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ABSTRACT

The mammalian brain is complex, with multiple cell types performing a variety of diverse
functions, but exactly how the brain is affected with aging remains largely unknown. Here
we performed a single-cell transcriptomic analysis of young and old mouse brains. We
provide a comprehensive dataset of aging-related genes, pathways and ligand-receptor
interactions in nearly all brain cell types. Our analysis identified gene signatures that vary
in a coordinated manner across cell types and gene sets that are regulated in a cell type
specific manner, even at times in opposite directions. Thus, our data reveal that aging,
rather than inducing a universal program, drives a distinct transcriptional course in each
cell population. These data provide an important resource for the aging community and
highlight key molecular processes, including ribosome biogenesis, underlying aging. We
believe that this large-scale dataset, which is publicly accessible online (aging-mouse-
brain), will facilitate additional discoveries directed towards understanding and modifying
the aging process.

INTRODUCTION

Aging, the time-dependent functional decline of organs and tissues, is the biggest risk factor
for many diseases, including several neurodegenerative and cardiovascular disorders 12.
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Characterizing aging-related molecular and cellular changes will provide insights into this
complex process and highlight opportunities to slow or reverse its progression, thereby
helping to prevent or treat aging-associated pathologies. That this might be achievable is
supported by a plethora of studies using model organisms demonstrating that not only
lifespan, but also the integrity of multiple tissues, can be regulated by discrete molecular
modifications 3-5.

Towards the goal of achieving a broader understanding of aging-related changes and
deciphering the molecular mechanisms that accompany brain aging, transcriptomic studies
in model organisms and humans have been at the forefront of experiments. However, these
studies generally utilize aggregated RNA from either mixed cell populations ¢-12 that may
vary in distinct ways with age, or cell populations purified using known markers 13-22
which themselves may also change during aging. Therefore, despite the successful
identification of major aging-related genes and pathways, prior transcriptomic analyses
have not resolved the common aging-related changes experienced across all brain cells
from those that may be cell-type specific. Thus, there is a need to elucidate how individual
cell types are affected by aging and to clarify if the process of aging follows a similar
blueprint in all cell types or whether certain cell types have unique transcriptional changes.
This will be critical in determining whether aging at the tissue level is a global process, if it
results from specific changes in certain cell types that culminate in loss of function and
deterioration, or a combination of both 23, This information may also help the design of
effective aging-related therapeutics that are targeted either narrowly, affecting only certain
cell types, or more broadly, affecting all cells.

In this study, to begin to address these issues, we employed single-cell RNA sequencing to
profile and compare the cellular composition and transcriptomes of young and old mouse
brains. This is the first large-scale transcriptomic analysis of aging for the vast majority of
individual brain cell types. For all the major cell populations identified, we provide a
comprehensive dataset of genes and pathways whose transcriptional profiles change with
aging. Our computational analysis suggests that cells in the brain do not change with aging
identically, indicating that, while overlapping signatures exist, the cellular consequences of
aging are not universal. Given that cell non-autonomous changes are also known to
regulate aging-dependent changes 34, we also detail ligand-receptor interactions among
nearly all the cell types in the brain that are modified by aging. Overall, this study provides
a rich resource that can facilitate the interrogation of the molecular underpinnings and
cellular basis of the aging process in the mouse brain.

RESULTS

Identification of cell types
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To gain new, more precise, insights into the effects of aging, we employed unbiased high-
throughput single-cell RNA sequencing (scRNA-seq) to examine the transcriptional profiles
of young and old mouse brains (Fig. 1A). Because the dissociation of mammalian adult
brains is challenging due to the complexity of the tissue involving a very dense intercellular
space, including an extensive neuronal network insulated by myelin sheaths, we first
developed a new dissociation protocol that enables the isolation of healthy and intact cell
suspensions that are representative of both young and old mouse brains (see details in
Supplementary Methods).

We then analyzed the transcriptomes of 50,212 single cells (24,401 young and 25,811 old)
derived from the brains of 8 young (2-3 months) and 8 old (21-23 months) mice
(Supplementary Fig. 1-2). We first aggregated transcriptionally similar cells, using an
established clustering algorithm 2425, Next, we removed clusters likely to be of low quality,
resulting from debris, doublets/multiplets and dead cells (Supplementary Fig. 3), and
employed other critical quality control steps as described in the Supplementary Methods
(Supplementary Fig. 4). Ultimately, our analysis led to the identification of 37,069 cells
(Supplementary Fig. 5A), representing 25 cell types (Fig. 1B) with distinct expression
profiles (Fig. 1C-D and Supplementary Fig. 6): oligodendrocyte precursor cells (OPC),
oligodendrocytes (OLG), olfactory ensheathing glia (OEG), neural stem cells (NSC),
astrocyte-restricted precursors (ARP), astrocytes (ASC), neuronal-restricted precursors
(NRP), immature neurons (ImmN), mature neurons (mNEUR), neuroendocrine cells
(NendC), ependymocytes (EPC), hypendymal cells (HypEPC), tanycytes (TNC), choroid
plexus epithelial cells (CPC), endothelial cells (EC), pericytes (PC), vascular smooth muscle
cells (VSMC), hemoglobin-expressing vascular cells (Hb-VC), vascular and leptomeningeal
cells (VLMC), arachnoid barrier cells (ABC), microglia (MG), monocytes (MNC),
macrophages (MAC), dendritic cells (DC), and neutrophils (NEUT). Cell counts and other
sequencing metrics for each identified cell type are shown in Fig. 1E and Supplementary
Fig. 5B-E.

Identification of cell subtypes and states

To reveal heterogeneity within each population, we grouped the aforementioned cell types
into 6 classes based on their expression profile, lineage, function and anatomical
organization (oligodendrocyte lineage, astrocyte lineage and stem cells, neuronal lineage,
ependymal cells, vasculature cells, and immune cells) (Supplementary Fig. 7) and employed
another round of clustering. This subsetting of the data enabled us to highlight more subtle
changes within the classes without the impact of variation due to inclusion of drastically
different cell identities. This secondary analysis identified dozens of different cell subtypes
and states reflecting distinct functional, maturational and regional cell identities
(Supplementary Fig. 8-9). These cell identities are in line with recent scRNA-seq studies 2¢-
42 whose purpose was to identify novel and distinct cell types/subtypes and create detailed
atlases of the developing and adult mouse brain (see details in Supplementary Fig. 8). This
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allowed us to generate a comprehensive dataset of gene expression profiles for all the
experimentally validated cell populations from both young and old brains at high
resolution (Supplementary Tables 1 and 2). It also permitted us to identify specific markers
that distinguish each type regardless of age (Supplementary Table 3).

Aging-related effects on cell-to-cell transcriptional variability and cellular
composition

We found that cell identity is largely preserved in old brains as indicated by unbiased
clustering where all clusters represent cells of all animals from both ages (Supplementary
Fig. 4C). Furthermore, the quality of data generated from both young and old cell types
appears similar, with each having comparable numbers of unique molecular identifiers
(UMI) and detected genes (Supplementary Fig. 5C, E). Next, we compared the coefficient of
variation (CV) of expression for all the transcribed genes (Supplementary Fig. 10A), only
the mitochondrially-encoded genes (Supplementary Fig. 10B), or only the ribosomal
protein genes (Supplementary Fig. 10C). We observed differences in the variability of
transcription between young and old cells in many cell types. However, the directionality of
change was not identical among cell types, providing evidence that aging is not broadly
associated with increased transcriptional variation 43.

Then, by investigating the abundance of each cell type, we found that cellular composition
was largely consistent across both young and old brains (Fig. 2A and Supplementary Table
4). Nonetheless, we were able to confirm the previously reported aging-related decline of
OPC 44, NRP 4546 and ImmN 4647, (Fig. 2A), and to reveal potentially interesting but not
statistically significant population shifts within certain subtypes of OPC, OLG, ASC, mNEUR
and MG (Supplementary Fig. 11; see also details in Supplementary Fig. 8). Of note, although
the estimated percentages for each cell type do not necessarily reflect their actual
proportions in the mouse brain, mainly due to differences in their sensitivity to tissue
dissociation, the observed changes in cell type ratios appear to reflect a real biological
effect.

