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Abstract. This article presents the application of data analysis and
computational intelligence techniques for evaluating the air quality in
the center of Madrid, Spain. Polynomial regression and deep learning
methods to analyze the time series of nitrogen dioxide concentration,
in order to evaluate the effectiveness of Madrid Central, a set of road
traffic limitation measures applied in downtown Madrid. According to
the reported results, Madrid Central was able to significantly reduce the
nitrogen dioxide concentration, thus effectively improving air quality.
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1 Introduction

Mobility is a crucial issue in nowadays cities, having direct implication on the
quality of life of citizens. Sustainable mobility contributes to reduce environmen-
tal pollution, which has serious negative effects on health. Sustainable mobility
is a relevant subject of study under the novel paradigm of smart cities [1].

Most of modern cities have been designed without considering air quality
concerns. In fact 91% of the world population lives in places where the air quality
levels specified by World Health Organization (WHO) are not met [24]. Many
cities have prioritized the use of motorized vehicles, causing a significant negative
impact on health and quality of life, especially for children and the elderly.

One of the major concerns arising from the rapid development of car-oriented
cities is the high generation of air pollutants and their impact on the health
of citizens [20]. WHO estimates that 4.2 million deaths per year are due to air
pollution worldwide [24]. International authorities have taken actions by enacting
environmental policies oriented to reducing pollutants (e.g., the Clean Air Policy
Package adopted by the European Union (EU) to control harmful emissions).

This article analyzes the Madrid Central initiative, which has been imple-
mented in Madrid (Spain) in order to diminished air pollutants and thus comply
with the requirement demanded by the EU. Madrid Central, defined as a low
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emissions zone, extends a series of traffic restrictions aimed at reducing the high
levels of air pollution in the city. As a result, most pollutants vehicles cannot
access to the central downtown area.

The proposed methodology for air quality evaluation applies data analysis
and computational intelligence methods (polynomial regression and deep learn-
ing) to approximate the time series of nitrogen dioxide (NO2) concentration,
which is a direct indicator of environmental pollution. The main results indicate
that the deep learning approach is able to correctly approximate the time series
of NO2 concentration, according to standard metrics for evaluation. Results al-
low concluding that Madrid Central was able to significantly reduce the nitrogen
dioxide concentration, thus effectively improving air quality.

The main contributions of this work are: i) the analysis of the air quality,
regarding NO2 concentration, in Madrid downtown and ii) the application of
computational intelligence to assess the environmental impact of car restriction
measures in Madrid Central. The proposed approach is generic and can be ap-
plied to analyze other policies to deal with different challenges in smart cities.

The article is organized as follows. Next section describes the case study and
reviews related works. Section 3 introduces the proposed approach. The evalua-
tion of air quality via data analysis and computational intelligence is presented
in Section 4. Finally, Section 5 presents the conclusions and the main lines of
future work.

2 Case study and related works

This section presents the case study and reviews relevant related works.

2.1 Reducing traffic: residential priority areas and Madrid Central

In the EU air pollution it is considered the biggest environmental risk, causing
more than 400,000 premature deaths, years of life lost as well as several health
derived problems (i.e. heart disease, strokes, asthma, lung diseases and lung
cancer). Besides, it has an impact over natural ecosystems, biodiversity loss,
and climate change [6, 16]. Less known is that it can harms deeply the built
environment and so, the cultural heritage [6]. Finally, it produces an economic
cost in terms of increasing expenses associated to health issues and in terms of
diminished production (e.g. agricultural lost and lost of working days).

