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ABSTRACT

Thanks to the continued development of new medications in many therapeutic areas, patients and

clinicians often are faced with the need to choose from multiple treatment options. All treatment

decisions should ideally be informed with randomized controlled trials. However, randomized con-

trolled trials with multiple active medications are rare. In the absence of trial evidence, comparative

effectiveness/safety research utilizing observational data can play important roles.

Although propensity score methods have become a standard tool in comparative effectiveness/safety

research, they are less frequently used in questions involving three or more treatment options. This

is in part due to the lack of familiarity and methods. In this dissertation, we extended several

existing methods that had originally been developed in the two-group setting to the multi-group

setting to overcome this.

InChapter 1, we extended thematching weights, an alternative propensity score weighting method,

to the general multi-group setting. We showed its asymptotic equivalence to multi-group simulta-

neous propensity score matching and confirmed its similarity to three-way simultaneous matching

in a simulation.
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In Chapter 2, we applied the multi-group matching weights method to an applied question on

the bone safety of analgesics. The analysis based on the initial treatment assignment showed

similar changes in bone mineral density although the on-treatment analysis suggested a potentially

detrimental effect of opioids.

In Chapter 3, we developed an empirical equipoise tool for the multi-group setting to address

the question familiar to pharmacoepidemiologists: Are the treatment groups similar enough? We

examined the settings in which the tool helped identify the danger of residual confounding due to

dissimilar patient characteristics.

In Chapter 4, we proposed extensions of three existing propensity trimming methods into the

multi-group setting. We examined their ability to reduce confounding due to unmeasured variables

more common in the tails of the multinomial propensity score distribution.

In conclusion, we extended several existing propensity score methods to the multi-group setting. We

hope these methods promote and improve comparative effectiveness/safety research with multiple

treatment groups.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Figures with Captions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables with Captions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1: Matching weights to simultaneously compare three treatment groups: Com-

parison to three-way matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

eFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

eTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 2: Effects of Analgesics on Bone Mineral Density: a Longitudinal Analysis of

the Prospective SWAN Cohort with Three-group Matching Weights . . . . . . . . . . . . . . . . 60

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

iv



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

eTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

eFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Chapter 3: A Tool for Empirical Equipoise Assessment in Multi-group Comparative

Effectiveness Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

eFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

eTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Chapter 4: Multinomial Extension of Propensity Score Trimming Methods: A Simu-

lation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

v



Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

vi



List of Figures with Captions

Chapter 1

Figure 1-1. Illustration of pre- and post-weighting or post-matching distributions of propensity

score when the treatment prevalence is 50%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 1-2. Comparison of weighted and matched sample sizes under different levels of covariate

overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Figure 1-3. Comparison of covariate balance before and after matching or weighting by average

standardized mean differences under different covariate overlap (selected covariates: X1, X4, and

X7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 2

Figure 2-1. Group mean trajectories of baseline-normalized % bone mineral density (BMD). . . . 82

Chapter 3

Figure 3-1. Propensity score (left) and preference score (right) distributions in the naproxen (0 red;

n = 23,532), ibuprofen (green 1; n = 21,880), and diclofenac (2 blue; n = 5,261) example. . . . . 109

Figure 3-2. Propensity score (left) and preference score (right) distributions in the abatacept (0

red), tocilizumab (1 green), and TNFi (2 blue) examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 3-3. Simulation results from scenarios with equal group sizes (1 vs 0 contrast). . . . . . . . . 111

Figure 3-4. Simulation results from scenarios with equal group sizes (2 vs 0 contrast). . . . . . . . . 112

Figure 3-5. Simulation results from scenarios with equal group sizes (2 vs 1 contrast). . . . . . . . . 113

Chapter 4

Figure 4-1. Visual explanation of three existing two-group trimming methods. . . . . . . . . . . . . . . . . 166

Figure 4-2. Ternary plots of trimming results in empirical datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Figure 4-3. Simulated samples size after trimming at different thresholds. . . . . . . . . . . . . . . . . . . . . 168

Figure 4-4. Bias results from the moderate unmeasured confounding setting. . . . . . . . . . . . . . . . . . 169

vii



Figure 4-5. Standard error results from the moderate unmeasured confounding setting. . . . . . . .170

Figure 4-6. Mean squared error (MSE) results from the moderate unmeasured confounding setting.

171

viii



List of Tables with Captions

Chapter 2

Table 2-1. Baseline characteristics of analgesics new users before propensity score weighting. . . 79

Table 2-2. Baseline characteristics of analgesics new users after propensity score weighting. . . . . 80

Table 2-3. Main bone mineral density analysis results from generalized estimating equations. . . 81

Chapter 4

Table 4-1. Existing propensity score trimming method definitions for a binary treatment and pro-

posed propensity score trimming method definitions for a multinomial treatment . . . . . . . . . . . . . 172

Table 4-2. Tentative threshold values for each method and number of groups. . . . . . . . . . . . . . . . . 173

ix



Acknowledgments

I would like to express the most profound appreciation to Dr. Sonia Hernández-Díaz for allowing

me to pursue my interest in methodological issues in pharmacoepidemiology and to Dr. Robert J.

Glynn for his patient guidance in my research endeavor at the intersection of pharmacoepidemiology

and biostatistics. I would like to thank Dr. Daniel H. Solomon for his continuous mentorship both

in research and career development. I am grateful to Dr. Sebastien Haneuse for his assistance with

the most technical aspects of my research.

I also received support from many people outside the dissertation committee. Drs. Jessica M.

Franklin and John Jackson guided me through my first methodological paper, which became Chapter

1 of this dissertation. Dr. Joshua J. Gagne supported me to formulate the dissertation proposal

by leading my oral qualifying exam committee. Drs. Seoyoung Kim, Elisabetta Patorno, Sara

K. Tedeschi, Houchen Lyu, and Tzu-Chieh Lin helped me with the clinical examples and keeping

manuscripts relevant. Dr. Til Stürmer assisted me extending his asymmetric trimming method.

Ms. Zhi Yu, Dr. Gail A. Greendale, Dr. Kristine Ruppert, and Ms. Yinjuan Lian helped with the

SWAN database.

I would also like to thank the members of my two written qualifying exam study groups: Dr.

Katsiaryna Bykov, Dr. Andres Ardisson Korat, and Mr. Xeno Acharya for epidemiology and Mr.

Xihao Li, Dr. Tom Chen, and Dr. Yan Wang for biostatistics.

Last but not least, I would like to thank my wife Tomoko for tolerating my protracted doctoral

study and my three children, Haruka, Nanami, and Kouta for cheering me up.

x



 

- 1 - 

Chapter 1: Matching weights to simultaneously compare three treatment groups: Comparison to 

three-way matching 
 
AUTHORS: Kazuki Yoshida (1,2), Sonia Hernández-Díaz (1), Daniel H. Solomon (3,4), John W. Jackson 
(5,1), Joshua J. Gagne (4), Robert J. Glynn (2,4), Jessica M. Franklin (4) 
 
 
AFFILIATIONS 

1. Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 
United States. 

2. Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 
United States. 

3. Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, 
Massachusetts, United States. 

4. Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham 
and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States. 

5. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, 
Maryland, United States. 

 
 
DISCLOSURES: 
KY receives tuition support jointly from Japan Student Services Organization (JASSO) and Harvard T.H. Chan School 
of Public Health (partially supported by training grants from Pfizer, Takeda, Bayer and PhRMA). SHD has consulted 
for AstraZeneca and UCB. DHS receives salary support from institutional research grants from Eli Lilly, Amgen, 
Pfizer, AstraZeneca, Genentech, and Corrona. He also receives royalties from UpToDate, and serves in unpaid roles 
in studies funded by Pfizer and Eli Lilly. JWJ None. JJG has received salary support from institutional research grants 
from Novartis Pharmaceuticals Corporation. He is a consultant to Aetion, Inc., a software company. RJG None. JMF 
is PI of grants from PCORI and Merck. She also serves as consultant to Aetion, Inc. 
 
 
FUNDING INFORMATION: 
KY receives tuition support jointly from Japan Student Services Organization (JASSO) and Harvard T.H. Chan School 
of Public Health (partially supported by training grants from Pfizer, Takeda, Bayer and PhRMA). DHS receives salary 
support from NIH-K24AR055989. JWJ is funded by the Alonzo Smythe Yerby Fellowship at the Harvrad T.H. Chan 
School of Public Health. JMF is PI of grants from PCORI and Merck. 
  



 

- 2 - 

ABSTRACT 

BACKGROUND: Propensity score matching is a commonly used tool. However, its use in 

settings with more than two treatment groups has been less frequent. We examined the 

performance of a recently developed propensity score weighting method in the three treatment 

group setting. 

METHODS: The matching weight method is an extension of inverse probability of treatment 

weighting (IPTW) that reweights both exposed and unexposed groups to emulate a propensity 

score matched population. Matching weights can generalize to multiple treatment groups. The 

performance of matching weights in the three-group setting was compared via simulation to three-

way 1:1:1 propensity score matching and IPTW. We also applied these methods to an empirical 

example that compared the safety of three analgesics. 

RESULTS: Matching weights had similar bias, but better mean squared error (MSE) compared 

to three-way matching in all scenarios. The benefits were more pronounced in scenarios with a 

rare outcome, unequally sized treatment groups, or poor covariate overlap. IPTW’s performance 

was highly dependent on covariate overlap. In the empirical example, matching weights achieved 

the best balance for 24 out of 35 covariates. Hazard ratios were numerically similar to matching. 

However, the confidence intervals were narrower for matching weights. 

CONCLUSIONS: Matching weights demonstrated improved performance over three-way 

matching in terms of MSE, particularly in simulation scenarios where finding matched subjects 

was difficult.  Given its natural extension to settings with even more than three groups, we 

recommend matching weights for comparing outcomes across multiple treatment groups, 

particularly in settings with rare outcomes or unequal exposure distributions. 
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INTRODUCTION 

The emergence of multiple treatment options makes the availability of comparative 

effectiveness/safety evidence more important. However, head-to-head clinical trials are not 

common, let alone trials of multiple active treatment options. Observational studies can play an 

important role in filling this gap; however, confounding by indication1 is a challenge. 

Initially proposed in 1983, the propensity score2 has become a commonly used tool to 

address confounding in the scientific literature. However, its use in multiple group settings has not 

received as much attention3–5. Rassen et al3 explored an extension of propensity score matching to 

the three-group setting, developing a three-way simultaneous nearest neighbor matching algorithm 

(three-way matching). However, simultaneous matching in multiple dimensions is 

computationally burdensome and often leads to many patients being excluded because appropriate 

matches are unavailable. Therefore, the extension of this approach to 4 or more groups has not 

been achieved.  

 Li and Greene recently proposed a weighting analogue to pairwise 1:1 matching6 (matching 

weights), and demonstrated that its estimand is asymptotically equivalent to the estimand of exact 

pairwise matching on the propensity score, given common support of the propensity score between 

treatment groups. As compared to matching, efficiency gains were seen in simulations. Therefore, 

we hypothesized that matching weights generalized to the setting of three treatment groups would 

outperform three-way matching. 

 In the current paper, we generalize matching weights to the setting of three or more 

treatment groups and present a simulation study that compares the validity and precision of 

matching weights, three-way matching, and inverse probability of treatment weights (IPTW). 

Finally, we use empirical data to demonstrate its performance in a real-life dataset. 
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METHODS 

Matching weights 

 Li and Greene’s proposed weight is defined as follows for the i-th subject6: 

Matching	weight = 	
min(/0, 1 − /0)

50/0 + (1 − 50)(1 − /0)
	

where		

/0	is	the	propensity	score	

50	is	the	binary	treatment	indicator 

The denominator is identical to that of IPTW7, the probability of the assigned treatment 

given covariates. The numerator is the smallest of the propensity score or its complement, which 

can be thought of as a combination of the numerator for the average treatment effect on the treated 

weight (“treated weight”)8,9 and that for the average treatment effect on the untreated weight 

(“untreated weight”)9. These weights' close relationships can be appreciated if they are expressed 

in the same notation as shown below. 

IPTW =	
1

50/0 + (1 − 50)(1 − /0)
	

Treated	weight = 	
/0

50/0 + (1 − 50)(1 − /0)
		

Untreated	weight = 	
1 − /0

50/0 + (1 − 50)(1 − /0)
	 

 Matching weights reduce to the treated weights for those with propensity scores < 0.5, 

untreated weights for those with propensity scores > 0.5, and at propensity scores = 0.5, matching 

weights agree with both. 

A simulated dataset may help intuitive understanding (Figure 1-1). Compared to the IPTW 

method, which up-weights subjects to balance the distributions of the propensity score, matching 
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weights instead down-weight subjects to achieve balance. In this example, the treated group is as 

large as the untreated group, making the target of matching weights and 1:1 matching depart from 

the treated group. If there is a large reservoir of untreated10, however, most observations fall below 

propensity score < 0.5, making both matching weights and 1:1 matching approximate the treated 

group similarly well (eFigure 1-1). Matching weights confer numerical stability compared to 

IPTW, which can suffer from very high weights, by focusing on treatment effects in patients with 

good overlap on the propensity score.6 Compared to matching, matching weights are more efficient 

because they use all of the original data. 

 

Generalization of matching weights 

 Unlike matching, weighting methods can naturally generalize to a non-dichotomous 

treatment variable, including three or more treatment groups. For matching weights under K 

treatment groups, the weight can be generalized as follows. 

Matching	weight = 	
min(/C0, … , /E0)
∑ G(50 = H)/I0E
IJC

	

where		

/I0	is	the	generalized	propensity	score	for	the	Hth	treatment 

(i.e., probability of receiving the k-th treatment)	

	50 ∈ {1, … , P}	is	a	categorical	treatment 

I(∙) is an indicator variable (1 if true and 0 if false) 

 The denominator is the probability of receiving the treatment actually received given 

covariates. The numerator considers probabilities for all treatment levels and selects the smallest 

value. For a given individual, the sum of all propensity scores must add up to 1, meaning that a 

single model must be fit to the data to estimate all of the propensity scores (e.g., multinomial 
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logistic regression).4 Again the estimand of this generalized weighting method is asymptotically 

equivalent to the estimand of exact matching across all treatment groups if common support (i.e., 

positivity) holds for all treatment levels (proofs in eAppendix page 1-9). 

 
Simulation study 

Comparison of matching weights6, stabilized IPTW13, and the three-way matching method 

developed by Rassen et al3 was conducted in simulated datasets (details in eAppendix pages 10-

14). 

Data Generation 

The data generation mechanism followed Franklin et al.14 The outcome was binary, and the 

treatment took on three values. There were ten confounders (binary and continuous). Levels of 

covariate overlap, treatment prevalence, baseline outcome risk, treatment effects, and treatment 

effect modification were varied. Each dataset had 6,000 subjects. Treatment assignment (Ti ∈{0, 

1, 2}) was generated as a multinomial random variable based on true propensity scores. We 

generated all combinations of exposure prevalence {33:33:33, 10:45:45, 10:10:80} and weak 

(near-random treatment assignment; good covariate overlap) and strong (non-random treatment 

assignment; poor covariate overlap) covariate-treatment associations. 

All covariates and treatment jointly determined the true probability of disease for each 

subject. The counterfactual probability of disease under each treatment was also recorded. To 

avoid non-collapsibility issues15,16, a log-probability model was used. 

 

log(P(R0 = 1|T0 = U0, VW = XW))

= 	YZ + X0[\V + Y[CG(U0 = 1) +	Y[]G(U0 = 2) +	Y[C_`G(U0 = 1)ab0 +	Y[]_`G(U0 = 2)ab0	 
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The bold �X represents main effects of covariates. Treatment has two main effect terms. The last 

two terms are treatment-X4 interactions. Treatment 0 served as the baseline for comparison, and 

Treatments 1 and 2 had no effects or protective effects. The intercept �0 was manipulated to 

achieve the baseline disease risk of 5% or 20%. We controlled treatment effect heterogeneity by 

setting the coefficients of the interaction terms to either zeros (no heterogeneity) or negative 

(additional protective effect for individuals with x4i = 1). Combining these simulation parameters, 

we constructed 48 simulation scenarios (eAppendix page 13). Each scenario was run 1,000 times. 

 
Propensity score estimation 

For each simulated dataset, the propensity score model including all covariates was fit by 

multinomial logistic regression17. For each subject, three propensity scores (e0i, e1i, and e2i) were 

estimated. 

Matching weight procedure 

Weights were estimated from three propensity scores. Subsequent analyses, including 

balance metrics and risk regression (modified Poisson regression18), were conducted as weighted 

analyses19,20. The treatment variable was the only predictor in the outcome model. The estimation 

using the stabilized IPTW was conducted similarly substituting the weights. Reproducible example 

R code is provided in eAppendix (pages 15-21). 

Three-way matching procedure 

 Using non-redundant propensity scores to define a two-dimensional propensity score 

space, three-way matching was conducted without replacement3. The Pharmacoepidemiology 

Toolbox version 2.4.15 (http://www.drugepi.org) was used. The caliper width was based on the 

perimeter of the triangle formed by three individuals in a proposed matched trio.3 The maximum 

allowed perimeter was: 
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0.6 × g
hZ] + hC] + h]]

3 	

where	

hI] = 	
Var(/Z0	|	T = H	) + 	Var(/Ck	|	T = H	)

2  

Modified Poisson regression18 was conducted without stratifying on matched trios to maintain the 

unconditional estimand comparable to that of matching weights. 

Performance assessment metrics 

Several assessment metrics were used to examine validity and efficiency: weighted or 

matched sample size, covariate balance measured by absolute standardized mean differences,21,22 

bias in risk ratios, simulation variance, estimated variance, mean squared errors (MSE), false 

positive rates in null scenarios, and coverage probability of confidence intervals. Bias and 

covariate balance, which measures the potential for confounding bias, are measures of validity, 

whereas variance is a measure of efficiency. 

Standardized mean differences were calculated for three pairwise contrasts and averaged 

for each covariate. The standardization was conducted by dividing the mean difference by the 

square root of the pooled within-group variance (Its definition for binary variables is explained in 

references).21,22  

Bias for an effect estimate was defined as the average risk ratio estimate / the true risk ratio. 

The true risk ratio (estimand) was calculated as the contrast of the marginal counterfactual 

outcomes (average of the counterfactual probabilities of disease across individuals under each 

treatment). This true risk ratio calculation was conducted in the unadjusted cohort (for the average 

treatment effect), matching weight cohort, three-way matched cohort, and IPTW cohort (this 

should agree with the average treatment effect) to obtain their respective estimands. These adjusted 
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cohorts were newly constructed using the true propensity scores to avoid the influence of the 

propensity score estimation model performance. The estimands themselves were also compared 

for their agreement under treatment effect heterogeneity. 

The simulation variance is the variance of the estimator across simulation iterations, and 

represents the true variance of the estimator, whereas the estimated variance was calculated within 

each iteration and average across all iterations. The bootstrap variance was calculated for matching 

weights only due to computational burden. The full sequence of propensity score modeling and 

outcome modeling was bootstrapped12. For each one of 1,000 iterations of a given scenario, 1,000 

bootstrap iterations were conducted. MSE combines bias and true variance (variance + bias2). False 

positive rates were examined in the null scenarios where there was no treatment effect and no 

treatment effect heterogeneity. The confidence intervals created from the estimated variance were 

examined for their coverage of the aforementioned true risk ratios to see whether these intervals 

are conservative in nature by ignoring uncertainty in the estimated propensity score6,11.  

 
Empirical study 

We re-analyzed Medicare data from a previously published study comparing new users of 

opioids, COX-2 selective inhibitors (coxibs), and non-selective non-steroidal anti-inflammatory 

drugs (nsNSAIDs)3,23 for various safety outcomes. There were 35 covariates including 5 continuous 

variables. The propensity score model was pre-specified as a model with squared terms for the 

continuous variables without any interaction terms. All-cause mortality, any fracture, upper or 

lower gastrointestinal bleeding, and any cardiovascular events were examined. 

The baseline covariates for each treatment group before and after weighting (or matching) 

were examined. Average standardized mean difference across all three pairwise contrasts was 

calculated for each variable. For the outcome analyses using Cox models, hazard ratios with 
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corresponding 95% confidence intervals were calculated and compared between methods for each 

outcome event.  

Computing 

 All analyses were conducted in R (http://cran.r-project.org) versions 3. All code for the 

simulation study is available online (https://github.com/kaz-yos/mw). 

 
RESULTS 

Simulation study 

Sample sizes 

 Sample size comparison is presented in Figure 1-2. The matching weight sample sizes 

and the matched sample sizes were similar given Rassen et al.’s caliper configuration. They were 

influenced by both the treatment prevalence and covariate overlap because the size of the common 

support and number of 1:1:1 matches are influenced by these factors. This means their estimands 

are similarly affected by the characteristics of the dataset. The unmatched sample size and the 

stabilized IPTW sample size coincide regardless of the treatment prevalence and covariate overlap. 

This agrees with the fact that the stabilized IPTW estimates the effect in the entire cohort rather 

than a subset as in matching weights and matching. 

Covariate balance 

Figure 1-3 shows the covariate balance before and after balancing by the different methods. 

In the good covariate overlap setting where there was a minor imbalance to start with, all methods 

did well, making all standardized mean differences well below the conventional 0.10 threshold21. 

Among the three methods, matching weights achieved the best balance with near-zero standardized 

mean differences for all covariates followed by IPTW. In the poor covariate overlap setting, i.e., a 

setting with positivity violation (some subjects exist outside the common support), IPTW broke 
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down, indicating the entire cohort estimand is likely not estimable in this setting. In comparison, 

both matching weights and matching performed reasonably well, likely because of their emphasis 

on the effect in the common support. 

Bias of estimators 

eFigure 1-2 shows the biases of these methods with respect to their corresponding 

estimands (1.0 means unbiased). The biases were similarly small for all methods in the good 

covariate overlap settings. In the poor covariate overlap settings, however, their performance 

differed. Most noticeably IPTW sometimes gave more biased results than the unadjusted analyses, 

confirming the difficulty of estimating the effect in the entire cohort in such settings. Both 

matching weights and three-way matching performed reasonably well in all settings, although in 

the rare outcome setting, matching weights tended to perform better. 

Comparison of estimands 

eFigure 1-3 shows the estimands (true risk ratios to be estimated) of these methods in 

different settings. In the absence of effect modification (left half of the figure), their estimands 

numerically agree. In the presence of effect modification, they may differ substantially. IPTW by 

definition has the entire cohort as its target of inference (thus, the agreement between U and Ip in 

the figure). The estimands of matching weights and three-way matching agreed as expected, but 

they differed from the IPTW estimand particularly in the unbalanced exposure settings. On the 

other hand, their estimands were close to each other with good covariate overlap and the 33:33:33 

exposure distribution (i.e., a setting in which the matching weight or matched sample sizes are 

close to the entire cohort). 

Variance and MSE of estimators 

 The matching weight estimator had smaller true variance than the three-way matching 
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estimator, particularly in poor covariate overlap settings (eFigure 1-4). In these settings, matching 

yields a small matched cohort, whereas matching weights do leverage data from all subjects 

although the weighted cohort is similarly small. The difference was most striking in the poor 

covariate overlap, rare disease, 10:45:45 treatment distribution scenario. This difference was 

caused by lack of any observed events in treatment group 2 in the matched cohort in some datasets. 

The estimated variance (eFigure 1-5) showed a similar pattern but was sometimes anti-

conservative for all methods in poor overlap scenarios. The bootstrap variance for matching 

weights was less often anti-conservative (eFigure 1-6). Since the bias was small, MSE (eFigure 

1-7) also showed a similar pattern. Importantly, matching weight MSE was always smaller than 

matching MSE across all scenarios. 

False positive rates and coverage 

  Matching weights had false positive rates > 0.05 for 6 scenarios whereas three-way 

matching had them for 5 scenarios (eFigure 1-8). Undercoverage (coverage < 0.94) was observed 

in 7 scenarios for matching weights and 3 scenarios for three-way matching (eFigure 1-9). For 

matching weights, undercoverage occurred in poor covariate overlap scenarios only, whereas two 

of the undercoverage scenarios for three-way matching were in good overlap scenarios. 

 
Empirical study 

 In the three-group analgesic example, there were 23,647 potentially eligible patients 

before weighting or matching. After matching weights, the weighted sample size was 13,887.9, 

which was similar to the three-way matched sample size of 13,833, whereas IPTW resulted in a 

weighted sample size of 23,699.4, which was similar to the original cohort size. Individuals’ 

assigned weights ranged from 0.0003 to 1 with a median of 0.577 [interquartile range: 0.318-

0.897] for matching weights, and 0.241-12.938 with a median of 0.939 [interquartile range: 
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0.809-1.126] for stabilized IPTW. As seen in eFigure 1-10, matching weights achieved the best 

covariate balance most consistently (24 of the 35 covariates) compared to three-way matching (6 

covariates) and IPTW (5 covariates). Thanks to the active comparator design24, the covariate 

overlap was relatively good (relatively small standardized mean difference in the unmatched 

cohort), and IPTW did not break down. 

The characteristics of the matching weights cohort and the matched cohorts for selected 

variables with most imbalances were very similar (eTable 1-1), again confirming the notion that 

matching weights are a weighting analogue to matching. As expected from the definition of the 

common support (overlap area of all three groups), these cohorts are most similar to the smallest 

group, i.e., the NSAIDs group in the unmatched cohort. The IPTW cohort had somewhat 

different characteristics with higher morbidity levels, most closely resembling the largest group, 

i.e., the opioids group.  

 The outcome model results are shown in Table 1-1. The hazard ratios were similar using 

matching weights and three-way matching, but IPTW sometimes differed. Between matching 

weights and three-way matching, the most noticeable difference was in the opioids-vs-nsNSAIDs 

comparison for the gastrointestinal bleeding outcome, which was the rarest outcome among the 

four considered in the current study. The standard errors were smaller for matching weights than 

for three-way matching or IPTW for all estimates, as reflected by the somewhat narrower 

confidence intervals. 

 

DISCUSSION 

 We examined the usefulness of a recently proposed weighting method6 in multiple 

treatment arm settings, comparing it to the previously described three-way matching method3 as 
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well as IPTW25 in both simulated data and a reanalysis of a previously published empirical study.23 

Overall, matching weights provided smaller MSE than three-way matching in the scenarios studied 

mainly due to smaller variance. Better MSE was more pronounced in settings where matching 

performed poorly, such as with rare disease and poor covariate overlap. Compared to IPTW, 

matching weights demonstrated robustness to poor covariate overlap. The false positive rate and 

coverage rate for matching weights were somewhat less ideal than three-way matching, indicating 

the need for the bootstrap variance. In the empirical data analysis, matching weights gave similar 

point estimates compared to three-way matching, but with better covariate balance and narrower 

confidence intervals. 

The strengths of matching weights are the combination of the strengths of matching and 

weighting. The estimand of the matching weight estimator is asymptotically equivalent to that of 

1:1 exact matching. We confirmed that this approximately holds in finite datasets using nearest-

neighbor matching (eFigure 1-3). Those who are nearly equally likely to receive all treatment 

choices are most represented (Figure 1-1). Matching weights avoid inflating weights for a small 

number of subjects in the extremes of the propensity score distribution treated contrary to the norm, 

which is a major disadvantage of typical IPTW approaches. 

From weighting, matching weights inherit the maximum use of the data, i.e., no one in the 

dataset is left out, but subjects contribute differing amounts of information depending on their 

weights. The efficient use of data resulted in lower variance of estimators in our simulation and 

narrower confidence intervals in our empirical study. As with other weighting methods, matching 

weights can naturally generalize to multiple treatment group settings, which we demonstrated in 

this paper. Currently, there appears to be no software available for 4+ group simultaneous 

matching, which matching weights can easily accommodate. 
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 Matching weights outperformed IPTW in scenarios with poor covariate overlap; however, 

choice of a method should carefully consider both the clinical question and the data (Table 2). 

Although matching weights are an extension of IPTW, their targets of inference are different as 

illustrated in Figure 1-1. Their estimands (true risk ratios to be estimated) numerically agree if no 

treatment effect heterogeneity exists (left half of eFigure 1-3), and they nearly coincide if covariate 

overlap is good (first and third rows of eFigure 1-3). However, their estimands are not directly 

comparable in settings with treatment effect heterogeneity as demonstrated in the right half of 

eFigure 1-3, particularly if covariate overlap is poor (second and fourth rows). When making a 

decision about which propensity score method to employ, the estimand should be decided first 

based on the clinical question. If it is the causal effect in the entire population, IPTW is the method 

of choice. 

Nonetheless, as seen in the poor covariate overlap simulation scenarios, the performance 

of IPTW degrades when positivity violations26 exist because the effect in the entire cohort is not 

estimable. The IPTW cohort can be “trimmed” to drop subjects who violate positivity, but this will 

also reduce the effective sample size and modify the target of inference (detailed discussions of 

propensity score trimming in the two-group setting are in Crump et al27 and Stürmer et al28). Matching 

weights and matching approach this problem by focusing on the patients with “empirical 

equipoise”29 --i.e., patients for whom all treatment options under study are appropriate. This subset 

is not easily definable; however, in the setting of 3+ active treatment groups, the average treatment 

effect on the treated is not uniquely defined, justifying focusing on this feasible subset. This subset 

is also where comparative effectiveness evidence may be most useful for decision-making. In 

practice, the matching weight cohort, as well as the original cohort, should be presented in the 

baseline table to clarify the subset of the population for which inference was made. 
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Another potential approach given three or more groups is to match two groups at a time, 

resulting in three matched cohorts with different pairs of treatment arms (i.e., to separately target 

the populations for whom those two treatments are equally possible). These three cohorts are not 

directly comparable to the one cohort given by matching weights or three-way matching. Whether 

the former is a more appropriate method depends on the clinical question and situation. The mean 

matching weight (ranges 0 to 1) in the group that had the smallest unweighted sample size may be 

used to assess the simultaneous common support. This quantity is roughly interpretable as the 

fraction of the smallest treatment group in clinical equipoise with the other groups. If this fraction 

is close to 1, the treatment groups have reasonable overlap and the factor constraining the weighted 

sample size is the number of subjects in the smallest group. On the other hand, if the fraction is 

close to 0, it is the lack of sufficient common support that is constraining the weighted sample size. 

In the latter setting, the more meaningful questions may be answered by pairwise comparison. If 

the problem persists with pairwise matching weights, it means not enough common support exists 

in the data to enable comparative effectiveness research. 

 There are potential limitations in the current study. We employed the caliper configuration 

for three-way matching used in the paper by Rassen et al.3 Currently, no known standard exists for 

caliper definitions (raw propensity score or logit of propensity score) or caliper widths for three-

way matching. In the 4 or more group settings, even the distance metric is hard to define. Matching 

weights, on the other hand, completely avoids the use of an arbitrary caliper parameter. 

Investigators can instead focus on the structure of the propensity score model. 

Matching methods, including three-way matching, are, by definition, protected against 

common support (positivity) violations at least with narrow matching calipers. Subjects with 

propensity scores that are not present in other treatment groups cannot match, and are excluded. 
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This is not true for matching weights, as everybody, even those without exactly comparable 

subjects in other groups, contributes to the weighted analyses. This is why the theoretical 

asymptotic equivalence of the estimands of matching weights and matching requires perfect 

common support in addition to exact matching.6 However, poor covariate overlap did not adversely 

affect matching weights in comparison to IPTW, which did not perform well in poor covariate 

overlap scenarios. 

There have been debates about whether to account for the uncertainty in the estimated 

propensity score11, which are estimates of the true underlying propensity score. Li and Greene 

found that not accounting for the uncertainty (using estimated propensity scores as if they were 

known constants) results in conservative variance estimates6, whereas simultaneous estimation of 

the propensity score and outcome model parameters gave correct variance estimates. We did not 

pursue this method, as the generalization to multiple treatment group settings and binary outcomes 

was unclear. They suggested bootstrapping as an alternative that is easier to implement. In our 

simulation study in the three-group setting with a binary outcome, matching weight variance 

estimates were somewhat anti-conservative (smaller than the true variance) in poor covariate 

overlap scenarios. Bootstrap variance performed more accurately and was less often anti-

conservative. 

 In conclusion, matching weights are a viable alternative to matching, especially with three 

or more treatment groups. Matching weights demonstrated improved performance over three-way 

matching in terms of MSE. With good covariate overlap, matching weight estimates were similar 

to IPTW estimates, although, in such settings, IPTW may be preferable due to its clearer target of 

inference. Given its natural extension to settings with more than three groups, we recommend 

matching weights for comparing outcomes across multiple treatment groups when covariate 
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overlap is relatively limited, outcomes are rare, or exposure distributions are unequal. For variance 

estimation, use of bootstrapping is preferred. 
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Figure 1-1. Illustration of pre- and post-weighting or post-matching distributions of propensity 
score when the treatment prevalence is 50%. 

 

The solid line is the distribution of the propensity scores in the treated, and the dashed line is the 
distribution in the untreated. Matching and matching weight cohorts have a similar propensity 
score distribution, indicating that their estimands are similar. However, their distributions are 
substantially different from the original treated group, indicating their departure from the average 
treatment effect in the treated. 
Abbreviations: IPTW: inverse probability of treatment weights. 
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Figure 1-2. Comparison of weighted and matched sample sizes under different levels of covariate 
overlap. 

 

IPTW shows a weighted sample size identical to the original cohort. Matching weights and 
matching are similarly affected by exposure prevalence and poor covariate overlap, indicating 
shifts in the target population. 
Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: 
Inverse probability of treatment weight cohort; pExpo: Exposure prevalence 
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Figure 1-3. Comparison of covariate balance before and after matching or weighting by average 
standardized mean differences under different covariate overlap (selected covariates: X1, X4, and 
X7). 

 

MW performs best in both settings, whereas IPTW only works in the good covariate setting. The 
other covariates showed similar patterns. 
Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: 
Inverse probability of treatment weight cohort; pExpo: Exposure prevalence 
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eFigure 1-1. Illustration of pre- and post-weighting or post-matching distributions of propensity 
score when the treatment prevalence is 20%. The solid line is the distribution of the propensity 
scores in the treated, and the dashed line is the distribution in the untreated. Matching and matching 
weight cohorts have a similar propensity score distribution, indicating that their estimands are 
similar. These cohorts are very similar to the original treated group (i.e., their estimands 
approximate the average treatment effect on the treated) although there is a minor attrition in the 
cohort in the high propensity score range (propensity score > 0.5). 

 
Abbreviations: IPTW: inverse probability of treatment weights. 
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eFigure 1-2. Comparison of bias (risk ratio / true risk ratio) between methods across 48 scenarios. 
The left half presents the constant treatment effect scenarios, whereas the right half presents 
treatment effect heterogeneity scenarios. Each three columns represent three treatment contrasts. 
Rows classify scenarios by good vs. poor covariate overlap levels and presence vs. absence of 
main effects. Each panel contains six lines classified by the exposure prevalence and the baseline 
risk. Matching weights and matching perform well in all scenarios; however, IPTW fails in the 
poor covariate overlap setting. 

Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: 
Inverse probability of treatment weight cohort; pExpo: Exposure prevalence; pDis: Baseline risk 
of disease. 
  

Modification (−)

1v0

Modification (−)

2v0

Modification (−)

2v1

Modification (+)

1v0

Modification (+)

2v0

Modification (+)

2v1

0.75

1.00

1.50

2.00

3.00

0.75

1.00

1.50

2.00

3.00

0.75

1.00

1.50

2.00

3.00

0.75

1.00

1.50

2.00

3.00

N
ull m

ain effects
N

ull m
ain effects

N
on−null m

ain effects
N

on−null m
ain effects

G
ood overlap

Poor overlap
G

ood overlap
Poor overlap

U M Mw Ip U M Mw Ip U M Mw Ip U M Mw Ip U M Mw Ip U M Mw Ip

Bi
as

 (E
st

im
at

ed
 R

is
k 

R
at

io
 / 

Tr
ue

 R
is

k 
R

at
io

)

pExpo 33:33:33 10:45:45 10:10:80

pDis 0.05 0.2



 

- 27 - 

eFigure 1-3. Comparison of true risk ratios (estimands) between methods across 48 scenarios. 
Some scenarios have the same estimands and completely overlap. The left half presents the 
constant treatment effect scenarios, whereas the right half presents treatment effect heterogeneity 
scenarios. Each three columns represent three treatment contrasts. Rows classify scenarios by good 
vs. poor covariate overlap levels and presence vs. absence of main effects. Differences in 
estimands are only present in the treatment effect heterogeneity scenarios, particularly with poor 
covariate overlap and unbalanced treatment group sizes. 

 
Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: 
Inverse probability of treatment weight cohort; pExpo: Exposure prevalence. 
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eFigure 1-4. Comparison of true variance of log risk ratios calculated across iterations between 
methods across 48 scenarios. The left half presents the constant treatment effect scenarios, whereas 
the right half presents treatment effect heterogeneity scenarios. Each three columns represent three 
treatment contrasts. Rows classify scenarios by good vs. poor covariate overlap levels and presence 
vs. absence of main effects. Each panel contains six lines classified by the exposure prevalence 
and the baseline risk. All methods performed well in the good covariate overlap scenarios; however, 
matching weights were most efficient in the poor covariate overlap scenarios (rows 2 and 4). 
Matching performed poorly in the poor covariate overlap with 10:45:45 exposure distribution, as 
there were often no events in Group 2 after matching. 

 
Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: 
Inverse probability of treatment weight cohort; pExpo: Exposure prevalence; pDis: baseline risk 
of disease 
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eFigure 1-5. Comparison of estimated variance of log risk ratios averaged across iterations 
between methods across 48 scenarios. The left half presents the constant treatment effect scenarios, 
whereas the right half presents treatment effect heterogeneity scenarios. Each three columns 
represent three treatment contrasts. Rows classify scenarios by good vs. poor covariate overlap 
levels and presence vs. absence of main effects. Each panel contains six lines classified by the 
exposure prevalence and the baseline risk. Results were similar to the true variance results. 

