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Abstract 

Genetics have been an important risk factor for cancer. The information we learned 

from genome-wide association studies (GWAS) provide researchers with tools and new 

approach to better understand cancer epidemiology. In this dissertation, I present three 

projects using GWAS discoveries to understand cancer etiology and infer cancer risks. 

Chapter 1 uses GWAS information as an instrument variable to estimate the causal 

relationship between adiposity measures at different life stages (at birth, during childhood, at 

adulthood) and risk of breast, ovarian, prostate, colorectal and lung cancers via Mendelian 

Randomization analysis. We found that the genetic predicted adult BMI was inversely 

associated with breast cancer risk but positively associated with ovarian, lung and colorectal 

cancer risk. 

Chapter 2 evaluates the performance of a synthetic breast cancer risk prediction model 

utilizing both classical risk factors of breast cancer and common genetic variants in form of 

polygenic risk score (PRS). We validated the model using Nurses Health Study and Nurses 

Health Study II. We found that adding PRS greatly improved the performance of risk prediction 

models and of all three models validated, the model with both classic risk factor and PRS 

performed the best. 

Chapter 3 investigates the joint effect of PRS and pathogenic mutation in nine breast 

cancer predisposition genes using population based cohort studies in CAnceR RIsk Estimates 

Related to Susceptibility (CARRIERS) consortium. We also estimated 5-year and lifetime 
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absolute risk using the final model built from penalized regression. We found that PRS is 

associated with breast cancer in carriers of pathogenic variant as well as in non-carriers but 

there was no significant difference between these effect (odds ratio associated with one 

standard deviation change in PRS). More importantly, we found that PRS can be particularly 

important for managing risk of carriers of pathogenic variants in moderate penetrance cancer 

predisposition genes such as ATM and CHEK2.  

Together, the projects presented in this dissertation demonstrated three approaches to 

utilize genetic information to understand cancer in the post-GWAS era. We hope that these 

findings could shed light to the underlying genetic architecture of cancer and could contribute 

to future studies of building breast cancer risk prediction models and generating effective 

screening guidelines. 
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Introduction 

Cancer develops when cells divide and grow uncontrollably. Epidemiological studies 

have identified many risk factors for cancer including radiation, alcohol drinking, obesity, 

tobacco uses, hormone levels et cetera(1). Family history and genetic composition have also 

been seen as important risk factors of cancer(2). For instance, family history contributes greatly 

to increased risk of prostate cancer(3, 4). A meta-analysis of 33 epidemiological studies found 

that subjects with a first-degree relative family history of prostate cancer were at 

approximately 2.5 folds increase of lifetime risk(5). Family history also plays a critical role in 

other cancers etiology such as breast(6) and colorectal cancer(7). 

While family history is an important cancer risk factor, it has limitation in distinguish 

genetic from non-genetic contributions as some family members also share similar lifestyles 

and exposures. To better understand the genetic component of a given cancer within families, 

several types of studies have been performed in the past few decades: a) twin studies to 

implicate the strong heredity in cancer susceptibilities. Analyses from the Nordic Twin Study of 

Cancer (NorTwinCan) found significant estimates of heritability of 57% for prostate cancer, 31% 

for breast cancer, and 58% for skin melanoma(8). b) segregation studies simulated under 

various genetic models to identify inheritance patterns of cancer(9). Past segregation studies 

have favored a highly penetrance, autosomal dominant genetic model for breast cancer(10-12). 

c) linkage analysis to identify cancer predisposition genes. Using large breast cancer pedigrees, 

linkage analyses mapped high-penetrance breast cancer genes BRCA1(13) and BRCA2(14). 

