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A Chemical Odor Map in Cortex 

 

Abstract 
 

Odorous molecules trigger specific percepts. Appropriate assignment of odorants to 

corresponding percepts relies on the brain’s ability to both discriminate distinct odorants, 

as well as generalize odorants that share chemical features. Although odorants evoke 

correlated activity across receptor expressing neurons in the olfactory epithelium and 

glomeruli residing in the olfactory bulb, it is unclear how the chemical attributes of odors 

are encoded in cortex to support both discrimination and generalization. To address this 

question, we have developed a preparation that allows us to monitor odor representations 

in awake mice across cortical layers in the main region of the brain devoted to olfactory 

processing, the Piriform Cortex (PCx). Using sets of odorants rationally designed to tile 

different regions of chemical odor space, we demonstrate that responses of neural 

ensembles in both Layer II (LII) and Layer III (LIII) of PCx preserve information about the 

physicochemical relationships between odor molecules in a manner conserved across 

individual mice. LII and LIII differ in terms of their correlation structure, reliability, odor 

sensitivity, and odor preferences, suggesting parallel representational strategies optimized 

for odor discrimination and generalization. These findings suggest that PCx harbors an 

invariant relational map of odorant space. The differential expression of this map across 
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distinct cortical layers further suggests complementary contributions to perception and 

odor-guided behavior. 
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Chapter 1 Introduction 
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The mammalian olfactory system tightly couples odor detection with internal 

representations of past experience and immediate physiological demands to optimize a 

variety of behaviors necessary for survival.  

In mice, odors bind distinct classes of olfactory sensory neurons (OSNs), defined by 

the expression of just 1 of 1000 different olfactory receptors (Axel, 2006). Each odor evokes 

a unique pattern of OSN activity that is relayed to higher-order olfactory areas via the 

olfactory bulb (OB) — the site of convergence for all OSNs-belonging to a unique class 

(Bozza, McGann, Mombaerts, & Wachowiak, 2004; Mombaerts, Wang, Dulac, Chao, & 

Nemes, 1996).  

While OB projection neurons relay information to downstream targets from just one 

class of OSNs, this information diverges across several cortical and striatal olfactory areas 

such that each region may sample activity from all OSN classes (Igarashi & Mori, 2005; 

Miyamichi et al., 2010; Nagayama, Enerva, & Fletcher, 2010; Sosulski, Bloom, Cutforth, Axel, 

& Datta, 2012). Such connectivity enables unique interpretation and specialized processing 

of identical information that is integral for confluent execution of odor-guided behavior 

(Choi et al., 2011; Root, Denny, Hen, & Axel, 2014).  

Perhaps the most studied target of the olfactory bulb is the Piriform Cortex.  

This area is a paleo-cortical structure thought to be involved in mediating higher-order 

olfactory functions such as odor discrimination, formation of unitary percepts from multi-

component odors, and ultimately, odor-learning in a context and time appropriate manner 

(Chapuis & Wilson, 2011; Wilson & Sullivan, 2011; Wilson, Kadohisa, & Fletcher, 2006). 
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Essential to these higher order functions is the Piriform's capacity for representing 

an arbitrary number of odors and odor combinations (Wilson & Sullivan, 2011). These 

representations take the form of broadly distributed, sparse ensembles of neurons which 

display excitatory and inhibitory activity and evolve in time (Illig & Haberly, 2003; Rennaker, 

Chen, Ruyle, Sloan, & Wilson, 2007; Stettler & Axel, 2009).  

Such response properties are thought to arise from the distributed structure of 

olfactory input from the OB as well as the interactions of recurrent feedforward excitation 

and local inhibition within the cortical network (Bekkers & Suzuki, 2013; Franks & Isaacson, 

2006; Franks et al., 2011; Large, Vogler, Mielo, & Oswald, 2016; Poo & Isaacson, 2011; 

Suzuki & Bekkers, 2012).   

Relating aspects of olfactory experience to features of this odor-evoked activity in 

PCx and understanding how such experience is encoded, transformed, and communicated 

to downstream targets to support perception and adaptive behavior are the main driving 

forces of current Piriform research.  

Unfortunately, the field has been hampered in two ways. First, much of the 

characterization of PCx odor representations has been gathered with sparse sampling 

methods or under anesthesia (Barnes & Wilson, 2014b; 2014a; Courtiol & Wilson, 2014; M. 

Y. A. K. Mori, 2013; Narikiyo, Manabe, & Mori, 2014; Roland, Deneux, Franks, & Bathellier, 

2017; Shanahan & Gottfried, 2014; Stettler & Axel, 2009; Tantirigama & Huang, 2017; 

Wilson, 2014; Wilson, Hoptman, Gerum, & Guilfoyle, 2011), conditions where cortical 
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processing is sufficiently different from that expected during wakefulness or ongoing 

behavior.  

Secondly, the unpredictable nature of ligand-receptor interactions has made it 

difficult to define axes for grouping olfactory stimulii into comprehensive systematic 

arrangements that have proven so useful in vision and audition research. Researchers have 

relied primarily on artificially constrained odor arrangements that capture only a small 

fraction of the structural diversity of volatiles (Belluscio & Katz, 2001; Imamura, Mataga, & 

Mori, 1992; Rubin & Katz, 1999) or have not attempted to quantify odors at all.    

More recently, a number of groups have begun to characterize volatiles using 

collections of metrics specifically designed to capture physicochemical molecular attributes 

that could ultimately influence binding interactions in the olfactory periphery (Haddad et 

al., 2008a; Haddad, Lapid, Harel, & Sobel, 2008b; Keller & Vosshall, 2016; Mainland et al., 

2013; Mandairon, Poncelet, Bensafi, & Didier, 2009; Saito, Chi, Zhuang, Matsunami, & 

Mainland, 2009; Snitz et al., 2013). Collectively these studies confirm the utility of 

chemometrics for predicting olfactory-evoked activity at multiple stages of olfactory 

processing, and ultimately odor perception.    

Here, we describe the development of a novel surgical preparation compatible with 

monitoring odor-evoked activity of cortical ensembles spanning both principal layers of PCx 

in awake mice. Using this approach, coupled with odor panels specifically chosen to tile 

multiple scales of odor space, we show that PCx represents odors according to their 

physicochemical similarity and that these representations are consistent across individuals. 
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LII and LIII use different strategies for representing odors. While odor encoding in LII is 

sparse and selective, deeper LIII appears to represent odors densely. These findings 

provide the first evidence for a chemical map of odors in PCx and challenge current models 

of PCx as a purely associative structure whose contribution to perception is thought to 

arise primarily via experience.  
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Introduction 

In this chapter we describe the development of a novel experimental preparation 

that allows us for the first time to monitor odor-evoked activity in PCx ensembles during 

wakefulness. Using this new approach, we find that unlike under anesthesia, baseline 

activity of olfactory cortex in awake mice is substantially elevated and decorrelated. We 

show that during wakefulness, temporal dynamics of odor-evoked activity are substantially 

enriched, and neurons’ response profiles are considerably reconfigured.  

Methods 

Surgical Approach 

Prior to exposing PCx, mice are anesthetized with Isoflurane and head-fixed with 

dental cement to a rotating headpost. The surgical procedure involves resection of most of 

the musculature associated with the temporal aspect of the skull, and proceeds in several 

stages.  

 First, the skin overlying the temporal and mandibular muscles, is cut away from the 

whiskers rostrally, to the auditory meatus caudally. After cauterizing the facial vein, which 

channels blood from the orbital sinus to the jugular vein is cauterized, the superficial 

aspect of the zygomatic bone is exposed. The dorsal-posterior portion of the temporal 

muscle overlying the zygomatic bone is resected from the skull. To expose the ventral 

portion of the zygomatic bone, the mandibular muscle and associated fascia is resected 

along its entire rostro-caudal axis. This both, exposes the anterior tendon connecting this 
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muscle to the portion of the skull overlying the maxilla, as well as the articular surface of 

the jaw at the posterior portion of the mandible. The tendon is then severed and the 

zygomatic bone is isolated at both anterior and posterior junctions using a microdrill.     

 At this point, the mandible is only connected to the orbital muscular complex 

anteriorly, and to the retroglenoid vein at the articular surface. This vein serves as the 

venous drain from the entire ventral aspect of the brain and joins the mandibular and deep 

facial veins on its way to the jugular vein. At this point, the mandible must be further 

recessed ventrally in order to provide unhindered access to the optical objectives used in 

our imaging approach. However, disruption of any of these vessels is catastrophic. The 

cartilage connecting the articular surface of the mandible to the retroglenoid vein is 

transected along with associated musculature affixing the mandible to the external 

pterygoid process on the ventral portion of the skull. Rostrally, the mandible’s coronoid 

process is disconnected from the tendons and orbital muscles connecting it to the eye. 

Finally, two strings are affixed to the articular surface and coronoid process on one end 

and attached to two screws affixed to the surgical baseplate on the other. The 

arrangement of the strings allows us to pull the mandible and associated musculature 

ventrally, while providing sufficient degrees of freedom for the subsequent portions of the 

surgery. At this point, the entire temporal aspect of the skull is exposed from the orbit, 

rostrally, to the junction of the squamosal bone and the external auditory meatus, caudally.   

 Finally, the fascia connecting the eye to the orbit is teased away from the skull 

surface to expose the orbital stalk. A small piece of Gelfoam soaked in saline containing 
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bovine thrombin is gently inserted into the orbit in order to apply pressure to the 

vasculature associated with the eye. The eye is immediately severed at the stalk and the 

orbit is further packed and pressurized with Gelfoam. 

Hemifacial Analgesia 

To ensure that the animal is free of pain and discomfort during wakefulness and 

semi-paralysis, we provide full hemifacial analgesia by performing a complete trigeminal 

nerve block. This procedure is designed to abolish sensation around our surgical exposure 

as well as the entire ipsilateral oro-facial region encompassing the entire dorsoventral 

extent of the head and extending from the nostril to the neck, rostrocaudally.  

Access to the trigeminal ganglion is achieved as part of the full resection of the 

mandible. The junction of the four branches of the trigeminal ganglion, (the ophthalmic, 

infraorbital, maxillary, and mandibular nerve bundles) can be readily identified at the 

external pterygoid ridge.  

To ensure that nerve-block lasts for the entire 3-4 hour imaging session, we inject a 

1-5 ul, 0.2-1mg/kg dose of Bupivacaine directly into the stalk of the trigeminal nerve bundle 

using a calibrated micropipette mounted on a micro-manipulator. By infusing bupivacaine 

solution proximally to the trigeminal ganglion, distribution along all trigeminal branches, 

including the mandibular, ophthalmic, and infraorbital branches is guaranteed. 

To ensure that block infiltrates the entire nerve bundle, each injection is 

supplemented with DiI,  a contrast agent used to identify myelinated nerve fibers, due to its 

lipophilic, infiltrating nature (Maklad, Quinn, & Fritzsch, 2001). By including DiI in the block 
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solution and monitoring its diffusion through the nerve adjacent to the injection site, we 

are able to confirm proper micropipette placement directly inside the nerve bundle and 

not in nearby blood vessels. Successful DiI injection are characterized by uniform 

distribution of dye through the trigeminal bundle by proximal to the injection site. In cases 

of insufficient labelling of the nerve bundle, multiple injections are administered until the 

entire nerve is labelled by visual inspection.  Despite delivering depolarization blockers 

close to the imaging site we have not noticed any injection associated decreases in 

spontaneous or odor-evoked activity of the Piriform network during imaging.  

