADA+ with Bayes Factors having a lower limit (floor) of 1, and calculate the 

empirical FDR. 

6. Repeat steps 1-5 100 times. 

Applying the floor principle increased the false discovery rate by a modest amount.  In 

practice, we found there was considerable heterogeneity across genes and this adjustment was 

necessary. 

 

TADA analyses 

We explored the performance of TADA0 and TADA+ with three analyses: 

A. TADA0 applied to ASC2018, de novo only; 

B. TADA+ applied to ASC2018, de novo only; and 

C. TADA+ applied to ASC2018, de novo and case-control data. 
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By moving through the three analyses, we changed one variable at a time and analyzed 

the consequences.  From A to B, we compared the improvements in the model by contrasting 

TADA0 and TADA+.  From B to C, we assessed the impact of adding in the case-control data. 

With additional data and a more powerful TADA model, we obtained substantial new 

discoveries.  We identified 65 genes in A, 85 genes in B, and 102 genes in C.  We visualized the 

q-values of the three analyses for the 114 genes with q-value less than 0.1 in at least one 

analysis—for most genes, the q-values decreased in sequence from analysis A to B to C, with the 

q-value of analysis C being the smallest.  Twelve genes have a q-value greater than 0.1 in C, but 

less than 0.1 in at least one other analysis; of these 12 genes, most are downgraded in analysis C 

because of refinements in the new TADA model (with the genes or variants, having, for instance, 

low pLI score or low MPC score, particularly MPC less than 1 or missing and thus not 

categorized as MisA or MisB). 

 

Comorbid phenotypes 

Full-scale IQ scores were measured using several tests including, but not limited to, the 

Differential Ability Scales, Second Edition49; the Mullen Scales of Early Learning50; the 

Wechsler Intelligence Scale for Children51; and the Wechsler Abbreviated Scale of 

Intelligence52.  The full-scale IQ estimates were taken from the full-scale deviation IQ variable 

when available and full-scale ratio IQ when it was not53.  Full-scale IQ is normally distributed 

with a mean of 100 and a standard deviation of 15.  We defined intellectual disability to be if a 

subject met one of the following conditions: a full-scale IQ (FSIQ) < 70 (i.e., two standard 

deviations below the mean), if the proband was administered but could not complete an IQ test, 

indicated by the subject having a date for their IQ test but no IQ score, or if the subject had an 
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HPO term or ICD code indicating intellectual disability or mental retardation.  Age of walking 

unaided (in months) was taken from question 5A from the Autism Diagnostic Interview (ADI)54.  

We divided individuals into three possible categories for seizure status: yes, no, and unknown.  A 

subject was put into the yes bin if he or she had a diagnosis of seizures or epilepsy, or a value of 

2 on question 85 from the ADI (indicating a diagnosis of epilepsy).  A subject was put into the 

no bin if no seizure/epilepsy diagnosis was indicated or if ADI question 85 had a value of 0. All 

remaining subjects were put into the unknown bin. 

 

Burden of mutations in ASD as a function of IQ 

We used full-scale IQ (FSIQ) to separate subjects into groups. Of the 5298 probands with 

any de novo mutation, 3010 have FSIQ information, 2055 (68.3%) with FSIQ > 70 and 1586 

with FSIQ > 82.  For a sample size N, the expected number of mutations within genes is 

computed as 𝐸 = 2𝑁𝜙, where 𝜙 is the sum of the mutation rate, per variant type, over all 

relevant genes.  (For example, to calculate 𝜙  for PTVs in genes with pLI > 0.995, we compute 

the sum of the PTV mutation rates for these genes.)   We then compare E to the observed count 

for this mutation class, O, and evaluate the distribution of O/E as a chi-square statistic with 1 

degree of freedom. 

 

Burden of mutations over 102 TADA ASD genes 

This analysis addressed the question of whether the signal found in the 102 genes with 

q<0.10 could have arisen solely from low IQ subjects, such that any mutations found in higher 

IQ subjects occurred by chance.   To answer this question, we must address the bias inherent in 

choosing 102 genes because they have q<0.10. To do so, we performed model-based 
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simulations, similar to those used to evaluate the properties of the TADA model.  We first 

selected 874 genes with the smallest q-values from the real data and labeled them “signal 

genes”.   Let  𝑀 = 0.306𝑁 be the number of subjects with IQ < 70, who accumulate mutations 

at rates greater than chance.  We generated mutations for the signal genes using the TADA 

model and Poisson rate (2𝑀𝛾𝜇), where 𝜇  is the gene-specific mutation rate and 𝛾 is the 

increased rate of mutations due to this being a risk gene and the mutation of a particular type, 

and we generated additional mutations at a Poisson rate (2[𝑁 −𝑀]𝜇).  We generated mutations 

in non-signal genes at a Poisson rate (2𝑁𝜇).  We ran TADA to get the new top 102 genes and the 

new signal genes, and we recorded counts occurring in new signal genes by chance (i.e., for 

individuals with high IQ).  We performed the simulation 500 times to obtain the distribution of 

counts in signal genes for individuals with high IQ and compared this to the observed data.  For 

all four informative mutation types, the expected counts were consistently lower than the 

observed count; only for missense mutations with MPC between 1 and 2 does the expected 

count, 13.54 (± 4.2) approach the observed value, 23 (p=0.03).  For all other mutation types, the 

empirical p-value was far smaller, based on 500 simulations (MPC >2: 13.9 ± 3.9 versus 28; 

PTV for pLI >0.995: 8.3 ± 3.0 versus 48; and PTV for 0.5 < pLI < 0.995: 3.0 ± 1.9 versus 15).  

We also performed these simulations for a split on IQ at 82 and reached the same conclusion, 

that the mutations in the higher IQ ASD subjects accumulate at a rate far greater than chance.  

 

Genes in recurrent genomic disorders 

We constructed a list of loci previously reported to be associated with ASD- or NDD-

related phenotypes due to rare CNVs.  We first collated coordinates of pathogenic genomic 

disorder (GD) regions as reported by nine previous studies5,24,37,55-59 and converted all 
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coordinates to human reference genome build hg19 with UCSC liftOver tool as necessary.  We 

next clustered the coordinates of all overlapping CNV regions using svtk bedcluster and a 

minimum 50% reciprocal overlap between segments, retaining the median clustered coordinates 

of all CNV regions appearing in at least two of the nine studies considered.  After clustering, we 

excluded any CNV segments > 5Mb in size and all segments on sex chromosomes.  Finally, we 

annotated each CNV segment passing all filters with all overlapping genes drawn from the list of 

autosomal genes considered during TADA analyses.  

 

Assessment of overlap between ASD-associated genes and GD loci 

We designed three permutation-based approaches to benchmark null expectations for the 

overlap of ASD-associated genes and GD loci.  All approaches involved randomly drawing new 

sets of collinear genes for each GD locus from the list of all genes considered in TADA analyses, 

but differed in how these new genes were selected.  These sampling approaches are summarized 

as follows: 

1. Matched on number of genes: a new collinear list of genes was drawn for each GD locus, 

where the number of genes was matched to the number of genes in the original GD locus. 

2. Matched on PTV mutation rates: a new collinear list of genes was drawn for each GD, where 

the number of genes was determined such that the sum of their estimated PTV mutation rates 

was at least as large as the sum of the estimated PTV mutation rates of the original list of 

genes in that GD locus. 

3. Matched on brain expression, PTV mutation rates, and number of genes: prior to 

permutation, all genes were assigned a PTV mutation rate quintile and a brain expression 

quantile determined by the median brain expression value for that gene across all samples 
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and all brain regions present in GTEx release v7 calculated after excluding genes with non-

zero median brain expression.  During permutation, a new collinear list of genes was drawn 

for each GD such that the number of genes matched the original GD locus, with the 

additional requirements that the distribution of these genes across brain expression quintiles 

and PTV mutation rate quintiles were also preserved. 

For each permutation, we performed one of the three above approaches for all 51 GD loci 

to obtain a new set of sampled genes, and we then counted the number of newly sampled genes 

that matched the TADA thresholds for ASD association in this study.  We performed 1,000,000 

permutations for each approach and computed p-values based on the fraction of all permutations 

where the number of GD loci with at least one randomly sampled ASD-associated gene matched 

or exceed the empirical observation in the original data.  Fold-changes were determined as the 

observed number of GD loci with at least one ASD-associated gene divided by the mean number 

of GDs with at least one ASD-associated gene across all 1,000,000 permutations. 