 
Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: 
Inverse probability of treatment weight cohort; pExpo: Exposure prevalence; pDis: baseline risk 
of disease 
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eFigure 1-6. Comparison of variance estimation methods for matching weights across 48 scenarios. 
The left half presents the constant treatment effect scenarios, whereas the right half presents 
treatment effect heterogeneity scenarios. Each three columns represent three treatment contrasts. 
Rows classify scenarios by good vs. poor covariate overlap levels and presence vs. absence of 
main effects. Each panel contains six lines classified by the exposure prevalence and the baseline 
risk. In good covariate overlap settings, the estimated variance and the bootstrap variance were 
both close to the true variance values. In the poor covariate overlap settings, however, the estimated 
variance was sometimes anti-conservative, whereas the bootstrap variance was more accurate or 
somewhat conservative. 

 
Abbreviations: Est.: Estimated variance; True: True variance calculated across iterations; Boot.: 
Bootstrap variance; pExpo: Exposure prevalence; pDis: baseline risk of disease. 
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eFigure 1-7. Comparison of mean squared error of log risk ratios between methods across 48 
scenarios. The left half presents the constant treatment effect scenarios, whereas the right half 
presents treatment effect heterogeneity scenarios. Each three columns represent three treatment 
contrasts. Rows classify scenarios by good vs. poor covariate overlap levels and presence vs. 
absence of main effects. Each panel contains six lines classified by the exposure prevalence and 
the baseline risk. All methods performed well in the good covariate overlap scenarios; however, 
matching weights were most robust in the poor covariate overlap scenarios (rows 2 and 4). 
Matching performed poorly in the poor covariate overlap with 10:45:45 exposure distribution, as 
there were often no events in Group 2 after matching. 

 
Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: 
Inverse probability of treatment weight cohort; pExpo: Exposure prevalence; pDis: Baseline risk 
of disease. 
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eFigure 1-8. Comparison of false positive probability in completely null treatment effect 
scenarios. Minor violation of the 0.05 expected false positive rate (false positive rates of 0.06-
0.07) was seen in both matching weights and matching. IPTW made many false positives in the 
poor covariate overlap settings. These tests were based on the estimated variance. 

 
Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: 
Inverse probability of treatment weight cohort; pExpo: Exposure prevalence; pDis: baseline risk 
of disease 
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eFigure 1-9. Comparison of coverage probability of estimated confidence intervals between 
methods across 48 scenarios. The left half presents the constant treatment effect scenarios, whereas 
the right half presents treatment effect heterogeneity scenarios. Each three columns represent three 
treatment contrasts. Rows classify scenarios by good vs. poor covariate overlap levels and presence 
vs. absence of main effects. Each panel contains six lines classified by the exposure prevalence 
and the baseline risk. matching weights and matching performed similarly, whereas IPTW 
performed poorly in the poor covariate overlap settings. These confidence intervals were based on 
the estimated variance. 

 
Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: 
Inverse probability of treatment weight cohort; pExpo: Exposure prevalence; pDis: baseline risk 
of disease. 
  

Modification (−)

1v0

Modification (−)

2v0

Modification (−)

2v1

Modification (+)

1v0

Modification (+)

2v0

Modification (+)

2v1

●
●●

●●● ●●● ●●●

●

●

●

●●● ●●
●

●

●

●

●
●●

●●● ●●● ●●●

●

●

●

●●● ●●●

●

●

●

●

●
●

●●● ●●● ●●●

●●●

●●● ●
●
●

●

●

●

●

●
●

●●● ●●● ●●●

●●●

●●● ●●●

●

●

●

●●

●
●●● ●●● ●●

●

●●
●

●●● ●●● ●
●

●

●
●
●

●●● ●●● ●●●

●●

●

●●● ●●● ●●

●

●
●● ●●● ●●● ●●●

●

●

●

●
●●

●●
●

●

●

●

●
●● ●●● ●●● ●●●

●

●

●

●●● ●●●

●

●

●

●
●●

●●● ●●● ●●●

●●●

●●● ●●●

●

●

●

●
●●

●●● ●●● ●●●

●●●

●
●●

●●●

●

●

●

●
●
● ●●● ●●● ●●●

●

●

●

●●● ●●●
●
●

●

●●● ●●● ●●● ●●●

●

●

●

●
●●

●●●
●
●

●

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

N
ull m

ain effects
N

ull m
ain effects

N
on−null m

ain effects
N

on−null m
ain effects

G
ood overlap

Poor overlap
G

ood overlap
Poor overlap

U M Mw Ip U M Mw Ip U M Mw Ip U M Mw Ip U M Mw Ip U M Mw Ip

C
ov

er
ag

e 
Pr

ob
ab

ilit
y

pExpo 33:33:33 10:45:45 10:10:80

pDis ● 0.05 0.2



 

- 34 - 

eFigure 1-10. Standardized mean differences for each covariate averaged across three treatment 
contrasts in the unmatched, weighted, and matched cohort. Matching weights achieved the best 
covariate balance most consistently (24 of the 35 covariates) compared to three-way matching (6 
covariates) and IPTW (5 covariates). 

 
Abbreviations: PPI: proton pump inhibitor; H2: histamine-2 receptor; SSRI: selective serotonin 
reuptake inhibitor; ACE: angiotensin converting enzyme; ARB: angiotensin receptor blocker; 
MW: matching weights; IPTW: Inverse probability of treatment weights. 
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eTable 1-1. Characteristics of unmatched, matched, and weighted cohorts for the variables that 
were least balanced (average standardized mean difference > 0.1). The MW and matched cohorts 
were similar in characteristics, confirming the notion that MW is a weighting analogue to 
matching. As expected from the definition of the common support (overlap area of all three 
groups), these two cohorts are most similar to the smallest group, i.e., the NSAIDs group in the 
unmatched cohort. The IPTW cohort had somewhat different characteristics with higher 
morbidity levels, most closely resembling the largest group, i.e., the opioids group.  

nsNSAIDs Coxibs Opioids SMD 
Unmatched 

   
 

n 4874 6172 12601  
Charlson score, mean (SD) 1.59 (1.54) 1.72 (1.53) 2.17 (1.78) 0.233 
Antithrombotic use, % 14.4 17.6 27.7 0.220 

No. prescription drugs, mean (SD) 8.28 (4.69) 8.55 (4.76) 9.76 (5.38) 0.197 
No. days in hospital, mean (SD) 1.85 (6.90) 2.19 (6.86) 4.18 (9.46) 0.190 

White race, % 84.6 88 92.4 0.164 
Fracture, % 6.5 7.2 13.7 0.161 

Loop diuretic use, % 21.3 25.8 31.3 0.152 
Age, mean (SD) 79.67 (7.03) 80.87 (6.99) 81.15 (7.17) 0.140 

No. physician visits, mean (SD) 8.72 (6.32) 8.80 (5.99) 10.08 (7.14) 0.137 
Myocardial infarction, % 5.2 5.7 9.6 0.112 

Stroke, % 15.2 16.1 21.5 0.110     
 

Matched 
   

 
n 4611 4611 4611  

Charlson score, mean (SD) 1.62 (1.54) 1.63 (1.52) 1.61 (1.52) 0.005 
Antithrombotic use, % 15.1 15.5 15.8 0.013 

No. prescription drugs, mean (SD) 8.34 (4.70) 8.33 (4.69) 8.32 (4.71) 0.003 
No. days in hospital, mean (SD) 1.89 (6.45) 1.88 (6.54) 1.94 (6.29) 0.006 

White race, % 86.9 86.7 86.6 0.007 
Fracture, % 6.7 6.9 6.7 0.005 

Loop diuretic use, % 22 22 22.6 0.010 
Age, mean (SD) 79.97 (6.97) 79.96 (6.93) 80.11 (6.92) 0.014 

No. physician visits, mean (SD) 8.76 (6.08) 8.76 (5.93) 8.66 (5.84) 0.010 
Myocardial infarction, % 5.4 5.2 5.6 0.011 

Stroke, % 15.5 15.6 15.7 0.002     
 

Matching weights 
   

 
n 4633.49 4635.71 4618.71  

Charlson score, mean (SD) 1.62 (1.53) 1.61 (1.52) 1.63 (1.53) 0.008 
Antithrombotic use, % 14.9 14.8 15.2 0.007 

No. prescription drugs, mean (SD) 8.32 (4.70) 8.29 (4.67) 8.35 (4.71) 0.009 
No. days in hospital, mean (SD) 1.87 (6.37) 1.78 (6.18) 2.00 (6.99) 0.022 

White race, % 86.3 86.4 86.4 0.002 
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   eTable 1-1 (Continued) 
 nsNSAIDs Coxibs Opioids SMD 

Fracture, % 6.7 6.7 6.7 0.002 
Loop diuretic use, % 22 21.8 22.3 0.007 
Age, mean (SD) 79.97 (6.95) 79.95 (6.97) 80.02 (6.95) 0.007 

No. physician visits, mean (SD) 8.72 (6.09) 8.69 (6.01) 8.76 (6.04) 0.008 
Myocardial infarction, % 5.3 5.2 5.4 0.005 

Stroke, % 15.4 15.4 15.5 0.002     
 

IPTW 
   

 
n 4926.58 6187.8 12585.04  

Charlson score, mean (SD) 1.98 (1.70) 1.94 (1.68) 1.94 (1.69) 0.016 
Antithrombotic use, % 23.3 22.5 22.4 0.014 

No. prescription drugs, mean (SD) 9.27 (5.17) 9.15 (5.15) 9.17 (5.14) 0.014 
No. days in hospital, mean (SD) 3.48 (8.96) 3.35 (8.78) 3.39 (9.82) 0.010 

White race, % 89.7 89.7 89.7 0.001 
Fracture, % 11.2 10.8 10.6 0.012 

Loop diuretic use, % 28.9 27.9 27.9 0.015 
Age, mean (SD) 80.89 (7.17) 80.82 (7.11) 80.81 (7.11) 0.008 

No. physician visits, mean (SD) 9.58 (6.82) 9.49 (6.66) 9.50 (6.75) 0.008 
Myocardial infarction, % 7.8 7.7 7.7 0.002 

Stroke, % 19.4 18.8 18.9 0.010 
 
Abbreviations: Matched: three-way matching; IPTW: inverse probability of treatment weights; 
Coxibs: COX-2 selective inhibitors; nsNSAIDs: non-selective nosteroidal anti-inflammatory 
drugs; SMD: standardized mean difference averaged across three pairwise contrasts 
 

 



1 Proof for the two group setting

1.1 Estimand of Matching

This proof essentially follows the structure of the proof in the appendix of Li & Greene’s 2013 paper[1]. The

initial expression for the sample mean outcome in the matched treated group appears di↵erent from theirs,

i.e.,
PK

k=1

Pn
i=1 YiI(i2S1k)PK

k=1

Pn
i=1 I(i2S1k)

where k is an index over discrete values of propensity scores, however both are the

equivalent sample marginal mean outcome in the matched treated group. Instead of the explicit sum over

k, we define a specific structure for the matched set.

The usual causal inference assumptions[2] are all required. The first is conditional exchangeability (uncon-

foundedness) given a function of the covariate vector Xi including the vector itself (finest balancing score)

or the propensity score (coarsest balancing score). The latter requires no model misspecification for the

propensity score model. The second is consistency, i.e., Yi = ZiY1i + (1 � Zi)Y0i. That is, the observed

outcome is the counterfactual potential outcome corresponding to the treatment received. This requires well-

defined treatment and non-interference among individuals’ potential outcomes. The third is positivity, i.e.,

at any level of Xi (and thus propensity score), both treatment choices have non-zero (positive) probability.

In this setting, this implies a perfect common support, i.e., any propensity score values present in one of the

treatment groups are also present in the other group.

Additional assumptions are required for the propensity score matching process. Matching has to be 1:1

matching without replacement. It also has to be exact matching on propensity scores (no calipers are al-

lowed). This necessarily requires discrete propensity scores taking on a finite set of values because there has

to be a positive probability of finding an exact match across two treatment groups[1]. The set of values can

be arbitrarily large as long as its size is bounded and does not grow with the sample size n. When multiple

untreated candidates are available for matching a treated individual at a given propensity score (< 0.5),

one is selected at random. The same should apply when there are more treated individuals than untreated

individuals at a given propensity score (> 0.5).

Proof : Let l 2 {1, 2, ..., L} be the index for the propensity score matched pairs. Let S1l be the single

member set of the treated subject from the l-th matched pair and the S0l be the corresponding set of the

untreated subject. Thus, S1 =
LS

l=1
S1l is the set of matched treated subjects, S0 =

LS
l=1

S0l is the set of

matched untreated subjects, and S = S0 [ S1 is the set of the entire matched cohort. This matched cohort

is balanced, i.e., both groups contain the same number (L) of matched subjects. Index n is over the entire

dataset before matching, thus, it includes subjects who do not match. The group mean in the matched

treated group is expressed as follows. The selection indicator is e↵ectively acting as a 0, 1 weight.

37



Pn
i=1 YiI(i 2 S1)Pn
i=1 I(i 2 S1)

The numerator is examined first. The expression is multiplied by 1
n , but it cancels out in the original

expression as we do the same for the denominator. Yi is the observed outcome of the i-th subject, whereas

Y1i is the treated counterfactual potential outcome of the i-th subject.

By consistency, the treated counterfactual is observed among the treated.

Only the treated contribute to the expression, thus, Yi = Y1i.

1

n

nX

i=1

YiI(i 2 S1) =
1

n

nX

i=1

Y1iI(i 2 S1)

Asymptotically, by the Weak Law of Large Number

p! E[Y1iI(i 2 S1)]

Rewrite as an iterative expectation.

= E[E[Y1iI(i 2 S1)|Xi]]

Break the indicator into selection and treatment.

= E[E[Y1iI(i 2 S)I(Zi = 1)|Xi]]

* only the treated subjects contribute to the inner expectation,

and otherwise it is zero, expectation can be taken

in the treated and weighted by its prevalence.

= E[E[Y1iI(i 2 S)|Zi = 1,Xi]P (Zi = 1|Xi)]

* given Zi = 1 and within levels of Xi, selection (i 2 S) is random,

Y1i and selection indicator are conditionally independent.

= E[E[Y1i|Zi = 1,Xi]E[I(i 2 S)|Zi = 1,Xi]P (Zi = 1|Xi)]

By conditional exchangeability, E[Y1i|Zi = 1,Xi] = E[Y1i|Zi = 0,Xi] = E[Y1i|Xi].

= E[E[Y1i|Xi]E[I(i 2 S)|Zi = 1,Xi]P (Zi = 1|Xi)]

* expectation of a 0,1 selection indicator is the selection probability.

= E[E[Y1i|Xi]P (i 2 S|Zi = 1,Xi)P (Zi = 1|Xi)]

The last term is the propensity score by definition.

= E[E[Y1i|Xi]P (i 2 S|Zi = 1,Xi) ei]

At a given Xi, only the smaller group can match fully.
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ei is the fraction of the treated group at a given Xi.

min(ei, 1� ei) is the fraction of the smaller group at Xi.

⇧ among the treated group, only
min(ei, 1� ei)

ei
can match.

As this is a function of Xi, conditioning is implicit.

= E


E[Y1i|Xi]

min(ei, 1� ei)

ei
ei

�

= E [E[Y1i|Xi]min(ei, 1� ei)]

The denominator is a simplified version of the above proof.

1

n

nX

i=1

I(i 2 S1) =
1

n

nX

i=1

I(i 2 S1)

p! E[I(i 2 S1)]

= E[E[I(i 2 S1)|Xi]]

= E[E[I(i 2 S)I(Zi = 1)|Xi]]

= E[E[I(i 2 S)|Zi = 1,Xi]P (Zi = 1|Xi)]]

= E[P (i 2 S|Zi = 1,Xi)P (Zi = 1|Xi)]]

= E[P (i 2 S|Zi = 1,Xi) ei]

= E


min(ei, 1� ei)

ei
ei

�

= E [min(ei, 1� ei)]

Therefore, the estimand of the group mean of the matched treated cohort is asymptotically the following.

E [E[Y1i|Xi]min(ei, 1� ei)]

E [min(ei, 1� ei)]

Similarly, the estimand of the group mean of the matched untreated cohort is asymptotically the following.

E [E[Y0i|Xi]min(ei, 1� ei)]

E [min(ei, 1� ei)]

Using these, the estimand of the group mean di↵erence is
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�̂M =

Pn
i=1 YiI(i 2 S1)Pn
i=1 I(i 2 S1)

�
Pn

i=1 YiI(i 2 S0)Pn
i=1 I(i 2 S0)

=

Pn
i=1 Y1iI(i 2 S1)Pn
i=1 I(i 2 S1)

�
Pn

i=1 Y0iI(i 2 S0)Pn
i=1 I(i 2 S0)

p! E [E[Y1i|Xi]min(ei, 1� ei)]

E [min(ei, 1� ei)]
� E [E[Y0i|Xi]min(ei, 1� ei)]

E [min(ei, 1� ei)]

=
E [E[Y1i|Xi]min(ei, 1� ei)� E [E[Y0i|Xi]min(ei, 1� ei)]]

E [min(ei, 1� ei)]

=
E [(E[Y1i|Xi]� E[Y0i|Xi])min(ei, 1� ei)]

E [min(ei, 1� ei)]

=
E [E[Y1i � Y0i|Xi]min(ei, 1� ei)]

E [min(ei, 1� ei)]

=
E [�imin(ei, 1� ei)]

E [min(ei, 1� ei)]

where �i is the causal e↵ect given covariates.

1.2 Estimand of Matching Weight

The corresponding matching weight estimator of the mean outcome in the treated is the following. The same

causal inference assumptions are required except for the additional assumptions required for the matching

algorithm.

Pn
i=1 YiZiWiPn
i=1 ZiWi

where

Wi =
min(ei, 1� ei)

Ziei + (1� Zi)(1� ei)

i.e., Wi is a function of covariates Xi and treatment Zi.

The numerator has the following asymptotic characteristic.

By consistency, the treated counterfactual is observed among the treated.

Only the treated contribute to the expression, thus, Yi = Y1i.

1

n

nX

i=1

YiZiWi =
1

n

nX

i=1

Y1iZiWi

Asymptotically, by the Weak Law of Large Number

p! E[Y1iZiWi]
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Rewrite as an iterative expectation.

= E[E[Y1iZiWi|Xi]]

* (Y1i, Y0i) ?? Zi|Xi implies (Y1i, Y0i) ?? f(Xi, Zi)|Xi,

the following holds (Y1i, Y0i) ?? ZiWi|Xi

= E[E[Y1i|Xi]E[ZiWi|Xi]]

* only the treated units contribute to the second term,

and otherwise it is zero, expectation can be taken

in the treated and weighted by its prevalence.

= E[E[Y1i|Xi]E[Wi|Zi = 1,Xi]P (Zi = 1|Xi)]

The last term is the propensity score by definition.

Also expand the weight.

= E

"
E[Y1i|Xi]E

"
min(ei, 1� ei)

Ziei + (1� Zi)(1� ei)

�����Zi = 1,Xi

#
ei

#

* Zi = 1 for the second term

= E


E[Y1i|Xi]

min(ei, 1� ei)

ei
ei

�

= E [E[Y1i|Xi]min(ei, 1� ei)]

Similarly, the denominator has the following asymptotic characteristic.

1

n

nX

i=1

ZiWi
p! E[ZiWi]

= E[E[ZiWi|Xi]]

= E[E[Wi|Zi = 1,Xi]P (Zi = 1|Xi)]

= E

"
E

"
min(ei, 1� ei)

Ziei + (1� Zi)(1� ei)

�����Zi = 1,Xi

#
ei

#

= E


min(ei, 1� ei)

ei
ei

�

= E [min(ei, 1� ei)]

Therefore, the estimand of matching weight estimator for the treated group mean has the same form as the

corresponding matching estimator asymptotically.
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Pn
i=1 YiZiWiPn
i=1 ZiWi

=

Pn
i=1 Y1iZiWiPn
i=1 ZiWi

p! E [E[Y1i|Xi]min(ei, 1� ei)]

E [min(ei, 1� ei)]

Because this holds similarly for the untreated group, the estimand of the treatment e↵ect is also asymptoti-

cally equivalent.
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2 Extension to 3+ group settings

In the previous proof following Li & Greene 2013, the e↵ect estimate was compared between the matching

method and the matching weight method. Proving the asymptotic equivalence of the estimand of an arbi-

trary group-specific mean outcome in 3+ group setting will generalize the proof. The same assumptions are

required on all the treatment groups under study.

2.1 Estimand of Matching in 3+ group setting

One propensity score is defined for each treatment group. For the k-th treatment group, eki is the corre-

sponding treatment-specific propensity score, i.e., the probability of being assigned to the k-th treatment

group for the i-th subject given covariates. The treatment-specific propensity scores must be formed in such

a way that within an individual subject
KP

k=1
eki = 1 is met. This requires a single model be fit for estimation

(e.g., multinomial logistic regression).

The same assumptions as the two group setting are required. Regarding the matching process now it is a

simultaneous 1 : 1 : ... : 1 exact matching of K treatment groups on their K treatment-specific propensity

scores without replacement. That is, K individuals with the identical propensity scores (all of the treatment-

specific propensity scores, e1i, . . . , eKi must match up across K individuals) form a matched unit. If there

are multiple candidates from a given treatment group k, the selection is random.

Proof : Let Skl be the single member set of the subject in the k-th treatment group (k 2 {1, 2, ...,K}) from

the l-th propensity score matched unit (l 2 {1, 2, ..., L}). Thus, Sk =
LS

l=1
Skl is the set of all matched subjects

in the k-th treatment group, and S =
KS

k=1
Sk is the set of entire matched cohort. This matched cohort is

balanced, i.e., each one of K treatment groups contain the same number (L) of matched subjects. Index

n is still over all individuals in the dataset before matching. The treatment variable, Zi is now a nominal

variable 1, 2, ...,K indicating the treatment group. The group mean in the k-th group is expressed as follows.

Pn
i=1 YiI(i 2 Sk)Pn
i=1 I(i 2 Sk)

The numerator is examined first. The expression is multiplied by 1
n , but it cancels in the original expression

as we do the same for the denominator. For the most part the proof is almost identical to the previous one.

By consistency, the k-th counterfactual is observed in the k-th group

Also only the k-th group contributes to the expression, thus, Yi = Yki
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1

n

nX

i=1

YiI(i 2 Sk) =
1

n

nX

i=1

YkiI(i 2 Sk)

Asymptotically, by the Weak Law of Large Number

p! E[YkiI(i 2 Sk)]

Rewrite as an iterative expectation.

= E[E[YkiI(i 2 Sk)|Xi]]

Break the indicator into selection and treatment.

= E[E[YkiI(i 2 S)I(Zi = k)|Xi]]

* only the k-th group contributes to the inner expectation,

and otherwise it is zero, expectation can be taken

in the k-th group and weighted by its prevalence.

= E[E[YkiI(i 2 S)|Zi = k,Xi]P (Zi = k|Xi)]

* given Zi = k and within levels of Xi, selection (i 2 S) is random,

Yki and selection indicator are conditionally independent.

= E[E[Yki|Zi = k,Xi]E[I(i 2 S)|Zi = k,Xi]P (Zi = k|Xi)]

By conditional exchangeability, E[Yki|Zi = k,Xi] = E[Yki|Xi].

= E[E[Yki|Xi]E[I(i 2 S)|Zi = k,Xi]P (Zi = k|Xi)]

* expectation of a 0,1 selection indicator is the selection probability.

= E[E[Yki|Xi]P (i 2 S|Zi = k,Xi)P (Zi = k|Xi)]

The last term is the PS for the k-th treatment by definition.

= E[E[Yki|Xi]P (i 2 S|Zi = k,Xi) eki]

At a given Xi, only the smallest group can match fully.

eki is the fraction of k-th group at a given Xi.

min(e1i, e2i, ..., eKi) is the fraction of the smallest group at Xi.

⇧ Among the k-th group, only
min(e1i, e2i, ..., eKi)

eki
can match.

As this is a function of Xi, conditioning is implicit.

= E


E[Yki|Xi]

min(e1i, e2i, ..., eKi)

eki
eki

�

= E [E[Yki|Xi]min(e1i, e2i, ..., eKi)]

Similarly,
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1

n

nX

i=1

I(i 2 Sk) =
1

n

nX

i=1

I(i 2 Sk)

p! E [min(e1i, e2i, ..., eKi)]

Therefore, the estimand of the group mean of the matched k-th group is asymptotically the following.

E [E[Yki|Xi]min(e1i, e2i, ..., eKi)]

E [min(e1i, e2i, ..., eKi)]

2.2 Estimand of Matching Weight in 3+ group setting

The corresponding weighted estimator of the mean outcome in the treated is the following. The denominator

of the weight picks the propensity score for the assigned treatment for the i-th unit.

Pn
i=1 YiI(Zi = k)WiPn
i=1 I(Zi = k)Wi

where

Wi =
min(e1i, e2i, ..., eKi)PK

k=1 I(Zi = k)eki

The numerator has the following asymptotic characteristic.

By consistency, the k-th counterfactual is observed in the k-th group

Also only the k-th group contributes to the expression, thus, Yi = Yki

1

n

nX

i=1

YiI(Zi = k)Wi =
1

n

nX

i=1

YkiI(Zi = k)Wi

Asymptotically, by the Weak Law of Large Number

p! E[YkiI(Zi = k)Wi]

Rewrite as an iterative expectation.

= E[E[YkiI(Zi = k)Wi|Xi]]

* Yki ?? Zi|Xi implies Yki ?? f(Xi, Zi)|Xi,

the following holds Yki ?? I(Zi = k)Wi|Xi

= E[E[Yki|Xi]E[I(Zi = k)Wi|Xi]]

* only the k-th group contributes to the second term,

and otherwise it is zero, expectation can be taken
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in the k-th group and weighted by its prevalence.

= E[E[Yki|Xi]E[Wi|Zi = k,Xi]P (Zi = k|Xi)]

The last term is the propensity score for the k-th treatment.

Also expand the weight.

= E

"
E[Yki|Xi]E

"
min(e1i, e2i, ..., eKi)PK

k=1 I(Zi = k)eki

�����Zi = k,Xi

#
eki

#

* Zi = k for the second term

= E


E[Yki|Xi]

min(e1i, e2i, ..., eKi)

eki
eki

�

= E [E[Yki|Xi]min(e1i, e2i, ..., eKi)]

Similarly,

1

n

nX

i=1

I(Zi = k)Wi
p! E[I(Zi = k)Wi]

= E [min(e1i, e2i, ..., eKi)]

Therefore, the estimand of matching weight estimator has the same form as the matching estimator asymp-

totically.

Pn
i=1 YiI(Zi = k)WiPn
i=1 I(Zi = k)Wi

=

Pn
i=1 YkiI(Zi = k)WiPn
i=1 I(Zi = k)Wi

p! E [E[Yki|Xi]min(e1i, e2i, ..., eKi)]

E [min(e1i, e2i, ..., eKi)]

Because this holds true for each treatment group, the estimand of any two group contrast e↵ect is also

asymptotically equivalent between the multi-way matching method and the matching weight method.
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1 Data Generation Mechanism DAG

The covariate were generated following the data generation process of Franklin et al [1]. The treatment
assignment process also followed that of Franklin et al [1], but was extended to the three treatment group
setting using a multinomial logistic model[2, 3]. The outcome model was a log-probability model to avoid
non-collapsibility issues[4, 5].

1.1 Annotated Directed Acyclic Graph

Xi is a vector of ten covariates for the i-th individual, Ti 2 {0, 1, 2} is the treatment level, and Yi 2 {0, 1}
is the binary outcome.

Ti

Xi

Yi

�T1,�T2 (main e↵ects)
for treatment e↵ects

�XT1,�XT2 (interactions)
for additional treatment e↵ects in subset

↵10,↵20 (intercepts)
for treatment prevalence

↵1X ,↵2X (covariate association)
for covariate overlap level

�0 (intercept)
for baseline risk of disease
�X (covariate association)
for strength of risk factors

1.2 Covariate Generation

The covariate vector for the i-th individual, Xi had the following random elements[1].

Variable Generation Process
X1i Normal(0, 12)
X2i Log-Normal(0, 0.52)
X3i Normal(0, 102)
X4i Bernoulli(pi = e2X1i/(1 + e2X1i)) where E[pi] = 0.5
X5i Bernoulli(p = 0.2)
X6i Multinomial(p = (0.5, 0.3, 0.1, 0.05, 0.05)T )
X7i sin(X1i)
X8i X2

2i

X9i X3i ⇥X4i

X10i X4i ⇥X5i

1.3 Treatment Generating Model

As there were three treatment groups, two relative probabilities were jointly modeled by two simultaneous
models (essentially multinomial logistic model).

⌘T1i = log

✓
P (Ti = 1|Xi = xi)

P (Ti = 0|Xi = xi)

◆
= ↵10 +↵T

1Xxi

⌘T2i = log

✓
P (Ti = 2|Xi = xi)

P (Ti = 0|Xi = xi)

◆
= ↵20 +↵T

2Xxi

where

↵10,↵20 determine treatment prevalence

↵1X ,↵2X determine covariate-treatment association
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Importantly, the covariate-treatment association is inversely correlated with the covariate overlap in these
model. This is because if patient characteristics play more important roles in treatment decision, the treat-
ment assignment is less random.

To obtain the three predicted probabilities (true propensity scores) from the two linear predictors, we con-
ducted the following normalization process[2, 3].

e0i = P (Ti = 0|Xi = xi) =
1

qi

e1i = P (Ti = 1|Xi = xi) =
exp(⌘T1i)

qi

e2i = P (Ti = 2|Xi = xi) =
exp(⌘T2i)

qi
where qi = 1 + exp(⌘T1i) + exp(⌘T2i)

Finally, the treatment level was assigned in a multinomial random number generating process.

Ti ⇠ Multinomial
�
n = 1,p = (e0i, e1i, e2i)

T
�

1.4 Outcome Generating Model

The log probability of disease was generated using a log-linear (log-probability) model to avoid the non-
collapsibility issue of the logistic model.

⌘Y i = log(P (Yi = 1|Ti = ti,Xi = xi)) = �0 + �T
Xxi + �T1I(ti = 1) + �T2I(ti = 2)

+ �XT1x4iI(ti = 1) + �XT2x4iI(ti = 2)

where

ti = Assigned treatment

�0 = Intercept determining baseline disease risk

�X = E↵ects of ten covariates (risk factors) on disease risk

�T1 = Main e↵ect of Treatment 1 compared to Treatment 0

�T2 = Main e↵ect of Treatment 2 compared to Treatment 0

�XT1 = Additional e↵ect for Treatment 1 vs 0 among X4i = 1

�XT2 = Additional e↵ect for Treatment 2 vs 0 among X4i = 1

Using this linear predictor, the probability of disease was calculated as follows.

pY i = P (Yi = 1|Ti = ti,Xi = xi) = exp(⌘Y i)

Then the outcome was assigned using a Bernoulli random number generating process.

Yi ⇠ Bernoulli (pY i)
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The counterfactual probability of disease under each treatment was defined as follows.

pY i(0) = P (Yi = 1|Ti = 0,Xi = xi)

pY i(1) = P (Yi = 1|Ti = 1,Xi = xi)

pY i(2) = P (Yi = 1|Ti = 2,Xi = xi)

1.5 Parameter Settings

The parameters were assinged as follows.

1.5.1 Treatment Generating Model

All possible combinations of three treatment prevalences and two levels of covariate overlap (inverse of
covariate-treatment association) were generated as follows (6 combinations).

Treatment Prevalence
33:33:33 10:45:45 10:10:80

Covariate Overlap
Good Poor Good Poor Good Poor

↵1 ↵2 ↵1 ↵2 ↵1 ↵2 ↵1 ↵2 ↵1 ↵2 ↵1 ↵2

Intercept -0.13 -0.26 -0.75 -3.75 1.30 1.18 1.55 -0.65 -0.10 1.87 0.60 1.70
X1 0.05 0.10 0.80 1.60 0.05 0.10 0.80 1.60 0.05 0.10 0.80 1.60
X2 0.00 0.01 0.06 0.12 0.00 0.01 0.06 0.12 0.00 0.01 0.06 0.12
X3 0.00 0.01 0.06 0.12 0.00 0.01 0.06 0.12 0.00 0.01 0.06 0.12
X4 0.09 0.19 1.50 3.00 0.09 0.19 1.50 3.00 0.09 0.19 1.50 3.00
X5 0.09 0.19 1.50 3.00 0.09 0.19 1.50 3.00 0.09 0.19 1.50 3.00
X6 0.03 0.05 0.40 0.80 0.03 0.05 0.40 0.80 0.03 0.05 0.40 0.80
X7 0.05 0.10 0.80 1.60 0.05 0.10 0.80 1.60 0.05 0.10 0.80 1.60
X8 0.00 0.01 0.04 0.08 0.00 0.01 0.04 0.08 0.00 0.01 0.04 0.08
X9 0.01 0.01 0.08 0.16 0.01 0.01 0.08 0.16 0.01 0.01 0.08 0.16
X10 0.06 0.12 1.00 2.00 0.06 0.12 1.00 2.00 0.06 0.12 1.00 2.00

where ↵1 = (↵10,↵T
1X)T and ↵2 = (↵20,↵T

2X)T .

1.5.2 Outcome Generating Model

The outcome generating model parameters were the following.

Two types of baseline risks

�0 2 {log(0.05), log(0.20)} , i.e., 5% and 20% baseline risk

One type of covariate-outcome association

�X = (0.160, 0.012, 0.012, 0.300, 0.300, 0.080, 0.160, 0.008, 0.016, 0.200)T

Null or non-null treatment (main) e↵ects

�T = (�T1,�T2)
T 2

�
(0, 0)T , (log(0.9), log(0.6))T

 

For the non-null case:

relative risk of 0.9 comparing Treatment 1 vs 0

relative risk of 0.6 comparing Treatment 2 vs 0

=) relative risk of 6/9 comparing Treatment 2 vs 1
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Null or non-null treatment e↵ect modification

�XT = (�XT1,�XT2)
T 2

�
(0, 0)T , (log(0.7), log(0.5))T

 

For the non-null case:

additional 0.7⇥ risk reduction among X5i = 1 for Treatment 1 vs 0

additional 0.5⇥ risk reduction among X5i = 1 for Treatment 2 vs 0

=) additional 5/7⇥ risk reduction among X5i = 1 for Treatment 2 vs 1

There are thus, 2⇥ 1⇥ 2⇥ 2 = 8 combinations of the outcome generating model parameters

1.6 Simulation scenarios

There are 6⇥ 8 = 48 total simulation scenarios. The columns in the table denote the following settings.

• Scenario: Scenario number

• N: Total sample size

• EM: Treatment e↵ect modification by covariate

• Main e↵ects: Treatment main e↵ects

• Risk: Baseline risk in Treatment 0

• Group sizes: Relative sizes of three treatment groups

• Covariate overlap: Level of covariate overlap
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Scenario N EM Main e↵ects Risk Group sizes Covariate overlap
1 6000 Modification (-) Null main e↵ects 0.05 33:33:33 Good overlap
2 6000 Modification (-) Null main e↵ects 0.05 33:33:33 Poor overlap
3 6000 Modification (-) Null main e↵ects 0.05 10:45:45 Good overlap
4 6000 Modification (-) Null main e↵ects 0.05 10:45:45 Poor overlap
5 6000 Modification (-) Null main e↵ects 0.05 10:10:80 Good overlap
6 6000 Modification (-) Null main e↵ects 0.05 10:10:80 Poor overlap
7 6000 Modification (-) Null main e↵ects 0.2 33:33:33 Good overlap
8 6000 Modification (-) Null main e↵ects 0.2 33:33:33 Poor overlap
9 6000 Modification (-) Null main e↵ects 0.2 10:45:45 Good overlap
10 6000 Modification (-) Null main e↵ects 0.2 10:45:45 Poor overlap
11 6000 Modification (-) Null main e↵ects 0.2 10:10:80 Good overlap
12 6000 Modification (-) Null main e↵ects 0.2 10:10:80 Poor overlap
13 6000 Modification (-) Non-null main e↵ects 0.05 33:33:33 Good overlap
14 6000 Modification (-) Non-null main e↵ects 0.05 33:33:33 Poor overlap
15 6000 Modification (-) Non-null main e↵ects 0.05 10:45:45 Good overlap
16 6000 Modification (-) Non-null main e↵ects 0.05 10:45:45 Poor overlap
17 6000 Modification (-) Non-null main e↵ects 0.05 10:10:80 Good overlap
18 6000 Modification (-) Non-null main e↵ects 0.05 10:10:80 Poor overlap
19 6000 Modification (-) Non-null main e↵ects 0.2 33:33:33 Good overlap
20 6000 Modification (-) Non-null main e↵ects 0.2 33:33:33 Poor overlap
21 6000 Modification (-) Non-null main e↵ects 0.2 10:45:45 Good overlap
22 6000 Modification (-) Non-null main e↵ects 0.2 10:45:45 Poor overlap
23 6000 Modification (-) Non-null main e↵ects 0.2 10:10:80 Good overlap
24 6000 Modification (-) Non-null main e↵ects 0.2 10:10:80 Poor overlap
25 6000 Modification (+) Null main e↵ects 0.05 33:33:33 Good overlap
26 6000 Modification (+) Null main e↵ects 0.05 33:33:33 Poor overlap
27 6000 Modification (+) Null main e↵ects 0.05 10:45:45 Good overlap
28 6000 Modification (+) Null main e↵ects 0.05 10:45:45 Poor overlap
29 6000 Modification (+) Null main e↵ects 0.05 10:10:80 Good overlap
30 6000 Modification (+) Null main e↵ects 0.05 10:10:80 Poor overlap
31 6000 Modification (+) Null main e↵ects 0.2 33:33:33 Good overlap
32 6000 Modification (+) Null main e↵ects 0.2 33:33:33 Poor overlap
33 6000 Modification (+) Null main e↵ects 0.2 10:45:45 Good overlap
34 6000 Modification (+) Null main e↵ects 0.2 10:45:45 Poor overlap
35 6000 Modification (+) Null main e↵ects 0.2 10:10:80 Good overlap
36 6000 Modification (+) Null main e↵ects 0.2 10:10:80 Poor overlap
37 6000 Modification (+) Non-null main e↵ects 0.05 33:33:33 Good overlap
38 6000 Modification (+) Non-null main e↵ects 0.05 33:33:33 Poor overlap
39 6000 Modification (+) Non-null main e↵ects 0.05 10:45:45 Good overlap
40 6000 Modification (+) Non-null main e↵ects 0.05 10:45:45 Poor overlap
41 6000 Modification (+) Non-null main e↵ects 0.05 10:10:80 Good overlap
42 6000 Modification (+) Non-null main e↵ects 0.05 10:10:80 Poor overlap
43 6000 Modification (+) Non-null main e↵ects 0.2 33:33:33 Good overlap
44 6000 Modification (+) Non-null main e↵ects 0.2 33:33:33 Poor overlap
45 6000 Modification (+) Non-null main e↵ects 0.2 10:45:45 Good overlap
46 6000 Modification (+) Non-null main e↵ects 0.2 10:45:45 Poor overlap
47 6000 Modification (+) Non-null main e↵ects 0.2 10:10:80 Good overlap
48 6000 Modification (+) Non-null main e↵ects 0.2 10:10:80 Poor overlap
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1 Aim

This document provides a step-by-step guide for implementation of matching weight method in practice.

