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ABSTRACT

The applications of deep neural networks (DNN) have grown in number in recent

years, but there is a need to better support their deployment in the field. This disser-

tation introduces Intelligence Distribution Network (IDN), a platform specifically

designed to support this increasing demand for DNN inference computations. IDN is

a fault-tolerant decentralized peer-to-peer (p2p) network that delivers fast, low-cost,

scalable execution of DNN models. IDN does this by optimizing DNN inference for

this setting, and then distributing the computation among spare computing resources

nearby.

IDN reduces inference time using BranchyNet, a technique to modify the standard

DNN structure with “exit branches” at certain locations throughout the network,

allowing some samples to exit the computation early and decreasing the inference

time.

IDN scales inference to the entire IDN p2p network using Distributed Deep Neural

Network (DDNN), a method that allows DNN inference to be distributed among a

computing hierarchy consisting of devices, edges, and clouds.
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IDN achieves fault tolerance and high availability for DNN inference with Parallel-

Net. ParallelNet can generate multiple DNN model of various sizes, each fitting a de-

vice of varying compute capacity. Each device can execute its model independently in

parallel. ParallelNet allows DNN inference to be run on more devices independently,

improving the fault tolerance and availability of DNN inference.

IDN incentivizes the creation of a large number of high quality DNN models that

can be shared among users using DaiMoN, a Decentralized Artificial Intelligence

Model Network. DaiMoN improves upon today’s limited, redundant, and siloed

DNNmodel sharing structures by incentivizing peers to collaborate and share DNN

models to improve the accuracy of a given problem in a decentralized manner.

Finally, to manage how IDN is used, the ComputeSwap protocol incentivizes peers to

participate in the network via an optimistic debt-repayment structure that probabilis-

tically results in repayment based on credits earned for executing inference and debts

acquired by using the network. This encourages peers to service inference computa-

tions that are needed by other peers by maintaining a balance to not accumulate too

much debt or give too little credit.
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1
Introduction

The modern era of the World Wide Web (WWW) started in 1990, when the first web

page was served on the Internet by Tim Berners-Lee. Eight years later, Akamai, which

would become the operator of the world’s largest Content Distribution Network

(CDN), was founded in 1998 in Cambridge, MA. CDN works by caching web con-

tent closer to end users in order to increase their quality of experience (QoE). When
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Akamai launched its CDN in 1999, the Internet was still in its early days. At the end

of 1999, Akamai had an annual revenue of almost $4 million and managed 3,000

servers across the globe [1]; these numbers grew to $2.3 billion and 200,000 servers

in 2016 [2]. MarketsandMarkets [3] forecasts that the global CDN market will grow

to be over $30 billion by 2022. CDNs have changed the way content is distributed

and improved users’ Quality of Experience (QoE) significantly. This dissertation in-

troduces Intelligence Distribution Network (IDN), the intellectual successor of CDNs

for the age of machine learning. Just as CDN fundamentally changed the way con-

tent was distributed, IDN will change the way artificial intelligence computation is

distributed and greatly improve users’ QoE for the ever-growing number of AI appli-

cations.

IDN focuses on distributing and optimizing deep neural networks (DNNs), the main

algorithm used for today’s artificial intelligence (AI) applications. In 2012, Alex Krizhevsky

won the ImageNet [4] challenge by a large margin using a DNN. Since then, many AI

applications have seen a significant improvement in their accuracy by using DNNs.

Today, an increasing number of companies have deployed DNNs in their products.

These products include smart cities, autonomous vehicles, virtual assistants, virtual

reality (VR), augmented reality (AR), and internet-of-things (IoT) devices such as

smart appliances, cameras, drones, and robots. In 2016, the global AI market was

worth just over $3 billion. However, we are still in the early days of the age of DNNs.
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By 2022, the global AI market is expected to be worth over $37 billion [5]. As DNN

usage increases, there is a rising need for an infrastructure capable of deploying and

scaling DNN models for inference.

The Internet is organized in a hierarchical fashion. Tier 1 Internet service providers

(ISPs) are at the top of the pyramid. Web content from the server flows up the ISP

tree and down to the end users, as shown in Figure 1.1. A CDN places caches at var-

ious points in the hierarchy to reduce the latency of retrieving the content and the

server load, and ultimately improve users’ QoE. In an analogous fashion, as shown

in Figure 1.2, IDN places DNN engines at various points in the hierarchy closer to

end users to reduce the latency of DNN computation and the server load, and ulti-

mately improve users’ QoE. In addition, IDN allows peer-to-peer (p2p) communica-

tion among nearby devices; any computing devices can join the IDN network and

host the computation to further increase the network’s computing capacity and dissi-

pate the computation load.

IDN provides an infrastructure consisting of nearby peer computing devices. By

leveraging spare computational resources from peer devices, edge nodes, and cloud

servers nearby, IDN puts computation closer to the device that needs it, with the aim

to substantially reduce inference time and cost of deployment, scale the computation

to nearby devices, and increase fault tolerance. IDN comes with ecosystems and in-

centive mechanisms that encourage people to share both high-quality DNN models

3



and their spare computing resources.
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1.1 MOTIVATIONS

We have seen growing demand for and successes of DNN models for various tasks

such as classification, detection, scene segmentation, and language understanding,

with new use cases discovered in every single industry. However, putting these DNN

models to use and making them available and accessible to a large population re-

quires the right tools and scalable infrastructure.

In the case of web content, the content is created once, but it is distributed many more

times. Similarly, in case of DNN models, once a model is trained, a process that may

happen only once, it is used for inference many more times, sometimes thousands or

millions of times a day. Inference is the process in which the trained DNN is used to

4



predict outputs from input samples. Inference use cases are becoming widespread

with the advent of next generation technologies such as autonomous vehicles, edge-

based inference systems (smart appliances, cameras, etc.), augmented reality (AR),

virtual assistants and virtual reality (VR). The trends in inference are toward sophis-

ticated real-time services where models are complex and responsiveness is critical.

Those services may include, for example, DNN-based speech recognition, natural

language processing, and object detection and classification.

To support these growing inference demands, application developers typically ser-

vice inference computation demands of DNN models using either centralized cloud

servers or by making the models smaller so that they fit entirely on a single end de-

vice. Each of these approaches have their own pros and cons. On one hand, running

DNNmodels on a cloud server supports complex models, but puts a huge load and

thus cost of the cloud server on the application developers. Further, this adds end-to-

end latency to the application as it must communicate with a distant clouds. On the

other hand, running the model on the device locally has no cost for the application

developer, as opposed to keeping the cloud server running, and no added end-to-end

latency. However, it only supports simple models due to the limited capacity and ca-

pabilities of the end device itself.

IDN is a solution to these issues. IDN provides a peer-to-peer (p2p) network of com-

puting devices with spare computing resources that are near to where the inference

5



needs to be executed. IDN allows inference computation to be distributed across

nearby devices, edge nodes, and cloud servers, improving responsiveness of the ap-

plication and lowering the cost of computing resources while still supporting com-

plex models and providing fault tolerance. IDN makes DNN inference for every-

day users fast, scalable, and fault tolerant while not being controlled by a few cloud

providers such as Amazon, Microsoft or Google.

1.2 CHALLENGES

One challenge in distributing DNNmodels across multiple nodes is to consider whether

the model is communication bound or computation bound. How to balance this

tradeoff while maintaining the model’s integrity and the accuracy of the resulting

computation is the challenge at hand. Distributing DNNmodels across devices, edge

nodes, and cloud servers allows applications to have access to more complex and

more accurate DNN models. However, distributing DNNmodels across devices,

edge nodes, and cloud servers incurs communication overheads that may reduce the

responsiveness of the applications.

There is no correct universal answer for this tradeoff, as different applications might

prefer different points along the accuracy/speed spectrum; a single application might

even prefer different tradeoffs for different DNN models that it uses or at different

points in time. The choice of tradeoff is generally dictated by the performance that

6



the application seeks to deliver to its users. There is no existing system that allows

applications to control this tradeoff directly when they deploy their DNN models. In

real-world networks, a challenge is to deal with unreliable connections and the fact

that nodes can connect and disconnect anytime. This leads to another important ques-

tion: how should the system deal with this unreliability while maintaining the level

of usability and responsiveness desired by the applications using the intelligence dis-

tribution network?

Beyond the computational aspects of the system, another important factor for a suc-

cessful inference network is the availability of high-quality DNN models to be used

by the community of applications and developers. A challenge is how to encourage

peers to collaborate and share the models, increasing the number of publicly available

high-quality DNN models.

Another challenge is how to incentivize peers to participate in the network and share

their spare computing resources efficiently among themselves. This leads to a central

question: how should this p2p network of peers load balance requests from applica-

tions on end devices efficiently in a decentralized p2p manner?

This dissertation aims to tackle these challenges and specifically answer the following

questions:

• Can we improve the inference time of DNN models by early exiting the compu-
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tation to reduce the overall inference time of IDN? Can we tradeoff accuracy for

speed?

• Can we scale DNN models by distributing DNN computation across end de-

vices, edge nodes, and cloud servers efficiently and further decrease the infer-

ence time of computations managed by IDN?

• Can we design DNNmodels that run independently in parallel on a lot of de-

vices of different capabilities in order to improve fault tolerance and availability

of DNN inference?

• Can we encourage people to together improve and share high-quality DNN

models, increasing the number of publicly available high-quality DNN models?

• Can we incentivize peers to participate in the network and efficiently distribute

inference computation in a decentralized peer-to-peer (p2p) manner?

1.3 INTELLIGENCE DISTRIBUTION NETWORK (IDN)

This dissertation tackles the aforementioned challenges with three main components.

The first component includes frameworks to adapt DNN models to take advantage

of IDN infrastructure with the end goals of improving speed, scalability, and fault tol-

erance. The second component is a platform for peer collaboration in improving the

accuracy and sharing of DNN models, increasing the number of publicly available

high-quality DNN models. The third component is a platform to efficiently distribute
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inference computation of DNN models to nearby peer-to-peer (p2p) networked de-

vices.

The frameworks to adapt DNN models to take advantage of IDN infrastructure for

speed, scalability, and fault tolerance introduced in this dissertation include BranchyNet,

Distributed Deep Neural Network (DDNN), and ParallelNet. BranchyNet allows

DNNmodels to exit computation at earlier points of the network. DDNN allows

DNNmodels to scale beyond a single device by mapping DNN computation across a

computing hierarchy of end devices, edges, and clouds. ParallelNet generates different-

sized DNNmodels to run independently in parallel on heterogeneous devices of

varying capability.

In order to increase the number of publicly available high-quality DNN models to be

run on the network, IDN introduces DaiMoN, a decentralized artificial intelligence

model network for peer collaboration in improving the accuracy and sharing of DNN

models. DaiMoN improves over existing collaborative model improvement systems

by allowing peers to verify the accuracy improvement of submitted models without

knowing the test labels in a decentralized manner. This is an essential component in

order to mitigate intentional model overfitting by model-improving peers. DaiMoN

rewards these contributing peers with cryptographic tokens to encourage participa-

tion.

To incentivize participation in the network and allow an efficient distribution of infer-
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ence computation, ComputeSwap is introduced. ComputeSwap maintains a ledger

between any pair of peers to keep track of computation debt and credit. Peers serve

inference computation optimistically in the hopes that the debt will be repaid. As

debt continues to accumulate, debt-to-credit ratio (debt ratio, for short) is used to

probabilistically service inference computation. The higher the debt ratio, the lower

the probability of service with the probability reducing as the debt ratio increases.

This incentivizes a node to service models needed by its peers in order to not accumu-

late too much debt or give too little credit, allowing for efficient distribution of DNN

models and inference.

The benefits of IDN scale with the number of participants: the more nodes participat-

ing in the network, the better the network can efficiently distribute inference compu-

tation. This is because the more nodes the network has, the more the inference can be

fault tolerant, executed closer to end devices, and scaled beyond the resources inher-

ent in the device itself.

In summary, IDN is a decentralized peer-to-peer (p2p) network that delivers lower-

cost, fast, scalable and fault tolerant execution of DNN models. IDN moves the execu-

tion closer to end devices by leveraging the aggregate compute power of nodes in the

network to dissipate and absorb DNN inference computation for applications. IDN

replicates and distributes DNN execution in proportion to the model’s popularity,

regardless of the application developer’s resources. This is, in effect, democratizing
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and allowing for large-scale DNN inference. Everybody and every device has access

to publicly available high-quality DNN models and inference compute resources to

be used in their applications without being limited by concerns of cost or end-user

device capabilities.

1.4 CONTRIBUTIONS

This dissertation makes the following contributions:

• An early exiting method that allows neural network computation to do predic-

tion without going through all the layers of DNN models, trading off accuracy

for speed.

• A mapping of DNN computation onto a distributed computation infrastructure

and a joint optimization method of DNN models on such infrastructure, allow-

ing DNN inference computation to scale both horizontally across devices and

vertically across the computing hierarchy.

• A parallel DNN architecture capable of generating multiple different-sized

DNNmodels, each fitting a device of different capability, that run indepen-

dently in parallel, increasing fault tolerance of DNN inference.

• DaiMoN, a decentralized artificial intelligence model network, which incen-

tivizes peers to collaborate and share high-quality DNN models for a given

task. DaiMoN allows peers to verify the accuracy improvement of submitted
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models without knowing the test labels, and rewards peers according to their

contributions in a decentralized manner.

• IDN, an intelligence distribution network that allows nodes with spare comput-

ing resources to participate in inference execution, brings computation closer

to its origin, and provides low-cost provisioning and scaling of DNN inference

services. The concept of ComputeSwap is the heart of IDN that enables the effi-

cient distribution of DNN models and inference computation.

1.5 NOTATION

In this dissertation, unless noted otherwise, we use the following conventions for

variables. Non-bold letters (e.g., a, A) denote scalars. Bold non-capital letters (e.g.,

a, b) denote vectors. Bold capital letters (e.g., A,B) denote matrices. Calligraphic let-

ters (e.g., A,B) denote sets. A set {x1, . . . , xN} may be shorten as {xn}Nn=1. R denotes

the set of real numbers. Z denotes the set of integers. Z>0 denotes the set of integers

greater than 0. θ denotes parameters of a model. e is the exponential constant.

1.6 OUTLINE

The dissertation is organized as follows. The content in this dissertation is introduced

linearly and as such, it can be read one chapter after another.
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Chapter 2 gives background information necessary for the content discussed in this

dissertation. It reviews deep neural networks. This chapter can be skipped if readers

are already familiar with these topics.

Chapter 3 introduces BranchyNet. BranchyNet modifies the architecture of neural

networks by adding branches to it. Branches allow inference of an input sample to

exit early without having to go through the entire network. BranchyNet is based on

the observation that some input samples are considered easy and do not require the

computation of the entire network because lower level features are sufficient for mak-

ing a prediction. Criteria on deciding whether a sample should exit early or continue

further through the network are described.

Chapter 4 introduces Distributed Deep Neural Network (DDNN). DDNN introduces

the concept of mapping a neural network architecture onto a distributed computing

hierarchy of devices, edges, and clouds, allowing DNNs to scale beyond a single de-

vice. By considering the entire computing hierarchy as an end-to-end system and

jointly optimizing the entire system, we can design the entire system to reduce com-

munication cost, minimize resource usage, and tolerate faulty devices. In combina-

tion with the early-exit concept from Chapter 3, DDNN allows fast and localized in-

ference using shallow portions of the neural network on edges and end devices. Map-

ping DNNs to a distributed computing infrastructure allows DNNmodels to scale

both horizontally across devices and vertically to edges and clouds.
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Chapter 5 introduces ParallelNet. ParallelNet generates multiple different-sized DNN

models to be executed independently in parallel on multiple heterogeneous devices

of different capabilities. The output of each model is then combined to generate the

final prediction. When enough confidence is accumulated, the computation can be

terminated early without waiting for the results from all of the models. This reduces

inference time, and increases fault tolerance of DNN inference.

Chapter 6 introduces DaiMoN, a decentralized artificial intelligence model network,

which incentivizes peer collaboration in improving the accuracy of DNN models. A

main feature of DaiMoN is that it allows peers to verify the accuracy improvement

of submitted models in a decentralized manner without knowing the test labels. Dai-

MoN reduces model silos and increases the number of publicly available high-quality

DNN models, a necessary condition for a successful inference network.

Chapter 7 describes the design and specification of Intelligence Distribution Network

(IDN). ComputeSwap is introduced to incentivize peers to participate in the network

via an optimistic debt-repayment structure that probabilistically results in repay-

ment based on credits earned for executing inference and debts acquired by using

the network. This allows for efficient distribution of inference computation among

peers.

Chapter 8 concludes the dissertation with open problems and future researches.
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2
Background

This chapter briefly reviews artificial neural networks, with a focus on convolutional

neural networks and deep neural networks. We will also review the algorithms used

to train artificial neural networks and different types of neural network layers.
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2.1 ARTIFICIAL NEURAL NETWORKS

The Artificial Neural Network (ANN) was invented in 1958 by psychologist Frank

Rosenblatt [6]. It was designed to mimic the neurons of human brain. Figure 2.1

shows a neuron. A neuron receives signal from its dendrites of different lengths. All

input signals are combined at the nucleus and output through the axon with various-

length terminals. Two neurons are connected via a specialized structure used to trans-

mit signals called a synapse (Figure 2.2).

Schwann's cell

Node of Ranvier

Axon

Dendrites

Axon terminals

Nucleus

Cell body

Myelin sheath

Figure 2.1:A neuron [7]. A neuron receives signal from its dendrites of different lengths. All
input signals are combined at the nucleus and output through the axon to other neurons.
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Figure 2.2: Synapse [8]. A specialized structure used to transmit signals between two neu-
rons.

Figure 2.3 shows an artificial neuron that was modeled after a neuron. An artificial

neuron consists of inputs, weights, a summation, an activation and an output. In-

puts are first multiplied by weights and summed together. Then, the result is passed

through an activation function to give an output. Mathematically, it can be repre-

sented as follows.

y = σ(
N

∑
i
wixi),

where y is an output, xi is an input, wi is a parameter or a weight to be learned or

trained, and σ is an activation function. Many neurons work together to form a layer,

and many layers are connected one after another to form an artificial neural network

(ANN), as depicted in Figure 2.4. These layers are sometimes referred to by their po-

sitions in the signal pathway. The first layer usually represents inputs and is called

the input layer; each circle is called an input unit. The last layer usually represents

outputs and is called output layer; each circle is called an output unit. The layers in

between the input layer and output layer are usually called hidden layers; each circle
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is called a hidden unit. Commonly, these layers are also referred to as linear layers,

since a linear transformation is applied to the incoming signals.

Artificial Neuron

Summation Activation

w1

w2

w3
w4

x1

x2

x3

x4

y

Figure 2.3:An artificial neuron modeled after a neuron. An artificial neuron consists of inputs,
weights, a summation, an activation and an output.

Layer 1 Layer 2 Layer 3

neuron

neuron

neuron

neuron

neuron

neuron

neuron

neuron

neuron

neuron

Figure 2.4:An Artificial Neural Network (ANN). An ANN consists of many layers, each with
one or more neurons.

Artificial neural networks have many types. The simplest type is called the feedfor-

ward neural network, and is as described above. In this type of network, the signal

moves from the input layer to the output layer via hidden layers without any cycles
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or loops. Other types of artificial neural networks include recurrent neural networks

(RNNs) and memory neural networks (MNNs).

2.2 CONVOLUTIONAL NEURAL NETWORKS

A convolutional neural network (CNN) is a type of feedforward neural networks. It

is inspired by the visual cortex part of the brain that processes visual information. It

rose in popularity in 2009 with the introduction of AlexNet [9], which won the Ima-

geNet competition in 2012 [10].

We describe here CNN in the context of processing a 2D (2 dimensional) image, but

a similar concept applies for 1D (1 dimensional) and higher dimensional signals as

well. A CNN makes use of the fact that patterns in natural images are inherently local.

The same pattern at one location of an image can be reused at another location in the

same image or in another image. A CNN consists mostly of convolutional layers. A

convolutional layer takes a multi-channel image as input and convolves it with filters.

Mathematically, it can be represented as follows:

yj = σ(
N

∑
i=1

fji ∗ xi),

where N is the number of input channels, fji is the i-th channel of the j-th filter, xi is

the i-th input channel of an input image, yj is the j-th output channel of an output
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image and σ is an activation function. When the input data is 2D, fji is a 2D kernel

and fji ∗ xi is a 2D convolution.

Figure 2.5 depicts a convolutional layer with two input channels and four filters; each

circle represents a filter and produces an output channel.

input
channel

input
channel

filter

filter

filter

filter

output
channel

output
channel

output
channel

output
channel

2-channel image

4x 2-channel filters

4-channel image

Figure 2.5:A convolutional layer with two input channels and four filters. Each circle repre-
sents a filter and produces an output channel.
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2.3 DEEP NEURAL NETWORKS

Since the success of CNNs in the ImageNet challenges [9, 10], research in many ar-

eas of computer visions and natural language processing has shifted toward CNNs

with many layers and obtained better results [11, 12, 13]. These deeper and deeper

CNN architectures give rise to deep neural networks (DNNs). Figure 2.6 shows the

progression of CNN architectures that get deeper and deeper (from 5-layer LeNet to

152-layer ResNet). New deeper and deeper architectures are being developed and

trained everyday.

Deep neural networks (DNNs) are state of the art methods for various tasks due to

their ability to piece together lower-level features and extract increasingly abstract

higher-level features at each network layer, similar to how a human processes infor-

mation.

2.4 TRAINING NEURAL NETWORKS

To train a neural network is to update its parameters or weights toward an objective

function. An objective function is different for different tasks. For example, for a clas-

sification task, a softmax cross-entropy objective function may be used and for a re-

gressing task, a mean squared error objective function may be used (See Section 2.4.1).

