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Abstract:  

Risk tolerance is an important variable in the behavioral and social sciences and one of the most 

studied phenotypes in social science genetics, but few genetic variants have so far been found to 

robustly associate with it or with risky behaviors. We conducted genome-wide association 

studies (GWAS) of general risk tolerance (n = 939,908) and of six related phenotypes: 

adventurousness, and measures of risky behaviors in the driving, drinking, smoking, and sexual 

domains. We identified ~600 independent loci associated with the phenotypes, including 124 

with general tolerance. We report evidence of substantial pleiotropy and estimate large genetic 

correlations—which exceed the corresponding measurement error-adjusted phenotypic 

correlations—between general risk tolerance and a range of risky behaviors (e.g., 𝑟" = 	0.50 with 

a first principal component of measures of risky behaviors). Bioinformatic analyses imply that 

genes near general risk tolerance-associated SNPs are highly expressed in brain tissues and point 

to a role for glutamate and GABA neurotransmitters; we find no evidence of enrichment for 

genes that had previously been hypothesized to relate to risk tolerance. [173 words] 

 

One Sentence Summary:  

We identify ~600 independent loci associated with risk tolerance and risky behaviors and find 

evidence of substantial pleiotropy between these phenotypes [141 characters] 
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Main Text:  

Risk pervades almost every aspect of human life, since many decisions involve tradeoffs 

between the amount of uncertainty and the magnitude of the expected payoff they entail. For 

instance, how car drivers deal with traffic risks, how individuals trade off the pleasure they 

derive from smoking and drinking alcohol with the associated health risks, and how 

entrepreneurs meet the challenges of business risks are decisive determinants of human well-

being and of a society's innovation capacity. Risk tolerance—defined as the willingness to take 

risks to obtain greater rewards—is also an important variable in decision theory, finance, and 

economics.   

Risk tolerance has been one of the most intensively studied phenotypes in social science 

genetics. Twin studies have established that risk tolerance (both self-reported and experimentally 

elicited) is moderately heritable, with estimates of its heritability ranging from 20% to 60%(1–3). 

To date, however, nearly all published studies attempting to discover the genetic variants 

associated with risk tolerance have been conducted in relatively small samples, ranging from a 

few hundred to a few thousand individuals (Table S11.1), and still little is known about the 

genetic underpinnings of human risk taking behavior.   

Here, we report results of what is by far the largest genetic study of risk tolerance and risky 

behaviors to date, in samples totaling over one million individuals. We report results of a 

genome-wide association study (GWAS) of self-reported ‘general risk tolerance’: the self-

reported tendency or willingness to take risks in general. Self-reported general risk tolerance has 

been shown to be a good all-around predictor of risky behavior—such as portfolio allocation, 

occupational choice, smoking, drinking alcohol, and starting one’s own business(1, 4, 5)—and to 

be highly correlated with a general factor of risk preference(1, 6).  

We also report results of GWAS of six supplementary phenotypes related to risk tolerance: 

‘adventurousness’ (defined as the self-reported tendency to be adventurous vs. cautious); four 

risky behaviors—‘automobile speeding propensity’ (the tendency to drive faster than the speed 

limit), ‘drinks per week’ (the average number of alcoholic drinks consumed per week), ‘ever 

smoker’ (whether one has ever been a smoker), and ‘number of sexual partners’ (the lifetime 

number of sexual partners); and the first principal component (PC) of these four risky behaviors, 
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which we interpret as capturing the general tendency to take risks across domains. Table 1 lists, 

for each GWAS, the datasets we analyzed and the GWAS sample size.   

 

GWAS analyses 

We followed a pre-specified analysis plan (available at https://osf.io/cjx9m/) for all seven 

GWAS. All analyses were performed for the autosomal SNPs and were restricted to individuals 

of European descent.  

For self-reported general risk tolerance, we conducted a discovery GWAS (n = 939,908) based 

on a sample-size-weighted meta-analysis of results from the UK Biobank (UKB, n = 431,126) 

and from a sample of research participants from 23andMe (n = 508,782). We also conducted a 

replication GWAS based on a meta-analysis of 10 other cohorts (total n = 35,445). In the UKB 

cohort, we analyzed responses to the question: “Would you describe yourself as someone who 

takes risks? Yes / No.” The exact phenotype measures vary across the 23andMe and replication 

cohorts in wording and number of response categories, but all measures are self-reported and 

broadly similar to the one analyzed in the UKB cohort (Table S1.2).  

