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Abstract

Methods for drawing causal inferences from observational data play a central role in fields

such as the social sciences and epidemiology, in which performing experiments may be di�cult or

impossible for technical, practical, or ethical reasons. Though regression methods remain the most

popular, many other techniques are also widely used. We focus on two of them, matching and

instrumental variables.

The matching literature is fiercely divided over the optimal method for matching, with the

majority of investigators advocating for either direct covariate or propensity score matching. We

compare the performance of these two techniques in estimating the average e↵ect of treatment on

the treated using a variety of metrics including bias, variance, and model dependence, a measure of a

bias corrected matching estimator’s sensitivity to the regression model used. We find that neither

method dominates the other and that which one is preferred will depend on the distribution of

the covariates, the structure of the true and regression models, and the numbers of treated and

untreated subjects, as well upon how many covariates are actually matched.

We also explore the use of instrumental variables when the exclusion restriction is violated,

focusing particularly on the use of Egger Regression to analyze Mendelian Randomization studies.

Though this estimator is widely used, it has not been rigorously analyzed. We do so here, giving

conditions under which it is consistent and providing its limit under other circumstances. We

also show that, when only finitely many instruments are used, it is biased, but asymptotically

normal, and compute its properties in the setting in which all quantities except the causal e↵ect

are known, which provides a bound on the rate of convergence of the standard estimator, in which

these quantities are estimated by linear regression.
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Chapter 1

Introduction

Since time immemorial, humans have drawn causal inferences from observational data. Though

such inferences have led to dramatic advances in our understanding of the human and natural

worlds, and are responsible for much of our technological and scientific progress, they are fraught

with peril due to phenomena such as confounding and selection bias. Although the average person

is aware that “correlation does not imply causation,” they rarely fully understand why, since even

many experts do not fully appreciate the threats to validity present in a particular problem. While

philosophers have long been fascinated by the nature of causation, and under what assumptions it

can be inferred, it was only in the twentieth century that we developed formal statistical frameworks

for it, chief of which is Neyman’s Potential Outcomes framework [4], which forms the foundation of

work by Donald Rubin [7] and James Robins [6] (separately) that led, along with the substantial

progress on graphical models by Judea Pearl [5], to the current state of the field. Though there are

many approaches to controlling for confounding and drawing valid causal inferences from observa-

tional data, many of which were developed far before our modern understanding of the problem,

we will focus on two, more specialized, approaches, which are widely used in the social sciences and

epidemiology: matching and instrumental variables.

The first two chapters of the following work focus on matching, which attempts to control

for potential confounding by matching each “treated” or “exposed” subject to a corresponding

“untreated” or “unexposed” control who is as much like that subject as possible, so that the two

di↵er meaningfully only in their treatment or exposure status. Under such circumstances, the

di↵erence in outcomes between the two will be due only to the e↵ect of treatment or exposure and,

possibly, idiosyncratic factors that are not related to whether or not they were treated or exposed.

In particular, if the matching is su�ciently good (oftentimes meaning perfect) then the matched

analysis will control for confounding, the potential that treatment/exposure is related to other

characteristics of the individual and these characteristics a↵ect the outcome (in the extreme case,

it is only these associated characteristics, not treatment/exposure itself, that a↵ect the outcome),

since all relevant characteristics will be su�ciently similar in the treated/exposed subject and his
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matched control that they will have the same e↵ect on the outcome in both and any di↵erences

will be solely due to the e↵ects of treatment/exposure.

However, there are many ways in which to match subjects, and, when the matching process

is imperfect, as it almost always is, the choice of matching technique will a↵ect who is matched

with whom, and, thus, potentially, the estimated causal e↵ect. Two of the most popular matching

methods are matching directly on some collection of covariates, typically those that are felt to be

potential confounders for the causal e↵ect of interest, in order to minimize some distance metric that

is related to the di↵erence in covariate values (or some transformation thereof), and matching on

the propensity score, the probability that an individual will be treated/exposed given his covariates,

so that matched pairs di↵er in their propensity score as little as possible. Both approaches have

strong proponents and which technique is superior is vigorously debated in the literature.

In order to address the question of whether one matching method dominates the other, we

explore how the bias and variance of matching estimators, using either direct or propensity score

matching, depend on the number of treated/exposed subjects and controls and the number and

distribution of matched covariates. In addition to the simple matching estimators described above,

we also evaluate methods that combine matching with regression in order to account for the fact

that, when matching is not perfect, the covariate values of a treated/exposed subject and his

matched control may di↵er, sometimes substantially.

Such bias-corrected matching estimators, which combine matching and regression can vary

significantly in their estimated causal e↵ects depending on the choice of regression model. Thus,

choices by the analyst can a↵ect the answer, which weakens one of the primary arguments for using

matching over other methods: that matching is “less parametric” than regression, and, thus, less

dependent on choices made by the analyst. To explore this question, we examine how much the

estimated causal e↵ect can change based on the choice of regression model. In particular, for a

collection of regression models, we evaluate the empirical variance, over models, of the estimated

causal e↵ect, which we refer to as the Model Dependence, following King and Nielsen [3]. As with

the bias and variance for a single matching estimator, we examine how this di↵ers between direct

and propensity score matching and how this di↵erence varies with the number of treated/exposed

subjects and controls and the number and distribution of matched covariates.

Having explored the properties of matching estimators in the prior two chapters, for the final
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main chapter, we turn our attention to another means of estimating causal e↵ects in the presence

of potential confounding: Instrumental Variable (IV) methods. An Instrumental Variable is a

quantity that is associated with the potential risk factor, but not with the outcome, except through

the risk factor’s e↵ect on the outcome. If one has a true IV, then this allows one to estimate the

causal e↵ect of the potential risk factor on the outcome using a variety of standard methods. In

epidemiology, a popular choice for instruments has been genetic markers, which is referred to as

Mendelian Randomization (MR), based on the idea that, for many risk factors, genes that a↵ect the

level/state of the risk factor are known. However, many genes actually have multiple e↵ects and,

thus, may a↵ect the outcome, either directly or indirectly, via pathways other than their e↵ect on

the potential risk factor, so-called pleiotropy. In response to this issue, alternative IV estimators,

that can tolerate pleiotropy have been developed. Perhaps the most popular is Egger Regression,

which was originally developed for evaluating meta-analyses, but was repurposed to allow the use

of Mendelian Randomization, even in the presence of pleiotropy, under particular assumptions

about the association between the selected genetic markers and the potential risk factor and their

association with the outcome (the strength of pleiotropy), the so-called InSIDE assumption [1, 2].

However, despite this estimator being widely used, it has never been formally characterized

or even been rigorously shown to be consistent (the arguments for its use are based on informally

taking sequential limits as first the sample size then the number of instruments goes to infinity). We

begin the process of formally characterizing its asymptotic properties in terms of the strength of the

instruments (the association of the markers with the potential risk factor), the extent of pleiotropy

(the association of the markers with the outcome), and violations of the InSIDE assumption.
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Chapter 2

Bias and Variance of Matching Estimators

Tom Kolokotrones, Max Goplerud, Richard Nielsen, Gary King, and James Robins

2.1 Introduction

In a widely-cited 2019 paper, boldly entitled ”Why Propensity Scores Should not be Used

for Matching,” King and Nielsen argue that “propensity score matching... often accomplishes the

opposite of its intended goal—thus increasing imbalance, ine�ciency, model dependence, and bias,”

even when the propensity score is known as in a (possibly stratified) randomized clinical trial, and,

thus, as the title states, should not be used for matching [5]. Given the strength of this assertion,

we ask whether the superiority of direct over propensity score matching is indeed universal, or

whether there may be some cases, possibly unusual, in which matching on the propensity score

does, in fact, result in better performance. In order to evaluate this, we consider the bias and

variance of matching estimators for the Average E↵ect of Treatment on the treated (ATT) when

directly matching on the covariates (or some transformation of them, as in Mahlanobis matching)

vs. when matching on the propensity score [6, 7]. The ATT is commonly estimated using both

matching methods, and, indeed, such estimators are the focus of King and Nielsen’s paper [5].

In order to sharpen our analysis, we consider an extreme case which provides an apparently

severe disadvantage to the propensity score: the case in which the propensity score is a known

constant. This implies that the distribution of covariates is identical among both treated and

untreated subjects and, thus, treatment is not (unconditionally) confounded by either measured or

unmeasured covariates. Thus, in our setting, propensity score matching cannot use the covariates

at all, and, instead, matches at random; while direct matching can potentially utilize all of the

information available in the observed covariates. On its face, this is very strong limitation for

propensity score matching, but also highlights a major complaint King and Nielsen have about

matching on the propensity score: that propensity score matching is similar to random matching in

that it often matches points that are far apart in covariate space, even when much closer matches are

available [5]. Therefore, using a constant propensity score only exacerbates what King and Nielsen

5



consider to be one of the greatest problems with the method and, thus, if this extreme version of

propensity score matching is able to outperform direct covariate matching by any criterion, this

will provide strong evidence that there are indeed settings in which propensity scores should be

used for matching, or, at least, favored over direct covariate matching.

Further, in practice, the propensity score is typically not known and must be estimated. How-

ever, when the model for the propensity score is correctly specified, matching on the estimated

propensity score obtained by fitting a properly specified parametric model is known to improve

performance over using the true score, even when it is known [3]. Therefore using the true propen-

sity score further disadvantages this version of propensity score matching vs. what is used in

practice, which should further bias our results in favor of direct covariate matching.

The structure of the remainder of the paper is as follows. Section 2 introduces the notation.

Section 3 introduces three types of estimators for the Average E↵ect of Treatment on the Treated, as

described by Abadie and Imbens, and explores their bias and robustness properties [1, 2]. Section

4 further discusses the bias of matching estimators under direct vs. propensity score matching

and explores how this is related to properties of the distribution of the covariates. Section 5

derives expressions for the variance of matching estimators, particularly their dependence on the

matching discrepancy. Section 6 explores how the variance of matching estimators is a↵ected by

the distribution of the covariates as well as compares the relative variance of matching estimators

using direct vs. propensity score matching. Section 7 concludes.

We find that there are settings in which estimators of the ATT that use propensity score

matching outperform those that use direct covariate matching. The reason for this phenomenon is

that, rather surprisingly, matching directly on the covariates can introduce bias, even in the total

absence of confounding, as is the case under a constant propensity score.

2.2 Basics

Let Y be a continuous outcome, A a binary treatment (where A = 1 corresponds to treatment

and A = 0 to no treatment), X a vector of continuous covariates, and Y (a) the counterfactual

outcome under treatment a. We use [n] to denote the set {1, . . . , n}, as is typical in Computer

Science. Consider a collection of N
1

treated and N
0

untreated subjects. Our goal is to estimate the
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expected e↵ect of treatment, A, on the outcome, Y , among those subjects that were treated, the so-

called Average E↵ect of Treatment on the Treated (ATT), which is given by ⌧ = E[Y (1)�Y (0)|A =

1].

Consider a matching criterion M , which is a function M : [N
1

] ! [N
0

]m that associates with

each of the N
1

treated subjects m of the N
0

untreated controls. In what follows, we will restrict

attention to the case of 1-1 matching with replacement, so that m = 1 and each treated subject is

matched to exactly one untreated control (although multiple treated subjects may be matched to

the same untreated control). In the typical case, a match is defined as the untreated control j =

M(i) 2 [N
0

] that minimizes some distance d(X
i

, X
j

), where d is some metric, such as the Euclidean

or Mahlanobis distance or the absolute di↵erence in propensity score. Let ⌧
i

= Y
i

(1) � Y
i

(0) be

the individual treatment e↵ect for subject i. Since exactly one of Y
i

(0) and Y
i

(1) will actually be

observed, ⌧
i

must be estimated. For any random variable, Z, we use Z to represent the values of

the treated subjects and Z
M

for the values of the matched controls and define �Z
i

= Z
M(i)

� Z
i

and Z = N�1

1

P
N1
i=1

Z
i

. Following Abadie and Imbens, we refer to �Z as the matching discrepancy

of Z [1, 2].

In simple matching, Y
i

(0) for treated subjects is estimated by bY
i

(0) = Y
M(i)

. We can then

estimate the e↵ect of treatment on treated individual i by, ⌧̂
i

= Y
i

� Y
M(i)

and estimate the

ATT as ⌧̂ = N�1

1

P
N1
i=1

�
Y
i

� Y
M(i)

�
. Unfortunately, as we will see below, this estimator will, in

general, be biased, if the matching function is allowed to depend on the covariates, even when

the propensity score is constant and there is no confounding for treatment. However, if Y
i

(0)

satisfies Y
i

(0) = µ
0

(X
i

) + ✏
i

, E[✏
i

|X
i

] = 0, then several other estimators become available [1,

2]. The first is the regression imputation estimator, which estimates the e↵ect of treatment on

treated individual i by ⌧̂
i

= Y
i

� µ̂
0

(X
i

), and the ATT by ⌧̂ = N�1

1

P
N1
i=1

(Y
i

� µ̂
0

(X
i

)), where µ̂
0

is estimated using the data from some subset of the untreated controls. The second is referred

to as the bias-corrected matching estimator and combines the simple matching and regression

estimators in order to account for the fact that, in general, X
i

6= X
M(i)

[8]. It does so by using

a fitted regression function to correct for the matching discrepancy and so estimates Y
i

(0) by

bY
i

(0) = Y
M(i)

+ µ̂
0

(X
i

) � µ̂
0

�
X

M(i)

�
, instead of simply using Y

M(i)

. One can then estimate the

e↵ect of treatment on treated individual i by ⌧̂
i

= Y
i

� Ŷ
i

(0) = Y
i

� Y
M(i)

+ µ̂
0

�
X

M(i)

�
� µ̂

0

(X
i

)

and estimate the ATT by ⌧̂ = N�1

1

P
N1
i=1

⇥
Y
i

� Y
M(i)

+ µ̂
0

�
X

M(i)

�
� µ̂

0

(X
i

)
⇤
. Our primary focus
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throughout the paper will be the bias-corrected estimator for the ATT, but, we will explore each

of the three estimators.

Abadie and Imbens carefully analyzed the asymptotic bias, variance, and normality of matching

estimators for nearest neighbor matching [1, 2]. However, our focus will be somewhat di↵erent.

Abadie and Imbens specifically focus on the asymptotic performance of matching estimators after

bias correction. In their first paper on the subject, they subtract the exact bias from the matching

estimator, while in the second they estimate this bias using a nonparametric estimator. However,

this procedure relies on the matching discrepancy shrinking su�ciently rapidly, which will not

always hold in what follows. Additionally, Abadie and Imbens focus on nearest neighbor matching,

while we are interested in examining the performance of several di↵erent forms of matching and so

will not restrict ourselves to the nearest neighbor setting.

2.3 Bias of ATT Estimators

In this section, we will examine the bias of the three estimators of the ATT discussed above:

simple matching, regression imputation, and bias-corrected matching. Our results will be stated in

terms of the matching discrepancy and will not be specific to any particular matching method.

2.3.1 Simple Matching

We begin with simple matching. Let the true model be Y
i

(a) = µ
a

(X
i

)+ ✏
i

, where E[✏
i

|X
i

] = 0,

so that the true treatment e↵ect for subject i is ⌧
i

= µ
1

(X
i

)�µ
0

(X
i

) = ⌧ (X
i

). Then, the estimated

e↵ect of treatment on subject i is:

⌧̂
i

= Y
i

� Y
M(i)

= µ
1

(X
i

)� µ
0

�
X

M(i)

�
+ ✏

i

� ✏
M(i)

= (µ
1

(X
i

)� µ
0

(X
i

))�
�
µ
0

�
X

M(i)

�
� µ

0

(X
i

)
�
��✏

i

= ⌧
i

�
�
µ
0

�
X

M(i)

�
� µ

0

(X
i

)
�
��✏

i

and the conditional bias will be,

E [⌧̂
i

|X
i

]� ⌧
i

= E
⇥
µ
0

(X
i

)� µ
0

�
X

M(i)

���X
i

⇤
= µ

0

(X
i

)� E
⇥
µ
0

�
X

M(i)

���X
i

⇤

8



so the estimated individual treatment e↵ect will be (conditionally) unbiased if and only if

E
⇥
µ
0

�
X

M(i)

���X
i

⇤
= µ

0

(X
i

), or, put di↵erently, if and only if the (conditional) expected matching

discrepancy of µ(X) for subject i is zero.

