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Abstract 

Cylindrical shells under uniaxial compression and spherical shells under equi-

biaxial compression display the most extreme buckling sensitivity to imperfections.  In 

engineering practice, the reduction of load carrying capacity due to imperfections is 

usually addressed by use of a knockdown factor to lower the critical buckling stress 

estimated or computed without accounting for imperfections.  For thin elastic cylindrical 

shells under uniaxial compression and spherical shells under equi-biaxial compression, 

the knockdown factor is typically as small as 0.2.  This paper explores the alleviation of 

imperfection-sensitivity for loadings with a reduced circumferential (transverse) 

membrane stress component.  The analysis of W.T. Koiter (1963) on the effect of an 

axisymmetric imperfection on the elastic buckling of a cylindrical shell under uniaxial 

compression is extended to both cylinders and spheres for loadings that produce general 

combinations of biaxial membrane stresses.  Increases in the knockdown factor due to a 

reduction of the transverse membrane component are remarkably similar for cylindrical 

and spherical shells. 

 

1.  Introduction 

 Design of structures comprising thin cylindrical and spherical shells subject to 

compressive membrane stresses makes use of a knockdown factor,  , to account for the 

fact that imperfections can reduce the compressive stress at buckling to a small fraction 

of the critical stress at which the perfect shell buckles.  For all the cases considered in this 

paper, the relevant compressive stress at buckling of the imperfect shell is given by 

 1 C           (1) 

where C  is the critical compressive stress component in the 1-direction of the perfect 

shell.  Cylindrical shells under uniaxial compression and spherical shells under equi-



biaxial compression are the most imperfection-sensitive of all shell structure/loading 

combinations.  As established by Koiter (1945, 2009), their extreme sensitivity is due to 

the nonlinear post-buckling interaction among the many simultaneous buckling modes 

associated with buckling of the perfect structure.  By far, the most information is 

available for knockdown factors for cylindrical shells under uniaxial compression based 

on experimental data collected by NASA (1965).  Data assembled by Seide, Weingarten 

and Morgan (1960) is plotted in Fig. 1 as   versus the shell radius to thickness ratio, 

/R t .  Very thin elastic cylindrical shells under uniaxial compression buckle at stresses as 

low as 0.2  , and possibly even lower for / 1500R t  .  The body of experimental data 

for spherical shells under external pressure (equi-biaxial compression) is much smaller.  

However, due to similarity with the cylindrical shell under axial compression noted 

above and the data that does exist, it has been common practice to adopt the knockdown 

factor for cylindrical shells plotted in Fig. 1 for the spherical shells under equi-biaxial 

compression. 

 The issue addressed in this paper is the extent to which imperfection-sensitivity of 

elastic buckling is alleviated by loadings which alter the circumferential (transverse) 

membrane stress component.  Throughout this paper, 1  and 2  denote the membrane 

stresses in the axial and circumferential directions (Fig. 2), taken positive in compression.  

For a perfect cylinder, 1  is proportional to the axial load and 2  is related to an external 

pressure, p , by 2 /pR t  .  For perfect spherical shell segments, the membrane stresses 

depend on the combination of axial load (and possibly transverse load) and external 

pressure, p , such that 1 2 /pR t    for all combinations.  A spherical shell loaded 

solely by external pressure has equi-biaxial compression (i.e., 1 2 / 2pR t   ). A 

spherical equatorial segment (a belt-line segment) loaded only by a compressive axial 

load, P , has axial compression and circumferential tension with 1 2 / (2 )P Rt     .  

For imperfect cylindrical and spherical shells, there will be short wavelength spatial 

variations in the membrane stresses, but their average values are the same as for the 

perfect shells.  Consequently, throughout this paper, 1  and 2  can be regarded as the 

values associated with loads on the perfect shell whether the shell is perfect or not.  