Evaluation of Hemifacial Analgesia 

This procedure was initially evaluated and optimized in the following way. After 

bupivacaine injection, mice were allowed to recover in a restraint tube positioned on a 

heating blanket. Once righting reflex was regained, the spatial extent of peripheral nerve 

block was assessed by needle pricks along the entire dorsoverntral and rostrocaudal 

portion of the head ipsilateral to the injection site.     

Heart rate and breathing rate was continually monitored for deviations that could indicate 

distress. Needle pricks were repeated every half an hour to determine the appropriate 

dose of Bupivicaine required to provide sufficiently long-lasting analgesia (3-4 hours). 

Craniotomy 

 Imaging posterior PCx in awake mice is associated with substantial motor artifacts 

not typically encountered with imaging dorsal aspects of the brain. The site of our 

craniotomy—the squamosal bone—is almost free-floating. Caudally and ventrally, it is 
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bounded by the external auditory meatus and the tympanic bulla, respectively. Any animal 

motion during the imaging phase of the experiment results in axial movement of the brain 

that cannot be compensated by post-processing. In addition, the total area available for 

installing a cranial window is too small to permit the use of readily available cover-glass. 

During this portion of the surgery, we take several measures to create a stable, yet 

sufficiently large cranial window.  

 Instead of using thin glass coverslips, we cast thicker laminate windows from CYTOP, 

a fluorinated polymer. The biggest advantage of this polymer is that its index of refraction 

matches that of water, thereby reducing aberrations associated with glass cover-slipping. 

Furthermore, our laminate windows can be cut to any range of sizes between 0.5-3mm. 

Finally, the additional thickness of this coverslip allows sufficient depression of the brain 

surface to prevent axial movement during animal motion.  

 Given that imaging is performed almost immediately after installation of the cranial 

window, any pressure applied directly to the brain results in progressive buildup of 

cerebral spinal fluid between the dura and cortical surface. For this reason, the dura is 

gently teased away across the cranial opening prior to placement of the coverslip. The 

coverslip is then positioned and slightly depressed onto the brain surface using a 

micromanipulator.  

 Finally, a thick wall of dental cement is affixed around the coverslip covering any 

exposed portions of the skull and soft tissue. This further stabilizes the squamosal bone 

and largely abolishes any axial motion artifacts during imaging.   
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Semiparalysis 

Unfortunately, stabilizing the craniotomy does not sufficiently eliminate motion 

artifacts encountered during imaging. As a result, we provide the animal with a continuous 

infusion of a low dose of the muscle relaxant Pancuronium Bromide during the imaging 

phase of the experiment.  

The infusion line is placed into the jugular vein on the side contralateral to the 

exposure. The external jugular vein is first exposed at its junction with the acromiodeltoid 

and cephalic veins. The vein is then gently separated from the surrounding connective 

tissue, ligated, and partially transected (Asghar, 2002). A tip of an intravenous silicone 

catheter is then inserted through the pectoral muscle, dorsal to the clavicle, directly into 

the vascular lumen, and secured in place vetbond. The line is flushed with heparinized 

saline and hooked up to a variable-rate infusion pump. After calibration, the final dose and 

infusion speed was chosen to be 0.024 nanograms/kg/10 min. At this dose, mice 

experience a loss of righting reflex. Contraction of the diaphragm is not abolished, and toe-

pinch reflex is maintained. Voluntary motion only occurs in response to noxious stimuli.   

Blood pressure monitoring 

During initial development of this procedure, heartrate and breathing rate 

monitoring were used to assess animal stability and effects of paralytic dosing. In addition, 

an arterial manometer placed directly into the femoral artery was used to monitor blood 

pressure.  

Installation of the manometer occurred as follows. First, the superficial femoral 
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artery was exposed by making a 1cm incision along the inner thigh. Then, a 5-10 mm 

section of artery was carefully isolated and covered with a 2% lidocaine solution to prevent 

arterial constriction during cannulation. After placing two circular sutures around the 

exposed artery to prevent bleeding, the vessel was partially transected and a catheter 

(SciSense Inc.) was inserted with the tip oriented towards the heart and secured with two 

nylon sutures placed on either side of the insertion point. The two marginal sutures were 

then removed and the catheter flushed with heparinized saline before connecting the 

catheter to a manometer. Any deviations from normal values (between 300-600 bpm for 

heartrate and 80-160 mmHg for blood pressure) indicated either acute stress responses or 

paralytic overdosing; appropriate adjustments were made.  

Fictive Sniffing 

Mice rapidly adjust their sniff rate as part of active odor sampling and investigation 

(Verhagen, Wesson, Netoff, White, & Wachowiak, 2007; Welker, 1964), and changes in active 

sampling strongly influence neural representations of odors in olfactory bulb circuits (Carey 

& Wachowiak, 2011; Cury, 2010).  

In order to control for potential differences in odor coding due to changes in odor 

sampling, we hijack the mouse’s sniffing rhythm with a fixed computer controlled 

inspiration/expiration cycle synchronized in time to odor presentation. In so doing, we 

insure consistent odor delivery on with multiple exposures over the course of the 

experiment.   

To do this, a cannula  is placed into the nasopharynx via the trachea and 
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subsequently hooked up to a solenoid valve which draws air bidirectionally across the 

nasal epithelium (Cheung & Carey, 2009; Moldestad, Karlsen, Molden, & Storm, 2009). To 

place the cannula, a 1cm longitudinal incision is made over the trachea, beginning at the 

lower jaw and ending at the sternum. The exposed lobes of the thyroid gland and 

sternohyoid muscles are gently retracted, thereby exposing the trachea. Custom-cut 

polyethylene tubing is then placed through a single incision made in between a pair of 

tracheal rings below the cricothyroid and gently inserted via the vocal chords into the 

nasopharynx. The tube is secured to the trachea with a pair of nylon sutures and doused 

with silicone elastomer for further stability. The distal portion of the tube is then coupled to 

a computer driven solenoid valve and a vacuum line providing 150 ms long pulses of 

suction at a flow rate of 100 ml/min.  

Image Registration 

First, movies are aligned using a feature-based approach that is robust to regional 

fluorescence intensity fluctuations over the course of the experiment. Frames from a given 

experiment are first smoothed and contrast-normalized with a spatial kernel twice the size 

of a typical neuron in the FOV.  

All frames from a single experiment are then registered to a manually chosen target 

frame in a pairwise manner. Features are automatically identified on the target frame using 

Harris corner detection. For all subsequent frames, feature displacement relative to target 

is calculated using the Lucas-Kanade ( Lucas & Kanade, 1981) method at multiple spatial 

scales to accommodate small as well as large motion in the field-of-view (FOV).  
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Corresponding features are then used to calculate the homography transform that 

can best explain the displacement between frame and target. Given a set of at least 4 

coordinates residing in one plane, a homography transform remaps these to a 

corresponding set in a different plane. It thus extends affine transforms (translation, 

scaling, rotation, shearing, and stretching) from a single to multiple planes. We find that 

homography-based registration, is the simplest approach to sufficiently compensate for 

uni-directional as well as nonuniform, elastic deformation of the FOV on the scale 

encountered in a typical experiment.  

Cell Segmentation 

Cells from aligned movies are subsequently identified using a semi-automated 

approach. First, the centroids of cells in a time-series average projection are manually 

identified. Cell masks are subsequently generated using a combination of morphological 

filtering and region-growing. To prevent signal cross-contamination from adjacent cells, 

each cell mask is further refined based on co-fluctuations in the pixel intensity in the cell’s 

vicinity. Independently covarying groups of pixels are first identified using Nonnegative 

Matrix Factorization. Groups of pixels associated with the cell of interest are then assigned 

to the current mask. Those that correspond to adjacent neurons are excluded.  

Finally, fluorescence time-courses for identified cells are obtained by averaging all 

pixels within corresponding masks on a frame-by frame basis across the experiment.  

Image registration, cell segmentation, and trace extraction is accomplished via custom 

scripts generated in-house that rely on publicly available Python image processing  and 
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OpenCV packages. For image registration, functions for Harris corner detection, Lucas-

Kanade based feature tracking, and homography transformation are publicly available as 

part of the “Feature Detection," "Object Tracking,” and "Camera Calibration and 3D 

Reconstruction” modules of OpenCV (Bradski, 2000) respectively. Cell segmentation and 

trace extraction scripts are publicly available at https://github.com/dattalab/d_code. 

Functions for morphological filtering and cell mask refinement are available as part of the 

Scikit-image (van der Walt et al., 2014) and Scikit-learn Python modules (Pedregosa et al., 

2011).  

Results 

In order to obtain a head-to-head comparison of odor-evoked activity between 

wakefulness and anesthesia from the same neural population, we performed a 2-phase 

experiment. PCx of mice previously infected with the slow variant of Gcamp6, was acutely 

exposed. During both phases of the experiment mice were presented with 8 different 

monomolecular odors in a randomized manner for 2 seconds, with a 30-second inter-

stimulus interval. Each odor was presented 10-15 times. At the end of Phase I, during which 

mice were awake, semi-paralyzed, and equipped with our fictive sniffing apparatus, 

anesthesia was delivered. Phase II proceeded immediately after. The use of the artificial 

sniffing apparatus eliminated any brain-state associated changes in respiration patterns 

that could influence odor encoding.  
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Assessing State Using Electroencephalography 

Anesthesia is thought to induce a brain-state similar to slow wave sleep that is 

characterized by large-amplitude fluctuations in the 0.5 - 4 hz range and the absence of 

high-frequency activity from 30-60 hz that is typically present during wakefulness or 

behavioral engagement. Because power in the slow and fast frequency bands of the EEG is 

anti-correlated across these brain-states, their ratio has been traditionally used to assign 

an absolute value to the arousal state of the animal. 

 We recorded EEG activity across PCx and contralateral cerebellum to compare 

differences in brain state across the experiment.  As shown in Figure 2.1, depicting 

overlaid trials acquired from both awake and anesthetized portions of the experiment, 

gamma power was substantially elevated during wakefulness, while delta power was only 

high under anesthesia.  

For all 4 animals in this experiment the ratio of slow to fast wave power was used to 

set thresholds for acceptable levels for arousal for each experimental condition. 

 Spontaneous Activity is Elevated During Wakefulness 

 Spontaneous activity in cortical circuits has been shown to be highly susceptible to 

fluctuations in brain state (Haider et al., 2012). We therefore compared the character of 

baseline activity across cortical ensembles recorded under both anesthetized and awake 

conditions.  

 Unlike under anesthesia, during wakefulness a larger fraction of piriform neurons 

exhibited spontaneous activity (Figure 2.2 A).  Overall, the frequency of spontaneous  
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Figure 2.1 EEG-based Assessment of Brain State 

Spectrogram from a single experiment depicting differences in slow and fast-wave 

activity across the experiment. Both Phase I (awake) and Phase II (anesthetized) are 

superimposed. Each trace corresponds to a 4-minute trial. The black rectangles indicate 

regions in the spectrum corresponding to the Delta and Gamma ranges (insets) of 

oscillatory activity. Note the reciprocal relationship between spectral density for each 

band across states.  
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Figure 2.2 Anesthesia Attenuates Baseline Activity in PCx. 