The results for the estimator of the ATT, are similar.

⌧̂ = N�1

1

N1X

i=1

⌧̂
i

= N�1

1

N1X

i=1

⌧
i

�N�1

1

N1X

i=1

�
µ
0

�
X

M(i)

�
� µ

0

(X
i

)
�
+N�1

1

N1X

i=1

�✏
i

E [⌧̂ |X]� ⌧̄ = N�1

1

N1X

i=1

E
⇥
µ
0

(X
i

)� µ
0

�
X

M(i)

���X
i

⇤
= N�1

1

N1X

i=1

�
µ
0

(X
i

)� E
⇥
µ
0

�
X

M(i)

���X
i

⇤�

E [⌧̂ ]� ⌧ = N�1

1

N1X

i=1

E
⇥
µ
0

(X
i

)� µ
0

�
X

M(i)

�⇤
= E

⇥
µ
0

(X
i

)� µ
0

�
X

M(i)

�⇤

This leads to an interesting, and somewhat surprising, conclusion: if E [µ
0

(X)] is the same in

the treated subjects and their matched controls, then ⌧̂ will be unbiased (either conditionally or

unconditionally, respectively), regardless of any other properties of the matching scheme.

In the case in which µ
0

is an a�ne function of x, so µ
0

(x) = �
0

+ �tx,

E [⌧̂ |X]� ⌧̄ = N�1

1

�t

N1X

i=1

�
X

i

� E
⇥
X

M(i)

��X
i

⇤�
= �N�1

1

�t

N1X

i=1

E [�X
i

|X
i

]

E [⌧̂ ]� ⌧ = ��tE [�X
i

]

so the estimated ATT will be conditionally unbiased if the conditional expected matching discrep-

ancy is zero and unconditionally unbiased if the expected matching discrepancy is zero. Note that

this is equivalent to expected value of X being the same in the treated subjects and their matched

controls (i.e. E [X
i

] = E
⇥
X

M(i)

⇤
). This means that, when the true model is a�ne, matching does

not have to be perfect, it only has to equalize the first moment between the treated and untreated

subjects in order to give an unbiased estimate of the ATT (either unconditionally or conditional

9



on X, the values of the observed covariates among the treated subjects). This provides theoretical

support for the common practice of measuring imbalance by comparing the means of covariates

among the treated and untreated (before or after matching) and considering matching to have been

successful when the means in both groups are similar. Indeed, when the true model is a�ne, this

is all that is needed in order to ensure that the estimated ATT is unbiased.

2.3.2 Regression Imputation

If we have an estimator of µ
0

, µ̂
0

, the regression imputation estimator of the ATT, as defined

by Abadie and Imbens [1, 2], gives:

⌧̂
i

= Y
i

� µ̂
0

(X
i

) = µ
1

(X
i

) + ✏
i

� µ̂
0

(X
i

) = (µ
1

(X
i

)� µ
0

(X
i

))� (µ̂
0

(X
i

)� µ
0

(X
i

)) + ✏
i

= ⌧
i

� (µ̂
0

(X
i

)� µ
0

(X
i

)) + ✏
i

Then,

E [⌧̂
i

|X
i

]� ⌧
i

= E [µ
0

(X
i

)� µ̂
0

(X
i

)|X
i

] = µ
0

(X
i

)� E [µ̂
0

|X
i

] (X
i

)

The equivalent computations for the ATT are:

⌧̂ = N�1

1

N1X

i=1

⌧̂
i

= N�1

1

N1X

i=1

⌧
i

�N�1

1

N1X

i=1

(µ̂
0

(X
i

)� µ
0

(X
i

)) +N�1

1

N1X

i=1

✏
i

E [⌧̂ |X]� ⌧̄ = N�1

1

N1X

i=1

(µ
0

(X
i

)� E [µ̂
0

|X] (X
i

))

E [⌧̂ ]� ⌧ = E [µ
0

(X
i

)� E [µ̂
0

|X] (X
i

)]

Thus, the regression imputation estimator of the ATT will be unbiased if the regression function

is conditionally unbiased. Let µ⇤
0

be the (stochastic) limit of µ̂, then we can expand the bias as

10



follows:

E [⌧̂ ]� ⌧ = E [µ
0

(X
i

)� µ⇤
0

(X
i

)] + E [µ⇤
0

(X
i

)� E [µ̂
0

|X] (X
i

)]

Thus, the bias of the regression imputation estimator arises from two sources, the asymptotic

bias of the regression function and its additional finite sample bias. Abadie and Imbens assume

that the estimator µ̂
0

is fit using only untreated controls, and, thus, will be independent of X [2].

However, many analysts would combine such a regression estimator with matching and would first

match the untreated subjects to the treated ones before running the regression only on matched

controls, which may mean that µ̂
0

6?? X if µ̂
0

is biased. In order to include this case, we will not

assume that µ̂
0

?? X until later.

If both µ and µ̂ are a�ne functions of x, so that µ(x) = �tx, µ̂(x) = �̂tx, where we set the

zeroth entry of each x equal to one in order to simplify notation, as is standard, then

E [⌧̂ |X]� ⌧̄ = N�1

1

N1X

i=1

⇣
� � E

h
�̂
���X

i⌘
t

X
i

=
⇣
� � E

h
�̂
���X

i⌘
t

·N�1

1

N1X

i=1

X
i

E [⌧̂ ]� ⌧ = E

⇣
� � E

h
�̂
���X

i⌘
t

X
i

�
= E

⇥
(� � �⇤)tX

i

⇤
+ E

⇣
�⇤ � E

h
�̂
���X

i⌘
t

X
i

�

= (� � �⇤)t E [X
i

]� E


E
h
�̂ � �⇤

���X
i
t

X
i

�
= (� � �⇤)t E [X

i

] + o(1)

under mild regularity conditions such as that �̂
L1�! �⇤ and X is bounded or �̂

L2�! �⇤ and X has

finite second moment. Therefore, the asymptotic bias of the regression imputation estimator of

the ATT is the product of the asymptotic bias of �̂ and the expected value of X
i

and so, will be

asymptotically unbiased if the regression estimator is.

When using the regression imputation estimator, linearity does not provide any clear advantage

for obtaining an unbiased estimate of the ATT vs. the general case; the estimated ATT will be

unbiased if the regression function is conditionally unbiased. In the a�ne case, this will occur when

the regression function used to estimate �̂
0

is correctly specified. However, this is what one would

naively expect and it does not provide any surprising additional robustness, unlike what we saw

with the simple matching estimator.
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2.3.3 Bias Corrected Matching

Finally, in the case of the bias-corrected matching estimator,

⌧̂
i

= Y
i

� Y
M(i)

+ µ̂
0

�
X

M(i)

�
� µ̂

0

(X
i

)

= (µ
1

(X
i

) + ✏
i

)�
�
µ
0

�
X

M(i)

�
+ ✏

M(i)

�
+ µ̂

0

�
X

M(i)

�
� µ̂

0

(X
i

)

= (µ
1

(X
i

)� µ
0

(X
i

)) +
�
µ̂
0

�
X

M(i)

�
� µ

0

�
X

M(i)

��
� (µ̂

0

(X
i

)� µ
0

(X
i

))��✏
i

= ⌧
i

+
�
µ̂
0

�
X

M(i)

�
� µ

0

�
X

M(i)

��
� (µ̂

0

(X
i

)� µ
0

(X
i

))��✏
i

E [⌧̂
i

|X
i

]� ⌧
i

= E
⇥
E
⇥�
µ̂
0

�
X

M(i)

�
� µ

0

�
X

M(i)

��
� (µ̂

0

(X
i

)� µ
0

(X
i

))
��X

M

, X
⇤��X

i

⇤

= E
⇥�
E [µ̂

0

|X,X
M

]
�
X

M(i)

�
� µ

0

�
X

M(i)

��
� (E [µ̂

0

|X,X
M

] (X
i

)� µ
0

(X
i

))
��X

i

⇤

The equivalent calculations for the ATT are:

⌧̂ = N�1

1

N1X

i=1

⌧̂
i

= ⌧̄ +N�1

1

N1X

i=1

�
µ̂
0

�
X

M(i)

�
� µ

0

�
X

M(i)

��
�N�1

1

N1X

i=1

(µ̂
0

(X
i

)� µ
0

(X
i

))

�N�1

1

N1X

i=1

�✏
i

E [⌧̂ |X]� ⌧̄ = N�1

1

N1X

i=1

E
⇥
E [µ̂

0

|X,X
M

]
�
X

M(i)

�
� µ

0

�
X

M(i)

���X
⇤

�N�1

1

N1X

i=1

(E [µ̂
0

|X] (X
i

)� µ
0

(X
i

))

E [⌧̂ ]� ⌧ = E
⇥
E [µ̂

0

|X,X
M

]
�
X

M(i)

�
� µ

0

�
X

M(i)

�⇤
� E [E [µ̂

0

|X] (X
i

)� µ
0

(X
i

)]

So the bias-corrected estimator of the ATT will be unbiased if the estimated regression function

is unbiased conditional on X,X
M

or if the matching is perfect so that the first and second terms

are identical. However, when µ and µ̂ are a�ne functions of x so µ(x) = �
0

+ �tx, µ̂(x) = �̂
0

+ �̂tx
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the situation simplifies. Then,

E [⌧̂ |X]� ⌧̄ = E

⇣
E
h
�̂
���X,X

M

i
� �

⌘
t

�X

����X
�

E [⌧̂ ]� ⌧ = E

⇣
E
h
�̂
���X,X

M

i
� �

⌘
t

�X
i

�

As before, if �⇤ is the (stochastic) limit of �̂, then we can reexpress the bias as,

E [⌧̂ ]� ⌧ = (�⇤ � �)t E [�X
i

] + E

⇣
E
h
�̂
���X,X

M

i
� �⇤

⌘
t

�X
i

�
= (�⇤ � �)t E [�X

i

] + o(1)

under mild regularity conditions such as �X being bounded and �̂
L1�! �⇤ or �X having finite

second moment and �̂
L2�! �⇤. Thus, the bias-corrected matching estimator of the ATT will be

unbiased if �̂ is conditionally unbiased (meaning that it is correctly specified) and asymptotically

unbiased if either the expected matching discrepancy is zero or the regression function is correctly

specified. Thus, the bias-corrected matching estimator combines the robustness properties of both

simple matching and regression imputation.

Therefore, when both µ
0

and µ̂
0

are a�ne functions of x, the bias-corrected matching estimator

exhibits a strong form of double robustness: it will be asymptotically unbiased if either the expected

matching discrepancy is zero or the regression function is correctly specified. The first criterion

is exactly what we saw in the case of simple matching. However it is still, in some sense, rather

surprising, since it tells us that the quality of individual matches doesn’t matter, just that the

expected matching discrepancy is zero, so that the errors cancel each other out as the sample

becomes arbitrarily large.

2.4 Bias, Matching Method, and Covariate Distribution

We now examine the practical implications of these results for both direct and propensity score

matching for a variety of commonly encountered covariate distributions, focusing on how the choice

of distribution a↵ects the bias of matching estimators of the ATT.
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2.4.1 Direct Matching

Average Bias of the ATT vs. Covariate Distribution

Figure 29: Treatment Group T =3000
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��

��

��

��

��

��

��

��

��

10 20 40

interaction
linear

quadratic

0100020003000 0100020003000 0100020003000

−0.3

0.0

0.3

0.6

−0.3

0.0

0.3

0.6

−0.3

0.0

0.3

0.6

caliper

match.method
Mahal

PS

(b) Expo Data

��

��

��

��

��

��

��

��

��

10 20 40

interaction
linear

quadratic

0100020003000 0100020003000 0100020003000

−0.5

0.0

0.5

1.0

1.5

−0.5

0.0

0.5

1.0

1.5

−0.5

0.0

0.5

1.0

1.5

caliper

match.method
Mahal

PS

(c) Uniform Data

��

��

��

��

��

��

��

��

��

10 20 40

interaction
linear

quadratic

0100020003000 0100020003000 0100020003000

−0.1

0.0

0.1

0.2

−0.1

0.0

0.1

0.2

−0.1

0.0

0.1

0.2

caliper

match.method
Mahal

PS

31

�� �� ��

10 20 40

norm
al

0100020003000 0100020003000 0100020003000

−0.3

0.0

0.3

0.6

caliper

match.method
Mahal

PS

�� �� ��

uniform

−0.1

0.0

0.1

0.2

�� �� ��

exponential

−0.5

0.0

0.5

1.0

1.5

10 20 40

exponential

−0.5

0.0

0.5

1.0

1.5

norm
al

−0.3

0.0

0.3

0.6

0100020003000 0100020003000 0100020003000
caliper

bi
as

Figure 2.1: Average bias of the bias-corrected matching estimator of the ATT for Normally and
Exponentially Distributed covariates. The numbers at the top of the figure give the number of
covariates being matched, while caliper indicates the number of matched pairs retained after dis-
carding the worst matches.

Figure 2.1 shows that, as we discussed above, when the matching discrepancy is small, the bias-

corrected matching estimator of the ATT will be nearly unbiased, even if the regression function

is misspecified. The figure shows that the empirical bias of the estimated ATT, under nearest-

neighbor matching, is smaller when the covariates are normally distributed (Figure 2.1, top row)

than when they are exponentially distributed (Figure 2.1, bottom row). This is because normally

distributed covariates have zero expected matching discrepancy, while exponentially distributed

covariates have a negative expected matching discrepancy.

Figure 2.2 illustrates the origin of the di↵erence in matching discrepancies. When covariates

are symmetrically distributed, as they are under the Normal Distribution, the conditional expected

matching discrepancy at opposing points will be equal and opposite so that the unconditional

expected matching discrepancy will be zero because the contributions of opposing points exactly

cancel, as seen in Figure 2.2a. For the normal distribution, the matched point is more likely to lie
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Figure 2.2: Expected conditional matching discrepancies at several points of the a. Normal and b.

Exponential Distributions. Note that, for the Normal Distribution, opposing points will have equal
and opposite expected matching discrepancies, while for the Exponential Distribution, all points
will have negative expected matching discrepancies.

closer to the origin than the original point, although this may not be the case for other symmetric

distributions. When covariates are drawn from a skewed distribution, such as the Exponential

Distribution, the matching discrepancies will no longer cancel. Indeed, for the Exponential Distri-

bution, the expected conditional matching discrepancy will always be negative and will increase in

magnitude with increasing x, meaning that the matched point is, again, more likely to be closer to

the origin than the original point, as seen in Figure 2.2b.

This behavior can be seen in following analytic result originally due to Abadie and Imbens (see

the appendix for an expanded version, which includes higher order terms than the original result)

[2].

E[�X|X] = d�1�

✓
d+ 2

d

◆
�

✓
d+ 2

2

◆ 2
d

⇡�1f(X)�
d+2
d

@f

@x
(X) ·N� 2

d

0

+ o

✓
N

� 2
d

0

◆
(2.1)

E[�X�Xt|X] = d�1�

✓
d+ 2

d

◆
�

✓
d+ 2

2

◆ 2
d

⇡�1f(X)�
2
d · I

d

·N� 2
d

0

+ o

✓
N

� 2
d

0

◆
(2.2)

where d is the number of covariates on which matching is performed, I
d

is the d dimensional identity

matrix, and, here, X denotes the covariate values of the individual being matched.