Finally, we titrated additional parameters to examine the variability of results from this 

permutation approach.  For each of the three gene-sampling schemes above, we performed a 

separate 1,000,000 independent permutations for each combination of two additional factors, as 

follows: 

1. ASD-associated gene list: we considered two different significance levels for ASD-

associated genes, including (1) those determined as significant by the extended TADA model 

at FDR ≤ 0.1 (n=102 genes) and (2) those reaching Bonferroni-corrected significance (n=26). 

2. Chromosome sampling weights: for each GD locus in each permutation, an autosomal 

chromosome was selected based on one of two weighting schemes prior to randomly 

sampling a new set of collinear genes. These weights were either (1) determined by the 
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fraction of all autosomal genes located on each chromosome, or (2) determined by the 

fraction of GD loci located on each chromosome.  

All results were consistent across gene sampling strategies and the additional parameters 

had limited influence on our individual results or overall conclusions. 
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Chapter 4 

Influence of severe intellectual disability and developmental delay on de novo architecture and 

gene discovery in autism spectrum disorders and congenital heart disease 
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Abstract 

De novo variants identified through exome sequencing have implicated numerous genes 

in both autism spectrum disorders (ASD) and congenital heart disease (CHD).  In both traits, 

these variants are disproportionately observed in the subset of cases with comorbid intellectual 

disability / developmental delay (ID/DD).  Using de novo and inherited variants from distinct 

ascertainments of 6430 ASD probands, 3683 CHD probands, and 5305 ID/DD probands coupled 

with extensive phenotype data, we examined the effect of ID/DD on de novo variant frequencies 

and gene discovery in ASD and CHD.  We found the frequency of deleterious de novo coding 

variants was equivalent in both ASD and CHD with comorbid ID/DD as well as ID/DD with and 

without ASD and CHD.  We identified 105 genes at genome-wide significance for at least one of 

the three disorders, but far more genes were identified in ID/DD (N=95) than ASD (N=18) and 

CHD (N=11).  Using a frequentist-based approach, nine genes were significantly more strongly 

associated with ID/DD than ASD or CHD, and one gene – KMT2D – was more strongly 

associated with CHD than the either two traits after Bonferroni correction.  Lastly, the excess of 

de novo and inherited variants reside in genes on opposite ends of the selection coefficient 

distribution. 

 

Introduction 

Autism spectrum disorder is a highly heritable, but phenotypically heterogeneous 

disorder, diagnosed by deficiencies in two core domains: (1) impairments in communication and 

social interaction and (2) restrictive interests and repetitive behaviors.  Historically, ASD was 

most often diagnosed in individuals with comorbid intellectual disability / developmental delay 

(ID/DD)1, and many early genetic associations to ASD were made in ASD cases with co-
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occurring severe intellectual disability or syndromic features2-6.  Thanks in large part through 

increased awareness of the disorder coupled with widening diagnostic criteria, ASD currently 

encompasses individuals that span the entire IQ spectrum, reaching those with average or above 

average IQ.   

Congenital heart disease (CHD) has similarly often been described in the context of 

likely or established genetic syndromes that also have significant neurodevelopmental 

disabilities7; however, given the obvious lack of phenotypic and diagnostic overlap between the 

cardiac and neurodevelopmental aspects, such observations have simply suggested multiple or 

diverse sites of molecular action of specific genes, rather than generating contentious debate over 

diagnostic criteria and disease etiology.  We sought here to explore the degree to which currently 

observed de novo variant excesses in both ASD and CHD might suggest general developmental 

abnormalities, and to what degree specific insights unique to each diagnosis may be available as 

studies expand. 

  

Results 

Frequency of de novo variants by ascertainment and comorbidity across studies 

Here we analyze 21,288 published de novo variants: 12,166 de novo variants from 6430 

individuals ascertained for ASD, 1404 de novo variants from 1012 individuals ascertained for 

intellectual disability (ID), 6791 de novo variants from 4293 individuals ascertained for 

developmental disorders (DD) as part of the Deciphering Developmental Disorders (DDD) 

project, 4585 de novo variants from 3683 individuals ascertained for congenital heart disease, 

and 3623 de novo variants from 2179 control individuals (Table 4.1; Materials and methods).  

We collected each individual’s secondary diagnoses in each of the cohorts to identify the 2402 
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ascertained ASD and 1073 ascertained congenital heart disease individuals with comorbid 

ID/DD, and the 711 and 571 ascertained ID/DD individuals with comorbid ASD and CHD 

respectively (Materials and methods). 

 
Table 4.1: Probands split by ascertainment and comorbidity status. 
Ascertainment Comorbidity N Male Female 
ASD Total 6430 5333 1097 

without ID/DD 2895 2511 384 
comorbid ID/DD 2402 1924 478 
unknown 1133 898 235 

CHD Total 3683 2133 1550 
without ID/DD 1673 944 729 
comorbid ID/DD 1073 628 445 
unknown 937 561 376 

ID/DD Total 5305 2952 2353 
without ASD 4594 2457 2137 
comorbid ASD 711 495 216 
without CHD 4734 2638 2096 
comorbid CHD 571 314 257 

Unaffected siblings Total 2179 1031 1148 
 

Because we meta-analyzed various datasets sequenced at different times on different 

platforms, we needed to correct for any technical discrepancies between studies.  All de novo 

variants were reprocessed to ensure consistency across datasets (Materials and methods).  As a 

control for the comparison of de novo missense and PTVs, we compared the frequencies of de 

novo synonymous variants across the separate ascertained cohorts because, as a class, true 

frequencies of de novo synonymous variants should be independent of phenotypic ascertainment.  

We observed no difference in the frequency of de novo synonymous variants (Table 4.2), nor did 

we observe a difference in the frequency of de novo PTVs in LoF-tolerant genes (pLI < 0.9) 

(Table 4.3) or benign missense variants (MPC < 1) (Table 4.4) between any of the ascertained 

cohorts.   
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Table 4.2: De novo synonymous variant frequencies.  Testing for association between the de 
novo synonymous variant frequencies between the five different ascertained groups using a two-
sided, two-sample Poisson exact test (also known as the C-test)8.  We performed pairwise 
comparisons for a difference in the de novo synonymous variant frequency between 
ascertainments.  The columns, Frequency 1 and 2, refer to the de novo synonymous variant 
frequencies for the two traits tested.  Our significance threshold after Bonferroni correction for 
ten tests is 0.05 / 10 ~ 5 x 10-3. 

Comparison Frequency 1 Frequency 2 P-value Rate Ratio 95% CI 
ASD vs. Control 1870 / 6430 640 / 2179 0.8363 0.9902 0.90 - 1.08 
ASD vs. ID 1870 / 6430 252 / 1012 0.0207 1.1679 1.02 - 1.34 
ASD vs. CHD 1870 / 6430 983 / 3683 0.0293 1.0896 1.01 - 1.18 
ID vs. CHD 257 / 1012 983 / 3683 0.49 0.9515 0.83 - 1.09 
ID vs. Control 257 / 1012 640 / 2179 0.0485 0.8646 0.75 - 1.00 
CHD vs. Control 983 / 3683 640 / 2179 0.0608 0.9087 0.82 - 1.01 
DDD vs. ASD 1276 / 4293 640 / 2179 0.8278 1.012 0.92 - 1.11 
DDD vs. Control 1276 / 4293 1870 / 6430 0.5483 1.022 0.95 - 1.10 
DDD vs. ID 1276 / 4293 257 / 1012 0.021 1.1704 1.02 - 1.34 
DDD vs. CHD 1276 / 4293 983 / 3683 0.0113 1.1136 1.02 - 1.21 

 
 
Table 4.3: De novo PTVs (pLI < 0.9) frequencies. Testing for association between the de novo 
protein truncating variant frequencies in LoF-tolerant genes (pLI < 0.9) between the five 
different ascertained groups using the Poisson exact test.  We perform pairwise comparisons for 
a difference in the de novo PTV (pLI < 0.9) frequency between ascertainments.  The columns, 
Frequency 1 and 2, refer to the de novo PTV (pLI < 0.9) frequencies for the two tested traits.  
Our significance threshold after Bonferroni correction for ten tests is 0.05 / 10 ~ 5 x 10-3. 