A.  Change in fraction of active neurons across states defined by the presence of any 

spontaneous activity.  

B.  Distributions of event rates as a function of state.  Note the overall reduction in 

spontaneous activity under anesthesia.  

C.  Distributions of standardized event amplitudes during baseline activity (inter-

stimulus-interval) and odor presentation.  
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fluctuations in fluorescence across the populations increased. Although not significantly 

different, the amplitude of spontaneous “events” as well as event amplitudes associated 

with odor presentation, were elevated during wakefulness (Figure 2.2 B,C). 

Enriched Temporal Dynamics During Wakefulness 

There’s considerable evidence that temporal coding plays an especially important 

role in olfactory processing (Carleton, Bathellier, & Gschwend, 2010).  The increase in 

spontaneous activity observed during wakefulness indicates an increase in the dynamic 

range of network activity (Tantirigama & Huang, 2017). This suggests that temporal 

dynamics of odor-evoked activity could also be increased during wakefulness. We therefore 

measured latency to response across both anesthetized and awake states as a simple 

proxy for the temporal evolution of odor-evoked activity.    

While in the anesthetized state, responses tended to concentrate early in the 

response period, during wakefulness, responses tiled the odor period and extended well 

past odor offset (Figure 2.3). These results suggest that our awake preparation provides a 

suitable platform for characterizing cortical odor representations under conditions relevant 

for higher-order olfactory function.  

Anesthesia Reconfigures Odor Tuning Profiles  

State-dependent changes in neuromodulatory and inhibitory tone are intimately 

related to the selectivity of cortical activity at the single cell and population levels 

(Constantinople & Bruno, 2011; Fu et al., 2014; Haider et al., 2012). We therefore asked how 

response preferences of individual neurons changed as a function of anesthesia.  
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Figure 2.3 Anesthesia Reduces Odor-Evoked Dynamics 

A. Single-trial responses from three different cells demonstrating typical response 

latencies observed during wakefulness. Grey bar indicates odor presentation period.  

B. Median response latencies by state.  

C. Sorted distributions of all odor-evoked responses presented by state. Note increase in 

responses occurring during the late portion of odor presentation as well as after odor 

offset.  
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 Tuning profiles for single neurons were separately generated for the awake and 

anesthetized conditions. Neurons were then sorted using hierarchical clustering based on 

tuning similarity during wakefulness (Figure 2.4 A top). A substantial fraction of the 

population responded strongly and selectively to each odor in the panel. (Figure 2.4 A 

bottom) depicts tuning profiles for the same set of neurons from the anesthesia condition, 

with the same sorting order. Response profiles appear largely reconfigured. During 

wakefulness, neurons responded to slightly fewer odors on average (Figure 2.4 B) and 

tended to be more selective according to the lifetime sparseness measure.    

 These results indicate that odor-evoked activity in PCx is particularly sensitive to 

anesthesia associated changes in brain-state  

Conclusions 

Under physiologically normal conditions, state-dependent differences in network 

activity may reflect changes in functional connectivity between cortical and sub-cortical 

regions as well as preferential modulation of local excitatory or inhibitory circuit elements, 

and are likely indicative of behavior-appropriate circuit function (i.e. forraging, defensive 

behavior, rest, etc) (Fu et al., 2014). Studies of cortical sensory processing performed in 

anesthetized animals, on the other hand, provide only a marginal view of cortical function.     

In this chapter, we show that baseline and odor-evoked activity in PCx differs 

substantially between anesthesia and wakefulness. Importantly, these finding validate the 

utility of the awake preparation for studying central odor representations. 
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Figure 2.4 Response Profiles Are Reconfigured by Anesthesia 

A. Top panel: hierarchically-clustered (complete linkage) trial-averaged responses 

(standardized dF/F) of all neurons in this experiment. Bottom panel: response profiles of 

the same neurons sorted according to clustering obtained in the awake state. Darker 

colors indicate stronger responses. Neuron tuning curves appear largely reconfigured 

between states.  

B. Distribution of the fraction of neurons activated by 1 or more odor.  

C. Cumulative probability distribution of lifetime sparseness values.  
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Chapter 3  Mapping Odor Representations in Piriform Cortex 
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Introduction 
 

To investigate the relationship between cortical odor representations and molecular 

structure, awake, head-fixed mice were exposed to odors during volumetric imaging of 

GcAMP6s expressing cortical ensembles residing in PCx layers II and III. Three experiments 

were performed with three different odor sets, systematically chosen to span molecular 

odor space at different scales.   

Methods 

Animal Methods 

Acute imaging of Piriform cortex was performed in 8-16 week old C57/BL6J (Jackson 

Laboratories) male mice co-expressing the Vgat-ires-Cre transgene (Jackson Stock No. 

028862) and Rosa-TdTomato (Jackson Stock No. 007914). TdTomato expression was limited 

to inhibitory neurons. This signal was used as a counter-stain for image alignment and 

registration. Male mice were group-housed prior to viral delivery and singly-housed for 1-3 

weeks post-injection. All experiments were run in accordance with Harvard Medical School 

IACUC protocol number 04930. 

Viral Delivery 

Vgat-ires-Cre; Rosa-TdTomato male mice were injected with the slow version of the 

genetically encoded activity indicator GCaMP6:  

AAV1.CAG.GCaMP6s.WPRE.SV40 (Penn Vector Core). Using this Cre-independent viral 

strategy allows comprehensive labeling of both LII and LIII pyramidal neurons. Injections 
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were targeted to posterior Piriform cortex using Allen Brain Atlas coordinates: ML: -4.2, AP: 

-1.09, DV: -4.25, from the dura. 500-800 nl of full-titer virus was delivered at a rate of 10 nl 

every 10 seconds using a Nanoject II dispensing pump (Drummond Scientific). Imaging was 

performed 1-3 weeks after injection.  

Surgical Methods 

See Chapter 2 Methods: Surgical Approach 

Imaging Volume Acquisition 

High-speed volume imaging was performed using a 16KHZ resonant galvo - regular 

galvo pair (Cambridge Technologies) housed in a custom-designed microscopy equipped 

with 2-inch optics. Axial acquisition was performed with a large working distance Nikon 16x 

objective (N16XLWD-PF, 0.8 NA, 3mm WD) mounted on a high-speed piezo actuator (nPoint 

400). A Coherent Chameleon laser tuned to 930 nm delivered 50-120 mW of excitation 

power at the front end of the objective. Emitted Fluorescence was detected using 

Hamamatsu H10770PA-40 PMTs. We used Scanimage 2015b to coordinate hardware and 

acquire imaging data. Imaging volumes spanned 210um across Piriform LII and LIII. 

Volumes were split into 6 optical slices each spanning 35um of cortex. Volumes were 

positioned such that 2 slices resided in LII and 4 slices resided in LIII. Given the greater 

density of pyramidal neurons in LII relative to LIII this configuration allowed simultaneous 

acquisition of fluorescence from roughly equal numbers of neurons from each layer.  For 

correctly assigning neurons to either layer II or layer III we typically discarded a single 

optical slice that spanned the boundary between layers.   
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Image Registration 

Individual optical slices from each movie were first aligned using a feature-based 

approach that was robust to regional fluorescence intensity fluctuations over the course of 

the experiment. Frames from a given experiment were first smoothed and contrast-

normalized with a spatial kernel twice the size of a typical neuron in the FOV. All frames 

from a single experiment were then registered to a manually chosen target frame in a 

pairwise manner. Features in the FOV were automatically identified on the target frame 

using Harris corner detection. For all subsequent frames, feature displacement relative to 

target is calculated using the Lucas-Kanade method at multiple spatial scales to 

accommodate small as well as large motion in the field-of-view (FOV). Corresponding 

features were then used to calculate the homography transform that best explained the 

displacement between frame and target. Given a set of at least 4 coordinates residing in 

one plane, a homography transform remaps these to a corresponding set in a different 

plane. It thus extends affine transforms (translation, scaling, rotation, shearing, and 

stretching) from a single to multiple planes. We found that homography-based registration, 

was the simplest approach to sufficiently compensate for uni-directional as well as 

nonuniform, elastic deformation of the FOV on the scale encountered in a typical 

experiment.  

ROI Detection and Signal Extraction 

Following image registration, neuron detection, segmentation, and extraction of 

fluorescence signal was performed using the Suite2p software (Pachitariu, Stringer, 
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Dipoppa, & Schröder, 2017). This package implements neuropil fluorescence correction 

and correctly detects fluorescence sources from spatially overlapping neurons. Following 

automated neuron detection, cell masks were manually curated to exclude masks 

corresponding to non-somatic signal or to correct oversegmented cells.  

Odor Set Design 

A major goal of this study was to rationally design odor sets such that we could 

flexibly control the extent of similarities and differences between odorants in each odor 

panel. To do this we took advantage of 2 databases. The first is a collection of 2584 

molecules commonly used in the flavors and perfume industries 

(www.TheGoodScentsCompany.com).  A large fraction of these molecules are odorous; 

they are <300 daltons in size and sufficiently hydrophilic and volatile to readily access to 

the aqueous environment of the nasal epithelium. This database contains structurally 

diverse molecules that vary in cyclicity, branching, constituent functional groups, and other 

parameters. The second database is a set of 2270 statistical metrics designed to capture 

different molecular physicochemical properties (Dragon). Using this descriptor database, 

each of 2584 molecules could be represented by a vector containing 2270 values, thereby 

constituting a relational odor space where the similarity between any two molecules (in 

terms of atomic configuration, polarizability, molecular weight, van Der Waals volume, etc.) 

could be readily expressed as Euclidean distance between them.  

Using this model odor space, we selected 3 distinct odor sets to explore how 

similarities and differences between odorants are represented in Piriform cortical activity. 
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These are referred to as Universal, Global, and Local odor sets to reflect the scale at which 

they sample our model odor space.  Each odor set consisted of 22 odorants. The Universal 

odor set contained structurally diverse molecules chosen by sampling odor space broadly 

and uniformly.  The Global Odor set was designed to ask whether odorant relationships in 

chemical space are preserved in patterns of neural activity. This odor set consisted of 6 

groups of 3-4 molecules such that each group was maximally separated from the rest while 

molecules belonging to any single group were highly similar.  Finally, for the Local odor set, 

we chose a set of closely-related aliphatic molecules that systematically varied in 1 

dimension (number of carbon atoms in the chain). This odor set allowed us to describe 

how PCx represents odors at the local scale.   

Odor selection for the first 2 odor sets was performed with Monte Carlo sampling. 

The cost function for the Universal odor set was designed to maximize separation between 

all 22 odors. To obtain well separated groups of molecules for the Global odor set, we used 

the silhouette coefficient as the cost function. 

Detection of Odor Responses During Single Odor Presentations 

In order to determine how reliably individual neurons responded to multiple 

presentations of the same odorant, excitatory responses on individual trials were defined 

as positive fluorescence transients during the 2-second odor presentation period whose 

mean magnitude exceeded 2.5 standard deviations of the mean signal calculated during 

the 2-second time window immediately preceding odor presentation.   

auROC-Based Detection of Odor Responsive 
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To identify neurons that significantly responded to multiple presentations of the 

same odorant, we computed the area-under-the-receiver-operator-curve (auROC) statistic 

for each cell-odor pair. The auROC metric represents the probability that a neuron’s 

response, chosen at random from all presentations of the same odor, will be ranked higher 

than a randomly chosen sham response obtained using baseline activity.  A value of 0.5 

indicates no difference between a neuron’s activity during baseline and odor presentation. 