Identification of aging-related genes

We then investigated the breadth of transcriptional changes that occur in the mouse brain
with aging by performing differential gene expression (DGE) analysis between young and
old cell types and neuronal subtypes (Supplementary Table 5). Of the 14,699 total detected
genes, 3,897 were significantly affected by aging in at least one cell type (FDR<0.05). When
the magnitude of change in expression was also considered, 1,113 genes passed the 10%-
fold-change (FC) threshold (Fig. 2B and Supplementary Table 6). Interestingly, of those,
1,027 exhibited the same directionality regardless of the cell type identity (531
upregulated and 496 downregulated), while the direction of change in the expression of 86
genes was different across cell populations (discussed further below; Supplementary Table
6). As described in Supplementary Methods, our ability to identify genes whose
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transcription changes significantly with aging and the calculation of fold-change is
dependent on several factors, including the number of cells within each population, the
level of transcription, and the algorithm for analysis.

Identification of shared and cell-type specific aging signatures

To ensure the validity of these aging signatures, we first started broadly and compared our
data with past transcriptomic studies of the mouse aging brain 6848, To more effectively
compare datasets, we aggregated all of our sequenced cells, thereby recreating a traditional
whole brain profile similar to what might be observed using bulk sequencing
(Supplementary Tables 2 and 5). As expected, this analysis verified previously identified
top aging-related genes (such as Apod, B2m, C1qa, C4b, Ctss, 1133, Rpl8). Moreover, due to
the increased sensitivity of the techniques used in our study compared to past ones, we
were able to identify a set of aging-related genes not reported previously (such as Apocl,
Caly, Cxcl12, Nell2, Ybx1; see Supplementary Table 5). These changes could have been
masked in past studies due to their limited expression levels or variations in less abundant
cell types. Importantly, our single cell DGE data enabled us to build on these results to
identify from which cell types these aging signatures arose. For example, Ctss, while highly
transcribed in all immune cells (MG, MAC, MNC, DC; see Supplementary Table 2), was only
significantly changed with aging in MG (Supplementary Table 5). Another example is NellZ,
which is mostly transcribed in neuronal lineage cells and OEG (Supplementary Table 2),
but its levels changed with aging only in OEG (Supplementary Table 5).

We then focused our analysis on 11 major cell populations that exhibited the greatest
number of differentially regulated genes (see Fig. 2B). By comparing the DGE data from
these cell populations (Fig. 2C and Supplementary Fig. 12), we were able to distinguish
both shared and cell-type specific aging signatures. Supplementary Table 6 presents a
matrix that specifies the genes that changed significantly in each cell type.

Fig. 2D presents selected top aging-related genes that are shared across multiple cell types.
The majority of the most commonly aging-upregulated genes were ribosomal protein genes
(such as Rpl6), IncRNA genes (such as Malat1) and immunoregulatory/inflammatory genes
(such as BZ2m). The most commonly aging-downregulated genes were mitochondrial
respiratory chain complex genes (such as mt-Nd1), glycolysis-related genes (such as Aldoc),
genes encoding selenoproteins (such as Sepw1) and tetraspanins (such as Tspan?7) (Fig. 2D
and Supplementary Table 6).

A subset of genes representing cell-type specific aging signatures are highlighted in Fig. 2E.
Interestingly, these data revealed that certain genes that are traditionally used as cell type
specific markers change with aging, such as the decrease of Mog in OLG and CsfIr in MG,
and the increase of Cxcl12 in EC (Fig. 2E and Supplementary Tables 5 and 6). Conversely,
we observed that other classic cell type marker genes change with aging in other cell types.
For example, Gfap, which is highly transcribed and enriched in the astrocyte lineage and
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stem cells (Supplementary Table 2), was found as one of the genes that increased the most
in EPC (Fig. 2E and Supplementary Tables 5 and 6).

We next sought to validate certain shared and cell type unique aging-related gene
expression changes. As shown in Fig. 3A, we were able to verify transcriptional changes in
the shared aging-related genes Rpl6, Malatl and Meg3 by in situ hybridization. We also
confirmed the cell type specific aging-related changes of genes such as BZm, Csf1r, Ctss,
Cxcl12 and Sparc by bulk RNA-seq and qRT-PCR analysis of FACS-purified CD31+* (EC),
CD11b* (MG) and ACSA2* (ASC) cells (Fig 3B-C and Supplementary Fig. 13). Additionally, to
further determine if our transcriptomic approach faithfully captured changes at the protein
level, we performed immunohistochemistry. As shown in Fig. 3D, we again observed the
specific aging-related downregulation of SPARC in MG and the global aging-related increase
of IL33 that is mostly expressed by OLG (Supplementary Fig. 14), as revealed by our
scRNA-seq analysis (Fig. 2E and Supplementary Table 2) and by others 3134,

Identification of bidirectional aging signatures

Analysis of our sequencing dataset also revealed individual genes with opposite regulation
among different cell types (Supplementary Fig. 15 and Supplementary Table 6). For
example, the tetraspanin Cd9 was downregulated in OPC and ASC but upregulated in EC
and MG. This bidirectional aging signature was confirmed between OPC and MG by dual
fluorescence in situ hybridization (Fig. 4A-B). Another example of bidirectional changes
with aging is Cldn5, which is often used as a marker for EC, but it is also highly transcribed
in OEG (Supplementary Table 2). We found aging-related downregulation of Cldn5 in EC
but upregulation in OEG (Supplementary Table 5). Notably, when its levels were measured
in the whole brain, changes were minimal (Supplementary Tables 2 and 5), further
highlighting why certain aging-related changes were masked in previous bulk sequencing
studies.

Similarly, we found large gene sets, such as ribosomal protein genes, that were discordant
between cell types (Supplementary Fig. 15B and Supplementary Table 6). As mentioned
above, many ribosomal protein genes were found among the top shared aging-upregulated
genes across major cell populations (Fig. 2D and Supplementary Table 6), but a subset of
these genes also exhibited differential regulation/directionality with aging in certain cell
types (Supplementary Fig. 15B). For example, Rps23 was found to be downregulated in OPC
and ASC, but upregulated in mNEUR, EC and MG. This differential aging-related
transcriptional signature was confirmed in OPC and MG by dual fluorescence in situ
hybridization (Fig. 4C-D).

Interestingly, when we examined the expression profile of all genes encoding ribosomal
proteins across major cell populations, we found two distinct and divergent patterns. As
shown in Fig. 5A (see also Supplementary Table 6), both OPC and ASC were found to
downregulate a fraction of their ribosomal protein genes with aging, while the other cell
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types upregulated their expression. These patterns of expression were also detected when
neuronal subtypes were compared, where GABA and GLUT neurons exhibited upregulation
of their ribosomal protein genes with aging, while DOPA neurons exhibited downregulation
(Supplementary Table 5). To validate these broad bidirectional aging-related signatures,
we examined ribosomal protein gene expression in FACS-purified ACSA2+ (ASC), CD31+
(EC) and CD11b* (MG) cells. As shown in Fig. 5B-C, bulk RNA-seq reproduced the scRNA-
seq data for a subset of ribosomal protein genes, highlighting their potentially distinct
responses to aging.

Identification of aging-related pathways

Next, we investigated changes in aging-related cellular pathways and processes by
performing gene set enrichment analysis (GSEA) 4°. GSEA has increased sensitivity
compared to DGE analysis as it aggregates information from broad sets of genes that are
presumed to be functionally related. As such, we were also able to include cell types and
neuronal subtypes with limited cell numbers that did not show significant aging-related
changes by DGE analysis. This approach revealed the existence of many shared and cell-
type specific aging-related pathways across the examined cell populations (Fig. 6 and
Supplementary Tables 7 and 8). In total, 451 pathways (1,142 GSEA terms) changed
significantly (p<0.05 & q<0.25); 234 were expressed in at least 2 cell types, while the
remaining 217 were unique for specific cell populations. Of those aging-related pathways,
339 exhibited the same directionality regardless of cell type (195 were upregulated and
144 downregulated), while the directions of change in the remaining 112 varied across cell
types (Supplementary Table 8). The most common aging-related pathways were those
associated with cellular respiration, protein synthesis, inflammatory response, oxidative
stress, growth factor signaling, and neurotrophic support (Fig. 6 and Supplementary Table
8). As expected, GSEA showed that the aging process entails many biological changes in
mNEUR that were in common across its major subtypes. These include the impairment of
key metabolic pathways, the dysregulation of ion homeostasis and the disruption of
neurotransmission (Supplementary Tables 7 and 8), all of which have been very well
documented in the literature °.

