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ABSTRACT 1 

Spatially resolved, multiplexed tissue imaging makes it possible to characterize cell types and 2 

states in human resection specimens, xenografts and animal tissues. A growing number of tissue 3 

imaging methods applicable to standard formaldehyde fixed paraffin embedded (FFPE) tissue 4 

sections have been described, the vast majority of which rely on antibodies for antigen detection 5 

and mapping. This protocol focuses on methods for confirming the selectivity and specificity of 6 

such antibodies for constructing and validating antibody panels. Although we use tissue-based 7 

cyclic immunofluorescence (t-CyCIF) as an imaging approach, the antibody testing methods we 8 

described are broadly applicable. We demonstrate the protocol by assembling a 16-antibody 9 

panel designed to enumerate and localize T-cells and B-cells, macrophages, and cells expressing 10 

immune checkpoint regulators in tumor resection specimens and by showing how the panel 11 

performs in the identification of common and rare immune cell types in lung cancer. 12 
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INTRODUCTION 1 

Tissue biopsies and resections are among the most widely acquired patient samples in medicine 2 

and their analysis by anatomic pathologists is the basis for differential diagnosis of many 3 

diseases and virtually all cases of cancer. Tissue imaging also plays an important role in many 4 

basic and translational studies in developmental biology, pathophysiology and drug 5 

development. In clinical practice, tissue samples are usually formalin-fixed and paraffin 6 

embedded (FFPE), sectioned and then stained with haemotoxylin and eosin (H&E) following 7 

protocols that have been in place for nearly a century. Molecular diagnosis of such samples is 8 

facilitated in a subset of cases by immunohistochemistry (IHC) and in a yet smaller subset of 9 

cases by RNA and DNA fluorescence in-situ hybridization (FISH). IHC of FFPE tissue typically 10 

provides data on the level of expression and spatial distribution of a single marker1 although two 11 

marker IHC is occasionally used2. 12 

The recent development of highly multiplexed imaging technologies has raised the possibility of 13 

much deeper molecular analysis of human resection specimens. Methods that can be 14 

implemented on top of universal FFPE-based pathology workflows are particularly promising. In 15 

contrast to single-cell sequencing or flow cytometry of disaggregated tissues, highly multiplexed 16 

digital histology provides data on cell identity and morphology within a preserved tissue context. 17 

Highly multiplexed tissue imaging has many applications in basic and translational research, for 18 

example in the analysis of genetically engineered and xenografted mice, in zebrafish and in 19 

drosophila embryos as well as a wide range of other areas of investigation3. Multiplexed tissue 20 

imaging is likely to find wide application in the analysis of clinical trial specimens where tissue-21 

sparing methods are highly valued and also in the clinical workflows used for diagnostic surgical 22 

pathology. 23 

Some multiplexed tissue imaging methods involve optical imaging whereas others use laser or 24 

ion beam ablation followed by spectroscopy. Ablation methods include multiplexed ion beam 25 

imaging (MIBI) and imaging mass cytometry (IMC); these methods achieve a high degree of 26 

multiplexing using antibodies as reagents, metals as labels and mass spectrometry as a detection 27 

modality4–6. Methods such as CODEX7, DNA exchange imaging (DEI)8 and tissue-based cyclic 28 

immunofluorescence (t-CyCIF)9,10 use fluorescence imaging and a variety of primary-secondary 29 

detection chemistry to detect antigen binding by primary antibodies; t-CyCIF is conceptually the 30 
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simplest in that it involves conventional secondary antibodies and fluorophore-conjugated 1 

primary antibodies to assemble highly multiplexed images in a sequential manner. 2 

Multiple approaches have also been developed for spatially resolved, highly multiplexed imaging 3 

of RNA (spatial transcriptomics11), including fluorescent in situ sequencing (FISSEQ)12,13, 4 

padlock probes and in situ target-primed rolling-circle amplification14 and multiplexed error-5 

robust fluorescence in situ hybridization (MERFISH)15,16. Analysis of RNA in clinical samples 6 

has the potential to directly utilize a rapidly growing body of genomic and molecular data, but it 7 

can also be problematic due to the lability of RNA and the complexities of standardizing pre-8 

analytical variables in many clinical settings17,18.  9 

Recent interest in multiplexed histology in cancer is driven in part by the introduction of immune 10 

checkpoint inhibitors (ICIs), which are changing the treatment options for many solid and 11 

hematological malignancies19,20. ICIs function by disrupting cell-to-cell interactions in a cell 12 

non-autonomous manner and by activating normal tumor surveillance by the immune system. 13 

Knowing the numbers, types and locations of immune cells in the tumor microenvironment is 14 

thought to be essential for understanding mechanisms of action. The use of ICIs as first line 15 

therapeutic agents21,22 and as neo-adjuvant therapies23 is increasingly common: targeting the 16 

immune checkpoints mediated by CTLA-4 (cytotoxic T lymphocyte-associated antigen-4), PD-1 17 

(programmed cell death-1 receptor) and PD-L1 (programmed cell death ligand 1) has been 18 

shown to elicit dramatic therapeutic responses in a range of cancers including advanced non-19 

small-cell lung carcinoma, melanoma, renal-cell carcinoma, and Hodgkin lymphoma24–30.  20 

Even in the case of tumor types that are broadly ICI responsive (e.g. melanoma), not all patients 21 

benefit from existing drugs and there are many types of tumors (e.g. triple negative breast 22 

cancer) in which only sporadic responses are observed. Thus, predictive biomarkers are needed. 23 

These biomarkers are likely to involve multiplex panels that enable “immune profiling” to 24 

determine the abundance, locations and states of tumor-associated immune cells and the levels of 25 

expression of ICI ligands and receptors on immune and tumor cells. Relevant intracellular states 26 

for immune cells include degrees of activation and exhaustion31, rates of proliferation, degree of 27 

apoptotic priming and levels of replication, metabolic and other stresses. 28 
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Multiplex flow cytometry suggests that a minimum of 12-14 cell surface markers is required for 1 

a basic enumeration of T and B cell subtypes. Identifying stromal and tumor cells and their states 2 

likely requires a similar number of immunofluorescence markers. In addition, multiple 3 

checkpoints are currently being targeted therapeutically: approved drugs exist against PD-1, PD-4 

L1 and CTLA-4 and multiple Phase II/III trials are ongoing32,33 for drugs targeting LAG3 5 

(Lymphocyte-Activation Gene 3), TIM3 (T cell Immunoglobulin Mucin-3), and TIGIT (T-cell 6 

Immunoreceptor with Ig and ITIM Domains). Thus, biomarker discovery for ICIs will require 7 

the ability to rigorously enumerate cell types and states based on the levels of expression of 20-8 

40 immunofluorescence markers34–38. Ideally, these measurements can be made using technical 9 

platforms that allow individual research teams to develop and test new “mix and match” assays 10 

for specific drug targets, immune cell populations, and tumor biomarkers. 11 

Regardless of how antibody-antigen conjugates are detected, virtually all multiplexed tissue 12 

imaging (e.g. MIBI, IMC, CODEX, DEI, t-CyCIF, etc.) involves the use of primary antibodies. 13 

An extensive literature exists on the use of primary antibodies in research and clinical workflows 14 

and it is well established that specificity and reproducibility are influenced by a range of 15 

analytical factors39 that include dilution, incubation conditions, type and extent of conjugation 16 

etc. Some commercially available antibodies work well and others poorly or not all. Ongoing 17 

assessment is also necessary to reaffirm the reliability of antibodies that do work, actively 18 

monitoring staining across tissue types and batches of reagent. 19 

In this protocol, we focus on methods for constructing and validating antibody panels for 20 

immune profiling of human tumors with a focus on enumerating T-cell and B-cells, 21 

macrophages, and cells expressing immune checkpoint regulators. We discuss factors that impact 22 

the assembly of such a panel and present data for a 16-plex panel that enumerates canonical 23 

immune cell types (B cells, helper and cytotoxic T cells, regulatory T cells, NK cells, 24 

macrophages and dendritic cells) with the potential to differentiate among 65,000 states using 25 

binary gating. 37 of these antigen-defined states comprised greater than 0.5% of the total 26 

immune cell population in primary lung tumors (the tumor type used as a reference in the current 27 

work) of which 19 states are commonly encountered immune cell subtypes. However, rare cells 28 

were identified for about 103 distinct antigen combinations (Supplementary Fig. 1). The 29 

imaging method used in this protocol to construct and test antibody panels involves tissue-based 30 
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cyclic immunofluorescence (t-CyCIF)9,10, an extension of older approaches to sequential 1 

assemble high-plex images using fluorophore inactivation and/or antibody stripping. However, 2 

our approaches are applicable to many other imaging methods and we anticipate that that 3 

primary antibodies tested by t-CyCIF can also be used in other tissue imaging approaches. 4 

t-CyCIF constructs high-dimensional images by sequential 4-6 color immunofluorescence 5 

imaging on a conventional microscope and can be extended to at least 60 antigens. In general, we 6 

find that the fluorophore inactivation process (which is based on light and acid or base-catalyzed 7 

oxidation) substantially reduces auto-fluorescence and that signal-to-noise ratio often increases 8 

with cycle number. For most antibodies, the order of addition does not appear to be critical and 9 

preservation of immunogenicity and morphology is excellent. For some samples, we have 10 

demonstrated preservation of structure out to the limits of super-resolution optical microscopes 11 

(about 140 nm laterally)9. To date, we have tested primary antibodies against cell cycle 12 

regulators, signaling proteins and kinases, cell lineage markers, transcription factors, a wide 13 

array of cell state markers9, and multiple immune markers (see https://www.cycif.org/ for 14 

details)9,40,41. Efforts are also underway to integrate multiplex immunofluorescence imaging with 15 

FISH, in situ mRNA profiling and DNA mutation detection42,43,43,44 as part of a multi-parametric 16 

approach to tumor characterization and human tumor atlas construction. 17 

Fluorescence imaging of tissue (including by t-CyCIF) is possible on a variety of conventional 18 

fluorescence microscopes but such microscopes generally have fields of view that are smaller 19 

than those achieved by custom slide scanners. In either case, the instruments must have 20 

appropriate filters, an automated stage holder for securing slides, and the ability to record and 21 

retrieve precise stage positions across successive imaging cycles. We routinely perform immune 22 

profiling using wide-field microscopes with air objectives having numerical apertures of NA~ 23 

0.2 to 0.6, but higher resolution instruments such as confocal, deconvolution and structured 24 

illumination microscopes make it possible to capturing fine subcellular detail. 25 

One advantage of t-CyCIF is that individual investigators can create their own panels without the 26 

need for special equipment, using widely available reagents in a mix and match approach that is 27 

adaptable to specific tissue types and scientific questions. It seems very likely that antibody 28 

panels developed using t-CyCIF will be applicable (perhaps with small modification such as 29 

differing dilution) to other high-dimensional multiplexing approaches, regardless of 30 
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instrumentation. It is also likely that the specific antibodies best suited to t-CyCIF will be largely 1 

the same as antibodies for IMC, MIBI, DEI and CODEX because antigen detection is 2 

fundamentally similar; the primary difference among these approaches involves the mode of 3 

detection (and thus, the atoms or molecules conjugated to the primary antibody).  4 

The current protocol covers methods for immune panel assembly and validation that include 5 

slide staining, image acquisition, and data processing as well as multiple techniques for data 6 

visualization; these methods can be implemented by most laboratories familiar with 7 

immunofluorescence using a variety of microscopes. We describe development of a 16-marker 8 

panel for characterizing canonical immune cell types as well as the proliferation marker Ki-67, 9 

cell lineage markers GFAP (glial fibrillary acidic protein; an intermediate filament protein), α-10 

SMA (alpha-smooth muscle actin), and a pan-isoform keratin epitope. In the anticipated results 11 

section below, we use this antibody panel to profile lung cancer samples, identifying multiple 12 

immune populations and visualizing their spatial distribution within tumors. We also show how 13 

imaging can be a superior technology for the detection of very rare immune cell subtypes that are 14 

hard to identify using flow cytometry. Imaging is highly advantageous in this regard in that the 15 

sample is preserved, making it possible to return to an unanticipated signal and to subject it to 16 

detailed visual and morphological analysis. 17 

We envision that successful immune cell profiling will involve the ability to innovate quickly in 18 

the context of a torrent of new data on immuno-oncology as well as a commitment to the free 19 

and open sharing of information, reagents, methods, and computational tools, some of which will 20 

be reduced to practice by industry for general clinical use. Our group is developing an antibody 21 

validation resource at https://www.cycif.org/ comprising a list of reagents, images and caveats 22 

and a discussion of best practices; the site also describes data analysis, visualization and 23 

management software needed to construct pre-cancer and cancer atlases45. We are also 24 

performing cross-platform comparison to assist laboratories using MIBI, CODEX or DEI. We 25 

hope that instrument and antibody suppliers will respond to these academic efforts by 26 

manufacturing quality-controlled panels for clinical use.  27 

Development of immune profiling panels 28 

Box 1: Approaches to Antibody Testing and Qualification 29 
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There is no single approach to testing antibodies for tissue-based imaging, particularly in the 1 

case of human samples. Moreover, no antibody is ever fully “validated” since the pattern and 2 

intensity of staining is always subject to unknown confounders arising from pre-analytical 3 

variables encountered during sample acquisition and preparation46,47 and from analytical 4 

variables encountered during sample processing and analysis. Instead, a variety of different 5 

approaches are needed depending on the sample and the antibody being studied. These 6 

approaches include (i) comparing patterns of staining by different antibodies on the same sample, 7 

which is particularly useful when highly qualified FDA-approved antibody reagents are available 8 

as comparators (e.g. anti PD-1 antibodies48), (ii) examining patterns of staining in tissues having 9 

stereotypical structures and spatial distributions of multiple cell types (e.g. immune cells in 10 

tonsil), and (iii) staining tissues with known genetic lesions such as HER2 over-expression or 11 

