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Abstract

Chapter 1 studies contracts which provide incentives for information acquisition

that is costly for an agent and unobservable to a principal. We show that each Pareto

optimal contract pays a fraction of output, a state-dependent transfer, and a decision-

dependent transfer. The fraction of output is increasing in the set of experiments

available to the agent, the state-dependent transfer indexes contract payments to

differences in output between states, and the decision-dependent transfer punishes

decisions that are likely to make liability limits bind.

Chapter 2 studies the effect of capacity constraints capping maximum agent

effort in principal-agent problems. We show that the form of optimal contracts after

introducing a capacity constraint can be obtained from the form of the original

optimal contracts by replacing output with a fraction of output and we show that

this fraction is increasing in the agent’s capacity. One implication of this result

is that if before introducing a capacity constraint all optimal contracts result in

the principal receiving a debt, then optimal contracts after introducing a capacity

constraint result in the principal receiving a debt and a fraction of equity.

Chapter 3 studies the relationship between core and competitive equilibira in

economies that consist of a continuum of agents and some large agents. We construct

a class of these economies in which the core and competitive allocations do not

coincide.
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Chapter 1

Contracts for Experimentation

1.1 Introduction

Consider a principal that wishes to hire an agent to acquire information and take

a decision on his behalf. The nature of the information precludes verifying how

carefully the agent carries out this task, but the pair can enforce a contract stipulating

transfers as a function of the decision the agent takes and the realized state of the

world. Information is costly for the agent and he is capacity constrained in the

amount he can acquire. Both parties are risk-neutral and transfers between them

are constrained by liability limits.

We show that each Pareto optimal contract pays a fraction of output, a state-

dependent transfer, and—with information costs proportional to expected Shannon

entropy reduction—a decision dependent transfer. The fraction of output is increas-

ing in the set of experiments available to the agent, the state-dependent transfer

indexes contract payments to differences in output between states, and the decision-

dependent transfer punishes decisions likely to make liability limits bind.

The resulting contract can be described simply: stipulation of the liability limits,
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a punishment or reward for each decision based on its ex-ante risk of causing

bankruptcy, an indexing payment so the agent is not rewarded purely for finding

himself in a lucky state, and a piece rate based on the agent’s capacity for acquiring

information.

For a general cost function the expression that becomes decision-dependent

under expected Shannon entropy reduction sheds light on how optimal incen-

tives are shaped by complementarities in the cost of acquiring information. If a

contract payment is stuck against a liability limit, then other contract payments

substitute for its role of influencing the signal probability; this occurs by exploiting

complementarities in the cost of acquiring different signals in different states.

We do not impose restrictions on contract form, such as monotonicity or linearity,

or on the way the agent can influence the distribution over output, such as monotone

likelihood ratio or distribution function convexity properties. Our model is at its

core an information acquisition version of the static model in Holmström and

Milgrom’s classic paper [33] on linear contracts, in which the domain of the agent’s

cost function is a feasible set of distributions, rather than a set of effort parameters.

This side-steps the need to specify a mapping between effort parameters and the

distribution over output.

This approach also starts the analysis in the right place for thinking about linear

contracts. A theme in that literature is that linear contracts arise because they are

robust to uncertainty about the contracting environment and to freedom in the

way the agent can influence the distribution over output (e.g. [12, 22]). To see the

second of these points, consider the following argument for why linear contracts

align the incentives of a principal and agent: where it can be avoided non-linearity

is wasteful because it drives apart the agent’s and principal’s preferred distributions

over output; a convex payoff for the agent nearby some output level means a concave
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payoff for the principal, and thus an agent who wishes for higher variation in output

than the principal nearby this level of output. This argument is strengthened by

the agent having freedom in how he can influence the distribution over output. We

take advantage of this by starting out with a model that allows the agent to choose

any distribution over output. This starting point also forces us to think carefully

about the restrictions we do place on the agent’s feasible set, such as the capacity

constraint.

Our results demonstrate the importance of capacity constraints in principal-agent

models by showing that they pin down the fraction of output paid to the agent.

In the context of modeling information acquisition, usual practice dictates that a

decision maker either pays a cost for information in terms of utility, or faces a

budget set of feasible experiments given by a capacity constraint. These approaches

are interchangeable in decision problems—one is dual to the other. However,

in principal-agent models the optimal contract varies significantly depending on

whether or not a capacity constraint is imposed. The results we obtain regarding

capacity constraints do not depend on the agent choosing an experiment. Rather,

they apply to any standard principal-agent setup with a risk-neutral principal and

agent. For example, one could augment the security design model of Innes [35] with

a capacity constraint and apply our results. The conclusion of that paper in which

debt is optimal then changes, the optimal contract now being debt and a fraction of

equity. This connects our work to the literature that seeks to derive optimal capital

structure from agency considerations (e.g. [36]).

The rest of the paper is organized as follows. We lay out the model in section 1.2.

Section 1.3 contains the analysis and results, and is divided into six parts: in

section 1.3.1 we characterize the Pareto optimal contracts that are first-best; in

section 1.3.2 we present a method for dealing with the capacity constraint, allowing
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subsequent analysis to do without it; section 1.3.3 studies the form of Pareto optimal

contracts that are second-best; section 1.3.4 discusses how the previous three sections

work together to characterize the set of Pareto optimal contracts; in section 1.3.5 we

consider the contract forms arising from different cost functions and discuss the

simplest way of describing the optimal contract; and in section 1.3.6 we present a

multi-period model. We discuss applications and relations to other contract forms

in the literature in section 1.4; in section 1.5 we conclude. All proofs and derivations

are collected in appendix A.1, and appendix A.2 solves a simple example and

presents a graphical method for analyzing the optimal contract.

1.1.1 Background

The first study of optimal incentives for information acquisition was completed

by Demski and Sappington [21]. They focused on optimal risk-sharing arrange-

ments and on contracts that depend solely on output. Their main concern was the

interaction between the “planning phase” (the acquiring of information) and the

“implementation phase” (the choice of a decision). Their basic point was that, even if

implementation is costless (as it is in our model), the unverifiable nature of planning

induces moral hazard in implementation since the outcome of the agent’s decision

provides information about his planning.

Osband [46] was led to the problem from his study of proper scoring rules—

incentive schemes that elicit true beliefs (see [49]). His goal was to characterize the

best proper scoring rule eliciting a forecaster’s estimate of the mean of a random

variable. The forecaster draws observations of the random variable at a cost, and

this cost as well as the number of observations the forecaster makes are unknown to

the principal. His focus was on the merits of (a) screening by offering a menu of

contracts versus (b) pitting forecasters in competition against one another.
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More recently, Zermeño [59, 60] has developed a very general model of incen-

tivizing information acquisition under liability limits. His analysis focuses on the

interaction between the verifiable data on which a contract can depend (for instance,

the decision may be verifiable but the state may not be) and: (1) the usefulness

of menus of contracts, and (2) whether the principal or agent is tasked to take

the decision. Menus are useful because they allow contract payments to partially

depend on the state: following receipt of a signal the agent gets to choose a decision

and a contract from the menu; since the signal is correlated with the state the menu

functions as a tool for correlating contract payments with the state—a role that is

otherwise forced upon the agent’s choice of decision—with a more precise signal

leading to better correlation. In general, menus do not allow perfect correlation

between contract payments and the state, and for this reason decision making is

usually ex-post inefficient—it is distorted so that the agent is more likely to take

a decision that reveals the state. Regarding (2), the allocation of decision making

authority is irrelevant when the principal and agent can infer from the verifiable

data which decision was taken; when this is unclear, whether the principal or agent

is tasked to take the decision affects the set of implementable outcomes.

Carroll [13] builds on and refines this model to study the form of “robust”

incentives for information acquisition: a principal does not know all experiments

or experiment costs available to an agent and ranks contracts according to their

minimum expected payoff among all experiments and experiment costs including a

known set. He shows that the optimal contract is a restricted investment contract: the

set of decisions available to the agent is restricted, and for unrestricted decisions the

optimal contract pays a fraction of output and a state-dependent transfer.

Our paper falls closest to Carroll’s. In the terminology of our model, one may

view Carroll’s restriction on decisions as resulting from a decision-dependent trans-

5



fer that severely punishes restricted decisions. From this perspective, the contracts

we find generalize restricted investment contracts. This provides a link between

Bayesian and non-Bayesian approaches to designing incentives for experimentation.

1.2 Framework

There are two dates. At date 0, a principal faces a choice from a finite set of decisions

D. The date 1 payoff to the principal from a decision depends on the realization of

one among a finite set of states Θ, as described by an output function y : D×Θ→ R.

The principal hires an agent to acquire information about the state and take a

decision on his behalf but cannot either monitor how much care the agent takes

acquiring information or observe the information the agent does acquire. The

principal motivates the agent with a contract b : D×Θ → R that depends on the

decision the agent takes and the realized state of the world—both are verifiable.

At date 0, the principal and agent agree to a contract b. At date 1, before

choosing a decision, the agent performs an experiment (X, {p(·|θ)}θ∈Θ), which

consists of a finite set of signals X and a collection of probability distributions

{p(·|θ)}θ∈Θ ⊆ ∆(X) on the set of signals. A decision rule f : X → ∆(D) describes

the agent’s randomization over decisions upon observing each signal.

An action profile (b, X, {p(·|θ)}θ∈Θ, f ) consists of a contract, experiment, and

decision rule. The agent has preferences over action profiles (b, X, {p(·|θ)}θ∈Θ, f )

given by the expected value of contract payments less an experiment cost:

∑
θ∈Θ

π(θ) ∑
x∈X

p(x|θ) ∑
d∈D

f (d|x)b(d, θ)− c(X, {p(·|θ)}θ∈Θ).

The distribution π ∈ ∆(Θ) is the agent’s prior belief over states and the function c is

the agent’s cost function. For now, the cost function is only assumed to respect the
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ordering of experiments given by informativeness (see Blackwell’s theorem1).

The principal has preferences over action profiles (b, X, {p(·|θ)}θ∈Θ, f ) given by

the expected value of output less contract payments:

∑
θ∈Θ

π(θ) ∑
x∈X

p(x|θ) ∑
d∈D

f (d|x) (y(d, θ)− b(d, θ)) .

Contracts are restricted to belong to a set B of feasible contracts and experiments

are restricted to belong to a set E of feasible experiments.

A contract b satisfies the limited liability constraints if 0 ≤ b(d, θ) ≤ y(d, θ) for all

d ∈ D, θ ∈ Θ. The set of feasible contracts are those satisfying the limited liability

constraints. This may mean that the principal and agent are wealth constrained

(with wealth normalized to zero or included in output y) or that the contract is

subject to statutory liability limits (as is the case for a limited liability corporation).

In addition to the incremental cost of acquiring information represented by the

cost function c, we assume that the agent faces a capacity constraint c(X, {p(·|θ)}θ∈Θ) ≤

k that limits the experiments he can perform. The set of feasible experiments are

those satisfying this constraint.

An action profile (b, X, {p(·|θ)}θ∈Θ, f ) is feasible if the contract b and experiment

1Experiment (X, {p(·|θ)}θ∈Θ) is more informative than experiment (X′, {p′(·|θ)}θ∈Θ) if for any
prior π and contract b, whenever some expected payoff can be achieved under the latter experiment,
then it can be achieved under the former. That is, for each decision rule f ′ on X′ there exists a
decision rule f on X such that

∑
θ∈Θ

π(θ) ∑
x′∈X′

p′(x′|θ) ∑
d∈D

f ′(d|x′)b(d, θ) = ∑
θ∈Θ

π(θ) ∑
x∈X

p(x|θ) ∑
d∈D

f (d|x)b(d, θ).

Experiment (X, {p(·|θ)}θ∈Θ) is sufficient for experiment (X′, {p′(·|θ)}θ∈Θ) if there is a garbling
function g : X → ∆(X′) such that

p′(x′|θ) = ∑
x∈X

p(x|θ)g(x′|x).

That is, experiment (X′, {p′(·|θ)}θ∈Θ) can be performed by randomizing over its outcomes according
to g where the randomization depends on the outcome of the experiment (X, {p(·|θ)}θ∈Θ).

Blackwell’s theorem [8] states that an experiment is more informative than another if and only if it is
sufficient.
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(X, {p(·|θ)}θ∈Θ) are feasible, and there is no action profile (b, X′, {p′(·|θ)}θ∈Θ, f ′),

consisting of the same contract and some feasible experiment, that the agent prefers.

An action profile can be improved upon if there is a feasible profile that makes

either the agent or principal better off without making the other worse off. An

action profile is Pareto optimal if it is feasible and cannot be improved upon.

Normalizing the experiment and decision rule. A decision rule is a garbling

function (see footnote 1). Thus, given action profile (b, X, {p(·|θ)}θ∈Θ, f ), we may

define a garbled experiment (D, {p′(·|θ)}θ∈Θ) by p′(d|θ) = ∑x∈X p(x|θ) f (d|x) and

choose the decision rule f ′ : D → ∆(D) that maps each decision to the degenerate

distribution on that decision. The contract has the same expected payoff under this

experiment and decision rule and since the former experiment is sufficient for the

latter it is weakly more costly. Thus, it is without loss to set the agent’s set of signals

to be D and the agent’s decision rule f : D → ∆(D) to map each decision to the

degenerate distribution on that decision.

Given this normalization, we will write p for the experiment (D, {p(·|θ)}θ∈Θ),

and write (b, p) for the action profile (b, D, {p(·|θ)}θ∈Θ, f ) in which f maps each

decision to the degenerate distribution on that decision. We will write Ep[b] −

c(p) and Ep[y− b] for the agent’s and principal’s utility from action profile (b, p).

For experiment p, we will write p(d, θ) for the joint probability p(d|θ)π(θ), p(d)

for the total probability ∑θ π(θ)p(d|θ), and p(θ|d) for the posterior probability

p(d|θ)π(θ)/ ∑θ′ π(θ′)p(d|θ′).
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1.3 Analysis and results

Since both principal and agent are risk-neutral, a Pareto optimal contract is one that

maximizes welfare—expected output less the cost of the agent’s chosen experiment—

subject to the agent obtaining a given level of utility. A way to characterize all Pareto

optimal contracts is to start with the contract equal to output and to then consider

feasible alterations that increase the principal’s payoff at minimal loss to welfare.

Our setup provides two ways to do this without altering the agent’s behavior, and

thus without any loss in welfare.

First, since the agent is risk-neutral and does not control the state, altering

contract payments by a state-dependent transfer does not alter his behavior. Second,

if the agent’s capacity constraint binds then a slight scaling down of the contract—

multiplying it by a number slightly less than one—will not alter the agent’s behavior

provided the capacity constraint continues to bind.

The interval of utilities achievable for the agent by applying these maneuvers

to output, correspond to the points on the Pareto frontier in which welfare is

maximized. Proposition 1 characterizes these contracts. For lower agent utilities

there is no way to increase the principal’s payoff without reducing welfare, and thus

for such contracts the agent’s liability limit binds for at least one decision in each

state and the agent’s capacity constraint does not bind.

We characterize these second-best Pareto optimal contracts in Proposition 3.

These contracts share the features of first-best contracts in that they pay a fraction of

output less a state-dependent transfer. But they also involve an optimal distortion,

which we give a formula for in this proposition.

In section 1.3.5, we provide a simplified version of this formula specialized to

the class of posterior separable cost functions studied in [10] and [31]. Expected
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reduction in Shannon entropy belongs to this class. Under this cost function the

optimal distortion reduces to a decision-dependent transfer in which the agent is

punished for taking decisions that are likely to make his liability limits bind and

rewarded for decisions that are likely to make the principal’s liability limits bind.

Finally, in section 1.3.6 we study, with a multi-period version of our model, how

the optimal contract changes when the agent’s decision and the state control future,

as well as current, output. The optimal contract has the same form as in the static

model except now the agent is led to internalize the effect of his decision on the

principal’s future payoffs: the results of the static model apply with current output

replaced by output together with the principal’s continuation payoff.

1.3.1 First-best contracts

In the standard principal-agent setup with risk-neutral parties the first-best contracts

(those that maximize welfare Ep[y] − c(p)) are given by output less a constant,

b = y− t. If the principal “sells the firm” to the agent for a fee t, then the agent

necessarily maximizes welfare. In problems of information acquisition there are

additional first-best contracts. Given that the agent is risk-neutral and does not

control the state, modifying a contract by a state-dependent transfer does not alter

his incentives. Thus, any y− β with β : Θ→ R is first-best.

Introducing a capacity constraint into the problem introduces more first-best

contracts. There is α′ ∈ [0, 1] such that for any first-best contract y− β all contracts

αy− β with α ∈ [α′, 1] are also first-best. When the agent’s capacity constraint does

not bind under contract y− β, then α′ = 1; if it does bind, α′ is less than 1.

Conversely, if the cost function, viewed as a function on R|D×Θ|, is differentiable,

and each first-best experiment assigns positive probability to each decision in each

state, then all first-best contracts take this form.
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Proposition 1. Define α′ by

α′ = sup {α ∈ [0, 1] : c(p) < k for all feasible p optimal for agent against contract αy} .

If a contract has the form αy− β, with α ≥ α′ and β : Θ→ R, then it is first-best.

Conversely, suppose the cost function is differentiable and all first-best experiments

assign positive probability to each decision in each state. Then, if b is a first best contract,

b = αy− β for some α ≥ α′ and β : Θ→ R.

Note that if a first-best contract is feasible, it is also Pareto optimal. Notice too

that if there is a first-best Pareto optimal contract yielding the agent utility r, then

all Pareto optimal contracts yielding the agent utility at least r are first-best since

the agent’s utility can be increased without affecting his behavior.

From here, it is easy to see that the minimum agent utility achievable with a first-

best Pareto optimal contract is obtained by the contract α′y− β, where β : Θ→ R

brings the minimum contract payment in each state to zero: β(θ) = min{α′y(d, θ) :

d ∈ D}.

Also note that α′ is increasing in the agent’s capacity k.

1.3.2 Dealing with the capacity constraint

In this section we show that imposing a capacity constraint is equivalent to scaling

output. This will allow us to proceed in solving for the second-best Pareto optimal

contracts with a scaled level of output in place of the capacity constraint.

The key idea is to consider a perturbation of our model, parametrized by

α ∈ [0, 1], in which output y in the principal’s objective function is replaced by αy

(the feasible contracts, distributions, and profiles remain unchanged). Denote the

set of Pareto optimal profiles to the perturbed problem by P(α), and denote by
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P(α, r) the subset of P(α) in which the agent’s utility is minimized subject to it

being at least equal to r.

Consider a Pareto optimal profile (b, p) ∈P(1, r) to the unperturbed problem.

The following Proposition shows that all solutions P(1, r) of this unperturbed

problem (a problem in which the capacity constraint might bind) may be obtained

as solutions P(α∗, Ep[b]− c(p)) to the perturbed problem for the α∗ ∈ [0, 1] defined

in the proposition and that, if the agent’s cost function is continuous, then for at

least one solution of this problem the capacity constraint does not bind.

Proposition 2. Let (b, p) ∈P(1, r). Then there exists α∗ ∈ [0, 1], defined as

α∗ = sup
{

α ∈ [0, 1] : c(p′) < k for all (b′, p′) ∈P(α, Ep[b]− c(p))
}

,

so that for each α ∈ [α∗, 1],

P(α, Ep[b]− c(p)) ⊇P(1, r),

and, conversely, if (bα, pα) ∈P(α, Ep[b]− c(p)) is such that c(pα) = k, then

(bα, pα) ∈P(1, r).

If the agent’s cost function is continuous, then there is a Pareto optimal profile in

P(α∗, Ep[b]− c(p)) that solves the problem obtained by removing the capacity constraint

from this perturbed problem.

Note that α∗, by its definition, is increasing in the agent’s capacity.

1.3.3 Second-best contracts

Having dealt with first-best Pareto optimal contracts (and developed a tool to

jettison the capacity constraint) we can now turn to their second-best counterparts.
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Proposition 2 tells us that we can do away with the capacity constraint and instead

replace output by α∗y. In the next proposition we solve for the form of the optimal

contract in the resulting problem.

Proposition 3. Let (b, p) belong to P(α, r) and assume that

• the agent’s capacity constraint does not bind: p is an optimal experiment for the agent

without a capacity constraint when the contract is b;

• the agent’s cost function c is strictly convex and its second derivative is continuous;

• p assigns positive probability to each decision in each state.

Then

b(d, θ) = αy(d, θ)− β(θ)− γ(d, θ),

γ(d, θ) =
1

π(θ) ∑
d′,θ′

∂2c(p)
∂p(d|θ)∂p(d′|θ′)

(
p(d′|θ′)(1− ξ)− λ[d′, θ′]

π(θ′)

)
. (1.1)

The term λ[d, θ] is a Lagrange multiplier for the constraint 0 ≤ b(d, θ) ≤ y(d, θ): it

is non-negative when only the agent’s liability limit binds, non-positive when only the

principal’s liability limit binds, zero when neither liability limit binds, and unrestricted in

its value if both liability limits bind; ξ ∈ [0, 1] and is a Lagrange multiplier on the agent’s

participation constraint.

By Proposition 2, when the agent is capacity constrained there is a Pareto optimal

contract of the form

b(d, θ) = α∗y(d, θ)− β(θ)− γ(d, θ),

where α∗ ∈ [0, 1] and is increasing in the agent’s capacity. For second best contracts

we have that

β(θ) = min{α∗y(d, θ)− γ(d, θ) : d ∈ D}.
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Note that if the mapping from α ∈ [0, 1] to the set of Pareto optimal profiles

P(α, r) is lower hemi-continuous at α∗, then all second-best Pareto optimal contracts

take this form (cf. Proposition 2).

1.3.4 Piece rates, indexation, and the optimal distortion

Together, propositions 1, 2, and 3 provide a general characterization of Pareto

optimal contracts in terms of a piece rate α ∈ [0, 1], a state-dependent transfer

β : Θ→ R, and an optimal distortion γ : D×Θ→ R.

For a first-best contract, γ = 0 and there is no distortion to incentives. The piece

rate α may be any value in the interval [α′, 1], α′ being the point below which the

agent’s capacity is no longer exhausted. The state-dependent transfer β is any state

dependent transfer such that the resulting contract αy− β satisfies the liability limits

and so is feasible.

For a second-best contract the piece rate is equal to α∗ and the state-dependent

transfer β is given by β(θ) = min{α∗y(d, θ)− γ(d, θ) : d ∈ D} so that liability limits

bind in each state. The non-distortionary ways of transferring utility from the agent

to the principal are fully exploited.

The term γ describes the optimal distortion to incentives—that is, it is the way

of transferring utility from the agent to the principal at minimum loss to welfare

(expected output less experiment cost).

