
The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:42354467

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Shaojie Song,†‡ Athanasios Nenes,§£ Meng Gao,‡ Yuzhong Zhang,‡ Pengfei Liu,‡ Jingyuan Shao,† Dechao Ye,† Weiqi Xu,§ Lu Lei,§ Yele Sun,§,# Baoxian Liu,†‖* Shuxiao Wang,†,# Michael B. McElroy‡

†School of Environment, Tsinghua University, Beijing 100084, China
‡School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
§School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
£Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece
*School of Physics, Peking University, Beijing 100871, China
#State Key Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
‖Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing Municipal Environmental Monitoring Center, Beijing 100048, China

ABSTRACT

During recent years, aggressive air pollution mitigation measures in northern China have resulted in considerable changes in gas and aerosol chemical composition. But it is unclear whether aerosol water content and acidity respond to these changes. The two parameters have been shown to affect heterogenous production of winter haze aerosols. Here, we performed thermodynamic equilibrium modeling using chemical and meteorological data observed in urban Beijing for four recent winter seasons and quantified the changes in the mass growth factor and pH of inorganic aerosols. We focused on high relative humidity (> 60%) conditions when submicron particles have been shown to be in the liquid state. From 2014/2015 to 2018/2019, the modeled mass growth factor decreased by about 9%–17% due to changes in aerosol compositions (more nitrate and less sulfate and...
chloride) and the modeled pH increased by about 0.3–0.4 unit mainly due to rising ammonia. A buffer equation is derived from semivolatile ammonia partitioning, which helps understand the sensitivity of pH to meteorological and chemical variables. The findings provide implications for evaluating the potential chemical feedback in secondary aerosol production and the effectiveness of ammonia control as a measure to alleviate winter haze.

1. INTRODUCTION

One ubiquitous component of ambient aerosols is condensed water, which partitions to particles from water vapor. The abundance of aerosol-phase water primarily depends on relative humidity (RH), particle mass, and chemical composition. Aerosol water contributes to aerosol mass, alters physical properties, facilitates gas-to-particle uptake of semivolatile species, and provides the medium for heterogeneous (multiphase) processes. Studies have suggested that aerosol water plays a role in the formation of northern China winter haze, a serious public health issue. A positive feedback mechanism has been proposed, in which aerosol water promotes secondary aerosol production and the product aerosols, in turn, enhance water uptake. Aerosol water content and acidity (or pH) are considered as two influencing parameters, with the first representing the space for heterogeneous processes and the second determining rates of many chemical reactions. Hence, it is useful to characterize these two parameters for understanding haze formation.

A general approach to measuring aerosol water content is by perturbing RH and detecting the changes in aerosol physical properties, e.g., using nephelometers or hygroscopicity tandem differential mobility analyzers, but such measurements are not performed routinely in China. Another common approach involves thermodynamic equilibrium analyses between gas and aerosol phase for semivolatile species, requiring composition measurements and a thermodynamic model (e.g., E-AIM or ISORROPIA). Intercomparisons indicate that water contents estimated
from the two approaches are in good agreement. Thermodynamic analyses on the basis of gaseous and aerosol compositions are also considered as the best available method to estimate the pH of ambient aerosols. Direct pH measurement techniques developed in the laboratory are difficult to apply in ambient air. Over the past few years, dozens of studies have examined the water content and acidity of northern China winter haze aerosols using thermodynamic models. Major findings include: aerosol water content, mainly contributed by uptake of inorganic components, increases rapidly with haze accumulation due to enhancement of both particle mass and RH; and aqueous aerosols are moderately acidic (average pH of about 4 to 5) primarily due to abundant ammonia.

Stringent anthropogenic emission controls, especially since implementation of the China Clean Air Action Plan in 2013, have led to considerable changes in aerosol loadings and chemical compositions as well as in the levels of reactive gases. For example, the annual mean concentrations of fine particles decreased by about 50% over the North China Plain during 2013–2018, according to the national monitoring network. The question arises, but remains unanswered, as to how the water content and acidity of aerosols have responded to these changes. Quantifying their responses is helpful for evaluating potential feedbacks associated with secondary aerosol production. Here, we conduct thermodynamic analyses using high-time-resolution data observed in Beijing for four winter seasons from 2014/2015 to 2018/2019. To our knowledge, this is the first attempt to address the questions highlighted here for this region, although the sensitivity of aerosol acidity to changes in chemical compositions has been studied in other areas, e.g., North America.
2. MATERIALS AND METHODS