Those factors have lead the EU to take action by enacting stronger air policies
and a bigger control among their Member States. The Clean Air Policy Package
refers to the Directive 2008/50/EC [5] and to the 2004/107/EC [4] and it sets
different objectives for 2020 and 2030. This EU clean air policy relies on three
main pillars mandatory to every member state: i) ambient air quality standards
and air quality plans accordingly; ii) national emission commitments enacted on
the National Emissions Ceiling Directive; and iii) emissions and energy standards
for key sources of pollution.
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One of these key sources of pollution are vehicles. In fact, the biggest contri-
bution of NO2 emissions and big part of particulate matter emissions are caused
by the transport sector. The maximum levels established by the EU have been
exceeded in some EU countries, Spain among them. Under the risk of huge eco-
nomic fines, the EU required the reduction of the referred pollutants. As an
attempt avoid the economic sanction, the city of Madrid (one of the largest
contributors to air pollution) implement a low emission zone in the downtown
area: Madrid Central. This zone is established by the Ordenanza de Movili-
dad Sostenible (October 5th, 2018) starting the traffic restriction on November
30, 2018 and fining for noncompliance in March 16, 2019. The designed area
covers the Centro District (4.72 km2). A series of car restrictions are applied,
except to residents and authorized cars (e.g., people with reduced mobility, pub-
lic transport, security and emergency services, vehicle-sharing) are progressively
applied to eliminate transit traffic. For the rest, a environmental sticker system
is followed: depending on how contaminant is a car it will be labelled with an
environmental sticker, marking so if you can access and park in the area, access
but not park or neither one nor the other. The idea behind those measures are
not just improving air quality in the short term, but change mobility behaviour.
As a first victory, this measure succeeds in paralysing EU disciplinary measures.

2.2 Related works

A number of researches have studied the efficacy of car restriction policies in dif-
ferent cities. Several of them have included some type of analysis of air pollution.
A brief review of the related literature is presented next.

Several articles studied the rapid growth of car ownership in Beijing, China
and its impact on transportation, energy efficiency, and environmental pollu-
tion [13,14]. In general, authors acknowledged that implementing and evaluating
car restriction policies is somehow difficult. First measures on Beijing were taken
in 2010, with the main goal of mitigating the effects of traffic congestion and
reduce air pollution. Liguang et al. [13] analyzed data from Beijing Municipal
Committee of Transport to evaluate the implementation of car use restriction
measures. Results reported confirmed that fairly good effects on improving ur-
ban transportation and air quality were achieved. No computational intelligence
methods were applied for the analysis, but just a comparison of average and
sampled values and qualitative indicator. Liu et al. [14] proposed an indirect
approach to evaluate the impact of car restrictions and air quality, by applying
a generalized additive model to explore the association of driving restrictions
and daily hospital admissions for respiratory diseases. Several interest facts were
obtained from the analysis, including higher daily hospital admissions for respi-
ratory disease for some days, and the stronger effect on cold season. Female and
people older than 65 years benefited more from the applied environmental policy.
Overall, authors found positive effects on the improvement of public health.

Wang et al. [23] applied a data analysis approach to address traffic conges-
tion and air pollution in Beijing, regarding driving restriction policies. Using
data from Beijing Household Travel Survey, the authors analyzed short-term
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effects of driving restriction policies on individual mode choice and the impact
in pollution. The main results showed an impact on public transit transporta-
tion and a large number of drivers (about 50%) breaking the rules, i.e., driving
illegally when not allowed to. Evidence of reductions in congestion and mobile
source pollution were also confirmed. As a result, driving restrictions have shown
effective in curbing air pollution and traffic congestion. Using data from multi-
ple monitoring stations, Viard anf Fu [22] confirmed that air pollution fell up to
21% when one-day-per-week restrictions were implemented, with the consequent
benefits on improved health conditions. Recently, Li et al. [12] performed a sim-
ilar study for Shanghai, but focusing on the impact of restrictions for non-local
vehicle on air quality. CO concentration and Air Quality Index were studied ap-
plying regression discontinuity statistical analysis. The main results confirmed
that non-local vehicle restriction policy was a key factor to improve the air qual-
ity and commuters health in Shanghai. Other cities have implemented temporary
measures, e.g., Paris prohibited circulation of more than half of the cars regis-
tered in the suburban region in the summer of 2019, due to a notorious worsening
of the air pollution [19].