We note that the direction of the conditional expected matching discrepancy is given by the
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gradient of the density at the point X. For the Uniform Distribution, the expected matching

discrepancy is always 0 at any point (ignoring edge e↵ects). For the Normal Distribution, the

matching discrepancy is always towards the origin and is symmetric, with opposite points having

equal and opposite matching discrepancies, so that the unconditional matching discrepancy is zero.

For the Exponential Distribution, the discrepancy again always points towards the origin, but,

since exponential random variables are nonnegative, this means that the conditional matching

discrepancy will always be negative, and, thus, the unconditional expected matching discrepancy

will be as well.

From this, it appears that, when both the true model and the regression model are a�ne,

symmetric covariate distributions will result in improved matching estimates of the ATT, since they

naturally result in matching discrepancies with zero mean, and, based on our above results, this

guarantees that the simple matching estimator will be unbiased and the bias-corrected estimator

will be asymptotically unbiased, regardless of whether or not the bias correction function is correctly

specified. However, while this is relatively straightforward in one dimension, it becomes less obvious

how this intuition should extend to higher dimensions with correlated covariates. In particular, if

our collection of covariates includes some variable X(1) as well as its square, X(1)2, even if X(1) is

symmetric or, better yet, uniform, X(1)2 and, thus, the joint distribution (X(1), X(1)2) will certainly

not be. As Figure 2.3 shows, in general, the distribution of X(1)2 will be skewed towards the origin,

at least near 0. Thus, nearest neighbor matching on X(1)2 will fail to produce an expected matching

discrepancy of zero.

In fact, when a model contains both simple covariates, like X(1), X(2), . . . and derived covariates

which are functions of the simple covariates X (i) = f
i

(X), such as interaction terms, like X(1)X(2),

and quadratic terms, like X(1)2 (or even more general functions such as logX(1)), it is typical to

match only on the simple covariates and ignore the presence of derived covariates in the matching

process. This also typically leads to the derived covariates having nonzero expected matching

discrepancies even if the simple covariates actually do have zero expected matching discrepancies,

although the explanation for why this is is slightly di↵erent. The reason is that the nonlinear

transformation x 7! x2 distorts distances in a nonlinear fashion so that distances near 0 are shrunk

while distances near 1 (and �1) are stretched. Thus, the conditional matching discrepancy will be

altered. In particular, if it is zero before the transformation, it will typically be nonzero afterwards.
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Figure 2.3: Distribution of X2 for various distributions. a. Even though the base covariate is
distributed Uniformly, X2 is not, with the density concentrating around 0. This results in the
conditional expected matching discrepancy being negative at every point. This e↵ect is also seen
with the b. Normal and c. Exponential Distributions.

This is most evident in Figures 2.4a and b, which show that, if X is uniformly distributed, the

deciles are evenly spaced for X, but not for X2. In particular, the deciles of X2 are very closely

spaced near 0 and spread out asX increases, and so are widely spaced near 1. Let q(i) be the x value

of the ith decile. Since X is uniformly distributed, if x = q(i), it has an equal probability of being

matched to q(i+1) or q(i� 1). Thus, the fact that q(i+1)� q(i) > q(i)� q(i� 1) implies that the

matching discrepancy is positive. The situation is more complex for other distributions since it is no
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Figure 2.4: Distribution of X and X2 when X is Uniformly Distributed. a. Distribution of X with
points indicating the deciles. b. Distribution of X2 with points indicating the deciles. Note that,
while the deciles are evenly spaced for X, this is clearly not the case for X2, with the lowest deciles
tightly grouped near zero and the upper deciles widely spread out.

longer the case that matching to q(i+1) and q(i� 1) is equally likely. In order to understand their

behavior, it is more enlightening to examine an analytic expression for the conditional matching

discrepancy akin to Equation 2.1. We can extend that equation to the case in which we have

derived covariates (X (1),X (2), . . . ), but only match on the simple covariates (X(1), X(2), . . . ), using

a power series expansion of the defining functions of the derived covariates, f
k

. A full derivation is

presented in the appendix. In this setting,
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From Equation 2.3, we see that if X = X(1)2 and the distribution of X(1) is uniform, the

first term in brackets disappears and the second term is equal to 1, so the conditional expected

matching discrepancy (and, thus, also the unconditional matching discrepancy) will be positive,

even though the conditional expected matching discrepancy of X(1) is zero; this is just what we

saw in Figure 2.4. Indeed, if the distribution of X(1) is symmetric, then its derivative will be

antisymmetric, so, since @f

k

@x

(x) = 2x is also antisymmetric, the first term will be symmetric and

the conditional expected matching discrepancy will generally be nonzero (although, since the first

term in brackets my be negative, as is the case when X(1) is normally distributed, the conditional

expected matching discrepancy may be zero at particular points). Thus, even if the true model and

regression model are both a�ne, if the regression model in the bias-corrected matching estimator

is incorrectly specified, then the estimated ATT will, in general, be biased, since the covariates no

longer have zero expected matching discrepancy. Therefore, when using nearest-neighbor matching

on the simple covariates alone, in the presence of quadratic, and other higher order terms, one will,

in general, need to properly specify the regression model in order for the estimated ATT to be

asymptotically unbiased.

However, it is not necessarily the case that all derived covariates will have nonzero expected

matching discrepancy. Looking at the expression for the conditional expected matching discrepancy,

we can see that, if the distributions of the simple covariates are symmetric and they are mutually

independent, then, if the derived covariates are antisymmetric in each of the simple covariates, the

expected matching discrepancy will be zero. In particular, simple two-way interaction terms will

have zero expected matching discrepancy, as will odd powers of a single covariate. However, if the

simple covariates are correlated, this will no longer be the case and even simple two-way interactions

may have nonzero expected matching discrepancies so that the bias-corrected matching estimator

will, in general, be biased, unless the regression function is correctly specified.

2.4.2 Propensity Score Matching

As we have seen above, for many distributions, direct matching on the covariates will not result

in zero expected matching discrepancy, either because the covariates being matched upon have

skewed distributions, or because the model includes derived covariates. Thus, even when both the

true and regression models are a�ne, the bias-corrected matching estimator of the ATT will, in
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general, not be even asymptotically unbiased, unless the regression model is properly specified.

However, we can also consider other matching methods besides direct nearest-neighbor matching.

One of the most popular alternatives to direct matching is matching on the propensity score,

the probability that a subject will be treated given his covariate values. In our extreme setting,

in which the propensity score is a constant (which is equal to the fraction of treated subjects

among all subjects treated or untreated), this means any treated subject is equally likely to be

matched to any untreated subject. Also note that, since the propensity score is constant across all

subjects, the distribution of covariates among treated and untreated subjects must be the same.

Thus, E [�X
i

] = E
⇥
X

M(i)

�X
i

⇤
= E

⇥
X

M(i)

⇤
� E [X

i

] = 0, since X is distributed identically

among treated and untreated subjects and the matched subject is chosen completely at random,

independent of the value of X
i

.

Therefore, as long as both the true and regression models are a�ne, when using propensity

score matching, the bias-corrected estimator of the ATT will always be asymptotically unbiased

(and the simple matching estimator will be unbiased). This is in contrast to what occurs when

using direct matching, since, in that case, for the expected matching discrepancy to be zero, the

matched covariates must be drawn from distributions with special structure (as is the case if they

are drawn from symmetric distributions) and any derived covariates must not have quadratic or

higher order terms (or even interaction terms, if the simple covariates are correlated). When using

the propensity score for matching, the expected matching discrepancy will always be zero, no matter

what covariates are used and how they are distributed, so the bias-corrected matching estimate of

the ATT will always be asymptotically unbiased.

2.4.3 Coarsened Exact Matching

A less popular alternative to direct covariate matching and propensity score matching is Coars-

ened Exact Matching (CEM) [4]. When using CEM, the analyst first partitions each matched

covariate into bins (the so called coarsening) and then matches treated subjects to untreated con-

trols which perfectly match their coarsened covariate values (e.g. if we match on X
1

, which we

coarsen into two categories X
1

< 0 and X
1

� 0, a treated subject with x
1

= 1 will be matched at

random with a control that has x
1

� 0; if no such untreated control exists, that treated subject

is discarded, as only perfect matches are allowed). The major benefit of CEM is that it achieves
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(approximate) perfect matches between subjects, but it requires very large numbers of untreated

subjects in order to ensure that all possible configurations of covariates have enough untreated

representatives. In particular, if we match on d covariates, which we coarsen into just two cate-

gories each, we will have 2d possible configurations, so it potentially requires very large numbers

of untreated subjects in order to match on more than a handful of covariates, with the worst case

being when the covariates are completely independent. However, if the covariates are very highly

correlated, so that only a small fraction of the possible configurations are exist, it may be possible

to match on many more than O (log
2

N
0

) covariates.

However, if one has su�cient untreated controls, in the case of a constant propensity score, CEM

shares a remarkable feature with propensity score matching: matches of subjects within any bin will

have zero expected matching discrepancy, and, thus, CEM will result in zero expected matching dis-

crepancy. The reason for this is similar to the argument for propensity score matching. Matching of

two subjects within a bin is completely at random, conditional only on the fact that their covariate

values fall within a certain range. Since both treated and untreated subjects have identical co-

variate distributions, they will also have identical covariate distributions conditional on falling

within a particular bin, B. Thus, E
⇥
�X

i

��X
i

, X
M(i)

2 B
⇤
= E

⇥
X

M(i)

�X
i

��X
i

, X
M(i)

2 B
⇤
=

E
⇥
X

M(i)

��X
i

, X
M(i)

2 B
⇤
� E

⇥
X

i

��X
i

, X
M(i)

2 B
⇤
= 0.

Therefore, regardless of the distribution of the covariates, when the propensity score is constant,

CEM will have zero expected matching discrepancy, and, thus, if both the true and regression

models are a�ne, the bias-corrected matching estimator of the ATT will be asymptotically unbiased

regardless of whether or not the regression function is properly specified. Thus, CEM possesses

the most favorable property of propensity score matching in this setting, although it may be more

di�cult to use in practice, when the number of covariates is large, because it requires large numbers

of untreated subjects to populate all the possible configurations. However, when the propensity

score is not constant, the distribution of covariates may di↵er between the treated and untreated

within each bin (which is referred to as intrastratum confounding), so the expected matching

discrepancy within each bin is no longer guaranteed to be zero and, thus, the overall expected

matching discrepancy of CEM may also be nonzero and the estimated ATT may be asymptotically

biased, if the regression model is not properly specified.
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2.5 Variance

Having examined the e↵ect of di↵erent matching methods on the bias, we now expand our

analysis to the variance. The fact that propensity score matching guarantees that the bias-corrected

matching estimator is asymptotically unbiased whenever both the true and regression models are

a�ne appears to be an important advantage, but, since the propensity score may select matches

that are far apart in covariate space, this could potentially lead to the bias-corrected matching

estimator of the ATT having a much higher variance when propensity score matching is used

instead of direct matching. We will explore this below after taking some time to characterize the

variance of the simple matching, regression imputation, and bias-corrected matching estimators.

2.5.1 Simple Matching

We begin with the simple matching estimator. Recalling that,

⌧̂
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i

� Y
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= ⌧
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the variance of the the estimated individual treatment e↵ect is,
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The conditional variance of the individual treatment e↵ect decomposes nicely into the sum of

the conditional variances of µ
0

�
X

M(i)

�
and the error terms. However, the situation for the ATT

is more complicated. The variance of the ATT conditional on the covariates in both the treated
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subjects and their matched controls is
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, since more than one treated subject may match to the same control. Thus,

the first term is not necessarily the variance of the average of iid variables, and, thus, will not

simplify further without additional assumptions. The variance conditional only on the covariates
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The second term in these expressions will simplify if the ✏
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s are mutually independent, so that

23



N�1

1

E
h
Var

hP
N1
i=1

✏
M(i)

���X
M

ii
= E

⇥
�2

✏

�
X

M(i)

�⇤
. This will occur asymptotically if the distribution

of X in the treated subjects, µ
X,1

, is absolutely continuous with respect to the distribution of X in

the untreated controls, µ
X,0

(µ
X,1

<< µ
X,0

),
@µ

X,1

@µ

X,0
is bounded almost surely, and N�1

0

N3+✏

1

! 0,

where ✏ > 0, so that each treated subject will asymptotically be matched to a di↵erent control.
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The variance decomposes into the sum of three pieces. The first is the finite sample variance

of ⌧̄ , the conditional ATT, about its expectation ⌧ = E [⌧(X)]. The second is the covariance of
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✏ > 0, since the X
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s are IID, asymptotically, this becomes,
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This expression is again the sum of three pieces: the variance of the treatment e↵ect across the

population, the covariance of the individual level treatment e↵ect with the matching discrepancy

times the coe�cient vector �, and the quadratic form of � with respect to the variance of the

matching discrepancy. In the case in which ✏ ?? X, then, asymptotically, we have,
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The variance of the ATT conditional on both the covariates among the treated subjects and

the estimated regression function is
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The terms involving µ̂
0

in these expressions can have a very complicated structure depending

on the nature of µ̂
0

and how it is estimated. However, in the case in which µ̂
0

is an a�ne function

of x, it simplifies dramatically. For notational convenience we let the zeroth entry of x be 1 (as is

standard) so that µ̂
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If �̂ is conditionally unbiased, as is the case if the model is correctly specified, then the second

and third terms drop out. While if �̂ ?? X, as is the case if the untreated controls used to estimate

� are not matched to the treated subjects, as is the case in Abadie and Imbens, the expression

simplifies to
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2.5.3 Bias-Corrected Matching

For the bias-corrected matching estimator,
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The conditional variance of the individual treatment e↵ect is,
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The first term comes from the conditional bias of µ̂, the next three terms arise from the fact

that µ̂ must be estimated from the data, the next two terms arise from each subject’s idiosyncratic

variation (✏
i

and ✏
M(i)

), and the last two terms come from the fact that µ̂ is potentially estimated

using ✏
i

and ✏
M(i)

. This expression o↵ers little further insight into the conditional variance of

the estimated individual treatment e↵ect, so we make several simplifying assumptions. First, we

assume that both µ
0

and µ̂
0

are a�ne functions of x, so that µ
0

(x) = �tx, µ̂
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(x) = �̂tx, where we

take the zeroth component of x to be 1 in order to simplify notation. We then have,
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The first term arises from the bias of the estimated regression function, the second term comes

from the fact that the regression function is estimated rather than known, the third and fourth

terms are derived from idiosyncratic noise (the error terms), and the final term comes from the fact

that the regression function is estimated from the same data that is used in the matching estimator.
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In order to understand the magnitude of the final term, we need to more carefully specify the

form of the estimator of �̂. In particular, we will allow it to use a collection of both treated and

untreated subjects, which we denote by I
c

(which will technically be a sequence since a control may

be included multiple times at separate indices) and may use a set of covariates that di↵ers from

those in the true model; in particular, we allow it to also include treatment as a covariate (which

will be necessary if treated individuals are used in the fitting process). Because the covariates

used in the regression may not be the same as those in the true model (most importantly, if it is

misspecified, the regression model will omit covariates that enter nontrivially in the true model),

we will use the general form Y
i

= µ
a
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) + ✏
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(the reason for this will become clear momentarily).
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, where ⇧ is the matrix that projects the estimated covariates onto

the subset corresponding to � (in fact, we can let ⇧ be an arbitrary matrix).

The first term is a function of the Xs alone. Thus, if i corresponds to a treated subject,
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In order to make sense of this expression, we first compute Var
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is the number of times a particular subject occurs in X
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while for a matched untreated control, K
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If � is estimated using both treated and untreated subjects then,
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then we can write,
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If X ?? ✏, we get one final simplification so,
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so, if �̂ is unbiased, the variance of the bias corrected matching estimator will only be a↵ected by

the matching process used through the moments of the matching discrepancy, which provides us

with a straightforward way to compare the e↵ects of di↵erent matching methods.