Comparison Frequency 1 Frequency 2 P-value Rate Ratio 95% CI 
ASD vs. Control 423 / 6430 127 / 2179 0.2395 1.1287 0.92 - 1.39 
ASD vs. ID 423 / 6430 60 / 1012 0.5066 1.1096 0.85 - 1.48 
ASD vs. CHD 423 / 6430 201 / 3683 0.0305 1.2054 1.02 - 1.43 
ID vs. CHD 60 / 1012 201 / 3683 0.5981 1.0864 0.80 - 1.46 
ID vs. Control 60 / 1012 127 / 2179 0.9374 1.0172 0.74 - 1.39 
CHD vs. Control 201 / 3683 127 / 2179 0.5681 0.9364 0.75 - 1.18 
DDD vs. ASD 251 / 4293 127 / 2179 1 1.0032 0.81 - 1.25 
DDD vs. Control 251 / 4293 423 / 6430 0.1458 0.8888 0.76 - 1.04 
DDD vs. ID 251 / 4293 60 / 1012 0.9425 0.9861 0.74 - 1.33 
DDD vs. CHD 251 / 4293 201 / 3683 0.4794 1.0713 0.89 - 1.30 
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Table 4.4: De novo missense variants (MPC < 1) frequencies.  Testing for association between 
the de novo missense variant (MPC < 1) frequencies between the five different ascertained 
groups using a two-sided, two-sample Poisson exact test.  We perform pairwise comparisons for 
a difference in the de novo missense variants (MPC < 1) frequency between ascertainments.  The 
columns, Frequency 1 and 2, refer to the de novo missense (MPC < 1) frequencies for the two 
tested traits.  Our significance threshold after Bonferroni correction for ten tests is 0.05 / 10 ~ 
8.33 x 10-3. 

Comparison Frequency 1 Frequency 2 P-value Rate Ratio 95% CI 
ASD vs. Control 2117 / 6430 731 / 2179 0.6665 0.9814 0.90 - 1.07 
ASD vs. ID 2117 / 6430 314 / 1012 0.3437 1.0611 0.94 - 1.20 
ASD vs. CHD 2117 / 6430 1233 / 3683 0.6407 0.9834 0.92 - 1.06 
ID vs. Control 314 / 1012 1233 / 3683 0.2401 0.9268 0.82 - 1.05 
ID vs. CHD 314 / 1012 731 / 2179 0.2585 0.9249 0.81 - 1.06 
CHD vs. Control 1233 / 3683 731 / 2179 0.9628 0.9979 0.91 - 1.10 
DDD vs. ASD 1442 / 4293 731 / 2179 1 1.0013 0.92 - 1.10 
DDD vs. Control 1442 / 4293 2117 / 6430 0.5609 1.0202 0.95 - 1.09 
DDD vs. ID 1442 / 4293 314 / 1012 0.213 1.0826 0.96 - 1.23 
DDD vs. CHD 1442 / 4293 1233 / 3683 0.9382 1.0033 0.93 - 1.08 

 
While each study’s ascertainment differs, both ASD and CHD studies include individuals 

with comorbid ID/DD and vice versa.  We began by asking whether ascertainment affects the 

frequency of deleterious de novo missense (MPC9 ≥ 2) and PTVs in LoF-intolerant genes (pLI ≥ 

0.9) absent from ExAC.  We failed to observe a significant difference in the frequency of de 

novo missense (MPC ≥ 2) variants absent from ExAC between individuals ascertained for 

ID/DD with (0.12 per person) and without comorbid ASD (0.16 per person; P = 0.04; two-sided, 

two-sample Poisson exact test) and with (0.15 per person) and without comorbid congenital heart 

disease (0.15 per person; P=0.91; two-sided, two-sample Poisson exact test; Figure 

4.1).  Additionally, we failed to observe a significant difference in the frequency of de novo 

PTVs (pLI ≥ 0.9) absent from ExAC between individuals ascertained for ID/DD with (0.18 per 

person) and without comorbid ASD (0.16 per person; P = 0.25; two-sided, two-sample Poisson 

exact test) and with (0.15 per person) and without comorbid congenital heart disease (0.16 per 

person; P=0.62; two-sided, two-sample Poisson exact test; Figure 4.1). 
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By contrast, however, the presence of ID/DD in both ascertained ASD and ascertained 

congenital heart disease cases significantly increases the frequency of both de novo missense 

(MPC ≥ 2) and PTVs (pLI ≥ 0.9) absent from ExAC (Figure 4.1).  Individuals ascertained for 

ASD with comorbid ID/DD have a 1.92-fold excess (95% CI: 1.50-2.46) of de novo missense 

(MPC ≥ 2) and a 1.49-fold excess (95% CI: 1.22-1.82) of de novo PTVs in LoF-intolerant genes 

(missense P = 6.71 x 10-8, PTVs P = 6.27 x 10-5; two-sided, two-sample Poisson exact test).  

Similarly, individuals ascertained for congenital heart disease with comorbid ID/DD have a 1.36-

fold excess (95% CI: 1.05-2.29) of de novo missense (MPC ≥ 2) and a 2.33-fold excess (95% CI: 

1.56-3.50) of de novo PTVs in LoF-intolerant genes (missense P = 6.71 x 10-4, PTVs P = 1.62 x 

10-5; two-sided, two-sample Poisson exact test).  These contrasting results indicates the presence 

of comorbid ASD or congenital heart disease within an ascertained severe ID/DD sample does 

not influence the frequency of de novo missense (MPC ≥ 2) or PTVs (pLI ≥ 0.9) absent from 

ExAC, but comorbid ID/DD strongly increases the frequency of both classes of de novo variation 

in ascertained ASD and congenital heart disease cases. 

Beyond comparing comorbidities within ascertainment, we also compared the 

frequencies of de novo missense (MPC ≥ 2) and PTVs (pLI ≥ 0.9) absent from ExAC across 

ascertainments.  After a Bonferroni correction for eight tests for each variant class (P-value 

threshold = 0.00625), we failed to detect a significant difference in the frequency of both classes 

of de novo variation when we compared individuals ascertained for ASD with comorbid ID/DD 

to individuals ascertained for congenital heart disease with comorbid ID/DD (missense P = 0.03; 

PTVs P = 0.65; two-sided, two-sample Poisson exact test); the same was true for individuals 

ascertained for ASD without comorbid ID/DD compared to individuals ascertained for 

congenital heart disease without comorbid ID/DD (missense P = 0.59; PTVs P = 0.02; two-
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sided, two-sample Poisson exact test; Figure 4.1).  These results are reminiscent of previous 

results demonstrating that ASD and ADHD with and without intellectual disability have similar 

rare PTV frequencies10. 

 
Figure 4.1: Frequency – variants per person – of de novo variants by ascertainment and 
comorbidity.  In (A), the frequency of de novo PTVs (pLI ≥ 0.9) absent from ExAC.  In (B), the 
frequency of de novo missense (MPC ≥ 2) variants absent from ExAC.  Error bars represent 95% 
confidence intervals. 

 

Given the observed higher frequency of both de novo missense and PTVs in individuals 

ascertained for ID/DD with ASD (missense rate ratio = 1.70; missense P = 8.99x10-5; PTV rate 

ratio = 1.89; PTV P = 4.51x10-8) or CHD (missense rate ratio = 1.55; missense P = 3.49x10-3; 

PTV rate ratio = 1.51; PTV P = 1.85x10-3) than individuals ascertained for ASD or CHD with 

ID/DD suggests the current classification is not perfectly comparable.  If we assume that the 
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relative frequency of these classes of de novo variation are indicative of severity, then the 

presence of ASD and CHD is secondary to that of ID/DD.  By stratifying individuals in 

ascertained ASD and ascertained CHD based on the number of additional ID/DD phenotypes 

(i.e., ID, seizures, delayed walking, global developmental delay, cranio-facial abnormalities), the 

frequency of de novo missense and PTVs increases with increasing number of comorbid 

phenotypes (Figure 4.2).  Once the ascertained ASD and congenital heart disease samples are 

limited to those with two or more ID/DD comorbidities, then the de novo variant frequencies are 

no longer significantly different after Bonferroni correction (Figure 4.2). 

 

 
Figure 4.2: Frequency – variants per person – of de novo variants by ascertainment and number 
of comorbidities in ascertained ASD and congenital heart disease samples.  In (A), the frequency 
of de novo PTVs (pLI≥0.9) absent from ExAC.  In (B), the frequency of de novo missense 
(MPC≥2) variants absent from ExAC.  Error bars represent 95% confidence intervals. 