CDKN2A deletion. The later approach is particularly effective in the case of antibody panels for 12 

profiling mouse tissues; these panels can often be tested using genetically engineered mouse 13 

models (although we do not discuss this further in the current protocol). 14 

Comparing Multiple Antibodies 15 

Antibodies can be compared to each other at the level of pixels, cells or tissues (Fig. 1). In all 16 

cases, the starting point is an image in which different cycles of imaging have been correctly 17 

registered to each other. We have created the open-source ASHLAR algorithm 18 

(https://github.com/sorgerlab/ashlar) for joining together (stitching) successive image panels and 19 

then registering images across channels; ASHLAR improves on methods currently available in 20 

ImageJ (https://imagej.nih.gov/ij/) and is compatible with any image format complying with the 21 

Bio-formats standard49–52. 22 

a. Pixel-Level Analysis 23 

The signals generated from two or more antibodies that selectively detect the same protein 24 

should, in principle, be highly correlated with each other down to the resolution of the 25 

microscope. This can be assessed by measuring the correlation between images at pixel 26 

resolution; image segmentation and morphological analysis are not necessary, and the analysis is 27 

therefore straightforward and objective. Pixel-level correlation analysis is the preferred method 28 

for comparing antibodies against the same antigen when labeling with different fluorophores is 29 

possible (this is straightforward when primary antibodies derive from different species). To 30 
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measure Pearson correlation on either a log or linear scale, antibodies are labelled with different 1 

fluorophores either by direct conjugation or using suitable secondary antibodies and images from 2 

different channels are then registered and compared directly. 3 

b. Cell–Level Analysis 4 

When fluorescence images are compared to IHC images or two different IHC antibodies are 5 

compared to each other, it is almost always necessary to use successive tissue slices. In this case, 6 

different cells are being stained and pixel level comparison is not meaningful. Instead, analysis 7 

usually involves image segmentation, binary scoring and then correlating the number of positive 8 

and negative cells across sections. However, matching morphologies and staining patterns across 9 

different cells is inherently more subjective than pixel-level analysis and, at the current state of 10 

the art, human judgement is often required (although the introduction of machine learning 11 

methods, which have demonstrated super-human performance in other medical imaging tasks53, 12 

may change this). 13 

Conventional computer-assisted cell-level analysis involves three sequential steps. First, cell 14 

boundaries are identified by computational segmentation, followed by integrating signal intensity 15 

across each cell, channel-by-channel, while subtracting background signal. Second, distributions 16 

are constructed for the integrated staining intensity in each channel and analyzed manually or 17 

automatically to score positive and negative populations. This yields a high-dimensional cell 18 

state vector in which both absolute intensities and correlations between these intensities are 19 

informative (e.g. a CD4+ CD8+ double thymocyte is different from a thymocyte positive for 20 

either marker alone). Third, correlations among state vectors for different cells are visualized 21 

using tools and methods such as multi-axis scatter plots, t-SNE plots, and X-shift plots. These 22 

approaches help to cluster cells with similar state vectors and lineage markers. More rigorous, 23 

multivariate statistical analyses can then be used to quantify the nature and degree of similarity 24 

or difference, for example by discriminant analysis54 or principal components analysis55. Spatial 25 

analysis can also be performed to determine if different cell populations (cells whose state 26 

vectors are similar) have a particular spatial relationship to each other.  27 

Additional analytical methods include computational analysis of cell and tissue morphology (e.g. 28 

to identify membranes, blood vessels or subcellular organelles and the cytoskeleton). For 29 
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simplicity, we do not describe these approaches and refer readers to methods for proximity 1 

analysis in multiplexed tissue described in the literature9, 56. 2 

c. Tissue-Level Analysis 3 

Tissue-level analysis provides information on the spatial distribution of cells, cell state attributes, 4 

membranes, tissue boundaries and structures such as blood and lymphatic vessels. In computer-5 

assisted tissue-level analysis, the positions (centroids) of individual cells are typically recorded, 6 

making it possible to revisit specific cells for further analysis or human inspection. Tissue level 7 

analysis is most effective for antibody testing and validation using tissues that have a 8 

stereotypical distribution of cell types. One of the most frequently used human tissues is tonsil; it 9 

contains a wide variety of immune cell types compartmentalized in primary lymphoid follicles 10 

and secondary lymphoid follicles with germinal centers (e.g. see 11 

https://www.proteinatlas.org/learn/dictionary/normal/tonsil); tonsils are also readily available 12 

under discarded tissue protocols and FFPE specimens are available from commercial vendors 13 

including Origene, Pantomics and GeneTex. 14 

Tissue-level analysis of experimental samples typically involves the specification of regions of 15 

interest (ROIs), such as tumor and the non-neoplastic tissues surrounding the tumor, and 16 

calculation of relative levels staining in different ROIs. For example, the extent of tumor 17 

infiltration by immune cells is typically highly non-uniform, and immune cells are often 18 

substantially more abundant in an ROI corresponding to the tumor/stroma interface than the 19 

tumor interior. ROIs can be defined manually by pathologists based on classical morphological 20 

criteria following H&E staining. Tumor markers such as pan-keratin (an epitope shared among 21 

multiple keratin isoforms) or stromal markers such as alpha-smooth muscle actin make the 22 

identification of ROIs similar. In this protocol, we used an objective approach to ROI-definition 23 

based on a K-nearest neighbor (KNN) algorithm. The algorithm iteratively assesses whether a 24 

cell and its neighbors express tumor markers, assigning those that do to the tumor ROI and those 25 

that do not to non-neoplastic tissue.  26 

End Box 1 27 

Box 2: Tissue and Cells for Antibody Testing 28 

Selecting an appropriate set of samples for any tissue imaging project is obviously of paramount 29 

importance, but it is beyond the scope of the current article; a discussion of factors affecting 30 
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study design and statistical analyses can be found elsewhere57–59. In general, a range of sample 1 

types is used for antibody validation including clinical specimens with known genetic alterations. 2 

For example, malignant peripheral nerve sheath tumors with EED or SUZ12 mutations for testing 3 

antibodies against H3K27me3, or mismatch repair deficient tumors carrying inactivating 4 

alterations for testing antibodies against MSH2/MSH6 or MLH1/PMS2; in both instances there 5 

is a highly characteristic loss of signal in tumor cells with retention of signal in non-neoplastic 6 

(and genetically wild-type) stromal cells and neighboring normal tissues. Other FFPE tissue 7 

samples useful for antibody validation include specimens with known patterns of protein 8 

expression (e.g. breast or prostate cancer with expression of certain hormone receptors), or 9 

tissues containing cells from defined lineages (e.g. kidney/upper urinary tract and the Müllerian 10 

system for validating PAX8 antibodies, breast for GATA3 antibodies, and prostate for NKX3.1). 11 

Such FFPE validation samples can be compiled into tissue microarrays (TMAs) that allow 12 

investigators to not only assess sensitivity but also the specificity of the antibody reagents across 13 

dozens of normal and pathologic tissue types. 14 

Other reagents commonly used for antibody validation include cell lines subjected to si/shRNA 15 

knockdown, CRISPR-Cas9 genome editing60, ORF overexpression, drug or chemical exposure 16 

or environmental manipulation. Cultures of these cell lines are pelleted, fixed and embedded in 17 

FFPE blocks in the same manner as tissues; blocks with individual cell lines are then assembled 18 

into cell line microarrays (CMAs; see protocol below). Antibody can also be performed 19 

following conventional protocols for staining cultured cells (or following cell-based CyCIF)61 20 

but this is less ideal because of the impact of different fixation conditions on antibody 21 

performance.  22 

When using any tissue or cell line bank for antibody testing, staining should be evaluated for 23 

subcellular localization (e.g. nucleus, membrane, endoplasmic reticulum, cytoplasm), cell type 24 

(e.g. tumor, stromal cells), strength of signal, signal to noise ratio, and dynamic range (e.g. 25 

Supplementary Table 2). During antibody validation, we typically initiate testing of 26 

fluorophore-conjugated antibodies at a concentration of 10 µg/ml and select a concentration for 27 

use that gives optimal signal strength and signal to noise ratio. 28 

 29 

Creating FFPE Cell Microarrays (CMAs) for Antibody Testing  30 
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●TIMING 60 min 1 

! CAUTION Follow local biosafety guidelines for details on handling biohazardous materials 2 

1. Assemble a suitable panel of genetically engineered or drug-treated cell lines.  3 

2. Heat HistoGel (VWR, cat. no HG-4000-012) to 60 ºC to liquefy the solution. 4 

3. Collect cells from a confluent T75 flasks or 10 cm dishes into a 15-ml falcon tube. 5 

4. Centrifuge the samples at 200 g for 5 min. 6 

5. Remove the supernatant. 7 

6. Resuspend cell pellet in 500 µl of 4% phosphate buffered formaldehyde or 10% 8 

phosphate buffered formalin and fix at 4 ºC for 15 min. 9 

▲CRITICAL STEP Do not over fix the samples which can affect antigen-antibody 10 

binding.  11 

7. Centrifuge samples at 200 g for 5 min. 12 

8. Remove the supernatant. 13 

9. Resuspend cell pellet with 1 ml of PBS to wash. 14 

10. Centrifuge the samples at 200 g for 5 min. 15 

11. Remove PBS. 16 

12. Cut off the distal end (1 cm) of a 1 ml pipette tip and gently resuspend the cell pellet in 17 

300 µl of warm HistoGel. 18 

13. Place the HistoGel with cells on a piece of parafilm to allow a droplet to form. 19 

14. Incubate at 4 ºC for 1 h to allow the HistoGel droplet to harden. 20 

15. Subject the HistoGel droplet to paraffin embedding to create a FFPE block. 21 

16. Cut 5 µm sections from the FPPE tissue block and mount on slides. 22 

▲CRITICAL STEP Do not leave the sample in HistoGel without further processing into 23 

paraffin blocks for longer than couple of days. 24 

End Box 2 25 

Box 3: Cell Type Identification 26 

The identification of immune cell types is typically based on assessing the presence or absence 27 

of expression of CD (cluster of differentiation) and other cell surface markers as well as lineage-28 

specific transcription factors. The binary (antigen positive or antigen negative) score across 29 

multiple markers identifies the cell type and the greater the number of markers, the more precise 30 
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the subtyping (e.g. CD4+ CD8+ staining identifies double positive T cells). The assumption is 1 

typically made that CD markers are present or absent depending on cell type. The multi-channel 2 

distribution of staining intensities for a cell therefore represents its identity convolved by 3 

measurement of noise and intrinsic cell-to-cell variability (Fig. 1). Calling immune cell types 4 

from image data in this manner starts with subtracting fluorescence signals arising from auto-5 

fluorescence and nonspecific antibody binding, segmenting the image to identify individual cells 6 

and then integrating staining intensity over each cell.  7 

a. Image Segmentation 8 

Segmentation of images with densely packed cells is a challenging task, particularly when cells 9 

of different sizes and shapes are intermingled in tissues62. Segmentation is the focus of an entire 10 

subfield of machine vision63,64 and new approaches that learn directly from pixel-level data 11 

(bypassing segmentation altogether) are also in development. The approaches described in this 12 

protocol represent a good starting point for high-dimensional image analysis, but they are among 13 

the simplest available; users may therefore wish to investigate other options. We typically apply 14 

standard watershed algorithms (in ImageJ or MATLAB; available at our GitHub repository: 15 

https://github.com/sorgerlab/cycif) to identify nuclei (of Hoechst 33342-stained nuclei imaged in 16 

the “DAPI” channel) and then dilate the nuclear mask to encompass a representative portion of 17 

the nucleus. Staining intensity is integrated over the cytoplasm, the nucleus or both 18 

compartments. Making masks slightly larger than a typical lymphocyte (~10 µm in diameter) is 19 

generally sufficient to quantify cell surface staining. A rolling-ball algorithm is used to remove 20 

global and regional background for each channel9. Evaluation of image segmentation and an 21 

assessment of the types of errors that typically occur is shown below in the Anticipated Results 22 

section (Supplementary Fig. 2).  23 

b. Manual Gating to Identify Cells with Positive or Negative Staining 24 

The intensity distribution obtained after image segmentation can be analyzed manually or 25 

automatically to identify positive and negative populations (Fig. 1, a manual gating example is 26 

shown in Supplementary Fig. 3). Manual gating is usually performed on one or two dimensions 27 

at a time, by pathologists or cell biologists who also review fluorescence images to assess 28 

staining patterns associated with different cut-off values. This is directly analogous to gating 29 

multi-dimensional flow cytometry data.  30 
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However, staining intensity for marker-positive and -negative populations is typically less well 1 

separated in segmented image data than in flow data. In addition, we have found that intensity 2 

distributions for CD markers (e.g. CD8a) can have more than two modes and these modes can 3 

vary across cell types. Other CD proteins are more highly expressed in some positive-scoring 4 

cell populations than others: (e.g. CD4 protein levels are substantially higher in T cells than in 5 

macrophages). Thus, it can be difficult to set a single cut-off value that effectively and 6 

reproducibly distinguishes cell types. This problem is compounded by pre-analytical variables 7 

such as cold ischemia time (the interval between when a sample is resected and the time it is 8 

placed in fixative) which can affect antigen preservation, differences in fixation time and 9 

processing, differences in the ages of the blocks (e.g. a sample resected one year before testing 10 

versus a sample resected a decade prior), or in the age of the sectioned tissue (e.g. a ‘fresh’ 11 

section that was cut from a paraffin block one day earlier versus one that was cut six months 12 

earlier and has been stored in ambient conditions). These factors are often called “pre-analytical 13 

variables” and have been studied extensively65,66. Analytical variables such as differences in 14 

antibody incubation time, imaging time (or instrument type) and resolution also affect gating. 15 

