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Abstract

E↵ectively designing and evaluating public health responses to the ongoing COVID-19 pan-

demic requires accurate estimation of the week to week burden of COVID-19. Unfortunately,

a lack of systematic testing across the United States (US) due to equipment shortages and

varying testing strategies has hindered the usefulness of the available positive COVID-19 case

counts. We introduce three complementary approaches aimed at estimating the prevalence of

COVID-19 in each state in the US as well as in New York City. Instead of relying on an estimate

from a single data source or method that may be biased, we provide multiple estimates, each

relying on di↵erent assumptions and data sources. Across our three approaches, there is a con-

sistent conclusion that estimated state-level COVID-19 case counts usually vary from 10 to 100

times greater than the o�cial positive test counts. Nationally, our lowest and highest estimates

of COVID-19 cases in the US from March 1, 2020 to April 4, 2020 are 2.7 and 8.3 million (9

to 27 times greater). These estimates are to be compared to the cumulative confirmed cases

of about 311,000 as of April 4th. Our approaches demonstrate the value of leveraging existing

influenza-like-illness surveillance systems for measuring the burden of new diseases that share

symptoms with influenza-like-illnesses. Our methods may prove useful in assessing the burden

of COVID-19 in other countries with comparable influenza surveillance systems.

1 Introduction

COVID-19 (SARS-CoV-2), is a coronavirus that was first identified in Hubei, China, in December

of 2019. On March 11, due to its extensive spread, the World Health Organization (WHO) de-
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clared it a pandemic [1]. As of April 8, 2020, COVID-19 has infected people in nearly every country

globally and in all 50 states in the United States (US) [2]. This pandemic now poses a substantial

public health threat with potentially catastrophic consequences. Reliable estimates of COVID-19

infections, particularly at the start of the outbreak, are critical for appropriate resource allocation,

e↵ective public health responses, and improved forecasting of disease burden [3].

A lack of widespread testing due to equipment shortages, varying levels of testing by region over

time, and uncertainty around test sensitivity make estimating the point prevalence of COVID-19

di�cult [4, 5]. In addition, it has been estimated that 18% [6] to 50% [7, 8] of people infected

with COVID-19 do not show symptoms. Even in symptomatic infections, under-reporting can fur-

ther complicate the accurate characterization of the COVID-19 burden. For example, one study

estimated that in China, 86% of cases had not been captured by lab-confirmed tests [9], and it

is possible that this percentage is even higher in the US [5]. Finally, it has been suggested that

the available information on confirmed COVID-19 cases across geographies may be an indicator of

the local testing capacity over time (as opposed to an indicator of the epidemic trajectory). Thus,

solely relying on positive test counts to infer the total number of COVID-19 infections, and the

epidemic trajectory, may not be sensible [10].

The aim of this study is to develop alternative methodologies, each with di↵erent sets of inputs

and assumptions, to estimate the weekly prevalence of COVID-19 in each state in the US. One such

approach is to analyze region-specific changes in the number of individuals seeking medical atten-

tion with influenza-like illness (ILI), defined as having a fever in addition to a cough or sore throat.

The significant overlap in symptoms common to both ILI and COVID-19 suggests that leveraging

existing disease monitoring systems, such as ILINet, a sentinel system created and maintained by

the United States Centers of Disease Control and Prevention (CDC) [11, 12], may o↵er a way to

estimate the prevalence of COVID-19 without needing to rely on COVID-19 testing results. Im-

portantly, recent regional increases in ILI in conjunction with stable or decreasing influenza case

numbers present a discrepancy (or an increase in ILI not explained by an increase in influenza)

that can be used to impute COVID-19 cases.

A second and related approach uses ILI data to deconfound COVID-19 testing results from

state-level testing capabilities. These two methods show that existing ILI surveillance systems pro-

vide a useful signal for measuring COVID-19 prevalence in the US, especially during the early

stages of the outbreak. A third and final approach, which uses reported COVID-19-attributed

deaths to estimate COVID-19 prevalence and improves upon previously introduced methodologies

[13, 14, 15, 16] is presented. COVID-19 deaths may represent a lower-noise estimate of cases than

surveillance testing given that patients who have died are sicker, more likely to be hospitalized,

and thus more likely to be tested than the general infected population.
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While previous work has attempted to quantify COVID-19 prevalence in the United States

using discrepancies in ILI trends [17, 18], to the best of our knowledge this study is the first

to o↵er a range of estimates at the state level, leveraging a suite of complementary methods

based on di↵erent assumptions. We believe that this provides a more balanced picture of the

uncertainty over COVID-19 prevalence in each state. While our results are approximations and

depend on a variety of (likely time-dependent) estimated factors, we believe that our presented

case counts better represent prevalence than simply relying on laboratory-confirmed COVID-19

tests. Providing such estimates for each state enables the design and implementation of more

e↵ective and e�cient public health measures to mitigate the e↵ects of the ongoing COVID-19

epidemic outbreak. While the scope of this paper is focused on the United States, the methods

introduced here are general enough that they may prove useful to estimate COVID-19 burden in

other locations with comparable disease (and death) monitoring systems.

2 Results

We implement four methods based on three complementary approaches to estimate the prevalence

of COVID-19 within the US from March 1st to April 4th, 2020. These dates correspond to the

early stages of the outbreak (with fewer than 50 confirmed cases in the US), up to the date

of the most recent available CDC reports as of April 16th. The first two methods, labeled div-

IDEA and div-Vir, fall under the Divergence approach, which first estimates what the level of ILI

activity across the US would have been if the COVID-19 outbreak had not occurred. Each method

develops a control time series and uses the unexpected increase in ILI rate over the control to infer

the burden of COVID-19. div-IDEA is based on an epidemiological model, the IDEA model [19],

fitted to the observed 2019-2020 ILI (prior to the introduction of COVID-19 to the US), while

div-Vir is based on the time-evolution of empirical observations of positive virological influenza

test statistics. The third method, based on the COVID Scaling approach, leverages healthcare ILI

visits and COVID-19 test statistics to directly infer the proportion of ILI due to COVID-19 in

the full population. The fourth method, based on the mortality MAP (mMAP) approach, uses

the time series of COVID-19-attributed deaths in combination with the observed epidemiological

characteristics of COVID-19 in hospitalized individuals, to infer the latent disease onset time series,

which is then scaled up to estimate case counts using the expected infection fatality ratio (IFR).