2.6 Variance, Matching Method, and Covariate Distribution

We can now evaluate how the variances of matching estimators depend on the distribution of the

covariates and the matching method used. For simplicity, we will focus on bias-corrected matching

estimators in which the true and regression models are a�ne and correctly specified, meaning that

the model specified by the regression function contains the true model as a submodel (so it can

contain additional covariates not included in the true model, but must include every covariate on

which the true model nontrivially depends). Additionally, we will restrict our focus to the case in

which all covariates are independent and identically distributed and are matched on. The case in

which derived covariates appear in the regression function will be explored in future work. If the

regression function is properly specified, then the expression for the variance of the bias-corrected
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matching estimator simplifies to
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so that the variance separates into two parts, the first term, which is independent of the matching

scheme used, and a matching dependent part that depends explicitly on the matching discrepancy.

While the second term is manifestly positive, the third term need not be. In order to address

this possibility, a simple, but less common solution would be to fit the regression function using

data that is not otherwise used in the matching procedure. In that case, the final term vanishes, and

every term contributes positively to the variance. In a more realistic scenario, �̂ is fit using some

collection of the same untreated controls to which treated subjects may be potentially matched. If

the matched controls are the only ones used to fit the regression, then Cov
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i
will be O
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which is the same order as the remaining terms. However, if additional controls are used, either

the entire population of untreated subjects, N
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will instead be O
�
N�1

0

�
or O

⇣
(rN

1

)�1

⌘
, respectively. So, if N

1

N�1

0

! 0, as we have already

assumed, or r ! 1, then the covariance term will go to zero much faster than the other terms

which are of order O
�
N�1

1

�
, and its sign will not ultimately matter. If we additionally decompose

the variance, as we did in the previous section, we obtain,
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Thus, in order to understand the behavior of the variance under di↵erent matching methods,
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we need to characterize E
h
�X

t

V
�

�X
i
. Expanding the quadratic form (and assuming that the

covariates are IID) yields
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Thus, the expectation has two pieces: a portion that arises from the variance of the matching

discrepancy and is O
�
N�1

1

�
and a part that comes from the squared bias and is O(1). To complete

the computation, we need to replace moments of the matching discrepancy with their actual values.

For direct covariate matching, we can use the expressions,
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from previously, while for propensity score matching we can compute the moments of the matching

discrepancy directly.

As we showed above, using a fixed propensity score is equivalent to random matching so that

X and its match are independent and, thus, E [�X
i

] = 0 and Var [�X
i

] = Var [X
i

]+Var
⇥
X

M(i)

⇤
=

2Var [X
i

]. We will use these results to consider how the choice of matching method and the

distribution of covariates a↵ects the variance of the bias-corrected matching estimate of the ATT.

We are ultimately interested in the unconditional expectations of these terms. Under our
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assumptions that the covariates are independent and identically distributed, the expressions for

the unconditional expectations can be simplified somewhat, using
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Due to the absence of o↵ diagonal terms, to highest order, in the expression for the second

moment of the matching discrepancy, and the fact that the covariates are IID, the expression for

E
h
�X

t
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i
simplifies to
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Since propensity score matching has zero matching discrepancy the expression for propensity
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score matching is even simpler,
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It will also be useful to note that, using Stirling’s approximation,
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2.6.1 Uniform Distribution

We will first consider the case in which the covariates are distributed uniformly (f(x) =

I[� 1
2 ,

1
2 ]
(x)). As we discussed previously, symmetric distributions have zero expected matching

discrepancy under direct nearest-neighbor matching, so the variance (or equivalently, the second

moment) of the matching discrepancy will determine the e↵ect of the matching discrepancy on the

variance of the estimator of the ATT. Then for direct matching,
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while for the propensity score,
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Thus, direct matching will result in a smaller value of E
h
�X

t

V
�

�X
i
than propensity score

matching if the ratio of their leading terms 3(⇡d)d
�1
(2⇡e)�1N

� 2
d

0

< 1, which will always occur if

d � 2 or N
0

� 2. Thus, direct matching will always be preferred to propensity score matching for

estimating the bias-corrected matching ATT, but this advantage will be less prominent for smaller

values of N
0

and will lessen as d, since this decreases the e↵ect of N
0

.
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2.6.2 Normal Distribution

Next, we consider the case in which the covariates are normally distributed

(f(x) =
�
2⇡�2

�� 1
2 e�

x

2

2�2 ). Since the normal distribution is also symmetric, the value of

E
h
�X

t

V
�

�X
i
will again be determined solely by the variance of matching discrepancy.
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For propensity score matching,
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So, direct matching will be preferred if the ratio of the leading terms
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2
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< 1, which will always be the case for d > 2. Thus, as in the uni-

form case, direct matching will be preferred to propensity score matching, because direct matching

is also unbiased for symmetric distributions, but its matching discrepancy has a lower variance and

this advantage will grow with the number of available controls, N
0

. However, since the ratio scales

like N
� 2

d

0

, this advantage will rapidly become smaller as d increases, since the value of an additional

control in decreasing the variance of the matching discrepancy rapidly diminishes with d.

2.6.3 Exponential Distribution

Finally, we consider the case in which the covariates are exponentially distributed (f(x) =

��1e��x). Notably, unlike the uniform and normal distributions, the exponential distribution is

not symmetric, and, thus, direct matching will not be unbiased. Therefore, we can no longer simply

compare the ratio of the variances in order to determine which matching technique performs better.
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Using direct matching,
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Using propensity score matching gives,
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If direct matching were unbiased, it would again have the advantage. The ratio of the leading

terms of the variance of the matching discrepancy is (4⇡)�1eN
� 2

d

0

, so, under direct matching,

the matching discrepancy has a lower variance. However, direct matching also results in biased

matching and so contributes an additional O

✓
N

� 4
d

0

◆
term, which, notably, does not decline as N

1

grows. Thus, as N
1

increases, propensity score matching will outperform direct covariate matching.

This will happen most rapidly when d is larger, since the e↵ect of using more controls will be greatly

diminished in high dimensions since N
4
d

0

will grow very slowly.
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2.7 Conclusion

In this work, we examined the e↵ect of the choice of matching method on the performance of

matching based estimators of the Average E↵ect of Treatment. In particular, we found that, when

both the true outcome model and the regression model are a�ne, the ATT is unbiased under simple

matching and asymptotically unbiased under bias-corrected matching, if either the regression model

is correctly specified or the expected matching discrepancy is zero. The latter criterion is equivalent

to the means of the treated subjects and matched untreated controls being equal, after matching.

This is a strong form of double robustness, which is much more flexible than the weaker result,

seen in the general case, that the ATT will be unbiased if either the regression model is properly

specified or the matching is perfect, particularly since the second condition can never hold when

the covariates are continuous. Further, it provides theoretical justification for the standard practice

of measuring imbalance between two groups by comparing the di↵erences in means.

We further showed that, under the above linearity assumption, when the propensity score is

constant, propensity score matching is always unbiased and, therefore, results in asymptotically

unbiased estimators of the ATT, even when the regression model is misspecified. This provides

a basis for preferring propensity score matching over direct covariate matching for estimating the

ATT using matching estimators, although this ignores the di↵erence in the variance between the two

methods. An interesting compromise is Coarsened Exact Matching, which will also result in zero

expected matching discrepancy when the propensity score is constant, but will better control the

variance of the matching discrepancy, since matches can occur only within the same coarsened level

of each covariate. However, since CEM is a form of perfect matching on the coarsened covariates,

it will require a large number of controls in order to avoid throwing away many cases that cannot

be exactly matched.

We also showed that, when the covariates are symmetrically distributed, direct matching is

also unbiased, which would lead to it being preferred over propensity score matching because of

its lower variance. However, it is often the case that the true or regression models may contain

derived covariates which are functions of the covariates that are actually matched upon. In general,

these derived covariates will not be uniform or symmetric even if the original covariates from which

they were derived were. For example, if X(1) is symmetric, or even uniform, X(1)2 will, in general,
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not be. Thus, when using direct covariate matching, the matching discrepancy for these derived

covariates will be nonzero and the estimated ATT will be biased. However, under propensity score

matching, the matching discrepancy of all covariates, even derived ones, will be zero, and so the

ATT will be asymptotically unbiased.

Finally we explored how, under some mild regularity conditions on the data used to fit the

regression function, the variance of the ATT behaves under direct covariate matching vs. propen-

sity score matching when the regression model is correctly specified. When the distribution of the

covariates is symmetric, direct matching is preferred since it is unbiased and its matching discrep-

ancy has a lower variance. However, when the distribution of the covariates is not symmetric, when

the number of treated subjects, N
1

, is su�ciently large, propensity score matching will result in a

lower variance of the estimated ATT, because the deleterious e↵ects of the bias of direct covariate

matching will overwhelm the advantage of its matching discrepancy having lower variance. The

sample size at which this occurs will depend on the number of available controls (a larger num-

ber of which favors direct matching by reducing its variance) and the number of covariates being

matched, which significantly attenuates the benefit of additional control subjects. Thus, when the

underlying distribution of the covariates is not symmetric, we encounter a form of bias-variance

tradeo↵ in which direct matching may perform better with smaller numbers of subjects, but is

eventually overwhelmed by its bias and, so, is outperformed by propensity score matching, as the

number of treated subjects grows, an e↵ect that only becomes more pronounced as the number of

covariates increases.

Taken together, these results show that neither direct covariate matching, nor propensity score

matching uniformly dominates the other. The optimal method for any given setting will depend

intimately on the distribution of the covariates being matched and, thus, the structure of the

problem. Selecting the best technique remains, as it always has, a reflection of the analyst’s

understanding of the nature of the problem and the available data.
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Chapter 3

Model Dependence of Matching Estimators

Tom Kolokotrones, Max Goplerud, Richard Nielsen, Gary King, and James Robins

3.1 Introduction

Matching is widely used across a variety of fields, particularly in the health and social sciences

and, in order to estimate causal e↵ects, such as the Average E↵ect of Treatment on the treated,

as well as to reduce the variance of estimates. However, the optimal form of matching is fiercely

debated, with the two most popular candidates being matching directly on the covariates (or

some simple transformation thereof, such as Mahalanobis matching, which first standardizes and

decorrelates the covariates before matching) or matching on the propensity score, the probability

that a subject will be treated conditional on his covariates [5–7].

In a provocatively titled recent article, “Why Propensity Scores Should not be Used for Match-

ing,” King and Nielsen compare the use of several di↵erent forms of matching to estimate causal

treatment e↵ects from observational or randomized data and conclude that matching on the propen-

sity score is inferior to other forms of matching [3]. In order to reach this conclusion, they compare

the performance of propensity score matching against other forms of matching, primarily direct

covariate matching, using a combination of simulated and real-world data.

In the central analysis of the paper, they focus on how the choice of matching method, specifi-

cally direct covariate (Mahalanobis) matching vs. propensity score matching, a↵ects the sensitivity

of estimates of the Average E↵ect of Treatment on the Treated (ATT) to the investigator’s choice

of regression model. To do so, they simulate 100 data sets and then, for each data set, proceed as

follows.

They first select a distance measure (e.g. Mahalanobis distance or the absolute di↵erence in

propensity score) and then assign to each treated subject an untreated control, which minimizes

this distance. Next, they prune the M worst matches, where M is allowed to vary from 0 to the

number of treated subjects and estimate the ATT by using the remaining pairs to fit a collection

of K linear regressions, where the regression functions are a�ne functions of treatment, several
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covariates, and higher order functions of the covariates including quadratic terms and interactions

between the covariates, but not with the treatment itself.

For each M , the authors then calculate two quantities, the empirical variance and the maximum

estimate of the ATT over the K models. They then plot the average of each these measures across

simulations vs. M , finding that matching on Mahalanobis distance strictly dominates propensity

score matching for all values of M , with respect to the empirical variance, and that it is generally

superior with respect to minimizing the bias of the maximum estimated ATT, becoming strictly

superior past a certain value of M . They conclude from this, and the consideration of several forms

of covariate imbalance, that Mahalanobis matching is to be strictly preferred over propensity score

matching.

The empirical variance and maximum estimated ATT over a class of models can be thought

of as measures of how sensitive the estimated ATT is to the choices made by the analyst [3]. If

the variance is high, or the maximum estimated ATT di↵ers significantly from the truth, then

the reported ATT will be heavily dependent on the the model the analyst selects, which enables

him, consciously, or unconsciously, to bias the presented results towards his desired conclusion

[3]. A high variance across models also means that investigators with identical data, but di↵erent

preferences, may interpret the results in vastly di↵erent ways by choosing models that favor their

positions. Thus, it is reasonable to consider such quantities to be measures of Model Dependence

and to favor matching methods that minimize this dependence. In this work, we will focus on the

empirical variance of the ATT over models, which we will call Model Dependence, since both the

empirical variance of the ATT across models and maximum observed ATT measure similar things,

but the empirical variance is much more analytically tractable since the maximum is typically not

a smooth function of the inputs.

In what follows we will compare direct matching on the covariates to an extreme version of

propensity score matching in which the propensity score is constant across individuals. This puts the

propensity score at an apparently extreme disadvantage since it cannot use any information about

the covariates, while direct matching has complete access to the covariate values, and, therefore,

propensity score matching in this setting is equivalent to matching at random. This is particularly

interesting since King and Nielsen note that propensity score matching behaves similarly to random

matching, meaning that, even when the propensity score is not fixed, matching on the propensity
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score results in matches that are often far apart using conventional measures of distance, such as

Euclidean or Mahalanobis distance, even when much closer matches are available. They believe

that this phenomenon is, at least partially, responsible for the poor performance of propensity

score matching in their analysis. Therefore, particularly since using a constant propensity score

emphasizes one of King and Nielsen’s most significant problems with the propensity score, finding

that the propensity score is able to outperform direct matching in this setting would then provide

strong evidence that propensity score matching is not uniformly dominated by direct matching.

The remainder of the paper is is structured as follows. Section 2 introduces the notation and

defines Model Dependence. Section 3 derives analytic expressions for the Model Dependence and

specializes them to both direct and propensity score matching, using both simple and derived

covariates in the regression functions. Section 4 compares the Model Dependence of direct and

propensity score matching for estimating the ATT and characterizes situations in which one may

be preferred to the other. Section 5 examines when pruning “bad” matches decreases model de-

pendence for direct matching and when it is harmful. Section 6 shows that performing regression

after matching can be viewed as a type of bias-corrected estimator, thereby extending our results

to this widely used approach. Section 7 concludes.

3.2 Basics

Let Y be a continuous outcome, A a binary treatment (where A = 1 corresponds to treatment

and A = 0 to no treatment), X a vector of continuous covariates, and Y (a) the counterfactual

outcome under treatment a. We use [n] to denote the set {1, . . . , n}, as is typical in Computer

Science. Consider a collection of N
1

treated and N
0

untreated subjects. Our goal is to estimate the

expected e↵ect of treatment, A, on the outcome, Y , among those subjects that were treated, the so-

called Average E↵ect of Treatment on the Treated (ATT), which is given by ⌧ = E[Y (1)�Y (0)|A =

1].

Consider a matching criterion M , which is a function M : [N
1

] ! [N
0

]m that associates with

each of the N
1

treated subjects m of the N
0

untreated controls. In what follows, we will restrict

attention to the case of 1-1 matching with replacement, so that m = 1 and each treated subject is

matched to exactly one untreated control (although multiple treated subjects may be matched to
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the same untreated control). In the typical case, a match is defined as the untreated control j =

M(i) 2 [N
0

] that minimizes some distance d(X
i

, X
j

), where d is some metric, such as the Euclidean

or Mahlanobis distance or the absolute di↵erence in propensity score. Let ⌧
i

= Y
i

(1) � Y
i

(0) be

the individual treatment e↵ect for subject i. Since exactly one of Y
i

(0) and Y
i

(1) will actually be

observed, ⌧
i

must be estimated. For any random variable, Z, we use Z to represent the values of

the treated subjects and Z
M

for the values of the matched controls and define �Z
i

= Z
M(i)

� Z
i

and Z = N�1

1

P
N1
i=1

Z
i

. Following Abadie and Imbens, we refer to �Z as the matching discrepancy

of Z [1, 2].

