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Abstract

All data systems require optimization. Determining the most performant

recipe for data retrieval is commonly referred to as access path selection (APS). This

paper introduces the use of artificial neural networks for query optimization in APS.

The problems with query optimizers are well known. Promising research in

other areas of query optimization using machine learning techniques continues at a

rapid pace. Research has proposed machine learning solutions for join order enu-

meration, cardinality estimation, and predicting optimizer heuristics (such as cost

estimation and table statistics). However, a practical method for learned APS re-

mains an open research topic.

APS is difficult because an optimizer must be aware of the ever-changing

system state, hardware, and data. Incorrect assumptions in any of those can be very

costly, and finding a solution requires years of research.

In this thesis, I present an artificial intelligence-based approach to APS and

introduce a learned optimization method using neural networks. Moreover, I explore

the challenges inherent in applying generalized neural network techniques to APS. I

empirically show that these networks significantly outperform the query optimizer’s

accuracy in determining the truly performant access path.
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Chapter 1: Introduction

All data systems require optimization; whether for storage or access to infor-

mation. For a given query, many decisions have to be made to determine the most

performant method for retrieving results. The optimizer must determine how to read

the data (indexes and algorithms) and which resources (parallelism, memory, and

CPU) to use.

As Bruce Lindsay, Edgar F. Codd Innovations Award Winner in 2012, put

it, “three things are important in the database world: performance, performance,

performance”. Performance is many times at odds with flexibility. There is a tradeoff

between a generalized system providing flexibility at the cost of performance, and a

specialized system delivering performance at the cost of flexibility.

A usable system must have at least some flexibility because it is difficult to

know how a system will be used. Even in a known, specific application, there are vari-

ations in workload over time that require different tunings. Additionally, the point of

any data system is to support any workload that applications require. Optimization

is the result of years of research, shared knowledge, and testing. That makes systems

incredibly complex and results in a necessarily opaque implementation, carefully ex-

posing knobs that can be used to influence key aspects of the optimizer.

For example, a user can not tell the system precisely in which instances it

should consider a scan or how many workers to use but can turn them on and off

entirely. A user can influence how expensive the optimizer perceives multithreading

1



and other functions. The method can vary from system to system (MySQL allows

per-query hinting while PostgreSQL supports only system-level knobs).

To make matters worse, the correct decisions an optimizer must make change

with the query and the data itself. A hint that is right for a small table becomes wrong

as the table grows and can even become anti-performant. All of the rich experience

gained during the painful discovery process on one system does not make its way back

to the project community for optimizer improvement.

A system specialized to a particular task is constrained to that scenario. The

same issues mentioned above plague even this highly-tuned system; as data and hard-

ware change, the system requires re-development.

Conceivably, system knobs have some optimal setting. It is impossibly complex

to expose the inner workings of the optimizer to an expert user, but a system smart

enough to improve itself could find the optimum configuration.

Today, artificial intelligence (AI) provides exciting opportunities given their

exceptional capability for optimization problems. Machine learning and deep neural

networks have shown that they can make recommendations, convert speech to text,

or classify images with surprising accuracy.

AI could be used to replace the generalized optimizer with a specialized opti-

mizer trained on a particular workload. Further, it could form the basis of a system

that improves itself by continuously measuring results and re-training the model,

creating a perpetually optimal system.

2



ID ... Price
1 ... 20
2 ... 5
3 ... 100
4 ... 50
... ... ...
98 ... 12
99 ... 87
100 ... 50

Table 1.1: An illustrative dataset.

1.1. Background

1.1.1 Access Path Selection

There are a variety of algorithms and data structures a data system can employ

to return query results. Every approach has tradeoffs. The decision an optimizer has

to make on how best to retrieve data is called access path selection.

Scan

One approach is to scan data to find rows matching criteria in the query’s

predicate. Consider the data in Table 1.1 and the following query:

SELECT Price FROM Dataset WHERE

Price >= someMin AND Price < someMax

The query requests all of the prices between some minimum and maximum

value. If someMin = 1 and someMax = 101, we would be requesting all of the price

data in the table. The code for a typical scan used in a column-store database would

look something like this:

int *output = new array(sizeOf(input))

for (i=0;i<tuples;i++,input++)

3



if *input>=low && *input<high

*output++=i

return output

The tight for loop evaluates all values in memory in search of matching

tuples. It works well for the scenario we outlined (known as the case of high query

selectivity). Scanning is the fastest method of searching for results since we need to

traverse the entire array, regardless.

Indexes

A scenario where someMin = 10 and someMax = 12 would result in very

few rows returned (referred to as low selectivity). In such a case, a scan is highly

inefficient because we have to scan many values (moving them in and out of memory)

only to discard them. If we had some intuition as to exactly where they are, we could

locate the few we need and move directly to their location in memory. Of course, the

savings we would gain would have to be worth the computational and memory cost

of building the intuition.

Indexes built on B+ Trees are one well-established technique for building in-

tuition. A B+ Tree is a tree (as shown in Figure 1.1) in which each group of nodes

contains n keys (where n is the number of keys able to fit in cache memory). Each

group of nodes links to other nodes. We begin with the root node, which indicates

that keys with values < 3 are located by traversing down one level to the left relation,

keys between 3 and 5 to the middle, and keys > 5 to the right. Moving from node

to node incurs a cache miss because the keys have to be evacuated from memory and

replaced by the next batch. However, trees are shallow, allowing travel down the tree

with only a hand full of cache misses. In comparison, a scan would incur a cache miss

every time we move n values into memory.
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3 5

3 41 2 5 6 7

v1 v2 v3 v4 v5 v6 v7

Figure 1.1: A example B+ Tree.

This kind of structure is not free. There is a cost to storing data redundantly,

building the tree, and keeping it current. However, in the case of low selectivity, the

cost is generally worth the savings in read performance.

Deciding Between Index and Scan

Determining the most performant route to take has been a heavily researched

topic since the 1970s (Selinger et al., 1979). The conventional solution is to compute

and store statistics of the data so that we predict how many records we must traverse

(thus giving us some intuition as to the approach to take). If the query is highly

selective, we can use the faster scan approach, and conversely, with low selectivity,

choose the index.

Even with the guidance of statistics, the optimizer is still guessing, possibly

incorrectly. Statistics may be out of date or poorly represent the distribution of

the data. Recomputing them consumes valuable resources better spent on query

workloads loads.

Recent work by Kester et al. (2017) shows that selectivity is not the only factor

to be considered. That work proposes a decision boundary that takes concurrency into

account, as shown in Figure 1.2. That algorithm is light-weight and fixed, identifying

a mathematical proportion for a given set of parameters. Hardware characteristics

would be set once upon system setup, then query concurrency, selectivity, and the

5



Figure 1.2: Concurrency is important in APS.

dataset could be monitored during the life of the system. The optimizer needs only

to perform the computation to select the optimal access path. While, on the one

hand, this is a fast computation, on the other, it can only take into account the

parameters coded into the algorithm and is susceptible to factors that challenge the

base assumptions.

Table 1.2 lists the parameters needed to compute the Access Path Selection

(APS) cost proportion. Those parameters illustrate just how sensitive the algorithm

is to changes in hardware, data, and the query. For example, when hardware evolves

and is capable of running more concurrent queries effectively, the weight we assign to

them needs to be adjusted. Fundamental changes to block size, CPU clocks, memory,

or some other new capability also require new research to reformulate a new solution

by hand.

Spending years reformulating understanding is not a hypothetical scenario.

Consider the evolution of data systems. By the late 1990s, research on in-memory

data layouts was underway to address the growing speed disparity between CPU and

main memory (Abadi et al., 2013). Whereas processor time was the bottleneck in the

past, it had now shifted to memory (size, access time, and latency). Table 1.3 shows
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Workload
number of queries
selectivity of query
total selectivity of the workload

Dataset
data size
tuple size

Hardware

L1 cache access (sec)
LLC miss: memory access (sec)
scanning bandwidth (GB/s)
result writing bandwidth (GB/s)
leaf traversal bandwidth (GB/s)
the inverse of CPU frequency
Factor accounting for pipelining

Scan and Index

result width (bytes per output tuple)
tree fanout
attribute width (bytes of the indexed column)
offset width (bytes of the index column offset)

Table 1.2: APS algorithm parameters Kester et al. (2017)

Year 1980 (disk) 1990 (disk) 2000 (disk) 2010 (disk) 2016 (mem) F1 (mem) F2 (mem)
CPU (GHz) 2 4 4
HDD (ms) 10 8 2 2
HDD (MB/s) 40 100 500 500
Mem (ns) 180 100 20
Mem (GB/s) 40 160 80
# tuples 106 107 108 109 109 109 109

Tuple Size 200 200 200 4 4 4 4
Branching 250 250 250 250 21 21 21
Crossover 12.4% 6.2% 5.0% 0.1% 0.6% 0.3% 0.5%

Table 1.3: Access path selection crossover point evolution Kester et al. (2017).

how the selectivity-based boundary has been affected over time. In the 1980s, it made

sense to switch from scans to indexes when the selectivity fell below 12.4%. However,

advances in memory access made the penalty of moving data much lower, and scans

became useful in more and more cases. As memory latency continued decreasing, we

see indexes again start to make a resurgence in performance in larger datasets (a case

that did not exist before fast memory and the massive sets found in the Big Data

movement). Inevitably, the state of research in system memory will evolve again and

alter the formulation.

Concurrency is complicated. It is not sufficient to say that processing more
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queries concurrently increases system performance. Aside from the overhead in allo-

cating threads to queries, concurrent processing has side-effects such as negating other

techniques employed by data systems. For example, zone maps are an optimization

that seeks to minimize the traversal of unnecessary blocks of data by viewing the

block as a zone. Processing concurrent queries means that there are fewer irrelevant

zones to skip since the area of interest is a union of the combined queries.

The hand-derived nature of the algorithm presents a problem to scalability,

and raises some interesting questions:

• Can the decision boundary already described be improved? (or, described by a

more sophisticated algorithm)?

• Can the performance of the model be improved?

• Are concurrency, hardware, and selectivity the only factors, or are there more

dimensions to the problem space?

It is important to note that the Access Path Selection algorithm requires anal-

ysis and observation. Scientific breakthroughs in computing can also be the result

of a data-driven solution (Hey et al., 2009). Can such a data-driven solution be

automated?

Choosing the optimal path is critical to the performance of any system, not

just in-memory data systems. The goal of every system is to find and return data as

quickly as possible. The decisions made along the way determine the viability of the

system.

1.1.2 Optimizers

In a data system, the query execution engine performs the work of executing

operations and returning results. The query optimizer provides organized input to
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SELECT * FROM lineitem WHERE

l_extendedprice > 75000

AND l_suppkey < 6000

AND l_partkey < 1200000;

Listing 1.1: Sample query on LINEITEM table.

the execution engine. Since the execution engine executes any plan given, the plan

must be accurate. The optimizer has three key components (Chaudhuri, 1998):

• A space of query plans called a search space.

• Some cost estimation technique to determine which plans are more costly than

others.

• Enumeration algorithms to choose the best plan by exploring the search space.

The optimizer has to (1) ensure that optimal and efficient plans are in the

search space, (2) have an accurate cost estimating technique, and (3) use an efficient

enumeration algorithm. Each of these tasks is not trivial, and a flaw in any one

causes the entire execution to be suboptimal. In practice, query optimizers are often

suboptimal.

Search Space

When the optimizer builds a search space, it is collecting a list of possible

query plans that include permutations of join sequencing, threading scenarios, and

access path.

Consider the query in Listing 1.1 with an index on each of the columns in the

predicate (l suppkey, l partkey, and l extendedprice). The plans in the space in-

clude many variations, a few of which are shown in Listing 1.2 (PostgreSQL). The plan

in Listing 1.2a performs a bitmap scan on l sk, then filters (scans) l extendedprice
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Gather (cost=68999.01..1326984.50 rows=161741 width=129)
Workers Planned: 2
−> Parallel Bitmap Heap Scan on lineitem (cost=67999.01..1309810.40 rows=67392)

Recheck Cond: (l suppkey < 6000)
Filter : (( l extendedprice > ’75000’) AND (l partkey < 1200000))
−> Bitmap Index Scan on l sk (cost=0.00..67958.57 rows=3679734)

Index Cond: (l suppkey < 6000)

(a) Bitmap index on l suppkey column, then filter.

Gather (cost=1000.00..1443085.60 rows=764987)
Workers Planned: 2
−> Parallel Seq Scan on lineitem (cost=0.00..1365586.90 rows=318745)

Filter : (( l extendedprice > ’75000’) AND (l suppkey < 6000) AND (l partkey < 1200000))

(b) Multithreaded table scan filtering on all columns.

Index Scan using l sk on lineitem (cost=0.56..9681195.21 rows=161741)
Index Cond: (l suppkey < 6000)
Filter : (( l extendedprice > ’75000’) AND (l partkey < 1200000))

(c) Index scan on l suppkey column, then filter.

Listing 1.2: Sample query plans for Listing 1.1.

and l partkey. Another (Listing 1.2b) uses multiple workers to scan the entire table,

looking for all columns in the predicate at once. Finally, we see a plan (Listing 1.2c)

that performs a btree index probe in l sk, then scans the remaining columns.

While conceptually simple, there is no perfect method for representing plans

in a complex search space. Some systems use a calculus-oriented approach to analyze

the structure of the executions in the plan while others use a query graph with nodes

and edges representing operations (Chaudhuri, 1998).

If the best plan is not in the search space, the downstream portions of the

optimizer must select the best of the available options (perhaps the worst options).

If the plans in Listing 1.2 did not include 1.2b, the most effective plan in some cases

would be missing (when returning more than .0099% of the rows).

Cost Estimate

There are many ways to represent a query as a set of operations. Cost esti-

mation is the method of determining how costly components of the plan are in terms

of memory, time, CPU, and I/O. This process must also be done efficiently since the
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optimizer will repeatedly invoked it. The estimation framework must:

(a) Collect statistical summaries of the data stored in the system

(b) For each data stream:

(a) determine the statistical summary of the output data stream

(b) estimate the cost of executing the operation

Statistics collected while the system is idle accomplish the first task (in the

meantime, they may drift from the actual). The latter task uses the collected statistics

to predict the output distribution for estimating a cost to the various operations. If

the estimates are inaccurate, the system executes a slower plan believing it to be

optimal.

All plans in the space use the same statistical data and therefore should have

the same output summaries (they all return the same data). However, that is not

always the case. Listing 1.2b shows a very different estimation for rows than the

other two plans in the space. In reality, none of them are correct. The actual number

of rows that are returned by the query in Listing 1.1 are 153,849. All of the plans

overestimate the number of rows returned.