A way to train a neural network is to use backpropagation to efficiently compute gra-
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LeNet
(1998)
5 Layers

AlexNet
(2012)
8 Layers

VGGNet
(2014)

19 Layers

GoogLeNet
(2014)

22 Layers

ResNet
(2015)

152 Layers

(34-layer version)

Figure 2.6: Progression towards deeper neural network structures in recent years from LeNet
with 5 layers in 1998 to ResNet with 152 layers in 2015 (see, e.g., [14, 10, 15, 16, 17]).

dients and use one of the optimizers (e.g. SGD, Adam [18] and SGDR [19]) to update

the parameters (weights) of the neural networks. This section briefly describes each

of these methods.

In practice, it can be costly to compute the gradients of the entire set of training sam-
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ples and often, the training samples are split into many subsets called batches and the

parameters (weights) of a neural network is updated in a batch of training samples.

For each iteration of weight update (training), a subset of training samples are used.

An epoch of weight update (training) is when all the subsets of the training samples

are used once in that epoch. A typical batch size is 128 or 256, though it depends on

the available memory, network architectures, and applications. Computing the gradi-

ents in batches reduces the variance and can lead to more stable convergence.

2.4.1 OBJECTIVE FUNCTIONS

In this section, we describe two simple objective functions, also called loss functions

or cost functions. Throughout the text, these names are used interchangeably. For a

classification task, we describe softmax cross-entropy objective function and for a re-

gression task, we describe mean squared error objective function. In this dissertation,

we will extensively use the softmax cross-entropy objective function for a classifica-

tion task.

For a classification task, the softmax cross-entropy objective function may be used.
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The softmax cross-entropy objective function (LCE(x, y; θ)) is defined as

LCE(x, y; θ) = − 1
|C| ∑

c∈C
yc log ŷc,

ŷ = softmax(z)

=
exp(z)

∑
c∈C

exp(zc)
,

z = f (x; θ),

where (x, y) is a training input and one-hot ground-truth output label tuple, ŷ is an

output prediction vector, C is the set of all possible labels, f is the neural network

forward function, and θ represents the parameters of the layers of the neural net-

work.

For a regression task, the mean squared error objective function may be used. The

mean squared error objective function (LMSE(x, y; θ)) is defined as

LMSE(x, y; θ) =
1
N

N

∑
i=1

(ŷi − yi)2,

ŷ = f (x; θ),

where (x, y) is a training input and output pair, ŷ is an output prediction vector, N

is the number of components of an output vector, f is the neural network forward

function, and θ represents the parameters of the layers of the neural network.
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The objective function is often calculated in batches. The objective function of a batch

is an average of objective function values of the samples in a batch:

1
M

M

∑
j=1

L(x(j), y(j); θ),

where M is the number of samples in a batch (batch size), and L(x(j), y(j); θ) is the

objective function for the j-th sample.

2.4.2 BACKPROPAGATION

Backpropagation is an efficient method for computing the gradients of a neural net-

work. It consists of forward and backward passes.

In the forward pass, an input is passed through a neural network to get an output.

The output is then compared with the target output according to the objective func-

tion to compute an error. In the backward pass, the error is backpropagated layer-by-

layer and the gradient of the objective function with respect to each parameter of a

layer is calculated using the output of that layer and the error backpropagated from

the layer above.

After the gradients are calculated, the parameters are updated using the computed

gradients. Optimizers are used to keep track of these parameter updates and their

convergence. There are many optimization methods. In the following sections, we
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review a few methods.

2.4.3 STOCHASTIC GRADIENT DESCENT (SGD)

Stochastic Gradient Descent (SGD) is an iterative method for minimizing the objective

function L(θ; x(j), y(j)) by updating the parameters θ after seeing only a single or a

few training examples. The update is given by

θt = θt−1 − α∇θL(θt−1; x(j), y(j)),

where (x(j), y(j)) is a training input and output sample, α is the learning rate, and

∇θL(θt−1) is short for
∂L(θ)

∂θ

∣∣∣
θ=θt−1

.

A variant of SGD is Momentum SGD. Momentum SGD updates the parameters using

the exponential moving average of the gradients. This helps dampen oscillations in

narrow valleys. The update of Momentum SGD is given by

vt = βvt−1 + α∇θL(θt−1; x(j), y(j)),

θt = θt−1 − vt,

where vt−1 and vt is the previous and current exponential moving average of the gra-

dients, respectively, and have the same dimension as the parameter vector θ. β ∈

26



(0, 1] is the exponential decay rate.

A slight variant of Momentum SGD is called Nesterovs Accelerated Momentum

(NAG) [20, 21]. Instead of calculating the gradient at the current point, NAG calcu-

lates the gradient at a point in the vicinity of where the point is going to be when it is

updated. The update of NAG is given by

vt = βvt−1 + α∇θL(θt−1 − βvt−1; x(j), y(j)),

θt = θt−1 − vt,

where ∇θL(θt−1 − βvt−1) is short for
∂L(θ)

∂θ

∣∣∣
θ=θt−1−βvt−1

.

2.4.4 ADAM

Another optimization method that is often used in practice today is Adam [18]. The

Adam update is given by

vt = β1vt−1 + (1− β1)∇θL(θt−1; x(j), y(j)),

ut = β2ut−1 + (1− β2)
(
∇θL(θt−1; x(j), y(j))

)2
,

θt = θt−1 − α
vt√
ut + ϵ

,
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where α is the learning rate, β1 and β2 are the exponential decay rates for the moving

averages of the gradients and squared gradients accordingly, and ϵ is the smoothing

term to avoid division by zero. Notice the term
√
ut + ϵ that is used to normalize the

parameter update. The parameters that receive large gradients will have their effec-

tive learning rate reduced, while parameters that receive small or infrequent updates

will have their effective learning rate increased. Effectively, each parameter adapts its

own learning rate.

2.4.5 STOCHASTIC GRADIENT DESCENT WITH WARM RESTARTS (SGDR)

Stochastic Gradient Descent with Warm Restarts (SGDR)[19] is another variant of

SGD that integrates learning rate annealing in its method. With SGDR, the learning

rate changes at each iteration or batch. The learning rate α is adjusted as follows:

αt = αmin +
1
2
(αmax − αmin)(1+ cos(

πt
thalf

)),

where t is the iteration number, thalf is the half period in number of iterations, αt is the

learning rate at iteration t, αmin is the minimum learning rate, and αmax is the maxi-

mum learning rate.
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2.4.6 WEIGHT DECAY

In training neural networks, weight decay is sometimes used to prevent the weights

from growing too large. This technique is commonly used to avoid over-fitting. Weight

decay is formulated by adding a L2 regularization term to the objective function as

follows.

L(θ; x(j), y(j)) + λ

2
∥θ∥22,

where λ is the weight decay rate. With the regularization term added, the SGD up-

date is given by

θt = θt−1 − α∇θL(θt−1; x(j), y(j))− αλθt−1.

The additional L2 regularization term adds a term to the SGD update that causes the

weight to decay in proportion to its size.

2.4.7 LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR (LASSO)

Another regularization term that is used in training neural networks is a L1 regular-

ization or LASSO regression. The objective function with L1 regularization is defined

as follows.

L(θ; x(j), y(j)) + λ

2
∥θ∥1,
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where λ is the shrinkage rate. With the regularization term added, the SGD update is

given by

θt = θt−1 − α∇θL(θt−1; x(j), y(j))− αλ.

Notice that the additional L2 regularization term adds a term to the SGD update that

causes the weight to shrink by a certain amount every iteration. The key difference

between L1 and L2 regularization is that L1 regularization shrinks a parameter to 0.

L1 regularization is commonly used for parameter selection when there are a lot of

parameters.

2.5 BASIC TYPES OF NEURAL NETWORK LAYERS

There are many types of neural network layers. Here, we discuss a few types of neu-

ral network layers: linear, convolutional, pooling, normalization, and dropout lay-

ers.

2.5.1 LINEAR LAYERS

A linear layer applies a linear transformation to the incoming input data:

y = Wx+ b,
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whereW is a matrix of the weight parameters, b is the bias vector, x is the input vec-

tor, and y is the output vector.

2.5.2 CONVOLUTION LAYERS

A convolutional layer convolves the input N-channel image with a set of learned fil-

ters:

yj =
N

∑
i=1

f ji ∗ xi + bj,

where f j is the j-th filter weight parameters, b is the bias vector, x is the input vector,

and yj is the j-th output feature map.

A linear layer or a convolutional layer is usually followed by an activation function.

An activation function applies a non-linear function element-wise to its input, produc-

ing the output of the same dimensions. A few examples of those non-linear functions

are

sigmoid(x) =
ex

ex + 1
,

relu(x) = max(0, x),

tanh(x) =
ex − e−x

ex + e−x .
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2.5.3 POOLING LAYERS

Pooling layers combine together features over regions of input feature maps by apply-

ing a function such as min, max or average:

y = min
1≤i≤N

xi,

y = max
1≤i≤N

xi,

y =
1
N

N

∑
i=1

xi,

where N is the number of components in a region or a patch of an input image, y is

the pooled output, and xi is the i-th component of a region or a patch of an input im-

age.

2.5.4 OTHER LAYERS

There are other types of neural network layers and more types are being discovered

everyday. For example, a local response normalization layer [10] normalizes features

across spatially grouped feature maps, a batch normalization layer [22] normalizes

its input by subtracting the batch mean and dividing by the batch standard deviation,

and a dropout layer [23] randomly ignores neurons or filters during training.
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2.6 CONCLUSION

In this chapter, we have reviewed artificial neural networks, different types of neural

networks and neural network layers, and how we can train them. In the following

chapters, we will use this concept as a basis and work toward adapting these deep

neural networks to a distributed setting of peers in IDN for fast, scalable, and fault-

tolerant inference.
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3
BranchyNet: Fast Inference via Early

Exiting

BranchyNet is a method to allow samples to exit the inference computation early

when sufficient confidence about the decision is present. BranchyNet follows from
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the observation that features learned at an early layer of a network may often be

sufficient for the classification of many data points without the need to continue to

the later layers of the network. Based on this observation, BranchyNet modifies the

standard deep network structure by adding exit branches (also called side branches

or simply branches for brevity), at certain locations throughout the network. These

early-exit branches allow samples that can be accurately classified in early stages

of the network to exit at that stage. For more difficult samples, which are expected

less frequently, BranchyNet will use further or all network layers to provide the best

likelihood of correct prediction. With this modification, BranchyNet allows for fast

inference.

With neural networks getting deeper and deeper, the ability for a neural network to

exit samples early at a shallower layer will provide a tremendous help in reducing

the inference time. In this chapter, we describe BranchyNet with classification tasks in

mind; however, the architecture is general and can also be used for other tasks such

as natural language processing, image segmentation, and object detection.

In designing the BranchyNet architecture, there are several points to consider, includ-

ing:

• Number of branches: how many branches should be added?

• Locations of a branch: where to place the branches?

• Structure of a branch: how many layers in a branch? What types and sizes of
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layers to use?

Section 3.6 provides some guidance in designing a BranchyNet that augments an

existing deep neural network architecture. But first, we describe the architecture

of BranchyNet, the training and inference of BranchyNet, and different exit crite-

ria.

3.1 ARCHITECTURE

A BranchyNet is a neural network with an entry point and one or more exit points. A

branch is a subset of the network containing contiguous layers, which do not overlap

other branches, followed by an exit point. The original neural network can be viewed

as a main branch, and layers branching out from the main branch can be viewed as

side branches, early-exit branches, or simply exit branches. Each branch must resolve

to an exit and is numbered increasingly based on its distance from the entry point,

starting at one. An example BranchyNet applied to AlexNet [10] is illustrated in Fig-

ure 3.1.

3.2 TRAINING BRANCHYNET

For a classification task, the softmax cross-entropy loss function is commonly used as

the optimization objective. Here, we describe how BranchyNet uses this loss function.
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Exi t  1
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Conv 5x5

Conv 5x5

Conv 3x3

Exi t  3

Conv 3x3 Conv 3x3

Conv 3x3
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L inear

Figure 3.1:A simple BranchyNet with two branches added to the baseline (original) AlexNet.
The first branch has two convolutional layers and the second branch has one convolutional
layer. The “Exit” boxes denote the various exit points of BranchyNet. This figure shows the
general structure of BranchyNet, where each branch consists of one or more layers followed
by an exit point.

Let y be a one-hot ground-truth label vector, x be an input sample, and C be the set of

37



all possible labels. The objective function can be written as

L(ŷ, y; θ) = − 1
|C| ∑

c∈C
yc log ŷc,

ŷ = softmax(z)

=
exp(z)

∑
c∈C

exp(zc)
,

z = fexitn(x; θ),

where fexitn is the n-th exit branch function and θ represents the parameters of the

layers of the neural network from an entry point to the exit points.

The design goal of each exit branch is to minimize this loss function. To train the en-

tire BranchyNet, we form a joint optimization problem as a weighted sum of the loss

functions of each exit branch

Lbranchynet({ŷexitn}
N
n=1, y; θ) =

N

∑
n=1

wnL(ŷexitn , y; θ),

where N is the total number of exit points and wn is the weight of the n-th branch exit.

One is free to choose the weight of each branch exit to emphasize one branch more or

less than another. Section 3.2.1 presents a simpler way of setting these weights.

The training algorithm for BranchyNet consists of two steps: the feedforward pass

and the backward pass. In the feedforward pass, the training dataset is passed through
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the network, including both main and side branches, the outputs of all exit points

are recorded, and the loss of the network is calculated. In the backward pass, back-

propagation is used. The error of the loss is passed back through the network and

the weights are updated using a gradient descent algorithm such as Stochastic Gra-

dient Descent (SGD), Adam [18] or Stochastic Gradient Descent with warm Restarts

(SGDR) [19].

3.2.1 EXPONENTIALLY WEIGHTED BRANCHYNET LOSS

To simplify the number of hyper-parameters wn involved in calculating the loss of a

BranchyNet, one can choose to use exponentially weighted BranchyNet loss instead.

The loss is defined as follows.

Ln({ŷexiti}
n
i=1, y; θ) = (1− α)Ln-1({ŷexiti}

n−1
i=1 , y; θ) + αL(ŷexitn , y; θ),

where Ln is the weighted sum of the losses of branches up to branch n-th and α ∈

[0, 1] is the exponential weight parameter. The weighted sum of the losses of up to the

n-th branch is the weighted sum of the losses of up to the (n-1)-th branch and the n-th

branch loss. The higher the α is, the more the emphasis is put on later branches. The

lower the α is, the less the emphasis is put on the earlier branches.
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3.3 FAST INFERENCE WITH BRANCHYNET

Once trained, BranchyNet can be used for fast inference by classifying samples at ear-

lier stages in the network based on the algorithm in Figure 3.2. If the classifier at an

exit point of a branch has high confidence or enough information (in terms of entropy,

as discussed later) about correctly labeling a test sample x, the sample is exited and

returns a predicted label early with no further computation performed by the later

branches of the network. Exit criteria governing a choice of whether a sample should

exit at a certain branch are discussed next in Section 3.4.

1: procedure BRANCHYNETFASTINFERENCE(x, T)
2: for n ∈ [1,N] do
3: z ← fexitn(x)
4: ŷ ← softmax(z)
5: if SHOULDEXIT(ŷ, Tn) then
6: return argmax ŷ
7: return argmax ŷ

Figure 3.2: BranchyNet Fast Inference Algorithm. x is an input sample, T = {Tn}Nn=1 is a
vector where the n-th entry Tn is the threshold for determining whether to exit a sample at
the n-th exit point, N is the number of exit points of the network and SHOULDEXIT(ŷ, Tn) is
a function that returns true or false depending on whether an output probability vector of a
branch is confident enough or have enough information (in terms of entropy, as discussed
later) to exit. Several choices of SHOULDEXIT(ŷ, Tn) functions are discussed in 3.4.

To perform fast inference on a given BranchyNet network, we follow the procedure as

described in Figure 3.2. The procedure requires T = {Tn}Nn=1, a vector where the

n-th entry is the threshold used to determine if the input x should exit at the n-th
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exit point. The procedure begins with the earliest, shallower exit point and iterates

to the latest, deeper exit point of the network. For each exit point, the input x is fed

through the corresponding branch. The procedure then calculates the softmax of the

output and checks the exit criterion to see if the sample should exit at this branch or

if it should carry on to a deeper branch. If the sample should exit, the class label with

the highest confidence score is returned. Otherwise, the sample continues to the next

exit point. If the sample reaches the last exit point, the label with the highest confi-

dence score is always returned.

3.4 EXIT CRITERIA

In designing the BranchyNet architecture, we need an exit criterion for a branch. Exit

criteria helps to determine whether or not the sample should exit. For classification

tasks, each branch outputs a probability vector. Here, we present two exit criteria that

make use of the output probability vector: Confidence and Entropy.

3.4.1 CONFIDENCE

A way to decide whether or not to exit a sample is to use confidence, or the proba-

bility value of the winning class in the predicted probability vector. Formally, confi-
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dence is defined as follows.

confidence(ŷ) = max ŷ,

where ŷ is a vector containing computed probabilities for all possible class labels.

Confidence represents how confident the branch is about the prediction. The higher

the value of the confidence, the higher the probability of the branch accurately pre-

dicting the class of the sample.

To decide whether to exit a sample at a certain branch, we calculate the confidence

value of the prediction of that branch and compare it against a fixed threshold Tn. If

the value is greater than or equal to the threshold Tn, the branch has enough confi-

dence to exit the sample and the procedure returns true. Otherwise, it returns false.

The pseudo code of this procedure is provided in Figure 3.3.

1: procedure SHOULDEXITWITHCONFIDENCE(ŷn, Tn)
2: c ← confidence(ŷn)
3: if c ≥ Tn then
4: return true
5: return false

Figure 3.3:A procedure to decide whether a sample should exit based on the confidence
value of the probability vector. ŷn is an probability vector output of a branch n, and Tn is the
threshold at branch n for determining whether to exit a sample at the n-th exit point.
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3.4.2 ENTROPY

Alternatively, another way to decide whether or not to exit a sample is to use entropy.

To keep the entropy value between 0 and 1, normalized entropy is used instead. Nor-

malized entropy (η) is defined as follows:

entropy(ŷn) = η(ŷ) = − ∑
c∈C

yc log yc
log |C| ,

where ŷ = {ŷc}c∈C is a vector containing computed probabilities for all possible class

labels c, C is a set of all possible labels, and |C| is the size of the set of labels C.

Entropy represents how random the information is in the probability vector. The

higher the value the entropy is, the less information the probability vector contains.

To decide whether to exit a sample at the n-th branch, we calculate the entropy value

of the output probability vector of that branch and compare it against a fixed thresh-

old Tn. If the value is less than or equal to the threshold Tn, the branch has enough

information to exit the sample and the procedure returns true. Otherwise, it returns

false. The pseudo code of this procedure is provided in Figure 3.4.

Normalized entropy (η) is used instead of entropy to allow for easier interpretation

and searching for its corresponding threshold Tn, as its values range from 0 to 1. For

example, η close to 0 means that the branch is confident about the prediction of the

43



1: procedure SHOULDEXITWITHENTROPY(ŷ, Tn)
2: η ← entropy(ŷn)
3: if η ≤ Tn then
4: return true
5: return false

Figure 3.4:A procedure to decide whether a sample should exit based on the entropy value of
the probability vector. ŷn is an probability vector output of a branch n, and Tn is the threshold
at branch n for determining whether to exit a sample at the n-th exit point.

sample; η close to 1 means it is not confident. At each exit point, η is computed and

compared against its corresponding threshold Tn in order to determine if the sample

should exit at that point.

3.4.3 CONFIDENCE CALIBRATION WITH SOFTMAX TEMPERATURE

Modern neural networks for classification tend to be overconfident about their pre-

dictions. For example, a neural network may output a prediction with probability 0.8;

however, it is only accurate 50% of the time, and not 80% of the time as the probabil-

ity may seem to imply. One way to mitigate this effect is to introduce a temperature

parameter to the softmax function and tune the probability outputs with the temper-

ature. This concept of calibrating confidence with softmax temperature is introduced

by Guo et al. [24].

Softmax Temperature is a modified version of the softmax function by adding a tem-

perature parameter τ. The higher the temperature, the softer the probability values
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and the higher the entropy of the output probability vector. Mathematically, it is de-

fined as follows:

softmax(z, τ) =
exp(z/τ)

∑i exp(zi/τ)

In BranchyNet, one may use this technique to calibrate the probability vector, so that

the branch is not over or under confident about its prediction and gives consistent

confidence and entropy values. Consistent confidence and entropy values help ease

the setting of the desired exit thresholds for both criteria across all branches.

3.5 RESULTS

In this section, we demonstrate the effectiveness of BranchyNet by adapting widely

studied convolutional neural networks on the image classification task.

For simplicity, we only describe a network in terms of the convolutional and linear

(fully-connected, dense) layers it has. Generally, these networks may also contain

max pooling, non-linear activation functions (e.g., a rectified linear unit (ReLU) and

sigmoid), normalization (e.g., local response normalization, batch normalization), and

dropout.

The dataset used for the experiments is the CIFAR10 [25] dataset. There are 50,000

training images and 10,000 images testing images. The 50,000 training images are

split into 45,000 for training and 5,000 for validation. We follow the standard data
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augmentation scheme for this dataset, in which the images are centered and normal-

ized, zero-padded with 4 pixels on each side, randomly cropped to produce 32× 32

images, and randomly flipped horizontally.