Linkage and segregation analyses work best for mendelian diseases where high 

penetrant variants segregate according to clear patterns within families. However, for common, 
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complex disease such as cancer, the genetic risk is comprised of multiple alleles with no single 

allele being fully deterministic for driving tumorigenesis. Hence, to identify alleles associated 

with complex diseases, research focus has shifted from highly penetrant alleles clustered within 

families to more common variant present in larger, unrelated populations. Initial efforts to 

identify modestly penetrant alleles relied on resequencing candidate genes predicted to play a 

role in cancer risks. Some convincing findings have been reported for some cancers(15), 

however, only few associations were robustly validated in independent cohorts. For instance, 

the genes for androgen receptors attracted significant attention given its known role in 

prostate carcinogenesis but extensive variant annotation across genes in prostate cancer cases 

and controls found no inherited variant associated with risk(16). This suggests that a less biased 

and more robust approach is needed to identify common alleles associated with complex 

diseases which leads to the era of genome-wide association studies (GWAS). 

 For the past two decades, several advances in genetic research made the 

implementation of GWAS possible, including the sequencing of the human genome, the 

publication of International HapMap Project and the 1000 Genomes Project, the availability of 

high-throughput genotyping, and the development of statistical methods to interpret and 

impute massive amount of genetic data. GWAS scan the genome for polymorphisms, usually 

single nucleotide polymorphisms (SNPs) that are associated with disease of interest. To date, 

multiple GWAS have been reported for many of the major cancers in European populations, 

including breast cancer(17-20), prostate cancer(21-23), lung cancer(24-27), colorectal 

cancer(28-31), gastric cancer(32, 33), ovarian cancer(34), and pancreatic cancer(35-37).  
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Most of these common variants (allele frequency >1%) identified by GWAS are 

associated with modest increase in disease risk, with odds ratios (ORs) generally less than 

1.5(38). Individually, these SNPs may not be informative in evaluating the risk of developing 

cancer, but the collective use of large numbers of common variants to create a polygenic risk 

score (PRS) have demonstrated abilities to modify and individualize cancer risk estimates(39-

41).  The recent work by Mavaddat et al. found that one standard deviation change of a breast 

cancer PRS is associated with a 1.61 folds increase of breast cancer, and that the lifetime risk of 

overall breast cancer for the top percentile of the PRS is 32.6%(42). PRS can also be useful in 

further stratifying the risk among carriers of a pathogenic variant. Take breast cancer as an 

example, Kuchenbaecker et al. found a statistically significant association between a PRS and 

breast cancer risk among BRCA1 and BRCA2 variant carriers (HR:1.14, 95%CI: 1.11- 1.17 for 

BRCA1 carriers, and HR: 1.22, 95%CI: 1.17-1.28 for BRCA2 carriers)(43). 

In this dissertation, I present three projects to investigate the important role of PRS in 

understanding cancer etiology and cancer risks. The first project is a mendelian randomization 

study using PRS as proxies for adiposity to examine the causal relationship between adiposity at 

different life stages (birth weight, childhood obesity, adult BMI and WHR) and risk of breast, 

ovarian, prostate, colorectal and lung cancers. The results of this project may help us 

understand the underlying genetic architecture of the five cancers studied. The second project 

performs validation analysis of a synthetic breast cancer prediction model utilizing both PRS 

and classic risk factors from questionnaire data. This project demonstrates the contribution of 

PRS in improving performance and accuracy of breast cancer risk prediction models. The third 

project investigated the joint effect of PRS and rare pathogenic variant in breast cancer 
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predisposition genes in the general population. Findings from this project can help better 

develop risk prediction model incorporating both common and rare variants of breast cancer. It 

also shed light into developing more individualized breast cancer prevention and screening 

strategies. 
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CHAPTER 1 
 
 
Mendelian Randomization study of adiposity-related traits and risk 
of breast, ovarian, prostate, lung and colorectal cancer 

 

1.1 Introduction  

Obesity influences risk for many chronic diseases such as cancer, cardiovascular disease 

and diabetes(44). Observational studies have found associations between body mass index 

(BMI) and various cancer types including increasing risk of postmenopausal breast (45), 

colorectal(46), endometrial(47), and pancreatic cancer(48, 49) and decreasing risk of lung 

cancer and premenopausal breast cancer (50). However, the mechanisms underlying the 

contribution of obesity to cancer risk remains poorly understood. It is also unclear whether 

these associations between obesity and cancer in observational studies are causal.  For 

instance, the observed increased risk of lung cancer among individuals with low BMI may be 

due to residual confounding by smoking or weight loss resulting from chronic lung disease(51).  