The practical consequence is that a single gate is often insufficient to determine marker positive 16 

and negative cell populations; instead, gates mush be adjusted for each sample manually, which 17 

is time consuming and potentially introduces biases in multi-sample analysis. 18 

The relatively poor separation between marker-positive and -negative cells in many tissue 19 

images (relative to flow cytometry data) reflects the fact that simple integration of staining 20 

intensities across cells destroys much of the information in an image. More advanced methods 21 

for analyzing morphology, perhaps by direct learning from pixel-level data, are therefore 22 

required. The approaches described here should, therefore, be regarded as representing a 23 

reasonable first step in the complex process of cell-type calling from images. 24 

c. Automated Gating Using Gaussian Mixture Modeling  25 

Some of the liabilities associated with manual gating are addressed by automated gating using 26 

Gaussian mixture modeling (GMM). GMM fits high-dimensional Gaussian distributions to 27 

empirical distributions in the log domain under the assumption that data points are generated 28 

from a mixture of a finite number of Gaussian (normal) distributions with unknown parameters 29 

(means and standard deviations)67. Each Gaussian in the final mixture model is assumed to 30 
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correspond to a different cell population, providing an objective method for estimating the 1 

number of subpopulations and assigning each cell in an image to a specific positive, negative or 2 

intermediate marker value. The introduction of too many distributions (overfitting) is penalized 3 

by criteria such as likelihood ratios68 or Bayesian Information Criterion (BIC)69. One limitation 4 

of GMM analysis is that it has limited ability to identify rare cell populations since the Gaussians 5 

corresponding to populations with few members are usually penalized and eliminated. Thus, 6 

GMM analysis and manual gating are complementary methods.  7 

d. Marker Analysis  8 

The procedures described above, and the cell level analyses described in Box 1 have the 9 

advantage that they create multi-dimensional marker scores, cell position plots, etc. that are 10 

directly analogous to familiar flow cytometry data. Higher-order correlations among markers 11 

can, therefore, be visualized and analyzed using standard approaches such as clustering, multi-12 

axis scatter plots, t-SNE plots70, and X-shift plots71.  13 

Box 4: Practical Implementation of a 16-antibody Immune Marker Panel 14 

To assemble a panel of antibodies for immune profiling, we used normal human tonsil (Fig. 1). 15 

For immune markers for which multiple antibodies were available, we performed pixel-by-pixel 16 

comparison across one or more cycles of t-CyCIF. As noted above, multi-channel fluorescence 17 

imaging is greatly superior to IHC in this setting because antibodies labelled directly or 18 

indirectly with different fluorophores can be mixed and used to stain a single tissue section. In 19 

other cases, we compared fluorescence and IHC images or used tissue-level data. The large 20 

numbers of fluorophore-conjugated antibodies available commercially for many immune 21 

markers make all three approaches useful. 22 

a. Antibody Validation by Pixel-by-Pixel Comparisons 23 

A single FFPE section of human tonsil was stained with four different commercially available 24 

antibodies raised against PD-1. This included two chemically conjugated antibodies, PD-1 clone 25 

EPR4877(2) conjugated to Alexa Fluor 647 (AF 647) and PD-1 clone NAT105 conjugated to 26 

Alexa Fluor 488 (AF 488) and two unconjugated antibodies, PD-1 clone EH33 (mouse) and PD-27 

1 clone D4W2J (rabbit) (Fig. 2 and Supplementary Tables 1, 2). EH33 and D4W2J detection 28 

involved indirect immunofluorescence with secondary antibodies: anti-rabbit (AF 647) for EH33 29 

and anti-mouse (AF 555) for D4W2J.  30 
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We found that staining from all four antibodies co-localized to the plasma membrane of cells in 1 

tonsil germinal centers (Fig. 2), which are lymphoid structures that contain large numbers of 2 

follicular T helper cells known to express PD-172. Pixel-by-pixel comparison of fluorescence 3 

intensities values showed that signals from three of the antibodies were highly correlated 4 

(Pearson correlation = 0.99), while the signal from clone NAT105 had a lower dynamic range 5 

and was less well correlated (Pearson correlation = 0.79-0.80; Fig. 2, and Supplementary Table 6 

2). We interpreted the low correlation to be a consequence of non-selective antigen binding. We 7 

selected PD-1 clone EPR4877(2) for the immuno-profiling panel due to its wide dynamic range 8 

(14300 ± 5800 fluorescence intensity arbitrary units) and the availability of a t-CyCIF 9 

compatible fluorophore conjugated antibody (see below, Experimental design) (Supplementary 10 

Tables 1, 2).  11 

Pixel-by-pixel comparison was also used to test other antibodies including three PD-L1 12 

antibodies (Supplementary Fig. 4), two FOXP3 antibodies (Supplementary Fig. 4), three 13 

CD45 antibodies (Supplementary Fig. 5), five LAG3 antibodies (Supplementary Fig. 6), and 14 

three CD11b antibodies (Supplementary Fig. 7). In each case, antibodies selected for inclusion 15 

in the multiplex profiling panel were prioritized based on pixel-by-pixel correlation values with 16 

comparators, dynamic range, and the availability of fluorophore-conjugated antibodies 17 

(Supplementary Tables 1, 2).  18 

  19 

b. Antibody Validation by Comparison to Established, Clinical-Grade IHC Antibodies  20 

Sixteen of the most promising antibodies against immune cell markers (as determined from the 21 

multiple validation methods discussed in Box 1, shown in Fig. 1 and indicated in 22 

Supplementary Table 3) were combined with pan-keratin, GFAP, α-SMA and Ki-67 antibodies 23 

in a 20 antibody panel that was then used for 9-cycle t-CyCIF staining of tonsil (Table 1, 24 

Supplementary Table 3); the panel was designed to distinguish immune subtypes, tumor cells 25 

and stromal cells and also to identify those cells of all types that were proliferating. 26 

  27 

Patterns of t-CyCIF staining were compared with IHC staining patterns for eight antibodies 28 

(against CD3, CD4, CD8, CD20, CD68, PD-1, PD-L1 and FOXP3) that are routinely used for 29 

clinical diagnosis by the Anatomic Pathology service at Brigham and Women’s Hospital; Fig. 3, 30 

Supplementary Table 4, and Supplementary Fig. 8) as well as by clinical services at other 31 
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medical centers. Such antibodies are the backbone of contemporary immune profiling2. As 1 

judged by two trained pathologists, the fluorescently conjugated and IHC antibodies showed 2 

similar patterns of staining; in particular, expected immune cell subtypes localized to the 3 

appropriate tonsil compartments in whole slide images. For example, small cells positive for 4 

CD20 staining were highly enriched in germinal centers, which contain many B cells, while 5 

CD4+ and CD8+ cells were found predominately in tissue surrounding the germinal centers, 6 

which contains many T cells (Fig. 3, and Supplementary Fig. 8). Large, irregular CD68+ cells 7 

were enriched in germinal centers, which contain numerous macrophages phagocytosing B cells 8 

that are undergoing apoptosis. In addition, antibodies against Ki-67, CD19, CD14, CD163 and 9 

IBA1 exhibited staining consistent with the established intra-tissue distribution of cycling cells, 10 

B cells, and macrophages, respectively.  11 

 12 

To quantify the fraction of cells positive for IHC staining in tissue sections adjacent to the 13 

section used for t-CyCIF, we used standard Aperio ImageScope software (Leica). We observed a 14 

high degree of correlation between the number of positive cells identified by IHC and by t-15 

CyCIF for all eight markers for which comparison was possible. For this analysis, a total of 16 

~288,000 cells were successfully segmented in the t-CyCIF data and ~80,000 to 237,000 cells 17 

were segmented from slides subjected to IHC. The Pearson correlation between the number of 18 

positive cells determined by IHC and by manual gating of t-CYCIF data across all eight markers 19 

was 0.98 (Fig. 3). A strong correlation was also observed when fluorescence intensity 20 

distributions were gated using GMMs (Fig. 3; Pearson correlation = 0.95).  21 

 22 

c. Antibody Validation by Co-segregation of Markers Across a Tissue 23 

Next, we performed tissue-level analysis by asking whether observed patterns of co-staining 24 

were consistent with prior knowledge of immune marker expression in specific sub-populations 25 

of immune cells found in human tonsil. To look for co-staining, intensity data for each 26 

segmented cell was visualized in two-way scatter plots (Fig. 4; Supplementary Figs. 9-10 and 27 

Supplementary Movie 1). This analysis revealed co-segregation of markers such as PD-1 and 28 

CD3, CD8a and CD3, PD-L1 and IBA1, CD3 and CD45RB, and FOXP3 with both CD4 and 29 

CD3 (Fig. 4, and Supplementary Fig. 9). Moreover, we found that a subset of T cells co-30 

expressed LAG3 and PD-1, a phenotype that is indicative of T cell exhaustion. Some cells co-31 
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expressed CD163 and IBA, two markers of macrophage lineages. Taken together, pixel-level 1 

analysis, comparison of immunofluorescence staining with established IHC patterns and tissue-2 

level analysis suggested that our profiling panel was selective and reproducible. 3 

End Box 4 4 

Box 5: Considerations for Assembling IF Antibody Panels 5 

Once antibodies are individually qualified as described in the preceding boxes, an antibody panel 6 

is assembled for subsequent testing. This assembly involves several considerations:  7 

1. To reduce errors, staining plans should include multiple overlapping (and even redundant) 8 

markers for defining each cell population. For example, cytotoxic T-cells are defined in our 9 

panel by co-expression of CD45, CD3, and CD8. 10 

2. In the specific case of t-CyCIF, the first cycle can accommodate up to three unconjugated 11 

antibodies generated in three different host species (e.g. mouse, rabbit, goat, etc.); the fourth 12 

channel is used for Hoechst staining). 13 

3. In t-CyCIF, subsequent cycle requires three antibodies that are conjugated to fluorophores. 14 

The fluorophores must have non-overlapping emission wavelength spectra; we recommend 15 

Alexa Fluor 488, Alexa Fluor 555, and Alexa Fluor 647.  16 

4. It is best to avoid combining, within one cycle, antibodies that stain different epitopes on the 17 

same or similar structures where there are very different levels of signal intensity; in this case, 18 

channel bleed through may obscure the weaker signal.  19 

5. Primary antibodies that are conjugated to fluorophores that are resistant to photo-inactivation 20 

such as Alexa Fluor 546, Alexa Fluor 568, and Alexa Fluor 594 should not be used for t-CyCIF 21 

due to signal carry-over between cycles. If necessary, primary antibodies conjugated to these 22 

fluorophores can be used in the final cycle of imaging when carry forward of signal is irrelevant. 23 

6. Some types of phycoerythrin (PE) (e.g. Abcam PE-conjugated antibodies) emit signal in both 24 

the FITC and Cy3 channel and should be avoided.  25 

END Box 5 26 

Extension of the Profiling Panel to Additional Immune Cell Types 27 
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The 16-marker immune profiling panel describe in this paper (Table 1) includes widely 1 

expressed immune lineage markers (CD45, CD45RB), T cell markers (CD3, CD4, CD8, 2 

FOXP3), B cell markers (CD19, CD20), macrophage markers (CD68, CD163, IBA1, CD14, 3 

CD11b), and immune checkpoint markers that are expressed on T cells, macrophages and some 4 

tumor cells (PD-1, PD-L1, LAG3) (Supplementary Table 3). To image primary lung tumors 5 

and their metastases (described in Anticipated Results section below) our antibody panel also 6 

includes α-SMA to label stromal cells, pan-keratin to label cancer cells and GFAP to label glial 7 

cells, which are intermingled with tumor cells in brain metastases. For other applications, the 8 

thousands of commercially available fluorophore-conjugated antibodies represent an excellent 9 

resource for the creation of panels customized to different needs (the antibodies we have tested 10 

can be found at https://www.cycif.org/). Addition of such antibodies to a panel should involve 11 

testing as described in Boxes 1-5 and application of “pillars” (standardized guidelines) for 12 

antibody qualification developed primarily for CLIA-certified immunohistochemistry 13 

laboratories39,73–75 One of these pillars is inclusion of positive and negative controls in each 14 

staining run; such controls can include normal tissues such as tonsil, TMAs or CMAs (and small 15 

control arrays can potentially be added to each slide). For some antigens, stereotypical variability 16 

is also observed in each tissue (e.g. CD markers on T cells) and this can serve as an internal 17 

staining control.  18 

Considerations in the Construction of Antibody Panels  19 

Even when individual antibodies have been validated, and the guidelines described in Box 5 20 

have been considered, it is necessary to demonstrate that mixtures of antibodies perform as 21 

expected. When combined, some antibodies generate unexpected patterns of staining not 22 

observed with individual antibodies, and mixtures of many antibodies can exhibit substantial 23 

interference (a phenomenon best described in multiplex immuno-binding assays76,77). In addition, 24 

cyclic staining methods such as t-CyCIF are sensitive to factors that affect antigenicity across 25 

cycles. We, therefore, routinely perform a thorough assessment of the effects of mixing and 26 

cycle number on immunogenicity (see Figure 5 and 6 in Lin et al. 20189 for the design and 27 

interpretation of such experiments). In the case of ten antibodies tested in this work (CD14, 28 

