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Abstract 
 
I present three essays on educational testing in an era of "college-ready" 

standards.  

My first essay evaluates evidence-based standard setting methods that select 

passing or “college-ready” cut scores using regression-based predictive relationships 

between test scores and college outcomes. I investigate the forms of evidence that can be 

derived using predictive methods, whether such evidence can enhance score 

interpretations, and if so, how such evidence can be used to inform standard setting. I find 

that to compensate for the poor predictive utility, cut scores derived from predictive 

methods may be overly stringent or lenient than the stringency required of the standard. 

This may result in "college-ready" cut scores that are higher than warranted. 

My second essay uses the case of Minnesota which set a high passing standard for 

its math high school exit exam, but later waived the passing requirement for obtaining a 

high school diploma and required failing students to take remediation. I investigate the 

impact of barely failing on students’ high school and college outcomes. I find some 

evidence that within this context, there may be a cohort-dependent impact on on-time 

high school graduation and enrollment in 4-year colleges for students who score barely 

below versus barely above the math passing score. If the second essay shows that the 

passing score has consequences, the first study may help to advance wiser selection of cut 

scores. 

It is well-documented that gains on high-stakes state tests for low-income children 

and racial minority children are not matched on state-level audit tests such as the NAEP 

(Ho, 2007) or other low-stakes tests in districts (Jacob, 2005). This raises concerns about 
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the generalizability of findings from one test used to another. Using the case of Texas 

where the curriculum standards stayed the same but the newly introduced high-stakes test 

focused more on "college-readiness" standards, my third essay investigates whether 

measured district-SES score gaps change when the test changes. I find that after the 

assessment focused more on "college-readiness" standards, district-SES score gaps 

between the 90th and 10th district-SES percentiles widen slightly, but are of smaller 

magnitude than previously found using low-stakes audit tests for students. 



1 

 

Introduction 

Educational testing is used as a tool to motivate student and system efforts 

towards improving test scores as a proxy for improving learning and education (Haertel, 

2013). High-stakes testing changes the behavior of actors in the system and has both 

intended effects and unintended consequences (Koretz, 2013). Gathering evidence on the 

consequences of test use is one of the five sources of evidence recommended by the 

Standards for Educational and Psychological Testing to support the proposed 

interpretation of test scores (American Educational Research Association, American 

Psychological Association, & National Council on Measurement in Education, 2014). 

Amidst recent educational reforms aimed at developing students who are college-

ready by the end of high school (American Diploma Project, 2004; Jerald, 2008; U.S. 

Department of Education, 2010), it is not surprising that these reforms are closely tied to 

assessments. In particular, states are called to develop more rigorous "college-readiness" 

standards that reflect the knowledge and skills that students require in order to be 

successful in college. One implication of upgrading standards is that existing standards 

may be low, and a substantial proportion of students may not be able yet to meet the 

higher standards. It would take time for the system and students to catch up to these 

higher standards. Within such a policy environment, I present three essays that broadly 

aim to identify the consequences of educational testing at a time of when educational 

systems are shifting towards higher educational standards.  

The first essay explores the use and development of cut scores in testing. It 

investigates predictive standard setting and more generally empirical-based standard 

setting. Both are relatively new standard setting methods developed to set standards that 
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purport to indicate whether students are "on-track" to college readiness. One implication 

of setting "rigorous" college-readiness standards is that they are often geared to move 

students towards higher levels of performance, and are hence of a higher level of 

stringency compared to existing standards. Such levels of performance would typically be 

above the average level of performance in the student population.  

One finding from my study is that when the correlation between test scores and 

the predicted outcome scores is less than unity, predictive standard setting will yield cut 

scores that are overly stringent or lenient to compensate for the poor predictive utility. 

When predictive standard setting is used to identify cut scores for targeted outcome 

performance that is above-average, the resulting cut scores will be even more stringent 

than the targeted level of performance. In other words, college readiness cut scores will 

be more stringent than existing standards because (i) that is what is called for and implied 

by setting more rigorous standards, but also because (ii) the short-comings of predictive 

standard setting will further elevate the stringency of the identified cut score. Both these 

trends will result in "college-readiness" standards that are far more stringent than existing 

standards. One consequence of setting such (overly) stringent standards is that the 

percentage of students who fail to meet the standards will be higher than when standards 

were previously set lower.  

My second study is situated in such a context, where the passing score on a newly 

introduced math high school exit exam in Minnesota is set very high, such that the 

percentage of students who cannot pass the test is higher than that under the old test. 

Although students were originally required to pass the exam in order to graduate from 
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high school, the state eventually waived the passing requirement after the first cohort of 

students sat for the test. 

Once the cut score is set, it introduces a discontinuity that divides the test score 

distribution into distinct categories. From a skills perspective, there should not be any 

differences, on average, between students who score barely above or below the cut score. 

Any consequences of barely missing the cut score thus represents an effect of the testing 

policy (Papay, Murnane, & Willett, 2010). Within the context where a high passing 

standard is set, but the stakes for students are made more lenient (in the form of removing 

the passing requirement in order for students to be eligible for a high school diploma), I 

ask whether we still observe consequences of scoring barely below versus barely above a 

cut score. I find some evidence that in some cohorts, scoring barely below the math 

passing score has an impact on on-time high school graduation and 4-year college 

enrollment. 

My third essay looks at another type of discontinuity: whether there are 

disruptions in test score trends when the assessment program changes. Under No Child 

Left Behind, states are required to use assessments to measure student performance in 

reading and math. State assessments should presumably measure what students know and 

can do broadly in the subject domain, as opposed to that on a specific test. Large-scale 

trends and gaps should not differ substantially when the measurement tool is changed 

provided that both are aligned to relevant content standards. Yet, changes to assessment 

programs have been associated with drops in nationally norm-referenced performance, 

arguably because of an over-focus on test-taking rather than learning improvements 

(Koretz, Linn, Dunbar, & Shepard, 1991).  
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The third essay is situated within the context where Texas changed its assessment 

to one that emphasizes college-readiness. In the context of a shift towards a more 

rigorous assessment and performance standards, I ask whether there are differences in 

district-SES gaps in performance measured using two different high-stakes tests in Texas. 

I find that after the assessment shifted towards measuring "college-readiness", the gap in 

performance between high-SES and low SES districts in the 90th versus 10th district-SES 

percentile widened slightly, but the magnitude is far smaller than the discrepancies found 

in student-level audit tests. 

The last two essays contribute to evidence on whether high-takes testing causes 

unintended consequences at the student level or shapes unintended behavior at the district 

level respectively.
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Essay 1 

An Investigation of Methods to Incorporate Evidence into Standard Setting 
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An Investigation of Methods to Incorporate Evidence into Standard Setting 

I. Introduction 

Rigorous college-readiness standards have been the focus of recent educational 

reform (U.S. Department of Education, 2010), in particular the Common Core State 

Standards (Common Core State Standards Initiative, 2010). These standards “must be 

based on evidence regarding what students must know and be able to do at each grade 

level to be on track to graduate from high school college- and career-ready” (U.S. 

Department of Education, 2010, p.8). The emphasis on predictive evidence that addresses 

whether a student is “on track” has motivated so-called “evidence-based methods” for 

setting performance standards (McClarty, Way, Porter, Beimers, & Miles, 2013), 

including predictive standard setting (ACT, 2004; Kobrin, 2007). 

Benchmarks set by predictive standard setting largely take the form, “a student 

with current score x has a p% probability of exceeding a future score y.” For example, the 

SAT defines its benchmark score as a score that “predict(s) a 65% probability or higher 

of getting a first-year college grade point average of either 2.7 or higher (approximately a 

B average)” (Kobrin, 2007, p.2). For the ACT, “the ACT College Readiness Benchmarks 

represent the level of achievement required for students to have a high probability of 

success (a 75 percent chance of earning a course grade of C or better, a 50 percent chance 

of earning a B or better) in such credit-bearing college courses as English Composition, 

Algebra, and Biology. The benchmarks correspond to ACT Assessment scores on the 

English, Mathematics, and Science tests, respectively” (ACT, 2004). 

These methods contrast with traditional standard setting methods such as the 

Angoff method and bookmark method. Traditional standard setting methods rely 
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predominantly on the judgment of standard setting panels regarding what students should 

know and be able to do at a particular performance level. In judgmental-based standard 

setting, the performance of students with respect to an external criterion is occasionally 

used post-hoc as external validity evidence to check the reasonableness of the 

performance standard set. In predictive standard setting, the external criterion is 

incorporated directly as an outcome for predictive models.  

The emphasis on external criterion-related validity evidence forms the basis for 

the validity argument for evidence-based standard setting (EBSS) (McClarty et al., 2013). 

Evidence-based standard setting systematically collects cut scores identified by empirical 

methods, including predictive standard setting, using various sources of external evidence 

to identify neighborhoods where candidate cut scores fall. According to the EBSS 

argument, convergence of candidate cut scores in a particular region provides stronger 

validity evidence to support setting the eventual cut score in that region.  

Predictive cut scores and evidence-based cut scores seem appealing because their 

basis in predictive and empirical evidence makes them appear less arbitrary than cut 

scores set by traditional judgmental-based standard setting methods. Predictive cut scores 

also provide an interpretation of the cut score that is connected to a meaningful criterion 

outcome, such as college-readiness, making it seem more interpretable and relevant 

(Beaton, Linn, & Bohrnstedt, 2012).  

Even though predictive standard setting appears more evidence-based and 

objective than judgmental-based standard setting, judgment is still required for a number 

of inputs to the method. These include selecting the prediction method, selecting the 

probability associated with the prediction, selecting the outcome measure and criterion 
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score, and forming the analytic sample. Additionally, for evidence-based standard setting, 

judgment is still required in cases where there is no clear agreement of cut scores across 

different outcomes, and to select the final cut score within the neighborhood range.  

Ho (2012) demonstrates that predictive cut scores are a function of both the 

stringency of the target outcome score, as well as the correlation between the test on 

which cut scores are set and the outcome test. Thus, students may be required to reach a 

higher or lower cut score not because of the standard required, but because of a stronger 

or weaker predictive relationship between the two tests. Even though predictive cut 

scores have been around for some time (see ACT, 2004; Kobrin, 2007; McClarty et al., 

2013) these problems have not been well-identified.  

In this paper, I discuss issues associated with predictive standard setting and by 

extension, evidence-based standard setting. I then investigate an alternative that attempts 

to combine the strength of judgmental-based standard setting and predictive standard 

setting.  In this alternative, cut scores are first set by judgmental-based methods. Then, 

empirically based statements generated by predictive methods can be attached post-hoc to 

the identified cut scores.  

II. Research Questions 

The overarching research question in this study concerns the use of empirical 

methods in standard setting. In research question (RQ) 1, I first conduct an empirical 

investigation, before using the results to make a conceptual investigation in RQ2. I state 

RQ1 here and will clarify them in section (V) after explaining the terminology and 

predictive methods. 
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RQ1a:  How do predictive cut scores deviate from a stringency-only 

equipercentile cut score when focal-outcome test correlations vary? 

RQ1b:  How dependent are predictive cut scores on judgments made regarding 

inputs to the predictive method? Specifically, 

RQ1bi:  How much do predictive cut scores vary using different 

predictive methods? 

RQ1bii: How much do predictive cut scores vary across different 

probabilities/ quantiles of prediction? 

RQ1biii: How much do predictive cut scores vary across different criterion 

scores? 

RQ1c: How do empirical cut scores compare, using impact data and 

misclassification rates? 

RQ2a:  Can predictive standard setting be used as a stand-alone standard setting 

method? 

RQ2b:  What are the forms of empirically-based statements that can accompany 

any score on the predictor test regarding a future outcome score? What is 

the suitability of attaching empirically-based statements to judgmental-

based cut scores as a standard setting method? 

III. Background and Terminology 

Modern standards-based reform efforts include content standards (the skills and 

knowledge that test-takers are to acquire); tests that measure these standards; and 

performance standards (levels of competence that test-takers can or should achieve). 

Performance standards are operationalized by cut scores on the test score scale (Kane, 
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1994), and performance at or in each level is described by “performance level 

descriptors” (Hambleton, Pitoniak, & Copella, 2012). Cut scores indicate the minimum 

score that test-takers must obtain on a test to demonstrate that they meet the performance 

standards. Setting cut scores is the goal of standard setting methods (Cizek, 2012) and is 

the focus of this paper.  

I refer to predictive standard setting as an umbrella of methods that use regression 

as the basis for prediction. I refer to the test on which the cut score is set as the focal test, 

or the predictor test. The focal test scores are used as the predictor variable in the 

regression model. I refer to the test that measures the eventual outcome of interest as the 

outcome test. The outcome test scores are used as the dependent, or predicted variable. In 

the case of college-readiness standards, the ultimate outcome is often some form of 

college-level grade, such as first-year grade point average (first-year GPA) or course 

grade on a college-level course.  I refer to the level of performance expected on the 

outcome test as the criterion score, e.g. B+ or C. The predictive cut score is the minimum 

score on the focal test identified using a regression-based prediction method that predicts 

the criterion score on the outcome test. 

I use the term empirical methods to refer to prescribed procedures that use 

empirical data and a quantitative method to identify a cut score. Empirical methods may 

differ by the quantitative method, such as a regression-based method (ordinary least 

squares (OLS) regression, logistic regression or quantile regression), or an equipercentile 

linking method. The studies in which empirical methods are applied to identify an 

empirical cut score may differ by the external evidence used, such as concurrent studies 

(measurements taken from the students around the same time, or concurrently, as the 
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focal test) or predictive studies (measurements taken from the students at a future time, so 

the focal test is used to predict the future performance). I define predictive standard 

setting by the use of regression-based methods, which may use either concurrent or future 

outcomes.  

I use the terms identified cut score or candidate cut score to refer to the cut score 

derived through an empirical method, that is under consideration as a potential cut score, 

but which has not yet been put forward as the “final” recommended cut score by the 

standard setting panel.  

In the empirical investigations, I use the following notation: Let X and Y be the 

distribution of test scores on the focal test and outcome test respectively, Xc be the 

identified cut score on the focal test, and Yc be the criterion score on the outcome test.  

IV. Empirical Methods for Identifying Cut Scores 

I discuss two empirical methods that can be used to identify cut scores: a general 

set of regression-based methods and a contrasting equipercentile linking method. 

Regression-based methods are the basis of predictive standard setting. I present the 

equipercentile linking method as a method that maintains “equal stringency” rather than 

“best prediction.”  

IV.1  Regression-based predictive methods 

OLS regression. OLS regression regresses outcome test scores on the focal test 

scores: 

������������ = �� + ����������������+ � (1) 

For a given criterion score, Yc, that is the targeted level of performance on the 

outcome test, the predictive cut score, Xc, on the focal test can be calculated. For a given 
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pair of focal test scores and outcome test scores, and a given criterion score, there is only 

one score on the focal test that predicts the criterion score. There is a linear relationship 

between (Yc, Xc) that satisfies the above regression equation (see Appendix A for 

depicting diagram). 

Logistic regression. Logistic regression predicts the probability p of scoring at or 

above the criterion score on the outcome test. The corresponding logit function is: 

���
�(������������ ������������)

���(������������ ������������)
�= �� + ���������������� (2) 

The predictive cut score is calculated for a given criterion score and probability. I 

first look at a range of probabilities (50%, 65%, 75%) (LR50, LR65, and LR75) that have 

been used as acceptable margins of accuracy over a range of standardized scores on the 

outcome test (ACT, 2004; Kobrin, 2007). 

For a given pair of focal test X and outcome test Y and a given criterion score Yc, 

there is a joint distribution of probability p and predictive cut score, Xc, (p, Xc) that 

satisfies the above logit function. Similarly, for a given probability p of scoring above the 

criterion score Yc, where there is a linear relationship between (Yc, Xc) that satisfies the 

linear equation, here, for a given predictive cut score, Xc, there is a non-linear relationship 

between (p, Yc) that satisfies the equation. To identify a cut score Xc, the probability p has 

to be specified. The converse is also true, we can fix Xc and solve for the probability p. 

Quantile regression. McClarty, Murphy, Keng, Turhan, and Tong (2012) 

evaluate quantile regression as a method for predictive standard setting. Whereas OLS 

regression estimates the conditional mean of the outcome test score, quantile regression 

(Koenker & Hallock, 2001) estimates the conditional median or some other specified 

quantile: 
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�(�|��)= �� + ���������������� (3) 

where �(q|��) is the qth quantile of outcome test score. Quantile regression is more 

robust to outliers in the outcome score than OLS regression. McClarty et al. (2012) looks 

at quantiles over 40th, 50th, and 60th percentile, but quantile regression has so far not been 

used in the literature for predictive standard setting. To facilitate comparison to logistic 

regression, I look at quantiles “numerically equivalent” to the probabilities of scoring 

above a criterion score in logistic regression, where for the (1-q)th quantile regression, q% 

of students score above the criterion score i.e., 50th, 35th, and 25th quantiles (QR50, 

QR35, and QR25). 

For a given pair of focal test and outcome test and a given criterion score, there is 

a joint distribution of (q, Xc) that satisfies the above quantile regression equation, i.e., we 

can specify any quantile q and identify the corresponding cut score Xc. The converse is 

also true: we can fix a particular Xc and solve for the corresponding quantile q. Similarly, 

for a given quantile of performance, there is a joint distribution of (Yc, Xc) that satisfies 

the equation; for a given predictive cut score, there is a joint distribution of (q, Yc) that 

satisfies the equation.  

IV.2  Equipercentile method 

The equipercentile method (Lord, 1955) identifies the cut score on the focal test 

that has equivalent percentile rank as the criterion score on the outcome test. This is an 

expression of “equal stringency” that does not depend on the relationship between the 

tests nor the construct each of them measures. I refer to the stringency level of a 

performance standard broadly as the difficulty level (see Phillips, 2014), measured by the 

percentage of students who are able to score above a given level on the test. In this sense, 
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the equipercentile cut score is used as a stringency-only reference point to predictive-

based cut scores. 

For a given pair of focal test and outcome test and a given criterion score, there is 

only one score on the focal test that has equal stringency as the criterion score. There is a 

typically non-linear relationship between (Yc, Xc) that satisfies the equal stringency 

relationship. 

V. Predictive Standard Setting 

I refer to predictive standard setting as a procedure that uses regression-based 

methods for identifying cut scores on a test. The regression-based methods seek a score 

on the focal test that “predicts” a given criterion score on the outcome test. It typically 

takes the form of a predictive statement based on logistic regression: a student who scores 

at the cut score Xc on the focal test has p% probability of achieving the future score Yc on 

the outcome test (see ACT, 2004; Kobrin, 2007).  

Predictive standard setting has often been put forth as an objective, evidence-

based alternative over traditional judgmental-based standard setting. However, predictive 

standard setting requires specification of a number of inputs to the predictive equation. In 

this section, I present a conceptual framework to investigate predictive standard setting. 

At the end of the section, I explain in detail the research questions (RQ1) for the 

empirical investigation.  

V.1  Predictive standard setting: Conceptual framework 

Dependency of predictive cut scores on focal-outcome test correlations  

Performance standards specify the level of performance required on a test in order 

for a test taker to be classified into a particular performance category (Cizek, 2012). The 
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level of stringency required should correspond to the level of knowledge, skills, or ability 

required to demonstrate the performance level. Predictive cut scores, however, are a 

function of both the stringency of the standard, and the predictive strength, i.e., 

correlation, between the predictor and outcome test (Ho, 2012).  

As a point of reference, the equipercentile linking method establishes the score 

correspondence between X and Y that have equivalent percentile on either scale. 

Equipercentile cut scores (Xc
equi) identified this way have the same “passing” percentage 

on either scale, and hence reflect a “stringency-only” relationship (Ho, 2012). Where X 

and Y have standard bivariate normal distributions with correlation ρXY, Yc and Xc
equi are 

related by: 

Yc = Xc
equi (4) 

In the case where OLS regression is used as the prediction method, the 

relationship between the OLS predictive cut score Xc
OLS and the criterion score Yc is a 

function of the correlation ρXY between the two tests (Ho, 2012): 

��
��� =

��

���
 (5) 

or 

��
��� =

��
����

���
 (6) 

Whereas the equipercentile linking method identifies a cut score that reflects only 

stringency (equation 4), the OLS-regression based method identifies a cut score that 

deviates from the stringency-only cut score by a factor of 1/ρXY (equation 6). When the 

target outcome score is below average on the z-scale, the predictive cut score would be 

lower, or more lenient than the equipercentile cut score by a factor of 1/ρXY. When the 
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target outcome score is above average on the z-scale, the predictive cut score would be 

higher, or more stringent than the equipercentile cut score by a factor of 1/ρXY. 

In the case of predicting college-readiness, the typical raw correlation between 

high school GPA or SAT scores  and first-year college GPA is from +0.30 to +0.40 

(Kobrin, Patterson, Shaw, Mattern, & Barbuti, 2008; Shaw, 2015). Based on the above 

relationships, the OLS regression-based cut score for these correlation ranges will be 2 to 

3 times higher on the z-scale than the equipercentile-based cut score.  

Cut scores derived by probabilistic regression methods are thus affected by a 

confounded relationship between the stringency of the standard and the predictive 

strength of the focal-outcome tests. If a student is not “on track” to a future cut score, it 

can be due to a combination of facts: a) the future standard is high; b) the predictor test 

does not predict the outcome; or both. 

In summary, predictive standard setting results in cut scores that confound the 

level of knowledge and skills required of students to demonstrate “college-readiness” 

with the predictive strength of relationship between the focal-outcome tests. In other 

words, the predictive cut score is affected both by the level of student performance, and 

the joint relationship between the focal (predictor) and outcome tests. In this paper, I first 

empirically demonstrate the sensitivity of predictive cut scores to focal-outcome tests 

with different correlations under conditions of bivariate normality. Comparing this to the 

equipercentile cut score as a stringency-only reference point, I then ask how sensitive 

predictive cut scores are to focal-outcome tests with different correlations when X and Y 

depart from bivariate normality. I answer this under simulated conditions and in an actual 

empirical dataset. 
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Judgment required for inputs to predictive standard setting methods  

Judgment is required for selecting the specific predictive standard setting method, 

and for selecting inputs to implement the method. First we need to identify the outcome 

measure and select a criterion score on the measure. Next, we need to select a prediction 

method to use. Finally, depending on the prediction method chosen, we need to select the 

type of summary statistic being modeled. For OLS regression, this is set at the mean. For 

logistic regression, we need to select the probability of scoring above the criterion score. 

For quantile regression, we need to select the conditional quantile of performance being 

modeled. I ask how sensitive predictive cut scores are when the above inputs are varied.  

V.2  Empirical investigation of predictive standard setting (RQ1) 

In this section, I discuss the empirical investigations that I conduct to answer 

RQ1. I conduct the investigations for RQ1a and RQ1b under the following scenarios: (1) 

under conditions of standard bivariate normality; (2) under simulated conditions with 

departures from standard bivariate normality; and (3) using an actual empirical dataset. I 

use Cohen's effect size guidelines to reference whether the magnitude of the difference 

between the identified predictive cut score and the stringency-only equipercentile cut 

score is small (±0.2), medium (±0.5), or large (±0.8) in terms of standard deviation units1. 

To answer RQ1c, I also evaluate the cut scores using impact data and 

classification accuracy (see also McClarty et al., 2012). Impact data refers to the 

percentage of students who will exceed the cut score. If the impact data (i.e. passing rate) 

is similar to what policymakers expect based on their point of reference to previous tests 

or other tests, then the cut score may be assumed to be reasonable (Hambleton & 

                                                           
1 No extra calculation is required for the simulated data since the scale is already in standard deviation units 
for a bivariate standard normal distribution. 
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Pitoniak, 2006). Impact data is a commonly used statistic in the standard setting literature 

to evaluate cut scores (Hambleton & Pitoniak, 2006). Impact data is regularly reported in 

NAEP, and has been used by states in cut score studies (e.g. see Texas Education 

Agency, 2013).  

Classification accuracy looks at the percentage of accurate classifications for a 

given cut score and criterion score. Classification accuracy is commonly used to evaluate 

cut scores in professional licensure and certification tests where criterion-referenced 

testing is more popular (Clauser, Margolis, & Case, 2006), but less commonly used for 

K-12 standard setting. With the increasing use of external criteria in empirical standard 

setting for college-readiness, classification accuracy might receive more attention in K-12 

standard setting. Below, I adapt the discussion of indices for measuring accurate 

classifications from the professional licensure and certification test literature.  

Within the classical test theory framework, a student whose level of proficiency 

meets the standard will have a true score at or above the cut score associated with the 

standard. The score that the student receives on the test used to measure proficiency is the 

observed test score. Classification errors occur when the proficiency classification based 

on the observed score does not match the proficiency classification based on the true 

score (see Appendix B for depicting diagram). Misclassification arises in two ways 

within this framework. False negative arises when students are classified as not proficient 

on the observed test when their true score in fact meets the proficiency standard. False 

positive arises when students are classified as proficient on the observed test when their 

true score falls below the proficiency standard. 
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Hanson and Brennan (2004) propose a set of indices to look at the size of 

classification errors (or misclassification rates) relative to the population. The false-

positive rate (fp) refers to the proportion of students who are not proficient but received 

passing status on the test; the false-negative rate (fn) refers to the proportion of students 

who are proficient but received failing status on the test. In this study, I calculate the 

misclassification rate as the sum of the false positive rate and the false negative rate.  

V.3 Predictive standard setting: Empirical investigation methods (RQ1) 

Data 

Standard bivariate normal distributions. I start first by generating two 

variables, X and Y to respectively represent focal test scores, the test on which standards 

are being set, and outcome test scores, the test on which future performance is being 

targeted with criterion scores. X and Y are generated as standard bivariate normal 

distributions with correlations between 0 and 1 (r = +0.9, +0.7, +0.5, and +0.3).  

Departure from standard bivariate normality. Next, I simulate conditions that 

depart from standard bivariate normality by using log-normal distributions to 

approximate skewed distributions (see Ho & Yu, 2015; Reardon & Ho, 2015).  

I follow the procedure described in Reardon and Ho (2015) where log-normal 

distributions are used to approximate skewed distributions. For our skewed distribution of 

interest, X, there is a log-normal distribution X* that is normally distributed, X* ~ N (μ, σ) 

where  

� = �����
∗
      (7) 

The distribution of X has a skewness of � = ����(�)(��
�
+ 2)�(��

�
− 1) determined by 

the parameter c. I generate a standard normal distribution of X* ~ N (0, 1) to derive the 

corresponding skewed distribution. By constraining  
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X will have a standardized (mean 0, variance 1) log-normal distribution. I generate 

distributions with skewness  of ±0.10, ±0.30, and ±0.50, all well within the range of 

skewness statistics of ±0.5, which has been found to be rarely exceeded by K-12 state-

level tests (Ho & Yu, 2015). 

Empirical dataset. Finally, I use an empirical dataset containing City University 

of New York (CUNY) first-year GPAs2 (outcome test) and New York Regents high 

school tests in math and ELA (focal tests) from nearly 50,000 students during graduation 

years 2011 and 2012. The test score distributions generally have a negative skew with 

magnitude of skew lower than 0.5. The Regents high school ELA has greater skew 

around -0.80. The first-year GPA distribution has a bimodal peak that includes modes at a 

non-zero value as well as a mode at 0.  

In the analyses, I use the original first-year GPA scale to retain its meaning and 

standardized the Regents high school score scales to have a mean of 0 and standard 

deviation of 1.  

Methods 

I use the empirical methods described under Section IV to identify predictive cut 

scores.  

To set predictive cut scores where the data departs from bivariate normality, the 

usual procedures of checking and dealing with model misfit can apply. Hence, if 

                                                           
2 Student’s weighted freshman GPA at CUNY. The total number of grade points earned by each student is 
divided by the total number of credits attempted during their freshman year. Only non-remedial courses and 
courses that provided grades are included in the calculations. 
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distributions are skewed, they could be transformed so that the regression residuals are 

normally distributed. I do not perform these transformations here because, in the case of a 

generalized logarithmic transformation as in Equation (7) above, they would lead back to 

the standard normal bivariate distributions. Thus, this study illustrates a situation where 

regression models are applied without standard diagnostic checks. Although this would 

represent poor statistical practice, imperfect model fitting methods are often used in 

operational settings for consistency and transparency. Even assuming that flexible 

predictive models are not used, untransformed distributions illustrate how nonstandard 

distributions affect the predictive cut score. This can inform how cut scores would be 

affected for situations where the departures are not serious enough to violate the 

regression residuals normality assumptions and invoke transformations to the affected 

variable.  

Where applicable, I pay special attention to results for data with correlations of r= 

+0.3 or r= +0.5. These correlations are typical for that observed between college first-

year GPA with high school GPA and college admissions tests (ACT, 2007; Kobrin, 

2007).  

V.4 Predictive standard setting: Results 

V.4.1 Results under standard bivariate normality 

RQ1a: How do predictive cut scores deviate from a stringency-only equipercentile cut 

score when focal-outcome test correlations vary? 

Figure 1 and Table 1 shows the cut scores identified by each predictive method 

across a range of criterion scores on the outcome test when the focal-outcome test 

correlation changes. They also show the equipercentile cut score as a stringency-only 
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reference. For clarity of presentation, I focus on predictive methods that model some 

measure of central tendency in the outcome variable – OLS regression, logistic regression 

that predicts 50% probability of scoring above the criterion score (LR50), and quantile 

regression that predicts the median performance in outcome (QR50).  

Stringency-only reference cut score. Figure 1 Panel A and Table 1 Panel A 

show that when the equipercentile method is used, the identified cut score on the z-scale 

is identical (within sampling limits) to the criterion score, regardless of the correlation 

between the focal test and outcome test. In the rest of the discussion for results under 

standard bivariate normality, I take this as the stringency-only reference point to compare 

other cut scores.  

Criterion score at average of outcome distribution. Figure 1 Panels B-D show 

that when the criterion score is targeted at the average of the outcome test distribution, 

the identified cut score is also around the average of the focal test distribution for all the 

methods that model some form of central tendency – OLS regression, logistic regression 

with 50% probability, and quantile regression at the median – regardless of the 

correlation between the focal test and outcome test.  

Criterion score above (below) average of outcome distribution. When the 

criterion score is targeted to be above (below) the average of outcome distribution, the 

regression-based methods will identify cut scores that deviate above (below) the 

stringency-only equipercentile-based cut score. In the case of OLS regression, the 

identified cut scores deviate by a factor of 1/ρXY as predicted by equation 6. When the 

strength of the focal-outcome test correlation drops, the severity of the deviation 

increases. This is because to compensate for the poor test prediction, the cut score has to 
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be set even more stringent (lenient) than the level of performance expected by the 

criterion score. 

RQ1bi: How much do predictive cut scores vary using different predictive methods? 

Table 2 and Figure 2 groups the results from Table 1 to show how predictive cut 

scores vary by prediction method. In general, the predictive cut scores identified by OLS 

regression and median quantile regression are very similar to each other, since there are 

no outliers in a standard normal distribution to skew the conditional outcome 

distributions. 

Holding the test correlation and criterion score fixed, the predictive cut scores 

identified by regression-based methods that model some form of mean outcome (OLS), 

or median outcome (QR50) differs somewhat from that for logistic regression which 

models 50% probability of achieving the outcome (LR50). Using Cohen’s d as a guide to 

the size of difference between the predictive cut scores, at r=0.7 and above, the difference 

in predictive cut scores for each prediction method is very small. At r=0.5 and below, the 

difference in predictive scores is also very small when the criterion score is within ±1 

standard deviation units of the average outcome score. At r=0.5, the difference in 

predictive scores is small-sized for criterion scores between 1 to 2 standard deviation 

units away from the average outcome score, and medium-sized for r=0.3 or below.   

RQ1bii: How much do predictive cut scores vary across different probabilities of 

prediction? 

Table 3 and Figure 3 show that when logistic regression is used, predictive cut 

scores vary across different specified probabilities of scoring above the criterion score. 
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As expected, the stringency of the logistic regression cut score increases as the specified 

probability of scoring above the criterion score increases.  

At correlation r=0.5, the difference in predictive cut scores for probability set at 

75% versus 65% is about 0.5 standard deviation units when criterion scores are targeted 

within ±1 standard deviation units of the average outcome score. At correlation r=0.3, the 

difference in predictive cut scores is about 1 standard deviation units. These differences 

range from medium- to large-sized. 

Table 4 and Figure 4 shows corresponding results when quantile regression is 

used. The difference in predictive cut scores predicted by 25th quantile regression and 35th 

quantile regression is about 0.5 standard deviation units at correlation r=0.5, and about 1 

standard deviation units at correlation r=0.3 for criterion scores targeted within ±1 

standard deviation units of the average outcome score. These differences range from 

medium- to large-sized. 

RQ1biii: How much do predictive cut scores vary across different criterion scores? 

The results presented in Table 1 show that across all predictive methods, for a 

given change in targeted criterion score, the predictive cut score increases by more than 

that magnitude on the z-scale for all prediction methods when the focal-outcome test 

correlation is less than 1. At lower correlations, the difference in predictive cut score for a 

given change in targeted criterion score is wider than that at higher correlations.  

RQ1c: How do empirical cut scores compare, using impact data and misclassification 

rates? 

Finally, I evaluate the predictive cut scores and equipercentile cut scores using 

two approaches commonly used to provide external validity evidence in standard setting. 
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I focus our discussion for the case when correlation r=0.3 but the results are generally 

true for correlations below unity. To recap, we found earlier that at r=0.3 (Figure 2 Panel 

D), the predictive cut score is lower than the equipercentile cut score when the criterion 

score is below average of the outcome distribution, and higher than the equipercentile cut 

score when the criterion score is above average.  

Figure 5 shows the impact data over the range of criterion scores when cut scores 

are identified using the equipercentile method, and the regression-based methods that 

measure some form of central tendency (OLS, LR50, or QR50). When the criterion score 

is targeted above the average of the outcome score distribution, the percentage of passing 

students for the corresponding predictive cut scores are lower than that for the 

corresponding equipercentile cut score. This happens because predictive cut scores are set 

more stringent than the equipercentile cut score in order to compensate for the low 

predictive utility of the focal test scale. Conversely, when the criterion score is targeted 

below average of the outcome score distribution, the percentage of passing students is 

higher when predictive methods are used than when the equipercentile method is used, 

because the former sets cut scores that are more lenient. 

Figure 6 shows the misclassification rates for the corresponding cut scores over 

the range of criterion scores. The misclassification rate for equipercentile cut scores is 

higher for all criterion scores, other than that targeted at the average of the outcome 

distribution. Again, this is mainly a function of the relative location of the identified cut 

score. Figure 7 shows why this is so. Figure 7 shows how misclassification rates vary as a 

function of cut scores on the X score scale at different target values of the criterion score. 

Generally at low correlations, for criterion scores above average, the higher the cut score, 
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the lower the misclassification rate; for criterion scores below average, the lower the cut 

score, the lower the misclassification rate. Since predictive cut scores are higher than 

equipercentile cut scores for criterion scores above average and vice versa for criterion 

scores below average, the misclassification rates for predictive cut scores are always 

lower than those for equipercentile cut scores. However, as Figure 2 Panel D reminds us, 

the lower misclassification rates for predictive cut scores come at the expense of overly 

stringent or lenient cut scores compared to the stringency-only equipercentile cut scores. 

V.4.2 Results under simulated departures from standard bivariate normality 

In this section, I present identified predictive cut scores when the focal test scores 

depart from standard normal distributional assumptions. These results are illustrative in 

nature, because proper application of regression models require initial data exploration 

and alternative model specifications to deal with non-linear and non-normal relationships.  

Skewness. Figure 8 shows how predictive cut scores and equipercentile cut scores 

vary when the focal test score distribution varies from negative skewness of -0.50 to 

+0.50 for correlation values of r=0.3 and r=0.5.  