De novo variant genetic architecture 

 Despite prior evidence that ASD is a polygenic trait11-13, a recent study suggested the 

contrary: having observed more individuals with ASD carrying multiple rare de novo variants 
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compared to their unaffected siblings indicated oligogenic inheritance14.  For an oligogenic trait, 

one should observe more individuals carrying two or more trait-associated variants than expected 

as at least two trait-associated variants are necessary for the given trait to manifest.  We tested 

this hypothesis in the three ascertained traits – ASD, ID/DD, and congenital heart disease – as 

well as unaffected ASD siblings by comparing the distribution of de novo synonymous, 

missense, and PTVs per person compared to what would be expected under a null Poisson 

distribution (Materials and methods).  For ASD, congenital heart disease, and the unaffected 

ASD siblings, the observed distribution for all four sets of de novo variation did not differ from 

expectation (Figure 4.3).  The distribution of 1) all de novo PTVs and 2) de novo missense and 

PTVs in ID/DD-significant genes were significantly different from expectation (Figure 4.3).  

There were significantly more individuals with one such de novo variant and a depletion at two 

that was responsible for the deviation from expectation in the chi-squared goodness of fit test 

(Figure 4.3).  Based on this analysis, we do not find evidence that any of these traits are 

oligogenic.   
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Figure 4.3: The observed (black) and expected (red) distribution of de novo synonymous, 
missense, PTVs, and lastly associated missense and PTVs in Bonferroni significant genes per 
person per ascertained trait.  P-values come from the chi-square goodness of fit test with a 
Bonferroni significance threshold of 0.05 / 16 = 0.003125. 

 
 In the foundational paper by Jonathan Sebat and colleagues, they reported a 10-fold 

increase in the frequency of large CNVs in simplex ASD families (i.e., a family with a single 

child with ASD and no other affected family members out to first-degree relatives) and a 3-fold 

increase in multiplex families compared to unaffected siblings15.  Such a striking observation 

motivated a subset of future family-based studies focusing on de novo variation to include only 

simplex ASD families16.  While one of the earliest ASD de novo studies by Neale and 

colleagues17 found no difference in the frequency of de novo variants between simplex and 
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multiplex families, their sample size was extremely small (N=175) and thus we revisited this 

analysis with a larger sample.  Of the 6430 ASD probands, 3061 came from simplex families and 

500 came from multiplex families.  We lacked any information about the remaining 3839 

probands.  Consistent with the Neale et al. results, we failed to observe any difference in the 

frequency of five classes of de novo variation (Table 4.5) and thus, we suggest that at the very 

least for future family-based ASD studies examining the role of de novo single nucleotide 

variation, they not restrict samples based on family status. 

 
Table 4.5: De novo variant frequencies – variants per ASD proband – between simplex and 
multiplex ASD families.  We failed to observe a significant difference in the frequency of five 
classes of de novo variation between simplex and multiplex ASD families using a two-sided, 
two-sample Poisson exact test. Our significance threshold after Bonferroni correction for five 
tests is 0.01. 

Variant class Simplex frequency Multiplex frequency Rate ratio (P-value) 
Synonymous 906 / 3061 155 / 500 0.96 (0.60) 
Missense (All) 1582 / 3061 274 / 500 0.94 (0.38) 
Missense (MPC ≥ 2) 158 / 3061 26 / 500 0.99 (0.92) 
PTV (All) 460 / 3061 65 / 500 1.16 (0.32) 
PTV (pLI ≥ 0.9) 231 / 3061 26 / 500 1.45 (0.07) 
 
  

Besides de novo variants, we also had access to inherited variants from the entire ASD 

and congenital heart disease cohorts and a subset of the ID/DD cohorts (Materials and methods).  

We were specifically interested in whether rare inherited and de novo variants reside in the same 

or different genes.  We counted the number of de novo and inherited PTVs absent from ExAC 

per gene and found they are inversely correlated (r = -0.42; P = 3.74x10-6; Pearson’s product-

moment correlation).  Given that inherited variants have undergone at least one generation of 

selection, one could certainly imagine that genes under weak or no negative selection accumulate 

more de novo PTVs than genes under increasingly stronger degrees of negative selection.  Using 

published selection coefficients for heterozygous protein truncating variants in 15,998 genes18, 
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we examined the distribution of de novo and inherited PTVs per gene (Figure 4.4).  Indeed, the 

increasing values of selection coefficients are associated with more de novo (β=0.41±0.02; P < 2 

x 10-16; linear regression), but fewer inherited PTVs (β=-0.06±0.01; P=1.06 x 10-7; linear 

regression).

 

Figure 4.4: Distribution of de novo (black dots) and inherited protein truncating variants (PTVs; 
red dots) per bin of 160 genes (y-axis) across the negative log10 distribution of selection 
coefficients (x-axis).  Linear regressions with 95% confidence intervals for both de novo (solid 
black line) and inherited (solid red line) PTVs.   

 
 
Gene discovery across phenotypes and comorbidities 

After examining how the frequency of de novo missense (MPC ≥ 2) and PTVs (pLI ≥ 

0.9) absent from ExAC differs between and within ascertainments, we turned our attention to 

gene discovery.  We identified genes with either 1) more de novo PTVs or 2) more de novo 

PTVs and de novo missense variants (MPC ≥ 2) than expected under a null mutation model19.  

Testing two sets of variant classes in 18,226 genes gives a Bonferroni significance threshold of 

~1.37x10-6 (Materials and methods). 
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We first tested each ascertained trait separately identifying 95 genes in ascertained 

ID/DD, 18 genes in ascertained ASD, 11 genes in ascertained congenital heart disease, and no 

genes in unaffected ASD siblings (Table 4.6).  Given the significantly different frequency of de 

novo missense and PTVs between ASD with and without ID/DD and CHD with and without 

ID/DD, we re-ran the gene discovery in these four sets and as well as the corresponding splits in 

ascertained ID/DD.  Unsurprisingly, the number of Bonferroni significant genes differed 

drastically between the ascertained ASD with (N=15; Table 4.6; Figure 4.5A; P < 0.001; 

permutation; Materials and methods) and without ID/DD (N=4; Table 4.6; Figure 4.5B; P = 

0.06; permutation) and ascertained congenital heart disease with (N=14; Table 4.6; Figure 4.5C; 

P < 0.001; permutation) and without ID/DD (N=0; Table 4.6; Figure 4.5D; P < 0.001; 

permutation).  In particular, we discovered more Bonferroni significant genes in ascertained 

CHD with ID/DD than the entire set of ascertained CHD probands which is remarkable given 

that the former’s sample size is 60.87% smaller which is hardly what one would expect given the 

conventional wisdom that larger sample sizes are (for the most part) always better20. 

Just as we evaluated how many Bonferroni significant genes could be discovered in 

ascertained ASD and ascertained CHD with and without ID/DD, we performed the same analysis 

with the ascertained 5305 ID/DD with and without ASD and similarly with and without 

congenital heart disease.  Ten genes were Bonferroni significant in 711 ascertained ID/DD with 

ASD individuals (Table 4.6; Figure 4.5E; P = 0.14; permutation), 87 genes were Bonferroni 

significant in 4594 ascertained ID/DD without ASD individuals (Table 4.6; Figure 4.5F; P = 

0.15; permutation), ten genes were Bonferroni significant in 571 ascertained ID/DD with 

congenital heart disease individuals (Table 4.6; Figure 4.5G; P = 0.13; permutation), and 88 

genes were Bonferroni significant in 4734 ascertained ID/DD without congenital heart disease 
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individuals (Table 4.6; Figure 4.5H; P = 0.16; permutation).  Unlike the gene discovery analysis 

in ascertained ASD and congenital heart disease, the number of Bonferroni significant genes did 

not differ from a random sample matched on sex and cohort (Materials and methods). 

Lastly, if one assumes that ASD and ID/DD are simply arbitrary labels and differentiating 

between the two is semantic21,22, then combining the data together to approximately double the 

sample size should drastically increase power for gene discovery.  This is clearly not the case, 

given that only 111 genes surpass the Bonferroni significance threshold, of which 16 were novel 

to this analysis, but come at the cost of losing ten (Table 4.6).  Furthermore, jamming all the data 

together agnostic to ascertainment produces 109 genes, thus losing power (Table 4.6). 

Table 4.6: Number of Bonferroni significant genes discovered via de novo variation.  ID/DD- 
and ASD-overlap columns represent how many of those genes were also Bonferroni significant 
in the full ascertained trait-only analysis. 

