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Cube-3: A Real-Time Architecture for
High-Resolution Volume Visualization

Hanspeter P�ster, Arie Kaufman, and Tzi-cker Chiueh
Department of Computer Science

State University of New York at Stony Brook

Abstract

This paper describes a high-performance special-purpose
system, Cube-3, for displaying and manipulating high-
resolution volumetric datasets in real-time. A primary
goal of Cube-3 is to render 512 3, 16-bit per voxel,
datasets at about 30 frames per second. Cube-3 imple-
ments a ray-casting algorithm in a highly-parallel and
pipelined architecture, using a 3D skewed volume mem-
ory, a modular fast bus, 2D skewed bu�ers, 3D inter-
polation and shading units, and a ray projection cone.
Cube-3 will allow users to interactively visualize and
investigate in real-time static (3D) and dynamic (4D)
high-resolution volumetric datasets.

1. Introduction

A volumetric dataset is typically represented as a
3D regular grid of voxels (volume elements) represent-
ing some uniform or piecewise property of an object or
phenomenon. This 3D dataset is commonly stored in a
regular cubic frame bu�er (CFB), which is a large 3D
array of voxels (e.g., 128M voxels for a 5123 dataset)
and is displayed on a raster screen using a direct vol-
ume rendering technique (see e.g., [14, 9]). Alterna-
tively, the dataset may be represented as a sequence of
cross-sections or as an irregular grid.

Applications of volume visualization include sam-
pled, simulated, and modeled datasets in confocal mi-
croscopy, astro- and geophysical measurements, molec-
ular structures, �nite element models, computational
uid dynamics, and 3D reconstructed medical data, to
name just a few (see [9] Chapter 7). As with other dis-
play methods of 3D objects, the provision of real-time
data manipulation rates, typically de�ned to be more
than 10 and preferably 30 frames per second, is essential
for the investigation of 3D static datasets. Furthermore,
in many dynamic applications, 4D (spatial-temporal)
real-time visualization is a necessary component of an
integrated acquisition-visualization system. Examples
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are the real-time analysis of an in-vivo specimen under
a confocal microscope or the real-time study of in-situ
uid ow or crack formation in rocks under Computed
Microtomography (CMT).

High-bandwidth memory access and high arithmetic
performance are key elements of real-time volume ren-
dering and can be met by exploiting parallelism among
a set of dedicated processors [5, 16, 15, 10] [9, Chapter
6]. Sub-second rendering times for a 1283 dataset have
been reported by Schr�oder and Stoll on a Princeton En-
gine of 1024 processors [18] and by V�ezina et al. on a
16k-PE MasPar MP-1 computer [22]. For higher reso-
lution datasets, however, the number of processors and
their interconnection bandwidths must increase, placing
hard-to-meet requirements on existing general-purpose
workstations or supercomputers.

The main objective of the Cube-3 architecture is to
develop a special-purpose real-time volume visualiza-
tion system for high-resolution 5123 16-bit per voxel
datasets that achieves frame rates over 20 Hz. This
rendering performance is orders of magnitude higher
than that of previously reported systems, while requir-
ing only moderate hardware complexity. Furthermore,
Cube-3 allows interactive control over a wide variety of
rendering and segmentation parameters. The availabil-
ity of such a system will revolutionize the way scientists
and engineers conduct their studies.

2. System Overview

Figure 1 shows the overall organization of two real-
time volume visualization environments. The host com-
puter controls the entire environment and runs non
time-critical parts of the Cube-3 software. It also con-
tains a frame bu�er for the �nal image display on a color
monitor. The acquisition device is a sampling device
such as a confocal microscope, microtomograph, ultra-
sound, MRI, or CT scanner. Alternatively, the acqui-
sition device is a computer running either a simulation
model (e.g., computational uid dynamics) or synthe-
sizing (voxelizing) a voxel-based geometric model from
a display list (e.g., CAD). The sampled, simulated, or
modeled dataset is either a sequence of cross sections, a
regular 3D reconstructed volume, or an irregular data
that has been converted into a regular volume. All these
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formats can be maintained and archived by the �ling
module of the host software.
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Figure 1: Real-Time Volume Visualization Systems.