Expression 1.1 sheds light on how this optimal distortion is constructed showing

that it largely depends on the complementarities in the cost of acquiring different

signals in different states. To see this, suppose that the agent’s liability limit

binds in state θ′ following decision d′ so that the Lagrange multiplier λ[d′, θ′] > 0

(i.e. the optimal contract would be different without this liability limit). To lever

down the probability of receiving the signal to take decision d′ when the state is
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θ′ the principal can no longer reduce the contract payment b(d′, θ′). As a result,

other contract payments—those not immobilized against their liability limits—are

recruited for this task. Expression 1.1 shows the way this happens. If a contract

payment b(d, θ) is not stuck against the agent’s liability limit then complementarity

in the cost of signal probabilities p(d′|θ′) and p(d|θ) together with λ[d′, θ′] > 0 adds

to γ(d, θ). This reduces the contract payment b(d, θ) which in turn reduces the

signal probability p(d|θ) and hence signal probability p(d′|θ′).

The term p(d′|θ′)(1− ξ) in Expression 1.1 accounts for adjustments in the con-

tract payments b(d, θ) necessary to keep the incentive and participation constraints

holding following a reduction in p(d′|θ′).

1.3.5 Posterior-separable costs

Complementarities in information acquisition

Here we consider a class of cost functions defined in [31]. These cost functions

emerge from a dynamic information acquisition problem in which an agent at

each point in time decides whether to take a decision or continue collecting infor-

mation. Information collection is modeled as the agent choosing the covariances

of a multi-dimensional Brownian motion that moves about the set of probability

distributions over states, subject to a constraint on these covariances in terms of the

complementarities and substitutabilities of acquiring information about different

states. They show that this dynamic problem has a static representation in which

the agent’s cost function is defined as

c(p) = ∑
d∈D

p(d)D(p(·|d)||π)
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where

D(p(·|d)||π) = H(p(·|d))− H(π)− (p(·|d)− π)T∇H(π)

is the Bregman divergence associated with the convex function H and where

∂

∂p(θ|d)
∂

∂p(θ′|d)H(p(·|d)) = k(θ, θ′, p(·|d))
p(θ|d)p(θ′|d) . (1.2)

The matrix k is called the information cost matrix and characterizes the comple-

mentarities and substitutabilities in acquiring information about different states.

It is positive semi-definite, symmetric, and its rows sum to zero. Given experi-

ment p, there is complementarity in learning about distinct states θ and θ′ when

k(θ, θ′, p(·|d)) is negative and substitutabilities when it is positive; when θ = θ′ it is

nonnegative and measures the difficulty of learning about state θ.

For any cost function in this class, its Hessian is given by (see section A.1.6 for

the derivation)
∂2c(p)

∂p(d|θ)∂p(d|θ′) = p(d)
k(θ, θ′, p(·|d))
p(d|θ)p(d|θ′) ,

and 0 otherwise. Substitution into (1.1), the expression for γ, gives

γ(d, θ) = − 1
π(θ) ∑

θ′

∂2c(p)
∂p(d|θ)∂p(d|θ′)

λ[d, θ′]

π(θ′)
.

A simple description of optimal contracts

A simple and intuitive form for γ arises when the agent’s information cost matrix k

is given by the inverse Fisher information matrix

k(θ, θ′, p(·|d)) =


p(θ|d)(1− p(θ|d)) if θ = θ′

−p(θ|d)p(θ′|d) if θ 6= θ′
.
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Then the agent’s cost function is expected reduction in Shannon entropy

c(p) = HS(π)− ∑
d∈D

p(d)HS(p(·|d)),

where HS denotes Shannon entropy, defined for each q ∈ ∆(Θ) by

HS(q) = − ∑
θ∈Θ

q(θ) log q(θ).

Then

γ(d, θ) = ∑̄
θ

λ[d, θ̄]

p(d)
− λ[d, θ]

p(d|θ)π(θ)

and so the optimal contract has the following simple description:

• Decision d penalty/reward: γ̂(d) = ∑θ̄
λ[d,θ̄]
p(d) ;

• Indexed output: yI = y− β/α∗ where β(θ) = min{α∗y(d, θ)− γ̂(d) : d ∈ D};

• Piece rate: α∗ ∈ [0, 1].

Here we assume the liability limits are implicitly understood: if the sum of promised

payments falls outside the allowed range, the actual payment is the closest liability

limit.

Notice that the decision d penalty/reward depends on the number of states in

which liability limits bind following decision d. When the agent’s liability limit binds

λ[d, θ] > 0 which pushes the decision d transfer in the direction of a punishment;

when the principal’s liability limit binds λ[d, θ] < 0 which pushes the decision d

transfer in the direction of a reward. The magnitude of the multiplier indicates the

cost to the principal of having the liability limit bind.

One can see from Expression (1.2) that we recover the same contract form as

when the agent’s cost function is expected reduction in Shannon entropy provided
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the information cost matrix is of the form

k(θ, θ′, p(·|d)) = p(θ|d)g(θ′, p(·|d)) + 1{θ′=θ}h(θ, p(·|d))

for some functions f and g. However, from this form it is straightforward to show

(using symmetry of the information cost matrix and that its rows sum to zero)

that the cost function is necessarily proportional to expected reduction in Shannon

entropy.

1.3.6 Multiple periods

In this section we study a multi-period version of our model in which the static

contracting problem arises each period. Output and contracts now depend on

histories of decisions and states, and the prior is a distribution over sequences of

states.

Formally: there are a finite number of periods t = 1, 2, · · · T, a finite number

of states Θ one realizing each period, and a finite number of decisions D one

being chosen each period. Output y :
⋃T

t=1 Dt × Θt → R depends on histories

of decisions and states (dt, θt) ∈ Dt × Θt; output y(dt, θt) is delivered at time t

immediately following history (dt, θt). A contract b :
⋃T

t=1 Dt × Θt → R follows

the same conventions as output but represents payments to the agent. The set

of feasible contracts B are those satisfying the principal’s and agent’s liability

limits 0 ≤ b(dt, θt) ≤ y(dt, θt) for all (dt, θt) in
⋃T

t=1 Dt × Θt. An experiment is

now a set of signals X and for each history (dt−1, θt−1) a collection of probability

distributions {p(·|dt−1, θt−1, θ)}θ∈Θ ⊆ ∆(X) over the signals. A decision rule f : X×⋃T−1
t=1 Dt ×Θt → ∆(D) maps signals at each history (dt−1, θt−1) to randomizations

over decisions. It is clear that we can again normalize the experiment and decision

rule by applying the arguments of section 1.2: p denotes the experiment and decision
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rule (D, {p(·|dt−1, θt−1, θ)}θ∈Θ, f ) in which f maps signals in D to the degenerate

distribution on the corresponding decision.

The set of feasible experiments E is the set of all experiments such that for all

histories (dt−1, θt−1) the cost of the period t experiment p(·|dt−1, θt−1, ·) is less than

the agent’s capacity at this history k(dt−1, θt−1) ∈ R. We also allow the agent’s cost

function to depend on the history of decisions and states; thus the cost of the period

t experiment following history (dt−1, θt−1) will be denoted c(p|dt−1, θt−1).

The preferences of the principal and agent are given by the discounted sum of

their per period utilities (as defined in the static model) discounted geometrically

by discount factors δP, δA ∈ [0, 1] and the prior is given by conditioning the belief

π ∈ ∆(ΘT) on the past history of states (this belief could also be made to depend on

the past history of decisions, in which case that would also be conditioned upon).

Let vP(dt, θt) denote the principal’s continuation payoff at history (dt, θt) and let

vA(dt, θt) denote the agent’s continuation payoff at history (dt, θt). The principal’s

and agent’s utilities may be written recursively as Ep[y + δPvP − b|dt−1, θt−1] and

Ep[b + δAvA|dt−1, θt−1]− c(p|dt−1, θt−1).

We can now apply the reasoning of Proposition 1, 2, and 3 to the problem of de-

signing the period t contract payoffs following history (dt−1, θt−1) (see section A.1.5

for the derivation) to obtain:

b(dt, θt) = α∗(dt−1, θt−1)(y(dt, θt) + δPvP(dt, θt))− β(dt−1, θt)− γ(dt, θt),

where α∗(dt−1, θt−1) in [0, 1] is defined as in Proposition 2 and

γ(dt, θt) =
1

π(θ|θt−1) ∑
d′,θ′

∂2c(p|dt−1, θt−1)

∂p(d|dt−1, θt−1, θ)∂p(d′|dt−1, θt−1, θ′)
φ[dt−1, d′, θt−1, θ′],

φ[(dt−1, d′), (θt−1, θ′)] = p(d|dt−1, θt−1, θ′)(1− ξ[dt−1, θt−1])− λ[dt, θt−1, θ′]

π(θ′|θt−1)
.
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As in the static model, for a second-best contract the agent’s liability limit binds in

each state so that

β(dt−1, θt) = min{α∗(dt−1, θt−1)(y(dt, θt) + δPvP(dt, θt))− γ(dt, θt) : d ∈ D}.

The decision-dependent transfer punishes decisions that are likely to make the

current period’s liability limits bind; now, though, the liability limits might bind

due to variations in the principal’s continuation payoff. For second-best contracts,

the state-dependent transfer again plays an indexing role so that the agent’s liability

limits bind in each state; the difference now is that it indexes output and the agent’s

continuation payoff. The fraction of output paid to the agent again reflects his

capacity at each history.

1.4 Discussion

1.4.1 Debt and equity

Our model describes interaction between an entrepreneur and investor in which

the investor’s role is to provide funding and the entrepreneur’s job is to acquire

information and take a decision. In the simplest case, when the agent’s information

cost is proportional to expected Shannon entropy reduction, our model predicts that

y(d, θ)− b(d, θ)

= min{y(d, θ), (β(θ) + γ̂(d))/α∗}+ (1− α∗)max{0, y(d, θ)− (β(θ) + γ̂(d))/α∗}.

Thus, the payoffs of the project are split into three pieces. A debt of (β(θ)+ γ̂(d))/α∗

and a 1− α∗ : α∗ split between investor and entrepreneur of equity max{0, y(d, θ)−

(β(θ) + γ̂(d))/α∗}.
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Debt. The debt’s face value is

β(θ) + γ̂(d)
α∗

.

The state-dependent transfer β corresponds to indexation of the debt (certain classes

of bonds exhibit this feature, their coupon rate being a reference rate plus a quoted

spread). The decision-dependent transfer γ̂ corresponds to a debt covenant, auto-

matically increasing debts following a course of action that risks bankruptcy.

Equity. Debt is repaid first. What remains is equity, which is split between the

investor and entrepreneur. Fraction α∗ remains inside the firm to motivate work;

additional equity kept inside has no effect since capacity constraints bind, so it used

outside the firm to raise capital.

Debt vs. equity. A capacity constrained entrepreneur first sells equity since it does

not distort his inventives. After a certain amount of equity is issued his capacity

constraint will stop binding. If, before this point, the investor receives his required

return, entrepreneur effort is first-best. Debt is issued only if more capital is needed.

1.4.2 Restricted investment contracts

In [13], Carroll studies a principal-agent problem of information acquisition where

the principal does not know all experiments or experiment costs available to the

agent. His principal ranks contracts according to their minimum expected payoff

among all experiments and experiment costs including a known set. He shows that

the optimal contract is a restricted investment contract: the set of decisions available

to the agent is restricted and for unrestricted decisions the agent is paid a fraction

of output less a state-dependent transfer.
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Carroll’s result assumes that for each convex combination of decisions there is

a decision that dominates the combination: for each t ∈ [0, 1] and d, d′ ∈ D there

is a decision d′′ such that y(d′′, θ) ≥ ty(d, θ) + (1− t)y(d′, θ) for all θ ∈ Θ. With a

finite number of decisions this assumption implies that there is a dominant decision:

a decision d′ such that y(d′, θ) ≥ y(d, θ) for all d ∈ D, θ ∈ Θ. This eliminates the

need for information acquisition. Carroll suggests that the set of decisions may

be replaced by convex combinations of decisions. This would be problematic in

our setting because a randomization over decisions is not verifiable (which for

a restricted investment contract would be important to determine if the selected

decision is restricted). Thus in Carroll’s model the agent makes a recommendation

and the principal is left to take the decision.

To compare our results to Carroll’s, it is useful to think of his restriction on

decisions as a payment γ : D×Θ→ R that sufficiently punishes restricted decisions

that they are left unchosen and is zero for unrestricted decisions. Thus, Carroll

obtains the contract b = αy − β − γ where α ∈ [0, 1], β : Θ → R is defined

as β(θ) = min{αy(d, θ) − γ(d, θ) : d ∈ DUR}, and γ : D × Θ → R is defined

to be 0 on unrestricted decisions DUR and such that b(d, θ) = 0 for restricted

decisions D \ DUR. In contrast to this, we obtain the contract b = αy − β − γ

where α = α∗ ∈ [0, 1] (as defined in Proposition 2), β : Θ → R is defined as

β(θ) = min{αy(d, θ)− γ(d, θ) : d ∈ D}, and γ : D×Θ→ R is given by

γ(d, θ) =
1

π(θ) ∑
d′,θ′

∂2c(p)
∂p(d|θ)∂p(d′|θ′)

(
(1− ξ)p(d′|θ′)− λ[d′, θ′]

π(θ′)

)
,

where λ[d, θ] and ξ are dual variables for the liability limits 0 ≤ b(d, θ) ≤ y(d, θ)

and participation constraint. When our cost function is proportional to expected

Shannon entropy reduction, γ(d, θ) = ∑θ′ λ[d, θ′]/p(d)− λ[d, θ]/p(d|θ)π(θ) which

conditional on liability limits not binding does not depend on the state.
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In both sets of results γ punishes decisions that are likely to induce liability

limits to bind. In Carroll’s model, γ either rules out decisions or does nothing. In

our model γ is less absolute: decisions are punished in proportion to how often and

at what cost they induce binding liability limits. In both models the state-dependent

transfers serve a normalizing role, setting the minimum contract payment in each

state to zero.

Finally, the strength of the agent’s incentives is measured by α in both Carroll’s

results and our own. Carroll does not discuss comparative statics for this parameter,

but we are able to show in our model that it is increasing in the agent’s capacity. It

would be interesting to see whether a similar comparative static holds in Carroll’s

model, perhaps in terms of enlargements in the set of experiments and costs known

to be available to the agent.

1.4.3 Parallel literatures

Acquiring information may be socially destructive. Effort spent may be wasteful, as

in Hirshleifer [32] and Spence [53], or it may lead to trade-destroying information

asymmetry, as in Akerlof [1] and Rothschild and Stiglitz [48]. These forces affect

contract design. For example, in a model where an agent must report a project’s

outcome, Townsend [54] finds that debt contracts are optimal because they efficiently

ration monitoring costs. Motivated by the second force, the same conclusion

is drawn by Dang, Gorton, and Holmström [17] and Yang [57]: debt contracts

are optimal to securitize state-dependent cash-flows because they avoid trade-

destroying information asymmetry between the buyer and seller. Other examples

include [15, 16, 58].

Recently, a theoretical literature has emerged that studies dynamic contracts

that incentivize experimentation (e.g. [7, 26, 28, 29, 34, 40]). This literature often
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uses results from the strategic experimentation literature (e.g. [9, 38]) but typically

specializes to the case of a one or two armed bandit problem. An exception

is Chassang [14] who considers a very general model of dynamic information

acquisition. He shows that limited liability becomes approximately non-binding

with a long enough time horizon and he uses this to characterize a class of contracts

that work well in a variety of environments.

Sims [51, 52] popularized the use of expected reduction in Shannon entropy as a

cost function to model bounded rationality; although its roots in economics were

much earlier, for example in [2, 3], and before that in the statistical decision theory

literature (e.g. [20, 39]). Recent efforts have aimed to derive behavioral founda-

tions for different forms of costly information acquisition and to test popular cost

functions using state-dependent stochastic choice data obtained from experiments

(e.g. [10, 11, 31, 45, 56]).

1.5 Summary

We have studied contracting for the production of an experiment and provided

necessary and sufficient conditions for optimal contracts to take an intuitive linear

form. All Pareto optimal contracts pay a fraction of output, a state-dependent trans-

fer, and—with information costs proportional to expected reduction in Shannon

entropy—a decision-dependent transfer. For a general cost function, our character-

ization shows how complementarities in the cost of receiving different signals in

different states affects the design of the optimal contract. In terms of these contracts,

we have provided explanations for the strength of incentives, the role of indexing,

and the role of punishments and rewards observed in actual contracts.

24



Chapter 2

Capacity Constraints in

Principal-Agent Problems

2.1 Introduction

A widespread economic situation is the relation between a principal and an agent

(see [4]). In the hidden action version of this problem an agent takes a costly action

that affects the welfare of a principal. The relation between a physician and her

patient, potential parties of a tort, investor and entrepreneur, and landlord and

tenant are prominent examples. A feature of this relation is the set of actions

available to the agent—the ways the agent can influence the distribution over

outcomes. This set is determined by constraints on the environment (constraints on

resources, technological know-how, etc). For example, a physician is constrained by

the state of medical knowledge at the time she must make a diagnosis as well as

by the amount of time and hospital resources she can devote to her patient. How

should incentives change for the agent with only half the time to perform her task

or after new technology expands the actions available to her?
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This chapter addresses an aspect of this question. The agent’s action is modeled

as a distribution over an unknown state whose realization determines outcomes;

attached to each distribution is the cost the agent incurs if he wishes to implement it;

and the agent’s choice is constrained to a feasible set of such distributions. We focus

on modifying this feasible set via a capacity constraint capping the maximum cost of

effort. Our main result applies when the principal and agent are risk-neutral. Here

we obtain a relationship between optimal contracts with and without the capacity

constraint.

To understand the result, imagine an optimal contract for which the agent’s

capacity constraint binds—that is, if the cap on effort cost were slightly relaxed the

agent would change action. What relation does this contract bear to the optimal

contract obtained after doing away with the capacity constraint? What we show is

that imposing the capacity constraint is equivalent to scaling down output by some

factor α∗ in [0, 1]. That is, we find α∗ such that given a mapping from output to

optimal contracts for the problem without a capacity constraint, an optimal contract

in the problem with a capacity constraint may be obtained by applying this mapping

to a fraction α∗ of output. We show that α∗ is increasing in the agent’s capacity.

Thus, expanding the set of feasible distributions by removing a capacity constraint

increases the strength of incentives.

The proof goes as follows. Starting at 1, imagine scaling down output by a

factor α until the capacity constraint stops binding for at least one optimal contract.

Denote this value α∗. For all α in [α∗, 1] we show that the set of optimal contracts is

the same and for α∗ there is an optimal contract that remains optimal after doing

away with the capacity constraint.

Subject to optimal contracts existing, we do not impose a particular structure

on the sets of feasible distributions and feasible contracts; the agent’s cost function
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need only be continuous. This accommodates a wide range of restrictions on

allowable contracts (e.g. liability limits, monotonicity, inability to discriminate

between collections of states, etc) and a wide range of restrictions on how the agent

can influence the distribution over states.

We may apply our result to the literature on capital structure (e.g. [43]; see [44]

for a review article). A sector of that literature seeks to derive capital structure from

agency between investors and those running firms (e.g. [36]). A common result is

that optimality requires the firm to raise capital exclusively through the sale of debts

(see [35]). Puzzling, then, that firms sell equity, too. An application of our result

resolves this puzzle: the optimal contract under a capacity constraint is debt and a

fraction 1− α∗ of equity, the remaining equity kept inside the firm to motivate those

running it.

2.2 Framework

Output depends on the realization of one among a set of states Ω as described by

an output function y : Ω → R. An agent has the ability to choose the distribution

p ∈ ∆(Ω). A principal hires the agent to choose this distribution but cannot verify

the choice. The state is verifiable and the agent is given incentives to choose one

distribution or another with a contract

b : Ω→ R.

A profile (b, p) consists of a contract b and distribution p. The agent’s preferences

over profiles (b, p) are represented by the expected value of contract payments less

a distribution cost:

Ep[b]− c(p) =
∫

b(ω)dp(ω)− c(p).
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The function c : ∆(Ω)→ R is the agent’s cost function. The principal’s preferences

over profiles (b, p) are represented by the expected value of output less contract

payments:

Ep[y− b] =
∫
(y(ω)− b(ω))dp(ω).

Contracts are restricted to belong to a set B of feasible contracts. Distributions are

restricted to belong to a set D of feasible distributions.

The agent faces a capacity constraint which means that included in the restrictions

that define the set of feasible distributions D is the condition that the cost of each is

no more than the agent’s capacity k ∈ R:

c(p) ≤ k.

Profile (b, p) is feasible if the contract b is feasible, the distribution p is feasible,

and this profile is the agent’s most preferred profile among those consisting of

contract b and any feasible distribution. Profile (b, p) may be improved upon if there

exists a feasible profile that makes either the agent or principal better off without

making the other worse off. Pareto optimal profiles are those that are feasible and

cannot be improved upon.

2.3 Examples

Many principal-agent setups fit this framework.

The textbook principal-agent problem

In the textbook model, the set of feasible distributions D is parametrized by

effort e ∈ Rn and the distribution over output corresponding to effort e is denoted
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p(·|e). The agent’s cost function maps effort e to its cost c(p(·|e)). The set of feasible

contracts B is often defined by liability limits.

Information acquisition

One may be more explicit about how the agent influences the distribution

over states. In problems of information acquisition a state ω is taken to be a

decision d chosen by the agent and a state of nature θ that the agent cannot

influence but can acquire information about. The agent faces a statistical decision

problem. He acquires information about the state of nature θ with an experiment

(X, {q(·|θ)}θ∈Θ) that consists of a set of signals X and a collection of probability

distributions {q(·|θ)}θ∈Θ ⊆ ∆(X) over signals, and he chooses a decision rule

f : X → ∆(D), mapping signals to randomizations over decisions. Given a prior

π on the states of nature, an experiment and decision rule induce a distribution

p(·|π, X, {q(·|θ)}θ∈Θ, f ) ∈ ∆(Ω) over states.

Multiple periods

The distribution over states may arise from the agent’s behavior in multiple

periods. One could take the states Ω as the set of terminal histories (θ1, θ2, · · · , θT)

where each θt, t = 1, 2, · · · , T is information revealed to the agent at time t. For each

history (θ1, θ2, · · · , θt−1) the agent chooses a distribution q(·|θ1, θ2, · · · , θt−1) over θt.

This induces a distribution p(·|q) ∈ ∆(Ω).

2.4 Result

Consider a perturbation of our model, parametrized by α ∈ [0, 1], in which output

y in the principal’s objective function is replaced by αy (the feasible contracts,
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distributions, and profiles stay the same). Denote the set of Pareto optimal profiles

to the perturbed problem by P(α). Further denote by P(α, r) the subset of P(α)

in which the agent receives the lowest level of utility among the elements of P(α)

that is at least equal to r.