In all cases considered here, 1  is the largest compressive component such that it 

drives buckling. Attention is limited to loadings that produce circumferential tension in 

the cylindrical shell ( 2 0  ) and that reduce circumferential compression in the 

spherical shell ( 2 1  ).  Commonly encountered loadings produce these reductions, as 

will be illustrated later.  Experiment (Seide, et al., 1960; Limam, et al, 1991; Mathon and 

Limam, 2006) and theory (Hutchinson, 1965; Rotter and Zhang, 1990; Teng and Rotter, 

1992) have revealed that the knockdown is less severe for axial buckling of cylindrical 

shells under internal pressure.  One set of tests on spherical shell segments by Yao (1963) 

discussed later also reveals reduced imperfection-sensitivity when the loading produces 

reduced transverse stress.  Efforts are underway by both ASME and NASA to refine the 

knockdown prescriptions as a function of the circumferential membrane stress to take 

advantage of the reduced imperfection-sensitivity.  For the ranges of 2  considered here, 

for both the cylindrical shell and the spherical shell, 2  has no effect on the buckling 

stress of the perfect shell: 

 1 23(1 )
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E t

R
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       (2) 

with E  as Young’s modulus and   as Poisson’s ratio (c.f. analysis in Section3). 

For the ranges of 2  considered in this paper, the deflection normal to the shell 

associated with the buckling mode of the perfect shell has the form (away from the ends 

of the cylinder or away from the boundaries of a spherical segment) 
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with   as the buckling amplitude.  For thin shells, the wavelength of this mode, 

 2 1/ 42 / 3.38 /(1 )R q Rt    ,        (4) 

is short compared to the shell radius.  For a full cylindrical shell, the mode in (3) is 

axisymmetric, as in the analysis by Koiter (1963) for uniaxial compression.  It also 

applies to a “large” circumferential segment of a cylindrical shell away from the 

boundaries as long as the boundary edges are well supported.  Large in this context 

means that the circumferential width and axial height of the segment are both large 



compared to  . Similarly, (3) is an axisymmetric mode for a full equatorial segment of a 

spherical shell (Fig. 2b) whose height, H , is large compared to   but such that the shell 

is still shallow in the axial direction, i.e., /(2 )H R  not larger than about ½.  The mode (3) 

also represents the buckling deflection away from adequately supported edges for any 

“large” shallow segment of a sphere whose dimensions are large compared to  , as 

discussed by Hutchinson (1967). 

 

2.  Buckling strength reduction due to an axisymmetric imperfection 

 An imperfection in the form of a normal displacement, W , of the shell middle 

surface is considered.  Following Koiter (1963) for the cylinder and Hutchinson (1967) 

for the sphere, an imperfection in the shape of the buckling mode (3) is assumed: 

 1cos
x

W t q
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 

        (5) 

with   as the normalized imperfection amplitude.  As just discussed, (5) can be viewed 

as an axisymmetric imperfection for full circumferential shell segments or as a local 

imperfection varying in only the 1x -direction in a sufficiently large shell segment (that is 

also shallow in the case of the sphere).  For simplicity, the imperfection (5) will be 

referred to as being axisymmetric and the associated pre-buckling deflections of the 

loaded shell will also be referred to as axisymmetic in the sequel.  The shells, or shell 

segments, are assumed to meet the conditions described in the previous section with 

regard to their dimensions.  It is also assumed that the support conditions are sufficiently 

strong such that buckling is dominated by the imperfection and not by a weakly 

supported edge. 

With due regard for readers not interested in the details of the analysis, the results 

for the knockdown factor will be presented in this section followed by presentation of  

details in Section 3.  Nevertheless, a brief outline of the analysis, following the steps laid 

out by Koiter (1963), is described because it highlights the validity of the predictions.   

(i) Given the imperfection (5), an exact axisymmetric solution to the Donnell-

Mushtari-Vlassov (DMV) nonlinear shell equations is obtained.   

(ii) Bifurcation from the axisymmetric state is determined in the form of a non-

axisymmetric mode,  
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where   is a minimization parameter in the analysis that sets the wavelength in the 

circumferential direction.   

(iii) While the bifurcation mode (6) is not exact, the analysis carried out ensures 

that the prediction for the knockdown factor,  , is both accurate and an upper bound for 

the prescribed imperfection. 