Field campaigns in four winter seasons (2014/2015, 2016/2017, 2017/2018, and 2018/2019) were conducted in urban Beijing. Meteorological variables (temperature and RH), gaseous ammonia, and chemical components of non-refractory submicron particles (NR-PM$_1$) including organics, sulfate, nitrate, ammonium, and chloride, were measured at time resolutions < 5 minutes. Details (sampling dates and location, instrumentation, and uncertainty quantification) are provided in the Supporting Information (SI). Measured chemical species and meteorological parameters served as inputs to the ISORROPIA II thermodynamic equilibrium model for calculating the water content and pH of inorganic aerosols (pH$_i$). Here, pH$_i$ was defined as the molality-based hydrogen ion activity on a logarithmic scale, following the recommendation by the International Union of Pure and Applied Chemistry (IUPAC)\[51\]

$$\text{pH}_i = -\log_{10} \left(a_{H^+_{(aq)}} \right) = -\log_{10} \left(m_{H^+_{(aq)}} \gamma_{H^+_{(aq)}} / m^\Theta \right)$$

(1)

where $a_{H^+_{(aq)}}$ is hydrogen ion activity in aqueous solution, $H^+_{(aq)}$, $m_{H^+_{(aq)}}$ and $\gamma_{H^+_{(aq)}}$ are the molality and the molality-based activity coefficient of $H^+_{(aq)}$, respectively. $m^\Theta = 1 \text{ mol kg}^{-1}$ is the standard molality. The model inputs were averaged on an hourly basis for consistency with the timescales for semivolatile species to reach equilibrium.\[52\] Only inorganic aerosol species (i.e., sulfate, nitrate, ammonium, and chloride) were included in our calculations, since inorganics and organics were expected to reside in separate liquid phases for Beijing winter haze. The average oxygen-to-carbon (O/C) elemental ratios were observed to be < 0.5,\[53\] and studies have shown that liquid-liquid phase separation of organic–inorganic mixtures occurs almost always when O/C < 0.5.\[24,54,55\] It should be noted that hydrophilic organic acid salts (e.g., oxalate) may reside in the same phase with inorganic ions, but unfortunately they were not measured in this study. We thus conducted a
sensitivity calculation to evaluate the potential influence of their presence on the modeled acidity and water uptake. Another drawback in our measurements was not including non-volatile cations, and we conducted another sensitivity calculation to evaluate their possible effect.

The most recent ISORROPIA model v2.3 was used with the pH algorithmic issue fixed. The pH solution procedure has been described in Song et al. (2018). Because the amount of aerosol water is much smaller than that of water vapor in the atmosphere, the model assumes that aerosol water uptake does not change ambient RH. In addition, the model does not consider the effect of surface tension on equilibrium droplet radii, which may be important for aerosols with radii less than about 50 nm. Given these assumptions, phase equilibrium shows that aerosol water activity \((a_w) \) equals to RH. Aerosol water content (AWC) in ISORROPIA is estimated with the Zdanovskii-Stokes-Robinson (ZSR) mixing rule, linking water uptake of a multicomponent aerosol to that of the individual electrolytes,

\[
\text{AWC} = \sum_i \frac{M_i}{m_{oi}(a_w)}
\]

(2)

where AWC is the total water concentration (kg m\(^{-3}\)), \(M_i \) is the molar concentration of electrolyte \(i \) (mol m\(^{-3}\)) and is solved iteratively in the model, and \(m_{oi}(a_w) \) is the molality (mol kg\(^{-1}\)) of a binary solution of electrolyte \(i \) at a given \(a_w \). \(m_{oi}(a_w) \) is specified in ISORROPIA using outputs from the model E-AIM III. Although based on semi-ideality, the ZSR rule has been shown to provide a good prediction of water uptake and widely used in aerosol models. The mass growth factor for inorganic aerosols, \(G_{mi} \), was computed as Equation (3) using the AWC (kg m\(^{-3}\)) and dry aerosol concentration \((m_i, \text{kg m}^{-3}) \) calculated using the ISORROPIA model and measured chemical species and meteorological parameters.
Here, we exported the contribution of each electrolyte to the total AWC from ISORROPIA, in order to evaluate the effect of aerosol composition changes. The forward mode (using total chemical measurements as inputs) was adopted in this work, since the reverse mode (using only particle data as inputs) is strongly affected by errors in particle measurements. The calculations were made assuming both stable and metastable thermodynamic equilibrium states, with the stable assuming that solids precipitate when RH is below the deliquescence RH and the metastable assuming that aerosols may constitute a supersaturated solution at low RH. We used a Monte Carlo approach to propagate measurement uncertainties to model predictions (more information in SI)33. The measured and predicted gaseous NH\textsubscript{3} concentrations agreed reasonably well, indicating good model behavior (Figure S1).