Proposition 4. Let (b, p) ∈P(1, r) and define α∗ ∈ [0, 1] as

α∗ = sup
{

α ∈ [0, 1] : c(p′) < k for all (b′, p′) ∈P(α, Ep[b]− c(p))
}

.

Then, for each α ∈ [α∗, 1],

P(α, Ep[b]− c(p)) ⊇P(1, r),

and, conversely, if (bα, pα) ∈P(α, Ep[b]− c(p)) is such that c(pα) = k, then

(bα, pα) ∈P(1, r).

If the agent’s cost function is continuous, then there is a Pareto optimal profile in

P(α∗, Ep[b]− c(p)) that solves the problem obtained by removing the capacity constraint

from the perturbed problem for α∗.

The point is that all solutions P(1, r) to the unperturbed problem (a prob-

lem in which the capacity constraint might bind) may be obtained as solutions

P(α∗, Ep[b]− c(p)) to the perturbed problem for α∗ (and for at least one solution

of this problem the capacity constraint does not bind).
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2.5 Proof

By assumption (b, p) ∈ P(1, r). Let α ∈ [0, 1) (the argument for α = 1 is obvious)

and (bα, pα) ∈P(α, Ep[b]− c(p)). We will show:

Ep[y]− Epα [y] ≥ Ep[b]− Epα [bα] ≥ α(Ep[y]− Epα [y]) ≥ 0, (2.1)

c(p)− c(pα) ≥ Ep[b]− Epα [bα]. (2.2)

Then, if α ≥ α∗ we may assume that c(pα) = k, and the inequalities in A.3 give

c(p) = k and Ep[b] = Epα [bα], and so the inequalities in A.2 give Ep[y] = Epα [y].

Therefore (b, p) ∈ P(α, Ep[b] − c(p)) (i.e., P(α, Ep[b] − c(p)) ⊇ P(1, r)) and

(bα, pα) ∈P(1, r).

To obtain the inequalities in A.2, note Ep[y− b] ≥ Epα [y− bα] and Epα [αy− bα] ≥

Ep[αy− b]. The first and second inequalities of A.2 are rearrangements of these;

and, from this, the last emerges because α ∈ [0, 1). Inequality A.3 follows from

rearrangement of the participation constraint Epα [bα]− c(pα) ≥ Ep[b]− c(p).

Finally, we show there is a Pareto optimal profile in P(α∗, Ep[b]− c(p)) that

solves the problem obtained by removing the capacity constraint from the perturbed

problem for α∗. Let α1, α2, · · · be a sequence in [0, α∗) converging to α∗ and let

(b1, p1), (b2, p2), · · · be a sequence of profiles with (bi, pi) ∈ P(αi, Ep[b] − c(p)),

i = 1, 2, · · · . Since the agent’s cost function is continuous the set of feasible profiles

yielding the agent at least utility Ep[b] − c(p) is compact. Therefore, there is a

subsequence (bn1 , pn1), (bn2 , pn2), · · · converging to some (b′, p′). Continuity of the

principal’s objective function implies (b′, p′) ∈ P(α∗, Ep[b]− c(p)). Continuity of

the agent’s cost function together with the fact that c(pi) < k (because αi < α∗) for

i = 1, 2, · · · implies (b′, p′) solves the problem obtained by removing the capacity

constraint from the perturbed problem for α∗.
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2.6 Application to a theory of capital structure

Suppose that in the absence of a capacity constraint all Pareto optimal contracts

correspond to debt contracts

y(ω)− b(ω) = min{y(ω), F},

for some F ≥ 0, so that b(ω) = max{0, y(ω)− F}.

By Proposition 4, if the agent’s cost function is continuous, then provided P(1, r)

is nonempty at least one of its elements (b, p) has the form b(ω) = max{0, α∗y(ω)−

F} = α∗max{0, y(ω)− F/α∗}.

The corresponding payoff for the principal is a debt of F/α∗ and a fraction 1− α∗

of the remaining equity:

y(ω)− b(ω) = min{y(ω), F/α∗}+ (1− α∗)max{0, y(ω)− F/α∗}.

By its definition, α∗ increases with agent capacity. Thus, as agent capacity increases,

more debt and less equity is issued.

Note that our result does not assume a particular form for the feasible contracts.

For example, we could apply our result in a setting where contracts are restricted to

be monotonically increasing in output with a slope less and one. Our result also

does not assume the form of the feasible set of distributions so we could also apply

it if the set distributions were restricted to satisfying a monotone likelihood ratio

property. Innes [35] uses both assumptions in deriving debt contracts as optimal

and thus we can apply our result to his model.
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2.6.1 Live-or-Die Contracts

Dropping contract monotonicity, Innes [35] finds that the resulting optimal contract

corresponds to a live-or-die security:

y(ω)− b(ω) =


y(ω) if y(ω) < l

0 if y(ω) ≥ l
.

Then

b(ω) =


0 if y(ω) < l

y(ω) if y(ω) ≥ l
.

The argument applied to the debt and equity case applies here too. In the capacity

constrained problem if output is α∗ of itself then (i) there is an optimal contract

such that the capacity constraint does not bind and (ii) this contract is optimal for

in the original problem (the problem with unaltered output). Therefore the agent’s

contract will have the form shown here but with output replaced by a fraction α∗ of

itself. The resulting contract form for the principal is

y(ω)− b(ω) =


y(ω) if y(ω) < l

(1− α∗)y(ω) if y(ω) ≥ l
.

Under a capacity constraint the principal retains the fraction 1− α∗ of output in the

“die” region of the live-or-die contract since he only needs to exhaust the agent’s

capacity, and this can be done with the fraction α∗ of output.

2.7 Discussion

The capital structure irrelevance theorems of Modigliani and Miller [43] state that the

market value of a firm is invariant to capital structure because buyers of securities

33



may borrow or lend making it as if they bought from a firm with any other capital

structure.

Many theories now exist to explain why some capital structures are preferred to

others (see [44] for a review). These theories relax the assumptions of the Modigliani

Miller theorems: the absence of borrowing constraints and taxes, that only debt and

equity may be issued, or that the cash flows of the firm are independent from its

capital structure.

My results relate to the agency theory of capital structure in which capital

structure determines the incentives of the owners of a firm and therefore its cash

flows. This point of view was first taken in [36] by Jensen and Meckling who

considered a firm’s incentives for issuing debt versus equity. Debt is good because

it leaves intact entrepreneur incentives whenever firm profits exceed the face value

of debt. Equity is bad because it scales down the entrepreneur’s incentives: an

entrepreneur that sells a 5 percent equity stake will only exert effort to the point

where the marginal cost of additional effort is equal to the marginal benefit of an

additional 95 cents, not the full 100 cents their additional effort generates. After

observing this, Jensen and Meckling ask why firms issue equity at all?

An ingenious entrepreneur eager to expand, has open to him the oppor-
tunity to design a whole hierarchy of fixed claims on assets and earnings,
with premiums paid for different levels of risk. Why don’t we observe
large corporations individually owned with a tiny fraction of the capital
supplied by the entrepreneur in return for 100 percent of the equity and
the rest simply borrowed?

Their answer was that too much debt encourages the entrepreneur to take greater

risks in order to obtain the high payoffs where their incentives lie (the alternative

being the minimum payoff implied by limited liability). Thus, equity is issued

because at some point the harm caused from the risk taking induced by additional

34



debt is worse than the incentive dilution caused by issuing more equity.

My results suggest an alternative reason why firms issue equity: why leave the

entrepreneur with 100 percent equity when a lesser fraction will do? That is, if

the entrepreneur is capacity constrained, then selling a certain amount of equity

does not change their incentives and so is the best way to initially raise capital. At

some point the capacity constraint stops binding. If at this point additional capital

is necessary, then it becomes optimal to issue debt.

2.8 Conclusion

We have shown that in solving for optimal incentives imposing a capacity constraint

on the agent is equivalent to scaling down output by a factor α∗ ∈ [0, 1] and that

this factor is increasing in the agent’s capacity. When applied to models that yield

debt as the optimal contract a capacity constraint implies that the optimal contract

becomes a debt and a fraction 1− α∗ of equity. This contributes to the literature

that seeks to explain capital structure from a principal-agent relationship between

investors and those running the firm.

It would be interesting to find an analogue of our results for when the agent is

risk-averse or when the feasible set of actions for the agent changes in a way other

than through a capacity constraint.
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Chapter 3

Core Equivalence with Large Agents

Competitive equilibrium assumes price taking behavior. A long line of research dat-

ing back to Edgeworth [23] has sought to provide a foundation for this assumption

by constructing models in which the ability to interact strategically necessarily leads

to a competitive outcome (e.g. [19, 5, 25]).

Debreu and Scarf [19] showed that every core allocation is eventually competitive

as the size of the economy increases through replication, and Aumann [5] showed

that if one models the set of agents as an atomless measure space, then the core and

competitive allocations coincide. Subsequent literature (e.g. [50, 24]) has studied

settings in which core allocations are necessarily competitive even though the

underlying set of agents contains some atoms (i.e., large agents, or groups of agents

that act collusively).

We add to this literature by constructing a class of economies in which a large

agent exploits the rest of the economy in such a way that the resulting core allocation

cannot be decentralized with prices.
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3.1 Framework

The economy. Our model of an economy consists of a set of consumers each of

whom possess a commodity bundle and hold a preference relation over the set of all

commodity bundles. We call the space R` the commodity space, where ` refers to the

number of commodities. A commodity bundle is an element of the commodity space.

A preference relation, denoted �, is a linear ordering1 over the commodity space and

induces a strict preference relation (denoted �) in the following way: If x and y are

arbitrary commodity bundles, then x � y if and only if x � y and not y � x. The

set of all such preference relations is P . The relation x � y is read “x is preferred

or indifferent to y.”

The set of consumers in our economy is T. Let (T, T , µ) be a measure space.

An allocation is an integrable function from T into the non-negative orthont of the

commodity space. There is a fixed allocation, denoted ω, that is called the initial

allocation; ω(t) is called the initial endowment of consumer t. An allocation x is said

to be feasible if
∫

x =
∫

ω.

Each consumer, represented by an element of T, has a preference relation defined

by a preference function �: T →P . We say that �: T →P is a measurable preference

function if, given arbitrary allocations x and y, the set {t ∈ T : x(t) �t y(t)} is

measurable.

Definition 1. An economy, denoted E , is a triad ((T, T , µ), ω,�). It consists of a

positive and finite measure space (T, T , µ), an initial allocation ω : T → R`
+, and a

measurable preference function �: T →P .

Let (T, T , µ) be a measure space. An atom is defined as a non-null element of

the σ-algebra with the property that any subset also belonging to the σ-algebra is of

1A complete, transitive, and reflexive relation.
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equal or zero measure. That is, A ∈ T is an atom if for all B ⊆ A, where B ∈ T , we

have µ(B) = µ(A), or otherwise µ(B) = 0. A measure space with atoms is called

atomic. A measure space without atoms is called atomless.

Core and competitive equilibrium. Fix an economy E . A price system, denoted p,

is a vector in R`
+.

Definition 2. A competitive equilibrium (p, x) is a price system p and an allocation x

such that x is feasible, and for µ-almost all t in T

1. p · x(t) ≤ p ·ω(t) and

2. y �t x(t) implies p · y > p ·ω(t).

If (p, x) is a competitive equilibrium, then p is called an equilibrium price system

and x is called a competitive allocation. The set of competitive allocations is denoted

W(E ).

The second equilibrium concept we consider is called the core. A coalition is any

set S in T with positive measure. We say that an allocation x is blocked by a coalition

S if there exists an allocation y such that
∫

S y =
∫

S ω, and y(t) �t x(t) for all t in S.

Definition 3. The core of E is the set of feasible allocations that are not blocked by any

coalition.

The core is denoted C(E ).

Non-trivial linear economies. We call an economy linear if every consumer’s

preference relation can be represented by a linear function ut : R`
+ → R defined by

ut(x) = at · x, where at is a vector in R`
++ such that ∑`

i=1 ati = 1. An allocation for

an economy is called Pareto optimal if the coalition consisting of all consumers does
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not block the allocation. We call an economy non-trivial if the initial allocation is not

Pareto optimal.

Our first result provides a motivation for considering non-trivial economies.

Recall that we want to characterise economies for which the core does not coincide

with the set of competitive allocations. It happens that (under fairly weak conditions

on preferences) if the initial endowment is Pareto optimal then the core coincides

with the competitive allocations. Thus we exclude these economies from the analysis.

Proposition 5. Let E = ((T, T , µ), ω,�) be an economy satisfying

1. Monotonicity: let x and y be arbitrary commodity bundles. Then x > y2 implies

x �t y;

2. Continuity: let x be an arbitrary commodity bundle. The sets {z ∈ R`
+ : x �t z}

and {z ∈ R`
+ : z �t x} are open;

3.
∫

T ω(t) >> 0 (i.e. every commodity exists); and

4. E has at most finitely many atoms and each atom has convex preferences.

If ω is Pareto optimal, then C(E ) = W(E ).

Proof. Consider the allocation f : T → R`
+ assigning almost all agents a commodity

bundle preferred or indifferent to their initial endowment and a non-null set of

agents a commodity bundle preferred to their initial endowment. Let F be the set of

integrals of all such allocations. Let I be the set of integrals over the atomless part

of the economy of all such allocations. Let G be the set of integrals over the atomic

part of the economy of all such allocations. We have that F = I + G. By Lyapunov’s

convexity theorem I is convex. By the convexity of each atom’s preferences and the

2Let x and y be arbitrary points in R`. We write x > y to mean that x 6= y and xi ≥ yi for all
i = 1, ..., `.
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assumption that there are finitely many atoms G is convex. Thus F is convex as

the sum of two convex sets. F is disjoint from
∫

ω because ω is Pareto optimal. By

Minkowski’s separating hyperplane theorem there exists a price system p such that

x ∈ F implies p · x ≥ p ·
∫

ω. We claim (p, ω) is a competitive equilibrium. Suppose

not. Then there exists a non-null set of agents S and a commodity bundle y(t) for

each agent in S such that y(t) �t ω(t) and p · y(t) ≤ p ·ω(t). Define z : T → R` by

z(t) =

 ω(t) if t ∈ T \ S,

y(t) if t ∈ S.

We have p ·
∫

z ≥ p ·
∫

ω. If this holds with equality, then for almost all agents in

S we have p · y(t) = p · ω(t). By continuity y(t)− (ε, ...ε) �t ω(t) for sufficiently

small ε > 0. Define

z̄(t) =

 ω(t) if t ∈ T \ S,

y(t)− (ε, ...ε) if t ∈ S.

By monotonicity and linearity of the integral we have p ·
∫

z̄ < p ·
∫

ω, contradicting

that
∫

z̄ belongs to F. Thus

p ·
∫

z > p ·
∫

ω

which implies p ·
∫

S y > p ·
∫

S ω, contradicting p · y(t) ≤ p · ω(t) for all t ∈ S.

Therefore (p, ω) is a competitive equilibrium.

We now apply the argument of [5] to show that every core allocation is a

competitive allocation. For any feasible allocation x let Γx
t be the set of all commodity

bundles z in the commodity space such that z+ω(t) �t x(t) and let Γx be the convex

hull of the union of each Γx
t , where the union is taken over any measurable set U

such that µ(T \U) = 0. As in [5] x is a competitive allocation if and only if the

origin does not belong to Γx. Now, let x be a core allocation. Since x(t) �t ω(t)
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µ-a.e. we have Γx
t ⊆ Γω

t and thus Γx ⊆ Γω. Since ω is a competitive allocation the

origin does not belong to Γω, and thus also not to Γx. Hence x is a competitive

allocation.

Unbalanced economies. Two consumers are said to be of the same type if they

have the same preference relation and the same initial endowment. An economy

is said to be an n-type economy if the set of consumers can be partitioned into n

non-null sets, each containing exactly those consumers of a particular type. The

economy is called unbalanced if an element of this partition consists of a single atom,

i.e. there is an atom whose type is not shared by any other non-null set of agents.

3.2 Analysis and results

Our main result is:

Theorem. Let (T, T , µ) be a measure space and a1 and a2 distinct vectors in R`
++ such

that ∑`
i=1 ati = 1. Consider the set of two-type non-trivial linear economies on the measure

space (T, T , µ) such that the preference relation of type i consumers is represented by

ui(x) = ai · x. If for all such economies E we have C(E ) ⊆ W(E ), then (T, T , µ) is

atomless.

Equivalently:

Theorem. Let E be a two-type unbalanced non-trivial linear economy. There exists a

non-competitive core allocation for E .

The basic idea of the proof can be summarised as follows. Let E be a two-type

unbalanced non-trivial linear economy. We first show that if one restricts attention

to a certain class of allocations, then E is equivalent to a non-trivial linear economy

41



with two atoms. We then show that for any non-trivial linear economy with two

atoms there exists a core allocation that is not competitive. Finally we show that

this allocation is also a non-competitive core allocation for E .

Interpretation of the main theorem. Our main result is that for every two-type

unbalanced non-trivial linear economy the core is a strict superset of the set of

competitive allocations. There are two ways to interpret this result. The first is

mathematical and the second economic.

The mathematical interpretation is that our result provides a necessary and

sufficient condition for a positive and finite measure space to be atomless. Suppose

we are given a positive finite measure space and distinct vectors a1 and a2 in R`
++

such that ∑`
i=1 ati = 1. Consider the set of two-type non-trivial linear economies

on this measure space such that the preference relation of type i consumers is

represented by ui(x) = ai · x. A necessary and sufficient condition for this measure

space to be atomless is that all such economies have the property that the core is a

subset of the set of competitive allocations.

The economic interpretation is as follows: Our result shows that given any

positive and finite measure space there exists economies on the measure space such

that core equivalence does not hold. The presence of a large agent of a unique type

in the economy can cause the core equivalence result to break down.

The important condition of the class of economies we identify is that they are

unbalanced: that there is an atom whose type is not shared by any other consumers

in the economy. In [50] core equivalence is obtained only if there are at least two

atoms of the same type. In [24] each atom must be associated with a non-null set

of atomless consumers of the same type. These results require that the economy

not be unbalanced. In an economy with two identical firms we are likely to observe
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intense competition between them, but in an economy with a firm of a unique type

we will observe monopolistic behaviour.

3.2.1 A rescaling lemma

This section presents a result of [42] which we will use to simplify the analysis of

following sections. The basic idea is that we can transform one economy to another

in such a way that the relationship between the core and competitive equilibria

remains fixed. The transformation is attractive because it gives us the freedom to

choose the measure of a finite number of measurable subsets of consumers. When

working with a particular economy we will find it useful to transform the economy

so that certain measurable subsets of consumers are of measure one.

The transformation is also interesting in its own right. It implies that any

economy defines a class of ‘equivalent’ economies, from the point of view of core

equivalence analysis. That is, any property of the core and competitive equilibria

that holds in one economy from the class must hold in all economies of that class.

The transform. Fix a set of consumers T. Let E denote the class of all economies

in which the set of consumers is T and Λ the class of all simple functions λ =

∑n
i=1 λiχGi from the set of consumers to the positive real numbers. Define a mapping

Ξ : E×Λ→ E as follows. For an economy E = ((T, T , µ), ω,�) in E and a simple

function λ in Λ let Ξ(E , λ) be the economy ((T, T , µ̂), ω̂, �̂) in E defined by:

1. ω̂ = λω;

2. �̂t is defined by λ(t)x �̂t λ(t)y if and only if x �t y; and
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3. µ̂ is defined by the equation

µ̂(S) =
n

∑
i=1

µ(S ∩ Gi)

λi

for any S in T .

Notice that µ̂ is a measure on (T, T ). Also, it is clear that if x is an allocation and

λ an element of Λ, then λx is integrable. Thus the mapping is well defined. We

now prove the main result of this section: that the class of economies Ξ(E , Λ) are

equivalent in the following sense.

Lemma 1. Let E be an economy. For any λ in Λ we have:

1. x ∈ C(E ) if and only if λx ∈ C(Ξ(E , λ)), and

2. x ∈W(E ) if and only if λx ∈W(Ξ(E , λ)).

Proof. First it is shown that an allocation x for E is feasible if and only if λx is

feasible for Ξ(E , λ). To see this let x be an allocation for E . Then

∫
λxdµ̂ =

∫
λx

dµ

λ
=
∫

xdµ.

To see that (1) is true let x be a feasible allocation for E . Suppose x can be blocked

by a coalition S. Then there exists an allocation y for E such that
∫

S y =
∫

S ω and

y(t) �t x(t) for all t in S. By the previous observation λy is a feasible allocation for

Ξ(E , λ) and
∫

S λydµ̂ =
∫

S λωdµ̂. By the definition of �̂ we have λ(t)y(t) �̂t λ(t)x(t)

for all t in S. Thus λx can be blocked by S in Ξ(E , λ). The converse holds by

symmetry.

To see that (2) is true let (p, x) be a competitive equilibrium for E . Then for

µ-almost all consumers t in T we have p · x(t) ≤ p · ω(t), and y �t x(t) implying

p · y > p ·ω(t). Since λ(t) is a positive real number p · λ(t)x(t) ≤ p · λ(t)ω(t) µ-a.e.
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By the definition of �̂ it is clear that λ(t)y �̂t λ(t)x(t) implies p ·λ(t)y > p ·λ(t)ω(t)

µ-a.e. Thus (p, λx) is a competitive equilibrium for Ξ(E , λ). Once again the converse

holds by symmetry.

3.2.2 A two-atom economy

This section studies the class of non-trivial linear economies with two atoms. By

Lemma 1 we can assume without loss of generality that the measure of each atom

is one. Consequently the analysis devolves to a simple two consumer economy of

the type studied by Edgeworth. The main result of this section says that if the price

system facing each atom is the vector defining the other atom’s utility function, then

the solution to one of the resulting utility maximisation problems is infeasible with

the resources of the economy.

Preliminary observations. Let E be a non-trivial linear economy with two atoms

(note that such an economy is necessarily two-type and unbalanced.) By Lemma 1

we may assume without loss of generality that the measure of each atom is one.

Denote the atoms A1 and A2. Since the economy is linear each atom’s preference

relation can be represented by a linear utility function ui : R`
+ → R defined by

ui(x) = ai · x where ai belongs to R`
+ for both i = 1 and i = 2 such that ∑`

i=1 ati = 1.

Since the economy is non-trivial ai ∈ R`
++ and a1 6= a2 (for otherwise, ω would be

Pareto optimal.) Fix a price system p and consider the following utility maximisation

problem.

Problem 1.

max
x∈βi(p)

ai · x, where

βi(p) = {x ∈ R`
+ : p · x ≤ p ·ω(Ai)}
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Let x be a commodity bundle. Define the support of x to be

supp x = {l : xl > 0}.