Here, we highlight changes in EC and EPC, two understudied, but important, brain cell
populations, that form the barriers that isolate the brain parenchyma from factors
circulating in blood and cerebrospinal fluid. GSEA showed that EC exhibit numerous aging-
regulated cellular pathways and biological processes, such as the aging-related induction of
senescence, hypoxia signaling and response to ketone signaling, and the aging-related
reduction of =xenobiotic metabolism, lipid metabolism and hormone processing
(Supplementary Fig. 16A and Supplementary Tables 7 and 8). In EPC, there was a notable
upregulation of interferon-induced signaling (Supplementary Fig. 16B and Supplementary
Tables 7 and 8) that aligns with the induction of certain interferon-stimulated genes (like
Ifitm3) just as found in the DGE analysis (Supplementary Tables 5 and 6). The aging-related
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upregulation of interferon-stimulated genes and other aging-induced genes was also seen
by qRT-PCR in FACS-purified EPC (Supplementary Fig. 17). This suggests that an aging-
induced inflammatory response may extend to these cells, and appears similar to what it
has been previously reported for the choroid plexus epithelium 59,

Importantly, GSEA also points to ribosome biogenesis as a biological process exhibiting
differential regulation with aging across different cell types and neuronal subtypes, beyond
what we found based on DGE analysis alone (Supplementary Tables 7 and 8). In particular,
even employing stringent significance criteria, the vast majority of brain cell types were
seen to exhibit an aging-related upregulation of genes encoding ribosomal subunits, while
three types of stem/progenitor cells (NSC, NRP, OPC) showed downregulation (Fig. 6,
Supplementary Fig. 18 and Supplementary Table 8).

Identification of aging-related changes in intercellular communication

Finally, our single-cell transcriptomics data provides the ability to explore how aging-
driven changes in gene expression might affect intercellular communication within the
brain. By leveraging the transcriptional profiles of each cell population, we built a
comprehensive intercellular network of potential ligand-receptor interactions among
nearly all the identified brain cell types. We then enriched this network with data from our
DGE analysis to mark all those interactions that were found to change with aging at the
ligand or receptor level. To facilitate the visualization and exploration of these data, we
created an online interactive data viewer that can also be downloaded as an R package
(see details in Supplementary Methods).

Here we highlight the ligand-receptor changes in EC (Fig. 7), not only because they
exhibited a variety of aging-related changes, as mentioned above (see Fig. 2B-C and
Supplementary Fig. 16A), but also because they possess the unique ability to interact
directly with factors synthesized in the brain and with those secreted by peripheral tissues
into the circulation. Network analysis showed that both cystatin C (Cst3; an aging-
downregulated gene), and stromal cell-derived factor 1 (Cxcl12; an aging-upregulated
gene) (see Fig. 3B), which have been previously linked to multiple pathologies >1-54, are
mediators of crosstalk between vascular cells and many brain cell types (Fig. 7). This
signifies that their aging-related changes may modulate, either synergistically or
separately, important, still to be identified aging-related processes occurring in the brain
parenchyma.

DISCUSSION

The transcriptomic database reported here is the first to examine the aging process in the
mammalian brain at a single-cell level. In this study, we first investigated the cellular
complexity of the mouse brain and showed that cell identity and composition is generally
maintained with aging. More specifically, we found that the numbers of cells within most of
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the cell types did not change radically with age, when quantified as a fraction of total brain
cells, which is in line with previous findings °5-59. Nonetheless, we did observe the
previously reported aging-related decline of certain cell populations, such as NRP 4546, Of
note, it seems possible that additional work focused on this issue might reveal additional
changes in subtypes of cells, particularly those occurring in specific regions of the brain.

We then compared young and old cells and observed a noticeable aging-related cell-to-cell
transcriptional variation within certain cell populations. However, our data did not show a
universal aging-related change in transcriptional variability across all cell types. That is,
gene transcription in particular cell populations does not necessarily become more variable
with aging. This is in line with Warren et al. 9, but in contrast to other studies that
suggested increased transcriptional variability as a common feature of aging 4361,

By aggregating all of our sequenced single cells and performing DGE analysis comparable
to what was done in prior bulk sequencing studies, we validated many of the previously
identified aging-related genes ¢848 and extended the list to include numerous additional
gene signatures. We then utilized single cell type DGE analyses to reveal the primary cell
type(s) generating these signatures. The fine resolution provided by scRNA-seq further
allowed us to detect changes in specific cell populations that would otherwise be masked
by bulk sequencing techniques. More specifically, single cell type DGE analyses yielded a
large number of aging-related genes that are: (a) commonly regulated among cell types, (b)
specific to certain cell types and (c) discordant between cell types. To the best of our
knowledge, only a small fraction of the genes reported here have been previously
associated with brain aging.

Interestingly, our data analysis revealed different patterns of aging across cell populations.
We found that certain aging-related genes and pathways are differentially regulated across
cell types. For example, we provide evidence that, with aging, expression of ribosomal
protein genes is regulated in opposite directions among groups of cell types and among
neuronal subtypes. Data from both DGE and pathway analyses showed that most of the
brain cell types exhibited an aging-driven upregulation of ribosomal protein genes, while
those exhibiting the opposite regulation include important stem/progenitor cell
populations. This paradoxical bidirectional regulation of ribosomal protein genes with
aging is noteworthy.

Over the past few years, it has been clearly shown that the attenuation of protein synthesis
by dietary restriction or genetic manipulation of translation-associated genes, including
those encoding ribosomal subunits, increases the lifespan of multiple species 2. Notably,
the down-regulation of ribosomal protein genes and bulk protein synthesis has been long
considered as a hallmark of aging 6364, It appears that the aging-driven down-regulation of
ribosomal protein genes had been widely accepted, mostly based on transcriptomic studies
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in yeast 566, However, several studies in other model organisms and humans have
presented conflicting results 7.1267-74, Zahn et al. reported an aging-driven upregulation of
ribosomal protein genes in human brain and muscle tissues 48 and, in a later study,
reported an aging-driven upregulation of ribosomal protein genes in mouse neuronal
tissues 7 with a downregulation of the same genes in multiple non-neuronal tissues 7.
Moreover, recently published transcriptomic studies showed an aging-related
downregulation of ribosomal protein genes in both ASC 17 and NSC 75, and an upregulation
in MG of both aged 187¢ and diseased brains 76¢-78, Intriguingly, a very recent study reported
increased ribosome biogenesis and activity as hallmarks of premature aging in human
fibroblasts 79. A possible explanation for this is that cells with different metabolic demands
are affected differently by aging, thus inducing alternative feedback loops to partially
compensate for loss of translational efficiency and protein synthesis. Another explanation
is that certain cell populations may start producing different types and/or levels of
specialized ribosomes 8° tailored to their translational needs to cope with the metabolic
changes induced by aging.

Collectively, these data indicate that the aging process may not be identical in all cell types,
which is in line with our findings and with a recent transcriptome analysis of the
Drosophila brain that showed a differential aging trajectory in the transcriptional profile of
neurons and glial cells 72. In short, it is not yet clear whether the regulation of ribosomal
protein genes and other translation-associated genes is causative of aging or the
consequence of physiological changes accompanying aging, or both depending on species,
tissue and cell type. However, our work demonstrating that ribosome biogenesis is one of
the aging-related pathways that is differentially regulated across different cell types may
help to reconcile seemingly conflicting studies.

Lastly, we created a roadmap of intercellular communication in the brain by generating
detailed information on ligand-receptor interactions that change with aging across nearly
all brain cell types. This is also of high importance as recent findings from our lab 8! and
others 5082-84 have shown that certain secreted factors, either derived from brain
parenchyma or blood, are able to modulate brain aging, degeneration and rejuvenation.
Thus, the discovery of novel factors, their source, and their targets are emerging areas of
importance in the aging field and will be crucial for understanding brain physiology in both
health and disease 4. We foresee the extension of this network by including data from blood
proteomic analyses and transcriptomic data from both mouse disease models and
heterochronic parabiosis experiments 81, to generate additional data that may help in
identifying novel therapeutic targets for treating functional defects in the brain brought on
by aging and disease.

Our findings, in agreement with recent studies, highlight the sensitivity and power of
single-cell transcriptomics not only to reveal differences in cell identities, but also to reveal
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changes within individual cell types after different treatments and conditions 30333485
including organismal aging 1820.2171-73_ As single-cell sequencing technologies continue to
mature, some of the technical and experimental limitations that we encountered will be
improved upon. These include: (a) potential sampling problems resulting from the
enzymatic dissociation of the brain that may be overcome using single-nuclei sequencing
approaches 2786; (b) potential age-associated biases in response to dissociation, cell
encapsulation, and other procedures that might drive transcriptional differences between
experimental groups; (c) the relatively small number of cells sequenced compared to the
total size of the brain, restricting the comparative analyses to more abundant cell
populations; (d) the relatively shallow depth of sequencing limiting the analysis to highly
transcribed genes; and (e) the lack of full-length splicing isoform profiling that could be
enabled using other methods 87. Our data could not also reveal potentially important aging-
driven regional changes 2288 that may be resolved using spatial mapping sequencing
approaches 89, and sex-specific gene expression variations as only whole brain
preparations of male mice were analyzed.