In what follows, we will focus on so-called bias-corrected matching estimators as defined by

Abadie and Imbens [1, 2] and originally described by Rubin [8]. Simple matching estimators

estimate the individual e↵ect of treatment on the treated by ⌧̂
i

= Y
i

� Y
M(i)

. However, since,

untreated subject M(i), the control matched to treated subject i, may not have the exact same

covariate values as subject i, this estimator may be biased. If Y
i

(0) = µ
0

(X
i

)+✏
i

, where E [✏
i

|X
i

] =

0, then we could use µ
0

to correct for the fact that X
i

6= X
M(i)

. However, µ
0

is typically unknown

so we must use a substitute, µ̂
0

, that is estimated using some subset of the population of untreated

subjects. The bias-corrected matching estimator is then ⌧̂
i

= Y
i

�Y
M(i)

+µ
0

�
X

M(i)

�
�µ

0

(X
i

) and

the corresponding estimate of the ATT is ⌧̂ = N�1

P
N1
i=1

⇥
Y
i

� Y
M(i)

+ µ̂
0

�
X

M(i)

�
� µ̂

0

(X
i

)
⇤
.

Since the form of µ
0

is typically unknown, and must be postulated by the analyst, we would

like to know how sensitive such bias-corrected matching estimators are to the choice of regression

model that is used. Consider a family of K regression functions {µk

0

}K
k=1

, such that, for each k,

µk

0

(x) gives a predicted outcome, ŷ for an untreated subject with covariates x, (which may not

correspond to the true relationship). Let I
0

✓ [N
0

] and denote the least squares estimate of µk

0

,

using the data from the untreated subjects in I
0

by µ̂k

0

. Then, the kth estimator of the individual

treatment e↵ect for subject i is

⌧̂k
i

= Y
i

� Y
M(i)

+ µ̂k

0

�
X

M(i)

�
� µ̂k

0

(X
i

)
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so the kth estimate of the ATT is

⌧̂k = N�1

1

N1X

i=1

h
Y
i

� Y
M(i)

+ µ̂k

0

�
X

M(i)

�
� µ̂k

0

(X
i

)
i

and the average ATT across all regression functions is given by

⌧ = (N
1

K)�1

N1,KX

i,k=1

h
Y
i

� Y
M(i)

+ µ̂k

0

�
X

M(i)

�
� µ̂k

0

(X
i

)
i

= N�1

1

N1X

i=1

(Y
i

� Y
M(i)

) + (N
1

K)�1

N1,KX

i,k=1

h
µ̂k

0

�
X

M(i)

�
� µ̂k

0

(X
i

)
i

Henceforth, we shall focus on linear regression functions of the form µk

0

(x) = ↵ + xt�k with

corresponding estimators µ̂k

0

(x) = ↵̂k + xt�̂k. To simplify notation we define �Z
i

= Z
M(i)

� Z
i

,

Z = N�1

1

P
N1
i=1

Z
i

, and �̄ = K�1

P
K

k=1

�̂k. Following Abadie and Imbens, we refer to �Z as the

matching discrepancy of Z [1, 2]. Then, the above simplifies to

⌧̂k = ��Y +�X
t

�̂k

⌧ = ��Y +�X
t

�̄

⌧̂k � ⌧ = �X
t

⇣
�̂k � �̄

⌘

In what follows, we will be particularly interested in the quantity,

K�1

KX

i=1

⇣
⌧̂k � ⌧

⌘
2

= �X
t

⇣
�̂k � �̄

⌘⌦2

�X

the empirical variance of the estimated ATT over the family of selected regression functions, which

we call Model Dependence. It provides a measure of the sensitivity of the estimated ATT to the

regression function, µk

0

, used to perform the bias correction.

Since di↵erent regression functions may have di↵erent covariates, the �s in the expression above

represent a universal � that has entries for each possible covariate used by any of the regression
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functions. If the regression function µk

0

is a function of a covariate, say X
i

, the corresponding entry

in �k is simply the value of the coe�cient in µk

0

; the remaining entries will be zero. Likewise, all

matrices will be padded by zeros, as necessary, to ensure that they conform to �.

3.3 Model Dependence

In previous work, we considered the bias and variance of bias-corrected matching estimators for

the Average e↵ect of Treatment on the Treated (ATT), noting that, at least in the case of linear mod-

els, this bias is controlled by the expected matching discrepancy [4]. When using nearest-neighbor

matching, the expected matching discrepancy will naturally be 0 for symmetric distributions in one

dimension and will tend to be nonzero for skewed distributions. However, the situation becomes

complicated in higher dimensions since correlations between covariates may destroy symmetry, and,

even if a covariate has a symmetric, or uniform, distribution, functions of it, such as its square, will,

in general, not be symmetric or uniform. Since the matching discrepancy appears prominently in

the definition of Model Dependence, it has the potential to be a↵ected by all of these phenomena.

In order to explore how the structure of the covariates a↵ects Model Dependence, we begin by

expanding its definition.

K�1

X

k

⇣
⌧̂k � ⌧

⌘
2

= K�1

X

k

h
�X

t

⇣
�̂k � �̄

⌘i
2

= �X
t

K�1

X

k

⇣
�̂k � �̄

⌘⌦2

�X

= �X
t

"
K�1

X

k

⇣
�̂k � �

⌘⌦2

�
�
�̄ � �

�⌦2

#
�X

We now consider the expectation conditional on X, the collection of covariates for both the

treated (Xtr) and untreated (Xun), which gives,

E

"
K�1

X

k

⇣
⌧̂k � ⌧

⌘
2

�����X
#
= �X

t

(
K�1

X

k

E

⇣
�̂k � �

⌘⌦2

����X
�
� E

h�
�̄ � �

�⌦2

���X
i)

�X

The first term is relatively straightforward to compute, but, since �̄ =
P

k

�̂k, the second term

will contain cross terms of the form (�̂k��)(�̂l��)t when expanded. If the �̂ks were independent,

then these cross terms would vanish in expectation and the sum would simplify. However, since the

�̂ks are estimated using the same data, the coe�cients will be correlated and, therefore, the cross
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terms will not vanish, in general.

Let m be the number of points used to fit the regression models, which will typically be N
1

,

the number of treated subjects, since the regression for bias correction is usually fit using only the

matched controls, of which there is one for each treated subject (where an untreated subject may

be used multiple times if it is matched to more than one treated subject). Then we have,

E

"
K�1

X

k

⇣
⌧̂k � ⌧

⌘
2

�����X
#
= K�1

X

k

�XtE

⇣
�̂k � �̄

⌘⌦2

����X
�
�X

= m�1�X
t

A
⇣
{µk

0

}K
k=1

,�2

Y |X , F
X

⌘
�X +m�1�X

t

B
⇣
X, {µk

0

}K
k=1

,�2

Y |X , F
X

⌘
�X

where A is a matrix valued function of the regression functions used, the conditional variance of

Y among the untreated, and the distribution of the covariates (but not their actual values) and

B(X,�2

Y |X) 2 o
p

(1) is a matrix valued function of the realized values of the treated {Xtr

i

}N1
i=1

,

untreated {Xun

i

}N0
i=1

, their distribution, F
X

, �2

Y |X , and the regression functions {µk

0

}K
k=1

. If the

models are correctly specified, then it is straightforward to write down explicit expressions for A

and B, but, under mild regularity conditions, they will exist, in general.

Expanding this expression, and denoting the uth covariate vector by X(u), gives,

E

"
K�1

X

k

⇣
⌧̂k � ⌧

⌘
2

�����X
#
= m�1

X

u,v

A
uv

�X
(u)

�X
(v)

+m�1

X

u,v

B
uv

(X)�X
(u)

�X
(v)

Taking the expectation, in order to remove the conditioning, gives:

E

"
K�1

X

k

⇣
⌧̂k � ⌧

⌘
2

#
= m�1

X

u,v

A
uv

E
h
�X

(u)

�X
(v)

i
+m�1

X

u,v

E
h
B

uv

(X)�X
(u)

�X
(v)

i

Ideally, �X
i

and �X
j

would be independent for i 6= j, but this is, unfortunately, not the case,

although it will be true in the correct limit and will hold approximately more generally. Clearly,

if two treated subjects have similar covariate values, they are more likely to be matched with

the same control, so the �X
i

s will not be independent given Xtr. However, if the covariates are

continuous, so that each subject will have di↵erent covariate values with probability one, and if the

number of untreated subjects is large compared to the number of treated subjects, so that no two are

matched to the same control, the �X
i

s will be approximately conditionally independent, and, thus,
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unconditionally independent since the Xtr

i

s are IID. Therefore, in the following, we will assume that

the �X
i

s are independent We can achieve this asymptotically if µ
X,1

, the distribution of X among

the treated subjects is absolutely continuous with respect to µ
X,0

, the distribution of X among the

untreated controls (µ
X,1

<< µ
X,0

),
@µ

X,1

@µ

X,0
is bounded almost surely, and lim

N1!1N�1

0

N3+✏

1

= 0,

where ✏ > 0. We will also make the assumption that all the covariates used in the regression were

directly matched on (for example, if the regression included both X(1) and X(1)2, then we would

match on both the original and derived covariate, which is not typically done). We will relax this

assumption to allow the covariates to be (su�ciently smooth) functions of the matching parameters

later.

Then,

E
h
�X

(u)

�X
(v)

i
= N�2

1

X
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i
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1�N�1

1

�
E
h
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i

i
E
h
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(v)

i

i

= N�1

1

Var [�X
i

]
uv

+ E
h
�X

(u)

i

i
E
h
�X

(v)

i

i

Note that, this expression consists of a variance term, which has a leading constant N�1

1

which

goes to zero as N
1

goes to infinity and a squared bias term, which has a leading constant of 1.

Thus, if the expected matching discrepancy is nonzero, increasing the number of treated subjects

will reduce the sample variance of the ATT estimates only up to a point, which will be determined

by the magnitude of the expected matching discrepancy.

In order to complete the computation we must select a matching function. We will begin with

direct nearest neighbor matching on the covariates.

3.3.1 Direct Matching

Nearest neighbor matching, either directly on the covariates, or some suitable transformation

of them, such as Mahalanobis matching, which standardizes, normalizes, and decorrelates the
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covariates before matching, remains the most popular method of matching in many fields. We will

focus on nearest-neighbor Euclidean matching, since most other direct matching methods can be

interpreted as some transformation of the covariates followed by nearest neighbor matching using

Euclidean distance.

We draw upon the following result due to Abadie and Imbens (see the appendix of [4] for an

expanded version, which includes higher order terms than the original result) [1, 2].
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where d is the number of factors on which the matching is performed and here X denotes the

covariate values of the individual being matched.

Taking the expectation of the above expressions and substituting them into our previous result

yields,
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under su�cient regularity conditions that E
h
�X
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We summarize this as the following:

Theorem 3.1. Given collections of treated {Xtr

i

}N1
i=1

and untreated subjects {Xun

i

}N0
i=1

and regres-

sion functions {µk

0

}K
k=1

, which are a�ne functions of the covariates, if each covariate is matched
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upon, the sample variance, with respect to k, of the collection of the corresponding bias-corrected

matching estimators {⌧̂k}K
k=1

, Var
k

(⌧̂k), is given by:
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where the approximation follows by applying Stirling’s Theorem and noting that �
�
d+2

d

�
! 1 as

d ! 1.

Proof. Sketch as above. See appendix for details.

Although these expressions appear unwieldy, we will see shortly that, when specialized to par-

ticular distributions, they will allow us to compare the model sensitivity of direct matching to

propensity score matching, in a straightforward manner.

3.3.2 General Covariates

In the above, we explicitly assumed that all possible covariates were used in the matching

(including higher order terms if they were included). However, it is often the case that only the

first order terms are used to match, but that higher order, or otherwise derived, terms are used in

the regression function. This complicates things somewhat.
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For monomial terms, we can use the following expansion,
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However, it is also possible to derive a result for any function that admits a power series

expansion of a su�cient order (at least third order for the following result).

Let N
0

and N
1

be the number of untreated and treated subjects, respectively. Let
�
X(i)

 
d

i=1

be

a collection of covariates that will be used for matching and define a collection of derived covariates
�
X (i)

 
p

i=1

such that X (i) = f
i

(X). We will refer to the original collection of matched covariates, as

simple covariates. Then, expanding f as a power series, we get:
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Note that, the most common case, derived covariates that are (possibly multivariate) monomial

functions of the matched covariates, is easily treated within this general framework.

Then, proceeding via a similar (but more intricate) analysis to the one above, we find that,

Corollary 3.2. Given collections of treated {Xtr

i

}N1
i=1

and untreated subjects {Xun

i

}N0
i=1

and regres-

sion functions {µk

0

}K
k=1

, which are a�ne functions of possibly derived covariates {X (i)}p
i=1

such

that X (i) = f
i

(X), where X is the vector of simple covariates {X(i)}d
i=1

, upon which matching

was performed, the sample variance of the collection of the corresponding bias-corrected matching
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estimators {⌧̂k}K
k=1

, Var
k

(⌧̂k), is given by:

E

"
K�1

X

k

⇣
⌧̂k � ⌧

⌘
2

#

= m�1

X

u,v

(A
uv

+ o(1))
⇣
N�1

1

E
h
�X (u)

i

�X (v)

i

i
+
�
1�N�1

1

�
E
h
�X (u)

i

i
E
h
�X (v)

i

i⌘

= m�1

X

u,v

(A
uv

+ o(1))
⇣
N�1

1

Var [�X
i

]
uv

+ E
h
�X (u)

i

i
E
h
�X (v)

i

i⌘

where

E
h
�X (k)

i

���X
i

i

= N
� 2

d

0

⇡�1d�1�

✓
d+ 2

d

◆
�

✓
d+ 2

2

◆ 2
d

X

u


f(X

i

)�
d+2
d

@f

@x
u

(X
i

)
@f

k

@x
u

(X
i

) + f(X
i

)�
2
d

1

2

@2f
k

@x2
u

(X
i

)

�

+ o

✓
N

� 2
d

0

◆

E
h
�X (k)

i

�X (l)

i

���X
i

i

= N
� 2

d

0

⇡�1d�1�

✓
d+ 2

d

◆
�

✓
d+ 2

2

◆ 2
d

X

u

f(X
i

)�
2
d

@f
k

@x
u

(X
i

)
@f

l

@x
u

(X
i

) + o

✓
N

� 2
d

0

◆

Proof. See appendix.

Comparing this to the above, we see that the results have the same form as in the case of

simple covariates, with the same functional dependence on m,N
1

, N
0

and d and similar asymptotic

behavior, although the coe�cients of each term have changed.

From the above, expressions, we see that up to o

✓
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� 2
d
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◆◆
, the Model De-

pendence is controlled by two terms, the squared bias and the variance of the matching discrepancy,

which scale like O

✓
m�1N

� 4
d

0

◆
and O

✓
m�1N�1

1

N
� 2

d

0

◆
, respectively. So, as the number of dimen-

sions or treated subjects grows large, the squared bias term will dominate. In particular, as the

number of treated subjects goes to infinity, the contribution of the variance term will become

negligible compared to the contribution from the squared bias.
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3.3.3 Propensity Score Matching

We now consider the case of propensity score matching using a known constant propensity score.