For each Ai, i = 1, 2, define the set of commodities yielding maximum marginal

utility by S(p, ai). Thus

S(p, ai) = {l : al pk ≥ ak pl for all k = 1, ..., `} .

If x∗ is a solution to Problem 1, then it is clear that each atom consumes only

those commodities yielding maximum marginal utility. That is,

Lemma 2. If x∗ is a solution to Problem 1, then supp x∗ ⊆ S(p, ai) for i = 1 and i = 2.

We now prove that if each atom Ai faces prices p = aj with j 6= i, then the set of

commodities that yield maximum marginal utility for each are disjoint.

Lemma 3. S(a2, a1) ∩ S(a1, a2) = ∅.

Proof. Suppose not. Then there exists a commodity l belonging to both S(a2, a1) and

S(a1, a2) so that a1la2k ≥ a1ka2l and a2la1k ≥ a2ka1l for all k = 1, ..., `. This implies

a1la2k = a1ka2l for all k = 1, ..., `.

If a1l = a2l, then a1 = a2, a contradiction. Thus there exists a positive number α, not

equal to one, such that a1l = αa2l. But then a1k = αa2k for all k = 1, ..., ` so that

1 =
`

∑
k=1

a1k = α
`

∑
k=1

a2k = α.

A contradiction.

Decentralization. The main result of this section is that if atoms A1 and A2 each

face a price system defined by the other atom’s utility function, then the solution to
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Problem 1 is infeasible with the total resources of the economy for at least one atom.

Lemma 4. Suppose x∗1 solves Problem 1 for A1 with p = a2 and suppose that x∗2 solves

Problem 1 for A2 with p = a1. Then, for at least one i = 1, 2 we have x∗i 6≤ ω(A1) +

ω(A2).

Proof. Suppose by contradiction that for both i = 1 and i = 2 we have x∗i ≤

ω(A1) + ω(A2). By Lemma 2 we have supp x∗1 ⊆ S(a2, a1) and supp x∗2 ⊆ S(a1, a2).

By Lemma 3 S(a2, a1) ∩ S(a1, a2) = ∅. Thus

supp x∗1 ∩ supp x∗2 = ∅.

Since x∗i ≤ ω(A1) + ω(A2) for both i = 1 and i = 2 we have

x∗1 + x∗2 ≤ ω(A1) + ω(A2).

By Walras’ law a1 · x∗2 = a1 · ω(A2). Since ω is not Pareto optimal there exists

commodity bundles x1 and x2 such that x1 + x2 = ω(A1) + ω(A2), a1 · x1 > a1 ·

ω(A1) and a2 · x2 > a2 ·ω(A2). x1 is affordable since a2 · (x1 + x2) = a2 · (ω(A1) +

ω(A2)) implies

a2 · x1 < a2 ·ω(A1).

Thus a1 · x∗1 > a1 ·ω(A1). Combining these two observations yields

a1 · (x∗1 + x∗2) > a1 · (ω(A1) + ω(A2)),

which contradicts x∗1 + x∗2 ≤ ω(A1) + ω(A2).

3.2.3 Constructing the core allocation

This section studies the class of two-type unbalanced non-trivial linear economies.

The main result of this section is a characterisation of a core allocation for such
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economies.

To begin, fix a two-type unbalanced non-trivial linear economy E . Since E is

unbalanced there is an atom of a unique type. Denote this atom A1. We will call

consumers belonging to A1 type one and consumers belonging to T \ A1 type two.

To simplify notation we denote the initial endowment of a consumer of type i by ωi.

Denote the utility function representing the preferences of a consumer of type i by

ui(x) = ai · x.

It happens that in such an economy there is a core allocation in which all

consumers of type two get a commodity bundle indifferent to their initial commodity

bundle and the atom of type one maximises his utility over the set of feasible

allocations satisfying this constraint. We now construct this allocation. Consider the

following maximisation problem.

Problem 2.

max
(x1,x2)∈X

u1(x1)

X = F ∩W

where

F = {(x1, x2) ∈ R2l
+ : µ(A1)x1 + µ(T \ A1)x2 ≤ µ(A1)ω1 + µ(T \ A1)ω2}

and

W = {(x1, x2) ∈ R2l
+ : u2(x2) = u2(ω2)}.

The main result of this section is the following theorem.

Lemma 5. Let E be a two-type unbalanced non-trivial linear economy. A solution (x∗1 , x∗2)

to Problem 2 exists. The allocation x∗ : T → R`
+ that assigns x∗i to each consumer of type i

belongs to C(E ).
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Proof. A solution exists. Notice that X is closed and bounded. By the Heine-Borel

property X is compact. As u1 is continuous we obtain a solution by Weierstrass’

theorem.

Now, let (x∗1 , x∗2) be a solution to Problem 2 and define x∗ as in the statement of

the lemma. Clearly x∗ is a feasible allocation. Suppose by way of contradiction that

x∗ does not belong to C(E ). Then there exists a coalition S which blocks x∗ with

an allocation y. Note that A1 belongs to S. For if not, then by the linearity of u2

we have that 1
µ(S)

∫
S y is preferred to x∗2 by each consumer of type two. However,

1
µ(S)

∫
S y = ω2 contradicting u2(x∗2) = u2(ω2). By the same argument a non-null set

of consumers of type two belongs to S. Define

ȳ =
1

µ(T \ A1)

[∫
S\A1

y +
∫

T\S
ω2

]
.

Clearly ȳ is preferred to ω2 by each consumer of type two. Since u2 is continuous, by

the Intermediate Value Theorem there exists an α ∈ (0, 1) such that αȳ is indifferent

to ω2 for each consumer of type two. Finally

µ(A1)y(A1) + µ(T \ A1)αȳ ≤ µ(A1)y(A1) + µ(T \ A1)ȳ

= µ(A1)y(A1) +
∫

S\A1

y +
∫

T\S
ω2

=
∫

ω

= µ(A1)ω1 + µ(T \ A1)ω2.

Thus (y(A1), αȳ) belongs to X contradicting that (x∗1 , x∗2) is a maximiser.

3.2.4 Proof of the main theorem

In any two-type unbalanced non-trivial linear economy Lemma 5 characterises a core

allocation. It turns out via Lemma 4 that this allocation is not competitive. Thus, in
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every two-type unbalanced non-trivial linear economy there exists a non-competitive

core allocation. This is the main result.

Theorem 1. Let E be a two-type unbalanced non-trivial linear economy. There exists a

non-competitive core allocation for E .

Proof. By Theorem 1 there is no loss of generality in assuming that µ(A1) = µ(T \

A1) = 1. Since E is a two-type unbalanced economy Theorem 5 yields the core

allocation x∗. Suppose by contradiction that x∗ is a competitive allocation. We

claim that p = a2. For if p 6= a2, then since ω2 is not Pareto optimal there exists a

commodity bundle y such that p · y ≤ p ·ω2 and a2 · y > a2 ·ω2. Since a2 · x∗2 = a2 ·ω2

this contradicts our assumption that x∗ is a competitive allocation. Thus, p = a2.

By Theorem 4, interchanging a1 and a2 if necessary, we have x∗2 6≤ ω1 + ω2. Thus∫
x∗ 6≤

∫
ω. A contradiction.

Finally:

Theorem. Let (T, T , µ) be a measure space and a1 and a2 distinct vectors in R`
++ such

that ∑`
i=1 ati = 1. Consider the set of two-type non-trivial linear economies on the measure

space (T, T , µ) such that the preference relation of type i consumers is represented by

ui(x) = ai · x. If for all such economies E we have C(E ) ⊆ W(E ), then (T, T , µ) is

atomless.

Proof. By Theorem 1 if (T, T , µ) is atomic, then C(E ) 6⊆ W(E ) for some such

two-type non-trivial linear economy.

3.3 Graphical proof for the two commodity case

After normalizing the economy so that µ(A) = µ(T \ A) = 1, we may represent the

two commodity situation in an Edgeworth box with the caveat that for type 2 what
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is measured is the per-capita allocation
∫

T\A x. In the diagrams below, the core is in

red (hollow dot) and the set of competitive allocations is in blue (solid dot) (not to

be confused with the initial allocation).

0

∫
ω

ω(A)

u1

u2

Figure 3.1: Proof of the main theorem: configuration 1.

0

∫
ω

ω(A)

u1

u2

Figure 3.2: Proof of the main theorem: configuration 2.

In the following case, we interchange a1 and a2
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0

∫
ω

ω(A)

u1

u2

(a)

0

∫
ω

ω(A)

u2

u1

(b)

Figure 3.3: Proof of the main theorem: configuration 3. Interchange a1 and a2.
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Appendix A

Appendix to Chapter 1

A.1 Proofs

A.1.1 Proof of Proposition 1

Let p be an experiment that is optimal for the agent against contract y. First, consider

a contract αy− β for α ≥ α′ and β : Θ→ R and let pα be optimal for this contract.

We will show that

Ep[y]− Epα [y] ≥ c(p)− c(pα) ≥ α(Ep[y]− Epα [y]). (A.1)

Then, if α ≥ α′, we may assume c(pα) = k, so that c(p) = k and Ep[y] = Epα [y]. This

implies that αy− β is first-best.

Inequality (A.1) may be proved by noting that Ep[y]− c(p) ≥ Epα [y]− c(pα) and

Epα [αy− β]− c(pα) ≥ Ep[αy− β]− c(p). Rearranging these inequalities gives the

first and second inequalities of (A.1).

Conversely, let b be a first-best contract and p′ an experiment that is optimal for

this contract. Then the gradient of the agent’s objective function at p′ under contract

y and contract b belong to the normal cone NE (p′) (see Theorem 2).
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Since the cost function is differentiable, the set of feasible experiments is regular

at p′. Hence,

NE (p′) =
{

µ∇c(p′) + ρ : µ ≥ 0 and ρ : Θ→ R
}

.

Therefore, there are µ, µ′ ≥ 0 and ρ, ρ′ : Θ→ R such that

πy−∇c(p′) = µ∇c(p′) + ρ and πb−∇c(p′) = µ′∇c(p′) + ρ′.

Combining these equations gives

b =
1 + µ′

1 + µ
y− (µ′ + 1)ρ− (µ + 1)ρ′

π(µ + 1)
.

To complete the argument we need to show that the coefficient on b is at least equal

to α′. Suppose, on the contrary, that this coefficient is less than α′. Then, from the

definition of α′, c(p′) < k. But this implies µ = µ′ = 0 so that (1 + µ′)/(1 + µ) = 1,

and this is impossible because, by its definition, α′ ≤ 1.

A.1.2 Proof of Proposition 2

By assumption (b, p) ∈P(1, r). Let α ∈ [0, 1) (the argument for α = 1 is trivial) and

(bα, pα) ∈P(α, Ep[b]− c(p)). We will show:

Ep[y]− Epα [y] ≥ Ep[b]− Epα [bα] ≥ α(Ep[y]− Epα [y]) ≥ 0, (A.2)

c(p)− c(pα) ≥ Ep[b]− Epα [bα]. (A.3)

Then, if α ≥ α∗ we may assume that c(pα) = k, and the inequalities in (A.3) give

c(p) = k and Ep[b] = Epα [bα], and so the inequalities in (A.2) give Ep[y] = Epα [y].

Therefore (b, p) ∈ P(α, Ep[b] − c(p)) (so that P(α, Ep[b] − c(p)) ⊇ P(1, r)) and

(bα, pα) ∈P(1, r).
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To obtain the inequalities in (A.2) note that Ep[y− b] ≥ Epα [y− bα] and Epα [αy−

bα] ≥ Ep[αy− b]. The first and second inequalities of (A.2) are rearrangements of

these; and from this the last inequality in (A.2) follows since α ∈ [0, 1). Inequality

(A.3) follows from the participation constraint Epα [bα]− c(pα) ≥ Ep[b]− c(p).

What remains to be shown is that there is a Pareto optimal profile in P(α∗, Ep[b]−

c(p)) that solves the problem obtained by removing the capacity constraint from the

perturbed problem for α∗. Let α1, α2, · · · be a sequence in [0, α∗) converging to α∗ and

let (b1, p1), (b2, p2), · · · be a sequence of profiles with (bi, pi) ∈P(αi, Ep[b]− c(p)),

for i = 1, 2, · · · . Since the agent’s cost function is continuous, the set of feasible

profiles yielding the agent at least utility Ep[b]− c(p) is compact. Therefore, there

is a sub-sequence (bn1 , pn1), (bn2 , pn2), · · · converging to some feasible (b′, p′). Con-

tinuity of the principal’s objective function implies (b′, p′) ∈ P(α∗, Ep[b]− c(p)).

Continuity of the agent’s cost function together with the fact that c(pi) < k for

i = 1, 2, · · · (because αi < α∗) implies that (b′, p′) solves the problem obtained by

removing the capacity constraint from the perturbed problem for α∗.

A.1.3 Proof of Proposition 3

Step 1: necessary and sufficient conditions for optimal experiments

The agent’s problem is convex and so a necessary and sufficient condition for

an experiment p to be optimal against contract b is that ∇p
(
Ep[b]− c(p)

)
belong to

the normal cone NE (p) (see Theorem 2):

π(θ)b(d, θ)− ∂c(p)
∂p(d|θ) = ρ[θ] for all d ∈ D, θ ∈ Θ (A.4)

for some ρ ∈ R|Θ|. Here we have used that the set of feasible experiments is defined

without a capacity constraint and that the experiment p, by assumption, places
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positive probability on each decision in each state.

Step 2: a necessary condition for optimal contracts

Condition A.4 involves Lagrange multipliers ρ so we shall pose the prob-

lem of designing an optimal contract as a choice of a contract b, experiment

p, and Lagrange multipliers ρ such that the contract and experiment form a

feasible profile that yields the agent at least utility r. In the notation of Theo-

rem 3 define C = {(b, p, ρ) ∈ A : F(b, p, ρ) ∈ B}, where A = R|D×Θ|+|D×Θ|+|Θ|,

F : R|D×Θ|+|D×Θ|+|Θ| → R|D×Θ|+1+|Θ|+|D×Θ| is defined componentwise F(b, p, ρ) =

( f i
j (b, p, ρ))i,j by

f i
j (b, p, ρ) =



b(d, θ) for i = 1, j ∈ D×Θ,

r− (Ep[b]− c(p)) for i = 2,

∑d∈D p(d|θ)− 1 for i = 3, j ∈ Θ,

π(θ)b(d, θ)− ∂c(p)
∂p(d|θ) − ρ[θ] for i = 4, j ∈ D×Θ,

and B =
(

∏(d,θ)∈D×Θ[0, y(d, θ)]
)
× (−∞, 0]× {0}|Θ|+|D×Θ|.

The Pareto optimal contracts in which the principal maximizes his utility subject

to the agent receiving at least utility r is given by maximizing Ep[y− b] over C. A

necessary condition for the local optimality of (b, p, ρ) is that ∇(b,p,ρ)Ep[α∗y − b]

belongs to the normal cone N̂C(b, p, ρ)

The main challenge of the proof is in showing that C is regular at any solution

(b, p, ρ) so that we may then express its normal cone as certain linear combinations

of the gradients of the constraint functions.

We follow the notation and conditions of Theorem 3. Thus, first note that

by Theorem 4, A and B are regular since they are products of intervals. Also,

NA(b, p, ρ) = {0} and NB(b, p, ρ) is the standard multiplier cone consisting of

61



Lagrange multipliers (λ, ξ, τ, φ) ∈ R|D×Θ|×R×R|Θ|×R|D×Θ| with each multiplier

being zero if an interior point, non-positive if a right endpoint only, non-negative

if a left end-point only, and unrestricted if both right and left end-points of the

corresponding interval of B.

We now show that the constraint qualification of Theorem 3 holds at (b, p, ρ). To

do this consider the matrix obtained from the Jacobian of F after eliminating the

row corresponding to the gradient of the participation constraint function (i = 2).

This matrix has the form  I 0

C̃ D̃


where D̃ is a square matrix and I is an identity matrix. Therefore, its determinant,

therefore, is given by the product of the determinant of the identity matrix and the

determinant of D̃. The matrix D̃ has the form B̃ 0

Ã −B̃′

 .

where Ã = ∇2c(p) and B̃ = [I|Θ|×|Θ| . . . I|Θ|×|Θ|]. It is enough to show that the

matrix obtained from D̃ by interchanging the first block and the second block of

rows is invertible. Block-wise inversion of this matrix gives (B̃Ã−1B̃′)−1 −(B̃Ã−1B̃′)−1B̃Ã−1

−Ã−1(−B̃′)(B̃Ã−1B̃′)−1 Ã−1 + Ã−1(−B̃′)(B̃Ã−1B̃′)−1B̃Ã−1

 .

Hence it is invertible if Ã and B̃Ã−1B̃′ are invertible. Ã is invertible because it is

positive definite as the Hessian of a strictly convex function. To see that B̃Ã−1B̃′ is

invertible, let x be any nonzero vector conformable for pre-multiplication with B̃.
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Then, since Ã−1 is positive definite,

0 < x′B̃Ã−1B̃′x,

which implies that B̃Ã−1B̃′ is positive definite and thus invertible. We can conclude

from this that the set of gradients of the functions f i
j (i 6= 2) at (b, p, ρ) form a

linearly independent set of vectors.

At least one of the liability limits must not bind, and so we can replace the

corresponding gradient with the gradient of f 2
j . Since p is assumed to place

positive probability on each decision in each state and the prior has full support,

the first |D × Θ| components of this gradient are nonzero. Thus the new set

of vectors form a linearly independent set. Therefore the standard constraint

qualification of Theorem 3 holds at (b, p, ρ) and hence C is regular at (b, p, ρ) (so

that N̂C(b, p, ρ) = NC(b, p, ρ)) and hence

NC(b, p, ρ) =

{
∑
d,θ

λ[d, θ]∇ f 1
(d,θ)(b, p, ρ) + ξ∇ f 2(b, p, ρ) + ∑

θ

τ[θ]∇ f 3
θ (b, p, ρ)

+∑
d,θ

φ[d, θ]∇ f 4
(d,θ)(b, p, ρ) : (λ, ξ, τ, φ) ∈ NB(F(b, p, ρ))

}
.

The condition ∇(b,p,ρ)Ep[y− b] ∈ N̂C(b, p, ρ) may now be written

π(θ)p(d|θ) = λ[d, θ] + ξπ(θ)p(d|θ) + φ[d, θ]π(θ),

π(θ)(y(d, θ)− b(d, θ)) = τ[θ]

+ ∑
d′,θ′

φ[d′, θ′]
∂2c(p)

∂p(d|θ)∂p(d′|θ′) + ξ

(
π(θ)b(d, θ)− ∂c(p)

∂p(d|θ)

)
,

0 = −∑
d′

φ[d′, θ].
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Therefore

b(d, θ) = y(d, θ)− τ[θ] + ξρ[θ]

π(θ)
− 1

π(θ) ∑
d′,θ′

φ[d′, θ′]
∂2c(p)

∂p(d|θ)∂p(d′|θ′) . (A.5)

where φ[d, θ] = p(d|θ)(1− ξ)− λ[d, θ]/π(θ). Defining β : Θ→ R and γ : D×Θ→

R as

β(θ) =
τ[θ] + ξρ[θ]

π(θ)
,

γ(d, θ) =
1

π(θ) ∑
d′,θ′

(
p(d′|θ′)(1− ξ)− λ[d′, θ′]

π(θ′)

)
∂2c(p)

∂p(d|θ)∂p(d′|θ′) .

completes the proof.

A.1.4 Results used in the proofs of Propositions 1 and 3

Definition 4. (Tangent vector). A vector w ∈ Rn is tangent to a set C ⊆ Rn at a point

x̄ ∈ C, written w ∈ TC(x̄), if there exists a sequence x1, x2, x3, · · · in C converging to

x̄ along with a sequence of positive scalars τ1, τ2, τ3, · · · converging to 0, such that the

sequence (x1 − x̄)/τ1, (x2 − x̄)/τ2, (x3 − x̄)/τ3, · · · converges to w.

Definition 5. (Normal vector). Let C ⊆ Rn and x̄ ∈ C. A vector v is normal to C at x̄ in

the regular sense, written v ∈ N̂C(x̄), if

v · w ≤ 0 for all w ∈ TC(x̄).

It is normal to C (in the general sense), written v ∈ NC(x̄), if there are sequences

x1, x2, x3, · · · in C converging to x̄, and v1, v2, v3, · · · in N̂C(x1), N̂C(x2), N̂C(x3), · · ·

converging to v.

Definition 6. (Clarke regularity of sets). A closed set C ⊆ Rn is regular at one of its points

x̄ in the sense of Clarke if every normal vector to C at x̄ is a regular normal vector, i.e.

NC(x̄) = N̂C(x̄).
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Theorem 2. (6.12. of Rockafellar and Wets [47]) (Basic first order conditions for optimality).

Consider a problem of maximizing a differentiable function f0 over a set C ⊆ Rn. A necessary

condition for x̄ to be locally optimal is

∇ f0(x̄) ∈ N̂C(x̄).

When C is convex and f0 concave, this condition is sufficient for x̄ to be globally optimal.

Theorem 3. (6.14 of Rockafellar and Wets [47]) (Normal cones to sets with a constraint

structure). Let

C = {x ∈ A : F(x) ∈ B}

for closed sets A ⊆ Rn and B ⊆ Rm and a C1 mapping F : Rn → Rm, written component-

wise as F(x) = ( f1(x), · · · , fm(x)). Suppose that the following assumption, to be called

the standard constraint qualification at x̄, is satisfied:
the only vector y ∈ NB(F(x̄)) for which

−(y1∇ f1(x̄) + · · ·+ ym∇ fm(x̄)) ∈ NA(x̄) is y = (0, · · · , 0).

Then, if A is regular at x̄ and B is regular at F(x̄), C is regular at x̄ and

NC(x̄) = {y1∇ f1(x̄) + · · ·+ ym∇ fm(x̄) + z : y ∈ NB(F(x̄)), z ∈ NA(x̄)}.

Theorem 4. (6.15 of Rockafellar and Wets [47]) (Normals to boxes). Suppose B = B1 ×

· · · × Bn, where each Bj is a closed interval in R. Then B is regular at every one of its points

x̄ = (x̄1, · · · , x̄n), and its normal cones have the form NB(x̄) = NB1(x̄1)× · · · × NBn(x̄n),
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where

NBj(x̄j) =



[0, ∞) if x̄j is only the left endpoint of Bj,

(−∞, 0] if x̄j is only the right endpoint of Bj,

{0} if x̄j is an interior point of Bj,

(−∞, ∞) if Bj is a one point interval.