 Insight into the selection of the bifurcation mode (6) was provided by Koiter 

(1963, 2009) and repeated here in Fig. 2c.  In the axisymmetric state the loaded imperfect 

shell experiences alternating compressive (+) and tensile (-) enhancements of the 

circumferential membrane stress, as noted in Fig. 2c, depending on whether the 

deflection is inward or outward.  Compressive enhancement favors circumferential 

variations in non-axisymmetric bifurcation mode while tensile enhancement discourages 

such variations.  Thus, the axial wavelength of the bifurcation mode is exactly twice that 

of the axisymmetric deformation with the associated deflection phased such that the 

circumferential nodal lines coincide with the peaks of enhanced tension.  The largest 

circumferential variations align with regions of enhanced compression.  In many cases, 

but depending on the way the loads are applied and the imperfection amplitude, the post-

bifurcation interaction of the axisymmetric and non-axisymmetric deflections gives rise 

to dynamic snap buckling at bifurcation (Budiansky and Hutchinson, 1972). 

 The knockdown factors for the cylindrical shell under uniaxial compression and 

the spherical under equi-biaxial compression based on the results of Section 3 are plotted 

as a function of the normalized imperfection amplitude in Fig. 3.  Plotted in this manner, 

the curves are independent of  .  The curve for cylindrical shells was originally given by 

Koiter (1963) and the curve for spherical shells was given by Hutchinson (1967).  Based 

on asymptotic methods for small imperfections, these authors also established that the 

axisymmetric imperfection (5) gives rise to knockdowns that are the largest for the 

cylinder, and almost the largest for the sphere, among all competing imperfections with 

the same amplitude.  The extreme sensitivity to the geometric imperfection of the middle 

surface of these two shells under their respective loadings is evident.  The fact that the 

sensitivity of the cylindrical and spherical shells is nearly the same for the imperfection 



(5) provides some justification for the common practice of applying knockdown factors 

based on experimental data for cylindrical shell under uniaxial compression to the 

spherical shell under equi-biaxial compression. 

 The effect of a circumferential membrane stress component that departs from 

uniaxial compression for the cylinder or from equi-biaxial compression for the sphere is 

shown in Fig. 4.  This figure plots four sets of curves with one for the cylinder and the 

other for the sphere in each set.  For each set of paired curves, the normalized 

imperfection amplitude, 2(1 )  , is chosen such that the knockdown factor,  , for the 

cylinder under uniaxial compression ( 2 0  ) and that for the sphere under equi-biaxial 

compression ( 2 1  ) coincide.  The abscissa in Fig. 4 is taken as the normalized 

decrease in the circumferential membrane component from the uniaxial state for the 

cylinder, measured by 2 1/  ,  and from the equi-biaxial state for the sphere, measured 

by 2 1/ 1   .   

It is particularly striking in Fig. 4 that the effect on the knockdown factor of the 

decrease in the circumferential membrane stress is almost the same for the two shell 

structures.  This observation provides further justification and guidance for using 

experimental data obtained from cylindrical shell compression tests to assign knockdown 

factors to spherical shells, especially since data for cylindrical shells is more readily 

acquired that the corresponding data for spherical shells. 

 It is also evident from Fig. 4 that a reduction in the compressive circumferential 

membrane stress lowers the imperfection-sensitivity, the primary concern of this paper.  

If one assumes that the results in Fig. 4 are accurate for the prescribed axisymmetric 

imperfection, then it can be argued that they should provide a conservative prediction for 

the increase in knockdown factor above the values for uniaxial compression for the 

cylinder and equi-biaxial compression for the sphere.   