Unless mentioned otherwise, we use SGDR [19] (with the learning rate of 0.01) to

train the networks with a batch size of 128. Experiments are done in PyTorch [26] on

Amazon EC2 p3.2xlarge instance with a single Nvidia Tesla V100 16GB GPU.

3.5.1 EFFECTS OF BRANCH WEIGHTS

In this experiment, we study the effects of branch weights on the branch accuracy

and the accuracy-speed trade-off profile of a BranchyNet. We use an AlexNet-style

network with 3 branches, as shown in Figure 3.5. The last exit branch is part of the

original network (main branch). We train the main branch before the two early-exit

branches are added. The main branch has the accuracy of 87.74%. We compare 3 dif-

ferent weighting schemes: 1) equal weighting (w1 = 0.33,w2 = 0.33,w3 = 0.33), 2)

exponential weighting with α = 0.9 (w1 = 0.01,w2 = 0.09,w3 = 0.90) and 3) exponen-

tial weighting with α = 0.1 (w1 = 0.81,w2 = 0.09,w3 = 0.1). Each scheme is trained

for 50 epochs.

In terms of individual branch accuracy, equal weighting does the best for this net-

work, with each branch having an accuracy of 43.26%, 75.11%, and 87.57%, respec-
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Figure 3.5:AlexNet with 3 branches. The number in parenthesis is the number of filters for
Conv2d layer or the number of hidden units for Linear layer.

tively. Exponential weighting with α = 0.9 results in each branch having an accuracy

of 22.68%, 71.36%, and 87.81%, respectively. Exponential weighting with α = 0.1 re-

sults in each branch having the accuracy of 32.52%, 65.95%, and 87.45%, respectively.

With exponential weighting, one can emphasize on the earlier branch or the later

branch. On one hand, the 2nd branch of α = 0.9 does better than the 2nd branch of

α = 0.1. On the other hand, the 1st branch of α = 0.1 does better than the 1st branch

of α = 0.9.

The results comparing the accuracy-speed trade-off profiles of the three weighting

schemes are shown in Figure 3.6. Since the 1st branch accuracy of the equal weighting

scheme is higher than others, it has the highest accuracy of the three schemes.
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Figure 3.6:Accuracy-speed trade-off profile of BranchyNet trained with different branch
weighting schemes.

From experimenting with the weight settings, we observe the following:

• Each branch weight should not be set too low. Otherwise, the gradient will

vanish and the network weights are not updated.

• Branches with higher weights tend to converge faster.

• If the branch weights are large enough, varying the branch weights only affects

the convergence time and does not affect the accuracy much.

• Outputs of the higher branches rely on the lower layers which are affected by

backpropagation from lower branches. Giving higher weights to lower branch

usually results in faster convergence, as lower layers are stable first and it is

therefore easier for the higher branches to build on top of stable lower layers.
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Figure 3.7:Accuracy-speed trade-off profile of the two exit criteria: confidence and entropy.

3.5.2 COMPARING EXIT CRITERIA

In this experiment, we compare the two exit criteria: confidence and entropy. We

use an AlexNet-style network with 3 branches (a main branch and two early-exit

branches), as shown in Figure 3.5.

Figure 3.7 compares the accuracy-speed trade-off profile of the two exit criteria. We

see here that the confidence exit criterion performs better than the entropy exit crite-

rion for this network since the confidence exit criterion achieves higher accuracy for

less time than the entropy exit criterion achieves.
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3.5.3 EARLY EXITS WITH BRANCHYNET

In this experiment, we demonstrate the effectiveness of BranchyNet on a DenseNet-

style [27] network with 121 layers and 4 branches. Added branches are shown in Fig-

ure 3.8. The first branch consists of a convolutional layer with 32 filters and a linear

layer, and is located at layer 14. The second branch consists of a convolutional layer

with 64 filters and a linear layer, and is located at layer 39. The third branch consists

of a convolutional layer with 256 filters and a linear layer, and is located at layer 88.

The last branch is part of the original network.

Conv2d(32) Linear(10)

Conv2d(64) Linear(10)

Conv2d(256) Linear(10)

Figure 3.8: 3 early-exit branches added to DenseNet-121. The first early-exit branch (top) is
located at layer 14. The second early-exit branch (middle) is located at layer 39. The third
early-exit branch (bottom) is located at layer 88.

Figure 3.9 shows the accuracy-speed trade-off profile of this BranchyNet at various

threshold settings running on a GPU. We see that BranchyNet achieves higher accu-

racy at certain settings and faster inference time. At the best accuracy setting, BranchyNet

gains 3x speed up and slightly higher accuracy over the original network.

50



2500 5000 7500 10000 12500 15000 17500 20000

Avg. inference time per sample (µs)

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

A
cc
u
ra
cy

Figure 3.9:GPU performance results for BranchyNet when applied to DenseNet-121 [27].
The original network accuracy and runtime are shown as the star. Each dot denotes different
combinations of entropy thresholds for the branch exit points

3.6 DISCUSSION

In this section, we discuss why early exit works and how one starts augmenting a

DNNmodel with early exit branches. We also discuss the regularization benefit of

BranchyNet and how it can help with vanishing gradient issue when training deep

neural networks.

3.6.1 WHY DOES EARLY EXIT WORK?

For a classification problem, we seek to learn the boundaries between different classes

of the samples. The required complexity of the boundaries is tied to the difficulty of
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the problem. When we use deep neural networks (DNNs) to solve the classification

problem, the complexity of the boundaries able to be learned by the DNNs increases

as the number of layers of the DNNs increases.

To understand how early exit works, we split the problem into easy and hard cases.

The easy case includes only the samples that are far away from the class boundaries

(easy samples) while the hard case includes the rest of the samples that are close to

the class boundaries (hard samples).

On one hand, the easy case only needs simple boundaries between classes in order

to classify its samples properly. Only a small number of the DNNs’ layers is needed

to learn these simple boundaries; thus, these easy samples can be exited at the earlier

layers of the DNNs. On the other hand, the hard case requires more complex bound-

aries between classes in order to classify its samples properly. These complex bound-

aries need the full expressiveness of all the DNNs’ layers; thus, these hard samples

are exited at the later layers of the DNNs.

3.6.2 DESIGNING BRANCHYNET

Different branch placements enable different speed and accuracy trade-off profiles.

Figure 3.10 compares the trade-off profile of a BranchyNet with two and three branches.

Here, we discuss some general guidance when designing a BranchyNet.
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In general, the lower the location of the branch, the faster and less accurate the branch

becomes. Conversely, the higher the location of the branch, the slower and more accu-

rate the branch becomes.
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Figure 3.10:Accuracy vs. speed trade-off profile of BranchyNet with two and three branches.
With three branches, there are wider ranges of choices of accuracy and inference time.

In designing the number of branches, there should not be too many branches since

each branch adds additional processing time to a sample if the branch cannot exit the

sample early.

In addition, branches should not be placed too close to each other, since the features

that the branches learn will be too similar. Generally, a sample that cannot exit from

an earlier branch will not be able to exit from closely placed later branch either. Thus,

this closely placed branch will incur additional processing time without early exit
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benefits.

The accuracy of the trade-off profile is lower bounded by the first early exit point and

the speed of the trade-off profile is upper bounded by the first early exit point. There-

fore, designing the first early-exit branch is important since it defines the bound of the

trade-off profile.

We can state general guidelines for designing a BranchyNet:

• Add first branch with 1 layer at the lowest layer of the model.

• Add layers to your first branch or move the branch up until the desired accu-

racy lower bound and speed upper bound of the trade-off profile is reached.

• Experiment with adding additional branches until the desired trade-off profile

is reached.

3.6.3 REGULARIZATION AND VANISHING GRADIENTS

Beyond the speed up benefits by BranchyNet, training the classifiers at these exit

branches helps with network regularization and the mitigation of vanishing gradi-

ents in backpropagation. For the former, branches will provide regularization on the

main branch (baseline network) and other branches, and vice versa. For the latter, a

relatively shallower branch at a lower layer will provide more immediate gradient

signal in backpropagation, resulting in discriminative features in lower layers of the
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main branch, thus improving its convergence.

3.7 RELATED WORKS

Due to the computational costs of deep networks, improving the efficiency of feed-

forward inference has been heavily studied. Two such approaches are network com-

pression and implementation optimization. Network compression schemes aim to

reduce the the total number of model parameters of a deep network and thus reduce

the amount of computation required to perform inference. Bucilua et al. (2006) pro-

posed a method of compressing a deep network into a smaller network that achieves

a slightly reduced level of accuracy by retraining a smaller network on synthetic data

generated from a deep network [28]. More recently, Han et al. (2015) have proposed

a pruning approach that removes network connections with small contributions [29].

However, while pruning approaches can significantly reduce the number of model

parameters in each layer, converting that reduction into a significant speedup is dif-

ficult using standard GPU implementations due to the lack of high degrees of ex-

ploitable regularity and computation intensity in the resulting sparse connection

structure [30]. Kim et al. (2015) use a Tucker decomposition (a tensor extension of

SVD) to extract shared information between convolutional layers and perform rank

selection [31]. This approach reduces the number of network parameters, making the

network more compact, at the cost of a small amount of accuracy loss. These network
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compression methods are orthogonal to the BranchyNet approach, and could poten-

tially be used in conjunction to improve inference efficiency further.

Implementation optimization approaches reduce the runtime of inference by making

the computation algorithmically faster. Vanhoucke et al. (2011) explored code opti-

mizations to speed up the execution of convolutional neural networks (CNNs) on

CPUs [32]. Mathieu et al. (2013) showed that convolution using FFT can be used to

speed up training and inference for CNNs [33]. Recently, Lavin et al. (2015) have in-

troduced faster algorithms specifically for 3x3 convolutional filters (which are used

extensively in VGGNet and ResNet) [34]. In contrast, BranchyNet makes modifica-

tions to the network structure to improve inference efficiency.

Deeper and larger models are complex and tend to overfit the data. Dropout [23], L1

and L2 regularization and many other techniques have been used to regularize the

network and prevent overfitting. Additionally, Szegedy et al. (2015) introduced the

concept of adding softmax branches in the middle layers of their inception module

within deep networks as a way to regularize the main network [16]. While also pro-

viding similar regularization functionalities, BranchyNet has a new goal of allowing

early exits for test samples that can already be classified with high confidence.

One main challenge with (very) deep neural networks is the vanishing gradient prob-

lem. Several works have introduced ideas to mitigate this issue, including normalized

network initialization [35, 36] and intermediate normalization layers [22]. Recently,
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new approaches such as Highway Networks [37], ResNet [17], and Deep Networks

with Stochastic Depth [38] have been studied. The main idea is to add skip (short-

cut) connections in between layers. This skip connection is an identity function that

helps propagate the gradients in the backpropagation step of neural network train-

ing.

Panda et al. [39] propose Conditional Deep Learning (CDL) by iteratively adding

linear classifiers to each convolutional layer, starting with the first layer, and moni-

toring the output to decide whether a sample can be exited early. BranchyNet allows

for more general branch network structures with additional layers at each exit point,

while CDL only uses a cascade of linear classifiers, one for each convolutional layer.

In addition, CDL does not jointly train the classifier with the original network. We

observed that jointly training the branch with the original network significantly im-

proves the performance of the overall architecture when compared to CDL.

3.8 RELEVANCE WITHIN IDN

IDN can take advantage of the early-exits of BranchyNet in order to optimize infer-

ence efficiency and speed. Such early exit augmentation of a neural network allows

for a flexible deployment of deep learning models on a distributed peer-to-peer (p2p)

network. A model augmented with early-exit branches can exit early, reducing the

amount of computation and thus inference time.
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3.9 CONCLUSION

BranchyNet relaxes the rigid structure of the neural network by allowing early ex-

its for highly confident predictions. We have shown in this chapter that BranchyNet

helps reduce the inference time while maintaining a similar accuracy level.

The main contributions in this chapter include:

1. Introducing a new neural network architecture concept, called BranchyNet.

2. Joint training of BranchyNet branches.

3. Confidence and entropy exit criteria for classification tasks for fast inference

using BranchyNet.

In this chapter, we have discussed BranchyNet which enables faster response by al-

lowing DNN computation to exit early. In the next few chapters, we will use this con-

cept of early termination to accelerate DNN inference in various settings. In the next

chapter (Chapter 4), we will discuss a mapping of DNN models onto a distributed

computing hierarchy of end devices, other nearby devices, edges, and clouds, allow-

ing DNNmodels to scale horizontally and vertically across computing hierarchies.

BranchyNet can be used in this distributed setting by placing exit branches at physi-

cally distinguishable points in the network. For example, we can place Exit 1 on local

devices, Exit 2 on network nodes, Exit 3 on edge devices, and the entire processing of

the remaining model on the cloud. Samples with higher confidence exit early at the
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local nodes, while only lower confident samples are sent to other devices to be pro-

cessed higher up in the hierarchy. This helps reduces end-to-end inference latency of

the deployed neural network overall.
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4
Distributed Deep Neural Networks

The current state of deep learning inference systems on end devices leaves an unsat-

isfactory choice: either (1) offload input sensor data to complex, large deep learning

models in the cloud, with the associated server costs, communication costs, latency

issues, and privacy concerns, or (2) perform classification directly on the end device

using small, simple deep learning models, leading to reduced system accuracy and
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increased end-device power usage.

To address these shortcomings, it is natural to consider the use of a distributed com-

puting approach that allows DNNs to scale beyond a single device. Hierarchically

distributed computing structures consisting of the cloud, the edge, and end devices (see,

e.g., [40, 41]) have inherent advantages, such as supporting coordinated central and lo-

cal decisions, and providing system scalability, for large-scale intelligent tasks based

on geographically distributed Internet of Things (IoT) devices.

An example of one such distributed approach is to combine a small model (less num-

ber of parameters) on end devices and a larger model (more number of parameters)

in the cloud. The small model at an end device can quickly perform initial feature

extraction, and also classification if the model is confident. Otherwise, the end de-

vice can fall back to the larger model in the cloud, which performs further processing

and final classification. This approach has the benefit of low communication costs

compared to always offloading input samples to the cloud, and can achieve higher

accuracy compared to a simple model on device only. Additionally, since a summary

based on extracted features from the end device model are sent instead of raw sensor

data, the system could provide better privacy protection.

This kind of distributed approach spread over a computing hierarchy is challenging

for a number of reasons, including:
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• End devices such as embedded sensor nodes often have limited memory and

battery budgets. This makes it an issue to fit models on the devices that meet

the required accuracy and energy constraints.

• A straightforward partitioning of neural network (NN) models over a comput-

ing hierarchy may incur prohibitively large communication costs in transfer-

ring intermediate results between computation nodes.

• Incorporating geographically distributed end devices is generally beyond the

scope of DNN literature. When multiple sensor inputs on different end devices

are used, they need to be aggregated together for a single classification objec-

tive. A trained NN will need to support such sensor fusion.

• Multiple models at the cloud, the edge and the device need to be learned jointly

to allow coordinated decision making. Computation already performed on

end device models should be useful for further processing with edge or cloud

models.

• Usual layer-by-layer processing of a DNN from the NN’s input layer all the

way to the NN’s output layer does not directly provide a mechanism for local

and fast inference at earlier points in the neural networks (e.g., end devices).

• A balance is needed between the accuracy of a model (with the associated

model size) at a given distributed computing layer and the cost of communi-

cating to the layer above it. The solution must have reasonably good lower NN

layers on the end devices capable of accurate local classification for some input
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samples while also providing useful features for classification in the cloud for

other input samples.

To address these concerns under the same optimization framework, it is desirable that

a system could train a single end-to-end deep learning model and partition it between

end devices, the edges, and the cloud.

To this end, we propose distributed deep neural networks (DDNNs) over distributed

computing hierarchies, consisting of geographically distributed cloud, edge, and end

devices. In implementing a DDNN, we design and map sections of a single DNN

onto a distributed computing hierarchy, considering communication limitations be-

tween devices and computation limitations of each device. By jointly training these

sections, we show that DDNNs can effectively address the aforementioned challenges.

Specifically, while being able to accommodate inference of a DNN in the cloud, a

DDNN allows fast and localized inference using some shallow portions of the DNN

at the edge and end devices. Moreover, via distributed computing, DDNNs naturally

enhance sensor fusion, data privacy, and system fault tolerance for DNN applications.

When supported by a scalable distributed computing hierarchy, a DDNN can scale up

in neural network size and scale out in geographical span.

DDNN leverages BranchyNet (see Section 3) which allows early exit points to be

placed in a DNN. Samples can be classified and exited locally when the system is

confident, and offloaded to the edge and the cloud when additional processing is re-
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quired. By training DDNN end-to-end, the network optimally configures lower NN

layers to support local inference at end devices, and higher NN layers in the cloud to

improve overall classification accuracy of the system. As a proof of concept, we show

that a DDNN can exploit geographical diversity of sensors (on a multi-view multi-

camera dataset) in sensor fusion to improve recognition accuracy.

The contributions of this chapter include

1. A novel DDNN framework and its implementation that maps sections of a

DNN onto a distributed computing hierarchy. System constraints such as de-

vice memory and limited communication can be designed into the structure

of the DNN in the DDNN framework. This helps simplify the implementation

and deployment of an intelligence distributed system.

2. A joint training method that minimizes communication and resource usage for

devices and maximizes the usefulness of extracted features that are utilized

in the cloud, while allowing low-latency classification via early exit for a high

percentage of input samples.

3. Aggregation schemes that allow automatic sensor fusion of multiple sensor

inputs to improve the overall performance (accuracy and fault tolerance) of the

system.
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4.1 ARCHITECTURE

DDNNmaps a trained DNN onto heterogeneous physical devices distributed locally,

at the edge, and in the cloud. Since DDNN relies on a jointly trained DNN framework

at all parts in the neural network, for both training and inference, many of the diffi-

cult engineering decisions are greatly simplified. Figure 4.1 provides an overview of

the DDNN architecture. The configurations presented show how DDNN can scale the

inference computation across different physical devices. The cloud-based DDNN in

(a) can be viewed as the standard DNN running in the cloud as described in the intro-

duction. In this case, sensor input captured on end devices is sent to the cloud in orig-

inal format (raw input format), where all layers of DNN inference is performed.

We can extend this model to include a single end device, as shown in (b), by perform-

ing a portion of the DNN inference computation on the device rather than sending

the raw input to the cloud. Using an exit point after device inference, we may classify

those samples that the local network is confident about, without sending any infor-

mation to the cloud. For more difficult cases, the intermediate DNN output (up to the

local exit) is sent to the cloud, where further inference is performed using additional

NN layers and a final classification decision is made. Note that the intermediate out-

put can be designed to be much smaller than the sensor input (e.g., a raw image from

a video camera), and therefore may drastically reduce the network communication
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required between the end device and the cloud. The details of how communication is

considered in the network is discussed in section 4.6.1.

DDNN can also be extended to multiple end devices which may be geographically

distributed, shown in (c), that work together to make a classification decision. Here,

each end device performs local computation as in (b), but their output is aggregated

together before the local exit point. Since the entire DDNN is jointly trained across all

end devices and exit points, the network automatically aggregates the input with the

objective of achieving maximum classification accuracy. This automatic data fusion

(sensor fusion) simplifies runtime inference by avoiding the necessity of manually

combining output from multiple end devices. We will discuss the design of feature

aggregation in detail in section 4.2. As before, if the local exit point is not confident

about the sample, each end device sends intermediate output to the cloud, where

another round of feature aggregation is performed before making a final classification

decision.

DDNN scales vertically as well, by using an edge layer in the distributed computing

hierarchy between the end devices and cloud, shown in (d) and (e). The edge acts

similarly to the cloud, by taking output from the end devices, performing aggrega-

tion and classification if possible, and forwarding its own intermediate output to the

cloud if more processing is needed. In this way, DDNN naturally adjusts the network

communication and response time of the system on a per sample basis. Samples that
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(a) Cloud-based DDN
(b) DDNN over cloud and device
(c) DDNN over cloud and geographically

distributed devices

(d) DDDN over cloud, edge and device
(e) DDNN over cloud, edge and 
geographically distributed devices
(f) DDDN over cloud and geographically 
distributed edges and devices

Figure 4.1:Overview of the DDNN architecture. The vertical lines represent the DNN
pipeline, which connects the horizontal bars (NN layers). (a) is the standard DNN (processed
entirely in the cloud), (b) introduces end devices and a local exit point that may classify sam-
ples before the cloud, (c) extends (b) by adding multiple end devices which are aggregated
together for classification, (d) and (e) extend (b) and (c) by adding edge layers between the
cloud and end devices, and (f) shows how the edge can also be distributed like the end de-
vices.

can be correctly classified locally are exited without any communication to the edge

or cloud. Samples that require more feature extraction than can be provided locally

are sent to the edge, and eventually to the cloud if necessary. Finally, DDNNs can also

scale geographically across the edge layer as well, which is shown in (f).

4.2 AGGREGATION METHODS

In DDNN configurations with multiple end devices (e.g., (c), (e), and (f) in Figure 4.1),

the output from each end device must be aggregated in order to perform classifica-
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tion. We present several different schemes for aggregating the output as shown in

Figure 4.2.
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Figure 4.2:Different types of aggregation methods: Max pooling (MP), Average pooling (AP),
and Concatenation (CC).

Each aggregation method makes different assumptions about how the device output

should be combined, and therefore can result in different system accuracy. We present

three approaches:

• Max pooling (MP). MP aggregates the input vectors by taking the max of each

component. Mathematically, max pooling can be written as

v̂j = max
1≤i≤n

V ji,
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where n is the number of inputs and V ji is the j-th component of the input vec-

tor and v̂j is the j-th component of the resulting output vector. Max pooling

only keeps the strongest signal of each component. This aggregation method is

usually good for retaining strongest high-level features.