Where plans significantly differ is the cost assigned to operational variations

between plans. These costs are in an arbitrary unit of computation (although tra-

ditionally it is some representation in terms of disk page fetches set relative to the

value of seq page cost parameter). The only reliable method to interpret them is

to compare them relative to each other. From least to most expensive, the optimizer

projects Plan 1.2a to cost 1326984.5 units, Plan 1.2b to cost 1443085.6 units, and

Plan 1.2c to cost 9681195.21 units. Note that individual functions are assigned costs.

For example, the scan on l sk (line 6, Listing 1.2a) costs 67958.57 units, and the
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cost of GATHER (combining the two worker threads) is 62825.9. Each cost in the tree

includes the costs below them, so we need to subtract the cost of line 3 from line 1

to determine line 1’s cost.

The cost only reflects things that the planner finds essential. Time spent

transmitting result rows to the client or performing other factors that contribute to

the real elapsed time of the query are ignored because the optimizer cannot change

them by altering the plan.

Cost estimation remains one of the most challenging parts of the optimizer.

It requires intimate knowledge of the underlying system’s physical configuration and

operator algorithms (for example, buffer pool hit ratios, memory access costs, cache

latency, and co-location of data) (Chaudhuri, 1998).

A learning optimizer could observe the reality of execution, allowing all of

the details to resolve naturally. If a genuinely accurate cost is predicted overall, the

cost of the minutia does not matter. An optimizer executes the fasted plan, observes

change, and adjusts.

It is vital to point out that the optimizer is making a few assumptions. First,

each plan’s total cost is the sum of its parts. That could be true if the environment

were sterile and we were confident that no factors other than what is in the plan

come into play. Second, the lowest cost is derivable from the statistical information

on hand. What about concurrency (Kester et al., 2017) or some new algorithmic

improvement? We cannot improve the algorithms automatically by adding some new

hardware components. The optimizer needs to become intimately aware of its cost.

A learned optimizer system could improve along with the underlying hardware.

Enumeration algorithm

The enumeration algorithm selects an inexpensive plan to execute. If it were

simply a matter of executing every plan in the search space to determine which
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enable bitmapscan seq page cost geqo
enable hashagg random page cost geqo threshold
enable hashjoin cpu tuple cost geqo effort
enable indexscan cpu index cost geqo pool size
enable indexonlyscan cpu operator cost geqo generations
enable material parallel setup cost geqo selection bias
enable mergejoin parallel tuple cost geqo seed
enable nestloop min parallel relation size cursor tuple fraction
enable seqscan effective cache size from collapse limit
enable sort default statistics target join collapse limit
enable tidscan constraint exclusion force parallel mode
enable gathermerge

Table 1.4: Optimizer settings in PostgreSQL version 10.

is fastest, this would be trivial. Many modern versions are somewhat extensible,

allowing the addition of new operators to the search space. The optimizer uses a

rule-based algorithm to determine which plan to choose, suffering from the same

issues plaguing any pre-coded approach. Systems expose “knobs,” allowing experts

to influence the optimizer. That poses a problem because the expertise needed to

tune the knobs is very high and very time-consuming.

While knobs are helpful, the only influence exerted is limited to which knobs

are exposed. Table 1.4 shows optimizer settings available in PostgreSQL 10. Consider

PostgreSQL’s genetic query optimizer, which uses a genetic algorithm to search the

plan space over a rule-based approach (the name of the knobs begin with geqo). An

expert can set values like the size of the genetic population and how many generations

until convergence, but you can not tell it to use a different fitness function, mutation

rate, or even a different algorithm entirely. You can take the inadvisable approach of

turning it off completely, which illustrates the difficulty of expertly tuning systems.

Finding the best genetic settings requires an exhaustive process of exploration. The

documentation for PostgreSQL recommends not to touch it, negating any benefit an

exposed knob would offer.
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Since the row estimates are incorrect, the cost estimates that use them as a

basis are also inaccurate. If the enumeration algorithm relies strictly on taking the

lowest cost, it chooses the least optimal plan, in reality, Plan 1.2a instead of the better

Plan 1.2b.

How Good are Query Optimizers?

Queries run on real systems with other things happening in the background

and other queries running that permute the state of the system. At times, queries

operate on the same data and share execution. A learned algorithm could better

understand the observed reality of what happens when a queries run concurrently.

Finally, some parts of a system extremely challenging to estimate. For exam-

ple, user-defined functions are opaque to the optimizer. A learned optimizer could

effectively treat them as a black box and train on the observed behavior.

As I have shown, achieving perfection is difficult, while failure is easy. Given

all of this, how does the optimizer truly perform? Consider the query in Listing 1.3.

As before, this query could be executed in many ways. Figure 1.3 compares the per-

formance of plans selected by the optimizer with the actual optimal plan as l suppkey

is varied (from 200 to 4,000) to increase selectivity (from 0.1988% to 3.9972%). The

optimizer selects a bitmap scan on a single thread until point A (2.7985% selectivity),

where it switches to a multithreaded bitmap scan. We can see that it should have

switched much sooner. However, the true optimal was a different plan altogether;

starting with a btree probe on l sk until point B (0.7983% selectivity), then switch-

ing to a multithreaded table scan. Not only should it have switched to multithreading

sooner, it should have never chosen a bitmap scan in the first place, let alone stick

with it for eternity.

While this is a simple example, Chapter 2 demonstrates that an optimizer

choosing the truly optimal plan is a rare occurrence.
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SELECT * FROM lineitem WHERE l_suppkey < 200;

Listing 1.3: Query 3.
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Figure 1.3: Ideal vs optimizer performance of Query 3.

1.1.3 Neural Networks

Neural networks have seen success in predicting complex problems. Rosenblatt

first identified the perceptron as a probabilistic model in his 1958 paper (Rosenblatt,

1958), but it was not until more modern techniques improved the perceptron, making

it a viable machine learning technique. Figure 1.4 illustrates the basic principles of

the perceptron. Each input has a corresponding weight and bias applied (a linear

regression). An activation function controls the perceptron’s ability to “fire”.

A biological neuron is an excellent metaphor because a neuron is either on or

off. A network of many such neurons fires in observable patterns, and we can draw a

decision boundary around the patterns.

The technique used to cause a neuron to fire or not is called the activation

function. There are a variety of activation functions with varying properties as can

be seen in Figure 1.5. The activation function defines the final output given an input.
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Figure 1.4: Rosenblatt’s Perceptron.
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(a) The ReLU activation function.
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(b) Sigmoid activation function.

Figure 1.5: Common neural network activation functions.

Consider the functions in Figure 1.5. A rectified linear unit (ReLU) is the

most popular neural network activation function (Ramachandran et al., 2017). It

retains only the positive part of the input value (Figure 1.5a), effectively removing

noisy negative neurons, allowing better gradient propagation to the next layer. A

sigmoid (Figure 1.5b) effectively pushes values either toward one or zero (especially

useful in classification problems, but problematic for values in the middle).

Many perceptrons could be clustered and arranged as layers. It is not uncom-

mon to have thousands or millions of neurons in a network. A network of many layers
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Figure 1.6: A multi-layered perceptron network (MLP).

of perceptrons is appropriately called a multilayer perceptron network (MLP).

Figure 1.6 is an example of one such network used to classify handwritten

digits. The MNIST dataset contains 70,000 handwritten digits in 28x28 pixel format

along with a corresponding labeled classification (0-9) (see Figure 1.7a). This type of

approach is known as supervised learning because we know what the actual prediction

should be by comparing it to the label.

To feed the images to a neural network, we first flatten the image by converting

it from a 28x28 pixel (784 total pixels) matrix to a 784-pixel vector (Figure 1.7b).

We assign each pixel to a neuron in the input layer (a layer of 784 neurons) and

connect each of those to every neuron in the next layer (Figure 1.7c). Such an

architecture is appropriately called fully connected. The next layer of ten neurons

(one for each classification of digits) uses Softmax (a multi-classification machine

learning technique) to create probabilities for each class. Finally, in our output layer,

we will select the highest probability as the predicted output.

We do not know what the values for the weights for each parameter should

be. Finding an optimal combination for millions of weights on 70,000 images is a

significant computing problem.

Backpropagation is a technique that allows the weights associated with the
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(c) Simple network for classifying digits.

Figure 1.7: MNIST image classification.

neurons to be learned. The results of backpropagation are used by another function

(such as stochastic gradient descent) to perform the learning. The backpropagation

algorithm works as follows:

(a) Compute the scalar cost (or loss) during the forward pass through the network.

For example, in a sum of squares approach.

(b) Compute the gradient of the cost function with respect to the parameters (using

the chain rule of calculus).
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1.2. Prior Work

Nowadays, there is a never-ending deluge of success stories in artificial in-

telligence. The term itself has not coalesced into a specific body of knowledge. In

this thesis, I consider AI to encompass neural networks, reinforcement learning, evo-

lutionary algorithms, and any machine learning technique that learns patterns in

data. Every researcher wonders at some point if it is practical to create an artificial

(learned) optimizer. The conclusion is natural since the knowledge needed to train

such an algorithm exists in the data system somewhere.

The practicality of an artificial optimizer is difficult to determine. Practical in

which terms? Is it technically possible, maintainable, and offer a fast enough response

to incoming queries? How difficult will it be to train, and what is the performance

impact? On one side of the debate, machine learning is deemed unnecessary to

improve the quality of optimizers as they are only as good as the estimates given

(Leis et al., 2015; Wu et al., 2013). On the other, recent research shows promising

results (Kipf et al., 2018; Kraska et al., 2019; Krishnan et al., 2018; Marcus et al.,

2019; Marcus & Papaemmanouil, 2018; Ortiz et al., 2018).

The problems with optimizers are well documented. In addition to sensitivity to

cost estimates, system performance is highly dependent on configuration (Van Aken

et al., 2017). Additionally, optimizers are highly susceptible to hardware changes

(e.g., scans look more and more attractive as hardware improves). That presents the

untenable situation of a research bottleneck. Research can take years, during which

time hardware changes again, starting the cycle anew. Exciting research shows that

the entire approach is even suspect when hardware changes because the algorithm

has to account for concurrency where it did not before (Kester et al., 2017).

Even after decades of research, the generalization of an optimizer’s cost pro-
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cess is still very difficult. Conventional research methods are still the means that

improvements make their way to optimizers, far behind state of the art.

However, problems with machine learning approaches also exist. They are slow

to train, consume massive resources, and require large sets of data. Trained models

are not portable and applicable to different scenarios (such as varying hardware,

systems, algorithms) and require expensive retraining. Although research has been

done on models of various sizes and architectures, establishing a best practice is still

in the distance. Neural Networks and Reinforcement Learning are also coming of age,

but the research for their applications to optimizers is still relatively new (Marcus

& Papaemmanouil, 2018; Ganapathi et al., 2009; Zaheer et al., 2017). Despite the

problems, the results are promising enough to warrant further exploration.

Opportunities

First, AI-based research in data systems is scattered, with most of the research

centering around techniques to improve existing optimizers. Understandable, because

they are very well researched and understood areas of the optimizer. They are also

reasonably sized work that can establish viability for machine learning. Still, there is

a significant gap in other areas of the optimizer or even the optimizer as a whole:

• Estimating cardinality for building sub plans (Ortiz et al., 2018)

• Join order enumeration (Kipf et al., 2018; Krishnan et al., 2018)

• Workload scheduling (Ganapathi et al., 2009)

• Data structures by means of new a kind of learned index (Kraska et al., 2018)

• Evolutionary approaches to access path selection and vertical fragmentation

(Song & Gorla, 2000)
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Second, even within machine learning and AI, one can approach the problem

from several directions. One option is to leave the optimizer intact, using predictive

models to improve estimates the optimizer relies on (Akdere et al., 2012). However,

some researchers caution that better estimations have yet to demonstrate better plans,

casting the entire line of reasoning into doubt (Marcus et al., 2019). Keeping the

existing optimizer also inherits all of the problems in the current design. As some

authors (Van Aken et al., 2017) point out, a system’s performance is dependent on

its configuration. The best you can do is tune the available knobs and hope for the

best. Any other tuning is effectively unreachable. Additionally, different databases

have different knobs.

Another option is to replace the optimizer entirely (Marcus et al., 2019). Re-

search exists on micro components of the optimizer (for example, ReJOIN), but it

is much more challenging (and intimidating) at a holistic level. However, by freeing

us from the underlying system-specific algorithms, such an approach could translate

more freely to various systems (perhaps even as a drop-in replacement for optimizers).

Even though problems with AI exist, all is not lost. Interesting research (Mar-

cus & Papaemmanouil, 2018) shows that even a tiny model of only a few neurons can

have a meaningful impact on join order enumeration using a Reinforcement Learning

approach.

We have many open questions. Should we use a monolithic model for the

entire system, or consider smaller, more purposeful models (Marcus et al., 2019)?

How do we build such a system? Does the monitoring and training happen in-line

with the system’s other functions, or separately as another, even external, system

(Gupta et al., 2008)?
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1.3. Contributions

The main contribution of this thesis is an approach to access path selection

using artificial neural networks that outperform a traditional approach to optimiza-

tion. Secondarily, traditional loss functions for training neural networks suffer from

the way they show accuracy without additional considerations.

As we have seen, approaches such as ReJOIN (Marcus & Papaemmanouil,

2018), use Reinforcement Learning models to predict optimal relation join order ac-

curately. Such an approach can not be applied directly to the problem of access path

selection because the major components of the approach (feature vectorization and

policy gradient) are highly specific to the join problem. Further, the join order prob-

lem lends itself to an iterative approach because relations can be incrementally added

and rewarded at each step.

I show that small neural networks of multi-layer perceptrons outperform the

built-in query optimizer while avoiding the problems inherent in other solutions.

Problem: Reliance on the Optimizer

Other efforts, such as LEO (Stillger et al., 2001; Markl & Lohman, 2002)

attempt to address the cost estimation problem by predicting cost estimates using

machine learning techniques. While those rely on the existing optimizer, I show that

a neural network can produce very accurate results without considering traditional

optimizer costs.

Problem: Reliance on Computed Statistics

Improving the accuracy of table statistics is another method of addressing the

cost estimate problem. We have seen that table statistics are not enough for access

path selection (Kester et al., 2017). Research, like PQR (Gupta et al., 2008), predicts

ranges of execution times using selectivity, among other things. In this thesis, I show
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that a neural network can predict execution latency without using selectivity.

Problem: Computationally Expensive Predictions

Other research uses memory-intensive models, such as nearest-neighbor ma-

chine learning models (Ganapathi et al., 2009). These approaches require the entire

training set to remain at hand during prediction, rather than training time. The

resulting higher latency predictions make the approach unacceptable for access path

selection. By their nature, neural networks require fewer resources at prediction time.

1.3.1 Summary of Contributions

• Demonstrate the performance of optimizers against the true ideal decision path

on TPC-H data.

