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ABSTRACT

Contemporary virtual reality systems enable academics to more efficiently explore and analyze complex three-dimensional (3D) content, but
their utility is limited by visual short-term memory. Janus, a geometry agnostic shader script, circumvents this cognitive limitation by
automatically rendering complex object meshes to fit entirely within the field-of-view of consumer head mounted displays. The resulting
360° vision experience represents an advantage over existing scientific data visualization tools, which have sought to replicate real-world
viewing experiences but have inadvertently replicated associated limitations as well. By presenting data in such a way so as to effectively
circumvent cognitive loads associated with body (or object) movement, academics can use the Janus shader to more readily engage in the
exploratory analysis of complex 3D data sets, thereby facilitating scientific insight. This paper explores the motivations and design of the
Janus shader, and describes preliminary results from user testing conducted under controlled conditions. For the 24 study participants (N=24),
statistically significant time-to-completion decreases were observed for spatial analysis tasks taking place in intervention (Janus-enabled) VR
scenes of low to moderate complexity.
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1 INTRODUCTION

What is the most efficient and effective way to analyze complex surface mesh geometries, especially with low-cost imaging and 3D
scanning techniques providing the means to generate detailed models with myriad research applications? Scholarship suggests that a fully
optimized virtual reality (VR) viewing system effectively replicates the experience of exploring physical objects in the real world. This is
an especially important design consideration for academic applications, as activities that require the analysis of complex 3D data sets —
including modeled specimens, numerical data sets, scanned artifacts, etc. — are shown to be improved when models are made available for
inspection in VR.

However, the relatively lifelike combination of stereoscopic depth cues and positional tracking (defining characteristics of today’s
high-end VR systems) represent a viewing paradigm that is unnecessarily beholden to the limitations of human perception. In the course of
both real-world and digital exploration of complex 3D objects, for example, users are initially bound to a single viewing angle, and take on
cognitive load in moving virtual objects (or themselves) to gain novel perspectives and/or circumvent occlusions. Yet exploring complex
3D objects need not be as cognitively taxing in a digital research environment, since both digital content and visual input can be arbitrarily
transformed via customized software.

The Janus geometry shader script, detailed below, represents an advantageous development in the of discipline-agnostic immersive
virtual reality viewing systems.1 By deploying data in a way that effectively minimizes the need for user or model movement, academics
can more readily engage with complex 3D objects, especially during the exploratory phase of research, when a high-level mapping of the
complete data set might shape the subsequent trajectory of a nascent research program. This human-first system design approach represents
a first step towards a “super-fidelity” VR system, which — like existing technologies - preserves real-world stereoscopy and positional
tracking but extends human capabilities to 360° vision.

2 LITERATURE REVIEW

Virtual Reality has been employed to support scholarship across a range of academic fields, including: Archaeology, Neuroscience,
Engineering, Geology, and Medicine (Acevedo et al. 2001; Van Dam, Laidlaw, and Simpson 2002; Seth, Vance, and Oliver 2011; Donalek
et al. 2011; Anderson et al. 2016). Testing these in these instances typically requires special access to costly visualization equipment, such
as CAVE-type projection rooms (Cruz-Neira, Sandin and DeFanti 1993). Since the release of the first Oculus Developer Kit (2013),
however, VR has hit the academic mainstream, and the benefits documented under controlled conditions have made their way from
relatively well-resourced computer science and electrical engineering departments and into the classroom (Milovanovic et al 2017;
Thompson 2018; Cook & Lischer-Katz 2019). The relatively low cost of head mounted display hardware, coupled with the ease-of-access
to game development software (e.g. Unity3D) has translated to a proliferation of educational VR experiences that all University
stakeholders can engage with and benefit from.

2.1 The Benefits of Virtual Reality for Scholarship

Virtual Reality is useful tool for scholarship because it presents the user with digital content in a way that resembles the familiar experience
of viewing physical objects in the real world. Such fidelity is enabled by a combination of low-level system affordances including
stereoscopy (via appropriately offset displays) and six-degrees-of-freedom positional tracking, the latter a feature that respects the way
human beings engage with their surroundings bodily in daily life (i.e. along three axes of locomotion). Given this combination of depth
cues and body-centered interfacing capabilities, VR-aided analyses are more efficient than engagement with the same complex 3D objects
using traditional (mouse, keyboard, monitor) computer interfaces (Ragan et al. 2013; Laha, Bowman, and Socha 2014).