Nonetheless, our work identified aging-related changes in nearly all mouse brain cell types
and revealed different patterns of aging across different cell populations, many of which we
validated in this study. Thus, while there may be hallmarks of aging that occur in most cell
types, such as mitochondrial dysfunction and loss of proteostasis 12563, our data argue
against the hypothesis that aging induces a single universal molecular program in all cells
and tissues 23. However, we note that the aging process, now thought to begin soon after
birth, may occur gradually or in discrete steps depending on complex interactions among
cells in the brain, and ways in which these interactions modified by extrinsic factors, such
as stress and exercise. Thus, future studies studying gene expression changes along a
continuum, by examining additional timepoints, will help to reveal the precise aging
trajectories for each cell and gene, and to distinguish changes that are causative of aging
from those that change as a consequence of aging. Future studies will also assist in
deciphering the exact molecular mechanisms and dynamics by which cell types, tissues and
organisms respond to normal aging.

Collectively, as a resource to the aging community, we provide a comprehensive dataset of
genes, pathways and ligand-receptor interactions with aging-related variation for all the
cell types identified. We expect that, beyond the valuable exploration of aging signatures
and novel insights regarding the aging process, our data will be used as a reference for a
series of other applications. For example, we showed that numerous putative cell specific
marker genes change with aging. Thus, the purification or investigation of cells based on
single discriminatory markers maybe faulty in the context of aging. Similarly, our data
revealed that the transcript levels of certain housekeeping genes change with aging in
many cell types, which could confound some quantitative analyses.
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Finally, we expect that these data will help to advance a variety of efforts towards
understanding and modulating the aging process and exploring molecular and cellular
therapeutic targets for aging-related neurodegenerative diseases. Furthermore, as
mentioned above, we hope that our data will serve as a benchmark from which to carry out
future studies with higher spatial and temporal resolution.
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FIGURE LEGENDS

Fig. 1. Identification of cell types. (A) Overview of the experimental workflow. (B) t-
distributed stochastic neighbor embedding (t-SNE) projection of 37,069 cells derived from
8 young and 8 old mouse brains. Cell clusters were color-coded and annotated post hoc
based on their transcriptional profile identities (see Supplementary Methods). (C) t-SNE
visualization of 6 major cell populations showing the expression of representative well-
known cell-type-specific marker genes. Numbers reflect the number of unique molecular
identifiers (UMI) detected for the specified gene for each cell. (D) Violin plot showing the
distribution of expression levels of known representative cell-type-enriched marker genes
across all 25 cell types. Markers used: Pdgfra, OPC 2%; Cldn11, OLG 2°; Npy, OEG 3¢; Thbs4,
NSC 90-%; Cd44, ARP 95; Gjal, ASC 33; Cdk1, NRP ; Sox11, ImmN 35; Syt1, mNEUR 28; Baiap3,
NendC °¢; Ccdc153, EPC 39; Sspo, HypEPC 39; Rax, TNC 39; Ttr, CPC 26; Cldn5, EC 37; Kcnj8, PC
37, Acta2, VSMC 37; Alas2, Hb-VC 3497; Slc6a13, VLMC 2939; Slc47a1, ABC 3%, Tmem119, MG 33;
Plac8, MNC 38; Pf4, MAC 38; Cd209a, DC 3898; S100a9, NEUT 38. (E) Bar plot showing the total
number of detected cells and the total number of detected genes per cell type.

Fig. 2. Aging-related population shifts and changes in gene expression. (A) Bar plot
showing the fraction of cells associated with each cell type in both young and old brains
(data presents mean * SEM of 8 young and 8 old brains; *FDR<0.05 by Mann-Whitney U
test). (B) Strip chart showing the aging-related logarithmic fold changes (logFC) of all
detected genes across all cell types. Each point represents a gene. Genes in colored dots are
significantly (FDR<0.05 and FC>10%) upregulated or downregulated with aging. Genes in
gray are not significantly changed with aging. (C) Sample volcano plot for EC showing -
log10(FDR) and logFC values for all genes with highlighting for those that are significantly
upregulated (magenta dots) or downregulated (blue dots) with aging. Genes in black are
not significantly changed with aging. (D) Heatmap of logFC showing a subset of aging-
related genes (FDR<0.05 and FC>10%) that are shared across many of the major cell types.
Gray indicates no significant dysregulation. (E) Heatmap of logFC showing a subset of
aging-related genes (FDR<0.05 and FC>10%) that are unique to each major cell type.

Fig. 3. Validation of shared and cell-type-specific aging-related gene expression
changes. (A) Violin plots with data in units of transcripts per million (TPM) from our
scRNA-seq across all identified cell types (left panels) and RNAscope in situ hybridization
images (middle panels) of mouse hippocampi showing the aging-related upregulation of
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the ribosomal protein gene Rpl6, and of the IncRNAs Malat1 and Meg3. This brain area was
selected due to its high expression levels of those genes, according to the Allen Brain Atlas
99, Scatter plots (right panels) showing the quantification of the RNAscope data of 3-4
independent experiments (data presents mean + SEM; *p<0.05, **p<0.01 by Welch's t-test).
Scale bar: 20pm. (B) Heatmap showing the fold expression changes (FC) of a few
representative significantly (FDR<0.05) aging-related genes in MG, EC, and ASC as
identified by our scRNA-seq (left panel) and verified by both bulk RNA-seq (middle panel)
and qRT-PCR (right panel) on sorted CD11b* (MG), CD31* (EC) and ACSA-2+* (ASC) cells.
Gray indicates no aging-related gene expression changes in the seq data; consequently,
these genes were not analyzed by qRT-PCR. For the qRT-PCR experiments data presents
mean +* SEM of 3-9 young and 3-10 old mouse brains. (C) Scatter plots showing the
significant correlations of the gene expression changes in (B) between the scRNA-seq, bulk
RNA-seq and qRT-PCR datasets. Linear regression is depicted with the colored line, while
black dotted lines represent 95% confidence intervals. Correlation coefficient (R?) and p-
value are shown at the bottom right of each plot. (D) Violin plots and
immunohistochemistry showing the aging-related up-regulation of IL33 that is mainly
expressed in OLG (see Supplementary Fig. 14), and the aging-related down-regulation of
SPARC in MG (IBA1-positive cells; indicated by arrows). Scale bar: 50pum. Scatter plots
showing the quantification of the immunohistochemistry data of 4 independent
experiments (data presents mean + SEM; *p<0.05 by Welch’s t-test).

Fig. 4. Validation of bidirectional aging-related gene expression changes. (A-B) Violin
plots with boxplots overlay of UMI from our scRNA-seq (left panels) and representative
RNAscope in situ hybridization micrographs (middle panels) of mouse cortices showing the
aging-related downregulation of Cd9 in OPC (Pdgfra* cells; indicated by arrows) (A), and
the aging-related upregulation of the same gene in MG (Itgam* cells; indicated by arrows)
(B). Arrowheads in (B) designate autofluorescence from lipofuscin granules in the
lysosomes of old microglia 190 (see details in Supplementary Methods). Violin plots with
boxplots overlay (right panels) showing the quantification of the RNAscope experiments
(data presents median expression of Cd9 in Pfgfra* OPC and Itgam* MG derived from 4
young and 4 old brains; ***p<0.0001 by Mann-Whitney U test). Scale bar: 2um. (C-D)
Violin plots with boxplots overlay of UMI from our scRNA-seq (left panels) and
representative RNAscope in situ hybridization micrographs (middle panels) of mouse
cortices showing the aging-related downregulation of the ribosomal protein gene Rps23 in
OPC (C), and the aging-related upregulation of the same gene in MG (D). As in (B),
arrowheads in (D) designate autofluorescence from lipofuscin granules. Dotted lines
outline the area of each cell that was considered for quantification (see details in
Supplementary Methods). Violin plots with boxplots overlay (right panels) showing the
quantification of the RNAscope experiments (data presents median expression of Rps23 in
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Pfgfra* OPC and Itgam* MG derived from 4 young and 4 old brains; ****p<0.0001 by Mann-
Whitney U test). Scale bar: Zpum.