The argument for the conservatism follows from the fact that, while 2  has no 

effect on pre-buckling behavior for axisymmetric imprefections, 2  diminishes pre-

buckling deflections for non-axisymmetric imperfections—in effect, smoothing out the 

circumferential variations (assuming circumferential tension for the cylinder and reduced 

circumferential compression, or tension, for the sphere). Thus, the knockdown factor 



based on non-axisymmetric imperfections increases more rapidly with reduction in 2  

than for axisymmetric imperfections.  This was established for cylindrical shells by 

Hutchinson (1965) using asymptotic methods for small imperfections.   More recently, 

this point was emphasized by Teng and Rotter (1992) who also studied the effect of 

pressure for a variety of axisymmetric imperfection shapes using finite element 

simulations.  It is not possible to carry out an analysis such as that in Section 3 for the 

2 -dependence of   for non-axisymmetric imperfections without resorting to nonlinear 

finite element computations.  Such an analysis would almost certainly produce a more 

rapid increase of   with decreases in 2  than those in Fig. 4.  Nevertheless, it remains 

true that any shell dominated by axisymmetric imperfections would be expected to 

approximately follow the trends in Fig. 4 as is also evident in the results of Teng and 

Rotter (1992). 

 An illustration of a loading case that produces reduced circumferential membrane 

stress is provided by the tests on spherical shell segments conducted by Yao (1963).  Yao 

subjected clamped fully circumferential spherical shell segments to an overall axial 

tensile load, P ,  with no normal pressure applied to the shell.  These shell segments 

experienced a tensile axial membrane stress / (2 )P Rt  and an equal and opposite 

compressive circumferential stress.  Thus, in the present notation with the axial and 

circumferential directions interchanged, Yao’s tests have 2 1/ 1    .  The range of the 

experimentally measured knockdown in Yao’s tests is plotted in Fig. 5.  The seven shells 

tested by Yao had /R t  ranging from 455 to 1600 with the ratio of the experimental to the 

theoretical buckling loads ranging from 0.38 to 0.67.  Stress estimates indicated that the 

shells all buckled in the elastic range.  Two shells buckled at 0.38  , including one 

shell with /R t =476.  The imperfection associated with the theoretical curve in Fig. 5 has 

been set at 2(1 ) 0.843    such that the spherical shell under equi-biaxial 

compression buckles at 0.2  , consistent with the factor commonly used for the range 

of /R t for Yao’s shells (c.f., Fig.1).  

A large body of experimental data for spherical shells under loadings other than 

equi-biaxial compression does not exist, and even that is scarcer than cylindrical shell 

data.  It is significant that two of Yao’s seven shells buckled just above the theoretical 



prediction in Fig. 5.  This limited data set suggests that the present theoretical prediction 

for   as a function of 2 1/   may not be overly conservative.  In other words, 

axisymmetric imperfections can be expected to dominate buckling in some shells.  A 

similar conclusion was drawn for cylindrical shells subject to combined axial 

compression and internal pressure (Hutchinson, 1965). 

The present study has relevance to cylindrical shells subject to combined bending 

and internal pressure where experimental data provides clear evidence of reduced 

imperfection-sensitivity as the pressure is increased (Seide, et al., 1960; Limam, et al., 

1991; Mathon and Limam, 2006).  For thin shells subject to bending, it is common 

practice to estimate the buckling stress based on the local stress in the most highly 

compressed region.  Imperfection-sensitivity is less severe than for shells under uniaxial 

compression due to fact that a far smaller region of the imperfect shell is sampled by the 

highest compression and the mode is more localized.  In principle, however, a local 

“axisymmetric” imperfection in the most highly stressed region should be almost as 

deleterious as for the uniaxial loading.  The trends seen in the experimental data 

presented by Limam, et al. (1991) indicate a clear reduction in imperfection-sensitivity 

with increased internal pressure and, further, that the present results are conservative 

when applied in the manner just stated.  

Lastly, it should be emphasized again that the present results focus on bifurcation 

from the axisymmetric state.  It is well known from experiments and theory (e.g., Koiter, 

2009) that bifurcation of cylindrical shells under uniaxial compression is unstable giving 

rise to dynamic collapse even under prescribed overall end shortening, except for highly 

imperfect shells (Budiansky and Hutchinson, 1972).  It is also known from experimental 

observation that sufficiently high internal pressure can lead to stable post-bifurcation 

behavior in which the buckled shell supports an imposed axial load.  This paper has not 

addressed the issue of post-bifurcation stability.  It is expected that over much of the 

range of  2 1/   plotted in Figs. 4 and 5, the bifurcation will be unstable, but that has not 

been established.  