• Average pooling (AP). AP aggregates the input vectors by taking the average of

each component. This is written as

v̂j =
n

∑
i=1

V ji

n
,

where n is the number of inputs and V ji is the j-th component of the input vec-

tor and v̂j is the j-th component of the resulting output vector. Average pooling

may help reduce noise in inputs presented in some end devices.

• Concatenation (CC). CC simply concatenates the input vectors together. This

aggregation method is usually good for retaining all low-level features. CC re-

tains all information which is useful for higher layers (e.g., the cloud) that can

use the full information to extract higher level features. Note that this expands

the dimension of the resulting vector. To map this vector back to the same num-

ber of dimensions as input vectors, once can add an additional linear layer.

We analyze these aggregation methods in Section 4.5.4.
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4.3 TRAINING

While DDNN inference is distributed over the distributed computing hierarchy, the

DDNN system can be trained on a single powerful server or in the cloud. One aspect

of DDNN that is different from most conventional DNN pipelines is the use of mul-

tiple exit points, as shown in Figure 4.1. At training time, the loss from each exit is

combined during back-propagation so that the entire network can be jointly trained,

and each exit point achieves good accuracy relative to its depth. To train DDNN, we

follow joint training as described in Section 3.2 of Chapter 3.

4.4 INFERENCE

Inference in DDNN is performed in several stages using multiple preconfigured exit

thresholds T (one element Tn at each exit point n) as a measure of confidence in the

prediction of the sample. One way to define T is by searching over the ranges of T on

a test set for the T that gives the best accuracy within a desired inference time.

DDNN inference follows the procedure described in Section 3.3 of Chapter 3. In this

work, we use normalized entropy η as the exit criterion: at a given exit point n, if the

predictor is not confident in the result (i.e., η > Tn), the system falls back to a higher

exit point in the hierarchy until the last exit is reached which always performs classifi-

cation.
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We now provide an example of the inference procedure for a DDNN which has multi-

ple end devices and three exit points (configuration (e) in Figure 4.1):

1. Each end device first sends summary information to a local aggregator.

2. The local aggregator determines if the combined summary information is suffi-

cient for accurate classification.

3. If so, the sample is classified (exited).

4. If not, each device sends more detailed information to the edge in order to per-

form further processing for classification.

5. If the edge believes it can correctly classify the sample it does so and no infor-

mation is sent to the cloud.

6. Otherwise, the edge forwards intermediate computation to the cloud, which

makes the final classification.

4.5 RESULTS

In this section, we evaluate DDNN on a scenario with multiple end devices and demon-

strate the following characteristics of the approach:

• DDNNs allow multiple end devices to work collaboratively in order to im-

prove accuracy at both the local and cloud exit points.

• DDNNs seamlessly extend the capability of end devices by offloading difficult
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samples to the cloud.

• DDNNs have built-in fault tolerance. We illustrate that missing any single end

device does not dramatically affect the accuracy of the system. Additionally, we

show how performance gradually degrades as more end devices are lost.

• DDNNs reduce communication costs for end devices compared to a traditional

system that offloads all input sensor data to the cloud.

We first introduce the DDNN architecture and dataset used in our evaluation. Through-

out this section, we use various accuracy measures as defined in Section 4.5.3 and

communication cost as defined in Section 4.6.1.

4.5.1 DDNN EVALUATION ARCHITECTURE

To accommodate the small memory size of the end devices, we use Binary Neural

Network blocks [42]. Here, a block consists of one or more conventional NN layers.

We make use of two types of blocks presented in [43]: the fused binary fully con-

nected (FC) block and fused binary convolution-pool (ConvP) block as shown in

Figure 4.3. FC blocks each consist of a fully connected layer with m nodes for some

m, batch normalization and binary activation. ConvP blocks each consist of a con-

volutional layer with f filters for some f , a pooling layer and batch normalization,

and binary activation. A convolution layer has a kernel of size 3x3 with stride 1 and

padding 1. A pooling layer has a kernel of size 3x3 with stride 2 and padding 1.
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For our experiments, we use version (c) from Figure 4.1, with six end devices. The

system presented can be generalized to a more elaborated structure which includes

an edge layer, as shown in (d), (e) or (f) of Figure 4.1. Figure 4.4 depicts a detailed

view of the DDNN system used in our experiments. In this system, we have six end

devices shown in red, a local aggregator, and a cloud aggregator. During training,

output from each device is aggregated together at each exit point using one of the

aggregation schemes described in Section 4.2. We provide detailed analysis on the

impact of aggregation schemes at both the local and cloud exit points in Section 4.5.4.

All DDNNs in our experiments are trained with Adam [18] using the following hyper-

parameter settings: α of 0.001, β1 of 0.9, β2 of 0.999, and ϵ of 10−8. We train each DDNN

for 100 epochs. When training the DDNN, we use equal weights for the local and

cloud exit points. We explored heavily weighting both the local exit and the cloud

exit, but neither weighting scheme significantly changed the accuracy of the system.

This indicates that this solution to the dataset and the problem we are exploring is not

sensitive to the weights, but this may not be true for other datasets and problems. For

example, in GoogleNet [16], a less than 1% difference in accuracy was observed based

on varying the values of the weight parameters of auxiliary branches.
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Figure 4.3: Fused binary blocks consisting of one or more standard NN layers. The fused bi-
nary fully connected (FC) block is a fully connected layer with n nodes, batch normalization
and binary activation. The fused binary convolution-pool (ConvP) block consists of a convo-
lutional layer with f filters, a pooling layer, batch normalization and binary activation. The
convolution layer has a kernel of size 3x3 with stride 1 and padding 1. The pooling layer has
a kernel of size 3x3 with stride 2 and padding 1. These blocks are used as they are presented
in [43].

4.5.2 MULTI-VIEW MULTI-CAMERA DATASET

We evaluate the proposed DDNN framework on a multi-view multi-camera (MVMC)

dataset [44]. This dataset consists of images acquired at the same time from six cam-

eras placed at different locations facing the same general area. For the purpose of our

evaluation, we assume that each camera is attached to an end device, which can trans-

mit the captured images over a bandwidth-constraint wireless network to a physical

endpoint connected to the cloud.
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Figure 4.4: The DDNN architecture used in the system evaluation. The FC and ConvP blocks
in red and blue correspond to layers run on end devices and the cloud respectively. The
dashed orange boxes represent the end devices and show which blocks of the DDNN are
mapped onto each device. The local aggregator shown in red combines the exit output (a
short vector with length equal to the number of classes) from each end device in order to de-
termine if local classification for the given input sample can be performed accurately. If the
local exit is not confident (i.e. η(x) > T), the activation output after the last convolutional
layer from each end device is sent to the cloud aggregator (shown in blue), which aggregates
the input from each device, performs further NN layer processing, and outputs a final classifi-
cation result.

The dataset provides object bounding box annotations. Multiple bounding boxes may

exist in a single image, each of which corresponds to a different object in the frame. In

preparing the dataset, for each bounding box, we extract an image, and manually syn-

chronize* the same object across the multiple devices that the object appears in for the

given frame. Examples of the extracted images are shown in Figure 4.5. Each row cor-

responds to a single sample used for classification. We resize each extracted sample

*In practical object tracking systems, this synchronization step is typically automated [45].
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to a 32× 32 RGB pixel image. For each device that a given object does not appear in,

we use a blank image and assign a label of -1, meaning that the object is not present

in the frame. Labels 0, 1, and 2 correspond to car, bus and person, respectively. Ob-

jects that are not present in a frame (i.e., label of -1) are not used during training. We

split the dataset into 680 training samples and 171 testing samples. Figure 4.6 shows

the distribution of samples at each device. Due to the imbalanced number of class

samples in the dataset, the individual accuracy of each end device differs widely, as

shown by the “Individual" curve of Figure 4.8. A full description of the training pro-

cess for the individual NN models is provided in Section 4.5.6.

Device 1 Device 2 Device 3 Device 4 Device 5 Device 6

Person

Bus

Car

Figure 4.5: Example images of three objects (person, bus, car) from the multi-view multi-
camera dataset. The six devices (each with their own camera) capture the same object from
different orientations. An all grey image denotes that the object is not present in the frame.
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Figure 4.6: The distribution of class samples for each end device in the multi-view multi-
camera dataset.

4.5.3 ACCURACY MEASURES

Throughout this section, we use different accuracy measures for the various exit

points in a DDNN as follows:

• Local Accuracy is the accuracy when exiting 100% of samples at the local exit of

a DDNN.

• Edge Accuracy is the accuracy when exiting 100% of samples at the edge exit of

a DDNN.

• Cloud Accuracy is the accuracy when exiting 100% of samples at the cloud exit

of a DDNN.
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• Overall Accuracy is the accuracy when exiting some percentage of samples at

each exit point in the hierarchy. The samples classified at each exit point n are

determined by the entropy threshold Tn for that exit n. The impact of T on clas-

sification accuracy and communication cost is discussed in Section 4.5.5.

• Individual Accuracy is the accuracy of an end device NN model trained sepa-

rately from DDNN. The NN model for each end device consists of a ConvP

block followed by a FC block (a single end device portion as shown in Fig-

ure 4.4). In the evaluation, individual accuracy for each device is computed

by classifying all samples using the individual NN model and not relying on

the local or cloud exit points of a DDNN.

4.5.4 IMPACT OF AGGREGATION SCHEMES

In order to perform classification on the input from multiple end devices, we must

aggregate the information from each end device. We consider three aggregation meth-

ods (max pooling, average pooling, and concatenation) outlined in Section 4.2, at both

the local and cloud exit points. The accuracy of different aggregation schemes are

shown in Table 4.1. The first two letters identify the local aggregation scheme and the

last two letters identify the scheme used by the cloud aggregator. For example, MP-

CC means the local aggregator uses max-pooling and the cloud uses concatenation.

Recall that each input to the local aggregator is a floating-point vector of length equal
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Table 4.1:Accuracy of aggregation schemes. The first two letters identify the local aggrega-
tion scheme, and the last two letters identify the cloud aggregation scheme. For example,
MP-CC means the local aggregator uses max-pooling and the cloud aggregator uses concate-
nation. The accuracy of each exit point (either local or cloud) is computed using the entire test
set. In practice, we will exit a portion of samples locally based on the entropy threshold T and
send the remaining samples in the cloud. Due to its high performance, MP-CC is used in the
remaining experiments in this chapter.

Schemes Local Acc. (%) Cloud Acc. (%)
MP-MP 95 91
MP-CC 98 98
AP-AP 86 98
AP-CC 75 96
CC-CC 85 94
AP-MP 88 93
MP-AP 89 97
CC-MP 77 87
CC-AP 80 94

to the number of classes (corresponding to the output from the final FC block for a

single device as shown in Figure 4.4) and the device output sent to the cloud aggrega-

tor is the output from the final ConvP block.

The MP-MP scheme has good classification accuracy for the local aggregator but poor

performance in the cloud. On one hand, the elements in the vectors at the local ag-

gregator correspond to the same features (e.g., the first item is the likelihood that the

input corresponds to that class); therefore, max pooling corresponds to taking the

max response for each class over all end devices, and shows good performance. On

the other hand, since the information sent from the end devices to the cloud is the ac-

tivation output from the filters at each device, which corresponds to different visual

features in the input from the viewpoint of each individual end device, max pooling
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these features does not perform well.

Comparing the MP-MP and MP-CC schemes, although both use MP for local aggre-

gators, MP-CC increases the accuracy of the local classifier. In the training phrase,

during backpropagation the MP-MP scheme only passes gradients through a device

that gives the highest response, while the MP-CC scheme passes gradients through

all devices. Therefore, using CC aggregator in the cloud allows all devices to learn

better filters (filter weights) by giving a stronger response to the local MP aggregator

to use during training with backpropagation, resulting in a better classification accu-

racy.

The CC-CC scheme shows an opposite trend where the local accuracy is poor while

the cloud accuracy is high. Concatenating the local information (instead of a pooling

scheme), does not enforce any relationship between output for the same class on mul-

tiple devices, and therefore performs worse. Concatenating the output for the cloud

aggregator maintains the most information for NN layer processing in the cloud and

therefore performs well.

Generally, for the local aggregator, average pooling performs worse than max pool-

ing. This is because some of the end devices do not have the object present in the

given frame. Average pooling take the average of all outputs from end devices; this

degrades the strong outputs from end devices in which the object is present. Based on

these results, we use the MP-CC aggregation scheme for the rest of this chapter unless
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mentioned otherwise.

4.5.5 ENTROPY THRESHOLD

The entropy threshold for an exit point corresponds to the level of information that

is required in order to exit a sample. Setting the threshold of 0 would mean that no

samples will exit, and setting it at 1 would mean that all samples exit at that point.

Figure 4.7 shows the relationship between the threshold T at the local aggregator and

the overall accuracy of the DDNN. We observe that as more samples are exited at the

local exit, the overall accuracy decreases. This is expected, as the accuracy of the local

exit is typically lower than that of the cloud exit.

We need to set the threshold appropriately to achieve a balance between the commu-

nication cost (as defined in Section 4.6.1), latency, and accuracy of the system. In this

case, we see that setting the threshold to 0.8 results in the best overall accuracy with

significantly reduced communication, i.e., 97% accuracy while exiting 60.82% of sam-

ples locally as shown in Table 4.2 where in addition to local exit (%) and overall ac-

curacy (%), communication cost in bytes is given. We set T = 0.8 for the remaining

experiments in the system evaluation, unless noted otherwise.

The local classifier may do better than the cloud for certain samples where low-level

features are more robust in classification than higher-level features. By setting an ap-
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propriate threshold T, we can improve overall accuracy. In this experiment, T = 0.8

corresponds to that sweet spot where some samples that are incorrectly classified by

the cloud classifier can actually be correctly classified by the local classifier. Such a

threshold indicates the optimal point where both local and cloud classifier work best

together.

Table 4.2: Effects of different exit threshold (T) settings for the local exit. T = 0.8 is used in the
remaining experiments.

T Local Exit (%) Overall Acc. (%) Comm. (B)
0.1 0.00 96 140
0.3 0.58 96 139
0.5 1.75 96 138
0.6 2.92 96 136
0.7 22.81 96 111
0.8 60.82 97 62
0.9 83.04 96 34
1.0 100.00 92 12

4.5.6 IMPACT OF SCALING ACROSS END DEVICES

In order to scale DDNNs across multiple end devices, we distribute the lower sec-

tions of Figure 4.4, shown in red, over the corresponding devices, outlined in orange.

Figure 4.8 shows how the accuracy of the system improves as additional end devices

(each with its attached input cameras) are added. The devices are added in order

sorted by their individual accuracy from worst to best (i.e., the device with the low-

est accuracy first and the device with the highest accuracy last).
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Figure 4.7:Overall accuracy of the system as the entropy threshold for the local exit is varied
from 0 to 1. For this experiment, 4 filters are used in the ConvP blocks on the end devices.

The first observation is the large variation in the individual accuracies of the end de-

vices, as noted earlier. Due to the nature of the dataset, some devices are naturally bet-

ter positioned and generally have clearer observations of the objects. Looking at the

viewpoints of each camera in Figure 4.5, we see that the selected examples for Device

6 have clear frontal views of each object. This viewpoint gives Device 6 the highest

individual accuracy at over 70%. By comparison, Device 2 has the lowest individual

accuracy at under 40%.

The “Local” and “Cloud” curves show the accuracy of the system at each exit point

when all samples are exited at that point. We observe that the cloud exit point out-

performs the local exit point at all numbers of end devices. The gap is widest when
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there are fewer devices. This suggests that the additional NN layers in the cloud sig-

nificantly improve the final classification result when the problem is more difficult

due to limited labeled training data for an end device. Once all six end devices are

added, both the local and cloud aggregators have high accuracy. The “Overall” curve

represents the overall accuracy of the system when the threshold T for the local exit

point is set to 0.8. We see that this curve is roughly equivalent to exiting all samples

at the cloud (but at a much reduced communication cost as 60.82% of samples are ex-

ited locally). Generally, these results show that by combining multiple viewpoints, we

can increase the classification accuracy at both the local and cloud level by a substan-

tial margin when compared to the individual accuracy of any device. The resulting

accuracy of the DDNN system is superior to any individual device accuracy by over

20%. Moreover, we note that the 60.82% of samples which exit locally enjoy lowered

latency in response time.

4.5.7 IMPACT OF CLOUD OFFLOADING ON ACCURACY IMPROVEMENTS

DDNNs improve the overall accuracy of the system by offloading difficult samples

to the cloud, which perform further NN layer processing and final classification. Fig-

ure 4.9 shows the accuracy vs. communication costs (as defined in Section 4.6.1) of

the DDNN as the number of filters on the end devices increases. For all settings, the

NN layers stored on an end device require under 2 KB of memory. In this experiment,

84



Figure 4.8:Accuracy of the DDNN system as additional end devices are added. The accu-
racy of “Overall” is obtained by exiting a percentage of the samples locally and the rest in
the cloud. The accuracy of “Cloud” and “Local” are computed by exiting all samples at each
point, respectively. The end devices are ordered by their “Individual” classification accuracy,
sorted from worst to best.

we configure the local exit threshold T such that around 75% of samples are exited

locally and around 25% of samples are offloaded to the cloud. We see that DDNNs

achieve around a 5% improvement in accuracy compared to using just the local ag-

gregator. This demonstrates the advantage of offloading to the cloud even when

larger models (more filters) with improved local accuracy are used on the end de-

vices.
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Figure 4.9:Accuracy vs. communication cost (in bytes, as defined in Section 4.6.1) for increas-
ingly larger end device memory sizes that accommodate additional filters. We notice that
cloud offloading leads to improved accuracy.

4.5.8 FAULT TOLERANCE OF DDNNS

A key motivation for distributed systems is fault tolerance. Fault tolerance implies

that the system still works well even when some parts are broken. In order to test the

fault tolerance of DDNN, we simulate end device failures and look at the resulting

accuracy of the system. Figure 4.10 shows the accuracy of the system under the pres-

ence of individual device failures. Regardless of the device that is missing, the system

still achieves over a 95% overall classification accuracy. Specifically, even when the

device with the highest individual accuracy (Device 6) has failed, the overall accuracy

is reduced by only 3%. This suggests that for this dataset, the automatic fault toler-
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ance provided by DDNNmakes the system reliable even in the presence of device

failure.

We can also view Figure 4.8 from the perspective of providing fault tolerance for the

system. As we decrease the number of end devices from 6 to 4, we observe that the

overall accuracy of the system drops only 4%. This suggests that the system can also

be robust to multiple failing end devices.

Figure 4.10:Accuracy vs. device that fails. The impact on DDNN system accuracy when any
single end device has failed is minimal.

87



4.5.9 REDUCING COMMUNICATION COSTS

DDNNs significantly reduces the communication cost (as defined in Section 4.6.1)

of inference compared to the standard method of offloading raw sensor input to the

cloud. Sending a 32× 32 RGB pixel image (the input size of our dataset) to the cloud

costs 3,072 bytes per image sample. By comparison, as shown in Table 4.2, the largest

DDNNmodel used in our evaluation section requires only 140 bytes of communi-

cation per sample on average (an over 20x reduction in communication costs). This

communication reduction for an end device results from only transmitting class-label

related intermediate results to the local aggregator for all samples and binary-value

intermediate results to the cloud for samples that need additional NN layer process-

ing for better classification.

4.6 DISCUSSION

In this section, we discuss different aspects of DDNN, including communication costs

and provisioning for horizontal and vertical scaling.
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4.6.1 COMMUNICATION COST OF DDNN INFERENCE

The total communication cost for an end device with the local and cloud aggregator is

calculated as

c = 4× |C|+ (1− p)
f × o
8

(4.1)

where p is the percentage of samples exited locally, C is the set of all possible labels (3

in our experiments), f is the number of filters, and o is the output size of a single filter

for the final NN layer on the end-device. The constant 4 corresponds to the 4 bytes

that are used to represent a floating-point number and the constant 8 corresponds to

bits used to express a byte output. The first term assumes a single floating-point per

class, which conveys the probability that the sample to be transmitted from the end

device to the local aggregator belongs to this class. This step happens regardless of

whether the sample is exited locally or at a later exit point. The second term is the

communication between the end device and the cloud which happens (1− p) fraction

of the time, when the sample is exited in the cloud rather than locally.

4.6.2 PROVISIONING FOR HORIZONTAL AND VERTICAL SCALING

The evaluation in the previous section shows that DDNN is able to achieve high over-

all accuracy through provisioning the network to scale both horizontally, across end

devices, and vertically, over the network hierarchy. Specifically, we show that DDNN
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scales vertically, by exiting easier input samples locally for low-latency response and

offloading difficult samples to the cloud for high overall recognition accuracy, while

maintaining a small memory footprint on the end devices and incurring a low com-

munication cost. This result is not obvious, as we need sufficiently good feature repre-

sentations from the lower parts of the DNN (running on the end devices with limited

resources) in order for the upper parts of the neural network (running in the cloud)

to achieve high accuracy under the low communication cost constraint. Therefore,

we show in a positive way that the proposed method of joint training a single DNN

with multiple exit points at each part of the distributed hierarchy allows us to meet

this goal. That is, DDNN optimizes the lower parts of the DNN to create a sufficiently

good feature representations to support both samples exited locally and those pro-

cessed further in the cloud.

To meet the goal of horizontal scaling, we provide a principled way of joint training a

DNN with inputs from multiple devices through feature pooling via local and cloud

aggregators, and demonstrate that by aggregating features from each device we can

dramatically improve the accuracy of the system both at the local and cloud level. Fil-

ters on each device are automatically tuned to process the geographically unique in-

puts, and work together toward to the same overall objective leading to high overall

accuracy. Additionally, we show that DDNN provides built-in fault tolerance across

the end devices and is still able to achieve high accuracy in the presence of failed de-
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vices.