Our discovery GWAS of general risk tolerance identified 124 approximately independent 

(pairwise r2 < 0.1) genome-wide significant SNPs (“lead SNPs”) (Table S3.1). Fig. 1A shows a 

Manhattan plot. The Q-Q plot of the discovery GWAS (before adjustment of the standard errors) 

(Fig. S3.1A) exhibits some inflation (λGC = 1.41), as expected under polygenicity(7). Additional 

analyses suggest that population stratification is not a significant source of confounding bias. The 

lead SNPs’ R2’s are all less than 0.02%, and an additional risk-tolerance-increasing allele at the 

SNP with the largest estimated effect size increases general risk tolerance by ~0.026 standard 

deviations. The estimated effect sizes are almost all smaller than those of the lead SNPs of 

previous GWAS of selected phenotypes, including educational attainment(8) (Fig. S3.2). 

To assess the credibility of these results, we compared them to our estimates from the replication 

GWAS. 123 of the 124 lead SNPs were directly available (or in high LD with a SNP) in the 

summary statistics of the replication GWAS. Of these 123 SNPs, 94 have a concordant sign (P = 

1.7×10-9) and 23 of these 94 SNPs are significant at the 10% level (P = 4.5×10-8) (Fig. S5.1). To 

benchmark these results, we conducted a Bayesian analysis to estimate the posterior distribution 
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of the 123 SNPs’ true effect sizes as well as their expected replication record(9). Our actual 

replication record very closely matches the estimated expected replication record.  

Across our six supplementary GWAS, we identified a total of 741 lead SNPs distributed across 

~550 approximately independent loci. Table 1 reports statistics summarizing the results of the 

supplementary GWAS, Fig. 1 (B to G) shows Manhattan plots, and Fig. S3.1 (C to H) shows Q-

Q plots, which also exhibit some inflation.  

 

Genetic overlap  

There is substantial overlap across the results of our seven GWAS. We identified a total of 831 

different lead SNPs across the seven GWAS, but these are located across only ~611 

approximately independent loci, and 34 of these lead SNPs were identified in two separate 

GWAS. In particular, 72 of the 124 general risk tolerance lead SNPs are in loci that also contain 

lead SNPs for at least one of the other GWAS, including 45 for adventurousness and 49 for at 

least one of the four risky behaviors or their first PC.  

To further investigate genetic overlap, we used bivariate LD score regression(10) to estimate 

genetic correlations with self-reported general risk tolerance (using the summary statistics from 

the meta-analysis of our discovery and replication GWAS). The estimated genetic correlations 

with our six supplementary phenotypes are all positive, larger than ~0.25, and highly significant 

(P < 2.3×10–30; Fig. 2), indicating that SNPs associated with higher risk tolerance also tend to be 

associated with riskier behavior. Of note, general risk tolerance is highly genetically correlated 

with adventurousness (𝑟" = 0.83, P < 1×10–100), automobile speeding propensity (0.45, P = 

1.21×10–102), number of sexual partners (0.52, P = 1.6×10–171), and the first PC of the four risky 

behaviors (0.50, P = 4.9×10–167). We also estimated genetic correlations between general risk 

tolerance and eight additional risky behaviors (Fig. 2). The estimates are significant at the 5% 

level and in the expected direction for five of the eight additional risky behaviors (the other three 

estimates are not significant). In particular, general risk tolerance is moderately or highly 

genetically correlated with self-employment (𝑟" = 0.67, P = 0.01), age at first sexual intercourse 

(-0.33, P = 1.6×10–25), and lifetime cannabis use (0.31, P = 3.5×10–8).  
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We also estimated genetic correlations between general risk tolerance and 20 additional 

phenotypes, including the Big Five personality traits and some cognitive, anthropometric, 

neuropsychiatric, and socioeconomic phenotypes (Fig. 2 and in Table S7.1). The estimated 

genetic correlations are especially large for the personality traits extraversion (𝑟" = 0.51, P = 

5.5×10–79), neuroticism (-0.42, P = 8.6×10–29), and openness to experience (0.33, P = 4.9×10–61). 

After Bonferroni correction for 34 tests, we also find significant genetic correlations with some 

neuropsychiatric phenotypes (including ADHD and schizophrenia) and some socioeconomic 

phenotypes.  