• Tune the optimizer to understand the difference between out-of-the-box settings

and a highly tuned system.

• Compare various architectures and their effect on small and large neural net-

works.

• Show that identifying training loss is nuanced and identify lessons learned.

• Unlike LEO (Stillger et al., 2001; Markl & Lohman, 2002), which relies on the

existing optimizer by predicting its cost estimates, I show that a neural network

can produce accurate results without using selectivity and optimizer cost.

• Unlike PQR (Gupta et al., 2008), which predicts ranges of execution times, I

show that an accurate latency prediction without selectivity is possible.

• Unlike research that focuses on resource-intensive models like nearest neighbor

(Akdere et al., 2012; Ganapathi et al., 2009), I show system state, hardware,
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query metadata, and observed latency train a very accurate model. I further

show that a correct access path eliminates the need to estimate the minutia of

a plan.

1.4. Outline

In Chapter 2, I describe the test methods and structure used and discuss how

to find the true ideal and measure the optimizer’s performance.

In Chapter 3, I describe the neural network architectures, and the process and

various methods of extracting usable feature vectors from our performance data.

Chapter 4 is the main body of findings, where I measure the results of the

monolithic and smaller, purpose-built neural networks. The chapter concludes with

a comparison of the two approaches in terms of predictive ability and training time.

In Chapter 5, we briefly review some interesting nuances discovered between

the way neural networks are conventionally trained and the peculiarities of access

path selection.

In Chapter 6, I describe a possible approach to operationalizing this work.

Finally, in Chapter 7, I summarize conclusions and describe exciting future

directions.
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Chapter 2: Approach

2.1. Introduction

Generating a plan with the lowest latency is the ultimate goal of our model

(and all optimizers). That makes latency a reasonable benchmark for comparison;

if we can show that another approach can perform better than the optimizer, it is

worth exploring. Of course, that is not the only benchmark. Other questions are

worth asking:

• How long does it take to get to that conclusion?

• How complicated is it?

• How many resources does it consume to get there?

While these questions are of interest and explored somewhat, the primary ob-

jective of this thesis is to reduce latency by reach more accurate access path decisions.

To that end, we need to measure optimizer performance as a baseline for comparison

of our model. Then, with the optimizer disabled, we measure various plans through a

range of selectivity with a grid search to establish a source of truth and discover the

true crossover point. Recall that a crossover point is a point in which the decision

for the access path should change from one plan to another. A grid search is a tech-

nique involving an exhaustive search of all possible combinations of parameters. Grid
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searches are expensive, especially considering this test is on hundreds of thousands of

queries.

We compute the ideal access path by locating the truly fastest plans by mea-

sured output. Finally, we compare the model’s predictive power by determining how

accurately they predict the truly optimal paths (not just the most accurate latency

predictions). To locate the crossover point, we vary the selectivity of the queries by

small increments. We also need to understand how multiple predicates interact and

affect performance. The information contained in the query is not enough. We need

to consider:

• Hardware characteristics (how much memory? how many cores? etc.)

• System configuration (what indexes do we have to work with)

• The method we should access (scan? btree? use multithreading?) and in which

order

• How does multithreading affect the decision boundary?

To address these, we run the entire set of queries on a variety of hardware

configurations and observe the variances in decision boundaries. The results form the

basis of our training set. Rather than allow that to happen organically, we start with

a curated suite of queries that exercise the system in the desired selectivity range

between .02% to 4% (where the access path selection crossover typically occurs is

usually between 1.5% and 2%, but gets lower as hardware improves).

To test the optimizer as a baseline, we perform two tests. First, we measure

an untuned optimizer (Test 0) and its corresponding decisions and second, perform

a grid search on the optimizer knobs to compare a highly tuned optimizer (Test 2).

Appendix A lists all of queries for the various tables.
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Figure 2.1: TPC-H table schema.

2.2. The TPC-H Benchmark

The TPC organization defines various benchmark standards. The TPC-H

benchmark is a standard decision support benchmark and includes a set of tables

and queries as well as tools to generate data to populate the tables. The widely used

benchmark compares the performance of SQL-like data systems.

The benchmark includes tooling (DBGEN) to load the table with generated data,
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at a scale factor selected. In the TPC-H schema, represented in Figure 2.1, below each

table name is a “scale factor”. For example, the LINEITEM table has a scale factor of

6,000,000, meaning that for each scale factor, 6,000,000 rows are generated. For the

test setup, I used a scale factor of 10 on the four tables tested. For example, LINEITEM

has 60 million rows (6, 000, 000× 10). Three large tables (LINEITEM, PARTSUPP, and

ORDERS) and one smaller table (PART) were tested.

To get a space of query results in the target selectivity ranges, I derive the

queries run from one of 100 base queries, applying variations to each of the query’s

predicate so that we achieve the desired granularity. Each query executes with only

scan enabled, with bitmap, and with every combination of btree indexes. Each of

those, in turn, runs with and without parallelism. Appendix C lists these combina-

tions (batches).

2.2.1 Hardware

Tests executed on a variety of hardware configurations are reminiscent of tests

done on APS in other papers (Kester et al., 2017). I use profiles that are memory

optimized, compute optimized, and general purpose. Table B.1 (Appendix B)

lists the three configurations and various technical features of each. Hardware setup

must be carefully selected to ensure proper sizing. If it is too large, it obscures the

differences between systems (because it executes the queries too quickly, through

brute force). Some features are the same on all systems, but and are included for

convenience (or future usefulness). Scalar features are normalized and treated as

continuous values (such as processor clock speed and amount of RAM), while other

features are categorical (such as the processor architecture and whether it supports

SIMD). For easy reference, the shaded rows in Figure B.1 represent continuous values,

while the rest are categorical.
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Table Column Distribution
LINEITEM L PARTKEY uniform
LINEITEM L PARTKEY uniform
LINEITEM L PARTKEY uniform
LINEITEM L PARTKEY uniform
PARTSUPP PS AVAILQTY uniform
PARTSUPP PS PARTKEY uniform
PARTSUPP PS SUPPKEY uniform
PARTSUPP PS SUPPLYCOST uniform
ORDERS L CUSTKEY uniform
ORDERS L ORDERKEY uniform
ORDERS L TOTALPRICE skewed right
PART L PARTKEY uniform
PART L RETAILPRICE symmetric
PART L SIZE uniform

Table 2.1: TPC-H columns tested.

2.3. Test Queries

There are 100 query templates that form the basis of the test framework

presented in this thesis. These execute against the larger TPC-H tables LINEITEM,

PARTSUPP, and ORDERS; and the smaller PART table. Table 2.1 lists the columns, cor-

responding tables, and distributions of data therein. These columns were selected

because they contain a large enough range of values for training. From those 100

queries, we derive 2,511 variations in granularity (collectively referred to as, queries)

by incrementally adjusting the predicate values. Each variation is given a run num-

ber.

Table 2.2 demonstrates the run variations for query template 35 on the PARTSUPP

table. The PS PARTKEY column is stepped in 20 increments to give us a selectivity

between approximately 0.02% and 4%. A query is identified by its query id (35)

and the run number (1-20). For example, query 35-10 is the variation that yields a

selectivity of 1.9995%.
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SELECT * FROM partsupp WHERE PS PARTKEY < ?

Run PS PARTKEY Selectivity (%)
1 4000 0.1999
2 7999 0.3999
3 11998 0.5999
4 15997 0.7998
5 19996 0.9997
6 23995 1.1997
7 27994 1.3997
8 31993 1.5996
9 35992 1.7996
10 39991 1.9995
11 43990 2.1995
12 47989 2.3994
13 51988 2.5993
14 55987 2.7993
15 59986 2.9993
16 63985 3.1992
17 67984 3.3992
18 71983 3.5991
19 75982 3.7990
20 79981 3.9990

Table 2.2: Query 35 variations on PARTSUPP.

These incremental queries run against variations in system state called batches.

Each batch represents a unique combination of access path (scan, index, or bitmap),

multithreading, and available indexes. Appendix C lists the unique characteristics

comprising the 673 unique batches.

Each of the batches, in turn, run on three Amazon Web Services EC2 in-

stances representing the three profiles: compute-optimized (c5d.4xlarge), memory-

optimized (r5d.4xlarge), and general-purpose (m5d.2xlarge). All runs, batches,

queries, servers, and permutations total 267,633 individual executions are comprising

the training set. An execution is uniquely identified by the server, query, batch, and

run.
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(a) PARTSUPP.PS AVAILQTY (uniform).

(b) PART.P RETAILPRICE (symmetric). (c) ORDERS.O TOTALPRICE (skewed right).

Figure 2.2: Distributions of TPC-H data.

2.3.1 Data Distributions

TPC-H tools provide a mechanism for generating data by sampling from pre-

set distributions for each column. That approach is particularly useful in determining

a predictable, variable range of selectivity. For example, consider the distributions of

data for the column PARTSUPP.PS AVAILQTY in Figure 2.2. That column’s data are

uniformly distributed between zero and 10,000 (approximately 160,000 of each value,

given a scale factor of 10). We can step the predicate values in equal increments

to get the desired granularity (e.g., 4,000 keys produce 0.02% selectivity). Since the

distribution is uniform, adding another 4,000 keys adds another 0.02% selectivity, and

so on.
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While PART.P RETAILPRICE is not uniform, it is symmetrical and predictable.

ORDERS.O TOTALPRICE has a distribution that is skewed right, making it especially

valuable for learning (demonstrating that the model can predict a variety of distri-

butions).

2.3.2 Column Interaction (Order Enumeration)

Estimating selectivity is foundational to access path selection algorithms and,

therefore, performance. We have seen that hardware also affects performance. In

the simple case of a query with a single predicate, computing selectivity is trivial.

However, in the case of a query with multiple predicate columns, the approach be-

comes a bit more challenging. The problem becomes even more complicated when

we consider that some or all the columns may be indexed, and that system state

mutates over time. The decision boundary for query plans becomes affected by the

combination of when (order) and how (access path) each predicate is applied. Each

of these permutations must be tested to understand their interaction.

For example, Table 2.3 details the variations of query template 100, which

tests the interactions of columns O TOTALPRICE, O CUSTKEY, and O ORDERKEY on table

ORDERS. The predicate fixes O TOTALPRICE while it varies the other two columns,

measuring the latency effect and access path selected. The ideal plan across the

entire selectivity range is:

σTOTALPRICE → σCUSTKEY → γORDERKEY

The notation above describes a plan in which it first scans (σ) the entire

table’s O TOTALPRICE column, then on the interim results scans O CUSTKEY, and finally

performs a btree probe (γ) on the remaining O ORDERKEY. We yield the best results
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SELECT * FROM ORDERS WHERE O TOTALPRICE < ? AND

O CUSTKEY < ? AND O ORDERKEY < ?;
Run O TOTALPRICE O CUSTKEY O ORDERKEY Selectivity (%)
1 120766 24750 990000 0.0107
2 120766 49499 1979999 0.0435
3 120766 74248 2969998 0.0993
4 120766 98997 3959997 0.1774
5 120766 123746 4949996 0.2798
6 120766 148495 5939995 0.4037
7 120766 173244 6929994 0.5508
8 120766 197993 7919993 0.7194
9 120766 222742 8909992 0.9097
10 120766 247491 9899991 1.1226
11 120766 272240 10889990 1.3578
12 120766 296989 11879989 1.6148
13 120766 321738 12869988 1.8976
14 120766 346487 13859987 2.2013
15 120766 371236 14849986 2.5243
16 120766 395985 15839985 2.8703
17 120766 420734 16829984 3.2401
18 120766 445483 17819983 3.6330
19 120766 470232 18809982 4.0482
20 120766 494981 19799981 4.4852

Table 2.3: Query 100 variations on ORDERS.

by pushing the btree probe as far down the stack as possible (minimizing the penalty

for a cache miss when traversing the btree). The O TOTALPRICE scan portion of the

query includes roughly 25% of records. It pays to take the scan penalty since we are

selecting so many records on that pass (following the intuition we have been building

all along). But, why scan O TOTALPRICE before O CUSTKEY? They have the same

proportional steps in the query predicate (thus, selectivity) and the columns have

the same distribution. While the difference between the approaches may have been

computable given perfectly accurate statistics and algorithms, there is no substitute

for running the query and observing the latency (as we have done here). Optimizers

cannot afford to do that at run time.

33



Switch Effect
SET force parallel mode = OFF;

disable parallelism
SET parallel setup cost = 1000000;

SET enable bitmapscan = OFF; disable bitmap
SET enable seqscan = OFF; disable scan
SET enable indexscan = OFF; disableindex

Table 2.4: Disabling plans in PostgreSQL optimizers (return to default to enable).

2.3.3 Test Execution

All queries were run on each of the servers directly with psql (the console

application packaged with PostgreSQL). Queries are assembled into scripts that also

created applicable indexes according to the batch requirements. The optimizer’s path

was forced a certain direction by enabling only certain options using switches such as

those in Table 2.4, and by adding and deleting indexes. For example, Table 2.5 is a

matrix representing options for executing Query 100. Each row represents a batch.

The circle indicates that an option was enabled (or an index created). A scan is

denoted by the absence of a mark in the index or bitmap column. We run the entire

set represented in this table twice; once with parallelism enabled, and once without.

2.4. The Optimizer

As discussed, each of the 2,511 unique queries run in batches varying state

on three servers. Computing the true optimal (or ideal) is a matter of selecting

the lowest latency result of each query across batches (per server), building an ideal

optimizer that made perfect choices. We quantify the performance of the actual

optimizer by running the queries against a freshly installed system with indexes on

every column so that it has the opportunity to select freely. Then, we compare the

optimizer’s results to that of the true optimal.
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Index on
O TOTALPRICE O CUSTKEY O ORDERKEY Index scan Bitmap scan

©
©

©
© ©
© ©

©
© ©
© ©

© ©
© © ©
© © ©
© ©
© © ©
© © ©

© ©
© © ©
© © ©

© © ©
© © © ©
© © © ©

Table 2.5: Access path options for Query 100.

2.4.1 How Optimal is the Optimizer?

The results of query execution are shown in Figure 2.3. The difference between

the latency of the ideal path and the path the optimizer chose is the error rate.

Figures 2.3a and 2.3b show how queries performed on their respective tables. Figures

2.3c, 2.3d, and 2.3e illustrate the average error rate of those queries.

The error rate is particularly high in the low selectivity range (below 1.5%).

That range is critical for access path selection because that is typically where the

crossover from one plan to another occurs. Decision accuracy in this portion of the

selectivity range is a critical factor in determining the viability of an AI approach.

The penalty for such a decision are long-lasting. Not only is there a penalty of over

10 seconds, on average at the time of a decision (Figure 2.3c), but sticking with a

poor decision continues to cost 2 seconds throughout the selectivity range.
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(a) Queries 1-16 LINEITEM table. (b) Queries 86-100 ORDERS table.