Then, if X ⇠ F , for both treated and untreated subjects, X , will also have the same distribution

among the treated and the untreated, so the density of �X is given by

f
�X (x) =

Z
fX (x+ y)fX (y)dy

Recall that the Model Dependence is given by
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Since all matches are equally good given a fixed propensity score, it is easy to see that E[�X
i

] =

E[X
i

]� E[X
M(i)

] = 0, so propensity score matching is unbiased and the second term vanishes so
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tr [(A+ o(1))Var [�X
i

]]

In contrast to the situation for direct matching, this expression always goes to zero as the

number of treated subjects goes to infinity, since propensity score matching is unbiased. However,

propensity score matching will also result in a larger squared matching discrepancy than matching

directly on the covariates, so that, for smaller numbers of treated subjects, when the bias term is

small relative to the variance term, direct matching may perform better. This can be viewed as a

form of bias-variance tradeo↵, in which, as usual, variance plays a larger role at small sample sizes,

while bias dominates for larger ones (since typically variance declines with increasing sample size

while bias remains fixed).
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3.4 Comparing Direct and Propensity Score Matching

3.4.1 Simple Covariates

We now examine the relative performance of direct and propensity score matching for a number

of commonly encountered distributions. To simplify the analysis, we will begin with the case in

which all the covariates are independent, equally distributed, and are used in the matching process.

Before we begin, we collect the distributions and variances of �X for propensity score matching

for some important distributions, which will arise in our comparisons.

Uniform: f(x) = I[� 1
2 ,

1
2 ]
(x), f

�X

(x) = (1� |x|)I
[�1,1]
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6

.
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2 e�
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Exponential: f(x) = �e��x, f
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2

e��|x|, Var [�X] = 2��2.

To make the comparisons easier to interpret, we first simplify the expression for the Model

Dependence for direct matching.
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The assumptions also yield an additional simplification in the propensity score case:

tr [AVar [�X
i

]] = tr [A] Var
h
�X (u)

i

i
, which makes comparison of direct and propensity score match-

ing straightforward.

Recall that, in our discussion of direct matching, we obtained the following expression for the

55



Model Dependence:
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3.4.1.1 Uniform Distribution

For the Uniform Distribution, direct matching gives a Model Dependence of
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Since Var [�X] = 1

6

, using propensity score matching, the Model Dependence is
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As we noted previously, matching directly on a uniformly distributed covariate leads to unbiased

matches and, therefore, the bias term disappears for direct matching as well. The ratio of the leading

terms for direct and propensity score matching is 3(⇡e)�1(⇡d)d
�1
�
�
d+2

d

�
N

� 2
d

0

⇠ 3(⇡e)�1N
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, so,

direct matching will always result in lower Model Dependence, but this advantage will decrease as

d increases. (If we instead use the full expression instead of its asymptotic approximation, we find

that direct matching is preferred if either N
0

� 2 or d > 1). This is clearly seen in the top row of
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Figure 3.1.

Model Dependence by Matching Method and Covariate Distribution

Figure 3: Treatment Group T =3000

(a) Normal Data
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(b) Exponential Data
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(c) Uniform Data
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Figure 3.1: Model Dependence for direct vs. propensity score matching under the Uniform, Normal,
and Exponential distributions. The numbers at the top of the figure give the number of covariates
being matched, while caliper indicates the number of matched pairs retained after discarding the
worst matches.

3.4.1.2 Normal Distribution

For the normal distribution, the Model Dependence using direct matching is
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Since Var[�X] = 2�2, using propensity score matching results in a Model Dependence of
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We again note that matching on the covariates is unbiased because the normal distribution

is symmetric. The ratio of the leading terms of the Model Dependence for direct vs. propensity

score matching is 2�1e�1(⇡d)d
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, so, direct matching will always

be preferred (indeed, this is true even if we use the full expression rather than its asymptotic

approximation). We can see this clearly in the middle row of Figure 3.1.

3.4.1.3 Exponential Distribution

For the exponential distribution, direct matching yields a Model Dependence of
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Since Var [�X] = 2��2, using propensity score matching gives a Model Dependence of
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Comparing the variance terms, we see that the term is smaller in the case of direct matching,

as we would expect, by a factor of (4⇡)�1eN
� 2

d

0

⇡ .22N
� 2

d

0

. However, while direct matching has a

nonzero squared bias term, which does not scale with N
1

, propensity score matching is unbiased and

so lacks such a term. Thus, for largeN
1

, propensity score matching will outperform direct matching,

particularly in high dimensions, since, as d grows large, the e↵ect of N
0

becomes negligible. Thus,
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for large N
1

and d, matching on the propensity score will perform significantly better because of

the substantial bias of direct matching. This is apparent in the bottom row of Figure 3.1.

3.4.2 Derived Covariates

We now consider the case in which derived covariates may be included in the regression functions.

Since derived covariates may be functions of multiple simple covariates, as is the case for a two-way

interaction term like X(u)X(v), they may not be independent. However, we will continue to assume

that the covariates that are actually matched upon are independent. As before, let
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a collection of covariates, which are mutually independent, and on which matching is performed,
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(X) where X (i) 6= X (j)

for i 6= j.

In what follows, we will restrict our analysis to derived covariates which are monomials of

order at most two in the matched covariates, which includes constants, simple covariates like X(u),

two-way interaction terms of the form X(u)X(v), and quadratic terms such as X(u)2.
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Var [�X ] = 2Var [X ]. Thus, Var [�X ]
uv

= 2Cov
⇥
X (u),X (v)

⇤
= 2E

⇥
X (u)X (v)

⇤
� 2E

⇥
X (u)

⇤
E
⇥
X (v)

⇤
.

If both X (u) and X (v) are quadratic, then, since X (u) 6= X (v) for u 6= v, they must be functions

of two di↵erent matched covariates, which are, by assumption, independent, so X (u) and X (v),

must be independent as well and Cov
⇥
X (u),X (v)

⇤
= 0. If X (u) = X(s)2 and X (v) = X(s)X(t)

then Cov
⇥
X (u),X (v)

⇤
= E

⇥
X(t)

⇤ �
E
⇥
X(s)3

⇤
� E

⇥
X(s)2

⇤
E
⇥
X(s)

⇤�
and if X (u) = X(s)2 and X (v) =

X(s) then Cov
⇥
X (u),X (v)

⇤
= E

⇥
X(s)3

⇤
� E

⇥
X(s)2

⇤
E
⇥
X(s)

⇤
, both of which will be zero if X(s) is
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have zero covariance. Thus, if the matched covariates are symmetric about zero, then, up to second

order, the o↵ diagonal terms of Var [�X ] vanish.
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so, if the matched covariates are symmetrically distributed, then the o↵ diagonal terms of
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since, for quadratic terms (although not for two-way interactions or

lower order terms), the final term in brackets will be 1, and, thus, the bias will be nonzero, unless

this is exactly cancelled by the first term in the summand.

3.4.2.1 Uniform Distribution

Since the uniform distribution on
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is symmetric around zero, from the discussion above,

we expect that if we include only two-way interactions and lower-order terms, the behavior of direct

versus propensity score matching will be similar to the case of simple covariates. This is clearly

seen in the top two rows of Figure 3.2, in which direct matching always outperforms propensity

score matching. However, as soon as we include quadratic terms, the behavior changes, and, as N
1

and d become large, propensity score matching performs better, similarly to the exponential case

for simple covariates (Figure 3.2, bottom row).
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Model Dependence by Matching Method and Covariate Type

Figure 3: Treatment Group T =3000

(a) Normal Data
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(b) Exponential Data
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(c) Uniform Data
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4

Figure 3.2: Model Dependence for the Uniform Distribution under direct vs. propensity score
matching with only simple covariates, two-way interactions, and quadratic terms. The numbers
at the top of the figure give the number of covariates being matched, while caliper indicates the
number of matched pairs retained after discarding the worst matches.
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we see that, while the contributions to the first term will be similar for both direct and propensity

score matching, except for the additional factor of N
� 2

d

0

, the second, squared bias term will be zero

for propensity score matching, while it is ⌦

✓
N

� 4
d

0

◆
for direct matching. Therefore, as N

1

grows,

and the first term becomes small, Model Dependence for direct matching will be dominated by

the second term, particularly in higher dimensions, so that propensity score matching will perform

better for larger N
1

, particularly when d is large.

3.4.2.2 Normal Distribution

As with the uniform distribution, the normal distribution is symmetric around 0 so that the

relative performance of direct and propensity score matching will be similar when including either

only the matched covariates or with the addition of two-way interactions (Figure 3.3, top two rows).
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Model Dependence by Matching Method and Covariate Type

Figure 3: Treatment Group T =3000
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(b) Exponential Data
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Figure 3.3: Model Dependence for the Normal Distribution under direct vs. propensity score
matching with only simple covariates, two-way interactions, and quadratic terms. The numbers
at the top of the figure give the number of covariates being matched, while caliper indicates the
number of matched pairs retained after discarding the worst matches.
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For propensity score matching, we obtain,
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It is interesting to note that, the variance terms for direct and propensity score matching di↵er

only by a factor of N
� 2

d

0

. Additionally, as was the case with the uniform distribution, under

propensity score matching, the bias term is zero, while this is not the case for direct matching with

quadratic terms. Thus, as N
1

increases, propensity score matching has a lower Model Dependence,

particularly when d is large, as seen in the bottom row of Figure 3.3.
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3.4.2.3 Exponential Distribution

The exponential distribution di↵ers from the uniform and normal distributions in several major

ways. First, it does not have mean zero, so the variance term in the expression for the Model

Dependence will have o↵ diagonal terms. Second, since it is not symmetric about the origin, the

expected matching discrepancy will have nonzero mean, even when using simple covariates. Due to

the complex form of the variance of the matching discrepancy, which arises because the o↵ diagonal

terms are nonzero due to the asymmetry of the exponential distribution, we will focus our attention

on the expectation of the matching discrepancy and its e↵ects on the Model Dependence.

For direct matching,
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Thus, for the exponential distribution, all covariates of order at most two have nonzero expected

matching discrepancies, all of which are of similar magnitude and identical order, di↵ering by at

most a factor of �. Therefore, we expect the relative performance of direct and propensity score

matching to be similar in all cases, so that, for large N
1

, propensity score matching will outperform

direct matching, particularly for larger values of d. This is exactly what we see in Figure 3.4.

Model Dependence by Matching Method and Covariate Type

Figure 3: Treatment Group T =3000
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Figure 3.4: Model Dependence for the Exponential Distribution under direct vs. propensity score
matching with only simple covariates, two-way interactions, and quadratic terms. The numbers
at the top of the figure give the number of covariates being matched, while caliper indicates the
number of matched pairs retained after discarding the worst matches.

3.5 Pruning Matches

Thus far, after matching, we have used all of the treated subjects that were successfully matched

in the analysis. However, typical practice is to only retain those matched pairs that are of a specified

level of quality. One common approach is to rank the matches by the magnitude of their matching

66



discrepancies and then keep only the K best. Another commonly used criterion is to only retain

matched pairs with matching discrepancies that are less than some fixed standard, which is typically

referred to as caliper matching. The idea behind throwing away badly matched pairs is that poor

matches may lead to bias. However, this also reduces the number of pairs used in estimation, which

will increase the variance of the estimated treatment e↵ect. Thus, the process of pruning can be

seen as trying to optimize a bias-variance tradeo↵. However, such a tradeo↵ may not exist in all

cases and, under some circumstances, all pruning is deleterious.

In some cases, removing matched pairs only increases the Model Dependence, while in other

scenarios, pruning poor matches initially decreases and then increases Model Dependence as more

and more matched pairs are removed. This phenomenon is closely related to whether direct or

propensity score matching performs better than propensity score matching for a given distribu-

tion/regression model. Recall that, if the expected matching discrepancy was zero for all covariates,

then direct matching was always preferred over propensity score matching because direct match-

ing resulted in the matching discrepancy having lower variance. However, in cases in which the

expected bias of the matching discrepancy is nonzero, as N
1

increases, propensity score matching

performs better because the variance term in the Model Dependence falls o↵ inversely with N
1

,

while the bias term does not. Exactly the same phenomenon arises here, although from a slightly

di↵erent source. Here, pruning bad matches reduces the magnitude of the bias term, while also

increasing the size of the variance term by reducing the e↵ective N
1

. In the appendix, we present

a detailed derivation of this tradeo↵ using a nonstandard version of the Laplace expansion. If

we let r
max

be the maximum allowed matching discrepancy, then this alters the expression for

the Model Dependence by replacing the standard gamma functions with generalized incomplete

gamma functions that depend on ⇢(r), an increasing function of r whose form is computed in the

appendix. Additionally, this makes N
1

a function of r
max

, since not all treated subjects may have
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good matches, so that some will not be included. The modified expression is,
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Since the generalized incomplete gamma function is increasing in its final argument, as r
max

increases, the bias term will increase in magnitude. The e↵ect on the variance term depends on the

number of treated subjects available, as well as the current value of r
max

. N
1

(r
max

) is increasing

in r, so whether the magnitude of the variance term increases or decreases depends on the relative

rates of growth of N�1

1

(r
max

) and �
�
d+2

d

, 0, ⇢ (r
max

)
�
. Often, the combined e↵ects of these changes

will be for the Model Dependence to initially decrease as matched pairs are dropped until it reaches

an optimal value of r
max

, at which point the Model Dependence will increase ever after. However,

in order for this tradeo↵ to occur, the bias term must be nonzero.
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3.6 Regression After Matching and Bias-Corrected Matching Estimators

Above, we explored how bias-corrected matching estimators of the ATT may depend on the

choice of bias-correction function and how the degree of such sensitivity, the Model Dependence,

depends on the distribution of the covariates. However, King and Nielsen used a di↵erent technique

for estimating the ATT [3]. They first matched each treated subject to an untreated subject and

then fit a regression model to the collection of treated subjects and matched controls. As we will

show below, this is, in fact, a form of bias-corrected matching estimator, so the above discussion

applies equally well to this procedure as it does to explicitly constructed bias-corrected matching

estimators.

To be explicit, the procedure works as follows. First, match each treated subject to a single

untreated control. Next, fit a regression of the form Y
i

= ↵ + ⌧A + Xt� + ✏
i

to the collection of

cases and matched controls. Finally, use ⌧̂ as an estimate of the ATT. Somewhat surprisingly, this

estimator can also be written as a bias-corrected matching estimator, by manipulating the normal

equations of the regression. If we match first and then fit the regression model Y = ↵+⌧A+Xt�+✏,

using both the N
1

treated subjects and their matched controls, the normal equations give,

0 =
N1X

i=1

�
Y
i

� ↵� ⌧A
i

�Xt

i

�
�
+

N1X

i=1

⇣
Y
M(i)

� ↵� ⌧A
M(i)

�Xt

M(i)

�
⌘

0 =
N1X

i=1

A
i

�
Y
i

� ↵� ⌧A
i

�Xt

i

�
�
+

N1X

i=1

A
M(i)

⇣
Y
M(i)

� ↵� ⌧A
M(i)

�Xt

M(i)

�
⌘

=
N1X

i=1

�
Y
i

� ↵� ⌧A
i

�Xt

i

�
�

0 =
N1X

i=1

X
i

�
Y
i

� ↵� ⌧A
i

�Xt

i

�
�
+

N1X

i=1

X
M(i)

⇣
Y
M(i)

� ↵� ⌧A
M(i)

�Xt

M(i)

�
⌘

where the third equality is due to the fact that controls have A = 0.
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After some manipulation (detailed in the appendix), the normal equations yield,
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⌧̂ once again takes the form ⌧̂ = ��Y +�X
t

�̂ of a bias-corrected matching estimator. If we

interpret ⌧ as the average treatment e↵ect, the result for ⌧̂ holds even if the e↵ect of treatment

is allowed to vary based on the covariates, X, or the identity of the individual (see the appendix

for a detailed derivation). Thus, the only di↵erence between this approach and the standard bias

corrected estimator is the value of �, and the data which is used to estimate it.

3.7 Conclusion

In this work we compared the performance of matching directly on covariates vs. on the

propensity score, using the Model Dependence of the bias-corrected matching estimator of the ATT.

Which method is preferred depends on the number and distribution of the matched covariates, as

well as the form of any derived covariates used in the regression function, with direct matching

proving superior for symmetric covariates, which result in zero expected matching discrepancy, and

propensity score matching preferred when matching on covariates with asymmetric distributions.