Interestingly, the genetic correlations between general risk tolerance and the supplementary risky 

behaviors are substantially higher than the corresponding phenotypic correlations, even after 

adjustment of the phenotypic correlations for measurement error (Tables S1.3 and S7.1). The 

correlated effects of genetic variants are thus an important contributor to phenotypic correlations 

between risk tolerance and risky behaviors. Taken together, these results suggest that a common 

factor for risk tolerance partially accounts for cross-domain variation in risky behavior(1, 6, 11), 

and that this factor is genetically influenced (although our results do not rule out some domain-

specificity(12)).  

Several regions of the genome stand out for being associated both with general risk tolerance and 

with all or most of the supplementary phenotypes, which further points toward the existence of 

substantial shared genetic influences on general risk tolerance and the six supplementary 

phenotypes. Fig. 1B and Fig. S3.3 show local Manhattan plots for some of these. Of note, a 

long-range LD region(13) on chromosome 3 (~83.4 to 86.9 Mb) contains lead SNPs from all 

seven GWAS as well as the most significant lead SNP from the general risk tolerance GWAS, 

rs993137 (P = 2.14×10–40), which is located in the gene CADM2. CADM2 has previously been 

found to be associated with a range of phenotypes, including multiple personality traits, age at 

menarche, BMI, educational attainment, and information processing speed(14). Further, a 

candidate inversion (i.e., a genomic region that is highly prone to inversion polymorphisms) on 

chromosome 18 (~49.1 to 55.5 Mb) contains lead SNPs from all seven GWAS and has 

previously been found to be associated with autism spectrum disorder, ADHD, depression, 

educational attainment, schizophrenia, and subcortical brain region volumes, among other 

phenotypes(14). Another long-range LD region, on chromosome 6 (~25.3 to 33.4 Mb), covers 
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the HLA-complex(15) and contains lead SNPs from all GWAS except drinks per week (for 

which we obtained a suggestive association (P = 3.83×10–7)). Finally, two other candidate 

inversions, on chromosomes 7 (~124.6 to 132.7 Mb) and 8 (~7.89 to 11.8 Mb), contain lead 

SNPs from six and five of our GWAS. The chromosome 8 region contains more than 500 genes 

and has previously been associated with several phenotypes including neuroticism(9), 

extraversion, schizophrenia, and chronotype. Importantly, the general risk tolerance-increasing 

alleles of the 29 general risk tolerance lead SNPs that are located in these five genomic regions 

are all associated with increased risk-taking in the summary statistics of all six of our 

supplementary GWAS. 

To leverage the high degree of genetic overlap between general risk tolerance, adventurousness, 

and risky behaviors, we used Multi-trait Analysis of GWAS (MTAG)(16) to increase the 

precision of our estimates of the SNPs’ effects on general risk tolerance. Using as input the 

summary statistics of our discovery and replication GWAS of general risk tolerance, of our 

supplementary GWAS (except for the first PC of the risky behaviors), as well as summary 

statistics from a GWAS of lifetime cannabis use(17), MTAG increased the number of general 

risk tolerance lead SNPs from 124 to 312 (Fig. S9.1 and Table S9.1). 

 

Biological annotation 

We conducted a number of analyses to gain insights into the biological mechanisms through 

which genetic variants affect variation in self-reported general risk tolerance, using the summary 

statistics from the meta-analysis of our discovery and replication GWAS. First, we 

systematically reviewed the voluminous literature that has attempted to link risk tolerance to 

biological pathways. Our literature review covered both candidate genes studies (which test 

specific genetic variants as proxies for biological pathways) and studies employing other 

research designs, and identified 138 articles that matched our search criteria (Table S11.1).  

Five main biological pathways have been tested by this literature: the steroid hormone cortisol, 

the monoamines dopamine and serotonin, and the steroid sex hormones estrogen and 

testosterone. Using a MAGMA(18) competitive gene-set analysis, we found no evidence that 

SNPs within genes associated with these five pathways tend to be more significantly associated 

with general risk tolerance than SNPs in other genes in the genome (Table S11.3). About 30 of 
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the articles identified by our literature review tested candidate genes in humans, most of which 

are within the dopamine or serotonin pathways. We verified that the SNPs analyzed in our 

summary statistics either coincide with or are likely to tag well most of the genetic variants used 

by the literature to test the 15 most commonly tested autosomal genes within those two 

pathways. We found no evidence the SNPs within those genes are particularly strongly 

associated with general risk tolerance (Fig. 1C and Table S11.4).  