A value of 1 indicates a perfectly distinguishable excitatory response, while a value of 0 

indicates a perfectly distinguishable suppressed response. For a single neuron and all 

presentations of a single odorant, we provided the classifier with the mean fluorescence 

obtained from 2-second time windows immediately flanking odor onset.  A null distribution 

of auROC values for each cell-odor pair was constructed by randomly permuting the 

identity of the odor and baseline periods on each presentation. This was repeated 1000 

times. The actual auROC value was deemed significant if it resided outside the 2.5-97.5th 

percentile of the null distribution. Neurons that did not display a significant response to 

any odors, according to auROC analysis, were excluded from all subsequent analysis. 

Odor Sensitivity and Selectivity 

Neurons vary in the degree to which they respond to odors in general as well as 

their preference for particular odors in the panel. We measured the tendency of a neuron 

to respond to multiple odors in the panel, a simple measure of tuning width, by simply 

counting the number of odors that yielded a significant positive auROC value.  
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To determine a neuron’s odor-selectivity we computed the lifetime sparseness 

metric according to (Willmore & Tolhurst, 2001): 

lifetime	sparseness =
1 − 01
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where 01 is the positive odor-evoked change in fluorescence to an odor j relative to baseline 

and averaged over multiple odor presentations, and N is the number of odors (22 in all 

odor sets). This value reflects the kurtosis of a neuron’s tuning profile and ranges from 0 to 

1. Highly peaked, narrow tuning profiles yield values close to 1 and represent neurons that 

respond strongly and selectively to few odors. Values close to 0 indicate equal 

responsiveness to a large fraction of the odor set.  

Signal and ensemble correlation 

The extent to which any two neurons have similar odor preferences can be assessed 

by computing the Pearson product moment correlation between their tuning curves. 

Repeating this for all neuron pairs provides a measure of overall similarity in odor 

preferences across a population of neurons.  For each neuron, it’s tuning curve was 

represented as a vector containing N elements, where N is the number of odors in the 

stimulus set. Each entry in this vector corresponds to the odor-evoked change in 

fluorescence relative to baseline and averaged over all presentations.  

The same approach was used to measure shared odor preferences for neural 

ensembles. Here, we computed the Pearson product moment correlation between the 
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population responses to every pair of odors in our panel. For each odor, it’s population 

response was represented as a vector containing N elements, where N is the number of 

neurons in the population. Each entry in this vector represents a single neuron’s trial-

averaged response to the corresponding odor. Populations were defined as all neurons 

belonging to either LII or LIII that responded to at least one odor according to the auROC 

analysis.   

For this analysis, neural populations corresponding to each layer were pooled 

across multiple animals. 

Mutual Information 

Mutual information regarding odor identity or class was computed for individual 

neurons using normalized confusion matrices obtained from SVM classifiers. The following 

formula was used:   

67 8, : = 	 ;(8, :) ∙ ?@A4 B(C,D)
B(C)∙B(D)DC , 

where x represents the actual odor/class and y represents the predicted odor/class. p(x) 

and p(y) refer to the marginal probabilities and p(x,y) is the joint probability obtained from 

the normalized confusion matrix. 

Statistical Testing 

For comparing two independent distributions when normality cannot be assumed 

Mann-Whitney U test was used. For comparing two paired samples when normality cannot 

be assumed we used Wilcoxon Signed Rank Test. For comparing two normal independent 
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distributions, Student’s t-test was used. For testing significance of a single statistic against 

null distributions obtained by permutation, the true value was deemed significant if it 

resided outside the 2.5-97.5th percentile of the null statistic distribution. Error bars refer to 

either standard error of the mean or 97.5 confidence interval of the mean as indicated. For 

some statistical comparisons, effect size is reported using Cohen’s d. Values ranging from 

0-0.2, 0.2-0.5, and 0.5-2 indicate small, medium, and large effect sizes, respectively (Cohen, 

1992). 

Results 
 

Differences in odor response properties between PCx layer II and III 

Differences in local and global connectivity between PCx LII and LIII as well as 

reported differences in laminar response properties at the single cell level suggest that 

these layers could use distinct strategies for odor encoding at the population level. To 

characterize odor evoked activity across cortical layers, 3 mice were exposed to a diverse, 

“Universal” set of 22 monomolecular odorants that were selected based on maximal 

dissimilarity and homogeneous distribution in physicochemical descriptor space (Figure 

3.1, 54% variance explained by PC1 and PC2). 

Imaging volumes were positioned to capture approximately equal proportions of 

both layers (Figure 3.2 A). Roughly 1/3 of the imaging volume resided in LII, with the 

remainder positioned in LIII.  Odor-evoked fluorescence transients acquired from cells 

residing in both layers (Figure 3.2 B) were characteristic of the expected response types 

typically observed with electrophysiological methods. Responses differed in amplitude,  
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Figure 3.1 Universal Odor Set 

Projection of 22 odors onto the first 2 principal components of chemical space. Odors 

were chosen based on maximal dispersion in the space defined by 2270 dimensions. 
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Figure 3.2  Volume Imaging of PCx LII and LIII 

A. Top: Approximate position of craniotomy. Bottom: Coronal section of PCx with the 

position and orientation of each optical slice superimposed. Scale bar: 100 um. Right: 

Sample depiction of the fields of view corresponding to each optical slice in a typical 

imaging session. Top left FOV corresponds to the superficial optical slice from Layer II. 

Bottom right corresponds to the last optical slice from the left panel.  

B. Trial-averaged fluorescence traces obtained from individual neurons across the 

volume clustered with a Gaussian mixture model. Response types differ in amplitude, 

latency to peak, and direction (excitation vs. suppression).  
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Figure 3.3 Greater Response Likelihood in LIII 

Distribution of neuron response likelihood to multiple presentations of the same odor, 

presented as averages across different odors. Error bars indicate standard error from the 

mean.  Responses were identified as odor-associated fluorescence signals that deviated 

more than 2.5 SD from the pre-odor baselines of the same length (2 sec). Stippled lines 

refer to fluorescent events identified in a period where no odor was delivered.  In 

general, cortical neurons appear unreliable. Although there is a tendency for increased 

reliability in LIII, relative to baseline, neither LII nor LIII were significantly different from 

controls (Mann-Whitney U test; p=0.24, p=0.15, respectively). The distributions of 

response likelihood between layers were not significantly different (Mann-Whitney U test; 

p=0.47). For each layer, neurons were pooled across 2 animals. 
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directionality (suppression vs. excitation), and latency to peak. Odor onset as well as offset 

responses were common to both layers.  

The likelihood of observing a response on multiple presentations of the same odor 

was modestly but not significantly greater for individual LIII neurons (Figure 3.3) (Mann-

Whitney U test; p=0.47). Given the relatively low likelihood of response for most neurons, 

we defined reliable cell-odor pairs using an area-under-the-ROC curve classifier (Methods). 

A significant cell-odor pair was one whose auROC value for the distribution of response 

amplitudes corresponding to all presentations of a single odor was significantly different 

from a surrogate distribution obtained from activity in the time window immediately 

preceding odor presentation. Both LII and LIII harbored similar numbers of excitatory and 

suppressed responses (Figure 3.4, A) (Mann-Whitney U test; p=0.24, p=0.27, for 

excitatory and suppressed fractions respectively).  

Despite the apparently low fraction of significant responses across the population 

more than 80% of neurons in both layers II and III responded to at least 1 odor in the panel  

(Figure 3.4 B). Of these cells, the size of the pool of neurons recruited by any given odor 

differed substantially by layer (Figure 3.4 C). On average, odors recruited activity in 

significantly more neurons in LIII than in LII: 30% vs. 11% (Wilcoxon Signed Rank Test; 

p<001).  

Despite relatively similar sizes of the total responsive pools, this observation 

suggested that individual neurons in LIII were likely to be less selective. Indeed, LIII neurons  
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Figure 3.4 Larger odor-evoked ensembles in LIII 

A.  Distributions of excitatory and suppressed responses across layers. Dark grey bars 

indicate fractions of odor-cell response pairs deemed significant by auROC analysis. 

Values below 0.5 indicate suppression relative to pre-odor activity. Values above 0.5 

represent excitatory responses.  Despite a slight tendency for greater total excitatory 

responses in LIII, the differences in the fractions of suppressed or excitatory responses 

between LII and LIII were not significantly different (Mann-Whitney U test; p=0.24, p=0.27, 

for excitatory and suppressed fractions respectively). For each layer, neurons were 

pooled across 2 animals. 

 

odor
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Figure 3.4 (Continued) Larger odor-evoked ensembles in LIII 

B. Total responsive fraction of neurons. Most neurons in LII and LIII exhibit significant 

responses to at least 1 odor in the panel. Responsive neurons are identified using auROC 

analysis.  

C.  Size of odor-evoked ensembles. Collectively these neurons constitute the populations 

presented in B. On average, odors recruited activity in significantly more neurons in LIII 

than in LII: 30% vs. 11% (Wilcoxon Signed Rank Test; p<001).  
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 appeared more promiscuous based on the larger number of odorants capable of eliciting 

a response from a single neuron (Figure 3.5 A). Most neurons in LII responded to 3 or 

fewer odors (83% in LII vs 70% in LIII). Neurons tended to respond to more odors in LIII. The 

distributions were not significantly different (Mann-Whitney U test; p=0.09). Similarly, 

relative to LII, lifetime sparseness values across the LIII population were skewed in favor of 

less selective (0 is least selective) (Figure 3.5 B) (Mann-Whitney U test; p<0.001). 

Together, these results indicate that both PCx LII and LIII harbor moderately reliable 

neurons whose activity is bi-directionally modulated by odor presentation. At the 

population level, relative to LII, recruited LIII ensembles appear denser and consist of 

neurons with more broadly tuned response profiles. Furthermore, the sparse, moderately 

selective population responses characteristic of LII are consistent with coding strategies 

well-suited for decorrelating similar odors while the dense, less selective activity in LIII is 

consistent with compressed representation strategies that may be well suited for efficient 

generalization between similar odors.  

Complementary Representations of Odor Similarity Across LII and LIII 

Given the broadly-tuned, denser ensemble activity observed in LIII, we reasoned 

that deeper PCx could harbor a compressed representation of odor space. In this context,  

structurally similar odorants should remain decorrelated in superficial PCx but become 

consolidated by LIII ensembles.  

 To determine how similarity relationships are mapped in neural activity across LII 

and LIII, we designed a 22 monomolecular odor set organized into 6 groups defined by the  
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Figure 3.5 LIII Neurons Respond More Broadly 

A. Distribution of neuron sensitivity to odor stimulation. Of 22 diverse odors in the 

Universal panel, most neurons in LII responded to 3 or fewer odors (83% vs 70% in LIII). 

Neurons tended to respond to more odors in LIII. The distributions were not significantly 

different (Mann-Whitney U test; p=0.09). 

B.  Decile-decile plot of lifetime sparseness distributions obtained from neurons belonging 

to LII and LIII. A Lifetime sparseness value of 1 indicates most selective; 0 indicates least 

selective. Collectively, LII neurons were significantly more selective than LIII neurons as 

indicated by distribution deciles below the unity line (Mann-Whitney U test; p<0.001). 