In general, even as the skewness of the distributions vary, the broad findings 

under distributions with bivariate normality assumptions still hold true: predictive cut 

scores differ substantially from equipercentile cut scores as the focal-outcome test 

correlation drops; logistic regression and quantile regression cut scores depends on the 

specified probability of correct prediction or quantile of performance modeled, and the 

targeted criterion score. Hence, I focus the discussion on how the cut scores vary within 

prediction method and specified probability/quantile or criterion score as skewness 

varies.  
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The results in Figure 8 Panels A and B show that equipercentile cut scores are 

sensitive to skewness in the focal test score distribution. This occurs because skewness in 

the focal test score distribution shifts the density of the distribution relative to the 

outcome score distribution. Even so, the differences in equipercentile cut scores are very 

small (compared to equipercentile cut scores from a non-skewed distribution) when the 

criterion score is within ±1 standard deviation units of the average outcome score over 

skewness ranges of  within ±0.50.  

Both OLS and quantile regression cut scores are robust to differences in skewness 

of the focal test score distribution, since the outcome score distribution is still normally 

distributed over all values of focal test scores.  

Logistic regression cut scores are more sensitive to skewness in the focal test 

score distribution than OLS and quantile regression methods. When the probability is set 

at 50%, and the criterion score is within ±1 standard deviation units of the average 

outcome score, the differences in LR50 cut scores are very small (compared to logistic 

regression cut scores from a non-skewed distribution) as skewness values vary over the 

range within ±0.50. When the probability is set at 65% or 75%, the differences in logistic 

regression cut scores for skewed distributions beyond ±0.30 (compared to logistic 

regression cut scores from a non-skewed distribution) are still small if the criterion score 

is within ±1 standard deviation units of the average outcome score and reach medium-

sized if the criterion score lies within 1 to 2 standard deviation units above or below the 

average outcome score. Data tables are available upon request.  

V.4.3 Results using empirical data 
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Table 5 and Table 6 show the equipercentile and predictive cut scores identified 

using 2010 Regents high school Math and ELA score as the focal test respectively, and 

first-year GPA as the outcome score for criterion scores between 1.7 to 3.3, 

corresponding to grades between C-to B+. These grades correspond to above average 

first-year GPA scores in the empirical dataset, except for C and C-, which are slightly 

below average. The results show a similar pattern as that observed in the simulated 

dataset. I illustrate the magnitude of the differences in empirical cut scores using Regents 

high school math as an example, but the patterns apply for Regents high school ELA as 

well. 

When criterion scores are targeted above the average outcome score, the 

predictive cut scores are more stringent than that of equipercentile cut scores. For a 

criterion score targeted at B+, the predictive cut scores are at least 0.90 standard deviation 

units higher than the equipercentile cut scores when the predictive method models some 

measure of central tendency in the outcome score (OLS, LR50 or QR50). In the empirical 

dataset, the OLS cut score is quite different from the median quantile regression cut score 

because the score distributions depart from bivariate normality.  

For differences in specified probabilities (50%, 65% or 75%) or quantiles (50th, 

35th, or 25th percentile) in logistic regression and quantile regression respectively, the 

differences in cut score can range between 0.40 to 0.80 standard deviation units from one 

specified probability/quantile to the next.  

Over the ranges of criterion scores from C- to B+, the difference in equipercentile 

cut score for each half step grade difference (e.g. C- to C, B to B+) is between 0.25 to 0.5 

standard deviation units; the difference in identified equipercentile cut score for a 
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criterion score within the range of C- and B+ is about 1.7 standard deviation units. For 

predictive cut scores, each half step grade difference in criterion score can result in 

differences in identified predictive cut score between 0.5 to 1.0 standard deviation units. 

When criterion scores range between C- and B+, the predictive cut scores can reach a 

difference of about 2.0 to 4.0 standard deviation units. 

V.5 Predictive standard setting: Discussion 

RQ2a: What is the suitability of predictive standard setting as a stand-alone prediction 

method? 

In this study, we find that regression-based predictive cut scores differ 

substantially from equipercentile cut scores that provide a “stringency-only” reference 

when focal-outcome test score correlations are weak. This issue goes undetected when 

checks using misclassification rates are used. For a given criterion score, the 

corresponding predictive cut scores yield lower misclassification rates over 

corresponding equipercentile cut scores, but this is not surprising given the optimization 

problem that regression models solve. The cost of predictive accuracy is unnecessary 

stringency (or leniency) of cut scores as students are penalized (or given credit for) the 

imperfect predictive relationship of the test. Regression-based predictive cut scores can 

also differ substantially from each other depending on the specified probability of correct 

prediction (logistic regression) or quantile of performance (quantile regression) modeled, 

and the criterion score specified. These issues have not been widely studied in the 

standard setting literature. In this section, I discuss the implications of the above findings 

for predictive standard setting.  

V.5.1 Dependency on stringency of performance and test correlations 
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The empirical results from RQ1a show that for all focal-outcome test correlations 

below unity, and at criterion scores targeted at levels other than the average of the 

outcome distribution, predictive cut scores deviate from the equipercentile cut score that 

represents a stringency-only performance level. The weaker the focal-outcome test 

correlations are, the greater the deviation from the stringency-only equipercentile cut 

score.  

If the focal test used is imperfectly correlated to the outcome test, and the 

criterion score is above the average of the outcome score distribution, students would be 

expected to reach a higher level of performance to be classified as “college-ready” when 

predictive methods were used to identify cut scores than if the equipercentile method 

were used. There will be a group of students who would be classified differently 

depending on the empirical method used to set cut scores. The weaker the correlation of 

the focal-outcome test, the greater the percentage of affected students. Thus, there will be 

a group of students penalized due to the imperfect focal-outcome test correlation, a joint 

property of the tests, rather than because they cannot reach the level of performance 

required by the stringency of the criterion score.  

Conversely, when the criterion score is below the average of the outcome score 

distribution, a group of students would be classified as “college-ready” by the predictive 

cut score not because they have met the stringency required of the criterion score, but 

because the predictive cut score is more lenient than it should be in order to compensate 

for the imperfect focal-outcome test correlation. Again, the weaker the correlation of the 

focal-outcome test, the greater the percentage of affected students. Thus, there will be a 

group of students who will miss out on opportunities, allocated on the basis of their 
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performance on the focal test relative to the cut score, to help them become “college-

ready”.  

The above issues would not be detected if misclassification rate is used to 

evaluate the adequacy of the cut scores, because this statistic is driven by the relative 

location of the cut score with respect to the criterion score. In fact, misclassification rate 

statistics would appear more favorable for predictive cut scores at the expense of more 

stringent (or lenient) cut scores than the stringency-only standards. 

It is somewhat surprising that the deviation of predictive cut scores away from a 

“stringency-only” cut score has not been picked up by the examination of impact data. 

Our simulations suggest that at low correlations, predictive cut scores would lead to more 

extreme passing rates than equipercentile cut scores, depending on the location of the 

criterion score. It is possible that other issues with the GPA scale commonly used to 

measure college-readiness, and representativeness of the analytic sample may mask the 

differences in predictive cut scores and equipercentile cut scores when correlations are 

low. I discuss these issues further in Appendix C.  

V.5.2 Suitability of predictive standard setting as a stand-alone method 

Predictive standard setting may not be suitable as a stand-alone standard setting 

method for a number of reasons. First, predictive standard setting may not be as objective 

as it seems. It has been put forth as an alternative over judgmental-based methods 

because it is perceived not to be judgment-driven. In Appendix C, I explore in greater 

detail how predictive standard setting requires judgments about the choice of outcome 

measure, analytic sample, and prediction method, as well as inputs, to the prediction 

equation including the criterion score and probability of achieving the criterion score (or 
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quantile of performance). The differences in identified predictive cut scores as a result of 

different decisions may often be non-trivial. 

Second, predictive standard setting rests on the quality of the evidence. For the 

predictive models to work, the focal test score and outcome test score distributions should 

meet bivariate normality assumptions. When these assumptions are not met, the identified 

predictive cut score is misleading. Furthermore, the lack of a well-defined construct 

measured on a well-defined scale (see Appendix C.4 for further details), as well as issues 

in constructing a representative analytic sample (see Appendix C.5 for further details) 

may also affect the level of the identified cut score.  

Third, predictive standard setting is conceptually incoherent with the purposes of 

standard setting. The level of performance identified through predictive standard setting 

reflects not only the stringency of performance required of a standard, but also the 

correlation between focal test and outcome test scores. Thus, construct irrelevant factors 

to academic readiness may also affect the location of the predictive cut score. 

Finally, the likely interpretation of predictive cut scores is not supported by the 

prediction process. Once predictive cut scores are set as a college-readiness standard, it is 

likely that the resulting classification would be interpreted as an attribute of the student, 

when in actual fact, the classification reflects student performance as well as test 

correlations, a function of the joint properties of the focal test and outcome test (see 

Appendix C.1). 

V.5.3 Implications for using predictive standard setting as basis to identify 

neighborhood for cut scores in evidence-based standard setting 
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The quality of the cut score recommended by evidence-based standard setting is 

only as strong as the evidence that it rests on. The discussion about the issues with 

predictive standard setting also applies when it is used to identify the neighborhood for 

the eventual cut score such as that used in empirical-based standard setting (see Appendix 

D for a more detailed discussion). Any study that uses regression-based prediction for 

standard setting, whether it is based on a future outcome or a concurrent outcome would 

be subject to similar issues that predictive standard setting faces. 

Equipercentile cut score appears to address the problem of confounding 

stringency with predictive strength of tests. However, it is sensitive to the choice of 

outcome measure (Appendix C.4), and choices in the formation of the analytic sample 

(Appendix C.5). The stringency of the criterion score depends on the outcome scale used 

in the analytic sample, as well as the overall distribution of performance in the analytic 

sample. Furthermore, depending on the test difficulty, the specification of what students 

know and are able to do may differ from test to test.  

Hence, even if there is clear convergence of empirical cut scores around a region 

of the focal test score scale, it is not clear whether they are converging around a “correct” 

cut score that accurately reflects the standards of performance required for a student to be 

considered college-ready. In the case where there is no clear convergence of empirical cut 

scores, judgment will be required to prioritize some evidence over others in order to 

arrive at the final cut score.  
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VI. “Empirically-Based Statements” to Accompany Judgmental-Based Standard 

Setting 

In this section, I explore an alternative that uses empirical methods to generate 

“empirically-based statements” which can then be attached post-hoc to cut scores 

identified by judgmental-based standard setting. This method seeks to combine the 

strengths of both standard setting methods. I briefly recap the pros and cons of each 

method. 

Predictive standard setting is appealing because it provides an interpretation to the 

test score scale that references a meaningful external criterion. However, as a stand-alone 

standard setting method, the cut scores identified by predictive standard setting deviate 

from a stringency-only standard due to imperfect predictive utility of the score scale. The 

definition of what students should know and are able to do to perform at a particular 

performance level is derived post-hoc after the cut score is identified, and thus is 

circumscribed by the predictive cut score and the test. Moreover, judgment is also 

required to select the prediction method and the inputs to use.  

Judgmental-based standard setting on the other hand, focuses on defining what 

students should know and are able to do at a given performance level as measured by the 

focal test, to the best judgment of the standard setting panel. The disadvantage of the 

method is that is that it can be subjective.  

The alternative proposal seeks to combine the strengths of predictive standard 

setting and judgment-based standard setting. In this presented alternative, cut scores can 

first be set using judgmental-based standard setting based on the standard setting panel’s 

best judgment of the knowledge and skills required for a given performance level. 
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“Empirically-based statements” generated by prediction methods can then be attached to 

these identified cut scores. These statements facilitate checking the reasonableness of the 

cut score with respect to an external criterion, and also becomes part of the interpretation 

of the score scale that future users can reference to.  

In the next few sections, I present the forms of “empirically-based statements” 

that can be generated for any given score x on the predictor test, before critiquing this 

alternative.  

RQ2b: What are the forms of empirically-based statements that can accompany any 

score on the focal test regarding a future outcome score? 

Data and Methods 

To answer RQ2b, I use the same data and methods as for RQ1. The only 

difference is that here, I calculate the expected outcome score given a particular score on 

the focal test, or the combination of expected outcome score and probability (logistic 

regression) or quantile (quantile regression).  

Results 

Table 7 shows the future outcome score predicted by OLS and quantile regression 

for a range of cut scores set at x on the focal test, and a range of focal-outcome test 

correlations. The equipercentile scores are also included as a reference point that 

indicates a corresponding stringency-only relationship. Table 8 shows the logistic 

regression-derived probabilities of predicting a corresponding future outcome score over 

±1 standard deviation units of the average outcome score for a range of cut scores set at x 

on the predictor test. Using these two tables, we can generate empirically-based 

statements for specific scores on the focal test.  
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For example, using a theoretical dataset where X and Y are both standard normal 

distributions, and the correlation between X and Y is +0.3, the following set of statements 

about a student scoring at +1.0 SD on the focal test are all empirically-based:  

 A student who scored +1.0 SD on the predictor test scored 84.1% higher than 

all students on the predictor test. A student who scored +1.0 SD on the 

outcome test would also score 84.1% higher than all students on the outcome 

test (equipercentile linking-derived statement). 

 A student who scored +1.0 SD on the predictor test is predicted to score +0.30 

SD on the outcome test, on average (OLS regression-derived statement).  

 The median score on the outcome test for a student who scored +1.0 SD on 

the predictor test is predicted to be +0.30 SD (quantile regression-derived 

statement). 

 A student who scored +1.0 SD on the predictor test has a 23.0% probability of 

scoring +1.0 SD or higher on the outcome test (logistic regression-derived 

statement). 

 A student who scored +1.0 SD on the predictor test has a 62.4% probability of 

scoring 0.0 SD or higher on the outcome test (logistic regression-derived 

statement, approximately LR65). 

 A student who scored +1.0 SD on the predictor test has a 76.8% probability of 

scoring -0.4 SD or higher on the outcome test (logistic regression-derived 

statement, approximately LR75). 
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Note that for any given score on the predictor test, there is an infinite number of 

(p, Yc
LR) and (q, Yc

QR) pairs, i.e. there is an infinite number of “empirically-based 

statements” that can be attached to any given X value. 

RQ2b: What is the suitability of attaching “empirically-based statements” to 

judgmental-based cut scores as a standard setting method? 

 “True to the extent that regression assumptions are not violated”. The 

empirical-based statements generated by prediction methods are true “to the extent that 

the modeling assumptions are not violated”.   

Perceptions influenced by predictive utility of scale. Even though prediction is 

no longer driving the identification of cut scores, the “empirically-based statements” are 

still influenced by the predictive utility of the scale. These statements and the level of the 

criterion score referenced to will still be influenced by the focal-outcome test 

correlations. There is still a possibility that these statements may drive judgments of the 

reasonableness of judgmental-based identified cut score.  

Take the case where the judgmental-based cut score is at +1.0 SD on the focal test 

scale. The logistic-regression derived statement is: “A student who scored +1.0 SD on the 

predictor test has a 76.8% probability of scoring -0.4 SD or higher on the outcome test.” 

A high probability of scoring a below average predicted score would hardly be palatable 

for those seeking high standards. On the other hand, an alternative statement for an 

identical cut score: “A student who scored +1.0 SD on the predictor test has a 23.0% 

probability of scoring +1.0 SD or higher on the outcome test” would seem to stand on 

shaky grounds for predicting with only 23.0% probability for a reasonably high target 

score.  
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Both of the above statements are true for the same cut score, and both might 

invoke a response to increase the correct probability of prediction, or the predicted 

criterion score higher, both of which would work to shift the judgmental-based cut score 

upwards. But the perception of low standards or poor prediction probability of the 

judgmentally identified cut score is not indicative of low standards of the judgmental-

based standard setting panel, but influenced by the poor predictive utility of the focal test 

for the outcome.  

Consider an alternative scenario where the focal-outcome test correlation is r=0.9, 

the following empirical-based statements are true: 

 A student who scored +1.0 SD on the predictor test scored 84.1% higher than 

all students on the predictor test. A student who scored +1.0 SD on the 

outcome test would also score 84.1% higher than all students on the outcome 

test (equipercentile linking-derived statement). 

 A student who scored +1.0 SD on the predictor test has a 40.1% probability of 

scoring +1.0 SD or higher on the outcome test (logistic regression-derived 

statement). 

 A student who scored +1.0 SD on the predictor test has a 77.5% probability of 

scoring +0.6 SD or higher on the outcome test (logistic regression-derived 

statement). 

For a similar cut score, the focal test with higher correlation with the outcome test 

would be perceived as setting “higher standards” than the one with lower correlation. 

Hence, even though the use of “empirically-based statements” does not drive the initial 

identification of cut scores (via judgmental-based standard setting), weak focal-outcome 
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test correlations still drive the relationships between any score on the focal test with a 

future outcome score, which may in turn influence perceptions of whether “high” 

standards are set. This is a testable hypothesis and can be studied. 

Camara (2013) writes that: 

“Phillips (2012) states that “it is uncritically accepted that the performance 

standards must be based on the content standards and the PLDs written by the 

content experts, and that they should not be contaminated by empirical data” 

(p.323). Panelists in each state likely believe they have set rigorous standards and 

cut scores based on their experiences in the classroom, but without any external 

referent the validation argument is based solely on one line of evidence (i.e., 

content). … Given the intended purposes of CCR assessments, if performance 

levels and benchmarks are inconsistent with empirical data on performance in 

college and career-training programs, they will not only lack credibility but would 

raise concerns about the validity of the interpretative argument.” (p.23) 

The converse is also true. If empirical-based cut scores are uncritically accepted 

to reveal “correct” cut scores, then they may cast doubt on judgmental-based cut scores 

when in fact, the empirical-based cut scores are the ones deviating away from a 

stringency-only standard.  

Performance standard circumscribed by test. Earlier, I alluded that defining 

what students should know and be able to do receives greater focus in judgmental-based 

standard setting than predictive standard setting. In actual practice, standards set in 

judgmental-based standard setting are still limited to knowledge and skills that are 

included in the test (Haertel, Beimers, & Miles, 2012). When the standard setting panel 
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specifies a performance standard or achievement level descriptor that includes knowledge 

or skills not tested, the panel has to revise the standard and descriptor. I contend that this 

is a key weakness in current standard setting. The main focus of standard setting has been 

on setting the cut score, while defining the standard and achievement level descriptors 

take a secondary focus. Even if both receive the same amount of attention and time, the 

eventual standard and achievement level descriptors are still subject to what is included 

in the test. I suggest that to set college-readiness standards that are driven by the level of 

performance required to be “college-ready”, standard setting needs to shift its focus from 

setting cut scores on a given test, to integrate standard setting with test development and 

construction, so that tests can be developed to measure different levels of performance 

well.  

VII. Summary and Conclusion 

Traditional methods for setting performance standards have been widely critiqued 

because judgment of the standard setting panel is the main basis for setting standards. 

With the focus on setting college-readiness standards, there seems to be promise for a 

new approach to use external criterion evidence to drive empirical standard setting. 

However, as Ho (2012) demonstrates, and which I which show the results 

empirically in this study, predictive methods will confound the stringency of the standard 

with the predictive utility of the focal test when the correlation between the focal test 

scores and predicted test scores are less than 1. At levels of focal-outcome test 

correlations typically observed between K-12 tests and measures of college-readiness, the 

deviation of predictive cut scores from stringency-only standards can be quite severe. 

This will lead to cut scores that are too demanding or too lenient than what the level of 
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performance for college-readiness calls for. Judgment is also required for specifying 

every input to the prediction model.  

Although equipercentile cut scores avoid confounding between the stringency of 

standards and the predictive utility of tests, it is not immune to problems with the score 

scales. In particular, the level of performance specified by equipercentile cut scores may 

be biased when score scales are not well-defined or when there is bias in the analytic 

sample. Furthermore, the level of performance specified by equipercentile cut scores are 

circumscribed by the content of the test in practice, rather than defined by knowledge and 

skills that being college-ready calls for. 

Collectively, these issues with the various empirical methods for standard setting 

also affect evidence-based standard setting. Even if cut scores identified by various 

empirical methods using different outcome tests are in close agreement with one another 

and may converge on a particular region of focal test scores, it is also possible that they 

are converging on a spurious cut score, i.e. being precisely inaccurate.  

In this study, I also explore whether empirically-based statements can be attached 

to judgmental-based cut scores to add meaning to the score scale and anchor 

interpretation of scores in a relevant outcome. I demonstrate how these empirically-based 

statements are still driven by the predictive relationships between focal and outcome 

tests. False impressions about standards or predictive accuracy being set too low may 

arise not because the standards of the judgmental-based standard setting panel is low, but 

because of the poor predictive utility of the focal test.  

The findings from this study suggests that predictive standard setting does not 

solve the reliance on judgment that is commonly associated with judgemental-based 



42 

 

standard setting. Given what we learn about cut scores identified by predictive standard 

setting methods – that they will be overly stringent when the criterion score is above 

average performance and overly lenient when the criterion score is below average 

performance, we might use the longitudinal data as a kind of reasonableness check for the 

upper or lower limit for identified cut scores. That is, if the proposed cut score is even 

more stringent than the cut score identified by regression-based predictive methods when 

the targeted criterion score is above average performance, that might serve as a warning 

that the cut score may not be warranted. The longitudinal data may serve as external 

validity evidence to gauge the reasonableness of cut scores, but there will still be a need 

to focus standard setting on defining the knowledge and skills that students need to have 

in order to be ready for college. 
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Table 1. How predictive cut scores vary with focal-outcome test correlations, by prediction method 

 Correlation Criterion Score 

 -2.0 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 

 A. Equipercentile "stringency-only" reference 

r=0.9 -2.00 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.00 

r=0.7 -2.00 -1.60 -1.41 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.00 

r=0.5 -2.00 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.00 

r=0.3 -2.00 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.00 

r=0 -2.00 -1.60 -1.40 -1.20 -1.01 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.99 

 B. OLS 

r=0.9 -2.22 -1.78 -1.56 -1.33 -1.11 -0.89 -0.67 -0.44 -0.22 0.00 0.22 0.44 0.67 0.89 1.11 1.33 1.56 1.78 2.22 

r=0.7 -2.86 -2.29 -2.00 -1.71 -1.43 -1.14 -0.86 -0.57 -0.29 0.00 0.29 0.57 0.86 1.14 1.43 1.71 2.00 2.29 2.86 

r=0.5 -4.00 -3.20 -2.80 -2.40 -2.00 -1.60 -1.20 -0.80 -0.40 0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 4.00 

r=0.3 -6.67 -5.33 -4.67 -4.00 -3.33 -2.67 -2.00 -1.33 -0.67 0.00 0.67 1.33 2.00 2.67 3.33 4.00 4.67 5.33 6.67 

r=0 -## -## -## -## -## -## -## -## -## -83 ## ## ## ## ## ## ## ## ## 

 C. LR50 

r=0.9 -2.20 -1.76 -1.55 -1.33 -1.11 -0.89 -0.67 -0.44 -0.22 0.00 0.22 0.44 0.67 0.89 1.11 1.33 1.55 1.77 2.20 

r=0.7 -2.68 -2.19 -1.94 -1.68 -1.41 -1.13 -0.85 -0.57 -0.28 0.00 0.29 0.57 0.85 1.13 1.40 1.67 1.93 2.19 2.68 

r=0.5 -3.51 -2.91 -2.61 -2.28 -1.93 -1.57 -1.19 -0.80 -0.40 0.00 0.40 0.79 1.18 1.56 1.92 2.27 2.59 2.91 3.48 

r=0.3 -5.48 -4.63 -4.19 -3.70 -3.15 -2.57 -1.96 -1.32 -0.66 0.00 0.67 1.31 1.95 2.55 3.12 3.65 4.12 4.60 5.39 

r=0 465 873 495 337 739 822 637 382 -1876 6 493 248 407 936 1588 2720 610 -2314 1249 

 D. QR50 

r=0.9 -2.22 -1.78 -1.55 -1.33 -1.11 -0.89 -0.67 -0.44 -0.22 0.00 0.22 0.45 0.67 0.89 1.11 1.33 1.56 1.78 2.22 

r=0.7 -2.85 -2.28 -2.00 -1.71 -1.43 -1.14 -0.85 -0.57 -0.28 0.00 0.29 0.57 0.86 1.15 1.43 1.72 2.00 2.29 2.86 

r=0.5 -4.00 -3.20 -2.80 -2.40 -2.00 -1.60 -1.20 -0.80 -0.40 0.00 0.40 0.80 1.20 1.60 2.00 2.41 2.81 3.21 4.01 

r=0.3 -6.66 -5.33 -4.66 -4.00 -3.33 -2.66 -2.00 -1.33 -0.66 0.00 0.67 1.34 2.00 2.67 3.34 4.00 4.67 5.33 6.67 
Note: LR50 refers to logistic regression with 50% probability of scoring at or above the criterion score. QR50 refers to quantile regression at the median. Based on standard bivariate normal 
distributions. ## refers to magnitude greater than 1x109.
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Table 2. How predictive cut scores vary by prediction method, grouped within focal-test outcome correlations 

Prediction 
Method 

Criterion Score 

-2.0 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 

 Correlation = 0.9 

Equi -2.00 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.00 

OLS -2.22 -1.78 -1.56 -1.33 -1.11 -0.89 -0.67 -0.44 -0.22 0.00 0.22 0.44 0.67 0.89 1.11 1.33 1.56 1.78 2.22 

LR50 -2.20 -1.76 -1.55 -1.33 -1.11 -0.89 -0.67 -0.44 -0.22 0.00 0.22 0.44 0.67 0.89 1.11 1.33 1.55 1.77 2.20 

QR50 -2.22 -1.78 -1.55 -1.33 -1.11 -0.89 -0.67 -0.44 -0.22 0.00 0.22 0.45 0.67 0.89 1.11 1.33 1.56 1.78 2.22 

                    

 Correlation = 0.7 

Equi -2.00 -1.60 -1.41 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.00 

OLS -2.86 -2.29 -2.00 -1.71 -1.43 -1.14 -0.86 -0.57 -0.29 0.00 0.29 0.57 0.86 1.14 1.43 1.71 2.00 2.29 2.86 

LR50 -2.68 -2.19 -1.94 -1.68 -1.41 -1.13 -0.85 -0.57 -0.28 0.00 0.29 0.57 0.85 1.13 1.40 1.67 1.93 2.19 2.68 

QR50 -2.85 -2.28 -2.00 -1.71 -1.43 -1.14 -0.85 -0.57 -0.28 0.00 0.29 0.57 0.86 1.15 1.43 1.72 2.00 2.29 2.86 

                    

 Correlation = 0.5 

Equi -2.00 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.00 

OLS -4.00 -3.20 -2.80 -2.40 -2.00 -1.60 -1.20 -0.80 -0.40 0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 4.00 

LR50 -3.51 -2.91 -2.61 -2.28 -1.93 -1.57 -1.19 -0.80 -0.40 0.00 0.40 0.79 1.18 1.56 1.92 2.27 2.59 2.91 3.48 

QR50 -4.00 -3.20 -2.80 -2.40 -2.00 -1.60 -1.20 -0.80 -0.40 0.00 0.40 0.80 1.20 1.60 2.00 2.41 2.81 3.21 4.01 

                    

 
Correlation = 0.3 
                                  

Equi -2.00 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.00 

OLS -6.67 -5.33 -4.67 -4.00 -3.33 -2.67 -2.00 -1.33 -0.67 0.00 0.67 1.33 2.00 2.67 3.33 4.00 4.67 5.33 6.67 

LR50 -5.48 -4.63 -4.19 -3.70 -3.15 -2.57 -1.96 -1.32 -0.66 0.00 0.67 1.31 1.95 2.55 3.12 3.65 4.12 4.60 5.39 

QR50 -6.66 -5.33 -4.66 -4.00 -3.33 -2.66 -2.00 -1.33 -0.66 0.00 0.67 1.34 2.00 2.67 3.34 4.00 4.67 5.33 6.67 
Note: Equi refers to equipercentile cut score. LR50 refers to logistic regression with 50% probability of scoring at or above the criterion score. QR50 refers to quantile regression at the median. Based 
on standard bivariate normal distributions. ## refers to magnitude greater than 1x109

. 
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Table 3. How predictive cut scores vary with probability p of scoring at or above the criterion score using logistic regression, by focal-
outcome test correlations 

 Probability p Criterion Score 

 -2.0 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 

 Correlation = 0.9 

p=50 -2.20 -1.76 -1.55 -1.33 -1.11 -0.89 -0.67 -0.44 -0.22 0.00 0.22 0.44 0.67 0.89 1.11 1.33 1.55 1.77 2.20 

p=65 -2.04 -1.60 -1.39 -1.17 -0.94 -0.72 -0.50 -0.27 -0.05 0.17 0.39 0.61 0.83 1.05 1.27 1.49 1.71 1.93 2.35 

p=75 -1.92 -1.48 -1.26 -1.04 -0.82 -0.59 -0.37 -0.14 0.08 0.30 0.52 0.74 0.96 1.18 1.40 1.62 1.84 2.05 2.48 
                    

  Correlation = 0.7 

p=50 -2.68 -2.19 -1.94 -1.68 -1.41 -1.13 -0.85 -0.57 -0.28 0.00 0.29 0.57 0.85 1.13 1.40 1.67 1.93 2.19 2.68 

p=65 -2.38 -1.86 -1.60 -1.33 -1.06 -0.77 -0.49 -0.20 0.09 0.37 0.66 0.94 1.21 1.49 1.75 2.02 2.26 2.51 2.98 

p=75 -2.15 -1.62 -1.35 -1.07 -0.78 -0.50 -0.20 0.09 0.37 0.66 0.94 1.22 1.50 1.76 2.02 2.28 2.52 2.76 3.21 
                    

 Correlation = 0.5 

p=50 -3.51 -2.91 -2.61 -2.28 -1.93 -1.57 -1.19 -0.80 -0.40 0.00 0.40 0.79 1.18 1.56 1.92 2.27 2.59 2.91 3.48 

p=65 -3.03 -2.39 -2.06 -1.70 -1.33 -0.95 -0.55 -0.15 0.25 0.65 1.05 1.43 1.81 2.17 2.51 2.84 3.14 3.44 3.96 

p=75 -2.65 -1.98 -1.63 -1.25 -0.87 -0.47 -0.06 0.35 0.75 1.16 1.55 1.93 2.29 2.65 2.97 3.29 3.56 3.85 4.33 
                    

 Correlation = 0.3 

p=50 -5.48 -4.63 -4.19 -3.70 -3.15 -2.57 -1.96 -1.32 -0.66 0.00 0.67 1.31 1.95 2.55 3.12 3.65 4.12 4.60 5.39 

p=65 -4.63 -3.68 -3.19 -2.64 -2.05 -1.43 -0.79 -0.12 0.55 1.22 1.88 2.50 3.11 3.68 4.21 4.69 5.11 5.54 6.22 

p=75 -3.98 -2.95 -2.41 -1.83 -1.20 -0.55 0.12 0.81 1.49 2.17 2.82 3.43 4.01 4.56 5.05 5.50 5.87 6.27 6.87 

Note: Based on standard bivariate normal distributions. The predictive cut scores are derived from logistic regression with 50%, 65%, and 75% probability of 
scoring at or above the criterion score.
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Table 4. How predictive cut scores vary with quantile q of quantile regression, by focal-outcome test correlations 

Quantile q Criterion Score 

 -2.0 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 

 Correlation = 0.9 

q=50 -2.22 -1.78 -1.55 -1.33 -1.11 -0.89 -0.67 -0.44 -0.22 0.00 0.22 0.45 0.67 0.89 1.11 1.33 1.56 1.78 2.22 

q=35 -2.04 -1.59 -1.37 -1.15 -0.92 -0.70 -0.48 -0.26 -0.04 0.19 0.41 0.63 0.85 1.08 1.30 1.52 1.74 1.96 2.41 

q=25 -1.90 -1.45 -1.23 -1.01 -0.79 -0.56 -0.34 -0.12 0.10 0.33 0.55 0.77 0.99 1.22 1.44 1.66 1.88 2.10 2.55 
                    

 Correlation = 0.7 

q=50 -2.85 -2.28 -2.00 -1.71 -1.43 -1.14 -0.85 -0.57 -0.28 0.00 0.29 0.57 0.86 1.15 1.43 1.72 2.00 2.29 2.86 

q=35 -2.47 -1.90 -1.61 -1.32 -1.04 -0.75 -0.47 -0.18 0.11 0.39 0.68 0.96 1.25 1.54 1.82 2.11 2.39 2.68 3.25 

q=25 -2.17 -1.60 -1.31 -1.03 -0.74 -0.45 -0.17 0.12 0.40 0.69 0.97 1.26 1.54 1.83 2.11 2.40 2.68 2.97 3.54 
                    

 Correlation = 0.5 

q=50 -4.00 -3.20 -2.80 -2.40 -2.00 -1.60 -1.20 -0.80 -0.40 0.00 0.40 0.80 1.20 1.60 2.00 2.41 2.81 3.21 4.01 

q=35 -3.33 -2.53 -2.13 -1.73 -1.33 -0.93 -0.53 -0.13 0.27 0.67 1.07 1.46 1.86 2.26 2.66 3.06 3.46 3.86 4.66 

q=25 -2.84 -2.04 -1.64 -1.24 -0.84 -0.44 -0.04 0.36 0.76 1.17 1.57 1.97 2.37 2.77 3.17 3.57 3.97 4.37 5.17 
                    

 Correlation = 0.3 

q=50 -6.66 -5.33 -4.66 -4.00 -3.33 -2.66 -2.00 -1.33 -0.66 0.00 0.67 1.34 2.00 2.67 3.34 4.00 4.67 5.33 6.67 

q=35 -5.44 -4.11 -3.44 -2.78 -2.11 -1.44 -0.78 -0.11 0.56 1.23 1.89 2.56 3.23 3.89 4.56 5.23 5.89 6.56 7.89 

q=25 -4.51 -3.18 -2.51 -1.85 -1.19 -0.52 0.14 0.81 1.47 2.13 2.80 3.46 4.13 4.79 5.45 6.12 6.78 7.44 8.77 

Note: Based on standard bivariate normal distributions. The predictive cut scores are derived from quantile regression at the median, 35th, and 25th quantile of the 
outcome score that corresponds to the criterion score.
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Table 5. Empirical cut scores identified using Regents high school Math exams (2010 
data) as the focal test and first-year GPA as the outcome 

 

Note: Equi refers to the equipercentile approach. LR50, LR65, and LR75 refers to logistic regression with 
50%, 65%, and 75% probability of scoring at or above the criterion score. QR50, QR35, and QR25 refers to 
quantile regression at the median, 35th, and 25th quantile of the outcome test score (corresponding to the 
criterion score). 