Our thermodynamic model calculations were conducted mainly using ISORROPIA because of its high computational efficiency (allowing for uncertainty quantification using the Monte Carlo approach) and because of the availability of its source code (allowing for model development to evaluate the relative contributions of different electrolytes to aerosol water uptake). But since it is developed for large-scale atmospheric models, ISORROPIA is subject to many simplifications.21 Thus, we also conducted thermodynamic calculations using a benchmark model E-AIM IV.64

3. RESULTS AND DISCUSSION

Figure 1 shows mass fractions of NR-PM\textsubscript{1} chemical components for four winter seasons including also a comparison of aerosol compositions under low and high RH conditions. A RH of 60\% was chosen as the dividing line since the particle physical state transitions from the semisolid to liquid state when ambient RH increases above this value.14 Similar to previous studies,12,65,66 we found

\[
G_{mi} = \frac{AWC + m_i}{m_i}
\]

(3)
that the mass fractions of sulfate increased by 50%–130% at high RH compared with low RH conditions, which had been hypothesized to arise from sulfate production in aerosol water through different chemical pathways.10,11,67,68 Dissolved SO\textsubscript{2(aq)} (the sum of SO\textsubscript{2}–, H\textsubscript{2}O, HSO\textsubscript{3}−, and SO\textsubscript{3}\^{2−}) has been suggested to be oxidized in aerosol water by NO\textsubscript{2}, H\textsubscript{2}O\textsubscript{2}, and O\textsubscript{2} catalyzed by transition metal ions (Fe3+ and Mn2+). The higher RH resulted in an increase in aerosol water content, which provided a larger volume for heterogeneous reactions to occur. From 2014/2015 to 2018/2019, the mass fractions of nitrate increased by a factor of about 1.5. Nitrate has replaced sulfate as the most abundant inorganic component,40 a circumstance that may be attributed to the faster decline of emissions of SO\textsubscript{2} relative to NO\textsubscript{x} in Beijing and surrounding areas.38,43 The mass fractions of organics and chloride were reduced, likely due to the substantial decreases in coal and biomass combustions.38,42,53,69

Figure 1 also shows that the mass concentrations of PM\textsubscript{1} varied significantly among different winters. The average PM\textsubscript{1} concentrations in 2017/2018 winter (46 \(\mu\)g m−3 at high RH) were much lower compared with the other winter seasons (from 139 to 222 \(\mu\)g m−3 at high RH). Several studies (using chemical transport models or statistical models) have investigated the influences of reduced emissions and meteorology on PM concentrations in Beijing for recent years.43,70,71 They generally suggested a major role of emission and a minor role of meteorology. Cheng N. et al. (2019)70 found, different from the other seasons, that wintertime PM\textsubscript{2.5} did not decrease significantly (on a 90% confidence level) during 2013–2016 due to unfavorable meteorological conditions. Cheng J. et al. (2019)71 showed that PM\textsubscript{2.5} mass concentrations in 2017/2018 winter would increase by about 80% if the meteorological conditions were the same with 2016/2017 winter, although there was a negative bias in the modeled PM\textsubscript{2.5} compared to observations in 2016/2017. More stringent emission control measures, including the suspension of industrial activities and the replacement of
coal with natural gas, were implemented in 2017/2018 winter over Beijing and surrounding regions in order to meet the target of PM$_{2.5}$ concentration for the 2013–2017 Clean Air Action Plan, and were suggested to significantly reduce PM concentrations during this winter season.72 In this study, G_{mi} was used to evaluate the response of inorganic aerosol water uptake to the changes in the mass fractions of aerosol components. It was considered a better metric for such a purpose than AWC since it was primarily affected by mass fractions of chemical species rather than aerosol dry mass, which varied among different haze events as described above.