The example is in the three-group setting. However, the essentially the same code can be used in the two-

group setting or settings where there are more than three groups. The example is written in R, but it can

be implemented in any statistical environment that has (multinomial) logistic regression and weighted data

analysis capabilities.

2 Dataset

The tutoring dataset included in the TriMatch R package is used. The exposure is the treat variable,

which takes one of Treat1, Treat2, and Control. These represent the tutoring method each student

received. The outcome is the Grade ordinal variable, which takes one of 0, 1, 2, 3, or 4. Pre-treatment

potential confounders include gender, ethnicity, military service status of the student, non-native English

speaker status, education level of the subject’s mother (ordinal), education level of the subject’s father

(ordinal), age of the student, employment status (no, part-time, full-time), household income (ordinal),

number of transfer credits, grade point average. The dataset does not contain any missing values. See

?tutoring for details. The employment categorical variable is coded numerically. Thus, it is converted to

a factor.

## Load data

library(TriMatch)

data(tutoring)

summary(tutoring)

## treat Course Grade Gender Ethnicity Military

## Control:918 Length:1142 Min. :0.000 FEMALE:627 Black:211 Mode :logical

## Treat1 :134 Class :character 1st Qu.:2.000 MALE :515 Other:193 FALSE:783

## Treat2 : 90 Mode :character Median :4.000 White:738 TRUE :359

## Mean :2.891

## 3rd Qu.:4.000

## Max. :4.000

## ESL EdMother EdFather Age Employment Income

## Mode :logical Min. :1.000 Min. :1.000 Min. :20.00 Min. :1.000 Min. :1.000

## FALSE:1049 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:30.00 1st Qu.:3.000 1st Qu.:3.000

## TRUE :93 Median :3.000 Median :3.000 Median :37.00 Median :3.000 Median :5.000

## Mean :3.785 Mean :3.684 Mean :36.92 Mean :2.667 Mean :5.059

## 3rd Qu.:5.000 3rd Qu.:5.000 3rd Qu.:43.00 3rd Qu.:3.000 3rd Qu.:7.000

## Max. :8.000 Max. :9.000 Max. :65.00 Max. :3.000 Max. :9.000

## Transfer GPA GradeCode Level ID

## Min. : 3.00 Min. :0.000 Length:1142 Lower:988 Min. : 1.0

## 1st Qu.: 36.66 1st Qu.:2.890 Class :character Upper:154 1st Qu.: 286.2

## Median : 48.31 Median :3.215 Mode :character Median : 571.5

## Mean : 52.12 Mean :3.166 Mean : 571.5

## 3rd Qu.: 65.00 3rd Qu.:3.518 3rd Qu.: 856.8

## Max. :126.00 Max. :4.000 Max. :1142.0

## Make employment categorical

tutoring$Employment <- factor(tutoring$Employment, levels = 1:3,

labels = c("no","part-time","full-time"))

3 Pre-weighting balance assessment

The tableone package can be utilized for covariate balance assessment using standardized mean di↵erences

(SMD). SMD greater than 0.1 is often regarded as a substantial imbalance. The SMD shown in the table is

the average of all possible pairwise SMDs.

## Examine covariate balance

library(tableone)

covariates <- c("Gender", "Ethnicity", "Military", "ESL",

"EdMother", "EdFather", "Age", "Employment",

"Income", "Transfer", "GPA")

tab1Unadj <- CreateTableOne(vars = covariates, strata = "treat", data = tutoring)

print(tab1Unadj, test = FALSE, smd = TRUE)

53



## Stratified by treat

## Control Treat1 Treat2 SMD

## n 918 134 90

## Gender = MALE (%) 449 (48.9) 38 (28.4) 28 (31.1) 0.287

## Ethnicity (%) 0.095

## Black 166 (18.1) 24 (17.9) 21 (23.3)

## Other 157 (17.1) 23 (17.2) 13 (14.4)

## White 595 (64.8) 87 (64.9) 56 (62.2)

## Military = TRUE (%) 309 (33.7) 32 (23.9) 18 (20.0) 0.208

## ESL = TRUE (%) 76 ( 8.3) 8 ( 6.0) 9 (10.0) 0.100

## EdMother (mean (sd)) 3.80 (1.49) 3.78 (1.51) 3.67 (1.54) 0.057

## EdFather (mean (sd)) 3.68 (1.65) 3.66 (1.73) 3.78 (1.73) 0.044

## Age (mean (sd)) 36.75 (8.95) 37.10 (9.41) 38.41 (9.49) 0.119

## Employment (%) 0.248

## no 95 (10.3) 24 (17.9) 18 (20.0)

## part-time 75 ( 8.2) 20 (14.9) 11 (12.2)

## full-time 748 (81.5) 90 (67.2) 61 (67.8)

## Income (mean (sd)) 5.10 (2.24) 5.04 (2.60) 4.69 (2.51) 0.111

## Transfer (mean (sd)) 51.40 (24.38) 57.37 (25.10) 51.61 (26.39) 0.158

## GPA (mean (sd)) 3.16 (0.58) 3.16 (0.46) 3.24 (0.58) 0.097

## Examine all pairwise SMDs

ExtractSmd(tab1Unadj)

## average 1 vs 2 1 vs 3 2 vs 3

## Gender 0.28718081 0.431825669 0.369462797 0.06025398

## Ethnicity 0.09475231 0.004540496 0.137619463 0.14209699

## Military 0.20773590 0.217301900 0.312032587 0.09387322

## ESL 0.09955894 0.089842245 0.059753148 0.14908142

## EdMother 0.05735067 0.014182489 0.086066827 0.07180268

## EdFather 0.04433253 0.007919139 0.059274560 0.06580389

## Age 0.11889003 0.038429226 0.179969129 0.13827175

## Employment 0.24838203 0.332479394 0.324590337 0.08807636

## Income 0.11113230 0.025003114 0.171951403 0.13644238

## Transfer 0.15777889 0.241327245 0.008454888 0.22355453

## GPA 0.09651297 0.009213587 0.128230886 0.15209444

4 Propensity score modeling

As the exposure is a three-category variable, the propensity score model can be modeled using multinomial

logistic regression. In R, the VGAM (vector generalized linear and additive models) package provides a flexible

framework for this. Because the sample size of the treatment 2 group is small, making flexible modeling

di�cult, the ordinal variables are used only as linear terms. Predicting the “response” gives predicted

probabilities of each treatment as a (sample size) ⇥ 3 matrix, which then can be added to the dataset. The

following AddGPS function can be used to ease this process. Three propensity scores (one for each treatment

category) are added to the dataset.

## Function to add generalized PS to dataset

AddGPS <- function(data, formula, family = multinomial(), psPrefix = "PS_") {
library(VGAM)

## Fit multinomial logistic regression

resVglm <- vglm(formula = formula, data = data, family = family)

## Calculate PS

psData <- as.data.frame(predict(resVglm, type = "response"))

names(psData) <- paste0(psPrefix, names(psData))

cbind(data, psData)

}

tutoring <- AddGPS(data = tutoring, # dataset

## Propensity score model for multinomial regression

formula = treat ˜ Gender + Ethnicity + Military +

ESL + EdMother + EdFather + Age +

Employment + Income + Transfer + GPA)
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5 Weight creation

As mentioned in the text, the matching weight is defined as follows.

MWi =
Smallest PS

PS of assigned treatment

=
min(e1i, ..., eKi)PK
k=1 I(Zi = k)eki

where eki is the i-th individual’s probability of being assigned to the k-th treatment category given the

covariate pattern, Zi 2 {1, ...,K} is the categorical variable indicating the i-th individual’s treatment as-

signment.

The following function can be used to add matching weight to the dataset. Individuals’ matching weights

have a range of [0,1], where as the inverse probability treatment weights have a range of [1,1].

## Function to add matching weight as mw to dataset

AddMwToData <- function(data, txVar, txLevels, psPrefix = "PS_") {
## Treatment indicator data frame (any number of groups allowed)

dfAssign <- as.data.frame(lapply(txLevels, function(tx_k) {
as.numeric(data[txVar] == tx_k)

}))
## Name of PS variables

psVars <- paste0(psPrefix, txLevels)

## Pick denominator (PS for assigned treatment)

data$PS_assign <- rowSums(data[psVars] * dfAssign)

## Pick numerator

data$PS_min <- do.call(pmin, data[psVars])

## Calculate the IPTW

data$iptw <- 1 / data$PS_assign

## Calculate the matching weight

data$mw <- exp(log(data$PS_min) - log(data$PS_assign))

## Return the whole data

data

}

## Add IPTW and MW

tutoring <- AddMwToData(data = tutoring, # dataset

txVar = "treat", # treatment variable name

tx = c("Control", "Treat1", "Treat2")) # treatment levels

## Check how weights are defined

head(tutoring[c("treat","PS_Control","PS_Treat1","PS_Treat2",

"PS_assign","PS_min","iptw","mw")], 20)

## treat PS_Control PS_Treat1 PS_Treat2 PS_assign PS_min iptw mw

## 3 Control 0.8192816 0.11440448 0.06631388 0.81928164 0.06631388 1.220581 0.08094149

## 4 Control 0.8313205 0.10516348 0.06351606 0.83132046 0.06351606 1.202906 0.07640383

## 11 Control 0.6346235 0.22597339 0.13940309 0.63462352 0.13940309 1.575737 0.21966266

## 12 Control 0.7203265 0.11853269 0.16114082 0.72032649 0.11853269 1.388259 0.16455412

## 14 Control 0.6759314 0.15931947 0.16474916 0.67593137 0.15931947 1.479440 0.23570361

## 16 Treat1 0.7278386 0.18054526 0.09161616 0.18054526 0.09161616 5.538777 0.50744155

## 17 Control 0.7963014 0.09228518 0.11141339 0.79630143 0.09228518 1.255806 0.11589227

## 18 Control 0.7963014 0.09228518 0.11141339 0.79630143 0.09228518 1.255806 0.11589227

## 19 Control 0.4011609 0.29293705 0.30590201 0.40116094 0.29293705 2.492765 0.73022327

## 23 Control 0.7980564 0.14170696 0.06023666 0.79805638 0.06023666 1.253044 0.07547920

## 28 Treat2 0.7696177 0.11208565 0.11829667 0.11829667 0.11208565 8.453323 0.94749620

## 31 Treat1 0.7876534 0.11912070 0.09322587 0.11912070 0.09322587 8.394847 0.78261688

## 32 Control 0.7602112 0.13218394 0.10760486 0.76021120 0.10760486 1.315424 0.14154600

## 34 Treat2 0.6994628 0.12694918 0.17358797 0.17358797 0.12694918 5.760768 0.73132478

## 38 Treat1 0.6359332 0.24401948 0.12004734 0.24401948 0.12004734 4.098034 0.49195804

## 39 Control 0.7523881 0.15006473 0.09754713 0.75238814 0.09754713 1.329101 0.12965001

## 40 Control 0.8281320 0.11921012 0.05265789 0.82813199 0.05265789 1.207537 0.06358635
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## 49 Treat1 0.7963180 0.09950924 0.10417277 0.09950924 0.09950924 10.049318 1.00000000

## 50 Control 0.8929612 0.06199434 0.04504442 0.89296124 0.04504442 1.119869 0.05044387

## 51 Control 0.6910650 0.16455995 0.14437500 0.69106505 0.14437500 1.447042 0.20891666

## Check weight distribution

summary(tutoring[c("mw","iptw")])

## mw iptw

## Min. :0.01025 Min. : 1.052

## 1st Qu.:0.05546 1st Qu.: 1.154

## Median :0.09410 Median : 1.258

## Mean :0.21706 Mean : 3.066

## 3rd Qu.:0.17721 3rd Qu.: 1.465

## Max. :1.00000 Max. :46.446

6 Post-weighting balance assessment

All analyses afterward should be proceeded as weighted analyses. In R, this is most easily achieved by

using the survey package. Firstly, a survey design object must be created with svydesign function.

The resulting object is then used as the dataset. The weighted covariate table can be constructed with the

tableone package. All SMDs are less than 0.1 after weighting, indicating better covariate balance.

## Created weighted data object

library(survey)

tutoringSvy <- svydesign(ids = ˜ 1, data = tutoring, weights = ˜ mw)

## Weighted table with tableone

tab1Mw <- svyCreateTableOne(vars = covariates, strata = "treat", data = tutoringSvy)

print(tab1Mw, test = FALSE, smd = TRUE)

## Stratified by treat

## Control Treat1 Treat2 SMD

## n 82.8 82.6 82.5

## Gender = MALE (%) 24.9 (30.1) 25.0 (30.3) 24.4 (29.6) 0.010

## Ethnicity (%) 0.010

## Black 18.9 (22.9) 19.2 (23.3) 18.8 (22.8)

## Other 11.7 (14.1) 11.3 (13.7) 11.6 (14.1)

## White 52.2 (63.0) 52.1 (63.1) 52.0 (63.0)

## Military = TRUE (%) 17.2 (20.8) 19.7 (23.8) 17.4 (21.1) 0.048

## ESL = TRUE (%) 6.1 ( 7.4) 6.4 ( 7.7) 8.1 ( 9.8) 0.056

## EdMother (mean (sd)) 3.66 (1.49) 3.65 (1.47) 3.65 (1.55) 0.006

## EdFather (mean (sd)) 3.71 (1.70) 3.66 (1.75) 3.73 (1.70) 0.024

## Age (mean (sd)) 38.13 (9.68) 38.21 (9.63) 38.01 (9.38) 0.014

## Employment (%) 0.041

## no 16.3 (19.7) 15.6 (18.9) 15.2 (18.4)

## part-time 10.2 (12.3) 9.2 (11.2) 10.5 (12.7)

## full-time 56.3 (68.0) 57.7 (69.9) 56.8 (68.9)

## Income (mean (sd)) 4.76 (2.35) 4.72 (2.47) 4.80 (2.47) 0.023

## Transfer (mean (sd)) 52.46 (24.04) 51.39 (25.02) 53.48 (26.19) 0.055

## GPA (mean (sd)) 3.21 (0.49) 3.21 (0.45) 3.21 (0.59) 0.004

## All pairwise SMDs

ExtractSmd(tab1Mw)

## average 1 vs 2 1 vs 3 2 vs 3

## Gender 0.010336859 0.004393687 0.0111115330 0.0155053556

## Ethnicity 0.009595945 0.013881066 0.0006174629 0.0142893048

## Military 0.047738733 0.071609306 0.0067821033 0.0648247896

## ESL 0.055666107 0.010019487 0.0834804231 0.0734984115

## EdMother 0.005765913 0.008755059 0.0082762793 0.0002663992

## EdFather 0.023721214 0.024874520 0.0107632204 0.0355259006

## Age 0.013982735 0.008033386 0.0128645704 0.0210502478

## Employment 0.040896810 0.043102022 0.0330741322 0.0465142771

## Income 0.023351441 0.019691181 0.0157469189 0.0346162234

## Transfer 0.055073782 0.043293809 0.0406028456 0.0813246930

## GPA 0.003834104 0.006104611 0.0018132523 0.0035844491

56



Visualizing the covariate balance before and after weighting can sometimes be helpful. Extracted SMD data

can be fed to a plotting function (here ggplot2).

## Create SMD data frame

dataPlot <- data.frame(variable = rownames(ExtractSmd(tab1Unadj)),

Unadjusted = ExtractSmd(tab1Unadj)[,"average"],

Weighted = ExtractSmd(tab1Mw)[,"average"])

## Reshape to long format

library(reshape2)

dataPlotMelt <- melt(data = dataPlot,

id.vars = "variable",

variable.name = "method",

value.name = "SMD")

## Variables names ordered by unadjusted SMD values

varsOrderedBySmd <- rownames(dataPlot)[order(dataPlot[,"Unadjusted"])]

## Reorder factor levels

dataPlotMelt$variable <- factor(dataPlotMelt$variable,

levels = varsOrderedBySmd)

dataPlotMelt$method <- factor(dataPlotMelt$method,

levels = c("Weighted","Unadjusted"))

## Plot

library(ggplot2)

ggplot(data = dataPlotMelt,

mapping = aes(x = variable, y = SMD, group = method, linetype = method)) +

geom_line() +

geom_point() +

geom_hline(yintercept = 0, size = 0.3) +

geom_hline(yintercept = 0.1, size = 0.1) +

coord_flip() +

theme_bw() + theme(legend.key = element_blank())
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7 Outcome analysis

The outcome analyses should also be proceeded as weighted analyses. Most functions in the survey package

is named svy* with * being the name of the unweighted counterpart.
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The outcome was handled as a continuous outcome for simplicity. In weighted linear regression, both treat-

ments appear superior to the control without tutoring regarding the course grade assuming the propensity

score model was correctly specified. The mean di↵erence was 0.45 [0.23, 0.67] for treatment 1 vs control and

0.67 [0.45, 0.89] for treatment 2 vs control.

## Weighted group means of Grade

svyby(formula = ˜ Grade, by = ˜ treat, design = tutoringSvy, FUN = svymean)

## treat Grade se

## Control Control 2.792759 0.06648740

## Treat1 Treat1 3.244832 0.09179853

## Treat2 Treat2 3.463329 0.09070431

## Group difference tested in weighted regression

modelOutcome1 <- svyglm(formula = Grade ˜ treat, design = tutoringSvy)

summary(modelOutcome1)

##

## Call:

## svyglm(formula = Grade ˜ treat, design = tutoringSvy)

##

## Survey design:

## svydesign(ids = ˜1, data = tutoring, weights = ˜mw)

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.79276 0.06649 42.004 < 2e-16 ***

## treatTreat1 0.45207 0.11335 3.988 0.00007076303 ***

## treatTreat2 0.67057 0.11246 5.963 0.00000000331 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for gaussian family taken to be 1.394533)

##

## Number of Fisher Scoring iterations: 2

## ShowRegTable in tableone may come in handy

ShowRegTable(modelOutcome1, exp = FALSE)

## coef [confint] p

## (Intercept) 2.79 [2.66, 2.92] <0.001

## treatTreat1 0.45 [0.23, 0.67] <0.001

## treatTreat2 0.67 [0.45, 0.89] <0.001

8 Bootstrapping

As discussed in the text, bootstrapping may provide better variance estimates than model-based inference.

The boot package is a general purpose bootstrapping package. The following context-specific wrapper

functions can be used to simplify the process. In this specific example, the bootstrap confidence intervals

for the treatment e↵ects were somewhat narrower.

## Define a function for each bootstrap step

BootModelsConstructor <- function(formulaPs, formulaOutcome, OutcomeRegFun, ...) {
## Obtain treatment variable name

txVar <- as.character(formulaPs[[2]])

## Return a function

function(data, i) {
## Obtain treatment levels

txLevels <- names(table(data[,txVar]))

## Add generalized propensity scores

dataB <- AddGPS(data = data[i,], formula = formulaPs)

## Add matching weight

dataB <- AddMwToData(data = dataB, txVar = txVar, txLevels = txLevels)

## Weighted analysis (lm() ok as only the estimates are used)

lmWeighted <- OutcomeRegFun(formula = formulaOutcome, data = dataB,
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weights = mw, ...)

## Extract coefs

coef(lmWeighted)

}
}

## Define a function to summarize bootstrapping

BootSummarize <- function(data, R, BootModels, level = 0.95, ...) {
## Use boot library

library(boot)

## Run bootstrapping

outBoot <- boot(data = data, statistic = BootModels, R = R, ...)

out <- outBoot$t

colnames(out) <- names(outBoot$t0)

## Confidence intervals

lower <- apply(out, MARGIN = 2, quantile, probs = (1 - level) / 2)

upper <- apply(out, MARGIN = 2, quantile, probs = (1 - level) / 2 + level)

outCi <- cbind(lower = lower, upper = upper)

## Variance of estimator

outVar <- apply(out, MARGIN = 2, var)

outSe <- sqrt(outVar)

## Return as a readable table

cbind(est = outBoot$t0, outCi, var = outVar, se = outSe)

}

## Construct a custom bootstrap function with specific formulae

## formulaPs is propensity score model

BootModels <- BootModelsConstructor(formulaPs = treat ˜ Gender + Ethnicity + Military +

ESL + EdMother + EdFather + Age +

Employment + Income + Transfer + GPA,

## Outcome model

formulaOutcome = Grade ˜ treat,

## Regression function for outcome model

OutcomeRegFun = lm)

## Use a clean dataset without PS and weight variables

data(tutoring)

## Make employment categorical

tutoring$Employment <- factor(tutoring$Employment, levels = 1:3,

labels = c("no","part-time","full-time"))

## Run bootstrap

set.seed(201508131)

system.time(bootOut1 <- BootSummarize(data = tutoring, R = 2000, BootModels = BootModels,

parallel = "multicore", ncpus = 12))

## user system elapsed

## 159.201 13.593 17.688

bootOut1

## est lower upper var se

## (Intercept) 2.7927593 2.6130814 2.9872607 0.008972568 0.09472364

## treatTreat1 0.4520730 0.2325361 0.6577786 0.011831058 0.10877067

## treatTreat2 0.6705692 0.4626595 0.8484488 0.009776627 0.09887683

## Show naive confidence interval again

ShowRegTable(modelOutcome1, exp = FALSE, digits = 7)

## coef [confint] p

## (Intercept) 2.7927593 [2.6624464, 2.9230722] <0.001

## treatTreat1 0.4520730 [0.2299169, 0.6742290] <0.001

## treatTreat2 0.6705692 [0.4501465, 0.8909920] <0.001
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ABSTRACT 

PURPOSE: To examine the effects of analgesics on bone mineral density (BMD), which have not 

been examined in a longitudinal study with multiple measurements. 

METHODS: We investigated changes in BMD associated with new use of analgesics in a 

prospective longitudinal cohort of mid-life women. BMD and medication use were measured 

annually. We compared BMD among new users of acetaminophen, NSAIDs, and opioids. 

Adjustment for baseline covariates was conducted through propensity score matching weights. 

On-treatment analysis was conducted with inverse probability of censoring weights. Analysis 

based on the initial treatment group was also conducted to provide insights into selection bias. 

Repeated BMD measurements were examined with generalized estimating equations. 

RESULTS: We identified 71 acetaminophen new users, 659 NSAID new users, and 84 opioid 

new users among 2,365 participants. In the on-treatment analysis, the opioid group in comparison 

to the acetaminophen group had an additional average BMD decline of -0.06% [-1.24, 1.11] per 

year in the spine and -0.45% [-1.51, 0.61] per year in the femoral neck. BMD mean trajectories 

over time suggested a fifth-year decline in the opioid persistent users compared to other two 

groups. In the initial treatment group analysis, all three groups showed similar trajectories. 

CONCLUSION: The BMD decline over time was similar among the three groups. However, five 

years of continuous opioid use may be associated with a greater BMD decline than five years on 

other analgesics. Further studies examining the relationship between very long term persistent 

opioid use and BMD are warranted. 
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INTRODUCTION 

Many classes of drugs have been linked to increased risk of fractures or reduced bone 

mineral density (BMD). Histamine H2 receptor antagonists1, opioids, and anticonvulsants2 were 

among them. The cross-sectional nature of these studies, however, limit the assessment of 

temporality. Additionally, long-term effects of analgesics on bone health are not well 

understood. 

Opioids have been associated with increased fracture risks in multiple longitudinal 

studies3–8. The increased risks occurring soon after initiation4,6 suggest the primary mechanism is 

through acute neurologic effects, such as gait imbalance. However, chronic opioid use may also 

have indirect effects via endocrine changes9–11; for example, hypogonadotropic hypogonadism has 

been found in patients receiving methadone maintenance therapy12. Several studies also suggest 

lower BMD in opioid users13–15. However, these studies were cross-sectional, had limited control 

of confounding, and focused on a particular subset of chronic opioid users (i.e., former heroin 

addicts on methadone maintenance). 

NSAID use has been associated with higher BMD in two cross-sectional studies16,17 

adjusted for potential confounders such as body weight, although a more recent study found 

increased fracture risk among NSAID users despite stable BMD5. Both selective and non-

selective NSAIDs exhibit anti-inflammatory properties through inhibiting 

cyclooxygenase(COX)-2, an enzyme that plays a role in prostaglandins synthesis. 

Prostaglandins, in turn, play important roles in both bone formation and bone resorption18. 

The Study of Women’s Health Across the Nation (SWAN)19,20 allows for rigorous 

assessment of the effects of analgesics on BMD because of its longitudinal design and repeatedly 

measured BMD. We hypothesized that opioids and NSAIDs are associated with BMD reduction 
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compared to acetaminophen (active control). Presence of three treatment groups of quite 

different sizes as well as frequent treatment changes posed challenges in analysis. Thus, we used 

recently proposed matching weights in a multiple group setting21,22 along with inverse probability 

of censoring weights over time23. 

METHODS 

Study population and design  

SWAN19,20, a prospective longitudinal, community-based cohort study of mid-life women, 

enrolled participants in their pre-menopause between 1996 and 1997 from 8 U.S. sites to observe 

the natural history of menopause. Eligibility criteria included age 42-52 years old, at least one 

menstrual period within the past three months, and no hormonal medication use within the last 

three months. The SWAN BMD substudy enrolled 2,365 women of four racial/ethnic groups 

(1,177 Caucasian, 665 African American, 273 Japanese, and 250 Chinese) with approximately 

annual BMD measurement. Longitudinal follow-up is still ongoing, and SWAN data collection 

consists of physical measures, fasting morning blood draw, interviewer-administered and self-

administered questionnaires (completed at home or in clinic). Participants gave written informed 

consent and study sites obtained institutional review board approval. 

Exposure assessment 

 The exposure of interest was the type of analgesic --opioid, NSAID including COX-2 

selective inhibitors, and/or acetaminophen-- that participants took at ≥ 2 consecutive annual 

visits. The individual-specific baseline visit was defined as the visit immediately before the first 

of these consecutive visits. Medication use, including both prescription and over the counter 

(OTC), was ascertained through interviewer-administered questionnaire for medications used 

twice or more per week during the past month and was then verified by inspection of medication 
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containers. The exposure definition was constructed hierarchically (eTable 2-1): opioid user if 

an opioid is used regardless of the other two; NSAID user if an NSAID is used but not opioids 

regardless of acetaminophen; and acetaminophen user if it is the only analgesic used. Participants 

who transitioned between these exposure categories were assigned the exposure status at the time 

when they first met the eligibility criteria. 

Outcome assessment 

 Details of the BMD measurements have been described in previous studies using 

SWAN24–26. BMD (g/cm2) was measured in the lumbar spine and femoral neck at each study visit. 

Raw BMD measurements were converted to baseline-normalized %BMD values for 

interpretability, as regularly done in major osteoporosis clinical trials27–30. That is, for each 

individual, the outcome was defined as 100% at the individual-specific baseline visit when the 

covariates were ascertained (year 0), and subsequent values were described in relation to this 

baseline value (e.g., 96% of the baseline value at year 4). Follow-up was truncated at year 5 

because very few people remained in the initial treatment categories beyond that point. 

Covariate assessment 

Covariates were assessed at the individual-specific baseline visit. Body mass index (BMI) 

was calculated from height and weight at the study baseline. The demographic variables included 

age, race/ethnicity, self-reported annual income (low [≤ $19,999], medium [$20,000-49,999], 

and high [≥ $50,000-]), and college education (yes/no). Alcohol intake (none/low [< 1 

drink/month], moderate [up to 1/week], and high [≥ 2/week]), current tobacco use (yes/no), and 

physical activity measures were available as lifestyle variables. Physical activity was measured 

using the modified Baecke Physical Activity Questionnaire (range 3–15, with lower scores 

indicating less exercise)31,32. Self-reported comorbidities included thyroid disease, diabetes, and 
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history of cancer. Self-reported pain-related quality of life (range 0-100, with 100 indicating 

excellent quality of life33), vasomotor symptoms, and overall perception of health were also 

reported. Medications included hormone therapy for menopause, bisphosphonates, calcium 

supplements, vitamin D supplements, and oral glucocorticoids. Menopause transition (MT) stage 

was defined based on menstrual cycles25 (eTable 2-2). We created four categories of MT stages 

for the main analysis: pre- or early perimenopause; late perimenopause; postmenopause; and 

unknown (eTable 2-2). We also conducted a subgroup analysis among those who had a known 

date of the final menstrual period (FMP), using MT stages based on time prior to or after the 

FMP (eTable 2-3).24 

Statistical analyses 

 Participant characteristics at the study baseline were summarized within each exposure 

group. To examine between group imbalance in the unmatched cohort of patients, the 

standardized mean differences (SMD)34 were calculated in each pairwise treatment contrast and 

then averaged across all three contrasts. The SMD represents how different groups are for a 

given covariate. Covariates that have SMD ≤ 0.1 are considered reasonably balanced34. We 

multiply imputed missing covariates via the mice R package.35,36 

 Multinomial logistic regression was used for the propensity score (PS) model because the 

exposure status had three categories (acetaminophen, NSAIDs, or opioids)37, resulting in one PS 

for each exposure category. All baseline covariates listed in the baseline Table 2-(Table 2-1) 

were included as explanatory variables. We used the PSs as matching weights (MW; eAppendix 

Methods), a PS weighting method proposed by Li and Greene21. A recent study generalized MW 

to multiple treatment group settings22. Compared to 1:1:1 PS matching, MW allows for retention 

of all subjects, which is a potential advantage when the group sizes are dissimilar. Compared to 
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the conventional inverse probability of treatment weights (IPTW), the target of inference focuses 

on those who are in clinical equipoise among all drugs (i.e., similar estimand to PS matching). 

This clinical equipoise estimand was more stably estimated in the settings where baseline 

covariates were more different among groups22.  

 MW, as it is known currently, is only applicable to time-invariant exposure. However, a 

drug exposure is typically time-varying. Therefore, we used the on-treatment analysis and initial 

treatment group analysis to make treatment group assignment effectively time-invariant. The 

main analysis was on-treatment analysis of those who remained in the initial treatment category 

(adherers). That is, those who deviated from their initial category were censored at the time of 

deviation, making the treatment assignment effectively time-invariant among uncensored time 

points remaining in the analysis dataset. We additionally censored patients at the initiation of 

hormone therapy for menopause or bisphosphonate or cancer diagnosis. Such censoring of 

participants who deviate from the initial treatment status or started bone active medications can 

introduce selection bias -- those who are censored and retained may not share the same risks for 

BMD changes. Thus, we additionally assigned time-varying inverse probability of censoring 

weights (IPCW)23 to ameliorate this selection bias issue using the same set of covariates as the 

time-invariant MW model, but updated for each time point. A final weight for a given time point 

was constructed as the product of the individual-specific time-invariant MW and the individual-

specific, time point-specific time-varying IPCW and was normalized to represent the sample size 

of each treatment group at each time point.38 This approach should estimate the effect of 

continuous treatment,23,39 assuming both MW for baseline confounding by indication and IPCW 

for selection bias introduced by artificial censoring are successful. We also conducted an 

alternative analysis based on the initial treatment category at the study baseline (initial treatment 
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group analysis). Participants remained in their original treatment category regardless of 

subsequent medication changes in this analysis, also making the treatment variable time-

invariant. This approach is an observational analogue of the intention-to-treat analysis used in 

clinical trials, and should estimate the effect of assigned treatment39, assuming MW for baseline 

confounding by indication is successful. Censoring also occurred administratively because some 

subjects started analgesics late in the SWAN study, thus, reaching the latest SWAN visit (visit 

13) before having the fifth-year visit after analgesic initiation. This type of administrative 

censoring was assumed non-informative. 

The mean baseline-normalized %BMD over time for the spine and femoral neck were 

plotted in both the on-treatment analysis and initial treatment group analysis. We used the 

generalized estimating equation with the auto-regressive correlation structure to account for 

weighting and the clustering of repeated BMD measurements within each individual during 

follow-up. Confidence intervals were calculated based on robust sandwich standard error 

estimates. The time effect on the mean baseline-normalized %BMD was modeled as a linear 

term to provide average yearly change estimates. The slope differences of interest, NSAIDs 

versus acetaminophen, and opioids versus acetaminophen, were incorporated into the model as 

time-group interaction terms. We repeated the analyses in the FMP subgroup. We also repeated 

the main analysis after excluding an outlying data point as a sensitivity analysis. Another 

sensitivity analysis for the outcome model further adjusted for variables that had SMD > 0.1 after 

balancing by MW. 
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RESULTS 

Study population 

Among 2,365 participants in the SWAN BMD cohort, 71 acetaminophen new users, 659 

NSAID new users, and 84 opioid new users were identified (eFigure 2-1; break down by generic 

names in eTable 2-4). Their unadjusted baseline characteristics are shown in Table 2-1. The 

most prominent baseline differences were noted for pain-related quality of life (QoL), ethnic 

composition, income, overall perception of health, BMI, femoral neck BMD, and physical 

activity. The pain-related QoL was lower for the opioid users (48.8) compared to the other two 

groups that had scores around 70. Femoral neck BMD was higher in the opioid group than the 

other groups likely associated with their higher BMI. Physical activity was highest among 

NSAID users and was lowest among opioid users. Twenty-six percent of NSAID users were also 

exposed to acetaminophen. Opioid users also had substantial concurrent exposure 

(acetaminophen 80% and NSAIDs 66%). Matching weights reduced group imbalance at the 

baseline (Table 2-2), even in comparison to other PS methods (eFigure 2-2)40,41. The mean 

follow-up durations were similar across treatment groups (eTable 2-5). 

 

Adjusted main analysis using menstrual period-defined stages 

Figure 2-1 shows the mean baseline-normalized BMD over the five-year follow-up 

period for each treatment group (n = 814) as well as the treatment group contrasts from the 

generalized estimating equation (see eFigure 2-3 for unadjusted counterpart). The mean annual 

change in each treatment group as well as group differences in slopes are shown in Table 2-3. 

The on-treatment analysis (Figure 2-1, left panels) was suggestive of a greater decline in 

BMD in the opioid group compared to the acetaminophen group, principally at the fifth year. 
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The opioid group in comparison to the acetaminophen group had an additional mean BMD 

decline of -0.06% [-1.24, 1.11] per year in the spine and -0.45% [-1.51, 0.61] per year in the 

femoral neck. The initial treatment group analysis, on the other hand, demonstrated more similar 

trajectories for all three groups (Figure 2-1, right panels). The difference between the opioid 

group and the acetaminophen group diminished to -0.06% [-0.66, 0.78] in the spine and to 0.08% 

[-0.65, 0.82] in the femoral neck. 

Adjusted final menstrual period-based analysis 

eFigure 2-4 shows the corresponding outcome analysis in the subgroup of women with a 

known FMP date (n = 471). The adjustment for the menopause transition stages at individual-

specific baseline visit was based on the time prior to or after FMP (pre-transmenopause, 

transmenopause, or postmenopause; eTable 2-3)24. The baseline characteristics before propensity 

score weighting are in eTable 2-6. Propensity score weighing improved covariates balance, but 

to a lesser extent than in the main cohort (eTable 2-7). The mean trajectories were less stable due 

to the smaller sample size, particularly in the on-treatment analyses. The mean annual change in 

each treatment group is shown in eTable 2-8. The on-treatment analyses exhibited overlapping 

mean trajectories (eFigure 2-4, left panels). The initial treatment group analyses (eFigure 2-4, 

right panels) produced trajectories with more separation than the main initial treatment group 

analyses (Figure 2-1, right panels). 

Sensitivity analysis 

 As the main on-treatment analysis showed a strong fifth-year deflection in the trajectory, 

we examined for the presence of outliers. One subject with probable thyroid disease exhibited an 

outlying decline trajectory. This subject remained in the opioid category for the full five years 

without meeting any of the censoring criteria, thus, she was gradually up-weighted over time via 
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IPCW, becoming more influential. Reanalysis excluding this subject (eFigure 2-5) resulted in a 

less prominent decline in the fifth year, although the opioid group remained the lowest group at 

the fifth year. Outcome analysis further adjusting for the sub-optimally balanced variables gave 

similar estimates of group differences in slopes (eTable 2-9). 

DISCUSSION 

In the current study, we examined the association between analgesic use and BMD 

decline over time in a well-established cohort of mid-life women, with a focus on the contrasts 

between opioids and acetaminophen as well as NSAIDs and acetaminophen. We used three-

group MW for baseline covariate balancing and time-varying IPCW to reduce selection bias by 

artificial censoring over time. To our knowledge, the current study is the first instance of MW 

used in conjunction with IPCW in the multiple treatment group setting. The average slope 

differences were not statistically significant in both on-treatment analysis and initial treatment 

group analysis. However, the on-treatment analysis was suggestive of a potentially greater 

decline in the BMD in the opioid group compared to the acetaminophen group after five years of 

continuous use. The trajectory of BMD decline in the NSAID group was similar to the 

acetaminophen group. Between-group differences were not clearly observed in the initial 

treatment group analysis. 