4.7 RELATED WORKS

The framework of a large-scale distributed computing hierarchy has assumed new

significance in the emerging era of Internet of Things (IoT). It is widely expected that

most of the data generated by the massive number of IoT devices must be processed

locally on the devices or at the edge, for otherwise the total amount of sensor data

for a centralized cloud would overwhelm the communication network bandwidth.

In addition, a distributed computing hierarchy offers opportunities for system scala-

bility, data security and privacy, as well as shorter response times (see, e.g., [41, 46]).

For example, in [46], a face recognition application shows a reduced response time is

achieved when a smartphone’s photos are proceeded by the edge (fog) as opposed to

the cloud. DDNN can systematically exploit the inherent advantages of a distributed

computing hierarchy for DNN applications and achieve similar benefits.

In DDNN, exit points are placed at physical boundaries (e.g., between the last neu-

ral network (NN) layer on an end device and the first NN layer in the next higher

layer of the distributed computing hierarchy such as the edge or the cloud). Input

samples that can already be classified early will exit locally, thereby achieving a low-

ered response latency and saving communication with the next physical boundary.

With similar objectives, SACT [47] allocates computation on a per region basis in an
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image, and exits each region independently when it is deemed to be of sufficient qual-

ity.

Current research on distributing deep neural networks is mainly focused on improv-

ing the runtime of training the neural network. In 2012, Dean et al. proposed DistBe-

lief, which maps large DNNs over thousands of CPU cores during training [48]. More

recently, several methods have been proposed to scale up DNN training across GPU

clusters [49, 50], which further reduces the runtime of network training. Note that

this form of distributing DNNs (over homogeneous computing units) is fundamen-

tally different from DDNN. DDNN proposes a way to train and perform feedforward

inference over deep networks that can be deployed over a distributed computing hier-

archy, rather than processed in parallel over bus-or-switch-connected CPUs or GPUs

in the cloud.

Federated Learning [51] enables distributed model training on a large corpus of de-

centralized data. Several variants and improvements of the original federated learn-

ing [52, 53, 54, 52, 55, 56] have been introduced in the recent years. While federated

learning focuses on training on a large corpus of decentralized data, DDNN focuses

on scaling DNN models across a distributed computing hierarchy. Both approaches

are orthogonal. DDNNmodels can also be trained using federated learning on a large

corpus of decentralized data.
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4.8 RELEVANCE WITHIN IDN

IDN can utilize the DDNN framework to scale DNN models for use with its peer-to-

peer (p2p) network. With DDNN, DNNmodels can be mapped onto distributed com-

puting hierarchies consisting of nearby peer devices, the edge, and the cloud on IDN,

enabling flexibility in terms of the responsiveness and the complexity of the DNN

models. The DDNN framework can be used to optimize DNN models mapped to

different nearby devices in the computing hierarchy, allowing DNNmodels to scale

beyond the limitations of a single device.

4.9 CONCLUSION

In this chapter, we present a novel distributed deep neural network architecture

(DDNN) that is distributed across computing hierarchies, consisting of the cloud, the

edge, and end devices. We demonstrate for a multi-view, multi-camera dataset that

DDNN scales vertically from a few NN layers on end devices or the edge to many

NN layers in the cloud, and scales horizontally across multiple end devices.

Building on top of BranchyNet presented in Chapter 3, DDNNs reduce end-to-end in-

ference time and the required communication compared to a standard cloud offload-

ing approach by exiting many samples at the local aggregator and sending a compact

binary feature representation to the cloud when additional processing is required. For
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our evaluation dataset, the communication cost of DDNN is reduced significantly

compared to offloading raw sensor input to a DNN in the cloud that performs all of

the inference computation.

The aggregation of information communicated from different devices is built into the

joint training of DDNN and is handled automatically at inference time. This approach

simplifies the implementation and deployment of distributed cloud offloading, and

automates sensor fusion and system fault tolerance. The results suggest that with our

DDNN framework, a single DNN properly trained can be mapped onto a distributed

computing hierarchy to meet the accuracy, communication, and latency requirements

of a target application while gaining inherent benefits associated with distributed

computing such as fault tolerance and privacy.

In this chapter, we have discussed how we can scale DNN models by distributing

the computation across computing hierarchies. In the next chapter (Chapter 5), we

will explore a way to make DNNmodels fault tolerant and more flexible to be run on

heterogeneous devices of different hardware.
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5
ParallelNet: Fault Tolerant Inference

via Independent Parallel DNNs

The Internet connects devices with different capabilities in terms of CPU/GPU power

and memory and different connectivity patterns. At different points in time, these
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devices will have spare resources available with which to perform additional com-

putation at little or no additional cost. In this chapter, we explore how a deep neural

network can be trained to run on these heterogeneous computing resources indepen-

dently in parallel, reducing inference time and increasing the fault tolerance of the

DNNmodels.

We present ParallelNet, a framework to adapt and train a deep neural network model

that can generate multiple models of various sizes. Each generated model can be ex-

ecuted independently in parallel on heterogeneous devices of different hardware.

The outputs of each generated model are then combined to form the final prediction.

When enough confidence of the prediction is accumulated, the rest of the computa-

tion is terminated.

The proposed framework works by multiplying each filter (in a convolutional layer)

and neuron (in a linear layer) of a model with a coefficient β ∈ {0, 1}. At each train-

ing iteration, for each filter and neuron, the training algorithm randomly chooses

β ∈ {0, 1} according to a Bernoulli distribution with probability p of being 1. The

augmented model is then trained as usual with the backpropagation algorithm. We

call the resulting trained model a ParallelNet model.

For inference, a ParallelNet model is able to generate multiple smaller models that

can be run independently in parallel. A ParallelNet model can generate a model by 1)

randomly choosing β ∈ {0, 1} according to a Bernoulli distribution with probability

96



p of being 1, and 2) removing a filter or neuron with β of 0. The resulting generated

models can be run independently in parallel. The size of a model is controlled by se-

lecting the value of p. The smaller the p, the smaller the model.

These smaller models are usually less capable than the original model when oper-

ating independently, but when they form an ensemble, they gain back some of the

accuracy of the original model. Excitingly, these smaller models run faster than the

original model, thus, reducing the inference time. The resulting speed and accuracy

depend on the size of the ensemble and the models. ParallelNet offers a controllable

trade-off between speed and accuracy of the inference. If higher accuracy is needed,

a larger ensemble and larger models can be used. However, if faster inference time

is needed, smaller models can be used instead. The size of a generated model is con-

trolled by the parameter p. One can control the robustness of the inference by adjust-

ing the number of models in the ensemble. The larger the ensemble, the more fault

tolerant, the inference since a smaller fraction of the ensemble can form a highly confi-

dent prediction.

In addition, the models generated from ParallelNet can be executed in a progressive

manner. The result of each individual model’s computation can be independently pre-

sented to the end-user. For example, if the first model finishes its processing first, its

result can be shown immediately while waiting for others to finish. Once another

model has finished its computation, the result can be combined for an improved
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prediction in a progressive manner. Or, if the end-user is already satisfied with the

result, the in-progress computations can be interrupted, freeing up resources. This

progressive execution is beneficial in an unreliable setting such as peer-to-peer (p2p)

networks with devices of different capabilities. Additionally, if the result is already

good enough (according to the predetermined exit criterion), it can be exited early

and achieve faster inference time using techniques introduced in Chapter 3; the unfin-

ished computation can be terminated, freeing up resources.

ParallelNet has the following properties:

• In ParallelNet, the exponentially many models are trained altogether and some

of their parameters are shared.

• ParallelNet can generate exponentially many models.

• ParallelNet can generate models of different sizes to fit devices with different

resources and capabilities.

• ParallelNet can generate models that can be run independently in parallel.

• ParallelNet reduces the inference time since the generated models, when run in

parallel, are smaller and faster to run than the original model.

• ParallelNet when combined with early exiting offers even faster inference, and

fault tolerance, since the rest of the computation can be terminated when the

prediction has accumulated enough confidence from the models.

We now describe the architecture of ParallelNet, how to train ParallelNet, how to run
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inference on ParallelNet, present some results, and finally discuss and conclude the

chapter.

5.1 ARCHITECTURE

An example of a ParallelNet model is shown in Figure 5.1. A model (Figure 5.1 (a))

is adapted into a ParallelNet model (Figure 5.1 (b)) by augmenting each filter and

neuron with a Bernoulli random variable β ∼ Bern(p). A ParallelNet model can

generate exponentially many different instances of the model. Figure 5.1 (c,d)) shows

two examples of possible models generated by a ParallelNet model.

The parameter p of the Bernoulli random variable can be set per network, per layer,

or per filter or neuron. It can be thought of as the density of active filters and neurons

in the model. A higher p gives a higher number of active filters and neurons, result-

ing in a denser model.

5.2 TRAINING PARALLELNET

A ParallelNet model can be trained as usual with the backpropagation algorithm and

one of the optimizers discussed in Section 2.4. The difference is that for each mini-

batch iteration, a random model is trained. A random model is generated from draw-

ing a value of β ∈ {0, 1} for each filter and neuron from the Bernoulli distribution
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(a) A model. (b) A ParallelNet model.

(c) A model instance of a Paral-
lelNet model.

(d) Another model instance of a
ParallelNet model.

Figure 5.1: ParallelNet Architecture. A circle represents a filter or a neuron. β ∼ Bern(p) is
a Bernoulli random variable. Blank circle represents an active filter or neuron. Cross circle
represents a disabled filter or neuron.

with probability p of being 1. The β value dictates whether a filter or a neuron is ac-

tive or not: 1 means active and 0 means inactive. p can be kept constant across the

training iterations or can follow a specific schedule. A schedule may be, for example,

p is 0.1 for iterations ending with 1 and 0.5 otherwise. This parameter p set during

training dictates the ability of the network to learn as well as the ability of the models

it generates at inference time. Figure 5.2 shows the training procedure.

100



1: procedure PARALLELNETTRAINING(M, p,D,K)
2: for each epoch k ∈ [1,K] do
3: for each batch d ∈ D do
4: Mi ← {}
5: for each filter and neuron m ∈ M do
6: β ← Bern(p)
7: if β = 1 then
8: Mi ← Mi ∪ {m}
9: Train Mi with d using backpropagation and gradient descent.
10: return M
Figure 5.2: ParallelNet Training Algorithm. M is the model to train, represented as a set of
many filters and neurons m. p is the parameter of the Bernoulli random variable (Bern(p)). To
keep it simple, here p is constant across layers and iterations. D is the training dataset split
into mini-batches. K is the number of epoch to train.

5.3 FAST INFERENCE WITH PARALLELNET

At inference time, a ParallelNet model generates many models of different density

that fit each device’s capability. The ensemble of these generated models are then

combined together to form the final prediction.

From a ParallelNet model (a genesis model), a model is generated by drawing a value

of β ∈ {0, 1} for each filter and neuron from a Bernoulli distribution with probability

p of being 1. Only a filter or a neuron having β of 1 is included in the new model. In

other words, a filter or a neuron having β of 0 is removed from the original model.

The resulting model is thinner and smaller than the genesis model. This thinner,

smaller model can be used to run prediction independently. The value of p can be
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different from the value(s) used during training and for each model generation. Fig-

ure 5.3 shows the pseudocode of this procedure.

1: procedure PARALLELNETGENERATEMODEL(M, p)
2: Mi ← {}
3: for each filter and neuron m ∈ M do
4: β ← Bern(p)
5: if β = 1 then
6: Mi ← Mi ∪ {m}
7: return Mi

Figure 5.3: ParallelNet Model Generation Algorithm. M is the genesis model. p is the param-
eter of the Bernoulli random variable (Bern(p)).

Once the desired number of models (N) are generated, these models are used to make

predictions independently in parallel and their results are combined to form the fi-

nal inference. Figure 5.4 shows the PARALLELNETFASTINFERENCE procedure. In this

procedure, we average the outputs of the models before the softmax computation. Al-

ternatively, one can compute the softmax of the output from each model before aver-

aging. From our experiments, the two orderings do not have much effect in terms of

accuracy; however, it is cheaper to compute the average first and then softmax since

in this way, we only have to compute the softmax once. Instead of averaging, one

may use geometric mean [57]: n
√
x1x2 · · · xn.

To further reduce inference time, one can use the early-exit technique as discussed in

Chapter 3 to terminate the computation early. Figure 5.5 shows the inference proce-

dure with early exit. It works as follows. An input sample is broadcasted to N mod-
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1: procedure PARALLELNETFASTINFERENCE(x)
2: z ← 0
3: parfor n ∈ [1,N] do
4: zn ← fmodeln(x)
5: z ← z+ zn
6: ŷ = softmax(z/N)
7: return argmax ŷ

Figure 5.4: ParallelNet Fast Inference Algorithm. parfor indicates that the execution in the
block is done in parallel. x is an input sample, fmodeln(x) is the compute function of the n-
th model, N is the number of models and SHOULDEXIT(ŷ) is a function that returns true or
false depending on whether an output probability vector of a branch is confident enough or
have enough information to exit. Several choices of SHOULDEXIT(ŷ) functions are discussed
in Section 3.4.

els to run in parallel. Once any model finishes its computation, the exit criterion is

evaluated against a threshold T. If it passes, the sample is exited and the remaining

computation is terminated. Otherwise, it waits for another model to finish, averages

its result with the existing one, and reevaluates the exit criterion. If all models are

computed, but the result is still not good enough, it just returns the average of all pre-

dictions. Additionally, it can return the result as it arrives and return an improved

one as the new result becomes available in a progressive manner.

5.4 RESULTS

In this section, we demonstrate the effectiveness of ParallelNet in reducing the infer-

ence time by parallelizing the computation of the neural network inference on the

image classification task.
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1: procedure PARALLELNETFASTINFERENCEWITHEARLYEXIT(x, T)
2: z ← 0
3: i ← 0
4: parfor n ∈ [1,N] do
5: zn ← fmodeln(x)
6: z ← z+ zn
7: i ← i+ 1
8: ŷ = softmax(z/i)
9: if SHOULDEXIT(ŷ, T) then
10: return argmax ŷ
11: return argmax ŷ

Figure 5.5: ParallelNet Fast Inference with Early Exit Algorithm. parfor indicates that the exe-
cution in the block is done in parallel. x is an input sample, T is the threshold for determining
whether to exit the sample, N is the number of models and SHOULDEXIT(ŷ, T) is a function
that returns true or false depending on whether an output probability vector of a branch is
confident enough or have enough information to exit. Several choices of SHOULDEXIT(ŷ, T)
functions are discussed in 3.4.

5.4.1 SETUP

The dataset used for the experiments is the CIFAR10 [25] dataset. There are 50,000

training images and 10,000 images testing images. The 50,000 training images is split

into 45,000 for training and 5,000 for validation. We follow the standard data aug-

mentation scheme for this dataset, in which the images are centered and normalized,

zero-padded with 4 pixels on each side, randomly cropped to produce 32× 32 images,

and randomly flipped horizontally.

Unless mentioned otherwise, we use SGD with Cosine Annealing or SGDR [19] (with

the learning rate of 0.005 and the period of 10) to train the networks with a batch
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size of 128 and each network is trained for 2,000 epochs. Experiments are done in

PyTorch [26] on Amazon EC2 p3.2xlarge instance with 1 Nvidia Tesla V100 16GB

GPU.

For simplicity, we only describe a network in terms of styles (e.g., AlexNet-style [9,

10] or ResNet-style [17] or DenseNet-style [27]), convolutional layers and the number

of filters each layer has, and linear (fully-connected, dense) layers and the number

of neurons each layer has. Generally, these networks may also contain max pooling,

non-linear activation functions (e.g., a rectified linear unit and sigmoid), normaliza-

tion (e.g., local response normalization, batch normalization), and dropout.

We use an AlexNet-style [9, 10] network for the experiments to evaluate ParallelNet

in terms of accuracy, the number of parameters, and runtime for various settings of

the density of the filters and neurons (p) and the number of models (N). The AlexNet-

style network used is shown in Figure 5.6. It consists of 8 layers: 5 convolutional lay-

ers, followed by 3 linear layers. The convolutional layers have 96, 288, 576, 384 and

384 filters, respectively. The linear layers have 1,536, 1,536 and 10 neurons, respec-

tively.

To keep the experiments tractable, we use a single p for all filters and neurons of a

model. Note that p can does not have to be the same for every filters and neurons; p

can be set per layer or per filter or neuron for a more flexible control of the accuracy

and speed trade-off.
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Conv2d(96)

Conv2d(288)

Conv2d(576)

Conv2d(384)

Conv2d(384)

Linear(1536)

Linear(1536)

Linear(10)

Figure 5.6:AlexNet-style network used in the experiments.
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5.4.2 ACCURACY AND THE NUMBER OF PARAMETERS

First, we evaluate the ranges of accuracy and the number of parameters of the model

ParallelNet generates. For this experiment we train the AlexNet-style network with

p = 0.45. At inference time, we generate each model with varying p and observe the

accuracy and the number of parameters.

Figure 5.7 shows the accuracy and the number of parameters of a generated model

for a particular p. We observe the followings:

1. As p increases, the accuracy and the number of parameters increase.

2. p only needs to be around 0.45 for the model to reach around 95% of the maxi-

mum accuracy at p = 1 while using only 20% of the total parameters.

3. The confidence intervals are wider when p is lower since less parameters are

shared among the generated models at that particular p. In other words, many

more models can be generated when p is lower.

4. The gain (Accuracy/#Parameters) diminishes quickly as p approaches 1.

5.4.3 ACCURACY VS. THE NUMBER OF MODELS

In this experiment, we study how the number of models affects the accuracy for a

number of p values. Figure 5.8 shows the result. We see that:
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Figure 5.7:Accuracy and the number of parameters vs p. The solid line indicates the mean
and the envelop indicates 95% confidence interval.

1. As the number of models increases, the accuracy generally increases.

2. In general, the higher the p value, the better the accuracy. However, higher p

also means higher number of parameters and therefore, higher inference time.

3. p = 0.80 performs as good as or better than p = 1.00 when the number of

models is sufficiently large. This shows that an ensemble of smaller models can

perform as good as or better than one big model.

4. The accuracy gain reduces as more models are added and the accuracy of the

best p flattens out at around 88%.
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Figure 5.8:Accuracy vs. the number of models for various p used to generate the models.
p = 1.00 is the same as the genesis model without removing any filters or neurons.

5.4.4 INFERENCE TIME IMPROVEMENT

In this experiment, we see how ParallelNet can improve the inference time while

maintaining a similar level of accuracy as the full model (p = 1). In ParallelNet, all

N models run in parallel. The runtime is calculated as the average time it takes for

a model to infer a sample. Figure 5.9 shows the result for the runtime on GPU. We

observe that:

1. At N = 8, p = 0.45 performs almost as well as the full model (less than 1%

worse) while gaining 1.6x speedup.
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2. With high enough p, we do not need many models to achieve the accuracy of

the full model (p = 1). For example, with p = 0.60 and p = 0.80, we only need

6 to 8 models.
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Figure 5.9:Accuracy and the average time per sample on GPU vs. the number of models
for various p used to generate the models. p = 1 is the same as the genesis model without
removing any filters or neurons. The average run time is 1,419µs, 1,222µs, 953µs, 869µs and
878µs for p = 1.00, p = 0.80, p = 0.60, p = 0.45 and p = 0.30, respectively.

Figure 5.10 shows the result for the runtime on CPU. We observe similar behavior as

before with the following additional points:

1. On CPU, p = 0.45 now gains 3.2x speedup.

2. On CPU, p = 0.30 now gains 5.5x speedup with the fastest time of 3,889µs.

Note that these experiments are run on top-of-the-line high-performance GPU/CPU

in the cloud and the model used is rather small. Much better speedup in inference
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Figure 5.10:Accuracy and the average time per sample on CPU vs. the number of models
for various p used to generate the models. p = 1 is the same as the genesis model without
removing any filters or neurons. The average run time is 21,715µs, 15,491µs, 9,568µs, 6,760µs
and 3,889µs for p = 1.00, p = 0.60, p = 0.45 and p = 0.30, respectively.

time can be expected when using a bigger model and slower GPU/CPU on a typical

computer or edge device.

5.4.5 INFERENCE TIME IMPROVEMENT WITH EARLY EXIT

In this experiment, we study the effect of early-exit thresholds on the inference time

and accuracy of ParallelNet. The inference procedure used is as described in Fig-

ure 5.5. We use an AlexNet-style network as described previously and entropy as the

exit criterion (See Section 3.4.2). 8 models are generated with p = 0.25, 0.35, 0.45, 0.55,

0.65, 0.75, 0.85 and 0.95. We vary the early-exit threshold from 0 to 1.0 and record ac-
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curacy vs. inference time. All models run in parallel on a GPU; the inference time is

the time it takes for a sample to accumulate enough confidence to exit according to a

certain threshold T.
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Figure 5.11: The inference time of a generated model vs. various settings of p used to gener-
ated it. The data points are generated with p = 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85 and 0.95,
respectively.

First, let us take a look at the performance of each model generated with different p.

Figure 5.11 shows the accuracy and inference time of a generated model vs. various

settings of p used to generated it. As expected, as p increases, the accuracy and infer-

ence time increases. Note that the inference time increases rapidly while the gain in

accuracy diminishes.