The Methods section provides extensive details on the assumptions and data sources for each of

these approaches.
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2.1 Adjusted Assumptions Represent Most Likely Scenarios

Each of our methods has an adjusted version, which represents our best guess taking into account

all information available to us, and an unadjusted version, which uses pre-COVID-19 baseline

information. Specifically, the adjusted divergences (div-IDEA and div-Vir) and COVID Scaling

methods incorporate an increased probability that an individual with ILI symptoms will seek

medical attention after the start of the COVID-19 outbreak based on recent survey data [20, 21].

The adjusted mMAP method supplements the confirmed COVID-19 deaths with unusual increases

in pneumonia-related deaths across the country that may represent untested COVID-19 cases. In

most states, as seen in Fig. 1, the adjusted estimates from each method are more closely clustered

than their unadjusted counterparts, increasing our confidence in the adjusted range estimates of

COVID-19 prevalence.

2.2 Estimated Case Counts Far Surpass Reported Positive Cases

We produced estimates for the national and state levels using these four methods for the time

period between March 1, 2020 and April 4, 2020. These methods estimate that there had been 2.7

to 8.3 million COVID-19 cases in the US; in comparison, around 311,000 positive cases had been

o�cially recorded during that time period. Fig. 1 displays the COVID-19 case count estimates from

our methods at the national and state levels (and New York City) compared with the reported

case numbers. The results suggest that the estimated true numbers of infected cases are uniformly

much higher than those reported.

For reference, if one only adjusts the number of reported cases by the (likely) percentage of

asymptomatic cases (18% [6] to 50% [7, 8]) and symptomatic cases not seeking medical attention

(up to 73% [22]), one would conclude that the actual number of cases is higher, and about four

to eight times the number of reported cases; this ratio would also be constant across states. In

contrast, our methods frequently estimate 10-fold to 100-fold more cases than those reported and

show significant state-level variability. The median estimate for the ratio of actual cases to reported

cases for the adjusted div-IDEA method is 23 (with a 90% interval from 6 to 114), for adjusted

div-Vir is 25 (5, 88), for adjusted COVID-Scaling is 14 (3, 62), and for adjusted mMAP is 9 (4,14).

This highlights that models using only confirmed test cases may significantly underestimate the

actual COVID-19 prevalence in the United States, which is consistent with what previous studies

have shown [9, 18].

These methods also provide separate cumulative case estimates for each week within the studied

period (mMAP provides daily estimates, but these are aggregated by week for comparison). Fig. 3

highlights the rapid increase in estimated COVID-19 cases over the United States as well as in New

York City, Washington, and Louisiana, three locations which experienced early outbreaks. These
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methods suggest that states under-reported COVID-19 case counts even early in March, likely due

to limited testing availability. In New York and Louisiana, the estimates were more similar across

methods than in Washington. Since Washington had already experienced an outbreak by February

28 [23], testing shortages may have been more pronounced than in the other states. Our divergence

analysis approach does not rely on any COVID-19 testing data and therefore may provide more

accurate estimates in Washington.

2.3 State-level Comparisons

Using the adjusted versions of our methods, we estimate between 14 and 33 states (31 using the

median adjusted estimate) have actual case counts above 10 times the reported counts, depend-

ing on the method (Figs. 1 and 2). Five locations have at least one adjusted estimate above 100

times the reported counts (Nebraska, Oregon, Missouri, Hawaii, and Puerto Rico). Furthermore,

our methods suggest that places with low o�cial case counts, such as Alaska, Wyoming, South

Dakota, and North Dakota, are in fact experiencing significantly more COVID-19 cases than are

being tested. Even places with high o�cial case counts, such as Georgia, Pennsylvania, and Texas,

appear to be significantly under-reporting. As expected, our methods produce consistent high es-

timates in New York and New Jersey, which have reported especially high numbers of confirmed

cases; though, compared to other states, New York reports a relatively high percentage of its pre-

dicted cases across all methods, suggesting that under-reporting may be less of a problem there.

All four methods generally agree on the ordering of states by case count (Table 1). Furthermore,

they show strong rank correlations (larger than 0.65 across states and methods) with the reported

case counts. mMAP has an especially high 0.96 correlation with the reported case counts, which is

likely because o�cial COVID-19 deaths and positive COVID-19 cases represent the same pool of

patients and are therefore subject to the same bias. The other methods, however, rely on aggregate

data from ILINet, which may cover a di↵erent set of patients. While the rank-correlation across

methods is high, mMAP generally yields lower estimates than the others (Fig. 2). One possible ex-

planation is that many deaths caused by COVID-19 are not being o�cially counted as COVID-19

deaths because of a lack of testing (and that accounting for increased pneumonia deaths does not

fully capture this) [24]; further evidence of this reasoning is that New York City started reporting

plausible COVID-19 deaths (as in, not needing a test result) [25], and mMAP ’s estimates are closer

(and actually higher) than the other methods’ estimates there.
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Figure 1: (Continued on the following page)
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Figure 1: (On previous page) COVID-19 case count estimates compared with reported case counts at the

national and state levels (and New York City) from March 1, 2020 to April 4, 2020. Cases are presented on a

log scale. Adjusted methods take into account increased visit propensity (div-IDEA, div-Vir, COVID Scaling)

and pneumonia-recorded deaths (mMAP). In places where the ILI-based methods show no divergence in

observed and predicted ILI visits, the estimates of COVID-19 cannot be calculated and are not shown. Note

that Florida does not provide ILI data, so only mMAP could be estimated there.