There is no established gold standard for the clinically meaningful group difference in 

BMD changes over time, however, several clinical trials were summarized in eTable 2-10 to 

give some idea27–30. In the FIT study27, which demonstrated hip fracture reduction, the annual slope 

difference in the femoral neck BMD was +1.0% / year in the alendronate group compared to the 

placebo group. Our study found that the annual slope difference was -0.45% / year [-1.51, 0.61] 

for the femoral neck BMD comparing the opioid new users to the acetaminophen new users 
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(Figure 2-1), which was not statistically significant, but did not rule out 1.0% difference in 

annual slopes. The five-year difference in BMD comparing the opioid group to the 

acetaminophen group was close to -10% in the on-treatment analysis although the difference was 

negligible in the initial treatment group analysis (Figure 2-1). The noticeable discrepancy 

between the on-treatment analysis and the initial treatment group analysis suggests the 

contribution of residual selection bias that was not fully controlled by IPCW, likely due to the 

small size of the opioid arm that remained on treatment, in addition to the exposure 

misclassification in the initial treatment group analysis. However, even in the sensitivity analysis 

removing an outlying observation, some group difference in the range of -3 to -5% remained, 

which may suggest a potentially greater decline in BMD among persistent opioid users. 

Although the longitudinal association of opioid use and fractures has been well 

documented in multiple studies3–8, the association of opioid use and lower BMD has been shown 

only in cross-sectional studies13–15. To our knowledge, only one study has examined the 

longitudinal effect of opioids on BMD5 and reported no clinically relevant longitudinal 

association based on BMD measurements ten years apart. Our study provides additional insight 

into the potential effect of opioids on BMD by providing more granular follow-up, although this 

study alone is not conclusive. Past cross-sectional studies that demonstrated an association 

between opioid use and lower BMD were among former opioid abusers undergoing methadone 

therapy, whereas the current study was among community-dwelling healthy women. 

 Several studies have suggested potentially beneficial effects of NSAIDs on BMD. Bauer 

et al. found a cross-sectional association between higher BMD and current frequent NSAID use 

compared to infrequent use and non-use in their 1996 study on community-dwelling women 

aged at least 65 years old16. Carbone et al.17 examined the cross-sectional association between 
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NSAID use and BMD in the Health ABC study among community-dwelling men and women 

70-79 years of age. They found that current users of COX-2 selective NSAIDs with concurrent 

aspirin use had higher BMD than non-users. A 10-year longitudinal study by Vestergaard et al.5, 

which also examined acetaminophen, NSAIDs, and opioids, found a very minor (clinically 

insignificant) increase in spine and whole body BMD among NSAID users compared to non-

users. The current study showed essentially identical BMD trajectories between NSAID users 

and acetaminophen users in both the on-treatment analysis and the initial treatment group 

analysis. 

SWAN was designed to characterize the biological, symptomatic, and psychosocial 

changes that occur during the menopausal transition and their effects on women’s health and 

well-being. Thus, our findings may not generalize to men, or to women in different age ranges. 

SWAN did not specifically enroll analgesic users, thus, the number of users was small, limiting 

our ability to draw firm conclusions. Also SWAN does not have reliable medication dosage 

information. Doses of opioids can be highly variable among opioid users due to the highly 

individualized nature of these prescriptions42. However, high-dose opioid use is unlikely in this 

population cohort of generally healthy mid-life women.  

 Our longitudinal study design has some unique strengths compared to the prior cross-

sectional studies on this topic. Use of acetaminophen as a comparator medication --active 

comparator design43-- ensured that all three treatment groups had at least some pain. Non-users -- 

individuals who do not use analgesics -- are expected to have much less pain than analgesic 

users, thus using such a comparator group without pain could induce a spurious association 

between BMD changes and medication use44, which can be difficult to control for. We also used a 

new user design43, which examines subjects starting the medication of interest, in an attempt to 
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parallel the design of a hypothetical clinical trial45 and ensures that the baseline covariates were 

measured before medication initiation. 

 As a safety outcome study, the primary effect of interest is the on-treatment effect39, that 

is the effect of medication on the outcome if subjects were made to adhere to the regimen23. 

However, the naïve on-treatment analysis that simply censors subjects who do not follow the 

initial regimen of interest often introduces selection bias46. Therefore, we used IPCW to account 

for selection. The study revealed a difficulty of IPCW in the presence of small number of 

subjects in each arm. One of the few persistent opioid users happened to have an outlying decline 

in BMD, thereby exerting increasing influence at later time points because of progressively 

greater IPCW. Some of the differences in BMD trajectories, however, persisted after excluding 

this subject. Examination of the very long-term on-treatment effect beyond 5 years was not 

possible due to the very few adherers, potentially limiting the scope of the study. 

In conclusion, the average BMD slope differences over a five-year period were not 

statistically significant among mid-life female analgesic new users. However, five years of 

persistent opioid use may be associated with a greater BMD decline. It is important to remember 

that chronic opioid use, although becoming common, is not a well-justified practice in the setting 

of non-cancer pain47,48. Further studies examining the relationship between very long term 

persistent opioid use and BMD as well as their dose response are warranted. 
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Table 2-1. Baseline characteristics of analgesics new users before propensity score weighting. 
  APAP users NSAID users Opioid users SMD 
N 71 659 84  

Age (mean (SD)) 49.34 (4.33) 49.43 (4.02) 50.63 (4.42) 0.200 

Ethnicity (%)    0.493 

   Caucasian 33 (46.5) 385 (58.4) 40 (47.6)  

   Black 25 (35.2) 191 (29.0) 43 (51.2)  

   Asian 13 (18.3) 83 (12.6) 1 (1.2)  

Income (%)    0.383 

   Low (-19k) 9 (15.5) 46 (7.9) 13 (20.0)  

   Middle (20k-49k) 16 (27.6) 203 (34.7) 28 (43.1)  

   High (50k-) 33 (56.9) 336 (57.4) 24 (36.9)  

College education (%) 26 (36.6) 302 (46.2) 23 (27.7) 0.260 

BMI (mean (SD)) 28.43 (8.23) 29.16 (7.19) 32.43 (7.25) 0.354 

Physical activity [3-15] (mean (SD)) 7.49 (1.51) 7.87 (1.65) 7.08 (2.08) 0.295 

Vasomotor symptoms (%) 34 (49.3) 341 (52.2) 47 (56.0) 0.089 

Menopause transition stage (%)    0.318 

   Pre/Early Peri 45 (63.4) 458 (69.5) 41 (48.8)  

   Late Peri 3 (4.2) 43 (6.5) 6 (7.1)  

   Post 16 (22.5) 108 (16.4) 26 (31.0)  

   Unknown 7 (9.9) 50 (7.6) 11 (13.1)  

Lumbar spine BMD g/cm2 (mean (SD)) 1.04 (0.14) 1.08 (0.15) 1.11 (0.16) 0.291 

Femoral neck BMD g/cm2 (mean (SD)) 0.81 (0.13) 0.85 (0.14) 0.88 (0.14) 0.340 

Pain-related QoL [0-100] (mean (SD)) 70.44 (18.26) 69.75 (19.74) 48.77 (25.35) 0.647 

Overall perception of health (%)    0.386 

   Same 28 (42.4) 270 (43.1) 30 (40.0)  

   Better 31 (47.0) 297 (47.4) 22 (29.3)  

   Worse 7 (10.6) 60 (9.6) 23 (30.7)  

Alcohol (%)    0.177 

   None/Low 34 (56.7) 285 (47.1) 34 (50.7)  

   Moderate 16 (26.7) 168 (27.8) 21 (31.3)  

   High 10 (16.7) 152 (25.1) 12 (17.9)  

Current smoker (%) 14 (20.3) 96 (14.7) 21 (25.0) 0.173 

Thyroid disease (%) 9 (13.4) 66 (10.1) 10 (11.9) 0.069 

Diabetes (%) 6 (8.5) 34 (5.2) 16 (19.0) 0.292 

Calcium supplement (%) 21 (29.6) 216 (32.8) 18 (21.4) 0.171 

Vitamin D supplement (%) 15 (21.1) 105 (15.9) 8 (9.5) 0.218 

Oral glucocorticoids (%) 3 (4.2) 14 (2.1) 2 (2.4) 0.080 

Missing proportions: BMI 7%; Income 13%; College education 1%; Physical activity 52% (not measured at every 
visit by design); Vasomotor symptoms 1%; BMD 10%; Pain-related QoL 15%; Alcohol 11%; Smoking 1%; 
Cancers 1%; Thyroid disease 1%. Abbreviations: APAP: acetaminophen; NSAID: non-steroidal anti-inflammatory 
drug; SMD: standardized mean difference; BMI: body mass index; Menopausal status: menopausal status define by 
menstrual cycles (See eTable 2-2); BMD: bone mineral density in g/cm2; QoL: quality of life.  
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Table 2-2. Baseline characteristics of analgesics new users after propensity score weighting.  
APAP users NSAID users Opioid users SMD 

Age (mean (SD)) 49.25 (3.72) 49.66 (4.23) 49.73 (4.27) 0.086 

Ethnicity (%) 
   

0.103 

   Caucasian 53.9 54.0 50.6 
 

   Black 41.7 43.4 46.9 
 

   Asian 4.4 2.6 2.5 
 

Income (%) 
   

0.121 

   Low (-19k) 16.3 19.4 20.2 
 

   Middle (20k-49k) 33.7 34.2 37.6 
 

   High (50k-) 50.0 46.5 42.2 
 

College education (%) 37.0 32.0 31.1 0.085 

BMI (mean (SD)) 30.79 (7.87) 30.56 (7.35) 30.66 (6.54) 0.031 

Physical activity [3-15] (mean (SD)) 7.25 (1.63) 7.26 (1.67) 7.45 (1.92) 0.089 

Vasomotor symptoms (%) 46.7 54.6 55.7 0.125 

Menopause transition stage (%) 
   

0.155 

   Pre/Early Peri 61.8 58.8 57.1 
 

   Late Peri 7.2 5.3 9.2 
 

   Post 21.5 22.0 21.2 
 

   Unknown 9.5 13.9 12.6 
 

Lumbar spine BMD g/cm2 (mean (SD)) 1.08 (0.14) 1.07 (0.15) 1.08 (0.14) 0.066 

Femoral neck BMD g/cm2 (mean (SD)) 0.85 (0.13) 0.84 (0.13) 0.86 (0.12) 0.074 

Pain-related QoL [0-100] (mean (SD)) 65.17 (17.45) 62.66 (19.84) 63.84 (20.99) 0.088 

Overall perception of health (%) 
   

0.092 

   Same 40.4 44.8 39.7 
 

   Better 42.7 38.5 43.8 
 

   Worse 16.9 16.7 16.5 
 

Alcohol (%) 
   

0.074 

   None/Low 52.0 50.0 49.2 
 

   Moderate 32.8 32.2 34.0 
 

   High 15.3 17.8 16.8 
 

Current smoker (%) 19.8 26.1 23.9 0.102 

Thyroid disease (%) 10.2 14.6 12.4 0.091 

Diabetes (%) 12.8 13.4 12.2 0.030 

Calcium supplement (%) 16.5 22.6 21.8 0.106 

Vitamin D supplement (%) 8.4 12.7 12.6 0.098 

Oral glucocorticoids (%) 2.9 2.3 1.3 0.079 

 
Abbreviations: APAP: acetaminophen; NSAID: non-steroidal anti-inflammatory drug; SMD: 
standardized mean difference; BMI: body mass index; Menopausal status: menopausal status 
define by menstrual cycles (See eTable 2-2); BMD: bone mineral density in g/cm2; QoL: quality 
of life. 
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Table 2-3. Main bone mineral density analysis results from generalized estimating equations. 
 

Analysis Type Site Group Mean Annual Change (%) Group Difference (%) 
On Treatment Spine Acetaminophen -0.90 [-1.58, -0.21] Ref. 

  NSAIDs -0.76 [-0.92, -0.59] 0.14 [-0.56, 0.85] 

  Opioids -0.96 [-1.92, -0.00] -0.06 [-1.24, 1.11] 

 Femoral Neck Acetaminophen -0.61 [-1.21, -0.02] Ref. 

  NSAIDs -0.60 [-0.81, -0.39] 0.02 [-0.61, 0.64] 

  Opioids -1.07 [-1.95, -0.19] -0.45 [-1.51, 0.61] 

Initial Treatment Spine Acetaminophen -0.72 [-1.13, -0.30] Ref. 

  NSAIDs -0.79 [-0.93, -0.66] -0.07 [-0.51, 0.36] 

  Opioids -0.66 [-1.25, -0.07] 0.06 [-0.66, 0.78] 

 Femoral Neck Acetaminophen -0.82 [-1.28, -0.36] Ref. 

  NSAIDs -0.64 [-0.80, -0.49] 0.18 [-0.30, 0.66] 

  Opioids -0.74 [-1.31, -0.16] 0.08 [-0.65, 0.82] 

 
On-treatment analysis censored patients at the time they changed analgesic categories, whereas 
initial treatment group analysis retained these patients in the initial treatment groups. 
Abbreviations: NSAID: non-steroidal anti-inflammatory drug; Ref.: Reference. 
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Figure 2-1. Group mean trajectories of baseline-normalized % bone mineral density (BMD). 

 
The numbers at the bottom of each panel are number of individuals contributing BMD 
measurements (Top: Acetaminophen, Middle: NSAIDs, and bottom: Opioids). On-treatment 
analysis censored patients at the time they changed analgesic categories, whereas initial 
treatment group analysis retained these patients in the initial treatment groups. 
 
Abbreviations: NSAID: non-steroidal anti-inflammatory drug; N vs A: NSAID group vs 
Acetaminophen group; O vs A: Opioid group vs Acetaminophen group; Spine: lumbar spine 
BMD; Time Since Baseline: Time since the baseline visit in years. 
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eTable 2-1. Hierarchical definition of exposure category. 
Acetaminophen use NSAID use Opioid use Exposure Category 

+ - - Acetaminophen user 
± + - NSAID user 
± ± + Opioid user 

Abbreviations: (+): use; (-): no use; (±): either use or no use. 
 
 
eTable 2-2. Menopause transition stage definition assessed at the individual-specific baseline 
visit. 
Status Original Status Definition 
Pre/Early 
Peri 

Pre-menopause No change in menstrual cycles. 

Early peri-

menopause 

More irregular menstrual cycles than prior, but no gaps 

in cycles of > 3 months. 

Late Peri Late peri-

menopause 

No menstrual cycles for 3-11 months. 

Post Post-menopause No menstrual cycles for 12 or more months. 

Post-BSO Post-bilateral salpingo-oophorectomy (ovary removal). 

Unknown Post-hysterectomy Hysterectomy without bilateral oophorectomy prior to 

the FMP. 

(Excluded) HT before FMP HT use prior to FMP obscuring classification. Excluded 

from the current study. 

Pregnant or 

breastfeeding 

Menstrual cycles are obscured by pregnancy or 

breastfeeding. Excluded from the current study.  
We used the classification under “Status” in our analysis. The “Original Status” represents the 
coding in the SWAN database. 
Abbreviations: BSO: bilateral salpingo-oophorectomy; FMP: final menstrual period; HT: 
hormone therapy for menopause.  
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eTable 2-3. Final menstrual period-based menopause transition stage definition assessed at the 
individual-specific baseline visit. 

Status Definition 

Pretransmenopause More than 1 year before FMP 

Transmenopause From 1 year before FMP to 2 years after FMP 

Postmenopause More than two years after FMP 
Abbreviations: FMP: Final menstrual period. 
 
eTable 2-4. Break down of NSAIDs and opioids by generic names used by the subjects in the 
main analysis.  

NSAIDs        Opioids 
n 659 

 
n 84 

Generic name (%) 
  

Generic name (%) 
 

   Ibuprofen* 484 (73.4) 
 

   Codeine 30 (35.7) 

   Naproxen 113 (17.1) 
 

   Propoxyphene 17 (20.2) 

   Celecoxib† 16 (2.4) 
 

   Tramadol 15 (17.9) 

   Nabumetone 11 (1.7) 
 

   Oxycodone 12 (14.3) 

   Rofecoxib† 12 (1.8) 
 

   Meperidine 3 (3.6) 

   Etodolac 7 (1.1) 
 

   Fentanyl 2 (2.4) 

   Diclofenac 4 (0.6) 
 

   Methadone 2 (2.4) 

   Oxaprozin 3 (0.5) 
 

   Morphine 2 (2.4) 

   Indomethacin 2 (0.3) 
 

   Hydromorphone 1 (1.2) 

   Ketorolac 2 (0.3) 
   

   Piroxicam 2 (0.3) 
   

   Meclofenamate 1 (0.2) 
   

   Mefenamic acid 1 (0.2) 
   

   Sulindac 1 (0.2) 
   

* Includes one user who used both ibuprofen and naproxen; † COX-2 selective agents. 
Abbreviations: NSAID: non-steroidal anti-inflammatory drug; COX-2: Prostaglandin-
endoperoxide synthase 2 
 
eTable 2-5. Mean follow up duration in years in each analysis. 

Cohort Analysis Type Acetaminophen NSAIDs Opioids 
Main analysis On Treatment 2.6 3.0 2.8  

Initial Treatment 4.3 4.4 4.2 

FMP subgroup On Treatment 2.8 3.1 2.6  
Initial Treatment 4.4 4.7 4.0 

Postmenopausal subgroup On Treatment 3.0 2.8 2.9  
Initial Treatment 3.9 4.0 3.5 

On-treatment analysis censored patients at the time they changed analgesic categories, whereas 
initial treatment group analysis retained these patients in the initial treatment groups. 
Abbreviations: FMP: final menstrual period; NSAID: non-steroidal anti-inflammatory drug.   
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eTable 2-6. Baseline characteristics of the subgroup of analgesics new users with final menstrual 
period (FMP) data before propensity score weighting.  

APAP users NSAID users Opioid users SMD 
N 39 381 33 

 

Age (mean (SD)) 50.27 (4.04) 49.78 (4.10) 51.56 (4.85) 0.268 

Ethnicity (%) 
   

0.605 

   Caucasian 15 (38.5) 210 (55.1) 15 (45.5) 
 

   Black 15 (38.5) 120 (31.5) 18 (54.5) 
 

   Asian 9 (23.1) 51 (13.4) 0 (0.0) 
 

Income (%) 
   

0.467 

   Low (-19k) 7 (23.3) 25 (7.5) 5 (22.7) 
 

   Middle (20k-49k) 7 (23.3) 121 (36.3) 9 (40.9) 
 

   High (50k-) 16 (53.3) 187 (56.2) 8 (36.4) 
 

College education (%) 11 (28.2) 174 (46.3) 7 (21.2) 0.364 

BMI (mean (SD)) 27.60 (8.34) 29.72 (7.58) 33.43 (8.53) 0.472 

Physical activity [3-15] (mean (SD)) 7.32 (1.45) 7.81 (1.68) 7.31 (2.23) 0.190 

Vasomotor symptoms (%) 20 (51.3) 189 (49.9) 12 (36.4) 0.203 

FMP category (%) 
   

0.420 

   Pretransmenopause 21 (53.8) 242 (63.5) 16 (48.5) 
 

   Transmenopause 10 (25.6) 81 (21.3) 4 (12.1) 
 

   Postmenopause 8 (20.5) 58 (15.2) 13 (39.4) 
 

Lumbar spine BMD g/cm2 (mean (SD)) 1.04 (0.14) 1.08 (0.16) 1.10 (0.13) 0.303 

Femoral neck BMD g/cm2 (mean (SD)) 0.81 (0.15) 0.86 (0.14) 0.88 (0.13) 0.326 

Pain-related QoL [0-100] (mean (SD)) 69.22 (21.14) 69.93 (19.30) 49.38 (24.32) 0.614 

Overall perception of health (%) 
   

0.333 

   Same 16 (43.2) 155 (43.2) 13 (48.1) 
 

   Better 16 (43.2) 175 (48.7) 8 (29.6) 
 

   Worse 5 (13.5) 29 (8.1) 6 (22.2) 
 

Alcohol (%) 
   

0.239 

   None/Low 19 (61.3) 171 (49.9) 13 (56.5) 
 

   Moderate 8 (25.8) 88 (25.7) 7 (30.4) 
 

   High 4 (12.9) 84 (24.5) 3 (13.0) 
 

Current smoker (%) 8 (20.5) 46 (12.1) 8 (24.2) 0.212 

Thyroid disease (%) 4 (10.5) 28 (7.4) 2 (6.1) 0.109 

Diabetes (%) 3 (7.7) 22 (5.8) 11 (33.3) 0.496 

Calcium supplement (%) 13 (33.3) 116 (30.4) 4 (12.1) 0.348 

Vitamin D supplement (%) 9 (23.1) 48 (12.6) 4 (12.1) 0.194 

Oral glucocorticoids (%) 2 (5.1) 8 (2.1) 0 (0.0) 0.233 

Abbreviations: APAP: acetaminophen; NSAID: non-steroidal anti-inflammatory drug; SMD: standardized mean 
difference; BMI: body mass index; FMP category: final menstrual period category (See eTable 2-3); BMD: bone 
mineral density in g/cm2; QoL: quality of life.  
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eTable 2-7. Baseline characteristics of the subgroup of analgesics new users with final menstrual 
period (FMP) data after propensity score weighting. 

  APAP users NSAID users Opioid users SMD 
Age (mean (SD)) 49.14 (3.32) 50.49 (4.64) 49.55 (4.23) 0.219 

Ethnicity (%)    0.105 

   Caucasian 52.4 48.9 45.3  
   Black 47.6 51.1 54.7  
   Asian 0.0 0.0 0.0  
Income (%)    0.142 

   Low (-19k) 26.3 28.4 29.3  
   Middle (20k-49k) 27.7 30.6 30.1  
   High (50k-) 45.9 41.0 40.6  
College education (%) 29.2 25.1 27.7 0.091 

BMI (mean (SD)) 30.89 (8.71) 30.15 (7.92) 30.35 (6.42) 0.081 

Physical activity [3-15] (mean (SD)) 7.05 (1.72) 7.18 (1.79) 7.18 (2.10) 0.104 

Vasomotor symptoms (%) 35.4 47.1 54.0 0.259 

FMP category (%)    0.279 

   Pretransmenopause 69.5 56.3 59.4  
   Transmenopause 20.4 19.0 21.2  
   Postmenopause 10.1 24.7 19.4  
Lumbar spine BMD g/cm2 (mean (SD)) 1.09 (0.16) 1.07 (0.18) 1.11 (0.12) 0.156 

Femoral neck BMD g/cm2 (mean (SD)) 0.86 (0.17) 0.84 (0.15) 0.87 (0.14) 0.139 

Pain-related QoL [0-100] (mean (SD)) 66.18 (15.50) 60.02 (20.73) 60.08 (18.80) 0.254 

Overall perception of health (%)    0.285 

   Same 52.9 44.5 35.1  
   Better 31.7 32.9 37.1  
   Worse 15.4 22.5 27.8  
Alcohol (%)    0.388 

   None/Low 64.9 53.6 63.7  
   Moderate 33.3 30.0 27.5  
   High 1.8 16.4 8.8  
Current smoker (%) 18.5 31.5 31.3 0.235 

Thyroid disease (%) 5.9 8.7 7.2 0.094 

Diabetes (%) 8.2 14.9 16.7 0.182 

Calcium supplement (%) 19.9 19.0 24.9 0.106 

Vitamin D supplement (%) 12.0 15.0 20.4 0.153 

Oral glucocorticoids (%) 0.0 0.0 0.0 <0.001 
Abbreviations: APAP: acetaminophen; NSAID: non-steroidal anti-inflammatory drug; SMD: standardized mean 
difference; BMI: body mass index; FMP category: final menstrual period category (See eTable 2-3); BMD: bone 
mineral density in g/cm2; QoL: quality of life. 
  



 

- 87 - 

eTable 2-8. FMP-based bone mineral density analysis results from generalized estimating 
equations. 

Analysis Type Site Group Mean Annual Change (%) Group Difference (%) 

On Treatment Spine Acetaminophen -0.97 [-1.95, -0.00] Ref. 

  NSAIDs -0.99 [-1.28, -0.69] -0.01 [-1.03, 1.01] 

  Opioids -0.67 [-1.46, 0.12] 0.30 [-0.95, 1.56] 

 Femoral Neck Acetaminophen -0.95 [-1.88, -0.02] Ref. 

  NSAIDs -0.62 [-0.97, -0.26] 0.33 [-0.66, 1.33] 

  Opioids -0.80 [-1.65, 0.06] 0.15 [-1.11, 1.42] 

Initial Treatment Spine Acetaminophen -0.58 [-1.39, 0.22] Ref. 

  NSAIDs -1.01 [-1.23, -0.79] -0.43 [-1.26, 0.41] 

  Opioids -0.59 [-1.46, 0.27] -0.01 [-1.19, 1.17] 

 Femoral Neck Acetaminophen -0.70 [-1.51, 0.12] Ref. 

  NSAIDs -0.72 [-0.99, -0.45] -0.02 [-0.88, 0.84] 

  Opioids -0.61 [-1.53, 0.30] 0.08 [-1.15, 1.31] 

On-treatment analysis censored patients at the time they changed analgesic categories, whereas 
initial treatment group analysis retained these patients in the initial treatment groups. 
Abbreviations: NSAID: non-steroidal anti-inflammatory drug; Ref.: Reference. 
 
 
eTable 2-9. Bone mineral density sensitivity analysis results further adjusting for menopausal 
transition stage, income category, vasomotor symptoms, calcium supplement use, ethnicity, and 
smoking status. 

Analysis Type Site Group Group Difference (%) 
On Treatment Spine Acetaminophen Ref. 

  NSAIDs 0.15 [-0.55, 0.86] 

  Opioids 0.08 [-1.01, 1.17] 

 Femoral Neck Acetaminophen Ref. 

  NSAIDs -0.02 [-0.66, 0.62] 

  Opioids -0.40 [-1.44, 0.64] 

Initial Treatment Spine Acetaminophen Ref. 

  NSAIDs -0.07 [-0.51, 0.36] 

  Opioids 0.08 [-0.62, 0.79] 

 Femoral Neck Acetaminophen Ref. 

  NSAIDs 0.15 [-0.30, 0.61] 

  Opioids 0.04 [-0.62, 0.70] 

On-treatment analysis censored patients at the time they changed analgesic categories, whereas 
initial treatment group analysis retained these patients in the initial treatment groups. Adjustment 
was conducted in the outcome model for variables that had standardized mean differences > 0.1 
after balancing by matching weights. 
Abbreviations: NSAID: non-steroidal anti-inflammatory drug; Ref.: Reference. 
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eTable 2-10. Bone mineral density annual slope differences observed in key clinical trials. 
Trial Name FIT27 HORIZON28 FREEDOM29 FPT30 
Intervention Alendronate IV Zolendronate IV Denosumab SC Teriparatide 

Comparator Placebo Placebo Placebo Placebo 

Follow up 3 years 3 years 3 years 1.5 years 

Spine +2.5% / year +2.2% / year +3.1% / year +5.7% / year 

Femoral Neck +1.0% / year +1.7% / year N/A +2.3% / year 

Fracture Prevention Spine, Hip Spine, Hip Spine, Hip Spine 

Abbreviations: N/A: not available. 
 
 
eFigure 2-1. Derivation of the main study cohort and FMP cohort. 

 
Abbreviations: BMD: bone mineral density; BP: bisphophonate; NSAID: non-steroidal anti-
inflammatory drug; FMP: final menstrual period. 
  

BMD available (n = 2,365)

Excluded (n = 1,551):

a) No analgesic use (n = 349)

b) No 2+ consecutive visits in same

exposure category (n = 1,065)
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Main cohort (n = 814):

Acetaminophen (n = 71)

NSAIDs (n = 659)

Opioids (n = 84)

Excluded (n = 361):

e) No FMP recorded (n = 361)

FMP cohort (n = 453):

Acetaminophen (n = 39)

NSAIDs (n = 381)

Opioids (n = 33)
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eFigure 2-2. Standardized mean difference (SMD) before and after matching weights (MW). 

 
Abbreviations: SMD: standardized mean difference; MW: covariate balance after matching 
weights; Matched: covariate balance after three-way matching; IPTW: covariate balance after 
inverse probability of treatment weights; Original: covariate balance before any adjustment. 
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eFigure 2-3. Group mean trajectories of baseline-normalized % bone mineral density (BMD) in 
the main unadjusted analysis. 

 
The numbers at the bottom of each panel are number of individuals contributing BMD 
measurements (Top: Acetaminophen, Middle: NSAIDs, and bottom: Opioids). On-treatment 
analysis censored patients at the time they changed analgesic categories, whereas initial treatment 
group analysis retained these patients in the initial treatment groups. 
 
Abbreviations: NSAID: non-steroidal anti-inflammatory drug; N vs A: NSAID group vs 
Acetaminophen group; O vs A: Opioid group vs Acetaminophen group; Spine: lumbar spine 
BMD; Time Since Baseline: Time since the baseline visit in years.  

61 60 60 19 11 8
606 566 570 304 191 122
71 67 59 31 18 11

0.18 [−0.28, 0.64]
0.10 [−0.61, 0.82]

N vs A
O vs A

60 61 60 19 11 8
607 570 575 306 190 120
74 69 62 31 18 12

−0.01 [−0.46, 0.43]
−0.23 [−0.90, 0.45]

N vs A
O vs A

61 60 60 51 45 42
606 566 570 482 461 439
71 67 59 56 57 47

−0.01 [−0.35, 0.33]
0.12 [−0.40, 0.63]

N vs A
O vs A

60 61 60 51 45 42
607 570 575 487 462 439
74 69 62 56 57 48

0.11 [−0.22, 0.44]
0.02 [−0.48, 0.51]

N vs A
O vs A

On Treatment Initial Treatment

Spine
Fem

oral Neck

0 1 2 3 4 5 0 1 2 3 4 5

80

90

100

80

90

100

Time Since Baseline

Ba
se

lin
e−

No
rm

al
ize

d 
%

 B
M

D

Acetminophen NSAIDs Opioids



 

- 91 - 

eFigure 2-4. Group mean trajectories of baseline-normalized % bone mineral density (BMD) in 
the final menstrual period (FMP) subgroup. 

 
The numbers at the bottom of each panel are number of individuals contributing BMD 
measurements (Top: Acetaminophen, Middle: NSAIDs, and bottom: Opioids). On-treatment 
analysis censored patients at the time they changed analgesic categories, whereas initial treatment 
group analysis retained these patients in the initial treatment groups. 
 
Abbreviations: NSAID: non-steroidal anti-inflammatory drug; N vs A: NSAID group vs 
Acetaminophen group; O vs A: Opioid group vs Acetaminophen group; Spine: lumbar spine 
BMD; Time Since Baseline: Time since the baseline visit in years.  
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eFigure 2-5. Group mean trajectories of baseline-normalized % bone mineral density (BMD) 
after excluding an outlying opioid user. 

 
The numbers at the bottom of each panel are number of individuals contributing BMD 
measurements (Top: Acetaminophen, Middle: NSAIDs, and bottom: Opioids). On-treatment 
analysis censored patients at the time they changed analgesic categories, whereas initial treatment 
group analysis retained these patients in the initial treatment groups. 
 
Abbreviations: NSAID: non-steroidal anti-inflammatory drug; N vs A: NSAID group vs 
Acetaminophen group; O vs A: Opioid group vs Acetaminophen group; Spine: lumbar spine 
BMD; Time Since Baseline: Time since the baseline visit in years. 
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1 Details of matching weights
When there are K treatment categories, K propensity scores are defined. That is, individual i has a predicted
probability of receiving treatment for each one of the K treatment categories. These scores are often called
the generalized propensity scores. The scores need to add up to one, thus, estimation is usually conducted
with multinomial logistic regression. Using these generalized propensity scores and treatment categories, the
weights are defined as follows.

Matching Weighti =
min(e1i, ..., eKi)
K∑

k=1
I(Zi = k)eki

where eki is the generalized propensity score for the k-th treatment (i.e., probability of receiving the k-th
treatment), Zi ∈ {1, ...,K} is a categorical treatment variable, and I(·) is an inductor variable (1 if true and
0 if false).

2 Details of outcome modeling
2.1 Procedure
Generalized estimating equation was used via geepack R package (geeglm() function) with the Gaussian
error structure and identity link (family = gaussian(link = "identity")).

2.2 Model
The outcome variable used was the baseline-normalized %BMD. This variable was created within each
individual by dividing the BMD values by the year 0 BMD value and multiplying by 100. Therefore, the
outcome started at 100% at year 0 for all individuals regardless of the treatment group. This is the outcome
depicted in figures such as Figure 1.

The mean model formula for the outcome for individual i at time point j (Yij) was the following.

E[Yij − 100|COVARIATESij ] = β1YEARij + β2NSAIDi ×YEARij + β3OPIOIDi ×YEARij

Here the outcome was further modified by subtracting 100 to ease the modeling process because this "inter-
cept" was common to all individuals (thus, no need to estimate). The explanatory variables were the year
term (time effect), NSAID group indicator-year interaction term, and opioid group indicator-year interaction
term. We only need the interaction terms for the NSAID and opioid group indicator variables, but no the
main effect terms for the group indicator variables, because all individuals in all treatment groups have the
same outcome value at year 0 (Yij − 100 = 0 for all individuals).

As a result, the estimates shown in Table 3 are estimates for the following coefficients or sum of coefficients.
β1 represents the mean annual change (slope on the %BMD) in the acetaminophen group. To obtain the
mean annual changes (%) for the NSAIDs group and opioids group, the respective group difference coefficients
(interaction coefficients; slope differences) were added to the acetaminophen (reference) group mean annual
change (%).

Group Mean Annual Change (%) Group Difference
Acetaminophen β1 Reference
NSAIDs β1 + β2 β2

Opioids β1 + β3 β3
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ABSTRACT 

PURPOSE: In observational research, equipoise concerns whether groups being compared are 

similar enough for valid inference. Empirical equipoise was previously proposed as a tool to assess 

patient similarity based on propensity scores (PS). We extended this work for multi-group 

observational studies.  

METHODS: We modified the tool to allow for multinomial exposures such that the proposed 

definition reduces to the original when there are only two groups. We illustrated how the tool can 

be used as method to assess study design within three-group clinical examples. We then conducted 

three-group simulations to assess how the tool performed in a setting with residual confounding 

after PS weighting. 

RESULTS: In a clinical example based on rheumatoid arthritis, 44.5% of the sample fell within 

the region of empirical equipoise when considering first-line biologics, whereas 57.7% did so for 

second-line biologics, consistent with the expectation that a second-line design results in better 

equipoise. In a simulation where the unmeasured confounder had the same magnitude of 

association with the treatment as the measured confounders and a 25% greater association with the 

outcome, the tool crossed the proposed threshold for empirical equipoise at a residual confounding 

of 20% on the ratio scale. When the unmeasured variable had a twice larger association with 

treatment, the tool became less sensitive and crossed the threshold at a residual confounding of 

30%. 

CONCLUSION: Our proposed tool may be useful in guiding cohort identification in multi-

group observational studies, particularly with similar effects of unmeasured and measured 

covariates on treatment and outcome.  
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INTRODUCTION 

 Pharmacoepidemiologists are often concerned with whether the exposure groups in an 

observational study are similar enough for unbiased causal inference. Lack of similarity can 

imply dangers of positivity violation1 and residual confounding from imperfectly measured and 

unmeasured variables. Statistical analyses alone cannot fully address these issues and design 

stage efforts2, such as the active comparator design3,4, are necessary. However, no well-accepted 

measure exists for deciding whether groups are similar enough, particularly in comparisons 

among three or more treatments. 

 Walker et al. introduced the concept of empirical equipoise5 in the setting of two-group 

comparative effectiveness research (CER). Empirical equipoise is a manifestation of underlying 

clinical equipoise6: a state of collective uncertainty among medical providers regarding the best 

treatment option for a specific patient population. In this circumstance, prescriber opinions, 

rather than patient characteristics, largely determine treatment choices5. A treatment assignment 

mechanism that is mostly independent of patient characteristics results in treatment groups that 

are similar and overlapping in covariates. 

 Since clinical equipoise pertains to prescriber opinions, it is not directly measurable in 

typical CER datasets such as administrative claims. Empirical equipoise is a measure of 

similarity of the distributions of potential confounders available in CER datasets and can be 

useful as a study design assessment tool7. To our knowledge, no such tool exists for studies with 

three or more groups even though multi-group CER is increasingly relevant due to the 

development of many treatment options for rheumatoid arthritis (RA)8, diabetes mellitus9, and 

atrial fibrillation10 to name a few. In this paper, we provide a detailed explanation of Walker et 
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al.’s empirical equipoise tool, propose an extension to the multi-group CER setting, illustrate its 

face validity in empirical data, and examine its performance in simulations. 

 

METHODS 

Empirical equipoise assessment tool 

 Consider a two-group CER study. Let Ai be an indicator of the binary treatment for the i-

th study participant, Xi a vector of potential confounders, and consider the following logistic 

model for the propensity score (PS), denoted ei: 

log $
%&

1 − %&
) = logit(.[0&|2&]) = 56 + 2&89: 

Walker et al. proposed a prevalence-adjusted version of PS, the preference score, denoted πi 

defined by: 

log $
;&

1 − ;&
) = log $

%&
1 − %&

) − log $
<

1 − <)	 

where p is the marginal prevalence of treatment. The second term has the same form as the 

intercept adjustment for risk prediction from case-control data.11–13 Given this, the model for the 

preference score can re-written as: 

log $
;&

1 − ;&
) = >56 − log $

<
1 − <)? + 2&

89: 

Thus, the preference score considers treatment assignment in a hypothetical population with a 

treatment prevalence of 50% but for which the covariate effect on assignment remains the same 

as in the study population (eAppendix 1.2). If the covariates have no effect on the treatment 

assignment (i.e., 5X = 0), the right-hand side reduces to zero, giving a preference score of 0.5 for 

every individual5. Solving the defining equation for the preference score gives: 
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;& = 	

%&
<

1 − %&
1 − < +

%&
<
 

for which the numerator can be considered as an inverse prevalence scaled PS and the 

denominator seen as a normalizer to constrain πi within [0,1]. This transformation eliminates the 

influence of the treatment prevalence. For example, if the treatment is rare (small p), ei is 

generally small whereas πi is not because of the ei/p operation (small value/small value). 