Recent studies have also found time-dependent associations between assessment of 

adiposity and subsequent cancer risk. Higher	adiposity at young ages is inversely associated 

with both pre- and postmenopausal breast cancer(52). In contrast, higher adult BMI is positively 

associated with postmenopausal breast cancer risk(45, 53, 54). Evidence also suggests that 

childhood obesity may be associated with ovarian cancer independent of adult BMI(55). These 

findings demonstrate a dynamic relationship between adiposity and cancer development 

during different time frames of life that requires a deeper investigation.  
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Elevated waist-to-hip ratio (WHR), representing a higher abdominal fat distribution, is 

associated with multiple hormonal and metabolic changes including insulin resistance and 

hyperinsulinemia that may increase risk of chronic disease such as cancer(56-58). Previous 

studies examining WHR and breast cancer risk indicated a positive association, which remained 

positive after adjusting for BMI(54, 59). Some studies also suggest that measures of abdominal 

adiposity are more predictive of colorectal cancer than BMI(60, 61). Thus, further investigations 

on the contribution of WHR to cancer risk may improve our understanding of the relationship 

between body fat distribution, obesity, and cancerogenesis.  

Mendelian randomization (MR) is a technique that uses genetic predictors of risk factors 

as instrumental variables to assess the possible causal associations between risk factors and 

diseases(62). As genetic variants are fixed at conception and generally independent of 

confounders, such an approach seeks to eliminate potential reverse causality and reduce 

confounding bias(63, 64).  To our knowledge, there has not been any large-scale MR study 

assessing the potential causal relationship between obesity across different life stages and risk 

of multiple cancers. 

In this study, we performed MR analysis to estimate the causal relationship between 

adiposity at different life stages (birth weight, childhood BMI, adult BMI and WHR) and risk of 

breast, ovarian, prostate, colorectal and lung cancers. We leveraged the results of recently 

published large-scale genome-wide association studies (GWAS) of adiposity-related traits to 

define a genetic score for each trait. We then assessed the associations between these scores 

and risks of five cancers from the Genetic Associations and Mechanisms in Oncology (GAME-
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ON) Consortium, which include 51 537 cancer cases and 61 600 controls from 32 participating 

studies.  

 

1.2 Materials and Methods 

The GAME-ON post-GWAS initiative  

The Genetic Associations and Mechanisms in Oncology (GAME-ON) Initiative is a 

network of cancer-specific consortia engaged in GWAS and post-GWAS research. It includes five 

cancer-specific consortia: DRIVE (breast), CORECT (colorectal), ELLIPSE (prostate), FOCI 

(ovarian) and TRICL (lung) (Table 1.1).  GWAS data from 32 studies (all European ancestry) 

contributing to the GAME-ON consortium were imputed using the 1000 Genomes reference 

panel (phase I version 3). Studies contributed summary statistics only to cancer- specific meta-

analyses. Further information regarding imputation and analyses can be found in Fehringer et 

al.(65) and Zhang et al.(66).   
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Table 1.1: Participants and Studies Included in the Genetic Associations and Mechanisms in 

Oncology (GAME-ON) consortium by Cancer Site and Subtype. 

 

 
Cancer 

Type 

Cancer subtype Cases Controls GWAS 

studies 

Breast All 15,748 18,084 11 

ER-negative 4939 13,128 8 

Colorectal All 5,100 4,831 6 

Lung All 12,160 16,838 6 

Adenocarcinoma 3,718 15,871 6 

Squamous 3,422 16,015 6 

Ovarian All 4,369 9,123 3 

Clear-cell 356 9,123 3 

Endometrioid 715 9,123 3 

Serous 2,556  9,123 3 

Prostate All 14,160 12,724 6 

Aggressive 4,450 12,724 6 

Total All 51,537 61,600 32 
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Identification of SNPs associated with birth weight, childhood obesity and adult BMI and WHR. 