Figure 2: Distribution of the state-level ratios of estimated to reported case counts from March 1, 2020 to

April 4. The right-hand plot shows the results of using all methods together: taking the min, median, max

of the state-level estimates across methods.

Figure 3: Cumulative weekly case counts since March 1, 2020 for the United States, New York City,

Washington, and Louisiana, as estimated by each method and the reported cases. The estimate for each

week indicates total cases up to the denoted date. Solid and dotted lines indicate the adjusted and unadjusted

estimates, respectively. Refer to the Supplementary Materials for results over all locations.
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Reported div-IDEA div-Virology COVID Scaling mMAP

Reported 1.00 0.66 0.70 0.90 0.98

div-IDEA – 1.00 0.75 0.72 0.65

div-Virology – – 1.00 0.70 0.70

COVID Scaling – – – 1.00 0.88

mMAP – – – – 1.00

Table 1: Pairwise Spearman correlations between adjusted methods and reported case counts across the

state level.

3 Discussion

We present four methods based on three distinct approaches to estimate the COVID-19 preva-

lence across the United States. The methods are complementary, in that they rely on di↵erent

assumptions and use diverse datasets. Despite their clear di↵erences, these methods estimate that

the likely COVID-19 prevalence varies from 10 to 100 times higher, at the state level, than what

has been reported so far in the U.S. As of April 16th, 2020, about 650,000 COVID-19 cumulative

cases have been reported in the US. Assuming our (national) multiplicative factors to be good

approximations for what took place from April 4th to April 16th, the current cumulative number

of COVID-19 cases nationally could be anywhere from 6 to 16 million (9-fold to 25-fold higher

than confirmed cases).

By design and due to the utilized data sources, our estimates using data from ILINet and

confirmed cases (Divergence method and COVID-Scaling) likely better capture the number of

COVID-19 cases as they would be detected at the time of hospitalization; thus, they may be in-

herently lagged by roughly 12 days after initial infection [26]. Considering an empirical (and likely

naive) doubling time of a week, this means the prevalence of COVID-19, at any point in time (and

stage of infection), could be 2-4 times higher than the estimates presented here. Taking this lag

into consideration would suggest that it is plausible that up to 32 million cases individuals may be

infected as of April 16th (50-fold higher than confirmed cases).

By providing ranges of estimates, both within and across models, this suite of methods o↵ers a

robust picture of the uncertainty in state-level COVID-19 case counts. When making public health

decisions to respond to COVID-19, it is important to account for the uncertainty in estimates of

case prevalence; the multiple estimates presented here provide a better picture of this than single

point estimates.

Our approaches could be expanded to include other data sources and methods to estimate
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prevalence, such as Google searches [27, 28, 29], electronic health record data [30], clinician’s

searches [31], and/or mobile health data [32]. Accurate and appropriately-sampled serological test-

ing would provide the most accurate estimate of prevalence and would be useful for public health

measures, especially when attempting to relax current shelter-in-place recommendations. In ad-

dition, appropriately-designed studies based on serologiucal testing could be used to evaluate the

reliability of the methods presented in this study. This could inform prevalence estimation methods

for COVID-19 in other countries as well as for future pandemics. The ILI-based methods presented

in this study demonstrate the potential of existing and well-established ILI surveillance systems to

monitor future pandemics that, like COVID-19, present similar symptoms to ILI. This is especially

promising given the WHO initiative launched in 2019 to expand influenza surveillance globally [33].

Incorporating estimates from influenza and COVID-19 forecasting and participatory surveillance

systems may prove useful in future studies as well [34, 35, 36, 37, 38, 39].

Limitations. The uncertainty and bias of each individual method should be considered care-

fully. The Divergence methods su↵er from the same challenges faced when attempting to scale

CDC-measured ILI activity to the entire population [40]. In particular, scaling to case counts in

a population requires estimates for p(visit), the probability that a person seeks medical attention

for any reason, and p(visit | ILI) which captures health care seeking behavior given that a person

is experiencing ILI; these estimates are likely to change over time, especially during the course

of a pandemic. Moreover, the weekly prevalence estimates from this method decrease towards the

end of March, perhaps caused by a change in health care seeking behavior after the declaration

of a national emergency on March 13, 2020 and the widespread implementation of shelter-in-place

mitigation strategies. COVID Scaling relies on the assumption that COVID-19 positive test pro-

portions uniformly represent the pool of all ILI patients and that shortages in testing do not bias

the positive proportion upward or downward. Finally, mMAP is limited by assumptions of the

Infection Fatality Rate, the distribution of time from case onset to death, and accurate reporting

of COVID-19 deaths (or in the case of adjusted mMAP, that excess pneumonia deaths capture

all unreported COVID-19 deaths). A high-level summary of the three methods, their estimation

strategy, and their assumptions are provided in Table 2.

4 Conclusions

We have presented three complementary approaches for estimating the true COVID-19 prevalence

in the United States from March 1 to April 4, 2020 at the national, state, and city (New York City)

levels. The approaches rely on di↵erent datasets and modeling assumptions in order to balance

the inherent biases of each individual method. While the case count estimates from these methods

vary, there is general agreement among them that the actual state-level case counts are likely 10
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to 100 times greater than what is currently being reported.

A more accurate picture of the burden of COVID-19 is actionable knowledge that will help guide

and focus public health responses. Inevitably, as social distancing measures are relaxed, there will

be a resurgence in cases. Yet, if the true case counts are near the upper bound of our estimated

counts, then a substantial proportion (up to 10%) of the US population may have already been

infected. In such a scenario, the US population may be closer to herd immunity than previously

anticipated, and we may expect that subsequent waves of infection will eventually decrease in

magnitude, until COVID-19 becomes a relatively controllable seasonal a✏iction like influenza [41].