More specifically, the benefits of stereoscopically induced depth-of-field have been studied extensively, and has proven to be an
especially valuable feature of contemporary VR systems. Indeed, Ware and Mitchel (2005) describe a full order of magnitude increase in
performance for tasks associated with analyzing complex 3D graphs under stereoscopic viewing conditions, while Kersten-Oertel, Chen,
and Collins (2014) found that stereoscopic viewing of vascular structures was of practical utility for expert brain surgeons seeking to
determine the placement of blood vessels, especially when presented in conjunction with chromatic depth cues.

1 Janus, the Roman god of transitions, is often depicted as simultaneously seeing forwards and backwards.



Importantly, the embodied human observer is also preserved in virtual reality viewing environments, and, because VR thereby
permits, “...participants to use their body as part of the very process of data exploration,” novel perspectives on complex 3D objects can be
gained efficiently without significant prior training or mental exertion (Prabhat et al. 2008). Positional tracking - including head, upper
body, and hand/arm tracking supported by today’s higher-end (but still consumer oriented) VR systems - lowers the barrier to entry for
learning a new software system by preserving certain intuitive movements and abilities (Cook 2018). In VR, the user can bend down, lean
in, crane their neck, perambulate, etc., to take in various aspects of a complex three-dimensional data set; data that may only exist at
microscopic or cosmic scales, well beyond the reach of physical human interaction.

Virtual reality systems that combine stereoscopic viewing with positional tracking are among those classified as “high fidelity” in the
literature insofar as the combination of these features more accurately reproduce the visual conditions associated with viewing human scale
objects in the physical environment. When compared with a 2D illustration of a given object (on a textbook page, perhaps), or even a 3D
rendering of the same model viewed on a traditional computer screen, VR exists at the pinnacle of the representational spectrum. This is
borne out in the literature by participants demonstrating comparatively superior performance on tasks related to the search, identification,
description, and comparison of complex 3D objects in high fidelity, VR testing environments (Laha, Bowman, and Socha 2014, 7).

2.2 The Limitations of Existing VR Systems

In a controlled comparison of the individual features that determine abovementioned system fidelity, Ragan et al. (2013) summarize an

experimental design that makes use of low-level, cross-disciplinary spatial tasks to test the impact of VR platform characteristics: “This
task involved three stages: visual search for a potential gap location, navigation to view the potential gap location from an advantageous
viewpoint, and judgment of whether a gap was present or not” (pg 5).

Here, one of three basic components of the task — “navigation to view the potential gap location from an advantageous viewpoint” —
represents a well-known and tacitly accepted drain on the performance of the VR user: Cognitive load (Anderson et al. 2016). To
circumvent the visual occlusion obscuring potentially informative components of a complex 3D object, the VR user must take on cognitive
load, in the form of visual short-term memory, while moving between viewpoints, or, alternately, they must manipulate the digital objects’
position in virtual space (Lages & Bowman 2018). In either case, the user must recall previously encountered (but subsequently obscured)
visual features in order to draw meaningful inferences concerning the overall nature or “global shape” of that object (Silvestri et al. 2010).
As in the real world, the VR user must move the virtual model or his or her position to gain a useful perspective. This limitation, inherited
real-world viewing conditions, is unnecessary in a digital viewing environment.

Silvestri et al. (2010) explored the impact of this type of cognitive load as it applies to the design disciplines (e.g. Architecture), and
determined that the ability to reproduce (draw) complex 3D shapes was improved as the “mental transformations” necessary to compose a
comprehensive view of the object were offloaded onto the display capabilities of system itself (pg. 16). Navigation between advantageous
viewpoints represents a costly mental transformation insofar as the dimensional richness of the visual scene is offset by the need to
manipulate the object (or oneself) to mentally assemble a comprehensive view of all occluded perspectives (Thomas & Seiffert 2010).
Importantly, human cognitive systems are quite limited in their ability to keep track of the characteristics of complex 3D objects, which
directly impacts the usefulness of contemporary virtual reality systems.