 

3.  Knockdown factor   for buckling of cylindrical and spherical shell segments 
with an axisymmetric imperfection 



 
 Essential details of the buckling analysis are presented in this section. The shells 

are elastic and isotropic with uniform thickness t .  Middle surface coordinates, 1x  and 2x , 

are aligned with the axial (meridional) direction and the circumferential direction, 

respectively.   An axisymmetric imperfection, 1( )W x , specifies the normal  deflection of 

the middle surface of the unloaded shell.  The nonlinear Donnell-Mushtari-Vlasov 

(DMV) shell equations are 
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with 2/[12(1 )]D E   , 1 2( , )W x x  as the additional normal deflection of the shell, and 

1 2( , )F x x  as the stress function giving resultant membrane stresses 

 11 ,22 22 ,11 12 ,12, ,N F N F N F     

For the cylindrical shell, R  is the radius and 0  ; for the spherical shell, R  is the 

radius of curvature and 1  .  The equations provide an accurate description of shell 

behavior for modes of deformation that are shallow, characteristic of the shortwave 

length buckling modes pertinent to the present study.  The equations are also limited to 

middle surface rotations that do not exceed about 15o which is well below the rotations 

relevant to the results obtained below.   In addition, the dimensions of the shells, or shell 

segments, must be large compared to   in (4) and, for spheres, the segments must be 

shallow, as enunciated earlier.  The edge support is assumed to be sufficiently robust such 

that the dominant buckling deflections are away from the boundaries.  The analysis given 

below focuses on the behavior in the interior area of the shell and ignores a layer of width 

  at the boundaries, as in the approach of Hutchinson (1967). 

 The analysis which follows applies to both the cylinder and the sphere depending 

on whether   is 0 or 1.  The pre-buckling state of stress of the perfect shell ( 0W  ) is 

uniform with 

 11 1 22 2 12, , 0,N t N t N       with  1 2 /pR t       (8) 



The classical buckling equations for the perfect shell are obtained by linearizing 

(7) about the prebuckling state: 
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with ( , )W F   representing the linearized mode.  Eqs. (9) admit eigenmodes of the form 

        1 1 2 2 0 1 1 2 2cos / cos / , cos / cos /W qx R qx R F F qx R qx R       (10) 

where q  is defined in (3).  For the cylinder with 2 0  , the critical (lowest) eigenvalue 

is given by (2) for any combination of 1  and 2  satisfying 2 2
1 1 2 0      (Koiter, 

1945, 2009).  For the sphere with 2 1  , the critical eigenvalue is also given by (2) for 

any combination satisfying 2 2
1 2 1    (Hutchinson, 1967).  Note that the axisymmetric 

mode (3) with 1 1    is one of the possible modes for both cases.  When the loading is 

such that 2 0   for the cylinder, or 2 1   for the sphere, the critical eigenvalue (2) 

with the axisymmetric mode (3) is still valid, but now the non-axisymmetric modes with 

2 0   are associated with higher eigenvalues.  Thus, when the circumferential 

membrane stress is reduced below uniaxial compression for the cylinder, or below equi-

biaxial compression for the sphere, the axisymmetric mode (3) becomes unique. 

 An axisymmetric imperfection (5) in the shape of the buckling mode is assumed.  

The nonlinear DMV equations for the imperfect shell admit an exact axisymmetric 

solution which written in terms of the normal displacement and the Airy stress function is 
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with 1 1 / C   . 

Following Koiter’s (1963) approach for cylindrical shells under uniaxial 

compression, the bifurcation problem for buckling from the axisymmetric state into a 

non-axisymmetic mode is analyzed.  An important feature of this approach is that it is 

carried out in such a way that the result is not only accurate but also provides an upper-



bound to the bifurcation stress for the specific imperfection, with a caveat mentioned 

below. 

 The solution in the buckled state is written as 

 1 2 1 2( , ) & ( , )A AW W w x x F F f x x         (12) 

A non-axisymmetric deflection, w , of the form of (6) is assumed where   sets the 

wavelength in the circumferential direction and is determined in the solution process.  