A.1.5 Derivation of the optimal contract in the multi-period model

The agent’s first order condition now takes account of his continuation payoffs

π(θt)(b(dt, θt) + δAvA(dt, θt))− ∂c(p|dt−1, θt−1)

∂p(d|dt−1, θt−1, θ)
= ρ[dt−1, θt].

The principal’s first order conditions are now

π(θ|θt−1)p(d|dt−1, θt−1, θ)

= λ[dt, θt] + ξ[dt−1, θt−1]π(θ|θt−1)p(d|dt−1, θt−1, θ) + φ[dt, θt]π(θ|θt−1),

π(θ|θt−1)(y(dt, θt) + δPvP(dt, θt)− b(dt, θt)) = τ[θt, dt−1]

+ ∑
d′,θ′

φ[(dt−1, d′), (θt−1, θ′)]
∂2c(p|dt−1, θt−1)

∂p(d|dt−1, θt−1, θ)∂p(d′|dt−1, θt−1, θ′)

+ξ[dt−1, θt−1]

(
π(θt)(b(dt, θt) + δAvA(dt, θt))− ∂c(p|dt−1, θt−1)

∂p(d|dt−1, θt−1, θ)

)
,

0 = −∑
d′

φ[(dt−1, d′), θt].

Combining these gives

b(dt, θt) = y(dt, θt) + δPvP(dt, θt)− τ[dt−1, θt] + ξρ[dt−1, θt]

π(θ|θt−1)

− 1
π(θ|θt−1) ∑

d′,θ′
φ[(dt−1, d′), (θt−1, θ′)]

∂2c(p|dt−1, θt−1)

∂p(d|dt−1, θt−1, θ)∂p(d′|dt−1, θt−1, θ′)
.
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where

φ[(dt−1, d′), (θt−1, θ′)] = p(d|dt−1, θt−1, θ)(1− ξ[dt−1, θt−1])− λ[dt, θt]

π(θ|θt−1)
.

Defining

β(dt−1, θt) =
τ[dt−1, θt] + ξ[dt−1, θt−1]ρ[dt−1θt]

π(θ|θt−1)
,

γ(dt, θt) =
1

π(θ|θt−1) ∑
d′,θ′

φ[(dt−1, d′), (θt−1, θ′)]
∂2c(p|dt−1, θt−1)

∂p(d|dt−1, θt−1, θ)∂p(d′|dt−1, θt−1, θ′)
,

completes the derivation.

A.1.6 Posterior-separable costs and complementarities

Following their definition in [31] we suppose that the agent’s cost function takes the

form

c(p) = ∑
d∈D

p(d)D(p(·|d)||π)

where

D(p(·|d)||π) = H(p(·|d))− H(π)− (p(·|d)− π)T∇H(π)

is the Bregman divergence associated with the convex function H and where

∂

∂p(θ̌|d)
∂

∂p(θ̄|d)
H(p(·|d)) = k(θ̌, θ̄)

p(θ̌|d)p(θ̄|d)
. (A.6)

We are interested in calculating

∂2c(p)
∂p(d|θ)∂p(d|θ′) .

First note that

∂

∂p(d|θ′) p(θ̄|d) =


π(θ′)
p(d) (1− p(θ′|d)) if θ̄ = θ′

−π(θ′)
p(d) p(θ̄|d) if θ̄ 6= θ′

.
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We have
∂c(p)

∂p(d|θ′) =
∂

∂p(d|θ′) (p(d)D(p(·|d)||π))

= π(θ′)D(p(·|d)||π) + p(d)
∂

∂p(d|θ′)D(p(·|d)||π),

and so

∂2c(p)
∂p(d|θ)∂p(d|θ′) = π(θ′)

∂

∂p(d|θ) (D(p(·|d)||π)) + π(θ)
∂

∂p(d|θ′)D(p(·|d)||π)

+p(d)
∂

∂p(d|θ)
∂

∂p(d|θ′) (D(p(·|d)||π)) . (A.7)

Calculating the parts of (A.7):

∂

∂p(d|θ′)D(p(·|d)||π) =
∂

∂p(d|θ′)

(
H(p(·|d))− H(π)− (p(·|d)− π)T∇H(π)

)
=

∂

∂p(d|θ′)H(p(·|d))− ∂

∂p(d|θ′) ∑̄
θ

(p(θ̄|d)− π(θ̄))
∂H(π)

∂π(θ̄)
, (A.8)

where
∂

∂p(d|θ′)H(p(·|d)) = ∑̄
θ

∂

∂p(d|θ′) (p(θ̄|d)) ∂

∂p(θ̄|d)
H(p(·|d))

=
π(θ′)

p(d)
∂

∂p(θ′|d)H(p(·|d))− ∑̄
θ

π(θ′)

p(d)
p(θ̄|d) ∂

∂p(θ̄|d)
H(p(·|d)),

and

∂

∂p(d|θ′) ∑̄
θ

(p(θ̄|d)− π(θ̄))
∂H(π)

∂π(θ̄)
= ∑̄

θ

∂

∂p(d|θ′) (p(θ̄|d))∂H(π)

∂π(θ̄)
(A.9)

=
π(θ′)

p(d)
∂H(π)

∂π(θ′)
− ∑̄

θ

π(θ′)

p(d)
p(θ̄|d)∂H(π)

∂π(θ̄)
.

Putting these in (A.8)

∂D(p(·|d)||π)

∂p(d|θ′) =
π(θ′)

p(d)
∂H(p(·|d))

∂p(θ′|d) − ∑̄
θ

π(θ′)

p(d)
p(θ̄|d)∂H(p(·|d))

∂p(θ̄|d)

−π(θ′)

p(d)
∂H(π)

∂π(θ′)
+ ∑̄

θ

π(θ′)

p(d)
p(θ̄|d)∂H(π)

∂π(θ̄)
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=
π(θ′)

p(d)

(
∂H(p(·|d))

∂p(θ′|d) −
∂H(π)

∂π(θ′)

)
− ∑̄

θ

π(θ′)

p(d)
p(θ̄|d)

(
∂H(p(·|d))

∂p(θ̄|d)
− ∂H(π)

∂π(θ̄)

)

= ∑̄
θ

∂p(θ̄|d)
∂p(d|θ′)

(
∂H(p(·|d))

∂p(θ̄|d)
− ∂H(π)

∂π(θ̄)

)
.

Therefore

∂

∂p(d|θ)
∂D(p(·|d)||π)

∂p(d|θ′) =
∂

∂p(d|θ) ∑̄
θ

∂p(θ̄|d)
∂p(d|θ′)

(
∂H(p(·|d))

∂p(θ̄|d)
− ∂H(π)

∂π(θ̄)

)
(A.10)

= ∑̄
θ

∂2p(θ̄|d)
∂p(d|θ)∂p(d|θ′)

(
∂H(p(·|d))

∂p(θ̄|d)
− ∂H(π)

∂π(θ̄)

)
+ ∑̄

θ

∂p(θ̄|d)
∂p(d|θ′)

∂

∂p(d|θ)

(
∂H(p(·|d))

∂p(θ̄|d)

)
.

We have
∂

∂p(d|θ)
∂H(p(·|d))

∂p(θ̄|d)
= ∑̌

θ

∂p(θ̌|d)
∂p(d|θ)

∂2H(p(·|d))
∂p(θ̌|d)∂p(θ̄|d)

.

Putting this into (A.10)

∂

∂p(d|θ)
∂

∂p(d|θ′)D(p(·|d)||π)

= ∑̄
θ

∂2p(θ̄|d)
∂p(d|θ)∂p(d|θ′)

(
∂H(p(·|d))

∂p(θ̄|d)
− ∂H(π)

∂π(θ̄)

)
+ ∑̄

θ

∂p(θ̄|d)
∂p(d|θ′) ∑̌

θ

∂p(θ̌|d)
∂p(d|θ)

∂2H(p(·|d))
∂p(θ̌|d)∂p(θ̄|d)

.

Substituting into (A.7)
∂c(p)

∂p(d|θ)∂p(d|θ′) =

∑̄
θ

(
π(θ′)

∂p(θ̄|d)
∂p(d|θ) + π(θ)

∂p(θ̄|d)
∂p(d|θ′) + p(d)

∂2p(θ̄|d)
∂p(d|θ)∂p(d|θ′)

)(
∂H(p(·|d))

∂p(θ̄|d)
− ∂H(π)

∂π(θ̄)

)

+p(d) ∑̄
θ

∂p(θ̄|d)
∂p(d|θ′) ∑̌

θ

∂p(θ̌|d)
∂p(d|θ)

∂2H(p(·|d))
∂p(θ̌|d)∂p(θ̄|d)

.

We have

∑̄
θ

∂p(θ̄|d)
∂p(d|θ′) ∑̌

θ

∂p(θ̌|d)
∂p(d|θ)

∂2H(p(·|d))
∂p(θ̌|d)∂p(θ̄|d)

=
π(θ′)

p(d)

(
π(θ)

p(d)
∂2H(p(·|d))

∂p(θ|d)∂p(θ′|d) − ∑̌
θ

π(θ)

p(d)
p(θ̌|d) ∂2H(p(·|d))

∂p(θ̌|d)∂p(θ′|d)

)
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− ∑̄
θ

π(θ′)

p(d)
p(θ̄|d)

(
π(θ)

p(d)
∂2H(p(·|d))

∂p(θ|d)∂p(θ̄|d)
− ∑̌

θ

π(θ)

p(d)
p(θ̌|d) ∂2H(p(·|d))

∂p(θ̌|d)∂p(θ̄|d)

)

=
π(θ′)π(θ)

p(d)2

(
R(d, θ, θ′)− ∑̄

θ

p(θ̄|d)R(d, θ, θ̄)

)
,

where

R(d, θ, θ′) =
∂2H(p(·|d))

∂p(θ|d)∂p(θ′|d) − ∑̌
θ

p(θ̌|d) ∂2H(p(·|d))
∂p(θ̌|d)∂p(θ′|d)

. (A.11)

Note

∂2p(θ̄|d)
∂p(d|θ)∂p(d|θ′) =

∂

∂p(d|θ)


π(θ′)
p(d) (1− p(θ′|d)) if θ̄ = θ′

−π(θ′)
p(d) p(θ̄|d) if θ̄ 6= θ′

=


−π(θ′)π(θ)

p(d)2 (1− p(θ′|d))− π(θ′)
p(d)

∂p(θ̄|d)
∂p(d|θ) if θ̄ = θ′

−π(θ′)π(θ)
p(d)2 p(θ̄|d)− π(θ′)

p(d)
∂p(θ̄|d)
∂p(d|θ) if θ̄ 6= θ′

.

=
π(θ′)π(θ)

p(d)2



−(1− p(θ′|d))− (1− p(θ|d)) if θ̄ = θ′ and θ′ = θ

−(1− p(θ′|d)) + p(θ′|d) if θ̄ = θ′ and θ′ 6= θ

p(θ̄|d)− (1− p(θ|d)) if θ̄ 6= θ′ and θ′ = θ

p(θ̄|d) + p(θ′|d) if θ̄ 6= θ′ and θ′ 6= θ

.

Therefore (
π(θ′)

∂p(θ̄|d)
∂p(d|θ) + π(θ)

∂p(θ̄|d)
∂p(d|θ′) + p(d)

∂2p(θ̄|d)
∂p(d|θ)∂p(d|θ′)

)
= 0.

Then

∂2c(p)
∂p(d|θ)∂p(d|θ′) =

π(θ′)π(θ)

p(d)

(
R(d, θ, θ′)− ∑̄

θ

p(θ̄|d)R(d, θ, θ̄)

)
.

From (A.6) and (A.11)

R(d, θ, θ′) =
k(θ, θ′)

p(θ|d)p(θ′|d) − ∑̌
θ

p(θ̌|d) k(θ̌, θ′)

p(θ̌|d)p(θ′|d)
=

k(θ, θ′)

p(θ|d)p(θ′|d)
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where the summing to zero of the columns and rows of the information cost matrix

k has been used. Finally,

∂2c(p)
∂p(d|θ)∂p(d|θ′) =

π(θ′)π(θ)

p(d)

(
k(θ, θ′)

p(θ|d)p(θ′|d)

)
= p(d)

k(θ, θ′)

p(d|θ)p(d|θ′) . (A.12)

To check this expression, note that the inverse Fisher information matrix is

k(θ, θ′) =


p(θ|d)(1− p(θ|d)) if θ = θ′

−p(θ|d)p(θ′|d) if θ 6= θ′
.

Substituting this into (A.12)

∂c(p)
∂p(d|θ)∂p(d|θ′) =


π(θ′)π(θ)

p(d)

(
1

p(θ′|d) − 1
)

if θ = θ′

−π(θ′)π(θ)
p(d) if θ 6= θ′

,

which is the Hessian of expected reduction in Shannon entropy. Proposition 3 gives

the form of γ : D×Θ→ R

γ(d, θ) =
1

π(θ) ∑
d′,θ′

(
p(d′|θ′)(1− ξ)− λ[d′, θ′]

π(θ′)

)
∂2c(p)

∂p(d|θ)∂p(d′|θ′) .

Using (A.12) in this expression gives

γ(d, θ) =
1

π(θ) ∑
θ′

(
(1− ξ)− λ[d, θ′]

p(d|θ′)π(θ′)

)
p(d)

k(θ, θ′)

p(d|θ)

= − 1
p(d) ∑

θ′

(
k(θ, θ′)

p(θ|d)p(θ′|d)

)
λ[d, θ′].

A.1.7 Risk-aversion

Here we consider the case where the agent is risk-averse with a concave Bernoulli

utility function u over wealth. When the agent is not capacity constrained the

formula for the optimal contract extends straightforwardly. The only change is that
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γ is now given by

γ(d, θ) =
1

π(θ) ∑
d′,θ′

1
u′ (b(d, θ′))

(
p(d′|θ′)(1− u′

(
b(d, θ′)

)
ξ)− λ[d′, θ′]

π(θ′)

)
∂2c(p)

∂p(d|θ)∂p(d′|θ′) .

For the cost functions of [31] this becomes

γ(d, θ) = ∑
θ′

(
k(θ, θ′, p(·|d))
p(θ|d)p(θ′|d)

)(
p(d, θ′)− λ[d, θ′]

u′ (b(d, θ′))

)
.

In this case, γ takes on an insurance role as well as countering undesirable incentives

for risk-taking induced by limited liability. It is not yet clear whether there is an

analogous result to Proposition 2 when the agent is risk-averse.

A.2 Graphical method and an example

A.2.1 Graphical method

Here we use geometric methods to study the optimal contract when the agent’s cost

function is posterior separable. The agent’s cost function is posterior-separable if

there exists a nonnegative real valued function Υ on ∆(Θ) such that

c(p) = Υ(π)− ∑
d∈D

p(d)Υ(p(·|d)).

A benefit of using posterior separable cost functions is that they allow for a

simple geometric representation of the agent’s problem.1 Figure A.1 represents

the agent’s problem of choosing an experiment under a posterior separable cost

function when there are two states and two decisions.

Contract payments in states θ1 and θ2 are shown on the left and right vertical

axes. The horizontal axis measures the probability assigned to state θ2. The dashed

1This representation is taken from [10]; the Bayesian persuasion literature initiated by [37]
develops a geometric approach similar to the one here using insights from [6].
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0

θ1

1

θ2

−Υ(p)

b(d1, θ1)

b(d1, θ2)

b(d2, θ1) b(d2, θ2)

B(p)

B(p) + Υ(p)

p(θ2|d2) p(θ2|d1)

π(θ2)

1
2

vA(b) + Υ(π)

Figure A.1: The agent’s problem for π(θ2) = 0.45 and contract b(d1, θ1) = 0, b(d2, θ1) =
b(d2, θ2) = 1, and b(d1, θ2) = 2. Reduced form B(p) and upper envelope of net utilities B(p)+Υ(p)
as a function of the posterior probability assigned to state θ2. Optimal posteriors are given by
maximizing expected net utility subject to the average posterior equaling the prior.

lines connecting contract payments in different states show the expected payoffs

of each decision as a function of the probability assigned to state θ2. The upper

envelope of these lines is called the reduced form of contract b and is denoted by B(p)

(That is, B : ∆(Θ)→ R is defined as the agent’s maximal expected contract payment

as a function of his posterior belief about the state: B(p) = max{Ep[b(d, ·)] : d ∈ D}).

The reduced form describes the decision the agent will take as a function of his

posterior belief about the state. For the contract shown, the agent will choose

decision d2 when the probability he assigns to state θ2 is less than 1/2 and he will

choose decision d1 when the probability he assigns to state θ2 is greater than 1/2.

Because the cost function is posterior separable the agent’s objective function

may be written as

∑
d

p(d)

(
∑
θ

p(θ|d)b(d, θ) + Υ(p(·|d))
)
− Υ(π).
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Following [10], the term ∑θ p(θ|d)b(d, θ) + Υ(p(·|d)) is called the net utility of

decision d. The upper envelope of the net utility for decision d1 and the net utility

for decision d2 is given by B(p) + Υ(p). Note that the average of the agent’s

posterior beliefs is equal to his prior belief and therefore the agent’s utility is given

by weighting the optimal net utilities—given by B + Υ—with weights that average

the posteriors to the prior. In other words, the optimal posteriors are computed by

considering the “best” tangent hyperplane to the upper envelope of the net utility

function, B + Υ, or, alternatively, as in [37], by evaluating the concavification of

B + Υ at the prior.2 In the figure, the optimal posterior probabilities are shown as

well as the point (π(θ2), vA(b) + Υ(π)) corresponding (but not equal) to the agent’s

maximized utility.

Altering a contract by a state-dependent transfer. The agent’s behavior is un-

changed when his contract is altered by a state-dependent transfer since Ep[b−

β]− c(p) = Ep[b]− Eπ[β]− c(p) for all β : Θ → R. Figure A.2 illustrates this for

the contract shown in black and the state contingent payment β(θ1) = 0, β(θ2) = 1.

Note that the optimal experiment would not change if β(θ2) > 1 but the resulting

contract would not be feasible.

2The concavification of a function is the smallest concave function everywhere weakly greater than
the function.
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0

θ1

1

θ2

p(θ2|d2) p(θ2|d1)

π(θ2)

vA(b) + Υ(π)

b(d1, θ1)− β(θ1) = 0

b(d1, θ2)− β(θ2) = 1b(d2, θ1)− β(θ1) = 1

b(d2, θ2)− β(θ2) = 0

vA (b− β) + Υ(p)

Figure A.2: Altering the contract b by the state contingent payment β(θ1) = 0, β(θ2) = 1 does not
alter the experiment the agent chooses.

Scaling a contract when capacity constraints binds. When the agent’s capacity

constraint binds under his chosen experiment it is possible to scale down—multiply

by a factor less than one—the contract without altering the agent’s behavior. Fig-

ure A.3a shows that imposing a binding capacity constraint alters the agent’s chosen

experiment by bringing the posterior probabilities closer to the prior. Figure A.3b

shows that given the binding capacity constraint the contract b can be scaled down

by any factor α in [1/2, 1] without altering the agent’s chosen experiment.
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0

θ1

1

θ2

b(d1, θ1) = 0

b(d1, θ2) = 2

b(d2, θ1) = 1 b(d2, θ2) = 1

π(θ2)

(a)

0

θ1

1

θ2π(θ2)

Υ(π)− k

b(d1,θ1)
2 = 0

b(d1,θ2)
2 = 1

b(d2,θ1)
2 = 0.5 b(d2,θ2)

2 = 0.5

vA

(
b
2

)
+ Υ(π)

(b)

Figure A.3: (a) A binding capacity constraint (thick dashed lines) brings the posterior probabilities
closer to the prior. (b) With a binding capacity constraint (thick dashed lines), scaling incentives in
half (thick solid lines) does not alter the agent’s chosen experiment.
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A.2.2 A two-state two-decision example

Consider the following problem in which a principal hires an agent to choose

between a safe and risky course of action:

y(d, θ) θ1 θ2
d1 0 10
d2 5 5

Suppose the agent’s prior belief on state θ1 is 2/3 and that the set of feasible

experiments are those with cost less than k = 1/2.

First-best contracts

We first solve for Pareto optimal contracts that induce first-best experimentation.

Since altering a contract by a state-dependent transfer does not alter the experiment

chosen by the agent, any contract y− β with β : Θ → R induces first best experi-

mentation. Similarly, if the agent’s capacity constraint binds under these contracts,

then there exists a number α′ in [0, 1] (as defined in Proposition 1) such that for

each of the contracts α(y− β) with α in [α′, 1] the agent chooses the same first-best

experiment. Therefore, each contract of the form

α(y− β) with α ∈ [α′, 1] and β : Θ→ R chosen so the contract is feasible (A.13)

is Pareto optimal and induces first-best experimentation. The least favorable of

these contracts for the agent is α′(y + β′) with β′ defined by β′(θ1) = 0, β′(θ2) =

−5. So the set of agent reservation utilities corresponding to these contracts is

[vA(α
′(y− β′)), vA(y)].

Results from [41] and [10] show that when the agent’s cost function is expected

Shannon entropy reduction the optimal experiment resembles a logit-rule with the

observable part of the utility from taking decision d in state θ given by b(d, θ)/(1 +
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µ) + log p(d):

p(d|θ) = p(d)e
b(d,θ)
1+µ

∑d̄ p(d̄)e
b(d̄,θ)
1+µ

. (A.14)

The term µ is a nonnegative dual variable which is chosen as small as possible

subject to the agent’s capacity constraint binding. Using Equation (A.14), if the

agent’s capacity constraint were not to bind then the first-best experiment would

be as shown in Table A.1a. However, this experiment is not feasible since its cost

p(d|θ) θ1 θ2
d1 0.007 0.993
d2 0.993 0.007

(a)

p(d|θ) θ1 θ2
d1 0.031 0.969
d2 0.969 0.031

(b)

Table A.1: (a) First best experiment when the agent’s capacity constraint does not bind. (b) First
best experiment under capacity constraint c(p) ≤ 1/2.

is 0.596. Instead, the agent chooses the experiment show in in Table A.1b which

has cost 1/2 and is given by setting µ = 0.446 in Equation (A.14) with b = y. This

implies that α′ = 1/(1 + µ) = 0.692. Under this experiment, the agent is slightly

more prone to error than under the unconstrained experiment.

The minimum agent utility for a first-best contract is vA(α
′(y − β′)) = 2.853

and the maximum utility is vA(y) = 6.014; the first-best Pareto optimal contracts

given by Equation (A.13) deliver the agent utilities in this range. Under each of

these contracts, the agent chooses the experiment shown in Table A.1b. Note that

any Pareto optimal contract that delivers the agent a utility in this range must

induce first best experimentation (otherwise the contracts found here would be an

improvement, contradicting Pareto optimality).