To calculate the genetic scores, we considered SNPs that were genome-wide significant 

(p < 5x10-8) in the largest GWAS to date for each trait as follows: a) 7 SNPs of birth weight from 

Horikoshi et al.(67), b) 15 SNPs of childhood BMI from Felix et. al.(68), c) 77 SNPs of adult BMI 

from Locke et al. (SNPs from primary meta-analysis of European-descents only) (69) and d) 14 

SNPs of adult WHR from Heid et al. (70). All GWAS were restricted to individuals of European 

ancestry. For all identified SNPs, we obtained the chromosome and position, the nearest gene, 

the risk allele, and trait-specific association estimates and standard errors reported in the 

papers above. For each SNP, we also extracted cancer-specific effect estimates and p-values 

from the GAME-ON consortium (Supplementary Table 1.1).  

Several SNPs associated with birth weight, childhood BMI, adult BMI and WHR were not 

found in GAME-ON data for ovarian endometrioid cancer subtype, lung cancer, and colorectal 

cancer. For these SNPs, proxy SNPs (r2>0.9, 1000 Genomes Northern and Western European 

population) were used in the analysis instead (Supplementary Table 1.2) There were no 

overlaps (lead SNPs within 250kb) among the GWAS-identified loci for different adiposity-

related traits except childhood BMI and adult BMI, for which we found ten overlap regions: 

SEC16B, TNNI3K, FTO, MC4R, TMEM18, TFAP2B, OLFM4, ADCY3, GPR61/GNAT2, GNPDA2 

(Supplementary Figure 1.1).  

 
Statistical Analysis  

We conducted MR analyses to estimate the association between adiposity-related traits 

and cancer using summary genetic association statistics, as described in Burgess et al.(71). 

Specifically, the ratio estimate (!") of the effect of a risk factor (X) on disease outcome (Y) using 
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genetic variants k=1,...,K can be calculated as !"=	 ∑ "!#!$"!
#$!

∑ "!$$"!
#$!

 where Xk is the per-allele effect of 

SNP k with the risk factor, Yk is the per-allele change in the log odds ratio for the cancer being 

tested, and σYk2	is	the	standard	error	for	Yk.	The	summary	statistics	Xk,	Yk	and	σYk2	are	taken	

from	the	GWAS	for	the	risk	factor	and	for	cancer,	respectively. The standard error of !"  is 

given by: se(!") =% %
∑ "!$$!#$!

	16, 21. Under certain assumptions(72), the ratio estimate !"  can be 

interpreted as the causal log odds ratio of cancer risk associated with one unit change in the 

adiposity-related traits (birth weight, childhood BMI, adult BMI, and WHR). 

Since some cancers demonstrate etiologic heterogeneity by histologic subtype or clinical 

characteristics, we also conducted the following cancer-specific subgroup analyses: estrogen 

receptor negative (ER-) breast cancer; clear cell, endometrioid and serous ovarian cancer; 

adenocarcinoma and squamous lung cancer; and aggressive prostate cancer (defined as a 

Gleason score of ≥8, a disease stage of 'distant', a prostate-specific antigen level of >100 ng/ml 

or death from prostate cancer(73). In addition, sensitivity analyses were performed excluding 

the overlap loci between childhood BMI and adult BMI.  One key assumption for MR analysis is 

no pleiotropic effect. Thus, Egger regression was performed to evaluate directional pleotropic 

effect for adult and childhood BMI (74) to provide effect estimates after adjusting for potential 

pleiotropic effects. The intercept from Egger regression provides a test for directional 

pleiotropy (the average direct effects of adiposity-increasing variants increase [or decrease] 

cancer risk). Under the assumption that the SNPs’ direct effects on cancer risk are independent 

of their association with body mass index, Egger regression provides an unbiased estimate of 
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the causal effect of genetically predicted BMI on cancer. Unless otherwise noted, all p-values 

are unadjusted for multiple testing.  

 

1.3 Results 

We estimated the associations between adiposity-related genetic scores and risk of five 

cancers (Table 1.1). Figures comparing results across cancers are in Supplementary Figure 1.2.  