5 Data and Methods

CDC ILI and Virology: The CDC US Outpatient Influenza-like Illness Surveillance Network

(ILINet) monitors the level of ILI circulating in the US at any given time by gathering information

from physicians’ reports about patients seeking medical attention for ILI symptoms. ILI is defined

as having a fever (temperature of 37.8+ Celsius) and a cough or a sore throat. ILINet provides

public health o�cials with an estimate of ILI activity in the population but has a known availabil-

ity delay of 7 to 14 days. National level ILI activity is obtained by combining state-specific data

weighted by state population [12]. Additionally, the CDC reports information from the WHO and

the National Respiratory and Enteric Virus Surveillance System (NREVSS) on laboratory test

results for influenza types A and B. The data is available from the CDC FluView dashboard [11].

We omit Florida from our analysis as ILINet data is not available for Florida.

COVID-19 Case and Death Counts: The US case and death counts are taken from the

New York Times repository, which compiles daily reports of counts at the state and county levels

across the US [42]. For the mMAP validation in the supplementary materials, the case and death

counts from other countries are taken from the John’s Hopkins University COVID-19 dashboard

[43]. Counts are taken up until April 14, 2020.

COVID-19 Testing Counts: In addition, daily time series containing positive and negative

COVID-19 test results within each state were obtained from the COVID Tracking Project [44].

US Demographic Data: The age-stratified, state-level population numbers are taken from

2018 estimates from the US census [45].
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5.1 Approach 1: Divergence

Viewing COVID-19 as an intervention, this approach aims to construct control time series rep-

resenting the counterfactual 2019-2020 influenza season without the e↵ect of COVID-19. While

inspired by the synthetic control literature [46, 47], we are forced to construct our own controls

since COVID-19 has had an e↵ect in every state. We formulate a control as having the following

two properties:

1. The control produces a reliable estimate of ILI activity.

2. The control is not a↵ected by the COVID-19 intervention (that is, the model of ILI conditional

on any relevant predictors is independent of COVID-19).

We construct two such controls, one model-based and one data-driven.

5.1.1 Method 1: Incidence Decay and Exponential Adjustment Model

The Incidence Decay and Exponential Adjustment (IDEA) model [19] is a single equation epidemi-

ological model that estimates disease prevalence over time early in an outbreak while accounting

for control activities and behaviours. The model is as follows:

I(t) =

✓
R0

(1 + d)t

◆t

where I(t) is the incident case count at serial interval time step t. R0 is the basic reproduction

number, and d is a discount factor modeling reductions in the e↵ective reproduction number with

time due to public health interventions, changes in public behavior, or environmental factors. The

IDEA model has been shown to be identical to Farr’s law for epidemic forecasting and can be ex-

pressed in terms of a susceptible-infectious-removed (SIR) compartmental model with improving

control [48].

We fit the IDEA model to ILI case counts from the start of the 2019-2020 influenza season

to the last week of February 2020. The start of the 2019-2020 influenza season is defined in a

location specific manner as the first occurrence of two consecutive weeks with ILI activity above

2%. Model fitting is done using non-linear least squares with the Trust Region Reflective algorithm

as the optimizer. Next, the model is used to predict what ILI would have been had the COVID-19

pandemic not occurred. In other words, we use the IDEA model ILI estimates as the counterfactual

when assessing the impact of the COVID-19 intervention. When fitting the IDEA model, we use a

serial interval of half a week, consistent with the serial interval estimates from [49] for influenza.

We note that serial interval estimates from [50] for COVID-19 as well as from [51] for SARS-CoV-1

are longer than that of influenza, but that is not an issue as we use IDEA to model ILI.
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5.1.2 Method 2: Virology

As an alternative control to the IDEA model, we also present an estimator of ILI activity using

influenza virology results. As suggested by [17], there has been a divergence in March between

CDC measured ILI activity and the fraction of ILI specimens that are influenza positive. Clinical

virology time series were obtained from the CDC virologic surveillance system consisting of over

300 laboratories participating in virologic surveillance for influenza through either the US WHO

Collaborating Laboratories System or NREVSS [12]. Total number of tests, total influenza positive

tests, and percent positive tests are our variables of interest.

None of the three time series satisfy both properties of a valid control, as defined in 5.1. Total

specimens and percent positive do not satisfy property 2 since total specimens is directly suscep-

tible to increase when ILI caused by COVID-19 is added. Total positive flu tests satisfies property

2, but also depends on ILI through the quantity of tests administered.

We propose a modification that satisfies the properties. Let F+
t , Nt, It denote positive flu tests,

total specimens, and ILI visit counts respectively. In addition, let Ft be the true underlying ILI

counts. For any week t we assume the following relation:

Ft =
F

+
t · It
Nt

There are two interpretations of this quantity: 1) It extrapolates the positive test percent-

age (F+
t /Nt) to all ILI patients (It), a quantity known in the mechanistic modeling literature as

ILI+ [52]. 2) Test frequency is a confounder in the relationship between the number of positive

tests (F+) and total flu (Ft). Adjusting for test frequency closes the indirect pathway between Ft

and F

+
t [53]. In the Supplementary Material, we demonstrate over a series of examples that this

estimator behaves as desired. Each estimate of Ft is then scaled to population ILI cases using least

squares regression over pre-COVID-19 ILI counts.

5.1.3 ILI Case Count Estimation

In order to fit the IDEA and virology models, we estimate the ILI case count in the population

from the CDC’s reported percent ILI activity, which measures the fraction of medical visits that

were ILI related.

In a similar fashion to the approach of [40], we can use Bayes’ rule to map percent ILI activity

to an estimate of the actual population-wide ILI case count. Let p(ILI) be the probability of any

person having an influenza-like illness during a given week, p(ILI | visit) be the probability that

a person seeking medical attention has an influenza-like illness, p(visit) be the probability that a

12



person seeks medical attention for any reason, and p(visit | ILI) the probability that a person with

an influenza-like illness seeks medical attention. Bayes’ rule gives us

p(ILI) =
p(visit)

p(visit | ILI) · p(ILI | visit)

p(ILI | visit) is the CDC’s reported percent ILI activity, for p(visit) we use the estimate from [40]

of a weekly doctor visitation rate of 7.8% of the US population, and for p(visit | ILI) we use a

base estimate of 27%, consistent with the findings from [22]. Once p(ILI) is calculated, we multiply

p(ILI) by the population size to get a case count estimate within the population.