CD163, CD20, CD3D, CD4, CD8a, CD68, FOXP3, IBA1 and Keratin), we found that the order 29 

of addition was not a critical variable for 8 of 10 but that anti-CD3 and anti-CD68 staining fell 30 
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with cycle number. This finding is consistent with our general observation that staining intensity 1 

falls with cycle number for about 20% of antibodies and for a further 20% of antibodies signal 2 

increases. In the case of antibodies that do not change in intensity, reproducibility across cycle 3 

number is high within a single slide and across slides processed in parallel. For most antibodies 4 

where signal changes with cycle number, it is possible to control this variable by processing all 5 

samples in parallel. Future work is focused on further mitigating the effects of cycle number by 6 

applying gating techniques and cell calling algorithms that are less sensitive to absolute signal 7 

intensity, use of TMA-based calibration standards on each slide and identification of antibodies 8 

that are stable to changes in their order of use. 9 

To illustrate how we test the impact of cycle number on the staining by antibodies used in our 10 

immune profiling panel, we show data from eight sequential sections from a human tonsil 11 

(Supplementary Table 5). Antibodies were added in early and late rounds and signal intensity 12 

was measured from similar regions of the tissue, using the same image acquisition times. The 13 

correlation in staining intensity between early and late cycles was high for 8 of 10 antibodies 14 

(Supplementary Table 6 and Supplementary Figs. 11, 12) but staining for anti-CD3 and anti-15 

CD68 antibodies started to fall after cycle 5 (Supplementary Table 6 and Supplementary Figs. 16 

11, 12). When anti-CD3 and anti-CD68 antibodies were used only in early cycles, there was little 17 

evidence of batch to batch variability (Supplementary Table 6). Moreover, even with the most 18 

problematic antibodies, the localization of the signal did not change and only intensity varied.  19 

When considered from the perspective of a single tissue sample, t-CyCIF can seem rather slow: 20 

in most cases, only one or two cycles (7 channels) of staining and imaging can be performed per 21 

day. However, a single operator can process 30 or more slides in parallel and image entire tissue 22 

sections of four or more square centimeters. On a per-cell basis, this throughput is high relative 23 

to other high-plex tissue imaging methods and other single-cell technologies such as scRNASeq. 24 

Moreover, as a practical matter, the analysis and interpretation of data remains the most time-25 

consuming aspect of high-dimensional pathology studies, usually exceeding the time required for 26 

data collection.  27 

Future Directions 28 
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In the future, we anticipate that human tissues will be studied using protein imaging, dissociated 1 

single cell RNA-seq and/or spatial transcriptomics in parallel78. Multi-modality approaches such 2 

as these could provide unprecedented insights into cellular phenotypes and disease processes. 3 

We also expect improvements in throughput; in the case of t-CyCIF this will involve increasing 4 

the number of channels imaged in each cycle so that fewer cycles are needed to construct deep 5 

profiles. 6 

t-CyCIF PROTOCOL 7 

Expertise Needed to Implement the Protocol 8 

The methods described below, which focus on t-CyCIF, are all accessible to trained research 9 

assistants, graduate students and post-doctoral fellows, without extensive specialized experience 10 

in tissue imaging. However, experience with computational biology is typically needed to 11 

analyze the resulting data. Implementing these approaches on other platforms (e.g. MIBI, IMC, 12 

Dei, CODEX) depends largely on the availability of suitable labeled antibodies and users of 13 

these methods should contact the relevant manufacturers.  14 

MATERIALS 15 

Note that the t-CyCIF procedure described below involves dewaxing and antigen retrieval on a 16 

Leica Bond III automated slide processor; similar instruments are manufactured by Ventana or 17 

Dako and are commonly found in histopathology core facilities. t-CyCIF can also be performed 18 

following manual de-waxing and antigen retrieval (e.g. using microwaving slides in citrate buffer 19 

or using a pressure cooker)9.  20 

REAGENTS 21 

● Human tonsil FFPE tissue and three human lung cancer FFPE tissues (LUNG-1-LN: lung 22 

adenocarcinoma metastasis to lymph node; LUNG-2-BR: lung squamous cell carcinoma 23 

metastasis to brain; LUNG-3-PR: primary lung squamous cell carcinoma) were accessed 24 

from the archives of the Department of Pathology, Brigham and Women’s Hospital, Harvard 25 

Medical School, Boston.  26 

! CAUTION All experiments involving human tissues should be performed in accordance with 27 

the relevant guidelines by local ethics committees and local biosafety guidelines for details on 28 
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handling biohazardous materials. This study was approved by the Institutional Review Boards 1 

(IRBs) of Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical 2 

School.  3 

● Antibodies for t-CyCIF and IHC (see the list of antibodies used in Table 1, 4 

Supplementary Table 1, 3, 4).  5 

▲CRITICAL STEP Store the antibodies according to the manufacturer’s instructions.  6 

● HistoGel (VWR, cat. no HG-4000-012) 7 

● Deionized water 8 

● Formaldehyde (ThermoFisher Scientific, cat. no. 28906) 9 

● Formalin (Sigma-Aldrich, cat. no. HT501128-4L) 10 

● Pierce™ 20X Phosphate Buffered Saline (ThermoFisher Scientific, cat. no. 28348) 11 

● UltraPure™ Glycerol (Life technologies, cat. no. 15514011) 12 

● 30% Hydrogen peroxide solution, ACS grade, including stannate-containing compounds 13 

and phosphorus-containing compounds to stabilize the solution (Sigma-Aldrich, cat. no. 14 

216763-500ML)  15 

• Sodium hydroxide (Sigma-Aldrich, cat. no. 221465-500G) 16 

! CAUTION Sodium hydroxide and hydrogen peroxide are toxic; wear protective personal 17 

equipment, such as a lab coat, gloves, mask, and glasses.  18 

● Odyssey® Blocking Buffer in PBS 500 ml (LI-COR, cat. no. P/N 927-40003) 19 

● Hoechst 33342 (25 mg) (Cell Signaling Technology, cat. no. 4082) 20 

● Bond Dewax Solution (Leica, cat. no. AR9222) 21 

● BOND Epitope Retrieval solution 1 (ER1) (Leica, cat. no. AR9961) 22 

EQUIPMENT  23 
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● Platinum COVERSLIPS (24x50)/Cs (10oz) (American Master Tech Scientific, cat. no. 1 

GL2450) 2 

● StainTray 10 Slide Tray (Black)/ea (American Master Tech Scientific, cat. no. LWS10BK)  3 

● Tissue-Tek® Vertical 24 Slide Rack (American Master Tech Scientific, cat. no. LWS2124)  4 

● Tissue-Tek Slide Staining Set - Dishes and Baths (American Master Tech Scientific, cat. 5 

no. LWS19)  6 

● Ice box 7 

● Portable 20,000 LUX Dimmable LED Bright Light Panel (Amazon, ASIN B078JCBW9S, 8 

UPC 691608324805) 9 

● Covertiles (Leica, cat. no. S21.4611) 10 

● Slide scanning microscope such as RareCyte CyteFinder (RareCyte Inc., USA)  11 

● BOND RX machine (Leica, USA) 12 

● Plasticware and glassware: 100 ml Glass graduated cylinders (e.g. American Master Tech 13 

Scientific, cat. no. LWG0726); 15-ml and 50 ml centrifuge tubes (Corning, cat. nos. 430790 14 

and 430808); 5-ml, 10, 25, 50 ml Pipettes (Corning, cat. no. 4487-4490), micro-pipettes and 15 

tips 16 

SOFTWARE  17 

● Image J software (https://imagej.nih.gov/ij/); RRID: SCR_003070 18 

● MATLAB software (https://www.mathworks.com/products/matlab.html); 19 

RRID:SCR_001622 20 

● ASHLAR algorithm (https://github.com/sorgerlab/ashlar); RRID:SCR_016266 21 

● viSNE algorithms from the CYT single-cell analysis package were obtained from Dana 22 

Pe’er’s laboratory at Columbia University70, and were run with MATLAB R2017a 23 
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● X-shift: VorteX 29-Jun-2017-rev2 was obtained from Garry Nolan’s laboratory in Stanford 1 

University School of Medicine71 (https://github.com/nolanlab/vortex/releases) 2 

● Venn diagrams were made using online Venny 2.1 tool from Bioinfomatics for Genomics 3 

and Proteomics at the Spanish National Biotechnology 4 

(http://bioinfogp.cnb.csic.es/tools/venny/index.html) 5 

REAGENT SETUP 6 

PBS buffer solution (1X) 7 

• Combine 50 ml of Pierce™ 20X Phosphate Buffered Saline (ThermoFisher Scientific, 8 

cat. no. 28348) with 950 ml deionized water. 1X PBS buffer can be prepared in advance 9 

and stored at room temperature (RT) for several weeks.  10 

Hoechst solution 11 

• Dilute 25 mg of Hoechst 33342 (Cell Signaling Technology, cat. no. 4082) in 10 ml 12 

deionized water to make 2.5 mg/ml stock solution and store at 4 ºC. To make a working 13 

solution, dilute stock solution in Odyssey® Blocking Buffer (1:1000) to stain DNA and 14 

mark nuclei.  15 

▲CRITICAL STEP Hoechst working solution should be prepared immediately before use.  16 

NaOH solution (1M) 17 

• Combine 2 g of sodium hydroxide (Sigma Aldrich, cat. no. 221465-500G) with 50 ml 18 

deionized water in a 50-ml centrifuge tube. Vortex the solution to allow sodium 19 

hydroxide to dissolve completely. 1M NaOH can be prepared in advance and stored at 20 

RT. 21 

Fluorophore inactivation (bleaching) solution 22 

• Combine 25 ml 1X PBS, 4.5 ml 30% H2O2, and 0.8 ml 1M NaOH in a 50-ml centrifuge 23 

tube. The final working concentration is 4.5% H2O2 and 20 mM NaOH in PBS solution. 24 

30 ml fluorophore bleaching solution is sufficient for four standard slides. 25 

▲CRITICAL STEP Fluorophore bleaching solution should be prepared immediately before 26 

use.  27 

! CAUTION Hydrogen peroxide is toxic; wear protective personal equipment such as lab coat, 28 

gloves, mask, and glasses. 29 
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Glycerol solution (10%) 1 

• Prepare a 10% glycerol in PBS solution by combining 1 ml of UltraPure Glycerol (Life 2 

technologies, cat. no. 15514011) with 9 ml 1X PBS in a 15-ml centrifuge tube. 10% 3 

Glycerol in PBS can be prepared in advance and stored at RT for several weeks. 4 

Antibody mixture for t-CyCIF 5 

• Prepare the antibody mixture for t-CyCIF by diluting the antibodies of interest in 6 

Odyssey® Blocking Buffer according to their optimal concentrations (Supplementary 7 

Table 1). 8 

▲CRITICAL STEP Keep at 4 ºC or on ice.  9 

EQUIPMENT SETUP 10 

Leica BOND RX Setup 11 

• Instrument setup (see user manual for instrument-specific details): 1. Bake slides at 60 12 

ºC for 30 min; 2. Dewax with Bond Dewax Solution at 72 ºC; 3. Use Bond solution of 13 

HIER ER1 for antigen retrieval at 100 ºC for 20 min; 4. Block for 30 min with 14 

Odyssey® blocking buffer at RT; 5. Incubate secondary antibodies for 60 min at RT; 6. 15 

Incubate Hoechst solution for 30 min at RT.  16 

• Reagent setup: 1. Fill chamber 1 with 30 ml of 1X PBS; 2. Fill chamber 2 with 7 ml of 17 

Odyssey® blocking buffer; 3. Fill chamber 3 with 2 ml of the appropriate secondary 18 

antibodies conjugated with Alexa Fluor–488, Alexa Fluor–555, or Alexa Fluor–647 19 

diluted in Odyssey® blocking buffer (1:1000 v/v). 20 

▲CRITICAL STEP Prior to the first cycle of t-CyCIF, a prestaining (blocking) step is 21 

performed by incubating tissues with a mixture of appropriate secondary antibodies so as to 22 

block non-specific binding sites in the tissue. Secondary antibodies are chosen based on the 23 

species and isotypes of the unconjugated antibodies used in the first t-CyCIF cycle. Anti-rabbit 24 

Alexa Fluor 555 and anti-mouse Alexa Fluor 647 secondary antibodies were used in this study.  25 

▲CRITICAL STEP Avoid using Alexa Fluor 546, Alexa Fluor 568 or Alexa Fluor 594 26 

conjugated secondary antibodies, as these fluorophores are resistant to bleaching.  27 

Imaging on a RareCyte CyteFinder Slide-Scanning Microscope. A variety of fluorescent 28 

microscopes can be used to image slides. We have tested a Leica Aperio Digital Pathology Slide 29 
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Scanner, GE IN-Cell Analyzer 6000, GE OMX-SR Super-Resolution Microscope and GE Cytell 1 

Cell Imaging System; Hamamatsu, Nikon and other companies also manufacture suitable 2 

instruments. The principle requirements for these instruments are (i) the ability to acquire four 3 