Figure 1 (a) shows an environment in which the ac-
quisition and reconstruction are performed in several
seconds to several minutes on the acquisition device,
while the visualization and manipulation are running
on Cube-3 in real-time. Such a system ful�lls the needs
for static visualization, where the nature of the acquired
data is static and Cube-3 allows for interactive control
of viewing parameters, clipping planes, shading param-
eters, and data segmentation. Figure 1 (b) shows the ul-
timate environment, in which Cube-3 is tightly-coupled
with the real-time acquisition device to create an inte-
grated acquisition-visualization system that would al-
low the real-time 4D (spatial-temporal) visualization of
dynamic systems. The need for this dynamic visualiza-
tion clearly will arise, since the data rates of emerging
acquisition devices such as microtomographs will reach
several complete 3D high-resolution datasets per sec-
ond well before the end of the decade. In addition to
controlling the Cube-3 volume visualization engine on a
device driver level, the host also runs a volume visual-
ization software system and user interface called VolVis
[2], which has been developed at SUNY Stony Brook
and complements the Cube-3 hardware.

The next section describes aspects of the Cube-3
system in detail. Sections 4 and 5 provide estimated
performance and hardware real-estate.

3. Cube-3 Architecture

Cube-3 implements a ray-casting algorithm, a exi-
ble and frequently used technique for direct volume ren-
dering [14]. Figure 2 shows a block diagram of the over-
all dataow. In order to meet the high performance
requirements of real-time ray-casting, the Cube-3 ar-
chitecture is highly-parallel and pipelined. The Cubic
Frame Bu�er (CFB) is a 3D memory organized in n

dual-access memory modules, each storing n2 voxels. A
special 3D skewed organization enables the conict-free
access to any beam (i.e., a ray parallel to a main axis)

of n voxels (see Section 3.1). All the rays belonging to
the same scan line of a parallel or perspective projec-
tion reside on a slanted plane inside the CFB, termed
the Projection Ray Plane (PRP). In order to support
arbitrary viewing, each PRP is fetched as a sequence
of voxel beams and stored in consecutive 2D Skewed
Bu�ers (2DSB) (see Section 3.2). A high-bandwidth
interconnection network, the Fast Bus, allows the align-
ment of the discrete rays on the PRP parallel to a main
axis in the 2DSB modules (see Section 3.3).

ABC Shading

TRILIN

Units
Ray Projection

2D Skewed Buffer

Cone (RPC)

(2DSB)

Frame Buffer

PRP

2D Warping
Projection

Fast
Bus

Parallel Beam Fetch
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Figure 2: Cube-3 System Overview.

Several 2D Skewed Bu�ers are used in a pipelined
fashion to support tri-linear interpolation and gray-level
shading. Aligned discrete rays from 2DSBs are fetched
conict-free and placed into special purpose Tri-Linear
Interpolation (TRILIN) units (see Section 3.4). The re-
sulting continuous projection rays are placed onto ABC
Shading Units, where each ray sample is converted into
both an intensity and an associated opacity value ac-
cording to lighting and data segmentation parameters
(see Section 3.5). These intensity/opacity ray samples
are fetched into the leaves of the Ray Projection Cone
(RPC). The RPC is a folded binary tree that gener-
ates in parallel and in a pipelined fashion the �nal ray-
pixel value using a variety of projection schemes on the
cone nodes (see Section 3.6). The resulting pixel is
post-processed (e.g., post-shaded or splatted), 2D trans-
formed, and stored in the 2D frame-bu�er.

3.1. Parallel Cubic Frame Bu�er Organization

A special 3D skewed organization of the n3 voxel
CFB enables conict-free access to any beam of n voxels
[10]. The CFB consists of nmemory modules, each with
n2 voxels and its own independent access and addressing
unit. A voxel with space coordinates (x; y; z) is being
mapped onto the k-th module by:

k = (x+ y + z) mod n 0 � k; x; y; z � n� 1:

Since two coordinates are always constant along any
beam, the third coordinate guarantees that one and
only one voxel from the beam resides in any one of the
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modules. The internal mapping (i; j) within the module
is given by: i = x; j = y.

This skewing scheme has successfully been employed
in Cube-1 [10] and Cube-2 [3], �rst and second gener-
ation 163 prototype architectures built at SUNY Stony
Brook. They use a sequence of n processing units,
which team up to generate the �rst opaque projec-
tion along a beam of n voxels in O(log n) time, using
a voxel multiple-write bus [6, 10]. Consequently, the
time necessary to generate an orthographic projection
of n2 pixels is only O(n2 log n), rather than the con-
ventional O(n3) time. However, in this technique pro-
jections can be generated only from a �nite number of
predetermined directions [4]. The next section describes
the enhanced architecture used in Cube-3 for arbitrary
parallel and perspective viewing.