5.1.4 Visit Propensity Adjustment

We note that health care seeking behavior varies by region of the United States as shown in [22].

To better model these regional behavior di↵erences, we adjust p(visit | ILI), the probability that a

person with an influenza-like illness seeks medical attention, using regional baselines for the 2019-

2020 influenza season [12].

Additionally, because our method estimates the increase in ILI visits due to the impact of

COVID-19, we must distinguish an increase due to COVID-19 cases from an underlying increase

in medical visit propensity in people with ILI symptoms. Due to the widespread alarm over the

spread of COVID-19, it would not be unreasonable to expect a potential increase in ILI medical

visits even in the hypothetical absence of true COVID-19 cases.

For this reason, we also explore increasing p(visit | ILI) from 27% to 35% to measure the

possible e↵ect of a change in health care seeking behavior due to COVID-19 media attention and

panic. The increase of p(visit | ILI) to 35% is consistent with health care seeking behavior surveys

done after the start of COVID-19 [20, 21]. The Divergence and COVID Scaling methods have

adjusted versions which incorporate this shift as well as unadjusted versions that keep the baseline

27% propensity.

5.1.5 Estimating COVID-19 Case Counts

The ultimate goal is to estimate the true burden of COVID-19. The IDEA and virology predicted

ILI case counts can be used to estimate CDC ILI had COVID-19 not occurred. In other words,

the IDEA and virology predicted ILI can be used as counterfactuals when measuring the impact

of COVID-19 on CDC measured ILI. The di↵erence between the observed CDC measured ILI and

the counterfactual (IDEA predicted ILI or virology predicted ILI) for a given week is then the

estimate of COVID-19 case counts for that week. Fig. 4 shows example observed CDC measured

ILI, IDEA model predicted ILI, and virology predicted ILI. The supplementary materials contain

similar plots to Fig. 4 for all locations. For this method as well as the following two, we start
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estimating COVID-19 case counts the week starting on March 1, 2020. We note that while the

IDEA and virology ILI predictions tend to track CDC ILI well earlier in the flu season, after

COVID-19 started to impact the United States there is a clear divergence between predictions and

observed CDC ILI, with CDC ILI increasing while the counterfactual estimates decrease.

Figure 4: COVID-19 is treated as an intervention, and we measure COVID-19 impact on observed CDC

ILI, using IDEA model predicted ILI and virology predicted ILI as counterfactuals. The di↵erence between

the higher observed CDC ILI and the lower IDEA model predicted ILI and virology predicted ILI is the

measured impact of COVID-19. The impact directly maps to an estimate of COVID-19 case counts. Virology

predicted ILI is omitted when virology data is not available.

5.2 Approach 2: COVID Scaling

This approach infers the COVID-19 fraction of the total ILI by extrapolating testing results ob-

tained from the COVID Tracking Project [44], following the same reasoning as the Virology Di-
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vergence method. That is,

Ct =
C

+
t · It
N

c
t

where C+
t , N c

t , It denote positive COVID-19 tests, total COVID-19 specimens, and ILI visit counts

respectively.

State-level testing results were aggregated to the weekly level and positive test percentages

were computed using the positive and negative counts, disregarding pending tests. Positive test

counts were adjusted for potential false negatives. There are varying estimates for the false negative

rate for the RT-PCR used in COVID-19 tests, with some reports suggesting rates as high as 25-

30% [54, 55]. We apply a 15% false negative rate in our analysis; repeating our analysis using

a range of values from 5% to 25% yielded little di↵erence in our estimates. On the other hand,

COVID-19 testing is highly specific, so we assume no false positives. Then, the number of false

negatives (FN) can be computed from the recorded (true) positives (TP ) and the false negative

rate (fnr) as

FN = TP · fnr

1� fnr

Because COVID-19 testing is sparse in many states, there are issues with zero or low sam-

ple sizes, as well as testing backlogs. Rather than taking the empirical positive test percentage

(C+
t /N

c
t ), we first smoothed the percentages over time by taking convex combinations with the

probabilities from the previous weeks, weighted by relative specimen count. This has a Bayesian

posterior interpretation and is mathematically equivalent to computing probabilities using cumu-

lative positive and total counts instead of in-week counts (for convenience, C+
t and N

c
t henceforth

refer to these respective quantities). This helped but did not address all issues with case backlog,

so we further smoothed the estimates using a Bayesian spatial model:

Denote pjt as the probability that a given ILI patient in state j and week t has COVID-19.

Under the condition that testing is applied uniformly, the COVID-19 status of patient i from state

j in week t is

X

(i)
jt ⇠ Bernoulli(pjt)

Assuming COVID-19 status is independent in each ILI patient, the state testing results follow a

Binomial distribution. We apply a spatial prior based on first-order conditional dependence:

pjt ⇠ Beta(↵jtN0t, (1� ↵jt)N0t)

↵jt =
1

|Nj |
X

k2N
j

pkt

where Nj are the neighbors of state j. The strength of the prior was specified by setting N0t to be

the number of total tests at the 5th quantile among all states in each week. Finally, we compute ↵jt
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by replacing each pkt by their empirical estimates. Using the Beta-Binomial conjugacy we derive

closed-form posterior mean estimates for pjt:

p̂jt =
C

+
jt + ↵jtN0t

N

c
jt +N0t

As previously explained, the weekly, state-level reported percent ILI were then multiplied by

p̂jt to get an estimate of the percent of medical visits that could be attributed to COVID-19. These

values were subsequently scaled to the whole population using the same Bayes’ rule method as

described in ILI Case Count Estimation (4.2.3).