Figure 1. Mean mass fractions of NR-PM$_1$ chemical components at low (< 60%) and high (> 60%) RH conditions. (a–b), (c–d), (e–f), and (g–h) present data for the winters of 2014/2015, 2016/2017, 2017/2018, and 2018/2019, respectively.
2017/2018, and 2018/2019, respectively. The unit of PM$_1$ concentration is µg m$^{-3}$. ORG, NH$_4$, SO$_4$, NO$_3$, and Cl represent organics, ammonium, sulfate, nitrate, and chloride, respectively.

Figure 2(a) shows the modeled G_{mi} in winter 2014/2015 as a function of RH. Ambient aerosols could exist in either stable or metastable equilibrium state, depending on their compositions and RH experience, but there has not been enough evidence to demonstrate the state of Beijing winter aerosols. As we expect, G_{mi} increased from 1.0 to about 3.0 when RH increased from 17% to 83%. The metastable G_{mi} showed a monotonic increase with RH, while the stable G_{mi} remained at 1.0 below RH of about 50% (the mutual deliquescence RH). G_{mi} in both states converged when RH reached 75% as all inorganic salts deliquesced. As shown in Figure 2(b–c), the modeled G_{mi} in the following winter seasons decreased relative to 2014/2015, regardless of state assumptions. The amplitudes for G_{mi} decline increased with RH, reaching 3% ± 3%, 10% ± 3%, and 13% ± 4% in 2016/2017, 2017/2018, and 2018/2019, respectively.

Figure 2. (a) shows inorganic aerosol mass growth factors (G_{mi}) for the 2014/2015 winter as a function of RH modeled using both metastable and stable assumptions. (b–c) show the relative G_{mi} changes in the winters of 2016/2017, 2017/2018 and 2018/2019 as compared to 2014/2015. Data are grouped in RH bins (10% increment). The shaded areas indicate the 1σ uncertainty range.
We show next that the modeled declining water-uptake ability resulted from changed inorganic aerosol compositions. Figure 3(a–c) present the contribution of each electrolyte ((NH₄)₂SO₄, NH₄NO₃, and NH₄Cl) to the total AWC. Note that the AWC calculation followed the ZSR rule and that almost all sulfate existed in the form of (NH₄)₂SO₄. Figure 3(d) shows the amount of water uptake per electrolyte on a mass basis. Note that (NH₄)₂SO₄ and NH₄Cl are subject to efflorescence at RH of above 30% and extending the curves to lower RH may not be realistic for these pure salts. Ambient particles consisting of multiple salts exhibit a more complex behavior in efflorescence RH. The curves in Figure 3(d) are thus used only to demonstrate the different water-uptake ability of each electrolyte. Among the three electrolytes, (NH₄)₂SO₄ showed the highest ability and NH₄NO₃ the lowest. We found, below 30% RH, that most water uptake could be attributed to (NH₄)₂SO₄. At high RH, all three electrolytes contributed significantly. The importance of NH₄Cl has often been ignored in previous studies. The contribution of NH₄NO₃ increased from < 20% in 2014/2015 to > 50% in 2018/2019, whereas the contributions of both (NH₄)₂SO₄ and NH₄Cl decreased over the same period. During recent years, the relative increase and low water-uptake ability of NH₄NO₃ have resulted in a 9%–17% decline of the modeled G_{mi} during winter haze events (Figure 2). As mentioned in METHODS, ISORROPIA uses the output data from E-AIM model III to specify the amount of water uptake for each electrolyte. It should be noted that for NH₄NO₃ and (NH₄)₂SO₄ the water-uptake data in E-AIM III are different from those in E-AIM model II and IV (these two versions have very similar data) when RH is below about 50% (Figure S2). A recalculation using the water-uptake data from E-AIM IV shows, when RH is below 50%, a higher contribution of NH₄NO₃ and a lower contribution of (NH₄)₂SO₄ to the total AWC (Figure S3). As this study was focused on winter haze conditions associated with high
RH, the difference in water uptake between different thermodynamic models did not change our main findings.