With regards to visual short-term memory, the sort of cognitive load most associated with immersive visualization systems discussed
here, Alvarez and Cavanagh (2004) concluded that “[TThe total amount of visual information (the product of the number of objects and the
visual information per object) cannot exceed the maximum visual information limit,” of 4-5 objects. (pg. 6). Importantly, this maximum
varies in relation to target stimuli complexity, and subjects exhibit “...an inverse relation between the information load per object and the
number of objects that can be stored”. Fortunately, visual information (related to size, color, and presence or absence of a gap, at least), can
be conjoined, and Luck & Vogel’s (1997) study determined that, within those 4-5 target objects, subjects could reliably track as many as 16
sub-features or “chunks” of visual information. Yet the target stimuli of multiple research teams feature relatively complex objects,
comprising various sub-features (abstract architecture, cave structures, vasculature, cortical and biomechanical structures, etc.), and most
require some locomotive (or controller) movements to circumvent occlusion and complete experimental tasks associated with determining
the connectedness, describing the shape, and/or comparing complex 3D objects (Ragan et al 2013; Evagorou & Heinis 2018; Kersten-
Oertel, Chen, and Collins 2014; Laha, Bowman, and Socha 2014). The combination of real-world stimuli and locomotion is cognitively
taxing.

In all of these cases, both depth cues and positional tracking aid task completion in virtual reality, but the user runs up against hard
cognitive limits that limit performance. In the act of virtual navigation or object manipulation, the human user takes on cognitive load and
is required to “keep in mind” various types of visual information during the movement portion of the experimental task. Since the real-
world viewing experience is assumed to be the benchmark by which complex 3D objects can be analyzed, even the highest fidelity VR
systems available to scholars today are, by definition, constrained by their expectation that users circumvent visual occlusion via object or
self movement. Fortunately, we can leverage the digital nature of our immersive visualization systems to effectively circumvent the
limitations on human cognitive processing of visual information.

3 SysTEM DESIGN

Technically, Janus is a geometry shader script designed to integrate easily with any VR research project that uses Unity as a development
platform. Unity is a platform for both 2D and 3D software development that is used extensively in commercial software but also provides
free-of-charge licenses for educational uses. The relative simplicity and power of Unity, allied to its extensive documentation and support
for cross-platform VR development, make Unity an appealing platform for developing scientific visualization tools. The Janus shader is
implemented with the HLSL programming language for GPU calculations (also referred to as “Cg” due to the similarities between the
two), and the Janus shader therefore requires GPU hardware that supports DirectX 9 and later (which includes all recent GPU hardware).
The use of “standard” programming languages such as HLSL to implement the Janus shader should allow for straightforward porting to
other 3D platforms, and portability of the Janus shader to other Unity projects is accomplished via the standard Unity workflow of



associating the shader with one or more “materials” that are applied to object(s) in a Unity scene. No custom preprocessing of geometry
data is required as Janus warps and renders the position of each of a given mesh’s constituent vertices on the GPU in real-time, on a frame-
by-frame basis, based on the VR user’s head position (See: Figure 1). The resulting experience is akin to viewing the real world through a
wide-angle fish eye or catadiopteric lens as demonstrated by a handful of research teams (Ardouin et al 2012; Orlosky et al. 2014; Fan et al.
2014). But, unlike these optical implementations, the virtual player can be deployed at an arbitrary location, including at the center of a
given data set, theoretically allowing them to view all sides of a complex 3D object simultaneously. The end user experiences layers of
overlapping mesh components (whatever their chosen data set) and can thereby make use of myriad stereoscopic depth cues and positional
tracking to take in all sides simultaneously.