 

A B



 

 48 

 
 

Figure 3.6 Global Odor Set 

Projection of 22 odors onto the first 2 principal components of chemical space. Odors were 

chosen based on functional group as indicated in the legend. This odor set was designed 

such that the 6 groups were maximally dispersed in the 2270-dimensional odor space, 

while at the same time, minimizing distance between molecules belonging to a single 

group. 
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presence of a distinct functional moiety (Figure 3.6). Odors were chosen to maximize 

within-group similarity and maximize across-group distance in odor space (Methods); this 

panel will be referred to as the “Global” odor set to indicate the scale of separation 

between groups. Data in this experiment was gathered from 3 animals.    

The increase in physicochemical similarity for this set relative to the Universal odor 

panel resulted in an increase in variance captured by the first 2 principal components from 

54% to 61% (Figure 3.6). While the overall fraction of responsive neurons obtained for both 

Universal and Global odor sets was similar (Figure 3.4 B, Figure 3.7 A), LII and LIII neurons 

probed with the Global panel tended to be activated by more odors (Figure 3.5 A, Figure 

3.7 B). For the Global odor panel, most neurons in LII responded to 4 or fewer odors (69% 

vs 45% in LIII). Neurons responded to significantly more odors in LIII (Mann-Whitney U test; 

p<0.05). Similarly, lifetime sparseness distributions for both layers were greater than those 

observed in the Universal experiment (Figure 3.5 B, Figure 3.7 C), although in this 

experiment, LIII response profiles appeared substantially broader relative to LII (Mann-

Whitney U test; p<0.001). 

Interestingly, while the overall size of evoked ensembles in layer II was comparable 

to that observed with the Universal odor set, LIII ensemble sizes were more uniform across 

the stimulus set (Figure 3.7 D). This could be circumstantially associated with the particular 

configuration of chosen molecules or could reflect the overall decrease in molecular 

diversity of this panel relative to the Universal odor set. For the Global panel, odors  
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Figure 3.7 LII and LIII Response Profiles to Global Odor Set are Broader 

A. Fraction of neurons responding to at least 1 odor. 

B.  Distribution of neuron sensitivity to odor stimulation. Of 22 odors in the Global panel, 

most neurons in LII responded to 4 or fewer odors (69% vs 45% in LIII). Neurons 

responded to significantly more odors in LIII (Mann-Whitney U test; p<0.05). 

C Decile-decile plot of lifetime sparseness distributions obtained from neurons belonging 

to LII and LIII. A Lifetime sparseness value of 1 indicates most selective; 0 indicates least 

selective. Collectively, LII neurons were significantly more selective than LIII neurons 

(Mann-Whitney U test; p<0.001). 

C D

BA
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D. Size of odor-evoked ensembles. Collectively these neurons constitute the populations 

presented in A. On average, odors recruited activity in significantly more neurons in LIII 

than in LII: 21% vs. 13% respectively (Wilcoxon Signed Rank Test; p<001).  
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recruited activity in significantly more neurons in LIII than in LII: 21% vs. 13% (Wilcoxon 

Signed Rank Test; p<001). 

Neural populations that discriminate efficiently typically consist of neurons with 

dissimilar tuning profiles (Averbeck, Latham, & Pouget, 2006; Vinje & Gallant, 2000). We 

therefore compared the distributions of both signal and ensemble correlations across LII 

and LIII. We defined signal correlations as the product moment correlation coefficient 

between 2 trial-averaged response vectors for any pair of neurons, where each entry in the 

vector corresponds to a single odor in the panel. Ensemble correlations provide a sense for 

the similarity of the population response: for a vector corresponding to each odor in the 

panel, a single entry refers to a neuron’s trial-averaged response.  

Distributions of pairwise signal correlations in LII and LIII were both significantly 

right-skewed relative to corresponding control distributions created by permuting stimulus 

order (LII actual mean = 0.02 vs. control mean = 0.0 and LIII actual mean = 0.09 vs control 

mean = 0.0; Student’s t test; p<0.001). However, LIII harbored significantly more neuron 

pairs with similar response profiles indicating a greater overall response similarity at the 

population level (Figure 3.8 A) (LIII mean= 0.09±0.25 vs. LII mean = 0.02±0.23; Student’s t 

test; p<0.001). 

Shared odor preferences between individual neurons in LIII suggests that odor-

evoked activity in deeper PCx should be distributed across groups of neurons that overlap 

to a greater extent than in LII. We therefore measured ensemble correlations 

independently in each layer (Methods) (Figure 3.8 B). On average, ensemble correlations  
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Figure 3.8 Stronger Correlation structure in LIII 

A.  Signal correlation distributions obtained from all pairs of neurons, presented by layer. 

Signal correlation is defined as the Pearson product moment correlation coefficient 

between two neurons’ tuning curves. For each neuron, it’s tuning curve was represented 

as a vector containing N elements, where N is the number of odors in the stimulus set. 

Each entry in this vector corresponds to the odor-evoked change in fluorescence relative 

to baseline and averaged over all presentations. Shuffled distributions were constructed 

*

*

A

B
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by independently permuting the order of each neuron’s tuning curve vector. On average, 

signal correlations were higher in LIII relative to LII; LIII mean= 0.09±0.25 vs. LII mean = 

0.02±0.23 (Student’s t test; p<0.001). Signal correlations within each layer were also 

significantly higher than shuffled control distributions (LII actual mean = 0.02 vs. control 

mean = 0.0 and LIII actual mean = 0.09 vs control mean = 0.0; Student’s t test; p<0.001). 

B. Distributions of ensemble correlations computed as in A but on population responses 

for each pair of odors. For each odor, it’s population response was represented as a 

vector containing N elements, where N is the number of neurons in the population. Each 

entry in this vector represents a single neuron’s trial-averaged response to the 

corresponding odor. Shuffled distributions are constructed by independently permuting 

the order of neurons in each odor’s ensemble vector. Populations were defined as all 

neurons belonging to either LII or LIII that responded to at least one odor according to 

the auROC analysis. On average, ensemble correlations were higher in LIII relative to LII; 

LIII mean= 0.28±0.13 vs. LII mean = 0.1±0.08 (Student’s t test; p<0.001). Ensemble 

correlations within each layer were also significantly higher than shuffled distributions 

(LII actual mean = 0.28 vs. control mean = 0.0 and LIII actual mean = 0.1 vs control mean 

= 0.0; Student’s t test; p<0.001). 
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were higher in LIII relative to LII; LIII mean= 0.28±0.13 vs. LII mean = 0.1±0.08 (Student’s t 

test; p<0.001). Ensemble correlations within each layer were also significantly higher than 

shuffled distributions (LII actual mean = 0.28 vs. control mean = 0.0 and LIII actual mean = 

0.1 vs control mean = 0.0; Student’s t test; p<0.001).  

Consistent with increased odor sensitivity of LIII neurons, these results indicate that 

in deep PCx, odors activate shared pools of neurons that appear to behave non-selectively. 

Odor representations in LII on the other hand appear decorrelated.  

Increased response similarity at the population level in deep PCx could result from 

increased similarity of representations within groups or from indiscriminate increases in 

similarity across the entire panel. To assess the similarity structure of ensemble 

representations across layers we constructed distance matrices from odor-ensemble 

responses. Each entry in these matrices is a measure of separation between any two odors 

expressed in terms of neural activity. We then embedded these relationships in a 2-

dimensional subspace using metric multi-dimensional scaling (Methods). The same 

approach was used to embed the odor panel in physicochemical descriptor space. 

Surprisingly, in both LII and LIII, separation between the 6 groups of odors was 

conserved (Figure 3.9 B,C). While within each group odors appeared scattered in LII, LIII  

exhibited greater concentration of group members (Figure 3.9 C,D) (Wilcoxon Signed Rank 

Test; p<0.05). The groups also appeared better separated from each other in LIII. This effect 

likely requires collective neural activity, as individual neurons did not display strong  
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Figure 3.9 Enhanced Clustering of Similar Odors in LIII 

Embedding of odors using metric multi-dimensional scaling (MDS) based on either 

physicochemical descriptor data or neural activity. For embedding neural activity, 

pseudopopulations were constructed by combining neurons belonging to either LII or LIII 

from 3 animals. For each embedding, 10 MDS runs were performed to insure stability 

and convergence of the algorithm.  Each run was initialized with 500 random restarts. 

A.  MDS embedding of odors using physicochemical descriptors. Each odor was 

represented with a vector containing 2270 z-scored descriptor values. Pairwise distances 

between each pair of odor vectors were computed using normalized Euclidean distance  

BA C

D E
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Figure 3.9 (Continued) Enhanced Clustering of Similar Odors in LIII  

and supplied to the algorithm. Each dot represents an odor. Colors indicate different 

odor classes, as in Figure 3.6. 

B. and C. MDS embedding of odors using population activity from either LII or LIII.  For 

embedding neural activity we first created population response matrices (pooled by layer 

across 3 animals). Each row vector in this matrix corresponds to all neurons’ trial-

averaged responses to a single odor. The dimensionality of each matrix was reduced 

with PCA such that 50% of overall variance was captured in each layer (with 7 principal 

components in LII and with 5 principal components in LIII). Pairwise distances for each 

pair of transformed odor vectors were computed using normalized Euclidean distance 

and supplied to MDS.  Odors in LIII appear to cluster according to functional group class. 

In LII odors within any single group appear better separated.  

D. Depiction of cluster concentration by layer. For each functional class, we defined a 

concentration index as 1 divided by the average Euclidean distance from the cluster 

medoid. High values correspond to increased compactness. Odor groupings were more 

compact in LIII than in LII (Wilcoxon Signed Rank Test; p<0.05). 

E.  Fraction of neurons that respond to 1 or more odors belonging to a particular class. 

Stippled lines reflect surrogate distributions where odors are randomly assigned to 

functional classes. True distributions for each layer were not significantly different from 
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corresponding control distributions (Wilcoxon Signed Rank Test). Similarly, distributions 

were not different between layers (Wilcoxon Signed Rank Test). 
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 preference for odors belonging to any particular class (Figure 3.9 E). In both layers, most 

neurons tended to respond only to a fraction of each group.  

 These results indicate that neural ensembles residing in PCx LIII are better suited for 

generalizing odorants that are structurally similar while LII ensembles are better-suited for 

decorrelating similar odorants.  

Physicochemical Relationships are Conserved in Piriform Cortex 

The striking correspondence between the physicochemical relationships between 

members in the odor panel and their representations in PCx suggests that Piriform may 

harbor a relational map of odor space. We therefore constructed distance matrices for 

odors using physicochemical descriptors as well as odor-evoked activity pooled across both 

LII and LIII from all three mice (Figure 3.10 A). These were significantly correlated (Figure 

3.10 B) relative to control distributions acquired by bootstrapping chemistry with permuted 

odor labels (Pearson’s r = 0.78; null distribution mean = 0.32 ± 0.05). Figure 3.10 C depicts 

correspondence of odor pair distances across chemistry and activity spaces.  

The observation of strong correspondence between physicochemical properties of 

odors and their representations in population activity is consistent with the presence of a 

relational map of odor space in PCx.  