Figure 3. (a–c) show the modeled mass fractions of aerosol water content associated with different electrolytes. (d) shows the amount of water uptake per mass of each electrolyte in a binary solution. Data are presented as a function of RH. Data in (a–c) are calculated based on field measurements and ISORROPIA and grouped in RH bins (10% increment). Data in (d) are obtained from ISORROPIA.

pH_i of Beijing haze aerosols has been suggested to be buffered by abundant ammonia in the gas phase. Under such condition, the partitioning of nitric acid ($HNO_3(g) \leftrightarrow H^+_{(aq)} + NO_3^{-}_{(aq)}$) and hydrochloric acid ($HCl(g) \leftrightarrow H^+_{(aq)} + Cl^-_{(aq)}$) was strongly shifted toward the aerosol phase,
and thus both $[\text{HNO}_3(\text{g})]$ and $[\text{HCl}(\text{g})]$ were very low,32,33 suggesting that they did not strongly buffer pH$_i$. We derive the buffer equation from phase equilibrium of $\text{NH}_3(\text{g}) + \text{H}^+_{(\text{aq})} \leftrightarrow \text{NH}_4^+_{(\text{aq})} \,$ (details in the SI), similar to the Henderson–Hasselbalch equation,77

$$\text{pH}_i = pK^* + \log_{10}\left(\frac{[\text{NH}_3(\text{g})]}{a_{\text{NH}_4^+_{(\text{aq})}}}\right)$$

(4)

where K^* (µmol m$^{-3}$) is the apparent equilibrium constant, $[\text{NH}_3(\text{g})]$ (µmol m$^{-3}$) is gaseous NH$_3$ molar concentration, and $a_{\text{NH}_4^+_{(\text{aq})}}$ (mol kg$^{-1}$) = $[\text{NH}_4^+_{(\text{aq})}]\gamma_{\text{NH}_4^+_{(\text{aq})}}$ is the molality-based activity of NH$_4^+_{(\text{aq})}$. Equation (4) suggests that pH$_i$ is affected by three variables: pK^*, $[\text{NH}_3(\text{g})]$, and $a_{\text{NH}_4^+_{(\text{aq})}}$. pK^* depends only on T and decreases by about 0.05 unit per K increase. This dependence reflects the relationships of both ammonia solubility and water dissociation with T. log$_{10}$([NH$_3$(g)]) indicates about a 1 unit increase in pH$_i$ per 10-fold increase in [NH$_3$(g)], consistent with earlier results from Guo et al. (2017).34 The buffering capacity of the gas–aerosol system, defined as the amount of acidic or basic species necessary to change pH$_i$ by 1 unit, increases with [NH$_3$(g)]

$$\left(\frac{\partial \text{pH}_i}{\partial \text{NH}_3(\text{g})}\right) \approx 0.4/[\text{NH}_3(\text{g})].$$

$a_{\text{NH}_4^+_{(\text{aq})}}$ is a function of RH and is also affected by aerosol composition (ions coexisting in the aqueous phase). We show, in the SI, that the sensitivities of pH$_i$ to these variables are consistent between Equation (4) and thermodynamic models. This simple buffer equation can help understand the influence of different meteorological and chemical factors on the pH$_i$ estimated by thermodynamic modeling.

As shown in Figure 4, the mean (± standard error) pH$_i$ modeled by ISORROPIA were 4.52 ± 0.02, 4.73 ± 0.05, 4.77 ± 0.03, and 4.89 ± 0.04 for the winters of 2014/2015, 2016/2017, 2017/2018, and 2018/2019, respectively. The differences between 2014/2015 and 2016/2017 and between
2017/2018 and 2018/2019 were statistically significant \((p < 0.05\) from the Mann–Whitney \(U\) test), whereas that between 2016/2017 and 2017/2018 was insignificant. Note that only data for RH > 60% were considered when PM1 was liquid. The bias in pH\(_i\) owing to the \(T\) difference was removed. An increase of \(0.37 \pm 0.05\) unit from 2014/2015 to 2018/2019 was estimated in the modeled pH\(_i\) by ISORROPIA, agreeing well with the pH\(_i\) increase of about 0.4 unit modeled by E-AIM (Figure 4b). Although both models suggested a similar increase in pH\(_i\), a systematic difference existed in their modeled pH\(_i\), probably arising from different treatments of hydrogen ion activity coefficient \((\gamma_{\text{H}_\text{aq}}^+\)) and bisulfate ion dissociation.33,78