Beyond providing the means to decrease cognitive load associated with locomotive or object movement in virtual reality, Janus
compares favorably to existing VR-based scientific visualization systems via three uniquely beneficial features:

1) Modularity: Janus was designed from the ground up to move between laboratories, classrooms, and other academic
environments. By crafting Janus as a single geometry shader it can be easily applied to any surface mesh imported into Unity3D,
researchers and instructors can make use of the simulated, stereoscopic 360° viewing condition without abandoning their preferred
development environment, models, and associated customizations. Furthermore, this approach enables trivial “selective” application of the
Janus effect, allowing GUI elements (and related components of a scene) to remain unmodified. The use of a standard shader language
(HLSL) provides straightforward portability to other 3D platforms.

2) Mesh Pre-processing: Janus does not require preprocessing of
mesh data, as it effectively warps and compresses every associated 3D
mesh on the GPU for every rendered frame. Our preliminary testing
indicates that the shader is VR-ready, with performance data indicating
frame rates at or above the 75-100 FPM detailed in HMD manufacturer
guidelines.

3) Dynamic Compression Characteristics: The Janus system was
deliberately designed not to interfere with detail rich center-vision, and
to respect the limitations of peripheral vision, which lacks stereopsis in
the far periphery and is also relatively poor for discerning and
distinguishing some visual phenomena (e.g. color). Moreover, the target
field-of-view can be manually updated, in the Unity editor, or by using compression of scene data “behind” the camera is visible in the
controls inside the VR experience in real time, to accommodate any dense peripheral ring (unperturbed region of vision set to 20°); (C)

existing or future headset specifications. as (B), but with "native" field-of-view reduced to 30°.
Further technical details regarding the Janus compression can be

found in the Supporting Information that accompanies this manuscript.

Fig. 1 Simple Janus visualization. (A) Example scene (a spherical
arrangement of spheres) as viewed from outside; (B) view “inside”
the scene, with camera located at the center of the spheres. Janus

3.1 Prior Implementations

The dynamic visual field compression characteristics and potential cognitive impact of Janus is informed by the literature concerning the
strengths and limitations of peripheral vision and previous, experimental implementations with ultra wide-angle viewing systems.

For example, Orlosky et al. (2014) note the low acuity of peripheral vision in describing their optical (“Fisheye Vision”)
implementation. However, based on testing that measured the time it took study participants to detect peripherally located objects, the
research team determined that, “[P]lacing of virtual objects at more central peripheral angles can improve reaction times”, and, hinting at
something like the Janus implementation, the authors proceed to suggest that, with system optimization, these detection benefits could,
“[PJotentially be expanded past the human visual field” (pg. 7). Because the far periphery is monocular, alternative depth cues — like
motion, color, and fog — will be desirable, if the goal is to further differentiate what might otherwise be a confusing mass of visual
information (Strasburger, Rentschler, and Jiittner 2011). Human peripheral vision, while lacking the attention driven strength of central
vision, is nonetheless adept at detecting movement, which will inform future iterations of the Janus system (See: “Discussion” section).

A multi-institution team based in Japan engineered another wide-angled optical viewing system (Fan et al. 2014). Their testing
sought to determine whether users could make use of peripheral camera image data that was blended with a forward-facing image.
Intriguingly, researchers concluded that “[H]umans could adapt to having and utilizing eyes on the back of our heads, and could get
accustomed to using the back eyes to observe the back instead of turning 180 degrees to use the front eyes” (Fan et al. 2014, 7). Finally,
testing of the “FlyViz” system - which combines a helmet-mounted catadioptric sensor with a head mounted display — indicated that users
could be trained to both grasp and dodge objects outside of their natural field of view (Ardouin et al. 2012). There are therefore
implemented precedents documenting the fact that humans can make sense of, and act upon, 360 degrees of visual information.

4 PRELIMINARY TESTING

Preliminary testing of the Janus system comprises pre-test and VR-based test phases, each employing instrumentation designed to
determine the effectiveness of the system across various baseline spatial ability levels and to provide data for future improvement of system
performance and user interfacing.

Institutional IRB approval was sought and approved. Purposive snowball sampling was employed to recruit a total of 24 test
participants (N=24), all of who are affiliated with the University as a student, faculty, or staff member. Testing took place in a closed room,
with a total of four (4) Oculus Rift-enabled VR workstations running the Janus software. Each station is separated from neighboring
stations and participants by portable divider walls to prevent distraction during testing. The complete testing period takes, on average,
between 30 minutes and 1 hour per study participant.