Representations of Odor Relationships are Conserved Across Individuals 

  Topographical maps of sensory information in neocortex are largely consistent 

across individuals. Cognitive maps in higher-order associative areas reflect differences in 

individual experience. Given the proposed role for PCx as primarily an associative area, it is  
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Figure 3.10 Physicochemical Relationships are Conserved in Piriform Cortex 

A Distance matrices depicting physicochemical relationships between odorants in the Global 

odor set (left) and their corresponding relationships in PCx (right). Activity distances were 

calculated using neurons pooled across both LII and LIII of 3 animals. Distances in chemical 

space were obtained using the normalized Euclidean distance measure computed for each 

pair of odors expressed as vectors containing 2270 z-scored descriptor values. Activity  
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Figure 3.10 (Continued) Physicochemical Relationships are Conserved in Piriform Cortex 

distances were obtained by first embedding the pseudopopulation responses in a PCA 

subspace that capture 50% of the variance. Pairwise relationships were then obtained using 

normalized Euclidean distance. 

B.  Pearson’s correlation coefficient between Chemical and Activity Distance matrices was 0.78 

(vertical line). The control distribution (mean = 0.32 ± 0.05) represents correlation coefficients 

obtained by permuting the rows and columns of one of the matrices 1000 times. 

C.  For each odor-pair, its distance in chemical space is plotted against its corresponding 

distance in activity space. Regression fit is superimposed. The Pearson correlation coefficient 

is 0.64. The distribution of coefficients obtained by permutation testing was centered on 

mean = 0 ± 0.07. 
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Figure 3.11 (Continued) Invariance at the Global Scale 

On average, odor arrangements in both LII and LIII were highly conserved across 

animals, relative to shuffled surrogates (LII mean correlation = 0.74±0.05, LIII = 0.8±0.03; 

LII shuffle mean correlation = 0.57±0.03, LIII shuffle = 0.39±0.05, Mann Whitney U Test, 

p<0.001). The extent of similarity in odor arrangements between pairs of animals did not 

differ significantly between layers (Wilcoxon Signed Rank Test). 

C. Inter-animal similarity of a single odor’s position relative to the other odors in the 

panel. Here, the Pearson’s product moment correlation was computed over pairs of rows 

corresponding to the same odor from matrices in A. Each point represents the average 

pairwise correlation coefficient for a single odor. Means for each layer are indicated by 

dashes.  On average, an odor’s position in the relational space of LIII was slightly, but not 

significantly, more stable across individual mice than in LII (LIII mean = 0.79±0.1, LII mean 

= 0.75±0.1, Wilcoxon Signed Rank Test). 

D. Same as in C except each odor’s position relative to the rest of the odor panel is 

presented as fold-increase above chance correlation. Here, chance correspondence was 

obtained by shuffling odor relationships in one of 2 distance matrices obtained from 

separate mice prior to selecting rows corresponding to the odor being compared. Each 

point represents the mean pairwise increase in Pearson’s r. Odors are sorted from least 

to highest improvement in LIII. Error bars correspond to standard deviation. Overlying 

bars indicate most reliable classes: sulfurs (green) and aldehydes (black). For each odor  



 

 64 

Figure 3.11 (Continued) Invariance at the Global Scale 

except 5-methyl-furfural, its relationship to the rest of the panel was significantly more 

conserved in LIII than in LII (Wilcoxon Signed Rank Test, p<0.001). 
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not clear whether odor similarities and differences are reliably expressed across 

individuals. Conservation of the odor relationships in neural activity across individuals 

would suggest that this remapping is an essential feature of centralized odor processing.  

To assess the extent of invariance of odor relationships across individuals, we first 

performed pairwise comparisons between entire distance matrices constructed from odor-

evoked activity obtained from single mice (Figure 3.11 A).  Both LII and LIII exhibited 

significantly higher correlations on average relative to odor-shuffled controls (Figure 3.11 

B) (Pearson’s r = LII mean = 0.74±0.05 and LIII mean = 0.8±0.03; LII control mean = 

0.57±0.03, LIII control mean = 0.39±0.05, Mann Whitney U Test, p<0.001).  

To assess the extent to which a single odor’s position with respect to the rest of the 

panel was conserved across animals, for each odor, we computed Pearson’s r across pairs 

of rows from distance matrices corresponding to two different animals. In both LII and LIII, 

correlation values ranged from 0.47 to 0.96 (Figure 3.11 C) and were not significantly 

different between layers (LIII mean = 0.79±0.1, LII mean = 0.75±0.1, Wilcoxon Signed Rank 

Test). However, when these values were compared against those obtained from odor-

shuffled distance matrices, each odor’s (except 5-methyl-furfural) position in the relational 

structure was significantly greater in LIII than in LII (Figure 3.11 D) (p<0.001, Wilcoxon 

Signed Rank Test). 

The geometry of odor representations, therefore appears to manifest reliably across 

individuals. Furthermore, the greater invariance of this structure in LIII is consistent with 



 

 66 

enhanced stability afforded by populations that operate with a dense code (Spanne & 

Jörntell, 2015). 

Complementary Encoding of Odor Identity and Class 

 LII and LIII innervate a number of common targets. Relatively decorrelated odor 

representations in LII and stronger grouping of functional classes in LIII suggests that 

neurons belonging to each layer may route different aspects of odor information to 

downstream areas. We therefore took a decoding approach to determine how well odor 

identity and odor class can be predicted from activity in each layer.  

 We first trained linear support vector machines to distinguish between all odors in 

the Global panel using randomly drawn neural ensembles of varying size. Classifiers 

trained on LII activity outperformed LIII at all ensemble sizes until saturating at 100% 

accuracy with ensembles composed of around 200 neurons (Figure 3.12 A). The greatest 

gains in accuracy occurred for small ensembles containing 15-30 neurons. Consistent with 

this observation, individual neurons in LII tended to carry more information about odor 

identity than in LIII (Figure 3.12 B) (LII median = 0.16 vs. LIII median = 0.12, Mann Whitney U 

Test; p<0.001, Cohen’s d  = 0.43).  

 We then trained decoders to classify odors according to the class to which they 

belonged. Because distinguishing any two sets of odors should become easier with larger 

neural ensembles simply due to an increased likelihood of observing differences between 

high-dimensional activity patterns, for comparison, we trained surrogate decoders after 

shuffling odor-class assignments. LIII uniformly outperformed LII in odor class assignment  



 

 67 

 

 

Figure 3.12 Decoding Class and Odor Identity 

A Decoding accuracy of linear SVM classifiers trained to identify individual odor 

presentations. Each dot and associated 95% confidence interval represents the average 

accuracy of randomly sampled ensembles of the indicated size, obtained from individual 

animals and subsequently pooled. LII ensembles containing as few as 5 neurons 

significantly outperform LIII ensembles of similar sizes (Mann Whitney U Test <0.001). 

B. Distribution of single neurons’ mutual information with respect to odor identity. Odor-

response labels were permuted to generate control distributions. Median and  
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Figure 3.12 (Continued) Decoding Class and Odor Identity 

interquartile range of each distribution is indicated with horizontal marker and whiskers. 

Neurons in LII were considerably more informative (LII median = 0.16 vs. LIII median = 

0.12, Mann Whitney U Test; p<0.001, Cohen’s d = 0.43).  

C. Same as in A but classifiers were trained to assign individual odor presentations to 

their corresponding class. Each point represents relative improvement in performance 

above the 97.5th percentile of the chance distribution obtained by randomizing odor-

class relationships. LII ensembles containing as few as 5 neurons significantly outperform 

LIII ensembles of similar sizes (Mann Whitney U Test <0.001). 

D. Distribution of single neurons’ mutual information with respect to odor class. Odor-

class labels were permuted to generate control distributions. Median and interquartile 

range of each distribution is indicated with horizontal marker and whiskers. In general, 

individual neurons from both layers provided little information with respect to odor 

class. Neurons in LII were slightly more informative (LII median = 0.03 vs. LIII median = 

0.02, Mann Whitney U Test; p<0.001). However, this effect was marginal (Cohen’s d = 

0.03). 
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even for the smallest ensemble sizes (Figure 3.12 C), although significant increases in 

accuracy were observed for ensembles containing at least 10 neurons.  

 LIII performance was greatest for ensembles containing roughly 30 neurons and 

declined in a linear manner thereafter. LII neurons carried slightly more information about 

odor class than LIII neurons though the magnitude of this difference was negligible (Figure 

3.12 D) (LII median = 0.03 vs. LIII median = 0.02, Mann Whitney U Test; p<0.001, Cohen’s d = 

0.03).  

Better classification of odor identity in LII coupled with better class assignment in LIII 

suggests two types of representational strategies in PCx that could together communicate 

odor information at multiple scales of similarity.  

Interrogating Odor Representations on a Local Scale  

Prior studies focusing on the olfactory periphery have benefited from the selection 

of odor sets consisting of simple molecules, that vary in gradual and intuitive ways.  

Straight-chain aliphatic molecules that vary in carbon number have been  widely 

used to demonstrate systematic covariance of responses in olfactory receptor neurons and 

OB glomeruli across vertebrate (Johnson & Leon, 2007; Meister & Bonhoeffer, 2001; Rubin 

& Katz, 1999; Uchida, Takahashi, Tanifuji, & Mori, 2000) and invertebrate models (Sachse, 

Rappert, & Galizia, 1999). In addition, activity patterns induced by these homologous 

aliphatic series in the rodent OB are precisely arranged and conserved across individuals. 

(Belluscio & Katz, 2001; Wachowiak, Zochowski, & Cohen, 2000). This conservation is not 

expected in PCx where odor representations are considered to emerge from the combined 
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effects of randomly projected OB inputs and strong intrinsic cortical dynamics (Davison, 

2011; Franks et al., 2011). Under these conditions, ensemble activity evoked by structurally 

similar odors is expected to be well-separated and unique to each animal (Stettler & Axel, 

2009).  

To explore how systematic changes to molecular structure influence PCx odor 

representations, we designed an odor set that consisted of straight-chain aliphatic 

molecules containing one of four carbonyl (>C=O) functional groups: ketones, esters, 

aldehydes, or acids. Carbon tails associated with each functional moiety ranged from 3-8 

carbon atoms (Figure 3.13). Three mice were used for this experiment. 

Two-dimensional PCA embedding of this odor set revealed that carbon atom 

number (CAN) contributed more weight to PC1 which explained 62% of the variance. 

Functional group contributed more to PC2 which accounted for 11% of the variance. 

Collectively, the first 2 PCs accounted for 73% of the variance in the panel—a 12% increase 

from the Global odor set and a 19% increase from the universal odor set. Consistent with 

gradual compression in chemical space, the variance of odor-evoked activity decreased 

accordingly (Figure 3.14).  

Relationship Between Chemistry and Activity at the Local Scale 

Because our Local odor panel varied in both carbon atom number (CAN) and 

functional group, the precise rearrangement of these molecules in cortical activity could 

inform which molecular property is the major determinant of central odor representations, 

and how these representations may differ from those induced in the OB. 
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Figure 3.13 Local Odor Set 

Projection of 22 odors onto the first 2 principal components of chemical space. Each 

group of odors contains 5-6 molecules. Numbers indicate size of the carbon backbone. 
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Figure 3.14 Reduction of Variance in Neural Activity with Compression in Odor Space 

A. Total variance explained in physicochemical descriptor space plotted against PC 

number. 

B. Identical representation for odor-evoked activity. For this representation activity across 

both layers and animals was pooled. The first 20 principal components capture 99% of the 

variance. 