Fig. 5. Aging-related changes in the expression of ribosomal protein genes. (A)
Heatmap showing the logFC for all the significantly (FDR<0.05) aging-related ribosomal
and translation-associated genes across 11 cell types, as identified by our scRNA-seq. Gray
indicates no aging-related changes. (B) Heatmap of logFC showing all the significant
(FDR<0.05) aging-related ribosomal protein genes and translation-associated genes across
MG, EC and ASC as identified by our scRNA-seq (left panel) and further verified by bulk
RNA-seq on sorted CD11b* (MG), CD31+ (EC), and ACSA-2* (ASC) cells (right panel). The few
inconsistencies presented here more probably reflect differences in the composition of the
input sorted populations used for the comparisons (see details in Supplementary Methods).
Of note, despite the fact that only a subset of these genes was found significantly
dysregulated in our bulk RNA-seq analysis, due to lower statistical power, there is a
significant correlation of the gene expression changes between the scRNA-seq and bulk
RNA-seq datasets, as shown in scatter plot (C). More specifically, dots in (C) represent all
genes from the examined cell types in (B). Linear regression is depicted with the colored
line, while black dotted lines represent 95% confidence intervals. Correlation coefficient
(R?) and p-value are shown at the bottom right of the plot.

Fig. 6. Aging-related changes in cellular pathways and processes. Heatmap of gene set
enrichment analysis (GSEA) showing a small subset of significant (p<0.05 and g<0.25)
aging-related pathways across major cell types. Numbers in legend correspond to
normalized enrichment scores (NES). Positive NES values indicate upregulation, while
negative NES values indicate downregulation. Gray indicates no significant dysregulation
with aging.

Fig. 7. Aging-related changes in intercellular communication. Panel (A) shows aging-
related ligands produced and secreted by EC with receptors expressed in ASC, while panel
(B) shows aging-related ligands produced and secreted by EC with receptors expressed in
mNEUR. In both panels, nodes represent ligands or receptors expressed in the denoted cell
type, and edges represent protein-protein interactions between them. Node color
represents magnitude of differential gene expression (logFC as estimated by the MAST
model), such that the most significantly age-upregulated genes are in magenta, and age-
downregulated are in blue. Node borders indicate statistical significance of differential
expression, specifically the false-discovery rate expected from the MAST analysis. Edge
color represents the sum of scaled differential expression magnitudes from each
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contributing node, while width and transparency are determined by the magnitude of
scaled differential expression (see Supplementary Methods). These figures have been
filtered such that the top 65 edges representing the most differentially expressed node
pairs are shown. Figures for these cell interactions, and all others, are available from our
interactive data viewer accessible at: https://baderlab.github.io /AgingMouseBrainCCInx/.
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METHODS

Animals

C57BL/6] mice (JAX #000664) were housed in the Harvard Biolabs Animal Facility under
standard conditions. All experimental procedures were approved in advance by the Animal
Care and Use Committee of Harvard University (AEP #10-23) and are in compliance with
federal and state laws. Young male mice were used at 2-3 months of age, and old male mice
at 21-22 months of age.

Brain tissue dissociation

Here we modified existing dissociation protocols and developed a new protocol that
enables the isolation of intact living cells from both young and old mouse brains in less
than 1 hour. Briefly, mice were COz-anesthetized and then rapidly decapitated. Brains were
extracted, and hindbrain regions were removed. The remaining brain tissue was
dissociated into single cells using the Adult Brain Dissociation kit (Miltenyi Biotec #130-
107-677) with these modifications: (a) the tissue was manually dissociated following the
basic steps of the protocol described in the Neural Tissue Dissociation Kit (Miltenyi Biotec
#130-092-628); (b) 5% (w/v) trehalose (Sigma Aldrich #T0167) was added in all buffers
to ensure higher cellular viability 1; (c) half concentration of papain was used, and the
digestion was performed at 33-35°C; (d) the enzymatic reaction was quenched using
ovomucoid protease inhibitor, as described in the Papain Dissociation System
(Worthington #LK003182); (e) cell clusters were removed by serial filtration through pre-
wetted 70um (Falcon #352350) and 40um (Falcon #352340) nylon cell strainers; (f)
myelin debris and erythrocyte removal steps were omitted to prevent any bias in the
recovered cell yields; (g) all centrifugations were performed at 220xg for 8min at 4°C. After
dissociation, cells were kept on ice for no longer than 1 hour until further processing.

Single-cell RNA-sequencing

For the scRNA-seq experiments, 8 young and 8 old mouse brains were analyzed, with 2
animals sacrificed per day. Brain cells were processed through all steps to generate stable
cDNA libraries. Briefly, after dissociation, cells were diluted in ice-cold PBS containing 0.4%
BSA at a density of 1,000 cells/ul. For every sample, 17,400 cells were loaded into a
Chromium Single Cell 3’ Chip (10x Genomics) and processed following the manufacturer’s
instructions. Single-cell RNA-seq libraries were prepared using the Chromium Single Cell 3’
Library & Gel Bead kit v2 and i7 Mutiplex kit (10X Genomics). Libraries were pooled based
on their molar concentrations. Pooled libraries were then loaded at 2.07 pM and sequenced
on a NextSeq 500 instrument (Illumina) with 26 bases for read1, 57 bases for read2 and 8
bases for Index1. Cell Ranger (version 1.2) (10X Genomics) was used to perform sample de-
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multiplexing, barcode processing and single cell gene unique molecular identifier (UMI)
counting, while a digital expression matrix was obtained for each experiment with default
parameters 2, mapped to the 10X reference for mm10, version 1.2.0. After the initial
sequencing, the samples in each pool were re-pooled based on the actual number of cells
detected by Cell Ranger (Supplementary Fig. 2A), aiming to sequence each sample to a
similar depth (number of reads/cell) (median: 40,007; Supplementary Fig. 2C). Multiple
NextSeq runs were conducted to achieve over 70% sequencing saturation as determined
again by Cell Ranger (median: 75%; Supplementary Fig. 2F).

Raw data processing and quality control for cell inclusion

Basic processing and visualization of the scRNA-seq data were performed using the Seurat
package (version 2.3) in R (version 3.3.4) 3-5. Our initial dataset contained 50,212 cells with
data for 19,607 genes. The average numbers of UMI (nUMI) and non-zero genes (nGene)
were 2876.70 and 1112.56 respectively. The data were log normalized and scaled to
10,000 transcripts per cell. Variable genes were identified with the FindVariableGenes()
function with the following parameters used to set the minimum and maximum average
expression and the minimum dispersion: x.low.cutoff = 0.0125, x.high.cutoff = 3, y.cutoff =
0.5. Next, principal component analysis (PCA) was carried out, and the top 20 principal
components (PCs) were stored, which is the default number in Seurat. Clusters were
identified with the FindClusters() function using the shared nearest neighbor (SNN)
modularity optimization with a clustering resolution set to 1.6. All clusters with only one
cell were removed. This method resulted in 40 initial clusters. Data for all cells are
provided in Supplementary Fig. 3A with colors representing each of the clusters. For initial
quality control filtering, we selectively removed entire clusters with the majority of cells
having greater than 30% mitochondrial RNA, under 1,000 detected transcripts, or under
500 unique genes. Finally, we filtered the remaining individual cells using the following
parameters: minimum percent mito = 0, maximum percent mito = 30%, minimum number
of UMI = 250 maximum number of UMIs = 6000, minimum number of nGene = 250, and
maximum number of nGene = 6000 to exclude outliers. Finally, we removed any genes that
were only detected in fewer than 3 cells. After initial quality control (QC), we maintained a
total of 38,244 cells and 14,699 genes. Data for all cells are provided in Supplementary Fig.
3B with black representing excluded cells and grey the included cells. The average nUMI,
non-zero genes, percent mitochondrial RNA, and percent ribosomal RNA were 3199.12,
1284.08, 8.33%, and 6.94% respectively. PCA was again carried out, and the top 20 PCs
were retained. The clustering was again performed with the clustering resolution now set
to 2.0. This method resulted in 55 initial clusters. The final pre-processing stage was to
remove likely doublet artifacts arising from the co-capture of multiple cells in one droplet.
This step occurred following an initial round of determination of cell type identity as
described in the next section. We first searched for the top differential markers for each
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identified cluster/sub-cluster using the FindMarkers() function (Supplementary Table 3).
Then, we defined doublets/multiplets as any cluster in which >30% of its cells express at
least 5 of the top 10 genes specific for the initially identified cell type and any other cell
type outside of the class of cell types it is associated with (see below for details on cell type
classes). These clusters were removed from downstream analysis and clustering was again
performed. Ultimately, we included 37,069 cells representing 38 clusters (Supplementary
Fig. 4).