Next, to search in a hypothesis-free manner for genes that are significantly associated with 

general risk tolerance, we again used the software tool MAGMA(18), this time to perform a gene 

analysis for each of ~18,000 protein coding genes. After Bonferroni correction, 285 genes 

showed a significant association with general risk tolerance (Fig. S12.1 and Table S12.3). We 

then used the Gene Network(19) co-expression database to gain insight into the functions and 

expression patterns of the 285 MAGMA genes. We also used the software tool DEPICT(20) to 

identify tissues in which genes near general risk tolerance-associated lead SNPs are highly 

expressed and to identify biological pathways associated with risk tolerance.  

Both the Gene Network and the DEPICT analyses separately point to a role for glutamate and 

GABA neurotransmitters, which are the main excitatory and inhibitory neurotransmitters in the 

brain, respectively(21). Although glutamate neurotransmission has been implicated in 

schizophrenia(22) and major depression(23), to our knowledge no other published GWAS of 

cognition, personality, or neuropsychiatric phenotypes has pointed to a clear role for both 

glutamate and GABA. The relative balance between excitatory and inhibitory neurotransmission 

may thus be a relatively strong contributor to risk tolerance.  

These results stand in sharp contrast to the lack of enrichment reported above for genes 

associated with cortisol, dopamine, serotonin, estrogen, and testosterone (and none of our 

bioinformatics analyses point to these pathways either). We note, however, that some brain 

regions identified in our analyses (discussed next) are areas where dopamine and serotonin play 

important roles. 

The Gene Network and the DEPICT tissue enrichment analyses also both separately point to 

enrichment of the prefrontal cortex and the basal ganglia (Tables S12.4 and S12.6-7). The 

cortical and subcortical regions highlighted by DEPICT (Fig. 5B) are some of the major 

components of the cortical-basal ganglia circuit, which is known as the reward system in human 
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and non-human primates, and is critically involved in learning, motivation and decision-making, 

notably under risk and uncertainty(24, 25). We caution, however, that because the gene 

expression data used in the DEPICT analysis does not cover all brain regions, the results are not 

conclusive about the relative involvement of this circuit in risk tolerance.  

Lastly, we used stratified LD score regression(26) to test for the enrichment of SNPs associated 

with histone marks in 10 selected tissue or cell types. Central nervous system tissues are the most 

enriched, accounting for 44% of the heritability while comprising only 15% of the SNPs (Fig. 

3A and Table S12.2). Interestingly given prior evidence for involvement of the immune system 

in several neuropsychiatric disorders (22, 23), immune/hematopoietic tissues are also 

significantly enriched. 

 

Polygenic prediction  

We constructed polygenic scores with summary statistics from meta-analyses of our discovery 

and replication GWAS of general risk tolerance (the meta-analyses excluded each validation 

cohort). We used the Add Health, HRS, NTR, STR and Zurich cohorts as validation cohorts. Our 

measure of predictive power is the incremental R2 (or pseudo-R2) from adding the score to a 

regression with controls for sex, birth year, and the top ten principal components of the genetic 

relatedness matrix.  

Our preferred score, constructed with LDpred(27), explains ~1.0% of the variation in general 

risk tolerance, and up to ~1.4% of the variation in several alternative measures of risk tolerance 

(Fig. S10.1 and Table S10.1). The score is also predictive of several personality phenotypes, 

including sensation seeking, behavioral inhibition and, consistent with our estimated genetic 

correlations and with previously reported phenotypic correlations(1, 28), the Big Five personality 

traits openness to experience and extraversion (Fig. S10.1 and Table S10.2).  

To gauge the potential for using polygenic scores of general risk tolerance in empirical research 

in the behavioral sciences, we estimated the predictive power of the score for 20 real-world 

measures of risky behaviors in the health, financial, career, and other domains. Although most 

incremental R2 estimates are low (Fig. S10.2 and Table S10.3), several results stand out: in the 

STR cohort, a one-standard-deviation increase in our preferred LDpred score is associated with a 
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1.6 and a 3.4 percentage-point increase in the probability of being an entrepreneur and of having 

owned a business, respectively. A third score, constructed in the Add Health cohort with the 

general risk tolerance summary statistics outputted by our MTAG analysis, is associated with 2.5 

additional lifetime sexual partners and with a 5.2 percentage-point increase in the probability of 

ever having smoked cannabis. 