Next, let us compare the accuracy and inference time we can achieve with and with-
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Figure 5.12: Comparing the accuracy and inference time vs. threshold (T) of the ensemble of 8
models (generated with various p) with calibrated confidence and uncalibrated one.

out confidence calibration (See Section 3.4.3) as we vary the exit threshold (T). Fig-

ure 5.12 shows the accuracy and inference time vs. exit threshold (T) of a model with

calibrated and uncalibrated confidence. With calibrated confidence, we can achieve

higher accuracy for various threshold T while incurring a slight increase in infer-

ence time. With confidence calibration, the confidence values are consistent across

the models. More samples can exit correctly, resulting in a better accuracy. For the

rest of this section, we will use a calibrated version of the network, unless mentioned

otherwise.

The early exiting mechanism allows one to further trade off accuracy for inference

time. Figure 5.13 shows accuracy vs. average inference time per sample. To achieve
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Figure 5.13: The accuracy vs. the average inference time per sample.

an accuracy of 85.56%, the algorithm takes around 1,200µs, and to achieve the full ac-

curacy of 87.86%, the algorithm takes 1,650µs. With early exit, we achieve 1.4x speed

up while giving up around 2% in accuracy.

5.5 DISCUSSION

In this section, we discuss the ParallelNet’s hyperparameter p and how it affects train-

ing time and accuracy of the models. We also discuss robustness and fault tolerance

of ParallelNet in a distributed setting.
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5.5.1 EFFECT OF p ON TRAINING TIME

We start by comparing the training time of each p set at training.
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Figure 5.14: The training and testing accuracy of the first two hundred epochs for various p
set at training.

Figure 5.14 compares the training and test accuracy over the number of epochs of

various p settings. Generally, we observe that at a lower p setting, the network takes

longer to train and converge. p = 1.00 is the fastest to train and converge at around

50 epochs, followed by p = 0.80 at around 100 epochs. p = 0.30 is the slowest to train

and converge. This is because when p = 1.00, the network has full backpropagation

signal to train its weights while when p = 0.3, the network only has about 30% of the

signal propagate back through the network to train its weights.
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5.5.2 EFFECT OF p ON ACCURACY

We now discuss how the hyperparamter p set at training affects the accuracy of the

models generated using various p settings at test time.

0.2 0.4 0.6 0.8 1.0
ptest

10

20

30

40

50

60

70

80

90

A
cc
u
ra
cy

ptrain = 1.00

ptrain = 0.80

ptrain = 0.60

ptrain = 0.45

ptrain = 0.30

Figure 5.15: The accuracy vs. p used to generate a model (ptest) for various p settings at train-
ing time (ptrain).

Figure 5.15 compares accuracy vs. p used to generate a model (ptest) for various p

set at training time (ptrain). We observe that as ptest increases, the accuracy generally

goes up, regardless of how we set ptrain. For ptrain = 0.30, we see that the ParallelNet

model works best at lower ptest settings. When ptrain = 1.00, the network does not

work so well at lower ptest settings. The model generally does well at the p that it is
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trained on. This observation allows model developers to pick the accuracy and speed

trade-off profile by setting different ptrain and ptest as they design and train their Paral-

lelNet models.

5.5.3 FAULT TOLERANCE

In this section, we discuss the fault tolerance of DNN inference using ParallelNet. In

ParallelNet, each generated model is independent of the others. Each model takes an

input sample and outputs a final prediction with certain confidence. In a distributed

setting where each model is run on a different compute device, one or more nodes

may return an arbitrary result or not return the result due to problems with network

connectivity or node failure.

Two failure modes are considered. One is a nonresponsive failure where a device

fails to return a result before a response period expires. Another is a byzantine fail-

ure where a device may return an arbitrary result.

In the case where some devices fail to respond within a response period, ParallelNet

still has the results of other devices that run the inference independently in parallel.

The responses from these devices will cover the failure of the devices that fail to re-

spond within a response period.

In the case where a device return an arbitrary result which could be malicious, Par-
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allelNet can use the results of the other devices to cross check and ignore the result

given by the failed or malicious device.

In both cases, ParallelNet is still able to return the final prediction result (possibly

with less confidence and accuracy). As long as at least one device returns the correct

result, DNN inference service will still be available.

5.6 RELATED WORKS

Previous works such as Dropout [23], Dropconnect [58], Swapout [59] and Stochastic

Depth[38] have explored similar technique of drawing from Bernoulli random vari-

ables to enable or disable parts of the network to reduce overfitting and co-adaptation

of neurons and filters. This work, however, focuses on using this technique to paral-

lelize the computation of DNN for fast and increased robustness of DNN inference in

a p2p network setting.

5.7 RELEVANCE WITHIN IDN

Peers on IDN have different connectivity patterns and hardware. ParallelNet pro-

vides a framework that enables the generation of a different-sized DNNmodel for

each device of varying compute capacity. Each device then runs its model indepen-

dently in parallel, allowing for increased robustness to faults that are common in a
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distributed peer-to-peer (p2p) network due to intermittent network connectivity fail-

ures.

5.8 CONCLUSION

ParallelNet is a framework to adapt and train a deep network model that can gener-

ate multiple models of various sizes. These generated models are capable of running

independently in parallel on different-sized devices. Executing these models in par-

allel speeds up the inference time while maintaining reasonable accuracy level as the

predictions of all models are combined to form the final strong prediction.

In a distributed setting, each of the generated models of a ParallelNet model can be

run on multiple devices with different capabilities. In this setting, ParallelNet pro-

vides fault tolerance and robustness of inference computation. Since each model can

generate the prediction independently, regardless of the prediction of other models,

if there are problems with network connectivity or node failures, ParallelNet can still

return its prediction as long as at least one of the models returns a prediction.

The main contributions in this chapter include:

• Introducing ParallelNet, a framework to adapt and train a deep network model

that can generate multiple models of various sizes to run independently and in

parallel.
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• Parallel execution and early termination procedure of ParallelNet model to

speed up inference time.

• Fault tolerance of inference in a distributed setting, resulting from ParallelNet.

In this and the previous chapters, we have discussed frameworks and deep neural

network motifs for accelerating and scaling DNN inference, and making the inference

more robust and fault-tolerant. Not matter how fast, scalable, fault tolerant the neu-

ral network is, if it is not available for people to use, it will not be that useful. In the

next chapter, we will see an incentive mechanism to encourage peers to collaborate,

improve, and share DNN models.
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6
DaiMoN: A Decentralized Artificial

Intelligence Model Network

Network-based services are at the intersection of a revolution. Many centralized

monolithic services are being replaced with decentralized microservices. The utility
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of decentralized ledgers showcases this change, and has been demonstrated by the

usage of Bitcoin [60] and Ethereum [61].

The same trend towards decentralization is expected to affect the field of artificial in-

telligence (AI), and in particular machine learning, as well. Complex models such as

deep neural networks require large amounts of computational power and resources

to train. Yet, these large, complex models are being retrained over and over again by

different parties for similar performance objectives, wasting computational power

and resources. Currently, only a relatively small number of pretrained models such

as pretrained VGG [15], ResNet [62], and GoogLeNet [16] are made available for

reuse.

One reason for this is that the current system to share models is centralized, limit-

ing both the number of available models and incentives for people to participate

and share models. Examples of these centralized types of systems are Caffe Model

Zoo [63], Pytorch Model Zoo [64], Tensorflow Model Zoo[65], and modelzoo.co [66].

In other fields seeking to incentivize community participation, cryptocurrencies and

cryptographic tokens based on decentralized ledger technology (DLT) have been

used [60, 61]. In addition to incentives, DLT offers the potential to support trans-

parency, traceability, and digital trust at scale. The ledger is append-only, immutable,

public, and can be audited and validated by anyone without a trusted third-party.
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In this chapter, we introduce DaiMoN, a decentralized artificial intelligence model

network that brings the benefits of DLT to the field of machine learning. DaiMoN

uses DLT and a token-based economy to incentivize people to improve machine

learning models. The system will allow participants to collaborate on improving

models in a decentralized manner without the need for a trusted third-party. We fo-

cus on applying DaiMoN for collaboratively improving classification models based

on deep learning. However, the presented system can be used with other classes of

machine learning models with minimal to no modification.

In traditional blockchains, proof-of-work (PoW) [60] incentivizes people to participate

in the consensus protocol for a reward and, as a result, the network becomes more

secure as more people participate. In DaiMoN, we introduce the concept of proof-of-

improvement (PoI). PoI incentivizes people to participate in improving machine learn-

ing models for a reward and, as an analogous result, the models on the network be-

come better as more people participate.

One example of a current centralized system that incentivizes data scientists to im-

prove machine learning models for rewards is the Kaggle Competition system [67],

where a sponsor puts up a reward for contestants to compete to increase the accuracy

of their models on a test dataset. The test dataset inputs are given while labels are

withheld to prevent competitors from overfitting to the test dataset.

In this example, a sponsor and competitors rely on Kaggle to keep the labels secret.
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If someone were to hack or compromise Kaggle’s servers and gain access to the la-

bels, Kaggle would be forced to cancel the competition. In contrast, because DaiMoN

utilizes a DLT, it eliminates this concern, as it does not have to rely on a centralized

trusted entity.

However, DaiMoN faces a different challenge: in a decentralized ledger, all data are

public. As a result, the public would be able to learn about labels in the test dataset

if it were to be posted on the ledger. By knowing test labels, peers may intentionally

overfit their models, resulting in models which are not generalizable. To solve the

problem, we introduce a novel technique, called Distance Embedding for Labels (DEL),

which can scramble the labels before putting them on the ledger. DEL preserves the

error in a label vector inferred by the classifier with respect to the test label vector of

the test dataset, so there is no need to divulge the labels themselves.

With DEL, we can realize the vision of PoI over a DLT network. That is, any peer ver-

ifier can vouch for the accuracy improvement of a submitted model without having

access to the test labels. The proof is then included in a block and appended to the

ledger for the record.

The structure of this chapter is as follows: after introducing DEL and PoI, we intro-

duce the DaiMoN system that provides incentive for people to participate in improv-

ing machine learning models.
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The contributions of this chapter include:

1. A learnable Distance Embedding for Labels (DEL) function specific to the test

label vector of the test dataset for the classifier in question, and performance

analysis regarding model accuracy estimation and security protection against

attacks. To the best of our knowledge, DEL is the first solution which allows

peers to verify model quality without knowing the test labels.

2. Proof-of-improvement (PoI), including detailed PROVE and VERIFY procedures.

3. DaiMoN, a decentralized artificial intelligence model network, including an

incentive mechanism. DaiMoN is one of the first proof-of-concept end-to-end

systems in distributed machine learning based on decentralized ledger technol-

ogy.

6.1 DISTANCE EMBEDDING FOR LABELS

In this section, we describe Distance Embedding for Labels (DEL), a key technique by

which DaiMoN can allow peers to verify the accuracy of a submitted model without

knowing the labels of the test dataset. By keeping these labels confidential, the system

prevents model-improving peers from overfitting their models intentionally to the

test labels.
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6.1.1 LEARNING THE DEL FUNCTION WITH MULTI-LAYER PERCEPTRON

Suppose that the test dataset for the given C-class classification problem consists of m

(input, label) test pairs, and each label is an element in Q = {c ∈ Z | 1 ≤ c ≤ C},

where Z denotes the set of integers. For example, the FashionMNIST [68] classifica-

tion problem has C = 10 image classes and m = 10, 000 (input, label) test pairs, where

for each pair, the input is a 28 × 28 greyscale image, and the label is an element in

Q = {1, 2, . . . , 10}.

For a given test dataset, we consider the corresponding test label vector xt ∈ Qm,

which is made of all labels in the test dataset. We seek a xt-specific DEL function

f : x ∈ Qm → y ∈ Rn, where R denotes the set of real numbers, which can ap-

proximately preserve distance from a label vector x ∈ Rm (inferred by a classification

model or a classifier we want to evaluate its accuracy) to xt, where n ≪ m. For exam-

ple, we may have m = 10, 000 and n = 256. The error of x or the distance from x to xt

is defined as

e(x, xt) =
1
m

m

∑
i=1

(xi ̸= xti),

where is the indicator function, x = {x1, . . . , xm} and xt = {xt1 , . . . , xtm}.

Finding a distance-preserving embedding function is generally a challenging math-

ematical problem. Fortunately, we have observed empirically that we can learn this

xt-specific embedding function using a neural network.
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More specifically, to learn an xt-specific DEL function f , we train a multi-layer percep-

tion (MLP) for f as follows. For each randomly selected x ∈ Qm, we minimize the

loss:

Lθ(x, xt) = |e(x, xt)− d( f (x), f (xt))|,

where θ is the MLP parameters, and d(·, ·) is a modified cosine distance function de-

fined as

d(y1, y2) =

⎧
⎪⎪⎨

⎪⎪⎩

1− y1·y2
∥y1∥∥y2∥

y1 · y2 ≥ 0

1 otherwise.

The MLP training finds a distance-preserving low-dimensional embedding specific to

a given xt. The existence of such embedding is guaranteed by the Johnson-Lindenstrauss

lemma [69, 70], under a more general setting which does not have the restriction

about the embedding being specific to a given vector.

6.1.2 USE OF DEL FUNCTION

We use the trained DEL function f to evaluate the accuracy or the error of a classifica-

tion model or a classifier on the given test dataset without needing to know the test

labels. As defined in the preceding section, for a given test dataset, xt ∈ Qm is the

test label vector of the test dataset. Given a classification model or a classifier, x ∈ Qm
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is a label vector consisting of labels inferred by the classifier on all the test inputs of

the test dataset. A verifier peer can determine x’s distance to xt without knowing xt,

by checking d( f (x), f (xt)) instead of e(x, xt). This is because these two quantities are

approximately equal, as assured by the MLP training, which minimizes their absolute

difference. If d( f (x), f (xt)) is deemed to be sufficiently lower than that of the previ-

ously known model, then the peer may conclude that the model has improved the

accuracy of the test dataset.

Note that the DEL function f is xt-specific. That is, for a different test dataset with a

different test label vector xt, we will need to train another f . For most model bench-

marking applications, we expect a stable test dataset; and thus we will not need to

retrain f frequently.

6.2 EVALUATION OF LEARNT DEL FUNCTION

In this section, we evaluate how well the neural network approach described above

can learn a DEL function f : Qm → Rn with m = 10, 000 and n = 256. We consider

a simple multi-layer perceptron (MLP) with 1,024 hidden units and a rectified linear

unit (ReLU). The output of the network is normalized to a unit length. The network

is trained using the Adam optimization algorithm [18]. The dataset used is FashionM-

NIST [68], which has C = 10 classes and m = 10, 000 (input, label) test pairs.
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To generate the data to train the function, we perturb the test label vector xt by using

the following GENERATEDATA procedure.

1: procedure GENERATEDATA(xt)
2: Pick a random number v in {1, 2, . . . ,m}
3: Pick a random set K in {1, 2, . . . ,m}v
4: Initialize x as {x1, x2, . . . , xm} with x ← xt
5: for k ∈ K do
6: Pick a random number c in {1, 2, . . . ,C}
7: xk ← c
8: return x

First, the procedure picks v, the number of labels in xt to switch out, and generates

the set of indices K, indicating the positions of the label to replace. It then loops

through the set K. For each k ∈ K, it generates the new label c to replace the old one.

Note that with this procedure, the new label c can be the same as the old label.

We use the procedure to generate the training dataset and the test dataset for the MLP.

Figure 6.1 shows the convergence of the network in learning the function f . We see

that as the number of epochs increases, both training and testing loss decrease, sug-

gesting that the network is learning the function.

After the neural network has been trained, we evaluate how well the learned f can

preserve error in a label vector x inferred by the classifier. Figure 6.2 shows the cor-

relation between the error and the distance in the embedding space under f . We see

that both are highly correlated.
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Figure 6.1: The training and testing loss as the number of epochs increases.

0.0 0.2 0.4 0.6 0.8 1.0

Distance

0

20

40

60

80

100

E
rr
or

(%
)

Figure 6.2: Correlation between error (%) in x with respect to xt and the distance between
them in the embedding space under f (distance).
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Figure 6.3: The absolute difference (|e(x, xt) − d( f (x), f (xt))|) as the distance d( f (x), f (xt))
decreases. The shaded area indicates variance.

Figure 6.3 shows the absolute difference between the two distances (|e(x, xt)−d( f (x), f (xt))|),

as d( f (x), f (xt)) decreases. We observe that the mean absolute difference stays rela-

tively low (under 2% in this experiment). This is good news, as an accurate estima-

tion of model improvements for label vectors near the test label vector xt is precisely

what a useful embedding f should support.

6.3 ANALYSIS ON DEFENSE AGAINST BRUTE-FORCE ATTACKS

In this section, we show that it is difficult for an attacker to launch a brute-force attack

on DEL. To find out about the test label vector xt ∈ Qm that produces yt ∈ Rn for a

given f : x ∈ Qm → y ∈ Rn, the attacker’s goal is to find x such that d( f (x), yt) < ϵ,
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for a small ϵ. There are Cm possible instances of x to try, where C is the number of

classes. Note Cm can be very large. For example, for a test dataset of 10 classes and

10,000 samples, we have C = 10, m = 10, 000 and Cm = 1010000. The attacker may use

the following brute-force algorithm:

1: procedure BRUTEFORCEATTACK(yt, ϵ, q)
2: Pick a random set X of q values in Qm

3: for x ∈ X do
4: if d( f (x), yt) < ϵ then
5: return x

The success probability (α) of this attack where at least 1 value of x is within the ϵ

distance of xt is

α = 1− (1− p)q ≈ pq,

where p is the probability that d( f (x), yt) < ϵ for a random x.

We now derive p. Assume that the outputs of f is uniformly distributed on a unit (n-

1)-sphere or equivalently normally distributed on an n-dimension euclidean space [71].

Suppose that yt = f (xt). We align the top of the unit (n-1)-sphere at yt. Then, p is

equivalent to the probability of a random vector on a (n-1)-hemisphere falling onto

the cap [72] which is

p = I(sin2 β;
n− 1
2

,
1
2
),
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where n is the dimension of a vector, β is the angle between xt and a vector on the

sphere, and I(x; a, b) is the regularized incomplete beta function defined as:

I(x; a, b) =
B(x; a, b)
B(a, b)

,

where B(x; a, b) is the incomplete beta function, and B(a, b) is the beta function. There

functions are defined as:

B(x; a, b) =
∫ x

0
ta−1 (1− t)b−1 dt,

B(a, b) =
∫ 1

0
ta−1 (1− t)b−1 dt.

Figure 6.4 shows the probability p as the distance (ϵ) from xt decreases for different

values of n. We observe that for a small ϵ, this probability is exceedingly low and thus

to guarantee attacker’s success (α = 1), the number of samples (q = α/p = 1/p) of

x needed to be drawn randomly is very high. For instance, for a 10% error rate, ϵ =

0.10 and n = 32, the probability p is 6.12× 10−13 and the number of trials q needed

to succeed is 1.63× 1012. In addition, the higher the n, the smaller the p and the larger

the q. For example, for a 10% error rate, ϵ = 0.10 and n = 256, the probability p is

3.33× 10−93 and the number of trials q needed to succeed is 3.01× 1092.
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Figure 6.4: The probability p as distance decreases for varying n.

6.4 ANALYSIS ON DEFENSE AGAINST INVERSE-MAPPING ATTACKS

In this section, we provide an analysis on defense against attacks attempting to re-

cover the original test label vector xt from yt = f (xt). We consider the case that the

attacker tries to learn an inverse function f−1 : y ∈ Rn → x ∈ Qm using a neural

network. Suppose that the attacker uses a multi-layer perceptron (MLP) for this with

1,024 hidden units and a rectified linear unit (ReLU). The network is trained using

Adam optimization algorithm [18]. The loss function used is the squared error func-

tion:

Lθ(y, yt) = ∥ f−1(y)− f−1(yt)∥
2.
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We generate the dataset using the two following procedures: GENERATEINVERSE-

DATANEARBY and GENERATEINVERSEDATARANDOM. The former has the knowl-

edge that the test label vector xt is nearby, and the latter does not. We train the neural

network to find the inverse function f−1 and compare how the neural network learns

from these two generated datasets.

1: procedure GENERATEINVERSEDATANEARBY(xt, f )
2: x ← GENERATEDATA(xt)
3: y ← f (x)
4: return {y, x}

The GENERATEINVERSEDATANEARBY procedure generates a perturbation of the test

label vector xt, passes it through the function f , and returns a pair of the input y and

the target output vector x used to learn the inverse function f−1.

1: procedure GENERATEINVERSEDATARANDOM( f ,C)
2: Pick a random number x in {1, 2, . . . ,C}m
3: y ← f (x)
4: return {y, x}

The GENERATEINVERSEDATARANDOM procedure generates a random label vector xt

where each element of the vector has a value representing class 1 to class C, passes it

through the function f and returns a pair of the input y and the target output vector x

used to learn the inverse function f−1.

Figure 6.5 shows the error e( f−1(yt), xt) as the number of training epochs increases.
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Figure 6.5: Error (e( f−1(yt), xt)) in percentage as the number of epochs increases for data
generated with random x and near xt.

On one hand, using the data generated without the knowledge of the test label vector

xt using the GENERATEINVERSEDATARANDOM procedure, we see that the network

does not reduce the error as it trains. This means that it does not succeed in learn-

ing the inverse function f−1 and therefore, it will not be able to recover the test label

xt from its output vector yt. On the other hand, using the data generated with the

knowledge of the test label vector xt using the GENERATEINVERSENEARBY proce-

dure, we see that the network does reduce the the error as it trains and has found the

test label vector xt from its output vector yt at around 40 epochs. This experiment

shows that without the knowledge of xt, it is hard to find f−1.
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6.5 PROOF-OF-IMPROVEMENT

In this section, we introduce the concept of proof-of-improvement, the mechanism sup-

porting DaiMoN. The proof-of-improvement (PoI) enables a prover P to convince a ver-

ifier V that P has found model M that improves the accuracy or reduces the error on

the test dataset via the use of DEL without the knowledge of the test label vector xt.