 Walker and colleagues proposed an assessment tool based on the proportion of each 

exposure group that falls within the central region of the preference score distribution [0.3, 0.7] 

(i.e., 0.5 ± 0.2). Specifically, they proposed that having 50% or more of the subjects in this 

region indicates that the two drugs are in empirical equipoise.5 That is, the measured prognostic 

factors do not distinguish the users of one drug from the other, suggesting less danger of 

confounding by indication. 

 

Extension to the multi-group setting 

 Here we propose an extension of the tool to settings where interest lies in comparing 

more than two treatments. Specifically, suppose there are J + 1 treatment groups so that Ai is a 

categorical variable taking on a value in {0, 1, …, J}. The generalized PS14 is defined as eji = 

P[Ai = j | Xi] for j ∈{0, 1, …, J} where ∑j eji = 1 for all i. One option for modeling the 

generalized PS is to adopt a baseline-category logit PS model15, defined by the following J linear 

predictors: 

log $
%A&
%6&
) = log $

B[0& = C|2&]
B[0& = 0|2&]

) = 56A + 2&89EA		for	C ∈ {1, … , K} 
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Let pj (j = 0, …, J) describe the marginal prevalence of j-th treatment (∑j pj = 1) and πji denote 

the multinomial preference score defined for the treatment group j for the i-th subject. We 

propose the generalized preference score, defined by the following J equations: 

log $
;A&
;6&
) = log $

%A&
%6&
) − log $

<A
<6
) 	for	C ∈ {1, … , K} 

Solving these equations for πji using a constraint ∑jπji = 1 (eAppendix 2.1) gives: 

;A& = 	

%A&
<A

∑ %N&
<N

O
NP6

	for	C ∈ {0,1, … , K} 

which can be interpreted as the generalized PS scaled by the corresponding group’s marginal 

prevalence. 

 In extending the definition of the region of empirical equipoise, the threshold value needs 

to account for the number of groups. Thus, we propose the generalized threshold as: 

;A& ≥ 	 $
3
5) $

1
K + 1) 	for	all		C ∈ {0,1, … , K} 

The threshold is 0.3 in the two-group setting and becomes more lenient with the number of 

groups, for example, 0.2 in the three-group setting. This is necessary because once there are four 

groups, no individual can have πji ≥ 0.3 for all four treatments (eAppendix 2.2). We note that an 

appealing feature of the proposed region is that it reduces to [0.3, 0.7] in the two-group case 

(eAppendix 2.3). 

 

Data examples in the three-group setting 

 We use two observational datasets to demonstrate the face validity of the tool. We used 

ternary plots (eAppendix 3.1).16 The Partners Healthcare Institutional Review Board approved 

these analyses. 
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Non-steroidal anti-inflammatory drugs example 

 This example was an observational study of non-steroidal anti-inflammatory drugs 

(NSAIDs) taken from an original study of cardiovascular and gastrointestinal safety of analgesics 

among Medicare beneficiaries with osteoarthritis or rheumatoid arthritis (eAppendix 3.2).17 The 

dataset included 23,532 naproxen, 21,880 ibuprofen, and 5,261 diclofenac users. As they belong 

to the same pharmacological class, we expected clinical equipoise. In Figure 3-1 (left panel), 

closeness to each corner indicates a high propensity for the corresponding group. The prevalence 

imbalance drove the center of the distribution away from the smallest diclofenac corner (right 

lower). Preference scores (Figure 3-1, right panel) re-centered the distribution. Of the entire 

cohort, 86.6 percent fell within the proposed region of empirical equipoise. The individual 

covariates mostly gave absolute standardized mean distance (SMD) less than 0.1 (eFigure 3-1 

and eTable 3-1).18,19 

Biological disease-modifying anti-rheumatic drugs example 

 This example was an observational dataset of new users of biological disease-modifying 

anti-rheumatic drugs (bDMARDs) taken from original studies of cardiovascular safety among 

rheumatoid arthritis patients (eAppendix 3.3)20,21. We constructed a first-line bDMARDs cohort 

and a second-line (switch) bDMARDs cohort after prior use of one of the five tumor necrosis 

factor inhibitors (TNFi). We expected that the second-line design would result in better equipoise 

based on clinical reasoning (eAppendix 3.3) and a previous study22. We used this example to 

assess if the tool correctly identified the second-line design as superior. In the first-line cohort, 

there were 2,260 abatacept, 645 tocilizumab, and 27,939 TNFi users. The second-line cohort had 

475 abatacept, 187 tocilizumab, and 1,277 second TNFi users (switch within TNFi). Only 44.5% 

of the first-line cohort fell in the proposed region of empirical equipoise (Figure 3-2, right upper 
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panel). Using the second-line design (Figure 3-2, right lower panel) resulted in improvement 

with a higher proportion of the cohort (57.7%) falling in the proposed region of empirical 

equipoise. Absolute SMDs generally decreased, particularly for relevant risk factors such as oral 

glucocorticoids (eFigure 3-2, eTable 3-2, and eTable 3-3). 

 

Simulation setup 

 We conducted a simulation study to examine the settings under which the proposed tool 

reflected the risk of residual confounding. 

Data generating mechanism.  Details regarding the data generating models are provided in the 

eAppendix (Section 4.1). Briefly, we used the multivariate normal distribution to generate seven 

correlated normal covariates at correlation values ρ = 0, 0.1, 0.3, 0.5, 0.7, and 0.9. These initial 

covariates were all standard normal marginally. We kept X1 and X7 as standard normal. X2 was 

transformed to a uniform(0,1) random variable and then to a Poisson variable with mean 1. X3 

through X6 were similarly transformed to Bernoulli variables with prevalence 20%. Treatment Ai 

was assigned via a three-group multinomial logistic regression model including all seven 

covariates. The coefficient for X7 took on values zero, half, same, or twice as large as the 

coefficients for X1- X6. The coefficients were then simultaneously increased (less equipoise) or 

decreased (more equipoise). The outcome Yi was generated as a count outcome using a log-linear 

model including all covariates and treatment to avoid the issue of non-collapsibility23. The rate 

ratio for X7 was 1.2 (same as other covariates), 1.5, or 2.0. We handled X7 as an unmeasured 

continuous variable in the subsequent analysis. 

Methods to be evaluated.  The region of empirical equipoise was defined at the threshold of 0.2 

as stated above. We examined two assessment rules of three-group empirical equipoise: (1) 
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whether the proportion of those who were in the region of empirical equipoise in the entire 

sample was greater than 50% (overall proportion); (2) whether the minimum of three group-

specific proportions was greater than 50% (group-specific proportion). 

Estimand of interest.  The estimands were the rate ratios (RR) for groups 1 vs. 0, groups 2 vs. 0, 

and groups 2 vs. 1. We conducted unadjusted analysis as well as three PS-weighted analyses 

with inverse probability of treatment weights (IPTW)24, matching weights (MW)25,26, and 

overlap weights (OW)27–29. See eAppendix (Section 4.2) for weight definitions. 

Performance measures.  We examined the relationship between the residual confounding after 

PS weighting in the RRs and the proportions in the region of empirical equipoise. The desired 

result was a decreasing trend in the proportions in the region with increasing residual 

confounding. We also examined the approximate value of residual confounding at which the 

50% threshold was crossed. 

 

RESULTS 

  Figures 3-5 summarize the results from scenarios with no correlation among covariates 

(ρ = 0) and approximately equal group sizes (33:33:33). The columns of panels correspond to PS 

weighting methods. The rows of panels correspond to the RR for the unmeasured X7. Focusing 

on the panel in the MW column and RR 1.5 row (third column, second row) in Figure 3-3, the 

X-axis represents the multiplicative bias in RR estimates, whereas the Y-axis represents the 

average proportion of the simulated cohorts within the region of empirical equipoise (overall 

proportion). 

 The relationship between the residual confounding after PS weighting and the overall 

proportion varied with the relative strength of association of X7 with the treatment (denoted by 
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line types). Given an unmeasured confounder with a similar association with treatment (Same 

line type), having an overall proportion of 50% in the region of empirical equipoise (crossing of 

the horizontal 50% line) corresponded to residual confounding of roughly 1.2 (20% upward bias 

in RR estimates). This indicates in a setting where the unmeasured factor’s treatment association 

is similar to those of measured factors and the outcome association is only modestly stronger 

(+25%), the empirical equipoise tool would give an alert (overall proportion would drop below 

50%) once the residual confounding is greater than 20%. A proportion above 50% means less 

bias. 

 Still focusing on the same panel in Figure 3-3, the level of residual confounding at which 

the empirical equipoise tool gave an alert depended on the associations of X7 with the treatment 

and outcome. On the other hand, the type of PS weights (IPTW, MW, and OW) made little 

difference. When the relative treatment association of X7 was decreased to the lower extreme end 

(no unmeasured confounding; solid line), the tool became overly sensitive. That is, the 50% 

threshold was crossed without a corresponding increase in residual confounding. On the other 

hand, as we increased the association of the unmeasured variable X7 and the treatment to twice 

as large as the measured ones, the slopes became shallower. This means the tool became less 

sensitive to residual confounding, only crossing the 50% overall proportion threshold at a 

residual confounding level of about 1.37. That is, the unmeasured variable increasingly had a 

stronger effect on treatment not represented by the association between measured variables and 

treatment. 

 We also varied the level of unmeasured confounding by changing the RR between the 

unmeasured variable X7 and the outcome (rows of panels; RR 1.2, 1.5, and 2.0). For example, 

decreasing the unmeasured variable-outcome association to the same level as the other variables 
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(third column, top row in Figure 3-3) resulted in the tool giving an alert at a residual 

confounding of roughly 1.1 (more sensitive) when X7 had the same treatment association. When 

increasing the RR between the unmeasured variable X7 and the outcome to 2.0 (67% increase 

over measured variables), the tool gave an alert at a residual confounding of around 1.3 (less 

sensitive). When both associations were strong for the unmeasured variable X7, the 50% overall 

proportion threshold was crossed at a residual confounding of around 1.6. This means having 

barely 50% of the cohort in this region does not assure a small level of unmeasured confounding 

in this setting. 

 For the group 2 vs. 0 contrast (Figure 3-4), which was designed to have more different 

covariate distributions, greater levels of residual bias were observed. The group 2 vs. 1 contrast 

(Figure 3-5) gave similar results to the group 1 vs. 0 contrast. In all contrasts (Figures 3-5), 

using a threshold of 75% instead of 50% would lead to a smaller range of biases although this 

comes at the cost of disregarding study design where the unmeasured variable indeed had weaker 

associations than measured ones. The results were similar when we varied treatment prevalence 

(eAppendix 5.1) and when we switched the assessment metric to the group-specific proportion 

(eAppendix 5.2). Also, the results were invariant with increasing correlation among covariates 

except in the very extreme setting with ρ = 0.9, in which the residual confounding was reduced 

by surrogacy via highly correlated measured variables. (eAppendix 5.3). 

 
DISCUSSION 

We extended Walker et al.’s tool5 for assessing simultaneous empirical equipoise among 

multiple treatment groups in CER. We demonstrated its face validity in empirical data and 

examined its performance in simulations with three groups. Our simulations showed that having 

at least 50% of the overall cohort in the region of empirical equipoise can give a reasonable 
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assurance of relatively small magnitude of residual bias. However, in settings with a strong 

unmeasured variable (outcome association RR of 2.0) and a strong influence of the unmeasured 

variable on treatment choice (twice more on the logit scale), a relatively large residual bias went 

undetected by the 50% threshold. As a result, the tool was most useful when we could assume 

the unmeasured confounder had covariate-treatment associations similar in magnitude to the 

measured confounders. 

 There are several ways this empirical equipoise assessment tool could be useful in the 

implementation of multi-group CER. First, when several datasets are available for a specific 

multi-group CER question, the tool could indicate which dataset may suffer less from residual 

confounding as well as positivity issue. Second, when dealing with one dataset, the tool may help 

in choosing eligibility criteria although sample size issues may need to be taken into 

consideration. Thirdly, another potential change in the study design is to refrain from conducting 

all comparison if the groups do not achieve reasonable simultaneous empirical equipoise (e.g., if 

key covariates are highly imbalanced in one group but not in the others). In this case, dropping 

one or more groups from the comparison may identify a subset of groups in better equipoise. 

 Our tool is useful in providing a feasibility assessment7 for simultaneous multi-group 

comparison in a single outcome analysis dataset. However, when there are three or more groups, 

pairwise PS-matched or PS-weighted cohort construction is more common in practice. A 

potential drawback of the pairwise approach is that it produces multiple outcome analysis 

datasets, one for each pairwise comparison, with potentially different target populations. Thus, 

non-transitivity can arise. That is, in the three-group setting, the first two comparisons do not 

sufficiently inform the result of the third comparison. For example in the study by Rassen et al.30 

(see their supplement), COX2 selective inhibitors (coxibs) in comparison to NSAIDs had a 
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hazard ratio (HR) of 1.86 [95% confidence interval (CI) 1.14, 3.03] for myocardial infarction 

(MI), whereas opioids in contrast to NSAIDs had an HR of 1.40 [0.81, 2.40]. One would expect 

an HR around 0.75 (= 1.40/1.86) for the remaining opioids vs. coxibs comparison. However, 

their pairwise analysis gave an HR of 1.02 [0.74, 1.41] for this third contrast. Simultaneous 

empirical equipoise assessment followed by construction of a single PS weighted cohort 

eliminates this issue by focusing on individuals who are reasonable candidates for all treatments. 

 There are differences between the context in which Walker et al. developed the original 

empirical equipoise tool5 and the context for our proposed tool. We considered the drugs of 

interest that we want to compare in the proposed multi-group CER as given. Walker et al. 

proposed the tool as a prioritization tool given a source dataset that contains information on the 

use of many drugs. They developed their tool to assess the empirical equipoise of all possible 

pairwise contrasts of groups for prioritization. On the other hand, we framed our problem in a 

setting where we already had several drugs of interest a priori, with several alternative data 

sources or alternative designs to choose from.  

 In conclusion, to examine the roles that equipoise assessment may play in the setting of 

multi-group CER, we extended Walker et al.’s empirical equipoise tool. Our tool gave 

reasonable guidance for unmeasured confounding when the associations of the unmeasured 

variables to the treatment and outcome were similar to associations of measured covariates. With 

this assumption, when the proportion in the region of empirical equipoise is very high, for 

example, > 75%, we can reasonably assume that the level of residual confounding is small. A 

lower value, particularly < 50%, should prompt reconsideration of the study design or data 

source. 

 



 

 107 

References 
1.  Petersen ML, Porter KE, Gruber S, Wang Y, van der Laan MJ. Diagnosing and responding to violations in 

the positivity assumption. Stat Methods Med Res 2012; 21: 31–54. doi:10.1177/0962280210386207. 

2.  Rubin DB. For objective causal inference, design trumps analysis. Ann Appl Stat 2008; 2: 808–840. 
doi:10.1214/08-AOAS187. 

3.  Yoshida K, Solomon DH, Kim SC. Active-comparator design and new-user design in observational studies. 
Nat Rev Rheumatol 2015; 11: 437–441. doi:10.1038/nrrheum.2015.30. 

4.  Lund JL, Richardson DB, Stürmer T. The active comparator, new user study design in 
pharmacoepidemiology: historical foundations and contemporary application. Curr Epidemiol Rep 2015; 
2: 221–228. doi:10.1007/s40471-015-0053-5. 

5.  Walker AM, Patrick AR, Lauer MS, et al. A tool for assessing the feasibility of comparative effectiveness 
research. Comp Eff Res 2013: 11. doi:10.2147/CER.S40357. 

6.  Freedman B. Equipoise and the ethics of clinical research. N Engl J Med 1987; 317: 141–145. 
doi:10.1056/NEJM198707163170304. 

7.  Girman CJ, Faries D, Ryan P, et al. Pre-study feasibility and identifying sensitivity analyses for protocol 
pre-specification in comparative effectiveness research. J Comp Eff Res 2014; 3: 259–270. 
doi:10.2217/cer.14.16. 

8.  Singh JA, Saag KG, Bridges SL, et al. 2015 American College of Rheumatology Guideline for the 
Treatment of Rheumatoid Arthritis. Arthritis Care Res (Hoboken) 2016; 68: 1–25. doi:10.1002/acr.22783. 

9.  American Diabetes Association. 8. Pharmacologic Approaches to Glycemic Treatment: Standards of 
Medical Care in Diabetes-2018. Diabetes Care 2018; 41: S73–S85. doi:10.2337/dc18-S008. 

10.  January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients 
with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task 
Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 2014; 64: e1-76. 
doi:10.1016/j.jacc.2014.03.022. 

11.  Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. Third edition. Hoboken, New 
Jersey: Wiley, 2013. 

12.  Scott AJ, Wild CJ. Fitting Logistic Models Under Case-Control or Choice Based Sampling. J Royal Stat 
Soc 1986; 48: 170–182. 

13.  Prentice RL, Pyke R. Logistic Disease Incidence Models and Case-Control Studies. Biometrika 1979; 66: 
403–411. doi:10.2307/2335158. 

14.  Imbens GW. The role of the propensity score in estimating dose-response functions. Biometrika 2000; 87: 
706–710. doi:10.1093/biomet/87.3.706. 

15.  Agresti A. Categorical Data Analysis. 3 edition. Hoboken, NJ: Wiley, 2012. 

16.  Hamilton N. ggtern: An Extension to “ggplot2”, for the Creation of Ternary Diagrams., 2017. Available 
at: https://cran.r-project.org/web/packages/ggtern/index.html. Accessed January 25, 2018. 

17.  Solomon DH, Rassen JA, Glynn RJ, Lee J, Levin R, Schneeweiss S. The comparative safety of analgesics 



 

 108 

in older adults with arthritis. Arch Intern Med 2010; 170: 1968–1976. 
doi:10.1001/archinternmed.2010.391. 

18.  Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in 
Observational Studies. Multivariate Behav Res 2011; 46: 399–424. doi:10.1080/00273171.2011.568786. 

19.  Austin PC. Using the Standardized Difference to Compare the Prevalence of a Binary Variable Between 
Two Groups in Observational Research. Communications in Statistics - Simulation and Computation 2009; 
38: 1228–1234. doi:10.1080/03610910902859574. 

20.  Kim SC, Solomon DH, Rogers JR, et al. Cardiovascular Safety of Tocilizumab Versus Tumor Necrosis 
Factor Inhibitors in Patients With Rheumatoid Arthritis: A Multi-Database Cohort Study. Arthritis & 
Rheumatology (Hoboken, NJ) 2017; 69: 1154–1164. doi:10.1002/art.40084. 

21.  Kang EH, Jin Y, Brill G, et al. Comparative Cardiovascular Risk of Abatacept and Tumor Necrosis Factor 
Inhibitors in Patients With Rheumatoid Arthritis With and Without Diabetes Mellitus: A Multidatabase 
Cohort Study. J Am Heart Assoc 2018; 7. doi:10.1161/JAHA.117.007393. 

22.  Frisell T, Baecklund E, Bengtsson K, et al. Patient characteristics influence the choice of biological drug in 
RA, and will make non-TNFi biologics appear more harmful than TNFi biologics. Ann Rheum Dis 2017. 
doi:10.1136/annrheumdis-2017-212395. 

23.  Greenland S, Robins JM, Pearl J. Confounding and Collapsibility in Causal Inference. Statistical Science 
1999; 14: 29–46. 

24.  Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. 
Epidemiology 2000; 11: 550–560. 

25.  Li L, Greene T. A weighting analogue to pair matching in propensity score analysis. Int J Biostat 2013; 9: 
215–234. doi:10.1515/ijb-2012-0030. 

26.  Yoshida K, Hernandez-Diaz S, Solomon DH, et al. Matching Weights to Simultaneously Compare Three 
Treatment Groups: Comparison to Three-way Matching. Epidemiology 2017; 28: 387–395. 
doi:10.1097/EDE.0000000000000627. 

27.  Li F, Morgan KL, Zaslavsky AM. Balancing Covariates via Propensity Score Weighting. Journal of the 
American Statistical Association 2016; 0: 1–11. doi:10.1080/01621459.2016.1260466. 

28.  Li F, Thomas LE, Li F. Addressing Extreme Propensity Scores via the Overlap Weights. Am J Epidemiol 
2018. doi:10.1093/aje/kwy201. 

29.  Li F, Li F. Propensity Score Weighting for Causal Inference with Multi-valued Treatments. 
arXiv:180805339 [stat] 2018. Available at: http://arxiv.org/abs/1808.05339. Accessed August 23, 2018. 

30.  Rassen JA, Shelat AA, Franklin JM, Glynn RJ, Solomon DH, Schneeweiss S. Matching by propensity score 
in cohort studies with three treatment groups. Epidemiology 2013; 24: 401–409. 
doi:10.1097/EDE.0b013e318289dedf. 

 

  



 

 109 

Figure 3-1. Propensity score (left) and preference score (right) distributions in the naproxen (0 
red; n = 23,532), ibuprofen (green 1; n = 21,880), and diclofenac (2 blue; n = 5,261) example. 
 

 
 
The inner triangular area in the right panel indicates the region of empirical equipoise proposed 
in the text. Overall 86.6% of the cohort fell into this region (88.3% of naproxen users, 83.7% of 
ibuprofen users, and 91.2% of diclofenac users). 
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Figure 3-2. Propensity score (left) and preference score (right) distributions in the abatacept (0 
red), tocilizumab (1 green), and TNFi (2 blue) examples. 
 

 
 
The inner triangular area in the right panel indicates the region of empirical equipoise proposed 
in the text. Among the first-line bDMARD users, 44.5% of the cohort fell into this region (40.2% 
of abatacept users, 40.5% of tocilizumab users, and 45.0% of TNFi users). Among the second-
line bDMARD users, 57.7% of the cohort fell into this region (57.3% of abatacept users, 53.5% 
of tocilizumab users, and 58.5% of TNFi users). 
Abbreviations: TNFi (tumor necrosis factor inhibitor); bDMARD: biological disease-modifying 
antirheumatic drug. 
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Figure 3-3. Simulation results from scenarios with equal group sizes (1 vs 0 contrast). 

 
The columns of panels denote different confounding adjustment methods. The rows of panels 
denote different levels of associations between X7 (unmeasured covariate) and outcome. A rate 
ratio of 1.2 was the same strength of association as the measured covariates, whereas only X7 had 
a stronger outcome association at a rate ratio of 1.5 and 2.0. In each panel, the X-axis represents 
the multiplicative bias in RR estimates, whereas the Y-axis represents the average proportion of 
the simulated cohorts within the region of empirical equipoise (overall proportion). The line 
types denote different levels of associations between X7 and treatment relative to the associations 
between measured variables and treatment. 
 
Abbreviations: Unadj.: unadjusted; IPTW: inverse probability of treatment weights; MW: 
matching weights; OW: overlap weights. 
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Figure 3-4. Simulation results from scenarios with equal group sizes (2 vs 0 contrast). 

 
The columns of panels denote different confounding adjustment methods. The rows of panels 
denote different levels of associations between X7 (unmeasured covariate) and outcome. A rate 
ratio of 1.2 was the same strength of association as the measured covariates, whereas only X7 had 
a stronger outcome association at a rate ratio of 1.5 and 2.0. In each panel, the X-axis represents 
the multiplicative bias in RR estimates, whereas the Y-axis represents the average proportion of 
the simulated cohorts within the region of empirical equipoise (overall proportion). The line 
types denote different levels of associations between X7 and treatment relative to the associations 
between measured variables and treatment. 
 
Abbreviations: Unadj.: unadjusted; IPTW: inverse probability of treatment weights; MW: 
matching weights; OW: overlap weights. 
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Figure 3-5. Simulation results from scenarios with equal group sizes (2 vs 1 contrast). 

 
The columns of panels denote different confounding adjustment methods. The rows of panels 
denote different levels of associations between X7 (unmeasured covariate) and outcome. A rate 
ratio of 1.2 was the same strength of association as the measured covariates, whereas only X7 had 
a stronger outcome association at a rate ratio of 1.5 and 2.0. In each panel, the X-axis represents 
the multiplicative bias in RR estimates, whereas the Y-axis represents the average proportion of 
the simulated cohorts within the region of empirical equipoise (overall proportion). The line 
types denote different levels of associations between X7 and treatment relative to the associations 
between measured variables and treatment. 
 
Abbreviations: Unadj.: unadjusted; IPTW: inverse probability of treatment weights; MW: 
matching weights; OW: overlap weights. 
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eFigure 3-1. Average absolute standardized mean differences between groups in the three non-
selective NSAIDs example. 

 
Abbreviations: adm: admission; MD: physician; ind: index date; Rx: prescription; ACE: 
angiotensin converting enzyme; ARB: angiotensin receptor blocker; BBL: beta blocker. 
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eFigure 3-2. Average absolute standardized mean differences between groups in the three 
biological DMARDs example. 

 
The solid line indicates the cohort of first-line bDMARD users, whereas the dotted line indicates 
the cohort of second-line bDMARD users. 
 
Abbreviations: SMD: absolute standardized mean difference; MTX: methotrexate; CRP: C-
reactive protein; NSAID: non-steroidal anti-inflammatory drug; PSA: prostate-specific antigen; 
ED: emergency department; HbA1c: hemoglobin A1c; TIA: transient ischemic attack; CT: 
computed tomography; MI: myocardial infarction; HPV: human papilloma virus. 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●Cyclophosphamide
Insulin

Diuretics
Use of other lipid−lowering drugs

HPV DNA test
Angiotensin II Receptor Blockers (ARBs)

Gold Sodium Thiomalate
Flexible Sigmoidoscopy or colonoscopy or CT virtual colonoscopy

Non−insulin diabetes medications
Fecal occult blood (FOB) test

Azathioprine
Use of statins

Auranofin
Pap smear

Number of PCP (primary care provider) visits
Lipid lowering drugs

Mammogram
Sum of Daily dose of oral steroids− oral prednisone mg equivalents

Antiplatelet agents
Number of HbA1c tests ordered

Myocardial Infraction
Preventive screening test (at least once);

Recent hospitalization (60 days)
Beta Blockers

Number of ED visits
Nitrates

Chronic Liver Disease
ED visit (yes/no)

Peripheral Vascular Disease
Atrial Fibrillation

PSA test
Diabetes

Leflunomide
Angiotensin Converting Enzyme inhibitors (ACEs)

Hyperlipidemia
Cyclosporine

Calcium Channel Blockers
Number of Serum Creatinine Tests Ordered

Stroke or TIA (events occurred)
Hypertension

Number of CRP Tests Ordered
Number of Cardiologist visits

Any hospitalization
Renal Dysfunction

Coronary Artery Disease (CAD)
Antidepressants

Heart Failure (covariate)
Female
Region

Recent use of Oral Glucocorticoids
Combined Comorbidity Index (365 days)

Opioids
Number of outpatient visits
CHADS2 score, 365 days

Number of lipid tests ordered
CIRAS Score
Sulfasalazine

Number of Rheumatologist Visits
Age

Count Combined Biologics and NonBiologics including MTX (categorized)
Prior Use of Oral Glucocorticoids

Hydroxychloroquine (HCQ)
Recent use of Oral Glucocorticoids (yes/no)
Number of Unique Prescription Medications

Prior Use of Oral Glucocorticoids (yes/no)
NSAIDs and Coxibs

Methotrexate

0.0 0.1 0.2 0.3 0.4
Absolute SMD

Type of bDMARD use
First−line

Second−line



 

 116 

eTable 3-1. Patient group characteristics in the three non-selective non-steroidal anti-
inflammatory drugs example. 

Variable Naproxen Ibuprofen Diclofenac SMD 

n 23532 21880  5261 
 

White (%) 20126 (85.5) 17823 (81.5) 4777 (90.8)  0.182 

Combined comorbidity score in 365 days (mean (sd)) 1.40 (2.38) 1.72 (2.60) 1.20 (2.19)  0.143 
Osteoarthritis (%) 9936 (42.2) 8919 (40.8) 2640 (50.2)  0.127 

Number of days hospitalized in 365d days prior (mean (sd)) 3.25 (9.25) 4.23 (10.82) 2.63 (7.61)  0.114 
Number of nhome days in 365d days prior (mean (sd)) 1.62 (9.24) 2.75 (12.71) 1.24 (7.64)  0.097 

Stroke (%) 2153 (9.1) 2305 (10.5) 370 (7.0)  0.083 
Hyperlipidemia (%) 14102 (59.9) 12242 (56.0) 3256 (61.9)  0.081 

Congestive Heart Failure (%) 4208 (17.9) 4579 (20.9) 855 (16.3)  0.080 
Number of distinct generics in 365d prior (mean (sd)) 10.98 (5.82) 11.53 (6.18) 10.88 (5.65)  0.072 

Rheumatoid Arthritis (%) 862 (3.7) 721 (3.3) 271 (5.2)  0.062 
Coronary Artery Disease (%) 9042 (38.4) 8859 (40.5) 1912 (36.3)  0.057 

Male (%) 4538 (19.3) 4348 (19.9) 875 (16.6)  0.056 

Hospice adm in 365 days prior (%) 39 (0.2) 102 (0.5) 3 (0.1)  0.055 
Chronic Obstructive Pulmonary Disease (%) 5043 (21.4) 5084 (23.2) 1046 (19.9)  0.054 

Transient Ischemic Attack (%) 1216 (5.2) 1372 (6.3) 243 (4.6)  0.049 
MD visits in 365 days prior to indexdt (mean (sd)) 10.30 (7.49) 9.87 (7.37) 10.39 (7.04)  0.048 

Peripheral Vascular Disease (%) 3800 (16.1) 4057 (18.5) 841 (16.0)  0.045 
Clopidogrel Rx in 365 days prior (%) 1852 (7.9) 1899 (8.7) 369 (7.0)  0.041 

ACE Rx in 365 days prior (%) 6540 (27.8) 6219 (28.4) 1353 (25.7)  0.041 
New Myocardial Infarction (%) 619 (2.6) 743 (3.4) 128 (2.4)  0.038 

Gastrointestinal Disease (%) 1129 (4.8) 1183 (5.4) 221 (4.2)  0.038 
Dx for kidney in 365d prior (%) 1017 (4.3) 1071 (4.9) 199 (3.8)  0.036 

Angina (%) 1435 (6.1) 1458 (6.7) 285 (5.4)  0.035 

Statin Rx in 365 days prior (%) 8519 (36.2) 7472 (34.1) 1900 (36.1)  0.029 
Age, years (mean (sd)) 77.77 (7.07) 78.07 (7.32) 77.93 (6.96)  0.029 

Gastro Rx on indexdt (%) 4863 (20.7) 4829 (22.1) 1121 (21.3)  0.023 
Gastro Rx in 365 days prior (%) 7871 (33.4) 7651 (35.0) 1757 (33.4)  0.022 

Glucocorticoid Rx in 365 days prior (%) 2445 (10.4) 2353 (10.8) 592 (11.3)  0.019 
ARB Rx in 365 days prior (%) 2733 (11.6) 2422 (11.1) 627 (11.9)  0.018 

Peptic Ulcer Disease (%) 4998 (21.2) 4810 (22.0) 1112 (21.1)  0.014 
Warfarin Rx in 365 days prior (%) 1445 (6.1) 1428 (6.5) 318 (6.0)  0.013 

Old Myocardial Infarction (%) 1172 (5.0) 1175 (5.4) 260 (4.9)  0.013 
Diabetes Rx in 365 days prior (%) 4802 (20.4) 4597 (21.0) 1065 (20.2)  0.013 

BBL Rx in 365 days prior (%) 8309 (35.3) 7906 (36.1) 1863 (35.4)  0.011 
Diabetes Mellitus (%) 7745 (32.9) 7366 (33.7) 1745 (33.2)  0.011 

Lipid Rx in 365 days prior (%) 683 (2.9) 647 (3.0) 145 (2.8)  0.008 

Hypertension (%) 19048 (80.9) 17700 (80.9) 4263 (81.0)  0.002 

Abbreviations: nhome: nursing home; adm: admission; MD: physician; indexdt: index date; Rx: prescription; ACE: 
angiotensin converting enzyme; ARB: angiotensin receptor blocker; BBL: beta blocker. 
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eTable 3-2. Patient group characteristics in the three biological DMARDs example (first-line 
bDMARDs). 
Variable ABA TCZ TNF SMD 

n 2260 645 27939 
 

Methotrexate (%) 1140 (50.4) 257 (39.8) 19487 (69.7) 0.415 

NSAIDs and Coxibs (%) 716 (31.7) 147 (22.8) 13018 (46.6) 0.342 
Prior Use of Oral Glucocorticoids (yes/no) (%) 1207 (53.4) 295 (45.7) 19556 (70.0) 0.336 

Number of Unique Prescription Medications (mean (sd)) 9.44 (8.78) 7.51 (8.48) 11.49 (7.26) 0.327 
Recent use of Oral Glucocorticoids (yes/no) (%) 1122 (49.6) 280 (43.4) 18460 (66.1) 0.310 

Hydroxychloroquine (HCQ) (%) 672 (29.7) 109 (16.9) 8932 (32.0) 0.237 
Prior Use of Oral Glucocorticoids (mean (sd)) 149.52 (161.35) 128.12 (159.25) 180.10 

(153.86) 
0.220 

Count Combined Biologics and NonBiologics including 

MTX (categorized) (mean (sd)) 

0.48 (0.71) 0.29 (0.60) 0.51 (0.70) 0.218 

Age (mean (sd)) 54.91 (13.08) 54.24 (13.24) 51.26 (12.49) 0.189 

Number of Rheumatologist Visits (mean (sd)) 12.62 (18.17) 15.48 (22.19) 10.33 (14.41) 0.185 

Sulfasalazine (%) 176 (7.8) 26 (4.0) 3129 (11.2) 0.183 
CIRAS Score (mean (sd)) 6.47 (2.06) 6.51 (1.91) 6.99 (1.94) 0.176 

Number of lipid tests ordered (mean (sd)) 0.74 (1.47) 1.09 (1.31) 0.76 (1.26) 0.174 
CHADS2 score, 365 days (mean (sd)) 0.83 (1.01) 0.85 (1.05) 0.61 (0.85) 0.167 

Number of outpatient visits (mean (sd)) 14.69 (9.42) 14.54 (8.44) 12.85 (7.93) 0.145 
Opioids (%) 1133 (50.1) 300 (46.5) 15967 (57.1) 0.143 

Combined Comorbidity Index (365 days) (mean (sd)) 0.56 (1.46) 0.58 (1.44) 0.31 (1.12) 0.140 
Recent use of Oral Glucocorticoids (mean (sd)) 96.24 (127.77) 87.91 (128.51) 113.63 

(120.09) 
0.137 

Region (%) 
   

0.136 

   Northeast 406 (18.0) 116 (18.0) 4589 (16.4) 
 

   North Central 495 (21.9) 118 (18.3) 5860 (21.0) 
 

   South 885 (39.2) 233 (36.1) 11668 (41.8) 
 

   West 394 (17.4) 145 (22.5) 4753 (17.0) 
 

   Unknown 80 (3.5) 33 (5.1) 1069 (3.8) 
 

Female (%) 1864 (82.5) 529 (82.0) 20982 (75.1) 0.121 

Heart Failure (covariate) (%) 103 (4.6) 24 (3.7) 430 (1.5) 0.118 
Antidepressants (%) 592 (26.2) 150 (23.3) 8626 (30.9) 0.115 

Coronary Artery Disease (CAD) (%) 250 (11.1) 62 (9.6) 1788 (6.4) 0.111 
Renal Dysfunction (%) 135 (6.0) 43 (6.7) 943 (3.4) 0.101 

Any hospitalization (%) 346 (15.3) 97 (15.0) 2921 (10.5) 0.097 
Number of Cardiologist visits (mean (sd)) 1.22 (3.87) 1.09 (3.52) 0.73 (2.97) 0.096 

Number of CRP Tests Ordered (mean (sd)) 2.03 (2.35) 2.37 (2.74) 2.05 (2.10) 0.093 

Hypertension (%) 1217 (53.8) 347 (53.8) 13113 (46.9) 0.092 
Stroke or TIA (events occurred) (%) 52 (2.3) 21 (3.3) 377 (1.3) 0.086 

Number of Serum Creatinine Tests Ordered (mean (sd)) 3.60 (3.16) 3.96 (3.56) 3.56 (2.87) 0.081 
Calcium Channel Blockers (%) 267 (11.8) 53 (8.2) 2966 (10.6) 0.080 

Cyclosporine (%) 75 (3.3) 10 (1.6) 594 (2.1) 0.077 
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eTable 3-2 (continued) 
Variable ABA TCZ TNF SMD 

Hyperlipidemia (%) 824 (36.5) 238 (36.9) 8794 (31.5) 0.076 

Angiotensin Converting Enzyme inhibitors (ACEs) (%) 295 (13.1) 70 (10.9) 4077 (14.6) 0.075 
Leflunomide (%) 297 (13.1) 62 (9.6) 3255 (11.7) 0.074 

Diabetes (%) 429 (19.0) 115 (17.8) 4149 (14.9) 0.074 
PSA test (%) 103 (4.6) 30 (4.7) 1964 (7.0) 0.071 

Atrial Fibrillation (%) 81 (3.6) 14 (2.2) 526 (1.9) 0.070 
Peripheral Vascular Disease (%) 79 (3.5) 18 (2.8) 534 (1.9) 0.065 

ED visit (yes/no) (%) 122 (5.4) 33 (5.1) 959 (3.4) 0.064 
Chronic Liver Disease (%) 147 (6.5) 48 (7.4) 1467 (5.3) 0.060 