 

Discussion 

Researchers have developed numerous constructs and instruments to describe and measure 

various dimensions of risk tolerance(29). These range from psychologists’ measures of sensation 

seeking and impulse control to economists’ coefficient of relative risk aversion. Our use of 

simple, self-reported, and commonly-used measures of general risk tolerance allowed us to 

assemble a much larger sample than previous studies and to conduct the largest study on the 

genetics of risk tolerance and risky behaviors to date.  

Importantly, and consistent with the phenotypic evidence(1, 4, 5), we nonetheless found strong 

evidence that our general risk tolerance measure shares substantial genetic etiology with a wide 

range of risky behaviors. Moreover, our bioinformatic analyses point to a role for glutamate and 

GABA neurotransmission and to involvement of specific brain regions whose likely role in 

decision-making has been documented by a large body of neuroscientific studies(24, 25). As 

available GWAS samples sizes increase, we expect further convergence of results from genetic 

and neuroimaging studies of risk tolerance and decision-making.  

Although our focus has been on the genetics of risky tolerance and of risky behaviors, we 

recognize that environmental and demographic factors account for much of these phenotypes’ 

variation. Indeed, our estimates of the SNP heritabilities of general risk tolerance and the six 

supplementary phenotypes range from ~6% to 17% (Fig. S6.1), leaving ample room for 

environmental influences. In fact, we observe sizeable effects of gender and age on risk tolerance 

in the UKB data (Fig. S1.1), and there is abundant evidence that life experiences affect both 

measured risk preferences and risky behaviors(e.g., 35, 36). We speculate the impact of 

demographic factors and life experiences on risk tolerance and risky behaviors is partly 

moderated by genetic factors, and anticipate future research will uncover multiple instances of 

such gene-environment interactions.  
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Fig. 1. Manhattan plots. In all panels, the x-axis is chromosomal position; the y-axis is the 

significance on a −log10 scale; the horizontal dashed line marks the threshold for genome-wide 

significance (P = 5×10−8); and each approximately independent genome-wide significant 

association (“lead SNP”) is marked by a red ×. (A) Manhattan plots for the discovery GWAS of 

general risk tolerance. (B) Local Manhattan plots of two genomic regions that contain lead SNPs 

for all seven of our GWAS. The gray background marks the locations of candidate inversions or 

long-range LD regions. (C) Local Manhattan plots of the loci around the 15 most commonly 

tested candidate genes in the prior literature on the genetics of risk tolerance. Each locus 

comprises all SNPs within 500 kb of the gene’s borders that are in LD	(𝑟) > 0.1) with a SNP in 

the gene.  The 15 plots are concatenated and shown together in the panel, divided by the black 

vertical lines. The 15 genes are not particularly strongly associated with risk tolerance or the 

risky behaviors, as can be seen by comparing the results within each row across panels (B) and 

(C) (the three rows correspond to the GWAS of general risk tolerance, adventurousness, and the 

first PC of the risky behaviors).  
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Fig. 2. Genetic correlations with general risk tolerance. The genetic correlations were 

estimated using bivariate LD score (LDSC) regression(10). Error bars show 95% confidence 

intervals. For the supplementary phenotypes and the additional risky behaviors, green bars 

represent significant estimates with the expected signs, where higher risk tolerance is associated 

with riskier behavior. For the personality phenotypes, blue bars represent significant estimates. 

Light green bars represent genetic correlations that are statistically significant at the 5% level, 

and dark green and blue bars represent correlations that are statistically significant after 

Bonferroni correction for 34 tests (the total number of phenotypes tested). Grey bars represent 

correlations that are not statistically significant at the 5% level. 
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Fig. 3. Results from selected biological analyses. (A) DEPICT geneset enrichment diagram. 