Ascertained 
trait Set Sample size N 

genes 
ID/DD 
overlap 

ASD 
overlap 

ASD ASD (All) 6430 18 13 - 
ASD ASD (with ID/DD) 2402 15 10 13 
ASD ASD (without ID/DD) 2895 4 0 2 

ASD meta-analysis (ASD + 
ID/DD [with ASD]) 7141 25 19 16 

ID/DD ID/DD (All) 5305 95 - 13 
ID/DD ID/DD (with ASD) 711 10 10 6 
ID/DD ID/DD (without ASD) 4594 87 85 13 
ID/DD ID/DD (with CHD) 571 10 9 4 
ID/DD ID/DD (without CHD) 4734 88 85 13 

ID/DD 
meta-analysis (ID/DD + 
ASD [with ID/DD] + 
CHD [with ID/DD]) 

8279 112 92 17 

CHD CHD (All) 3683 11 7 3 
CHD CHD (with ID/DD) 1073 14 9 4 
CHD CHD (without ID/DD) 1673 0 0 0 
Control Control (All) 2179 0 0 0 
NDD ASD + ID/DD 11735 111 90 18 
All ID/DD + ASD + CHD 14917 109 84 18 
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Figure 4.5: Number of Bonferroni significant genes from 1000 permutations of randomly 
sampled individuals controlling for sex and cohort (Materials and methods).  The dashed, 
vertical red line marks the observed number of Bonferroni significant genes, and the N in 
parenthesis indicates the number of probands. 

 

Evaluating disease specificity of associated genes 

Despite the 18 genome-wide significant ASD genes discovered by ascertaining on ASD, 

we failed to observe a greater frequency of associated de novo variants among these eleven genes 

in ascertained ID/DD probands (0.042 per individual) than ascertained ASD probands (0.022 per 

individual; rate ratio=1.93; 95% CI: 1.55-2.39; P = 7.63 x 10-10; two-sided, two-sample Poisson 
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exact test).  This observation extends to both a larger list of 80 manually curated ASD genes 

from SFARI (rate ratio = 2.63; 95% CI = 2.09-3.34; P=2.33x10-19) and 102 genes at a false 

discovery rate < 0.1 from Satterstrom and colleagues23 (rate ratio = 1.64; P = 9x10-17; two-sided, 

two-sample Poisson exact test; Materials and methods).  Both genome-wide significant genes in 

ASD and larger lists of ASD genes contain a mixture of genes that confer more risk to ASD or 

more risk to ID/DD in line with what others have observed23.  Furthermore, this same pattern 

extends to congenital heart disease: the 11 congenital heart disease Bonferroni significant genes 

in are 1.33-fold enriched (95% CI: 1.02-1.75) in ascertained ID/DD probands (P = 0.03; two-

sided, two-sample Poisson exact test). 

For each of the 105 Bonferroni significant genes in the three ascertained traits, we 

compared the combined frequency of de novo missense (MPC ≥ 2) and PTVs in ascertained 

ID/DD to both ascertained ASD and ascertained CHD using a two-sided, two-sample Poisson 

exact test under the assumption that a higher frequency of de novo would be indicative of the 

gene conferring more risk (and therefore more preferential) towards one trait than the other.  

After Bonferroni correction for 105 genes and two sets of comparisons, nine genes (ARID1B [P 

= 2.91 x 10-6], ANKRD11 [P = 6.65 x 10-8], ASXL3 [P = 4.46 x 10-5], GATAD2B [P = 1.61 x 10-

4],  DDX3X [P = 3.39 x 10-7], KAT6B [P = 3.29 x 10-5], and KMT2A [P = 1.38 x 10-6]) had a 

higher combined frequency of de novo missense (MPC ≥ 2) and PTVs in ID/DD than ASD and 

congenital heart disease.  Only one gene, KMT2D, had a significantly higher combined 

frequency of de novo missense (MPC ≥ 2) and PTVs in congenital heart disease than ID/DD (P = 

1.73 x 10-4). 
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Discussion 

An oft-posed question within the field of psychiatric genetics is whether we are 

discovering genes not because they confer specific risk to the ascertained trait (i.e., ASD), but 

because they generally impair for cognition - which might either generally place individuals at 

higher baseline risk for diagnosis or generate associations specifically driven by the cognitively 

impaired subset of the sample10,24-33.  Following this logic suggests whole exome and genome 

sequencing for gene discovery via de novo variation may be primarily useful for understanding 

ASD in the background of other severe neurodevelopmental disorders. 

Here, we aggregated de novo and inherited coding variants across 6430 ascertained ASD, 

5305 ascertained ID/DD, and 3683 ascertained congenital heart disease samples along with 

extensive phenotyping data and examined the influence of ID/DD on the frequency of de novo 

variation and gene discovery efforts in both ASD and congenital heart disease.  We found that 

ASD and congenital heart disease did not affect the frequency of deleterious de novo variants 

within ascertained ID/DD samples, but the converse was not true.  Furthermore, we observed no 

difference in the frequency of deleterious de novo variants between ascertained ASD and 

ascertained congenital heart disease samples with comorbid ID/DD.  Using the same statistical 

method and significance threshold, we discovered 95 Bonferroni significant genes in ascertained 

ID/DD, 18 in ascertained ASD, and 11 in ascertained congenital heart disease.  Removing the 

ascertained ASD and congenital heart disease samples with comorbid ID/DD eliminated all the 

genes in congenital heart disease and left only four in ASD, two of which, ANK2 and GIGYF1, 

were novel to this analysis.  With the individuals without comorbid ID/DD removed, both traits 

had improved power for gene discovery. 
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Lastly, we found that the bulk of rare de novo and inherited PTVs reside in different sets 

of genes along the distribution of selection.  The greatest excesses of de novo PTVs reside in the 

genes under the strongest degree of negative selection where such variation may not survive 

beyond a couple generations.  In contrast, the majority of inherited PTVs reside on the opposite 

end of the distribution.  This suggests that de novo variation will be most useful (and most 

powered) to discover trait-associated genes under the strongest selection, inherited genetic 

variation will be most useful to identify trait-associated genes under the weakest selection, and 

genetic variation in case-control study designs will cover all genes up to the last tails of the 

distribution.  As such, studies focusing on de novo variation will continue to identify genes under 

the strongest negative selection, and those genes are most often associated with severe ID/DD. 

 

Materials and methods 

Published de novo variants 

We downloaded 12,166 de novo variants from 6430 individuals ascertained for ASD and 

2623 de novo variants from 2179 unaffected siblings from Satterstrom, Kosmicki, Wang and 

colleagues23.  We downloaded 8232 published de novo variants in 5305 individuals ascertained 

for ID/DD from five separate publications20,34-38.  For congenital heart disease, we downloaded 

5004 de novo variants from two publications of congenital heart disease29,39 and removed 326 

overlapping samples, and one sample that failed a sex-check post-publication (individual 

GT04014641; Steven DePalma, personal correspondence) and their de novo variants, bringing 

the total to 4594 de novo variants in 3683 individuals ascertained for congenital heart disease.  

To ensure uniformity in variant representation and annotation across datasets, we followed the 

same procedure described in Kosmicki et al40.  Briefly, we standardized variant representation 
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through a Python implementation of vt normalize41 and re-annotated all variants using Variant 

Effect Predictor (VEP)42 version 81 with Gencode v19 on GRCh37.  VEP provided the Ensembl 

Gene IDs, gene symbol, and the Ensembl Transcript ID for use in determining canonical 

transcripts.  When a variant fell across multiple transcripts, we used the canonical transcript 

when possible and the most deleterious annotation in cases of multiple canonical transcripts.  If 

no canonical transcript was available, the most deleterious annotation was used.  Following the 

protocol from DDD20, we restricted the number of de novo variants to one variant per person per 

gene prioritizing the de novo variant with the most severe consequence which removed 37 

ID/DD and nine congenital heart disease de novo variants. 

As the de novo variant data from congenital heart disease and intellectual disability came 

from multiple studies, we tested whether the frequency of de novo synonymous variants in each 

study was the same.  If a study had too few de novo synonymous variants, then we would 

exclude it from the analysis.  When we tested all of these cohorts, we failed to observe a 

significant difference in the frequency of de novo synonymous variants (Table 4.7) and 

proceeded to combine all of the intellectual disability and congenital heart disease data as a 

single group. 
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Table 4.7: De novo synonymous variant frequencies. Checking for differences in the de novo 
synonymous variant frequency between three cohorts ascertained for intellectual disability (ID) 
and two cohorts ascertained for congenital heart disease (CHD) using the Poisson exact test (also 
known as the C-test)8.  We perform pairwise comparisons for a difference in the frequency of de 
novo synonymous variants between studies with a Bonferroni significant threshold of 0.05 / 7 = 
0.0071.  We observe no such difference in the frequency of de novo synonymous variants, and 
thus grouped the three ascertained ID cohorts together and two ascertained CHD cohorts into 
single cohorts of ascertained ID and ascertained CHD respectively. 
 