5.3 Approach 3: Mapping Mortality to COVID-19 Cases

Other studies have introduced methods to infer COVID-19 cases from COVID-19 deaths using

(semi-)mechanistic disease models [15] or statistical curve-fitting based on assumptions of epi-

demic progression [16], but, to the best of our knowledge, no methods have been proposed to

directly infer cases without either of these assumptions.

Mortality Map (mMAP) uses, under a Bayesian framework, reported deaths to predict previous

true case counts. mMAP accounts for right-censoring (i.e. COVID-19 cases that are not resolved

yet) by adapting previously used methods [13]. A study of clinical cases in Wuhan found that

the time from hospitalization to death roughly follows a log-normal distribution with mean 13

and standard deviation 12.7 [26]. Using this distribution, a time series of reported deaths, D,

and the age-adjusted IFR, we estimate the distribution of cases C, defined at the usual time of

hospitalization, using an iterative Bayesian approach. We use Bayes’ rule to define the probability

that there was a case on day t given a death on day ⌧

p(case on t | death on ⌧) =
p(death on ⌧ | case on t) · p(case on t)

p(death on ⌧)
(1)

Let Cd⇤ denote the predicted distribution of whenD are classified as cases (i.e. are hospitalized),

Cd denote the predicted distribution of when D and future deaths are classified as cases (so

adjusted for right-censoring), and tmax denote the most recent date with deaths reported. Let

p(death on ⌧ | case on t) = p(T = (⌧ � t)) denote the log-normal probability. mMAP performs the

following steps:

1. Initialize the prior probability of a case on day t, p0(case on t), as uniform.

2. Repeat the following for each iteration i:
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• Calculate C

(i)
d⇤ .

C

(i)
d⇤ (t) =

t
maxX

⌧=t+1

D(⌧) · pi�1(case on t | death on ⌧)

=
t
maxX

⌧=t+1

D(⌧) · p(T = (⌧ � t)) · pi�1(case on t)
⌧�1P
s=1

p(T = (⌧ � s)) · pi�1(case on s)

(2)

where the denominator is equivalent to p(death on ⌧) in (1).

• We estimate that the proportion p(T(tmax � t)) of C(i)
d (t) have died by tmax and use

this to adjust for right censoring.

C

(i)
d (t) =

C

(i)
d· (t)

p(T(tmax � t))
(3)

• Update prior probabilities

pi(case on t) =
C

(i)
d (t)

P
C

(i)
d (t)

(4)

• Repeat until
||C(i)

d

�C
(i�1)
d

||
||C(i)

d

||
 ✏, where ✏ is a pre-specified tolerance level.

3. Cd(t) represents the number of cases on day t that will lead to death. We scale this to estimate

the number of all cases by divide by the IFR.

C(t) =
Cd(t)

IFR

(5)

mMAP has connections to expectation-maximization, though further theoretical work is needed

to establish the connection. We found that mMAP performs significantly better than using inde-

pendent maximum-likelihood based estimates [i.e. solving Cd⇤(t) =
t
maxP

⌧=t+1
D(⌧) · p(T = (⌧ � t))].

Supplementary section 4.2 demonstrates that mMAP successfully predicts cases in simulated and

true scenarios using data from six countries. As well, supplementary section 4.1 demonstrates that

if mMAP converges, which it does for every US state, Cd fully explains deaths under the assumed

probability distribution (6), and that this satisfies the calculation of the fatality rate as presented

in [13].

D(t) =
t�1X

⌧=1

p(T = t� ⌧) · Cd(⌧) , 8 t 2 1..tmax (6)

The IFR for each state is calculated using the age-stratified fatality rate [56], which estimates

IFR of all cases - symptomatic and asymptomatic, and the population age structure provided by

the US census [45].
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5.3.1 Accounting for Unreported COVID-19 Deaths

While mMAP assumes all COVID-19 deaths are reported, some deaths will be unreported be-

cause of a limited testing and false negative results [57]. Previous research on the H1N1 epidemic

estimated that the ratio of lab-confirmed deaths to actual deaths caused by the disease was 1:7

nationally [58] and 1:15 globally [59]. While the actual rate of under-reporting is unknown, we

include an adjustment, mMAPadj , that uses an estimate of unreported COVID-19 deaths based

on reports of excess pneumonia deaths (note that this is similar to the divergence methods, except

that those measure excess ILI visits). mMAPadj assumes that excess pneumonia deaths in March

2020 were due to COVID-19.

The CDC reports weekly pneumonia deaths, DP (w), expected weekly pneumonia deaths based

on a model of historical trends, E[DP (w)], and deaths that are classified as pneumonia and COVID-

19,DP\COV (w) [60, 61]. We estimate that the number of un-classified COVID-19 deaths each week,

DU (w), is the following:

DU (w) = DP (w)� E[DP (w)]�DP\COV (w) (7)

This results in 355, 438, 605, and 540 nationwide excess deaths for the four weeks from March

1 to March 28, which is the most recent data at the time of writing this paper. To account for

missing data in recent weeks, We assume that the weekly number of excess deaths remains constant

after March 21, i.e. that there were 540 excess deaths the weeks of March 29 - April 4 and April

5 - April 11. Since the expected pneumonia deaths are not available at the state level, excess

deaths are calculated nationally and then attributed to each state s in proportion to the number

of pneumonia deaths in that state. Then, the weekly excess deaths are evenly distributed across

each day of the week.

D

s
U (w) = DU (w) ·

D

s
P (w)P

s2S
D

s
P (w)

D

s,adj(t) = D

s(t) +
1

7
D

s
U (w), where t 2 w

(8)

5.4 Aggregation of Estimates

The divergence-based methods predict national COVID-19 prevalence directly using national ILI

data. mMAP predicts national prevalence using national death data, while COVID Scaling esti-

mates national prevalence by aggregating the case estimates from each state.