We identified 93 reconstituted gene sets that are significantly enriched (FDR < 0.01) for genes 

overlapping loci associated with general risk tolerance; using the Affinity Propagation 

method(32), these were grouped into the 13 clusters displayed in the graph. Each cluster was 

named after the most significant gene set it contained, and each cluster’s color represents the 

permutation P value of its most significant gene set. Overlap between the named representatives 

of two clusters is represented by an edge. Edge width represents the Pearson correlation ρ 

between the two respective vectors of gene membership scores (ρ < 0.3, no edge; 0.3 ≤ ρ < 0.5, 

thin edge; 0.5 ≤ ρ < 0.7, intermediate edge; ρ ≥ 0.7, thick edge). (B) Results of a DEPICT tissue 

enrichment analysis using GTEx RNA-sequencing gene expression data. The panel shows 
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whether the genes overlapping loci associated with general risk tolerance are significantly 

overexpressed (relative to genes in random sets of loci matched by gene density) in various 

tissues. Tissues grouped by organ or tissue type. The orange bars correspond to tissues with 

significant overexpression (FDR < 0.01). The y-axis is the significance on a −log10 scale. 
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Table 1. GWAS results.  

 
GWAS Cohorts analyzed n Mean 𝜒) No. lead SNPs 

General risk tolerance (disc. GWAS) UKB; 23andMe 939,908 1.85 124 

General risk tolerance (rep. GWAS) 10 indep. cohorts 35,445 1.03 0 

General risk tolerance (disc + rep.) UKB; 23andMe; 10 indep. cohorts 975,353 1.87 132 

Adventurousness 23andMe 557,923 1.98 167 

Automobile speeding propensity UKB 404,291 1.53 42 

Drinks per week UKB 414,343 1.61 85 

Ever smoker UKB; TAG Consortium(33) 518,633 1.97 223 

Number of sexual partners UKB 370,711 1.77 118 

First PC of the four risky behaviors UKB 315,894 1.77 106 

The table provides an overview of the GWAS of our primary and supplementary phenotypes.  

“disc.”: discovery; “rep.”: replication; “indep.”: independent; “n”: GWAS sample size; “Mean 

𝜒)”: mean chi-squared statistics across HapMap3 SNPs with minor allele frequency greater than 

0.01. 

 

 

 

  



 19 

Supplementary Materials: 

Materials and Methods 

Supplementary Text 

Figures S1.1-S12.3 

Tables S1.1-S12.11 

References (##-##) 

 

  



Authors: 
Richard Karlsson Linnér1,2,3*†, Pietro Biroli4†, Edward Kong5†, S Fleur W Meddens1,2,3, Robbee 
Wedow6,7,8†, Mark Alan Fontana9,10, Maël Lebreton11,12, 
Abdel Abdellaoui13,Anke R Hammerschlag1, Michel G Nivard13, Aysu Okbay3,14,15, Cornelius A 
Rietveld14,2,15,  Pascal N Timshel16,17, Stephen P Tino18, Maciej Trzaskowski19, Ronald de 
Vlaming3,14,15, Christian L Zünd4, 

Yanchun Bao20, Laura Buzdugan21,22, Ann H Caplin23, Chia-Yen Chen24,25, Peter Eibich26,27, 
Pierre Fontanillas28, Peter K Joshi29, Ville Karhunen30, Aaron Kleinman28, Remy Z Levin31, 
Christina M Lill32,33, Gerardus A Meddens34, Gerard Muntané35, Sandra Sanchez-Roige36, Juan 
Ramon Gonzalez37,38,39, Frank J van Rooij15, Erdogan Taskesen1, Yang Wu19, Futao Zhang19, 

23andMe Research Team, eQTLgen Consortium, International Cannabis Consortium, 
Psychiatric Genomics Consortium, Social Science Genetic Association Consortium, 

Adam Auton28, Jason D Boardman8,7, David W Clark29, Andrew Conlin40, Conor C Dolan13, Urs 
Fischbacher41,42, Patrick JF Groenen43,2, Kathleen Mullan Harris44,45, Gregor Hasler46, Albert 
Hofman15,47, Mohammad A Ikram15, Sonia Jain48, Robert Karlsson49, James MacKillop50,51 , 
Minna Männikkö30, Carlos Morcillo-Suarez35, Matthew B McQueen52, Klaus M Schmidt53, 
Melissa C Smart20, Matthias Sutter54,55, A Roy Thurik14,2,56, Andre G Uitterlinden57, Jon White58, 
Harriet de Wit59, Jian Yang19,60,  