Predictive 
Method Target First-Year GPA 

 C- C C+ B-  B B+ 

 1.7 2.0 2.3 2.7 3.0 3.3 

Equi -0.50 -0.25 0.01 0.44 0.78 1.20 

       
OLS -0.86 -0.19 0.48 1.37 2.04 2.71 

       
LR50 -1.12 -0.53 0.09 0.89 1.49 2.07 

       
QR50 -1.10 -0.50 0.11 0.91 1.51 2.11 

       
LR65 -0.27 0.27 0.84 1.59 2.14 2.63 

       
LR75 0.39 0.89 1.42 2.13 2.64 3.07 

       
QR35 -0.22 0.31 0.84 1.55 2.08 2.62 

       
QR25 0.41 0.90 1.40 2.05 2.55 3.04 
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Table 6. Empirical cut scores identified using Regents high school ELA exams (2010 
data) as the focal test and first-year GPA as the outcome 
 Predictive 
Method Target First-Year GPA 

 C- C C+ B-  B B+ 

 1.7 2.0 2.3 2.7 3.0 3.3 

Equi -0.41 -0.02 0.08 0.37 0.85 1.14 

       
OLS -0.88 -0.17 0.53 1.47 2.18 2.88 

       
LR50 -1.12 -0.51 0.13 0.93 1.55 2.15 

       
QR50 -1.08 -0.47 0.15 0.97 1.58 2.20 

       
LR65 -0.23 0.33 0.91 1.65 2.22 2.74 

       
LR75 0.45 0.98 1.51 2.21 2.74 3.19 

       
QR35 -0.19 0.35 0.89 1.62 2.17 2.71 

       
QR25 0.46 0.95 1.44 2.10 2.59 3.09 

Note: Equi refers to the equipercentile approach. LR50, LR65, and LR75 refers to logistic regression with 
50%, 65%, and 75% probability of scoring at or above the criterion score. QR50, QR35, and QR25 refers to 
quantile regression at the median, 35th, and 25th quantile of the outcome test score (corresponding to the 
criterion score).  
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Table 7. Future outcome scores predicted by cut scores, by predictive method and focal-outcome test correlation 
 Predictive  
Method Cut Score 

 -2.0 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 

 Correlation = 0.9 

Equi -2.00 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.00 

OLS -1.80 -1.44 -1.26 -1.08 -0.90 -0.72 -0.54 -0.36 -0.18 0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.80 

QR50 -1.80 -1.44 -1.26 -1.08 -0.90 -0.72 -0.54 -0.36 -0.18 0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.80 

QR65 -1.63 -1.27 -1.09 -0.91 -0.73 -0.55 -0.37 -0.19 -0.01 0.17 0.35 0.53 0.71 0.89 1.07 1.25 1.43 1.61 1.97 

QR75 -1.51 -1.15 -0.97 -0.79 -0.61 -0.43 -0.25 -0.07 0.11 0.29 0.47 0.65 0.83 1.01 1.19 1.37 1.55 1.73 2.09 
                    

 Correlation = 0.7 

Equi -2.00 -1.60 -1.39 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.00 

OLS -1.40 -1.12 -0.98 -0.84 -0.70 -0.56 -0.42 -0.28 -0.14 0.00 0.14 0.28 0.42 0.56 0.70 0.84 0.98 1.12 1.40 

QR50 -1.40 -1.12 -0.98 -0.84 -0.70 -0.56 -0.42 -0.28 -0.14 0.00 0.14 0.28 0.42 0.56 0.70 0.84 0.98 1.12 1.40 

QR65 -1.13 -0.85 -0.71 -0.57 -0.43 -0.29 -0.15 -0.01 0.13 0.27 0.41 0.55 0.69 0.83 0.97 1.11 1.25 1.39 1.67 

QR75 -0.92 -0.64 -0.50 -0.36 -0.22 -0.08 0.06 0.20 0.34 0.48 0.62 0.76 0.90 1.04 1.18 1.32 1.46 1.60 1.88 
                    

 Correlation = 0.5 

Equi -2.00 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.00 

OLS -1.00 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.00 

QR50 -1.00 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.00 

QR65 -0.67 -0.47 -0.37 -0.27 -0.17 -0.07 0.03 0.13 0.23 0.33 0.43 0.53 0.63 0.73 0.83 0.93 1.03 1.13 1.33 

QR75 -0.41 -0.21 -0.11 -0.01 0.08 0.18 0.28 0.38 0.48 0.58 0.68 0.78 0.88 0.98 1.08 1.18 1.28 1.38 1.58 
                    

 Correlation = 0.3 

Equi -2.00 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.00 

OLS -0.60 -0.48 -0.42 -0.36 -0.30 -0.24 -0.18 -0.12 -0.06 0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.60 

QR50 -0.60 -0.48 -0.42 -0.36 -0.30 -0.24 -0.18 -0.12 -0.06 0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.60 

QR65 -0.23 -0.11 -0.05 0.01 0.07 0.13 0.19 0.25 0.31 0.37 0.43 0.49 0.55 0.61 0.67 0.73 0.79 0.85 0.97 

QR75 0.04 0.16 0.22 0.28 0.34 0.40 0.46 0.52 0.58 0.64 0.70 0.76 0.82 0.88 0.94 1.00 1.06 1.12 1.24 
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Note: Equi refers to the equipercentile approach. QR50, QR35, and QR25 refers to quantile regression at the median, 35th, and 25th quantile of the outcome test 
score (corresponding to the criterion score). Based on standard bivariate normal distributions.   
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Table 8. Probability of scoring above a criterion score on the outcome test, as predicted by cut scores on the focal test, using the 
logistic regression predictive method, by test correlation 

 Correlation Cut Score 

 -2.0 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 

 Criterion Score = -1.0 

0.9 0.03 0.14 0.25 0.42 0.60 0.76 0.87 0.93 0.97 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.7 0.26 0.42 0.50 0.59 0.67 0.74 0.81 0.85 0.89 0.92 0.94 0.96 0.97 0.98 0.99 0.99 0.99 1.00 1.00 

0.5 0.48 0.58 0.63 0.68 0.72 0.76 0.80 0.83 0.86 0.88 0.90 0.92 0.93 0.94 0.95 0.96 0.97 0.97 0.98 

0.3 0.66 0.71 0.73 0.75 0.77 0.79 0.81 0.83 0.84 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 

 Criterion Score = -0.4 

0.9 0.00 0.01 0.03 0.06 0.12 0.21 0.36 0.54 0.71 0.83 0.91 0.96 0.98 0.99 0.99 1.00 1.00 1.00 1.00 

0.7 0.08 0.15 0.20 0.26 0.33 0.40 0.49 0.57 0.65 0.72 0.78 0.84 0.88 0.91 0.93 0.95 0.96 0.97 0.99 

0.5 0.24 0.32 0.36 0.40 0.45 0.50 0.55 0.59 0.64 0.68 0.72 0.76 0.79 0.82 0.85 0.87 0.89 0.91 0.94 

0.3 0.41 0.46 0.49 0.52 0.54 0.57 0.59 0.62 0.64 0.66 0.69 0.71 0.73 0.75 0.77 0.79 0.80 0.82 0.85 

 Criterion Score = 0.0 

0.9 0.00 0.00 0.01 0.01 0.03 0.05 0.10 0.19 0.32 0.50 0.67 0.81 0.90 0.95 0.97 0.99 0.99 1.00 1.00 

0.7 0.03 0.07 0.09 0.12 0.16 0.21 0.27 0.34 0.42 0.50 0.58 0.66 0.73 0.79 0.84 0.88 0.91 0.93 0.97 

0.5 0.13 0.18 0.21 0.24 0.28 0.32 0.36 0.41 0.45 0.50 0.55 0.59 0.64 0.68 0.72 0.76 0.79 0.82 0.87 

0.3 0.27 0.31 0.33 0.35 0.38 0.40 0.42 0.45 0.47 0.50 0.52 0.55 0.58 0.60 0.62 0.65 0.67 0.69 0.73 

 Criterion Score = 0.6 

0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.08 0.15 0.27 0.44 0.62 0.77 0.88 0.94 0.97 0.99 

0.7 0.01 0.02 0.02 0.03 0.04 0.06 0.08 0.11 0.14 0.19 0.25 0.32 0.39 0.48 0.56 0.64 0.72 0.78 0.88 

0.5 0.04 0.06 0.07 0.09 0.10 0.12 0.15 0.17 0.20 0.24 0.28 0.32 0.36 0.41 0.46 0.50 0.55 0.60 0.69 

0.3 0.11 0.13 0.14 0.16 0.17 0.19 0.21 0.22 0.24 0.26 0.28 0.31 0.33 0.35 0.38 0.40 0.43 0.45 0.51 

 Criterion Score = 1.0 

0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.07 0.13 0.24 0.40 0.59 0.75 0.86 0.97 

0.7 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.04 0.06 0.08 0.11 0.15 0.20 0.26 0.33 0.41 0.50 0.59 0.74 

0.5 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.08 0.10 0.12 0.14 0.17 0.20 0.24 0.28 0.32 0.37 0.42 0.52 

0.3 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.16 0.18 0.19 0.21 0.23 0.25 0.27 0.30 0.35 
Note: Based on standard bivariate normal distributions. 
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Figure 1. How predictive cut scores vary with focal-outcome test correlations, by prediction method 
Panel A. Equipercentile cut scores Panel B. OLS cut scores 

  
Panel C. LR50 cut scores Panel D. QR50 cut scores 

  
Note: LR50 refers to logistic regression with 50% probability of scoring at or above the criterion score. QR50 refers to quantile regression at the median. Based 
on standard bivariate normal distributions.
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Figure 2. How predictive cut scores vary by prediction method, grouped within focal-test outcome correlations 
Panel A. r=0.9 Panel B. r=0.7 

  
Panel C. r=0.5 Panel D. r=0.3 

  
Note: LR50 refers to logistic regression with 50% probability of scoring at or above the criterion score. QR50 refers to quantile regression at the median. Based 
on standard bivariate normal distributions.
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Figure 3. How predictive cut scores vary with probability of scoring at or above the criterion score using logistic regression, by focal-
outcome test correlations 
Panel A. r=0.9 Panel B. r=0.3 

  
 
Note: Based on standard bivariate normal distributions. LR50, LR65, LR75 refers to logistic regression with 50%, 65%, and 75% probability of scoring at or 
above the criterion score. 
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Figure 4. How predictive cut scores vary with quantile q of quantile regression, by focal-outcome test correlations 
Panel A. r=0.9 Panel B. r=0.3 

  
Note: Based on standard bivariate normal distributions. QR50, QR35, and QR25 refers to quantile regression at the median, 35th quantile, and 25th quantile of the 
outcome test score. 
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Figure 5. How impact data varies over criterion score, by prediction method for focal-
outcome test correlation of r=0.3 

 
 
Note: LR50 refers to logistic regression with 50% probability of scoring at or above the criterion score. 
QR50 refers to quantile regression at the median. Based on standard bivariate normal distributions.
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Figure 6. How misclassification rates vary over criterion score, by prediction method for 
focal-outcome test correlation of r=0.3 

 
Note: LR50 refers to logistic regression with 50% probability of scoring at or above the criterion score. 
QR50 refers to quantile regression at the median. Based on standard bivariate normal distributions.
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Figure 7. How misclassification rates vary over cut score, by various criterion score, for 
focal-outcome test correlation of r=0.3 

 
 
Note: LR50 refers to logistic regression with 50% probability of scoring at or above the criterion score. 
QR50 refers to quantile regression at the median. Based on standard bivariate normal distributions.
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Figure 8. How skewness (by values of = ±0.5, ±0.3, and 0.0) affects predictive cut scores, by predictive methods, for focal-outcome 
test correlations of r=0.3 and r=0.5 
Panel A: Equipercentile cut scores; r=0.3 Panel B: Equipercentile cut scores; r=0.5 

  
Panel C: OLS; r=0.3 Panel D: OLS; r=0.5 
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Figure 8 (continued) 
Panel E: LR50; r=0.3 Panel F:LR50; r=0.5 

  
Panel G: QR50; r=0.3 Panel H: QR50; r=0.5 
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Figure 8 (continued) 
Panel I: LR65; r=0.3 Panel J: LR65; r=0.5 

  
Panel K: LR75; r=0.3 Panel L: LR75; r=0.5 
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Appendix A 
Diagram Depicting Use of Outcome Test Scores to Identify Predictive Cut Scores 
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Appendix B 
Misclassification Errors 

 
Table B1. 2x2 matrix of observed versus actual score relative to identified cut score and 
actual performance relative to standard 

 

  True scores 

  Below standard Above standard 
Observed 

scores 
Below cut score P00 P01 
Above cut score P10 P11 

 
I base the notation on the discussion in Clauser, Margolis, and Case (2006). Let x and  

be the scores on the observed and true score scales and let x0 and 0 be the respective cut 

scores. Then, 

P00 = Probability (x < x0 and τ < τ0) 

P01 = Probability (x < x0 and τ ≥ τ0) 

P10 = Probability (x ≥ x0 and τ < τ0) 

P11 = Probability (x ≥ x0 and τ ≥ τ0) 

I refer to false positive rate (fp) as the proportion of students who are not 

proficient but receive passing status on the test (P10). I refer to false negative rate (fn) as 

the proportion of students who are proficient but received failing status on the test (P01). 

The misclassification rate is calculated as the sum of the false positive rate and the false 

negative rate (P10 + P01).
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Appendix C 
Further Issues with Use of Predictive Standard Setting as a Stand-Alone Standard Setting 

Method 
 
In this appendix, I discuss a couple of issues that may arise from the dependency 

of predictive cut scores on the focal-outcome test correlation.  

C.1  Implications for the validity of likely interpretations  

Construct irrelevant variance. Assuming the regression assumptions are met, the 

correct interpretations of predictive cut scores are as follows: On average, students who 

score at cut score Xc
OLS are predicted to have a mean outcome score Yc (OLS cut score); 

A student who scores at cut score Xc
LR is p% likely to achieve future score Yc (logistic 

regression cut score); The qth percentile of outcome score for students who score at cut 

score Xc
QR is expected to be Yc.  

Cut scores are widespread in education and their use are common and predictable 

(Haertel & Ho, 2012). Once predictive cut scores are set on K-12 tests, performance 

labels, such as “college-ready”/“not college-ready”, or “advanced academic 

performance”/“satisfactory academic performance”/“unsatisfactory academic 

performance” (e.g. Texas Education Agency, 2013, p.42), will likely be attached to these 

cut scores. Even though the underlying statement is probabilistic, cut scores are 

commonly used to make dichotomous classifications. The resulting classification will 

suggest that the student is either “college-ready” or “not college-ready”, which becomes 

interpreted as an attribute of the student. The appropriate interpretation of the predictive 

cut score is that it reflects what students are likely to know and be able to do, only as far 

as the focal test can predict the outcome (Ho, 2012).  

The shift from interpreting the predictive cut score as a probabilistic statement to 

making a dichotomous classification interpreted as an attribute of the student represents a 
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“construct shift” (Haertel & Ho, 2012). A “construct shift” happens when the developer 

construct (probability of achieving a future outcome) is different from the application 

construct (“college-ready” classification) because the performance labels add new 

meaning to the existing interpretation. This particular “construct shift” is problematic 

because a property of the test (focal-outcome test correlation) is confounded with an 

attribute of a student, which introduces construct irrelevant variance to the interpretation 

of the performance standard.  

Biasedness depending on correlational strength with outcome measure. In this 

paper, I take the focal-outcome test correlation as a given in the sense that it is not a 

variable and the standard setting panel has to work within the constraints of the test. 

Often in the case of standard setting, policymakers and standard setting panels have the 

task of setting a cut score on a particular test that has been constructed according to test 

specifications that takes into considerations legal mandates, and the curriculum standards 

in existence. In this sense, the correlation between the focal test on which cut scores are 

being set and a given outcome test is fixed and cannot be varied.  

However, it is possible that different focal-outcome test correlations may arise 

when different outcome measures are chosen. For example, focal-outcome test 

correlations may be higher in studies using concurrent outcomes compared to studies 

using future outcomes. The further out in time the future outcome is from the time when 

measurements are taken for the focal test, the weaker the correlations tend to be. Thus, 

the choice of different types of outcome measures may give rise to differences in focal-

outcome test correlations, giving rise to predictive scores that are subjected to different 

degrees of deviation away from a stringency-only cut score.  
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Fairness of predictive cut scores. Issues of fairness in the use of predictive cut 

scores for college-readiness standards can arise in at least two ways. 

The first issue of fairness can arise when different jurisdictions set predictive cut 

scores for college-readiness using different focal tests with different focal-outcome test 

correlations. Assume two jurisdictions, both of which have high-stakes tests for students 

and require students to score above the predictive cut score. For discussion purposes, let 

us assume that both jurisdictions use the same outcome measure to set predictive cut 

scores.  

Assume that due to the specifics of the test construction and specifications, the 

focal-outcome test has a weaker correlation in jurisdiction A than in jurisdiction B. There 

will be a group of students who will be unfairly treated than if the test used in the other 

jurisdiction is available to them. If the criterion score is set above the average of the 

outcome test distribution, students in jurisdiction A that uses the test with weaker 

correlation may be penalized by having to reach a higher predictive cut score. If the 

criterion score is set below the average of the outcome test distribution, some students in 

jurisdiction A may miss out on opportunities to help them become “college-ready” 

because the predictive cut score is set more leniently.  

The second issue of fairness may arise when the predictive relationship between 

one test and an external criterion differs among various subgroups, including by gender 

and ethnicity (Krug, 1966; Seashore, 1961, as cited by Cronbach, 1971). To ensure that a 

consistent procedure is used to set cut scores for subgroups where the focal-outcome test 

correlations differ, separate predictive cut scores would have to be estimated for each 

subgroup. However, if the differential predictive utility of the test arises because of 
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construct irrelevant factors, such as student and school background factors irrelevant to 

performance (see Haertel & Ho, 2012), then using the test to set a predictive cut score 

could constitute unfair use of the test. On the other hand, setting a common predictive cut 

score as if the predictive utility of the test were the same across all subgroups would 

constitute unequal application of procedures.  

C.2 Judgment required to select inputs for prediction 

The appeal of predictive standard setting over judgmental-based standard setting 

is that it appears more objective and less arbitrary. While this may be true for a given set 

of inputs to the prediction method, i.e. the data “speaks for itself” when the prediction 

method, criterion score, and statistic to be modeled are fixed, the choice of the inputs are 

subject to judgment and decisions of the implementers of the predictive method.  

Choice of prediction method. Ordinary least squares regression, logistic 

regression, and quantile regression are all reasonable prediction methods that can be used 

to identify predictive cut scores. The results from RQ1bi suggest that at a typical 

correlation where r=0.3, the difference in the location of predictive cut scores identified 

by OLS regression and median quantile regression (QR50) on one hand and logistic 

regression with 50% probability of scoring at or above the criterion score (LR50) may 

range from negligible to small-sized, for criterion score scores within ±1 standard 

deviation units of the average outcome. For what is practically considered as a very 

strong correlation of r=0.5, these differences will range from negligible to small-sized.  

Differences in predictive cut scores arise because each method gives rise to 

slightly different interpretations for the cut score and what can be known about students 

scoring at different parts of the focal test distribution.  
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In ordinary least squares (OLS) regression, the predictive OLS cut score has the 

following interpretation: On average, students who score at the predictive OLS cut score 

are expected to score at the criterion score on the outcome test. Other than in distributions 

with standard bivariate normality, the OLS prediction model provides no information 

about the probability or percentage of students who will score above or below the 

criterion score at each focal test score level. Depending on the position of the focal test 

score level with respect to the predictive OLS cut score, we will know the relative 

position of the conditional average of outcome scores at that score level with respect to 

the criterion score. 

In logistic regression, the predictive logistic regression cut score has the following 

interpretation: Students scoring at the predictive logistic regression cut score have a p% 

probability of scoring at or above the criterion score on the outcome test. Students 

scoring above the predictive logistic regression cut score have a greater than p% 

probability of scoring above at or above the criterion score while students scoring below 

the predictive logistic regression cut score have a lower than p% probability of scoring at 

or above the criterion score. Logistic regression may be popular as a predictive standard 

setting method because it provides a person-centric interpretation to the probability of an 

occurring event (scoring above the criterion score, or being “college-ready”).  

In quantile regression, the predictive quantile regression cut score has the 

following interpretation: (100-q)% of students scoring at the predictive qth quantile 

regression cut score will score above the criterion score on the outcome test. At each 

score level above the predictive quantile regression cut score, (100-q)% of students will 

score above the predicted outcome score. At each score level above the predictive 



70 

 

quantile regression cut score, (100-q)% of students will score below the predicted 

outcome score. If ensuring that a certain percentage of students will score above the 

criterion score is important at the cut score is important, then using quantile regression 

would be useful.  

Because each prediction method models a different statistic, differences arise in 

the predictive cut score. Depending on where the criterion score is set, whether and how 

distributions depart from bivariate normality, the differences may range from negligible 

to being substantially different under correlations typically observed between focal-

outcome tests. The choice of a prediction method is thus a non-trivial problem.  

Choice of prediction probability or quantile of performance. To use logistic 

regression or quantile regression, the prediction probability and quantile of performance 

has to be specified respectively. Equations 2 and 3 suggest that predictive cut scores can 

be identified for a given criterion score over a distribution of values for probabilities p 

and quantiles q where p ∈ (0, 100) and q ∈ (0, 100) (expressed in percentage) when 

logistic regression or quantile regression is used.  

In the case of logistic regression, the choice of prediction probability has ranged 

from 50% to 75% for setting college-readiness standards (see ACT, 2004; Kobrin, 2007). 

This probability has been based on the response probability (RP) criterion often used in 

judgment-based standard setting. In the traditional standard setting literature, specifically 

the Bookmark Method and item mapping procedures in which response probability is 

most commonly used, the selection of a suitable RP value has been widely studied and 

debated (see Karantonis & Sireci, 2006). Commonly justified RP values have included 

50% and 67%, values at which item information is maximized depending on whether 



71 

 

there is guessing and the type of IRT model used (Huynh, 1998; Wang, 2003). Other RP 

values have included 65% or 74%, but this is based on a slightly different context of item 

mapping and score anchoring in which the goal is to produce an adequate number of 

exemplar items (Kolstad et al., 1998, as cited by Zwick, Senturk, & Wang, 2001). Zwick, 

Senturk, and Wang (2001) found that experts favor 70% to be the minimum percentage 

of correct responses to consider that students “can do” an item. A National Academies of 

Sciences study (Hauser, Edley, Koenig, & Elliott, 2005) found that when RP values 

of .50, .67, and .80 are used to set standards via the Bookmark Method for an assessment 

of adult literacy, different cut scores were produced. The study also acknowledged that in 

different fields and contexts, experts may favor different RP values.  

In the case of quantile regression, there has been no past precedence for its use in 

predictive standard setting to the best of our knowledge, nor any literature discussing 

suitable quantiles of performance to model. 

Our results from RQ1bii using simulated data that meet bivariate normality 

assumptions suggest that at correlations of r=0.5 or below, medium to large differences in 

predictive cut scores may emerge when logistic regression probabilities are set at 50%, 

65%, or 75% for criterion scores ±1 standard deviation units of the average outcome. 

Similarly, for quantile regression, medium to large differences in predictive cut scores are 

observed when the quantile of performance is set at 50th, 35th, or 25th quantile. Predictive 

cut scores identified using the empirical dataset show these patterns as well. The choice 

of prediction probability or quantile of performance can thus give rise to substantially 

different cut scores. 
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More work needs to be done to study whether the response probability used in 

judgmental-based standard setting and its findings apply to predictive probabilities in 

logistic regression for predictive standard setting, and what might be appropriate 

quantiles of performance in quantile regression. Our results show that substantial 

differences in predictive cut scores arise when different predicted probabilities or 

quantiles of performance are selected.  

Choice of criterion score. The use of predictive standard setting requires 

judgments about the criterion score that set good enough standards (Beaton, Linn, & 

Bohrnstedt, 2012). For college admissions tests such as the SAT and ACT, college-

readiness benchmarks are provided across a range of criterion scores from B to C (ACT, 

2004; Kobrin, 2007). In the case of these college-admissions tests, providing a range of 

criterion scores give colleges the flexibility to pick and choose the criterion score that fit 

their needs. However, in K-12 testing, policymakers need to decide the criterion score 

level that will be pegged to a given performance level, which in turn may have 

consequential decisions attached for students who meet or do not meet that performance 

level.  

The results in Table 1 show that as expected, the predictive cut score increases as 

the criterion score increases. As such, the predictive cut score set is subject to judgments 

about where the criterion score level should be set. Moreover, the amount the predictive 

cut score increases in proportion to the increase in criterion score is also subject to the 

strength of correlation between focal test and outcome test.  

Equation 2 also shows that there is a joint distribution of (p, Xc) that satisfies the 

logistic regression equation for achieving a particular criterion score. Similarly, a joint 
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distribution of (q, Xc) exists for a given criterion score when quantile regression is used. It 

is thus technically possible to manipulate the values of p or q in order to arrive at a 

particular cut score, further suggesting the need for judgment in predictive standard 

setting.  

Judgments required for other inputs. So far, I have considered the judgments 

required for selecting the prediction method, prediction probability or quantile of 

performance, and the criterion score. There are also at least three other critical inputs for 

using predictive methods: an appropriate construct to base predictions of “college-

readiness” on and a corresponding outcome measure; the focal test score distribution; and 

the analytic sample. Using an empirical dataset, I illustrate how analytical decisions to 

deal with non-linearity and non-normality can result in unpredictable differences among 

empirical cut scores. Suffice to say, judgment is also required in the application of 

empirical methods. 

For the rest of this section, I discuss a number of other issues with the inputs for 

predictive standard setting.  

C.3 Issues with test score distributions 

The use of predictive methods is predicated on the availability of a well-defined 

construct on a well-defined scale on both the focal and outcome tests. However, many K-

12 tests do not have continuous normal distributions (Ho & Yu, 2015). As such, 

alternative model specifications have to be used to deal with non-linearity and non-

normality in the data.  

In this paper, I illustrate the how skewness in the focal test score distribution may 

affect equipercentile and predictive cut scores. I find that these departures from normality 
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in the focal test score distribution have somewhat of an effect on predictive cut scores, 

but the magnitude of the effect does not affect our broad finding that predictive cut scores 

deviate from stringency-only cut scores as focal-outcome test correlations weaken, and 

that choices made to specify the criterion score and the probability of correct prediction 

or quantile of performance can result in substantial differences in predictive cut scores.  

C.4 Issues with outcome construct 

Predictive standard setting requires selecting, defining, and measuring a suitable 

external criterion. College-readiness is most commonly used, but is it suitable when the 

focal test is a K-12 subject test? In this section, I first discuss college-readiness and its 

suitability for setting predictive standards for K-12 subjects. Then I discuss issues with 

the GPA scale before critiquing the suitability of first-year GPA and introductory college 

course grades which have commonly been used as measures for college-readiness.  

External criterion for setting predictive standards. “College-readiness” has 

become the de facto lingo representing the goal of K-12 education to prepare students for 

college. While “college-readiness” may be appropriate for general communication, it may 

not necessarily be the most suitable construct or external criterion to base K-12 predictive 

standards on.  

As a construct, “college-readiness” is multi-faceted. Operationally, it is defined as 

“the level of preparation a student needs in order to enroll and succeed – without 

remediation – in a credit-bearing general education course at a postsecondary institution 

that offers a baccalaureate degree or transfer to a baccalaureate program” (Conley, 2007, 

p.5). It encompasses not only academic knowledge and skills, but also other factors such 

as motivation, behavior, cognitive and study skills, and contextual skills and awareness 
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about college (Conley, 2007; Gaertner & McClarty, 2015; Wiley, Wyatt, & Camera, 

2010). Several studies that used first-year GPA as a measure for college-readiness have 

found that “noncognitive” characteristics such study habits and willingness to seek out 

support, and involvement in high school activities have a statistically significant 

relationship with first-year college grades (Pascarella and Terenzini, 1991; Williford, 

1996, as cited by Pike and Saupe, 2002).  

On the other hand, “academic preparedness” focuses on the academic and 

cognitive aspects of “college-readiness”. The Technical Panel on 12th Grade 

Preparedness Research convened by the National Assessment Governing Board (NAGB) 

(2009) states that:  

“[p]reparedness for college refers to the reading and mathematics knowledge and 

skills necessary to qualify for placement into entry level college credit 

coursework without the need for remedial coursework in those subjects. … 

Academic preparedness is separate and different from college readiness because, 

in addition to academic skills, readiness encompasses behavioral aspects of 

individual performance related to success, and these additional attributes are not 

measured by NAEP. Examples of readiness characteristics include persistence, 

time management, interpersonal skills, and knowledge of the context of college.” 

(p.3) 

This is a key reason why the NAEP preparedness research has focused on 

“academic preparedness” “because this is what grade 12 NAEP is best equipped to 

measure, but also because academic skills in reading and mathematics constitute an 

important and foundational dimension of readiness” (NAGB, 2009, p.3).  
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Another issue relevant to the selection of an external criterion is: when should the 

construct be measured relative to college? Should it be at the start or after college results 

are available? Most measures of college-readiness used are obtained after college results 

are available (Camera, 2013), such as first-year GPA or entry-level course GPA. 

However, such measures would be affected not only by college-readiness, but also 

affected by factors during the first semester or first year of college, including the quality 

of the college and instruction, students' non-academic preparation for and adjustment to 

college, motivation, behavior, and personal circumstances. As an external criterion for 

gathering validity evidence about cut scores set by traditional standard setting procedures, 

using first-year GPA may be useful empirical evidence for checking whether the cut 

score is set within a reasonable range. However, to base the setting of cut scores on the 

prediction of college performance would expose the predictive cut score to factors 

relevant to success in college but not directly relevant to the level of academic knowledge 

and skills required in a performance standard.  

The NAGB (2013) in its definition of preparedness has focused on the knowledge 

and skills at the entry point to college. Although measuring “college-readiness” at the 

entry point appears more conceptually appropriate, in practice, such data is typically not 

available, other than through admissions and placement tests (Camera, 2013). As I will 

explain further later, admissions and placement tests often set their college-readiness 

standards based on college grades, which lead back to the same issue that the measure of 

college-readiness is still affected by college-related factors. 

In selecting a suitable external criterion to set predictive standards on, I draw 

attention back to the purpose of standard setting, which is to set cut scores that represent 
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what the minimally qualified student knows and is able to do, at some desired level of 

competence. K-12 tests are similar to NAEP in the sense that they are subject tests that 

focus on academic knowledge and skills. When “college-readiness” is used as the 

outcome construct, behavioral, psychological, and contextual factors that are necessary 

for college success would introduce construct irrelevant factors that K-12 subject tests are 

not equipped to measure, and would deviate predictive cut scores away from a 

stringency-only standard that focuses on what students should know and be able to do. 

“Academic preparedness” measured at entry point to college such as that defined by 

NAGB (2013) may be more conceptually appropriate as the external criterion because of 

their focus on the requisite knowledge and skills that students need to be prepared for 

college-level courses, but before college factors have a chance to come into play.  

Prediction versus setting predictive standards. Before concluding this section 

on the outcome construct for college-readiness, I make a distinction between prediction 

and predictive standard setting. Both have been widely discussed in the college-readiness 

literature and both are concerned with setting “benchmarks”, but they are not clearly 

distinguished. Camara (2013) succinctly summarizes a study by Maruyama (2012) which 

describes the problem: “there is a logical inconsistency in developing college readiness 

benchmarks from a test score when research consistently demonstrates that multiple 

factors are the best predictor of college success” (Camara, 2013, p. 19). The distinction 

lies in the goal and the variable of interest in prediction and predictive standard setting.  

In prediction, such as predicting college readiness, the goal is to identify students 

who are at risk of not being successful in college. The focus is on the outcome of interest, 

college readiness in this case. The operational goal is to find a set of predictors that best 
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explain variation in college readiness, to maximize variance explained, and if possible, to 

maximize the classification accuracy rate. As discussed earlier, academic knowledge and 

skills is important for predicting college readiness, but so are a number of other factors. 

However, in the case of predictive standard setting, the goal is not correct 

prediction, but identifying a level of performance that meets a certain academic standard, 

or level of competence. The variable of interest is the focal test score, and setting a cut 

score on the focal test that indicates an appropriate level of performance. An implicit 

assumption of an academic performance standard is that students who meet the standard 

will have sufficient foundation to progress to the next level and benefit from learning in 

the next level, below which students may lack the requisite skills and knowledge to keep 

up in the next level. The focus is on the requisite knowledge and skills, as measured by 

the focal test. What may be construct relevant for predicting college readiness may be 

construct irrelevant to setting a stringency-only cut score on a K-12 subject test. 

Cureton (1951) provides an example to illustrate how a test built to optimize 

prediction may run counter to what is desired from an instructional standpoint. In 

Cureton’s scenario, the task is to predict students who in real-life German writing, will 

punctuate most correctly and make the least amount of punctuation mistakes. The 

predictor test used is a test passage of unpunctuated German. Experimental evidence, as 

Cureton’s scenario goes, found that students who put in the largest amount of correct 

punctuation, as well as the largest amount of incorrect punctuation on the test are the 

ones who have the desired performance in real-life. Therefore, in the scoring of the 

predictive test, “some positive credit [has to be given] for incorrect punctuation as well as 

more credit for correct punctuation” (p.633) even though incorrect punctuation is 
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undesirable from an instructional perspective. Cronbach (1971) cites a study by Kelly 

(1966) which found that medical-student performance was better predicted by “interests 

and other noncognitive variables than by ability measures” (pp.488-489). Both examples 

illustrate the key purpose of prediction.  

An example of a study concerned with prediction of college readiness is found in 

Gaertner and McClarty (2015), who propose a college-readiness index for middle school 

students. The college-readiness composite (consisting of SAT, ACT and high school 

GPA scores) is based on more proximal outcomes for middle school students enroute to 

college readiness. The college-readiness indicators cover a diverse set of predictors, 

including academic achievement, motivation, behavior, social engagement, family 

circumstances, and school characteristics. Together, the indicators explain 69% of the 

variance in the college-readiness composite, corresponding to about r=0.83 between 

index and outcome composite. The “benchmarks” set provide a numerical summary of 

the student’s joint status on each of the predictors with respect to the probability of 

scoring above or below a criterion score on the outcome. Students may reach an 

academic standard for being college ready, but if they are high in other risk factors for 

not being college ready, such as having poor study and organization skills, or 

experiencing financial hardships, then they may not meet the benchmark for being 

college-ready. This benchmark may include information about students’ academic 

performance, but it also encompasses a variety of factors that have nothing to do with 

academics. In this sense, the “benchmark” is closer to a risk score rather than a 

performance standard. 



80 

 

This example also illustrates that even with a diverse set of predictors, the 

prediction of college-readiness will still be imperfect at best, which is good news for 

students in the sense that the past (and circumstances) does not determine the future, but 

bad news for building a predictive model to identify cut scores. The implication is that to 

set standards for K-12 academic tests, the correlation between the K-12 test and the 

measure of college-readiness will practically be low due to factors embedded in the 

college-readiness measure that are construct irrelevant to what is measured by K-12 tests. 

We can be certain that this low correlation will deviate the predictive cut score away 

from a cut score that reflects stringency-only standards.  

Issues with the GPA scale. The use of prediction methods is predicated on the 

availability of a well-defined outcome scale. College academic scores, or the GPA scale, 

are often used as the outcome scale for setting college-readiness standards. However, a 

number of issues exists with the GPA scale. 

Firstly, individual college courses are often graded differently subject to 

individual instructors’ grading policies, even within the same department, or on the same 

course taught by different instructors (Johnson, 2003). Some instructors grade on a curve, 

i.e. use a norm-referenced scale. Others grade on students’ “absolute performance” with 

respect to the content taught, where the instructor is the arbiter of the definition of 

“absolute performance”.  

There are also concerns that course grades reflect not only standards for students’ 

performance, but may be subject to grade inflation (Rojstaczer & Healy, 2012). In an 

environment where course evaluations form part of faculty hiring, promotion, and tenure 
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decisions, instructors may have incentives to award higher grades (Eiszler, 2002; Moore 

& Trahan, 1998).  

GPA scales may also not be comparable across different major fields (Goldman, 

Schmidt, Hewitt, & Fisher, 1974) or colleges. Some studies conducted within colleges in 

the 1960s (Aiken, 1963; Hills, 1964) found that even though college admissions became 

more selective in admitting students with more competitive grades, their college GPA did 

not rise in tandem. One possible reason put forth was because faculty tend to award 

grades based on the average performance of the group, so that as the average 

performance of the group increased, the expectations for average performance also 

increased (Hills, 1964). On average, selective and non-selective colleges admit students 

at different parts of the performance spectrum. Once enrolled in the college, these 

students are graded on a 4.0 point GPA scale. An average of B+ on the GPA scale in a 

selective college may reflect very different performance from an average of B+ GPA in a 

non-selective college, especially if the course is graded on a curve. Thus, the GPA scale 

may not represent a common scale across different colleges.  

These are issues peculiar to the choice of GPA as an underlying scale for the 

outcome measure, which would be relevant whether introductory college courses or first-

year GPA are used as an outcome measure for either the academic preparedness or 

college readiness construct respectively. One needs to assess whether the GPA scale 

meets the requirement as a “well-defined scale” for college-readiness.  

Issues with using introductory course grades. Introductory course grades are 

subject to the above-mentioned issues with the GPA scale. Additionally, introductory 

course grades may be subject to sample bias. Academically advanced students with AP 
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credits may skip introductory courses and proceed to more advanced college courses. As 

such, introductory course grades may be biased downwards and affect the predictive cut 

score set. 

Issues with using first-year GPA. First-year GPA as a measure can also depend 

on the combination of courses that an incoming freshman takes.  

As discussed earlier, more academically advanced students may take more 

advanced college courses in their first year, while less academically advanced students 

may take introductory college courses. This will weaken the predictive power of the K-12 

focal test for first-year GPA. It also introduces academic advancedness as a construct-

irrelevant factor to using first-year GPA as a measure for college-readiness. 