3.2. Architecture for Arbitrary Viewing

All the rays belonging to the same scan line of the
2D frame-bu�er reside on the same plane, the PRP (see
Figure 3). For every parallel and perspective projec-
tion, all the PRPs can be made parallel to one major
axis by �xing a degree of freedom in specifying the pro-
jection parameters. For example, in parallel projection
the projection plane can be rotated about the viewing
axis, which can be reversed after projection in the 2D
frame-bu�er. Since there is no direct way to fetch arbi-
trary discrete rays from the CFB conict free, a whole
PRP of beams (which are now parallel to an axis) is in-
stead fetched in n cycles, beam after beam, and stored
in a 2D temporary bu�er, the 2DSB.

Fast
Bus

PRP

Ray

Beams
Orthogonal

(2DSB)
2D Skewed Buffer

(CFB)
Cubic Frame Buffer

Ray

Figure 3: Arbitrary Viewing Mechanism.

The direction of the viewing ray within the origi-
nal PRP depends on the observer's viewing direction.
When a PRP is moved from the CFB to the 2DSB, it
undergoes a 2D shearing (either to the left or to the
right) to align all the viewing rays into beams along a
direction parallel to a 2D axis (e.g., vertical). This step
is a de-skewing step that is accomplished by the high-
bandwidth Fast Bus that interconnects the CFB and
2DSB memory modules. Once the discrete viewing rays
are aligned vertically within the 2D memory, they can
be individually fetched and placed at the leaves of the
ray projection mechanism for interpolation and shad-

ing. Since there may be up to 2n � 1 parallel viewing
rays entering the PRP, the 2DSB size is 2n� n voxels.

The 2DSB thus supports conict-free storage of hor-
izontal beams coming from the CFB and conict-free
retrieval of vertical discrete rays. The 2DSB is divided
into n memory modules, each storing 2n voxels, and is
skewed such that any module appears exactly once in
every row and every column. To achieve this, the (i; j)
voxel is mapped onto module (i+ j) mod n in location
i+ j (see also [13], which is a hardware solution for 90o

rotation and mirroring of bitmaps).
As an example, assume that a parallel projection

is performed without loss of generality approximately
from the +z direction; namely, for each projection ray,
z grows faster than x and y in absolute value. The 26-
connected discrete ray representation is pre-generated
on the host computer using a 3D variation [11] [9,
pp. 280{301] of Bresenham's algorithm modi�ed for
non-integer endpoints [7]. First, the representation of
the projection of the ray along the fetch axis is gen-
erated. This representation determines which beams to
fetch from the CFB for each PRP. These viewing param-
eters are broadcast to the CFB addressing units. Sec-
ond, the ray parameters within the PRP are calculated,
determining how much to shear each beam. For paral-
lel projections all rays have the same slope and thus the
generalized Bresenham's steps in both directions have to
be calculated only once (cf. [23]). These pre-calculated
slope templates are down-loaded from the host into the
Fast Bus control units (see Section 3.3). Each PRP con-
tributes to all pixels of one scanline in the �nal image
up to a 2D transformation.

A perspective projection can be generated in a way
similar to the parallel projection. However, for per-
spective projections several beams are averaged into a
single beam that is stored in the 2DSB. The number
of beams averaged depends on the divergence of the
perspective rays. Voxels in a given beam are not only
averaged but also scaled and sheared between the Fast
Bus and 2DSB. This is equivalent to casting a fan of
rays, where larger portions of the volume are sampled
as the fan diverges. Note that the assumption that for
each projection ray z grows faster than x and y in abso-
lute value is not always true in perspective projection,
which may require the separate processing of z-major,
x-major, and y-major rays.

3.3. Modular Fast Bus

The Fast Bus is an interconnection network that al-
lows the high-bandwidth transfer of data from the n

CFB modules to the n 2DSB modules. It enables the
arbitrary shearing and averaging necessary for parallel
and perspective projections. A set of fast multiplex-
ers and transceivers with associated control units and
a multi-channel bus are used to accomplish the data
transfer speeds necessary for real-time rendering.
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Figure 4: Fast Bus Con�guration for n = 512.