PoI is characterized by the PROVE and VERIFY procedures.

As a part of the system setup, a prover P has a public and private key pair (pkP ,

skP ) and a verifier V has a public and private key pair (pkV , skV ). Both are given our

trained DEL function f (·), yt = f (xt), the set of m test inputs Z = {zi}mi=1, and

the current best distance dc achieved by submitted models, according to the distance

function d(·, ·) described in Section 6.1.

Let digest(·) be the message digest function such as IPFS hash [73], MD5 [74], SHA [75]

and CRC [76]. Let {·}sk denotes a message signed by a secret key sk.

Let M be the classification model for which P wants to generate a PoI proof πP . The

model M takes an input and returns the corresponding predicted class label. The

PROVE procedure called by a prover P generates the digest of M and calculates the

DEL function output of the predicted labels of the test dataset Z by M. The results are

concatenated to form the body of the proof, which is then signed using the prover’s

secret key skP . The PoI proof πP shows that the prover P has found a model M that
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could reduce the error on a test dataset.

1: procedure PROVE(M) → πP
2: g ← digest(M)
3: y ← f (M(Z))
4: return {g, y, pkP}skP

To verify, the verifier V runs the following procedure to generate the verification

proof πV , the proof that the verifier V has verified the PoI proof πP generated by the

prover P .

1: procedure VERIFY(M,πP , dc, δ) → πV
2: Verify the signature of πP with πP .pkP
3: Verify the digest: πP .g = digest(M)
4: Verify the DEL function output: πP .y = f (M(Z))
5: Verify the distance: d(πP .y, yt) < dc − δ, δ ≥ 0
6: if all verified then
7: return {πP , dc, δ, pkV}skV

The procedure first verifies the signature of the proof with public key πP .pkP of the

prover P . Second, it verifies that the digest is correct by computing digest(M) and

comparing it with the digest in the proof πP .g. Third, it verifies the DEL function

output by computing f (M(Z)) and comparing it with the the DEL function output

in the proof πP .y. Lastly, it verifies the distance by computing d(πP .y, yt) and sees if

it is lower than the current best with a margin of δ ≥ 0, where δ is an improvement

margin commonly agreed upon among peers. If all are verified, the verifier generates

the body of the verification proof by concatenating the PoI proof πP with the current
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best distance dc and δ. Then, the body is signed with the verifier’s secret key skV , and

the verification proof is returned.

6.6 THE DAIMON SYSTEM

In this section, we describe the DaiMoN system that incentivizes participants to im-

prove the accuracy of models solving a particular problem. In DaiMoN, each classifi-

cation problem has its own DaiMoN blockchain with its own token. An append-only

ledger maintains the log of improvements for that particular problem. A problem de-

fines inputs and outputs which machine learning models will solve for. We call this

the problem definition. For example, a classification problem on the FashionMNIST

dataset [68] may define an input z as a 1-channel 1× 28× 28 pixel input whose values

are ranging from 0 to 1, and an output x as 10-class label ranging from 1 to 10:

{z ∈ R1×28×28 | 0 ≤ z ≤ 1},

{x ∈ Z | 1 ≤ x ≤ 10}.

Each problem is characterized by a set of test dataset tuples. Each tuple (Z , f , yt) con-

sists of the test inputs Z = {z}mi=1, the DEL function f , and the DEL function output

yt = f (xt) on the test label vector xt.

A participant is identified by its public key pk with the associated private key sk.
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There are six different roles in DaiMoN: problem contributors, model improvers, val-

idators, block committers, model runners, and model users. A participant can be one

or more of these roles. We now detail each role below:

• Problem contributors contribute test dataset tuples to a problem. They can

create a problem by submitting a problem definition and the first test dataset

tuple.

• Model improvers compete to improve the accuracy of the model according to

the problem definition defined in the chain. A model improver generates a PoI

proof for the improved model and submit it.

• Validators validate PoI proofs, generate a verification proof and submit it as

a vote on the PoI proofs. Beyond being a verifier for verifying PoI, a validator

submits the proof as a vote on the blockchain.

• Block committers create a block from the highest voted PoI proof and its associ-

ated verification proofs and commit the block to the chain.

• Model runners run the inference on the latest model given inputs and return

outputs and get paid in tokens.

• Model users request an inference computation from model runners with an

input and pay for the computation in tokens.
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6.6.1 THE CHAIN

Each chain consists of two types of blocks:

• A Problem block contains the following information, including but not limited

to: the block number, the hash of the parent block, the problem definition, the

test dataset tuples, and the block hash.

• An Improvement block contains the following information, including but not

limited to: the block number, the hash of the parent block, PoI proof πP from

model improver P , verification proofs {πP} from validators {V}, and the block

hash. The chain must start with a Problem block that define the problem, fol-

lowed by Improvement blocks that record the improvements made for the

problem.

6.6.2 THE CONSENSUS

After a DaiMoN blockchain is created, there is a problem definition period Tp. In this

period, any participant is allowed to add test dataset tuples into the mix. After a time

period Tp has passed, a block committer commits a Problem block containing all test

dataset tuples submitted within the period to the chain.

After the Problem block is committed, a competition period Tb begins. During this pe-

riod, a model improver can submit the PoI proof of his/her model. A validator then
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validates the PoI proof and submit a verification proof as a vote. For each PoI proof,

its associated number of unique verification proofs are tracked. At the end of each

competition period, a block committer commits an Improvement block containing the

model with the highest number of unique verification proofs, and the next competi-

tion period begins.

6.6.3 THE REWARD

Each committed block rewards tokens to the model improver and validators. The

following reward function is used:

R(d, dc) = I(1− d; a,
1
2
)− I(1− dc; a,

1
2
),

where I(x; a, b) is the regularized incomplete beta function, d is the distance of the

block, dc is the current best distance so far, and a is a parameter to allow for the ad-

justment to the shape of the reward function. Figure 6.6 shows the reward function as

the distance d decreases for different current best distance dc for a = 3. We see that

more and more tokens are rewarded as the distance d reaches 0, and the improvement

gap dc − d increases.

Each validator is given a position as it submits the validation proof: the s-th validator

to submit the validation proof is given the s-th position. The validator’s reward is the

142



0.00.20.40.60.81.0

d

0.0

0.2

0.4

0.6

0.8

1.0

R
(d
,d

c)

dc = 1.00

dc = 0.50

dc = 0.30

dc = 0.20

dc = 0.10

dc = 0.05

Figure 6.6: The reward function R(d, dc) as the distance d decreases for varying current best
distance dc for a = 3.

model improver’s reward scaled by 2−s:

R(d, dc)2−s,

where s ∈ Z>0 is the validator’s position, and Z>0 denotes the set of integers greater

than zero. This factor encourages validators to compete to be the first one to submit

the validation proof for the PoI proof in order to maximize the reward. Two is used as

a base of the scaling factor here since ∑∞
s=1 2−s = 1.

143



6.6.4 THE MARKET

In order to increase the value of the token of each problem, there should be demand

for the token. One way to generate demand for the token is to allow it to be used as a

payment for inference computation based on the latest model committed to the chain.

To this end, model runners host the inference computation. Each inference call re-

quested by users is paid for by the token of the problem chain that the model solves.

Model runners automatically upgrade the model, as better ones are committed to the

chain. The price of each call is set by the market according to the demand and supply

of each service. This essentially determines the value of the token, which can later be

exchanged with other cryptocurrencies or tokens on the exchanges. As the demand

for the service increases, so will the token value of the problem chain.

Model runners periodically publish their latest services containing the price for the

inference computation of a particular model. Once a service is selected, model users

send a request with the payment according to the price specified. Model runners then

verify the request from the user, run the computation, and return the result.

To keep a healthy ecosystem among peers, a reputation system may be used to rec-

ognize good model runners and users, and reprimand bad model runners and users.

Participants in the network can upvote good model runners and users and downvote

bad model runners and users.
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6.6.5 SYSTEM IMPLEMENTATION

DaiMoN is implemented on top of the Ethereum blockchain [61]. In this way, we can

utilize the security and decentralization of the main Ethereum network. The ERC-

20 [77] token standard is used to create a token for each problem chain. Tokens are

used as an incentive mechanism and can be exchanged. Smart contracts are used to

manage the DaiMoN blockchain for each problem.

Identity of a participant is represented by its Ethereum address. Every account on

Ethereum is defined by a pair of keys, a private key and public key. Accounts are in-

dexed by their address, which is the last 20 bytes of the Keccak [75] hash of the public

key.

The InterPlanetary File System (IPFS) [73] is used to store and share data files that are

too big to store on the Ethereum blockchain. Files such as test input files and model

files are stored on IPFS and only their associated IPFS hashes are stored in the smart

contracts. Those IPFS hashes are then used by participants to refer to the files and

download them.
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6.7 DISCUSSION

One may compare a DEL function to an encoder of an autoencoder. An autoencoder

consists of an encoder and a decoder. The encoder maps an input to a lower-dimensional

embedding which is then used by the decoder to reconstruct the original input. Al-

though a DEL function also reduces the dimensionality of the input label vector, it

does not require the embedding to reconstruct the original input and it adds the con-

straint that the output of the function should preserve the error or the distance of the

input label vector to a specific test label vector xt. In fact, for our purpose of hiding

the test labels, we do not want the embedding to reconstruct the original input test

labels. Adding the constraint to prevent the reconstruction may help further defense

against the inverse-mapping attacks and can be explored in future work.

By building DaiMoN on top of Ethereum, we inherit the security and decentraliza-

tion of the main Ethereum network as well as the limitations thereof. We now discuss

the security of each individual DaiMon blockchain. An attack to consider is the Sybil

attack on the chain, in which an attacker tries to create multiple identities (accounts)

and submit multiple verification proofs on an invalid PoI proof. Since each problem

chain is managed using Ethereum smart contracts, there is an inherent gas cost associ-

ated with every block submission. Therefore, it may be costly for an attacker to over-

run the votes of other validators. The more number of validators for that chain, the
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higher the cost is. In addition, this can be thwarted by increasing the cost of each sub-

mission by requiring validators to also pay Ether as they make the submission. All in

all, if the public detects signs of such behavior, they can abandon the chain altogether.

If there is not enough demand in the token, the value of the tokens will depreciate

and the attacker will have less incentives to attack.

Since we use IPFS in the implementation, we are also limited by the limitations of

IPFS: files stored on IPFS are not guaranteed to be persistent. In this case, problem

contributors and model improvers need to make sure that their test input files and

model files are available to be downloaded on IPFS. In addition to IPFS, other de-

centralized file storage systems that support persistent storage at a cost such as File-

coin [78] and Storj [79] can be used.

6.8 RELATED WORKS

One area of related work is on data-independent locality sensitive hashing (LSH) [80]

and data-dependent locality preserving hashing (LPH) [81, 82]. LSH hashes input

vectors so that similar vectors have the same hash value with high probability. There

are many algorithms in the family of LSH. One of the most common LSH methods is

the random projection method called SimHash [83], which uses a random hyperplane

to hash input vectors.
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Locality preserving hashing (LPH) hashes input vectors so that the relative distance

between the input vectors is preserved in the relative distance between of the out-

put vectors; input vectors that are closer to each other will produce output vectors

that are closer to each other in the output space. The DEL function presented in this

chapter is in the family of LPH functions. While most of the work on LSH and LPH

focuses on dimensionality reduction for nearest neighbor searches, DEL is novel that

it focuses on learning an embedding function that preserves the distance to the test

label vector of the test dataset. For the purpose of hiding the test label vector from

verifier peers, it is appropriate that DEL’s distance preserving is specific to this test

vector. By being specific, finding the DEL function becomes easier.

Another area of related work is on blockchain and AI. There are numerous projects

covering this area in recent years. These include projects such as SingularityNET [84],

Effect.ai [85] and Numerai [86]. SingularityNET and Effect.ai are decentralized AI

marketplace platforms where anyone can provide AI services for use by the net-

work, and receive network tokens in exchange. This is related to the DaiMoN market,

where model runners run inference computation for model users in exchange for to-

kens. Numerai has an auction mechanism where participants stake network tokens

to express confidence in their models’ performance on forthcoming new data. The

mechanism will reward participants according to the performance of their models on

unspecified yet future test data, their confidence, and their stake. While these plat-
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forms all use a single token, DaiMoN has a separate token for each problem. It also

introduces the novel ideas of DEL and PoI, allowing the network to fairly reward par-

ticipants that can prove that they have a model that improves the accuracy for a given

problem.

6.9 RELEVANCE WITHIN IDN

For IDN, DaiMoN will help to increase the quality and the number of available DNN

models that peers can run on IDN. This availability of high-quality DNN models is

one of the important factors of a successful intelligence distribution network. The

higher the quality of models peers are servicing, the more the number of peers will

participate in the network. This in turn will help with the efficiency and performance

of serving inference with the network, as there will be more peers who are close to

each other available to perform the computations.

6.10 CONCLUSION

We have introduced DaiMoN, a decentralized artificial intelligence model network.

DaiMoN uses a Distance Embedding for Labels (DEL) function. DEL embeds the la-

bel vector inferred by a classifier in a low-dimensional space where its error or its dis-

tance to the test label vector of the test dataset is approximately preserved. DEL hides
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test labels from peers while allowing them to assess the improvement that a model

makes. We present how to learn DEL, evaluate its effectiveness, and present the anal-

ysis of DEL’s resilience against attacks. This analysis shows that it is hard to launch

a brute-force attack or an inverse-mapping attack on DEL without knowing a priori

a good estimate on the location of the test label vector, and that the hardness can be

increased rapidly by increasing the dimension of the embedding space.

DEL forms a basis of proof-of-improvement (PoI), which is the core of DaiMoN. Partici-

pants use PoI to prove that they have found a model that improves the accuracy of a

particular problem. This allows the network to keep an append-only log of model im-

provements and reward the participants accordingly. DaiMoN uses a reward function

that scales according to the increase in accuracy a new model has achieved on a par-

ticular problem. We hope that DaiMoN will spur collaboration in improving machine

learning models.

In this chapter, we have discussed a decentralized artificial intelligence model net-

work called DaiMoN that incentivizes peers to collaborate, improve the quality of

DNN models, and share them. DaiMoN helps with the quality and the availability of

DNN models. With the abundance of high-quality DNN models, in the next chapter

we will discuss the design of IDN with a mechanism to incentivize people to partici-

pate and share resources to run inference on these DNN models.
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7
Intelligence Distribution Network

Design and Specification

In this chapter, we discuss the design and detail specification of IDN, how it is used

by peers, and how peers are incentivized to participate in the network. We will use
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the following terminology: IDN nodes or peers refer to devices that run IDN client

software. Models refer to model files, including neural network computation graphs

and their corresponding weights. Services refer to an inference service defined by

the input(s), the output(s) and optionally the specific DNN model(s) that the service

provides.

IDN draws a lot of design influence from the InterPlanetary File System (IPFS) [73].

A core component of IDN is a compute exchange protocol called ComputeSwap,

which governs efficient inference distribution. The ComputeSwap protocol encour-

ages people to share their spare computing resources and discourages people from

cheating.

IDN is divided into multiple components responsible for different functionalities:

1. Identity - manages node identity generation and verification.

2. Network - manages connections to other peers.

3. Routing - maintains information to locate specific peers and services.

4. Inference Service Engine (ISE) - manages inference services.

5. ComputeSwap - manages the exchange of inference computation and incen-

tivizes efficient service distribution.

We now describe each of these components.
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7.1 IDENTITY

A node that joins IDN has a unique identity (ID). A node ID is a hash of its public key.

A node ID is generated as follows:

1: procedure GENERATENODEID(difficulty)
2: do
3: pubKey, priKey ← generateKeyPair()
4: nodeID ← hash(pubKey)
5: d ← countPrecedingZeroBits(nodeID)
6: while d < difficulty
7: return {nodeID, pubKey, priKey}

The procedure takes a difficulty argument. It tries to generate the public and private

key pair where the hash of the public key satisfies a certain difficulty constraint. This

difficulty constraint is defined as the number of preceding zero bits of the hash of

the public key. countPrecedingZeroBits is a function that counts the number of preced-

ing zero bits of the hash of the public key. generateKeyPair is a function that generates

the public and private key pair. One possible algorithm to generate this key pair is

RSA [87]. hash is a hash function. Algorithms such as SHA3/Keccak [75] could be

used as a hash function.

A node stores its public and encrypted private keys, along with network statistics

such as debt and credit that are associated with the node. A user is free to create a

new identity, however he/she will lose the network statistics associated with the
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node and the benefits that comes with the accrual of credits given to other peers.

NodeID is represented as Multihash [88]. Multihash is a self-describing hash where

the hash is prepended with the codec of the hash and the length of the hash digest.

For example, we can describe a SHA1 [89] hash of a string “content” as

SHA1 - 7 bytes - SHA1(“content”),

which is 0x1107636f6e74656e74 in hex. 0x11 is the codec for SHA1, 0x07 is the length

of the hash digest and 0x636f6e74656e74 is the SHA1 hash of “content.”

A node contains its node ID and the corresponding public and private key pair. The

node data structure is defined as follows:

type Multihash []byte
type PublicKey []byte
type PrivateKey []byte
type NodeID Multihash

type Node struct {
nodeID NodeID
pubKey PublicKey
priKey PrivateKey

}

We define NodeID type as Multihash type. Multihash, PublicKey, and PrivateKey

types are arrays of bytes. Node type consists of nodeID of type NodeID, pubKey of

type PublicKey, and priKey of type PrivateKey.

To verify each other’s identities, upon connecting to the other node, a node checks
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whether the other node’s ID matches the hash of its public key.

7.2 NETWORK

IDN peers communicate regularly with other peers in the IDN network. libp2p [90] is

used to implement the network layer. It supports multiple transport protocols includ-

ing UDP [91], TCP [92] and WebRTC [93].

Each node has an address in Multiaddr [94] format. Multiaddr is a self-described ad-

dress. A Multiaddr itself contains transport protocols and network addresses. For

example, a TCP connection over IPv4 [95] can be expressed in Multiaddr format

as

/ip4/10.20.30.40/tcp/8080/.

Multiaddr also supports encapsulation. For example, a TCP/IPv4 connection proxied

over a TCP/IPv4 connection can be expressed in Multiaddr format as

/ip4/5.6.7.8/tcp/8080/ip4/1.2.3.4/sctp/4756/.

With Multiaddr address, a node knows how to connect to the other node via its Multi-

addr. For example, /ip4/10.20.30.40/tcp/8080/ describes a connection by IPv4 at an

address 10.20.30.40 using the TCP protocol on port 8080.
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Multiaddr allows the flexibility of addressing peers without any assumption on the

underlying network (e.g., IP address) or transport layers (e.g., TCP). This allows IDN

to be used in any type of network, including overlay networks.

7.3 ROUTING

IDN peers need to look up other peers’ network addresses by their node IDs and look

up peers who provide a particular service by the service ID. This is achieved by using

a distributed hash table (DHT) [96, 97].

The interface for routing is derived from libp2p [90] and is defined as follows.

type Routing interface{
findPeer(nodeID NodeID) []Multiaddr
provide(key Multihash)
findProviders(key Multihash, numPeers int) []NodeID

getValue(key Multihash) []byte
setValue(key Multihash, value []byte)

}

findPeer(nodeID) looks up a particular peer’s network address by its node ID nodeID.

The function returns an array of a peer’s network addresses of type Multiaddr.

provide(key) broadcasts to other peers that this node is servicing a service with ser-

vice ID key.

findProviders(key, numPeers) finds numPeers number of peers that provide services
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with service ID key. This is used for a node to look up peers that provide a particular

inference service that it needs. The function returns an array of node IDs.

getValue(key) gets value stored in DHT at key. It is used to retrieve small meta data

about a particular key. The function returns value as an array of bytes.

setValue(key, value) stores value in DHT at key. It is used to store small meta data

about a particular key.

7.4 INFERENCE SERVICE ENGINE (ISE)

Each service on IDN has a service ID. A service ID is an IPFS hash of a service de-

scriptor specified in JavaScript Object Notation (JSON) format. The service descrip-

tor contains information such as the name of the service, the description of the ser-

vice, the type of inputs, the type of outputs, the link to download the model, and the

model hash for integrity verification. The service ID is used as an identifier of the ser-

vice. It is used as a key in the DHT to store and retrieve peers that provide the service

(See Section 7.3).

A node decides what to service based on the compatibility of the device and the de-

mands from its peers. A priority queue ranked by a service’s priority score is main-
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tained. The service priority score s is defined as follows:

s =
N

∑
i=1

ri,

where N is the total number of peers requesting the service S , and ri is the debt-to-

credit ratio which is the ratio of debt the node owes for its peer i over the credit the

node gives to its peer i (See Equation 7.1 for the exact definition).

A node services the top k services according to the priority score s in the priority

queue. k is set by the node’s operator in accordance with the capacity and capabil-

ity of the device in terms of the number of CPUs, the number of GPUs, the amount of

memory, etc.

When a service is deployed, there is a minimum service period Ts. The service will

be run for the minimum service period before it can be swapped out. This is to pre-

vent oscillation between services that are in the top k and ones that are not, and to

minimize the time spent to bootstrap and tear down services when the services are

swapped.

When the priority score updates and the top k services change, a node tear downs the

services that are no longer in the top k (provided that its minimum service period Ts

has passed) and bootstraps the services that are currently in the top k.
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7.5 COMPUTESWAP

In IDN, peers exchange inference computation with other peers using a protocol

called ComputeSwap. ComputeSwap is the core component of IDN. It governs effi-

cient distribution of inference services. ComputeSwap is an adaptation of a BitSwap

protocol in IPFS [73].