(c) Average error rate on LINEITEM table. (d) Average error rate on ORDERS table.

(e) Average error rate on PARTSUPP table.

Figure 2.3: Error rates for queries on TPC-H tables.

(a) Query 9 should have multithreaded. (b) Query 10 should be index/scan.

Figure 2.4: Examples of poor decision heuristics.
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2.4.2 Poor Decisions

Taking a deeper look at the lower selectivity range gives us an idea of the kinds

of mistakes the optimizer made.

Parallelism

Parallelism is a crucial strategy in query execution. It involves adding work-

ers to assist in the computational workload. That is not a trivial task; it consumes

precious resources to allocate and manage workers and to combine their results. Ad-

ditionally, a workload that can not be equitably divided causes workers to waste

valuable cycles waiting for each other, often resulting in worse performance than

without parallelism. Still, in the right circumstances, it is a powerful tool to leverage.

Query 9 varies column l extendedprice (from 75,000 to 120,000) while fixing

l partkey at 100,000:

SELECT cast (count(l_extendedprice) as float)

FROM lineitem WHERE l_extendedprice > 75000

AND l_partkey < 100000;

Query 9 (Figure 2.4a) should have switched to multithreading at 0.05% se-

lectivity, but the optimizer incorrectly surmised the cost was too high and avoided

parallelism. The system could have used more workers traversing l extendedprice
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(a) Query 38 poor decisions up to 1.5%. (b) Query 70 switch column enumeration.

Figure 2.5: More examples of poor decision heuristics.

as more and more of the records became applicable to the result set.

Wrong Path

Query 10 explores the interaction of columns l extendedprice and l suppkey,

fixing l suppkey at 5,000 and varying l extendedprice from 75,000 to 95,000:

SELECT cast (count(l_extendedprice) as float)

FROM lineitem WHERE l_extendedprice > 75000

AND l_suppkey < 50000;

Figure 2.4b shows that Query 10 should have started with a btree index scan,

switching to a parallel table scan at 0.075%. Instead, the optimizer ignored those

options, settling on a single-threaded bitmap index scan adding additional workers

at 1.5% resulting in a very high penalty throughout the range.

Not Robust Enough

A poor decision is easily seen when the cost is many times higher (as in sec-

onds), but even a few hundred milliseconds matter. Figure 2.5a shows the results of

Query 38 on PARTSUPP table. Query 38 varies only ps supplycost column from 2 to

21:
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SELECT cast (count(PS_PARTKEY) as float)

FROM partsupp WHERE PS_SUPPLYCOST < 2;

Unlike the other tables, PARTSUPP is small in size and distribution range. Still,

we can see that access path selection and optimizer choices are critical. The optimizer

should have recognized that an index scan and additional workers at 1.5% selectivity

was the optimal choice. Instead, the optimizer could see very little difference in the

plans across the selectivity range (opting, again, for bitmap index scan). Across all

tests, we see that the optimizer tends to overly favor bitmap index scans, with no

way to influence the optimizer otherwise.

Sticking With a Plan Too Long

Query 70 on table PARTSUPP varies PS PARTKEY from 33,000 to 659,981, PS AVAILQTY

from 165 to 3,281, and fixes PS SUPPKEY at 33,000:

SELECT cast (count(PS_PARTKEY) as float) FROM partsupp

WHERE PS_SUPPKEY < 33000

AND PS_PARTKEY < 33000 AND PS_AVAILQTY < 165;

At first glance, Figure 2.5b appears to show that the optimizer and ideal plan

are the same with different results. While it is true, they both determined that

they should scan PS SUPPKEY first, followed by a scan of PS AVAILQTY, and finally a

btree probe on PS PARTKEY. However, at approximately 2% selectivity, the ideal plan

varied in a subtle but essential way. It swapped the order of scans, performing the

PS AVAILQTY scan first, while the optimizer never varied from its original plan.

2.4.3 Good Decisions

The picture is not always so bleak. At times (albeit rarely, especially in com-

plex cases), an optimizer does make the ideal decision. Figure 2.6 illustrates that
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(a) Query 49 optimizer is ideal. (b) Query 49 optimizer’s correct decisions.

Figure 2.6: Sometimes optimizers makes ideal decisions.

Query 49 (fixing PS SUPPLYCOST and varying PS PARTKEY from 20,000 to 399,981)

performed at optimal on all three hardware scenarios:

SELECT cast (count(PS_PARTKEY) as float)

FROM partsupp where PS_SUPPLYCOST < 200

AND PS_PARTKEY < 20000;

With this simple query, hardware did not have a noticeable impact on perfor-

mance or to the decision process. Is that always the case?

2.4.4 Hardware

At times, hardware will feel different effects from the same decision. Consider

Query 90 (fixes O TOTALPRICE to 73192 and varies O CUSTKEY from 15000 to 299981):

SELECT cast (count(O_ORDERKEY) as float)

FROM orders WHERE O_TOTALPRICE < 73192

AND O_CUSTKEY < 15000;

In Figure 2.7, we see the optimizers for Query 90 on all three systems made

the same decision; start with a bitmap index scan and add parallelism at about 1%
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(a) Hardware performs differently. (b) Compute optimized performs near ideal.

(c) General purpose and memory optimized
feel the pain of delay in parallelism

Figure 2.7: Hardware makes decisions for Query 90 painfully obvious.

selectivity. The ideal performed a btree probe until 0.025% and switched to a parallel

scan from then on. The compute optimized system performed almost as well as the

ideal. The general purpose and memory-optimized systems, however, felt the pain of

delay in parallelism much more as can be seen in the spike in latency.

It is much more common to see the effects demonstrated by Query 5 (shown

in Figure 2.8), where we see the crossover point move slightly between systems (un-

beknownst to the optimizer):

SELECT cast (count(l_extendedprice) as float)

FROM lineitem WHERE l_discount < 0.01

AND l_quantity < 2 ;
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(a) Query 5 all hardware variations. (b) Query 5 compute optimized hardware.

(c) Query 5 general purpose hardware. (d) Query 5 memory optimized hardware.

Figure 2.8: Hardware affects crossover point in optimizer vs ideal.

We fix l discount and vary l quantity from 2 to 12. The optimizers on the

compute-optimized and general-purpose systems determined the appropriate time to

introduce parallelism is at 1.25% selectivity. The memory-optimized system shifted

the decision to 1.5%. While the true ideal was none of those options (and did not

vary per system), we see that the underlying hardware can influence the optimizer.

It is not always true that hardware affects the optimizer. For example, Query

3 (shown earlier), shows no difference between optimizers on various hardware (see

Figure 2.9).

It is clear that there are many ways in which the optimizer could make poor

decisions, but there is only a single ideal decision. That is asking a lot from an
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(a) All hardware variations on Query 3.
(b) Decisions on compute optimized hard-
ware.

Figure 2.9: Hardware does not always affect optimizer decisions.

optimizer. We tested the optimizer with settings set by best practices. Tuning is

tricky and changing knobs often has consequences on other queries without a single

universally optimal solution. The best we can hope for is a setting that performs well,

on average. Could a well-tuned optimizer perform better?

2.4.5 Tuning the Optimizer

Test 2 is designed to locate the ideal setting for PostgreSQL’s optimizer knobs

(shown in Table 1.4 in Chapter 1). The optimizer settings are varied to find the

combination that yields the greatest performance for Query 3.

However, these are system-wide settings, and as shown in Table 2.6, there is no

setting that is advantageous in all situations. Still, would a hypothetical optimizer

that could constantly shift its system configuration, per query, perform ideally?

After running Test 2 on all tuning knob permutations, we can compute the best

setting per query by again finding the results with the lowest latency and call that the

hypothetical optimizer. Table 2.6 lists the results of the hypothetical optimizer at each

selectivity point. Selectivity is the observed value, Est Selectivity is the selectivity

computed by the actual optimizer’s statistics, and Cost is the actual optimizer’s
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(a) Variations of settings and effect on
crossover point.

(b) Optimizer, ideal, and hypothetical
performance.

(c) Optimizer error in table statistics.

Figure 2.10: Using Query 3 to tune the optimizer.

assessment of the cost of this plan.

It is interesting to note that the optimizer’s estimate for selectivity is always

too low. Figure 2.10c shows us that the error rate (the difference between the es-

timated and actual selectivity) grew linearly as the selectivity grew, telling us that

the estimates were getting worse as more records were selected. To some extent, the

estimate does not matter once we pass the crossover point since there is no incentive

to make any further changes to the plan (at that point, nothing beats). However,

Figure 2.10a shows us that the settings affect the critical crossover point, causing it

to shift (as can be seen from the color gradation).

Also interesting to note is that the cost estimates for the plans vary wildly. We
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Latency Selectivity Est Selectivity Cost Batch
511.385 0.1988 0.1954 472431.66 2-4
712.776 0.3990 0.1590 587013.88 2-12
1013.439 0.5992 0.2408 774247.06 2-12
1293.960 0.7983 0.3226 915450.83 2-11
1532.453 0.9987 0.4086 1032826.27 2-12
1757.947 1.1992 0.4895 1110667.12 2-10
1967.899 1.3989 0.5760 1182007.94 2-11
2164.760 1.5992 0.6584 698724.21 2-5
2309.643 1.8001 0.7449 1270587.79 2-11
2487.979 1.9995 0.8272 820180.22 2-5
2612.282 2.1996 0.9248 1314746.65 2-10
2744.785 2.3990 1.0133 1323399.84 2-16
2857.196 2.5995 1.1017 1323648.42 2-13
2963.076 2.7985 1.1902 1331618.82 2-16
3063.461 2.9981 1.2870 1317797.14 2-19
3159.384 3.1985 1.3689 1324852.43 2-16
3241.860 3.3986 1.4641 1322325.92 2-10
3298.498 3.5987 1.5454 1294720.80 2-19
3379.634 3.7980 1.6267 1289191.27 2-20
3432.103 3.9972 1.7164 1298270.97 2-10

Batch Settings Legend
Batch Non-default Setting Value
2-4 seq page cost 5
2-5 random page cost 1
2-10 cpu tuple cost .03
2-11 cpu tuple cost .04
2-12 cpu tuple cost .05
2-13 cpu operator cost 0.0035
2-16 cpu operator cost 0.0055
2-19 parallel setup cost 100
2-20 parallel setup cost 5000

Table 2.6: Settings for a hypothetical optimizer for Query 3.

discussed earlier that cost estimates are in undefined units and have little meaning

on their own; however, relative to each other, they have significance. Some esti-

mates continue in a linear ascent, which means that the optimizer understood their

relationship to each other correctly, but that is not the case across the range.

Note that the batch column indicates that for the 20 queries, there are 19

changes in optimizer knobs necessary to achieve the performance of the hypothetical

optimizer. While still not ideal, Figure 2.10b shows us that the hypothetical opti-

mizer (purple line) would perform significantly better than the existing optimizer.

Ultimately, it still suffers from the problems that plague the actual optimizer.
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Chapter 3: Design

3.1. Introduction

There are two critical components to the design of a neural network; feature

engineering and network architecture. Feature engineering is the method in which we

design the features used to train a neural network. Recall that features are parameters

on which weights are trained through a training phase and computed through back-

propagation. Network architecture refers to the physical design of our network; how

many layers, the number of neurons in each layer, and the techniques we use for

activation and regularization.

3.2. Feature Engineering

Feature engineering is the process of creating individual, measurable properties

from data that make machine learning algorithms work. The algorithms learn to

weight features to compute a prediction. Loss, or cost, is the distance a prediction

is from the actual value. The best model is the one with the lowest loss. Such an

approach is also known as supervised learning. Care must be taken in the selection

and engineering of features because the model is only able to learn from the features

provided. The feature space consists of features in these categories:

• Hardware features (vary by hardware)
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SELECT * FROM lineitem WHERE l extendedprice> 75000 AND l suppkey<75000 AND l partkey<1200000

0 0 1 ... 0 0 1 0 ... 0 1 1 0 ... 1 0 0 0 ... 0 [0 1 0 ... 0 0 1 0 ... 0 0.02 2]
[1 0 0 ... 0 0 0 1 ... 0 0.13 1]

Hardware Table Index Optimizer Predicate Operator Value Order

Each Predicate

Figure 3.1: Feature vectorization of queries.

• System features (vary by database and includes indexes, etc.)

• Optimizer features (vary by configuration)

• Predicate features (vary by query)

Figure 3.1 shows an example of features presented in this thesis. Hardware

features are attributes of the underlying physical system, such as processor type,

supported instructions, and memory attributes. These are characteristics that could

affect the latency of the query (or, of the prediction). When new hardware (such as

a new processor instruction) becomes supported that could improve performance, its

characteristics could be added to the feature vectors and used for training. System

features are those that vary by implementation, such as the indexes available to the

system.

Optimizer features are exposed knobs that the system would allow for tuning.

While not required, they could include arbitrary metadata such as how much pressure

was on the network or memory at the time of execution (that obviously would affect

latency). These are fine-tuning fields that allow us to improve or research the model

further.

Predicate features are specifically related to the query. They represent the

column, operation, value, and ordinal position of the predicate in the plan. Some

of these are found in the query (operation, column, and value), while others are
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permuted (ordinal position).

Individual features can either be categorical or continuous values. Categorical

features are ones whose value can take on one of a limited set. For example, there

are only so many kinds of processors, or you either support a processor instruction,

or you do not (for example, SIMD, an Intel processor extension that allows a single

instruction execution on multiple data). Continuous variables can be measured and

take on any value. For example, the clock speed of a CPU can be any value. The

choice between the two can be subjective; for example, the number of processor cores.

Is it continuous in that you can have any number of cores, or is it categorical because

they only come in specific packages?

Another important consideration is that models learn significance in the mag-

nitude or distance between values. In the processor core example, there is a linear

relationship between 4 cores and 8 cores. Twice as many cores are twice as much

computing power. There is value in preserving the meaning inherent in the magni-

tude of the values. In other cases, preserving the distance might lead to learning a

false meaning. For example, level 2 cache is not twice as much as level 1 cache. They

are simply labels, and it would not make sense to preserve those.

In such cases, we use a technique called one-hot encoding to recode categorical

values to a series of binary features. Figure 3.2 illustrates the conversion of a cate-

gorical value “operator” to its one-hot encoded counterpart. Rather than represent

each operator as a scalar value, we recode to a set of values representing all possible

categories. The particular column desired would get a 1 value while the rest are en-

coded as 0, denoting they are not applicable. Mathematically, they effectively cancel

out by multiplying their respective trained weights by zero.