The mix of first-year courses taken by students across majors may also differ. A 

first-year social science major may take more courses in areas such as writing, and the 

social sciences, while a first-year engineering major may take more courses in areas such 

as math and sciences. In using college admissions tests to predict college-readiness, one 

common solution is to ignore differences across majors and course sequences, and 

directly aggregate course grades taken in the first year into the first-year GPA. The 

problem when first-year GPA is used as the outcome test to set cut scores on K-12 

subject focal tests, a mix of subject grades is used to set the standard for a specific 

subject, such as math or ELA. This may be a hidden problem when a college admissions 

test is used as an intermediate outcome test to set cut scores on a K-12 subject focal test, 

but the ultimate criterion for the standard on the college admissions test is based on first-

year GPA.  



83 

 

In summary, there is wide variation in which instructors, departments and 

colleges set standards for the GPA scale, and wide variation in which the scope, 

sequence, and difficulty of courses taken in the first year of college differs across 

students, majors, and how advanced academically they are. These factors contribute to 

issues with first-year GPA as a well-defined scale, which calls into question its suitability 

as an outcome measure that forms the basis for setting K-12 academic college-readiness 

standards.  

C.5 Issues with the analytic sample 

A number of issues also exist with constructing a representative analytic sample 

for setting college-readiness standards. Judgments will have to be made to address these 

issues. The issues may also cause predictive cut scores to be different from that if a 

representative sample were available. 

Selection bias. To set predictive standards, the analytic sample has to be 

representative of the population taking the focal test. Selection bias can occur because 

students at the bottom of the K-12 performance distribution would likely not enroll in 

college, and hence are excluded from the analytic sample when college academic 

performance is used as the outcome measure. This will be a problem regardless whether 

the prediction is based on existing data for college performance such as GPA, or whether 

the focal test is only administered to college students.  

Range restriction versus comparability of GPA scales. In order to set 

predictive cut scores that reflects performance across the student population, the analytic 

sample also requires a representative sample of colleges. In particular, restriction of range 
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may occur when specific colleges accepting students from a narrow range of performance 

are included in the sample.  

There may be a trade-off between the representativeness of colleges and the 

comparability of the GPA scale. When a more narrow-range of college types which admit 

students from specific score ranges are included in the sample, the GPA scale may reflect 

a similar range of college performance, making the ensuing GPA scale more comparable 

across colleges. However, this may give rise to a restriction of range problem. As 

discussed earlier, where correlations are attenuated, predictive cut scores are skewed 

away from a stringency only standard. Where the sample of colleges are more 

representative of the college student population, a wider range of performance is 

measured on the same GPA scale due to the selectivity of colleges, resulting in a GPA 

scale that may not be comparable across colleges.  

Changing distribution of student performance. College readiness is not an 

immutable quality. The notion of using tests to predict college readiness, especially at the 

lower grades, is so that students and educators can take some course of action to change 

their future outcome for the better over their predicted outcome. Ideally, students 

identified as not being college-ready in the earlier grades would be identified for 

intervention. If the interventions are effective, these students should gain proficiency 

towards college-readiness. When such interventions are effective on a systems level, we 

would expect the distribution of test scores to change. A time extrapolation principle of 

predictive testing (Cronbach, 1971, p.485) arises: 

A study that predicts success by a statistical formula has clearest significance 

when the formula is developed in the locale of the proposed application and the 
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situation is sufficiently stable that the findings are representative of what will 

happen in succeeding years. Only if the supply of applicants and the curriculum 

remain much the same in character are the findings likely to remain directly 

applicable. 

Practically, predictive cut scores for various grades would be set in year y based 

on prior years’ data. The predictive cut scores would be set for various grades based on a 

population of students who did not receive intervention on the basis of being identified as 

“not college-ready”. In year y+1, the year immediately after predictive cut scores have 

been set and used to identify students at risk of not being college-ready, students would 

have received 1 year of intervention. This would change the distribution of student 

performance on the predictor test with respect to the distribution in the previous year, and 

the predictive cut score set in previous years may no longer apply. Going forward for 

each successive year, we would have cohorts of students who received increasingly more 

years of intervention. For predicting college readiness from grades 3 to 12, it would take 

at least 9 years to reach steady state. Furthermore, the eventual distribution of student 

performance on the outcome test could also potentially change, if the interventions work 

well enough to influence the college-readiness of students. 

In theory, the relationship, especially the correlation, between focal test scores 

and outcome test scores have to be closely monitored for changes. The standards set by 

predictive methods would have to adjusted accordingly, presenting a substantial data 

challenge. 

C.6 Impact of GPA scale and analytic sample issues on empirical cut scores  
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The above issues with GPA scale and analytic sample affect all empirical methods 

that use a criterion score to set cut scores on the focal test, including the equipercentile 

method. I illustrate this when equipercentile linking is used.  

In the first example, I consider a case when the outcome score scale is shifted 

downwards from a “true” outcome score scale. For simplicity, assume the analytic 

sample is representative of the population, and the outcome scale used in the analytic 

sample is similar in all aspects to that used in the population, except that it is shifted 

downwards from the outcome test score scale in the population. The equipercentile cut 

score obtained using the analytic sample would then be biased downwards from the 

college-ready criterion score measured by the “true” outcome score scale used in the 

population.  

In the second example, I consider the case of selection bias. If selection bias exists 

such that the distribution of outcome test scores in the analytic sample is biased 

downwards from the population distribution, the equipercentile cut score obtained using 

the analytic sample would also be biased downwards from the college-ready criterion 

score in the population.  
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Appendix D 
Evidence-Based Standard Setting: Suitability of Predictive Standard Setting to Identify 

Neighborhoods of Potential Cut Scores 
 

Having discussed the issues with predictive standard setting as a stand-alone standard 

setting method, I discuss evidence-based standard setting in this appendix. An implicit 

assumption of evidence-based standard setting is that using different sources of evidence 

and types of empirical methods would give rise to different cut scores. However, the 

convergence of evidence around a particular cut score region would suggest where the 

“true” performance standard likely lies.  

The strength of evidence-based standard setting is that it lays out a 

systematic way for standard setting panelists to consider the external validity 

evidence in the process of setting standards. However, central to the validity 

argument of this standard setting method is the quality of the evidence. I start first 

by introducing the types of evidence that evidence-based standard setting 

typically relies on, before critiquing the quality of the evidence, and issues with 

evidence-based standard setting. 

Common types of evidence in EBSS. Evidence-based standard setting 

commonly uses empirical evidence from concurrent studies, predictive studies 

and longitudinal studies (see McClarty et al., 2013).  

Concurrent studies use external criterion evidence that is gathered from 

students at around the same time as the focal test. When focal tests are end-of-

course tests, the external criterion evidence may include other tests that high 

school students typically take, such as different tests within the same content area, 

high school course grades; or college admissions test such as the SAT or ACT. 
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Predictive studies and longitudinal studies use external criterion evidence 

gathered from students at a future time from the focal test. Predictive studies, as it 

is referred to in McClarty et al. (2013) involves administering the focal test to 

students before they start a college-level course, and collecting the college grades 

at the end of the college-level course. Longitudinal studies referred to in McClarty 

et al., (2013) involve collecting grade-to-grade test scores. I term these grade-to-

grade test scores “intermediate outcome tests”. The criterion score in the 

“intermediate outcome test” is typically an evidence-based cut score identified by 

an earlier predictive standard setting process in which the ultimate criterion is a 

specified level of performance in a college outcome measure (e.g. see Texas 

Education Agency, 2013).  

Empirical method used. Regardless of the type of external criterion used, 

all cut scores derived from regression-based methods will suffer from the similar 

problem encountered in predictive standard setting, in that identified cut scores 

deviate away from the stringency-only cut score when focal-outcome test 

correlations are less than unity. Having many regression-based cut scores from 

various studies converge in one neighborhood does not imply that cut scores are 

converging around a “correct” cut score.  

Although equipercentile-based cut scores avoid confounding the 

correlational strength of the focal-outcome test with the stringency of the 

standard, equipercentile-based cut scores can be subject to selection bias when the 

analytic sample is not representative of the student population. However, when 

the analytic sample is representative of colleges, an issue of the comparability of 
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GPA scales may arise, which may in turn affect the level where equipercentile-

based cut scores are set at. 

Definition of what students know and are able to do. For both 

regression-based and equipercentile-based cut scores, the description of what 

students know and are able to do comes after the cut score is identified. This 

description is test-dependent and potentially could differ from test to test, even if 

the correlations are similar. In this sense, the performance standard is 

circumscribed by the test as a measurement tool, and not an “absolute” criterion 

based on the knowledge and skills needed to be college-ready.  

External criterion used. There are various factors to consider in 

assessing the quality of evidence when various external criteria are used.  

Concurrent versus future outcome. Concurrent outcomes often have a 

higher correlation with the focal test than future outcomes. The identified cut 

scores based on concurrent outcomes would thus be less susceptible to deviation 

from a stringency-only cut score.  

College versus non-college outcomes. To predict college-readiness 

standards, it appears to make sense to base the external criterion on college 

outcomes. However, a number of issues may arise from the analytic sample used. 

Selection bias may be a problem because students who are not college-ready will 

not enroll in college, and thus their college results would be missing. Range 

restriction may also occur when the colleges sampled are not representative of the 

college population. Since the direction of bias is known, it is possible to apply a 

correction formula to address both of these issues. 
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However, when a representative sample of colleges is used, the 

comparability of the GPA scale across colleges may become an issue.  

Construct irrelevant factors may also be introduced when college 

outcomes are used. The quality of college, social and personal factors related to 

college may all affect a student’s success in college. Construct irrelevant factors 

would thus affect both predictive and equipercentile cut scores.  

To avoid the issues associated with use of college outcomes, it is 

theoretically possible to select constructs similar to non-college outcomes but 

which are not college outcomes as the external criterion. However, as Kane 

(2001) noted in the context of using other criteria as external validity evidence, 

the other criteria are often open to question themselves.  

One common alternative to college grades are results for admissions tests, 

such as the SAT or the ACT. Part of the logic of using admissions test results is 

that the data is collected prior to college entry, and hence, better measure student 

preparedness for college (Gaertner & McClarty, 2015). Yet the targeted criterion 

scores that admissions tests use to indicate college-readiness often rely on college 

grades. The level of performance considered to be college-ready is thus also 

subject to college factors that affect eventual college performance.  

First-year GPA versus course grades. First-year GPA may be attractive 

as an overall measure of college success. However, it combines results from a mix 

of subjects to set predictive cut scores for K-12 subject tests. The subjects other 

than that being tested in the focal test would introduce another source of construct 

irrelevance to empirical-based cut scores. 



91 

 

Intermediate versus ultimate outcome. I discuss here the special case of 

using an intermediate criterion set on intermediate outcomes. Often, grade-to-

grade tests or college admissions tests are used as an intermediate outcome, which 

in turn predicts college grades as an ultimate outcome. The correlations between 

the focal test and the intermediate test outcomes are typically much higher than if 

college grades were used as the outcome. However, these apparently high focal-

intermediate outcome test correlations belie the low correlation typically seen 

between the intermediate test and the ultimate outcome of interest, college grades. 

If the ultimate outcome has a low correlation with the intermediate test, then the 

cut scores set on the intermediate test would be too stringent or too lenient, which 

in turn would affect cut scores set on the focal test. Therefore, to assess the 

strength of evidence, one needs to identify the ultimate criterion that predictive 

cut scores are based on.  

Independent or families of evidence? One advantage of evidence-based 

standard setting is that it collects information from a large base of evidence. 

However, one issue is whether the various sources of evidence are independent 

from one another, or they represent form families of evidence subject to similar 

issues and biases? 

Take for example, if many of the studies use regression-based methods 

rather than equipercentile method, those studies would all be susceptible to issues 

that affect regression-based methods. If those predictive cut scores happen to 

converge at a location different from the equipercentile method, does that 
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strengthen the argument to recommend a cut score around the region of 

convergence? 

Consider the case when empirical standard setting is used to set cut scores 

on an end-of-course focal test. Let's say two studies are conducted, one a 

concurrent study using the SAT as the outcome, another a predictive study using 

first-year GPA as the outcome. If the cut score set on the SAT ultimately uses 

first-year GPA as the outcome, should the two studies be considered as two 

independent pieces of evidence, or from the same family of evidence? 

In evidence-based standard setting, special attention has to be paid to what 

is termed “salience” in behavioral psychology. Information that stands out is more 

likely to influence our thinking and action. When panelists are presented with a 

large number of cut scores in a particular neighborhood, panelists may 

subconsciously be conditioned to think that the region with the largest number of 

cut scores is the region where the eventual cut score should lie, when in fact, they 

need to also weigh the quality of the information that each identified cut score 

rests on.  
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High in Standards, Lenient in Stakes: 

The Consequences of Scoring Barely Below the Passing Score of High School Exit 

Exams in Minnesota 

Introduction 

In 2010-11, about 65% of public school students lived in 25 states with high 

school exit exam passing requirements in place (Center for Education Policy, 2011). One 

key argument for high school exit exams is that they can motivate student and system 

efforts to promote learning (Dee & Jacob, 2008; Holme, Richards, Jimerson, & Cohen, 

2010). However, a handful of papers have found unintended, causal consequences for 

students who barely fail the exam, mainly for students from disadvantaged backgrounds, 

such as higher high school drop-out probabilities (Ou, 2010), lower on-time high school 

graduation (Papay, Murnane, & Willett, 2010; Martorell, 2004) and lower college 

attendance (Martorell, 2004). Papay, Murnane, and Willett (2014) also find that barely 

failing an exit exam in Massachusetts reduces the probability of college enrollment even 

several years after the test. 

The role of high school exit exams as part of standards-based educational reform 

has been extensively discussed within the literature (Amrein & Berliner, 2003; Dee & 

Jacob, 2008; Greene & Winters, 2004; Holme, Richards, Jimerson, & Cohen, 2010; 

Grodsky, Warren, & Kalogrides, 2009; Shuster, 2012; Warren, Grodsky, & Lee, 2008). 

Past research on the causal effects of high school exit exams fall into two main 

categories. The first type of research examines how the presence of exit exams impact 

overall student outcomes (e.g. Dee & Jacob, 2008; Jacob, 2001; Reardon & Kurlaender, 
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2009). The second type of research examines how exit exams impact students on the 

margins. My study falls under the second category. 

Examining the impact of barely failing or barely passing high school exit exams 

for students on the margins is important from a policy perspective. High school exit 

exams hold significance for students especially in states where they are required for high 

school graduation. High school graduation is increasingly an important gateway into 

higher education (Bailey & Dynarski, 2011; Greene & Forster, 2003). In turn, 

postsecondary education is increasingly a determinant of labor market success (Autor, 

2014). 

This study examines whether scoring barely below or barely above the passing 

score of the Graduation-Required Assessment for Diploma (GRAD) in Minnesota has 

any impacts on students' high school and college outcomes. For the high school class of 

2009 and earlier, students were required to pass a Basic Skills Test in order to be eligible 

for a high school diploma. For the high school class of 2010, Minnesota switched to the 

more rigorous GRAD with higher passing standards. However, for the math test, the 

passing standard was set very high such that a very high percentage of students could not 

pass it. To address the high failure rate, Minnesota waived the passing requirement on the 

math exit exam for high school diploma. Within this policy context where the passing 

standard is high, but in which the stakes are lowered, I examine the impacts of scoring 

barely below or above the passing score on high school and college outcomes. I use 

longitudinal data from the Minnesota Statewide Longitudinal Education Data System 

(SLEDS) for this study.  
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Collecting evidence on the consequences resulting from the use of tests for their 

proposed score interpretations is integral to the development and evaluation of tests 

(Kane, 2006). In 1999, at a time when high-stakes testing was gaining prominence, the 

National Research Council set up the Committee on Appropriate Test Use at the request 

of Congress. The Committee published a study that looked into the proper and fair use of 

high-stakes tests. At the time of writing, the committee wrote that "very little is known 

about the specific consequences of passing or failing a high school graduation exam, but 

a good deal is known about whether and how earning a high school diploma affects a 

student's future life chances (National Research Council, 1999, p. 176)."  

A number of studies in the 2010s have used a regression discontinuity (RD) 

design to look at the causal impacts of passing or failing high school exit exams for 

students on the margins, and have focused mainly on high school outcomes such as 

academic course-taking, dropping out, and graduation (Ahn, 2014; Ou, 2010; Papay, 

Murnane, & Willett, 2010; Reardon, Arshan, Atteberry, & Kurlaender, 2009). It is left to 

the reader to infer the societal impacts as a consequence of not obtaining a high school 

diploma (see National Research Council, 1999). To my knowledge, two other studies 

have looked at the causal impacts of barely failing or barely passing a high school exit 

exam on longer-term outcomes such as employment (Martorell, 2004) and college 

enrollment (Papay, Murnane, & Willett, 2014). In this study, I seek to extend the 

literature by studying the consequences of scoring barely below or above the passing 

score of the math GRAD and reading GRAD in Minnesota on students' college outcomes, 

an increasingly important predictor of future success. 
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However, the study context is unique and different from past studies in the 

following ways. First, like the states in the other studies, the passing score for the math 

high school exit exam in Minnesota was set and announced prior to the first cohort of 

students sitting for the test. However, in Minnesota, the requirement to pass the math exit 

exam in order to be eligible for high school graduation was waived after the first cohort 

of students sat for it. Subsequent cohorts prepared for and took the exams knowing that 

they do not necessarily have to pass it in order to graduate. Second, the state law requires 

students who fail the exit exam to undergo remediation provided by the district. To my 

knowledge, this is unlike the states in other studies where opportunities for remediation 

depend on the districts that students attend.   

Thus, in my study, the treatment group is slightly different from that found in 

other studies. Students who score barely below the passing score on the math GRAD 

would not be denied a high school diploma because of a failing score, but instead would 

receive district-prescribed remediation. Any differences in outcomes that I observe 

between this group of students and those who score barely above the passing score would 

be the net impact of scoring below the passing score on the math GRAD and the 

remediation. 

In the next section, I discuss the various ways in which failing a high school exit 

exam may give rise to consequences for students who barely pass or fail. For studies that 

delve into the mechanisms by which these consequences arise, see for example, Reardon, 

Arshan, Atteberry, and Kurlaender (2009). 

Background 

High school exit exams and potential mechanisms 
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In general, states use high school exit exams to determine whether students have 

acquired the necessary knowledge and skills in key academic areas before they leave high 

school (Ferrara & DeMauro, 2006). Students are required to pass exit exams in specific 

subjects, most often in ELA or reading, and math, and sometimes various science 

subjects and social studies (see Center on Education Policy, 2011), before they are 

eligible to receive a high school diploma. 

Students may use the subject pass/fail label on an exam to inform whether they 

have mastered the high school academic standards of that subject. This may affect 

decisions pertaining to high school outcomes. Some students who fail the exam may be 

motivated to work harder in order to pass the retest. Some students may be discouraged 

because of the failing label. Parents with a child who fail the exam may be motivated to 

invest more resources to help the student succeed on a second attempt, or parents may 

discourage students from staying on in school. On the other hand, students who pass the 

exam may experience an encouragement effect which motivates them to work harder in 

school and to meet the other requirements for high school graduation. 

When the high school diploma is awarded based on the pass/fail status in required 

subjects, students who are awarded the high school diploma may interpret the diploma as 

indicative of having mastered the high school curriculum. Students whose diplomas are 

withheld may infer the opposite, even for those who may have barely failed.  

Because the high school diploma is a minimum academic requirement for some 

colleges, students may also interpret their performance on exit exams and their pass/fail 

label as information on their preparedness for college. For students who meet all the exit 

exam passing requirements in addition to other requirements and are awarded the high 
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school diploma, this piece of certification may be a stamp of approval for them to move 

on to the next phase of education. Students who meet only the high school exit exam 

requirements in part, or not at all, may use the information to gauge their likelihood of 

obtaining a high school diploma and the likelihood of admissions into certain colleges. 

They may also use the results to gauge their suitability for various fields of study. The 

exit exam results may inform whether they apply to college at all, and the types of 

college and field of study that they eventually apply to and enroll in, all of which may 

have consequences for their college outcomes.   

Last but not least, students' performance on exit exams may be used to determine 

their course offerings or tracks in the final year of high school. Especially in states where 

exit exams are taken before grade 12, districts and schools may use the exit exam results 

as a sorting mechanism for placing students into different tracks in their final high school 

year (see Ahn, 2014, for an example in North Carolina). Students who pass the exit exam 

may be deemed to have met the minimum academic standards for that subject in high 

school and be allowed to take more challenging courses or electives in their final high 

school year, which in turn may make their college applications more competitive. 

Students who fail the exit exam, however, need to retake the exit exam until they pass. 

The time used to prepare for exam retakes may be well-spent in the sense that the 

students are acquiring academic knowledge and skills important for success in college. 

However, especially for the small group of students who barely fail the exam, the time 

used to meet a graduation requirement may come at the cost of missing out on courses 

that may make them more competitive for college admissions.  
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Hence, the combination of the timing of high school exit exams in conjunction 

with the use of exit exam results to determine courses taken in the final high school year 

may result in consequences with respect to students' competitiveness for college 

admissions. Students who pass the exit exam subject may be placed on college 

preparatory tracks, which then becomes a self-fulfilling prophecy that students who pass 

the exit exam are "college-ready".   

Remediation and potential mechanisms 

The district-prescribed remediation constitutes another part of the "treatment" of 

barely failing the exit exam, which is distinct from failing the exam, but may also shape 

the consequences of barely passing or barely failing the exit exam. There are many 

educational settings in which students' test scores relative to a cut score are used to 

determine assignment to remedial programs (e.g. in elementary and middle schools, see 

Jacob & Lefgren, 2004; in middle schools, see Dougherty, 2012; Taylor, 2014), and the 

empirical evidence generally points to null or some positive effects (see Taylor, 2014). 

One key feature of the remedial "treatment" in this study is that despite being state 

mandated for students who fail the exit exam, it is "district-prescribed". Features of the 

remediation may vary greatly between one district to the next.  

Remediation may result in improved test scores in a particular subject as a result 

of increased instructional time in that area (Dougherty, 2012; Taylor, 2014). To the extent 

that it is effective, remediation may have a human capital effect by enhancing the 

knowledge and skills of the students who take it compared to the students who barely 

pass and are not required (or even ineligible) to take it. It may help students who barely 

fail at the first attempt to pass at subsequent attempts, and possibly even better prepare 
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them for post-secondary education. If remediation includes components on college 

counseling, then students may be aided in their college application efforts.  

However, remediation may also have negative consequences. It may be an 

inefficient use of students' time and distract them from subjects which may require more 

attention. It may also give rise to a labeling effect, especially if schoolmates and teachers 

can see which students attend remediation and thus infer who has failed the exit exam. 

However, depending on the student, labeling may provide a motivation to work harder, or 

a discouragement due to the stigma.  

In short, the mechanisms through which barely passing or barely failing an exit 

exam can exert its effect in the short-term and longer-term through a complex mix of 

positive and negative influences, but these mechanisms may be difficult to disentangle. 

Instead, this study seeks to replicate past studies on whether there are any net impacts of 

these mechanisms, as a result of barely passing or barely failing a high school exit exam 

in Minnesota on high school dropout and withdrawal, and high school graduation.  

Potential contributions 

My study design is much like other previous studies: I study the impacts of barely 

failing the exit exam by subject. Hence, this study like a replication of previous studies. 

However, the context and the longer-term outcomes studied can enrich the literature in 

the following ways. 

Firstly, the context that I look at is unique in that a pass/fail score for the math 

high school exit exam was initially set, but the requirement to pass the exam in order to 

be eligible for a high school diploma was later waived. The reason for the waiver was 

because the math passing standard was set very high such that the passing rate was 
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relatively low compared to previous years (Center on Education Policy, 2010). 

Furthermore, students were required to attend district-prescribed remediation to be 

eligible to receive the high school diploma despite failing the exit exam. If setting a 

passing score serves as a means to indicate a (high) performance standard required of 

students, while waiving the passing requirement removes a barrier towards high school 

graduation, and remediation provides greater support to help students pass the exam, then 

the combination of these three components may serve to mitigate some of the negative 

consequences that may arise due to the presence of a cut score. I call this policy context 

in which students take the Minnesota GRAD one which is "lenient in rules, high in 

standards". 

To be able to study whether such a policy mitigates the negative consequences of 

barely failing a high school exit exam would require a counterfactual in which a passing 

score on a high school exit exam were set, and students who fail would be ineligible for a 

high school diploma. Unfortunately, such a counterfactual is not available because the 

math exit exam in Minnesota was newly introduced at the start of the study period3.  

It may be possible that without the passing waiver and district remediation, there 

may be severe negative consequences; while the change in policy might mitigate some of 

these consequences, we may still observe some negative consequences. It may also be the 

case where before the change in policy, there may be little, if not no consequences to 

begin with; and there remains no detected consequences after the waiver. In any case, the 

results of the study do not allow me to differentiate among the different scenarios. In 

                                                           
3 The year the passing requirement for the math exit exam was waived was also the year when it replaced a 
basic skills test. Hence, a pre/post comparison of impacts would confound test change with the waiver of 
passing requirement. Minnesota was also undergoing other changes in assessment policies between the last 
cohort eligible for the waiver, and the first un-exempted cohort. 
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other words, I cannot answer the question of: what is the impact of the policy waiver on 

scoring barely below or above the passing score on the exam. Instead, the question I ask 

is a "status" question – with the particular policy context in place, are there any negative 

consequences? i.e., within such a "high on standards, lenient in rules" policy context, are 

there consequences of scoring barely below the passing score? 

For more completeness and for similarity to the other studies, I also look at the 

impacts of scoring barely below or above the passing score on the reading GRAD in 

Minnesota4. Unlike for the math GRAD, there is no waiver of the passing requirement for 

the reading GRAD – students who fail will be ineligible for high school graduation. 

However, like math, students who fail the reading exam are also required to take district-

remediation.  

Secondly, I seek to extend the literature by looking at the impact of longer-term 

outcomes, including college enrollment and college graduation, which have increasing 

importance for the post-high school trajectories of students. Unfortunately, the post-

secondary dataset has non-random missing data – it only includes college enrollment and 

graduation records for high school graduates, rather than for all students who take the 

exit exam. I discuss this data limitation when interpreting the findings.  

I do not, however, look at the impact of imposing high school exit exams in 

general, or the impact of setting tougher standards for high school exit exams (see Clark 

& See, 2011; Reardon & Kurlaender, 2009). Finally, from this study, I am unable to 

distinguish whether the observed impacts of barely passing or failing the exit exam arise 

                                                           
4 Although students are also required to pass a writing test, I did not include the writing test as part of this 
study because data was available for only one cohort of students, and students were rated on a score of 1 to 
6, which may render it unsuitable for regression discontinuity analyses. 
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due to negative consequences of scoring barely below, or positive consequences of 

scoring barely above the passing score on the test, or both. 

The Minnesota Context 

Passing requirement for high school exit exam 

Minnesota has had a relatively long history of high school exit exams. Since 

1997, Minnesota has required students to take and pass the “Basic Skills Tests” (BST) in 

math, reading, and writing to ensure that they have a minimum level of knowledge and 

skills before graduating from high school (Minnesota Department of Education, 2010a). 

Beginning in 2000, diplomas were withheld for students who did not pass the three BSTs 

(Center on Education Policy, 2010).  

In 2005, the Minnesota legislature enacted the Omnibus K-12 and Early 

Childhood Act of 2005 that had the Basic Skills Tests replaced (Minnesota Statutes, 

2005). Students enrolled in grade 8 from the 2005-2006 school year and onwards must 

pass the Graduation-Required Assessments for Diploma (GRAD) in reading and math or 

obtain an achievement level equivalent to or greater than proficient on the Minnesota 

Comprehensive Assessments-Series II (MCA-II). Students are also required to pass the 

GRAD in writing. The writing, reading, and math tests are taken in spring of grades 9, 

10, and 11 respectively. This statute was revised in 2007 to include options for retests to 

meet the graduation-testing requirement (Minnesota Session Laws, 2007). See Appendix 

A for details on the diploma requirements and Appendix B for policy timeline. 

While the state uses either the GRAD or MCA-II to determine eligibility for high 

school graduation, there are some key differences between the two. The purpose of the 

GRAD is to measure the writing, reading and math proficiency of high school students 
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(Minnesota Department of Education, 2010a) while the reading and math MCA-II are 

used for state accountability purposes to meet NCLB requirements. The MCA-II results 

are also used to compare the performance of districts across the state and to provide 

feedback on curriculum and instruction (Minnesota Department of Education, 2010b). 

Both the GRAD and MCA-II benchmarks originate from the same set of academic 

standards. Some of the benchmarks in the GRAD and MCA-II overlap, while other 

benchmarks are unique to only the GRAD or the MCA-II respectively. 

The administration of the math GRAD is embedded within the MCA-II 

assessment, i.e. students take both assessments in one seating. The math GRAD consists 

of 40 items in multiple-choice format while the math MCA-II consists of 55 items, 45 

items in multiple-choice format and 10 items in gridded response format. Of these, 25 

items are common to both the GRAD and MCA-II. In the data, I observe a correlation of 

about 0.94 between the GRAD and MCA-II.  

For both math and reading, GRAD is the key assessment for considering 

eligibility for high school graduation. However, students who pass the MCA-II but fail 

the GRAD are also considered eligible for high school graduation5. Students who fail the 

GRAD on the first attempt are allowed to retake the GRAD component.  

Waiver of the passing requirement on math GRAD 

Amid concerns that failure rates on the math GRAD might be higher than 

anticipated, a legislative task force was established in the late 2008 and early 2009 to 

review the GRAD passing policy and its implication for high school graduation (Center 

                                                           
5 Based on conversations with Minnesota Department of Education officials, the MCA-II is deemed to be 
based on more rigorous standards than the GRAD, hence this exception for students who passed the MCA-
II but failed the GRAD. 
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on Education Policy, 2010). Options for a short-term remedy and long-term direction 

were discussed. In May 2009, the governor signed a law (Minnesota Session Laws, 2009) 

that waived the passing requirement on the math exam. Students in the high school 

classes of 2010-2014 are not required to pass the math GRAD or obtain a proficient score 

on the math MCA-II in order to be eligible for a high school diploma.    

Under this updated Education Bill, students in the high school graduation classes 

of 2010-2014 would meet the state math graduation requirement by meeting state and 

local coursework and credits requirements, and by scoring at or above the passing score 

for the MCA-II or math GRAD component (Minnesota Statutes, 2009; Minnesota 

Department of Education, 2010). Students who could not meet the passing requirement 

on both the math MCA-II and the math GRAD would still be eligible to receive a high 

school diploma by: (i) participating in district-prescribed academic remediation in math, 

and (ii) fully participating in at least two retests of the math GRAD or until they pass the 

math GRAD6. Based on conversations with Minnesota Department of Education officials 

and district personnel, the retest requirement was also waived7 (SLEDS coordinator, 

personal communication, 6 September, 2018; district personnel, personal communication, 

1 October, 2018).  

Between cohort variation of treatment. The timing of these changes to the 

passing requirement for math GRAD gives rise to variation in the treatment from cohort 

                                                           
6 However, students will still receive a "not pass" notation on their transcript if they are unable to pass the 
test by the high school graduation date. See Appendix A for an example of the transcript notation when 
pass waiver is in place. 
7 I was unable to determine when the retest requirement was waived. Part of the challenge was identifying 
personnel present at the time when the policy was effected. Review of documents from the Department of 
Education suggests that the retest requirement was in place for all five cohorts of students. However, the 
district personnel whom I spoke with recalled that the policy went from "three attempts" (including the 
initial attempt and up to two retests), to "any attempt" (retests not required).  
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to cohort. For the cohort of students whose initial math GRAD attempt was in 2009, the 

students prepared and sat for the exam under the context that they had to pass the exam in 

order to be eligible for a high school diploma. Within a month, the law to waive the 

passing requirement was signed. Therefore, the cohort of students whose initial math 

GRAD attempt was in 2009 differs from subsequent cohorts in their understanding of the 

passing requirement when they prepared and sat for the exam, and for a short period of 

time after they sat for the exam. This gives rise to the possibility that students may 

withdraw or drop out from high school due to their perceived performance on the exam, 

before they learn about the waiver. 

For the cohorts of students whose initial math GRAD attempt was in 2010 and 

after, the students prepared and sat for the exam knowing that they could fail the exam, 

but still go on to graduate from high school provided that they meet the other 

requirements. However, even amongst these cohorts, there is potential for other 

differences. Based on anecdotal accounts, it appears that the retest policy has become 

more lenient over time ("three attempts" to "any attempts"). To the extent that the 

retesting requirement imposes additional effort and psychological barriers on students, 

the leniency over time might lower barriers towards high school graduation. Thus over 

time, we might expect little to no net impact of consequences for students who barely fail 

versus those who barely pass. I thus conduct analyses by cohort to address the different 

passing requirement from cohort to cohort. 

Differences in passing requirement between Minnesota and other states. The 

key difference between Minnesota and most other states in past studies, including 

California, Massachusetts, New Jersey, North Carolina, and Texas, is whether the passing 
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requirement for the high school exam is upheld. For most states, students are required to 

obtain a passing score on the high school exit exam in order to graduate. In Minnesota, 

there is a passing score for the math exit exam, but it is not necessary for students to 

score above it in order to graduate from high school. On this dimension, the reading test 

in Minnesota is similar to the other states since the passing requirement is upheld. 

Another difference is that in Minnesota, the state requires that districts provide 

remediation to students who fail the exit exam, although districts have the discretion to 

determine what that remediation might be. This is the case both for reading and math8. In 

most other states, such as Massachusetts, and California, it does not appear that such a 

rule exists on a state-wide basis9. Therefore, this constitutes a key difference for students 

on the margins in Minnesota compared to those in other states10. In Minnesota, students 

who barely fail the math exit exam not only score below the passing score, but also 

receive district-prescribed remediation whereas students who barely pass do not. In the 

other states studied in past regression discontinuity studies, students who barely fail the 

math exit exam may or may not receive remediation, depending on the districts that they 

are in11. 

                                                           
8 The rules may differ slightly. For reading, the rule stipulates that districts provide remediation for students 
who fail, and that students "have a minimum of six weeks for remediation before the next testing 
opportunity … Minnesota Rule 3501 (2009)" (excerpt from state document provided in personal 
communications with MDE coordinator, November 6, 2018). It appears that there is latitude to interpret the 
six weeks as pertaining to remediation, or simply the duration from one test to the next. For math, students 
are to take "district-prescribed remediation" but the rules did not stipulate the duration.  
9 Based on the description available from the published studies. An internet search of the policies in place 
in Massachusetts and California at the time of the regression discontinuity studies did not yield documents 
of policies in place during that time period. 
10 There are also other differences, such as the location of the passing score, which may affect the profile of 
students on the margins. I discuss this in the discussion section.  
11 Students in both Minnesota and other states have retest options when they fail the exit exam, but the 
number of attempts varies across states as well. 
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Finally, another key difference is that the subject exit exams in Minnesota are 

taken in different years, each a year apart. For the other states, the exams are taken in the 

same year, and sometimes as part of the same test (e.g. Texas). To address this difference, 

I analyze the discontinuities for math and reading separately by cohorts which took the 

respective tests for the first time. The estimates obtained represent the effects of scoring 

barely below versus barely above the passing score of the respective test for all students 

who attempted it for the first time.  

Research Questions 

Within the context of Minnesota in which a pass/fail score was initially set on a 

high school exit exam, but the requirement to pass the exam in order to be eligible for a 

high school diploma was later waived for one of the subjects, I ask the following 

questions: 

RQ1: What are the effects of scoring barely below versus barely above the 

passing score on the math GRAD, in the context where the passing rule for the 

math exam for high school diploma is waived, and students who fail are required 

to take remediation, on students’: (a) high school, (b) college enrollment, and (c) 

college graduation outcomes?  

RQ2: What are the effects of scoring barely below versus barely above the 

passing score on the reading GRAD on students’: (a) high school, (b) college 

enrollment, and (c) college graduation outcomes?  

Data 

The data used in this study comes from the Minnesota Statewide Longitudinal 

Education Data System (SLEDS) that matches public K-12 student data with 
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postsecondary education data from the National Student Clearinghouse (NSC). This 

database allows us to track public school students longitudinally through high school and 

college. The database consists of test scores on the Minnesota GRAD, as well as student 

records from the National Student Clearinghouse (NSC), which allows us to track post-

secondary college enrollment in private and public colleges across the United States. One 

caveat about the NSC data is that it only consists of records for high school graduates. I 

discuss this data limitation in the interpretation of findings. 