In Latin America, the efficacy of car restriction policies and their impacts
on pollution and health have been seldom studied. Indeed, some researchers
have argued that car restrictions policies have not yielded a positive impact on
air pollution yet (e.g., in the Colombian city of Medelĺın [8]). Other researches
have claimed that restricting the car utilization by license plate numbers is a
misguided urban transport policy that does not help to significantly improve
the quality of life of citizens [3, 25]. In any case, researchers must take into
account that the effects of vehicle restriction policies are often neutralized by
the continuous growth of vehicle ownership and utilization in modern cities.

Several researches have applied data analysis to study the relationship be-
tween transportation and health of citizens (e.g., [21]). Some other articles have
applied neural networks approaches to evaluate urban policies and air pollution
(e.g., [18]), especially to deal with complex urban systems, but no studies re-
lating car restriction policies and air pollution were found in the bibliographic
review. This article contributes in this line of research by applying a learning
approach for pollution prediction and evaluation of car restriction policies in the
center of Madrid, Spain,

3 Methodology for air quality evaluation

This section presents the applied methodology for air quality evaluation and
assessing the impact of the Madrid Central initiative.

3.1 Data analysis approach

Data analysis methods have been applied in several related articles for studying
air quality in modern cities [10, 17, 25]. It is a also a common methodology for
public services analysis and evaluation in smart cities [2, 7, 15,26].
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In order to determine the objective effects of the car restriction policies im-
plemented by Madrid Central, the NO2 concentration is evaluated as a relevant
indicator of the environmental pollution. The main goal of the study is to de-
termine whether the implementation of Madrid Central caused a statistically
significant decrease in NO2 pollution or not. In order to meet that goal, compu-
tational intelligence methods are applied to learn from the time series of NO2

concentration and to predict the pollutant emissions in case Madrid Central
were not implemented in December 2018. After that, the real measurements are
compared to the predictions in order to determine if significant deviations from
the learned model have occurred or not.

The analysis extends and complements a previous study of environmental pol-
lution in the center of Madrid [11]. That work applied a linear regression method
and considered a lower resolution on the observed data, thus non-conclusive re-
sults were obtained for the O3 pollution, mainly because the simple linear re-
gression method was not able to capture the complexity of several interacting
effects in the analyzed urban zone.

3.2 Data description

The source of data studied in the analysis is provided by the Open Data Portal
(ODP) offered by the Madrid City Council (https://datos.madrid.es/), an
online platform that promotes access to data about municipal public manage-
ment. The data gathered by the sensor located in Madrid Central (Plaza del
Carmen) is analyzed to evaluate the impact of the car restriction policies.

The analysis is performed considering a temporal frame of nine years, from
January 2011 to September 2019. Two relevant periods are distinguished: pre-
Madrid Central, i.e., the period before implementing the initiative (from January
2011 to November 2018), and post-Madrid Central, i.e., the period after imple-
menting the initiative (from December 2018 to September 2019). Every dataset
considers hourly values of NO2 concentration.

Regarding the computational intelligence methods, the following datasets
were considered:

– Training dataset : 90% of the data from pre-Madrid Central is used for train-
ing. Data from January 1st, 2011 to November, 30th, 2017 is used, accounting
for a total number of 60168 observations.

– Validation dataset : the remaining 10% is used for validation. Data from
December 1st, 2017 to September, 30th, 2018 is used, accounting for a total
number of 7248 observations.

– Comparison dataset : Finally, the comparison is performed over 7248 obser-
vations, taken from December 1st, 2018 to September, 30th, 2019.

3.3 Computational intelligence methods applied in the study

Polynomial regression and Recurrent Neural Networks (RNN) are applied to
predict the general future trend in NO2 concentration after the implementation
of the road traffic restrictions in Madrid Central.
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Polynomial regression. Polynomial regression is one of the simplest methods
for analysis and estimation of time series , yet it is one that is frequently used
in the related literature [11, 12, 14]. In this article, three polynomial regression
methods are studied: linear, quadratic, and polynomial (grade 10). These meth-
ods provide a set of baseline results to compare the prediction accuracy of more
sophisticated learning methods.