Some features in our model are one-hot encoded, including many of the predi-

cate features (Figure 3.3). For example, the predicate l partkey < 1200000 is made
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Operator
1 (Greater Than)
2 (Less Than)
3 (Equals)

Greater Than Less Than Equals
1 0 0
0 1 0
0 0 1

Figure 3.2: Example of one-hot encoding.
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Figure 3.3: One-hot encoding of a predicate.

of four components:

• l partkey column

• less than (<) operator

• 1200000 value

• ordinal position

The l partkey portion represents the method with which the column is ac-

cessed; scan (or, filter), btree probe, or bitmap scan. We test each of these access

methods by generating permutations of each access method. The operator is fixed by

the query and is represented, as shown in Figure 3.3. Finally, the value is normalized

to improve model accuracy.

Normalization is the adjustment of the values so that the entire distribution

falls into alignment. One common method (and the one used in this thesis) is L2

norm, which is the square root of the sum of the squared values in the set:
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√√√√ n∑
x=1

a2x

The L2 norm can then be divided by each value to produce a value between

0 and 1 (and conversely multiplied by L2 norm to return the original value). The

magnitude of the numbers is effectively reduced without distorting differences in the

ranges of values.

The final portion of each predicate is the position. As discussed, the permu-

tations of each of the variations are also applied here. We need to generate (m× n)n

permutations (where m is the number of access methods, 3 in our case, and n is the

number of columns) for each predicate.

3.3. Model Architecture

In Chapter 1 (§1.1.3), we introduced the multi-layer perceptron (MLP) deep

neural network architecture. MLPs are incredibly versatile and exceptionally good

at regression problems. They also have the added benefit of being straightforward

to implement since each layer fully connected to the next with no other complex

algorithms (such as convolutions). The bulk of the computation happens at training

time, and with a trained network, extracting predictions no longer requires the original

data.

Architecture is only one of the decisions made when designing a deep neural

network. This paper addresses the size of the network, as well. Should the model be

one monolithic model for the entire system, or would are many small, specialized

models more advantageous?

Both approaches have attractive qualities. A large model is more simple and

contains less moving parts, although its size consumes significantly more resources to
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output 1
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ReLU 512

linear 256
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output 1

(e) Model 5.

ReLU 512

ReLU 256
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linear 256

ReLU 512

output 1

(g) Model 7.

ReLU 512

linear 512

ReLU 256

linear 256

ReLU 512

linear 512

output 1

(h) Model 8.

Figure 3.4: Model Architectures (scale factor=1).

train. Would its more general nature hinder its predictive power? The small models

have fewer components per model and are more resilient (because we only need to

retrain affected models). However, they have redundant features (such as hardware

characteristics) in each model.

To test the hypothesis of which is better, I develop both approaches. We test

eight deep neural network architectures on each of the small and large models with

varying hyperparameters. Hyperparameters are settings that can be tuned in the

machine learning algorithm itself to affect its behavior, for example, the number of

layers, neurons in each layer, or epochs in which to train. An epoch is when all of the

training vectors are used once to update the weights. In the architectures, we vary

the number of layers, neurons, and epochs to find optimal parameters. We apply a

variety of activation functions and observe the effect of overfitting. Overfitting occurs

when the analysis corresponds too closely to the training dataset.

The architectures tested are based on the eight variations represented in Fig-

ure 3.4. The input layer is not represented in the figure for concision and varies per
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Name Parameters
Small 1 (512) 41,985
Small 2 & 3 (512) 173,057
Small 4 & 5 (512) 205,825
Small 6 & 7 (512) 304,897
Small 8 (512) 896,001
Large 1 (1024) 210,945
Large 2 & 3 (1024) 735,233
Large 4 & 5 (1024) 866,305
Large 6 & 7 (1024) 1,261,057
Large 8 (1024) 3,622,913

Table 3.1: Training parameters for each architecture.

training set. Models 3, 5, 7, and 8 alternate the activation functions on the layers

between linear and ReLU, similar to previous work (Kipf et al., 2018). Models 6,

7, and 8 also follow that research in the way they structure their perceptrons in an

hourglass shape (decreasing as we get toward the middle, then increasing them back

to their original shape).

We scale the hidden layer (linear and ReLU layers) neurons in each of the

hidden layers with three variations. Figure 3.4 shows the baseline scale referred to

as factor 1. The small models test factors 1.0, 0.5, and 0.25, while the large model

tests 2.0, 1.5, and 1.0. For example, a scale factor of 1.0 would have 512 neurons in

the first hidden layer, 0.5 would be 256, and 2.0 would be 1024. The total number of

trained parameters per model is in Table 3.1.

All models were trained for 200 epochs, and with and without L2 normalization

on the latency label. The final output layer of all architectures produces a single

prediction for latency.

The parameters shown in Table 3.1 grow exponentially with the number of

neurons and layers added to the network. For example, All small models for LINEITEM

table have 80 input features. Consider the resulting network for Model 8 in Table 3.2.
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Layer (type) Output Shape Param Count
relu 1 (Dense) 128 10368
linear 2 (Dense) 128 16512
relu 3 (Dense) 64 8256
linear 4 (Dense) 64 4160
relu 5 (Dense) 128 8320
linear 6 (Dense) 128 16512
output 7 (Dense) 1 129
Total params: 64,257

Table 3.2: Example Lineitem table neural network.

Our 80 features explode to 64,257 parameters. Recall that the formula for a regression

is Y = β0 +β1Xi + . . . βnXn. Some number (n) of features (X) are multiplied by their

respective weights (β1..n) and added to the bias (β0). That occurs for every neuron,

so the total number of parameters in a layer are simply the sums of the regressions

per neuron times the number of neurons (Ylayer =
∑nneurons

x=1 Yx). Consequently, the

number of total parameters in the model are the sum of all the parameters in each

layer (Ytot =
∑nlayers

x=1 Yx). Given that, for this model, we get:

relu 1 = (80× 128) + 80 = 10, 368 (3.1)

linear 2 = (128× 128) + 128 = 16, 512 (3.2)

relu 3 = (128× 64) + 64 = 8, 256 (3.3)

linear 4 = (64× 64) + 64 = 4, 160 (3.4)

relu 5 = (64× 128) + 128 = 8, 320 (3.5)

linear 6 = (128× 128) + 128 = 16, 512 (3.6)

output 7 = (1× 128) + 1 = 129 (3.7)

Total = 64, 257 (3.8)
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Layer (type) Output Shape Param Count
relu 1 (Dense) 256 52480
linear 2 (Dense) 256 65792
relu 3 (Dense) 128 32896
linear 4 (Dense) 128 16512
relu 5 (Dense) 256 33024
linear 6 (Dense) 256 65792
output 7 (Dense) 1 257
Total params: 266,753

Table 3.3: Example of monolithic neural network.

3.3.1 Monolithic and Specialized Models

In the specialized model approach, each table has its model, decreasing the

feature space significantly. Smaller models should be faster to train, more accurate,

and affect less of the system when change is detected.

The monolithic model must contain all of the data in each of the small mod-

els; thus, it has approximately 204 features, necessitating the larger scaling factors.

As discussed earlier, training larger models has performance implications. The larger

model has more neurons and significantly more parameters. Adding a single neuron

also results in adding connections to every other neuron in the next layer, and so

on. Table 3.3 summarizes the parameters at each layer. The 204 features result in

266,753 parameters to train.

3.3.2 Making Predictions

The trained network computes the latency for a given plan. A prediction for

each query plan is required to determine the best plan. For example, given a btree

index on column l suppkey and the query (leaving multithreading off the table for a

moment):

The lowest prediction of these models determines the best plan:
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(A) Scan l suppkey then filter scan l extendedprice

(B) Scan l extendedprice then filter scan l suppkey

(C) Index scan l suppkey then filter scan l extendedprice

(D) Index scan l suppkey then bitmap scan l extendedprice

(E) Scan l extendedprice then bitmap scan l suppkey

(F) Scan l extendedprice then index scan l suppkey

(G) Bitmap scan l suppkey then filter scan l extendedprice

(H) Bitmap scan l suppkey then bitmap scan l extendedprice

(I) Bitmap scan l extendedprice then filter scan l suppkey
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Chapter 4: Findings

In Chapter 2, I described the design of the neural networks and feature vectors.

This chapter follows with a brief discussion on the training process (§4.1, continuing

to the results of experiments on the small, purpose-built (§4.2) and the monolithic,

system-wide models (§4.3). Section 4.4 concludes the chapter with a comparison

between the approaches.

4.1. Training

Training neural networks follow a typical formula: clean the data, extract

feature vectors, train models (tuning hyperparameters as you go), and take the model

with the lowest loss as winner.

When tuning hyperparameters, there are a variety of successful methods (such

as genetic or randomized methods) for determining optimal settings. Grid search

attempts to find the optimal values of hyperparameters using an exhaustive method.

While it takes significant time, it provides accurate, measured results. Epochs and the

number of layers and neurons are examples of a few hyperparameters in our models.

I addressed the numbers of layers and neurons in the careful design of 8 architectures

described in Chapter 2. Since the goal of this thesis is not to find the optimal training

time, I tested 50, 100, and 200 epochs on all models. Subsequently, I retrained all

models at 200 epochs (the highest common denominator) for simplicity. All training
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was done both on Google Colab and a fresh Apple MacBook Pro with the following

specifications:

• Software: Python 3, Tensorflow 1.13.1

• Local Hardware: MacBook Pro 2.9 GHz Intel Core i9 (Mojave 10.14.6), 2400

MHz clock speed, 32 GB DDR4 RAM with SSD

• Cloud Computing: Google Colab

– GPU: 1x Tesla K80 with 2496 CUDA cores, compute 3.7, 12GB (11.439GB

Usable) GDDR5 VRAM.

– CPU: 1x single core hyper threaded i.e(1 core, 2 threads) Xeon Processors

@2.3Ghz (No Turbo Boost), 45MB Cache.

4.1.1 Overfitting

We see an example of overfitting in Figure 4.1. The training loss training

continues to decline as it gets better and better at predicting the training set. Against

the unseen validation set, however, it effectively loses its ability to make predictions

on new data. This model is going to be as good as it is ever going to get at 60 epochs,

and additional epochs are just a waste of time. Keras has a built-in mechanism to

cope with this problem by saving the latest best model until a better model comes

along. That frees us to train a network for as many epochs as we desire without fear

of making matters worse. In the worst case, we wasted time.

4.1.2 Loss Functions and Accuracy

The two loss functions used to compare the model were mean squared error

(MSE) and mean average percentage error (MAPE). Figure 4.2 compares the two on

a sample model and data from the PARTSUPP table.
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Figure 4.1: MSE loss for LINEITEM overfitting after 60 epochs

(a) Mean Squared Error (MSE) (b) Mean Average Pct Error (MAPE)

Figure 4.2: Training and validation loss for PARTSUPP over 200 epochs

MSE measures the average of the squares of the difference between the actual

and the predicted latency (the loss, or errors) in an epoch in this way:
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MSE =
1

n

n∑
i=1

(Yi − Ŷi)2

Put another way, MSE is the mean ( 1
n

∑n
i=1) of the squares of the errors

(Yi− Ŷi)2, where Yi is the actual value, and Ŷi is the predicted value. We use MSE to

compare the performance of an epoch to its peers. The winning recipe is the epoch

with the lowest cost. MSE is somewhat interpretable but represented in squared

units. For example, the MSE of the model in Figure 4.1 at epoch 100 is 64, 822ms2.

The average loss over the entire model (
√
MSE) is thus 254.6ms.

MAPE expresses accuracy as a percentage of deviation from the actual. It is

computed as follows:

MAPE =
100%

n

n∑
i=1

∣∣∣∣∣Yi − ŶiYi

∣∣∣∣∣
MAPE is the percentage (100%

n

∑n
i=1) of the proportion the prediction that is

error (
∣∣∣Yi−Ŷi

Yi

∣∣∣), where Yi is the actual value, and Ŷi is the predicted value. The

absolute value of the proportion is necessary to remove the effects of direction from

the error (positive or negative). MAPE is easily interpretable. For example, the

MAPE for epoch 100 in the same model is 31.63% (each prediction deviates from the

true value by 31%, on average).

Both of these give different contexts and have different effects on training. MSE

is very susceptible to outliers since they are squared and added to the sum, discarding

a potentially excellent model. Thus, penalizing overly large prediction errors severely.

MAPE, on the other hand, grows very high as the actual value approaches zero. For

example, we would not consider a prediction of 200ms for an actual 100ms latency

to be a substantial deviation (it could be much worse). Unfortunately, MAPE would

lead us to believe that that is much worse than a prediction of 5 seconds compared
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A B

Figure 4.3: Overlapping Decisions (A & B) and Confusion Area (white)

to an actual 3 seconds. When considering latencies that are very small (as we do in

all fast-running systems), that poses a significant problem.

MAPE allows us to compare different models. For example, since the loss is

a percentage, we can compare different architectures trained on vastly different sets

(for example, a small model trained on a single table and a large model trained on

all tables).

Loss does not tell the whole story. Since loss is a measurement of how far a

prediction deviates from an expected value, the selection of what we are predicting is

critical. In our approach, latency is an adequate substitution for our real objective: a

correct plan. Our intuition tells us that the best plan has the lowest latency. Unfor-

tunately, similar latencies between plans cause confusion. For example, consider the

two hypothetical predictions illustrated in Figure 4.3. Let us assume that decision A

is to scan, and decision B is to probe a btree. No model produces perfect decisions,

so decision A, and decision B miss the center of the target by some acceptable loss

(which we seek to minimize). However, the area in between in white (area of confu-

sion) could belong to either A or B. Any value for A or B in the area of confusion

may have the same loss, but drastically different decision points.

To understand how our model truly performs, we also compare the resulting

decisions it recommends resulting from the lowest latency prediction with the true
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ideal and the actual optimizer. I refer to the resulting decisions derived from the

latency as the learned optimizer. The learned optimizer is created by composing

predictions at each selectivity point and assembling them into a path.

In total, I trained 115 neural networks (23 small models per table and 23 larger

models). Given that we are interested in the decisions the models make, we consider

error rate and path decisions in addition to training and validation loss. Error rate

is the difference between the actual latency of learned optimizer and the ideal path.

Our goal is to do better than the actual optimizer at least. To do that, we review the

decisions in detail. Each review proceeds as follows:

• Review the loss of all models

• Review the error rate of all models

• Review the decisions of the winning model

4.2. Specialized Models

There are four specialized models, each learning from queries on one of the

tables tested. The 100 queries are as follows:

• LINEITEM: Queries 2-17

• PART: Queries 17-35

• PARTSUPP: Queries 36-85

• ORDERS: Queries 86-100

The small models had variations run on each architecture, identified by the

number of neurons in the first hidden layer:
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• Scale factor 1: 512 (on all models)

• Scale factor 0.5: 256 (on all models)

• Scale factor 0.25: 128 (omitted for model 8)

We identify a specific variation by the architecture number and variation (for

example, Model 3-512).