The Divergence and COVID Scaling methods provide separate case estimates for each week

within the studied period, which are summed to the total cumulative case estimates. mMAP

provides daily estimates which are further aggregated by week.
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Approach Divergence COVID Scaling mMAP

Brief

Description

Treat COVID-19 case count

estimation as a causal

inference problem.

COVID’s impact on ILI

activity is measured using

as controls an Incidence

Decay with Exponential

Adjustment model as well

as influenza testing

statistics.

Extrapolate state-level

positive test percentages for

COVID-19 to the weekly

ILI data to estimate

COVID-19 proportion in

medical visits, then scale to

the whole population.

Using reported COVID-19

deaths, the IFR, and a

distribution of time from

cases to deaths, predict the

latent case distribution.

Data Input ILI activity and influenza

test results.

ILI activity and COVID-19

test results.

COVID-19 deaths.

Model

Assumptions 1. The divergence between

predicted ILI activity for

the 2019-2020 season and

measured ILI activity

after the start of the

COVID-19 pandemic can

be attributed to

COVID-19.

2. Scaling from ILI to

population is reliable.

1. COVID-19 test reports

accurately represent the

pool of weekly ILI visits.

2. Delayed test reporting

does not significantly

a↵ect positive test

proportions after

applying smoothing

3. Scaling from ILI to

population is reliable.

1. All COVID-19 deaths are

reported (mMAP) or

explained by excess

pneumonia deaths

(mMAPadj).

2. The distribution of time

from cases to death is

log-normal.

3. The age-stratified IFR is

the same as reported in

[56].

Expected

Bias

This method can be

sensitive to model fit and

changes in healthcare

seeking behavior among

symptomatic individuals.

ILI visits and COVID-19

tests may capture di↵erent

segments of the sick

population.

May underestimate cases as

many COVID-19 related

deaths may go unreported

or untested.

Table 2: Comparing the three approaches to estimate COVID-19 cases in the US.
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Supplementary Materials

April 18, 2020

1 Divergence by Location

Figures 1 and 2 show the Divergence method model fits for all available locations. COVID-19 is

treated as an intervention, and we measure the impact of COVID-19 on observed CDC ILI, using

predictions of ILI from the IDEA model and the virology model as counterfactuals. The impact

of COVID-19 is calculated as the di↵erence between the higher observed CDC ILI and the lower

IDEA model predicted ILI and virology predicted ILI. The impact directly maps to an estimate of

COVID-19 case counts. Virology-predicted ILI is omitted when virology data is not available. We

note that model fit quality varies by location. CDC reported ILI activity is plotted in blue, IDEA

model predicted ILI is plotted in orange, and virology predicted ILI is plotted in green.
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Figure 1: Divergence model fits for first half of locations.
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Figure 2: Divergence model fits for second half of locations.
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2 Time Series Plots for All Methods

Figures 3 and 4 show the cumulative estimated counts for each week over our study period, com-

pared with cumulative reported counts, in each location in the United States. The solid and dotted

lines indicate adjusted and unadjusted methods, respectively.
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Figure 3: Cumulative case time series for first half of locations.
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Figure 4: Cumulative case time series for second half of locations.
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3 Virology-based Estimation

Figure 5: Causal DAG a↵ecting flu positive results.

Both the virology-based Divergence model and the COVID Scaling method rely on the ex-

trapolation of positive testing data to the actual prevalence of the disease. The causal diagram

shown in Fig. 5 shows that an individual’s flu test result depends on whether they have the dis-

ease, but also whether they receive a test in the first place (by going through the ILI visit path).

More broadly, the relationship between test positive results and true disease counts are influenced

by testing availability. We approximate the availability using the total administered tests divided

by ILI cases. Identical reasoning applies for analysis of COVID-19 cases, as done in the COVID

Scaling method.

We formulate a valid control as having the following two properties:

1. The control produces a reliable estimate of ILI activity.

2. The control is not a↵ected by the COVID-19 intervention (that is, the model of ILI conditional

on any relevant predictors is independent of COVID-19).

In Table 1, we show that the total positive tests divided by the availability satisfies both

properties and successfully estimates the true flu counts (in the perfectly distributed case) even

when a surge of COVID-19 cases is added.

7



Baseline cases With COVID-19 cases

Data 1 2 3 1 2 3

Flu (F ) 20 20 40 20 20 20

ILI (I) 100 100 200 200 200 400

Test (N) 10 50 50 10 50 50

Positive (F+) 2 10 10 1 5 2.5

Availability (N/I) 0.1 0.5 0.25 0.05 0.25 0.125

Predict F̂ 20 20 40 20 20 20

Predict Î 100 100 200 100 100 100

Table 1: Series of examples showing that the proposed estimator predicts flu cases correctly even

when potential COVID-19 is added.

4 Mortality-MAP Analysis

4.1 Proof of Case Recovery Given Convergence

In this section we will prove that if mMAP converges, which it does for every location in this

analysis, the cases predicted by mMAP, C
d

, fully recover deaths. That is that

D(t) =
t�1X

⌧=1

p(T = t� ⌧) · C
d

(⌧) 8 t 2 1..t
max

(1)

First, note that

C

(i)
d

(t) =
C

(i)
d

⇤ (t)

p(T(t
max

� t))

=
1

p(T(t
max

� t))

t

maxX

⌧=t+1

D(⌧) ·
p(T = (⌧ � t)) · C

(i�1)
d

(t)
P

C

(i�1)
d

(t)

⌧�1P
s=1

p(T = (⌧ � s)) · C

(i�1)
d

(s)
P

C

(i�1)
d

(t)

=
1

p(T(t
max

� t))

t

maxX

⌧=t+1

D(⌧) · p(T = (⌧ � t)) · C(i�1)
d

(t)
⌧�1P
s=1

p(T = (⌧ � s)) · C(i�1)
d

(s)

(2)

Assuming mortality-MAP converges, C
d

(t) = C

(i)
d

(t) = C

(i�1)
d

, so

C

d

(t) =
1

p(T(t
max

� t))

t

maxX

⌧=t+1

D(⌧) · p(T = (⌧ � t)) · C
d

(t)
⌧�1P
s=1

p(T = (⌧ � s)) · C
d

(s)

=) p(T(t
max

� t)) =
t

maxX

⌧=t+1

D(⌧) · p(T = (⌧ � t))
⌧�1P
s=1

p(T = (⌧ � s)) · C
d

(s)

(3)
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(1) can be shown by induction. First, we will show that it holds for t = t

max

� 1 and then show

that if it is true for t
i+1 then it must be true for t

i

.