Figure 4 shows the Fast Bus con�guration with
n = 512 CFB memory modules and 32 bus channels.
The CFB modules are �rst divided into 32 groups of 16
memory modules each. The data from the 16 modules
of each group are time-multiplexed onto the designated
16-bit Fast Bus channel for that group. The data now
appears on the Fast Bus as illustrated in Table 1. The
multiplexing is achieved with the bus transceivers asso-
ciated with each memory module.

Time Slice

Channel 00 01 � � � 14 15

00 000 001 � � � 014 015
01 016 017 � � � 030 031
..
.

..

.
..
.

..

.
..
.

..

.
30 480 481 � � � 494 495
31 496 497 � � � 510 511

Table 1: Memory Module Data Time-Multiplexed on
the Fast Bus.

The 2DSB modules are likewise divided into 32
groups of 16 modules each. For each group of 2DSB
modules, data from the 32 channels of the Fast Bus are
multiplexed into the group of 16 2DSB modules. The
multiplexers are placed on the backplane of the Fast
Bus, and de-multiplexing is implemented with the as-
sociated bus transceivers. Hardware necessary for the
averaging operation between beams for perspective pro-
jections can be incorporated between the bus receivers
and the 2DSB modules.

Operation of the multiplexers/transceivers is con-
trolled by lookup tables, called bus channel maps. The
maps are pre-computed for each projection and down-
loaded from the host. A change of viewing parameters
requires re-computation of these maps, but their limited

size allows for real-time update rates. A requirement of
the system is that the data intended to reach the 16
2DSB modules of a channel group are not transmitted
during the same time step. Note that this is trivially
satis�ed, as all voxels of the beam are kept in a sequence
and are moving the same amount either left or right.

We investigated the use of alternative structures
such as multistage cube/shu�e-exchange networks [20]
or expanded delta networks with packet routing [1].
Although these networks typically require less hard-
ware, their routing overhead severely limits their perfor-
mance. Furthermore, the Fast Bus requires only readily
available, o�-the-shelf hardware components.

3.4. Fast 3D Interpolation

When sampling in non-grid locations along the ray
for compositing [14], the sampled value is tri-linearly
interpolated from the values of the eight voxels (called
a cube) around the sample point. Note that this kind of
sampling does not necessarily require a regular isotropic
dataset, and slice data can be accommodated as well.
In Cube-3 this interpolation is performed at the leaves
of the Ray Projection Cone with data from the 2DSB.

Instead of fetching the eight-neighborhood of each
resampling location, four discrete rays are fetched from
the 2DSBs, two from each of two consecutive bu�er
planes. The four rays are subdivided into voxel cubes
and fed into the tri-linear interpolation units. Because
of the skewing of the 2DSB, neighboring rays reside in
adjacent memory modules, requiring a local shift opera-
tion of voxels between neighboring units. The pipelined
operation of the tri-linear interpolation accounts for this
additional latency.

Due to the discrete line-stepping algorithm and the
hardware organization into n memory modules, exactly
n voxels per discrete ray are fetched, independent of
the viewing direction. Since the maximum viewing an-
gle di�erence along a major axis is not more than 45
degrees up to a 2D rotation, the volume sample rate is
de�ned by the diagonal through the cube and is by a
factor of

p
3 higher for orthographic viewing. For ray-

compositing, this is of no consideration due to the aver-
aging nature of the compositing operator. High-quality
surface rendering, however, requires the adaptation of
the stepping distance along the continuous ray accord-
ing to the view direction.

TRILIN, the 3D interpolation unit, computes the in-
terpolated data values of the samples on the projection
ray as it traverses through the volume data. Suppose
the relative 3D coordinate of a sample point within a
cube with respect to the corner voxel closest to the ori-
gin is ha; b; ci and the data values associated with the
corner voxels of the cube are Pijk, where i, j, k = 0
or 1, then the interpolated data value associated with
the sample point, Pabc, is computed through a tri-linear
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interpolation process as follows:

Pabc = P000 (1� a)(1� b)(1� c) + P100 a(1� b)(1� c) +

P010 (1� a)b(1� c) + P001 (1� a)(1� b)c+

P101 a(1� b)c+ P011 (1� a)bc+

P111 abc+ P110 ab(1� c):

A brute-force implementation of this formula re-
quires 13 multiplications and 20 additions for each sam-
ple point that is not a voxel. We solve this problem by
making the observation that a tri-linear interpolation
is actually equivalent to a linear interpolation followed
by two bi-linear interpolations, and by replacing time-
consuming arithmetic operations with a table look-up
(see Figure 5).