4.2.1 LINEITEM

Loss

We begin by examining the loss of the model. Figure 4.4a shows the loss for all

23 models. We see that for LINEITEM, Model 3-512 performed best. After about 75

epochs, however, it suffered from overfitting. Despite overfitting almost immediately,

Model 6-256 (Figure 4.4b) performed almost as well. At the cost of one second

per epoch to train for only 25 epochs, it had remarkably good accuracy. MAPE,

however, was abysmal (Figure 4.4c) showing losses at around 10,000%, reflecting

the shortcomings of MAPE as a loss function. Comparing Model 3-512 with other

members of the Model 3 family (256 and 128), we are misled to believe that they all

performed about the same at 50 epochs (Figure 4.4d).

Error Rate

Figure 4.5 compares the performance of the optimizer (4.5a) with the winning

model (4.5b), plotting the error rate for predictions of each query together. We can

see that the predicted model performs better than the optimizer, even in the worst

case.
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(a) MSE on all models (Model 6 in red) (b) MSE on Model 6 (second best)

(c) MAPE on Model 3 and 6 (d) MSE on all variations of Model 3

Figure 4.4: Loss on small LINEITEM table models

Decision Path

To determine the decision in a little more depth, we review decisions made for

Query 6 and 13.

Query 6:

63



(a) Optimizer.

(b) Model 3-512.

Figure 4.5: LINEITEM error rate by query.

SELECT count(l_partkey) FROM lineitem

WHERE l_extendedprice > [100000-80000];

Query 13

SELECT count(l_partkey) FROM lineitem

WHERE l_extendedprice >[75000-95000]

AND l_suppkey < 75000 AND l_partkey < 1200000;

Figure 4.6 describes the error rate for Query 6, and 13 with each model plotted
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(a) Query 6.

(b) Query 13.

Figure 4.6: LINEITEM error for all models by query (optimizer in blue).

on a different line. Some models follow the optimizer (Model 8 in Figure 4.6a and

Model 1 Figure 4.6b), while others perform exceptionally well (Model 3 and 6).

Consider Query 6 as shown in Figure 4.7. While none of the models performs

perfectly, Models 3 through 6 roughly capture the correct path. Figure 4.8a shows the

path in a bit more detail. We see that the models determined to switch to scanning

just a little too soon. Still, much better than the optimizer that never comes to the

correct conclusion.

The results of Query 13 shown in Figure 4.7b indicates Models 3, 6, 7, and 8
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(a) Query 6.

(b) Query 13.

Figure 4.7: LINEITEM model decisions compared to ideal.

performed well. Figure 4.8b clearly shows that Model 3 determined the access path

perfectly.

Still, Model 3 is not without its flaws. Of the 17 queries in the tested table,
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(a) Query 6. (b) Query 13.

Figure 4.8: LINEITEM Model 3-512 (“Learned Optimizer”) decision detail.

it made mistakes on 3 of them (Queries 3, 5, and 6). Despite missing the target on

those, it was only by 2 or 3 minor decision points (not switching fast enough) for a

small latency loss. Again, the optimizer missed every one.

4.2.2 PART

Recall that the PART table is small. How does our artificial optimizer fare?

Loss

In Figure 4.9a, we see that none of the models give us the satisfying loss

progression that we would like to see. The validation loss stays stagnant and well

above the training loss. In this smaller table, there are not as many training samples

(intentionally) in the data. The MAPE (Figure 4.9b) is a bit more encouraging and

gets into the teens. A closer look at winning Model 7-512 compared to its family

(Figure 4.9c) does not give us much to go on. They seem as good as any other.

Error Rate

Figure 4.10 gives us some cause for concern. We see that Model 7-512 performs

well except for one errant query that doubles the error of the optimizer. Even though

we are led to believe that Model 7 performs well given its minimal error, it is the
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(a) MSE on all models. (b) MAPE on all models.

(c) MSE on all variations of Model 7.

Figure 4.9: PART table models.

timing of decisions that is our main concern.

Decision Path

We will consider Queries 24 and 31 to determine the quality of decisions.

Query 24:
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(a) Optimizer.

(b) Model 7.

Figure 4.10: PART error rate by query.

SELECT count(P_PARTKEY) FROM part

WHERE P_PARTKEY < [100000-2000000]

AND P_SIZE < 3;

Query 31:

SELECT count(P_PARTKEY) FROM part

WHERE P_PARTKEY < 200000

AND P_RETAILPRICE < [1100-2200]
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(a) Query 24.

(b) Query 31.

Figure 4.11: PART error for all models by query (optimizer in blue).

AND P_SIZE < [10-20];

The models in Figure 4.11a show good performance in the critical decision

region (below 2%) but struggle in the higher selectivity range. In reality, that is

the best possible place for error, since we are more confident that we should scan

anything above the critical decision boundary. In Query 31 (Figure 4.11b), we see

that all models outperform the optimizer.

Comparing the decisions across all models for Query 24, though, we get a very

different picture. Even though the error rate is low, they all missed the critical decision
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(a) Query 24.

(b) Query 31.

Figure 4.12: PART model decisions compared to ideal.

point (Figure 4.12a). For Query 31, we see acceptable performance for Models 3, 4,

6, and 7.

Looking deeper at the decisions of the winning model, we see that Model 7-512
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(a) Query 24. (b) Query 31.

Figure 4.13: PART Model 7-512 (“Learned Optimizer”) decision detail.

missed the mark on Query 24 because it switched to a bitmap scan instead of a table

scan. The optimizer made the right decision (Figure 4.13a). Figure 4.13b shows that

for Query 31, we see optimal results (while the optimizer chose the wrong path).

Of the 17 queries on PART table, we find 4 incorrect path selections (Queries

24, 27, 28, 32), albeit with minimal impact, while the optimizer misses 16 of them.

Of interest is that the optimal paths for PART table usually stuck with one type of

plan or another (a bitmap, or a scan) and rarely shifted direction. The AI optimizer

learned that it should likewise stick to some decision and resist change. However, it

was somewhat resilient in cases where change was necessary (Queries 24, 27, 28, 33).

4.2.3 PARTSUPP

PARTSUPP was the largest table with the most complicated queries (50 queries

with 4 indexed columns).

Loss

Loss follows the shape we would like to see during training (Figure 4.14a),

with constantly improving training and validation loss as epochs progress (showing

predictive power). A closer look at the best models (2-512 and 6-256) indicates
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(a) MSE on all models. (b) MSE on 4 best models.

(c) MAPE on best 4 models. (d) MSE on all variations of Model 6.

Figure 4.14: PARTSUPP table models.

similarities, but Model 6-256 edges out (Figure 4.14b). They take about the same

time to train; approximately 7 seconds per epoch (2-512) versus 6 seconds (6-256).

MAPE (Figure 4.14c) supports the selection of Model 6-256. The Model 6 family also

appears to be dead-even (Figure 4.14d).
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(a) Optimizer.

(b) Model 6.

Figure 4.15: PARTSUPP error rate by query.

Error Rate

Comparing the performance of Model 6-256 on all of the queries on the PARTSUPP

table, we see excellent performance (Figure 4.15b) in comparison to the much higher

latency of the optimizer (Figure 4.15a).

Decision Path

We review the decisions on Query 67 and 74 in a bit more depth.

Query 67:
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SELECT count(PS_PARTKEY) FROM partsupp

WHERE PS_PARTKEY < 660000

AND PS_SUPPKEY < [1650-32981]

AND PS_SUPPLYCOST < [17-321];

Query 74:

SELECT count(PS_PARTKEY) FROM partsupp

WHERE PS_SUPPKEY < 33000

AND PS_PARTKEY < [33000-659981]

AND PS_SUPPLYCOST < [17-321];

On most models, Query 67 (Figure 4.16a) performs well below the optimizer

(in blue). Note that Model 2 (in green) struggles a bit in the critical decision point

area below 1%. Query 74 tells a similar story (Figure 4.16b). Most models beat the

optimizer, except for Model 1 and 2, which show an error spike (indicating a poor

decision) at about .03% selectivity. Note that Model 2 failed at these two critical

points, while Model 6 shows minimal error. Recall that they both showed the same

score in training and validation loss earlier. We revisit this finding in the following

chapter.

A look at how every model reacted to Query 67 (Figure 4.17a) tells us that no

model did perfectly, but clearly, Model 6 made the fewest mistakes. In Figure 4.18a

we see the cause for confusion were the few points before the 0.5% selectivity area.

Still, it outperformed the optimizer, whereas the other models did not.

Turning our attention to Query 74 (Figure 4.17b), we see that Models 4

through 6 were the only models that perfectly followed the ideal. Interestingly, all

of the models made the critical decision at 1.5% selectivity to multithread (as we

discussed in Chapter2), while the optimizer missed that opportunity (Figure 4.18b).
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(a) Query 67

(b) Query 74

Figure 4.16: PARTSUPP error for all models by query (optimizer in blue).

Of the 50 queries on this table, the winning model got about half (26) entirely

correct, with minor mistakes in the others. It still outperformed the query optimizer.

4.2.4 ORDERS

Many models accurately predicted the ORDERS table, making it a close race.

Loss

Most models had very little loss, both from an MSE (Figure 4.19a) and MAPE

(Figure 4.19b) perspective. The winning model (Model 2-512) had a perfect decision
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(a) Query 67.

(b) Query 74.

Figure 4.17: PARTSUPP model decisions compared to ideal.

record, edging out Model 8-256 by a single mistake (in Query 87). Model 2-512 took

7 seconds per epoch to train while Query 8-256 took 5 seconds. Both acceptable,

considering Model 8-256’s mistake cost 85 milliseconds of latency but saves 200 sec-
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(a) Query 67. (b) Query 74.

Figure 4.18: PARTSUPP Model 6-256 (“Learned Optimizer”) decision detai.l

onds of training. Additionally, the charts in Figure 4.19 show that training completed

quickly at 50 epochs. Figure 4.19c compares the model to other members of its family.

Unlike other tables, here, we see clear victory amongst its family members.

Error Rate

Error rates across all 14 queries on this table (Figure fig:orders-errorrate),

indicate that all models significantly outperform the optimizer by order of magnitude.

Decision Path

To understand the decisions made, we consider Queries 90 and 93. Recall that

Query 90 was discussed in Chapter 2 and used O TOTALPRICE and O CUSTKEY varying

only O CUSTKEY.

Query 93:

SELECT count(O_ORDERKEY) FROM orders

WHERE O_CUSTKEY < 299999

AND O_ORDERKEY < [600000-11999981];

Figure 4.21a (Query 90) shows significant early confusion in Models 1 and 7

(costing approximately 1 second). The decisions made by Models 2 through 6 and 8
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(a) MSE on all models. (b) MAPE on all models.

(c) MSE on all variations of Model 2.

Figure 4.19: ORDERS table models.

follow the ideal (Figure 4.22a). Looking closely at the decisions, we see Model 2 (and

the optimizer) were at ideal (Figure 4.23a).

Models 3 and 6 show early confusion on Query 93 (Figure 4.21b), while Models

1, 2, and 7 follow the ideal (Figure 4.22b). We find a minor mistake with the first
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(a) Optimizer.

(b) Model 2.

Figure 4.20: ORDERS error rate by query.

decision in Model 8. Again, we see the decisions of Model 2-512 follow the ideal, while

the optimizer made a single mistake in the first decision point (Figure 4.23b).

The best model for ORDERS is Model 2-512, with a perfect prediction record

compared to the optimizer’s 8 out of 14.

4.3. Monolithic Model

The monolithic model has the challenge of being adept at predicting a broader

range of queries. To that end, additional features and a more extensive network are
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(a) Query 90.

(b) Query 93.

Figure 4.21: ORDERS error for all models by query (optimizer in blue).

required. How does the larger network perform?

The architectures remain the same except for changes in scale factor, as dis-

cussed in Chapter 2. The monolithic model variations are:

• Scale factor 2: 1024 (on all models)

• Scale factor 1: 512 (on all models)

• Scale factor 0.5: 256 (omitted for model 8)
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(a) Query 90

(b) Query 93

Figure 4.22: ORDERS model decisions compared to ideal.

4.3.1 Loss

We begin by comparing loss across the entire model range (Figure 4.24a),

highlighting Model 2-256. Overall, the error is quite high with validation error wildly
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(a) Query 90. (b) Query 93.

Figure 4.23: ORDERS Model 2-512 (“Learned Optimizer”) decision detail.

out of control on many models. Model 2-256 is the best performing model, settling

on 1, 286, 553ms2 MSE loss (approximately 1, 134ms). MAPE does not fare much

better at 375%. Model 2-256 does outperform the rest of its family (Figure 4.24c).

However, that does not tell us how the model fared in decision making.

4.3.2 Error Rate

The optimizer shows a very high error rate against all queries, especially those

in the critical decision range below 1.5% selectivity (Figure 4.25a). Most models

outperform the optimizer (blue line), and a few have trouble after 2% selectivity

(Figure 4.25b).

4.3.3 Decision Path

We see that Models 1, 2, 4, 6, and 7 struggle with Query 3, and Model 1

perfectly follows the optimizer (Figure 4.26a). Model 8 is the only model that found

the correct decision point (Figure 4.26b).

Query 13 fared slightly better with Models 1, 2, 3, and 7 showing high error

in the critical range (Figure 4.27a). The decisions of Models 5, 6, and especially 8
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(a) MSE on all models. (b) MAPE on all models.

(c) MSE on all variations of Model 2.

Figure 4.24: Error rate on monolithic models.

performed well (Figure 4.27b).

Figure 4.28a indicates that the error for Query 24 is very low on most models.

The optimizer (blue) errors cost 75ms in the lower selectivity range, on average.

Nearly all models outperform the optimizer in that range, but all of them missed the
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(a) Optimizer (Query 6 removed).

(b) Model 2 (Query 6 removed).

Figure 4.25: Monolithic error rate by query.

critical decision point (Figure 4.28b). Their low error is because the simple query

plan does not require change until outside the typical range (Figure 4.35a). Here, the

error rate gives us a false sense of reality.

Model 31 is a straightforward plan; it requires no decision change (Figure 4.35b).

Unfortunately, all models made errors here (Figure 4.29b). Model 6 performed best

on Query 67, but missed the early decisions (Figure 4.30b). Still, it outperformed the

optimizer (Figure 4.36a). Models 2, 4, and 6 found ideal performance on Query 74.

The spike of Model 3’s poor decisions early on (Figure 4.31) caused problems for this
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(a) Error across all models (optimizer in blue).

(b) Decisions per model (ideal is dotted).

Figure 4.26: Query 6 monolithic model comparison.

query. Only Model 2 correctly surmised the optimal path for Query 90 (Figure 4.32).