 

Breast cancer 

The risk of breast cancer decreased with increasing genetic score for childhood BMI 

(OR=0.71 per s.d. increase in childhood BMI; 95%CI: 0.60, 0.80; p=6.5x10-5), and also with 

increasing genetic score for adult BMI (OR=0.66 per s.d. increase in adult BMI; 95%CI: 0.57, 

0.77; p=2.5×10-7) (Table 1.2).  Similar associations were found for ER negative breast cancer 

(OR=0.69, 95%CI: 0.53, 0.98, p=5.8×10-3 for childhood BMI; OR=0.59, 95%CI: 0.46, 0.75, 

p=2.0×10-5 for adult BMI). We did not observe an association between the genetic score for 

birth weight and breast cancer and observed an inverse association between the genetic score 

for WHR and breast cancer risk (OR=0.73; 95%CI: 0.54, 1.00; p=0.05).  

 

Ovarian cancer 

The estimated association between the genetic scores for higher adult BMI is associated 

with increased risk of overall ovarian cancer. One standard deviation increase in genetically 

predicted adult BMI was associated with 35% increased risk of ovarian cancer (OR=1.35, 95%CI: 



 

 12 

1.05,1.72; p=0.017).  We did not find strong evidence of associations between genetically 

predicted birth weight, childhood BMI, or WHR and ovarian cancer risk.  

 

Lung cancer 

We observed a positive association between genetically predicted adult BMI and overall 

lung cancer (OR=1.27, 95%CI: 1.09, 1.49; p-value=2.9x10-3)(Table 1.2). This association 

appeared restricted to squamous cell lung cancer (OR=1.54, 95%CI: 1.20, 1.96; p=6.6x10-4), as 

we found no strong evidence for association with lung adenocarcinoma (OR=0.93, 

95%CI:0.73,1.19, p=0.59). We also did not find strong evidence for association between either 

genetically predicted birth weight or childhood BMI and lung cancer risk.  

 

Prostate Cancer 

We found a positive association between the genetic score for birth weight and 

aggressive prostate cancer (OR=1.63 per s.d. unit increase in birth weight, 95%CI: 1.03, 2.57, p = 

0.037). No strong evidence was found for associations between prostate cancer and any other 

adiposity measures.  

Colorectal Cancer 

We found an increase in risk of colorectal cancer per s.d. increase of genetically 

predicted adult BMI (OR=1.39, 95%CI: 1.06, 1.82, p = 0.016). No associations were found 

between birth weight, childhood BMI or waist-hip-ratio and colorectal cancer risk. 
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Table 1.2: Mendelian randomization odds rations (ORs) of birth weight, childhood obesity, adult BMI, and waist-hip-ratio across five 

different cancer types obtained using summary data from GAME-ON consortium.  

 Birth Weight Childhood BMI Adult BMI  Waist-hip-ratio 
 OR 

(95%CI) 
 
p-value 

OR 
(95%CI) 

 
p-value 

OR 
(95%CI) 

 
p-value 

OR 
(95%CI) 

 
p-value 

Breast 
Cancer 

All 1.22	
(0.93,	1.60) 

0.15 0.71 
(0.60, 0.80) 

6.5x10-5 0.66 
(0.57, 0.77) 

2.5x10-7 * 0.73	
(0.53,1.00) 

0.051 

ER_negative 1.01 
(0.66, 1.53) 

0.98 0.69 
(0.53, 0.98) 

0.0058 0.59 
(0.46, 0.75) 

2.0x10-5 * 0.74 
(0.45, 1.21) 

0.23 

Ovarian 
Cancer 

All 1.07	
(0.69,	1.65) 

0.75 
 

1.07 
(0.82, 1.39) 

0.62 1.35 
(1.05,1.72) 

0.017 1.19	
(0.73,	1.94) 

0.50 

Clear_cell 2.75 
(0.82, 9.30) 

0.10 
 

1.45 
(0.68, 3.09) 

0.34 1.68 
(0.84, 3.36) 

0.14 1.31 
(0.32, 5.30) 

0.71 
 

Endometrioid 0.79 
(0.33, 1.92) 

0.60 1.47 
(0.86, 2.52) 

0.16 1.34 
(0.80, 2.26) 