Nitrates (%) 48 (2.1) 18 (2.8) 434 (1.6) 0.057 
Number of ED visits (mean (sd)) 0.24 (1.25) 0.28 (1.64) 0.17 (1.40) 0.053 

Beta Blockers (%) 353 (15.6) 84 (13.0) 3885 (13.9) 0.049 

Recent hospitalization (60 days) (%) 47 (2.1) 17 (2.6) 460 (1.6) 0.046 
Preventive screening test (at least once); (%) 1149 (50.8) 319 (49.5) 14709 (52.6) 0.043 

Myocardial Infraction (%) 9 (0.4) 3 (0.5) 36 (0.1) 0.042 
Number of HbA1c tests ordered (mean (sd)) 0.38 (0.88) 0.41 (0.94) 0.36 (0.85) 0.039 

Antiplatelet agents (%) 74 (3.3) 23 (3.6) 714 (2.6) 0.039 
Sum of Daily dose of oral steroids- oral prednisone mg 

equivalents (mean (sd)) 

880.02 
(3609.78) 

1595.18 (20763.81) 1022.15 (5922.25) 0.038 

Mammogram (%) 723 (32.0) 191 (29.6) 8319 (29.8) 0.034 
Lipid lowering drugs (%) 463 (20.5) 127 (19.7) 6075 (21.7) 0.034 

Number of PCP (primary care provider) visits (mean (sd)) 6.58 (14.91) 6.00 (13.90) 5.92 (11.68) 0.032 
Pap smear (%) 536 (23.7) 146 (22.6) 6880 (24.6) 0.031 

Auranofin (%) 2 (0.1) 0 (0.0) 8 (0.0) 0.030 

Use of statins (%) 416 (18.4) 115 (17.8) 5466 (19.6) 0.030 
Azathioprine (%) 50 (2.2) 13 (2.0) 481 (1.7) 0.024 

Fecal occult blood (FOB) test (%) 163 (7.2) 46 (7.1) 2251 (8.1) 0.023 
Non-insulin diabetes medications (%) 162 (7.2) 46 (7.1) 2240 (8.0) 0.022 

Flexible Sigmoidoscopy or colonoscopy or CT virtual 

colonoscopy (%) 

200 (8.8) 63 (9.8) 2701 (9.7) 0.021 

Gold Sodium Thiomalate (%) 0 (0.0) 0 (0.0) 12 (0.0) 0.020 

Angiotensin II Receptor Blockers (ARBs) (%) 243 (10.8) 64 (9.9) 2848 (10.2) 0.018 
HPV DNA test (%) 170 (7.5) 45 (7.0) 2112 (7.6) 0.015 

Use of other lipid-lowering drugs (%) 88 (3.9) 26 (4.0) 1208 (4.3) 0.014 
Diuretics (%) 287 (12.7) 78 (12.1) 3500 (12.5) 0.012 

Insulin (%) 81 (3.6) 23 (3.6) 912 (3.3) 0.012 

Cyclophosphamide (%) 0 (0.0) 0 (0.0) 4 (0.0) 0.011 

 
Abbreviations: ABA: abatacept; TCZ: tocilizumab; TNF: tumor necrosis factor; SMD: absolute standardized mean 
difference; MTX: methotrexate; CRP: C-reactive protein; NSAID: non-steroidal anti-inflammatory drug; PSA: 
prostate-specific antigen; ED: emergency department; HbA1c: hemoglobin A1c; TIA: transient ischemic attack; CT: 
computed tomography; MI: myocardial infarction; HPV: human papilloma virus. 
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eTable 3-3. Patient group characteristics in the three biological DMARDs example (second-line 
bDMARDs). 
Variable ABA TCZ TNF SMD 

n 475 187 1277 
 

Methotrexate (%) 325 (68.4) 127 (67.9) 947 (74.2) 0.092 
NSAIDs and Coxibs (%) 178 (37.5) 66 (35.3) 526 (41.2) 0.081 
Prior Use of Oral Glucocorticoids (yes/no) (%) 335 (70.5) 125 (66.8) 916 (71.7) 0.071 

Number of Unique Prescription Medications (mean 

(sd)) 

11.66 (8.22) 11.01 (8.35) 12.48 (7.67) 0.121 

Recent use of Oral Glucocorticoids (yes/no) (%) 306 (64.4) 109 (58.3) 831 (65.1) 0.093 

Hydroxychloroquine (HCQ) (%) 200 (42.1) 60 (32.1) 450 (35.2) 0.139 
Prior Use of Oral Glucocorticoids (mean (sd)) 207.21 (161.90) 199.22 (162.96) 201.55 (160.56) 0.033 
Count Combined Biologics and NonBiologics including 

MTX (categorized) (mean (sd)) 

1.37 (0.73) 1.26 (0.79) 1.37 (0.70) 0.105 

Age (mean (sd)) 54.55 (12.52) 55.67 (12.93) 52.82 (13.09) 0.147 
Number of Rheumatologist Visits (mean (sd)) 10.57 (14.88) 16.28 (23.57) 8.57 (14.49) 0.273 
Sulfasalazine (%) 41 (8.6) 10 (5.3) 127 (9.9) 0.116 

CIRAS Score (mean (sd)) 6.05 (1.93) 6.12 (2.02) 6.22 (1.88) 0.058 
Number of lipid tests ordered (mean (sd)) 0.72 (1.18) 1.00 (2.03) 0.73 (1.45) 0.109 
CHADS2 score, 365 days (mean (sd)) 0.78 (0.97) 0.83 (1.03) 0.69 (0.92) 0.094 

Number of outpatient visits (mean (sd)) 13.71 (8.33) 13.84 (8.26) 12.77 (8.57) 0.085 
Opioids (%) 301 (63.4) 113 (60.4) 839 (65.7) 0.073 
Combined Comorbidity Index (365 days) (mean (sd)) 0.45 (1.33) 0.48 (1.60) 0.35 (1.15) 0.067 

Recent use of Oral Glucocorticoids (mean (sd)) 136.42 (145.06) 122.73 (145.09) 122.43 (133.52) 0.066 
Region (%) 

   
0.115 

   Northeast 91 (19.2) 39 (20.9) 215 (16.8) 
 

   North Central 92 (19.4) 41 (21.9) 278 (21.8) 
 

   South 206 (43.4) 74 (39.6) 562 (44.0) 
 

   West 79 (16.6) 28 (15.0) 198 (15.5) 
 

   Unknown 7 (1.5) 5 (2.7) 24 (1.9) 
 

Female (%) 386 (81.3) 151 (80.7) 1000 (78.3) 0.049 
Heart Failure (covariate) (%) 18 (3.8) 8 (4.3) 20 (1.6) 0.108 

Antidepressants (%) 166 (34.9) 73 (39.0) 455 (35.6) 0.057 
Coronary Artery Disease (CAD) (%) 50 (10.5) 20 (10.7) 115 (9.0) 0.038 
Renal Dysfunction (%) 27 (5.7) 10 (5.3) 51 (4.0) 0.053 

Any hospitalization (%) 75 (15.8) 29 (15.5) 205 (16.1) 0.010 
Number of Cardiologist visits (mean (sd)) 1.27 (3.11) 0.71 (3.17) 0.81 (2.63) 0.124 
Number of CRP Tests Ordered (mean (sd)) 1.70 (2.10) 2.05 (3.23) 1.63 (1.90) 0.106 

Hypertension (%) 268 (56.4) 106 (56.7) 663 (51.9) 0.064 
Stroke or TIA (events occurred) (%) 12 (2.5) 2 (1.1) 18 (1.4) 0.074 
Number of Serum Creatinine Tests Ordered (mean 

(sd)) 

3.33 (3.05) 3.63 (3.84) 3.08 (3.02) 0.108 

Calcium Channel Blockers (%) 55 (11.6) 22 (11.8) 177 (13.9) 0.046 
Cyclosporine (%) 11 (2.3) 0 (0.0) 42 (3.3) 0.179 
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eTable 3-3 (Continued) 
Variable ABA TCZ TNF SMD 

Hyperlipidemia (%) 158 (33.3) 69 (36.9) 371 (29.1) 0.112 
Angiotensin Converting Enzyme inhibitors (ACEs) (%) 76 (16.0) 35 (18.7) 250 (19.6) 0.062 
Leflunomide (%) 73 (15.4) 24 (12.8) 207 (16.2) 0.064 

Diabetes (%) 86 (18.1) 33 (17.6) 214 (16.8) 0.024 
PSA test (%) 23 (4.8) 9 (4.8) 77 (6.0) 0.036 
Atrial Fibrillation (%) 12 (2.5) 7 (3.7) 24 (1.9) 0.076 

Peripheral Vascular Disease (%) 8 (1.7) 1 (0.5) 19 (1.5) 0.074 
ED visit (yes/no) (%) 27 (5.7) 8 (4.3) 74 (5.8) 0.046 
Chronic Liver Disease (%) 35 (7.4) 12 (6.4) 52 (4.1) 0.095 

Nitrates (%) 12 (2.5) 7 (3.7) 41 (3.2) 0.047 
Number of ED visits (mean (sd)) 0.20 (0.97) 0.16 (0.81) 0.29 (1.47) 0.073 
Beta Blockers (%) 94 (19.8) 33 (17.6) 233 (18.2) 0.037 

Recent hospitalization (60 days) (%) 10 (2.1) 2 (1.1) 33 (2.6) 0.076 
Preventive screening test (at least once); (%) 234 (49.3) 90 (48.1) 615 (48.2) 0.015 
Myocardial Infraction (%) 1 (0.2) 0 (0.0) 2 (0.2) 0.045 

Number of HbA1c tests ordered (mean (sd)) 0.34 (0.83) 0.27 (0.66) 0.35 (0.87) 0.068 
Antiplatelet agents (%) 24 (5.1) 6 (3.2) 44 (3.4) 0.062 
Sum of Daily dose of oral steroids- oral prednisone 

mg equivalents (mean (sd)) 

905.53 
(1760.44) 

911.18 
(1691.07) 

1057.57 
(3848.50) 

0.034 

Mammogram (%) 145 (30.5) 47 (25.1) 311 (24.4) 0.092 
Lipid lowering drugs (%) 109 (22.9) 45 (24.1) 302 (23.6) 0.018 

Number of PCP (primary care provider) visits (mean 

(sd)) 

6.11 (11.83) 5.31 (9.94) 6.00 (13.05) 0.047 

Pap smear (%) 107 (22.5) 40 (21.4) 288 (22.6) 0.019 

Auranofin = FALSE (%) 475 (100.0) 187 (100.0) 1277 (100.0) <0.00
1 

Use of statins (%) 101 (21.3) 39 (20.9) 266 (20.8) 0.007 

Azathioprine (%) 12 (2.5) 3 (1.6) 32 (2.5) 0.043 
Fecal occult blood (FOB) test (%) 41 (8.6) 11 (5.9) 85 (6.7) 0.071 
Non-insulin diabetes medications (%) 48 (10.1) 15 (8.0) 118 (9.2) 0.048 

Flexible Sigmoidoscopy or colonoscopy or CT virtual 

colonoscopy (%) 

43 (9.1) 17 (9.1) 144 (11.3) 0.049 

Gold Sodium Thiomalate = FALSE (%) 475 (100.0) 187 (100.0) 1277 (100.0) <0.00
1 

Angiotensin II Receptor Blockers (ARBs) (%) 53 (11.2) 21 (11.2) 137 (10.7) 0.011 
HPV DNA test (%) 41 (8.6) 13 (7.0) 90 (7.0) 0.042 
Use of other lipid-lowering drugs (%) 19 (4.0) 10 (5.3) 63 (4.9) 0.043 

Diuretics (%) 79 (16.6) 34 (18.2) 189 (14.8) 0.061 
Insulin (%) 19 (4.0) 8 (4.3) 58 (4.5) 0.018 
Cyclophosphamide (%) 0 (0.0) 0 (0.0) 1 (0.1) 0.026 

Abbreviations: ABA: abatacept; TCZ: tocilizumab; TNF: tumor necrosis factor; SMD: absolute standardized mean 
difference; MTX: methotrexate; CRP: C-reactive protein; NSAID: non-steroidal anti-inflammatory drug; PSA: 
prostate-specific antigen; ED: emergency department; HbA1c: hemoglobin A1c; TIA: transient ischemic attack; CT: 
computed tomography; MI: myocardial infarction; HPV: human papilloma virus. 
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1 Two-group definitions
1.1 Preference score definition
Let Xi be a covariate vector and Ai be a binary treatment indicator. Then, ei = E[Ai|Xi] is the propensity
score. Its expectation is the treatment prevalence by iterative expectation p = E[ei] = E[E[Ai|Xi]] = E[Ai].
[Walker et al., 2013] defined the preference score as πi that satisfied the following relationship.

log

(
πi

1− πi

)
= log

(
ei

1− ei

)
− log

(
p

1− p

)

If we solve for πi, we can obtain the following.

log

(
πi

1− πi

)
= log

(
ei

1− ei

)
− log

(
p

1− p

)

log

(
πi

1− πi

)
= log

(
ei

1− ei

/
p

1− p

)

πi

1− πi
=

ei
1− ei

/
p

1− p

=
ei
p

1−ei
1−p

πi =

ei
p

1−ei
1−p

1 +
ei
p

1−ei
1−p

=
ei
p

1−ei
1−p + ei

p

This form gives insight into its re-centering property. When the treatment is rare, ei is generally small. The
numerator ei

p corrects this by dividing the generally small ei with a small p. In particular, those individuals
who happen to have the mean PS, i.e., ei = p, receive pii = 0.5. This transformation brings the "average
individuals" to the center of the scale.

Also if we solve for ei, we can obtain the following.

πi

1− πi
=

ei
1− ei

/
p

1− p
πip

(1− πi)(1− p)
=

ei
1− ei

ei =

πip
(1−πi)(1−p)

1 + πip
(1−πi)(1−p)

=
πip

(1− πi)(1− p) + πip

1.2 Intercept-adjustment interpretation of the preference score

Note

log

(
πi

1− πi

)
= log

(
ei

1− ei

)
− log

(
p

1− p

)
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= log

(
P [Ai = 1|Xi]

1− P [Ai = 1|Xi]

)
− log

(
P [Ai = 1]

1− P [Ai = 1]

)

Assuming logistic models

log

(
P [Ai = 1|Xi]

1− P [Ai = 1|Xi]

)
= α0 +XT

i αx

log

(
πi

1− πi

)
=

[
α0 − log

(
p

1− p

)]
+XT

i αx

The last expression has the same form as the intercept-adjusted logistic regression used for risk prediction
from a logistic regression fit on a case-control dataset [Hosmer et al., 2013]. It is known that a case-control
logistic regression and the corresponding cohort logistic regression give the same coefficients except for the
intercepts [Prentice and Pyke, 1979, Scott and Wild, 1986]. The intercept terms have the following relation-
ship.

αcohort
0 = αcase−control

0 − log

(
τ1
τ0

)

where
τ1 = case sampling fraction
τ0 = control sampling fraction

Intuitively, the case-control intercept is an overestimate because of the artificially high case prevalence in
the case-control data. log

(
τ1
τ0

)
> 0 if we oversample cases (τ1 > τ0).

We can consider the current study with a marginal treatment prevalence of p is a biased sample from a
hypothetical population in which the covariate effects on the logit of treatment αx are preserved but the
marginal treatment prevalence is 0.5. The sampling fraction for the treated would be τ1 = p and the sampling
fraction for the untreated would be τ1 = 1− p. We would obtain the desired ratio because 0.5p

0.5(1−p) =
p

1−p .

Under this framework, the initial PS model is the treatment assignment model for the biased sample with
a treatment prevalence of p. The preference score model is the treatment assignment model for the super-
population with a treatment prevalence of 0.5.
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When the covariates have no role in determining treatment assignment (random treatment assignment), the
right-hand side is always zero (preference score of 0.5) [Walker et al., 2013] because P [Ai = 1|Xi] = P [Ai =
1].

2 Multi-group definitions
2.1 Generalized preference score
Each generalized preference score is the following.

πji =

eji
pj

J∑
k=0

eki
pk

This expression came from the following proposed generalization of the defining equations (J simultaneous
equations) using the baseline logit multinomial logistic regression in place of the binary logistic regression in
the two-group definition.

For j ∈ {1, ..., J}

log

(
πji

π0i

)
= log

(
eji
e0i

)
− log

(
pj
p0

)

where
J∑

k=0

πki = 1

The sum constraint is necessary to maintain the interpretation as the prevalence-adjusted PS. For each
j ∈ {1, ..., J}, we have the following.

log

(
πji

π0i

)
= log

(
eji
e0i

)
− log

(
pj
p0

)

= log

(
eji
e0i

/
pj
p0

)

πji

π0i
=

eji
e0i

/
pj
p0

=
eji
pj

p0
e0i

First solve for π0i.

Sum J equations
J∑

j=1

πji

π0i
=

J∑

j=1

eji
pj

p0
e0i

J∑
j=1

πji

π0i
=

J∑

j=1

eji
pj

p0
e0i

By
J∑

j=0

πji = 1
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1− π0i

π0i
=

J∑

j=1

eji
pj

p0
e0i

π0i

1− π0i
=

1
J∑

j=1

eji
pj

p0

e0i

π0i =

1
J∑

j=1

eji
pj

p0
e0i

1 + 1
J∑

j=1

eji
pj

p0
e0i

=
1

1 +
J∑

j=1

eji
pj

p0

e0i

=
e0i
p0

e0i
p0

+
J∑

j=1

eji
pj

=
e0i
p0

J∑
j=0

eji
pj

Now solve for an arbitrary j ∈ {1, ..., J}.

πji

π0i
=

eji
pj

p0
e0i

πji = π0i
eji
pj

p0
e0i

= π0i
eji
pj

p0
e0i

Substitute π0i

=
e0i
p0

J∑
k=0

eki
pk

eji
pj

p0
e0i

=
1

J∑
k=0

eki
pk

eji
pj

=

eji
pj

J∑
k=0

eki
pk

Taken together, for j ∈ {0, 1, ..., J},

πji =

eji
pj

J∑
k=0

eki
pk
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2.2 Rationale for region of empirical equipoise
By the proposed generalization, each subject has a preference score vector πi with J +1 elements πji where

j = 0, 1, ..., J and
J+1∑
j=0

πji = 1. Note the expectation of the corresponding propensity score vector ei is the

treatment prevalence vector p (E[ei] = p).

# of Groups Preference score space Center of preference score space Threshold
2 [0, 1]2

(
1
2 ,

1
2

)T 0.30
3 [0, 1]3

(
1
3 ,

1
3 ,

1
3

)T 0.20
4 [0, 1]4

(
1
4 ,

1
4 ,

1
4 ,

1
4

)T 0.15
5 [0, 1]5

(
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

)T 0.12
6 [0, 1]6

(
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6

)T 0.10
...

J + 1 [0, 1]J+1
(

1
J+1 , . . . ,

1
J+1

)T (
1

J+1

) (
3
5

)

An "average" individual with a PS vector agreeing with the treatment prevalence vector is given a preference

score vector
(

1
J+1 , . . . ,

1
J+1

)T
. This is

(
1
2 ,

1
2

)T in the two-group setting,
(
1
3 ,

1
3 ,

1
3

)T in the three-group setting,

and
(
1
4 ,

1
4 ,

1
4 ,

1
4

)T in the four-group setting.

Because of this change in the center of the preference score space, the threshold for defining the region for
empirical equipoise assessment must adapt to the number of group. For example, the threshold of πji > 0.3
for all j ∈ {0, . . . , J} is not possible once there are four groups.

2.3 Proof that the generalized definition reduces to the original two-group definition
We can check this definition reduces to the original definition in the two-group setting as follows.

Preference score is recovered as follows.

log

(
π1i

π0i

)
= log

(
e1i
e0i

)
− log

(
p1
p0

)

log

(
π1i

1− π1i

)
= log

(
e1i

1− e1i

)
− log

(
p1

1− p1

)

log

(
πi

1− πi

)
= log

(
ei

1− ei

)
− log

(
p

1− p

)

Let I = {1, ..., n} be the set of indices for n individuals in the entire cohort and αJ,w be the threshold
proposed above. The index set for the individuals in the region of empirical equipoise is the following for
the J + 1 group setting.

IJ,w = {i ∈ I : πji ≥ αJ,w ∀ j ∈ {0, ..., J}}

We can show this expression reduces to the original two-group definition for J = 1 (two group setting).

I1,w = {i ∈ I : πji ≥ αJ,w ∀ j ∈ {0, 1}}
= {i ∈ I : π0i ≥ αJ,w,π1i ≥ αJ,w}
Since π0i = 1− π1i

= {i ∈ I : 1− π1i ≥ αJ,w,π1i ≥ αJ,w}
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= {i ∈ I : π1i ≤ 1− αJ,w,π1i ≥ αJ,w}
= {i ∈ I : αJ,w ≤ π1i ≤ 1− αJ,w}
= {i ∈ I : π1i ∈ [α1,w, 1− α1,w]}
Note π1i = πi (two-group preference score).
α1,w = 0.3

= {i ∈ I : πi ∈ [0.3, 0.7]}
= original two-group definition

If we visualize the two-group preference scores, we obtain a two-dimensional plot. However, because of the
constraint that π1i + π0i = 1, all individuals (red group 0; blue group 1) appear on the diagonal line. That
is, the information is one-dimensional, so we only need πi = π1i. With this visualization, we can see that
individuals satisfy π1i ≥ 0.3 and π0i ≥ 0.3 (gray region) if and only if they satisfy πi = π1i ∈ [0.3, 0.7].
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3 Empirical data demonstration
3.1 Visualization with a ternary plot
The generalized propensity score in the three-group setting is a vector of three elements (e0i, e1i, e2i)T . The
generalized preference score in the three-group setting is also a vector of three elements (π0i,π1i,π2i)T . The
following explanation is written in terms of the generalized propensity score, but the explanation is analogous
for the generalized preference score.

As three dimensional data, individual subjects can be plotted in a three-dimensional cube [0, 1]3 (left). The
Z-axis represents e0i, X-axis represents e1i, and Y-axis represents e2i. As seen in the three-dimensional plot
(left), the points only occupy the diagonal triangular plane. This is because of the constraint e0i+e1i+e2i = 1
for all i. In this case, we know what e2i is as soon as we know e0i and e1i. That is, although the data are
three-dimensional, the information carried is only two dimensional.

Therefore, we can take out this triangular plane in the left plot and represent as a two-dimensional plot
(right). This two-dimensional representation is called a ternary plot. We used the ggtern R package for
ternary plots [Hamilton, 2017].
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The coordinate systems is explained here. The top corner of the triangle (a) is ei = (1, 0, 0), i.e., 100%
probability of being in Group 0. The left lower corner (b) is ei = (0, 1, 0) and the right lower corner (c) is
ei = (0, 0, 1). The mid-point in the triangle (d) is ei = (1/3, 1/3, 1/3). That is, equal probability of being in
any of the three groups. The mid points on the edges are: (e) ei = (1/2, 1/2, 0), (f) ei = (1/2, 0, 1/2), and
(g) ei = (0, 1/2, 1/2).

To look up point (h), all three axes have to be looked up. The e0i axis is on the right edge. Use the horizontal
guide lines because the labels (0.1, etc) are horizontal. Point (h) is at e0i = 0.1. The e1i axis is on the left
edge. Use the guide lines going into the lower right direction as the labels indicate. Point (h) is at e1i = 0.7.
The e2i axis is on the bottom edge. Use the guide lines going into the upper right direction as the labels
indicate. Point (h) is at e2i = 0.2. As a result, Point (h) is at ei = (0.1, 0.7, 0.2).

We omitted the axis labels in the empirical examples since we did not need precise value lookup. The general
intuition is that being far from a given corner, for example, the top corner labeled 0, means having a low
probability of being in that group.
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3.2 Non-selective non-steroidal anti-inflammatory drugs (nsNSAIDs) example
This dataset contained demographic and clinical including dispensing information on Medicare beneficiaries
from Pennsylvania and New Jersey who qualified for pharmaceutical assistance programs for low-income
older adults (January 1, 1999, through December 31, 2005) [Solomon et al., 2010].

Individuals were required to have diagnoses for osteoarthritis or rheumatoid arthritis on two separate oc-
casions and consistent use of health care services in the preceding 365 days. Those who had dispensing of
analgesics within the preceding 180 days, those with malignancy, those using hospice services within the pre-
ceding 365 days, and those had simultaneous dispensing of multiple analgesics were secluded. The outcomes
of interest of the original study included cardiovascular and gastrointestinal adverse events.

We chose three non-selective NSAIDs with different prevalence in the dataset for visual examination:
naproxen, ibuprofen, and diclofenac. These non-selective NSAIDs were expected to have been used sim-
ilarly in practice. This example was used to illustrate the centering property of the generalized preference
score in the presence of groups of different sizes. Generalized PSs were estimated with 38 predictor variables
thought to be risk factors for any of several potential adverse effects of nsNSAIDs (eTable 1 and eFigure
1).

3.3 Biological disease-modifying anti-rheumatic drugs (bDMARDs) example
This example was taken from more recent MarketScan data (2011-June 2015) of new users of biological
disease-modifying anti-rheumatic drugs (DMARDs) [Kim et al., 2017, Kang et al., 2018]. In the original
studies, [Kim et al., 2017] examined the tocilizumab vs tumor necrosis factor (TNF) inhibitor comparison
and [Kang et al., 2018] examined the abatacept TNF inhibitor comparison. Both studies used multiple data
sources, but we focused on the MarketScan data for simplicity. Our three arms of interests were abatacept
users, tocilizumab users, and TNF inhibitor users. Therefore, we re-extracted the datasets and combined
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such that we have three mutually exclusive groups.

Individuals were required to have two separate outpatient or one inpatient code for rheumatoid arthritis
and initiation of the drugs of interest. The exclusion criteria were nursing home residents, patients with
HIV/AIDS, patients with malignancy other than nonmelanoma skin cancer, and those with end-stage renal
disease including use of dialysis or renal transplant. The outcome of interest of the original studies was
composite cardiovascular events.

The most up-to-date recommendations list these three classes of bDMARDs as equally indicated
[Singh et al., 2016, Smolen et al., 2017]. However, TNF inhibitors, by the virtue of being the first biological
DMARDs to come on the market, were more often used first. On the other hand, tocilizumab and abatacept
were market-approved more recently in the U.S. market, and thus, were more commonly used as subsequent
biological DMARDs after failure of one or more biological DMARDs.

Therefore, first-line tocilizumab and abatacept users were expected to be somewhat special patients compared
to first-line TNFi users, whereas users were expected to be more similar when using these agents as a second-
line bDMARD. A second-line TNFi after one TNFi means that there was a switch from one specific agent
to another within the five-member TNFi class (adalimumab, certolizumab pegol, etanercept, golimumab,
infliximab).

4 Simulation: methodological details
4.1 Data generating mechanism
In all scenarios, our sample size was n = 6,000.

4.1.1 Covariate generation
Latent covariates Z1i through Z7i were generated from a multivariate normal distribution to induce a given
level of correlation ρ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9}.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1i

Z2i

Z3i

Z4i

Z5i

Z6i

Z7i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

ρ1 1 ρ1 ρ2 ρ3 ρ4 ρ5

ρ2 ρ1 1 ρ1 ρ2 ρ3 ρ4

ρ3 ρ2 ρ1 1 ρ1 ρ2 ρ3

ρ4 ρ3 ρ2 ρ1 1 ρ1 ρ2

ρ5 ρ4 ρ3 ρ2 ρ1 1 ρ1

ρ6 ρ5 ρ4 ρ3 ρ2 ρ1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

This means each Zji was a standard normal marginally. The correlation of Zji and Zki for j ̸= k was ρ|j−k|.
These latent variables were then transformed as follows.

X1i := Z1i

X2i := F−1
Pois,1(Φ(Z2i))

X3i := F−1
Bern,0.2(Φ(Z3i))

X4i := F−1
Bern,0.2(Φ(Z4i))

X5i := F−1
Bern,0.2(Φ(Z5i))

X6i := F−1
Bern,0.2(Φ(Z6i))

X7i := Z7i

Φ(·) was the standard normal cumulative distribution function (pnorm(x, mean = 0, sd = 1) in R).
F−1
Pois,1(·) was the inverse distribution function for a Poisson distribution with a rate parameter of 1
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(qpois(p, lambda = 1) in R). F−1
Bern,0.2(·) was the inverse distribution function for a Bernoulli dis-

tribution with a success probability of 0.2 (qbinom(p, size = 1, prob = 0.2) in R). The first trans-
formation gave a Uniform(0,1) variable, and the second transformation gave a random variable with the
desired distribution. The correlation structure was preserved in X1i through X7i using this two-step covari-
ate generation.

4.1.2 Treatment generation
Treatment Ai was assigned based on all covariates Xi = (X1i, . . . , X7i)T .

Linear predictors
⎧
⎪⎪⎨

⎪⎪⎩

ηA1i = log

(
P [Ai = 1|Xi]

P [Ai = 0|Xi]

)
= α01 +XT

i αX1

ηA2i = log

(
P [Ai = 2|Xi]

P [Ai = 0|Xi]

)
= α02 +XT

i αX2

True propensity scores
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

e0i = P (Ai = 0|Xi) =
1

1 + exp(ηA1i) + exp(ηA2i)

e1i = P (Ai = 1|Xi) =
exp(ηA1i)

1 + exp(ηA1i) + exp(ηA2i)

e2i = P (Ai = 2|Xi) =
exp(ηA2i)

1 + exp(ηA1i) + exp(ηA2i)

Treatment assignment

Ai ∈ {0, 1, 2} ∼ Multinomial
(
(e0i, e1i, e2i)

T , 1
)

The treatment model parameter values are in the following table.

• The Size column is the treatment prevalence setting.

• The "RelX7" column corresponds to the "Relative treatment association of X7" in the figures, the
strength of the treatment association of X7 relative to X1 through X6.

• The "Equipoise" column corresponds to the "Level of equipoise" in the figures. "Perfect" indicates
no covariate effect on treatments (randomized treatment). Increasing levels of covariate effects were
introduced for "Good", "Moderate", and "Poor" as seen in the magnitude of coefficients.

• The alternating rows correspond to the first and second linear predictors (See Contrast column).

• Column 0 corresponds to the intercept coefficient. Columns 1 through 7 correspond to the coefficients
for X1 through X7.

Number Size RelX7 Equipoise Contrast 0 1 2 3 4 5 6 7
1 33:33:33 Zero Perfect 1vs0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 33:33:33 Zero Perfect 2vs0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 33:33:33 Zero Good 1vs0 -0.34 0.25 0.25 0.25 0.25 0.25 0.25 0.00
3 33:33:33 Zero Good 2vs0 -1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.00
4 33:33:33 Zero Moderate 1vs0 -0.40 0.50 0.50 0.50 0.50 0.50 0.50 0.00
4 33:33:33 Zero Moderate 2vs0 -1.70 1.00 1.00 1.00 1.00 1.00 1.00 0.00
5 33:33:33 Zero Poor 1vs0 -0.40 1.00 1.00 1.00 1.00 1.00 1.00 0.00

Continued
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Number Size RelX7 Equipoise Contrast 0 1 2 3 4 5 6 7
5 33:33:33 Zero Poor 2vs0 -3.10 2.00 2.00 2.00 2.00 2.00 2.00 0.00
6 33:33:33 Half Perfect 1vs0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 33:33:33 Half Perfect 2vs0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 33:33:33 Half Good 1vs0 -0.34 0.25 0.25 0.25 0.25 0.25 0.25 0.12
8 33:33:33 Half Good 2vs0 -1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.25
9 33:33:33 Half Moderate 1vs0 -0.40 0.50 0.50 0.50 0.50 0.50 0.50 0.25
9 33:33:33 Half Moderate 2vs0 -1.70 1.00 1.00 1.00 1.00 1.00 1.00 0.50

10 33:33:33 Half Poor 1vs0 -0.40 1.00 1.00 1.00 1.00 1.00 1.00 0.50
10 33:33:33 Half Poor 2vs0 -3.10 2.00 2.00 2.00 2.00 2.00 2.00 1.00
11 33:33:33 Same Perfect 1vs0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 33:33:33 Same Perfect 2vs0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13 33:33:33 Same Good 1vs0 -0.34 0.25 0.25 0.25 0.25 0.25 0.25 0.25
13 33:33:33 Same Good 2vs0 -1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50
14 33:33:33 Same Moderate 1vs0 -0.40 0.50 0.50 0.50 0.50 0.50 0.50 0.50
14 33:33:33 Same Moderate 2vs0 -1.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 33:33:33 Same Poor 1vs0 -0.40 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 33:33:33 Same Poor 2vs0 -3.10 2.00 2.00 2.00 2.00 2.00 2.00 2.00
16 33:33:33 Twice Perfect 1vs0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16 33:33:33 Twice Perfect 2vs0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 33:33:33 Twice Good 1vs0 -0.34 0.25 0.25 0.25 0.25 0.25 0.25 0.50
18 33:33:33 Twice Good 2vs0 -1.00 0.50 0.50 0.50 0.50 0.50 0.50 1.00
19 33:33:33 Twice Moderate 1vs0 -0.40 0.50 0.50 0.50 0.50 0.50 0.50 1.00
19 33:33:33 Twice Moderate 2vs0 -1.70 1.00 1.00 1.00 1.00 1.00 1.00 2.00
20 33:33:33 Twice Poor 1vs0 -0.40 1.00 1.00 1.00 1.00 1.00 1.00 2.00
20 33:33:33 Twice Poor 2vs0 -3.10 2.00 2.00 2.00 2.00 2.00 2.00 4.00
21 10:45:45 Zero Perfect 1vs0 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
21 10:45:45 Zero Perfect 2vs0 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
23 10:45:45 Zero Good 1vs0 0.90 0.25 0.25 0.25 0.25 0.25 0.25 0.00
23 10:45:45 Zero Good 2vs0 0.40 0.50 0.50 0.50 0.50 0.50 0.50 0.00
24 10:45:45 Zero Moderate 1vs0 1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.00
24 10:45:45 Zero Moderate 2vs0 0.50 1.00 1.00 1.00 1.00 1.00 1.00 0.00
25 10:45:45 Zero Poor 1vs0 1.70 1.00 1.00 1.00 1.00 1.00 1.00 0.00
25 10:45:45 Zero Poor 2vs0 -0.30 2.00 2.00 2.00 2.00 2.00 2.00 0.00
26 10:45:45 Half Perfect 1vs0 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
26 10:45:45 Half Perfect 2vs0 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
28 10:45:45 Half Good 1vs0 0.90 0.25 0.25 0.25 0.25 0.25 0.25 0.12
28 10:45:45 Half Good 2vs0 0.40 0.50 0.50 0.50 0.50 0.50 0.50 0.25
29 10:45:45 Half Moderate 1vs0 1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.25
29 10:45:45 Half Moderate 2vs0 0.50 1.00 1.00 1.00 1.00 1.00 1.00 0.50
30 10:45:45 Half Poor 1vs0 1.70 1.00 1.00 1.00 1.00 1.00 1.00 0.50
30 10:45:45 Half Poor 2vs0 -0.30 2.00 2.00 2.00 2.00 2.00 2.00 1.00
31 10:45:45 Same Perfect 1vs0 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
31 10:45:45 Same Perfect 2vs0 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
33 10:45:45 Same Good 1vs0 0.90 0.25 0.25 0.25 0.25 0.25 0.25 0.25
33 10:45:45 Same Good 2vs0 0.40 0.50 0.50 0.50 0.50 0.50 0.50 0.50
34 10:45:45 Same Moderate 1vs0 1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
34 10:45:45 Same Moderate 2vs0 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
35 10:45:45 Same Poor 1vs0 1.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00
35 10:45:45 Same Poor 2vs0 -0.30 2.00 2.00 2.00 2.00 2.00 2.00 2.00
36 10:45:45 Twice Perfect 1vs0 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
36 10:45:45 Twice Perfect 2vs0 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
38 10:45:45 Twice Good 1vs0 0.90 0.25 0.25 0.25 0.25 0.25 0.25 0.50
38 10:45:45 Twice Good 2vs0 0.40 0.50 0.50 0.50 0.50 0.50 0.50 1.00
39 10:45:45 Twice Moderate 1vs0 1.50 0.50 0.50 0.50 0.50 0.50 0.50 1.00
39 10:45:45 Twice Moderate 2vs0 0.50 1.00 1.00 1.00 1.00 1.00 1.00 2.00
40 10:45:45 Twice Poor 1vs0 1.70 1.00 1.00 1.00 1.00 1.00 1.00 2.00
40 10:45:45 Twice Poor 2vs0 -0.30 2.00 2.00 2.00 2.00 2.00 2.00 4.00
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Number Size RelX7 Equipoise Contrast 0 1 2 3 4 5 6 7
41 10:10:80 Zero Perfect 1vs0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
41 10:10:80 Zero Perfect 2vs0 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
43 10:10:80 Zero Good 1vs0 0.00 0.25 0.25 0.25 0.25 0.25 0.25 0.00
43 10:10:80 Zero Good 2vs0 1.70 0.50 0.50 0.50 0.50 0.50 0.50 0.00
44 10:10:80 Zero Moderate 1vs0 0.10 0.50 0.50 0.50 0.50 0.50 0.50 0.00
44 10:10:80 Zero Moderate 2vs0 1.60 1.00 1.00 1.00 1.00 1.00 1.00 0.00
45 10:10:80 Zero Poor 1vs0 0.80 1.00 1.00 1.00 1.00 1.00 1.00 0.00
45 10:10:80 Zero Poor 2vs0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0.00
46 10:10:80 Half Perfect 1vs0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
46 10:10:80 Half Perfect 2vs0 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
48 10:10:80 Half Good 1vs0 0.00 0.25 0.25 0.25 0.25 0.25 0.25 0.12
48 10:10:80 Half Good 2vs0 1.70 0.50 0.50 0.50 0.50 0.50 0.50 0.25
49 10:10:80 Half Moderate 1vs0 0.10 0.50 0.50 0.50 0.50 0.50 0.50 0.25
49 10:10:80 Half Moderate 2vs0 1.60 1.00 1.00 1.00 1.00 1.00 1.00 0.50
50 10:10:80 Half Poor 1vs0 0.80 1.00 1.00 1.00 1.00 1.00 1.00 0.50
50 10:10:80 Half Poor 2vs0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00
51 10:10:80 Same Perfect 1vs0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
51 10:10:80 Same Perfect 2vs0 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
53 10:10:80 Same Good 1vs0 0.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25
53 10:10:80 Same Good 2vs0 1.70 0.50 0.50 0.50 0.50 0.50 0.50 0.50
54 10:10:80 Same Moderate 1vs0 0.10 0.50 0.50 0.50 0.50 0.50 0.50 0.50
54 10:10:80 Same Moderate 2vs0 1.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00
55 10:10:80 Same Poor 1vs0 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00
55 10:10:80 Same Poor 2vs0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
56 10:10:80 Twice Perfect 1vs0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
56 10:10:80 Twice Perfect 2vs0 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
58 10:10:80 Twice Good 1vs0 0.00 0.25 0.25 0.25 0.25 0.25 0.25 0.50
58 10:10:80 Twice Good 2vs0 1.70 0.50 0.50 0.50 0.50 0.50 0.50 1.00
59 10:10:80 Twice Moderate 1vs0 0.10 0.50 0.50 0.50 0.50 0.50 0.50 1.00
59 10:10:80 Twice Moderate 2vs0 1.60 1.00 1.00 1.00 1.00 1.00 1.00 2.00
60 10:10:80 Twice Poor 1vs0 0.80 1.00 1.00 1.00 1.00 1.00 1.00 2.00
60 10:10:80 Twice Poor 2vs0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 4.00

4.1.3 Outcome generation
The linear predictor (log rate) for the Poisson count outcome was assigned based on all covariates and treatment.
The log link was used to avoid the issue of non-collapsibility of the logit link [Greenland et al., 1999].