The modeled pH\(_i\) increases of 0.3–0.4 unit from 2014/2015 to 2018/2019 could be explained by changes in [\(\text{NH}_3(\text{g})\)] and \(a_{\text{NH}_4^+(\text{aq})}\) \(\log_{10}\left([\text{NH}_3(\text{g})]\right)\) increased by about 0.3 during this time period. The changes in aerosol composition (more nitrate and less sulfate and chloride) led to a minor decrease in \(\gamma_{\text{NH}_4^+(\text{aq})}\) and thus increased pH\(_i\) by about 0.1 unit (Figure S6). It was noted that our thermodynamic calculations used the total (gas + aerosol) measurements of semivolatile species as inputs and allowed them to be repartitioned between the two phases. If aerosol measurements of chemical species were not charge balanced, which was common given the various uncertainties in sampling and chemical analyses, the modeled and measured [\(\text{NH}_3(\text{g})\)] might differ due to its repartitioning (for achieving the charge balance in the modeled aerosol phase), introducing an additional bias in the modeled pH\(_i\). The largest disagreement occurred in 2014/2015 winter when ISORROPIA underpredicted [\(\text{NH}_3(\text{g})\)] by about 20% compared with the measurements (Figure S1). A sensitivity calculation showed that the disagreement in 2014/2015 implied a possible bias in the modeled pH\(_i\) by about 0.1 unit.
Figure 4. (a) shows the mean values and probability density distributions of aerosol pH$_i$ modeled by ISORROPIA in recent winters. (b) presents the mean pH$_i$ calculated from both ISORROPIA and E-AIM. Data were obtained under high RH condition (> 60%).

In summary, this study provides two new findings for Beijing winter haze events which are associated with high RH. First, the water-uptake ability of inorganic aerosols, characterized by the modeled G_{mi}, declined by about 9%–17% during the four seasons (from 2014/2015 to 2018/2019) due to changes in aerosol chemical composition. Nitrate has become the primary species to uptake aerosol water. Second, inorganic aerosol acidity, characterized by the modeled pH$_i$ which increased by about 0.3–0.4 unit during this time period, also declined mainly as a response to rising ammonia. There are several limitations and assumptions in this work. First, the thermodynamic calculations conducted here assumed internally mixed inorganic aerosols and phase equilibrium. Second, the acidity of organic aerosol phase was not investigated. The water content associated with organics estimated by the κ-Köhler theory was about a factor of 5 lower than that with inorganics in Beijing winter haze. Third, minor water-soluble aerosol species, primarily including nonvolatile cations and hydrophilic organic acid salts, were unavailable in our measurements. Accordingly, two sensitivity calculations were conducted (details in the SI) using the available data measured under Beijing winter haze conditions by previous studies, and their
results suggested that the finding of declined acidity and water uptake remained when considering nonvolatile cations and hydrophilic organic acids.

The findings of this study have two implications. First, there are either positive or negative chemical feedbacks in secondary aerosol production. On one hand, the declining aerosol water uptake implies that the volume for heterogeneous processes to occur has become smaller during recent winter seasons. On the other hand, heterogeneous chemical reactions may be enhanced or inhibited by declining aerosol acidity (i.e., rising aerosol pH). Examples include nitrate photolysis and subsequent HONO/NO$_2^-$ production, organosulfates (OSs) and nitrooxy-Oss formation, and the oxidation of SO$_2(aq)$ (the sum of SO$_2$·H$_2$O, HSO$_3^-$, and SO$_3^{2-}$) by NO$_2$, O$_3$, and transition metals + O$_2$. The increase of 0.3 unit in the modeled pH from 2014/2015 to 2018/2019 winter translated to a halved $a_{H_3O^+}$. A calculation following Shao et al. (2019) suggested that these two factors together could have led to large increases in the in-situ oxidation rates of SO$_2(aq)$ by O$_3$ (+240%) and NO$_2$ (+70%) whereas a significant decrease in the oxidation rate by transition metals + O$_2$ (−90%). Note in this calculation that the other factors (e.g., the reactant concentrations in the aqueous phase) were assumed to remain the same in order to isolate the effects of aerosol water uptake and acidity. The O$_3$ and NO$_2$ pathways responded positively to pH because the solubility of SO$_2(aq)$ increased at higher pH and because the equilibrium among SO$_2$·H$_2$O, HSO$_3^-$, and SO$_3^{2-}$ shifted with changed pH. The change in the O$_3$ reaction pathway than the NO$_2$ pathway since O$_3$ mainly reacted with SO$_3^{2-}$ while NO$_2$ reacted with HSO$_3^-$. The negative response of the transition metals + O$_2$ pathway arose partly from the high solubility of Fe$^{3+}$ and Mn$^{2+}$ at low pH. Chemical feedbacks may help explain the observed slower declines in sulfate relative to SO$_2$ for winter haze during recent years. The sulfate/SO$_2$ ratios in 2018/2019 increased by about 80% compared to the ratios in 2014/2015 and by over a factor of 2 when compared to 2011/2012 (data from ref56).
Since almost all the sulfate is converted by SO$_2$,11 the enhanced sulfate/SO$_2$ ratios imply that the oxidation of SO$_2$ may have become more efficient. As shown earlier, the rates of SO$_2$ oxidation in aerosol water by O$_3$ and NO$_2$ increased as a result of declined aerosol acidity. Chemical transport modeling studies should be conducted to investigate the contributions of different SO$_2$ oxidation pathways and the role of meteorology. A better characterization of the mechanisms responsible for SO$_2$ oxidation can help evaluate the effects of the past (and future) emission mitigation efforts.