Setting t = t

max

� 1, from (3) we see that

P (T1) =
D(t

max

) · P (T = 1)
t

max

�1P
s=1

P (T = (t
max

� 1� s)) · C
d

(s)

=)
t

max

�1X

s=1

P (T = (t
max

� 1� s)) · C
d

(s) = D(t
max

)

(4)

since P (0) = 0, P (T = 1) = P (T1). Thus, (1) holds for t = t

max

� 1. Now, assume (1) is true for

all t > t

i

. From (3),

P (T(t
max

� (t
i

� 1))) =
t

maxX

⌧=t

i

D(⌧) · P (T = (⌧ � (t
i

� 1)))
⌧�1P
s=1

P (T = (⌧ � s)) · C
d

(s)

=

2

6664
D(t

i

) · P (T = 1)
t

i

�1P
s=1

P (T = t

i

� s) · C
d

(s)

+
t

maxX

⌧=t

i

+1

D(⌧) · P (T = (⌧ � (t
i

� 1))
⌧�1P
s=1

P (T = (⌧ � s)) · C
d

(s)

3

7775

=

2

6664
D(t

i

) · P (T = 1)
t

i

�1P
s=1

P (T = t

i

� s) · C
d

(s)

+
t

maxX

⌧=t

i

+1

P (T = (⌧ � (t
i

� 1))

3

7775

(5)

In the final step, D(⌧) and the denominator cancel out because (1) is true for all t > t

i

.

Subtracting probabilities from both sides we end up with.

P (T = 1) =
D(t

i

) · P (T = 1)
t

i

�1P
s=1

P (T = t

i

� s) · C
d

(s)

=)
t

i

�1X

s=1

P (T = t

i

� s) · C
d

(s) = D(t
i

) (6)

Therefore, (1) is true for t

i

and by induction is true for all t < t

max

. Note that C

d

is not a

unique solution to the equation; since there are more potential days of cases than reported deaths

this system is not full rank and there are infinite solutions (if C
d

is allowed to be continuous). This

this result shows that at least the current estimate of C
d

sensibly predicts the reported deaths.

The next section demonstrates that this estimate of C
d

does seem to be accurate for simulated

and empirical data.

4.1.1 Satisfying Infected Fatality Ratio Calculation

The authors of [1] propose an unbiased estimator of the IFR as the following. In the paper, they

calculated the case fatality ratio, defined as the proportion of deaths per reported case, and defined
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C as reported cases, but here we are defining C as the total infections, so the IFR should be used

instead of CFR

IFR =

t

maxP
t=1

D(t)

t

maxP
t=1

t�1P
⌧=1

C(t� ⌧) · p(T = ⌧)

(7)

Note that the notation from the paper referenced is adapted to match the notation here, and

that here P(T=0) so the summation limits are adjusted. We can show that the results from (1)

satisfy this calculation of IFR by showing that from our estimates of C, the RHS above equals the

LHS. Note that in our formulation of C, C
d

= IFR · C, since C

d

is the time series of cases that

end up in death, and C is the time series of all cases.

t

maxP
t=1

D(t)

t

maxP
t=1

t�1P
⌧=1

C(t� ⌧) · p(T = ⌧)

=

t

maxP
t=1

t�1P
⌧=1

C

d

(⌧) · p(T = t� ⌧)

t

maxP
t=1

t�1P
⌧=1

C(t� ⌧) · p(T = ⌧)

=

t

maxP
t=1

t�1P
⌧=1

IFR · C(⌧) · p(T = t� ⌧)

t

maxP
t=1

t�1P
⌧=1

C(t� ⌧) · p(T = ⌧)

=IFR

(8)

To see that the numerator and denominator cancel out, substitute j = t�⌧ into the denomina-

tor. This demonstrates that our method converges to solutions that match previously researched

formulations. Dependent on assumptions of accurate death reporting, the IFR, and distribution of

time from case onset to death, this method can accurately predict the unobserved case time series.

4.2 Simulated and Empirical Validation

To validate mMAP, it was analyzed using simulated and real death data from six countries: United

States, China, Italy, Spain, Germany, and South Korea. Figure 6 compares cases predicted from

mMAP with reported. To visually scale the reported cases, the following equation is used:

reported-scaled = true ·
P

predictedP
reported

While the scales di↵er, the trends of predicted cases generally follow the trends of reported cases;

this is especially the case where there is linear to exponential growth as in Germany, Italy, Spain,
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and the United States. For these countries, at the beginning of April, the relative slope for reported

cases is higher than for mMAP predictions; this could be a result of increasing case detection at

the start of April. In South Korea, mMAP does not match the trend as well, likely because of the

sharp change in case growth after the first week in March.

In figure 7, the deaths for each country are simulated from the reported cases. Deaths are

stochastically simulated from the reported cases using the log-normal distribution from case onset

to death and an IFR of 0.013. From the simulated deaths, mMAP predicts the original cases. As

demonstrated by the proof in section 2.1, mMAP recovers cases on convergence (note it does not

completely recover cases here because of the randomness of the simulation).

Both plots o↵er validation that mMAP can successfully predict the trend of the reported cases.

However, these plots do not demonstrate if the scale of mMAP predictions are on target, as this

is influenced by the under-reporting of deaths and the IFR.

Figure 6: mMAP predictions compared to reported cases.
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Figure 7: Simulated mMAP predictions compared to reported cases.
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