(or more) channel images without spectral interference (ii) a stage that grasps slides firmly and 4 

consistently, and (iii) the ability to store and retrieve exact slide positions between cycles. The 5 

speed, resolution, signal-to-noise ratio and number of available fluorescence channels vary with 6 

the microscope. The Cytefinder used here is capable of six-channel whole-slide imaging and 7 

precise slide positioning (note that only four channels were used for the work described here). 8 

Imager 5 software (RareCyte Inc.) was used for data acquisition. Relevant optical information is 9 

as follows (note that the channels names are somewhat arbitrary):  10 

• Filter sets: channels are referred to by the manufacturer as ‘DAPI channel’ used for 11 

imaging Hoechst using an excitation filter having a peak of 390 nm and half bandwidth 12 

of 18 nm and an emission filter with a peak of 435 nm and half bandwidth of 48 nm; 488 13 

channel having a 475 nm / 28 nm excitation filter and 525 nm/ 48 nm emission filter; 14 

555 channel having a 542 nm / 27 nm excitation filter and 597 nm / 45 nm emission filter 15 

and 647 channel having a 632 nm / 22 nm excitation filter and 679 nm / 34 nm emission 16 

filter. 17 

• Objective lenses: using either a 10X (NA = 0.3) or 40 X (NA = 0.6) long-working 18 

distance objective.  19 

PROCEDURE 20 

FFPE slide pretreatment ● TIMING 3 h 21 

! CAUTION Follow local biosafety guidelines for details on handling biohazardous materials 22 

1│ Set up protocol and prepare reagents for Leica BOND RX for t-CyCIF as described 23 

above under Leica BOND RX Setup. 24 

2│ Open the lids of the reagent chambers and insert the reagent chamber tray into the Leica 25 

BOND RX machine.  26 

3│ Create a new study using the protocol from Step 1, add each slide to the study, and print 27 

labels for each slide. The BOND requires barcoded labels on all slides to process them. 28 
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▲CRITICAL STEP Center the slide stickers evenly so that the Leica BOND RX can scan the 1 

barcodes on the stickers correctly.  2 

4│ Place all labeled slides onto a slide tray, cover the slides with Bond Universal Covertiles, 3 

and insert the slide tray into the machine.  4 

▲CRITICAL STEP Place the Covertiles right side up by using the “Leica” etched on each 5 

Covertile as an orientation guide. 6 

5│ The Leica BOND RX machine will scan the barcodes on the stickers of FFPE slides and 7 

reagent chambers. Check the label readings by hovering the mouse over the slide labels. 8 

If all of the slides have been recognized correctly, then click the START button to run the 9 

protocol. This will dewax slides and perform antigen retrieval. 10 

■ PAUSE POINT Slides can be stored in 1X PBS at 4 ºC for several days after processing on 11 

the BOND. Ensure that the entire tissue is covered in 1X PBS; otherwise the tissue will dry our 12 

and yield poor results.  13 

Pre-staining and background determination ● TIMING 16 -24 h 14 

▲CRITICAL STEP. Slide pre-staining (blocking) and background signal determination is 15 

particularly important for tissues with high auto-fluorescence.  16 

6│ Place slides flat in a container with the tissue facing up, and then gently pour fluorophore 17 

bleaching solution into the container to completely cover tissue. Place the container 18 

between two LED light panels (one LED panel above and one below) at RT for 45 min. 19 

▲CRITICAL STEP The pre-bleaching step is critical for reducing autofluorescence in the 20 

tissue and to inactivate the fluorophores of the secondary antibody from the pre-staining step.  21 

▲CRITICAL STEP Light sources that produce excessive heat can damage tissues. LED light 22 

sources are therefore preferable and large flat LED panels are now readily available at low cost 23 

(see Equipment list for preferred light panel). 24 

▲CRITICAL STEP Completely immerse the tissue sections in fluorophore bleaching solution. 25 

During the subsequent bleaching process, bubbles will appear and gradually increase in size and 26 

number. This indicates that the oxidation reaction is proceeding as expected. 27 

? TROUBLESHOOTING No bubbles in fluorophore bleaching buffer.  28 

 29 
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7│ Wash slides 4 times with 1X PBS at RT for 3 - 5 min per wash. Slides can be placed into 1 

a slide rack and lowered into a staining dish of PBS. 2 

8│ Using the secondary antibodies used in the pre-staining procedure in Step 1 to cover all 3 

tissues and incubate in the dark at 4 ºC overnight to block non-specific binding.  4 

▲CRITICAL STEP Do not use a hydrophobic barrier pen on the slides, as we have found that 5 

this adversely affects subsequent cycles.  6 

▲CRITICAL STEP Be careful not to scratch the tissue with pipette tip when applying the 7 

antibody solution. 8 

9│ Bleach the fluorophores for 45 min at RT as described in Step 6.  9 

10│ Wash the slides 4 times with 1X PBS at RT, 3 - 5 min per wash. 10 

▲CRITICAL STEP Wash the slides to remove the fluorophore bleaching solution completely 11 

which may affect subsequent t-CyCIF.  12 

11│ Incubate slides with Hoechst solution (2.5 µg/ml) in the dark at RT for 10 min. 13 

12│ Wash the slides 4 times with 1X PBS at RT for 3 - 5 min per wash. 14 

13│ Mount coverslips onto slides with 200 µl of 10% glycerol in 1X PBS to prevent 15 

dehydration during imaging. Slowly position coverslips in the center of each slide and 16 

lower the slowly onto the slide to avoid producing bubbles between the coverslip and to 17 

prevent scratching tissues. Do not allow cover slip to overhang the edge of the slide. Dry 18 

excess liquid by gently pressing the long edges of the slide against a paper towel. 19 

▲CRITICAL STEP. Wet-mounting and positioning cover slips takes some practice that 20 

should be undertaken initially using non-precious specimens. 21 

14│ Load the slide into the slide scanner and image at four wavelengths to record the 22 

background signal. 23 

▲CRITICAL STEP Typically only a portion of each slide is covered in tissue and only this 24 

region should be scanned; it is important to save this region of interest (ROI) in the imaging 25 

software so that precisely the same region can be imaged in subsequent rounds of t-CyCIF.  26 

▲CRITICAL STEP Check images as they are being acquired and adjust exposure times to 27 

remain in a linear range. 28 

? TROUBLESHOOTING Blurry images. 29 
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15│ After image acquisition remove cover slips by placing the slides in 1X PBS in a staining 1 

dish (which holds slides vertically) for 10 min and then slowly pull the slides vertically 2 

out of the solution allowing the coverslip to remain behind. 3 

▲CRITICAL STEP De-coverslipping is another procedure that requires practice. Always 4 

allow coverslips to fall away through gravity. Do not push the coverslips as this will scratch 5 

and damage tissues. It may take longer time than the recommended 10 min for coverslips to 6 

detach.  7 

 8 

16│ Wash the slides 4 times with 1X PBS at RT for 3 - 5 min per wash. 9 

■ PAUSE POINT Slides may be stored in 1X PBS at 4 ºC for several days. Make sure the 10 

entire tissue is covered in 1X PBS; otherwise the tissue will dry out resulting in poor results in 11 

subsequent staining steps.  12 

First round of t-CyCIF ● TIMING 16 -24 h 13 

17│ Dilute up to three unconjugated primary antibodies from different species to the 14 

appropriate concentration in Odyssey® blocking buffer, cover all the tissue, and incubate 15 

in the dark at 4 ºC overnight.  16 

▲CRITICAL STEP In the first round of t-CyCIF, unconjugated primary antibodies can be used. 17 

As in conventional immuno-fluorescence these antibodies must be from different species (e.g. 18 

rabbit, mouse, and rat) to allow for detection with species-specific secondary antibodies. The 19 

optimal dilution for primary antibodies must be optimized empirically; we usually test across a 20 

range of dilutions starting from 1:100 guided by manufacturer’s recommendations. The times 21 

listed for antibody incubation can be adjusted empirically; we use long incubations at 4 ºC for 22 

convenience. See Lin et al.9 and https://www.cycif.org/ (RRID:SCR_016267) for information on 23 

increasing the throughput of t-CyCIF experiments. 24 

18│ Wash slides 4 times with 1X PBS at RT for 3 - 5 min per wash. 25 

19│ Cover the tissue with secondary antibodies and incubate in the dark at RT for 2 h.  26 

20│ Incubate with Hoechst solution (2.5 µg/ml) in the dark at RT for 10 min. 27 

21│ Wash slides 4 times with 1X PBS at RT for 3 - 5 min per wash. 28 
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22│ Mount coverslips onto slides with 200 µl of 10% glycerol in PBS and image the saved 1 

ROI for each slide with RareCyte CyteFinder as described in Steps 13 and 14.  2 

▲CRITICAL STEP Use the saved ROI in the imaging software so that the exact same region 3 

of tissue is imaged for every cycle of t-CyCIF.  4 

? TROUBLESHOOTING Blurry images. 5 

? TROUBLESHOOTING Weak signal. 6 

? TROUBLESHOOTING Saturating signal. 7 

 8 

23│ After imaging, remove the coverslips and wash the slides 4 times with 1X PBS at RT for 9 

3 - 5 min per wash. 10 

24│ Perform fluorophore bleaching for 45 min at RT as described in Step 6.  11 

25│ Wash slides 4 times with 1X PBS at RT for 3 - 5 min per wash 12 

▲CRITICAL STEP Wash slides thoroughly to remove fluorophore bleaching solution since 13 

carry-over can adversely affect subsequent t-CyCIF cycles. 14 

■ PAUSE POINT Slides may be stored in 1X PBS at 4 ºC for several days. Make sure the 15 

entire tissue is covered in 1X PBS. Otherwise, the tissue may become dry and yield poor 16 

staining results.  17 

Cycles of t-CyCIF ● TIMING 16 -24 h per cycle 18 

! CAUTION The maximum number of cycles for t-CyCIF depends on tissue type, which is 19 

evaluated by counting nuclei in the Hoechst channel. We are able to perform >10 cycles for most 20 

tissue types and >20 cycles for some resilient tissues, such as tonsil.  21 

26│ Dilute up to three conjugated antibodies with different fluorophores in Odyssey® 22 

blocking buffer. Cover all tissue with antibody solution and incubate in the dark at 4 ºC 23 

overnight. 24 

▲CRITICAL STEP Normally, Alexa Fluor 488, Alexa Fluor 555, and Alexa Fluor 647 25 

conjugated primary antibodies are used. Antibodies dilution is optimized empirically starting 26 

from 1:100.  27 

▲CRITICAL STEP Avoid using Alexa Fluor 546, Alexa Fluor 568, and Alexa Fluor 594 28 

conjugated secondary antibodies, as these fluorophores are difficult to bleach.  29 
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 1 

27│ Wash the slides 4 times with 1X PBS at RT for 3 - 5 min per wash. 2 

28│ Incubate with Hoechst solution (2.5 µg/ml) in the dark at RT for 10 min. 3 

29│ Wash the slides 4 times with 1X PBS at RT for 3 - 5 min per wash. 4 

30│ Mount coverslip onto slides with 200 µl of 10% glycerol in PBS and image the saved 5 

ROI with the RareCyte CyteFinder as described in Steps 13 and 14.  6 

31│ Remove the coverslips as described in Step 15. 7 

32│ Wash the slides 4 times with 1X PBS at RT for 3 - 5 min per wash.  8 

33│ Bleach the fluorophores for 45 min at RT as described in Step 6.  9 

34│ Wash the slides 4 times with 1X PBS at RT for 3 - 5 min per wash. 10 

35│ Start next t-CyCIF cycle: repeat t-CyCIF cycles (cycles of Step 26 to Step 34). 11 

? TROUBLESHOOTING Blurry images.  12 

? TROUBLESHOOTING Weak signal. 13 

? TROUBLESHOOTING Saturating signal. 14 

? TROUBLESHOOTING Cell loss. 15 

? TROUBLESHOOTING Signal present after fluorophore bleaching step. 16 

Image processing ● TIMING variable.  17 

The data described here was obtained using pre-processing, registration, segmentation, and 18 

quantification software in Image J (scripts provided in Sorger Lab GitHub repository 19 

https://github.com/sorgerlab/cycif). As noted in the introduction, many potentially better tools 20 

are also available.  21 

▲CRITICAL STEPS In steps 36 through 38 change the parameters in the script to account for 22 

the directory and names of the image files, the start and end cycle numbers, and the number of 23 

rows and columns used to create montages.  24 
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36│ Run the script named 1_Macro-SAVEALLCYCLES.ijm on ImageJ to perform 1 

background subtraction, flat-field correction, and save .tif images of individual tiles from 2 

the.rcpnl file generated by RareCyte CyteFinder for each cycle.  3 

37│ Run the script named 2_Macro-imagereg-forRareCyte.ijm to perform registration of each 4 

tile using the Hoechst signal and a rigid body transformation algorithm. The registration 5 

information is applied to all channels of all images from each t-CyCIF cycle to generate a 6 

hyperstack of images from all cycles.  7 

38│ Run the script named 3_Macro-CycIF-wholeslidequan.ijm to segment cells using the 8 

Hoechst signal from the last cycle, measure the average intensity of every marker for 9 

each cell, and output the data as a .cvs file for each image tile. 10 

▲CRITICAL STEP Use the Hoechst image from the final cycle to generate a mask. 11 

 12 

High Dimension Data Analysis and Visualization ● TIMING variable  13 

39│ Run CycIF_readwholeslide.m to import the single cell data generated by Step 38 into 14 