My primary analyses for math focus on students who took the math GRAD for the 

first time in 11th grade in the spring of 2009 to 201112, corresponding to the high school 

graduation class of 2010 to 2012. These students make up the first three cohorts which sat 

for the GRAD, for which the waiver of the math exam passing requirement applies to. 

My reading analyses focus on students in these cohorts, but who took the reading GRAD 

for the first time in 10th grade in the spring of 2008 to 2010. I did not constrain the data to 

include students who have both reading and math scores so that the discontinuities reflect 

the impact on the full sample of students who took the tests for the first time in the 

indicated years13. 

Of the 170, 070 students who took the math exit exam for the first time in spring 

of 2009 to 2011, I exclude 17,686 students classified as special education students during 

                                                           
12 I use a cohort naming notation based on the subject and year in which students first attempt the exam, 
e.g. the 2009 math GRAD cohort first took the math exit exam in spring 2009; they are the expected high 
school class of 2010. The 2008 reading GRAD cohort took the reading exit exam in spring 2008 and are 
also the expected high school class of 2010. See Appendix B Figure 1 for academic milestones by math 
cohorts.  
13 For the reading analyses, this allows me to include all students who attempted the reading GRAD in the 
spring of the indicated years, and track students who withdraw or drop out at any time after the test and 
who may not persist to take the math GRAD. For the math analyses, this allows me to include all students 
who attempted the math GRAD in the spring of the indicated years, regardless of prior actions (such as 
grade retention) due to their writing and reading results taken in earlier years.  
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the academic year in which they took the math exit exam. Students could be required to 

take the GRAD or an alternative assessment, depending on their Individual Education 

Plan (IEP). Since the SLEDS database does not have data on the required test specified in 

the IEP, I exclude these students from the analyses. Eventually I retain 152,317 students 

with non-missing values for the outcome variables for my math analyses.  

Of the 178,307 students who took the reading exit exam for the first time in spring 

of 2008 to 2010, I exclude 16,794 students classified as special education students during 

the academic year in which they took the reading exit exam. Eventually I retain 161,452 

students with non-missing values for the outcome variables for my reading analyses. 

Outcome measures 

I estimate the effect of scoring barely below versus above the GRAD (math or 

reading) on the probability of various high school, college enrollment and college 

graduation outcomes. Each of these outcomes are coded as a dichotomous variable.  

The high school outcomes include on-time high school graduation expected for 

the cohort at the time of the test14. I create a variable to indicate if students ever withdraw 

or drop out15, 16 from high school within 1 year of taking the math GRAD in 11th grade, 

which corresponds to the timeframe to the anticipated high school graduation date; or 

within 1 year or 2 years of taking the reading exam in 10th grade, in which the anticipated 

                                                           
14 This corresponds to 2010 for the 2008 reading cohort and 2009 math cohort, up till 2012 for the 2010 
reading cohort and 2011 math cohort.  
15 In the SLEDS database, "withdrew" refers to students who left school with the intention to reenroll, 
while "dropout" refers to students who left without intending to reenroll. However, in the dataset, I observe 
students with "withdrew" records who did not reenroll and students with "dropout" records who reenroll. 
Hence, I combine the two variables to indicate that students ever left school.  
16 Using the "withdraw or dropout" variable, I include students who ever withdraw or drop out of high 
school, even if they reenroll again later on. This captures treatment effects on the decision to withdraw or 
drop out on high school, and delineates it from more distal effects, or future decisions that may influence 
them to reenroll in school again. 
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high school graduation date is within 2 years after students take the reading exam. The 

estimates for the high school graduation outcome and withdraw/dropout outcome may 

not necessarily be identical because some students who withdraw or dropout from high 

school may return to high school later on, and there are some students who persist till 12th 

grade but never graduate from high school. 

The college outcomes include enrollment in, as well as graduation from a 2-year 

college or 4-year college. I also look at overall college (2-year or 4-year) enrollment and 

graduation. Across cohorts, I track college enrollment within two years of expected high 

school graduation and college graduation within four years of expected high school 

graduation. This allows up to 4 years for students to complete 2-year colleges, and 

includes only graduation within 4 years at 4-year colleges (provided that they enroll in 

college on-time)17. The college data includes records for both private and public 

universities and colleges. 

Forcing variable: GRAD scale scores 

In this paper, I estimate the impact of scoring barely below versus barely above 

the passing score on the exit exam using a standard sharp regression discontinuity design, 

with the GRAD score as the forcing variable, for math and reading respectively. I center 

the forcing variable on the highest failing score. All students with a positive value of the 

re-centered forcing variable have a "pass" status on the exit exam. This means that they 

have satisfied the passing requirements for the high school exit exam with respect to the 

GRAD, and no further action is required from them in this respect.  

                                                           
17 This is a rather high standard for college graduation, but it uses up to the last available year of data at the 
time of data request (2016) for the last cohort studied (high school class of 2012).  
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The estimates obtained from this strategy represent reduced form estimates of the 

impact of barely failing versus barely passing the exit exam. All students who score at or 

above the GRAD passing score will receive a "pass" status regardless of their MCA-II 

score. Some students with a value of zero or below on the re-centered forcing variable 

may have a "pass" status if they pass the MCA-II, and no further action is required on 

their part with respect to the GRAD. Other students who fail both the GRAD and MCA-II 

will have a "not pass" status. This group of students will be required to take district 

remediation. For math, these students will still be eligible to graduate from high school if 

they meet the retest requirements for their cohort, amongst other requirements. For 

reading, these group of students will not be eligible to graduate from high school if they 

cannot pass the reading GRAD on subsequent retest attempts.  

Because the probability of passing the exit exam is not strictly zero for students 

who score below the GRAD passing score, the regression discontinuity estimates 

obtained using the standard sharp RD design is considered a reduced form estimate. At 

the end of the Analytic Strategy section, I explain further reasons why the estimates from 

this paper are reduced form estimates of barely failing the exit exam. 

Analytic Strategy 

I use a regression discontinuity (RD) strategy to identify the effects of scoring 

barely below versus barely above the passing score of the math and reading high school 

exit exam in Minnesota. The RD design relies on a few key conditions. One is an 

exogenously determined cut score that assigns students to one treatment condition or 

another. Due to the exogeneity of the cut score, it is as if students are randomly assigned 

to a treatment or a control condition, in our case, scoring above or below the passing 
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score. Another is that the design assumes that potential outcomes vary continuously 

around the cut score. If these conditions hold, the RD design would allow us to observe 

potential outcomes for both the treatment and control group, and to identify the causal 

effects of the treatment (fail) versus control (pass) condition. 

I conduct a sharp regression discontinuity analysis that uses the GRAD scale 

score (for math or reading) as the forcing variable. For all of the analyses, I fit identical 

models using the relevant variables as below: 

Yi  = 0 + 1Score + 2(BelowPass) + 3(BelowPass x Score) + i 

where Y is an indicator variable for the high school or college outcome of interest; Score 

is the forcing variable, the GRAD scale score centered on the highest failing score in 

math or in reading, for student i. BelowPass is an indicator coded with a value of 0 if the 

student scores at or above the GRAD passing score and 1 if below. 2 provides the 

parameter estimate of interest, the causal effect of scoring barely below compared to 

scoring barely above the relevant exit exam, on the probability of the outcome (high 

school graduation, college enrollment, or college graduation). Since the forcing variable 

is a discrete variable, I cluster standard errors by the forcing variable as recommended by 

Lee and Card (2008). For math, I conduct analyses separately by cohort to examine if 

there are differences in impacts across cohorts, due to differences in knowledge of the 

waiver at the time of taking the exam, and in retesting policy over time. I also conduct 

analyses for reading by cohort to allow for the possibility that differences in passing 

requirement for math may also influence the impacts for reading.  

In the RD design, we are concerned with estimating effects at the boundary for a 

single point, rather than maximizing fit across the whole range of data. I conduct local 



120 

 

linear regression which has been found to have better boundary properties (Hahn, Todd, 

& Van der Klaauw, 2001; Imbens & Lemieux, 2008). I fit local linear regression models 

using a rectangular kernel and using only observations within a narrow bandwidth (h), 

around the pass/fail cut score. For reporting, I use the cross-validation procedure 

described by Ludwig and Miller (2007) and Imbens and Lemieux (2008)18 to identify the 

optimal bandwidth, separately for each outcome, subject, and cohort. 

Internal validity checks 

The internal validity of the RD design requires that the cut score be exogenously 

determined, and assignment to treatment is independent of the potential outcomes. The 

processes in place in Minnesota suggest that this assumption may hold. The performance 

standard setting process for determining the passing score was conducted independently 

of the scoring (or test-taking) process, by a standard setting panel consisting of educators 

and community members using a well-established standard setting method (item-

mapping method) (Minnesota Department of Education, 2011). It seems unlikely that an 

individual teacher or group of teachers can influence the location of the cut score.  

The cut score is set based on a raw score on the GRAD, while the cut score on the 

MCA-II is an equated scale score to place it on the same scale as the GRAD score scale. 

Having a cut score based on a raw score may raise concerns about potential for 

                                                           
18 The optimal bandwidth is one that minimizes the mean squared prediction error ���(ℎ)=
�

�
∑ ��� − ����

��
���   for the δ quantile of the empirical distribution of the forcing variable. I follow the practice 

guide (Imbens & Lemieux, 2008) to discard observations from the tails since observations far from the cut 
score may introduce bias to the boundary estimate at the expense of improved precision. I discard 
observations more than 12 scale score points away from the cut score to retain scale scores approximately 
within 25th percentile and 75th percentile band of scores. I fit regression models separately for each side of 
the cut score for Xi < c – h or Xi > c + h where c is the cut-score. I implement the leave-one-out cross-
validation with modification for RD as such: for a given bandwidth, I leave out observations at the 
boundary and use the rest of the data to predict the outcome at the boundary, progressively narrowing the 
bins over which the data is used to predict the boundary.  
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manipulation of the raw scores. However, the performance standard setting for math was 

conducted after the first cohort of students sat for the test, so it is not possible for students 

to manipulate their scores if the cut was unknown at the time19. Furthermore, the tests are 

machine-scored, so it seems unlikely that the answer sheets and scores may be 

manipulated. Additionally, the GRAD and MCA-II items are interspersed throughout the 

test. It seems unlikely that students would track which test the items belonged to and 

manipulate their answers to specific items, to fall on one side of the passing score or 

another.  

I also examine the distribution of math GRAD scale scores and reading GRAD 

scale scores by cohort. The histograms suggest a smooth underlying distribution in the 

scale score. Using the Frandsen test (2017), I do not find evidence of potential 

manipulation of the forcing variable at the cut score.  

I also plot graphs of the density of pre-treatment (demographic) covariates on the 

forcing variable for reading and math separately. Beyond statistical noise, the plots do not 

seem to suggest discontinuities in the pre-treatment covariate density close to the cut 

score. See Appendix C for further details. 

Reduced form estimates of barely failing the exit exam 

 I estimate the effect of scoring barely below versus barely above the passing 

score of the relevant subject test, which provides reduced form estimates of the effect of 

barely failing versus barely passing the exit exam. 

                                                           
19 The performance standard setting process was based mainly on content considerations. Although it is 
possible that the panel may adjust the cut score based on actual student performance on the first 
administration of the test, this will be possible only for the first cohort of students and not subsequent 
cohorts. 
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This is because the pass/fail status of students is determined by both the scores of 

the GRAD and the MCA-II. Since some students may fail the GRAD but pass the MCA-

II, they may still gain a "pass" status on the exit exam (see Appendix D for further 

details). These students who score below the GRAD passing score will not be required to 

take further actions with respect to the GRAD, while other students who score below the 

passing score but have a "not pass" status will be required to take remediation and to 

meet the respective retest requirements for the math and reading exams. To the extent 

that scoring barely below (which increases the likelihood of failing the exam) the passing 

score has a stronger negative impact than any positive benefits from taking district-

prescribed remediation, my discontinuity estimates may actually be conservative 

estimates of the impact of barely failing the exit exam. 

In another way, the estimates also represent intent-to-treat effects of scoring 

barely below the passing score in conjunction with the other accompanying treatment 

(remediation and retest) versus scoring barely above the passing score. While students 

either score above or below the GRAD passing score, the other part of the treatment 

consists of remediation. The SLEDS database does not contain records of students who 

actually took and satisfied the district-prescribed remediation requirement. I also look at 

the impact at the first attempt. Hence, some students who score below the passing score 

on the first attempt may eventually pass the test on subsequent retest attempts and receive 

a "pass" status.  

Descriptive Statistics 

Table 1 shows the descriptive statistics and mean outcomes for the students 

included in the analyses by math cohorts, and pooled across reading cohorts. About 80% 
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of students in the overall sample are white. Students eligible for free and reduced-price 

lunch or eligible to receive Title 1 services (low income) during the academic year when 

they took the math exam constitute about a quarter of the sample; about 6% are enrolled 

in a school with Title 1 schoolwide program during the academic year of the math exam. 

About 4% of the students were assessed as limited English proficiency. 

The passing rates for the math GRAD and the reading GRAD are relatively low. 

About 37% score below the math GRAD passing score, and have a "not pass" status on 

the math GRAD at the first attempt. About 22% score below the reading GRAD passing 

score and about 18% have a "not pass" status on the test at the first attempt.  

I also show the descriptive statistics for the outcomes of interests in the overall 

sample. Over 80% of the students graduate from high school in the overall sample, and 

about 10% of students withdraw or drop out from high school after taking the GRAD. 

About 70% of the students in each cohort enroll in 2-year or 4-year colleges within 2 

years of their anticipated high school graduation year. About 50% of the students enroll 

in 4-year colleges. 

Results 

In this section, I present the results for separate discontinuities for the math 

GRAD and the reading GRAD. For the math GRAD discontinuity, I estimate results by 

cohort (one discontinuity each for the cohorts which attempted the math GRAD for the 

first time in the spring of 2009 to 2011) to examine if there are differences in impact due 

to differences in exposure to the announcement of the waiver relative to time of taking 

the test, and possibly different retest requirements. Although there are no differences in 

terms of the rules for reading GRAD with regards to high school graduation, I also 
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analyze the results separately by cohort in parallel to math. Although my regression 

discontinuity analyses are for students at the margins of the passing score on their first 

attempt, in the discussion, I sometimes refer to them as the first cohort subjected to the 

GRAD (2008 reading cohort and 2009 math cohort) through the third cohort (2010 

reading cohort and 2011 math cohort) to indicate that these are roughly the same group of 

students even though they take the reading and math exam in different grade-year. This 

helps us to track how each cohort of students are encountering the math passing policy as 

they take their math and reading exams.  

The tables of results are organized as follows: The impacts using the math GRAD 

score as the forcing variable are shown in Table 2 (high school outcomes) and Table 3 

(college outcomes). The impacts using the reading GRAD score as the forcing variable 

are shown in Table 4 (high school outcomes) and Table 5 (college outcomes). The 

heading for each row shows the outcome. Within each table, I present estimates obtained 

using the optimal bandwidth20, followed by estimates obtained using a smaller (about half 

the width of the optimal) bandwidth and a larger (about two times the width of the 

optimal) bandwidth. 

The figures are organized as follows: Figures 1 and 2 each present the graphical 

relationship between the probability of the relevant outcome and the forcing variable –

GRAD scale scores centered on the highest failing score for math and reading 

respectively. For each outcome, plots are shown for the optimal bandwidth. I show the 

plots for the 2011 math cohort and the 2008 reading cohort21. 

                                                           
20 I determine the optimal bandwidth separately for each outcome and cohort, using the cross-validation 
procedure suggested by Ludwig and Miller (2007) and Imbens and Lemieux (2008). 
21 To avoid repetition, I show plots for only one cohort for each subject, for which the results are more 
prominent.  
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All the results represent estimates of the effect of scoring barely below versus 

barely above the passing score of the relevant subject exam, which reflect reduced form 

estimates for the effect of failing that subject exam. See earlier section on Analytic 

Strategy (reduced form estimates sub-section) for more details. For simplicity, I discuss 

the results in terms of negative consequences for those who score barely below the 

passing score. In reality, I cannot tell if this is the case, or if it is due to a positive boost 

for students who score barely above the passing score, or both. 

Results by Subject: Math 

Math: High school outcomes 

Table 2 shows the estimates of scoring barely below the math passing score 

compared to scoring barely above, on the high school outcomes, by cohort. Broadly, the 

results suggest that there are no statistically significant impacts for the first math cohort 

(2009) to experience the waiver, but there are statistically significant impacts on high 

school outcomes for the subsequent (2010 and 2011) math cohorts to experience the 

waiver.  

For the 2009 math cohort, students took the math GRAD with the understanding 

that passing it would be required for high school graduation, only to learn a few months 

later that this passing requirement would be waived. For this first cohort of students 

which received different signals about the passing requirement before and after taking the 

exam, scoring barely below the math passing score does not appear to have any 

statistically significant impact on the probability of graduating from high school on-time, 

or on the probability of ever withdrawing or dropping out from high school within 1 year 

of the first attempt. 
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For the subsequent math cohorts, we might expect impacts on high school 

outcomes, if any, to be less negative, since the policies appear to lower the barrier 

towards high school graduation. As anecdotal accounts suggest, the retesting rules appear 

to become more lenient over time, going from "three attempts" to "any attempt". Over 

time, we might also expect districts to learn from experience and to improve in their 

district remediation programs. Overall, we might expect less negative impacts, if any, 

across cohorts. 

However, for the 2010 and 2011 math cohorts which took the math GRAD 

knowing that they do not have to pass the exam in order to graduate, I find that scoring 

barely below the math passing score lowers the probability of on-time high school 

graduation by about 0.7 percentage points for the 2010 math cohort and by about 1.2 

percentage points for the 2011 math cohort. I also find that scoring barely below the math 

passing score increases the probability of ever withdrawing or dropping out from high 

school within 1 year of the first attempt, by about 0.5 percentage points (2010 math 

cohort) and by about 1.1 percentage points (2011 math cohort). These results appear 

fairly robust to the choice of bandwidth. 

Figure 1 Panels A and B present the results in Table 2 for the 2011 math cohort 

graphically, showing the relationship between the probability of on-time high school 

graduation (Panel A) as well as the probability of ever withdrawing or dropping out from 

high school within one year of the first attempt (Panel B) respectively, and the forcing 

variable – math GRAD scale scores centered on the highest failing score. Although the 

results for these two outcomes are statistically significant, the discontinuity is barely 

visible.  
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Math: College enrollment outcomes 

The results shown in Table 3 suggest that there may be some impact of scoring 

barely below the math passing score on 4-year college enrollment, and overall (2-year or 

4-year) college enrollment across all three cohorts, but the results appear most prominent 

for the 2011 math cohort. 

For the 2011 math cohort, scoring barely below the math GRAD passing score 

appears to lower the probability of 4-year college enrollment by about 4.4 percentage 

points, with the findings being robust to the choice of bandwidth. Due to the earlier 

finding that there may be a negative impact of scoring barely below the math passing 

score on high school graduation, it is possible that these results may be biased by missing 

college records for high school non-graduates rather than represent an actual treatment 

effect.  

If scoring barely below the exam passing score has a negative impact on high 

school graduation, then there will be a greater proportion of high school non-graduates 

among those who score barely below the passing score compared to among those who 

score barely above. This will translate to a higher rate of missing data among those who 

score barely below the passing score relative to those who score barely above. This will 

downward bias the probability of observing any college records among those who score 

barely below the passing score even in the absence of any impact of scoring barely below 

the passing score on college enrollment or graduation.  

Hence, if I observe a lower probability of college enrollment or college 

graduation for those who score barely below the passing score compared to those who 

score barely above, I will not be able to differentiate whether it is due to an actual impact 
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on college outcomes, or due to a bias imparted by missing college records for high school 

non-graduates. On the other hand, if I observe a lower probability of college enrollment 

or college graduation that is greater in magnitude than the impact on high school 

graduation for those who score barely below the passing score relative to those who score 

above, that would suggest that the impact is driven by an underlying mechanism other 

than the bias imparted by missing college records for high school non-graduates. I then 

assume that the underlying mechanism is the impact of scoring barely below the passing 

score on the college outcome in question. To take into account statistical imprecision, I 

compare not only the point estimates, but the 95% confidence interval of the impact on 

high school graduation to the college outcome of interest, within the same bandwidth for 

the college outcome22. 

When I compare the 95% confidence interval of the impacts for college 

enrollment to that of high school graduation for the 2011 math cohort estimated within 11 

scale score points, I find that the 95% confidence interval of the probability of 4-year 

college enrollment in percentage points (-6.6, -2.3) does not overlap with that for high 

school graduation (-2.0, 0.3). This non-overlap is consistent across bandwidth sensitivity 

checks for the impact on 4-year college enrollment when compared to the impact on high 

school graduation. This gives some assurance that there may be an impact of scoring 

barely below the math GRAD passing score versus scoring barely above, on the 

probability of 4-year college enrollment for the 2011 math cohort, apart from any bias 

imparted by missing college records for high school non-graduates.  

                                                           
22 For example, if I am looking at the impact on 4-year college enrollment estimated within a bandwidth of 
11 scale score points, I evaluate the potential bias imparted by high school non-graduates by looking at the 
impact on high school graduation also within a bandwidth of 11 scale score points.  



129 

 

Still for the 2011 math cohort, although there appears to be a negative impact on 

the probability of overall (2-year or 4-year) college enrollment, the 95% confidence 

interval (-3.8, -1.6) overlaps with that for high school graduation (-2.1. 0.0) estimated at 

10 scale score points. Thus, I cannot differentiate whether the observed difference in 

probability represents an actual impact on overall college enrollment, or whether it is due 

to bias arising from missing college records for high school non-graduates. 

Turning to the other two math cohorts, I find that for the 2009 math cohort, there 

may be an impact of scoring barely below the math passing score on 4-year college 

enrollment (-3.3 percentage points) and overall (2-year or 4-year) college enrollment (-

2.2 percentage points). However, the 95% confidence interval of both these college 

impacts overlap with the 95% confidence interval of the impact of high school 

graduation. Hence, I cannot discount the possibility that this may be due to a bias in 

missing college data for high school non-graduates. For the 2010 math cohort, I do not 

observe any statistically significant impacts on college enrollment. 

Figure 1 Panels C to E show the above results for the 2011 math cohort 

graphically. A discontinuity is visible for overall (2-year or 4-year) college enrollment 

(Panel C) and 4-year college enrollment (Panel E). 

Math: College graduation outcomes 

Finally, I also look at longer-term outcomes on college graduation to examine if 

the negative impacts persist over time.  

The impact of scoring barely below the math GRAD passing score versus scoring 

barely above appears to fade out for the college graduation outcomes examined. Figure 1 

Panels F to H graphically show the relationship between the three college graduation 
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outcomes and math GRAD scale scores for the 2011 math cohort. No visible 

discontinuity is seen. 

Due to attrition at high school and college enrollment, we might expect to see at 

least the magnitudes of those impacts reflected in the point estimates for college 

graduation. However, the magnitudes of the estimates for college graduation are 

generally quite small. This might suggest that there is little negative impact on college 

graduation for students who score barely below the passing score, but it may also imply 

greater attrition for those who score barely above the passing score. It is also possible that 

because all the college graduation outcomes are based on graduation within 4 years of the 

anticipated high school graduation date, the general null findings may just reflect that 

there is insufficient study duration to detect impacts, especially for 4-year college 

graduation.  

Summary: Impact for math  

In summary, I generally find some evidence of the negative impacts of scoring 

barely below versus barely above the math GRAD passing score on various high school 

and college enrollment outcomes. However, the negative impact findings are cohort-

dependent.  

It appears that there may be no impact of scoring barely below the passing score 

on high school outcomes for the first (2009) math cohort, but the impact grows stronger 

in magnitude for the 2010 and 2011 math cohorts. This is observed even though the 

barriers towards high school graduation imposed by the math passing requirement may be 

lowered for each successive cohort. We also observe the strongest evidence of impact on 

4-year college enrollment for the 2011 math cohort.  
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Results by Subject: Reading 

For math, the treatment-control contrast is between students who score barely 

below the math GRAD passing score – students who would still be eligible to graduate 

from high school provided that they take district-prescribed remediation, and sit for at 

least two retests or until they pass, whichever comes first; compared to students who 

score barely above – who on the basis of the math GRAD score are eligible to graduate 

from high school23. For reading, the treatment-control contrast is also for students who 

score barely below versus above the passing score. Similar to math, students who fail the 

reading GRAD are also required to take remediation. But unlike for math, students who 

fail the reading GRAD would not be eligible to graduate from high school unless they 

pass a retest. In other words, the barriers towards high school graduation imposed by the 

passing requirement for reading are higher than that for math. 

The results for the impacts of reading are shown in the Table 4. In contrast to the 

results for math, it appears that the impacts for reading are more prominent for the first 

cohort of students to sit for the GRAD (2008 reading cohort), with some impact on ever 

withdrawing or dropping out from high school for the second (2009 reading) cohort, and 

no statistically significant impacts on high school outcomes for the third (2010 reading) 

cohort of students.  

For the 2008 reading cohort, scoring barely below the reading passing score 

appears to lower the probability of graduating from high school on time by 1.1 

percentage points, but the results are not statistically significant,. However, I observe that 

scoring barely below the reading passing score also increases the probability of ever 

                                                           
23 This is subject to meeting all other non-math GRAD related high school graduation requirements. 
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withdrawing or dropping out from high school within 2 years of the first attempt by about 

1.0 percentage points24. This latter result is statistically significant and robust to the 

choice of bandwidth. Figure 2 shows the graphical relationship for the 2008 reading 

cohort between on-time high school graduation (Panel A), as well as ever withdrawing or 

dropping out of high school within 2 years of the first reading attempt (Panel B), and 

reading GRAD scores centered on the highest failing score. The discontinuity is barely 

visible.  

For the 2009 reading cohort, I do not find any impact of scoring barely below the 

reading passing score on on-time high school graduation. However, for the 2009 reading 

cohort, I do find that scoring barely below the reading passing score has an impact on 

ever withdrawing or dropping out of high school within 2 years of the first attempt, which 

although is not statistically significant, is similar in magnitude to the impact found for the 

2008 reading cohort. 

Reading: College enrollment and graduation outcomes 

The estimates shown in Table 5 suggest that scoring barely below the reading 

passing score may have some impact on college enrollment outcomes for the 2008 and 

2009 reading cohort. However, I find overlaps in the 95% confidence intervals of these 

impacts on college enrollment outcomes with the 95% confidence interval of impact for 

high school graduation. Hence, it is possible that the observed differences in probabilities 

may arise due to bias in missing college data for high school non-graduates.  

                                                           
24 This includes students who have ever withdrawn or dropped out of high school, but may decide to return 
to school later. In additional analyses not shown, where I look at withdrawing or dropping out of high 
school without ever graduating from high school, I find that scoring barely below the reading passing score 
increases the probability by 0.7 percentage points (standard error of .08 percentage points, bandwidth=±3 
scale score points). This lends some evidence that there may be some impact of scoring barely below the 
reading passing score on on-time high school graduation, but that the impact is imprecisely estimated.  
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Figure 2 Panels C to H show the relationships between the college enrollment and 

graduation outcomes respectively and the reading GRAD scores centered on the highest 

failing score. A slight discontinuity in impact is observed for overall (2-year or 4-year) 

college enrollment (Panel C) and 4-year college enrollment (Panel E). 

Discussion 

The impacts of passing or failing the high school exit exam on high school 

outcomes and college outcomes are of great interest to educators and policymakers and 

certainly for students on the margins of passing or failing. At a time when there are calls 

to set higher educational standards to prepare students to be college-ready, states may be 

under pressure to raise passing standards on their high school exit exams. One 

implication of raising standards is that a higher proportion of students may fail the exams. 

My study is situated in a context where the passing standards have been raised, but the 

passing requirement was later waived for math and where students who fail the math or 

reading exam have to take district-prescribed remediation. I term such a context one that 

is "high in standards, lenient in stakes". 

Within this context, my study provides a closer look at whether there are 

consequences of scoring barely below versus barely above the passing score on an exit 

exam when passing requirements are in place for reading, and whether there are 

consequences for students on the margin when the passing requirements are waived for 

math. 

The results of this study suggest several interesting patterns, and provides a more 

nuanced view of their impacts than previous studies suggest. Overall, the findings of the 

impact for the math and reading exam suggest that the impact of scoring barely below the 
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passing score of an exit exam may depend on the subject and the passing requirement in 

place. In addition, over time, the consequences for students on the margins may also 

change from cohort to cohort.  

The students who initially attempt the reading GRAD in 2008 and the math 

GRAD in 2009 represent the first cohort of students to take the new high school exit 

exam after Minnesota switched from the Basic Skills Test. It appears that for this first 

cohort of students, the impacts of the reading exam, for which the passing requirement is 

upheld, are more pronounced than that for math, for which the passing requirement is 

waived. Scoring barely below the reading passing score increases the probability of ever 

withdrawing or dropping out from high school by the anticipated high school graduation 

year by 1.0 percentage points (statistically significant) and the probability of on-time high 

school graduation by 1.1 percentage points (not statistically significant). The 

corresponding impacts for math are smaller in magnitude and not statistically significant. 

These results may reflect the role of the passing requirement, whether it is upheld or 

waived, in students' decision to withdraw or drop out from high school, or it may reflect 

the influence of the subject, or both.  

One arising puzzle is: what drives the relative influence of the reading or math 

exam in withdrawal or dropping out from high school? One thing to note about the 2008 

reading cohort and 2009 math cohort is that they are roughly the same group of students, 

but some students have already dropped out after taking the reading GRAD in 10th grade 

and before spring of 2009 when they might have been taking the math GRAD. I find that 

scoring barely below versus barely above the reading GRAD passing score for the 2008 

reading cohort increases the probability of withdrawing or dropping out from high school 
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within 1 year of the first attempt by about 0.6 percentage points (S.E. = 0.4 percentage 

points). Hence, some students may already have decided to withdraw or drop out from 

high school after they take the reading exam without waiting to take the math exam. This 

may also explain why the impacts on high school outcomes for the math exit exam for 

this cohort are more subdued, because those who might have withdrew or dropped out 

have already done so after they took the reading exam in grade 10.   

Another related question is the timing of the impacts on decisions to withdraw or 

drop out from high school. The results suggest that for some students, the decision to 

withdraw or drop out from high school comes within one year of taking the exam while 

for other students, the decision arises closer to the anticipated high school graduation 

date. For the reading exam which students take in 10th grade, we see a sizable impact 

(+0.6 percentage points) on the probability of ever withdrawing or dropping out from 

high school within one year of the initial attempt, but this impact is not statistically 

significant. By the second year of the initial attempt, the impact of scoring barely below 

the passing score grows to about +0.10 percentage points and is statistically significant. 

For math, even though students take the exam under conditions in which the passing 

requirement is in place, the impact of scoring barely below the passing score on ever 

withdrawing or dropping out of high school within one year of the initial attempt is 

practically negligible. From this timeframe, we can infer that there is little impact on this 

outcome within the short timeframe when students take the math exam in April 2009 and 

before they learn about the waiver (sometime after May 2009).  

The impacts of the remedial policy are less clear. Since the remedial policy is in 

place for both reading and math, the differences in impacts for reading and math appear 
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to arise due to the differences in passing requirement for each subject. On the other hand, 

it may also be the case that without the remedial policy in place, the negative impacts of 

scoring barely below the passing score could be more severe for each of the subjects.  

Observationally, the stronger influence of reading relative to math for the first 

cohort of students appear to undergo shifts for the second cohort of students. By the third 

cohort of students, the relative influence of math appear stronger than that for reading. 

For the second cohort of students in the study (reading cohort 2009 and math 

cohort 2010), the impact of reading for students on the margins appears to be about the 

same or stronger (depending on bandwidth) than that for the 2008 reading cohort for high 

school outcomes. For math, we start to observe some negative impact of scoring barely 

below the math passing score on on-time high school graduation (-0.7 percentage points) 

and ever withdrawing or dropping out from high school prior to the anticipated high 

school graduation date (+0.5 percentage points).  

By the third cohort of students in this study (reading cohort 2010 and math cohort 

2011), it appears that the influence of the reading exam has subsided and the influence of 

the math exam has grown stronger. By the anticipated high school graduation date for 

this cohort, we do not observe any statistically significant impact of scoring barely below 

the reading passing score on on-time high school graduation, or students ever 

withdrawing or dropping out of high school. There may be a few reasons for this. It may 

be because over time, students come to realize that the retest opportunities allow them to 

eventually pass the reading exam and go on to graduate from high school25. It is also 

                                                           
25 Unfortunately, the SLEDS database does not contain retest results for us to test the hypothesis whether 
students eventually receive a pass on the reading GRAD by the time of their anticipated high school 
graduation date. 
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possible that the district-remediation is working in tandem with the retesting policy to 

help students pass the retests.  

In contrast, even though the passing requirement for the math exit exam has been 

waived, scoring barely below the math passing score appears to have negative impacts on 

high school outcomes for this third cohort of students. It does not seem that barriers 

towards high school graduation, such as retesting, or district-prescribed remediation are 

causing these impacts, since these barriers are also present for the reading exit exam.  

Comparing the impact of the math to reading exam suggests that students are 

using the signal from the math exam rather than the reading exam to influence whether 

they ever withdraw or drop out of high school. This happens more so for the third cohort 

than for the first cohort of students in this study. Among the evidence regarding the 

impacts on college enrollment, we also find the strongest evidence that scoring barely 

below the math passing score reduces the probability of enrolling in 4-year colleges for 

this third cohort of students.  

In Appendix E, I show the results from additional analyses where I limit the 

regression discontinuity analysis to include only students who pass their reading test. 

These analyses seek to answer the question: would we still see an impact of scoring 

barely below the math passing score if students' reading test results pose no barrier to 

high school graduation?  

The results in Appendix E Table 1 suggest that among students in the 2011 math 

cohort who pass the reading GRAD, negative impacts are still observed for high school 

and college enrollment outcomes for students who score barely below the math passing 

score versus those who score barely above. For these students, scoring barely below the 
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math passing score reduces the probability of on-time high school graduation by about 

0.7 percentage points and 5-year graduation by about 1.0 percentage points, and 

increases the probability of ever withdrawing or dropping out of high school within 1 

year of the initial attempt by about 1.1 percentage points. Furthermore, for these students 

who pass their reading GRAD, scoring barely below the math passing score reduces the 

probability of 4-year college enrollment by about 4.7 percentage points.  

Taken together, these results suggest that students in the high school class of 2011 

are taking the signal from scoring below versus above the passing score of the math exam 

more seriously than the other cohorts.  

One possibility is that the passing standard for the math exam is set very high, 

such that students on the margins may be relatively high-achieving students who would 

rather avoid a "not pass" status on their high school transcript. These students may 

instead choose to transfer to a non-public high school where they are not subject to the 

state passing requirements. In further analyses not shown, in which I constrain the 

reasons for withdrawing or dropping out of high school to include only transfer to a non-

public high school or moving out of state, I did not find any impact. It does not seem that 

students are trying to find a substitute for their high school education in order to avoid a 

"not pass" status on their high school diploma26. Perhaps students who score barely below 

the math passing score are perceiving that the passing score is set to high standards, and 

the discouragement is driving them to withdraw or drop out from high school, and even 

not to apply to 4-year colleges.  

                                                           
26 If these were relatively high-achieving students, it would seem unlikely that they withdraw or drop out of 
high school in order to pursue a GED in exchange for receiving a high school diploma with a "not pass" 
notation for their math. In additional analyses where I looked at pursuing a GED or an alternative diploma 
as the outcome, I also did not find any impact of scoring barely below versus above the math passing score. 
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Remediation provided by the district might also influence the impact on ever 

withdrawing or dropping out of high school and subsequently high school graduation. 