4.1 Pre-Test

Testing begins with a computer-based survey (not in VR), which gathers data concerning prior-experience with 3D visualization tools and
technologies. These data are intended to help control for factors that have been positively correlated with mental rotation and spatial
perception abilities (Veurink et al. 2009; Maan et al. 2012; Lages & Bowman 2018). Next, the Revised Purdue Spatial Visualization
(PSVT:R) test is administered. The PSVT:R has been deployed across hundreds of studies, and has proven reliable as a means to gauge
prior spatial ability, especially with regards to the mental rotation of 3D shapes. Moreover, the associated questions, “[CJonsist of spatial
problems closely aligned with the tasks routinely required to succeed in the engineering and technology disciplines,” which lends itself to
the development of a VR system designed specifically for scholarly use (Yoon 2011, 50-51).

Upon completion of the spatial visualization pre-test, study administrators worked with participants to properly seat the virtual reality
headset; to familiarize the user with the (Oculus Touch) hand controllers; and, finally, to launch the Janus software. A practice session is
initiated, wherein participants are exposed to simplified versions of the testing scenarios (described in detail, below). After 5-10 minutes of
pre-test practice, the administrator initializes testing proper.

The testing scenario involves the identification, counting, and input of a total number of idealized arrow—shaped 3D models deployed
in 360° virtual reality scene as well as a standard VR viewing environment (i.e. the control condition). Following established experimental
design, speed and accuracy of task completion were tracked by the system automatically via the in-app input interface (LaViola et al.
2017). The arrow 3D model, which included a roughly conical “head” and visually chaotic fletching, was chosen as the target object for a
number of reasons related to the general applicability of the system for academic purposes.

4.1.1 Target Stimuli Justification

Multiple research teams have sought to balance the potentially confounding impact of prior-knowledge (mostly in the form of subject-
specific expertise) with the scientific applicability of virtual reality systems. On the discipline-specific end of this spectrum, some
researchers have settled on recognizable but highly simplified representations of scientifically meaningful 3D models for testing, while
other teams have deliberately deployed abstract target stimuli, which — while visually unrelated to any discipline (and therefore
unrecognizable to an arbitrary subject expert participant) - nonetheless share geometric characteristics and complexities that represent
common, spatially relevant, task types. As Laha et al. (2014) conclude, the latter groups’ use of abstract model types for testing is doubly
useful insofar as the, “[Clommunity of VR and visualization researchers need to
identify and define abstract task categories cutting across various scientific domains”.
We chose to deploy abstract target stimuli, an arrow.

An arrow is a recognizable 3D object, familiar to all participants, but it is
unrelated to any specific scientific discipline. Moreover, an idealized arrow shape can
be perceived by the participant as a single, recognizable object, but also as a
combination of three primitive sub-components: A cone (arrowhead); tube (arrow
shaft); and a sort of explosive feathering (fletching). Critically, the complete arrow
model is also elongated, with distinct, asymmetrical end points, which can be deployed
so as to span the visual field, thereby necessitating either movement or a compressed
field-of-view. To correctly recognize an arrow as an arrow, one will need to accurately ~ Fig. 2 Target Stimuli (“A”, top); Standard field-of-
perceive a unidirectional (and connected) head, shaft, and fletching, and then view with typical control-group perspective (‘B”,

successfully combine those visual components via locomotion or object rotation in the tff’thorg"ltfft) a_”(rj]?t Janus compression perspective
case of occlusion. (“C”, bottom-right)

4.2 Test

Testing involves the counting of arrow models in space, as presented in simulated 360°, and, in the control, via 100° (Oculus Rift-specific)
standard field-of-view (see: Figure 2, above). The speed and accuracy with which the participant completes this counting task represents
the performance data that are compared to performance from engagement with repeated (but randomized) stimuli sets in a “traditional”
virtual environment with a limited field of view. To minimize variation between control and Janus conditions, only sitting-and-turning-in-
place physical movement was permitted, and no rotation or translational control over the target model placement was provided. The virtual
scale of the scene and associated stimuli was such that any benefits that might have come from standing (or crouching) would be minimal.
Both control and Janus place the user at the exact center of a large-scale virtual scene with varying numbers of complete and incomplete
virtual arrow arrangements.