Determination of cell type identity

We used multiple cell-specific/enriched marker genes that have been previously described
in the literature to assist in determining cell type identity (Fig. 1C-D). We then arranged all
the identified cell types based on their expression profile, lineage, function and topology
into 6 classes of cells (Supplementary Fig. 7A). For each group, we re-clustered the
subcategorized cell types following the same strategy (top 20 PCs using a clustering
resolution of 2.0). Only for the neuronal lineage, which has an increased complexity in
terms of cell subtypes, we utilized the top 40 PCs to yield more separated clusters. The
annotation of sub-clusters was performed similarly to identification of the main cell
clusters.

Differential gene expression analysis

After initial quality control pre-processing and determination of cellular identities, we
utilized the MAST package (version 1.6.1) ¢ in R (version 3.3.4) to perform differential gene
expression (DGE) analysis. Only cell types where at least half of the young and old animals
had cells from that type were processed. For example, although we detected epithelial cells
(Epcam*/Krt18+) in our dataset, we didn’t process them as they were detected only in two
of the young animals but none of the old animals. MAST generated p-values, fold changes
(FC), and logFC (based on natural log of the fold changes) using a hurdle model with
normalized nUMI as a covariate. It is worth mentioning that due to shrinkage in the Bayes
approach leveraged by MAST, we were able to detect significance in very small changes in
transcription but there was also an underestimation of fold change. This is especially
noticeable when comparing fold change between MAST calculations and traditional TPM-
based calculations for genes with low expression levels. Additionally, the DGE techniques
employed here have more power to assign significance of subtle changes in highly
transcribed genes and therefore our results may underrepresent changes in lowly
transcribed genes. Finally, our ability to establish a baseline level of transcription is
proportional to the number of cells measured and thus more subtle changes in abundant
populations can be deemed significant.
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Pathway analysis

Gene set enrichment analysis (GSEA) 7 was performed to identify cellular pathways and
processes associated with aging. Analysis was carried out using the GSEA package (version
3.0) (Broad Institute), following the protocol described in Reimand et al. 2019 8. Briefly,
prior to the analysis, genes for every distinct cell population were ranked according to their
differential gene expression changes and significance (young vs. old). 2 pre-ranked gene
lists were generated for each cell type: (1) with all genes transcribed, and (2) without the
highly abundant mitochondrially-encoding genes and ribosomal protein genes. All of these
pre-ranked gene lists were then used as an input, while 5 gene datasets [Hallmark
pathways; GO biological processes; KEGG; BioCarta; Reactome (versions 6.1)] were used as
a reference. One thousand random permutations were performed to calculate the p-values
for each pathway. Only gene sets with p<0.05 and q<0.25 were considered as significantly
enriched. To overcome redundancy and help interpretation of the analysis, we grouped
terms over-representing the same pathway using the Cytoscape software (version 3.5.1)
and the AutoAnnotate app (version 1.2) °. Pathways belonging to similar biological
processes were also grouped together for easier navigation/exploration (Supplementary
Table 7). Unless otherwise stated, expression heatmaps for specific pathways and
processes were generated using the raw normalized expression (TPM) values. More
specifically, for each value in a row of expression the mean of the row was subtracted
followed by division by the row’s standard deviation.

Intercellular network analysis

Cell-cell interactions were predicted by a method similar to that described by Kirouac et
al. 10, First, a cell communication interactome was created, collecting known protein-
protein interactions between receptor, ligand, and extracellular matrix (ECM) proteins.
Receptor genes were defined based on a set of GO terms (GO: 0043235 - receptor complex;
GO: 0008305 - integrin complex; GO: 0072657 - protein localized to membrane; GO:
0043113 - receptor clustering; GO: 0004872 - receptor activity; GO: 0009897 - external
side of plasma membrane) and UniProt (search term: "Receptor [KW-0675]" GO: 0005886
organism: human). Ligand genes were defined based on a GO term (GO: 0005102 - receptor
binding) and the set of proteins labeled as secreted in the Secretome dataset
(https://www.proteinatlas.org/humanproteome/secretome) 1. ECM genes were defined
based on a set of GO terms (GO: 0031012 - extracellular matrix; GO: 0005578 -
proteinacious extracellular matrix; GO: 0005201 - extracellular matrix structural
constituent; GO: 1990430 - extracellular matrix protein binding; and GO: 0035426 -
extracellular matrix cell signalling). Gene lists were manually curated to correct or remove
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genes that were misclassified. Using the curated list of receptors, ligands, and ECM genes,
known protein-protein interactions were collected from iRefindex (version 14) 12, Pathway
Commons (version 8) 13, and BioGRID (version 3.4.147) 14, keeping only those occurring
between genes from the different classes (ligand, receptor, ECM). This dataset is available
at: https://baderlab.org/CellCelllnteractions. To predict cell-cell interactions, the ligand-
receptor interaction dataset was filtered for genes detected to be expressed at the mRNA
transcript level in our cell types. To investigate aging-related perturbations in these
putative cell-cell interaction networks, differential gene expression metrics from the MAST
analysis outlined above were used to build subnetworks for each set of interactions
between cell types. In these networks, nodes represent ligands or receptors expressed in
the denoted cell type, and edges represent protein-protein interactions between them.
Nodes were colored to represent the magnitude of differential gene expression (logFC as
estimated by the MAST model). These values were scaled per cell type and summed to
determine edge weight. An R Shiny application was built to interactively explore the
bipartite  graphs generated from this analysis and is available at:
https://baderlab.github.io /AgingMouseBrainCCInx/.

Flow cytometry

For the simultaneous isolation and purification of ASC, EC, and MG, we developed a
multicolor flow cytometry approach. Briefly, dissociated cells from each brain were
pelleted (220xg, 8min, 4°C) and resuspended in 1ml ice-cold labeling buffer (HBSS without
calcium and magnesium, 0.1% BSA, 2mM EDTA, 5% trehalose, 1% GlutaMAX). Cells were
incubated with 100ul of FcR blocking reagent (Miltenyi Biotec #130-092-575) for 12min at
40C under continuous rotation, and then labeled with 3ug/ml of each of the following
antibodies: APC anti-ACSA-2 (Miltenyi Biotec #130-102-315) for ASC; BV786 anti-CD31
(BD Biosciences #740870 and BD Biosciences #740879) for EC; and BV510 anti-CD11b
(BD Biosciences #562950) for MG. Cells were also incubated with the following antibodies
targeting unwanted cell populations: PE anti-CD200 (BioLegend #123808) for mNEUR and
Alexa Fluor 488 anti-04 (R&D Systems #FAB1326G) for OLG. This step is critical as it helps
to exclude unwanted cells during sorting, thus minimizing cross-contamination events.
After 12min of incubation at 4°C (in dark conditions), cells were washed extensively,
pelleted and resuspended in ice-cold FACS buffer (HBSS containing calcium and
magnesium, 0.5% BSA, 5% trehalose, 1% Glutamax) in a volume of 25ml per brain (5 FACS
tubes). To exclude cellular debris and dead cells, 15min before sorting, 10uM Calcein Blue
AM (BD Biosciences #564060) was added to the FACS tubes to stain live cells. Calcein* cells
were then sorted using a Moflo Astrios instrument (Beckman Coulter) with a 70um nozzle
at 60psi. Gates were set manually by using compensation beads (Life Technologies
#A10497) and appropriate control samples, and data were analyzed with Flow]o software
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(version 10). For the purification of EPC, we followed a similar flow cytometry approach
using these antibodies: APC anti-CD133 (Miltenyi Biotec #130-102-197); APC anti-CD133
(eBioscience #17-1331-81); PE anti-CD24a (BD Biosciences #553262); and PE anti-CD24a
(BioLegend #138504). To minimize RNA degradation, sorted cells were collected directly
in RL buffer (Norgen Biotek #48500) supplemented with 10% BME, in a 1:1 final ratio
(50% lysis buffer : 50% cells in sheath fluid; the PBS-based solution that is derived from
the flow cytometer). After sorting, cell lysates were snap frozen and stored at -80°C for up
to 1 month until further processing.

RNA extraction

Total RNA was extracted from sorted cells using the total RNA purification plus Micro kit
(Norgen Biotek #48500) following the manufacturer’s instructions. Prior to RNA
extraction, a chloroform extraction step was included to remove myelin debris/lipids, as
well as, an on-column DNase digestion step (Qiagen #79254) to remove genomic and
mitochondrial DNA. For all samples, RNA concentration was determined using a Qubit
Fluorometer (Invitrogen), while RNA purity and integrity were evaluated with a
BioAnalyzer instrument (Agilent). After extraction, RNA was immediately stored at -80°C
for no longer than a month until further processing.