Lars Bertram32,61,62, Dorret Boomsma13, Tõnu Esko63, Ernst Fehr22, David A Hinds28, Magnus 
Johannesson64, Meena Kumari20, David Laibson5, Patrik KE Magnusson49, Michelle N Meyer65, 
Arcadi Navarro35,66, Abraham A Palmer36, Tune H Pers16,17,  Danielle Posthuma1,67, Daniel 
Schunk68, Murray B Stein36,48, Rauli Svento40, Henning Tiemeier15, Paul RHJ Timmers29,  
Patrick Turley69,25,70, Robert J Ursano71, Gert G Wagner72,27, James F Wilson29,73,  
Jacob Gratten19, James J Lee74,  

David Cesarini75, Daniel J Benjamin9,70,76*#, Philipp D Koellinger3,77*#, Jonathan P 
Beauchamp18*# 
 
† Lead analysts; authors 2-5 listed alphabetically. 
# These authors oversaw this work. 
* Corresponding author. E-mail: jonathan.pierre.beauchamp@gmail.com (J.P.B.), 
r.karlssonlinner@vu.nl (R.K.L); daniel.benjamin@gmail.com (D.J.B.); p.d.koellinger@vu.nl 
(P.D.K.)



 21 

 
                                                             
1 Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam 
Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands 
2 Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus School of Economics, Erasmus 
University Rotterdam, Burgemeester Oudlaan 50, Rotterdam, 3062 PA Rotterdam, the Netherlands 
3 Department of Economics, VU University Amsterdam, De Boelelaan 1105, Amsterdam, 1081 HV, the Netherlands 
4 Department of Economics, University of Zurich, Schönberggasse 1, Zurich, 8001, Switzerland 
5 Economics, Harvard University, 1805 Cambridge St, Cambridge, MA 2138, USA  
6 Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO 80309,USA 
7 Institute of Behavioral Science, University of Colorado Boulder, 1440 15th Street, Boulder, CO 80309, USA  
8 Department of Sociology, University of Colorado Boulder, UCB 327, Boulder, CO 80309,  USA 
9 Center for the Advancement of Value in Musculoskeletal Care, Hospital for Special Surgery, 535 East 70th Street, 
New York, NY 10021, USA 
10 Center for Economic and Social Research, University of Southern California, 635 Downey Way, Los Angeles, 
CA 90089,  USA 
11 Amsterdam School of Economics, University of Amsterdam, Roetersstraat 11, Amsterdam, 1018 WB 
12 Amsterdam Brain and Cognition, University of Amsterdam, Nieuwe Achtergracht 129B, Amsterdam, 1001 NK, 
Netherlands 
13 Biological psychology, Vrije Universiteit Amsterdam, van der Boechorstraat 1, Amsterdam, 1087 BT, Amsterdam 
14 Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Burgemeester 
Oudlaan 50, Rotterdam, 3062 PA 
15 Department of Epidemiology, Erasmus Medical Center, Wytemaweg 80, Rotterdam, 3015 GE, The Netherlands 
16 Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, 
Denmark 
17 Department of Epidemiology Research, Statens Serum Institut, Copenhagen, 2300, Denmark 
18 Department of Economics, University of Toronto, 150 St. George St., Toronto, M5S 3G7, Ontario, Canada 
19 Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia 
20 Institute for Social & Economic Research, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK 
21 Seminar for Statistics, Department of Mathematics, ETH Zurich, Raemistrasse 101, Zurich, 8092, Switzerland 
22 Department of Economics, University of Zurich, Bluemlisalpstrasse 10, Zurich, 8006, Switzerland 
23 Stuyvesant High School, New York, 10282 NY, USA 
24 Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA 
25 Stanley Center for Psychiatric Genomics, The Broad Institute at Harvard and MIT, 75 Ames St, Cambridge, MA 
02142, USA 
26 Nuffield Department of Population Health, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK 
27 Socio-Economic Panel Study, DIW Berlin, Mohrenstr. 58, Berlin, 10117, Germany 
28 Research, 23andMe, Inc., 899 W Evelyn Ave, Mountain View, CA 94041 USA 
29 Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of 
Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland 
30 Center for Life Course Health Research, University of Oulu, Aapistie 5, 90220 Oulu, Finland 
31 Department of Economics, University of California San Diego, La Jolla, CA 92093, USA 
32 Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Str. 1, Lübeck, 23562, Germany 
33 Institute of Human Genetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany 
34 Team Loyalty BV, Debbemeerstraat 25, Hoofddorp, 2131 HE, the Netherlands 
35 Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Dr. Aiguader, 88, Barcelona, 
8003, Spain 
36 Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093, CA, USA 
37 Barcelona Institute for Global Health (ISGlobal), Barcelona, 8003, Spain 
38 Universitat Pompeu Fabra (UPF), Barcelona, 8003, Spain 
39 CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, 280229, Spain 
40 Oulu Business School, University of Oulu, Oulu, Finland 
41 Department of Economics, University of Konstanz, Universitätssstraße 10, Konstanz, 78457, Germany 
42 Thurgau Institute of Economics, Hauptstrasse 90, Kreuzlingen, 8280, Switzerland 
43 Department of Econometrics, Erasmus University Rotterdam, Rotterdam, the Netherlands 