Which matching method performs better is intimately connected to a form of bias-variance tradeo↵:

while direct matching leads to lower variances for the matching discrepancy than propensity score

matching, the fact that propensity score matching is always unbiased means that Model Dependence

may be lower when using propensity score matching. Since the variance contribution to Model

Dependence falls o↵ with the inverse number of treated subjects, while the bias term does not,

when many treated subjects are available, propensity score matching will generally be preferred,

especially when matching on a large number of covariates, in which case, reducing the bias of direct

matching is very di�cult, since it scales like N
� 2

d

0

, and, so, will tend to be far from zero.
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Further, we showed that a similar bias-variance tradeo↵ guides the question of whether poor

matches should be pruned in order to reduce Model Dependence. Here, if the bias of matching is

zero, then pruning is never beneficial, but, if the expected matching discrepancy is nonzero, then

pruning the worst matches, in order to reduce the bias, is initially beneficial, and will decrease Model

Dependence. However, this is eventually outweighed by the increase in variance, as the number of

matched pairs used in estimation decreases, leading to Model Dependence actually increasing when

the pruning becomes excessive.

We also showed that, regression after matching leads to a form of bias-corrected matching es-

timator. This allows us to connect our results on bias-corrected matching estimators, which are

not commonly used in the applied literature, to regression after matching, which is the dominant

methodology in many fields in the social sciences. Thus, our conclusions about how Model De-

pendence is a↵ected by the distribution of the covariates carry over to this important setting, as

well.

Overall, we have demonstrated that the optimal approach to matching will depend on the nature

and number of the covariates on which matching occurs, with direct matching being preferred for

symmetrically distributed covariates, or when the number of covariates or treated subjects is small.

However, as the number of treated subjects increases, in cases in which direct matching gives a

nonzero expected matching discrepancy, propensity score matching will be preferred, especially

when the number of matched covariates is large. Thus, it is particularly important for the analyst

to think carefully about the structure of the problem before selecting an approach to matching,

since neither direct nor propensity score matching dominates the other.

71



Bibliography

[1] Alberto Abadie and Guido Imbens. “Bias-Corrected Matching Estimators for Average Treat-

ment E↵ects”. Journal of the American Statistical Association 29.1 (2011), pp. 1–11.

[2] Alberto Abadie and Guido Imbens. “Large Sample Properties of Matching Estimators for

Average Treatment E↵ects”. Econometrica 74.1 (2006), pp. 237–267.

[3] Gary King and Richard Nielsen. “Why Propensity Scores Should Not Be Used for Matching”.

Political Analysis 27.4 (2019).

[4] Thomas Kolokotrones et al. “Bias and Variance of Matching Estimators” (2020).

[5] Prasanta Chandra Mahalanobis. “On the generalised distance in statistics”. Proceedings of the

National Institute of Sciences of India 2.1 (1936), pp. 49–55.

[6] Paul Rosenbaum and Donald Rubin. “The Central Role of the Propensity Score in Observa-

tional Studies for Causal E↵ects”. Biometrika 70.1 (1983), pp. 41–55.

[7] Donald Rubin. “Matching to Remove Bias in Observational Studies”. Biometrics 29 (1973),

pp. 159–183.

[8] Donald Rubin. “The Use of Matched Sampling and Regression Adjustments to Remove Bias

in Observational Studies”. Biometrics 29 (1973), pp. 185–203.

72



Chapter 4

Mendelian Randomization and Egger Regression

Tom Kolokotrones, Rajarshi Mukherjee, Qingyuan Zhao, and James Robins

4.1 Introduction

Mendelian Randomization, the practice of using genetic markers as instrumental variables to

elucidate the causal e↵ect of putative risk factors on health outcomes, has become a popular tool

in modern epidemiology [5]. The method was first proposed by Katan in 1986, who wished to

determine whether the association between low serum cholesterol and cancer risk was causal, in

particular, whether low cholesterol led to an elevated risk [4]. Since some ApoE alleles are associated

with elevated serum cholesterol, and which alleles a subject possesses are determined at conception,

Katan proposed that by comparing the cancer risk in bearers of high vs. low cholesterol alleles, one

could determine whether or not low cholesterol causally increases cancer risk. However, he never

actually performed the analysis.

The first use of the term “Mendelian Randomization” was due to Gray and Wheatley in 1991

who used the term to refer to a somewhat di↵erent type of instrumental variable [3]. The two

wished to compare the e�cacy of allogenic Bone Marrow Transplant (BMT) vs. chemotherapy, in

the treatment of leukemia, but, because they were unable to randomize treatment since allogenic

BMT, was, by that time, the standard of care, if available, they used the presence of an HLA

(Human Leukocyte Antigen) matched sibling (who could provide bone marrow) as their instrument.

Since that time, a number of other treatment studies have used the same instrument. The use

of Mendelian Randomization in modern genetic epidemiology is now widespread as a means for

estimating the causal e↵ect of a given risk factor on an outcome of interest [5].

However, despite the popularity of Mendelian Randomization, the assumptions that are required

for its valid application are stringent and often violated. As is the case for other instruments, the

locus of interest, Z, must be associated with the outcome, Y , only through the putative risk

factor, X, the so-called exclusion restriction in the terminology of Instrumental Variables (IV).

Unfortunately, this assumption is frequently violated, since genes often have pleiotropic e↵ects, so
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the chosen locus may also a↵ect Y via other pathways, in which case the causal e↵ect of X on Y

is not identifiable without further assumptions.

In 2015, Bowden, Davey-Smith, and Burgess introduced the use of Egger Regression, a tech-

nique previously developed by Egger, Davey-Smith, and Minder in 1997 for meta-analysis, which

allows the use of Mendelian Randomization, even in the presence of pleiotropy under an additional

assumption, the so-called Instrument Strength Independent of Direct E↵ect, or InSIDE, condition

[1, 2]. However, while they sketched informal arguments justifying the use of Egger Regression, the

estimator has never been formally analyzed or even shown to be consistent. In the following work,

we provide an analysis of its use under a variety of IV assumptions, ranging from few strong to

many weak instruments.

4.2 Basics

Let Y be a continuous outcome, X be a continuous predictor, U be a collection of unmeasured

confounders, Z be a collection of p (possibly broken) instruments (which satisfy Z ?? U , but not

necessarily Z ?? Y |U,X), ✏
x

and ✏
y

be independent error terms (✏ ?? Z,U , ✏
x

?? ✏
y

), and n be the

number of subjects. Let E [✏
x

] = E [✏
y

] = 0, Var [✏
x

] = �2

x

, Var [✏
y

] = �2

y

, E [U ] = 0, Var [U ] = ⌃
u

.

(In the Mendelian Randomization setting, the Z are trinary and represent the number of minor

alleles present at the selected locus.) We wish to estimate the causal e↵ect of X on Y. We observe

n IID copies of (Y,X,Z), which satisfy the following structural equation model,

Y = �X + �t
y

Z + �t
y

U + ✏
y

X = �t
x

Z + �t
x

U + ✏
x

The corresponding reduced form expression for Y is,

Y = �X + �t
y

Z + �t
y

U + ✏
y

= �
�
�t
x

Z + �t
x

U + ✏
x

�
+ �t

y

Z + �t
y

U + ✏
y

=
�
��t

x

+ �t
y

�
Z +

�
��t

x

+ �t
y

�
U + (�✏

x

+ ✏
y

)

= �tZ +�tU + ✏
r
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where � = ��
x

+ �
y

, � = ��
x

+ �
y

, and ✏
r

= �✏
x

+ ✏
y

. In order to simplify some expressions, we

also define ✏0
x

= �t
x

U + ✏
x

, ✏0
y

= �t
y

U + ✏
y

and ✏0
r

= �✏0
x

+ ✏0
y

= �tU + ✏
r

.

If �
y

= 0, so that Z ?? Y |U,X, then these would be the standard structural equations for

an instrumental variables model, and the causal e↵ect could be estimated by a variety of methods

including Two-Stage Least Squares (TSLS). However, if �
y

6= 0, then Z 6?? Y |U,X and the exclusion

restriction does not hold. It is well known that, without additional assumptions, this model is not

identified. Before we explore solutions to this problem, it is useful to examine the bias of the

standard TSLS estimator in the presence of pleiotropy.

4.3 Bias of Two Stage Least Squares with Pleiotropy

Two Stage Least Squares proceeds in two steps. First, one uses the first stage equation X =

�t
x

Z +
�
�t
x

U + ✏
x

�
to estimate �̂

x

, using least squares, and then uses that estimate to compute the

predicted value of X given Z, X̂(Z) = �̂t
x

Z = P
Z

X, the projection of X onto the subspace spanned

by Z. Next, one substitutes X̂ into the second stage equation to give Y = �X̂(Z)+�t
y

Z+
�
�t
y

U + ✏
y

�
,

and then estimates � using least squares so that �̂ =
⇣
X̂tX̂

⌘�1

X̂tY, where X,Y are the design matrix

and vector of outcomes, respectively, and Z is the corresponding matrix of instruments. With some

manipulation (see appendix) this yields:

Lemma 4.1. If �
x

, �
y

are fixed, length p, vectors, then the Two Stage Least Squares estimator of

�, �̂
P�! � +

�
�t
x

E
⇥
ZZt

⇤
�
x

��1

�t
x

E
⇥
ZZt

⇤
�
y

.

Proof.

�̂ =
⇣
X̂tX̂

⌘�1

X̂tY

= � +
⇣
n�1XtZ

�
n�1ZtZ

��1

n�1ZtX
⌘�1

⇥
�
n�1 (Z�

x

+ U�
x

+ ✏
x

)t Z
� �

n�1ZtZ
��1

�
n�1Zt (Z�

y

+ U�
y

+ ✏
y

)
�

P�! � +
⇣
E
⇥
XZt

⇤
E
⇥
ZZt

⇤�1

E
⇥
ZXt

⇤⌘�1

⇥ E
⇥�
�t
x

Z + �t
x

U + ✏
x

�
Zt

⇤
E
⇥
ZZt

⇤�1

E
h
Z
�
�t
y

Z + �t
y

U + ✏
y

�
t

i

= � +
⇣
E
⇥
XZt

⇤
E
⇥
ZZt

⇤�1 · E
⇥
ZZt

⇤
· E

⇥
ZZt

⇤�1

E
⇥
ZXt

⇤⌘�1

�t
x

E
⇥
ZZt

⇤
E
⇥
ZZt

⇤�1

E
⇥
ZZt

⇤
�
y

= � +
�
�t
x

E
⇥
ZZt

⇤
�
x

��1

�t
x

E
⇥
ZZt

⇤
�
y
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Thus, if � is fixed and there is no pleiotropy, so that the exclusion restriction holds and �
y

= 0,

then TSLS consistently estimates �. In fact, as long as �
x

6= 0 and �t
x

E
⇥
ZtZ

⇤
�
y

= 0, then TSLS

is still consistent.

4.4 Egger Regression

Although TSLS will not consistently estimate �, in general, in the presence of pleiotropy, there

exist other potential estimators. One of these is Egger Regression, a two stage estimation procedure

that was originally developed for meta-analysis, which Bowden and colleagues used to estimate �,

even when �
y

6= 0 [1, 2]. Egger Regression relies on an additional assumption, which they call the

Instrument Strength Independent of Direct E↵ect, or InSIDE, condition which assumes that �
x

and �
y

are independently distributed random variables.

In Egger Regression, the random variables used are not X,Y, and Z, but rather �
x

and � =

��
x

+ �
y

, where �
x

and � are the coe�cients that appear in the first stage and reduced form

equations, respectively,

X = �t
x

Z + �t
x

U + ✏
x

Y = �tZ +�tU + ✏
r

However, since �
x

and � are unknown, we must estimate them from the above equations, and,

so, we will actually use �̂
x

and �̂, which are estimated with error. Some refinements of Egger

Regression, such as one due to Zhao and colleagues take this measurement error into account [6,

7], but the original version, which is the most widely used, does not [1]. Egger Regression then

regresses �̂ on �̂
x

, entry by entry using the regression model �̂
j

= �
0E

+ �
E

�̂
x,j

+ ✏
j

. This gives,

�̂
0E

= �̂ � �̂
E

�̂
x

and �̂
E

=
⇣�

�̂
x

� �̂
x

�
t

�
�̂
x

� �̂
x

�⌘�1 �
�̂
x

� �̂
x

�
t

⇣
�̂� �̂

⌘
. These are the standard

expressions for the coe�cients in simple linear regression; a derivation using the normal equations

is presented in the appendix.
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4.4.1 Consistency

Despite wide use, Egger regression has not been formally shown to consistently estimate the

causal e↵ect and its use is typically justified using informal sequential asymptotic arguments (first

letting n then p go to infinity) [1]. We present a formal proof of the consistency of Egger Regression

here.

Theorem 4.2. Let �̂
E,p

be the Egger Regression estimate of �, the causal e↵ect of X on Y , using

p (possibly broken) instruments (Z). Let the elements of �
x,p

, �
y,p

be independently and identically

distributed like f
x

(p)�
x,0

, f
y

(p)�
y,0

, respectively, where �
0

⇠ F
0

. If p�1E
h
tr
h�
n�1ZtZ

��1

ii
2 O(1)

(which is implied by E
h
�
min

�
n�1ZtZ

��1

i
2 O(1)) and f

x

(p) 2 !
⇣
n� 1

2

⌘
, f

y

(p) 2 O (f
x

(p)), then,

�
E

P�! �+lim
p!1

f

y

(p)

f

x

(p)

·Var [�
x,0

]�1Cov [�
x,0

, �
y,0

], so that Egger Regression consistently estimates

�, if either Cov [�
x,0

, �
y,0

] = 0 or lim
p!1

f

y

(p)

f

x

(p)

= 0.

Proof. We let the entries of �
x

and �
y

vary with p, which we will denote by �
x,p

and �
y,p

. Specifically,

let the elements of �
x,p

and �
y,p

be independently and identically distributed like f
x

(p)�
x,0

and

f
y

(p)�
y,0

, respectively, where �
0

⇠ F
0

, Var [�
x,0

] = �2

x,0

,Var [�
y,0

] = �2

y,0

. Also, let �
p

= ��
x,p

+�
y,p

,

�0
x,p

= f
x

(p)�1�
x,p

, �0
y,p

= f
y

(p)�1�
y,p

, and �̂
y,p

= �̂
p

� ��̂
x,p

. Then,

�̂
E,p

=
⇣�

�̂
x,p

� �̂
x,p

�
t

�
�̂
x,p

� �̂
x,p

�⌘�1 �
�̂
x,p

� �̂
x,p

�
t

⇣
�̂
p

� �̂
p

⌘

= � +
�
�̂t
x,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�̂
x,p

��1

�̂t
x,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�̂
y,p

We now expand �̂t
x,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�̂
y,p

. Recall that �̂
x,p

=
�
ZtZ

��1 ZtX, �̂
p

=
�
ZtZ

��1 ZtY. Then,

�̂
y,p

= �̂
p

� ��̂
x,p

=
�
ZtZ

��1 Zt (Y� �X)

�̂
x,p

� �
x,p

=
�
ZtZ

��1 Zt (U�
x

+ ✏
x

)

�̂
p

� �
p

=
�
ZtZ

��1 Zt (U�
y

+ ✏
y

)
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Note that this means that �̂
x,p

� �
x,p

?? (�
x,p

, �
y,p

), �̂
y,p

� �
y,p

?? (�
x,p

, �
y,p

). Then,

p�1f
x

(p)�1f
y

(p)�1�̂t
x,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�̂
y,p

= p�1�̂0t
x,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�̂0
y,p

= p�1

��
�̂0
x,p

� �0
x,p

�
+ �0

x,p

�
t

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�

⇥
��
�̂0
y,p

� �0
y,p

�
+ �0

y,p

�

= p�1

�
�̂0
x,p

� �0
x,p

�
t

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

� �
�̂0
y,p

� �0
y,p

�

+ p�1�0t
x,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

� �
�̂0
y,p

� �0
y,p

�

+ p�1

�
�̂0
x,p

� �0
x,p

�
t

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�0
y,p

+ p�1�0t
x,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�0
y,p

The last term goes to Cov [�
x,0

, �
y,0

]. Additionally, if the middle terms go to zero, the first term

will as well. This requires some condition so that the norm of the error terms will be e↵ectively

controlled. It is su�cient that p�1E
h
tr
h�
n�1ZtZ

��1

ii
2 O(1).