MATLAB.  15 

40│ Identifying specific cell populations 16 

A. (Optional) Gaussian mixture models: Gaussian mixture models (GMM) are fitted 17 

using the Expectation Maximization (EM) algorithm in MATLAB. For each GMM, 18 

at least 80 different initial guesses are used as starting points for EM algorithm to find 19 

the maximum likelihood fit.  20 

B. Manual gating: Cut-off values are set for each marker by a trained user by reviewing 21 

intensity distributions and florescence images.  22 

41│ Heatmaps were generated using the intensity data for particular marker and location 23 

information of the cells (Xt, Yt) using MATLAB R2017a. By applying cut-off value for 24 

particular markers dot plots can be generated for various markers. 25 

42│ Cluster plots, cross-correlation plots and scatter plots were generated from intensity data 26 

using MATLAB R2017a. 27 
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43│ Analysis by t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis was 1 

performed using the viSNE implementation from the CYT single-cell analysis package70 2 

and run in MATLAB R2017a. 3 

44│ (Optional) X-shift was performed using VorteX 29-Jun-2017-rev2 obtained from the 4 

Nolan lab (Stanford University School of Medicine; 5 

https://github.com/nolanlab/vortex/releases). (plots not shown) 6 

45│ (Optional) Venn diagrams: Venn diagrams were generated using the online Venny 2.1 7 

tool from the Bioinfomatics for Genomics and Proteomics Service at the Centro Nacional 8 

de Biotecnologia (CNB) in Spain (http://bioinfogp.cnb.csic.es/tools/venny/index.html). 9 

(diagrams not shown) 10 

  11 
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? TROUBLESHOOTING  1 

Troubleshooting advice can be found in Table 2.  2 

● TIMING 3 

Steps 1-5, FFPE slide(s) pretreatment: 3 h  4 

Steps 6-16, Pre-staining and background recording: 16 - 24 h 5 

Steps 17-35, t-CyCIF cycles: 16 -24 h per cycle times 9 cycles 6 

Steps 36-38, Image processing: variable 7 

Steps 39-45, High dimension data analysis and visualization: variable 8 

Box 3, Preparation of cell lines that have undergone perturbations for t-CyCIF validation in 9 

FFPE sections: 60 min 10 

 11 

ANTICIPATED RESULTS 12 

Immune Profiling of Lung Cancer Samples  13 

We analyzed three human primary and metastatic lung carcinoma specimens to demonstrate the 14 

performance of the immune profiling panels validated and assembled according the guidelines 15 

described in this protocol. The tissues represent contexts typically encountered when evaluating 16 

malignancies; a lymph node metastasis (LUNG-1-LN), a brain metastasis (LUNG-2-BR) and a 17 

primary lung tumor (LUNG-3-PR), each from a different patient. We performed nine-cycle t-18 

CyCIF in parallel on the three specimens followed by image segmentation, computational 19 

analysis and visual review by board-certified pathologists (Figs. 5-8, Supplementary Figs. 13-20 

17, Supplementary Tables 7-9 and Supplementary Movie 2). We then enumerated and 21 

mapped high and low frequency immune cell types. 22 

The antibodies described in Supplementary Table 3 generated staining at intensities sufficiently 23 

above background to enable manual and automated analysis. Manual review of images overlayed 24 

with segmentation masks revealed an overall accuracy of 80% ± 2% for computer-based cell 25 

identification, with visual analysis by a pathologist serving as the gold standard. We recognized 26 

three types of errors: cells that were missed by the segmentation algorithm, fusion of two or 27 

more cells into a single segmented entity, and splitting of a single cell between two or more 28 

entities (Supplementary Fig. 2). Segmentation accuracy was similar in cancer samples and 29 
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tonsil, but the types of errors differed between the types of samples; artefactual fusion of densely 1 

packed lymphocytes in tonsil was common whereas as tumor cells in lung cancer specimens 2 

(which are larger than lymphocytes) tended to be split. We do not yet know if these errors are 3 

random or systematic and their effects on cell has not been evaluated. However, it should be 4 

noted that the segmentation methods we applied are standard functions in ImageJ; more 5 

sophisticated segmentation algorithms using machine learning or multiple-features approaches 6 

(including nuclear, cytosolic or membrane markers) are very likely to improve segmentation 7 

accuracy. Machine learning from pixel-level data, which avoids the need for image segmentation 8 

altogether (and has been shown to yield super-human performance in other medical imaging 9 

applications79) is another possibility. 10 

In Fig. 5a, we show the immunofluorescence signal from a section of the primary lung tumor 11 

specimen (LUNG-3-PR) that demonstrates the expression of four antigens: α-SMA (green), pan-12 

keratin (blue), and CD45 or IBA1 (both red). A yellow box highlights a frame shown at high 13 

power in Fig. 5e (a representative merged image of pan-keratin (green), Ki-67 (white) and PD-14 

L1 (red)). An image from this region, of an H&E stain from an adjacent serial section, is also 15 

shown (Fig. 5f). To generate a map of cell positions, we integrated staining intensity over each 16 

successfully segmented cell across the image (following background subtraction) and used the 17 

information to call out distinct cell types: α-SMA high cells were labeled stromal cells, pan-18 

keratin high cells as tumor, and cells with CD45 or IBA1 as immune cells. Dots mark the 19 

computed centroid of each cell and the colors represent each cell’s identity (Fig. 5b and 20 

Supplementary Fig. 14). In subsequent figures (Figs. 7 and 8), we use multiple markers to 21 

define distinct cell states and present their location in cell position plots. To facilitate 22 

visualization and assessment of the relative expression levels of individual antigens, we also 23 

generated intensity maps across the image; such maps are shown for keratin in Fig. 5c and PD-24 

L1 in Fig. 5d. In the case of PD-L1, the maps reveal substantial spatial heterogeneity of PD-L1 25 

expression in the tumor cell compartment (Fig. 5d-f, and Supplementary Table 7) suggesting 26 

dynamic and variable effects on immune surveillance. We also found that proliferating tumor 27 

cells, immune cells, and fibroblast populations were also unevenly distributed, revealing 28 

additional forms of heterogeneity. Interestingly, the extent of proliferation of non-tumor cells 29 

within the tumor microenvironment equaled or surpassed that of tumor cells (Supplementary 30 
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Table 7) suggesting that proliferation of stromal, non-neoplastic elements is ongoing in the 1 

tumors we examined. 2 

We then used t-Distributed Stochastic Neighbor Embedding (t-SNE)1, 3 to visualize and 3 

characterize the immune cell infiltrates from the tumor sections. t-SNE projects the 15-4 

dimensional vectors of integrated staining intensity for each cell onto two dimensions in a 5 

manner that optimally preserves high dimensional relationships. We performed t-SNE on 2,000 6 

randomly selected immune cells from each of the three lung cancer specimens. This showed that 7 

the immune cells clustered by specimen (LUNG-1-LN, LUNG-2-BR, LUNG-3-PR; Fig. 5g and 8 

Supplementary Fig. 15), revealing dramatic specimen-specific differences in resident immune 9 

cell populations. When we projected the levels of expression of specific immune cell markers 10 

onto the t-SNE plots (Fig. 5g and Supplementary Fig. 15), we found that the brain metastasis 11 

(LUNG-2-BR) had few CD8+ T cells but many myeloid-derived immune cells (IBA1+/CD163+). 12 

In contrast, the primary lung tumor (LUNG-3-PR) was enriched in B cells (CD45+/CD20+) and 13 

T regulatory cells (CD45+/CD3+/CD4+/FOXP3+). The lymph node metastasis (LUNG-1-LN) 14 

was enriched specifically in CD45+/CD3+/CD8+ T cells (Fig. 5h and Supplementary Table 8). 15 

Thus, the immune environments of these tumors are very different, presumably reflecting tumor-16 

intrinsic differences as well as differences in the location of the tumor at the time of resection.  17 

Identifying and Mapping Low Frequency Immune Cell Types  18 

Many aspects of the tumor immune microenvironment remain enigmatic. A comprehensive 19 

understanding of the effects of the microenvironment on tumorigenesis and on response to 20 

therapy is likely to involve characterizing both high and low frequency immune cell populations. 21 

Highly multiplexed imaging is a potentially powerful way to identify rare cell immune types 22 

because it provides data not only on marker expression, but also on cell morphology and 23 

environment. Moreover, cells that represent outliers in biomarker distributions can be revisited 24 

for visual re-review to confirm their presence and potentially even for additional t-CyCIF 25 

analysis. In contrast, such re-review is not possible with flow cytometry data. 26 

In our samples, multi-axis scatter plots of the three lung cancer cases revealed three very low-27 

frequency immune cell populations: (i) CD8-expressing FOXP3+ regulatory T cells 28 

(CD45+/CD3+/CD4-/CD8a+/FOXP3+ cells) which represented 0.01 – 0.66% of all immune 29 

cells (ii) CD8-expressing LAG3/PD-1 double positive T cells (CD45+/CD3+/CD4-/CD8a+/PD-30 
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1+/LAG3+ cells) which represented 0.01% - 0.97% of all immune cells) and (iii) CD4 1 

expressing LAG3/PD-1 double positive T cells (CD45+/CD3+/CD4+/CD8a-/PD-1+/LAG3+ 2 

cells) which represented 0.03 – 0.08% of all immune cells (Fig. 6, 7, Supplementary Fig. 16, 17 3 

and Supplementary Table 8).  4 

CD8-expressing FOXP3+ regulatory T cells (CD45+/CD3+/CD4-/CD8a+/FOXP3+ cells) have 5 

been reported previously in both human and mouse lymph nodes, spleen and blood as well as in 6 

prostate cancer and hepatocellular carcinoma and have been implicated in immune evasion and 7 

consequent disease progression80–82. We confirmed by visual review the presence of small round 8 

cells with lymphocyte morphology that were clearly positive for CD45, CD3, FOXP3 and CD8 9 

(marked with red dots and boxes in Fig. 6c, d) and negative for CD4; the presence of nearby 10 

cells staining positive for CD4 (marked in green) provided an internal positive control for CD4 11 

staining (Fig. 6c, d). Compared to directly adjacent non-neoplastic lung tissue in the histologic 12 

section, both automated and manual analysis showed that this rare cell population was 6-fold 13 

enriched in the tumor component (p < 0.0001; t-test). Conventional regulatory T cells (which are 14 

FOXP3+/CD4+/CD8-) were also enriched in the tumor region, but to a lesser extent (2.3- fold; p 15 

< 0.001; t-test) (Fig. 7e,f and Supplementary Table 9).  16 

Similarly, double positive PD-1/LAG3 cells (CD45+/CD3+/CD4-/CD8a+/PD-1+/LAG3+ cells 17 

and CD45+/CD3+/CD4+/CD8a-/PD-1+/LAG3+ cells) were substantially enriched in the tumor 18 

region. The ~ 1% of immune cells that were CD8+/PD-1+/LAG3+ were 14-fold more abundant 19 

in the tumor region (p < 0.0001) and the ~0.1% of immune cells that were CD4+/PD-1+/LAG3+ 20 

were found essentially exclusively in the tumor (p < 0.0001; t-test) (Fig. 7 and Supplementary 21 

Table 9). CD8+ T cells double positive for PD-1 and LAG3 have been described previously in 22 

tumor-bearing animal models and shown to have an exhausted phenotype;83 they have also been 23 

found in human ovarian and triple-negative breast cancer resections.84,85 However, the rarer 24 

CD4+ subtype is largely unexplored.  25 

Multiplex imaging can also be used to identify truly rare cells. A surprising number of marker 26 

combinations currently undescribed in the literature can be observed in tissue biopsies86. For 27 

example, systematic assessment of PD-1+ cells in the LUNG-3-PR specimen revealed the 28 

presence of cells with 21 different marker combinations at a frequency of 3 cells per 2,000 or 29 

greater (Fig. 8a). We confirmed the presence of these unusual marker combinations by visual 30 
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inspection of the cells (Fig. 8b and galleries of images in Supplementary Fig. 17). However, 1 

whether these rare types of cells represent intermediates in the differentiation of known cell types 2 

or have unique and undescribed functions remains unknown. 3 

Together, the data presented in this Anticipated Results section show how multiplexed tissue 4 

imaging can be used to enumerate common, low frequency and very rare immune cell subtypes 5 

in stromal and tumor tissue. In this application, imaging has two advantages over flow 6 

cytometry: (i) the locations of cells types is preserved with respect to each other and the overall 7 

architecture of the tissue or tumor (ii) visual review can be used to confirm that outliers in 8 

marker distributions in fact represent cells in which the markers have the expected spatial 9 

distribution, thereby increasing confidence that the cell type is real.  10 
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TABLES 1 

Table 1. t-CyCIF staining plan for immune profile panel. 2 

488/FITC 555/Cy3 647/Cy5 

Cycle Name Clone Vendor Cat # Dil Name Clone Vendor Cat # Dil Name Clone Vendor Cat # Dil 