Comparison Frequency 1 Frequency 2 P-value Rate Ratio 95% CI 
Lelieveld vs. Hamdam 207 / 820 10 / 41 1.0000 1.0100 0.54 - 2.14 
Lelieveld vs. Rauch 207 / 820 10 / 51 0.5602 1.2563 0.67 - 2.66 
Lelieveld vs. de Ligt 207 / 820 30 / 100 0.2926 0.8211 0.56 - 1.25 
Hamdam vs. Rauch 10 / 41 10 / 51 0.6580 1.2439 0.46 - 3.33 
Hamdam vs. de Ligt 10 / 41 30 / 100 0.7278 0.8130 0.35 - 1.71 
Rauch vs. de Ligt 10 / 51 30 / 100 0.3156 0.6536 0.29 - 1.37 
Sifrim vs. Jin 364 / 1365 701 / 2645 0.9227 1.0062 0.88 - 1.14 

 
Defining phenotypes 

The ASD, ID/DD, and congenital heart disease cohorts comprise a heterogeneous 

collection of individuals.  As such, one would certainly like to strive toward more homogenous 

groups through secondary diagnoses.  To ensure a fair comparison, we defined intellectual 

disability and developmental delay within the ascertained ASD cohort in the same manner as was 

defined in the ascertained intellectual disability and ascertained developmental delay cohorts.  

For ascertained probands with ASD, a child was considered to have intellectual disability if they 

met one of the following conditions: a full-scale IQ (FSIQ) < 70 (N=1546), if the proband was 

administered but could not complete an IQ test, indicated by the child having a date for their IQ 

test but no IQ score (N=85), or if the child had an HPO term or ICD code indicating intellectual 

disability (N=591) or mental retardation (N=8).  The primary phenotypes included in the 

developmental disorders study included intellectual disability, developmental delay, motor delay, 

and seizures, of which intellectual disability was noted in >90% of the cohort20.  Any proband 

ascertained for ASD who had experienced seizures (N=496), had a previous diagnosis of 
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developmental delay or motor delay (N=31), or had begun walking after 18 months of age 

(measured in item 5A on the autism diagnostic interview43) (N=366) was considered to have a 

comorbid developmental disorder.  Together, 2402 of the 6430 probands ascertained for ASD 

met at least one of these conditions and as such had comorbid ID/DD.  Another 2895 probands 

ascertained for ASD had neither intellectual disability, developmental delay, seizures, nor motor 

delay and as such comprised a subset of ASD probands without ID/DD.  The remaining 1133 

ascertained ASD probands lacked information on all or a subset of intellectual disability, 

seizures, and motor delay status and were categorized as having an unknown ID/DD status.  

Similarly, among ascertained ID or ascertained developmental delay probands, those with a 

diagnosis of ASD were considered to have comorbid ASD (N=711) and those with either of the 

following conditions: ventricular septal defect, abnormality of the aortic valve, defect in the 

atrial septum, coarctation of aorta, tetralogy of Fallot, atrioventricular canal defect, abnormality 

of the pulmonary valve, hypoplastic left heart, patent ductus arteriosus, transposition of the great 

arteries with ventricular septal defect, abnormal branching pattern of the aortic arch, double 

outlet right ventricle, situs inversus totalis, abnormality of the mitral valve, abnormality of the 

vena cava, hypoplastic aortic arch, transposition of the great arteries with intact ventricular 

septum, pulmonary valve atresia, abnormality of cardiac morphology, cardiomyopathy, 

abnormality of the coronary arteries, abnormality of the left ventricular outflow tract, tricuspid 

atresia, abnormality of the tricuspid valve, abnormality of the pulmonary artery, total anomalous 

pulmonary venous return, mitral atresia, hypoplastic right heart, double inlet left ventricle, partial 

anomalous pulmonary venous return, pulmonary artery atresia, Ebstein's anomaly of the tricuspid 

valve, left atrial isomerism, congenitally corrected transposition of the great arteries, truncus 

arteriosus, right atrial isomerism, abnormality of the left ventricle, hypoplasia of right ventricle, 
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arrhythmia, abnormality of cardiac atrium, interrupted aortic arch, abnormality of the right 

ventricle, secundum atrial septal defect, pulmonic stenosis, were considered to have congenital 

heart disease (N=572).  The remaining 4594 and 4734 ID/DD probands do not have ASD and 

congenital heart disease, respectively (Table 4.1).  For the congenital heart disease cohorts,  

 

Defining intellectual disability within the confines of ASD 

Full-scale IQ scores were measured using several tests. These tests include, but are not 

limited to, the Differential Ability Scales, Second Edition44; the Mullen Scales of Early 

Learning45; the Wechsler Intelligence Scale for Children46; and the Wechsler Abbreviated Scale 

of Intelligence47.  The full-scale IQ estimates were taken from the full-scale deviation IQ 

variable when available and full-scale ratio IQ when it was not48.  Full-scale IQ is normally 

distributed with a mean of 100 and a standard deviation of 15. 

 

The expected number of de novo variants per person under a null Poisson distribution 

For a class of de novo variation, c, in trait t, one can estimate the expected number of 

individuals, x, carrying 𝑑 ∈ {0, 1, 2, 3, 4, 5, . . . } de novo variants under a null Poisson distribution 

from the probability mass function: 

𝑥t,P,q =
𝜆t,Pq 𝑒ú≈l,`

𝑑! 𝑛t 

where 𝜆t,P is the frequency of de novo variants of variant class c in trait t.  We considered four 

separate variant classes for c: synonymous, missense, PTV, and combined missense (MPC ≥ 2) 

and PTVs in Bonferroni significant genes.  We calculated 𝜆t,P from the total number of observed 

de novo variants of class c in trait t such that each trait and each variant class will receive their 

own 𝜆t,P.  This is scaled by the total number of individuals in trait t so that we can directly 
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compare the observed number of individuals carrying d de novo variants in variant class c in trait 

t to how many would be expected, assuming each de novo variant was randomly distributed (and 

with no association on the phenotype).  We used a chi-square goodness of fit test in R with 4 

degrees of freedom to compare the observed to expected counts at value of d.  Because the value 

of d ranges from 0 to +∞, we capped the distribution to 3 by subtracting the total number of 

individuals 𝑛t from the sum of 𝑥t,P,qwhere 𝑑 ∈ {0, 1, 2, 3} such that the sum of 𝑥t,P,q for values 

of 𝑑 ∈ {0, 1, 2, 3} = 𝑛t. 

 

Gene discovery using de novo variants 

Following the framework proposed by Samocha et al.,19 we evaluated 18,226 genes for 

enrichment of de novo variants across a variety of different traits and trait subsets (Table 4.6).  

Statistical significance was calculated under the null hypothesis that the observed and expected 

number of de novo variants given the gene-specific mutation rate and the number of 

chromosomes were equal.  For all 18,226 genes with measured mutation rates, the number of 

expected de novo variants in gene i of consequence class j follows a Poisson distribution 

	𝑃𝑜𝑖𝑠𝑠𝑜𝑛6𝜆+,…> 

𝜆+,… = 𝜇+,…𝑐 

where 𝜇+,…𝑐 is the mutation rate for gene i, consequence class j multiplied by the number of 

chromosomes (c).  For autosomal genes and pseudo-autosomal genes on X, 𝑐 = 2𝑛| + 𝑛{ where 

𝑛| and 𝑛{ are the number of females and males, respectively.  For non-pseudo-autosomal genes 

on X, 𝑐 = 2𝑛| + 𝜙|𝑛{, and lastly for genes on the Y chromosome, 𝑐 = 𝜙{𝑛{, where 𝜙{ = (
&ÀÃÕ
 

and 𝜙| =
(

&ÀŒ
	 are correction factors for the different mutation rates in males and females, 
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respectively (as males have a higher mutation rate than females).  The scaling factor, 𝛼, was 

obtained from the phased de novo variants in the Scottish Family Health Study and defined over 

the values œ𝛼	|	𝛼	 ∈ ℝ, 𝛼 ≠ {−1,0}— which in our case is 3.4.  Under our null model, we 

calculated the probability of finding an equal or more extreme number of de novo variants in 

gene i of consequence class j, compared to the observed number of de novo variants in the given 

cohort.  We used the ppois function in R to calculate the P-value.  We considered two sets of 

consequence classes: 1) PTVs and 2) PTVs + missense (MPC ≥ 2).  The resulting Bonferroni 

significance threshold for 18,226 genes and 2 variant consequence classes gives a P-value 

threshold = 0.05 / (2*18226) = 1.37 x 10-6. 