Bulk RNA sequencing

For the bulk RNA-seq experiments, sorted/purified cells from 8 mouse brains (4 young and
4 old) were analyzed. Bulk RNA-seq was performed using a modified version of the SCRB-
Seq that was originally developed for single cell RNA-seq analysis !5. Briefly,
polyadenylated RNA, from total RNA (7.5-25ng; RIN values >6.5) extracted from our FACS-
purified cells, with ERCC Spike-in control Mix A (Ambion) at 10-¢ final dilution, were
converted to cDNA and decorated with universal adapters, sample-specific barcodes and
UMI using a template-switching reverse transcriptase. Decorated cDNA was then pooled,
amplified and prepared for multiplexed sequencing (NextSeq500, Illumina) using a
modified transposon-based fragmentation approach that enriched for 3’ ends and
preserved strand information.

Bulk sequencing data analysis

Post-sequencing quality control on each of the libraries was performed to assess coverage
depth, enrichment for messenger RNA (exon/intron and exon/intergenic density ratios),
fraction of rRNA reads and number of detected genes using bespoke scripts. Second
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sequence reads were aligned against the murine genome mm9 using bwa mem (version
0.7.10-r789) (http://bio-bwa.sourceforge.net/). Gene expression was estimated based on
reads mapping near the 3' end of transcripts using ESAT 16, based on the mm9 Refseq
annotation, with flags java -Xmx128G -task score3p -wLen 50 -wExt 5000 -wOlap 0 -sigTest
0.01 -multimap ignore. Results were summarized as counts per million mapped reads
(CPM), merged across samples, log-transformed and subjected to hierarchical clustering
and visualization. For ERCC quantification, reads were mapped against the ERCC sequences
using STAR (version 2.5.1b) 17 with flags --runMode alignReads --runThreadN 8 -
outSAMtype BAM SortedByCoordinate -outFilterType BySJout --outFilterMultimapNmax
20 --outFilterMismatchNmax 999 --alignlntronMin 10 -alignIntronMax 1000000 --
alignMatesGapMax 1000000 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --
quantMode TranscriptomeSAM. Bam files from STAR were sorted and indexed with
samtools 18 and counts were retrieved from the indices using idxstats. Differential gene
expression (DGE) analysis 1° was performed in R (version 3.2.3) using Bioconductor’s
DESeq2 package (version 3.7) 20. Dataset parameters were estimated using the
estimateSizeFactors(), and estimateDispersions() functions; read counts across conditions
were modeled based on a negative binomial distribution and a Wald test was used to test
for differential expression (nbinomWaldtest(), all packaged into the DESeq() function),
using the age as a contrast.

Quantitative Real time PCR

For the quantitative Real-Time PCR (qRT-PCR) experiments, sorted/purified cells from 19
mouse brains (9 young and 10 old) were analyzed. Briefly, RNA samples with RIN values
>6.5 were reverse transcribed into cDNA using the iScript cDNA synthesis kit (Bio-Rad
#170-8891) following the manufacturer’s instructions. The resulting cDNA was then
processed for qRT-PCR analysis using pre-designed primers (Integrated DNA
Technologies) (Supplementary Table 9) and the Fast SYBR Green Master Mix (Life
Technologies #4385614) in a QuantStudio 12K Flex Real-Time PCR System (Applied
Biosystems). Before data analysis, we examined the melting curves for each reaction and
included only those with a single peak at the expected melting temperature. The fold-
change (FC) in gene expression was determined by the 2-PPCr method 21, and all values
were normalized to the endogenous expression of Vcp; a housekeeping gene that has been
proposed for calibration in quantitative experiments 22. Our scRNA-seq analysis showed
that in the vast majority of cell populations Vcp levels remain unaltered with aging, in
contrast to other more commonly used genes. Samples with Vep Ct values >29 were
excluded from our analysis. Each sample was repeated in technical duplicates on 3-10
biological replicates.
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Comparison of gene expression changes across different datasets

Unless stated otherwise, heatmaps of LogFC were used for the comparison of gene
expression changes across different datasets (scRNA-seq, FACS/bulk RNA-seq, FACS/qRT-
PCR). Heatmaps are much more informative compared to Venn diagrams as they display
gene identity and the degree of expression change. Our independent datasets were in a
very good agreement with each other, as only a few inconsistencies in the expression
changes of certain individual genes were observed. These changes more likely reflect slight
differences in the cell populations identified either informatically (for scRNA-seq) or by
antibody labeling (for FACS/bulk RNA-seq). For example, in our flow cytometry
experiments we used anti-ACSA-2 to isolate and purify astrocytes 2324, but a recent study
showed that this marker is not expressed at the same level by all astrocytes 2>. Thus, this
marker may slightly enrich some subpopulations of astrocytes more than others. Of note,
the existence of diverse subpopulations of astrocytes with distinct regional-specific
transcriptomic signatures has been recently demonstrated 26, and verified by our scRNA-
seq analysis (see Supplementary Fig. 8), while aging-associated gene expression changes in
different regional astrocytes have been also documented 27-29, Therefore, it is possible that
informatics-based identification, and FACS-based isolation/purification, define cell
populations that are very similar, but not identical, to each other, potentially contributing
to discrepancies when comparative analyses are employed.

RNAscope In Situ Hybridization

RNAscope fluorescent in situ hybridization was performed on fresh-frozen brain tissue
from 16 mice (8 young and 8 old). For sample preparation, mice were COz-anesthetized,
and brains were rapidly extracted and embedded in OCT (Tissue Tek) on dry ice, and then
stored at -80°C until further processing. We collected 14pm cryostat sections and
RNAscope hybridizations were carried out according to the manufacturer’s instructions,
using the RNAscope Multiplex Fluorescent Manual Assay kit (Advanced Cell Diagnostics).
Briefly, thawed sections were dehydrated in sequential incubations with ethanol, followed
by 30 min Protease IV treatment and washing in 1x PBS. Appropriate combinations of
hybridization probes were incubated for 2 hours at 40°C, followed by four amplification
steps, DAPI counterstaining, and mounting with Prolong Gold mounting medium (Thermo
Fisher Scientific #P36930). For single probe analysis, probes against Rpl6 (ACD #300031),
Malatl (ACD #313391), and Meg3 (ACD #527201) were tested and labeled using the
fluorophore Atto-550nm. For each mouse, 3-4 bregma-matched sections were imaged.
Images (4 per brain section) were acquired using a Zeiss LSM 880 Confocal Microscope
using identical settings across young and old sections and represented as maximum
intensity projections of acquired confocal z stacks. Analysis was done using the CellProfiler
software (version 3) 30 with the following specifications for different target probes:
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Malat1/Meg3: only puncta with a diameter between 4-8 pixels that were located within the
nuclei were quantified; Rpl6: only puncta with a diameter between 4-8 pixels that were
located within the perinuclear space (within 70 pixels of the DAPI-positive nuclei) were
quantified. For dual probe analysis, RNAscope was performed as described above, but here
imaging settings were kept identical across all young and old brain sections and all probes
tested. Probes against Cd9 (ACD #430631), Rps23 (ACD #571741), Pdgfra (ACD #480661-
C3), and Itgam (ACD #311491-C3) were tested. Target probes (Cd9, Rps23) were labeled by
fluorophore Atto-550nm while cell type markers (Pdgfra, Itgam) were labeled by
fluorophore Alexa-488nm. An empty channel (Atto-647) was collected for every image
processed to account for autofluorescence from lipofuscin granules largely associated in
the aged brain with microglia 31. In our imaging we observed that lipofuscin
autofluorescence mainly interfered with Alexa-488 channel. Imaging analysis was
performed as above with the following specifications for target probes (Cd9, Rps23): only
puncta with a diameter between 6-15 pixels that were located within an OPC’s or MG’s
perinuclear space (within 70 pixels of the DAPI-positive nuclei) were quantified. OPC and
MG were defined as cells that contained at least two Pdgfra* or Itgam* puncta respectively
(diameter 6-15 pixels). It is important to note that due to the high degree of homology
among ribosomal protein genes, certain pseudogenes and predicted mouse genes, probes
designed against Rpl6 and Rps23 may also cross-detect off-targets, based on the specificity
criteria provided by the vendor: Rpl6 probe may cross-detect: Gm13397, Gm6807; Rps23
probe may cross-detect Gm8624, Gm3189, Gm10689, Rps23-ps1, Rps23-ps2.