Recurrent Neural Network. RNNs are artificial neural networks whose con-
nections form a directed graph along a temporal sequence, allowing to capture
temporal dynamic behavior of studied phenomena [9]. RNNs are more useful to
analyze time series than standard feed forward neural networks.

In this article, instead of applying a traditional fully connected RNN, a Long
Short Term Memory (LSTM) RNN is used. The main reason for applying LSTM
is that they allow modeling the sequential dependence of input data. In this case,
LSTM are (a priory) a better method for capturing the daily pattern of NO2

concentration, (described in Fig. 2).
Regarding the RNN architecture, it contains two hidden layers and 50 neu-

rons per layer. Lookback observations are set to 24 (corresponding to 24 hours),
in order to capture the daily patterns of NO2 concentration. A standard lin-
ear activation function is applied. The RNN was trained using backpropagation,
applying Stochastic Gradient Descent optimization.

3.4 Metrics and statistical tests

Three metrics are considered in the analysis. The Mean Squared Error (MSE) is
used for training the proposed computational intelligent methods and to analyze
their prediction quality over validation data. MSE is the mean of the squares of
the differences between the observed (xm) and the predicted value (x̃m) for each
observation m in the comparison data set M (Eq. 1). For the comparison of time
series in order to determine the effect of the car restriction policies implemented
by Madrid Central, MSE and Mean Absolute Error (MAE) are applied. MAE is
similar to MSE but it takes into account the absolute difference instead of the
squared one (Eq. 2). The aforementioned absolute metric is also considered to
account for the real difference between NO2 concentration.

MSE =
1

|M |
∑
m∈M

(xm − x̃m)2 (1) MAE =
1

|M |
∑
m∈M

|(xm− x̃m)| (2)

Finally, the percentage of predictions that are over the real value (↑real) is
reported. This metric is applied to determine if the difference is over (thus, the
method overestimates) or below (the method underestimates) the real value.

Regarding the methodology to determine statistical significance of the ob-
tained results, the following procedure was applied:

1. Shapiro-Wilks statistical test was applied to check if the results follow a
normal distribution or not. The test was applied considering a statistical
significance of 99% (i.e., p-value<0.01).
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2. Analysis of Variance (ANOVA) statistical models are applied to analyze the
differences between the predicted and the observed NO2 values, after the
Shapiro-Wilks results confirmed that MSE values do not follow a normal
distribution, with a statistical significance of 99% (i.e., p-value<0.01).

3. Wilcoxon statistical test was applied to analyze MSE and MAE results,
considering a statistical significance of 99% (i.e., p-value<0.01).

4 Experimental evaluation

This section describes the experimental evaluation of the proposed approach.

4.1 Development and execution platform

The proposed computational intelligence methods were developed using python
(version 3.7) and the pytorch (version 1.0) open source machine learning library.

The experimental evaluation was performed in a Intel Core i7-8700K @3.70
GHz with 64 GB RAM, 6 cores and using hyper threading (12 execution threads).
The RNN training phase was performed using a NVIDIA GeForce GTX 1080
GPU with memory of 16GB.

4.2 Experimental results

This subsection reports the experimental results of the proposed computational
intelligence methods.

Analysis of NO2 concentration data. The first step of the study involved
analyzing NO2 concentration data. Weekly, daily, and hourly analysis were per-
formed to detect patterns and periodicity in the time series. Fig. 1 reports the
box plots corresponding to NO2 concentration for each day of the week. Fig. 2
shows the average values corresponding to the hourly NO2 concentration for
each day of the week.

Fig. 1: NO2 concentration distribution along weekdays.
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Fig. 2: Hourly NO2 concentration of each day.