ηY i = β0 + βA1I(Ai = 1) + βA2I(Ai = 2)

+XT
i βX + I(Ai = 1)XT

i βXA1 + I(Ai = 2)XT
i βXA2

Yi ∼ Poisson (exp(ηY i))

Additionally, the following counterfactual log rates were kept for use in calculating the marginal causal effects.

ηY 0
i
= β0 +XT

i βX

ηY 1
i
= β0 + βA1 +XT

i βX +XT
i βXA1

ηY 2
i
= β0 + βA2 +XT

i βX +XT
i βXA2

The outcome model parameter values were the following (RR: rate ratio).

β0 = log(0.20) Baseline rate

(βA1,βA2) = (log(1.0), log(1.0)) Null main effects
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βT
X =

⎧
⎪⎨

⎪⎩

(log(1.2), log(1.2), log(1.2), log(1.2), log(1.2), log(1.2), log(1.2)) X7 − Y RR 1.2
(log(1.2), log(1.2), log(1.2), log(1.2), log(1.2), log(1.2), log(1.5)) X7 − Y RR 1.5
(log(1.2), log(1.2), log(1.2), log(1.2), log(1.2), log(1.2), log(2.0)) X7 − Y RR 2.0

[
βT

XA1

βT
XA2

]
=

[
0 0 0 0 0 0 0
0 0 0 0 0 0 0

]
No effect modification

4.2 Estimands of interest
Four outcome analyses were conducted. The first was the unadjusted analysis. The other three were weighted
analyses with inverse probability of treatment weights (IPTW) [Robins et al., 2000], matching weights (MW)
[Li and Greene, 2013, Yoshida et al., 2017], and overlap weights [Li et al., 2016, Li et al., 2018, Li and Li, 2018].

IPTWi =
1

2∑
j=0

I(Ai = j)eji

MWi =
min(e0i, e1i, e2i)
2∑

j=0
I(Ai = j)eji

OWi =

1
1

e0i
+ 1

e1i
+ 1

e2i

2∑
j=0

I(Ai = j)eji

where I(·) is an indicator function that is 1 if the expression inside holds and 0 if not.

5 Simulation: additional results
5.1 Overall proportion as the summary measure of empirical equipoise
In the following additional results, the index was the proportion of the overall cohort that fell into the proposed
empirical equipoise region (same as Figures 1-3).
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5.1.1 Unequal group sizes 10:45:45
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5.1.2 Unequal group sizes 10:10:80
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5.2 Minimum group-wise proportion as the summary measure of empirical equipoise
In the following additional results, the index was the minimum of the group-wise proportions of the treatment groups
that fell into the proposed empirical equipoise region. The results were essentially the same as the
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5.2.1 Equal group sizes 33:33:33
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5.2.2 Unequal group sizes 10:45:45
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5.2.3 Unequal group sizes 10:10:80
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5.3 Different correlation structures
Here the correlation among covariates was varied from 0 to 0.9 (rows of the panels). The RR for the unmeasured
variable was kept at 1.5.

5.3.1 Equal group sizes 33:33:33
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5.3.2 Unequal group sizes 10:45:45
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ABSTRACT 

Crump et al. (Biometrika 2009;96:187), Stürmer et al. (Am J Epidemiol 2010;172:843), and 

Walker et al. (Comp Eff Res 2013;3:11) proposed propensity score (PS) trimming methods as 

measures to improve efficiency (Crump) or reduce confounding (Stürmer and Walker). We 

generalized the trimming definitions by considering multinomial PSs, one for each treatment 

option and proved these proposed definitions reduce to the original binary definitions when we 

only have two treatment groups. We then examined the performance of the proposed 

multinomial trimming methods in the three treatment-group setting in which subjects with 

extreme PSs more likely had unmeasured confounders. Inverse probability of treatment weights 

(IPTW), matching weights (MW), and overlap weights (OW) were used to control for measured 

confounders. All three methods reduced bias regardless of the weighting methods in most 

scenarios. Multinomial Stürmer and Walker trimming were more successful in bias reduction 

when the three treatment groups had very different sizes (10:10:80). Variance reduction, seen in 

all methods with IPTW but not with MW or OW, was more successful with multinomial Crump 

and Stürmer trimming. In conclusion, our proposed definitions of multinomial PS trimming 

methods were successful within our simulation settings. Further validation in both empirical and 

simulated data are warranted. 
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INTRODUCTION 

 Epidemiologists utilize propensity score (PS) methods(1–3) to evaluate the comparability 

of subjects in alternative exposure groups and to aid in control of imbalances between groups. 

Several authors(4–6) suggested trimming the tails of the PS distribution. Crump et al.(4) 

suggested trimming to improve imprecision of inverse probability of treatment weight (IPTW)(7) 

estimator. Stürmer et al.(5) developed their trimming method to reduce bias by unmeasured 

confounders. Walker et al.(6) proposed a covariate overlap assessment tool that also serves as a 

trimming tool. They all focused on two-group comparisons. 

 Many diseases now have three or more treatment options, from which patients and 

physicians have to choose. Conducting head-to-head clinical trials is the ideal way to establish 

equivalence or differences of efficacy and safety. However, it is not generally feasible to 

compare more than two medications in head-to-head trials. As such, observational comparative 

effectiveness/safety research (CER) studies are increasingly used for comparing multiple 

treatment choices. 

 Multiple-group CER, conducted among three or more active treatment agents, seeks to 

answer the question: “Given a population of patients requiring treatment and without 

contraindications to any of several approved options, which treatment is most appropriate among 

a range of available options?” Although the active comparator design(8) is a useful design to 

improve covariate balance, the presence of unmeasured confounders remains a concern. As 

reasoned by the authors above(5,6), PS trimming has the potential to mitigate the bias by 

unmeasured confounders by focusing on a subset of subjects with better treatment equipoise. 

However, PS trimming strategies, as well as their performance, are not well established in the 

context of multiple-group CER. In this paper, we propose general strategies for PS trimming for 
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CER involving three or more treatment groups, illustrate their characteristics in empirical data 

examples, and evaluate how they perform in simulated scenarios with three treatment groups. 

METHODS 

Existing PS trimming methods in the two-group setting 

 To our knowledge, there are at least three PS trimming strategies often considered in 

epidemiological studies involving PS methods(4–6) (Figure 4-1, Table 4-1, and eAppendix 

Section 1). Let I be the set of indices {1, …, n} indexing individuals in the entire study sample of 

sample size n. Let Ai � {0,1} be the binary treatment indicator for individual i and ei = P[Ai = 1 | 

Xi] be the PS for this individual given the covariate vector status Xi. Crump’s trimming method 

is defined as follows(4). 

!" = {% ∈ !: () ∈ [+", 1 −	+"]} 

Crump et al. proved that the estimated treatment effect based on IPTW has the optimal precision 

for a specific choice of αc. In practice, they suggested using αc = 0.1 as a rule-of-thumb threshold 

that worked in a wide range of PS distributions in achieving near-optimal precision. At this 

threshold, the trimming method dictates that everyone who receives an IPTW of greater than 10 

or less than 10/9 be removed.  

 Using the inverse of the cumulative distribution function of PS conditional on the 

treatment group Fei|Ai, Stürmer’s asymmetric trimming method can be written as follows(5). 

!2 = {% ∈ !: () ∈ 3456|86
9: (+2|1), 456|86

9: (1 − +2|0)	>} 

Rather than defining symmetric retention region around 0.5 as in Crump, this definition is based 

on the distribution of the PS in two treatment groups. The lower bound is defined by the 

100×αsth percentile of PS in the treated, and the upper bound is defined by the 100×(1-αs)th 

percentile of PS in the untreated. Importantly, once this retention region [100×αsth percentile in 
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the treated, 100×(1-αs)th percentile in the untreated] is constructed, every individual, both treated 

and untreated, outside this region is removed from the analysis dataset. This is necessary to avoid 

artificially introducing PS non-overlap. They examined 0.01, 0.025, and 0.05 for αs. The 

rationale for this trimming strategy is to remove those who received treatment choice that is on 

the contrary to the prediction: low PS treated individuals and high PS untreated individuals. They 

argued that these individuals were more likely to have strong unmeasured risk factors 

influencing the observed treatment choice. 

 Another trimming strategy proposed by Walker et al.(6) is defined on the scale of the 

preference score, which is a monotone transformation of the PS, adjusting for treatment 

prevalence p and denoted as ?i here. 

!A = {% ∈ !: ?) ∈ [+A, 1 −	+A]} 

They used αw = 0.3 although it was not validated. The rationale for this trimming strategy is to 

keep patients with PS close to the mean PS in the trimmed cohort. The mean PS in the 

population equals the treatment prevalence (eAppendix 1.3). Therefore, one can argue that those 

individuals with ei = p are the average patients most representative of the population of interest. 

The preference score transformation re-centers the distribution around such average patients. As 

a result, the trimming thresholds on the preference score scale are symmetric around 0.5. 

Extension to the multinomial setting 

 In the two group setting of treated vs untreated, we only need to consider one scalar PS 

for the probability of being treated, P[Ai = 1 | Xi]. However, in the multinomial setting with J+1 

treatment groups, it helps to consider a PS vector ei = (e0i, e1i, … , eJi)T having one probability of 

assignment for each one of the J+1 treatment groups(9) where eji = P[Ai = j | Xi] for j ∈ {0,1, …, 

J}. The sum of the J+1 elements is constrained to one. We introduced corresponding 
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generalization of the preference score transformation using the group prevalence pj (eAppendix 

2.3). 

 We can extend the definition of trimming using these generalized definitions of scores. 

The proposed definitions for the setting with J + 1 treatment groups are given in Table 4-1. 

Multinomial Crump trimming retains subjects who have all PSs above the threshold αJ,c. 

Multinomial Stürmer trimming is asymmetric in that the lower threshold for each PS is different 

unlike multinomial Crump trimming. The lower threshold is the 100αJ,c percentile of each PS in 

the corresponding treatment group. Multinomial Walker trimming is similar to multinomial 

Crump trimming except the use of a preference score in place of PS. We only define the lower 

threshold. Trimming the upper tail is implicit because individuals who have a very high PS for 

one treatment have very low PSs for the other treatments. These definitions reduce to the original 

definitions when there are only two groups (eAppendix Section 2). These lower thresholds are 

indexed with J to indicate the need to adjust for the number of groups J + 1. This adjustment is 

required because the threshold values used in the two-group setting can become too strict as the 

number of treatment groups increases (eAppendix 2.4). We used tentative values for our three-

group empirical illustration (Table 4-2). 

Empirical data illustration in the three-group setting 

 We illustrated how the trimming methods worked in the three-group setting using 

observational datasets(10,11) and visualization with ternary plots(12). A ternary plot is a 

triangle-shaped two-dimensional representation of three-dimensional data that sum to a constant 

(eAppendix Section 3). A point distant from a corner, for example, far from the top corner 

labeled 0, represents an individual with a low probability of being in group 0. The mid-point 

represents an individual with equal probabilities for all three groups. An interactive web 
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application that emulates a PS distribution is available at https://kaz-

yos.shinyapps.io/shiny_trim_ternary/ (eAppendix 3.4). 

 Figure 4-2 shows the results of the three trimming methods on three different 

observational datasets. All proposed multinomial trimming methods resulted in triangular 

retention regions. Crump trimming resulted in fixed trimming bounds regardless of the PS 

distribution. The other two methods were adaptive to the observed PS distribution. In the 

example of three COX2 selective inhibitors(10), all three groups were of similar sizes (32,684 

celecoxib users, 24,124 rofecoxib users, and 26,582 valdecoxib users) and had comparable 

distributions of patient characteristics, resulting in a concentrated cluster of all three groups on 

top of each other. Crump trimming retained all subjects. The other two methods retained most 

subjects. 

We found 23,532 naproxen users, 21,880 ibuprofen users, and 5,261 diclofenac users in 

the non-selective NSAID example(10). Users were still similar across treatment groups as 

illustrated by their clustering, but the small size of diclofenac group resulted in the off-centered 

location of the observations and off-centered bounds for Stürmer and Walker trimming. All three 

methods trimmed similar proportions in this specific instance.  

When the indications were different, as expected in the diabetes medication example(11), 

the distribution of PS became more visibly separated (distinct colors), leading small percentages 

of subjects remaining after trimming. This can reduce efficiency, but more importantly, it may be 

necessary to narrow cohort eligibility criteria to provide more comparable groups. We had a 

disproportionately large sulfonylurea group (n = 113,429), followed by the insulin (n = 18,294), 

and the GLP-1 agonist (n = 14,278) groups. This imbalance again resulted in off-centered bounds 

for Stürmer and Walker trimming. 
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Simulation setup 

 We conducted a simulation study to examine the influence of the proposed multinomial 

PS trimming methods in combination with different PS confounding adjustment methods on bias 

and efficiency in the setting of three treatment group CER. The reporting follows Morris et al.’s 

recommendation(13). The simulation suite written in R is available at https://github.com/kaz-

yos/multinomial-ps-trimming.  

Data generating mechanism.  We detailed the formulation of the data generating models as well 

as their parameters in the eAppendix Section 4. Briefly, to introduce unmeasured confounders in 

the tails of the PS distribution, we extended the data generating mechanism developed by 

Stürmer in the two-group setting to the three-group setting(5). Covariates X1 through X6 were 

considered the base variables that were measured, whereas covariates X7 through X9 were 

considered the rare confounders that remained unmeasured. As in Stürmer et al., we calculated a 

tentative PS based on the measured covariates. The unmeasured binary covariates were then 

generated based on the tentative PS such that X7=1 was more prevalent in those who had a high 

tentative propensity for group 0; X8=1 was more prevalent in those who had a high tentative 

propensity for group 1; and X9=1 was more prevalent in those who had a high tentative 

propensity for group 2. After constructing the full set of covariates both measured and 

unmeasured, the true PS was assigned based on coefficients given to all the covariates. The 

unmeasured covariates had strong “contraindication effects.” For example, when X7 was present 

in an individual with a high tentative propensity of receiving treatment 0, this treatment 

assignment became much less likely (X7 serving as a strong contraindication to an otherwise 

preferred treatment). Treatment Ai was then generated as a three-group multinomial random 

variable taking on one of {0, 1, 2}. The outcome Yi was a Poisson count random variable based 



 

 156 

on a linear predictor dependent on all the covariates and treatment. A log-link model was chosen 

to eliminate the problem of non-collapsibility(14), which complicates the calculation of true 

effects (eAppendix 4.4). 

Methods to be evaluated.  We compared the three types of multinomial PS trimming methods 

defined above in combination with different confounding adjustment methods. Each trimming 

method was examined at several trimming thresholds to compare alternative cutoffs (eAppendix 

4.3). We used the three-group IPTW(7), matching weights (MW)(15,16), and overlap weights 

(OW) (17–19) as confounding adjustment methods. Consideration of these three weighting 

schemes permitted evaluation of the sensitivity of any observed benefit of trimming to this 

choice. 

Estimand of interest.  We estimated the alternatively weighted log rate ratios for group 1 vs. 

group 0, group 2 vs. group 0, and group 2 vs. group 1 contrasts in the overall study population as 

well as PS trimmed cohort (eAppendix 4.4).  

Performance measures.  The trimmed sample size, bias, standard error (SE), and mean squared 

errors (MSE) were examined (eAppendix 4.5). 

RESULTS 

 We examined nine scenarios of varying data configurations, each run 500 times. Figure 

4-3 shows the sample size decrease after trimming (methods as the columns of panels) at 

different thresholds (X-axis). The strength of unmeasured confounding did not affect the 

proportion of trimmed observations because this strength of unmeasured confounding was 

manipulated by changing the coefficients for the outcome-generating model, but not the 

treatment-generating model. The size of trimmed cohorts after trimming differed by the 

treatment prevalence in the Crump trimming because these trimming thresholds did not adapt to 
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the skewed distribution of PS as seen in the empirical examples (Figure 4-2). In the 10:10:80 

setting, in particular, the center of the PS distribution was close to group 2 (right lower corner in 

the ternary plot), resulting in a larger proportion of the cohort trimmed by this method. Walker 

trimming provided most similar numbers of patients remaining in the cohort regardless of the 

treatment prevalence. This is because the Walker trimming region is around the average PS, i.e., 

a region where the treatment prevalence coincides with the full-sample prevalence. 

 Figure 4-4 illustrates the bias in the setting of moderate unmeasured confounding with 

different treatment prevalence, various trimming methods, and trimming thresholds. The bias in 

the unadjusted analysis at trimming threshold zero (no trimming) shows the direction and 

magnitude of the total confounding including both measured and unmeasured confounding. As 

expected from the principle of restriction as a measure to control confounding (if variables do 

not vary in the analysis cohort, they cannot confound), trimming reduced the bias in unadjusted 

analyses until the threshold where the cohort became too small for outcome analyses. Use of 

MW and OW resulted in a reduction of bias even without trimming. However, small bias 

persisted in the other direction except for the 1 vs. 0 contrast. Bias of similar magnitude appeared 

in the other direction with IPTW. Reduction in residual confounding was seen for all weighting 

methods. The only exception was that in the 10:10:80 treatment prevalence scenario, the bias 

increased for 2 vs. 0 and 2 vs. 1 contrasts with Crump trimming beyond the 1/60 threshold. The 

reason for exacerbated bias seems to be the very skewed PS distribution. The average PS vector 

corresponded to the marginal prevalence, i.e., (0.1, 0.1, 0.8)T. Therefore, group 2 would 

distribute closer to the left lower corner in the ternary plot, preferentially trimmed by Crump 

trimming. Estimation was less reliable for contrasts involving group 2 as a result. Stürmer and 

Walker trimming performed similarly regardless of the treatment prevalence. Overcorrection 
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occurred with PS trimming in contrast 1 vs 0, in which MW and OW did not have residual 

confounding. Further trimming resulted in a return to less biased estimates. 

 Figure 4-5 illustrates the corresponding simulation standard error (SE) of estimates. 

IPTW SE took a convex shape, initially benefiting from trimming, but eventually increasing due 

to the small sample sizes after trimming. This IPTW SE reduction appeared in all three trimming 

methods although only Crump trimming was proposed for improved precision. Among the 

thresholds examined in the simulation, the smallest SE was attained at around 0.07 for Crump, 

0.03 for Stürmer, and 0.1 for Walker trimming, suggesting the rule-of-thumb threshold of 0.2 for 

Walker trimming may be too strict and increases SE. Neither MW nor OW SE clearly benefited 

from trimming. Stürmer trimming, in particular, resulted in a quick increase in SE with MW and 

OW. Compared to other methods, Crump trimming seemed to offer the minimum IPTW SE in 

the absence of unmeasured confounding (eAppendix 5.2.1). 

 Figure 4-6 illustrates the MSE of the estimators calculated as variance + bias2, which 

represents the variability around the true value of the parameter. The variance term dominated 

the bias term with moderate unmeasured confounding. For IPTW, the minimum MSE was 

achieved at around 0.07 with Crump trimming, 0.017 for Stürmer trimming, and 0.05-0.10 for 

Walker trimming. The results for MW and OW were similar although the initial decrease in MSE 

was seen only in some settings (2 vs. 0 and 2 vs. 1 contrasts, particularly with 10:45:45 treatment 

prevalence). For the 1 vs. 0 contrast, no apparent benefit was observed with any of the trimming 

methods or thresholds. 

DISCUSSION 

 Several PS trimming methods have been proposed to improve the validity and efficiency 

of two-group observational studies requiring PS-based confounding control(4–6). We extended 



 

 159 

these trimming methods to the multinomial treatment setting and conducted a simulation study in 

the three-group setting. We specifically examined the interplay of bias introduced by 

confounders present in the tails of PS distribution and the variance of estimators with increasing 

trimming. All methods reduced bias in IPTW, MW, and OW estimators in most scenarios. 

However, multinomial Stürmer and Walker trimming were more successful in bias reduction 

when three treatment groups had very different sizes (10:10:80) skewing the PS distribution. 

Trimming a small fraction of observations in all three methods decreased variance for IPTW, not 

for MW or OW. At the proposed rule-of-thumb thresholds, multinomial Crump and Stürmer 

trimming achieved variance reduction better. 

 For the specific purpose of reducing bias by unmeasured confounders in the tails of 

multinomial PS distributions, Stürmer and Walker trimming may be better suited when the 

prevalence of treatment groups is quite different. Stürmer et al. suggested that this type of 

unmeasured confounding bias might be a reason for apparent “treatment effect heterogeneity” 

(truly a bias) seen in the tails of binary PS in the two-group observational study setting.(5,20) 

This bias can also happen in the multinomial setting in the presence of a strong indication for one 

of the drugs or a strong contraindication against one of the drugs that are unmeasured. Diabetes 

medications provide an illustrative example (Figure 4-2). Those who have severe diabetes and 

observable clinical indications for insulin may be found in one of the oral medication groups. 

Such patients are more likely to have unobserved contraindications for insulin such as frailty, 

which could strongly influence many outcomes. We simulated this type of setting and 

demonstrated that trimming reduced the bias by strong unmeasured contraindications. 

 Progressively stricter trimming reduced bias, but this was at the cost of efficiency once 

the trimmed sample size became too small. In the simulation scenarios that we examined, we 
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found that relatively limited PS trimming gave the best balance of bias and variance as assessed 

by MSE (Figure 4-7). The rule-of-thumb threshold for Walker trimming may be overly strict. 

 Another critical trade-off is the changing estimand when treatment effect heterogeneity 

exists. The target of inference, the population of individuals for whom we estimate the treatment 

effects, changes with trimming. Although PS trimming, a form of restriction, is expected to 

improve the validity of inference as long as all groups are trimmed in the same manner (21), the 

generalizability may be compromised. However, the type of patients retained after trimming can 

be argued as patients with reasonable chances of being assigned to any of the treatment groups, 

i.e., individuals for whom CER is most relevant(6). In practice, one should vary the trimming 

threshold to examine the sensitivity of the results related to progressively stricter trimming 

thresholds(22). 

 Our focus was bias by unmeasured risk factors that were more prevalent in the tails of PS 

distribution. This focus can be considered a multinomial equivalent of what Stürmer et al. 

examined(5). Importantly, the original intentions of the other Crump et al.’s(4) and Walker et 

al.’s(6) methods were somewhat different from Stürmer et al.’s(5). Crump et al.’s paper(4) 

emphasized the efficiency argument given that the PS model was correct and unmeasured 

confounding was absent. Their method’s strength is the proven minimum variance with IPTW 

under some constraints although multinomial Crump trimming also reduced residual bias in most 

settings in our simulation. Interestingly, multinomial Stürmer and Walker trimming also reduced 

the variance of the IPTW estimator albeit to a lesser extent. MW(15,16) and OW(17–19) were 

more efficient than IPTW, thus, no trimming methods examined improved the efficiency of MW 

or OW estimators. One might argue that PS trimming is of little benefit for MW and OW. 

However, small bias reduction did occur even for MW and OW. Walker et al.’s paper(6) focused 
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primarily on identifying CER settings where unmeasured confounding might be less of a 

concern. The tool’s role as a trimming tool was secondary. In our simulation study focusing on 

reducing unmeasured confounding bias in a given dataset, we found that smaller thresholds 

([0.05, 1.0] to [0.10, 1.0]) were sufficient to reduce confounding. 

 Another potential approach to unmeasured confounding worth mentioning is PS 

calibration(23,24). The important difference here is the requirement for an additional external 

validation dataset which contains variables that are unmeasured confounders in the main dataset. 

Our use of PS trimming to control for unmeasured confounding instead relies on the assumption 

that the tails of the PS contain individuals with unmeasured factors. 

 Although our definitions of multinomial PS trimming are natural extensions of the 

original binary PS trimming, they are not the only extensions. For example, PS trimming can be 

extended by considering all possible pairwise PS rather than the single multinomial PS. 

However, the complexity of implementation increases more rapidly for the pairwise definition 

than for the multinomial definition. Importantly, all pairwise PS must be defined for all patients. 

The pairwise PS for the A vs B contrast is estimated on groups A and B. However, we must 

assign this pairwise PS for the A vs B contrast even for those who are in group C. This 

counterintuitive approach is necessary to define the same retention region for all treatment 

groups and to capture those who are in equipoise for all treatment options. Otherwise, the 

principle of PS methods, assuring similar distribution of covariates in all treatment groups, is 

violated. The multinomial approach considers all treatment groups simultaneously, thus, it is not 

unnatural to assign all J+1 probabilities of treatment assignment for each individual. It also has 

the advantage of having only one PS model rather than all possible pairwise PS models, which 

need to be fit separately on relevant pairwise subsets of the entire dataset. 
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 Our study assumed that the relevant a priori clinical question was the comparison of 

treatment among subjects who had some chance of receiving any one of the multiple treatments. 

This assumption was an important rationale for modeling all groups in one multinomial PS 

model. On the other hand, we could construct pairwise PS and a pairwise PS trimmed cohort for 

each one of the pairwise contrast. The potential problem here is that each pairwise comparison 

may have a different target population. Having different target populations could cause non-

transitive results, for example, A is better than B; B is better than C; but A is worse than C (25). 

The pairwise approach is more acceptable when we have one group that is the reference group or 

the drug-of-interest group. In this case, only the pairwise contrasts involving this one group are 

relevant, making non-transitivity less of a concern. These two approaches may result in similar 

and transitive effect estimates if those who are in pairwise equipoise are also in equipoise among 

all groups. If this does not hold, the multinomial trimming likely results in a small trimmed 

cohort as the separation between groups in the PS space may be greater. Ideally, investigators 

should assess the appropriateness of a multi-group CER question a priori. When multinomial PS 

trimming results in a much smaller cohort than the original, one may need to reconsider whether 

the data and eligibility criteria give sufficient overlap among groups to justify multi-group CER 

(6,26). 

 The implication of a simulation study should be considered within the limitations of the 

data generation process. We introduced unmeasured confounding in the tails of PS distributions 

similarly to Stürmer et al.(5). Further studies are required for other specific data generation 

mechanisms. The use of a count outcome in our simulation was for simplicity and consistency 

with a previous study(5) and the trimming methods are not limited to this outcome type. 
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However, how these multinomial trimming methods perform in practice with other outcome 

types needs a future examination. 

 In conclusion, we proposed a multinomial extension of the existing two-group PS 

trimming methods and examined their performance with three treatment groups. The extensions 

of Stürmer and Walker’s PS trimming methods reduced bias in 3-group exposure settings even 

with highly imbalanced treatment frequencies. In practice, examining how effect estimates vary 

at various trimming thresholds can be a useful sensitivity analysis to assess potential unmeasured 

confounding in the tails of a multinomial PS. 
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Figure 4-1. Visual explanation of three existing two-group trimming methods. 
 

 
 

The hypothetical PS distribution densities were generated from beta distributions. The dotted line 
represents the propensity score (PS) density in the untreated, whereas the solid line represents the 
PS density in the treated. The columns of panels represent three trimming methods. The rows of 
panels represent treatment prevalence (50%, 25%, and 10%). In each panel, the gray region 
represents the retention region that applies to both treated and untreated groups. Individuals 
outside the retention region are removed regardless of their treatment status. Crump trimming is 
the same regardless of the prevalence, whereas the other two methods adapt to skewed PS 
distributions due to less frequent treatment. See eAppendix 1.4 for further examples.   
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Figure 4-2. Ternary plots of trimming results in empirical datasets. 
 

 
 
The rows represent datasets: coxibs, non-selective non-steroidal anti-inflammatory drugs 
(nsNSAIDs), and anti-diabetics. The columns represent the trimming methods: Crump, Stürmer, 
and Walker. The inner black triangles are the trimming thresholds. The numbers in the triangles 
indicate the proportion (%) of the original cohort that remained after trimming as well as group-
wise proportions. The groups are: (0) celecoxib, (1) rofecoxib, and (2) valdecoxib for coxibs; (0) 
naproxen, (1) ibuprofen, and (2) diclofenac for nsNSAIDs; and (0) sulfonylurea + metformin, (1) 
glucagon-like peptide-1 receptor agonist + metformin, and (2) insulin + metformin for anti-
diabetics.  
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Figure 4-3. Simulated samples size after trimming at different thresholds. 

 
The scales for the thresholds were the propensity score (PS) scale for Crump, quantiles of PS for 
Stürmer, and the preference score scale for Walker. The vertical hairlines are at the tentative 
thresholds used for the empirical data illustration (Figure 4-1). 
 
The original sample size was n = 6,000 in all prevalence scenarios. Both Stürmer and Walker 
methods trimmed similarly regardless of treatment prevalence as they accommodated skewed PS 
distributions. Crump trimming, on the other hand, trimmed differently at the same trimming 
threshold across treatment prevalence scenarios. 
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Figure 4-4. Bias results from the moderate unmeasured confounding setting. 

 
Abbreviations: 1vs0: group 1 vs group 0 treatment contrast; 2vs0: group 2 vs group 0 treatment 
contrast; 2vs1: group 2 vs group 1 treatment contrast; IPTW: inverse probability of treatment 
weights; MW: matching weights; OW: overlap weights. 
 
The rows of panels represent confounding adjustment methods: unadjusted, IPTW, MW, and 
OW. The columns of panels represent the group contrast and then trimming methods. Within 
each panel, the X-axis represents progressive increase in trimming threshold (more observations 
are trimmed off). The vertical hairlines are at the tentative thresholds used for the empirical data 
illustration (Figure 4-1). 
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Figure 4-5. Standard error results from the moderate unmeasured confounding setting. 

 
Abbreviations: 1vs0: group 1 vs group 0 treatment contrast; 2vs0: group 2 vs group 0 treatment 
contrast; 2vs1: group 2 vs group 1 treatment contrast; IPTW: inverse probability of treatment 
weights; MW: matching weights; OW: overlap weights. 
 
The rows of panels represent confounding adjustment methods: unadjusted, IPTW, MW, and 
OW. The columns of panels represent the group contrast and then trimming methods. Within 
each panel, the X-axis represents progressive increase in trimming threshold (more observations 
are trimmed off). The vertical hairlines are at the tentative thresholds used for the empirical data 
illustration (Figure 4-1). 
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Figure 4-6. Mean squared error (MSE) results from the moderate unmeasured confounding 
setting. 

 
Abbreviations: 1vs0: group 1 vs group 0 treatment contrast; 2vs0: group 2 vs group 0 treatment 
contrast; 2vs1: group 2 vs group 1 treatment contrast; IPTW: inverse probability of treatment 
weights; MW: matching weights; OW: overlap weights. 
 
The rows of panels represent confounding adjustment methods: unadjusted, IPTW, MW, and 
OW. The columns of panels represent the group contrast and then trimming methods. Within 
each panel, the X-axis represents progressive increase in trimming threshold (more observations 
are trimmed off). The vertical hairlines are at the tentative thresholds used for the empirical data 
illustration (Figure 4-1). 
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Table 4-1. Existing propensity score trimming method definitions for a binary treatment and 
proposed propensity score trimming method definitions for a multinomial treatment 
 
 Original binary definition Proposed multinomial definition 
Crump et 
al.(4) 

!" = {% ∈ !: () ∈ [+", 1 −	+"]} 

Their rule-of-thumb threshold for +c was 0.1. 

!C," = {% ∈ !C: (D) ≥ +C,"	∀	G ∈ {0,1,… , I}} 

 

Stürmer et 
al.(5) 

!2 = {% ∈ !: () ∈ 3456|86
9: (+2|1), 456|86

9: (1 − +2|0)	>} 

+s	were	0.01,	0.025,	and	0.05	in	their	simulation.	

!C,2 = {% ∈ !C: (D) ≥ 45Z6|86
9:

[+C,2\G]	∀	G ∈ {0,1,… , I}} 

 

Walker et 
al.(6) 

!A = {% ∈ !: ?) ∈ [+A, 1 −	+A]} 

Their rule-of-thumb threshold for +w was 0.3. 

!C,A = ^% ∈ !C: ?D) ≥ +C,A	∀	G ∈ {0,1,… , I}_ 

 

Notations I = {1, …, n} Set of individual indices 

Ix Subset of individual indices retained by method x 

Ai � {0,1} Binary treatment indicator for individual i 

ei Propensity score for individual i 

F-1ei|Ai Inverse cumulative distribution function of ei 

conditional on Ai  

?i	Preference	score	for	individual	i	 	 (See	text)	

+x	Trimming	threshold	by	method	x 

IJ = {1, …, n} Set of individual indices with J + 1 

groups 

IJ,x  Subset of individual indices retained by method x 

Ai � {0,1, …, J} Multinomial treatment indicator for 

individual i 

eji Propensity score for individual i for treatment j  

F-1eji|Ai Inverse cumulative distribution function of eji 

conditional on Ai  

?ji	Preference	score	for	individual	i	 	 for	treatment	j	

+J,x	Trimming	threshold	by	method	x	 	 with	J	+	1	

groups 

 
See text for interpretation and eAppendix Section 1 for rationale for each method. In all original 
and proposed methods, the same retention region is applied to every treatment group. See 
eAppendix Section 2 for equivalence of the proposed methods to the original binary methods 
and proposed tentative thresholds in the multinomial setting 
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Table 4-2. Tentative threshold values for each method and number of groups. 
 
Number of groups Crump Stürmer Walker 
2 (original) 0.10 0.050 0.30 
3 (our study) 0.07 0.033 0.20 
4 (not examined) 0.05 0.025 0.15 
    
Scale PS Group-specific PS 

quantile 
Preference score 

 
Abbreviation: PS Propensity score. 
See eAppendix 2.4 for details. 
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1 Base trimming methods for the two-group setting
Here we consider a two group setting where the treatment is defined as Ai ∈ {0, 1} and the propensity score
(PS) as a function of the covariate vector Xi is defined as ei = P [Ai = 1|Xi] ∈ (0, 1). Let I = {1, ..., n} be
the set of indices indexing all the individuals in the study cohort.

Let Fei(·) be the cumulative distribution function (CDF) of the PS. A preference score [Walker et al., 2013]
πi is a one-to-one transformation of PS such that logit(πi) = logit(ei)− logit(p) where p = P [Ai = 1] = E[ei]
is the prevalence of treatment, which equals the mean PS.

Using these notations, the subset of indices retained after each trimming method can be written as follows.

Method Definition
Crump Ic = {i ∈ I : ei ∈ [αc, 1− αc]}
Stürmer Is =

{
i ∈ I : ei ∈

[
F−1
ei|Ai

(αs|1), F−1
ei|Ai

(1− αs|0)
]}

Walker Iw = {i ∈ I : πi ∈ [αw, 1− αw]}

The rationale and detailed definition for each method is given in the following.

1.1 Crump trimming
1.1.1 Rationale
[Crump et al., 2009] used trimming for precision. They specifically utilized trimming to deal with the limited
overlap of the PS distributions between the treated and the untreated patients. The inverse probability of
treatment weight (IPTW) [Robins et al., 2000] can result in an imprecise estimate of the average treatment
effect (ATE) due to this lack of overlap. They developed their trimming method to select the optimal subset
of subjects for whom the ATE can be estimated most precisely. They proved that their trimming gives the
most precise estimate under the assumptions of no unmeasured confounding, positivity [Petersen et al., 2012],
homoscedastic outcome.

1.1.2 Definition
The Crump trimming method is defined with fixed bounds on the PS scale as follows.

Ic = {i ∈ I : ei ∈ [αc, 1− αc]}

Those who have PS outside the retention region [αc, 1 − αc] are trimmed. The most precise estimate is
obtained at a specific choice of αc that has to be estimated. In practice, they suggested using αc = 0.1 as a
rule-of-thumb threshold that is a good approximation for a wide range of PS distributions. We adopted this
threshold.

1.2 Stürmer trimming
1.2.1 Rationale
[Stürmer et al., 2010] used trimming for confounding control. Specifically, they reasoned that those with a
treatment choice contrary to the choice predicted by the working PS model might have unmeasured risk
factors, such as frailty, that motivated the treatment decision. Treated individuals with very low PSs and
untreated individuals with very high PSs raise such concerns. They designed their trimming method such
that those with a treatment choice contrary to their PSs are removed.

1.2.2 Definition
Their trimming method is defined as follows using the 100 × αs th percentile of the PS among the treated
patients F−1

ei|Ai
(αs|1) and the 100× αs th percentile of the PS among the untreated F−1

ei|Ai
(1− αs|0).