Models 1, 2, and 3 performed very well on Query 93 (Figure 4.33).

Despite not performing well on some of the examples above, Model 2 performed

best overall (with 30 out of 100 ideal paths and many other minor errors). However,

other large models performed better on the various tables:
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(a) Error across all models (optimizer in blue).

(b) Decisions per model (ideal is dotted).

Figure 4.27: Query 13 monolithic model comparison.

• LINEITEM: Model 5-1024

• PART: 4-1024

• PARTSUPP: 2-1024

• ORDERS: 3-1024
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(a) Error across all models (optimizer in blue).

(b) Decisions per model (ideal is dotted).

Figure 4.28: Query 24 monolithic model comparison.

The results of the queries above are not atypical (See Appendix E). How did

the model perform against its smaller counterparts?
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(a) Error across all models (optimizer in blue).

(b) Decisions per model (ideal is dotted).

Figure 4.29: Query 31 monolithic model comparison
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(a) Error across all models (optimizer in blue).

(b) Decisions per model (ideal is dotted).

Figure 4.30: Query 67 monolithic model comparison.
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(a) Error across all models (optimizer in blue).

(b) Decisions per model (ideal is dotted

).

Figure 4.31: Query 74 monolithic model comparison.
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(a) Error across all models (optimizer in blue).

(b) Decisions per model (ideal is dotted).

Figure 4.32: Query 90 monolithic model comparison.
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(a) Error across all models (optimizer in blue).

(b) Decisions per model (ideal is dotted).

Figure 4.33: Query 93 monolithic model comparison.
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(a) Query 6. (b) Query 13.

Figure 4.34: Monolithic model 2-256 decisions on LINEITEM.

(a) Query 24. (b) Query 31.

Figure 4.35: Monolithic model 2-256 decisions on PART.

(a) Query 67. (b) Query 74.

Figure 4.36: Monolithic model 2-256 decisions on PARTSUPP.
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(a) Query 90. (b) Query 93.

Figure 4.37: Monolithic model 2-256 decisions on ORDERS.

(a) Query 6 (LINEITEM). (b) Query 13 (LINEITEM).

(c) Query 90 (ORDERS). (d) Query 93 (ORDERS).

Figure 4.38: Monolithic (red) vs specialized (blue) model on LINEITEM and ORDERS.
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(a) Query 24 (PART) (b) Query 31 (PART)

(c) Query 67 (PARTSUPP) (d) Query 74 (PARTSUPP)

Figure 4.39: Monolithic (red) vs specialized (blue) model on PART and PARTSUPP.

4.4. Best Approach

We compare the monolithic and specialized models using two approaches; the

predictive power of the model (how well it made decisions compared to the ideal),

and how expensive the model was to train.

4.4.1 Predictive Power

We again look at the pairs of representative queries on our four tables and

compare the large and small models together. While at times both models struggle

(Query 67, Figure 4.39c and Query 24, Figure 4.39a), the smaller model is a better

fit.

For Query 6 (Figure 4.38a) and Query 13 (Figure 4.38b)
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Figure 4.40: Model parameters dramatically increase training time

For table LINEITEM (Query 6 and 13) and table ORDERS (Queries 90 and 93)

we see both models perform well (Figure 4.38). The same is true for large model

predictions for other queries (see Appendix E).

We see on table PARTSUPP (Queries 67 and 74) and PART (Queries 24 and 31)

that the smaller models outperform the larger almost every time (Figure 4.39).

4.4.2 Training Time and Resource Consumption

The performance of models is also essential. Training consumes valuable re-

sources. Figure 4.40 shows the relationship between the number of model parameters

and time. As the number of parameters to train increases, so does the amount of

time (and computing power) needed to accomplish the task.
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Chapter 5: Additional Findings

In Chapter 4 we saw that loss did not accurately predict the best model. Ad-

ditionally, we saw that even computing the error rate for each query is not sufficient.

The models that appeared to perform well are not the best. Determining the best

model took inspection of the decisions.

5.1. Traditional Methods of Selecting Models Do Not Work

We can further visualize this by comparing the average error of queries for each

table between the models (Figure 5.1). We see that the specialized model outperforms

the monolithic model on tables PARTSUPP and ORDERS. However, despite the better

average latency error, we have shown that the large model has many more mistakes

at the decision point. Traditional means of measuring accuracy are not sufficient.

As we have seen, the larger model does not perform as well as the error rate

and loss would lead us to believe. That is because the methods focus on the accuracy

of predictions, treating each prediction of equal value. That is not the case. The error

of pivotal decisions are much more important and impactful and should be minimized,

weighing other errors less.
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(a) LINEITEM table errors. (b) PART table errors.

(c) PARTSUPP table errors. (d) ORDERS table errors.

Figure 5.1: Monolithic (red) vs specialized (blue) average errors, per table

5.2. A New Loss Function

Figure 5.2 shows the computational process in an example neural network

(such as Architecture 3). Computed weights are passed to the loss function which, in

turn, updates the gradients. Instead of MSE or MAPE, a new loss function that takes

into account properly weighting decisions in the critical area before 2% selectivity

more heavily, thus rewarding good decisions.
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Figure 5.2: The computational process.
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Chapter 6: A Learning System

6.1. System Overview

Neural networks can become quite large and increasingly slower to train. To

give us as much flexibility as possible while still being sensitive to the performance im-

plications of neural networks, a system consisting of two core components: a learned

optimizer and a learning core (see Figure 6.1) can be conceived.

The learned optimizer ultimately selects the best plan for hand-off to the

executor. The optimizer is modular, allowing it to be a drop-in replacement for

components in various data systems while still allowing system-specific coding and

query execution to remain intact.

The learning engine generates and trains the model, decoupling the depen-

dency on the data system’s internal workings. It also allows a degree of freedom to

research entirely new models without disrupting the core optimizer code. It gathers

training data by either observing execution at run time, or by a bulk data run. The

bulk run executes queries found in Appendix refappendix.queries, while the queries

at run time are ad-hoc.

As changes to the underlying hardware or schema occur, the model is period-

ically retrained and reintroduced to the optimizer. This separation of concerns also

fits more naturally to the tooling necessary for each task. Models are trained with

more conventional neural network tools (for example, Tensorflow and Keras). The
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Figure 6.1: An AI learning optimizer system design.

exported raw numeric weights mean that retraining requires changes to the state of

the optimizer, but not to its core code.

6.2. The Learning Core

The learning core, in turn, is made of two core components; the deep neural

network and the knowledge store. The main contribution of this paper is the

neural network described in previous chapters. The knowledge store keeps the data

needed for training encoded and properly shaped as a tuple:

T = ([feature vectors], observed latency)

Where tuple T is a set of features and the observed latency of the executed

query.
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6.2.1 Training Data

Deep, fundamental changes to configuration require data reshaping and model

retraining. In most cases, however, a majority of the data remains valid. For example,

adding a new index or column means the portion of the data affected needs reshaping,

but the data from previous runs is still valuable for training.

When a system is first setup (or a new hardware profile introduced), there is

no training data. This case is referred to as the bootstrap problem, while the case

of incremental changes to a running system is called the runtime problem. Figure

6.2 illustrates the decision tree for determining the type of operation necessary.

Bootstrapping

Run Time

Since our requirements necessitate a fast, accurate response, models train dur-

ing downtime. The system needs to monitor and collect data for the training set

continually. Additional observed data is added to the training set for the next train-

ing phase to improve the predictive power of the model.

6.2.2 Plan Manager

The plan manager’s primary function is to create permutations of plans based

on a given query.

6.2.3 Cost Estimator

The cost estimate provides a prediction for the given plan (feature vectors)

and returns the normalized latency prediction. The cost estimator contains very little

code other than what is necessary to load, cache, and run the model.
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Figure 6.2: Change detection flowchart.

Algorithm 6.1 Enumeration algorithm.

1: V (p) = predict(p), for all p ∈ P . Prediction for each plan in the space P
2: best = V (0)
3: for each p ∈ P do . For each plan in the plan space
4: if V (p) < best then
5: best← V (p)
6: end if
7: end for
8: return best

6.2.4 Enumeration Algorithm

The enumeration algorithm also becomes simplified because it does not need

to determine the cost of components of the plan, nor which operations are required.

It returns the lowest latency plan from the predicted set (Algorithm 6.1).
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Chapter 7: Summary and Conclusions

All data systems require optimization. The critical decisions in access path

selection involved complex patterns that traditional rule-based approaches cannot

solve. In this thesis, I introduce a learned optimizer for determining the most efficient

path using small, specialized neural networks. I show that small, specialized neural

networks:

• Outperform the current, state of the art optimizer

• Outperform larger, monolithic neural networks

• Do not require selectivity or other table statistics

• Do not need to consider the inner workings of the query plan (for example,

sorting).

The requirement for sizable training sets still limits this approach. Also, pre-

dicting latency is not an ideal choice. Predicting latency requires that plan options be

estimates and compared. Perhaps a more direct approach producing a single predic-

tion of all of the correct plan options could be found. Perhaps reframing the problem

in an iterative, reinforcement approach would prove beneficial.

I categorize the directions this work can take as improvement, systematization,

and other applications. We already addressed the improvements that could be made

to address the limitations.
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Systematization is the arrangement of this research into a functioning, cohesive

system like the one described in Chapter 6. Such a system would have two major

components; a learned optimizer that uses the neural network (replacing the existing

optimizer), and a knowledge store that trains the network.

Further applications include NoSQL systems such as Apache Cassandra, Lucene-

based search, and Kafka. Finally, this approach can automate research to guide algo-

rithmic changes and reduce research time from years to weeks. Artificial intelligence

has a place in data systems, and the future of these directions is exciting.
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Appendix A: TPC-H Test Queries

The tables in this appendix are the portions of the query predicate for the
columns indicated and should be read as follows:

• A blank in the column cell indicates that column was not used in the predicate

• A static value indicates that the value is used for every variation

• A range (in brackets) indicates that each variation will change in this format:
[start, end, step].

• A positive step indicates a greater than comparison, and a negative is a ”less
than” comparison.

Number l extendedprice l partkey l suppkey l quantity l discount

2 [2,4,1]
3 [200,4000,200]
4 2 [0.01,0.15,0.01]
5 [2,14,1] 0.01
6 [100000,80000,-1000]
7 80000 [5000,75000,5000]
8 80000 [100000,2000000,100000]
9 [75000,95000,2000] 100000
10 75000 1200000 [75000,6000,-3000]
11 75000 [100000,1100000,100000] 75000
12 [75000,95000,2000] 75000
13 [80000,95000,1000] [1100000,2000000,60000] 75000
14 [80000,95000,1000] 1200000 [55000,75000,1000]
15 750000 [250000,900000,50000] [25000,90000,5000]

Table A.1: LINEITEM Table queries.
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Number P PARTKEY P SIZE P RETAILPRICE

18 [4000,80000,4000]
19 [1996000,1920000,-4000]
10 [49,48,-1]
21 [2,3,1]
22 [990,1026,2]
23 [1973,2027,2]
24 [100000,2000000,10000] 3
25 200000 [1,20,1]
26 [2,21,1] 1100
27 47 [1060,1660,20]
28 [20000,440000,20000] 10 50000
29 200000 [2,21,1] 50000
20 200000 [10,20,1] [1000,2200,100]
31 200000 [3,20,1] [1100,2200,110]
32 [30000,200000,10000] 50000 [3,20,1]
33 [40800,209100,5100] [960,4920,120] 20
34 [30000,111000,3000] [1200,4440,110] [10,37,1]

Table A.2: PART table queries.

Number O TOTALPRICE O ORDERKEY O CUSTKEY

86 [2077,25599,1238]
87 [120000,2399981,119999]
88 [3000,59981,2999]
89 73192 [600000,11999981,599999]
90 73192 [15000,299981,14999]
91 12000000 [15000,299981,14999]
92 [4455,73178,3617] 12000000
93 [600000,11999981,599999] 299999
94 [4455,73178,3617] 299999
95 120766 19800000 [24750,494981,24749]
96 120766 [990000,19799981,989999] 494999
97 [6834,120758,5997] 19800000 494999
98 6834 [990000,19799981,989999] 494999
99 6834 19800000 [24750,494981,24749]
100 120766 [990000,19799981,989999] 24750

Table A.3: ORRERS table queries.
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Number PS PARTKEY PS SUPPKEY PS AVAILQTY PS SUPPLYCOST

35 [4000,79981,3999]
36 [200,3981,299]
37 [20,381,19]
38 [2,21,1]
39 400000 [1000,19981,999]
40 400000 [100,1981,99]
41 400000 [10,181,9]
42 [20000,399981,9999] 20000
43 20000 [100,1981,99]
44 20000 [10,181,9]
45 [20000,399981,9999] 1999
46 [1000,19981,999] 1999
47 1999 [10,181,9]
48 [100,1981,99] 200
49 [20000,399981,9999] 200
50 [1000,19981,999] 200
51 660000 33000 [17,321,16]
52 660000 3299 [17,321,16]
53 33000 3299 [17,321,16]
54 660000 [1650,32981,1649] 330
55 660000 [1650,32981,1649] 3299
56 [1650,32981,1649] 3299 330
57 660000 33000 [165,3281,164]
58 660000 [165,3281,164] 330
59 33000 [165,3281,164] 330
60 [33000,659981,32999] 33000 3299
61 [33000,659981,32999] 3299 330
62 [33000,659981,32999] 33000 330
63 660000 [165,3281,164] [17,321,16]
64 33000 [165,3281,164] [17,321,16]
65 660000 [1650,32981,1649] [1650,32981,1649]
66 [1650,32981,1649] [165,3281,164] 330
67 660000 [1650,32981,1649] [17,321,16]
68 [1650,32981,1649] 3299 [17,321,16]
69 [33000,659981,32999] [165,3281,164] 330
70 [33000,659981,32999] 33000 [165,3281,164]
71 [33000,659981,32999] [1650,32981,1649] 330
72 [33000,659981,32999] [1650,32981,1649] 3299
73 [33000,659981,32999] 3299 [17,321,16]
74 [33000,659981,32999] 33000 [17,321,16]
75 940000 47000 4699 [24,461,23]
76 940000 [2350,46981,2349] 4699 470
77 940000 47000 [235,4681,234] 470
78 [47000,939981,46999] 47000 4699 470
79 940000 47000 [235,4681,234] [24,461,23]
80 940000 [2350,46981,2349] [235,4681,234] 470
81 940000 [2350,46981,2349] 4699 [24,461,23]
82 [47000,939981,46999] 47000 [235,4681,234] 470
83 [47000,939981,46999] [2350,46981,2349] 4699 470
84 [47000,939981,46999] 47000 4699 [24,461,23]
85 [47000,939981,46999] [2350,46981,2349] [235,4681,234] 470

Table A.4: PARTSUPP table queries.
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Appendix B: AWS Hardware Configurations

c5d.4xlarge

CPU Optimized

r5d.4xlarge

Memory Optimized

m5d.2xlarge

General Purpose

h mem

System Memory (GB)
30 128 32

h cpu

CPU Architecture

Intel(R) Xeon(R)
Platinum 8124M

Intel(R) Xeon(R)
Platinum 8175M

Intel(R) Xeon(R)
CPU E5-2686 v4

h cores

Number of Cores
16 16 16

h clk

CPU Clock Speed (Mhz)
3405.776 3110.95 2300.107

h l1d

Level1 Cache Size for

Data

32 32 32

h l1i

Level1 Cache Size for

Instructions

32 32 32

h l2

Level2 Cache Size
1024 1024 256

h l3

Level3 Cache Size
25344 33792 46080

h numa

NUMA Aware?
3 3 3

h avx2

Supports SIMD?
3 3 3

h avx512bw

SIMD 512 Bit Words?
3 3 3

h avx512vl

SIMD Vector Length

Extensions?