The second implication is that reducing NH$_3$ emissions may have become less effective than before as a measure to alleviate Beijing winter haze pollution.84 The buffering capacity of the gas-particle system have increased due to rising NH$_3$. It should be noted that NH$_3$ emissions in North China, especially in urban areas, remain poorly quantified and the contributions of different sources are subject to debate. Some studies$^{85-89}$ have argued that slip of NH$_3$ (due to urea used in the selective catalytic reduction (SCR) systems) from industrial or power generation plants and evasion from green space are important or even dominant sources to atmospheric NH$_3$ in urban areas. Fossil fuel combustion and biomass burning were also suggested to be potential sources.90,91 Others$^{92-94}$ have argued that NH$_3$ is dominated by agricultural activities (due to volatilization from fertilizer and livestock waste). An additional factor hindering our understanding is that the current estimates of agricultural NH$_3$ emissions in China may differ by a factor of 2.94 The reason for rising NH$_3$ has also been poorly investigated. Liu et al. (2018)39 studied satellite observations of NH$_3$ columns and concluded that more rapid reductions in emissions of SO$_2$ and NO$_x$ compared to NH$_3$ led to an increase in tropospheric NH$_3$ columns over the North China Plain since 2013. The Multi-resolution Emission Inventory for China38 showed, during 2013–2017, that emissions of SO$_2$, NO$_x$, and NH$_3$ decreased by 65%, 20%, and 4%, respectively. Note that a few non-agricultural sources of NH$_3$ (e.g., slip) were not included in the inventory. The increasing penetration rates of
SCR systems in power plants (50% in 2013 and 95% in 2017)38,95 may imply an increase in NH\textsubscript{3} slip. Therefore, future research efforts need to be undertaken to quantify NH\textsubscript{3} sources and driving factors. From the perspective of thermodynamics and based on gas/aerosol measurement data, this study suggests that a substantial (> 50%) NH\textsubscript{3} emission reduction is necessary to effectively reduce inorganic aerosol mass under the present Beijing winter haze conditions.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 00.0000/acs.000.0000000. Additional data, figures, and tables, some of which are referenced directly within the manuscript. Also included are detailed descriptions of field measurements and derivations of the buffer equation.

AUTHOR INFORMATION

Corresponding Author

S.W. (E-mail: shxwang@tsinghua.edu.cn), Y.S. (E-mail: sunyele@mail.iap.ac.cn), and B.L. (E-mail: liubaoxian28@163.com)

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This publication was made possible by funding from the Harvard Global Institute and the National Natural Science Foundation of China (21625701 and 91744207). We thank Simon Clegg for helpful discussions on the E-AIM model.
REFERENCES

19

(45) Tao, Y.; Murphy, J. G. The sensitivity of PM$_{2.5}$ acidity to meteorological parameters and chemical composition changes: 10-year records from six Canadian monitoring sites. *Atmos. Chem. Phys.* 2019, 19, 9309–9320.