Is =
{
i ∈ I : ei ∈

[
F−1
ei|Ai

(αs|1), F−1
ei|Ai

(1− αs|0)
]}

Note that the retention region [L,U ] where L = F−1
ei|Ai

(αs|1) and U = F−1
ei|Ai

(1 − αs|0) applies to both
untreated and treated. That is, the range restriction on PS is the same for the untreated and treated
groups although this point may be somewhat unclear in the original paper. Their simulation examined
αs ∈ {0.01, 0.025, 0.05}. We adopted αs = 0.05.
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1.3 Walker trimming
1.3.1 Rationale
[Walker et al., 2013] proposed a covariate overlap assessment tool based on the PS as a surrogate marker
for the potential for unmeasured confounding. They defined the proportion of patients in the medium
range of the preference score (prevalence-adjusted transformation of PS) as a measure of empirical equipoise.
Empirical equipoise can be interpreted as the observed surrogate of the underlying level of clinical equipoise
[Freedman, 1987]. Clinical equipoise is defined as "a state of collective uncertainty among medical providers
regarding the best treatment option for a specific patient population."

Walker and colleagues reasoned that similar patients can be assigned to different treatments under this
setting, resulting in a reduced concern for confounding by indication. After this initial assessment for the risk
of confounding by indication, they recommended using the patients within the medium range of preference
score as the analysis cohort. Therefore, this approach also constitutes another PS trimming method.

1.3.2 Definition
Their trimming method is defined on the scale of the preference score πi.

Iw = {i ∈ I : πi ∈ [αw, 1− αw]}

They suggested using αw = 0.3 as rule-of-thumb thresholds although this value has not been systematically
validated. The following equation defines the preference score πi in terms of the PS ei and treatment
prevalence p.

log

(
πi

1− πi

)
= log

(
ei

1− ei

)
− log

(
p

1− p

)

Note that the prevalence p is the mean PS.

p = P [Ai = 1]

= E [Ai]

= E [E [Ai|Xi]]

= E [P [Ai = 1|Xi]]

= E [ei]

We can solve for πi and ei as follows.

log

(
πi

1− πi

)
= log

(
ei

1− ei

)
− log

(
p

1− p

)

= log

(
ei

1− ei

/
p

1− p

)

As log is increasing, we have
πi

1− πi
=

ei
1− ei

/
p

1− p

=
ei
p

1− p

1− ei
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πi =
ei
p

1−p
1−ei

1 + ei
p

1−p
1−ei

=
ei
p

1−ei
1−p + ei

p

Also
ei

1− ei
=

πi

1− πi

p

1− p

ei =
πi

1−πi

p
1−p

1 + πi
1−πi

p
1−p

=
πip

(1− πi)(1− p) + πip

If we rewrite the trimming definition in terms of PS, we obtain the following.

Iw = {i ∈ I : πi ∈ [αw, 1− αw]}

=

{
i ∈ I : ei ∈

[
αw

1−αw

p
1−p

1 + αw
1−αw

p
1−p

,
1−αw
αw

p
1−p

1 + 1−αw
αw

p
1−p

]}

=

{
i ∈ I : ei ∈

[
αwp

(1− αw)(1− p) + αwp
,

(1− αw)p

αw(1− p) + (1− αw)p

]}

1.4 Visual comparison of methods
Here we provide a visual comparison of the three methods using hypothetical PS distributions. The PS
distributions were generated from different beta distribution to emulate different treatment prevalence as
well as covariate balance between the treated and untreated. Note in all methods, the same retention region
applies to both treated and untreated. This uniform application of the retention region to both groups is
important in avoiding artificially creating PS non-overlap regions.

1.4.1 More similar treatment groups

Crump Sturmer Walker
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This example emulates a setting where covariates are more similar across treatment groups than the example
in the main text, that is, the treatment assignment mechanism is closer to random (less confounding). In
this type of setting, Walker trimming tends to be less strict (wider retention region) than Stürmer trimming.
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1.4.2 Less similar treatment groups

Crump Sturmer Walker
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This example emulates a setting where covariates are less similar across treatment groups than the example
in the main text, that is, covariates affect treatment assignment more strongly (more confounding). In this
type of setting, Walker trimming tends to be more strict (narrower retention region) than Stürmer trimming.

2 Extended trimming methods for the multiple-group setting
When we have multiple treatment groups (J + 1 groups indexed with j ∈ {0, ..., J}), it is easier to consider
all PSs, that is, all conditional probabilities of treatment assignment given the covariates.

Let
Ai ∈ {0, 1, ..., J}
eji = P [Ai = j|Xi]

where
J∑

j=0

eji = 1

Each individual has an individual-specific PS vector ei = (e0i, ..., eJi)T . Using the group count-specific
threshold value αJ,c, αJ,s, and αJ,w, the proposed multinomial definitions can be written as follows.

Method Definition
Crump IJ,c = {i ∈ I : eji ≥ αJ,c ∀ j ∈ {0, ..., J}}
Stürmer IJ,s =

{
i ∈ I : eji ≥ F−1

eji|Ai
(αJ,s|j) ∀ j ∈ {0, ..., J}

}

Walker IJ,w = {i ∈ I : πji ≥ αJ,w ∀ j ∈ {0, ..., J}}

Notice only the lower threshold is set for each PS as opposed to the base two-group definitions. However,
this is sufficient because we define the constraint for every one of the all J+1 PSs. As shown in the following
parts, having a lower threshold for each one of the two PSs in the two-group setting is equivalent to having
both upper and lower thresholds for one non-redundant PS.

2.1 Crump trimming

IJ,c = {i ∈ I : eji ≥ αJ,c ∀ j ∈ {0, ..., J}}
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This definition means that we select a subset of subjects for whom all their PSs are greater than or equal to
some threshold αJ,c. We can check this definition reduces to the original definition in the two group setting
(J = 1) as follows.

I1,c = {i ∈ I : eji ≥ αJ,c ∀ j ∈ {0, 1}}
= {i ∈ I : e0i ≥ α1,c, e1i ≥ α1,c}
Since e0i = 1− e1i

= {i ∈ I : 1− e1i ≥ α1,c, e1i ≥ α1,c}
= {i ∈ I : e1i ≤ 1− α1,c, e1i ≥ α1,c}
= {i ∈ I : α1,c ≤ e1i ≤ 1− α1,c}
= {i ∈ I : e1i ∈ [α1,c, 1− α1,c]}
Note e1i = ei (regular two-group PS).
For α1,c = αc

= {i ∈ I : ei ∈ [αc, 1− αc]}
= original two-group definition

2.2 Stürmer trimming

IJ,s =
{
i ∈ I : eji ≥ F−1

eji|Ai
(αJ,s|j) ∀ j ∈ {0, ..., J}

}

Note the bound is now F−1
eji|Ai

(αJ,s|j) for the corresponding multinomial PS eji. That is, for PS for treatment
j (eji), the bound is determined by the lower αJ,s quantile of the PS for treatment j in the group actually
received treatment j. We can check this definition reduces to the original definition in the two group setting
as follows.

I1,s =
{
i ∈ I : eji ≥ F−1

eji|Ai
(αJ,s|j) ∀ j ∈ {0, 1}

}

=

⎧
⎪⎪⎨

⎪⎪⎩

i ∈ I :

e0i ≥ F−1
e0i|Ai

(α1,s|0),

e1i ≥ F−1
e1i|Ai

(α1,s|1)

⎫
⎪⎪⎬

⎪⎪⎭

Since e0i = 1− e1i

e0i ≥ 100× α1,s-th percentile of e0i among Ai = 0

and
e1i ≤ 100× (1− α1,s)-th percentile of e1i among Ai = 0

are equivalent conditions (see figures below)

=

⎧
⎪⎪⎨

⎪⎪⎩

i ∈ I :

e1i ≤ F−1
e1i|Ai

(1− α1,s|0),

e1i ≥ F−1
e1i|Ai

(α1,s|1)

⎫
⎪⎪⎬

⎪⎪⎭

=
{
i ∈ I : e1i ∈

[
F−1
e1i|Ai

(α1,s|1), F−1
e1i|Ai

(1− α1,s|0)
]}

Note e1i = ei (regular two-group PS).
For α1,s = αs

=
{
i ∈ I : ei ∈

[
F−1
ei|Ai

(αs|1), F−1
ei|Ai

(1− αs|0)
]}

= original two-group definition
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This reduction in the two-group case can be visually understood as follows. Plot data points in a 2-
dimensional coordinate using both of the two PSs (left). By the constraint that e0i + e1i = 1, the data
points lines up along the diagonal line. Project data points onto either axis depending on the treatment
group, i.e., Ai = 1 onto the e1i axis and Ai = 0 onto the e0i axis (right).
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Project onto corresponding axes

Determine the fifth percentile in each treatment group (left), that is, the fifth percentile of e1i for Ai = 1
and the fifth percentile of e0i for Ai = 0. On the original diagonal line, only keep observations inside the
two fifth percentile thresholds.
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Drop observations outside retention region

If we consider the 1-dimensional representation using e1i only, what we have done is identical to the asym-
metric PS trimming, i.e., trim both treated and untreated observations below the fifth percentile of e1i
among Ai = 1 (treated) and above the ninety-fifth percentile of e1i among Ai = 0 (untreated). The latter
condition is equivalent to dropping both treated and untreated observations below the fifth percentile of e0i
among Ai = 0 (untreated) because of the relationship e1i = 1− e0i.

2.3 Walker trimming
Using the multinomial preference scores, the definition is written as follows.

IJ,w = {i ∈ I : πji ≥ αJ,w ∀ j ∈ {0, ..., J}}

Each multinomial preference score is defined as follows.
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πji =

eji
pj

J∑
k=0

eki
pk

This proposed definition came from the following proposed generalization of the defining equations (J si-
multaneous equations) using the baseline logit multinomial logistic regression in place of the binary logistic
regression in the two-group definition.

For j ∈ {1, ..., J}

log

(
πji

π0i

)
= log

(
eji
e0i

)
− log

(
pj
p0

)

where
J∑

k=0

πki = 1

The sum constraint is necessary to maintain the interpretation as the prevalence-adjusted PS. For each
j ∈ {1, ..., J}, we have the following.

log

(
πji

π0i

)
= log

(
eji
e0i

)
− log

(
pj
p0

)

= log

(
eji
e0i

/
pj
p0

)

πji

π0i
=

eji
e0i

/
pj
p0

=
eji
pj

p0
e0i

First solve for π0i.

Sum J equations
J∑

j=1

πji

π0i
=

J∑

j=1

eji
pj

p0
e0i

J∑
j=1

πji

π0i
=

J∑

j=1

eji
pj

p0
e0i

By
J∑

j=0

πji = 1

1− π0i

π0i
=

J∑

j=1

eji
pj

p0
e0i

π0i

1− π0i
=

1
J∑

j=1

eji
pj

p0

e0i
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π0i =

1
J∑

j=1

eji
pj

p0
e0i

1 + 1
J∑

j=1

eji
pj

p0
e0i

=
1

1 +
J∑

j=1

eji
pj

p0

e0i

=
e0i
p0

e0i
p0

+
J∑

j=1

eji
pj

=
e0i
p0

J∑
j=0

eji
pj

Now solve for an arbitrary j ∈ {1, ..., J}.

πji

π0i
=

eji
pj

p0
e0i

πji = π0i
eji
pj

p0
e0i

= π0i
eji
pj

p0
e0i

Substitute π0i

=
e0i
p0

J∑
k=0

eki
pk

eji
pj

p0
e0i

=
1

J∑
k=0

eki
pk

eji
pj

=

eji
pj

J∑
k=0

eki
pk

Taken together, for j ∈ {0, 1, ..., J},

πji =

eji
pj

J∑
k=0

eki
pk

We can check this definition reduces to the original definition in the two group setting as follows.

Preference score is recovered as follows.

log

(
π1i

π0i

)
= log

(
e1i
e0i

)
− log

(
p1
p0

)
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log

(
π1i

1− π1i

)
= log

(
e1i

1− e1i

)
− log

(
p1

1− p1

)

log

(
πi

1− πi

)
= log

(
ei

1− ei

)
− log

(
p

1− p

)

I1,w = {i ∈ I : πji ≥ αJ,w ∀ j ∈ {0, 1}}
= {i ∈ I : π0i ≥ αJ,w,π1i ≥ αJ,w}
Since π0i = 1− π1i

= {i ∈ I : 1− π1i ≥ αJ,w,π1i ≥ αJ,w}
= {i ∈ I : π1i ≤ 1− αJ,w,π1i ≥ αJ,w}
= {i ∈ I : αJ,w ≤ π1i ≤ 1− αJ,w}
= {i ∈ I : π1i ∈ [α1,w, 1− α1,w]}
Note π1i = πi (two-group preference score).
For α1,w = αw

= {i ∈ I : πi ∈ [αw, 1− αw]}
= original two-group definition

2.4 Tentative threshold values
In the two group setting, the rule-of-thumb thresholds are [0.1, 0.9] for Crump trimming [Crump et al., 2009],
5-th and 95-th percentiles for the Stürmer trimming [Stürmer et al., 2010], and [0.3, 0.7] on the preference
score scale for the Walker trimming [Walker et al., 2013]. However, using the same lower threshold value
causes the multinomial trimming methods to become progressively stricter as the number of groups increases.
This problem is most easily understood with Crump trimming rule. Once there are 11 groups, it is not
possible to have eji ≥ 0.1 for all PSs (j ∈ {0, ..., 10}) because of the constraint

∑11
j=0 eji = 1. Therefore, we

considered the following scaling of the threshold values using the number of groups J + 1 for the graphical
demonstration in the empirical data illustration.

Groups J Crump (αJ,c) Stürmer (αJ,s) Walker (αJ,w)
2 1 0.10 0.050 0.30
3 2 0.07 0.033 0.20
4 3 0.05 0.025 0.15
5 4 0.04 0.020 0.12
6 5 0.03 0.017 0.10

...
J + 1 J 1

J+1
1
5

1
J+1

1
10

1
J+1

3
5

Crump lower bounds are on the multinomial PS, Stürmer lower bounds are on multinomial PS quantile, and
Walker lower bounds are on the multinomial preference score.

3 Empirical data illustration
3.1 Datasets
We used three characteristics datasets, each consisting of three treatment groups, to provide an intuitive
understanding of the trimming methods and to illustrate how the three trimming methods differ depending
on the distribution of PS among three treatment groups.

• The first example was the Medicaid non-steroidal anti-inflammatory drugs (NSAIDs) dataset
[Solomon et al., 2010], the users of the three types of COX2 selective inhibitors (celecoxib, rofecoxib,
and valdecoxib). The dataset was restricted to the calendar period when all of them were available
(1/1/2002 - 9/30/2004).

• The second example was non-selective NSAIDs dataset derived from the same Medicaid data, and
included naproxen, ibuprofen, and diclofenac as three treatment groups.
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• The third dataset consisted of diabetes patients who were started on either one of sulfony-
lurea, glucagon-like peptide receptor agonist (GLP1-RA), or insulin in addition to metformin
[Patorno et al., 2016].

3.2 Propensity score calculation and trimming
We estimated the generalized PS in each example using the baseline logit multinomial logistic regression
using VGAM R package [Yee, 2010]. Three predicted probabilities were estimated for each individual. The
generalized preference score was then obtained by the following equation using the generalized PS and the
respective prevalence of each treatment.

π̂ji =

êji
p̂j

2∑
k=0

êki
p̂k

for j ∈ {0, 1, 2}

Trimming was then performed at the proposed thresholds of αJ,c = 1/15, αJ,s = 1/30, and αJ,w = 1/5. The
proportion of subjects remained after trimming was recorded for the entire cohort as well as each treatment
group.

3.3 Visualization with a ternary plot
The generalized PSs in the three-group setting is a vector of three elements (e0i, e1i, e2i)T . As three di-
mensional data, individual subjects can be plotted in a three-dimensional cube [0, 1]3 (left). The Z-axis
represents e0i, X-axis represents e1i, and Y-axis represents e2i. As seen in the three-dimensional plot (left),
the points only occupy the diagonal triangular plane. This is because of the constraint e0i + e1i + e2i = 1
for all i. In this case, we know what e2i is as soon as we know e0i and e1i. That is, although the data are
three-dimensional, the information carried is only two dimensional.

Therefore, we can take out this triangular plane in the left plot and represent as a two-dimensional plot
(right). This two-dimensional representation is called a ternary plot. We used the ggtern R package for
ternary plots [Hamilton, 2017].

The coordinate systems is explained here. The top corner of the triangle (a) is ei = (1, 0, 0), i.e., 100%
probability of being in Group 0. The left lower corner (b) is ei = (0, 1, 0) and the right lower corner (c) is
ei = (0, 0, 1). The mid-point in the triangle (d) is ei = (1/3, 1/3, 1/3). That is, equal probability of being in
any of the three groups. The mid points on the edges are: (e) ei = (1/2, 1/2, 0), (f) ei = (1/2, 0, 1/2), and
(g) ei = (0, 1/2, 1/2).
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To look up point (h), all three axes have to be looked up. The e0i axis is on the right edge. Use the horizontal
guide lines because the labels (0.1, etc) are horizontal. Point (h) is at e0i = 0.1. The e1i axis is on the left
edge. Use the guide lines going into the lower right direction as the labels indicate. Point (h) is at e1i = 0.7.
The e2i axis is on the bottom edge. Use the guide lines going into the upper right direction as the labels
indicate. Point (h) is at e2i = 0.2. As a result, Point (h) is at ei = (0.1, 0.7, 0.2).

We omitted the axis labels in the empirical examples since we did not need precise value lookup. The general
intuition is that being far from a given corner, for example, the top corner labeled 0, means having a low
probability of being in that group.
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(a) 1 0 0
(b) 0 1 0
(c) 0 0 1
(d) 1/3 1/3 1/3
(e) 1/2 1/2 0
(f) 1/2 0 1/2
(g) 0 1/2 1/2
(h) 0.1 0.7 0.2

3.4 Web application
The empirical datasets [Solomon et al., 2010, Patorno et al., 2016] cannot be disclosed due to data use agree-
ment. Instead, we made an interactive web application available with a simplistic PS distribution simulation.
The web application is online at https://kaz-yos.shinyapps.io/shiny_trim_ternary/ and the
source code is available at [The page will be online at publication].
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The distribution of three-group PS ei = (e0i, e1i, e2i)T where e0i+ e1i+ e2i = 1 is simulated from a Dirichlet
distribution Dirichlet(cα0, cα1, cα2). The Dirichlet distribution is a multivariate generalization of the beta
distribution [Gelman et al., 2013]. Treatment Ai is then chosen as 0, 1, or 2 based on ei, which is the
treatment assignment probability.

The marginal mean of ei generated this way is
(

α0∑2
j=0 αj

, α1∑2
j=0 αj

, α2∑2
j=0 αj

)T
. This corresponds to the

marginal prevalence of three treatment groups as already explained. In the web application, Concentration
controls the multiplication factor c, whereas Relative group sizes decide α0, α1, and α2. The default value
for all α’s is 1. The default value for c is 2. A smaller c value gives a more separated distribution of the
PS and treatment groups (poor PS overlap). A larger c value gives a more concentrated distribution of the
PS and treatment groups (good PS overlap). The observed prevalence of three treatment groups is shown
above the plots.

Opacity Overall controls the fading of the points in each scatter plot. Opacity Trimmed can be used to
further fade points outside the trimming region.

Choosing Preference in Which score? changes the scale to the preference score. Choosing Yes in Plot
density results in a contour plot instead of a scatter plot. Selecting Yes in By group separates groups into
three panels.
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Multinomial trimming thresholds controls the trimming threshold for each method. The default values
are the tentative values for the three-group setting stated above. The trimming boundaries are shown visually
for each method. The proportion of data points retained (overall and by group) are displayed above each
plot.

The following settings can give approximations of the empirical PS distributions by the Dirichlet distribu-
tion. They were derived from the MLE assuming a Dirichlet distribution and manual adjustment for visual
similarity.

Data c α0 α1 α2

Coxibs 5 4 3 3
nsNSAIDs 5 4.5 4.5 1
Anti-diabetics 2 0.8 0.1 0.1

4 Simulation design
The description follows the reporting recommendation in [Morris et al., 2017].

4.1 Aim
The aim of this simulation study was to assess whether the extended definitions of the PS trimming methods
reduce bias due to unmeasured confounders.

4.2 Data generating mechanisms
We extended the data generating mechanism in [Stürmer et al., 2010], which they used to induce unmeasured
confounders in the tails of distribution, considering three treatment groups. In the two-group setting, their
data generation mechanism produces data like the following. An unmeasured binary confounderX7 is present
in the lower tail, particularly those who were actually treated. The other unmeasured binary confounder X8

is present in the upper tail, particularly those who were left untreated.
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4.2.1 Outline
Let i ∈ 1, ..., n index individuals.

Measured covariates

Xm
i =

[
X1i X2i X3i X4i X5i X6i

]T

Unmeasured covariates

Xu
i =

[
X7i X8i X9i

]T

Xm
i

Xu
i

Ai Yi
Outcome model

βA1,βA2 (main effects)
for treatment effects

Treatment model
α01,α02 (intercepts)

for treatment prevalence
αX1,αX2 (covariate association)

for covariate overlap level

Outcome model
β0 (intercept)

for baseline rate of events
βX (covariate association)
for strength of risk factors

The following elements were varied, resulting in 3 × 3 = 9 simulation scenarios.

• Exposure distribution: {(33:33:33), (10:45:45), (10:10:80)}

• Unmeasured confounding: {none, moderate, strong}

4.2.2 Covariate generation
[Stürmer et al., 2010] used the following structure to calculate the tentative PS P̃ [Ai = j|X1, ..., X6] based
only on the base covariates X1i, ..., X6i. The tentative PS was then used to determine the probabilities of
the unmeasured binary covariates X7i and X8i.

P̃ [Ai = j|X1i, ..., X6i]

X7i X8i

X1i X2iX3i X4iX5i X6i

Ai Yi

The base covariates X1i, ..., X6i were generated independently using the same mechanism as
[Stürmer et al., 2010].

X1i ∼ Bernoulli(0.1)
X2i ∼ Bernoulli(0.1)
X3i ∼ Bernoulli(0.1)
X4i ∼ Normal(0, 1)
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X5i ∼ Normal(0, 1)
X6i ∼ Normal(0, 1)

Based on these measured base variables Xm
i , the tentative PS vector ẽi was calculated in a multinomial

logistic regression model as follows.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

η̃A1i = log

(
P̃ [Ai = 1|Xm

i ]

P̃ [Ai = 0|Xm
i ]

)
= α01 + (Xm

i )TαXm1

η̃A2i = log

(
P̃ [Ai = 2|Xm

i ]

P̃ [Ai = 0|Xm
i ]

)
= α02 + (Xm

i )TαXm2

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẽ0i = P̃ [Ai = 0|Xm
i ] =

1

1 + exp(η̃A1i) + exp(η̃A2i)

ẽ1i = P̃ [Ai = 1|Xm
i ] =

exp(η̃A1i)

1 + exp(η̃A1i) + exp(η̃A2i)

ẽ2i = P̃ [Ai = 2|Xm
i ] =

exp(η̃A2i)

1 + exp(η̃A1i) + exp(η̃A2i)

ẽi =
[
ẽ0i ẽ1i ẽ2i

]T

The parameter values used in this part were the following.

αXm1 = (log(2.0), log(1.0), log(0.2), log(1.5), log(1.0), log(0.5))T

αXm2 = (− log(2.0),− log(1.0),− log(0.2),− log(1.5),− log(1.0),− log(0.5))T

(α01,α02) =

⎧
⎪⎨

⎪⎩

(−0.2,−0.5) for prevalence 33:33:33
(+1.25,+0.95) for prevalence 10:45:45
(−0.7,+2.1) for prevalence 10:10:80

These tentative PSs were then used as follows to define the additional binary covariates X7i through X9i,
which were designed as rare unmeasured conditions.

X7i := I(U0i ≤ [ẽ0i − δ0])

X8i := I(U1i ≤ [ẽ1i − δ1])

X9i := I(U2i ≤ [ẽ2i − δ2])

Uji’s were independent U(0, 1) variables to introduce randomness and δj ’s were manipulated to achieve the
desired marginal prevalence of 1% for each unmeasured covariate. The actual chosen values are shown below.

(δ0, δ1, δ2) =

⎧
⎪⎨

⎪⎩

(0.37, 0.63, 0.70) for prevalence 33:33:33
(0.11, 0.80, 0.85) for prevalence 10:45:45
(0.13, 0.35, 0.92) for prevalence 10:10:80
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4.2.3 Treatment generation
Treatment Ai was assigned based on all covariates Xi including both measured Xm

i and unmeasured Xu
i .

⎧
⎪⎪⎨

⎪⎪⎩

ηA1i = log

(
P [Ai = 1|Xi]

P [Ai = 0|Xi]

)
= α01 +XT

i αX1

ηA2i = log

(
P [Ai = 2|Xi]

P [Ai = 0|Xi]

)
= α02 +XT

i αX2

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

e0i = P (Ai = 0|Xi) =
1

1 + exp(ηA1i) + exp(ηA2i)

e1i = P (Ai = 1|Xi) =
exp(ηA1i)

1 + exp(ηA1i) + exp(ηA2i)

e2i = P (Ai = 2|Xi) =
exp(ηA2i)

1 + exp(ηA1i) + exp(ηA2i)

Ai ∈ {0, 1, 2} ∼ Multinomial
(
(e0i, e1i, e2i)

T , 1
)

The intercept and measured covariate coefficients were the same as before. The coefficients for the additional
unmeasured covariates were the following.

For prevalence 33:33:33
{
αXu1 = (+10,−10,+3)T

αXu2 = (+10,+2,−10)T

For prevalence 10:45:45
{
αXu1 = (+10,−10,+2)T

αXu2 = (+10,+2,−10)T

For prevalence 10:10:80
{
αXu1 = (+10,−10,+2)T

αXu2 = (+10,+2,−10)T

• X7i, which was more common with a high ẽ0i, had positive coefficients for both linear predictors,
meaning treatment assignment was strongly driven away from group 0 when X7i = 1.

• X8i, which was more common with a high ẽ1i, had a negative coefficient for the first linear predictor,
but positive for the second, meaning treatment assignment was manipulated such that group 0 was
strongly preferred over 1 and group 2 was preferred over 0 in effect driving assignment away from group
1 when X8i = 1.

• X9i, which was more common with a high ẽ2i, had a positive coefficient for the first linear predictor,
but negative for the second, meaning treatment assignment was manipulated such that group 1 was
preferred over 0 and group 0 was strongly preferred over 2 in effect driving assignment away from group
2 when X9i = 1.

In more clinical term, X7i = 1 was a contraindication for treatment 0, X8i = 1 was a contraindication for
treatment 1, and X9i = 1 was a contraindication for treatment 2.
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4.2.4 Outcome generation
The linear predictor (log rate) for the Poisson count outcome was assigned based on all covariates and treat-
ment. The log link was used to avoid the issue of non-collapsibility of the logit link [Greenland et al., 1999].

ηY i = β0 + βA1I(Ai = 1) + βA2I(Ai = 2)

+XT
i βX + I(Ai = 1)XT

i βXA1 + I(Ai = 2)XT
i βXA2

Yi ∼ Poisson (exp(ηY i))

Additionally, the following counterfactual log rates were kept for use in calculating the marginal causal
effects.

ηY 0
i
= β0 +XT

i βX

ηY 1
i
= β0 + βA1 +XT

i βX +XT
i βXA1

ηY 2
i
= β0 + βA2 +XT

i βX +XT
i βXA2

The outcome model parameter values were the following.

β0 = log(0.20) Baseline rate

(βA1,βA2) = (log(0.9), log(0.6)) Protective main effects

βXm = (log(1.0), log(2.0), log(0.2), log(1.0), log(1.5), log(0.5))T

βT
Xu =

⎧
⎪⎨

⎪⎩

(0, 0, 0) No unmeasured confounding
(log(2), log(2), log(2)) Moderate unmeasured confounding
(log(10), log(10), log(10)) Strong unmeasured confounding

[
βT
XA1

βT
XA2

]
=

[
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

]
No effect modification

4.3 Methods to evaluate
4.3.1 Trimming thresholds
The following thresholds were used for each three-group trimming methods to examine the influence of
progressively stricter trimming.

Trimming Method Scale Thresholds
Crump Propensity score {0, 1/60, 1/30, 1/15, 0.10, 0.15, 0.20, 0.30}
Stürmer Quantile {0, 1/60, 1/30, 0.05, 0.10, 0.15, 0.20, 0.30}
Walker Preference score {0, 1/40, 0.05, 0.10, 0.15, 0.20, 0.30}

4.3.2 Confounding adjustment methods
We used three PS weighting methods as confounding adjustment methods: inverse probability of treatment
weights (IPTW) [Robins et al., 2000], matching weights (MW) [Li and Greene, 2013, Yoshida et al., 2017],
and overlap weights (OW) [Li et al., 2016, Li et al., 2018, Li and Li, 2018]. The definitions were as follows.
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IPTWi =
1

2∑
j=0

I(Ai = j)eji

MWi =
min(e0i, e1i, e2i)
2∑

j=0
I(Ai = j)eji

OWi =

1
1

e0i
+ 1

e1i
+ 1

e2i

2∑
j=0

I(Ai = j)eji

4.4 Estimand
The following outcome model was fit using the glm function with the poisson family and the trimmed
and weighted data. The variance estimate was obtained using the sandwich function in the sandwich
package. The third contrast (group 2 vs group 1) was calculated as θ̂A2 − θ̂A1 and its variance estimate was
calculated from the variance covariance matrix accordingly, taking into consideration the covariance.

log(E[Yi|Ai]) = θ0 + θA1I(Ai = 1) + θA2I(Ai = 2)

The estimands (true θ’s) were the marginal causal log rate ratio in the respective trimmed and weighted
cohorts. These true effects can be calculated from the true coefficients (conditional effects) in the data
generation mechanism in the settings without treatment effect modification by other covariates by the virtue
of collapsible log link [Greenland et al., 1999]. That is, θA1 = βA1 and θA2 = βA2.

The simulation framework was designed to be more general as follows. In settings with treatment effect
modification, the true effects depended on the covariate distribution in the trimmed and weighted cohort.
We utilized the saved counterfactual log rates for each individual (below) in calculating the causal effects.

ηY 0
i
= β0 +XT

i βX

ηY 1
i
= β0 + βA1 +XT

i βX +XT
i βXA1

ηY 2
i
= β0 + βA2 +XT

i βX +XT
i βXA2

Each remaining individual in the trimmed cohort was cloned three times to represent counterfactuals under
three treatments. The treatment variable Ai was forced to be 0, 1, and 2 for the three clones. The outcome
variable Yi was set to be the corresponding counterfactual mean count. For example, exp(ηY 0

i
) for the clone

with Ai = 0. The same model fitting procedure was conducted using this augmented dataset containing three
counterfactual clones for each original individual to calculate the true effect in the dataset. The calculated
log rate ratios were average over simulation iterations.

We focused on the marginal estimands rather than conditional estimands that condition PSs because the
latter require explicit modeling of the PS-outcome functional form and PS-treatment interactions. Both of
these can become complicated with J + 1 PSs, of which J linearly independent PSs must be incorporated.

4.5 Performance measures
The trimmed sample size, bias, simulation standard error (SE), and mean squared errors (MSE) were ex-
amined. The bias, SE, and MSE were defined as follows for a true log rate ratio θ and the corresponding
estimate θ̂r (r indexing a simulation iteration 1, ..., R).
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Bias =

(
1

R

R∑

r=1

θ̂r

)
− θ

SE =

√√√√ 1

R− 1

R∑

r=1

(
θ̂r −

(
1

R

R∑

r=1

θ̂r

))2

MSE = SE2 + Bias2

Bias of the estimators with respect to increasing trimming thresholds was the metric of most interest. Bias
was calculated as the the average deviation of the estimate from the truth on the log rate ratio scale. The
simulation SE was the variability (standard deviation) of estimates around their mean, whereas the MSE
was the variability around the truth. MSE was used to examine the bias-variance trade off of increasing
levels of trimming.
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5 Additional simulation results
5.1 Bias in log rate ratio estimates
5.1.1 No unmeasured confounding
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Panel layout: The rows of panels represent confounding adjustment methods: unadjusted, IPTW, MW, and OW. The columns
of panels represent the group contrast and then trimming methods. Within each panel, the X axis represents progressive increase
in trimming threshold (more observations are trimmed off). The vertical hairlines are at the tentative thresholds used for the
empirical data illustration (Figure 1).
Abbreviations: 1vs0: group 1 vs group 0 treatment contrast; 2vs0: group 2 vs group 0 treatment contrast; 2vs1: group 2 vs
group 1 treatment contrast; IPTW: inverse probability of treatment weights; MW: matching weights; OW: overlap weights.

In this case without unmeasured confounding by X7,. . . ,X9, there was a minor increase in bias with trimming
after initial decrease although it decreased again with further trimming.
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5.1.2 Strong unmeasured confounding
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Panel layout: The rows of panels represent confounding adjustment methods: unadjusted, IPTW, MW, and OW. The columns
of panels represent the group contrast and then trimming methods. Within each panel, the X axis represents progressive increase
in trimming threshold (more observations are trimmed off). The vertical hairlines are at the tentative thresholds used for the
empirical data illustration (Figure 1).
Abbreviations: 1vs0: group 1 vs group 0 treatment contrast; 2vs0: group 2 vs group 0 treatment contrast; 2vs1: group 2 vs
group 1 treatment contrast; IPTW: inverse probability of treatment weights; MW: matching weights; OW: overlap weights.

In this case with strong unmeasured confounding by X7,. . . ,X9, the bias reduction with trimming was more
apparent with contrasts 2vs0 and 2vs1, which were more biased to begin with. As observed in the moderate
unmeasured confounding case, Crump trimming increased bias in the 10:10:80 treatment prevalence.
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5.2 Variance of log rate ratio estimates
5.2.1 No unmeasured confounding
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Panel layout: The rows of panels represent confounding adjustment methods: unadjusted, IPTW, MW, and OW. The columns
of panels represent the group contrast and then trimming methods. Within each panel, the X axis represents progressive increase
in trimming threshold (more observations are trimmed off). The vertical hairlines are at the tentative thresholds used for the
empirical data illustration (Figure 1).
Abbreviations: 1vs0: group 1 vs group 0 treatment contrast; 2vs0: group 2 vs group 0 treatment contrast; 2vs1: group 2 vs
group 1 treatment contrast; IPTW: inverse probability of treatment weights; MW: matching weights; OW: overlap weights.

Prominent convex patterns were seen in IPTW estimators, indicating that efficiency gain in IPTW was
present even in the absence of unmeasured confounding. Much smaller initial decreases in SEs were seen
in unadjusted estimators with Crump and Walker trimming. The unadjusted estimators were unweighted,
thus, they did not suffer the variance inflation by huge weights in the tails of PSs. Therefore, the very minor
initial reductions in unadjusted estimator SEs may be due to the bias reduction property of trimming (see
the strong unmeasured confounding case).
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5.2.2 Strong unmeasured confounding
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Panel layout: The rows of panels represent confounding adjustment methods: unadjusted, IPTW, MW, and OW. The columns
of panels represent the group contrast and then trimming methods. Within each panel, the X axis represents progressive increase
in trimming threshold (more observations are trimmed off). The vertical hairlines are at the tentative thresholds used for the
empirical data illustration (Figure 1).
Abbreviations: 1vs0: group 1 vs group 0 treatment contrast; 2vs0: group 2 vs group 0 treatment contrast; 2vs1: group 2 vs
group 1 treatment contrast; IPTW: inverse probability of treatment weights; MW: matching weights; OW: overlap weights.

When unmeasured confounding was strong, noticeable initial decreases in the SEs were also observed for
unadjusted, MW, and OW estimators. The clearest demonstration is in the 2 vs 0 contrast with Stürmer
trimming. As none of these three estimators suffer from huge weights, these findings may be explained by
bias reduction. That is, when the estimates decreased in magnitude with reduced bias by the virtue of
trimming, SEs also shrank (typically, small effects tend to be associated with smaller SEs).
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5.3 MSE of log rate ratio estimates
5.3.1 No unmeasured confounding
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Panel layout: The rows of panels represent confounding adjustment methods: unadjusted, IPTW, MW, and OW. The columns
of panels represent the group contrast and then trimming methods. Within each panel, the X axis represents progressive increase
in trimming threshold (more observations are trimmed off). The vertical hairlines are at the tentative thresholds used for the
empirical data illustration (Figure 1).
Abbreviations: 1vs0: group 1 vs group 0 treatment contrast; 2vs0: group 2 vs group 0 treatment contrast; 2vs1: group 2 vs
group 1 treatment contrast; IPTW: inverse probability of treatment weights; MW: matching weights; OW: overlap weights.

The MSE reduction was observed in IPTW, but was not apparent in MW and OW in the setting without
unmeasured confounding.
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5.3.2 Strong unmeasured confounding
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Panel layout: The rows of panels represent confounding adjustment methods: unadjusted, IPTW, MW, and OW. The columns
of panels represent the group contrast and then trimming methods. Within each panel, the X axis represents progressive increase
in trimming threshold (more observations are trimmed off). The vertical hairlines are at the tentative thresholds used for the
empirical data illustration (Figure 1).
Abbreviations: 1vs0: group 1 vs group 0 treatment contrast; 2vs0: group 2 vs group 0 treatment contrast; 2vs1: group 2 vs
group 1 treatment contrast; IPTW: inverse probability of treatment weights; MW: matching weights; OW: overlap weights.

When the unmeasured confounding was strong, the MSE was more heavily influenced by bias than variance.
As a result, all of IPTW, MW, and OW demonstrated decrease in the MSE for the more biased treatment
contrasts (2vs0 and 2vs1). Crump trimming increased the MSE in the 10:10:80 treatment prevalence due to
increase in bias.
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