From the above equation it is clear that the only
part that allows pre-computation is the intermediate
values involving a, b, and c. With a 16-bit data path
and n = 512, the number of bits left for fractionals,
i.e., relative coordinates within a cube, is seven. With
a seven-bit resolution, the number of possible combina-
tions for ha b ci triples becomes 272727 = 221. For each
triple, there are eight intermediate products, each be-
ing 8-bit wide. Thus, the total size of the look-up table
of partial products would be 16 MBytes. Such a look-
up table is needed for the simultaneous computation of
each interpolated data value. Therefore, it cannot be
shared and needs to be replicated n times. Simply be-
cause of the required memory size, this design is clearly
too expensive and potentially slow.

Operand
Register
File

Partial
Products BVoxels BProducts A

Partial
Voxels A

Plane BPlane A

Registers and
Booth Encoded Shifters

P

Multiplier Row 2

Multiplier Row 3

Multiplier Row 1

(same as on left)

Linear Interpolation

Accumulating Adder

Figure 5: TRILIN: Tri-Linear Interpolation Unit.

By substituting two bi-linear interpolations followed
by a linear interpolation for a tri-linear interpolation,
the look-up table size is only 64 KBytes. The price we
pay for this design decision is that two more multipli-
cations are needed than in the above equation. Fortu-
nately, the performance overhead associated with these
additional multiplications can be minimized by exploit-
ing parallelism and pipelining.

The second key idea in the fast 3D interpolation unit
design is to exploit the internal structure of a parallel
multiplier. To a �rst approximation, a parallel mul-
tiplier is actually a 2D array of single-bit carry-save
adders. Therefore, it is possible to integrate a multi-
plication and an addition operation by inserting an ex-
tra row of carry-save adders. Moreover, to reduce the
hardware cost, one can pipeline multiple multiply-add
operations through such an augmented parallel multi-
plier. Consequently, it becomes feasible to implement
the entire 3D-interpolation function in one chip.

3.5. Volumetric Shading Mechanisms

A prominent object-based volumetric shading
method is gray-level gradient shading [8]. It uses the
gradient of the data values as a measure of surface in-
clination. The gradient is approximated by the di�er-
ences between the values of the current sample and its
immediate neighbors.

In Cube-3 we use the tri-linearly interpolated val-
ues of neighboring rays to evaluate the gradient �eld
inside the dataset. In order to evaluate the gradient at
a particular point, we need the rays on the immediate
left, right, above and below, as well as the values in
the current ray. The left and right point sample values
can be fetched from neighboring shading units, and the
above and below samples arrive from the consecutive
processing of PRPs. Since we need to store complete
rays, we call the shading units ABC Shaders for their
above, below, and current ray sample bu�ers.

m-2 m-1 m m+1 m+2
n-2

n-1

n

n+1

n+2 n+2

n+1

n

n-1

n-2
m+2m+1mm-1m-2

(a) Corrected 10-neighborhood (b) 26-neighborhood Gradient 
Gradient Estimation Estimation

Figure 6: Gradient Estimation Schemes.

Figure 6 illustrates the di�erent gradient estima-
tion schemes (using a 2D drawing). The simplest ap-
proach is the 6-neighborhood gradient, which uses the
di�erences of neighboring sample values along the ray,
P(n;m+1) � P(n;m�1) in x and P(n+1;m+1) � P(n�1;m�1)
in the ray direction (Figure 6 (a)). Although the left,
right, above and below ray samples are in the same
plane and orthogonal to each other, the samples in the
ray direction are not. More importantly, when a change
in the viewing direction causes a change in the major
axis from m to n, the values of P(n+1;m)�P(n�1;m) are
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used to calculate the gradient in the x direction. This
leads to noticeable motion aliasing.

To circumvent this problem we use an additional lin-
ear interpolation step to resample the rays on correct
orthogonal positions (Figure 6 (a), black samples). We
call this approach the 10-neighborhood gradient estima-
tion, and it adequately solves the problem of switching
the major axis during object rotations. The linear in-
terpolation weights are constant along a ray and cor-
respond to a constant shift of the complete ray in the
viewing direction.