We calculated the expected number of de novo missense (MPC ≥ 2) variants in the same 

manner as Samocha et al19.  Briefly, for all 66,939,307 possible single nucleotide variants in 

17,915 genes with MPC scores9, we used the expected mutation rate for trinucleotide -> 

trinucleotide i as the expected mutation rate for the given variants, such that each variant now 

has a value of μ.  μMPC ≥ 2 was then calculated by removing all SNVs with a MPC < 2, grouping 

by gene, and summing the remaining the variants to get the expected μMPC ≥ 2 for each gene.  Due 

to the nature of MPC, only 5,146 genes have at least one possible SNV with a MPC ≥ 2.  As 

such, the remaining 12,769 genes have μMPC ≥ 2 = 0. 

 

Bonferroni significant gene permutations 

 When we subsetted the ascertained samples of ASD, congenital heart disease, and ID/DD 

to specific comorbidities, we observed a number of Bonferroni significant genes.  However, 

because for almost every single one of these analyses, we observed fewer Bonferroni significant 

genes (as one would expect given a smaller sample size), we inquired whether these observations 
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were unexpected from a random subset.  To evaluate the significance of these observations, we 

performed 1000 permutations, randomly sampling the same number of individuals controlling 

for sex and cohort.  With a random sample of individuals, we extracted their de novo variants 

and tested each gene for significance in the same procedure as laid out the previous section. 

 

Estimating negative selection from de novo and inherited variation 

Following the logic described by Zuk and colleagues49, one can estimate the negative 

selection for a given class of variation in a gene based on the fraction of variation that is de novo 

(i.e., s = de novo / total number of variants).  We used the 15,998 empirical estimates of s for 

heterozygous protein truncating variants from Cassa and colleagues18, and examined the 

relationship between de novo and inherited PTVs with respect to s.  Due to the sparse nature of 

the data (11,857 genes with at least one inherited PTV and 1639 genes with at least de novo 

PTV), we created 160 bins of ~100 genes in ascending values of s.  In each of the 160 bins, we 

calculated the average number of de novo and inherited PTVs across all genes in the bin from the 

observed de novo and inherited data.  We ran two linear regressions (one for de novo and the 

other for inherited PTVs) regressing s on the average number of PTVs. 

 

Testing for trait specificity 

 Given the large overlap between genes discovered across the ascertained traits, it is 

natural to inquire whether any genes are preferential towards one trait or the other.  For the 105 

significantly associated genes across the three traits, we compared the combined frequency of de 

novo missense (MPC ≥ 2) and PTVs in ascertained ID/DD to both ascertained ASD and 

ascertained CHD with a two-sided, two-sample Poisson exact test.  Our Bonferroni correction for 
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105 genes and two sets of comparisons was 2.38 x 10-4.  That being said, this approach is very 

conservative, and we are underpowered at current sample sizes to differentiate between genes 

whose differential risk conferred to each trait is small.  To illustrate, CHD7 has 13 de novo PTVs 

and one de novo missense (MPC ≥ 2) in congenital heart disease (combined frequency 0.0038 

per congenital heart disease proband) compared to three de novo PTVs and 0 de novo missense 

(MPC ≥ 2) variants in ascertained ID/DD (combined frequency = 5.66 x 10-4) – so it is roughly 

an order of magnitude greater in congenital heart disease than ID/DD.  But yet the frequency 

difference is not significant after Bonferroni correction (P = 1.45 x 10-3).  Furthermore, a gene 

such as GIGYF1 that was only Bonferroni significant in ascertained ASD without ID/DD with all 

four de novo PTVs present in individuals without intellectual disability, developmental delay, 

seizures, and delayed walking has no chance of being significant even though there are zero de 

novo PTVs in the ascertained ID/DD cohorts.  As such, there are very likely more trait-

preferential genes, but larger sample sizes are necessary using this approach or a better approach 

(perhaps a permutation-based approach) that accounts for comorbidities could be developed to 

resolve these issues. 
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 The main goal of this dissertation was to investigate the role of rare de novo and inherited 

coding variation in neurodevelopmental disorders and use these sources of rare coding variation 

for gene discovery.  To that end, we explored the properties of recurrently mutated sites in the 

genome and their contribution to trait etiology, performed the largest exome sequencing study of 

ASD to date identifying 26 Bonferroni significant associated genes and upwards of 102 genes 

(FDR<0.1), and the influence of intellectual disability on the de novo variant architecture and 

gene discovery in autism spectrum disorder and congenital heart disease.  Furthermore, we were 

able to better investigate older hypotheses (mutational recurrence, oligogenic architecture, de 

novo architecture of simplex and multiplex families) illustrating how prior assumptions and 

conclusions can be re-evaluated with significantly larger sample sizes. 

 

Summary of results 

Recurrently mutated sites in the genome 

 Many studies examining de novo variation1-4 either explicitly or implicitly made the 

assumption that each de novo variant site was novel, in line with Kimura’s infinite sites model5.  

We found that ~1 in 3 observed de novo variants in intellectual disability / developmental delay 

(ID/DD), autism spectrum disorder (ASD) and unaffected ASD siblings were also observed as 

standing variation in the 60,706 reference exomes from the exome aggregation consortium 

(ExAC)6 (Figure 2.2A).  We ran five secondary analyses to confirm the validity of these 

findings, ranging from evaluating the frequency of CpG variants to testing validation rates and 

the allele frequency distribution (Figure 2.2C). 

We then sought to determine whether both de novo protein truncating variants (PTVs) 

present and absent from ExAC contributed equally to ASD and ID/DD risk.  We found no 
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difference in the frequency of de novo PTVs present in ExAC between ASD, ID/DD, and 

unaffected ASD siblings (Figure 2.3B).  By contrast, de novo PTVs absent from ExAC were 

significantly more enriched in individuals with ASD and ID/DD as opposed to unaffected ASD 

siblings (Figure 2.3B).  The lack of excess case burden in de novo PTVs present in ExAC was 

consistent with what would be expected for a neutral class of variation, similar to de novo 

synonymous variants. 

Moving from the variant level to the gene level, we evaluated whether the overall 

frequency of PTVs per gene in ExAC provided a similar guide to which ASD and ID/DD 

variants were relevant.  We used the gene-level constraint metric, pLI16 (probability of loss-of-

function intolerance), to evaluate whether de novo PTVs absent from ExAC conferred more risk 

in LoF-intolerant (pLI ≥0.9) than LoF-tolerant genes (pLI <0.9).  We found a stronger 

enrichment of de novo PTVs absent from ExAC in LoF-intolerant gene in both ASD (rate ratio = 

3.24; P = 3.14x10-16) and ID/DD (rate ratio = 6.7; P = 6.34x10-38), and no observed excess in 

LoF-tolerant genes (Figure 2.3D).  Hence, all detectable de novo PTV signal in these phenotypes 

can be localized to 18% of genes with clear intolerance to PTVs in ExAC, with, consequently, 

substantially amplified rate ratios in this gene set.  Furthermore, all of the previous observed 

phenotypic associations with de novo variants were not only preserved, but also enhanced, when 

removing de novo variants present in ExAC (Figure 2.4). 

We also investigated whether inherited and case-control variation could be similarly 

enhanced using ExAC as a variant-level filter and pLI as a gene-level filter.  Comparing 

transmitted to untransmitted PTVs absent from ExAC and in LoF-intolerant genes, we found a 

modest excess of transmitted PTVs in ASD cases (rate ratio = 1.16; P = 9.85x10-3), which was 

minute in comparison to that of the de novo signal.  Lastly, using a Swedish cohort of 404 ASD 
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cases and 3654 controls, we found yet another significant association of singleton PTVs absent 

from ExAC in LoF-intolerant genes (2.63 OR; P = 1.37x10-18), which was the first instance of an 

exome-wide excess of PTVs in an ASD case-control analysis. 

 

Gene discovery via exome sequencing in ASD 

 Here we carried out the largest exome sequencing study of ASD to-date with 35,584 

samples.  This sample comprised both family-based data (6,430 ASD cases, 2,179 unaffected 

controls, and both parents) and case-control data (5,556 ASD cases, 8,809 controls).  We found a 

significant enrichment in de novo, inherited, and case-control missense (MPC ≥2) and PTVs in 

genes with a pLI ≥ 0.995 (Figure 3.1B).  Using an enhanced Bayesian gene discovery method 

that incorporated both gene- and variant-level constraint (Figure 3.2A), we found 26 Bonferroni 

significant genes and upwards of 102 genes (FDR < 0.1; Figure 3.2B) associated with ASD, 31 

of which represent novel associations.   