Based on anecdotal accounts from district staff, students who fail the math or reading exit 

exam are highly visible to others within school, because they have to attend remedial 

classes. While students who pass the math exit exam can go on to attend other electives 

in 12th grade, students who fail math need to attend remediation. Thus, based on the 

classes that students attend, students and teachers can differentiate those who pass from 

those who did not. Perhaps this negative visibility might contribute to demotivation and 

eventually result in some students withdrawing or dropping out of school. Students who 

have to take remediation instead of math electives may also be less competitive in their 4-

year college application, resulting in a lower probability of enrollment in 4-year colleges. 

However, this does not explain why we might observe different patterns of the impact on 

withdrawing or dropping out of high school across cohorts even though students who 

score barely below the passing score for both subjects across all years have to attend 

district remediation. 

Still, it is also be possible that the district remediation may be effective in helping 

students learn the materials on the exit exam better, so that students who persist 

eventually pass the retest. If this is the case for reading, it may explain why we do not see 

any statistically significant negative impact on high school graduation for reading despite 

the passing requirement being upheld.  

On the whole, the finding that there are negative consequences on withdrawing or 

dropping out of high school is quite substantial. For students at the pass/fail margin for 

math, the probability of withdrawing or dropping out is about 10% while the magnitude 
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of the observed impact is around +0.5 percentage points to +1.1 percentage points. For 

reading, the probability of withdrawing or dropping out of high school is about 20% for 

students at the pass/fail margins while the magnitude of the impact of scoring barely 

below the pass score is around +1.0 percentage points. 

Comparison with past studies – high school outcomes 

I compare my findings to the findings from past studies to put them into 

perspective. Appendix F Table 1 summarizes the research design and findings of past 

studies that use regression discontinuity analysis to look at the impact of barely passing 

or barely failing an exit exam.  

The results found in this study are most similar to that in New Jersey where Ou 

(2010) found that barely failing the math exit exam in New Jersey increases the 

probability of dropping out from high school by about 1.1 percentage points and 0.5 

percentage points for Language Arts Literacy. The results are different from the 

substantive conclusion reached in Massachusetts but the point estimates are similar. 

Papay, Murnane, and Willett (2010) found that barely passing the 10th grade exit exam on 

the first attempt increases the probability of on-time high school graduation by about 1.7 

percentage points for math and by 0.5 percentage points for ELA27, but the study failed to 

reject the null hypothesis that there is no impact.  

In terms of sample and cohort studied, my study comes the closest to that in New 

Jersey. Both this study on Minnesota and that on New Jersey uses data from all students 

in the state, with at least three high school cohorts. Although the study on Massachusetts 

also uses data from all students within the state, it only does so for one cohort of students 

                                                           
27 The results of the study in Massachusetts are reported in terms of the positive impact from barely passing 
the exit exam. Here, I report the results according to this original reference point. 
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subject to the exit exam. From the math analyses in Minnesota, it appears that we might 

draw different conclusions about the impacts of scoring barely below or barely above the 

math passing score on high school graduation if I had used data for only one cohort and 

sampled a different cohort for the analyses. If we look at only findings for the 2009 math 

cohort and 2008 reading cohort, the results would be more similar to the findings from 

Massachusetts. The results in Minnesota also differs from the study on California, which 

uses data from multiple cohorts, but only used student data for a couple of large districts 

in the state. It is an open but verifiable question whether the findings across these studies 

would be more similar had the cohort sampling and study population (data from entire 

state or from only some districts) been similar.  

It is also possible that the differences in results may arise because the treatment 

effects are different in Minnesota compared to that in other studies. However, the 

direction of the observed impacts do not fit if this were the case. In most of the other 

states studied, the implications of failing the exit exam are quite severe – high school 

diplomas would be withheld if students do not pass the test or subsequent retests. In 

Minnesota, students who do not pass the reading exam are required to pass the exit exam 

or subsequent retests to be eligible to graduate from high school. Those who do not pass 

are required to take remediation, which is supposed to help them to eventually pass the 

exam. Students who do not pass the math exam even have the passing requirement 

waived. If the waiver of the passing requirement for math and the remediation 

requirement for both math and reading are rules that represent lower barrier towards high 

school graduation or supportive measures to help students overcome the barriers, we 

might least expect negative consequences within such a policy context, as compared to 
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the policy context in other states. However, we see impacts on both high school 

graduation and withdrawing or dropping out of high school within Minnesota, that are 

more prominent than that found in states like Massachusetts or California.  

Last but not least, the differences that arise in the results across studies may be 

due to the location of the passing thresholds. Reardon et al. (2010) put forth a hypothesis 

that the impact of barely failing or barely passing an exit exam may depend on the 

location of the passing threshold. When the passing rate on the exam is relatively high, 

students who fail it may be relatively low-achieving students for whom there may be 

other constraints towards graduation rather than the barrier imposed by the exit exam 

itself. In this scenario, we might expect to observe little impacts of barely failing versus 

barely passing the exam.  

If this is the case, it may partially explain why we observe negative impacts of 

withdrawing or dropping out of high school for students who score barely below versus 

barely above the passing score of the reading test in Minnesota. The passing rate for 

reading in Minnesota is relatively low compared to the other states (81% in Minnesota, 

compared to 87% in New Jersey, 85% in Texas), indicating that the passing standard is 

quite high. The students who fail reading may not be particularly low-achieving, and 

failing the exam may be the main barrier towards high school graduation. This may lead 

to withdrawing or dropping out from high school if students do not eventually pass the 

reading exam on subsequent retests. 

However, it does not quite explain the results for the math 2011 cohort, since not 

passing the math exam imposes a much lower barrier towards high school graduation 

when the passing requirement is waived. It may be possible that even when the passing 
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requirement is waived for math, students are still taking the signal from passing or failing 

the test seriously. If the passing score is perceived to be of "high standards", students may 

view the information regarding their mastery of the high school math curriculum as 

meaningful, which may influence them to act on this signal with respect to their high 

school and college outcomes.  

Discussion on College Outcomes 

Summary of past studies – college outcomes 

The study that comes closest to my study is from Massachusetts (Papay, Murnane, 

& Willett, 2014) that looks at the impacts of barely passing or barely failing the math 

MCAS or the reading MCAS on college enrollment (2-year or 4-year college, public or 

private, from the NSC dataset), within two years of the cohort's high school graduation. 

The study, which looked at students who attempted the MCAS for the first time in 2004, 

2005, or 2006, found that barely passing the ELA exam increases the probability that 

students attend college by 4.5 percentage points, while barely passing the math exam 

increases the probability by 2.8 percentage points.  

In Texas, Martorell (2004) found that barely failing the "last-chance" test reduces 

the probability of attending college within 5 years of high school graduation by about 5.7 

percentage points. From the results on 4-year colleges, Martorell (2004) inferred that this 

result was mainly driven by an impact on attendance in 2-year colleges. Note that in 

Texas, the estimates are for the last-chance test before students are due to graduate. 

Furthermore, the results are for public colleges within Texas, whereas our results are for 

public and private colleges across the United States.  

Comparison with past studies – college outcomes 
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Although the direction of impacts in my study is consistent with that found in 

Massachusetts (Papay, Murnane, & Willett, 2014), I cannot tell whether this is due to bias 

imparted by missing data for high school non-graduates, or whether it is indeed due to an 

impact on college enrollment. On the surface, the magnitudes of the impact appear 

consistent for math and for the 2008 reading cohort. 

In light of the findings from Massachusetts where positive impacts are found for 

barely passing the exit exam, and the impacts are greater for reading than for math, it is 

somewhat surprising that in my study, I generally find larger impacts on college 

enrollment for math rather than for reading. This is particularly puzzling since students 

who fail math in Minnesota can still be eligible for high school graduation. One 

possibility might be due to the remediation policy and their opportunity costs in 

Minnesota. It is not very clear what students may be missing out if they attend reading 

remediation. But for students who fail the math exit exam, math remediation may come at 

the expense of class time to take other math electives, especially if remediation takes 

place during the timetable slot for math. Students may lose out in their college 

application competitiveness if math electives are more valued. Unfortunately, my study 

does not allow me to differentiate if the lower probability of enrollment for those who 

score barely below versus barely above the math passing score is due to lower rates in 

college application, or lower rates of college acceptance.  

The findings in Texas (Martorell, 2004) suggest that the negative impacts found 

on college enrollment was mainly due to impact on 2-year college enrollment. However, 

the impacts were for barely passing or failing a test that required passing each of the 

math, reading, and writing sections. It may be possible that the passing threshold 
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hypothesis put forth by Reardon et al. (2010) discussed earlier might play a part. The 

passing rate for the TAAS in the Texas sample is about 85%, while the passing rate for 

math in my sample is about 63% and that for reading is about 81%. The students at the 

pass/fail margin in Texas may thus be relatively low-achieving students compared to their 

peers in the state, whereas the students at the pass/fail margin in Minnesota may include 

relatively high-achieving students. If this is the case, perhaps the college of choice for 

students at the margins of the passing score in Minnesota are 4-year colleges rather than 

2-year colleges, and hence this is where we observe greater impacts. 

Conclusion 

Examining the consequences of barely failing an exit exam is an important topic 

for policymakers and students alike. This study replicates past studies on this topic by 

looking at the impact of scoring barely below versus barely above the passing score of 

the math and reading exit exam in Minnesota. My study is different from that of other 

states in that the treatment for students who score below the passing score of the exit 

exam in Minnesota have to take remediation, and in the case of math, may still be eligible 

to graduate from high school due to a waiver of the passing requirement. 

I find that within this policy context, there may be consequences on on-time high 

school graduation as well as withdrawing or dropping out of high school for students who 

score barely below versus barely above the passing score of the math exam, even though 

students can still be eligible to graduate from high school. For the reading exam in which 

students who fail are not eligible for high school graduation, I also find a negative impact 

on withdrawing or dropping out of high school.  
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The findings from my study are coherent with some earlier studies but not others. 

Other than the different passing requirements for the high school exit exam, the study 

design – including the cohorts studied and the student population studied – may play a 

role. The relative difficulty of the passing standard and the profile of students (relatively 

high-achieving or low-achieving) affected at the pass/fail margins may also influence the 

findings. Together, the results of my study relative to past studies suggest that whether 

there are impacts of barely passing or barely failing an exit exam may not be a settled 

question, and the study design as well as policy contexts may play a role. At a time when 

high school exit exams are still in place for a number of states, it is still a worthwhile 

question to ask whether there are consequences for students at the pass/fail margins. 

Furthermore, at a time when there are increasing calls to set higher standards to 

prepare students to be college and future ready, states may move towards setting exams 

with higher bars for passing. But to do so may risk increasing the proportion of students 

who fail the exam. Setting lower standards may keep the passing rate at an "acceptable" 

level, but this may not signal the higher standards desired. As we saw earlier, when the 

passing standard is set at a level where higher-achieving students may be affected at the 

margins, college enrollment, particularly 4-year college enrollment, may also be 

impacted. If so, motivating the student population towards higher standards may 

potentially impose a price for those at the margins.  

The particular context in Minnesota, where the passing requirement on the math 

exit exam was waived due to a high proportion of students failing it, provides an example 

of a policy response to a problem that has increasing relevance today. The findings in this 
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study also suggest a need to think about whether such consequences for students at the 

passing/failing margins need to be addressed, and if so, how.  

It may also be worthwhile to ask whether students can be motivated to reach 

higher standards, be rewarded for their efforts when they try, but not have barriers set up 

should they fail. One key question that this study raises but cannot answer is, what is the 

impact of waiving the passing requirement and providing remediation on the 

consequences for students at the pass/fail margin? This study raises questions for future 

studies: Would administering a high school exit exam with high passing standards 

improve overall student performance? Or would waiving the passing requirement on the 

exam cause overall student performance to drop due to students working less hard 

towards a difficult standard that does not matter anymore? Finally, would waiving the 

passing requirement and providing remediation support mitigate negative consequences, 

if any, for students at the margins?  
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Table 1. Descriptive statistics for demographic covariates, high school outcomes, and 
college outcomes 

  Math   Reading 

  Cohort    

 2009 2010 2011  Pooled Across Cohorts 

Number of observations 51143 50971 50203  161452 

Treatment characteristics      

Proportion …      
 fail reading GRAD     0.19 

 score below reading GRAD passing score     0.22 

 fail math GRAD 0.37 0.37 0.36   
 score below math GRAD passing score 0.38 0.37 0.36   

      
Demographic variables      
Male 0.49 0.49 0.49  0.49 

Female 0.51 0.51 0.51  0.51 

White 0.84 0.83 0.82  0.82 

African-American 0.06 0.06 0.07  0.07 

Hispanic 0.03 0.03 0.04  0.04 

Asian or Pacific Islander 0.05 0.06 0.06  0.06 

Native American/Alaskan Native 0.01 0.01 0.01  0.01 

Low income 0.25 0.28 0.29  0.27 

Enrolled in Title 1 school 0.06 0.06 0.06  0.06 

Limited English proficiency 0.04 0.04 0.04  0.04 

      
High School Outcomes      
Proportion …      
 graduated from high school 0.88 0.88 0.88  0.84 

 withdrew from high school 0.08 0.08 0.09  0.11 

 dropped out from high school 0.03 0.02 0.02  0.03 

 withdrew or dropped out from high school 0.09 0.09 0.10  0.12 

      
College Outcomes      
Proportion …      
 enrolled in college (2- or 4-year) 0.72 0.72 0.72  0.68 

 enrolled in 2-year college 0.32 0.32 0.32  0.31 

 enrolled in 4-year college 0.51 0.51 0.51  0.48 

 graduated from college (2- or 4-year) 0.37 0.37 0.39  0.36 

 graduated from 2-year college 0.10 0.10 0.11  0.10 

 graduated from 4-year college 0.28 0.28 0.29  0.27 
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Table 2. Estimated impacts on high school outcomes of scoring barely below the math GRAD passing score versus scoring above at 
the first attempt, by math GRAD cohorts 
  2009   2010  2011

 Optimal h (Optimal h)/2 (Optimal h)x2  Optimal h
 
(Optimal h)/2 (Optimal h)x2  Optimal h (Optimal h)/2 (Optimal h)x2

 (1) (2) (3)  (4)
 

(5) 6)  (7) (8) (9)

Probability of … h = ±7 h = ±4 h = ±14 h = ±4  h = ±3 h = ±8  h = ±6 h = ±3 h = ±12
graduating from high school (on-time) -0.007 0.002 -0.006  -0.007* -0.011*** -0.005  -0.012* -0.010** -0.010 

(0.005) (0.002) (0.009)  (0.003)  (0.001) (0.006)  (0.004) (0.002) (0.007)
n 23277 13984 37841  14835  10643 27515  17799 10702 33797 

                    
 h = ±7 h = ±4 h = ±14 h = ±5  h = ±4 h = ±10 h = ±4 h = ±3 h = ±8
ever withdrawing or dropping out -0.002 0.000 -0.002  0.005† 0.007** 0.000  0.011** 0.010** 0.009* 
      from high school (within 1 year) (0.002) (0.003) (0.003)  (0.002)  (0.002) (0.003)  (0.002) (0.002) (0.003)
n 23277 13984 37841  19123  14835 32590  12939 10702 22538
 

†p < .10. *p < .05. **p < .01. *** < .001.   
Note: Each cell is a separate regression discontinuity impact estimated using standard sharp regression discontinuity method for the reported bandwidth. Optimal bandwidths are 
determined separately for each outcome and cohort, using the cross-validation procedure suggested by Ludwig and Miller (2007) and Imbens and Lemieux (2008). The smaller and 
larger bandwidth checks for sensitivity are approximately half or two times the size of the optimal width respectively. Standard errors shown in parentheses are clustered at discrete 
values of the math GRAD score. 
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Table 3. Estimated impacts on college outcomes of scoring barely below the math GRAD passing score versus scoring above at the 
first attempt, by math GRAD cohorts 
 2009  2010  2011

 Optimal h (Optimal h)/2 (Optimal h)x2  Optimal h (Optimal h)/2 (Optimal h)x2  Optimal h (Optimal h)/2 (Optimal h)x2

 (1) (2) (3)  (4) (5) (6)  (7) (8) (9)

Probability of … h = ±11 h = ±5 h = ±22  h = ±10 h = ±5 h = ±20  h = ±10 h = ±6 h = ±20
enrolling in 2-year or 4-year college -0.022* -0.011 -0.037**  -0.012 -0.010 -0.031**  -0.027*** -0.037*** -0.048***  

(0.009) (0.007) (0.012)  (0.007) (0.006) (0.010)  (0.006) (0.005) (0.009)
n 32949 15707 45573

 
32590 14835 45308

 
28984 17799 45093

 
h = ±11 h = ±5 h = ±22  h = ±11 h = ±5 h = ±20  h = ±11 h = ±6 h = ±20

enrolling in 2-year college 0.006 0.007 0.025  -0.010 -0.006 0.010  0.005 0.009 0.006 
(0.011) (0.007) (0.015)  (0.013) (0.003) (0.015)  (0.015) (0.012) (0.013)

n 32949 15707 45573
 

33513 14835 45308
 

29942 17799 45093
 

h = ±11 h = ±5 h = ±22  h = ±11 h = ±5 h = ±20  h = ±11 h = ±6 h = ±20
enrolling in 4-year college -0.033* -0.011 -0.080***  -0.013 -0.009 -0.064**  -0.044*** -0.056*** -0.088***  

(0.013) (0.010) (0.020)  (0.013) (0.010) (0.020)  (0.011) (0.008) (0.015)
n 32949 15707 45573

 
33513 14835 45308

 
29942 17799 45093

 
h = ±11 h = ±5 h = ±22  h = ±11 h = ±5 h = ±20  h = ±11 h = ±6 h = ±20

graduating from 2-year or 4-year college -0.010 -0.016 -0.035**  -0.009 -0.023* -0.034*  -0.008 -0.001 -0.028*  
(0.007) (0.011) (0.010)  (0.015) (0.009) (0.013)  (0.009) (0.009) (0.010)

n 32949 15707 45573
 

33513 14835 45308
 

29942 17799 45093
 

h = ±11 h = ±5 h = ±22  h = ±11 h = ±5 h = ±20  h = ±11 h = ±6 h = ±20
graduating from 2-year college 0.000 0.000 -0.003  -0.008 -0.008 -0.009  0.003 0.005 -0.005 

(0.004) (0.004) (0.005)  (0.006) (0.006) (0.006)  (0.011) (0.012) (0.008)
n 32949 15707 45573

 
33513 14835 45308

 
29942 17799 45093

 
h = ±5 h = ±3 h = ±10  h = ±6 h = ±5 h = ±12  h = ±8 h = ±4 h = ±16

graduating from 4-year college -0.016† 0.002 -0.013*  -0.010 -0.020*** -0.012  -0.014 -0.013*** -0.016 
(0.007) (0.001) (0.006)  (0.013) (0.003) (0.012)  (0.008) (0.001) (0.009)

n 15707 11325 30014  20425 14835 36488  22538 12939 38233
 

†p < .10. *p < .05. **p < .01. *** < .001.   
Note: Each cell is a separate regression discontinuity impact estimated using standard sharp regression discontinuity method for the reported bandwidth. Optimal bandwidths are 
determined separately for each outcome and cohort, using the cross-validation procedure suggested by Ludwig and Miller (2007) and Imbens and Lemieux (2008). The smaller and 
larger bandwidth checks for sensitivity are approximately half or two times the size of the optimal width respectively. Standard errors shown in parentheses are clustered at discrete 
values of the math GRAD score. 
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Table 4. Estimated impacts on high school outcomes of scoring barely below the reading GRAD passing score versus scoring above at 
the first attempt, by reading GRAD cohorts 
   2008      2009      2010   
 Optimal h (Optimal h)/2 (Optimal h)x2   Optimal h (Optimal h)/2 (Optimal h)x2  Optimal h (Optimal h)/2 (Optimal h)x2

 (1) (2) (3)   (4) (5) (6)  (7) (8) (9)

Probability of … h = ±3 h = ±4 h = ±6  h = ±4 h = ±3 h = ±8 h = ±6 h = ±3 h = ±11
graduating from high school (on-time) -0.011 -0.011 -0.014   -0.002 -0.001 -0.018†  -0.011 0.001 -0.022†  

(0.010) (0.010) (0.011)   (0.005) (0.002) (0.010)  (0.014) (0.015) (0.011)
n 12310 13243 21430   13573 9941 22436  18630 11038 29196 

                    
 h = ±4 h = ±3 h = ±8  h = ±4 h = ±3 h = ±8 h = ±6 h = ±3 h = ±11
ever withdrawing or dropping out 0.006 0.004 0.011*  0.011 0.020** 0.012†  0.000 -0.006 0.001
   from high school (within 1 year) (0.004) (0.006) (0.004)   (0.006) (0.004) (0.006)  (0.004) (0.005) (0.003)
n 13243 12310 26258   13573 9941 22436  18630 11038 29196 

                    
 h = ±3 h = ±4 h = ±6  h = ±11 h = ±6 h = ±22 h = ±8 h = ±4 h = ±16
ever withdrawing or dropping out 0.010*** 0.013** 0.007**  0.012 0.023* 0.013  0.006 -0.004 0.010† 
   from high school (within 2 years) (0.001) (0.003) (0.002)   (0.009) (0.009) (0.010)  (0.006) (0.002) (0.005)
n 12310 13243 21430   32667 17524 44924  23585 11925 39913
 

†p < .10. *p < .05. **p < .01. *** < .001.   
Note: Each cell is a separate regression discontinuity impact estimated using standard sharp regression discontinuity method for the reported bandwidth. Optimal bandwidths are 
determined separately for each outcome and cohort, using the cross-validation procedure suggested by Ludwig and Miller (2007) and Imbens and Lemieux (2008). The smaller and 
larger bandwidth checks for sensitivity are approximately half or two times the size of the optimal width respectively. Where the optimal bandwidth is the smallest discrete 
bandwidth available, the sensitivity check is performed for the next larger possible bandwidth and reported in lighter shade. Standard errors shown in parentheses are clustered at 
discrete values of the reading GRAD score.
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Table 5. Estimated impacts on college outcomes of scoring barely below the reading GRAD passing score versus scoring above at the 
first attempt, by reading GRAD cohorts 
   2008    2009     2010  
 Optimal h  (Optimal h)/2 (Optimal h)x2  Optimal h  (Optimal h)/2 (Optimal h)x2   Optimal h  (Optimal h)/2 (Optimal h)x2

 (1)  (2) (3)  (4)  (5) (6)   (7)  (8) (9)

Probability of … h = ±11  h = ±5 h = ±22  h = ±11  h = ±5 h = ±22   h = ±11  h = ±6 h = ±22
enrolling in 2-year or 4-year college -0.041*** -0.025† -0.075***  -0.023  -0.011 -0.044**  -0.021  0.010 -0.060**  

0.010  0.012 0.014  0.013  0.014 0.013   0.016  0.014 0.018
n 32438  17148 45415  32667  13573 44924   29196  18630 49526 

                  
 h = ±11  h = ±5 h = ±22  h = ±11  h = ±5 h = ±22   h = ±11  h = ±6 h = ±22
enrolling in 2-year college -0.017  0.000 -0.016  -0.021  -0.016 -0.011   -0.003  0.008 -0.003 

(0.012)  (0.009) (0.011)  (0.013)  (0.018) (0.011)   (0.008)  (0.010) (0.008)
n 32438  17148 45415  32667  13573 44924   29196  18630 49526 

                  
 h = ±11  h = ±5 h = ±22  h = ±11  h = ±5 h = ±22   h = ±11  h = ±6 h = ±22
enrolling in 4-year college -0.033* -0.009 -0.085***  -0.011  -0.004 -0.060**  -0.030  0.011 -0.097**  

(0.014)  (0.012) (0.021)  (0.013)  (0.006) (0.019)   (0.020)  (0.015) (0.027)
n 32438  17148 45415  32667  13573 44924   29196  18630 49526 

                  
 h = ±7  h = ±4 h = ±14  h = ±11  h = ±5 h = ±22   h = ±11  h = ±6 h = ±22
graduating from 2-year or 4-year college -0.007  -0.007 -0.024†  -0.012  -0.006 -0.029*  -0.018* -0.008 -0.042***  

(0.015)  (0.020) (0.012)  (0.013)  (0.009) (0.012)   (0.008)  (0.009) (0.010)
n 22081  13243 38543  32667  13573 44924   29196  18630 49526 

                  
 h = ±11  h = ±5 h = ±22  h = ±11  h = ±5 h = ±22   h = ±11  h = ±6 h = ±22
graduating from 2-year college -0.016† 0.001 -0.021*  -0.015* -0.009 -0.017***  -0.009  -0.002 -0.018**  

(0.008)  (0.011) (0.007)  (0.005)  (0.006) (0.004)   (0.006)  (0.006) (0.005)
n 32438  17148 45415  32667  13573 44924   29196  18630 49526 

                  
 h = ±5  h = ±4 h = ±11  h = ±4  h = ±3 h = ±8   h = ±4  h = ±3 h = ±8
graduating from 4-year college 0.003  0.012 -0.003  -0.002  -0.001 -0.006   0.007  0.008 -0.004 

(0.012)  (0.018) (0.011)  (0.004)  (0.004) (0.008)   (0.007)  (0.006) (0.008)
n 17148  13243 32438  13573  9941 22436   11925  11038 23585
 

†p < .10. *p < .05. **p < .01. *** < .001.   
Note: Each cell is a separate regression discontinuity impact estimated using standard sharp regression discontinuity method for the reported bandwidth. Optimal bandwidths are 
determined separately for each outcome and cohort, using the cross-validation procedure suggested by Ludwig and Miller (2007) and Imbens and Lemieux (2008). The smaller and 
larger bandwidth checks for sensitivity are approximately half or two times the size of the optimal width respectively. Standard errors shown in parentheses are clustered at discrete 
values of the reading GRAD score. 



154 

 

 
Figures 

 



155 

 

Figure 1. Proportion of students with a value of 1 on the dichotomous indicator for the 
respective high school, college enrollment, and college graduation outcomes on math 
GRAD score for 2011 math cohort 
 

Panel A. On-time high school graduation.  
Statistically significant effect 

Panel B. Ever withdrew or dropped out from 
high school within 1 year of first attempt.  
Statistically significant effect 

 
Panel C. Enrollment in 2-year or 4-year 
college. Statistically significant effect 

Panel D. Enrollment in 2-year college.  
No statistically significant effect 

 
 
Panel E. Enrollment in 4-year college.  
Statistically significant effect 

Panel F. Graduation from 2-year or 4-year 
college. No statistically significant effect 
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Figure 1 (continued)  
Panel G. Graduation from 2-year college. 
No statistically significant effect 

Panel H. Graduation from 4-year college.  
No statistically significant effect 

 
 
Note: Each circle represents the proportion of students (y-axis) with a value of 1 on the dichotomous indicator as 
described in the panel title, for each discrete scale score on the math GRAD (x-axis), i.e. the smallest bin possible. The 
vertical line represents the highest failing score on the math GRAD. Local linear fitted lines (solid line) are estimated 
using data for all students using a rectangular kernel and the displayed bandwidth. The displayed bandwidth is the 
optimal bandwidth determined using the cross-validation procedure described in text. Dotted lines represent the 95% 
confidence interval.  
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Figure 2. Proportion of students with a value of 1 on the dichotomous indicator for the 
respective high school, college enrollment, and college graduation outcomes on reading 
GRAD score for 2008 reading GRAD cohort 
 

Panel A. On-time high school graduation.  
No statistically significant effect 

Panel B. Ever withdrew or dropped out from 
high school within 2 years of first attempt.  
Statistically significant effect 

 
Panel C. Enrollment in 2-year or 4-year 
college. Statistically significant effect 

Panel D. Enrollment in 2-year college.  
No statistically significant effect 

 
Panel E. Enrollment in 4-year college.  
Statistically significant effect 

Panel F. Graduation from 2-year or 4-year 
college. No statistically significant effect 
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Figure 2 (continued)  
Panel G. Graduation from 2-year college. 
No statistically significant effect 

Panel H. Graduation from 4-year college.  
No statistically significant effect 

 
 
Note: Each circle represents the proportion of students (y-axis) with a value of 1 on the dichotomous indicator as 
described in the panel title, for each discrete scale score on the reading GRAD (x-axis), i.e. the smallest bin possible. 
The vertical line represents the highest failing score on the reading GRAD. Local linear fitted lines (solid line) are 
estimated using data for all students using a rectangular kernel and the displayed bandwidth. The displayed bandwidth 
is the optimal bandwidth determined using the cross-validation procedure described in text. Dotted lines represent the 
95% confidence interval.  
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Appendices 
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Appendix A 
Role of GRAD for Graduation from Public High Schools in Minnesota 

 
High school class of 2010 to 2014 

To graduate from a Minnesota public high school, students must meet the state’s course 

credit and testing requirements and any additional local requirements established by the 

school district (Larson, 2010).  

The role of Graduation-Required Assessment for Diploma (GRAD) for 

graduation from a public high school in Minnesota is as follows: 

Minnesota Statutes 2006 120B.30 Statewide Testing and Reporting System… 
(b) For students enrolled in grade 8 in the 2005-2006 school year and later, only 
the following options shall fulfill students’ state graduation test requirements: 
(1) for reading and mathematics: 
(i) obtaining an achievement level equivalent to or greater than proficient as 
determined through a standard setting process on the Minnesota comprehensive 
assessments in grade 10 for reading and grade 11 for mathematics or achieving a 
passing score as determined through a standard setting process on the graduation-
required assessment for diploma in grade 10 for reading and grade 11 for 
mathematics or subsequent retests;  
… 
(2) for writing: 
(i) achieving a passing score on the graduation-required assessment for diploma;  
(Minnesota Statutes 2006, 2006, 120B.30) 
 
Based on conversations with Minnesota Department of Education officials, after 

students set for the GRAD in spring 2009, the state announced that the 2009 Legislature 

waived the passing requirement on math GRAD. The statute was amended to include the 

following: 

(d) Students enrolled in grade 8 in any school year from the 2005-2006 school 
year to the 2009-2010 school year who do not pass the mathematics graduation-
required assessment for diploma under paragraph (b) are eligible to receive a high 
school diploma with a passing state notation if they: 
(1)  complete with a passing score or grade all state and local coursework and 
credits required for graduation by the school board granting the students their 
diploma; 
(2)  participate in district-prescribed academic remediation in mathematics; and  
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(3)  fully participate in at least two retests of the mathematics GRAD test or until 
they pass the mathematics GRAD test, whichever comes first. A school, district, 
or charter school must place a student’s highest assessment score for each of the 
following assessments on the student’s high school transcript: 
- the mathematics Minnesota Comprehensive Assessment, 
- reading Minnesota Comprehensive Assessment, and  
- writing Graduation-Required Assessment for Diploma,  
and when applicable,  
- the mathematics Graduation-Required Assessment for Diploma and 
- reading Graduation-Required Assessment for Diploma. 
(Minnesota Statutes 2009, 2009, 120B.30) 
 
Some student groups were exempted from the above requirements. Larson (2010) 

summarized: 

Students with limited English proficiency who first enroll in a Minnesota public 
school in grade 9 or above need not pass the GRAD tests to graduate. … Students 
with IEPs and significant cognitive disabilities can take the Minnesota Test of 
Academic Skills (MTAS) instead of the GRAD reading and math tests. 
 

The MCA and GRAD in Minnesota 

According to the Research Department of the Minnesota House of 

Representatives (Larson, 2010): 

The GRAD reading and math test items that students must pass to graduate in 
Minnesota are embedded in the reading and math Minnesota Comprehensive 
Assessments-Series II (MCA-II). Students’ GRAD test scores and MCA-II test 
scores are reported separately. The state and districts use students’ GRAD test 
scores to determine whether students graduate.  
 
Based on conversations with Minnesota Department of Education officials, and 

what is observed in the data, in cases where students did not pass the GRAD but scored 

above the MCA-II passing score, students are also considered to have passed the GRAD. 

In cases where students passed the GRAD but did not score above the MCA-II passing 

score, students are still considered to have passed the GRAD. 
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Example of transcript notation when the pass waiver is in place 

 
Source: Excerpt from state document provided in personal communications with MDE 
coordinator, November 6, 2018. 
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Appendix B 
Timeline of Policy Announcement and Implementation by Cohorts 

 
Table B1. Grade (high school and post-high school) and academic milestone by math GRAD cohort (year in which students took math 
GRAD for the first time) and academic year 
Grade1 Milestone Academic Year ending in Spring 
  2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 
G9 Writing GRAD C2009 C2010 C2011        
G10 Reading GRAD  C2009 C2010 C2011       
G11 Math GRAD   C2009 C2010 C2011      
G12 High school graduation    C2009 C2010 C2011     
PHS1 College enrollment     C2009 C2010 C2011    
PHS2 College graduation (within 2 

years) 
     C2009 C2010 C2011   

PHS3        C2009 C2010 C2011  
PHS4 College graduation (within 4 

years) 
       C2009 C2010 C2011 

1 Grade: G refers to high school grade; PHS refers to post-high school year. 
 

Figure B1. Timeline of Policy Announcement and Implementation 
2006 2007 2008 2009 2010 2011 2012 2013 2014 

    
 

2006: Bill on GRAD 
passing requirement 
came into law 

 C2009 cohort took 
math GRAD around April 

with 2006 law in place 

First cohort (C2010) 
took math GRAD 
with waiver in place 

Last cohort with 
waiver (high school 
class of 2014) to take 
the math GRAD 

   Waiver of passing 
requirement announced 

  

Waiver of passing 
requirement for math 
GRAD announced 
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Appendix C 
Regression Discontinuity Internal Validity Check 

 
Identification in the regression discontinuity design requires that the cut score is 

exogenously determined. One potential violation of this assumption is if there is potential 

manipulation in the forcing variable, resulting in discontinuity in the density of the 

forcing variable around the cut score. Formal tests for this potential violation include the 

one more commonly used and developed by McCrary (2008) for continuous forcing 

variables, and one more recently developed by Frandsen (2017) for discrete forcing 

variables.  

Frandsen (2017) suggests that the McCrary test works well when the forcing 

variable is continuous, but is inconsistent when the forcing variable is discrete. The 

McCrary test relies on the number of observed support points near the cutoff growing to 

infinity as the sample size increases, which is the case for a continuous forcing variable 

but not a discrete one. The McCrary estimator for testing continuity of the forcing 

variable is robust when the bandwidth to binsize ratio h/b > 10 (McCrary, 2008). The 

Frandsen test uses the fact that if the discrete forcing variable is based on an underlying 

continuous variable with a continuous density, then the observed frequency at the 

threshold has a known approximate conditional distribution. The test then uses only 

support points immediately adjacent to the cut score. Frandsen shows that if the discrete 

forcing variable has an underlying continuous distribution, then conditional on the 

forcing variable taking on a value at the cut score or at the immediate adjacent support 

point, the probability of being exactly at the cut score is approximately 1/3. This forms 

the null hypothesis for no manipulation for the Frandsen test.  
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I examine the histograms of the forcing variable separately for math and reading, 

by cohort, and conduct the Frandsen test (2017) for each subject-cohort. The histograms 

suggest that the forcing variable is an approximately smoothly increasing function around 

the cutoff. Using the Frandsen test, I fail to reject the null hypothesis that there is no 

manipulation. Furthermore, I also plot graphs of the density of pre-treatment 

(demographic) covariates on the forcing variable. Beyond statistical noise, the plots do 

not seem to suggest discontinuities in the pre-treatment covariate density close to the cut 

score. The analyses are available upon request. 
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Appendix D 
Use of GRAD and MCA-II Score to Determine Pass/Not Pass Status 

 
The "pass" / "not pass" status on the exit exams in Minnesota is determined by scores on 

two related tests, the GRAD and MCA-II. Students sit for a single administration of the 

math exam during spring of their 11th grade. The component originally designed as the 

high school graduation requirement, GRAD, which students have to pass, is a set of items 

that partially overlaps with items for the MCA-II component. The MCA-II is used by the 

state and districts for accountability purposes. The GRAD items are interspersed with the 

MCA-II items so that students do not know which test(s) the items apply to.  

However, about 0.60% of the students failed the GRAD component but passed the 

MCA-II component. These students also received a "pass" status on their high school exit 

exam, which gives rise to the non-zero passing probabilities below the passing score (see 

Figure 1 Panel A of this appendix) because the MCA-II passing score is deemed more 

rigorous than that for the GRAD component. For reading, about 3.75% of the students 

failed the GRAD component but passed the MCA-II component, giving rise to the non-

zero failing probability below the passing score (Figure 1 Panel B). 