We also simulated the use of a 26-neighborhood gra-
dient (Figure 6 (b)). Instead of fetching sample val-
ues from four neighboring rays, 26 interpolated samples
from 8 neighboring rays are fetched and the gradient
is estimated by taking weighted sums inside and di�er-
ences between adjacent planes. This method leads to
better overall image quality, but the switching of ma-
jor axis is still noticeable, although less than with the
6-neighborhood gradient.

In the case of perspective projections, the front of
each PRP is uniformly sampled with n rays one unit
apart. As the rays diverge towards the back of the
volume, the distance between rays increases, and the
averaged values described above are used instead.

With the gradient estimation and a light vector
lookup table, the sample intensity is generated using
a variety of shading methods (e.g., using an integrated
Phong Shader [12]). Opacity values for compositing are
generated using a transfer function represented as a 2D
lookup table indexed by sample density.

3.6. Ray Projection Mechanism

The pipelined hardware mechanism for ray projec-
tion is the RPC, which can generate one projected pixel
value per clock cycle using a rich variety of projection
schemes. The cone is a folded (circular) cross-linked
binary tree with n leaves, which can be dynamically
mapped onto a tree with its leftmost leaf at any arbi-
trary end-node on the cone (see Figure 7). This allows
the processing of a ray of voxels starting from any leaf
of the cone. This in turn allows the cone to be hard-
wired to the outputs of the 2DSB modules containing
the voxels. Such a con�guration eliminates the need for
a set of n n-to-1 switching units or a barrel shifter for
de-skewing of the 2DSB. The leaves of the cone contain
the TRILIN interpolation and the ABC Shading units.

The cone accepts as input a set of n samples along
the viewing ray and produces the �nal value for the cor-
responding pixel. The cone is a hierarchical pipeline of
n� 1 primitive computation nodes called Voxel Combi-
nation Units (VCU). Each VCU accepts two consecutive
intensity/opacity pairs as input and combines them into
an output value. At any given snapshot the cone is pro-
cessing log n rays simultaneously in a pipelined fashion,

Output

b

a

b

c

0 1 2 3 4 5 6 7
2D Skewed Buffer Memory Modules

c

a

(to Host)

Voxel
Combination Unit (VCU)

LEAF Unit Neighbor Connection

LEAF Unit
(TRILIN/ABC Shading)

Constant Datapath
Switchable Datapath

Figure 7: Folded Binary Cone Tree (n = 8 Leaf Nodes).

producing a new pixel color every clock cycle. Section-
ing and clipping can be implemented on the RPC by
discarding voxels according to user speci�ed clip-planes.

Each VCU is capable of combining its two input
samples in a variety of ways in order to implement view-
ing schemes such as �rst or last opaque projection, max-
imum or minimum voxel value, weighted summation,
and �-compositing. Accordingly, each VCU selects as
input the left and center or center and right datapaths,
each one consisting of color C and opacity � of the cur-
rent ray sample.

The opacity of the voxel is either pre-stored with
every voxel or provided through a look-up table of a
transfer function inside the ABC Shading Unit at the
leaves of the cone. The VCU produces an output voxel
V

0

by performing one of the following operations:

First opaque: if (�L is opaque ) V
0

= VL

else V
0

= VR

Maximum value: if (CL < CR) V
0

= VR

else V
0

= VL

Weighted sum: C
0

= CL +WkCR

where W is the weighting factor and k is the cone level.
Wk is pre-computed and pre-loaded into the VCUs.
Weighted sum is useful for depth cueing, bright �eld,
and x-ray projections.

Compositing: C
0

= CL + (1� �L)CR

�
0

= �L + (1� �L)�R

where the �rst level VCUs compute CI = CI�I, assum-
ing the values are gray-levels or RGB. This is actually
a parallel implementation of the front-to-back (or back-
to-front) compositing. The pixel output is transmitted,
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for example, to the host, where post-processing, such
as post-shading, splatting, and 2D transformation or
warping, is performed. A frame bu�er outputs the �nal
image to a color display.