Activity Space

Chemical SpaceA

B
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Universal
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We therefore compared similarity arrangements for the Local odor panel against 

those constructed from odor-evoked activity pooled across layers and animals (Figure 3.15 

A). There was strong global correspondence between odor relationships and neural activity 

as compared to a null distribution of correlations constructed by permuting odor 

arrangements in chemical space (Figure 3.15 B) (Pearson’s r=0.76, null distribution mean =  

0.42 ± 0.04; permutation test). Comparisons for individual odor pairs are presented in 

Figure 3.15 C.  

The chemistry distance matrix exhibited strong off-diagonal regularity. High 

similarity was observed for short-chain as well as long-chain molecules associated with 

different functional groups as indicated by lighter colors in the matrix. The magnitudes of 

these similarities across functional group classes was comparable to those of same-class 

molecules differing in 1 to 3 carbons. Surprisingly, these similarities were substantially 

attenuated in neural activity. Only esters and ketones remained similar as CAN increased.   

To visualize the precise rearrangement of chemistry relationships in each layer, we 

embedded corresponding response distances obtained from activity pooled across animals 

in a 2-dimensional subspace using metric multi-dimensional scaling. In chemical space, 

odors were systematically arranged according to carbon chain length. Aldehydes and 

ketones appeared to be more similar. This was also the case for esters and acids. In both 

LII and LIII on the other hand, ketones and esters were much more similar to each other 

than to the rest of the odor panel (Figure 3.15 D-F). Similarity appeared higher for longer 

chain esters and ketones than their shorter counterparts, especially in LIII. In general,  
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Figure 3.15 Molecular Relationships are Reconfigured at the Local Scale 
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Figure 3.15 (Continued) Molecular Relationships are Reconfigured at the Local Scale 

A Distance matrices depicting physicochemical relationships between molecules in the Local 

odor set (left) and their corresponding relationships in PCx (right). Both matrices were 

obtained as described in Figure 3.10 A.  

B.  Pearson’s correlation coefficient between Chemical and Activity Distance matrices was 

0.76 (vertical line). The control distribution (mean = 0.42 ± 0.04) represents correlation 

coefficients obtained by permuting the rows and columns of one of the matrices 1000 times.  

C.  For each odor-pair, its distance in chemical space is plotted against its corresponding 

distance in activity space. Regression fit is superimposed. The Pearson correlation coefficient 

is 0.6. The distribution of coefficients obtained by permutation testing was centered on 

mean = 0 ± 0.07. 

D.  MDS embedding of odors using physicochemical descriptors. Color indicates functional 

group.  

E. Embedding of odor representations from 3 animals in LII. Short-chain molecules are 

positioned towards the top of the plot. Aldehyde and acid positions are consistent with 

chemical arrangements. Esters and ketones are much more closely associated. 

F. Same as in E but similarity between molecules belonging to different functional classes 

appears to increase with carbon chain length. Shorter chain molecules lie on the periphery 

of the circular arrangement (except for the 2 long-chain acids positioned in the bottom left 

quadrant).  
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equally good clustering of short-chain and long-chain molecules associated with different 

functional groups did not hold in LIII; any two groups of shorter-chain molecules appeared 

to be much better separated, and similarity increased with increasing chain size.  

These results indicate that, as observed in the OB, odor representations for 

homologous series of carbonyl compounds similarly covary with molecular structure. For 

molecules belonging to a particular functional group, increases in CAN lead to progressive 

changes in their representations such that separation by more than 3 carbons substantially 

reduces the similarity of associated ensemble responses. On the other hand, unlike in the 

olfactory bulb, where glomeruli and mitral cells are often broadly-tuned with respect to 

short-chain (<5 carbons) carbonyls (Imamura, Mataga, & Mori, 1992; Uchida et al., 2000), in 

PCx, these groups appear well-separated. This implies that PCx is capable of decorrelating 

related short-chain odorants according to the unique information carried by their 

functional groups. The observation that similarity of representations increases with CAN 

indicates that the contribution of functional group to response specificity is attenuated as 

molecules become larger. 

Invariance Between Animals at the Local Scale 

Given the consistency in similarity structure observed across animals with the 

Global odor set, we similarly asked whether this invariance held for representations of 

carbonyl series.  

To assess the conservation of odor relationships across individuals, we once again 

constructed distance matrices from odor-evoked ensemble responses obtained from each 
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layer of individual mice (Figure 3.16 A). As observed with the Global odor set, pairwise 

comparisons of entire distance matrices revealed substantial correlation, on average, 

relative to odor-shuffled controls (LII mean correlation = 0.81±0.02, LIII mean correlation = 

0.85±0.03; LII shuffle = 0.4±0.05, LIII shuffle = 0.31±0.05, Mann Whitney U Test, p<0.001) 

(Figure 3.16 B). For both LII and LIII the average similarity was stronger than that observed 

with the Global odor set.    

Comparing any single odor representation’s relationships to the rest of the panel 

revealed a general tendency for stronger conservation in layer III (Figure 3.16 C) (LIII mean 

= 0.85±0.1, LII mean = 0.8±0.1, Wilcoxon Signed Rank Test, p<0.01). Consistent with this 

observation, an odor representation’s position in LIII activity space was more stable across 

animals than in LII relative to correlation values obtained by shuffling distance matrix odor-

relationships (Figure 3.16 D).  

These results, as well as observations of conserved relational structure using the Global 

odor panel indicate that odors distributed across multiple scales of volatile space are 

represented in PCx in a way that’s robust to inter-individual differences. Furthermore, the 

consistent relationship between CAN and OB activity observed across different animals 

appears to extend to PCx representations as well.   

Optimizing Molecular Descriptors for Carbonyl Homologous Series 

The 2270 descriptors used in this study differ in the information they carry 

regarding molecular properties, some of which may not be pertinent for the odors 
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contained in the homologous series panel. The differences in relational structure between 

chemical and activity spaces in the Local experiment prompted us to search for better ways  

of representing molecular structure.   

To identify an optimal parsimonious set of descriptors that could explain the 

representational geometry for the entire set of carbonyl molecules, we performed a type of 

Monte-Carlo search over descriptor space called Simulated Annealing. Optimal sets were 

identified by maximizing the similarity of molecular arrangements across chemical and 

activity spaces. 

The optimal number of descriptors was initially chosen with short searches over set 

sizes ranging from 5 to 100 members (Figure 3.17 A).  Resulting similarity values ranged 

from (Pearosn’s r) 0.69 to 0.76, suggesting that with this approach, just 5 descriptors are 

sufficient to improve correspondence between chemistry and activity.  

Maximal performance was obtained with descriptor sets containing 35 members, 

but with multiple random restarts of the algorithm the descriptor occupancy of resulting 

sets varied substantially, suggesting that despite reaching convergence, the algorithm did 

not have sufficient time to explore the available space of combinations. We therefore  

repeated the process by extending the run time until restart reliability saturated. Figure 

3.17 B depicts selected descriptors’ robustness to random restarts. The reliability 

distribution appeared bimodal.  With multiple searches of 35-member sets, 22 descriptors 

were returned 100 percent of the time. The remaining 13 were chosen only 10% of the 

time. With smaller or larger set sizes, the fraction of reliably chosen descriptors fell.  
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Consistent with the substantial redundancy of the entire descriptor space, this 

variability indicates that in terms of performance, different combinations of descriptors can 

be used to predict activity equally well. 

Molecular relationships constructed using all descriptors that were returned on 

more than 90% of the runs (Table 1) better resembled activity relationships (Pearson’s r = 

0.84) in several ways (Figure 3.17 C,D). Similarity between esters and ketones was retained. 

For molecules bearing different functional groups, differences between short-chain 

members was respected, and similarities between their longer-chain versions was 

conserved.  

 These results indicate that cortical representations of homologous series of 

carbonyl molecules occupying a local portion of odor space can be accurately predicted 

with only 24 physicochemical parameters.  
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Figure 3.16 (Continued) Invariance at the Local Scale 

 On average, odor arrangements in both LII and LIII were highly conserved across 

animals, relative to shuffled surrogates (LII mean correlation = 0.81±0.02, LIII = 0.85±0.03; 

LII shuffle mean correlation = 0.4±0.05, LIII shuffle = 0.31±0.05, Mann Whitney U Test, 

p<0.001). The extent of similarity in odor arrangements between pairs of animals did not 

differ significantly between layers (Wilcoxon Signed Rank Test). 

C.  Inter-animal similarity of a single odor’s position relative to the other odors in the 

panel. Here, the Pearson’s product moment correlation was computed over pairs of rows 

corresponding to the same odor from matrices in A. Each point represents the average 

pairwise correlation coefficient for a single odor. Means for each layer are indicated by 

dashes.  On average, an odor’s position in the relational space of LIII was significantly 

more stable across individual mice than in LII (LIII mean = 0.85±0.1, LII mean = 0.8±0.1, 

Wilcoxon Signed Rank Test, p<0.01). 

D.  Same as in C except each odor’s position relative to the rest of the odor panel is 

presented as fold-increase above chance correlation. Here, chance correspondence was 

obtained by shuffling odor relationships in one of 2 distance matrices obtained from 

separate mice prior to selecting rows corresponding to the odor being compared. Each 

point represents the mean pairwise increase in Pearson’s r. Odors are sorted from least 

to highest improvement in LIII. Error bars correspond to standard deviation. For each 
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odor except heptanoic acid, its relationship to the rest of the panel was significantly 

more conserved in LIII than in LII (Wilcoxon Signed Rank Test, p<0.001). 
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Figure 3.17 Optimization of Physicochemical Descriptors 

A. Identification of the smallest number of descriptors with the highest predictive value 

using simulated annealing. Similarity between chemical and activity distance matrices 

saturated for descriptor sets containing 35 members (r = 0.76). Maximal similarity when 

bootstrapping searches with shuffled descriptor values was 0.42. 

B. Reliability of selected descriptors upon multiple random restarts of the algorithm. 24 out 

of 35 descriptors were returned more than 90% of the time.   