0 

Goat 

anti-

Rabbit 

Thermo 

Fisher A-21428 1000 

Goat 

anti-

Mouse 

Thermo 

Fisher 

A-

21235 1000 

1 LAG3 

EPR439

2(2) Abcam 

ab18018

7 100 

2 Ki-67 D3B5 CST 11882s 100 Keratin 

AE1/AE

3 

eBio 

science 

41-

9003-80 200 PD-1 

EPR487

7(2) Abcam 

ab 

201825 100 

3 

CD45R

B PD7/26 

eBio 

science 

53-

9458-

80 100 CD3 EP4426 Abcam 

ab20851

4 100 PD-L1 E1L3N CST  15005S 50 

4 CD4 

Polyclon

al 

R&D 

Systems 

FAB81

65G 100 CD45 2D1 

R&D 

Systems 

FAB143

0P-025 100 CD8a 

AMC90

8 

eBio 

science 

50-

0008-80 100 

5 CD163 

EPR146

43 Abcam 

ab2182

93 100 CD68 D4B9C CST #79594 100 CD14 

EPR365

3 Abcam 

ab19616

9 100 

6 CD11b 

C67F15

4 

eBio 

science 

53-

0196-

80 100 Foxp3 

236A/E

7 

eBio 

science 

41-

4777-80 100 

7 IBA1 

EPR613

6 Abcam 

ab1950

31 250 α-SMA 

EPR536

8 Abcam 

ab20250

9 250 CD20 L26 

eBio 

science 

50-

0202-80 250 

8 CD19 

EPR590

6 Abcam 

ab1964

68 100 GFAP GA5 

eBio 

science 

41-

9892-80 100 

  3 
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Table 2 │Troubleshooting table. 1 

Step  Problem  Possible reason Solution 

5  Leica BOND 

RX machine 

fails to start 

 Incorrect setup of 

Leica BOND RX 

machine 

Read the manufacturer’s instructions; check 

the protocol and reagent setup carefully; 

contact vendor 

 

6  No bubbles in 

fluorophore 

bleaching 

solution 

 Incorrect lighting 

source or bleaching 

solution used 

Use white LED light for fluorophore 

inactivation; use freshly made bleaching 

solution 

 

13, 

22, 35 

 Blurry images  The slides are not 

flat and focusing is  

suboptimal  

Examine the slide holder for precipitate and 

remove; ensure that slides are loaded 

properly in the slide holder; change 

coverslips; adjust the focusing points 

 

22, 35  Weak signal  Low signal can 

result because of 

low level antigen 

expression. Direct 

immunofluorescence 

using conjugated 

antibodies does not 

provide the signal 

amplification that 

can be generated in 

indirect 

immunofluorescence

Increase the exposure time while acquiring 

image; increase the antibody concentration 

during staining step; use the corresponding 

unconjugated antibodies in the first round 

instead of the conjugated antibody to see if 

signal amplification from indirect 

immunofluorescence improves signal; if 

necessary, find an alternative antibody 

 

22, 35 

  

Saturated signal 

  

Abundant antigen in 

sample or excessive 

amount of antibody 

 

Decrease the antibody concentration used 

during the staining steps; decrease the 

incubation time of the sample with antibody; 
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decrease the exposure time during image 

acquisition 

 

 

35 

  

 

Cell loss 

  

 

Tissue type (very 

low cell density), 

tissue fixation 

(insufficient 

fixation), t-CyCIF 

performance (rough 

handling of samples; 

e.g. washing)  

 

 

Cautious handling of samples during 

application of antibodies and washing steps 

as well as during manipulation of coverslips 

35  Signal present 

after fluorophore 

bleaching step 

 Insufficient 

fluorophore 

inactivation 

Avoid Alexa Fluor–546, Alexa Fluor–568, 

and Alexa Fluor–594 conjugated antibodies, 

because they are difficult to be inactivate; 

dilute conjugated antibodies further; extend 

fluorophore bleaching time; increase H2O2 

concentration from 3% to 4.5% 

  1 
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FIGURE LEGENDS 1 

Figure 1 │ Schematic of antibody validation approaches for multiplexed tissue imaging. 2 

The displayed approaches are the cornerstones for validating antibodies for use in any of the 3 

several emerging multiplex imaging methods. Validation approaches are described at the a. pixel 4 

level, b. cell level, and c. tissue level. Each of these approaches is discussed in detail in the text. 5 

The t-CyCIF protocol is used in this manuscript to illustrate how antibody validation, spatially 6 

resolved immune cell cataloging, and rare cell identification can be achieved via a multiplexing 7 

technology. The t-CyCIF method9 has three major parts: bench work (Steps 1-35), image 8 

processing (Steps 36-38), and high dimension data analysis and data visualization (Steps 39-45). 9 

Antibodies can be compared to each other at the level of pixels, cells or tissues. 10 

Figure 2 │ Pixel-by-Pixel validation of antibodies raised against PD-1 using t-CyCIF in 11 

human tonsil. a. Representative images of immunofluorescence staining from human FFPE 12 

tonsil sections using four different PD-1 antibodies: PD-1 (EPR4877, Abcam), PD-1 (NAT105, 13 

Abcam), PD-1 (EH33, CST) and PD-1 (D4W2J, CST); b. Plots of the pixel-by-pixel correlation 14 

of the signal intensity of four PD-1 antibodies were generated. The plots display the correlation 15 

of a random sampling of 2,000 pixels. The plots on the lower left (with blue dots) are of the 16 

original fluorescence intensity at each pixel and the plots on the upper right (with cyan dots) are 17 

of the log transformed fluorescence intensity at each pixel. The Pearson correlation coefficients 18 

(R) are shown. DR: Dynamic range.  19 

Figure 3 │ Validation of antibodies for immune profiling by comparison to clinical grade 20 

antibodies. Representative images of t-CyCIF and IHC are shown for a. CD3, b. CD20, c. CD4 21 

and d. PD-1 in human FFPE tonsil sections. e. and f. Correlation plots comparing the percentage 22 

of positive cells detected by t-CyCIF and by IHC staining for each immune marker antibody. 23 

Positive cells from the t-CyCIF data were identified using either e. manual gating or f. Gaussian 24 

mixture model analysis, and thresholds for indicating positive cells for IHC were set using 25 

Aperio ImageScope software.  26 

Figure 4 │ Validation of antibodies for immune profiling by co-segregation of known 27 

markers and expected spatial localization. a. Representative images of CD3, CD4, IBA1, 28 

CD8a, FOXP3, PD-1 and PD-L1 as well as b. – e. merged images from human tonsil are 29 

presented. A compilation of images for all other immune markers is available in Supplementary 30 
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Movie 1 and Supplementary Figure 9-10. Scatter plots were created from a random sampling 1 

of data from 10,000 cells. Both manual gating (black dashed lines) and Gaussian mixture model 2 

analysis (red ovals) highlight positive and negative cell populations.  3 

Figure 5 │ Spatially resolved cataloging of immune cells in lung cancer FFPE tissue and 4 

component analysis of the immune subpopulations by t-CyCIF. a. Montage of t-CyCIF 5 

immunofluorescence staining for four antigens in primary lung cancer resection sample (LUNG-6 

3-PR): α-SMA (green) for stromal myofibroblastic cells, pan-keratin (blue) for tumor cells, and 7 

CD45 or IBA1 (red) for immune cells. b. Corresponding map of cell position in which the 8 

intensity of the immunofluorescence data was integrated over each entire cell, with dots 9 

representing the computed centroid for each cell and the colors representing the identify of each 10 

of the cells: α-SMA+ stromal myofibroblasts (green), pan-keratin+ tumor cells (blue), and 11 

CD45+ or IBA1+ immune cells (red). The values of the x and y axes are in millimeters (mm). 12 

2D-spatially resolved intensity maps (red high; blue low) showing the relative levels of 13 

expression of c. pan-keratin and d. PD-L1. e. A representative merged image of pan-keratin 14 

(green), Ki-67 (white) and PD-L1 (red) immunofluorescence from frame 55 (yellow box in a.-d.) 15 

as well as f. a representative image from the H&E stain from a similar region from the next 16 

adjacent serial section of LUNG-3-PR. g. t-SNE plots for immune cell markers CD45, CD3, 17 

CD20, CD163 and CD11b from a random sampling of 2,000 immune cells from lung cancer 18 

samples LUNG-1-LN, LUNG-2-BR and LUNG-3-PR. The upper left panel shows the discrete 19 

clustering of the immune populations from each case. The additional panels show the intensity of 20 

staining for the indicated markers which is mapped to color (red - high; blue - low). h. Bar graph 21 

showing the percentage of each immune cell type relative to the total number of immune cells in 22 

the lung cancer samples (see Supplementary Table 7 for quantified data).  23 

Figure 6 │ Illustration of low frequency CD45+/CD3+/FOXP3+/CD4-/CD8a+ T cells 24 

detected and confirmed by t-CyCIF. Scatter plots of CD4 and FOXP3 expression in lung 25 

cancer sample LUNG-3-PR with a. CD3 and b. CD8a expression mapped to color (red - high; 26 

blue – low). 6.08% of the immune cells were CD45+/CD3+/FOXP3+/CD4+/CD8a-, while 27 

0.66% of the immune cells were CD45+/CD3+/FOXP3+/CD4-/CD8a+ (see Supplementary 28 

Table 8 for additional details). c. 2D-dot plot map of the spatial distribution of 29 

CD45+/CD3+/FOXP3+/CD4+/CD8a- cells (green dots) and CD45+/CD3+/FOXP3+/CD4-30 
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/CD8a+ cells (red dots) in lung cancer sample LUNG-3-PR. We found four 1 

CD45+/CD3+/FOXP3+/CD4-/CD8a+ cells (red dots) in frame 55 of this lung cancer sample and 2 

confirmed the presence of these four cells (red rectangles) by d. visual review of the t-CyCIF 3 

data. Bar graph of e. regional enrichment analysis and of f. manual counting of t-CyCIF data 4 

showing that CD45+/CD3+/FOXP3+/CD4+/CD8a- cells and CD45+/CD3+/FOXP3+/CD4-5 

/CD8a+ cells were significantly enriched in the tumor region compared to the non-tumor region 6 

(see Supplementary Table 9 for additional details). Error bars represent standard error of the 7 

mean (SEM). *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001, t-test 8 

Figure 7 │ Illustration of low frequency CD45+/CD3+/PD-1+/LAG3+ T cells detected and 9 

confirmed by t-CyCIF. Scatter plots of LAG3 and PD-1 expression in lung cancer sample 10 

LUNG-3-PR with a. CD3, b. CD8a, and c. CD4 expression mapped to color (red - high; blue – 11 

low). 2.49% of the immune cells were CD45+/CD3+/PD-1+, 1.21% of the immune cells were 12 

CD45+/CD3+/PD-1+/LAG3+, 0.97% of the immune cells were CD45+/CD3+/PD-13 

1+/LAG3+/CD4-/CD8a+ and 0.08% of immune cells were CD45+/CD3+/PD-14 

1+/LAG3+/CD4+/CD8a- (see Supplementary Table 8 for more details). d. 2D-dot plot map of 15 

the spatial distribution of CD45+/CD3+/PD-1+/LAG3+/CD4-/CD8a+ cells (green dots) and 16 

CD45+/CD3+/ PD-1+/LAG3+/CD4+/CD8a- cells (red dots) in lung cancer sample LUNG-3-PR. 17 

We found one CD45+/CD3+/PD-1+/LAG3+/CD4+/CD8a- cell (red dot) and two 18 

CD45+/CD3+/PD-1+/LAG3+/CD4-/CD8a+ cells (green dots) in frame 55 of lung cancer sample 19 

LUNG-3-PR and g. confirmed the presence of these T cell subpopulations by visual review of 20 

the t-CyCIF data with the two different cell subpopulations indicated by red and green 21 

rectangles, respectively). Bar graph of e. regional enrichment analysis and of f. manual counting 22 

of t-CyCIF data showing that CD45+/CD3+/PD-1+/LAG3+/CD4+/CD8a- cells and 23 

CD45+/CD3+/PD-1+/LAG3+/CD4-/CD8a+ cells were significantly enriched in the tumor region 24 

compared to the non-tumor region (see Supplementary Table 9 for additional details). Scale 25 

bars are indicated in the images and their insets. Error bars represent standard error of the mean 26 

(SEM).  *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001, t-test 27 

Figure 8 │ Systematic identification of rare subpopulations using the t-CyCIF method. a. 28 

All PD-1+ cells (n=273) from the LUNG-2-PR (match with results) sample were further 29 

separated using binary gating of all 15 different immune markers. The subpopulations 30 
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comprising 3 or more cells were listed. Highlighted with yellow is the subpopulation with PD-1 

1+/LAG3+/CD8a+/CD3+ (described by visual review of scatter plots in Figure 8. b. Gallery of 2 

images of single markers from single cells from the PD-1+/LAG3+/CD8a+/CD3+ subpopulation. 3 

SUPPLEMENTARY MATERIALS 4 

Supplementary Movie 1 │ t-CyCIF images from FFPE human tonsil tissue.  5 

Supplementary Movie 2 │ t-CyCIF images from a FFPE human primary lung cancer 6 

resection sample – LUNG-3-PR.  7 

 8 

Supplementary Table 1 │ t-CyCIF immune profile antibody panel. 9 

Supplementary Table 2 │ Dynamic range and Pearson’s r of the dynamic range between 10 

antibodies.  11 

Supplementary Table 3 │ Antibody information for the immune t-CyCIF panel. 12 

Supplementary Table 4 │ Clinical antibodies used for immunohistochemistry validation. 13 

Supplementary Table 5 │ Antigenicity with cycle number in t-CyCIF.  14 

Supplementary Table 6 │ Correlation in staining intensity between early and late cycles. 15 

Supplementary Table 7 │ The percentage of tumor cells, fibroblasts and immune cells 16 