4. Performance Estimation

The parallel conict-free memory architecture of
Cube-3 reduces the memory access bottleneck from
O(n3) per projection to O(n2) and allows for very high
data throughput. Due to the highly pipelined architec-
ture, the frame rate is limited only by the data-transfer
rate on the Fast Bus. If we assume a dataset size of n3,
one resample location per volume element, and a �nal
screen resolution of n2 pixels, we need to transfer a dis-
crete ray of n voxels on the Fast Bus in 1

n2f
seconds.

f is the frame rate in updates per seconds. Since the
Fast Bus operates in a time-multiplexed fashion with
m time-slices, we need 1

n2fm
seconds per transfer or a

clock speed on the bus of n2fm.

Dataset n � n� n Frame Rate f Bus Frequency

128� 128� 128 30 Hz 8 MHz
256� 256� 256 30 Hz 33 MHz
512� 512� 512 15 Hz 66 MHz
512� 512� 512 30 Hz 125 MHz

Table 2: Fast-Bus Performance Requirements (m = 16).

Table 2 gives some examples of required bus per-
formance for a multiplexing rate of m = 16. High-
bandwidth buses have been used by other researchers
[16], and technologies and driving chip sets are readily
available for most bus speed requirements [19, 21]. We
believe that a high-resolution compositing projection of
a 5123 dataset can be generated in Cube-3 with about
30 frames per second.

5. Hardware Estimation

Figure 8 shows the overall hardware structure of
Cube-3. It is a modular design that is scalable to higher
resolution datasets. The CFB boards contain several
CFB modules, each consisting of a memory module, an
addressing and bus control unit, and a bus transceiver.
Using o�-the-shelf components such as SIMMs (Sin-
gle Inline Memory Modules) and FPGAs (Field Pro-
grammable Gate Arrays), it is possible to �t up to 128
CFB modules together with I/O hardware and I/O bus
access logic on a single board. The CFB modules on
each board can be connected to the acquisition device
by high-speed parallel input channels.

Each 2DSB consists of a Fast Bus transceiver, a
memory module, and a special purpose LEAF chip.
This chip contains the addressing and bus control units,
the TRILIN interpolator, and the ABC shading unit. A
special purpose VCU chip contains several VCUs of the

Host

2DSB

CFB

2DSB

LEAF

2DSB

CFB CFB

2DSB

LEAFLEAF

VCUs VCUs

LEAF

CFB

VCUs

to Frame Buffer

Fast Bus

Parallel Input

VCUs: Voxel Combination Units
LEAF: TRILIN/ABC Shading Units
2DSB: 2D Skewed Buffers
CFB: Cubic Frame Buffers

I/O Bus

Figure 8: Cube-3 Hardware Architecture.

RPC. Each individual VCU has only modest complex-
ity, so that the number of VCUs per chip is determined
by the width of the I/O datapath. Assuming an I/O pin
count of 260 pins and 16-bit datapaths, it is feasible to
put 8 VCU units per chip. Sixteen VCU chips together
with 128 2DSB/LEAF units �t on a single board.

The CFB and 2DSB boards are connected through
the high-bandwidth Fast Bus on the backplane, which is
the main technological challenge in Cube-3. Assuming
a voxel resolution of 16-bit and a 5123 dataset, the back-
plane contains a 512-bit wide bus at clock-speeds possi-
bly over 100MHz. Furthermore, the backplane contains
a separate I/O bus for LEAF node and host connec-
tions.

With the above board estimations, a Cube-3 sys-
tem for 5123 16-bit per voxel datasets would require 8
boards and a custom fabricated backplane. This board
layout and chip count may change depending on o�-the-
shelf chip availability, pin count, package size, and bus
interface technology.

6. Conclusions

Cube-3 is a scalable, high-resolution volume vi-
sualization architecture that exploits parallelism and
pipelining to achieve real-time performance. It will pro-
vide the following capabilities to the scientist and re-
searcher: viewing from any parallel and perspective di-
rection, control of shading and projection parameters
(e.g., �rst opaque, max value, x-ray, compositing), pro-
grammable color segmentation and thresholding, and
control over translucency, sectioning, and slicing.

We have simulated the Cube-3 architecture in C and
in Verilog, and are designing the general layout of a
5123 16-bit per voxel prototype implementation. We are
currently simulating the e�ects of the 10-neighborhood
gradient estimation for perspective projections. Future
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work includes the full design of the LEAF and VCU
nodes, optimizing the pipelining between the di�erent
units, enhanced support for perspective projections, the
design of high-speed parallel input channels, and the
hardware implementation of a prototype.
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