Immunohistochemistry

For immunohistochemistry experiments, 14 mouse brains (7 young and 7 old) were
processed. For preparation of free-floating tissue sections, mice were perfused
intracardially with 1x PBS followed by 4% paraformaldehyde (PFA), brains were removed
and embedded in 3% agarose, and serial 30um-thick coronal sections were cut in a
vibrating microtome and were kept in 1x PBS with 0.1% sodium azide at 4°C until staining.
For preparation of fresh-frozen tissue sections (used only to show the co-expression of
IL33 and OLIG2), mice were COz-anesthetized, brains were rapidly extracted and
embedded in OCT, and serial 14pm-thick coronal sections were cut in a cryostat and then
fixed in 4% PFA prior to staining. Immunostaining was performed using standard
procedures. Briefly, sections were washed thoroughly in 1x PBS and incubated in a
permeabilization/blocking solution [10% normal goat serum (or 10% donkey serum, or
2% horse serum), 0.25% Triton X-100, 1x PBS] for 1 hour at room temperature. Sections
were then incubated overnight at 4°C with the following primary antibodies in blocking
solution: goat polyclonal anti-SPARC (R&D Systems #AF942), rabbit polyclonal anti-IBA1
(Wako #019-19741), goat polyclonal anti-IL33 (R&D Systems #AF3626), and mouse
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monoclonal anti-OLIG2Z (Millipore #MABN50). Alexa Fluor secondary antibodies
(Invitrogen) were used for detection of primary antibodies in 1% normal goat (or donkey
serum or horse serum), 1x PBS for 1-2 hours at room temperature. Hoechst 33342 was
used to label nuclei. Imaging was performed using a Zeiss ELYRA super-resolution confocal
microscope (free-floating tissue sections) or a Zeiss LSM 880 confocal microscope (fresh-
frozen tissue sections) at 20x and 40x magnifications. Images were visualized using Zeiss
Zen software (blue edition; version 2.6). For each mouse, 3-4 bregma-matched sections
were imaged. Images were represented as maximum intensity projections of acquired
confocal z-stacks. Analysis was done using Image | software (version 1.49).

Statistical analysis

All statistical analyses were performed using R (version 3.3.4) or GraphPad Prism (version
7.04). Unless otherwise stated, to generate p-values for cell counts and other
metrics/variables (nGene, nUMI, CV) we used the Mann-Whitney U test 32. All p-values
modified to a false discovery rate (FDR) of 5% using the Benjamin-Hochberg precedure 33.

Data availability

The raw sequencing data are available through NCBI's Gene Expression Omnibus (GEO)
under the accession number GSE129788. To further facilitate the exploration and
utilization of our scRNA-seq data, readers can view and download the processed datasets
through the Broad'’s Single Cell Data Portal:

https: ortals.broadinstitute.org/single cell/study/aging-mouse-brain

References:

1 Saxena, A. et al. Trehalose-enhanced isolation of neuronal sub-types from adult
mouse brain. BioTechniques 52, 381-385, doi:10.2144/0000113878 (2012).

2 Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells.
Nature communications 8, 14049, doi:10.1038/ncomms14049 (2017).

3 Satija, R, Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of

single-cell gene expression data. Nature biotechnology 33, 495-502,
doi:10.1038/nbt.3192 (2015).

4 Macosko, E. Z. et al. Highly Parallel Genome-wide Expression Profiling of Individual
Cells Using Nanoliter Droplets. Cell 161, 1202-1214, doi:10.1016/j.cell.2015.05.002
(2015).

10


https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

10

11

12

13

14

15

16

17

18

19

20

21

Butler, A, Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nature
biotechnology, d0i:10.1038/nbt.4096 (2018).

Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional
changes and characterizing heterogeneity in single-cell RNA sequencing data.
Genome biology 16, 278, d0i:10.1186/s13059-015-0844-5 (2015).

Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proceedings of the National
Academy of Sciences of the United States of America 102, 15545-15550,
doi:10.1073/pnas.0506580102 (2005).

Reimand, |. et al. Pathway enrichment analysis and visualization of omics data using
g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nature protocols 14, 482-517,
doi:10.1038/s41596-018-0103-9 (2019).

Kucera, M., Isserlin, R, Arkhangorodsky, A. & Bader, G. D. AutoAnnotate: A
Cytoscape app for summarizing networks with semantic annotations.
F1000Research 5,1717,d0i:10.12688/f1000research.9090.1 (2016).

Kirouac, D. C. et al. Dynamic interaction networks in a hierarchically organized
tissue. Molecular systems biology 6,417, doi:10.1038/msb.2010.71 (2010).

Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347,
1260419, doi:10.1126/science.1260419 (2015).

Razick, S., Magklaras, G. & Donaldson, I. M. iReflndex: a consolidated protein
interaction database with provenance. BMC bioinformatics 9, 405,
doi:10.1186/1471-2105-9-405 (2008).

Cerami, E. G. et al. Pathway Commons, a web resource for biological pathway data.
Nucleic acids research 39, D685-690, doi:10.1093 /nar/gkq1039 (2011).

Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic acids
research 34, D535-539, d0i:10.1093 /nar/gkj109 (2006).

Soumillon, M., Cacchiarelli, D., Semrau, S., van Oudenaarden, A. & Mikkelsen, T. S.
Characterization of directed differentiation by high-throughput single-cell RNA-seq.
bioRxiv, 003236 (2014).

Derr, A. et al. End Sequence Analysis Toolkit (ESAT) expands the extractable
information from single-cell RNA-seq data. Genome research 26, 1397-1410,
doi:10.1101/gr.207902.116 (2016).

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21,
doi:10.1093 /bioinformatics/bts635 (2013).

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25,
2078-2079, doi:10.1093 /bioinformatics/btp352 (2009).

Anders, S. & Huber, W. Differential expression analysis for sequence count data.
Genome biology 11, R106, d0i:10.1186/gb-2010-11-10-r106 (2010).

Love, M. I, Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome biology 15, 550,
doi:10.1186/s13059-014-0550-8 (2014).

Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-
time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408,
doi:10.1006/meth.2001.1262 (2001).

11



418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

450

22

23

24

25

26

27

28

29

30

31

32

33

Eisenberg, E. & Levanon, E. Y. Human housekeeping genes, revisited. Trends in
genetics : TIG 29, 569-574, d0i:10.1016/j.tig.2013.05.010 (2013).

Sharma, K. et al. Cell type- and brain region-resolved mouse brain proteome. Nature
neuroscience 18, 1819-1831, doi:10.1038/nn.4160 (2015).

Tabula Muris, C. et al. Single-cell transcriptomics of 20 mouse organs creates a
Tabula Muris. Nature 562, 367-372, doi:10.1038/s41586-018-0590-4 (2018).
Kantzer, C. G. et al. Anti-ACSA-2 defines a novel monoclonal antibody for prospective
isolation of living neonatal and adult astrocytes. Glia 65, 990-1004,
doi:10.1002/glia.23140 (2017).

Zeisel, A. et al. Molecular Architecture of the Mouse Nervous System. Cell 174, 999-
1014 e1022, d0i:10.1016/j.cell.2018.06.021 (2018).

Boisvert, M. M., Erikson, G. A., Shokhirev, M. N. & Allen, N. ]J. The Aging Astrocyte
Transcriptome from Multiple Regions of the Mouse Brain. Cell reports 22, 269-285,
doi:10.1016/j.celrep.2017.12.039 (2018).

Clarke, L. E. et al. Normal aging induces Al-like astrocyte reactivity. Proceedings of
the National Academy of Sciences of the United States of America 115, E1896-E1905,
doi:10.1073/pnas.1800165115 (2018).

Soreq, L. et al. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark
of Human Brain Aging. Cell reports 18, 557-570, doi:10.1016/j.celrep.2016.12.011
(2017).

Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and
quantifying cell phenotypes. Genome biology 7, R100, doi:10.1186/gb-2006-7-10-
r100 (2006).

Xu, H., Chen, M. Manivannan, A, Lois, N. & Forrester, J. V. Age-dependent
accumulation of lipofuscin in perivascular and subretinal microglia in experimental
mice. Aging cell 7, 58-68, doi:10.1111/j.1474-9726.2007.00351.x (2008).

Mann, H. B. & Whitney, D. R. On a Test of Whether one of Two Random Variables is
Stochastically Larger than the Other. Ann Math Statist 18, 50-60,
doi:10.1214 /aoms/1177730491 (1947).

Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series
B57,289-300 (1995).

12



	Article File
	Figures 1-7
	Article File