Importantly, there is no way to ascertain for certain either the completeness of a given target object or the total number of target
stimuli in a scene from any arbitrary single perspective in the control condition. Rather, the control group has to physically turn their bodies
around to take in the full scene and track instances of complete (non-fragmentary) target stimuli. Participants in the Janus condition can
theoretically take in the complete scene via a single, global perspective. This is accomplished with the elongated, asymmetric arrow
structure as well as “noise” in the form of arrow sub-components distributed throughout the scene on a systematic basis. As per Laha et al.,

9

generally applicable VR-based task categories include “Search”, “Search, counting”, “Spatial Judgement”, and “Shape Description”,
“quantitative estimation”, “shape description”, and “pattern recognition” (Table 9). While the primary completion task described here
requires that a user submit a total arrow count to move to the next scene, the entire process of searching, recognizing a (complete) pattern
amidst extraneous data, and then combining (i.e. counting) instances of intact stimuli combines multiple task types.

Rather than verbal reporting, which requires a dedicated human test administrator and risks administrator influence as well as
distraction from nearby test takers, counts were submitted with a (Oculus Touch) hand controller. In both the control and Janus conditions,
each participant took part in a 5 trial “practice round” for orientation followed by 10 trials each in both the control and Janus viewing
conditions (“Perspective 17, and “Perspective 2””). Arrows and arrow parts were procedurally generated, and ranged in number from 3 to 9

per trial.



4.3 Results

Testing was performed under two conditions: control (Janus view T T T T T
inactive) and intervention (Janus view active). Both phases present
the user with identical 3D scenes (albeit in a randomized order).

We examine performance via per-scene changes in both
time-to-completion and accuracy; the former is the difference in
time required to process a scene under both conditions, the latter is
the change in accuracy when counting complete arrows: accuracy =
|Nimer - Nactual| - ‘Ncomr - Nactual|. HCI‘S, Nactual is the number of
complete arrows in the scene, Neontr is the user’s estimate of Nactual
under control conditions, and Ninterv is the user estimate of Nactual
under intervention conditions. Where users occasionally self-
advance to the next scene by accident (i.e., without completing the
task), such instances are noted, and those specific data points are
removed from any analysis.

First, we consider all users as a single group (N=24),
and apply a paired, two-tailed t-test to detect performance
differences between the control and intervention phases (Ho =
no difference between control & intervention, p<0.05). No
statistically significant difference in accuracy was recorded for
any scene complexity studied; by contrast, statistically
significant improvements were recorded in time-to-completion
for scenes of low to moderate complexity (Figure 3).

The user data was then split into two groups via ranked PSVT:R scores to examine potential innate differences between "higher"
(N=12) and "lower" (N=12) performers. A paired, two-tailed t-test was use to compare performance differences under control and
intervention conditions for the "higher" and "lower" groups (Ho = no difference between control & intervention, p<0.05). Once again, no
statistically significant difference in accuracy between control and intervention phases was recorded for either group (Table 2). With
respect to time-to-completion, the "lower" PSVT:R cohort displayed a statistically significant increase in performance only for two low-
complexity scenes (Table 2); the "higher" PSVT:R group demonstrated a statistically significant performance increase across a wider range
of scene complexities (Table 2).

T T
Accuracy —@—
4r Time-to-completion —@&—

t-value

Fig. 3 User performance data as a single group (N=24). Two-
tailed, paired t-test (control vs. intervention) was used to examine
performance changes for each scene (listed in ascending
complexity) changes for each scene. Black lines denote the
"bounds" of statistical significance for the relevant degrees of
freedom

Table 1 User performance for “lower” and “higher” groups, partitioned according to ranked PSVT:R scores (significant changes emboldened)