Second-best contracts
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In the previous section, we showed that if the agent’s reservation utility is above

2.853, then all Pareto optimal contracts induce first-best experimentation. We now

consider the case where the agent’s reservation utility is below this level.

For a second-best contract the minimum payment in each state is 0. Consider the

case where b(d1, θ1) and b(d2, θ2) are 0 and b(d1, θ2) and b(d2, θ1) are positive and

such that the principal’s liability limits do not bind. Then λ[d1, θ2] and λ[d2, θ1] are

0. Using the form of contract given in Proposition 3 and section 1.3.5 as well as the

formula for the state-dependent transfer gives

γ̂(d1) =
λ[d1, θ1]

p(d1)
, β(θ1) = αy(d1, θ1) + γ̂(d1) +

λ[d1, θ1]

p(d1, θ1)

γ̂(d2) =
λ[d2, θ2]

p(d2)
, β(θ2) = αy(d2, θ2) + γ̂(d2) +

λ[d2, θ2]

p(d2, θ2)

Since ∑d λ[d, θ] = (1− ξ)π(θ), we have λ[d1, θ1] = (1− ξ)π(θ1) and λ[d2, θ2] =

(1− ξ)π(θ2) and so

b(d1, θ2) = α(10− 5) +
(1− ξ)π(θ2)

p(d2)
− (1− ξ)π(θ2)

p(d2, θ2)
− (1− ξ)π(θ1)

p(d1)
(A.15)

b(d2, θ1) = α(5− 0) +
(1− ξ)π(θ1)

p(d1)
− (1− ξ)π(θ1)

p(d1, θ1)
− (1− ξ)π(θ2)

p(d2)
(A.16)

Recall that the minimum agent reservation utility such that the optimal contract

induces first-best experimentation is 2.853. For this reservation utility the unique

optimal contract is given by
1

1 + µ
(y + β′),

where µ = 0.446 and β′(θ1) = 0, β′(θ2) = 5. Note that for a first-best contract we

have ξ = 1 since a fall in the agent’s reservation utility induces a one-for-one increase

in the principal’s utility. Using ξ = 1 in Equations (A.15) and (A.16) and setting α
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such that the cost of the optimal experiment is k = 0.5, i.e. α = 1/(1 + 0.446), gives

the same contract as the first-best contract for reservation utility 2.853. To solve

for this optimal contract in general requires solving the system of equations (A.14),

(A.15), and (A.16) and the inequalities given by the agent’s capacity constraint and

participation constraint.

A special case arises when the prior is uniform. Then a solution to the system of

equations is given by p(d1) = p(d2) = 1/2, p(d1, θ1) = p(d2, θ2), b(d1, θ2) = b(d2, θ1)

which implies that the optimal contract is affine and given by b(d1, θ2) = 5α− t,

b(d2, θt) = 5α− t, and 0 otherwise, where t = (1− ξ)/p(d1|θ1) = (1− ξ)/p(d2|θ2).

We now develop some graphical intuition for the second-best Pareto optimal

contracts characterized in this example making the simplifying assumptions that

the agent’s capacity constraint does not bind—so that α∗ = 1—and that the agent’s

reservation utility is sufficiently low that his participation constraint does not

bind—which implies ξ = 0. Solving Equations (A.14), (A.15), and (A.16) then

gives the following optimal contract, experiment, state-dependent transfer β, and

decision-dependent transfer γ
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b = y− β− γ θ1 θ2

d1 0 1.00

d2 0.702 0

(a)

p(d|θ) θ1 θ2

d1 0.160 0.514

d2 0.840 0.486

(b)

β θ1 θ2

d1 3.836 6.596

d2 3.836 6.596

(c)

γ θ1 θ2

d1 -3.836 2.404

d2 0.462 -1.596

(d)

Table A.2: (a) Optimal contract (b) Optimal experiment (c) State-dependent transfer (d) Optimal
distortion

We will now build this optimal contract in stages. First we consider the contract

y − β shown in Table A.3a. Since this contract is output adjusted by a state-

dependent transfer the agent chooses a first-best experiment. Table A.3b presents

the optimal experiment for this contract and Figure A.4 depicts the optimal posterior

probabilities.

y− β θ1 θ2

d1 -3.836 3.404

d2 1.164 -1.596

(a)

p(d|θ) θ1 θ2

d1 0.007 0.993

d2 0.993 0.007

(b)

Table A.3: (a) Contract y− β. (b) First best experiment under contract y− β.
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0

θ1

1

θ2

y(d1, θ2)− β(θ2)

y(d1, θ1)− β(θ1)

y(d2, θ1)− β(θ1)

y(d2, θ2)− β(θ2)

p(θ2|d2) p(θ2|d1)π(θ2)

Figure A.4: Contract y− β induces first best experimentation.

The contract y− β induces very precise experimentation with the agent choosing

the wrong decision with a 0.7 percent probability in either state.

Now consider the feasible contract induced by y − β which is its truncation

max{0, y − β}. Table A.4 shows the optimal experiment for this contract and

Figure A.5 depicts the optimal posterior probabilities (thick lines) and compares it

to the optimal posterior probabilities for y− β (thin lines)

p(d|θ) θ1 θ2

d1 0.211 0.963

d2 0.789 0.037

Table A.4: Optimal experiment for contract max{0, y− β}
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0

θ1

1

θ2

y(d1, θ2)− β(θ2)

y(d1, θ1)− β(θ1)

y(d2, θ1)− β(θ1)

y(d2, θ2)− β(θ2)

p(θ2|d2) p(θ2|d1)π(θ2)p(θ2|d2) p(θ2|d1)

Figure A.5: Optimal experiments for max{0, y− β} (thick lines) and y− β (thin lines).

Under contract max{0, y− β}, when the agent chooses decision d2 he does so

with approximately the same level of confidence in which state it is as under the

first-best experiment. But when the agent chooses decision d1 he does so with much

less confidence about the state than under the first-best experiment.

The optimal experiment for contract max{0, y− β} shown in Table A.4 shows that

in state θ2 the agent chooses the incorrect experiment d2 with a similar probability

as under the first best experiment. However the agent now incorrectly chooses

decision d1 in state θ1 about 20 percent of the time compared to 2 percent under

the first best experiment. This effect arises because truncating the contract y− β

eliminates a greater downside for decision d1 than d2 and so encourages the agent

to choose d1.

A way to measure the change in the principal’s utility due to truncating the
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contract y− β is shown in Figure A.6. Point A gives the expected value of output

less the constant Eπ[β(θ)] and point B gives the expected contract payment. Since

under the contract y− β these points coincide and now point A is below B, the

move from contract y− β to max{0, y− β} reduces the principal’s utility.

0

θ1

1

θ2

y(d1, θ2)− β(θ2)

y(d1, θ1)− β(θ1)

y(d2, θ1)− β(θ1)

y(d2, θ2)− β(θ2)

p(θ2|d2) p(θ2|d1)π(θ2)p(θ2|d2) p(θ2|d1)

B

A

Figure A.6: Point A gives expected output minus Eπ[β(θ)]. Point B gives the expected contract
payment.

Figure A.7 shows the optimal posterior beliefs for the optimal contract b =

y− β− γ. Table A.2b gives the optimal experiment and Table A.5 lists the expected

value of output, the contract, and the experiment costs under the three different

contracts.
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Ep[y] Ep[b] c(p)

y− β 6.633 1.877 0.596

max{0, y− β} 5.900 1.704 0.293

b = y− β− γ 5.321 0.566 0.067

Table A.5: Comparison of expected payoffs and costs

0

θ1

1

θ2

y(d1, θ2)− β(θ2)− γ(d1, θ2)

y(d2, θ1)− β(θ1)− γ(d2, θ1) A = B

Figure A.7: The optimal contract. The lines defining A and B coincide so the optimal contract
b = y− β− γ has the same expected value as the contract y− β at the optimal posteriors.

You can see that this contract is locally optimal since the lines defining A and B

coincide and so for small perturbations the change in the expected contract payment

will be roughly equal to the change in expected output. This also implies that

the expected value of the optimal contract at the optimal posterior beliefs for this

contract coincide with the expected value of the first best contract y− β at these
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posterior beliefs.

Figure A.8 shows a perturbation away from the optimal contract. You can see that

the expected contract payment falls less than expected output so the perturbation is

not profitable for the principal.

0

θ1

1

θ2

y(d1, θ2)− β(θ2)− γ(d1, θ2)

y(d2, θ1)− β(θ1)− γ(d2, θ1)

Figure A.8: A perturbation (thick line) away from the optimal contract. The expected contract
payment (middle dot) falls less than expected output (lower dot).
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Appendix B

Appendix to Chapter 2

B.1 Risk-aversion

We have been unable to find an analogue of our result for when the agent is risk-

averse. If the principal is risk-neutral and the agent is risk-averse the problem

in our proof is that A.3 now involves a Bernoulli utility function u and therefore

we cannot conclude (i) Ep[u(b)]− Epα [u(bα)] = 0 from A.2, nor (ii) that (i) implies

Ep[u(b)]− Epα [u(bα)] = 0.

The problem may be further seen by considering first-order conditions for the

simple capacity constrained problem

max
b,p

Ep[y− b]

such that c(p) ≤ k,

Ep[u(b)]− c(p) ≥ Ep′ [u(b)] for all p′ such that c(p′) ≤ k, (B.1)

and

Ep[u(b)]− c(p) ≥ 0.

87



Here the set of feasible contracts is unrestricted and the set of feasible distributions

are those satisfying the capacity constraint c(p) ≤ k. The agent’s program may be

written

max
p

Ep[u(b)]− c(p)

such that p(ω) ≥ 0 for all ω ∈ Ω, ∑ω∈Ω p(ω) = 1, and c(p) ≤ k. If the agent’s cost

function is convex and the optimal distribution always assigns positive probability to

each state, then a necessary and sufficient condition for p to be an optimal contract

is

u(b(ω))− ∂c(p)
∂p(ω)

= ρ + µ
∂c(p)
∂p(ω)

, (B.2)

where ρ and µ are Lagrange multipliers on the constraints ∑ω∈Ω p(ω) = 1 and

c(p) ≤ k. If the agent’s cost function is strictly convex, then one may show that

the program obtained after replacing the incentive constraint B.1 by the first order-

condition B.2 and making µ a choice variable satisfies a qualification constraint

which implies that any solution (in which p assigns positive probability to each

state) satisfies first-order conditions

y(ω)− b(ω) = τ+ δ
∂c(p)
∂p(ω)

− (µ+ 1) ∑
ω′∈Ω

φ[ω′]
∂2c(p)

∂p(ω)∂p(ω′)
+ ξ

(
u(b(ω))− ∂c(p)

∂p(ω)

)
−p(ω) = φ[ω]u′(b(ω)) + ξ p(ω)u′(b(ω))

0 = − ∑
ω∈Ω

φ[ω]
∂c(p)
∂p(ω)

where τ and δ are Lagrange multipliers on the adding up and capacity constraint

∑ω∈Ω p(ω) = 1 and c(p) ≤ k, φ[ω] is a Lagrange multiplier on agent’s first or-

der condition B.2, and ξ is a Lagrange multiplier on the participation constraint

Ep[b]− c(p) ≥ 0. Rearranging the first conditions and using the agent’s first-order
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condition B.2 gives

b(ω) +
δ + µ

1 + µ
u(b(ω)) = y(ω)− A− B ∑

ω′∈Ω
p(ω)

(
1

u′(b(ω))
+ ξ

)
∂2c(p)

∂p(ω)∂p(ω′)

for some constants A and B. If the agent is risk-neutral, then this may be written as

b(ω) =
1 + µ

1 + µ + µδ
y(ω)− A− B ∑

ω′∈Ω
p(ω)

(
1

u′(b(ω))
+ ξ

)
∂2c(p)

∂p(ω)∂p(ω′)
,

which suggests our result. Such a representation does not seem to be possible when

the agent is risk-averse.

B.2 Discounting

Discounting does not pose a problem when contract payoffs arise at a single date.

In this case we can define a new cost function for the agent equal to his old cost

function divided by his discount factor. However, when payoffs arrive at different

dates our proof fails for similar reasons as when the agent is averse to risk. Suppose

that payments can be made at two dates: date 0 and date 1. Suppose that the

principal and agent discount payments with the principal’s discount factor denoted

by δP ∈ [0, 1] and the agent’s discount factor denoted by δA ∈ [0, 1]. Output and

contracts are now functions of dates as well as states: y, b : {0, 1} ×Ω → R. The

principal’s utility from profile (b, p) is now

Ep(ω)

 ∑
t∈{0,1}

δt
P(y(t, ω)− b(t, ω))


and the agent’s utility is

Ep(ω)

 ∑
t∈{0,1}

δt
Ab(t, ω)

− c(p).
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Then following the proof of the case without discounting we obtain the inequalities

Ep(ω)

 ∑
t∈{0,1}

δt
Py(t, ω)

− Epα(ω)

 ∑
t∈{0,1}

δt
Py(t, ω)


≥ Ep(ω)

 ∑
t∈{0,1}

δt
Pb(t, ω)

− Epα(ω)

 ∑
t∈{0,1}

δt
Pbα(t, ω)

 (B.3)

≥ α

Ep(ω)

 ∑
t∈{0,1}

δt
Py(t, ω)

− Epα(ω)

 ∑
t∈{0,1}

δt
Py(t, ω)

 ≥ 0,

c(p)− c(pα) ≥ Ep(ω)

 ∑
t∈{0,1}

δt
Ab(t, ω)

− Epα(ω)

 ∑
t∈{0,1}

δt
Abα(t, ω)

 . (B.4)

As under risk-aversion, we cannot conclude that the value of discounted contract

payments for the agent is the same under both contracts, nor that this implies their

discounted value is equal for the principal.
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Appendix C

Appendix to Chapter 3

C.1 Perfect competition

This appendix reviews the classic core equivalence papers of [19] and [5]. [19]

prove that the core converges to the set of competitive allocations as the number of

consumers increases by replication. [5] proves that core equivalence holds exactly if

the set of consumers is modelled as an atomless measure space. Aumann’s model is

the canonical model of perfect competition so it is given a thorough treatment.

C.1.1 The Arrow-Debreu economy

In this section we define an Arrow-Debreu economy, the notions of core and

competitive equilibrium, and the idea of perfect competition.

An exchange economy consists of commodities and consumers. Each commodity

is defined by its physical characteristics and the location, date, and state of the world

in which it is available. Each consumer is defined by his tastes over commodities

and his initial holding of commodities. There is no production. All resources are

privately owned.
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An Arrow-Debreu exchange economy has a finite number of commodities and

consumers. There are m consumers and ` commodities. Each consumer is indexed

by i running from 1 to m and each commodity is indexed by h running from 1 to `.

R` is called the commodity space. A commodity bundle is an element of the commodity

space.

An allocation is an m-tuple x = (x1, ..., xm) of commodity bundles, where xi

represents the commodity bundle of consumer i. There is a fixed allocation, denoted

ω = (ω1, ..., ωm), called the initial allocation; ωi is called the initial endowment of

consumer i. An allocation x is said to be feasible if ∑m
i=1 xi = ∑m

i=1 ωi.

A preference relation, denoted �, is a complete preordering1 over the commodity

space and induces a strict preference relation (denoted �) in the following way: If x

and y are arbitrary commodity bundles, then

x � y if and only if x � y and not y � x.

x � y is interpreted to mean “x is preferred or indifferent to y."

Definition 7. An Arrow-Debreu economy, denoted E , is a triad ({1, ..., m}, ω, {�i}m
i=1).

It consists of a set of consumers {1, ..., m}, an initial allocation ω = (ω1, ..., ωm), and a

preference relation �i for each consumer i = 1, ..., m.

Competitive equilibrium

For each commodity there is a price corresponding to the amount that must be

paid now for one unit of that commodity. A consumer considers his wealth to

be the value of his initial endowment at prevailing prices and demands the best

commodity bundle that he can afford judged by his preferences. The market operates

1a complete, transitive, and reflexive binary relation.
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by adjusting prices to the point where aggregate demand meets aggregate supply.

Trade then takes place, resulting in an allocation. An allocation generated in this

way is called a competitive allocation.

The attractiveness of this process is its simplicity. Each agent only need know his

own preferences, endowment, and the prevailing prices. He does not need to worry

about the resources or preferences of his fellow consumers – prices summarise this

information, representing aggregate preferences and scarcity.

Formally, a price system, denoted p, is a vector in R`
+.

Definition 8. A competitive equilibrium (p, x) is a price system p and an allocation x

such that x is feasible and for i = 1, ..., m

1. p · xi ≤ p ·ωi and

2. y �i xi implies p · y > p ·ωi.

If (p, x) is a competitive equilibrium, then p is called an equilibrium price system

and x a competitive allocation.

Perfect competition

The simplicity of our model of competition does not come for free. In order for the

competitive allocation to make sense consumers must be price takers. This means

that at each price consumers calculate their wealth according to prices and demand

the best commodity bundle they can afford. The trouble is that consumers may

be able to manipulate prices by, for example, throwing away some of their initial

endowment.

Perfect competition solves this problem. It characterises a market in which price

taking is endogenous. In a perfectly competitive market it is always optimal for

consumers to be price takers. The idea behind perfect competition is to make the
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market for each commodity so large that each consumer owns a negligible fraction

of total resources. In turn, the influence of a single consumer becomes negligible.

With a finite number of commodities each consumer can be made negligible

by increasing the number of consumers in the market for each commodity. It is

important to note a finite number of commodities is required. If the economy has

an infinite number of commodities, then even with an infinite number of consumers

the market for each commodity could be small.

Of course, even in economies where consumers are negligible certain groups

may collude together, pooling their resources to gain influence over prices. The idea

we have in mind here is a cartel or a trade union. There is no concrete condition that

will eliminate this possibility. We simply assume that consumers do not collude:

that they are independent of one another.

We define a perfectly competitive exchange economy to be one in which each

consumer is negligible and behaves independently of other consumers. By negligible

we mean that each consumer owns a negligible fraction of total resources. By

independent we mean that consumers do not collude with one another.

The core

We can describe an efficient allocation for an exchange economy by considering

the cooperative outcome: the allocation arising from contract. This gives rise to

the notion of the core – the set of allocations such that no non-negligible group of

consumers can contract to redistribute their initial endowments so each is better off.

Formally, we define a coalition to be any nonempty set of consumers. An

allocation x is blocked by a coalition S if there exists an allocation y such that

∑i∈S yi = ∑i∈S ωi and yi �i xi for each i in S.

Definition 9. The core is the set of feasible allocations not blocked by any coalition.
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Given the simplicity of the competitive equilibrium we might question whether

there is anything remarkable about it. There is no immediate reason to expect the

competitive allocation to have special welfare properties. However it turns out that

a competitive allocation is in the core. An allocation generated by competition is a

solution to the cooperative problem.

The logic behind this result is the following: If a competitive allocation were not

in the core, then some coalition could block it. Each member of the coalition would

improve his situation by exchanging for a preferred bundle. By the definition of a

competitive equilibrium no such commodity bundle is affordable at equilibrium

prices. This implies the absurd conclusion that the total value of the coalition’s

commodity bundles is greater than the total value of their initial endowments.

Theorem 5. A competitive allocation is in the core.

Proof. Let x be a competitive allocation and p the equilibrium price system for x.

Suppose by contradiction that x does not belong to the core. Then a coalition S

blocks x with y. Because yi �i xi we have p · yi > p ·ωi for each i in S. Hence

p ·∑
i∈S

yi > p ·∑
i∈S

ωi,

contradicting ∑i∈S yi = ∑i∈S ωi.

C.1.2 Debreu and Scarf: A limit theorem on the core of an econ-

omy

[19] consider an Arrow-Debreu economy and a sequence of ‘replications’ of this

economy. They show that as the number of replications tends to infinity the core

converges to the set of competitive allocations.

95



The mathematical model

Debreu and Scarf consider the following mathematical model. Let E be an Arrow-

Debreu economy in which the following holds.

1. Monotonicity: let x and y be arbitrary commodity bundles. Then2 x > y implies

x �i y.

2. Continuity: let x be an arbitrary commodity bundle. The sets {z ∈ R`
+ : x �i z}

and {z ∈ R`
+ : z �i x} are open.

3. Strong convexity: let x and y be arbitrary distinct commodity bundles with

y �i x and let 0 < α < 1. Then αx + (1− α)y �i y.

4. ωi is strictly positive in each of its coordinates.

The core as the number of consumers becomes infinite

Debreu and Scarf show that the core converges to the set of competitive allocations

as the number of consumers becomes infinite. The main conceptual difficulty in

proving this is that the core and competitive allocations are subsets of a space whose

dimension depends on the number of consumers. Consequently it is difficult to

define what is meant by convergence. Debreu and Scarf sidestep this problem by

increasing the number of consumers by replication; starting with the economy E

they define the r-replica economy E r to be the economy consisting of rm consumers

indexed by iq where i = 1, ..., m and q = 1, ..., r. i refers to the type of consumer (i.e.

those belonging to the original economy) and q refers to different consumers of the

same type.

2Let x and y be arbitrary points in R`. x > y if and only if x 6= y and xi ≥ yi for all i = 1, ..., `.
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The reason for considering replica economies is that core allocations assign the

same commodity bundle to consumers of the same type. This is called the equal

treatment property. Thus a core allocation

x = ((x11, ..., x1r), (x21, ..., x2r), ..., (xm1, ..., xmr))

for an r-replica economy can be summarised x = (x1, ..., xm). Since a competitive

allocation is a core allocation this means that both core and competitive allocations

can be analysed in R`m, even while varying r.

The intuition of the equal treatment property is this: Consider a core allocation

and suppose it does not assign the same commodity bundle to consumers of the

same type. Consider the coalition consisting of one consumer of each type who

gets the least desired commodity bundle among the members of his type. Now

assign each of these consumers the average commodity bundle of their type. This is

feasible for the coalition because the core allocation is feasible and each member of

each type has the same initial endowment. By strong convexity of preferences and

our assumption, at least one member of the coalition strictly prefers this commodity

bundle to the one he gets in the core allocation. By monotonicity and continuity

of preferences this consumer can make each member of the coalition better off by

giving a sufficiently small fraction of his commodity bundle away. Thus the coalition

blocks the core allocation which is nonsense.

Formally,

Lemma 6. An allocation in the core of E r assigns the same commodity bundle to all

consumers of the same type.

Proof. Let x be a core allocation for E r. Suppose by contradiction that x does not

assign the same commodity bundle to consumers of the same type. Relabeling if

necessary we may assume that consumer i1 receives the least desired commodity
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bundle among the consumers of his type; that is xiq �i xi1 for all i = 1, ..., m.