I conduct standard sharp regression discontinuity analyses by using students who 

score barely below the passing score as the treatment group versus those barely above the 

passing score as the control group. This definition of treatment provides reduced form 

estimates of barely failing versus barely passing the exit exam.  
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Figure D1. Probability of receiving a "not pass" status on GRAD scale score for math 
(Panel A) and reading (Panel B) at first attempt, pooled across math cohorts and 
reading cohorts respectively 
 
Panel A: Math Panel B: Reading 
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Appendix E 
Additional Regression Discontinuity Analyses for Students who Passed Reading GRAD 

 
Table E1. Estimated impacts on selected high school and college enrollment outcomes of 
scoring barely below the math GRAD passing score versus scoring above at the first 
attempt, among those who passed the reading GRAD at the first attempt, for math GRAD 
cohort 2011 

 2011 

 Optimal h (Optimal h)/2 (Optimal h)x2
 (1) (2) (3)
Probability of … h = ±6 h = ±3 h = ±12
graduating from high school (on-time) -0.007* -0.007 *** -0.010* 

 (0.002) (0.001) (0.004)
n 15027 9028 28501
    
 h = ±7 h = ±4 h = ±14
graduating from high school (within 5 years) -0.010*** -0.007 *** -0.013*** 

 (0.002) (0.001) (0.003)
n 18203 11067 31740
    
 h = ±4 h = ±3 h = ±8
ever withdrawing or dropping out 0.011** 0.010 ** 0.010** 
 from high school (within 1 year) (0.003) (0.003) (0.003)
n 11067 9028 18831
    
 h = ±10 h = ±5 h = ±22
enrolling in 2-year or 4-year college -0.025** -0.033 *** -0.047***  

(0.007) (0.006) (0.008)
n 24675 12058 38121 

  
 h = ±10 h = ±5 h = ±22
enrolling in 2-year college 0.006 0.029 * 0.002 

(0.016) (0.009) (0.012)
n 24675 12058 38121 

  
 h = ±11 h = ±5 h = ±22
enrolling in 4-year college -0.047*** -0.067 *** -0.080*** 

 (0.011) (0.006) (0.014)
n 28501 12058 38121
 

†p < .10. *p < .05. **p < .01. *** < .001.   
Note: Each cell is a separate regression discontinuity impact estimated using standard sharp regression discontinuity 
method for the reported bandwidth. Optimal bandwidths are determined separately for each outcome, using the cross-
validation procedure suggested by Ludwig and Miller (2007) and Imbens and Lemieux (2008). The smaller and larger 
bandwidth checks for sensitivity are approximately half or two times the size of the optimal width respectively. 
Standard errors shown in parentheses are clustered at discrete values of the math GRAD score. 
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Appendix F 
Summary of Past Studies 

 
Table F1. Summary of study design, context, and findings in Minnesota compared from past regression discontinuity studies conducted in 
Massachusetts, New Jersey, California, and Texas on the effect of barely failing versus barely passing exit exams 

State Study Design Context Math Findings Reading Findings 
Minnesota  By cohort analyses across 3 

cohorts  

 Analyses conducted for all 
students in state (nmath = 152,317 ) 
(nreading = 161,452) 

 First reading attempt in 10th 
grade in 2008 to 2010;  
 First math attempt in 11th grade 
in 2009 to 2011 
 Passing Rate (math): 63% 
 Passing Rate (reading): 81% 

 On-time high school 
graduation by math cohort: 
2009: -0.007 (0.005) 
2010: -0.007* (0.003) 
2011: -0.012* (0.004) 
 Ever withdraw or dropout 
from high school within 1 
year of first attempt: 
2009: -0.002 (0.002) 
2010: +0.005† (0.002) 
2011: + 0.011** (0.002) 

 On-time high school 
graduation by reading cohort: 
2008: -0.011 (0.010) 
2009: -0.002 (0.005) 
2010: -0.011 (0.014) 
 Ever withdraw or dropout 
from high school within 2 
years of first attempt: 
2008: +0.010*** (0.001) 
2009: + 0.012 (0.009) 

2010: + 0.006 (0.006) 
New Jersey (Ou, 
2010) 

 Pooled and by-cohort analyses 
across 4 cohorts  
 Analyses conducted for all 
students in state (n = 299,948) 

 First attempt in 11th grade in 
spring 2002 to 2005 
 Passing rate (math): 76% 
 Passing rate (LAL): 87% 

High school dropout:  
+0.011*** (0.001) 

High school dropout: 
+0.005*** (0.002) 

Massachusetts 
(Papay, Murnane, 
& Willett, 2010) 

 1 cohort  
 Analyses conducted for all 
students in state (n = 66,347) 

 First attempt in 10th grade in 
2004 
 Passing Rate (math): 87% 

On-time high school 
graduationa:  
-0.017 (0.010) 

On-time high school 
graduationa:  
-0.005 (0.017) 

California 
(Reardon, Arshan, 
Atteberry, & 
Kurlaender, 2010 

 Pooled analyses across 5 
cohorts  
 Analyses conducted for students 
in 4 of 10 largest districts in CA 
(n = 106,454) 

 First attempt in 10th grade, for 
cohorts scheduled to graduate in 
2006 to 2010 
 Passing rate (math): 78% 
 Passing rate (ELA): 79% 

Effect of failing at least one section (math or ELA) on on-
time graduation: +0.027* (0.011);  
The authors note that this result is sensitive to bandwidth, and mostly 
statistically non-significant at other bandwidth checks 

Texas (Martorell, 
2004) 

 Pooled analyses across 3 
cohorts  
 Analyses conducted for all 
students in state (n = 505,291) 

 First attempt in 10th grade in 
1993 to 1995 
 Passing rate (all 3 sections): 
85% 

Effect of failing exam at first attemptb: -0.001 (0.004) 

Notes: 
†p < .10. *p < .05. **p < .01. *** < .001.  
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All impacts (point estimates and standard errors in brackets) expressed in this table are in terms of the impact of barely failing versus barely passing the exit exam, except in my study where I look at the 
impact of scoring barely below versus barely above the passing score.  
a The original study compared the effects of barely passing versus barely failing the exit exam. In this table I flipped the direction of comparison.  
b In Texas, the exit exam was structured differently in that students were required to take an exit exam consisting of math, reading, and writing, and were required to pass all three sections. 
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District-SES Test Score Gaps Before and After an Assessment Change in Texas 

Introduction 

Socioeconomic gaps in achievement are one of the most persistent features in 

education. To promote greater educational equity, policymakers have sought to raise 

achievement for all students. One of the most widespread means is through high stakes 

accountability policies, such as the No Child Left Behind Act of 2001 (NCLB), which 

requires districts to report disaggregated scores by racial minority and economically 

disadvantaged groups (NCLB, 2002). The spotlight on these students have put intense 

pressure on districts serving predominantly disadvantaged students. Districts that do not 

meet the improvement targets may face sanctions. This pressure may lead districts to 

make meaningful changes that impact student learning (Rouse, Hannaway, Goldhaber, & 

Figlio, 2013; Winters, Trivitt, & Greene, 2010), which is the desired behavior targeted by 

accountability policies. It may also influence districts to use non-learning related 

strategies to increase student test scores (Haney, 2000; Jacob, 2005; Jennings & Sohn, 

2014; Ladd & Lauen, 2010; Neal & Schanzenbach, 2010; Nichols & Berliner, 2007), 

which distorts behavior in the very districts that policymakers hope to improve.  

Accountability policies typically require student performance to be measured 

based on a state-developed academic assessment. NCLB requires all states to test 

students in each grade from grades 3 to 8 in math and reading or language arts to measure 

progress towards targets. Even as the spotlight is on student performance on state tests, 

and rewards and sanctions for districts are instituted based on the results on these high-

stakes tests, it is important to remember that the high-stakes state tests are but a 
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measurement tool to measure student learning in broader domains that educators are 

interested in, such as math, or reading. 

For example, consider this statement that the Texas Education Agency (2008), 

from the state where NCLB accountability policies are largely modeled after, made 

regarding the state test, Texas Assessment of Knowledge and Skills (TAKS): "TAKS has 

been developed to better reflect good instructional practice and more accurately measure 

student learning. We hope that every teacher will see the connection between what we 

test on this state assessment and what our students should know and be able to do to be 

academically successful [emphasis added]" (Texas Education Agency, 2008, p.1). 

Although accountability policies call for many high-stakes decisions to be made based on 

performance on a single test, it would be safe to say that most policymakers and 

educators would want those decisions to be robust to the measurement tool used. 

However, it is well documented that gains on high-stakes state tests for low-

income children and racial minority children are not matched on audit tests at the state 

level such as the NAEP (Ho, 2007; Ho, 2009; Ho & Haertel, 2006), or other state specific 

low-stakes tests at the district level (Jacob, 2005), or researcher-administered audit tests 

(Klein, Hamilton, McCaffrey, & Stecher, 2000). This gives rise to the concern about 

whether the test score gains are due to improved learning, or due to non-learning related 

reasons. 

What we cannot tell from the above studies is whether the lack of generalizability 

of test score gains across different tests happens for students across all districts, or is 

concentrated within specific districts. Much work has been done to study test score gaps 

at the student level, but it is also useful to monitor gaps at the district level. Districts are 
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the educational unit that have the most direct control over educational, human, financial 

and infrastructure resources that matter for students' education. Districts are also the unit 

that is held accountable under state accountability systems. It is thus useful to understand 

how assessments affect test scores and score gaps at the district level. 

In this study, I ask whether observed district-SES gaps change when the state 

assessment changes. The gold standard for examining whether measured district-SES 

gaps, or for that matter any other performance or gap that educators care about, differ due 

to a different measurement tool being used, i.e. the state test, is to conduct an experiment. 

One such experiment might randomly assign high-SES districts and low-SES districts to 

either the existing high-stakes state test or another test with high-stakes placed upon it, 

both based on the same curriculum, both designed and developed in a way to be 

representative of the tested domain, but are otherwise not predictably similar to each 

other. We would measure gaps in performance between the high-SES and low-SES 

districts using each test, and compare whether the measured gaps are statistically similar. 

If the measured gaps differ between the two tests, then there might be cause for concern 

that inferences about district-SES gaps based on the high-stakes state test might not be 

generalizable across the measurement tool used.  

In the absence of such an experiment, this study turns to a natural experiment to 

answer the question. I make use of a change in Texas' high-stakes state assessment to 

serve as an alternative measure of district-SES gaps in test scores. I ask whether district-

SES gaps, as measured by the old high-stakes test, differ when a new high-stakes test is 

introduced.  
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As previously mentioned, it is well known that scores on large-scale achievement 

tests drop when a new testing program is implemented (Koretz & Hamilton, 2006). Those 

studies are based on student-level test scores, nation-wide (e.g. Ho & Haertel, 2006) or 

state-wide using NAEP (e.g. Ho & Haertel, 2006; Koretz & Barron, 1998), within a 

district (e.g. Jacob, 2005; Koretz, Linn, Dunbar, & Shepard, 1991), or using purposive 

samples (e.g. Koretz & Barron, 1998 which selects students who took ACT in addition to 

the high-stakes test under study). This study contributes to the existing literature by 

looking at aggregated scores at the district-level, for district-SES performance gaps, and 

across an entire state. 

Background 

Educators and policymakers are often interested in measuring student 

performance in a particular domain of interest, such as in math or reading. However, the 

knowledge and skills encompassed in these domains of interest are often too broad to be 

entirely covered in a single test. Hence, the design and development of tests rely heavily 

on the "sampling principle of testing: test scores reflect a small sample of behavior and 

are valuable only insofar as they support conclusions about the larger domains of 

interest" (Koretz, 2008, p.21). Tests need to sample content, skills, and knowledge in a 

way that is representative of the domain of interest and reflects the broader goals of the 

domain. 

At the same time, high-stakes testing has created a greater need for standardized 

tests – tests that are uniform in the sense that examinees "face the same tasks, 

administered in the same manner and scored in the same way" (Koretz, 2008, p.23) so 

that scores can be comparable from test to test (Koretz & Hamilton, 2006). Comparability 
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of scores is essential for fairness since high-stakes decisions on students, educators, and 

educational units are made based on these results.  

Hence, one consequence of high-stakes standardized testing for test development 

is the creation of test forms that are similar to one another, to the extent that they are 

"predictable" (Koretz and Hamilton, 2006, p.568). The predictability of standardized tests 

has created opportunities for students and educators to engage in test preparation 

activities, some of which may improve learning, others which may increase scores 

without corresponding meaningful gains in learning (see Koretz and Hamilton, 2006 for a 

discussion of various test preparation activities). This raises concerns about whether 

scores obtained on high-stakes standardized tests reflect construct-relevant performance 

that can be generalized across different tests28 used, or whether they reflect non-

construct-relevant performance which hinge on the specificities of the test, and are not 

relevant for the target of inference29. 

The high-stakes nature of the tests has placed numerous technical demands on 

tests, and exposed them to greater legal scrutiny (e.g. see Schmeiser and Welch, 2006 pp. 

312-313; Phillips and Camara, 2006) so much so that test design and development has 

become a complex and costly enterprise. This may be why states often invest in the 

development of a single assessment30. This single state assessment is often the sole 

measurement tool on which high-stakes accountability decisions regarding schools and 

districts are based on (Koretz and Hamilton, 2006). One particular means of evaluating 

                                                           
28 that are representative of the domain of interest. 
29 Tests often perform different functions. Lazear (2006) proposes that from the perspective of providing 
incentives to learn, a good test may not have to be unpredictable. For high ability learners, an unpredictable 
test may provide incentives to learn a broader range of materials. For learners with high costs of learning, a 
predictable test may be a better motivator for learning. 
30 which may have multiple standardized test forms, across various grades. 
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the generalizability of student test performance across measurement tools is to develop 

another test that is representative of the domain of interest. However, for reasons 

discussed earlier, this is likely a costly and formidable enterprise in itself. Moreover, it 

may not be feasible to administer two high-stakes tests to students at the same time, nor 

be legally defensible to administer two high-stakes tests that are not built on the same test 

specification.  

This study makes use of a change in assessment within Texas to study district-

level SES gaps that is increasingly receiving attention in the literature (e.g. see Reardon, 

2016). The new assessment, State of Texas Assessments of Academic Readiness 

(STAAR), is essentially based on the same curriculum as the old assessment, TAKS, and 

can serve as a "pseudo-audit" test for TAKS. The use of this new high-stakes assessment 

as a "pseudo-audit" tool for the old assessment has an advantage over most other studies. 

Earlier studies typically administer audit tests in a low-stakes context, while we examine 

gaps measured by the STAAR and TAKS in a high-stakes context31. Thus, students and 

educators would be motivated to do well on both tests.  

One limitation in the use of STAAR as a "pseudo-audit" tool is that there is a 

runway period from the time the test specifications and eligible curriculum for STAAR is 

announced, which gives districts time to prepare for it, and which may give rise to 

differences and effectiveness in the ways districts prepare for the "pseudo-audit" 

assessment. However, the differential effectiveness with which low-SES and high-SES 

                                                           
31 One caveat is that the state accountability system is temporarily suspended in the first year of assessment 
change (2011-2012) while the new accountability system based on STAAR is being developed. I assume 
that students and teachers will still be motivated to do well in the first year as part of the learning curve for 
the new assessment that will be used in the new accountability system. However, I also cannot rule out that 
districts such as lower-SES districts which are likely to face greater accountability pressure might try to 
depress their performance in a year where they are not held accountable, so that they have greater room to 
show improvement in the years when the accountability pressure is on. 
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districts prepare for the new high-stakes test may arguably be the very differences that we 

hope to capture in the performance gap. How well STAAR can function as a "pseudo-

audit" measurement tool will depend on the extent that novel ways to test construct-

relevant performance are introduced in the assessment, such that students cannot depend 

on non-construct relevant approaches to score points. 

I make use of a change in Texas' assessment to estimate district-SES gaps in 

student test scores. In this paper, I discuss high-SES and low-SES district score gaps 

terms of the 75th-25th score gap (75th district-SES percentile score versus 25th district-SES 

score) and the 90th-10th score gap (90th district-SES percentile versus 10th district-SES 

percentile score). In spring 2012, Texas switched assessments, from TAKS to STAAR. 

STAAR is considered a more rigorous assessment that emphasizes postsecondary 

readiness.  

Studies on Texas in the 2000s have found that the gap in average test scores 

between white students and racial minority students were narrower based on analyses 

using the existing high-stakes Texas Assessment of Academic Skills (TAAS) compared 

to NAEP (Klein, Hamilton, McCaffrey, & Stecher, 2000). Klein et al. (2000) also found 

that the relationship between SES and TAAS scores disappeared when schools were the 

unit of analysis, even though the relationship between SES and scores on non-TAAS tests 

administered by the researchers persisted, which suggests that results from TAAS scores 

may not generalize to findings when non-TAAS scores are used. I propose to revisit this 

issue with some modifications, by comparing district-level gaps, between high-SES and 

low-SES districts32. 

                                                           
32 The dataset that I use for this study contains data for all states. Technically, I can gain external validity 
by using all states which experienced an assessment change as the treatment. However, to limit the scope of 
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The TAKS and STAAR Assessment in Texas 

Texas has a long history of standardized high-stakes testing. Each wave of testing 

change serves to raise the academic bar over time. From the Texas Assessment of Basic 

Skills (TABS) and Texas Educational Assessment of Minimum Skills (TEAMS) in the 

1980s that tested "basic" or "minimum" academic skills, to the Texas Assessment of 

Academic Skills (TAAS) in the 1990s that includes assessment of problem-solving and 

complex thinking skills, to the Texas Assessment of Knowledge and Skills (TAKS) in the 

2000s that measures students' mastery of the state-mandated curriculum, the State of 

Texas Assessments of Academic Readiness (STAAR) is the fifth test to be introduced in 

2012 (Clark, 2011; Haney, 2000; Zyskowski, 2016).  

The purpose of STAAR is to "increase the rigor of the assessments so that 

students have the academic knowledge and skills they need to meet the challenges of the 

21st century" (Texas Education Agency, 2010c). The STAAR program consists of a series 

of assessments in grades 3-8 that are vertically linked to end-of-course assessments. 

These end-of-course assessments which replace the 11th grade TAKS are linked to 

"readiness for postsecondary endeavors" (Texas Education Agency, 2013, p.5).  

STAAR differs from TAKS in many ways, particularly in rigor and test design 

(Texas Education Agency, 2010a). See Table 1 for a comparison. In most grades and 

subjects, assessments are lengthened. Items assessing skills at greater depth and level of 

cognitive complexity are added and the number of open-ended items ("griddable items") 

                                                           
this paper, I use Texas as a case study to delve deeper into the details of the assessment change. I also chose 
Texas as a case study because of the availability of (i) earlier studies that compare test score gains on 
Texas' state test to audit tests, and (ii) publicly available documentation of both the old and new 
assessments in question for this study. 
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are also increased. Performance standards are also set higher. Table 2 and Table 3 present 

the test blueprints for TAKS and STAAR for mathematics and reading respectively.   

The test design for STAAR also differs from that for TAKS by focusing on fewer 

skills and testing those skills in a deeper way. Although the curriculum, the Texas 

Essential Knowledge and Skills (TEKS), which both the TAKS and STAAR are based 

on, did not change in 2011-2012 for mathematics nor reading33, one difference is that the 

Texas Education Agency explicitly identifies a subset of TEKS that are "eligible34" to be 

assessed on STAAR. Within the "eligible" set of knowledge and skills from the TEKS, 

the Texas Education Agency further classifies them into "readiness standards" or 

"supporting standards" (Texas Education Agency, 2011; Texas Education Agency, 2012). 

The "readiness standards" which the Texas Education Agency defines to be "necessary 

both for success in the current grade or course and for preparedness in the next grade or 

course" (Texas Education Agency, 2010a) are emphasized on the STAAR. Even though 

30% of the eligible content standards from TEKS are "readiness standards", they are 

covered by about 65% of the items on the STAAR (Texas Education Agency, 2013). The 

"supporting" standards may not be tested annually, but are still included in instruction 

and eligible for assessment.  

Finally, STAAR also has greater speed demands than TAKS. There are more 

items on STAAR than on TAKS, but STAAR has a four-hour time limit, whereas there is 

no time limit for TAKS. 

                                                           
33 The Mathematics TEKS in place for school year 2011-2012 was implemented from school year 2006-
2007 to 2013-2014. The Reading TEKS in place for school year 2011-2012 was implemented from 2009-
2010 to 2018-2019. 
34 "Eligible" standards must be amenable to being assessed on a paper and pencil test (Texas Education 
Agency, 2010a). 
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In short, STAAR differs from TAKS in that STAAR tests a smaller subset of the 

TEKS curriculum, but at a level of greater depth and cognitive complexity. Students also 

have a time limit to work on a greater number of items that are presumably more 

difficult.  

In this study, I focus on how district-SES gaps change within Texas before and 

after the switch in assessment from TAKS to STAAR in spring 2012.  

One working hypothesis is that district-SES gaps may widen after the state 

switches to a new assessment. As the hypothesis goes, lower-SES districts that face 

greater accountability pressure from the scrutiny on disadvantaged student groups may be 

more likely to teach to the old test. For example, they may teach a curriculum that 

focuses on knowledge and skills emphasized on the test while neglecting other important 

parts of the curriculum that is seldom tested (McNeil, 2000; McNeil & Valenzuela, 

2001). Another working hypothesis is that district-SES may be highly correlated with 

family income and family investments in student enrichment and learning (see Kaushal, 

Magnuson, & Waldfogel, 2011). This may translate to advantages for higher-SES 

students within those districts as the state shifts to an assessment that focuses on higher 

cognitive skills. 

While changes in the assessments will also affect the accountability system in 

Texas, the new accountability system is implemented only for the 2012-13 academic year 

and onwards (Texas Education Agency, 2010a). To avoid confounding changes in the 

accountability system and changes in assessment, I focus only on spring of 2012 as the 

treatment year. I ask: 
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RQ1: Does the district-average test score gap between low-SES and high-SES 

districts widen in the year immediately after the switch from TAKS to STAAR in 

spring 2012? 

Data 

I use the Stanford Education Data Archive (SEDA) 2.1 dataset (Reardon, Ho, 

Shear, Fahle, Kalogrides, & DiSalvo, 2018) in this study. The SEDA dataset links 

district-level performance for grades 3 to 8 for all U.S. states to a common NAEP scale 

(Reardon, Kalogrides, & Ho, 2017). I use data from the 2008-09 academic year, the first 

year of data in the dataset, to 2011-12, the first year of assessment change in Texas35. I 

did not use data from academic year 2012-13 and onwards because that is when a new 

accountability system was introduced in Texas and may confound the effect of 

assessment change. Additionally, districts may start to develop non-learning related 

strategies as they gain experience with the assessment.  

The SEDA 2.1 achievement data is constructed using publicly available data on 

each state's standardized testing program from the EDFacts data system at the U.S. 

Department of Education. Briefly, the EDFacts data consists of "coarsened" data where 

aggregated student data is reported in terms of the number of students in each proficiency 

category, for each grade from grades 3 through 8 for math and reading/language arts. 

Using ordered probit models, SEDA estimates the mean and standard deviation of 

achievement for districts (and other geographic units) from the proficiency count data 

(Fahle, Shear, Kalogrides, Reardon, DiSalvo, & Ho, 2018; Ho & Reardon, 2012; Reardon 

                                                           
35 For reading, I further constrain data used to include scores for spring of years 2011 and 2012 because the 
TEKS curriculum for reading changed in school year 2009-2010. See Appendix A for details about the 
scores used for analyses by year-grade.  
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& Ho, 2015). The estimated means and standard deviations for each state-subject-year-

grade are standardized and placed on the NAEP scale36 (Reardon, Kalogrides, & Ho, 

2017). In this study, we use estimates from SEDA that are standardized using the CS 

scale, obtained by dividing the estimates by the national grade-subject-specific standard 

deviation for the cohort of students who were 4th grade in spring 2009 (and 8th grade in 

spring 2013). The group means (districts in our case) recovered from coarsened data in 

this way can be used to estimate between-group achievement gaps (Reardon, Shear, 

Castellano, & Ho, 2017) and allows us to study district gap trends over states, years, and 

grades37, 38. 

Measures 

In this study, I use the district-average math and reading scores (by subject-grade-

year for all students within the district) standardized in the SEDA dataset using the CS 

scale as described above.  

For the district-SES measure, I use the standardized SES composite variable 

provided within SEDA 2.1. The source variables of this composite are obtained using the 

Education Demographic and Geographic Estimates (EDGE), the school district-level 

tabulation of the American Community Survey (ACS). It is computed as the first 

principal component score of the following standardized measures for the academic year 

                                                           
36 Estimates for non-tested grades in NAEP assessment years are interpolated for grades 5, 6, and 7 and 
extrapolated for grade 8. Estimates for grades 3 to 8 in non-NAEP assessment years are interpolated across 
years (Reardon, Kalogrides, & Ho, 2017). 
37 The CS scale may not permit absolute comparisons across grades, but it allows us to compare gaps in 
district-SES percentile performance across grades. The grade (within cohort) standardized scale (gcs) 
within the SEDA dataset may allow comparisons across grades and years, but it does so by making more 
assumptions about the NAEP scale (see Fahle et al., 2018). Since, we are primarily interested in district-
SES gap trends, we use the cohort standardized scale. 
38 Technically, this study can be conducted by using continuous test score data from Texas, which would 
not require using the models and assumptions that SEDA used to recover the test scores. However, the 
advantage of using SEDA is that it is publicly available and allows for cross-state analysis.  
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2008-09: median income, percent of adults ages 2 and older with a bachelor's degree or 

higher, poverty rate for households with children ages 5-17, SNAP receipt rate, single 

mother headed household rate, and employment rate for adults ages 25-64 (Fahle et al., 

2018). Throughout the analyses, I use district-SES percentiles that are calculated for 

Texas39.  

Analytical Strategy 

Our primary effect of interest is the gap in district-average performance between 

low-SES and high-SES districts measured when the assessment in Texas changes (in 

school year 2011-12, henceforth referred to as year 2012). However, the one year lag in 

the administration of the old and new test may be confounded by other education and 

economic changes happening in Texas and nation-wide. To provide counterfactual 

district-SES score trends, I construct a comparison group consisting of states that did not 

change their assessment and assessment policies, namely no change in assessment 

standards, mode (paper-and-pencil or computerized) of assessment, or performance cut 

scores. See Appendix B for further details. 

I use a difference-in-difference estimation strategy to estimate differences in 

district-SES gaps measured using TAKS and STAAR. Substantively, I am interested in 

differences in the measured gap in district performance40.  

Even though there are multiple years of pre-assessment change data available for 

math, I use a difference-in-difference design rather than a comparative interrupted time 

series (CITS) design. The latter allows for both baseline average and growth trends but 

                                                           
39 This avoids confounding the differences in SES gradients across states.  
40 To be consistent with the difference-in-difference convention, I refer to the gap in performance between 
high-SES and low-SES districts as the first difference, the pre-/post-differences in this gap as the second 
difference, and the difference between Texas versus comparison state as the third difference. 
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requires at least 6 time-points of baseline data (see Somers, Zhu, Jacob, & Bloom, 2013). 

In this study, each cohort has at most three, or sometimes less years of baseline data. To 

address serial correlation among the outcome from year to year (Bertrand, Duflo, & 

Mullainathan, 2004), I average the data at the district-level before the assessment change. 

I estimate the district-SES test score gaps within Texas before and after the 

assessment change, i.e., the difference-in-difference effects, using the following model: 

(1):   ������� = �� + ���(����)+ ������ + ���(����)× ���� + ���� + ��� 

Score is the district-average test score in math or reading for cohort c in district d within 

Texas. For each cohort c, I average the district-average test score over the pre-test change 

years to address serial correlation among the outcome from year to year (see Bertrand, 

Duflo, & Mullainathan, 2004). f(SES) is a cubic polynomial function41 of the district 

overall-SES composite42 included in the SEDA dataset for 2009. Post is an indicator with 

a value of 1 if the year is 2012, the first year when Texas switched from the TAKS to 

STAAR, and a value of 0 otherwise. The interaction terms between Post and the cubic 

polynomial function of SES provide our main parameters of interest. By substituting in 

the 25th district-SES percentile and 75th district-SES percentile (or the 90th and 10th 

district-SES percentile) for Texas, I calculate the 75th-25th (or 90th-10th) district-SES 

percentile gap before and after the assessment change. Taking the before and after 

difference in 75th-25th (or 90th-10th) district-SES gap provides us with an estimate of the 

difference in measured gap between high-SES and low-SES districts after the assessment 

                                                           
41 In Reardon's (2017) paper that uses the SEDA dataset, the relationship between district-average test 
scores (pooled across years and subjects) and district-SES composite (which I also use in this paper) is 
modeled as a cubic function. Based on visual inspection of the data used in my analyses (see Appendix C) 
and AIC statistics, a cubic polynomial function appears to best model the relationship between district-
average test scores (by subject-year-grade) and district-SES among the various polynomial functions.  
42 See section on Measures for a description of how the SES composite is constructed in the SEDA dataset. 
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change relative to the pre-change years within Texas43. I then test the null hypothesis that 

the linear combination of the Postf(SES) interaction terms evaluated at the 75th and 25th 

(90th and 10th) district-SES percentiles is equal to zero44, i.e. that there is no difference in 

75th-25th (90th-10th) district-SES percentile gap as measured by STAAR compared to 

TAKS. 

I use cohort fixed effects to compare estimates within each cohort (or 

approximately the same group of students) over time. I include a vector of district-grade 

covariates (district-level covariates that vary across grades), X, to control for any changes 

in demographics and background differences within the cohort over time45. Since the 

treatment assignment is at the state level across all cohorts at a single point in time (year 

2012), I did not cluster standard errors (see Abadie, Athey, Imbens, & Wooldridge, 

2017).  

I also calculate a triple difference-in-difference estimate where I compare the 

difference-in-difference estimates obtained for Texas to a comparison group which 

comprises of other states that did not change assessment from 2009 to 2012. This triple 

                                                           
43 If 3a, 3b, and 3c are the parameters for the SES, SES2, and SES3 terms respectively, then the difference 
in gap between high-SES and low-SES districts before and after the assessment change is: 
���(�75 − �25)+ ���(�75

� − �25�)+ ���(�75
� − �25�). I use the notation p75 to refer to the 75th 

district-SES percentile. A similar reasoning follows for the 90th 10th district-SES gap change.  
44 The standard error for this linear combination is obtained using the lincom command in Stata. 
45 The district-grade covariates include: log of student enrollment by district-grade-year, percentage of 
white students in the district-grade, percentage of students on free or reduced price lunch in the district-
grade, percentage of all students in the district that are in special education, log of percentage of all students 
in the district that are English Language Learners, percentage of students living in the same house as the 
previous year, Gini coefficient for the district, percentage of 15-19 year olds giving birth in the district, log 
of number of schools in the district, percentage of schools in the district that are charter schools, square root 
of percentage of students in charter schools in the district, district-average of pupil-teacher ratio in students' 
school, log of total per-pupil expenditure in the district, and an indicator if the district is in a rural locale. 
All untransformed covariates are provided in the SEDA dataset, which in turn obtains the variables from 
the Education Demographic and Geographic Estimates (EDGE) and the Common Core of Data (CCD) 
(Fahle et al., 2018). I take the average of these covariates for each cohort within district across the pre-test 
change years. 
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difference takes into account changes in national education policies and other events or 

trends that may affect district-average performance over the period. I estimate the triple 

difference using the relationship between district-average test scores and district-SES as 

follows: 

(2): �������� = �� + ���(�����)+ ������ + ���(�����)× ���� + ���(�����)

× ��� + ������ × ��� + ���(�����)× ���� × ��� + �� + �� + ���� 

where the terms are defined as before. The subscript s refers to states. TX is an indicator 

for the treatment state, Texas, and W is a vector of state-level covariates that vary across 

years46. The interaction terms between Post, TX, and the cubic polynomial function of 

SES provide our main parameters of interest. By substituting in the 25th district-SES 

percentile and 75th district-SES percentile (or the 90th and 10th district-SES percentile) for 

Texas and evaluating the difference, I obtain the 75th-25th (90th-10th) district-SES 

percentile score gap before and after the assessment change, in Texas compared to the 

comparison states. I use cohort-by-state fixed effects to restrict the gap comparisons 

within each cohort and state. I cluster standard errors by state since the treatment 

assignment is at the state level (see Abadie et al., 2017). 

Results 

Figure 1 illustrates the trend in 75th-25th (90th-10th) district-SES percentile gaps in 

test scores within Texas between 2009 and 2012 for math and between 2011 and 2012 for 

                                                           
46 The state-year covariates include: log of median household income, log of total expenditures per pupil, 
instruction as percentage of current expenditures, and percentage of white students in public schools. The 
untransformed variables are obtained from the National Center for Education Statistics (retrieved from 
http://nces.ed.gov/ccd/elsi/) with the exception of median household income which is obtained from the 
Department of Numbers (https://www.deptofnumbers.com/income/). I take the average of these covariates 
for each cohort within state across the pre-test change years. 
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reading, obtained by fitting equation (1) separately for each subject47. Visual inspection 

of these graphs suggest that the gap in mean district scores between high-SES and low-

SES districts (75th-25th and 90th-10th district-SES percentile gaps) widened slightly when 

Texas switched from TAKS to STAAR. 

Table 4 shows the results of fitting equation (1) for Texas to obtain the difference-

in-difference estimates for the 75th-25th (90th-10th) district-SES percentile gaps before and 

after the assessment change. The 75th-25th district-SES percentile gap differs by about 

+0.037 standard deviation units for math and about +0.041 standard deviation units for 

reading after the switch to STAAR relative to the baseline years when TAKS was used. 

The 90th-10th district-SES percentile gap is also wider when measured using STAAR 

compared to TAKS by about +0.073 standard deviation units for math and +0.088 

standard deviation units for reading. The point estimates are quite stable across models 

with no covariates and with district-by-grade covariates. The difference in gap after the 

assessment change is statistically significant for both math and reading.  

While these results suggest that there may be differences in district-SES test score 

gaps when the measurement tool changed from TAKS to STAAR within Texas, this may 

be confounded with national trends happening between 2009 and 2012, due to the time 

lag in the administration of these assessments. For example, economic conditions may be 

deteriorating due to the great recession around that period, which may cause the district-

SES performance gap to change over time. To account for such national trends, we turn 

our attention to cross-state comparisons.  

                                                           
47 I do not draw trend lines that connect average outcomes for pre- and post- years because the CS scale 
used for the outcomes does not permit absolute comparison of performance across grades. However, this 
scale allows us to compare gaps across grade. See Data section for details. 
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Figure 2 compares the magnitude of the difference-in-difference estimates 

obtained for Texas relative to each of the comparison states. These estimates are obtained 

from fitting equation (1) and calculating the difference-in-difference estimates for the 

75th-25th (90th-10th) district-SES percentile score gaps48 separately for each state and 

subject. The point estimates for the district-SES performance gaps in Texas, though 

small, appear larger than that compared to most of the other comparison states. Unlike for 

most other comparison states, we can reject the null hypothesis that the difference in 

district-SES score gaps measured before and after the assessment change in Texas is zero 

for both math and reading.  

Figure 3 graphically shows the results when we pool the estimates across the 

comparison states, obtained from fitting equation (2). This is essentially a triple 

difference-in-difference estimate that provides the difference in mean district scores 

between high-SES and low-SES districts, before and after the assessment change, in 

Texas relative to the comparison states. Figure 3 suggests that while the pre-/post- 

gradient difference in 75th-25th (90th-10th) district-SES percentile gaps for the comparison 

states is relatively flat for both math and reading, the corresponding pre-/post- gradient 

difference in Texas is steeper, i.e., the difference in observed 75th-25th (90th-10th) district-

SES percentile gap in Texas after the switch from TAKS to STAAR in 2012 is larger in 

Texas compared to the comparison states pooled together.  