In the first part of the proof, we will assume that f
y

(p) 2 !
⇣
n� 1

2

⌘
, as well as f

x

(p). This will

make �
x

and �
y

interchangeable in what follows, which will reduce the number of quantities that

we need to calculate. Using Holder’s Inequality,

E
���p�1

�
�̂0
x,p

� �0
x,p

�
t

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�0
y,p

���

 E
h
p�1

�
�̂0
x,p

� �0
x,p

�
t

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

� �
�̂0
x,p

� �0
x,p

�i 1
2

⇥ E
⇥
p�1�0t

y,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�0
y,p

⇤ 1
2
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E
h
p�1

�
�̂0
x,p

� �0
x,p

�
t

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

� �
�̂0
x,p

� �0
x,p

�i

= p�1f
x

(p)�2E
h
tr
h�
I
p

� p�11
p⇥p

� �
ZtZ

��1 Zt

�
�t
x

⌃
u

�
x

+ �2

x

�
I
n

Z
�
ZtZ

��1

ii

= n�1f
x

(p)�2

�
�t
x

⌃
u

�
x

+ �2

x

�
p�1E

h
tr
h�
I
p

� p�11
p⇥p

� �
n�1ZtZ

��1

ii

 n�1f
x

(p)�2

�
�t
x

⌃
u

�
x

+ �2

x

�
p�1E

h
tr
h�
n�1ZtZ

��1

ii

 n�1f
x

(p)�2

�
�t
x

⌃
u

�
x

+ �2

x

�
·O(1)

2 o(1)

since f
x

(p) 2 !
⇣
n� 1

2

⌘
by assumption.

Then, p�1

�
�̂0
x,p

� �0
x,p

�
t

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

� �
�̂0
x,p

� �0
x,p

� L1

�! 0 Since this also holds

replacing x by y, we have,

p�1

�
�̂0
x,p

� �0
x,p

�
t

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

� �
�̂0
x,p

� �0
x,p

� L1

�! 0

p�1

�
�̂0
y,p

� �0
y,p

�
t

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

� �
�̂0
y,p

� �0
y,p

� L1

�! 0

Since,

p�1E
⇥
�0t
x,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�0
x,p

⇤
= p�1E

⇥�
�0t
x,p

� �̄0t
x,p

� �
�0
x,p

� �̄0
x,p

�⇤

= p�1E
⇥
�0t
x,p

�0
x,p

� �̄0t
x,p

�̄0
x,p

⇤
= p�1

pX

i=1

E
⇥
�02
x,p,i

� �̄02
x,p

⇤
= p�1(p� 1)�2

x,0

! �2

x,0

and a similar expression holds with y replacing x, we have

�0t
x,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�0
x,p

L1

�! �2

x,0

�0t
y,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�0
y,p

L1

�! �2

y,0

Finally, invoking Holder’s Inequality and that L2 convergence implies convergence in probability,
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we have,

p�1

�
�̂0
x,p

� �0
x,p

�
t

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
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�̂0
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� �0
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p�1

�
�̂0
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� �0
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I
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� p�11
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I
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p⇥p

� �
�̂0
x,p

� �0
x,p

�
P�! 0

p�1�0t
x,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

� �
�̂0
y,p

� �0
y,p

�
P�! 0

p�1�0t
x,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

� �
�̂0
x,p

� �0
x,p

�
P�! 0

p�1

�
�̂0
x,p

� �0
x,p

�
t

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�0
y,p

P�! 0

Then, since,

p�1�0t
x,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�0
y,p

P�! Cov [�
x,0

, �
y,0

]

by the Continuous Mapping Theorem,

p�1f
x

(p)�1f
y

(p)�1�̂t
x,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�̂
y,p

P�! Cov [�
x,0

, �
y,0

]

Similarly,

p�1f
x

(p)�2�̂t
x,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�̂
x,p

P�! Var [�
x,0

]

Thus, by a final application of the Continuous Mapping Theorem,

�̂
E,p

P�! � + lim
p!1

f
y

(p)

f
x

(p)
·Var [�

x,0

]�1Cov [�
x,0

, �
y,0

]

Finally, we treat the more general case in which f
x

(p) 2 !
⇣
n� 1

2

⌘
, f

y

(p) 2 O
⇣
n� 1

2

⌘
, but not

necessarily f
y

(p) 2 !
⇣
n� 1

2

⌘
. Instead of analyzing

p�1f
x

(p)�1f
y

(p)�1�̂t
x,p

�
I
p

� p�11
p⇥p

� �
I
p

� p�11
p⇥p

�
�̂
y,p

, we instead analyze
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x

(p)�1f
y

(p) · p�1f
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� �
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Thus, the Continuous Mapping Theorem yields,
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This completes the proof.

Corollary 4.3. If the entries of Z are IID with zero mean and finite fourth moment, p, n ! 1,

n�1p(n) ! � 2 [0, 1), and the assumptions of Theorem 4.2 hold (except for the trace condition),

then �
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Then,
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and Theorem 4.2 holds.

4.4.2 Asymptotic Expansion

Although we have shown that the Egger Regression estimator is consistent for �+lim
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], we would like to characterize it more fully. In particular, we would like

to know its rate of convergence and (scaled) asymptotic distribution. In order to do so, we begin

by computing an asymptotic expansion for the case when p is fixed and � is deterministic, but
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From the above expansion, we can directly read out the influence function,
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This completes the proof.

Corollary 4.5. For fixed p and deterministic �, the Egger Regression estimator of the causal e↵ect,
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suggests that a starting point would be to develop an expansion of
p
p (�
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). We present such

an expansion below, but note that there are several problems with such an approach. The first is

that, in Theorem 4.4, we assumed that � was a fixed sequence, whereas, in such an expansion, it
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Corollary 4.7. If � is observed, �
E,p

is p
1
2
consistent for �

E

, and is asymptotically normal with

limiting variance E
h
 
�

E

 t

�

E

i
.

Proof. This follows directly from the expansion in Theorem 4.6.

For the aforementioned reasons, even combined with Theorem 4.4, this is not enough to show

that the Egger regression estimator has a valid asymptotic expansion in the case in which p grows

with n and � is random. However, it does suggest that the variance estimated for any fixed sequence

of �s, will incorrectly estimate the true variance of the estimator. In particular, since the actual �

associated with any genetic locus is fixed, variance estimates will not properly account for the fact

that � varies across loci.

This also suggests that the meaningful parameter for the asymptotics is really p, not n. No

matter how large p is, so long as it is fixed, the Egger regression estimator will be biased for the

true causal e↵ect, even if n goes to infinity. Further, since �
E,p

is only p
1
2 consistent for �

E

, Egger

regression cannot hope to be more than p
1
2 consistent. Therefore, unless n�1p ! � 2 (0, 1), Egger

Regression cannot be n
1
2 consistent.

4.5 Simulations

In order to further explore the behavior of Egger Regression, we turn to simulation. In our

simulations, we use the following structural equations,

Y = �X + �t
y

Z + ✏0
y

X = �t
x

Z + ✏0
x

Z
ij

⇠ N (0, 1), ✏0
i

⇠ N (0,⌃
✏

), �
x,j

⇠ N
�
0, f

x

(p)2
�
, �

y,j

⇠ N
�
0, f

y

(p)2
�
, where ⌃

✏

=


1 ⇢
⇢ 1

�
, ⇢ = 1

4

,

and all random variables are IID. We let f
x

(p) = p�✓

x , f
y

(p) = p�✓

y . Each figure represents 1000

replications. We use a p : n ratio of 1 : 10 for p = 3, 10, 31, 100, 316 =
j
10

i

2

k
, i = 1, 2, 3, 4, 5. For

each combination of ✓ values, the densities for each p are estimated using kernel smoothing and are

plotted together in a single figure.
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Figure 4.1: Density of �̂ (✓
x

= ✓
y

). Simulated results from Egger Regression with p : n = 1 : 10
for a. ✓

x

= ✓
y

= 0, b. ✓
x

= ✓
y

= 1

2

, c. ✓
x

= ✓
y

= 1, d. ✓
x

= ✓
y

= 3

2

. Lines correspond to
p = 3, 10, 31, 100, 316.

From Figure 4.1, we see that for ✓
x

= ✓
y

 1

2

, Egger regression appears to be consistent and

unbiased. While for ✓
x

= ✓
y

> 1

2

, it is biased. This is consistent with our analytic results, which

required that f
x

(p) 2 !
⇣
n� 1

2

⌘
in order to be able to prove convergence, and suggests that, at least

in this respect, they cannot be improved.

In Figure 4.2 we also see that p
1
2

⇣
�̂ � �

⌘
appears to converge to a fixed normal distribution.

In combination with the above, this suggests that, when limn�1p ! � 2 (0, 1), �̂ is p
1
2 consistent
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Figure 4.2: Density of p
1
2

⇣
�̂ � �

⌘
. Simulated results from Egger Regression with p : n = 1 : 10 for

a. ✓
x

= ✓
y

= 0, b. ✓
x

= ✓
y

= 1

2

. Lines correspond to p = 3, 10, 31, 100, 316.

and asymptotically normal.

If ✓
x

6= ✓
y

, then, if ✓
x

 1

2

and ✓
y

> ✓
x

, �̂ ! �, as seen in Figures 4.3a, b, and c. However,

if ✓
x

> 1

2

, �̂ will be biased as seen in Figure 4.3d. This is again consistent with the fact that we

required f
x

(p) 2 !
⇣
n� 1

2

⌘
, in order to be able to prove convergence and suggests that this condition

is required for Egger Regression to be able to consistently estimate the causal e↵ect.

If ✓
x

 1

2

and ✓
y

= ✓
x

� 1

2

, then �̂ is not consistent, but appears to converge to a fixed distribution

and is unbiased, as seen in Figure 4.4a. This agrees with the fact that Figure 4.2 suggests that

the Egger Regression estimator is p
1
2 consistent. Interestingly, this convergence to a nondegenerate

normal distribution also appears to occur when ✓
x

= 1, ✓
y

= 1

2

, as seen in Figure 4.4c. When ✓
x

> 1

and ✓
y

= ✓
x

� 1

2

, �̂ is biased, as seen in Figure 4.4d, which is what we would expect. Finally, when

✓
y

< ✓
x

� 1

2

, the distribution of �̂ diverges as p increases, as seen in Figure 4.4b. This is also not

surprising, since the instrument is extremely weak relative to the pleiotropy and so is overwhelmed.

4.6 Conclusion

In this work, we have shown that if n�1p ! � 2 [0, 1) and the strength of the instruments,

f
x

(p), declines strictly slower than n� 1
2 and no slower than the strength of the pleiotropic e↵ects,

f
y

(p), the Egger regression estimator �̂
E,p

P�! �
E

= � + lim
p!1

f

y

(p)

f

x

(p)

· Var [�
x,0

]�1Cov [�
x,0

, �
y,0

].
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Figure 4.3: Density of �̂ (✓
x

< ✓
y

). Simulated results from Egger Regression with p : n = 1 : 10 for
a. ✓

x

= 0, ✓
y

= 1

2

, b. ✓
x

= 0, ✓
y

= 1, c. ✓
x

= 1

2

, ✓
y

= 1, d. ✓
x

= 1, ✓
y

= 3

2

. Lines correspond to
p = 3, 10, 31, 100, 316.

Therefore, it consistently estimates the true causal e↵ect of X on Y, �, if either Cov [�
x,0

, �
y,0

] = 0

or the strength of pleiotropy declines faster than the strength of the instruments (f
y

(p) 2 o (f
x

(p))).

We have also shown that, for fixed p (and fixed �), the Egger Regression estimator is biased

and converges in probability to �
E,p

= � +
�
(�

x

� �
x

)t (�
x

� �
x

)
��1

(�
x

� �
x

)t
�
�
y

� �
y

�
and is n

1
2

consistent for �
E,p

and asymptotically normal. Further, if � is directly observed, and does not need

to be estimated, then we demonstrated that �
E,p

P�! �
E

and, further, it is p
1
2 consistent for �

E

and
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Figure 4.4: Density of �̂ (✓
x

> ✓
y

). Simulated results from Egger Regression with p : n = 1 : 10 for
a. ✓

x

= 1

2

, ✓
y

= 0, b. ✓
x

= 1, ✓
y

= 0, c. ✓
x

= 1, ✓
y

= 1

2

, d. ✓
x

= 3

2

, ✓
y

= 1. Lines correspond to
p = 3, 10, 31, 100, 316.

asymptotically normal. This suggests that, �̂
E,p

, the standard Egger Regression estimator, which

must estimate �̂, since � is unknown, cannot converge faster to �
E

than p
1
2 and, thus, will not be

n
1
2 consistent unless n�1p ! � 2 (0, 1).

However, several important results remain. First, it is important to show that the Egger

Regression estimator �̂
E,p

is p
1
2 consistent, meaning that for n�1p ! � 2 (0, 1) it is n

1
2 consistent.

Second, it would be ideal to show that �̂
E,p

is asymptotically normal, although, as discussed above,

93



there are several structural challenges involved in doing so. Both of these properties are implied by

our simulation results, and so we expect to be able to prove that the Egger Regression estimator

is p
1
2 consistent and asymptotically normal in future work.
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Chapter 5

Conclusion

In this work, we explored various aspects of matching and Instrumental Variable estimators. In

particular, we showed that neither direct covariate matching nor propensity score matching strictly

dominates the other and that, under a variety of metrics, specifically the mean and variance of

the matching estimator itself, and the Model Dependence of families of matching estimators, each

tends to perform better in di↵erent regimes. In particular, when the propensity score is known and

fixed, and the true and regression models are linear, when the covariate distribution is symmetric,

and higher order terms do not appear in either the true or regression models, then direct matching

results in unbiased matches and is universally preferred, although its advantage declines as more

covariates are matched upon. However, when the covariate distribution is not symmetric, or when

higher order terms appear in either the true or regression model, then direct matching results in

biased matches, and, thus, while it may be advantageous in smaller samples, particularly when the

number of matched covariates is small, as the numbers of treated subjects and matched covariates

becomes large, propensity score matching performs better because it results in unbiased matches.

We also demonstrated several asymptotic properties of Egger Regression. First, we showed

that, as long as the instruments are not too weak, either in an absolute sense or relative to the

strength of pleiotropy, if the number of instruments and the sample size go to infinity, and their ratio

converges to a quantity less than 1, Egger Regression consistently estimates the true causal e↵ect

when either the InSIDE assumption holds or when the level of pleiotropy is strictly weaker than

the strength of the instruments. When InSIDE fails to hold and the instruments are not too weak,

then the estimator still converges in probability, but the estimate is biased. We also showed that,

for a fixed, finite number of instruments, the Egger Regression estimator is asymptotically normal,

but its limit is biased. Additionally, in the case in which the instrument strength and pleiotropy

are known and do not need to be estimated, the corresponding estimator is asymptotically normal

and is p
1
2 -consistent for its limiting value, where p is the number of instruments. Therefore, the

standard Egger Estimator cannot converge faster and, so, can only be n
1
2 consistent if, n�1p goes

to a constant strictly between 0 and 1.
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These findings a�rm the idea that the matching method should be selected based on the

structure of the data, and that direct and propensity score matching each have settings in which

they outperform the alternative. Likewise, these initial asymptotic results validate the use of Egger

Regression in the presence of pleiotropy, as well as demonstrating its limits. Hopefully, these results

will provide assistance on deciding when to use direct vs. propensity score matching, as well as

when Egger Regression is an appropriate technique for estimating causal e↵ects.
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