3 3 3

h avx512cd

SIMD Conflict

Detection?

3 3 3

h avx512dq

SIMD Double and

Quad Words?

3 3

h bogomips

Linux bogus MIPS

Score

6000 5000 4600

h ss

Self Snoop?
3 3

h 3dnowprefetch

3D Now

Prefetch?

3 3

h bmi2

Bitmanipulation

Instruction Set?

3 3

h erms

Enhanced Rep

Movsb/Stosb?

3 3

h invpcid

Supports Invalidate

Process Context Identifiers?

3 3

Table B.1: AWS hardware configurations.
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Appendix C: Batches

C.1. Optimizer Tuning

Optimizer tuning batches in Table C.1 tune the following PostgresSQL set-
tings:

• seq page cost (SPC)

• random page cost (RPC)

• cpu tuple cost (CTC)

• cpu operator cost (COC)

• parallel setup cost (PSC)

• parallel tuple cost (PTC)

• min parallel table scan size (MPTSS)

• effective cache size (ECS)

C.2. Table Batches
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BATCH SPC RPC CTC COC PSC PTC MPTSS ECS
2-1 2
2-2 3
2-3 4
2-4 5
2-5 1
2-6 2
2-7 3
2-8 5
2-9 .02
2-10 .03
2-11 .04
2-12 .05
2-13 0.0035
2-14 0.0015
2-15 0.0005
2-16 0.0055
2-17 2000
2-18 10
2-19 100
2-20 5000
2-21 8000
2-22 10000
2-23 .01
2-24 .001
2-25 .5
2-26 .2
2-27
2-28 1
2-29 2
2-30 8
2-31 16
2-32 1MB
2-33 4MB
2-34 16MB

Table C.1: Optimizer tuning batches.
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BATCH L PARTKEY L SUPPKEY L DISCOUNT L QTY L EXTENDED PRICE bitmap on parallel on index on
3-1a
3-1b Y
3-2a Y Y
3-2b Y Y Y
3-3a Y Y
3-3b Y Y Y
3-4a Y Y Y
3-4b Y Y Y Y
3-5a Y Y Y Y Y
3-5b Y Y Y Y
3-6a Y Y Y
3-6b Y Y Y Y
3-7a Y Y Y
3-7b Y Y Y Y
3-8a Y Y Y
3-8b Y Y Y Y
3-9a Y Y Y
3-9b Y Y Y Y
3-10a Y Y Y
3-10b Y Y Y Y
3-11a Y Y Y Y
3-11b Y Y Y Y Y
3-12a Y Y
3-12b Y Y Y
3-13a Y Y
3-13b Y Y Y
3-14a Y Y Y
3-14b Y Y Y Y
3-15a Y Y Y Y
3-15b Y Y Y Y Y
3-16a Y Y Y
3-16b Y Y Y Y
3-17a Y Y Y
3-17b Y Y Y Y
3-18a Y Y Y Y
3-18b Y Y Y Y Y
3-19a Y Y Y
3-19b Y Y Y Y
3-20a Y Y Y
3-20b Y Y Y Y
4-1a Y Y Y Y Y Y Y Y
4-2b Y Y Y Y Y Y Y
4-3a Y Y Y Y Y Y
4-4b Y Y Y Y Y Y Y
4-5a Y Y Y Y Y Y Y Y

Table C.2: LINEITEM table batches.
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BATCH P PARTKEY P RETAILPRICE P SIZE bitmap on parallel on index on
6-1a
6-1b Y
6-2a Y Y Y Y
6-2b Y Y Y Y Y
6-3a Y Y Y Y
6-3b Y Y Y Y Y
6-4a Y Y Y
6-4b Y Y Y Y
6-5a Y Y Y
6-5b Y Y Y Y
6-6a Y Y
6-6b Y Y Y
6-7a Y
6-7b Y Y Y
6-8a Y Y Y
6-8b Y Y Y Y
6-9a Y Y Y
6-9b Y Y Y Y
6-10a Y Y Y
6-10b Y Y Y Y
6-11a Y Y Y
6-11b Y Y Y Y
6-12a Y
6-12b Y Y
6-13a Y
6-13b Y Y

Table C.3: PART table batches.
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BATCH O TOTALPRICE O ORDERKEY O CUSTKEY bitmap on parallel on index on
8-1a
8-1b Y
8-2a Y Y
8-2b Y Y Y
8-3a Y Y
8-3b Y Y Y
8-4a Y Y Y
8-4b Y Y Y Y
8-5a Y Y Y
8-5b Y Y Y Y
8-6a Y Y Y Y
8-6b Y Y Y Y Y
8-7a Y Y Y Y
8-7b Y Y Y Y Y
8-8a Y Y Y
8-8b Y Y Y Y
8-9a Y Y Y
8-9b Y Y Y Y
8-10a Y Y
8-10b Y Y Y
8-11a Y Y
8-11b Y Y Y
8-12a Y Y Y
8-12b Y Y Y Y
8-13a Y Y Y
8-13b Y Y Y Y
8-14a Y Y
8-14b Y Y Y
8-15a Y Y
8-15b Y Y Y

Table C.4: ORDERS table batches.
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BATCH PS PARTKEY PS AVAILQTY PS SUPPLYCOST PS SUPPKEY bitmap on parallel on index
7-1a
7-1b Y
7-2a Y Y
7-2b Y Y Y
7-3a Y Y
7-3b Y Y Y
7-4a Y Y Y
7-4b Y Y Y Y
7-5a Y Y Y
7-5b Y Y Y Y
7-6a Y Y Y Y
7-6b Y Y Y Y Y
7-7a Y Y Y Y
7-7b Y Y Y Y Y
7-8a Y Y Y Y Y
7-8b Y Y Y Y Y Y
7-9a Y Y Y Y Y
7-9b Y Y Y Y Y Y
7-10a Y Y Y Y
7-10b Y Y Y Y Y
7-11a Y Y Y Y
7-11b Y Y Y Y Y
7-12a Y Y Y
7-12b Y Y Y Y
7-13a Y Y Y
7-13b Y Y Y Y
7-14a Y Y
7-14b Y Y Y
7-15a Y Y
7-15b Y Y Y
7-16a Y Y Y
7-16b Y Y Y Y
7-17a Y Y Y
7-17b Y Y Y Y
7-18a Y Y Y Y
7-18b Y Y Y Y Y
7-19a Y Y Y Y
7-19b Y Y Y Y Y
7-20a Y Y Y
7-20b Y Y Y Y
7-21a Y Y Y
7-21b Y Y Y Y
7-22a Y Y Y
7-22b Y Y Y Y
7-23a Y Y Y
7-23b Y Y Y Y
7-24a Y Y Y
7-24b Y Y Y Y
7-25a Y Y Y
7-25b Y Y Y Y

Table C.5: PARTSUPP table batches.
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Appendix D: Neural Network Example Code

D.1. Keras, Tensorflow and Python

Listing D.1: modeltrain.py

import models as m

import pandas as pd

import matplotlib.pyplot as plt

epochs = 500

#import cleaned and feature vectorized input

X = pd.read_hdf("x.h5")

Y = pd.read_hdf("y.h5")

path = "Lineitem_Models/ModelMLP-"

#Architecture 1

model = m.get_model([512], ["relu"])

hist = m.train_model(model, f"{path}1-512", X, Y, epochs)

model = m.get_model([256], ["relu"])

hist = m.train_model(model, f"{path}1-256", X, Y, epochs)

model = m.get_model([128], ["relu"])

hist = m.train_model(model, f"{path}1-128", X, Y, epochs)

#Architecture 2

model = m.get_model([512, 256], ["relu", "relu"])

hist = m.train_model(model, f"{path}2-512", X, Y, epochs)

model = m.get_model([256, 128], ["relu", "relu"])

hist = m.train_model(model, f"{path}2-256", X, Y, epochs)

model = m.get_model([128, 64], ["relu", "relu"])

hist = m.train_model(model, f"{path}2-128", X, Y, epochs)

#Architecture 3

model = m.get_model([512, 256], ["relu", "linear"])

hist = m.train_model(model, f"{path}3-512", X, Y, epochs)
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model = m.get_model([256, 128], ["relu", "linear"])

hist = m.train_model(model, f"{path}3-256", X, Y, epochs)

model = m.get_model([128, 64], ["relu", "linear"])

hist = m.train_model(model, f"{path}3-128", X, Y, epochs)

#Architecture 4

model = m.get_model([512, 256,128], ["relu", "relu","relu"])

hist = m.train_model(model, f"{path}4-512", X, Y, epochs)

model = m.get_model([256, 128, 64], ["relu", "relu","relu"])

hist = m.train_model(model, f"{path}4-256", X, Y, epochs)

model = m.get_model([128, 64,32], ["relu", "relu","relu"])

hist = m.train_model(model, f"{path}4-128", X, Y, epochs)

#Architecture 5

model = m.get_model([512, 256,128], ["relu", "linear","relu"])

hist = m.train_model(model, f"{path}5-512", X, Y, epochs)

model = m.get_model([256, 128, 64], ["relu", "linear","relu"])

hist = m.train_model(model, f"{path}5-256", X, Y, epochs)

model = m.get_model([128, 64,32], ["relu", "linear","relu"])

hist = m.train_model(model, f"{path}5-128", X, Y, epochs)

#Architecture 6

model = m.get_model([512, 256,512], ["relu", "relu","relu"])

hist = m.train_model(model, f"{path}6-512", X, Y, epochs)

model = m.get_model([256, 128,256], ["relu", "relu","relu"])

hist = m.train_model(model, f"{path}6-512", X, Y, epochs)

model = m.get_model([128, 64,128], ["relu", "relu","relu"])

hist = m.train_model(model, f"{path}6-512", X, Y, epochs)

#Architecture 7

model = m.get_model([512, 256, 512], ["relu", "linear","relu"])

hist = m.train_model(model, f"{path}7-512" , X, Y, epochs)

model = m.get_model([256, 128,256], ["relu", "linear","relu"])

hist = m.train_model(model, f"{path}7-256" , X, Y, epochs)

model = m.get_model([128, 64,128], ["relu", "linear","relu"])

hist = m.train_model(model, f"{path}7-128" , X, Y, epochs)

#Architecture 8

model = m.get_model([512, 512, 256 ,256, 512, 512], ["relu", "linear","relu", "

linear","relu", "linear"])

hist = m.train_model(model, f"{path}8-512", X, Y, epochs)
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model = m.get_model([256, 256, 128 ,128, 256, 256], ["relu", "linear","relu", "

linear","relu", "linear"])

hist = m.train_model(model, f"{path}8-256", X, Y, epochs)
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Listing D.2: models.py

import pandas as pd

import tables as pt

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

import keras

from keras.layers import Input, Dense

from keras.models import Model, Sequential

from keras.callbacks import CSVLogger

#takes 2 lists... a list of counts of neurons per layer, and a list of activations

for the layer, and a loss function (default is MSE)

def get_model(neurons, activations, loss=’mean_squared_error’):

keras.backend.clear_session()

model = Sequential()

for (n, a) in zip(neurons, activations):

model.add(Dense(n, activation=a))

#model.add(Dense(n_1, activation=act_1))

#model.add(Dense(n_2, activation=act_2))

model.add(Dense(1, kernel_initializer=’normal’))

model.compile(loss=loss, optimizer=’adam’, metrics=[’mse’, ’mae’, ’mape’, ’

cosine’])

return model

def train_model(m, filename, x, y, epochs, batch_size=None):

cb = keras.callbacks.ModelCheckpoint(f"{filename}.h5", monitor=’val_loss’,

verbose=0, save_best_only=True, save_weights_only=False, mode=’auto’, period

=1)

hist = m.fit(x=x.values, y=y.values, epochs=epochs, batch_size=batch_size,

shuffle=True, validation_split=.2, callbacks=[cb])

print("Evaluating Model")

print (m.evaluate(x.values, y.values))

pd.DataFrame(hist.history).to_csv(f"{filename}-hist.csv")

return hist

#this function will help plot the test/train accuracy

def plot_hist(hist):

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)

fig.set_figheight(15)

fig.set_figwidth(15)
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epochs = len(hist.history["loss"])

x = range(1, epochs + 1)

#plot the loss as circles and the accuracy as a line

ax1.plot(x, hist.history[’loss’], "bo", label="Loss Training")

ax1.plot(x, hist.history[’val_loss’], "b", label="Loss Validation")

ax2.plot(x, hist.history[’mean_absolute_error’], "bo", label="MAE Training")

ax2.plot(x, hist.history[’val_mean_absolute_error’], "b", label="MAE

Validation")

ax3.plot(x, hist.history[’mean_absolute_percentage_error’], "bo", label="MAPE

Training")

ax3.plot(x, hist.history[’val_mean_absolute_percentage_error’], "b", label="

MAPE Validation")

ax4.plot(x, hist.history[’cosine_proximity’], "bo", label="Cosine Training")

ax4.plot(x, hist.history[’val_cosine_proximity’], "b", label="Cosine

Validation")

ax1.set_title(’Training and Validation Loss’)

ax1.set_xlabel(’Epochs’)

ax1.set_ylabel(’Loss’)

ax1.legend()

ax2.set_title(’Training and Validation MAE’)

ax2.set_xlabel(’Epochs’)

ax2.set_ylabel(’MAE’)

ax2.legend()

ax3.set_title(’Training and Validation MAPE’)

ax3.set_xlabel(’Epochs’)

ax3.set_ylabel(’MAPE’)

ax3.legend()

ax4.set_title(’Training and Validation Cosine’)

ax4.set_xlabel(’Epochs’)

ax4.set_ylabel(’Cosine’)

ax4.legend()

plt.show()
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Appendix E: Model Decisions
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