Accuracy: t-value (dft) Time-to-completion: t-value Accuracy: t-value (dft) Time-to-completion: t-value
ScenelD “lower” PSVT:R (dfy) “higher” PSVT:R (dfy)
performers “lower” PSVT:R performers performers “higher” PSVT:R performers
1 0.00000 (9) -1.17020 (9) -1.49071 10 1.16465 10
2 -1.00000 (10) -5.48064 (10) -0.56061 11 -2.33103 11
3 0.00000 (11) -2.44386 (11) 1.77281 11 -2.84186 11
4 0.00000 (11) -1.52866 (11) 0.43179 11 -2.49642 11
5 -0.36405 (11) -1.00685 (11) -0.35156 11 -0.27396 11
6 -0.21926 (10) 1.27232 (10) -0.52223 11 0.20338 11
7 1.00000 (10) -0.46848 (10) 0.45408 10 -1.94146 10
8 1.44887 (11) 1.29458 (11) -0.00000 11 -0.21638 11
9 1.44463 (9) -1.48413 (9) 0.80440 11 -2.94176 11

In summary, the Janus intervention as not shown to impact accuracy on spatial analysis tasks, but it did allow users work faster, especially

in VR scenes of low to moderate complexity. While this speed increase is pronounced in users that perform well on the PSVT:R test, it’s
also present in the “worse” performers on the PSVT:R, which might indicate the benefits of simulated 360° viewing represent a global

effect regardless of existing ability for mental manipulations of complex geometries.

4.4 Limitations

The performance of "lower" and "higher" PSVT:R test groups in both control and intervention phases were further compared by one-way
ANOVA, with statistically significant difference (p<0.05) only detected for a single scene. This result suggests that PSVT:R test scores
may not be a general predictor for performance in our VR tests when used to partition users into roughly equal-sized "lower" and "higher"
groups, or that insufficient data prevents the detection of differences.

Moreover, the ordering of the scenes may also have impacted performance data. For the "simplest" 3D scene, we do not observe
statistically significant improvements in the time-to-completion for Janus (see Table 1). This may be due to the simplicity of this scene not
benefiting from Janus, but it could also be because this is the first scene shown to the user after Janus is enabled; the initial shock of the
Janus view might actually be detrimental to performance while the users adjust. If we exclude those outlier scenes, we have the behavior
one might expect: large improvements in time-to-completion for less-complex scenes, with this advantage becoming smaller (and thus, less
statistically significant) as the scene complexity increases. Improved experimental design and increase sample sizes in follow-up studies
should serve to minimize these outlier discrepancies.



5 DiscussioN

Again, the basic research question is: What is the most efficient and effective way to analyze complex 3D data sets, especially with low-
cost imaging and 3D scanning techniques providing the means to generate detailed models with myriad research applications, including in
the humanities (Pfarr-Harfst 2016; Alliez et al 2017)? After all, a scientific data set is fundamentally unlike a macroscopic real-world
object, although our familiarity with the latter is a useful baseline when it comes to designing robust enough visualization software to
accommodate high levels of visual complexity. When explored at human scale, in three dimensions, and presented with a depth of field,
myriad “big” scientific data can be explored efficiently and new discoveries or research directions can be readily facilitated. Numerous
examples exist for suitably complex data sets.

Open access meteorological, medical, chemical, and geophysical data sets abound, and each category of data represents viable use
cases for the Janus system. In all cases, multi-gigabyte sized data sets are regularly analyzed for patterns, anomalies, outliers, groupings,
sub-section connectivity, etc., while the same data are presented to undergraduate and graduate students in the classroom with the
expectation that defining characteristics (e.g. pathologies) will be recognizable in a clinical or other practitioner-oriented professional
environment. In all cases, the complexity of the 3D objects that emerge from these disciplines test the visual short-term memory limits of
the user. After the preliminary testing is complete, and the system is refined, and improved, subject-specific 3D content will be targeted and
deployed to support the early-stage, open-ended, and/or diagnostic research efforts of scientists in these disciplines.

Importantly, Janus isn’t the catch-all solution for VR-based big data analysis. Rather, the results of this preliminary testing highlights
potential time-to-completion benefits assuming search, pattern recognition, and counting activities are goals of the analyses. User
performance with regard to other task categories identified in the literature (e.g. “spatial judgement”, “shape description”) will undoubtedly
suffer, given the image warping necessary to compress 360-degrees of visual data into the forward field-of-view. (One might erroneously
note the curvature of an anatomical structure, for example, while attempting to analyze a medical data set). So, Janus might best be viewed
as a “first pass” tool, allowing the user efficient access to global composition of a moderately complex visual scene.