We next examined what biological and phenotypic insights this larger list of genes could 

provide us about the underlying biology of ASD.  First, we examined the distribution of 

missense variants and found missense clustering in the functional domains of DEAF1, SCN1A, 

and SLC6A1 and gain-of-function variants contributing to ASD in KCNQ3 (Figure 3.3A-E).  

Given that large CNVs confer risk to ASD, we examined whether any of the 102 genes could 

provide insight into which, if any, gene(s) were driver in 51 genomic disorder loci.  We found 13 

ASD-associated genes resided in 12 genomic disorder loci, which was unexpected by chance 

(2.3-fold increase; P = 2.3x10-3) and nominated HDLBP in 2q37.3 and both SHANK2 and in 

11q13.2-q13.4 (Figure 3.3F and 3.3G). 
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Lastly, given that many individuals with ASD also have comorbid ID/DD, we attempted 

to determine whether any of the 102 (FDR < 0.1) genes conferred more risk to ID/DD or 

conferred more risk to ASD.  By comparing the frequency of de novo missense (MPC > 1) and 

PTVs in 5264 ascertained ID/DD individuals.  We found 53 genes conferred more risk to ASD 

(ASD-preferential) and 49 genes conferred more risk to ID/DD (NDD-preferential; Figure 

3.4A).  We then tested to see whether individuals with ASD who carried associated variants in 

the NDD-preferential genes were phenotypically different from ASD individuals carrying 

associated variants ASD-preferential variants.  We found that ASD individuals with associated 

variants in NDD-preferential genes walked 2.6 ± 1.2 months later in life (Figure 3.4B) and had a 

full-scale IQ 11.9 ± 6.0 points lower (Figure 3.4C) compared to ASD individuals carrying 

associated variants in ASD-preferential genes.  Furthermore, we found more inherited PTVs in 

the ASD-preferential genes than the NDD-preferential genes potentially suggesting that ASD-

preferential genes are under less negative selection than NDD-preferential genes. 

 

Influence of intellectual disability / developmental delay on the genetic architecture and gene 

discovery in autism spectrum disorders and congenital heart disease 

 Even after ascertaining on ASD, roughly half of the genes discovered in Chapter 3 were 

more often observed in individuals ascertained not for ASD but for ID/DD.  This finding 

indicated that perhaps some of the genes might not contribute to ASD at all.  In this chapter, we 

sought to examine how the effect of ID/DD influences the frequency of de novo variants across 

and within ascertainments as well as their effect on gene discovery.  We took three traits with the 

largest trio sample sizes, ID/DD (N=5305), ASD (N=6430), and congenital heart disease 

(N=3683) and aggregated all the genetic and phenotypic data.  We found that within ascertained 
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ID/DD samples, comorbid congenital heart disease and ASD did not influence the frequency of 

de novo missense (MPC ≥ 2) and PTVs (pLI ≥ 0.9).  In contrast, both of the above classes of de 

novo variation were elevated within ascertained ASD (missense rate ratio 1.92; PTV rate ratio 

1.49) and ascertained congenital heart disease individuals with comorbid ID/DD (missense rate 

ratio 1.36; PTV rate ratio 2.33; Figure 4.1).  We also found that the frequency of both de novo 

missense (MPC ≥ 2) and PTVs (pLI ≥ 0.9) were not significantly different in ascertained ASD 

with ID/DD and ascertained congenital heart disease with ID/DD, suggesting that comorbid 

ID/DD contributes equally in both disorders for these two classes of de novo variation.  Lastly by 

collecting phenotype data, we did not find any difference in the frequency of any class of de 

novo variation between simplex and multiple ASD families, in contrast to the results from CNV 

studies (Table 4.5). 

 We tested 18,226 genes for excess de novo missense (MPC ≥ 2) and PTVs and found 95 

genes in ID/DD, 18 genes in ASD, and 11 genes in congenital heart disease.  As expected, we 

found more genes in ASD with than without ID/DD (15 vs. 4) and similarly in congenital heart 

disease (14 vs. 0) as all of the individuals carrying the de novo variants driving these gene 

associations had comorbid ID/DD.  Two genes, ANK2 and GIGYF1, rose above the Bonferroni 

significance threshold for the first time in ASD without ID/DD because all of the individuals 

carrying de novo variants in these genes did not have intellectual disability, developmental delay, 

seizures, or delayed walking.  Splitting ID/DD by ASD or congenital heart disease comorbidity 

status did not significantly affect the amount of associated genes discovered (Figure 4.4E-H). 

 

Future directions 

Correcting for differences in exome capture 
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 Exome sequencing has come a long way since its initial use in 20097.  In order to 

sequence solely the exome, exome sequencing uses exome capture kits with baits designed to 

target just the exons that are then sequenced.  Over time, the exome capture kits have improved 

originally covering roughly 80% of exons to covering nearly 95% of exons.  Differences in exon 

capture can create issues with meta-analyses, as older studies will contribute fewer variants 

because fewer exons were sequenced.  As such, differences in both the total number of variants 

and individual variant classes (e.g., synonymous, missense, PTV) between studies and cohorts 

may be partially due to differences in capture and not QC or other technical artifacts that are 

currently not accounted for.  In particular, there exists a large number of schizophrenia trios with 

published de novo variants (2544 trios), most of which was sequenced using older exome capture 

kits.  When we compare the global frequency of de novo synonymous variants between the 

aggregated schizophrenia data and ASD, ID/DD, and congenital heart disease, we find that the 

schizophrenia data is significantly depleted of de novo synonymous variants as such we have not 

explored there data further but this depletion could very well be accounted for by the older 

sequencing.  

 

Insertions / deletions 

 All of our analyses discussed throughout this dissertation depend on accurately calling 

variants with high sensitivity and specificity.  While variant calling is quite accurate for single 

nucleotide variants, calling insertions and deletions (indels) still remains a challenge.  As 

frameshift variants can sometimes comprise upwards of 50% of the PTVs in a study, there is a 

strong incentive to improve our indel calling.  A consequence of poor indel calling is two-fold: 

the mutational model currently lacks the ability to predict the expected number of indels per 
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gene8 and pLI does not account for the observed frameshift variants in ExAC6.  To include 

frameshift variants in the mutational model, we estimated the per-gene frameshift mutation rate 

to equal the per-gene nonsense mutation rate multiplied by the ratio of frameshifts to nonsense 

mutations – a clear, and definite, hack.  We foresee both of these issues to be resolved with 

larger sample sizes, improved variant calling technology, longer reads, and better prediction 

algorithms such as convolutional neural networks. 

 

Updating TADA for the sex chromosomes 

 Currently, the transmission and de novo association (TADA) method only operates on the 

autosomes and thus ignores the sex chromosomes9.  Given that the X-chromosome has the most 

haploinsufficient genes in the genome (31.63%) far above expectation (observed 230; expected 

128.88; c2 = 79.34), there are most likely a non-zero number of ASD associated genes residing 

on chromosome X that have yet to be discovered.  Some of the challenges for the sex 

chromosomes include different number of copies between women and men, potential for 

different prior effect sizes for women and men, and sex-specific germline mutation rates.  While 

we already incorporated the sex-specific germline mutation rates into our gene discovery models 

(Chapter 4), the remaining issues have yet to be resolved.  We know there is a large potential for 

ASD-associated genes given the large imbalance in males and females (other traits, such as 

ID/DD with much smaller male:female imbalances currently have many associated genes on 

chromosome X as we discovered in Chapter 4) and we already identified one gene on 

chromosome X in ASD with comorbid ID/DD, IQSEQ2, using a frequentist-based approach.  

Therefore, many more genes on X will be discovered via TADA if this were resolved, and 

associated genes on X is practically guaranteed with a liberal FDR-based approach.  
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Final thoughts 

 Throughout this dissertation, we sought to investigate the role of rare de novo and 

inherited coding variants in neurodevelopmental disorders and identify trait-associated genes.  

We identified the subset of PTVs most likely to confer risk, provided an analysis strategy for 

PTV prioritization and association that has been used in studies of ASD9,10, schizophrenia11, and 

epilepsy12, and found that rare de novo and inherited PTVs reside in different sets of genes.  With 

increasingly larger exome sample sizes on the horizon, such as the ASD SPARK cohort of 

150,000 exomes, and the exome sequencing of UK Biobank (500,000 exomes), it will 

fascinating to see if the results presented here hold in the face of massive sample sizes. 
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