Results reported in Fig. 1 indicate that there are two clear clusters: working
days and weekends. Absolute differences on the median NO2 concentration values
are significant: MAE = 8µg/m3 (19% of the average value for a working day) for
Saturday and MAE = 11µg/m3 (26% of the average value for a working day) for
Sunday. These values account for a significant reduction of vehicles circulating
in the studied area as reported by several media. Furthermore, the analysis of
the time series of hourly values in Fig. 2 clearly shows that the morning peak
of NO2 concentration in working days reduces to almost the half on Saturdays
and to lower than the half on Sundays. On the other hand, the afternoon peak
is still present on weekends.

Table 1 reports the computed values for NO2 concentration before and after
installing the Madrid Central initiative. Minimum (min), median, inter-quartile
range (IQR), and maximum (max ) values are reported, since the results do
not follow a normal distribution, according to the shapiro-Wilks statistical test
(confidence level = 0.99). The ∆ column reports the average difference between
post-Madrid Central and pre-Madrid Central values. ANOVA values indicate
that the differences are statistically significant. The box plots in Fig. 3 present
the comparison of the NO2 concentration per day, between pre-Madrid Central
values and post-Madrid Central values.

Table 1: Summary of the NO2 concentration (in µg/m3) sensed in the center of
Madrid. Negative values of ∆ indicate a reduction of NO2 concentration

weekday
Pre-Madrid Central Post-Madrid Central

∆
ANOVA

min median IQR max min median IQR max F -value p-value

Monday 9.0 41.0 27.0 149.0 2.0 35.0 35.0 147.0 -2.96 8.5 4×10−3

Tuesday 10.0 44.0 31.0 134.0 2.0 33.0 33.0 128.0 -8.49 70.8 <10−3

Wednesday 12.0 43.0 32.0 185.0 2.0 31.0 34.0 123.0 -9.45 87.5 <10−3

Thursday 10.0 43.0 32.0 138.0 1.0 31.0 34.0 131.0 -9.24 72.9 <10−3

Friday 9.0 46.0 32.0 125.0 1.0 33.0 34.0 139.0 -9.68 95.6 <10−3

Saturday 9.0 36.5 23.0 132.0 1.0 30.0 32.0 122.0 -4.99 34.4 <10−3

Sunday 10.0 34.0 21.0 120.0 1.0 23.0 26.0 117.0 -6.63 50.9 <10−3
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Fig. 3: NO2 concentration for each day of the week: � pre-Madrid Central,
� post-Madrid Central.

Differences between pre- and post-Madrid Central NO2 concentration values
seem to be significant, but the simple analysis of median values does not account
for other effects that can be considered to model NO2 pollution. Thus, the pro-
posed approach applies computational intelligence methods to learn and predict
the corresponding time series. The main results are reported next.

Polynomial regression results. Fig. 4 graphically presents the training data
(red dots) and the polynomial used for approximation. The graphics shows that
the quadratic model provides a better approximation than linear and the degree
10 polynomial for pre-Madrid Central observations. In turn, the degree 10 poly-
nomial is the best method to predict values for the post-Madrid Central period.
Results are confirmed by the MSE and MAE values reported in Table 2. For
the pre-Madrid Central period, the quadratic polynomial improves 2.6% over
the linear regression method, and 2.6% over the degree 10 polynomial, regarding
the MSE metric. For the post-Madrid Central period, the degree 10 polynomial
improves 20.9% over the linear regression method, and 1,8% over the quadratic
polynomial, regarding the MSE metric.