Consider the coalition S consisting of consumers {11, ..., m1}. The allocation which

gives 1
r ∑r

q=1 xiq to each consumer i1 is feasible since

m

∑
i=1

1
r

r

∑
q=1

xiq =
1
r

m

∑
i=1

rωi =
m

∑
i=1

ωi.

For at least one consumer of type i in the coalition our assumption implies

xi1 6= xqi for some q = 2, ..., r. Denote this type i∗. By strong convexity

1
r

r

∑
q=1

xiq �i xi1

for all i = 1, 2, ..., m, and for i∗

1
r

r

∑
q=1

xi∗q �i∗ xi∗1.

By monotonicity and continuity, if the consumer of type i∗ in the coalition gives

a sufficiently small amount of his commodity bundle to the other members of the

coalition, then each member of the coalition prefers the resulting commodity bundle

to the commodity bundle obtained under x. Hence S blocks x. A contradiction.

Notice that the cores of replica economies form a decreasing sequence in r since

a coalition of an r replica economy is a coalition of an r + 1 replica economy. Also

notice that the set of competitive allocations is fixed as r varies. Because the number

of coalitions increases as we increase the number of replications there is some hope

that the core will converge to the set of competitive allocations as the number of

replications tends to infinity. This is indeed the case. Debreu and Scarf prove

Theorem 6. If x = (x1, ..., xm) is in the core of E r for all r, then it is a competitive

allocation.

We give an outline of the proof. To simplify things we consider the two consumer
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case. The proof can be split into two parts. First we construct an analytical tool that

will tell us whether a feasible allocation is competitive. Then using this tool we will

show that a core allocation for all replica economies is a competitive allocation.

Step 1: Let (x1, x2) be a feasible allocation. For each consumer i = 1, 2 let

Γi = {z ∈ R` : z + ωi �i xi}. This is the set of net trades z that result in a

commodity bundle preferred to xi. Let Γ be the convex hull3 of the union of these

sets. This situation is depicted in Figure C.1.
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u

u0

Γ1

Γ2

x1 −ω1

x2 −ω2

p · z = 0 Γ = co Γ1 ∪ Γ2

Figure C.1: Forming the set Γ

It turns out that an allocation (x1, x2) is competitive if and only if Γ and the

origin are disjoint.

To see this suppose (x1, x2) is a competitive allocation. Then there is an equi-

librium price system p such that every commodity bundle preferred to xi by the

i’th consumer is unaffordable. This means Γi, and hence Γ, lie strictly above the

hyperplane through the origin with normal p4. Therefore Γ and the origin are

3Let S be a subset of R`. The convex hull of S is the intersection of all the convex sets containing
S.

4Let p be an element of R` different from zero; the set H = {z ∈ R` : p · z = 0} is a hyperplane
through the origin with normal p.
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disjoint. This can be seen in Figure C.1.

Conversely, if Γ and the origin are disjoint, then we can obtain an equilibrium

price system as a normal vector to a separating hyperplane through the origin. The

intuition can again be seen in Figure C.1. The commodity bundles xi will lie on

the hyperplane because the allocation (x1, x2) is feasible. Furthermore, Γi will lie

strictly above the hyperplane which implies that a commodity bundle preferred to

xi is not affordable with this price system. Hence (x1, x2) is a competitive allocation.

Step 2: The second step in the proof shows that if (x1, x2) is in the core of

all replica economies, then the origin does not belong to Γ. This is shown by

contradiction. Assume that the origin does belong to Γ. We will show this implies

(x1, x2) is blocked. Because Γ is the convex hull of the union of sets Γi we can

express the origin as a convex combination of points in these sets. I.e.

α1z1 + α2z2 = 0

for positive α1 and α2 summing to one where zi + ωi �i xi.

Consider a sequence zk
i defined by [kαi/ak

i ]zi where ak
i is the smallest integer

greater than or equal to kαi, and k is an integer. As k tends to infinity this sequence

tends to zi and so is eventually in Γi for all k larger than some integer K (Γi is open.)

We then have

aK
1 zK

1 + aK
2 zK

2 = K(α1z1 + α2z2) = 0

and zK
i + ωi �i xi for i = 1, 2. This implies that the coalition consisting of aK

i

members of type i = 1, 2 each of whom get zi + ωi blocks (x1, x2) in the economy

replicated max{aK
1 , aK

2 } times. A contradiction. So the origin and Γ are disjoint and

thus (x1, x2) is a competitive allocation.

We now prove the result formally.

100



Theorem 7. If x = (x1, ..., xm) is in the core of E r for all r, then it is a competitive

allocation.

Proof. Let Γi be the set of all commodity bundles z in the commodity space such

that z + ωi �i xi and let Γ be the convex hull of the union of each Γi. Suppose by

contradiction that the origin belongs to Γ. By convexity of preferences each Γi is a

convex set. Thus ∑m
i=1 αizi = 0 for some αi ≥ 0, ∑m

i=1 αi = 1 and zi + ωi �i xi. Let ak
i

be the smallest integer greater than or equal to kαi, where k is an integer, and let

I be the set of i such that αi > 0. For each i in I define a sequence zk
i by [kαi/ak

i ]zi.

This sequence converges to zi as k tends to infinity. Since preferences are continuous

the sequence is eventually in Γi. Let K be an integer such that k larger than K implies

zk
i belongs to Γi for each i in I. Consider the coalition of aK

i members of each type i

to each of whom we assign zK
i + ωi. Notice

∑
i∈I

aK
i (z

K
i + ωi) = K ∑

i∈I
αizi + aiK ∑

i∈I
ωi = aiK ∑

i∈I
ωi.

Such a coalition blocks x in the economy replicated max{aK
i : i ∈ I} times, contra-

dicting the assumption that x is in the core for all r.

Thus the origin does not belong to Γ. By Minkowski’s separating hyperplane

theorem [18, p.25] there is a hyperplane through the origin with normal p such that

p · z ≥ 0 for all z in Γ. By continuity of preferences xi −ωi belongs to the closure of

Γ so that p · xi ≥ p ·ωi. Since
m

∑
i=1

xi =
m

∑
i=1

ωi

p · xi = p · ωi for each i. If y �i xi, then y− ωi belongs to Γ so that p · y ≥ p · ωi.

Suppose by contradiction that p · y = p · ωi. By continuity and monotonicity of

preferences, and the assumption that ωi is strictly positive in each of its coordinates,

there exists y′ such that y′ �i xi and p · y′ < p ·ωi. A contradiction.
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C.1.3 A model of perfect competition

[5] describes an exchange economy in which there is an infinite number of con-

sumers, each consumer owns a negligible fraction of the total resources of each

commodity, and each consumer acts independently of other consumers. He captures

these conditions by modelling the set of consumers as an atomless measure space.

In Aumann’s model each consumer is negligible and independent, thus it is a model

of perfect competition.

We first formally define the economy and then make a few remarks about the

implications and interpretation of the model. [30] is the appropriate reference for

the measure theoretic ideas.

The economy

The model of an economy consists of a set of consumers each of whom possess a

commodity bundle and hold a preference relation over the set of all commodity

bundles. The space R` is called the commodity space, where ` refers to the number

of commodities. A commodity bundle is an element of the commodity space. A

preference relation, denoted �, is a complete preordering over the commodity space

and induces a strict preference relation (denoted �) in the following way: If x and y

are arbitrary commodity bundles, then

x � y if and only if x � y and not y � x.

The set of all such preference relations is P . x � y is interpreted to mean “x is

preferred or indifferent to y."

The set of consumers is denoted T. There is a positive and finite measure
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space5 (T, T , µ) over the set of consumers. An allocation is an integrable function

from T into the non-negative orthont of the commodity space. There is a fixed

allocation, denoted ω, called the initial allocation; ω(t) is called the initial endowment

of consumer t. An allocation x is said to be feasible if
∫

x =
∫

ω. Each consumer

has a preference relation defined by a preference function �: T → P . We say that

�: T → P is a measurable preference function if for arbitrary allocations x and y

{t ∈ T : x(t) �t y(t)} is measurable.

Definition 10. An economy, denoted E , is a triad ((T, T , µ), ω,�). It consists of a

positive and finite measure space (T, T , µ), an initial allocation ω : T → R`
+, and a

measurable preference function �: T →P .

Let (T, T , µ) be a measure space. An atom is a non-null element of the σ-algebra

with the property that any subset also belonging to the σ-algebra is of equal or

zero measure. That is, A ∈ T is an atom if for all B ⊆ A, where B ∈ T , we have

µ(B) = µ(A) or otherwise µ(B) = 0. A measure space with atoms is called atomic.

A measure space without atoms is called atomless.

Core and competitive equilibrium

A price system, denoted p, is a vector in R`
+.

Definition 11. A competitive equilibrium (p, x) is a price system p and an allocation x

such that x is feasible and for µ-almost all t in T

1. p · x(t) ≤ p ·ω(t) and

5If µ is a measure on a σ-algebra T , a set E in T is said to have finite measure if µ(E) < ∞. If
the measure of every set E in T is finite, then the measure µ is called finite. The measure µ is called
positive if for all E in T we have µ(E) ≥ 0. A positive and finite measure space is a measure space
that has a positive and finite measure.
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2. y �t x(t) implies p · y > p ·ω(t).

If (p, x) is a competitive equilibrium, then p is called an equilibrium price system

and x is called a competitive allocation.

The second equilibrium concept we consider is called the core. A coalition is any

set S in T with positive measure. We say that an allocation x is blocked by a coalition

S if there exists an allocation y such that
∫

S y =
∫

S ω, and y(t) �t x(t) for all t in S.

Definition 12. The core is the set of feasible allocations not blocked by any coalition.

Aumann’s model of perfect competition

Aumann’s model consists of an economy E = ((T, T , µ), ω,�) such that (T, T , µ)

is an atomless measure space. We make the following remarks.

Remark 1. Integration. The main conceptual difference between Aumann’s model

and the Arrow-Debreu model is the use of integration. It is instructive to consider

an example to see what the integral of an allocation means. In the Arrow-Debreu

model the total allocation is obtained by summing the m commodity bundles; in

Aumann’s model we integrate.

The integral of an allocation is the per capita allocation: the allocation that

each consumer obtains if we divide the allocation equally. Consider the following

example. Let E = ((T, T , µ), ω,�) be an economy with a single commodity.

Suppose that the allocation x assigns half the economy S two units of the commodity

and everyone else T \ S nothing. The integral of this allocation is

∫
x = 2µ(S) + 0µ(T \ S) = µ(T).

Thus the per capita allocation is µ(T) units of the commodity. We can also define

the mean allocation by dividing the per capita allocation by the measure of the
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economy. In this case the mean allocation of the commodity is one. Notice that if

the measure of the economy is one, then the per capita allocation and the mean

allocation are the same.

Remark 2. Core and Competitive Equilibrium. The definition of a competitive equi-

librium implies that the commodity bundle of any finite number of consumers in

the economy can be changed arbitrarily – finite groups of consumers have measure

zero and so have no effect. This may appear to be a weakening of the notion of a

competitive allocation but it is not. The reason is that an equilibrium price system

describes an infinite number of allocations – any allocation in which almost all

of the consumers in the economy choose a maximal element in their budget set.

This includes the allocation, induced by the equilibrium price system, in which all

consumers in the economy choose a maximal element of their budget set.

For the core, the restriction to coalitions with positive measure may seem even

more strange. A redistribution of resources in which a null set of consumers receive

a commodity bundle inferior to their initial endowment may be in the core. But

again, the core allocations need to be thought of as an equivalence class: an entire

set of allocations in which the commodity bundles assigned to any null set of

consumers in the economy can be changed arbitrarily. This includes the allocation

where no null set of consumers can block.

Remark 3. Lyapunov’s Convexity Theorem. An important tool used to study Aumann’s

model is Lyapunov’s convexity theorem. This states that the range of an atomless

measure is a closed convex subset of Euclidian space. In terms of the model the

theorem says the following. Let S be a coalition and 0 < c < µ(S). Then there is a

coalition A ⊆ S such that µ(A) = c. This result is critical in proving that the set of

competitive allocations coincides with the core.
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Remark 4. Implications of the Model. At the beginning of this section we defined

three features of Aumann’s model: (1) there is an infinite number of consumers; (2)

each consumer owns a negligible fraction of total resources; (3) each consumer acts

independently of other consumers. We now describe how his model of an economy

characterises these conditions.

(1) There are an infinite number of consumers: The set of consumers has positive

measure. Since each consumer has zero measure there is an uncountable infinity

them.

(2) Each consumer owns a negligible fraction of total resources: This follows directly

from the fact that each consumer has measure zero. The consequence is that an

allocations feasibility does not depend on what any individual consumer does.

(3) Each consumer acts independently of other consumers: This is implied by the

model insofar that we can ‘split’ any coalition into smaller coalitions. The condition

that consumers do not collude when interacting with the market is assumed rather

than an endogenous feature of the model.

C.1.4 Aumann: Markets with a continuum of traders

Statement of the theorem

Let E = ((T, T , µ), ω,�t) be an economy where (T, T , µ) is an atomless measure

space and the following assumptions hold.

1. Monotonicity: let x and y be arbitrary commodity bundles. Then x > y implies

x �t y;

2. Continuity: let x be an arbitrary commodity bundle. The sets {z ∈ R`
+ : x �t z}

and {z ∈ R`
+ : z �t x} are open;
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3. ω(t) is strictly positive in each of its coordinates.

Under these conditions Aumann proves the following.

Theorem 8. The core coincides with the set of competitive allocations.

The last assumption that the initial endowment of each consumer is strictly

positive in each of its coordinates is unnecessarily restrictive. We could have gotten

away with assuming instead that each commodity is present in the market (i.e.
∫

ω

is strictly positive in each of its coordinates.) We make this assumption to simplify

the exposition of the proof. There is no loss here; the extra work that needs to be

done under the less restrictive assumption is straightforward but a distraction from

the proofs central idea.

A competitive allocation is in the core

Every competitive allocation belongs to the core. The argument for this result

mimics its proof in the Arrow-Debreu model: if a coalition can block a competitive

allocation, then at the equilibrium price system the total value of the coalition’s

commodity bundles exceeds the total value of their initial endowments.

Theorem 9. A competitive allocation is in the core.

Proof. Let x be a competitive allocation and suppose by contradiction that x does

not belong to the core. Then there is a coalition S that blocks x with y. y(t) �t x(t)

implies p · y(t) > p ·ω(t) for each t in S. Hence, by the monotonicity and linearity

of the integral

p ·
∫

S
y > p ·

∫
S

ω,

contradicting
∫

S y =
∫

S ω.
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A core allocation is a competitive allocation

The interesting part of Aumann’s proof is in showing that a core allocation is a

competitive allocation. The basic logic follows [19]. Aumann proves

Theorem 10. A core allocation is a competitive allocation.

We give an outline of the proof. Let x be a core allocation and Γt the set of

net-trades for the t’th consumer that result in a commodity bundle preferred to x(t):

Γt = {z ∈ R`
+ : z + ω(t) �t x(t)}.

Let Γ be the convex hull of the union of these sets taken over µ-almost all consumers,

i.e. a set of consumers U such that T \U is a null set.

In precisely the same way as [19] it can be shown that a feasible allocation is a

competitive allocation if and only if the origin does not belong to Γ.

Like in [19] we show that x is a competitive allocation by showing that the origin

does not belong to Γ. Suppose by contradiction that the origin does belong to Γ.

We will show this implies a coalition blocks the core allocation x. In [19] such a

coalition is constructed by expressing the origin as a convex combination of points

in sets Γi, where i refers to a particular type of consumer, and forming a coalition of

sufficiently many consumers of these types by replication. This approach does not

work for Aumann’s model since (a) replicating the economy does not help us, and

(b) a finite set of consumers is not a coalition (since it is a null set.)

Instead, Aumann expresses the origin as a convex combination of points

k

∑
i=1

αizi = 0

where each zi is drawn from the set Γti with ti ∈ U, and searches for non-null sets

of consumers similar to ti. Specifically he considers consumers that prefer zi + ω(t)
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to their commodity bundle x(t). I.e. A(zi) = {t ∈ T : zi + ω(t) �t x(t)}.

Assume for a moment that for each i = 1, ..., k A(zi) is non-null. This means that

for each i there is a non-null set of consumers that prefers the net trade zi to their

own net trade. By Lyapunov’s convexity theorem we can choose sets Si ⊆ A(zi)

such that µ(Si) = δαi where δ is some positive real number chosen sufficiently small

so that µ(A(zi)) ≤ δαi for each i. This situation is depicted in Figure C.2.
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Figure C.2: Forming a blocking coalition with Lyapunov’s convexity theorem

We could then form a coalition S equal to the union of the sets Si and assign each

consumer in Si the commodity bundle zi + ω(t). By construction, this commodity

bundle is preferred to x(t). Doing this is feasible for the coalition since

∫
S

k

∑
i=1

(zi + ω)χSi = δ
k

∑
i=1

αizi +
∫

S
ω =

∫
S

ω.

Thus S blocks x contradicting that x is in the core.

So if it can somehow be shown that each set A(zi) is non-null the proof is

complete. The way to do this is by careful choice of the set U. The general idea is

to exclude consumers from U in such a way that A(zi) must be non-null. However

we cannot exclude too many consumers from U otherwise this set will not satisfy
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the property that T \U is a null set, or we will not be able to express the origin as a

convex combination of commodity bundles from sets Γti where ti ∈ U.

Two facts suggest a solution to the problem: (1) The rational numbers are dense

in the real numbers, and (2) the rational numbers are countable.

The first fact suggests that we might be able to express the origin as a convex

combination of commodity bundles with rational coordinates. That is

k

∑
i=1

αiri = 0

where ri ∈ Q`, ri ∈ Γti , αi ≥ 0, and ∑k
i=1 αi = 1.

The second fact implies that the union of consumers A(r) where A(r) is a null

set and r is a commodity bundle with rational coordinates is itself a null set. This

follows because each null set is measurable, the set of measurable sets forms a

σ-algebra, and the measure is countably additive. Thus setting

U = T \
⋃
{A(r) : r ∈ Q` and µ(A(r)) = 0},

U is measurable and has the desired property that T \U is a null set. Suppose we

do this.

Now pick any commodity bundle r with rational coordinates such that for some

consumer t in U, r belongs to Γt; that is r + ω(t) �t x(t). By construction A(r) is

non-null. Since we can express the origin as the convex combination of commodity

bundles with rational coordinates we can proceed as before to find a blocking

coalition. Thus x is a competitive allocation.

We have not provided the details of how the origin is expressed as a convex

combination of commodity bundles with rational coordinates. Doing this is a bit

messy. The formal proof is given below.

Theorem 11. A core allocation is a competitive allocation.
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Proof. Let x be a core allocation. For each commodity bundle z define A(z) to

be the set of consumers in T such that z + ω(t) �t x(t) and define N to be the

set of commodity bundles r with rational coordinates such that A(r) is a null set.

N is countable. Define the set of consumers U to be all consumers in T except

those belonging to A(r) where r is in N. U is measurable and its complement is

a null set. Let Γt be the set of all commodity bundles z in the commodity space

such that z + ω(t) �t x(t) and let Γ be the convex hull of the union of each Γt,

where the union is taken over the set U. Suppose by way of contradiction that

the origin belongs to Γ. Then there exists −y in Γ such that each component of

y is positive. By the definition of Γ, −y = ∑k
i=1 γiyi for some γi > 0, ∑k

i=1 γi = 1

and yi + ω(ti) �ti x(ti) where each ti belongs to U. By continuity of preferences

there exists rational numbers βi > 0, ∑k
i=1 βi = 1, and commodity bundles with

rational coordinates ri such that −r = ∑k
i=1 βiri where ri + ω(ti) �ti x(ti) and each

coordinate of r is positive. Choose an arbitrary consumer t0 in U. By monotonicity

there exists α > 0 such that αr + ω(t0) �t0 x(t0). Set r0 = αr, α0 = 1/(α + 1), and

αi = αγi/(α + 1) for i = 1, ..., k. Then αi > 0, ∑k
i=0 αi = 1, and ∑k

i=0 αiri = 0. By

construction A(ri) is non-null for i = 0, ..., k. For sufficiently small δ > 0 each set

A(ri) has a measure of at least δαi. By Lyapunov’s convexity theorem there exists

measurable subsets Si of A(ri) with measure δαi. Let S be the union of sets Si and

define y(t) = ri + ω(t) for each t in Si. By construction y(t) �t x(t) for each t in S.

Moreover, ∫
S

y =
k

∑
i=0

δαiri +
∫

S
ω =

∫
S

ω.

So coalition S blocks x with y contradicting that x belongs to the core.

Thus the origin does not belong to Γ. By Minkowski’s separating hyperplane

theorem [18, p.25] there is a hyperplane through the origin with normal p such that

p · z ≥ 0 for z in Γ. By continuity of preferences x(t)−ω(t) belongs to the closure
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of Γ so that p · x(t) ≥ p ·ω(t) for µ-almost all t. Since

∫
x =

∫
ω

p · x(t) = p ·ω(t) for µ-almost all t.

If y �t x(t), then y − ω(t) belongs to Γ so that p · y ≥ p · ω(t). Suppose by

contradiction that p · y = p · ω(t) for a non-null set of consumers. By continuity

and monotonicity of preferences, and the assumption that ω(t) is strictly positive in

each of its coordinates, there exists y′ such that y′ �t x(t) and p · y′ < p ·ω(t) for a

non-null set of consumers. A contradiction.

C.2 Imperfect Competition

This appendix studies imperfectly competitive economies. These are economies

where individual consumers are non-negligible or groups of consumers act together

as collusive entities. The mathematical model of this collusion is given by the

notion of an atom. We first define the model of imperfect competition and discuss

some conceptual issues that arise from the introduction of atoms. We then review

two important papers: each establishes core equivalence in imperfectly competitive

economies satisfying some restriction. The first paper by [50] proves core equivalence

for an imperfectly competitive economy where atoms have the same preferences

and initial endowment. The second paper by [24] proves core equivalence for

an imperfectly competitive economy where each type of atom can be associated

with a sufficiently large set of non-atomic consumers of their type. In particular

Gabszewicz and Mertens paper explains why Aumann’s core equivalence proof

does not work for an imperfectly competitive economy.
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C.2.1 Imperfect competition

We have defined a perfectly competitive economy to be one in which each consumer

is negligible and behaves independently of other consumers. Thus an imperfectly

competitive economy is one in which each consumer is non-negligible or where

consumers do not behave independently of one another. We will argue that with

infinitely many consumers the concept of a non-negligible consumer is nonsensical.

Thus the way in which we introduce imperfect competition into the model of an

economy is to allow groups of consumers to collude.

C.2.2 A model of imperfect competition

Aumann’s model of an economy is a model of perfect competition because each

consumer is negligible and independent. Both of these characteristics are captured

by the measure space of consumers being atomless. An imperfectly competitive

economy arises when one or more of these properties fails.