 22 

                                                                                                                                                                                                    
44 Department of Sociology , University of North Carolina at Chapel Hill, 155 Hamilton Hall CB #3210, Chapel 
Hill, NC 27599, USA 
45 Carolina Population Center, University of North Carolina at Chapel Hill, 206 West Franklin St., Rm. 208, Chapel 
Hill, NC 27516, USA 
46 Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of 
Bern, Bolligenstrasse 111, Bern, 3000, Switzerland 
47 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA 
48 Family Medicine and Public Health, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, 
USA 
49 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12a, Stockholm, 171 77, 
Sweden 
50 Psychiatry and Behavioural Neurosciences , McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, 
Ontario, Canada 
51 Peter Boris Centre for Addictions Research, St. Joseph’s Healthcare Hamilton, 100 West 5th Street, Hamilton, 
L8P 3R2, Ontario, Canada 
52 Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, USA 
53 Department of Economics, University of Munich, Ludwigstrasse 28, Munich, 80539, Germany 
54 Department of Economics, University of Cologne, Albert-Magnus-Platz, Cologne, 50923, Germany 
55 Experimental Economics Group, Max Planck Institute for Research into Collective Goods, Schumacher Strasse 
10, D-51113 Bonn, Germany 
56 Montpellier Business School, Montpellier, France 
57 Internal Medicine, Erasmus Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, the Netherlands 
58 UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin 
Building, Gower Street, London, WC1E 6BT, UK 
59 Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S. Maryland Ave., MC 3077, Rm L485, 
Chicago, IL 60637, USA 
60 Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia 
61 Institute of Integrative Genomics, University of Lübeck, Maria-Goeppert-Str. 1, Lübeck, 23562, Germany 
62 Faculty of Medicine, Imperial College London, London 
63 Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia 
64 Department of Economics, Stockholm School of Economics, Box 6501, Stockholm, 113 83, Sweden 
65 Center for Translational Bioethics and Health Care Policy, Geisinger Health System, Danville, PN, 
USA 
66 Institució Catalana de Recerca i Estudis Avançats (ICREA), Parc de Recerca Bomèdica. Carrer Dr. Aiguader, 88, 
Barcelona, 8003, Spain 
67 Department of Clinical Genetics, VU Medical Centre, De Boelelaan 1085, Amsterdam, 1081 HV, The 
Netherlands 
68 Chair of Public Economics, Johannes Gutenberg University, Jakob-Welder-Weg 4, Mainz, 55128, Germany 
69 Analytical and Translational Genetics Unit, Massachusetts General Hospital, Richard B. Simches Research 
building, 185 Cambridge St, CPZN-6818, Boston, MA 02114, USA 
70 Behavioral and Health Genomics Center, University of Southern California, 635 Downey Way, Los Angeles, 
90089 CA, USA 
71 Psychiatry, Uniformed Services University Health Science, Bethesda, MD, USA 
72 Max Planck Institute for Human Development, Lentzeallee 94, Berlin, 14195, Germany 
73 MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western 
General Hospital, Edinburgh, EH4 2XU, Scotland 
74 Department of Psychology, University of Minnesota Twin Cities, 75 East River Parkway, Minneapolis, 55455, 
MN, USA 
75 Department of Economics, New York University, 19 W 4th St, 6 FL, NY, 10012, USA 
76 National Bureau of Economic Research, 1050 Massachusetts Ave, Cambridge, MA 2138, USA 
77 German Institute for Economic Research, DIW Berlin, Mohrenstr. 58, Berlin, 10117, Germany 