5.1 Future Directions

Regarding future system design directions, alternative depth cues have been successfully deployed in testing environments to increase
performance of analysis on complex 3D data sets. Among these visual cues, color, motion, “fog” (or atmospheric occlusion), and
exaggerated scaling have been identified as particularly useful, especially when the limitations of peripheral vision are taken into account
and these cues are deployed in tandem with stereoscopic, body-tracking displays (Strasburger, Rentschler, and Jiittner, 2011; Kersten-
Oertel, Chen, and Collins 2014; Evagorou & Heinis 2018)

Motion cues represent an especially promising future depth cue insofar as their usefulness isn’t confined to center vision, and — in
combination with stereopsis — they have been shown to non-linearly aid shape perception under controlled conditions (Johnston, Cumming,
and Landy 1994). Indeed, this “most important” combination of depth cues can massively increase the ability of users to identify
components of complex 3D structures (Ware, Colin, and Mitchell 2005, 2). In practice, the deployment of ray-traced (eye or controller-
based) targeting in a given scene could aid in the connectivity analysis of sub-meshes or mesh components that would otherwise go
unnoticed. Evagorou & Heinis (2018) demonstrated the implementation of this connectivity with a highlighting feature that allows the user
to trace the path of neocortical structures (pg. 2). Color highlighting won’t be as useful when viewed peripherally, however, so in the case
of the Janus preliminary target stimuli, this feature might take the form of subtle swaying motion of both arrow end points if the user
centers their vision (or points their controller) on the arrow shaft, for example.

Finally, the increased performance of both consumer-oriented head mounted displays and associated graphics processing hardware
have provided a sufficiently powerful computing platform for the day-to-day use of virtual reality systems. It appears that all we lack,
before we can fully integrate systems like Janus into our current academic workflows, are the highly anticipated “killer apps” that various
forecasters point to as the necessary, but heretofore elusive inflection point preventing the widespread adoption of VR across academic (as
well as the consumer) markets. Importantly, such software is close at hand.

6 CONCLUSION

In early 2017, researchers from CalTech and JPL announced a Series-A funding round for a startup focused on the development of data
visualization software to help users quickly visualize numerical data sets in virtual reality. Virtualitics, as the company is now called,
provides the means for researchers to jointly analyze and manipulate complex multi-dimensional data in a way that leverages depth-of-field
and positional tracking. Later that same year, at the University of Oklahoma, librarians hosted a multi-campus, expert-guided virtual tour of
a remote (and inaccessible) Arizona cave system, which featured archaic-era Native American wall inscriptions. In the case of both
abstract/numerical and 3D-scanned scholarly content, Janus is poised to contribute meaningfully. Integration with existing software, which
might allow users to toggle between “traditional” and simulated 360° perspectives at will, could provide the means to rapidly comprehend
complex 3D objects without succumbing to the limitations associated with cognitively taxing object or self movement.

As Donalek et al. (2014) states, “Massive and complex data sets — no matter how content-rich or how expensively obtained — are of
no use if we cannot discover interesting patterns in them” (pg. 1). If seen as falling on a spectrum - with idealized, 2D dimensional
illustration (in a source text, perhaps) being the most primitive form of visualization, and contemporary VR systems providing the richest
and potentially the most efficient viewing experience - Janus surpasses even the most high-powered immersive visualization software
currently in academic use. This is borne out in the preliminary performance increases demonstrated by Janus study participants who were
generally able to complete spatial analysis tasks more quickly in the simulated 360° viewing condition than in the standard field-of-view
(control) viewing condition. While testing is still in the preliminary phase, Janus nevertheless represents a tool type that both acknowledges
and attempts to circumvent cognitive rather than computational limitations. By deploying data in a way that effectively bypasses the need
for cognitively taxing (object or self) movement, academics can more readily engage with complex 3D data sets and thereby encourage
scientific discovery across disciplines.
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