The model of imperfect competition we consider relaxes the assumption that con-

sumers are independent. It introduces collusive groups that control a non-negligible

fraction of the resources of the economy and thus can potentially manipulate prices.

The model has three basic features: there are an infinite number of consumers, each

consumer is negligible, and consumers are not independent in the sense that certain

groups are assumed to interact cooperatively or competitively as a single entity.

This collusion is introduced into the model exogenously – we assume that certain

groups of agents are bound together (like in a firm or trade union.) This is in contrast

to the more natural approach of allowing collusion to form endogenously according

to the mutual interests of groups of agents. Such an approach, while natural, is

impossible.
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Our model of perfect competition is an economy E = ((T, T , µ), ω,�) where

the measure space (T, T , µ) is atomic. Recall that a measure space is atomic if the

σ-algebra contains atoms and that an atom is a non-null element of the σ-algebra

with the property that any subset of the atom belonging to the σ-algebra has equal

or zero measure. The atom is what makes our model of an economy imperfectly

competitive. We make the following remarks about the model.

Remark 5. An atom represents a group of consumers: We view an atom as a group of

consumers collectively owning a non-negligible fraction of the total resources of the

economy and bound together by common preferences. The size of the atom is given

by its measure and this corresponds to the size of the group of consumers. Since

the atom is non-null it is composed of an infinite number of consumers.

A commodity bundle for an atom represents a commodity bundle for each of its

members. Thus the interpretation of a commodity bundle is different for an atom

and a non-atomic consumer.

Given a price system the atom may sell the initial endowments of its members

and purchase the most desirable element of its budget set according to the common

preferences of its members. Thus the atom behaves as to maximise the welfare of

its members much like a firm would for its shareholders. Formally the decision

process of an atom is identical to one of its members. The only difference is that the

atom has positive measure.

Nevertheless, it does not make sense to think of an atom as an individual

consumer. If we pursue this interpretation, then what we are saying is that an

individual consumer owns a non-negligible fraction of the resources of the economy.

In general, with infinitely many consumers the quantity of each commodity is

infinite so that a non-negligible fraction of resources involves infinite quantities of

commodities. Besides it being awkward to assume that a single consumer owns
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infinite quantities of certain commodities it becomes impossible to define reasonable

preferences for them.

For example, suppose that faced with a price system a non-negligible consumer

wishes to sell his initial endowment and purchase the most desirable commodity

bundle affordable to him. If his preferences are defined over finite quantities of

commodities, then there is no solution to this problem. For a solution to be well

defined his preferences must be defined over commodity bundles that refer to

infinite quantities of commodities. An individual consumer would not have such

preferences.

Remark 6. Preferences are µ-a.e. constant on an atom: We now establish that the

preference function is constant µ-almost everywhere on an atom. This follows from

the preference function being measurable.

Proposition 6. The preference function is µ-a.e. constant on an atom.

Proof. To see this let E be an economy and A an atom of the measure space (T, T , µ).

Suppose by contradiction that the preference function is not µ-a.e constant on A.

Then there exist commodity bundles x and y such that C = {t ∈ A : x �t y} is

non-null and A \ C is non-null. By the measurability of the preference function,

since A is measurable, and the class of measurable sets T is a σ-algebra we have

that C and A \ C are measurable. But this contradicts that A is an atom since

0 < µ(C) < µ(A)− µ(A \ C) < µ(A).

Remark 7. Allocations are µ-a.e. constant on an atom: This follows from the integra-

bility of an allocation. If an allocation assigned different commodity bundles to
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non-null subsets of an atom, then the allocation would not be measurable and hence

not integrable.

C.2.3 Shitovitz: Oligopoly in markets with a continuum of traders

[50] proves core equivalence for an imperfectly competitive economy with at least

two atoms having the same convex preferences and initial endowment. The basic

approach is to reduce an imperfectly competitive economy to an equivalent perfectly

competitive economy and to apply the core equivalence theorem of [5]. Shitovitz

constructs a perfectly competitive economy by ‘splitting’ the atoms of his imperfectly

competitive economy into atomless sets of consumers. He shows that core and

competitive allocations are essentially the same for both economies. Having made

the necessary assumptions he then applies Aumann’s core equivalence theorem

which yields core equivalence in the imperfectly competitive economy.

Statement of the theorem

Let E = ((T, T , µ), ω,�) be an economy where (T, T , µ) is an atomic measure

space with at least two atoms in which each atom has the same convex preferences

and initial endowment. In order to apply the core equivalence result of [5] we

assume

1. Monotonicity: let x and y be arbitrary commodity bundles. Then x > y implies

x �t y;

2. Continuity: let x be an arbitrary commodity bundle. The sets {z ∈ R`
+ : x �t z}

and {z ∈ R`
+ : z �t x} are open; and

3.
∫

T ω(t) >> 0 (i.e. every commodity exists.)
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Under these conditions it can be shown that

Theorem 12. The core coincides with the set of competitive allocations.

The assumption that atoms have convex preferences is crucial.

Proof of the theorem

We follow the proof given by [27]. Let T0 be the atomless part of T. We assume

T0 is non-null so without loss of generality T0 = [0, 1]. Denote the atomic part

of T by T1 = T \ T0. Define an economy E ∗ by ((T∗, T ∗, µ∗), ω∗,�∗) where T∗ =

[0, 1+ µ(T1)] and T ∗ and µ∗ are given by the direct sum of T and µ restricted to T0

and the Lebesgue atomless measure space over [1, 1 + µ(T1)]. Given an atom A ⊆ T

we define the ‘split’ atom A∗ ⊆ T∗ to be an atomless set such that µ∗(A∗) = µ(A).

Denote the set of split atoms by T∗1 . Let T∗0 = T∗ \ T∗1 .

We define the initial allocation and the preference function of E ∗ by

(ω∗(t),�∗t ) =

 (ω(A),�A) if t ∈ A∗,

(ω(t),�t) if t ∈ T∗0 .

In words, each consumer in E that belongs to an atom is obliged to work in

unison with the other members of the atom. E ∗ is obtained by removing this

restriction. The idea is summarised in Figure C.3. On the left is an imperfectly

competitive economy with two atoms, on the right is the economy after the atoms

have been split.

To compare core and competitive allocations between economies we define a

mapping from the set of allocations of one economy to the set of allocations of the

other. Given an allocation x for E an allocation x∗ for E ∗ is given by distributing the

commodity bundle of each atom equally among its members. Thus for each t in T∗
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Figure C.3: From imperfect to perfect competition

x∗(t) =

 x(t) if t ∈ T0,

x(t) if t ∈ A∗, A ⊆ T1 and A ∈ T .

In the other direction, given an allocation x∗ for E ∗ the allocation x for E obtains

by averaging the commodity bundles of consumers in A∗. Thus for each t in T

x(t) =

 x∗(t) if t ∈ T0,

1
µ∗(A∗)

∫
A∗ x∗ if t ∈ A ⊆ T1 .

It is clear that an allocation for one economy is feasible if and only if it is feasible

for the other economy.

We first prove some preliminary results needed for the proof of Theorem 12.

The convexity of each atoms preferences implies that if an allocation assigns each

consumer in the split atom a commodity bundle preferred to the commodity bundle

x, then the mean of these commodity bundles is also preferred to x.

Lemma 7. Let �A∗ be a convex preference relation. If f is an allocation such that f (t) �A∗

x for all t in A∗, then 1
µ∗(A∗)

∫
A∗ f �A∗ x.

Proof. If f is a simple function, then the result follows by induction using the
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convexity of preferences. Otherwise, let { fn} be a sequence of measurable functions

on A∗ such that 0 ≤ f1 ≤ f2 ≤ ..., fn(t) ∈ f (A∗) for all t in A∗, and lim fn = f in

measure. The sequence { 1
µ∗(A∗)

∫
A∗ fn} belongs to the set C = {z ∈ R` : z �A∗ x}

which is closed by continuity. By the Monotone convergence theorem

lim
1

µ∗(A∗)

∫
A∗

fn =
1

µ∗(A∗)

∫
A∗

f

and so 1
µ∗(A∗)

∫
A∗ f belongs to C.

We state the next result without proof. It is due to Karl Vind ([55].) Fortunately

the result is quite intuitive. It states that if an allocation is blocked by some coalition

in a perfectly competitive economy (i.e. an economy with an atomless set of

consumers), then it can be blocked by a coalition of any measure less than the

measure of the whole set of consumers.

Lemma 8. Let E = ((T, T , µ), ω,�) be an economy where (T, T , µ) is an atomless

measure space. If an allocation x is blocked by a coalition S, then for any c, 0 < c < µ(T),

there exists a coalition E with µ(E) = c that blocks x.

We can now prove Theorem 12. We do so in two parts. First, we show that an

allocation for E is competitive if and only if the associated allocation is competitive

for E ∗. Then we show that an allocation for E is in the core if and only if the

associated allocation is in the core for E ∗.

Lemma 9. (p, x) is a competitive equilibrium for E if and only if (p, x∗) is a competitive

equilibrium for E ∗.

Proof. It is clear that an allocation for one economy is feasible if and only if it is

feasible for the other economy.
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Let (p, x) be a competitive equilibrium for E . x∗ assigns each consumer in E ∗

the commodity bundle he receives in E . Thus (p, x∗) is a competitive equilibrium

for E ∗.

Conversely, let (p, x∗) be a competitive equilibrium for E ∗. Recall that x averages

the commodity bundles of consumers belonging to the split atom A∗. The only

difficulty in this case is that the members of the split atom may receive different

commodity bundles. However, since each consumer belonging to the split atom has

convex preferences Lemma 7 implies that the average is preferred or indifferent to

the commodity bundle under x∗. By the definition of competitive equilibrium

p · x∗(t) ≤ p ·ω∗(t) and y �∗t x∗(t) implies p · y > p ·ω∗(t).

for µ-almost all consumers in T∗. Since

p · 1
µ(A∗1)

∫
A∗1

x∗ ≤ p ·ω(t)

we have p · x(A) ≤ p ·ω(A) for each atom in T1 and p · x(t) ≤ p ·ω(t) for µ-almost

all t in T0.

Let y �t x(t) for some t ∈ T. Then since �t=�∗t and ω(t) = ω∗(t) we have

p · y > p ·ω(t)

for µ-almost all t in T. Thus (p, x) is a competitive equilibrium for E .

This completes the first part of the proof. The next part of the proof is more

difficult.

Lemma 10. x is a core allocation for E if and only if x∗ is a core allocation for E ∗.

Proof. Let x∗ be a core allocation for E ∗. Suppose by contradiction that x is not a
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core allocation for E . Then there is a coalition S that blocks x with y. But y∗ is

feasible and preferred to x∗ by each member of S∗. Thus S∗ blocks x∗ with y∗. A

contradiction.

Conversely, assume that x is a core allocation for E . Suppose by contradiction

that x∗ is not a core allocation for E ∗. Then there exists a coalition S∗ that blocks x∗

with y∗. We will show this implies that a coalition R blocks x.

Since each atom has the same preferences there exists an atom Ā that receives

the least desired commodity bundle. That is,

x(A) �A x(Ā)

for all atoms A ⊆ T1. Let µ(Ā) = α.

Since there are at least two atoms we have µ∗(T∗) > 1 + α. By Lemma 8

([55]) we can choose the measure of our blocking coalition to be 1 + α. So assume

µ∗(S∗) = 1 + α.

Since T∗0 has measure one the measure of the coalition intersected with T∗1

must be at least α by subadditivity. That is, µ∗(S∗ ∩ T∗1 ) ≥ α. We will show

using Lyapunov’s convexity theorem that there exists a coalition R∗ ⊆ S∗ such

that µ(R∗ ∩ T∗1 ) = α and that this coalition blocks x∗. To see this define the vector

measure ν on T∗ by

ν(E) =
(∫

E
(y∗ −ω∗), µ∗(E ∩ T∗1 )

)
for any E ∈ T ∗. Since (T∗, T ∗, µ∗) is an atomless measure space Lyapunov’s

theorem implies there is a coalition R∗ ⊆ S∗ such that

ν(R∗) =
α

µ∗(S∗ ∩ T∗1 )
ν(S∗).

Therefore

121



ν(R∗) =

(∫
R∗
(y∗ −ω∗), µ∗(R∗ ∩ T∗1 )

)
=

(
α

µ∗(S∗ ∩ T∗1 )

∫
S∗
(y∗ −ω∗),

αµ∗(S∗ ∩ T∗1 )
µ∗(S∗ ∩ T∗1 )

)
= (0, α)

which implies that y∗ is feasible for R∗ and µ(R∗ ∩ T∗1 ) = α.

To finish the proof we define an allocation for (R ∩ T0) ∪ Ā. Let

y(t) =

 y∗(t) if t ∈ R ∩ T0,

1
α

∫
R∗ y∗ if t = Ā.

y is preferred to x for each member of R ∩ T0. By Lemma 7 y is preferred to x by

Ā.

Thus (R ∩ T0) ∪ Ā blocks x with y. A contradiction.

By [5] the core of E ∗ coincides with the set of competitive allocations. By

Lemma 9 and Lemma 10 the core of E coincides with the set of competitive alloca-

tions. This completes the proof.

C.2.4 Gabszewicz and Mertens: Atoms that aren’t “too" big

[24] prove core equivalence for imperfectly competitive economies where each atom

can be associated with a sufficiently large set of atomless consumers with the same

preferences and initial endowment as the atom. Their theorem is a direct extension

of [5]. The key to their result is showing that core allocations have an equal treatment

property. This means that a core allocation assigns to consumers with the same

preferences and initial endowment commodity bundles in the same indifference set.
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Formally, let E = ((T, T , µ), ω,�) be an economy where (T, T , µ) is a separa-

ble6 atomic measure space and each atom has convex preferences. By separability

the set of atoms can be partitioned into at most countably many sets {Ta,i : i ≥ 1}

where each Ta,i contains atoms with the same preferences and initial endowment.

For each Ta,i define Ti to be the set of consumers with the same preferences and

initial endowment as the atoms in Ta,i. Notice that Ta,i ⊆ Ti. Define the set of

consumers not in any Ti as T0. T0 = T \⋃{Ti : i ≥ 1} is atomless.

So that they can apply the core equivalence result of [5] Gabszewicz and Mertens

assume E satisfies

1. Monotonicity: let x and y be arbitrary commodity bundles. Then x > y implies

x �t y;

2. Continuity: let x be an arbitrary commodity bundle. The sets {z ∈ R`
+ : x �t z}

and {z ∈ R`
+ : z �t x} are open; and

3.
∫

T ω(t) >> 0 (i.e. every commodity exists.)

Under these conditions they prove:

Theorem 13. If ∑i≥1
µ(Ta,i)
µ(Ti)

≤ 1 (holding strictly in the case of a single atom), then the

core coincides with the set of competitive allocations.

Why Aumann’s proof does not work for imperfectly competitive economies

Recall Aumann’s core equivalence proof. Aumann applies the argument of [19] to a

perfectly competitive economy: he considers a core allocation x and then assumes

by contradiction that x is not competitive, or equivalently that 0 ∈ Γ where

6A measure space (T, T , µ) is called separable if its σ-algebra T can be generated by a countable
collection of sets.
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Γ = co
⋃
{Γt : t ∈ U} = co

⋃
t∈U
{z : z + ω(t) �t x(t)}

where U is a subset of consumers such that its complement in T is a null set.

He then proceeds to show that one can construct a blocking coalition to x. He

finds commodity bundles r1, ..., rk and weights α1, ..., αk such that

0 =
k

∑
i=1

αiri

where each ri has the property that A(ri) = {t ∈ T : ri + ω(t) �t x(t)} is non-null.

The idea is to select, by Lyapunov’s theorem, a set of consumers Si from each A(ri)

with measure δαi, (δ being chosen sufficiently small.) The assignment of ri + ω(t)

to each member of Si is feasible because

k

∑
i=1

∫
Si

(ri + ω(t)) = δ
k

∑
i=1

αiri +
k

∑
i=1

∫
Si

ω(t).

Thus x is blocked by the coalition made up of the union of each Si.

Importantly, notice the assumption that (T, T , µ) is an atomless measure space

is used to apply Lyapunov’s convexity theorem to each A(ri). The reason why

Aumann’s proof does not work in imperfectly competitive economies is that we can

only apply Lyapunov’s theorem to A(ri) if it contains a non-null set of atomless

consumers. However it may be the case that A(ri) contains only atoms. In this

case we cannot apply Lyapunov’s theorem and so we cannot construct a blocking

coalition. The goal of Gabszewicz and Mertens paper is to provide a sufficient

condition such that the set A(ri) contains a non-null set of atomless consumers.

Assume for a moment that for each atom there exists a non-null set of atomless

consumers with the same preferences and initial endowment as the atom. That is

µ(Ti) > µ(Ta,i) for each i ≥ 1. Moreover, assume that every core allocation assigns

to each consumer in Ti a commodity bundle in the same indifference set – this is
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the equal treatment property. Now consider the set of consumers

A(ri) = {t ∈ T : ri + ω(t) �t x(t)}.

If this set contains an atom (i.e. ri + ω(A) �A x(A) for some atom A), then it

contains all consumers with the same preferences and initial endowment as the

atom. Therefore A(ri) contains a non-null set of atomless consumers. Lyapunov’s

theorem can be applied and Aumann’s proof works.

The hypothesis of Theorem 13 is

∑i≥1 µ(Ta,i)

µ(Ti)
≤ 1

(with strict inequality in the case of a single atom.) Thus the first requirement, that

µ(Ti) > µ(Ta,i), is satisfied. In the next section we establish that this hypothesis

implies the desired equal treatment property. Once this has been achieved the proof

is complete.

Idea of the proof

The goal is to establish that core allocations assign consumers of the same type

commodity bundles in the same indifference set. The argument of the proof is

similar to the proof of equal treatment in [19]. Assuming that the equal treatment

property is false for some core allocation we will construct a blocking coalition

consisting of a non-null set Ci of consumers from each type Ti. We choose Ci to

contain those consumers that receive less desirable commodity bundles than other

members of their type. We then assign each member of Ci the average of their type’s

commodity bundle. In order for this assignment to be feasible we must be able to

choose the Ci to have equal measure. This is the main difficulty of the proof.

By Theorem 3.2.1 we may assume without loss of generality that the measure
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of each Ti i ≥ 1 is one. Consider each type Ti, i ≥ 1, ordered on the unit interval

according to the desirability of their commodity bundle (the consumers that receive

the less desirable commodity bundles lying closer to the origin.) The ability to

choose non-null sets Ci from each type so that all have equal measure is determined

by the position of the atoms on the unit intervals (see Figure C.4.) In Figure C.4 the

ability to choose such sets corresponds to whether we can find an α ∈ (0, 1) such

that α does not intersect an atom. In the first panel of Figure C.4 we cannot do this

because whichever α we choose it will always intersect one of the atoms. In the

second panel, we can.

Figure C.4 refers to an economy with two types, T1 and T2, and two atoms, A1

and A2 with µ(A1) = µ(A2) =
2
3 . Depending on the core allocation, an α ∈ (0, 1)

that does not cut the atoms may or may not exist because if we line the atoms head

to toe, their measure (here indicated by their length) spans the unit interval. These

two cases are illustrated in the figure.

α

α

0

1

0

1T1 T2 T1 T2

A1

A2

A1

A2

Figure C.4: Forming a blocking coalition

However if the sum of the measure of the atoms in the economy is less than or

equal to one, then we will always be able to find an α ∈ (0, 1) that does not intersect

the atoms. This is precisely the hypothesis of Theorem 13.
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The proof of the theorem formalises this idea.

Proof of the theorem

We follow the proof of [42]. Let E = ((T, T , µ), ω,�) be an economy where

(T, T , µ) is a separable atomic measure space. Let each consumer belonging to Ti

have the same utility function ui : R`
+ → R. Suppose that each atom has convex

preferences. Assume E satisfies

1. Monotonicity: let x and y be arbitrary commodity bundles. Then x > y implies

x �t y;

2. Continuity: let x be an arbitrary commodity bundle. The sets {z ∈ R`
+ : x �t z}

and {z ∈ R`
+ : z �t x} are open; and

3.
∫

T ω(t) >> 0 (i.e. every commodity exists.)

Lemma 11. If ∑i≥1
µ(Ta,i)
µ(Ti)

≤ 1 (holding strictly in the case of a single atom) and x is a core

allocation, then ui(x(t)) is µ-a.e. constant on Ti for each i ≥ 1.

Proof. Let x belong to the core and suppose by contradiction that ui(x(t)) is not

µ-a.e. constant on all Ti. For each i ≥ 1 define a measurable function hi : Ti → [0, 1]

such that h(t) 6= h(s) for all t 6= s. For each i ≥ 1 define the function Fi : Ti → [0, 1]

by

Fi(t) = µ({s ∈ Ti : ui(t) > ui(s), or [ui(t) = ui(s) and hi(t) > hi(s)]}).

Fi is measurable by the measurability of ui and hi. For each atom A ∈ Ta,i define

the interval JA = (Fi(A), Fi(A) + µ(A)). Consider each Ti as ordered by Fi on the

unit interval. By hypothesis ∑i≥1 µ(Ta,i) ≤ 1. Thus there exists α ∈ (0, 1) such

that α 6∈ JA for all atoms A ⊆ T. Define the sets Ci = F−1
i (α). Clearly µ(Ci) = α
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for all i ≥ 1. By Lyapunov’s convexity theorem choose a subset C0 of T0 such

that
∫

C0
(x − ω) = α

∫
T0
(x − ω). Let C =

⋃{Ci : i ≥ 1}. Consider the following

assignment for C:

y(t) =

 x(t) if t ∈ C0,∫
Ti

x if t ∈ Ci, i ≥ 1.

By convexity of the atoms preferences and Lemma 7 ui(y(t)) ≥ ui(x(t)) for all

i ≥ 1 and for at least one i′ ≥ 1 we have ui′(y(t)) > ui′(x(t)) for all t ∈ Ci′ . y is

feasible for C since

∫
C
(y−ω) =

∫
C0

(x−ω) + ∑
i≥1

∫
Ci

((∫
Ti

x
)
−ω

)
= α

∫
T0

(x−ω) + ∑
i≥1

[
µ(Ci)

(∫
Ti

x
)
−
∫

Ci

ω

]
= α

∫
T0

(x−ω) + α ∑
i≥1

∫
Ti

(x−ω)

= α
∫

T
(x−ω).

By monotonicity there exists an allocation ȳ for C such that ui(ȳ(t)) > ui(x(t))

for all t ∈ C and i ≥ 0 (simply redistribute a small quantity of the commodity

bundle of consumers in Ci′ to the other members of C.) Thus C blocks x with ȳ. A

contradiction.
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