Fig. 4: Polynomial regression fitting
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Table 2: Polynomial regression fitting results

fitting method
pre-Madrid Central post-Madrid Central

MSE MAE ↑real MSE MAE ↑ real

linear 426.07 16.74 0.58 633.75 21.43 0.68
quadratic 414.77 16.06 0.55 510.42 18.83 0.69
polynomial (degree 10) 423.76 16.21 0.54 501.40 18.63 0.68

RNN results. Table 3 reports the main results of the RNN accuracy analy-
sis, regarding the two studied metrics (MSE and MAE). Minimum (min), me-
dian, IQR, and maximum (max ) values of both metrics are reported, since the
Shaphiro-Wilks confirmed that results do not follow a normal distribution. Re-
sults indicate that the proposed LSTM RNN is able to accurate approximate the
time series of NO2 concentration. Relative values of MAE were lower than 0.2
(in median) and lower than 0.06 (in maximum). MSE values were significantly
lower than those computed with polynomial regression. Vales of ↑real indicate
that for post-Madrid Central period, the RNN predicted values over the real
measurement in 62% of the observations, accounting for a real reduction on
NO2 concentration in that period. Results are statistically significant, according
to the reported p-values of the Wilcoxon test (p-values <10−7).

Table 3: Results of the RNN accuracy analysis

metric
Pre-Madrid Central Post-Madrid Central Wilcoxon

min median IQR max min median IQR max p-value

MSE 153.56 160.33 4.40 169.69 153.91 161.79 5.10 169.62 <10−4

MAE 9.64 9.89 0.19 10.28 9.59 9.91 0.26 10.20 2×10−2

↑real 0.55 0.56 0.01 0.57 0.60 0.62 0.01 0.64 <10−4

Global discussion. As expected, the RNN provided more accurate predictions
than the ones using polynomial regression, accounting for lower MSE and MAE
metrics. RNN allows capturing the complex relationships and periodicity on
the time series data. For the post-Madrid Central period, MSE and MAE val-
ues reduced up to 0.25 of those of linear regression and up to 0.31 of those of
quadratic and degree 10 polynomials. Furthermore, all methods predicted a ma-
jority of observations over the real values, and the difference was statistically
significant. Thus, results reported in the previous subsection allows concluding
that the Madrid Central initiative has certainly reduced concentrations of the
NO2 pollutant in the city,

5 Conclusions and future work

This article presented an approach applying data analysis and computational
intelligence techniques for evaluating the air quality in the center on Madrid,
Spain. Air quality and pollution are relevant problems in the context of smart
cities, and a reliable diagnosis is key to address such challenges.
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Polynomial regression and deep learning methods were applied to analyze
the time series of NO2 concentration, in order to evaluate the effectiveness of car
restriction policies instrumented in the Madrid Central initiative. Real data was
processed, obtained from a sensor installed in the studied area. The accuracy of
the proposed method was evaluated applying standard metrics for prediction.
Results indicated that RNN accounted for accurate predictions for both pre-
Madrid Central and post-Madrid Central scenarios. MSE and MAE values were
significantly better that polynomial regression.

According to the reported results, Madrid Central was able to significantly
reduce NO2 concentration, thus effectively improving air quality. This a very pos-
itive result, with direct implications on the health of citizens, which is confirmed
by the learning approach presented in this article.

The main lines for future work include extending the analysis to nearby zones
in the city, performing a multivariate analysis by taking into account related
data (e.g., wind speed, temperature, etc.); and evaluating the impact on other
relevant indicators (e.g., economical impact, mobility behaviour, citizens’ health,
etc.) The proposed approach can be applied to other scenarios too.
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17. Or lowski, A., Marć, M., Namieśnik, J., Tobiszewski, M.: Assessment and optimiza-
tion of air monitoring network for smart cities with multicriteria decision analysis.
In: Intelligent Information and Database Systems, pp. 531–538 (2017)

18. O’Ryan, R., Martinez, F., Larraguibel, L.: A neural networks approach to evalu-
ating urban policies: the case of santiago, chile. WIT Transactions on the Built
Environment 23, 127–139 (1996)

19. Reuters: Paris bans up to 60% of its cars as heatwave worsens pollu-
tion, https://www.reuters.com/article/us-france-pollution/paris-bans-up-to-60-of-
its-cars-as-heatwave-worsens-pollution, [2019-11-10]

20. Soni, N., Soni, N.: Benefits of pedestrianization and warrants to pedestrianize an
area. Land Use Policy 57, 139–150 (2016)
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