Table 5 shows the corresponding estimates displayed in Figure 3. After 

accounting for the secular trend among comparison states in observed gaps between high-

SES and low-SES districts over the same period, the observed 75th-25th and 90th-10th 

                                                           
48 evaluated at the relevant district-SES percentiles for Texas. 
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district-SES percentile gap in Texas is wider by about 0.029 and 0.057 standard deviation 

units respectively for math after the switch from TAKS to STAAR. For reading, the 

corresponding 75th-25th and 90th-10th district-SES percentile gap is wider by about 0.021 

and 0.051 standard deviation units respectively after taking into account the secular trend 

in comparison states across the same time period. All of these differences in measured 

gap between the two tests are statistically significant. 

Sensitivity Checks 

I conduct checks on the sensitivity of findings to various specifications for the 

triple difference estimates (Table 5) that indicate the difference in measured gaps using 

STAAR relative to TAKS, in Texas relative to the comparison states.  

First, I added district fixed effects. The district fixed effects would limit 

comparisons of changes in district-average scores within districts. The results in Table 5 

Panel A suggests that the substantive findings do not change with the inclusion of state-

cohort-district fixed effects.  

I also check the sensitivity of findings to the functional form specification (Panels 

B and C) for the relationship between district-average scores and district-SES. For the 

cross-state analysis, the checks suggest that the findings for 75th-25th district-SES 

percentile score gaps may be sensitive to the functional form specified, but the findings 

for 90th-10th district-SES gaps are robust. 

Threats to Validity 

One assumption of the difference-in-difference strategy is that in the absence of 

the assessment change, the slope of change in district-SES score gaps from 2011 to 2012 

in Texas would be the same as the slope change in district-SES score gaps in comparison 
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states over the same period. This is a strong assumption and cannot be directly tested. 

However, having parallel trends before the change would add confidence that this method 

is suitable. In Appendix D, I plot a graph that estimates the mean district-average math49 

score separately for each year within the study period, at the 25th and 75th district-SES 

percentiles. This graph suggests approximately parallel trends before the change. 

Another threat to validity is that I am relying on a district-SES composite based 

on SES variables measured in 2009. One possibility for the observed widening district-

average performance between high-SES and low-SES districts may be due to increased 

sorting of students by SES, such that higher-SES students are sorting into higher-SES 

districts (or students in those districts are growing richer), and lower-SES students are 

sorting into lower-SES districts (or students in those districts are growing poorer). I am 

unable to check for this directly, because some of the variables used to form the district-

SES composite are collected in the SEDA dataset only for the year of 2009. In Table 7, I 

use other SES-related variables that vary by district-year for Texas available within the 

SEDA dataset to check for this possibility. I look at how the percentage of students with 

free and reduced-price lunch change within each decile. I find that in general, across all 

district-SES deciles within Texas, the percentage of students on free and reduced-price 

lunch has increased. Within the same period, the total per-pupil expenditure (total 

expenditure/enrollment) as well as the per-pupil instructional expenditure (instruction 

expenditure/enrollment) also dropped across all deciles. It does not appear that higher-

SES students are sorting into higher-SES districts or higher-SES districts are spending 

more on education, and vice versa for the lower-SES districts.  

                                                           
49 I did not plot a corresponding graph for reading since only one time-point is used for the pre-change 
period. 
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This study relies on the linking of coarsened test score distributions (by state, 

district, subject, year, and grade) to an interpolated NAEP score for even years when 

NAEP was not administered, and for grades 3, and 5 to 7, for the state-average test 

scores. If actual even year test scores deviate from the linear trend between odd years, 

then the interpolated scores for the even years would be affected. Reardon, Kalogrides, 

and Ho (2017) provide a series of empirical checks on the validity of this approach and 

find that the interpolation is generally sound. I also look at NAEP data for Texas as well 

as NAEP-TUDA (Trial Urban District Assessment) data (data not shown here) for 

districts within Texas, and find that score trends are quite stable across administrations of 

the assessments within the study period. I assume that there is no wild fluctuation in 

scores for year 2012, and that this stability of score trend allows for linear interpolation of 

scores across years. 

Discussion and Conclusion 

This study examines whether district-SES test score gaps differ when measured 

using the old and new state assessment in Texas. I find that for both math and reading, 

district-average test score gaps between high-SES and low-SES districts are slightly 

wider in 2012, the first year when the STAAR assessment was administered in Texas, 

compared to the baseline years (2009 to 2011) when TAKS was administered. This is the 

case whether we compare districts at the 75th and 25th district-SES percentile, or districts 

at the 90th and 10th district-SES percentile, and whether we solely look within Texas or 

compare Texas to other states that did not change assessment over the same period. The 

finding for the 90th-10th gap is robust across a number of specifications, but the finding 
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for 75th-25th gap is sensitive to polynomial specifications. The magnitude of these 

differences, however, are very small50.  

One caveat about interpreting these effects is that we are looking at district-

average test scores. The findings are relevant for test score gaps between districts at high 

district-SES percentiles and districts at low district-SES percentiles. The ecological 

fallacy warns us that findings about district aggregate scores does not imply the same for 

individual student test scores. Hence, the findings on district-SES score gaps apply only 

at the district-level but not the student-level. In other words, the findings do not imply 

that test score gaps between high-SES students and low-SES students widened in 2012 

within Texas. 

The results from this study is in some ways consistent with the results from earlier 

studies in that score trends found using an existing high-stakes test may be different when 

a new test is introduced, or when an audit test is used, although the magnitude of 

differences that I find is much smaller. One advantage that this study has over other 

studies is that the sample includes nearly all districts from the state, and hence is 

generalizable to the state. Another advantage is that the tests used are both administered 

under high-stakes conditions. 

There are a few possible reasons for the difference in magnitude found between 

this study and earlier studies. First the nature of the gap is different. In this study, we look 

at district-SES gaps while earlier studies look at student-level SES gaps. Another reason 

is because our sample consists of state-wide test scores, whereas earlier studies are based 

on representative samples, or constrained to specific districts. Finally, the difference in 

                                                           
50 This may be because we are looking at not only district-average test scores, but also differences in gaps. 
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magnitude between this study and earlier studies could be because here, both tests are 

administered under high-stakes conditions, which may motivate students to do well on 

each of those tests. 

The findings of this study also suggest that when there is an assessment change, 

lower-SES districts are more disadvantaged compared to higher-SES districts on the new 

test, or higher-SES districts are more advantaged compared to lower-SES districts. 

Unfortunately, the scale that we used for this study does not allow us to distinguish year-

to-year performance on an absolute scale, hence we are unable to distinguish whether the 

difference in gaps is due to lower-SES districts performing less well on the new 

assessment, or performing better on the new assessment but not as well relative to higher-

SES districts.  

One peculiar aspect of STAAR is that while it attempts to be more "rigorous" by 

including more open-ended items and items that test greater cognitive complexity, it 

appears to intentionally focus on a narrower part of the curriculum51. The "readiness 

standards" which comprises 30% of the eligible content standards from the curriculum 

are given a weightage of about 65% on STAAR (Texas Education Agency, 2010c). In 

addition, STAAR only focuses on the curriculum taught within the school year whereas 

TAKS assesses the cumulative curriculum up till the present year. Thus, while STAAR 

may increase the cognitive difficulty of material tested, it also presents opportunities to 

narrow the curriculum. Furthermore, where there is no time limit for TAKS, there is a 

time limit of four hours for STAAR. Our results suggests that lower-SES districts may 

not be performing as well as higher-SES districts on such a test. 

                                                           
51 albeit narrowing the focus to parts of the curriculum with greater relevance for "college- and career-
readiness". 
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There may be a number of reasons why this is the case. One reason may be that 

the time limit may make a difference. Students from lower-SES districts may need the 

extra time to complete the test, or the psychological burden of having a time limit may 

affect their test performance. Another reason may be because lower-SES districts are not 

preparing their students as well on skills requiring greater cognitive complexity despite 

an explicit narrower focus on the state curriculum, relative to the higher-SES districts. 

Lower-SES districts may also have been focusing on different parts of the curriculum that 

are more emphasized on TAKS than on STAAR. We also cannot rule out lower-SES 

districts having a greater reliance on test preparation practices on TAKS due to the 

enormous accountability pressures that they face, but which may not carry over well in 

the preparation for STAAR.  

Another major reason may be due to the high correlation between SES and the 

availability of educational resources. Higher-SES districts may have more resources to 

invest in building up capacity to better prepare their students for STAAR. Families of 

students from higher-SES districts may also have the resources to invest in enrichment 

programs that deepen student learning on the state curriculum, or broaden learning 

beyond the state curriculum in a way that translates into an advantage for them on the 

new assessment.  

Although I cannot determine the reasons causing the differences in measured 

district-SES gaps using the old and new assessment, I propose that these are the relative 

advantages or disadvantages that give rise to differential learning opportunities and 

performance between high-SES and low-SES districts to be captured through measuring 

district-SES gaps. The advantage of using an alternative assessment is to minimize 
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construct-irrelevant factors that may affect one type of district more than another, such as 

use of test preparation activities that do not impact learning. 

Our results suggest that overall to the changes that have been made to the STAAR 

assessment, the gap in district-average test scores between higher- and lower-SES 

districts is wider when measured on the new assessment, STAAR, compared to that 

measured on the old assessment, TAKS. This is despite the opportunities to focus on a 

narrower segment of the curriculum. This may suggest that the wider gap is due to 

students in lower-SES districts faring poorer on average, relative to students in higher-

SES districts (or students in high-SES districts faring better than those in low-SES 

districts), on the more challenging items tested.  

One shortcoming of this study is that it only looks at results on the aggregate, and 

does not examine the processes that may lead to these results. I suggest future work in 

two directions. 

The first is to understand district responses when there is an assessment change. 

What strategies do districts adopt to prepare their students for a change in assessment? 

Which of these impact teaching and learning in the classroom, and which only impact test 

scores? Are all students similarly affected by these strategies? Are there differences in 

how higher-SES and lower-SES districts respond to a change in assessment and in what 

ways are they different? 

A second area for future work is to continue to replicate findings made regarding 

schools, districts, or groups about their test scores and performance gaps using 

assessments other than that obtained via long-administered high-stakes tests. As many 

earlier studies have shown, the findings from high-stakes tests that have been 
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administered for a while and have gained familiarity by districts may sometimes not be 

generalizable to other audit tests or low-stakes tests. Such work has focused mainly on 

student-level performance. With the availability of a dataset such as SEDA which makes 

district-level data available for nearly all districts in the state and nation-wide, there are 

opportunities for more studies to replicate the findings made at the district-level.  

Finally, high-stakes decisions regarding schools and districts are often made 

based on results from the state's only assessment. What exactly do high-stakes tests help 

us infer about the progress that schools and districts are making towards preparing their 

students on the academic knowledge and skills that have relevance for the workplace, for 

college, and for the future, as opposed to the knowledge and skills emphasized by state 

assessments? Would the identification and decisions made regarding schools and districts 

be consistent if the predictability is taken out of high-stakes standardized tests without 

sacrificing representativeness of the tested domain? Would periodic use of such audit 

tests help assessments become better reform tools to inform and motivate educators 

towards improving education for all students? 
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Table 1. Comparison of TAKS and STAAR 
 TAKS STAAR 
Assessed curriculum Texas Essential Knowledge and Skills (TEKS). 

Educator committees identified student expectations 
that should be assessed on a statewide assessment, 
which the TEA later developed into TAKS objectives1 
with further inputs from Texas educators and the public.  

Texas Essential Knowledge and Skills (TEKS). 
Educator committees identified a subset of Texas 
Essential Knowledge and Skills that are "eligible" to be 
tested on STAAR, and further classify this eligible 
subset into "readiness standards" and "supporting 
standards". Assessment of "readiness standards" are 
emphasized in STAAR2. 

Rigor of assessment Focuses on mastery of the TEKS curriculum. Overall test difficulty increased by including more 
"rigorous" items that assess skills at a "greater depth" 
and level of "cognitive complexity".  

Number of items See Table 2 and Table 3 for the number of items by 
grade and subject. 

The number of items for STAAR are increased for most 
grades and subjects. See Table 2 and Table 3 for the 
number of items by grade and subject. 

Item format In math, most items on TAKS are in multiple-choice 
format with a limited number of open-ended griddable 
items.  

In math, the number of open-ended griddable items on 
most tests are increased. 

Test duration Untimed 4-hour limit 
Mode of administration Paper administration for grades 3-8 Paper administration for grades 3-8 
Test contractor  Pearson Pearson 

1 See Table 2 and Table 3 for examples of TAKS objectives in mathematics and reading respectively.  
2 See Table 2 and Table 3 for the distribution of "readiness standards" and "supporting standards", and the distribution of items across the standards in 
mathematics and reading respectively. 
References:  
Texas Education Agency (2010a). House Bill 3 transition plan. A report to the 82nd Texas Legislature from the Texas Education Agency. Retrieved from 

https://tea.texas.gov/student.assessment/hb3plan/ 
Texas Education Agency (2011). 2011 District and Campus Coordinator Manual. Retrieved from 

https://web.archive.org/web/20110220045422/http://www.tea.state.tx.us/student.assessment/manuals/dccm/ 
Texas Education Agency (2012). 2012 District and Campus Coordinator Manual. Retrieved from  

https://web.archive.org/web/20120829142834/http://www.tea.state.tx.us/student.assessment/manuals/dccm/
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Table 2. Test blueprints for TAKS (2011) and STAAR (2012) mathematics 
TAKS  
 No. of Items by Grade 
TAKS Objectives1 3 4 5 6 7 8 
Numbers, Operations, and 

Quantitative Reasoning 
10 11 11 10 10 10 

Patterns, Relationships, and 
Algebraic Reasoning 

6 7 7 9 10 10 

Geometry and Spatial Reasoning 6 6 7 7 7 7 
Measurement 6 6 7 5 5 5 
Probability and Statistics 4 4 4 6 7 8 
Mathematical Processes and Tools 8 8 8 9 9 10 
Total no. of items2 40 42 44 46 48 50 
       
STAAR  
 No. of Items by Grade 
STAAR Reporting Categories1 3 4 5 6 7 8 
Numbers, Operations, and 

Quantitative Reasoning 
15 17 18 16 13 11 

Patterns, Relationships, and 
Algebraic Reasoning 

8 6 6 12 13 14 

Geometry and Spatial Reasoning 9 12 7 8 10 8 
Measurement 8 8 8 8 8 13 
Probability and Statistics 6 5 11 8 10 10 
Mathematical Processes and Tools3 See note 3.  
Total no. of items on test 46 48 50 52 54 56 

Breakdown of items by format       

Multiple Choice 43 45 47 48 50 52 
Griddable 3 3 3 4 4 4 

Breakdown of items by type of standard 
No. of items testing readiness 
standards 

28-30 29-31 30-33 31-34 32-35 34-36 

No. of items testing supporting 
standards 

16-18 17-19 17-20 18-21 19-22 20-22 

 No. of Eligible Standards by Grade 
Total no. of readiness standards 9 10 10 10 12 11 
Total no. of supporting standards 19 23 20 21 23 22 

1 The TAKS objectives are “umbrella statements” that serve as headings under which student expectations from the 
TEKS can be meaningfully grouped. They are called "reporting categories" under STAAR.  
2 Most items on math TAKS are in multiple-choice format with a limited number of open-ended griddable items.  
3 The STAAR blueprints state: "Underlying Processes and Mathematical Tools is not a separate reporting category. 
These skills will be incorporated into at least 75% of the test questions from reporting categories 1–5 and will be 
identified along with the content standards." 
Note: Tests blueprints for TAKS and STAAR are retrieved from the following websites:  
2011 TAKS Blueprints 
https://web.archive.org/web/20110220050407/http://www.tea.state.tx.us/student.assessment/taks/blueprints/ 
2012 STAAR Test Blueprints 
https://web.archive.org/web/20120626183326/http://www.tea.state.tx.us/student.assessment/staar/blueprints/
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Table 3. Test blueprints for TAKS (2011) and STAAR (2012) reading 
TAKS  
 No. of Items by Grade 
TAKS Objectives1 3 4 5 6 7 8 
The student will demonstrate a basic 

understanding of culturally diverse 
written texts. 

15 15 13 13 12 12 

The student will apply knowledge of 
literary elements to understand 
culturally diverse written texts. 

7 8 8 8 10 10 

The student will use a variety of 
strategies to analyze culturally 
diverse written texts. 

6 7 8 8 10 10 

The student will apply critical-
thinking skills to analyze culturally 
diverse written texts. 

8 10 13 13 16 16 

Total no. of items 36 40 42 42 48 48 
       
STAAR  
 No. of Items by Grade 
STAAR Reporting Categories1 3 4 5 6 7 8 
The student will demonstrate an 

ability to understand a variety of 
written texts across reading genres. 

6 10 10 10 10 10 

The student will demonstrate an 
ability to understand and analyze 
literary texts. 

18 18 19 20 21 22 

The student will demonstrate an 
ability to understand and analyze 
informational texts.  

16 16 17 18 19 20 

Total no. of items on test 40 44 46 48 50 52 

Breakdown of items by type of standard 
No. of items testing readiness 
standards 

24-28 26-31 28-32 29-34 30-35 31-36 

No. of items testing supporting 
standards 

12-16 13-18 14-18 14-19 15-20 16-21 

 No. of Eligible Standards by Grade 
Total no. of readiness standards 12 13 15 13 14 13 
Total no. of supporting standards 11 14 19 21 20 21 

1 The TAKS objectives are “umbrella statements” that serve as headings under which student expectations from the 
TEKS can be meaningfully grouped. They are called "reporting categories" under STAAR.  
Note: Tests blueprints for TAKS and STAAR retrieved from the following websites:  
2011 TAKS Blueprints 
https://web.archive.org/web/20110220050407/http://www.tea.state.tx.us/student.assessment/taks/blueprints/ 
2012 STAAR Test Blueprints 
https://web.archive.org/web/20120626183326/http://www.tea.state.tx.us/student.assessment/staar/blueprints/ 
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Table 4. Differences in 75th-25th (DiD7525) and 90th-10th (DiD9010) district-SES percentile gaps within Texas measured using 
STAAR relative to TAKS, and parameter estimates from models fitted using equation (1), by subject 
 Math  Reading  

 (1) (2) (3) (4)  

Calculated Difference          
DiD7525 0.047** 0.037* 0.042 * 0.041** 

 (0.018) (0.017) (0.016) (0.015)  
 0.009 0.032 0.011 0.007  

DiD9010 0.086** 0.073** 0.085 *** 0.088*** 

 (0.027) (0.025) (0.024) (0.022)  
 0.001 0.004 0.000 0.000 

Parameter Estimates      

SES 0.144*** 0.053*** 0.176 *** 0.068*** 

 (0.012) (0.014) (0.012) (0.013)  
 0.000 0.000 0.000 0.000  

SES2 0.071*** 0.048*** 0.061 *** 0.049*** 

 (0.007) (0.007) (0.007) (0.007)  
 0.000 0.000 0.000 0.000  

SES3 0.021*** 0.019*** 0.021 *** 0.021*** 

 (0.004) (0.004) (0.005) (0.004)  
 0.000 0.000 0.000 0.000  

Post 0.129*** 0.122*** 0.052 *** 0.045*** 

 (0.011) (0.011) (0.010) (0.010)  
 0.000 0.000 0.000 0.000  

PostxSES 0.041* 0.032* 0.036 * 0.034* 

 (0.017) (0.016) (0.015) (0.014)  
 0.013 0.043 0.018 0.014  

PostxSES2 0.005 0.008 0.009 0.012  

 (0.010) (0.009) (0.009) (0.008)  
 0.597 0.416 0.306 0.156  

PostxSES3 -0.001 0.002 0.004 0.007  

 (0.006) (0.006) (0.005) (0.005)  
 0.924 0.693 0.469 0.201  

Intercept -0.080*** -0.245 -0.161 *** -0.054  

 (0.008) (0.221) (0.008) (0.185)  
 0.000 0.268 0.000 0.771  

Number of districts 4667 4598 5762 5714  
District-grade covariates no yes no yes  
State-year covariates no no no no  
 
Note: Standard errors and estimates come from regression of equation (1) with fixed effects by cohort. Parameter estimates for covariates for models fitted in columns (2) and (4) are not shown.  
†p < .10. *p < .05. **p < .01. *** < .001. 
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Table 5. Impact of switch from TAKS to STAAR on measured 75th-25th (TDiD7525) and 
90th-10th (TDiD9010) district-SES percentile gaps in Texas relative to comparison states, 
and parameter estimates estimated from models fitted using equation (2), by subject 
   Math    

 
  Reading    

 (1)  (2)  (3)  
 (4)  (5)  (6)  

Calculated Difference       
 

      
TDiD7525 0.035*** 0.030* 0.029* 0.034*** 0.028** 0.021* 

 (0.008) (0.012) (0.011) (0.004) (0.009) (0.009)
 0.000 0.023 0.014 0.000 0.008 0.028

TDiD9010 0.064*** 0.058** 0.057** 0.062*** 0.057*** 0.051** 

 (0.014) (0.019) (0.017) (0.008) (0.015) (0.014)
 0.000 0.007 0.003 0.000 0.001 0.002

Parameter Estimates       
 

      
SES 0.221*** 0.092*** 0.092*** 0.243*** 0.107*** 0.110*** 

 (0.013) (0.017) (0.016) (0.014) (0.013) (0.015)
 0.000 0.000 0.000 0.000 0.000 0.000

SES2 0.040*** 0.035*** 0.035*** 0.040** 0.038*** 0.035*** 

 (0.009) (0.005) (0.005) (0.012) (0.006) (0.005)
 0.000 0.000 0.000 0.003 0.000 0.000

SES3 0.008** 0.009*** 0.009*** 0.007* 0.009*** 0.008** 

 (0.003) (0.002) (0.002) (0.003) (0.002) (0.002)
 0.004 0.000 0.000 0.030 0.001 0.002

Post -0.010 -0.004 0.000 -0.001 0.004 0.002

(0.006) (0.008) (0.012) (0.006) (0.008) (0.013)
0.110 0.633 0.992 0.910 0.601 0.884

PostxSES 0.011 0.005 0.006 0.013** 0.016† 0.014

 (0.007) (0.012) (0.011) (0.004) (0.009) (0.009)
 0.149 0.654 0.597 0.002 0.098 0.110

PostxSES2 0.001 0.003 0.003 0.002 0.004 0.007** 

 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
 0.657 0.314 0.303 0.453 0.165 0.010

PostxSES3 0.000 0.001 0.001 0.000 0.001 0.001

 (0.001) (0.002) (0.002) (0.001) (0.002) (0.002)
 0.748 0.562 0.584 0.539 0.537 0.546

TXxSES -0.078*** -0.060*** -0.060*** -0.077*** -0.057*** -0.051*** 

 (0.013) (0.012) (0.012) (0.014) (0.008) (0.009)
 0.000 0.000 0.000 0.000 0.000 0.000

TXxSES2 0.031** 0.002 0.002 0.013 -0.008 -0.009

 (0.009) (0.009) (0.009) (0.012) (0.009) (0.009)
 0.003 0.833 0.813 0.285 0.388 0.293

TXxSES3 0.012*** 0.008*** 0.008*** 0.016*** 0.011*** 0.008* 

 (0.003) (0.002) (0.002) (0.003) (0.003) (0.003)
 0.000 0.001 0.001 0.000 0.000 0.010

PostxTX 0.139*** 0.130*** 0.133*** 0.046*** 0.039*** 0.059** 

 (0.006) (0.009) (0.024) (0.006) (0.009) (0.016)
 0.000 0.000 0.000 0.000 0.000 0.001

PostxTXxSES 0.030*** 0.026* 0.025* 0.031*** 0.024* 0.018* 

 (0.007) (0.011) (0.010) (0.004) (0.009) (0.008)
 0.000 0.032 0.023 0.000 0.013 0.044

PostxTXxSES2 0.004 0.004 0.004 0.015*** 0.008** 0.009** 

 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
 0.202 0.175 0.258 0.000 0.010 0.002

PostxTXxSES3 0.000 0.001 0.001 0.001 0.003 0.006** 

 (0.001) (0.002) (0.002) (0.001) (0.002) (0.002)
 0.855 0.514 0.491 0.181 0.111 0.004

Intercept 0.004 -0.598* 7.212 -0.027* -0.676* 4.157

 (0.008) (0.249) (5.158) (0.012) (0.258) (4.695)
 0.626 0.026 0.177 0.033 0.016 0.386

Number of districts 32417 31373 31373 40388 39111 39294

District-grade covariates no yes yes no yes yes

State-year covariates no no yes no no yes

 
Note: Standard errors are clustered by state. All estimates come from regression of equation (2) with fixed effects by cohort-state. 
Parameter estimates for covariates for models fitted in columns (2), (3), (5), and (6) are not shown.  
†p < .10. *p < .05. **p < .01. *** < .001. 
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Table 6. Sensitivity checks for differences in measured 75th-25th (TDiD7525) and 90th-
10th (TDiD9010) district-SES percentile gaps in Texas relative to comparison states, 
estimated from equation (2), by subject 

 Math  Reading

Panel A. Add district fixed effects     
TDiD7525 0.035*  0.045*** 

 (0.014)  (0.013)

TDiD9010 0.066**  0.092*** 

 (0.020)  (0.019)

No. of districts 31373  39215

      
Panel B. Include 4th polynomial degree    
TDiD7525 0.012  0.006

 (0.008)  (0.008)

TDiD9010 0.049**  0.029* 

 (0.014)  (0.011)

No. of districts 31373  39172

      
Panel C. Include 5th polynomial degree    
TDiD7525 0.009  0.010

 (0.008)  (0.008)

TDiD9010 0.048**  0.028* 

 (0.013)  (0.012)

No. of districts 31373  39172
 
Note: Standard errors are clustered by cohort-state. All estimates come from regression of equation (2) with fixed effects by cohort-
state unless otherwise noted. 
†p < .10. *p < .05. **p < .01. *** < .001. 
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Table 7. Within grade-year mean of SES variables that vary by year and grade, by deciles 
of district-SES (1=lowest decile, 10=highest decile) for cohort 2006 within Texas 

cohort year grade district-SES decile mean perfrl mean ppe_tot mean ppe_inst 

2006 2009 3 1 0.514 12343 5726 

2006 2010 4 1 0.572 12759 5939 

2006 2011 5 1 0.593 11764 5787 

2006 2012 6 1 0.557 11449 5430 

2006 2009 3 2 0.581 11796 5698 

2006 2010 4 2 0.610 12640 5989 

2006 2011 5 2 0.627 11783 5778 

2006 2012 6 2 0.599 10971 5454 

2006 2009 3 3 0.578 12199 5602 

2006 2010 4 3 0.602 12191 5929 

2006 2011 5 3 0.607 11661 5795 

2006 2012 6 3 0.557 10842 5428 

2006 2009 3 4 0.535 11549 5594 

2006 2010 4 4 0.560 11410 5796 

2006 2011 5 4 0.565 11456 5671 

2006 2012 6 4 0.534 10832 5347 

2006 2009 3 5 0.494 11713 5420 

2006 2010 4 5 0.527 11565 5690 

2006 2011 5 5 0.542 10762 5554 

2006 2012 6 5 0.506 10164 5155 

2006 2009 3 6 0.459 12258 5592 

2006 2010 4 6 0.503 12043 5879 

2006 2011 5 6 0.511 11844 5784 

2006 2012 6 6 0.465 10891 5388 

2006 2009 3 7 0.399 11785 5513 

2006 2010 4 7 0.436 11810 5698 

2006 2011 5 7 0.449 11305 5601 

2006 2012 6 7 0.415 10105 5269 

2006 2009 3 8 0.380 12606 5425 

2006 2010 4 8 0.412 12186 5702 

2006 2011 5 8 0.428 11409 5513 

2006 2012 6 8 0.399 11181 5262 

2006 2009 3 9 0.309 12427 5394 

2006 2010 4 9 0.350 12042 5726 

2006 2011 5 9 0.349 11313 5620 

2006 2012 6 9 0.315 10629 5283 

2006 2009 3 10 0.198 13764 5363 

2006 2010 4 10 0.220 13000 5446 

2006 2011 5 10 0.228 11715 5459 

2006 2012 6 10 0.206 11666 5206 
perfrl: percentage of students on free or reduced-price lunch in district 
ppe_tot: Total per-pupil expenditure - Total expenditure/enrolment 
ppe_inst: Current per-pupil expenditure - Instructional expenditure/enrolment 
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Figure 1. Mean district scores at 25th and 75th (Panels A and C) and 10th and 90th (Panels B and D) district-SES percentile within Texas 
before and after switch from TAKS to STAAR, by subject 
Panel A. Mean math score at 75th and 25th district-SES percentile Panel B. Mean math score at 90th and 10th district-SES percentile 

  
Panel C. Mean reading score at 75th and 25th district-SES 
percentile 

Panel D. Mean reading score at 90th and 10th district-SES 
percentile 

  
Note: Estimates and 95% confidence intervals obtained from fitting equation (1) using cohort fixed effects and evaluating the average pre/post scores for the relevant district-SES percentiles within 
Texas. Standard errors are obtained via a test of linear combination of the estimators. Models fitted without any covariates. As explained in text, pre-treatment math outcome is taken as average of 
outcomes for years 2009-2011. Pre-treatment reading outcome is taken only for year 2011. Post-treatment outcome is taken only for year 2012 for math and reading respectively.
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Figure 2. Impact of switch from TAKS to STAAR on 75th-25th and 90th-10th district-SES percentile gap in Texas relative to 
comparison states for math and reading 
Panel A. Math 75th-25th district-SES percentile gap Panel B. Math 90th-10th district-SES percentile gap 

  
Panel C. Reading 75th-25th district-SES percentile gap Panel D. Reading 90th-10th district-SES percentile gap 

  
Note: Difference-in-difference estimates and 95% confidence intervals obtained from fitting equation (1) separately for each state using cohort fixed effects and evaluating the difference in average 
scores at the district-SES values corresponding to the 75th and 25th (or 90th and 10th) district-SES percentile in Texas. Standard errors for the 75th-25th (or 90th-10th) district-SES percentile difference are 
obtained via a test of linear combination of the estimators. Models fitted with district covariates. As explained in the main text, the pre-treatment outcome is taken as the average of district-level 
outcomes in years 2009-2011 for math; and in year 2011 only for reading. Post-treatment outcome is taken only for year 2012 for math and reading respectively. 
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Figure 3. Pre/Post 75th-25th and 90th-10th district-SES score gaps in Texas versus comparison states, by subject 
Panel A. Math 75th-25th district-SES percentile gap Panel B. Math 90th-10th district-SES percentile gap 

  
Panel C. Reading 75th-25th district-SES percentile gap Panel D. Reading 90th-10th district-SES percentile gap 

  
Note: Estimates and 95% confidence intervals obtained from fitting equation (2) (see text) using cohort fixed effects and evaluating the average pre/post scores corresponding to the relevant district-SES 
percentiles within Texas. Standard errors are obtained via a test of linear combination of the estimators. Models fitted without any covariates. As explained in the main text, the pre-treatment outcome is 
taken as the average of district-level outcomes in years 2009-2011 for math; and in year 2011 only for reading. Outcome for post-treatment includes only year 2012 for math and reading respectively. 
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Appendix A 
Cohorts Used in Analyses 

 
Table A1. Cohorts and year-grades used in analyses, by subject 
 School Year 
Cohort1 2008-2009 2009-2010 2010-2011 2011-2012 
Math2     
2006 Grade 3 Grade 4 Grade 5 Grade 6 
2007 X Grade 3 Grade 4 Grade 5 
2008 X X Grade 3 Grade 4 
Reading3     
2004 X X Grade 7 Grade 8 
2005 X X Grade 6 Grade 7 
2006 X X Grade 5 Grade 6 
2007 X X Grade 4 Grade 5 
2008 X X Grade 3 Grade 4 

Note: X denotes scores not included in analyses. 
1 Cohorts are named for the year in which students enter 1st grade in the Fall. 
2 The SEDA dataset excludes data for grade 7 and grade 8 math within Texas because some students take end-of-course exams in 
these grades, resulting in different assessments within subject-grade-year. 
3 Reading scores from 2009 and 2010 are excluded from analyses due to a change in the TEKS curriculum for reading in school year 
2009-2010.  
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Appendix B 
Summary of Assessment Changes in the U.S. States, 2009-2012 

 
Table B1. States chosen as comparison states or if not, reasons for exclusion 

State Comparison 
State? 

Change in Assessment? 

Alabama No ARMT to ARMT+ (2012) 

Alaska Yes 
 

Arizona Yes 
 

Arkansas Yes 
 

California Yes 
 

Colorado No CSAP to TCAP (2012) 

Connecticut Yes 
 

Delaware No DSTP (paper) to DCAS (online) (2011) 

Florida No FCAT to FCAT 2.0 (2010) 

Georgia Yes 
 

Hawaii No Online adaptive testing (2011) 

Idaho Yes 
 

Illinois Yes 
 

Indiana No Changed cut score (2009) 

Iowa No ITBS to Iowa Assessments (2011) 

Kansas Yes 
 

Kentucky No KCCT to K-PREP (2012) 

Louisiana No LEAP administered over two seatings (2010 and 2011) 

Maine Yes 
 

Maryland Yes 
 

Massachusetts No Transition from 2000/2004 standards to 2011 standards (2012 and 2013 onwards) 

Michigan No New cut scores (Fall 2011) 

Minnesota No MCA-II to MCA-III Math (2010); MCA-II to MCA-III Reading (2012) 

Mississippi Yes 
 

Missouri No Re-administered previous form of grade-level MAP for budgetary reasons 

Montana Yes 
 

Nebraska No School-based student assessments to NeSA (Reading - 2010; Math - 2011) 

Nevada No New cut scores (Math - 2010; Reading - 2011) 

New 
Hampshire 

Yes 
 

New Jersey No New tests for NJ ASK introduced over 2008 to 2009 for grades 3-8 

New Mexico Yes New school accountability system (2012)1 
Transitioned to Common Core State Standards assessments beginning 2012-13 

New York No Changed cut score (2010) 

North Carolina Yes Implemented assessments aligned to Common Core State Standards in 2012-13 

North Dakota No Contractor change in implementation of state assessments 2011 

Ohio Yes 
 

Oklahoma No Switched from paper- to computer-based administration (2011 to 2012) 

Oregon No Changed cut score (Math - 2011; Reading - 2012) 

Pennsylvania Yes Classroom-based diagnostic tests offered in 2010 as a resource for Pennsylvania System of 
State Assessment2 

Rhode Island Yes 
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State Comparison 
State? 

Change in Assessment? 

South Carolina No PACT to PASS (2009) 

South Dakota No New content standards assessed (Reading - 2009); Curriculum realignment to new content 
standards (Math - academic year 2011-2012) 

Tennessee No Changed cut score (2009) 

Texas Treatment 
State 

TAKS to STAAR (2012) 

Utah No New test designs and standards (over 2008 and 2009) 

Vermont Yes 
 

Virginia No New content standards assessed (Reading - 2012; Math - 2011) 

Washington  No WASL to MSP (2011) 

West Virginia No Changed scale score (2010) 

Wisconsin Yes 
 

Wyoming No Technical problems in administration of computer-based tests (2010); Paper-based tests 
(2011) 

Note: Unless otherwise specified, year refers to spring of stated year 
1 Since the assessment did not change, New Mexico was retained as a comparison state. 
2 Since the tests were offered as a diagnostic tool with no change to the state assessment, Pennsylvania was retained as a 
comparison state. 
Data obtained through internet search of EdFacts reports, state assessment technical manuals, department of education 
announcements, presentation slides, and newspaper articles. References available upon request. 
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Appendix C 
Relationship between District-Average Test Scores and District-SES Deciles 

 
Figure C1. Boxplots of district-average test scores over deciles of district-SES by year for 
cohort 2006 within Texas. 
Panel A. Math 

 
 
Panel B. Reading 

 



217 

   

Appendix D 
75th-25th District-SES Performance Gaps Before and After Switch from TAKS to 

STAAR in Texas, by Cohort for Math 
 

 

 
 
Note: To obtain the datapoints, I first estimate the relationship between district-average math scores 
(Score) and district-SES (SES)52 for each year separately using the model: 

 ������ = �� + ������ + ������
� + ������

� + �� 
I then calculated the mean district-average math score at the 25th and 75th district-SES percentiles within 
Texas separately for each year and plotted them on the graph. 

 
 

                                                           
52 See main text for explanation of why a cubic polynomial function is used. 
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