The motivation underlying the choice of this mode was given in connection with Fig. 2c.  

The next step is to substitute (12) into the nonlinear DMV compatibility equation and to 

note that the resulting equation can be solved exactly for f  in terms of w : 
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with 23(1 )c    and 
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Because only terms linear in A  will be required, the quadratic terms in A  are not shown. 

The final step in the analysis is to evaluate the potential energy difference of the 

shell in buckled state from that in the axisymmetric state.  The eigenvalue problem for the 

bifurcation problem only requires the quadratic terms in w  and f  in the potential energy 

change.  Koiter’s notation for this term is 2 ( , )P w f , and for DMV theory: 
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The potential energy change can be evaluated in closed form: 
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(15) 

where S  is the area of the spherical segment and 2 1/r   .  The only approximation in 

the above calculation occurs in the final step where contributions in the boundary layer of 

width   are ignored.  The neglected terms are of order / L  relative to those retained 



where L  is the minimum in-plane dimension of the shell segment.  In Koiter’s (1963) 

analysis of infinitely long cylindrical shells, a similar approximation is made in ignoring 

the requirement that there must be an integral number of waves around the circumference. 

For prescribed  and r  with specified, , the eigenvalue for bifurcation from the 

axisymmetric state, 1 , is given by 2 0P  .  For prescribed   and r , the lowest buckling 

stress is obtained by minimizing this eigenvalue with respect to  .   Note that the 

normalized lowest buckling stress, 1 1 / C   , is precisely the desired knockdown factor, 

 .  The fact that the result so obtained is an upper-bound to the factor follows because 

the field used to evaluate 2P  is kinematically admissible due to fact that f  is obtained 

exactly in terms of w .  For the infinitely long cylinder constrained to have an integral 

number of waves around the circumference, the upper-bound is rigorous.  For the finite 

cylinder or for spherical shell segments, the upper-bound is only rigorous as /R t   

due to the neglect of terms of order 1/ q .   

Inspection of 2P  shows that c  appears in combination with no other dependence 

on   and, thus, the curves in Figs. 3 and 4 do not depend on  .  
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Fig. 1  Experimental data on the knockdown factor plotted against the radius to thickness 
ratio, /R t , for cylindrical shells under uniaxial compression.  Reproduced from the 
report of Seide, Weingarten and Morgan (1960) who assembled the data for shells from 
various sources.  Included in the figure is the empirical NASA (1965) recommendation 
for the knockdown factor for cylinders under uniaxial compression: 

 ( / ) /161 0.901 1 R te    . 



 

 

Fig. 2  (a) Cylindrical and (b) spherical shell segments.  (c) Interaction between the 
axisymmetric deformation associated with the initial imperfection and the non-
axisymmetric bifurcation mode. 
 



 

 

Fig. 3  Imperfection-sensitivity of cylindrical shells under uniaxial compression and 
spherical shells under external pressure (equi-biaxial compression) based on 
axisymmetric imperfections (5). 
 



 

 

Fig. 4  The effect of a reduction in circumferential (transverse) membrane stress on the 
knockdown factor for cylindrical and spherical shells with an axisymmetric imperfection 
(5).  The membrane stresses, 1  and 2 , are taken positive in compression.  For each of 

the four pairs of curves, the normalized imperfection amplitude, 2(1 )  , is chosen 

separately for the cylinder and the sphere such that   the respective values coincide at 

the ordinate on the right.  For the cylinder curves, from bottom up: 2(1 ) 0.924   , 

0.329, 0.250 and 0.147.  The corresponding values for the sphere are:  0.843, 0.475, 
0.296 and 0.183.  The curves are independent of  . 



 

 

Fig. 5  Range of the buckling loads of seven thin spherical shell segments tested by Yao 
(1963) for a loading that generates equal and opposite membrane stresses. The theoretical 
curve is that for the sphere from Fig. 4 with the imperfection amplitude set such that 

0.2   for equi-biaxial compression ( 2(1 ) 0.843   ). 

 