Like BitSwap, ComputeSwap operates as a persistent marketplace where peers barter

and exchange inference computation with each other. Unlike BitSwap, ComputeSwap

exchanges inference computation instead of blocks of data. ComputeSwap peers are

looking to run inference computation on DNNmodel(s) given input data, and have a

list of services that they could run inference computation to offer in exchange. Com-

puteSwap peers provide direct value to each other in the form of inference computa-

tion.

ComputeSwap’s design goals are to:

1. Encourage peers to service inference computation when they do not need any-

thing in particular.

2. Discourage free-loading peers that never service inference computation.

To accomplish these goals, ComputeSwap has a credit-like system where the proba-

bility that a node gets its request for inference computation serviced falls as its debt
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increases. ComputeSwap peers run inference computation optimistically on credit,

hoping that the debt will be repaid. This encourages peers to service inference com-

putation when they do not need anything in particular, as other peers may be able to

service inference computation it needs in exchange in the future. Since the the proba-

bility of servicing inference computation falls as debt increases, this discourages free-

loading peers that never service inference computation, as their debts will be high

and the probability of getting their inference computation requests serviced will be

low.

ComputeSwap incentivizes a node to service an inference computation needed by its

peers. If a node is currently not servicing inference computation its peers want, it will

switch to service the inference computation its peers want in order to keep its debt

on its peers low and therefore the probability of getting its own requests serviced on

its peers high. This encourages the efficient distribution of inference services because

more popular services in a particular area will be serviced by more peers.

We now introduce the details of ComputeSwap, including the ComputeSwap ledger

and the ComputeSwap strategy; then, we give a detailed specification of ComputeSwap.

The ComputeSwap ledger keeps track of the computation exchanged with other

peers in terms of debt and credit. Any pair of peers maintain a common ledger. This

allows peers to keep track of history and avoid tampering. The ComputeSwap strat-

egy outlines a strategy each node uses to exchange inference computation.
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7.5.1 COMPUTESWAP LEDGER

A node keeps ledgers to keep track of credits and debts of the inference computation

exchanged and avoid tampering. Each pair of two connecting peers maintains a com-

mon ledger. A node keeps multiple ledgers, one for each peer. These ledgers allow

nodes to keep track of a history of credits and debts and avoid tampering. A common

ledger has to be agreed between two connecting peers.

The structure of a ComputeSwap ledger is defined as follows.

type Ledger struct {
node1 NodeID
node2 NodeID
debt1 int
debt2 int

}

Given a pair of connecting peers, their node IDs are sorted and stored in a common

ledger. The first node ID is assigned to node1, and the second node ID is assigned

to node2. debt1 is the debt accumulated by node1, and debt2 is the debt accumulated

by node2. Note that debt1 is the credit that node2 gives to node1 and debt2 is the credit

that node1 gives to node2. These are used to compute the debt-to-credit ratio in Sec-

tion 7.5.2.

The ledger is exchanged when a connection is activated between two connecting

peers. If the ledger does not yet exist, it is initialized with zero debts. If a peer notices
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a discrepancy in the ledger, it is free to hold the other node in contempt and refuse to

exchange.

Peers may agree to create check points of their ledgers, thus allowing them to garbage

collect the old history.

7.5.2 COMPUTESWAP STRATEGY

Each ComputeSwap peer uses a strategy to exchange its computation. Each peer may

employ different strategies. The strategies used by peers dictate the performance of

the network as a whole. In designing a strategy, we aim to:

1. Be lenient to trusted peers.

2. Maximize the efficiency and performance of the network.

3. Deter freeloaders from exploiting and degrading the network, and be resistant

to other unknown strategies.

In this section, we outline a strategy that fits these criteria. To be lenient to trusted

peers, peers should maintain a trusted peer list where the service probability is al-

ways one for those peers on the list. To maximize the efficiency and performance of

the network, peers should serve service requests optimistically as the requests come

in. To deter freeloaders and be resistant to other unknown strategies, peers should

service the inference requests probabilistically, where the probability decreases as the
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debt-to-credit ratio, or debt ratio for short, increases.

The debt-to-credit ratio or debt ratio (r) is defined for each pair of peers as:

r =
debt

credit+ 1
, (7.1)

where debt is the amount of inference computation a peer has requested for the other

peer and credit is the amount of inference computation the peer has serviced for the

other peer. The inference computation is counted as the number of operations the

node has to do in order to service the request. For a floating point model, this is the

total number of floating point operations. Note that one is added to the denominator

to keep r well-defined when credit is zero.

For the service probability, we want to design a probability function that penalizes

peers with a high debt ratio (r). The penalty must grow as the debt ratio increases to

discourage peers to accumulate debt. When the debt ratio is less than one, i.e., the

node has serviced requests more than requesting services, there should be no penalty.

With these criteria in mind, the probability p of servicing a request is defined to be

monotonic, starting from one and dropping to zero as r increases. Specifically, it is

defined as follows:

p(r) = 1− I(
r− 1
m− 1

; n,
1
n
),

where m is a parameter indicating the upper bound of the debt ratio where the proba-
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Figure 7.1: Probability of servicing a request as the debt ratio increases when m = 4.0 for
varying n

bility is zero, n is a parameter indicating how p drops with r, and I(x; a, b) is the regu-

larized incomplete beta function defined as:

I(x; a, b) =
B(x; a, b)
B(a, b)

,

where B(x; a, b) is the incomplete beta function, and B(a, b) is the beta function. Their

functions are defined as:

B(x; a, b) =
∫ x

0
ta−1 (1− t)b−1 dt,

B(a, b) =
∫ 1

0
ta−1 (1− t)b−1 dt.
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Figure 7.1 shows the probability p of servicing a request as the debt ratio r increases

when m = 4.0 for varying n. We see that this definition of the probability p fits

the criteria specified earlier: the probability drops as the debt ratio increases. How

p drops depends on the configurable parameter n. As n increases, the function is

more lenient to peers with high debt ratio r. For example, when n = 16 the penalty

does not kick in until the debt ratio is very high; after a certain point, the probability

drops significantly. When n = 1, the probability p drops linearly as the debt ratio r

increases.

If a node decides not to service a peer, the node subsequently ignores the peer for a

certain period of time Tg. This prevents the peers from trying to increase their success

probability by increasing the number of requests. A node can also decide to add a

peer to a blacklist and immediately terminate the connection if it detects undesirable

behaviors from the peer.

7.5.3 COMPUTESWAP SPECIFICATION

The ComputeSwap data structure and interface are defined as follows:

type NeedList []Multihash
type HaveList []Multihash
type TrustedList []Multihash
type BlackList []Multihash
type State int
type ServiceID Multihash

type ComputeSwap struct {
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ledgers map[NodeID]Ledger
actives map[NodeID]Peer
needList NeedList
haveList HaveList
trustedList TrustedList
blackList BlackList

}

type Peer struct {
nodeID NodeID
addrs []Multiaddr
state State
lastSeen Time
ledger Ledger

needList NeedList
haveList HaveList

}

type Request struct {
serviceID ServiceID
inputs []byte

}

type Response struct {
outputs []byte

}

type Peer interface {
open(ledger Ledger) bool
sendNeedList(needList NeedList)
sendHaveList(haveList HaveList)
infer(request Request) Response
close(final bool)

}

A ComputeSwap node maintains a map of peer ID to active peers and a map of peer

ID to associated ledgers. It also maintains various lists: a trusted peer list, a black-

list, a need list and a have list. A trusted peer list is a list of peers for which the node

will always service inference computation, regardless of the debt ratio the peer has. A
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blacklist is a list of peers for which the node will never exchange inference computa-

tion. A need list is a list of services that the node needs from its peers. A have list is

a list of services that it is currently servicing. When an application starts, joins IDN,

and requests an inference computation service on a particular node, the service ID is

added to the need list. When a node starts providing a particular service, the service

ID is added to the have list.

For each connecting peer, a node also maintains the peer’s need list and have list

as well as other information such as the peer’s ID, network addresses, state, last

seen timestamp, and ledger. Each peer object also has the following available meth-

ods:

• open(ledger) opens a connection with the peer and sends the common ledger

ledger. The method returns true if the peer accepts the ledger and activates the

connection. Otherwise, it returns false and closes the connection.

• sendNeedList(needList) sends the list of services needed (needList) to the peer.

The method returns true if the peer successfully receives the list. Otherwise, it

returns false.

• sendHaveList(haveList) sends the list of services this node is providing (haveList)

to the peer. The method returns true if the peer successfully receives the list.

Otherwise, it returns false.

• infer(request, timeout) sends inference request of type Request to the peer and
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waits for timeout period for a response from the peer. The peer executes the in-

ference computation and returns the response of type Response. If the timeout

period has passed and the peer has not yet responded, the method returns with-

out a response.

• close(final) closes the connection with the final parameter indicating whether it

is the final message and the node is shutting down the connection.

7.5.3.1 STATES AND LIFECYCLE

The following are the different states of a peer during its lifetime:

1. Open: peers negotiate their ledgers until they agree.

2. Online: a peer is online and ready to exchange lists and inference computation.

3. Close: the connection to the peer is deactivated.

4. Ignore: a peer is ignored for an ignore period Tg.

Figure 7.2 shows different states of a peer during its lifecycle. We now describe each

state in detail.

7.5.3.2 OPEN

When a connection is established, a peer is in an Open state. A node then sends an

openmessage with the common ledger, either stored from the previous connection or
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Figure 7.2: ComputeSwap Peer State Machine. It consists of four states: Open, Online, Ignore
and Close

a new one if it does not exist, to the peer.

Upon receiving an openmessage, a peer chooses whether to activate the connection

or not depending on whether the peer is in the trusted peer list, the blacklist, or nei-

ther. A node may choose to ignore the openmessage if it detects undesirable behav-

iors from the peer. This will transition the state of the peer to Ignore state and start

an ignore period Tg, where the node will ignore this peer for a Tg period of time. A

node may also choose to add the peer to a blacklist and proceed to close the connec-

tion.
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If a node decides to activate the connection, it initializes a Peer object with the local

version of the ledger or a new one if it has not yet existed. The node then sets the

last seen timestamp and compares the received ledger with its own. If they match

exactly, the connection is open and the peer’s state is transitioned to Online. Other-

wise, the peer creates a new ledger, and sends it back to the sender to open the con-

nection.

7.5.3.3 ONLINE

When a peer is in the Online state, a node sends out its need list and have list to the

peer under the following conditions:

1. the connection is first activated,

2. after a randomized periodic timeout,

3. after a change in node’s need list and have list.

Upon receiving a need list or have list, a node stores it. It checks whether it can ser-

vice any of the services in the need list and has capacity for it. This decision depends

on the state of the service priority queue. If the node can provide the service, it boot-

straps the service and waits for the inference requests.

Upon receiving an incoming inference request, the node simply executes the infer-

ence computation given the input data. Upon receiving the response, the node option-

170



ally verifies the response and returns the receipt confirmation.

A node can occasionally send a challenge where it knows the expected response.

Upon receiving the response, the node verifies if the response of the challenge is cor-

rect and returns receipt confirmation. If the challenge is not responded to correctly, a

node is free to ignore the node for a certain period of time or blacklist the node and

close the connection.

Upon receiving the receipt confirmation, both the receiver and sender update their

ledgers to reflect the new debt ratio.

7.5.3.4 CLOSE

A node can send a close message to a peer to indicate that it wants to close the con-

nection. A closemessage has a final parameter to indicate the final message and the

node’s intention to tear down the connection.

A closemessage with the final parameter set to false is sent when the node does not

receive any messages from the peer and has waited for a certain period of time Tc. A

closemessage with the final parameter set to true is sent when the node is shutting

down.

A peer transitions to a Close state when a node sends a closemessage to the peer to

tear down the connection. After a close message is sent, the node tears down the con-
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nection to the peer, clearing any state stored except the ledger which is stored for fu-

ture accountability.

Upon receiving a closemessage, if the final parameter is set to false, a node may re-

open the connection immediately. Otherwise, it tears down the connection to the

peer, clearing any state stored except the ledger which is stored for future account-

ability.

7.5.3.5 IGNORE

When a peer is transitioned into the Ignore state, a node ignores all messages from

that peer. The peer is transitioned out of the Ignore state after the ignore period Tg

has passed.

7.6 RELATED WORKS

In 1999, Napster [79], a pioneering peer-to-peer (p2p) MP3 [98] file sharing applica-

tion, was born out of a college dormitory. It has made a tremendous impact on how

the Internet was used in the following decades. In 2000, Clay Shirkey [99] defines

peer-to-peer (p2p) as “a class of applications that take advantage of the resources

– storage, cycles, content, human presence – available at the edges of the Internet.”

That definition remains true today. A peer in a p2p network can be both a resource
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provider and a resource consumer. As more nodes join the network, the demand on

and the resources of the system increase. In addition, since each peer in the network

is a provider, the servicing resources of the network is distributed with redundancy.

Thus, inherently, applications on a p2p network are low-cost, low-latency, fault toler-

ant, and scalable.

Since Napster, many other p2p systems have emerged. For example, SETI@Home [100]

and Folding@Home [101] provide infrastructure for communities to volunteer their

CPU cycles to help solve certain problems. Gnutella [102] and BitTorrent [103] are

p2p file sharing systems. CoralCDN [97] is a p2p content distribution network (CDN).

More recently, Storj [79] is a p2p cloud storage network and IPFS [73] is distributed

file system. The successes of these p2p applications share a common trait: these p2p

applications greatly reduce the cost of running the source server, which in turn allows

for the growth of their usage. Built as a p2p network, IDN shares this common trait.

IDN peers can economically run inference on DNNmodels in their applications using

spare computing resources nearby. The growth of participating peers will increase

the resources available in the network and in turn accelerate the growth of artificial

intelligence applications.
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7.7 CONCLUSION

In this chapter, we describe different components of IDN, including Identity, Net-

work, Routing, Inference Service Engine (ISE), and ComputeSwap. The core compo-

nent of IDN is ComputeSwap that manages the efficient distribution of inference com-

putation among peers. In the strategy presented, a node services inference computa-

tion to a peer optimistically hoping that the debt will be repaid and probabilistically

according to the debt ratio of that peer. This incentivizes a node to service DNN mod-

els that its peers need; thus, more popular DNN models are serviced by more peers.

With the right incentive, peers are organized in a decentralized manner to dissipate

the inference load of popular DNN models. A node also maintains a trusted peer list

where it always services inference requests from these peers, and a blacklist where it

never services inference requests from these peers.
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8
Conclusion

Today the demand for artificial intelligence applications is ever-growing. Complex

DNN models are large and require substantial computing resources. These models

are trained and deployed on highly sophisticated and powerful computing devices

on the cloud. This has led to related work aiming at reducing their computational

complexity and fitting them on smaller and embedded devices. Intelligence Distribu-
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tion Network (IDN) as introduced in this dissertation tackles this problem differently.

Following in the footsteps of CDNs and learning from the successes of peer-to-peer

(p2p) networks for media streaming, file sharing, and content distribution, IDN aims

to provide tools and a p2p infrastructure to support this ever-growing demand by al-

lowing end devices to tap into computing resources nearby. In summary, the benefits

of IDN discussed here include:

• Lower cost. Using the spare computing resources of other devices nearby which

would otherwise go unused, therefore lowering the cost of DNN inference.

• Faster inference. Using nearby computing devices brings computation closer

to the devices that need it and therefore lowers the inference time. With BranchyNet

(Chapter 3), the inference computation can exit early, further reducing the infer-

ence time.

• Scalability. With DDNN (Chapter 4), DNN models can utilize resources be-

yond a single device and scale across multiple devices, edges, and cloud servers.

• Fault tolerance. DNN models generated with ParallelNet (Chapter 5) can exe-

cute independently in parallel on devices of varying compute capacity. Not all

models are required to return the result, making the inference more robust to

faults.

• Abundance of high-quality DNNmodels. DaiMoN (Chapter 6) incentivizes

peers to collaborate and share DNN models, improving the quality and increas-
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ing the number of publicly available high-quality DNN models.

• Efficient distribution of DNN inference. ComputeSwap (Chapter 7) incen-

tivizes peers to participate in the network, enabling efficient distribution of

DNN models and inference computation.

This dissertation introduces both the frameworks and neural network architecture

motifs that developers can utilize in order to adapt their models to optimally take ad-

vantage of the IDN platform. By using IDN and these associated motifs, users can tap

into the computing resources of other peers nearby, democratizing neural network

inference.

These frameworks introduced here for use with IDN include BranchyNet, Distributed

Deep Neural Network (DDNN), and ParallelNet. BranchyNet (Chapter 3) proposes

an augmentation to a DNN model by adding early exit branches to exit the compu-

tation early, reducing unnecessary communication and computation. Distributed

Deep Neural Network (DDNN) (Chapter 4) takes this concept further by mapping

a DNNmodel to a computing hierarchy consisting of end devices, edges, and clouds,

allowing the computation to exit early at various tiers of the computing hierarchy and

scale beyond the capacity and capabilities of a single device. ParallelNet (Chapter 5)

builds upon this concept to allow devices of different capability to execute different-

sized models independently in parallel, and to terminate the computation early when

enough confidence is accumulated, increasing redundancy and fault tolerance of the
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services as not every model is required to return the result. Since the introduction of

these frameworks, people have used and adapted these frameworks to design effi-

cient inference systems for various applications [104, 105, 106, 107, 108, 109, 110, 111,

112, 113, 114].

IDN relies on the availability of various DNN models for peers to use. To tackle this

problem, IDN introduces DaiMoN (Chapter 6), a decentralized artificial intelligence

model network, which incentivizes peer collaboration in improving the accuracy of

DNN models. A main feature of DaiMoN is that it allows peers to verify the accuracy

improvement of submitted models without knowing the test labels. This is an essen-

tial component in order to mitigate intentional model overfitting by model-improving

peers. As a result, DaiMoN will encourage peers to collaborate, increasing the quality

and the number of publicly available models for use on IDN.

To manage how IDN is used, ComputeSwap (Chapter 7) is introduced to incentivize

peers to participate in the network and efficiently distribute inference computation

among these peer computing devices. In ComputeSwap, peers execute inference re-

quests optimistically and keep ledgers of debts that other peers owe and credits that

other peers give. Peers execute inference requests probabilistically where the proba-

bility of servicing reduces as the debt-to-credit ratio increases.

IDN makes an impact on the field of artificial intelligence in two ways. First, IDN

provides a p2p network of computing resources that researchers and application de-
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velopers can tap into. As the demand for artificial intelligence applications grows, so

does the demand for computing resources. With IDN, researchers and application

developers now have access to an ever-growing source of spare computing resources

nearby that would otherwise go unused. Having a platform like IDN to build upon

will help accelerate the research and development of novel artificial intelligence appli-

cations.

Second, IDN as a platform opens up a new frontier of research topics. As more ap-

plications run on IDN, new problems will arise. More tools and frameworks will be

developed to support various applications on IDN. It is the hope that IDN will have

an impact on how artificial intelligence applications are built and used in the decades

to follow.

8.1 FUTURE WORK

Though this dissertation touches upon various topics that make up IDN, it is in no

way exhaustive. A lot of future and continuing work is needed. However, it is the

hope that IDN will provide a platform for future research and developments of DNN

models and inference using nearby peer computing resources.

This dissertation explores a few criteria for exiting samples and provides some heuris-

tics in selecting the exit thresholds. However, these are not exhaustive. Future work
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may explore other criteria for exiting samples and other methods for finding the exit

thresholds.

This dissertation applies the presented frameworks and neural network architecture

motifs to only image classification problems. However, these frameworks and motifs

are generic and could be applied to other application domains. Future work may ex-

plore the use of these frameworks and motifs in other application domains such as

object detection, natural language processing, and reinforcement learning.

Topics that are not discussed in this dissertation but could be helpful are other tech-

niques to improve the performance and inference time of DNN models. These tech-

niques include, for example, computational graph optimization, neural network prun-

ing, quantization, and compression [29, 43, 115, 116, 117, 118, 119, 120, 121]. These

techniques could further be developed to take advantage of available nearby peer

computing resources on IDN.

DaiMoN aims to solve the quality and availability problem of DNN models to encour-

age peers to work collaboratively in a decentralized manner to create DNN models

that solve a particular task and make them available for use. Future research in this

area includes different neural network architectures to learn the distance embedding

function to further protect against future attacks. Theoretical foundation of those

functions can also be explored.
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There is still a lot to explore in the design of IDN itself. We only touched upon a sin-

gle ComputeSwap strategy in this dissertation. Future work could explore different

strategies including different penalty functions for peers with high debt ratios. IDN

currently maintains a ledger for each pair of peers. Future work could use a common

public ledger for all peers, which will allow the use of a virtual currency that peers

can exchange for inference services. Future iterations of IDN can also improve the ef-

ficiency and performance of the network by including performance metrics such as

availability, response time, and bandwidth in the decision of whether nodes can host

a particular inference service.

IDN is a platform which can further grow to provide support for DNN training. Train-

ing techniques such as distributed deep learning and federated learning [51, 52, 54,

122, 123] can also be explored on the IDN platform. Federated learning on IDN can

take advantage of the locality of the data from nearby devices. With federated learn-

ing, IDN nodes can learn from each other’s data in the same vicinity and generate

models that are specialized to the data of that particular area. For example, object de-

tection services on IDN nodes in Australia where there are a lot of kangaroos will be

able to detect kangaroos really well.

Another area that has not been touched upon much in this dissertation is privacy and

security. Though certain applications do not require privacy and security, these could

be important to other applications dealing with sensitive information. Work such as
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differential privacy, zero-knowledge proofs, multi party computation, and homomor-

phic encryption [124, 125, 126, 127, 128] can further be researched and included in the

future iterations of IDN.
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