C. Left: Distance matrices constructed from optimized descriptors. Right:  Corresponding 

activity distance matrix, based on responses from all animals and layers.  
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Figure 3.17 (Continued) Optimization of Physicochemical Descriptors 

D. Pairwise odor relationships in chemical and activity spaces. R = 0.84; correlation 

coefficient obtained using all descriptors is 0.6. Better performance compared to A is due to 

extended annealing times that permit full exploration of descriptor combinations.  
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Table 1 

no. Molecular 
Descriptor  

Full Name Descriptor Block 

1 MATS3v Moran autocorrelation of lag 3 weighted by van der 
Waals volume 

2d autocorrelations 

2 GATS7m Geary autocorrelation of lag 7 weighted by mass 2d autocorrelations 
3 MATS7e Moran autocorrelation of lag 7 weighted by Sanderson 

electronegativity 
2d autocorrelations 

4 ATSC1s Centred Broto-Moreau autocorrelation of lag 1 weighted 
by I-state 

2d autocorrelations 

5 ATSC1e Centred Broto-Moreau autocorrelation of lag 1 weighted 
by Sanderson electronegativity 

2d autocorrelations 

6 VE1_B(v) coefficient sum of the last eigenvector (absolute values) 
from Burden matrix weighted by van der Waals volume 

2D matrix-based 
descriptors 

7 Mor08e signal 08 / weighted by Sanderson electronegativity 3D-MoRSE 
descriptors 

8 Mor27s signal 27 / weighted by I-state 3D-MoRSE 
descriptors 

9 Mor09p signal 09 / weighted by polarizability 3D-MoRSE 
descriptors 

10 Mor21m signal 21 / weighted by mass 3D-MoRSE 
descriptors 

11 Mor28s signal 28 / weighted by I-state 3D-MoRSE 
descriptors 

12 Mor14s signal 14 / weighted by I-state 3D-MoRSE 
descriptors 

13 SpMAD_AEA(ri) spectral mean absolute deviation from augmented edge 
adjacency mat. weighted by resonance integral 

Edge adjacency 
indices 

14 SpMAD_AEA(dm) spectral mean absolute deviation from augmented edge 
adjacency mat. weighted by dipole moment 

Edge adjacency 
indices 

15 R1m+ R maximal autocorrelation of lag 1 / weighted by mass GETAWAY 
descriptors 

16 H8u H autocorrelation of lag 8 / unweighted GETAWAY 
descriptors 

17 IC2 Information Content index (neighborhood symmetry of 
2-order) Radial Distribution Function - 085 / weighted by 
mass 

Information indices 

18 RDF100m Radial Distribution Function - 100 / weighted by mass RDF descriptors 
19 RDF085m Radial Distribution Function - 085 / weighted by mass RDF descriptors 
20 RDF035m Radial Distribution Function - 035 / weighted by mass RDF descriptors 
21 E1u 1st component accessibility directional WHIM index / 

unweighted 
WHIM descriptors 

22 E1i 1st component accessibility directional WHIM index / 
weighted by ionization potential 

WHIM descriptors 

23 L2m 2nd component size directional WHIM index / weighted 
by mass 

WHIM descriptors 

24 L2s 2nd component size directional WHIM index / weighted 
by I-state 

WHIM descriptors 
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Discussion 

Olfactory Perception involves a set of neural transformations that convert essential 

features of the remarkably diverse olfactory environment into neural representations that 

support adaptive behavior. PCx is considered to be especially important for carrying out a 

set of general perceptual functions including odor discrimination, generalization, and 

ultimately long-term storage of diverse odor-associated experiences. Molecular 

representations in PCx must therefore accommodate these operations, yet their structure 

at the level of population activity is largely unexplored.  

 Imaging PCx neural activity in awake mice demonstrates that structural similarities 

and differences between molecules are—like in the olfactory periphery—maintained in 

PCx. 

Encoding Differences between LII and LIII 

 Sampling odor-evoked activity across both PCx LII and LIII with a set of diverse 

odorants reveals several key differences regarding odor encoding across layers. Individual 

neurons in LII tend to be less sensitive to odor presentation, respond with lower reliability 

and are selective for a small fraction of the odor set. LIII neurons, on the other hand, are 

slightly more reliable and tend to have broader response profiles. These results are 

consistent with previous reports of broader tuning and greater sensitivity of LIII neurons 

obtained with extracellular recordings in awake mice (Zhan & Luo, 2010).  

Consistent with increased sensitivity of individual neurons, odors tended to recruit 

larger ensembles in LIII than in LII. These effects likely explain the elevated levels of signal 
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and ensemble correlations observed in deep PCx. Odor encoding in LIII by a shared pool of 

excitable neurons could result from increased convergence of associative input in deeper 

PCx, especially in posterior PCx (Hagiwara, Pal, Sato, Wienisch, & Murthy, 2012; Luna & 

Morozov, 2012) where our recordings were targeted.  

Our findings of sparse, selective activation of superficial LII and dense, broadly-

tuned activity in deeper LIII is consistent with findings in auditory, somatosensory, and 

visual (de Kock, Bruno, Spors, & Sakmann, 2007; O’Connor, Peron, Huber, & Svoboda, 2010; 

Sakata & Harris, 2009) cortex in rodents. The coexistence of these different coding 

strategies in PCx may serve to both increase information capacity in LII via sparse 

representations and simultaneously compress these representations for efficient transfer 

to distal targets in LIII  (Coulter, Hillar, & Isley, 2010). 

Conservation of Physicochemical Relationships in PCx 

Presenting groups of similar odors selected from well-separated portions of odor 

space as well systematically tiling odor space locally using homologous series of carbonyl 

molecules revealed that neural activity patterns in both PCx LII and LIII covaried with 

molecular structure.  

Unlike in the OB where molecular similarity is transformed into spatially stereotyped 

activity, the transformation in PCx involves functional relationships between distributed 

ensemble activity that likely lack a spatial component. This observation, for the first time, 

provides empirical evidence that central sensory representations in the olfactory system 

are organized according to molecular structure. This didn’t have to be the case. The current 
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view in the field is that odor information carried by OB projections is substantially 

decorrelated by cortical dynamics such that all odors become equally well separated 

regardless of their structural similarity (Stettler & Axel, 2009). Consistent with this view, 

discrimination would be optimized but generalization between similar odors would suffer 

(Spanne & Jörntell, 2015). This compromise is tempered by suggestions that  experience-

dependent plasticity is essential for establishing perceptual similarity (Haberly, 2001; 

Wilson & Sullivan, 2011).  

Alternatively, and consistent with our results, information regarding molecular 

similarity is supplied to PCx via correlations in the activity of mitral cells. These correlations 

are inherited by the cortical population and transformed in a way that preserves the 

underlying structural similarity between odorants. Providing this information to pools of 

neurons that differ in coding strategy subsequently permits operations like discrimination 

and generalization to take place.  

Could odor quality be represented in PCx? 

Segregation of cortical activity according to molecular structure is sufficient for 

perceptual operations that involve categorizing or distinguishing odors. One fundamental 

question is whether the structure of odor-evoked activity also conveys information 

regarding odor quality. For instance, molecules containing amine and ester moieties are 

reliably assigned fishy and fruity qualities by human observers (Dravnieks, 1982; Keller & 

Vosshall, 2016). Given that these odors are well separated in chemical space and should 

therefore be segregated in PCx activity, classifying new esters and amines should be a 
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tractable task. However, in the absence of a priori knowledge of the relationships between 

the activities these odor classes evoke, can a molecule be identified as an ester or an amine 

based on some feature of neural activity? If piriform cortex is primarily involved in forming 

stable, unique representations of olfactory experience, this is not required. If, on the other 

hand, PCx harbors of odor qualities associated with distinct molecular structures, they 

must be encoded in PCx activity in a way that can be readily interpreted by PCx targets.   

This could occur either by means of spatially segregated populations or across 

functionally distinct groups of neurons. If odor quality involves spatially organized cortical 

activity, as has been suggested by Gottfried and colleagues based on an fMRI study 

conducted on human subjects (Howard, Plailly, Grueschow, Haynes, & Gottfried, 2009), it is 

unlikely to result from anatomically structured projections to PCx, as these appear broadly 

distributed across the cortical mantle (Ghosh, Larson, Hefzi, Marnoy, & Cutforth, 2011; 

Miyamichi et al., 2010; Sosulski, Bloom, Cutforth, Axel, & Datta, 2012). Rather, topographic 

arrangement of odor quality could be inherited from other OB targets like the anterior 

olfactory nucleus or the cortical amygdala, which are thought to receive spatially biased 

innervation from the olfactory periphery (Miyamichi et al., 2010; Sosulski et al., 2012); 

though, the relationship between biased innervation and spatial organization of neural 

activity remains an open question (Iurilli & Datta, 2017).  

In the absence of topographic organization, different odor qualities could be 

preferentially expressed by discrete groups of neurons with distinct contributions to odor-

mediated behaviors. For instance, a class of PCx neurons defined by the expression of the 
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oxytocin receptor gene has been proposed to influence odor learning in response to 

salient social cues (Choe, Reed, Benavidez, & Montgomery, 2015). This class of neurons 

could be preferentially sensitive to urine volatiles. Similarly, PCx subclasses defined by the 

expression of melanin-concentrating-hormone or neuropeptide-Y receptor genes, 

implicated in energy homeostasis, could be preferentially tuned to food odors. In this case, 

assignment of distinct odor qualities to specific classes of neurons would likely have to 

emerge through experience, and their detection would require monitoring activity across 

genetically tagged neural populations.  

Alternatively, if molecular structure is encoded by a homogeneous neural pool, 

specific odor qualities could be represented by differences in the temporal patterning of 

activity or variations in population firing rate. These differences could reflect distinct 

molecular mechanisms associated with ligand-receptor interactions. For example, the 

exceptionally low perceptual thresholds for malodorous sulfur containing odors (Laska, 

Bautista, Höfelmann, Sterlemann, & Salazar, 2007) have been related to unique detection 

mechanisms involving selective and high-affinity ligand-receptor interactions via metal ion 

intermediates in the binding cavity (Noe et al., 2017; Wang, Luthey-Schulten, & Suslick, 

2003). In general, differences in molecular size, atomic arrangement, and composition all 

affect molecular access to the aqueous environment of the nasal epithelium and 

subsequently, binding affinity across the receptor array. This could ultimately influence the 

size of recruited ensembles in PCx, as well as the synchrony, latency, and amplitude of 

responses of constituent neurons. All of these properties could potentially be read out by 
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downstream targets of PCx to support stable representations of odor qualities capable of 

eliciting innate, ethologically relevant behaviors.  

General Conclusions 

A map is an expression of fixed, reliable relationships among a set of entities 

designed to facilitate prediction of higher-order interactions between them. For example, 

on a geographical map, distance is a reliable metric that allows one to predict how long it 

would take to travel between two locales. The fact that this distance does not change from 

day to day and that its’ representation remains constant allows the planning of routes and 

itineraries that lead to more efficient behavior.  Maps based on unreliable metrics quickly 

lose their utility.  

Nervous systems similarly harbor maps of the external environment to facilitate 

adaptive behavior. Because most experience requires engagement in 3d space, these maps 

are often designed to accommodate ordered spatial relationships in the outside world. The 

brainstem auditory localization map of barn owls, for instance, is spatially optimized for 

temporal triangulation of auditory sources (Konishi, 1971).      

Systematic arrangements of sensory information in neural circuits has also been 

suggested to emerge from metabolic constraints on nervous system packaging (Chklovskii 

& Koulakov, 2000; 2004; Koulakov & Chklovskii, 2001).   

From an experimental point of view, topographic arrangement of sensory 

information in cortex has simplified attempts to characterize computations performed by 

neural circuits (Nassi & Callaway, 2009) and becomes especially useful in the absence of a 
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priori knowledge of what relationships in the outside world are selectively represented in 

the brain (Hubel & WIESEL, 1962). In the absence of topographic organization, this 

information must be gleaned exclusively from measuring functional relationships between 

sensory-evoked patterns of activity.  

Despite considerable effort, topographic remapping of odors in central olfactory 

areas has yet to be identified in any organism, but see (Nikonov & Finger, 2005). This is 

likely because olfaction is not primarily a “spatial sense,” and odor processing beyond the 

olfactory bulb may therefore not be bound by the same energy-minimizing physiological 

constraints imposed on visual, somatosensory, or auditory cortical circuits.   

This ultimately means that understanding how the brain transforms the structure 

inherent in the volatile world to neural correlates of perception and behavior will likely 

benefit from top-down experimental strategies where ordered relationships in population 

activity are subsequently linked to structural properties of odorous molecules.    
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