(percentage to all cells) in lung cancer cases. 17 

Supplementary Table 8 │ The immune profile (ratio to all immune cells) in lung cancer 18 

cases. 19 

Supplementary Table 9 │ Regional enrichment analysis (percentage to all immune cells) of 20 

rare immune cells in lung cancer cases. 21 

 22 
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Supplementary Figure 1 │ Markers and major cell types identified by t-CyCIF immune 1 

panel. a. Canonical immune cell types and their markers. Seven major immune cell subtypes 2 

were assayed using a panel of 16 markers. Three additional markers (Ki-67, α-SMA and pan-3 

Keratin) were used to identified cell states (Ki-67 for proliferative cells) or to separate immune 4 

cells from tumor cells (Keratin positive) or stromal cells (alpha SMA positive). b. Actual 5 

immune subpopulation identified from t-CyCIF immune profiling of a primary lung 6 

adenocarcinoma (LUNG-2-BR). A total 23,079 immune cells (keratin/α-SMA negative cells) 7 

from the sample was used for binary gating of 15 different markers. A total 1,356 different 8 

subpopulations were identified of which 37 subpopulations represented over 0.5 percent of total 9 

immune cells. The four subpopulations that were highlighted here are 10 

CD45+/IBA1+(Macrophage or Dendritic cells), CD45+/CD20+ (B cells), CD45+/CD3+/CD8a+ 11 

(Cytotoxic T cells) and CD45+/CD3+/CD4+ (T helper cells). Asterisks label 19 common 12 

immune cell subtypes. 13 

Supplementary Figure 2 │ Evaluation of segmentation accuracy and error composition. a. 14 

Overall error rates of segmentation. Several hundred segmented masks were validated by human 15 

review and the errors versus total counts of segmented cells from four different samples (Tonsil, 16 

LUNG-1-LN, LUNG-2-BR and LUNG-3-PR) were plotted. The average error rate was ~20% 17 

(S.E. 2%) for each of the samples. b. Illustration of the types of errors encountered. An example 18 

single-channel gray-scale Hoechst image is shown including the segmented masks that were 19 

highlighted in yellow. Three major types of segmentation errors were found: fused (blue arrows), 20 

split (red arrows) and missed (green arrows) cells. c. The composition of the different types of 21 

segmentation errors from the four different samples. 22 

Supplementary Figure 3 │ Illustration of manual inspection and gating of intensity data. a. 23 

Histogram of single-cell intensity from CD8a staining. Human-inspection of this signal profile 24 

was used to set the gate/threshold at 8.5 log. The digital representation of the same intensity data 25 

was projected into physical maps of b. the original intensity data in log scale, c. data with all 26 

positive cells colored in red and d. the relative density of positive cells. 27 

Supplementary Figure 4│ Multi-antibody qualification of PD-L1 and FOXP3 antibodies by 28 

t-CyCIF in human FFPE tonsil tissue. Representative images of immunofluorescence staining 29 

from human FFPE tonsil sections using a. three different antibodies for PD-L1: PD-L1 AB1 30 
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(E1L3N, CST), PD-L1 AB2 (22C3, DAKO), and PD-L1 AB3 (28-8, Abcam). c. two different 1 

antibodies for FOXP3: FOXP3 AB1 (23A/E7, eBioscience) and FOXP3 AB2 (206D, 2 

BioLegend). Plots of the pixel-by-pixel correlation of the signal intensity generated by the b. PD-3 

L1 antibodies and d. FOXP3 antibodies. The plots display the correlation of a random sampling 4 

of 2,000 pixels. The plots on the lower left (with blue dots) are of the original fluorescence 5 

intensity at each pixel and the plots on the upper right (with cyan dots) are of the log transformed 6 

fluorescence intensity at each pixel. The Pearson correlation coefficients (r) are shown. DR: 7 

Dynamic range. 8 

Supplementary Figure 5 │ Multi-antibody qualification of CD45 antibodies by t-CyCIF in 9 

human FFPE tonsil tissue. Individual and merged a. low and b. high magnification images of 10 

immunofluorescence from three CD45 antibodies: CD45 AB1 (2D1, R&D), CD45 AB2 (HI30, 11 

BioLegend), and CD45RB AB3 (PD7/26, eBioscience). c. Plots of the pixel-by-pixel correlation 12 

of the signal intensity generated by the CD45 antibodies. The plots display the correlation of a 13 

random sampling of 2,000 pixels. The plots on the lower left (with blue dots) are of the original 14 

fluorescence intensity at each pixel and the plots on the upper right (with cyan dots) are of the 15 

log transformed fluorescence intensity at each pixel. DR: Dynamic range.  16 

Supplementary Figure 6 │ Multi-antibody qualification of LAG3 antibodies by t-CyCIF in 17 

human FFPE tonsil tissue. Individual and merged a. low and b. high magnification images of 18 

immunofluorescence from five LAG3 antibodies: LAG3 AB1 (EPR4392, Abcam), LAG3 AB2 19 

(Polyclonal, R&D), LAG3 AB3 (17B4, Lifespan), LAG3 AB4 (11E3, Abcam) and LAG3 AB5 20 

(T47-530, BD Bioscience). c. Plots of the pixel-by-pixel correlation of the signal intensity 21 

generated by the LAG3 antibodies. The plots display the correlation of a random sampling of 22 

2,000 pixels. The plots on the lower left (with blue dots) are of the original fluorescence intensity 23 

at each pixel and the plots on the upper right (with cyan dots) are of the log transformed 24 

fluorescence intensity at each pixel. DR: Dynamic range 25 

Supplementary Figure 7 │ Multi-antibody qualification of CD11b antibodies by t-CyCIF in 26 

human FFPE tonsil tissue. Individual and merged a. low and b. high magnification images of 27 

immunofluorescence from three CD11b antibodies: CD11b AB1 (EP1345Y, Abcam), CD11b 28 

AB2 (C67F154, c), and CD11b AB3 (EPR1344, Abcam). c. Plots of the pixel-by-pixel 29 

correlation of the signal intensity generated by the CD11b antibodies. The plots display the 30 
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correlation of a random sampling of 2,000 pixels. The plots on the lower left (with blue dots) are 1 

of the original fluorescence intensity at each pixel and the plots on the upper right (with cyan 2 

dots) are of the log transformed fluorescence intensity at each pixel. DR: Dynamic range 3 

Supplementary Figure 8 │ Multi-antibody qualification by t-CyCIF and IHC in human 4 

FFPE tonsil tissue. Representative images of t-CyCIF and IHC staining using antibodies to a. 5 

CD8a, b. FOXP3, c. PD-L1, d. CD68, e. Bar plot of the percentage of total immune cells in the 6 

tonsil section that were positive for the specified antibodies. The estimated number of positive 7 

cells was determined by both manual gating and by Gaussian mixture model analysis. The plot 8 

includes the percentage of positive cells for each immune antibody by IHC; counted using 9 

Aperio ImageScope software, Leica, USA. 10 

Supplementary Figure 9 │ Immune profiling in human FFPE tonsil tissue by t-CyCIF. 11 

Merged images of t-CyCIF data from frame 106 of and scatter plots from a random sampling of 12 

10,000 cells for a. CD3 and CD45RB, b. CD3 and FOXP3, c. LAG3 and PD-1, d. IBA1 and 13 

CD16. e. Additional merged images from Frame 106 for CD3 and CD20, CD4 and CD8a, CD19 14 

and CD20, CD11b and CD14, CD163 and CD68, and IBA1 and CD14.  15 

Supplementary Figure 10 │ Individual t-CyCIF images for 16 different immune markers 16 

in human FFPE tonsil tissue (frame 106). 17 

Supplementary Figure 11 │ Analysis of effect of t-CyCIF cycle number on antigenicity 18 

with in human FFPE tonsil tissue. Histograms of signal intensity and representative images of 19 

t-CyCIF from eight sequential sections of human FFPE tonsil tissue across different staining 20 

cycles for a. CD3, b. CD4, c. CD8a, d. CD20, and e. FOXP3. The same antibody concentration 21 

and the same exposure time for imaging was used in the different cycles (see Supplementary 22 

Table 5, 6 for additional details). The histogram plots were made from single cell data to show 23 

the intensity distribution from the different populations from different cycles. For the 24 

representative t-CyCIF images shown, the same threshold was used for each marker for 25 

visualization and comparison. In e. the black arrow indicates the FOXP3+ population. 26 

Supplementary Figure 12 │ Analysis of effect of t-CyCIF cycle number on antigenicity 27 

with in human FFPE tonsil tissue. Histograms of signal intensity and representative images of 28 

t-CyCIF from eight sequential sections of human FFPE tonsil tissue across different staining 29 
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cycles for a. IBA1, b. CD14, c. CD68, d. CD163, and e. Keratin. The same antibody 1 

concentration and the same exposure time for imaging was used in the different cycles (see 2 

Supplementary Table 5, 6 for additional details). The histogram plots were made from single 3 

cell data to show the intensity distribution from the different populations from different cycles. 4 

For the representative t-CyCIF images shown, the same threshold was used for each marker for 5 

visualization and comparison. In e. the black arrow indicates the Keratin+ population. 6 

Supplementary Figure 13 │ H&E images of lung cancer specimens. Whole slide scans of 7 

H&E stained slides of a. lung adenocarcinoma metastasis to lymph node (LUNG-1-LN), b. lung 8 

squamous cell carcinoma metastasis to brain (LUNG-2-BR), and c. primary lung squamous cell 9 

carcinoma (LUNG-3-PR). 10 

Supplementary Figure 14 │ Geographic visualization of t-CyCIF data in cancer samples 11 

LUNG-1-LN and LUNG-2-BR. a. Montage of t-CyCIF images and b. corresponding dot plot 12 

for tumor cells (Keratin+, blue), fibroblasts (α-SMA+, green) and immune cells (CD45+ or 13 

IBA1+, red) in lung cancer sample LUNG-1-LN. c Representative merged images of t-CyCIF 14 

data for α-SMA, Keratin, CD45RB and IBA1, CD20, CD3 from lung cancer sample LUNG-1-15 

LN (frame 36). d. Montage of t-CyCIF images and e. corresponding dot plot for tumor cells 16 

(Keratin+, blue), fibroblasts (α-SMA+, green) and immune cells (CD45+ or IBA1+, red) in lung 17 

cancer sample LUNG-2-BR. f. Representative merged images of t-CyCIF data for α-SMA, 18 

Keratin, CD45RB and IBA1, CD20, CD3 from lung cancer sample LUNG-2-BR (frame 137).  19 

Supplementary Figure 15 │ t-SNE analysis of immune cells from lung cancer samples. t-20 

SNE plots of immune cell markers CD4, CD8a, FOXP3, IBA1, CD68, CD14, PD-1, PD-L1 and 21 

LAG3 from a random sampling of 2,000 immune cells for lung cancer samples LUNG-1-LN, 22 

LUNG-2-BR and LUNG-3-PR. The staining for each of the indicated markers is mapped to color 23 

(red - high; blue - low).  24 

Supplementary Figure 16 │ Low frequency immune cell types detected and confirmed by t-25 

CyCIF in lung cancer samples LUNG-1-LN and LUNG-2-BR by t-CyCIF. a. Scatter plots of 26 

CD4 and FOXP3 expression in lung cancer sample LUNG-1-LN with CD3 and CD8a expression 27 

mapped to color (red - high; blue – low). 2.31% of the immune cells were 28 

CD45+/CD3+/FOXP3+/CD4+/CD8a- while 0.031% of the immune cells were 29 
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CD45+/CD3+/FOXP3+/CD4-/CD8a+ (see Supplementary Table 8 for additional details). b. 1 

Representative image of t-CyCIF data for CD4, CD8a and FOXP3 (LUNG-1-LN, frame 36). c. 2 

Scatter plot for CD4 and FOXP3, with CD3 and CD8a mapped to color (red – high, blue – low) 3 

in lung cancer sample LUNG-2-BR. 2.65% of the immune cells were 4 

CD45+/CD3+/FOXP3+/CD4+/CD8a- while 0.006% cells of the immune cells were 5 

CD45+/CD3+/FOXP3+/CD4-/CD8a+ (see Supplementary Table 8 for additional details). d. 6 

Merged image of t-CyCIF data for CD4, CD8a and FOXP3 (LUNG-2-BR, frame 137. e. Scatter 7 

plots for LAG3 and PD-1expression in lung cancer sample LUNG-1-LN with CD3 and CD8a 8 

expression mapped to color (red - high; blue – low). 3.6% of the immune cells were 9 

CD45+/CD3+/PD-1+ while 0.87% of the immune cells were CD45+/CD3+/PD-1+/LAG3+ cells, 10 

0.67% cells were CD45+/CD3+/ PD-1+/LAG3+/ CD4-/CD8a+ and 0.07% were 11 

CD45+/CD3+/PD-1+/LAG3+/ CD4+/CD8a- (see Supplementary Table 8 for additional 12 

details). 13 

Supplementary Figure 17 │ Images from nine rare subtypes of PD-1 expressing cells. 14 

Coordinates of a selected cell subpopulation (CD45+/CD3+/CD8a+/PD-1+/LAG3+ cells) were 15 

used to extracted single-cell images from t-CyCIF imaging data from the LUNG-2-BR sample. 16 

The 15 individual channels of images from ten different cells (including the one shown in Figure 17 

9) were displayed in 40µm x 40µm grids, with the cell of interest centered in each grid. The 18 

highlighted channels (LAG3, PD-1, CD3, CD45 and CD8a) were positive in all ten cells.  19 
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