0.26 1.03 
(0.38, 2.84) 

0.95 

Serous 0.85 
(0.50, 1.45) 

0.56 
 

0.91 
(0.65, 1.26) 

0.56 1.30 
(0.97, 1.76) 

0.089 1.34 
(0.73, 2.46) 

0.34 
 

Prostate 
Cancer 

All 1.33	
(0.96,	1.82) 

0.082 
 

1.01 
(0.83, 1.22) 

0.91 1.01 
(0.84, 1.21) 

0.97 1.02 
(0.72, 1.46) 

0.90 
 

Aggressive 1.63 
(1.03, 2.57) 

0.037 
 

1.10 
(0.83, 1.45) 

0.49 1.11 
(0.85, 1.44) 

0.44 1.19 
(0.71, 1.98) 

0.51 
 

Lung 
Cancer 

All 0.93	
(0.70,	1.23) 

0.64 
 

1.01 
(0.85, 1.2) 

0.90 1.27 
(1.09, 1.49) 

2.9x10-3 1.15 
(0.80, 1.66) 

0.46 
 

Adenocarcino
ma 

0.95 
(0.62, 1.46) 

0.83 0.90 
(0.69, 1.19) 

0.47 0.93 
(0.73, 1.19) 

0.59 0.90	
(0.51,	1.58) 

0.71 

Squamous 0.99 
(0.64, 1.52) 

0.94 1.08 
(0.82, 1.43) 

0.57 1.54 
(1.20, 1.96) 

6.6x10-4 * 1.33	
(0.75,	2.36) 

0.33 

Colorectal 
Cancer 

All 0.69	
(0.44,	1.10) 

0.12 1.20 
(0.90, 1.59) 

0.21 1.39 
(1.06, 1.82) 

0.016 1.29 
(0.75, 2.22) 

0.35 

* denotes analyses that have p<0.001 after Bonferroni Correction for 48 tests 

BMI SNP rs12016871 has been merged into rs9581854 and thus rs9581854 was used for analysis instead 
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Overlap in adiposity SNP scores 

None of the pairs of adiposity-trait SNP scores overlap (within 250kb) except childhood 

BMI and adult BMI, which overlap at ten loci: SEC16B, TNNI3K, FTO, MC4R, TMEM18, TFAP2B, 

OLFM4, ADCY3, GPR61/GNAT2, GNPDA2. To assess the specificity of the observed associations 

between childhood and adult BMI and cancer risk, we repeated the analyses after removing the 

SNPs from the overlapping loci. The associations remained between adult BMI and breast and 

lung cancer, whilst the associations between childhood BMI and breast was attenuated after 

removing the overlapping loci (Table 1.3).  

 

Egger Regression 

With the possible exception of genetically predicted childhood BMI and breast cancer 

risk, the Egger regression did not reveal any strong directional pleiotropic effect on the risk 

estimation of genetically predicted adult BMI/childhood BMI/WHR/birth weight on various 

cancers (Table 1.4). All estimated intercept from the Egger regression are near zero. The effect 

estimates from the Egger Regression are generally in the same direction as the estimates from 

the MR analysis and larger in magnitude, except for lung cancer. We detect no strong 

pleiotropic effect on the risk estimation of genetically predicted adult BMI and lung cancer 

(intercept=0.011, p=0.057) but found no positive association between the BMI score on lung 

cancer in the Egger regression analysis (OR=0.90, 95% C.I. 0.51-1.29; p=0.59). 
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Table 1.3: Mendelian randomization odds ratios (ORs) of childhood BMI and adult BMI across five different cancer types obtained 
using summary data from GAME-ON consortium, excluding overlap loci (SEC16B, TNNI3K, FTO, MC4R, TMEM18, TFAP2B, GNAT2, 
OLFM4, ADCY3, GNPDA2) 

 Childhood BMI  Adult BMI  
 OR 

(95%CI) 
 

 
p-value 
 

OR 
(95%CI) 
 

 
p-value 
 

Breast 
Cancer 

All 1.05 
(0.74,1.48) 

0.80 0.75 
(0.62, 0.92) 

4.7x10-3 * 

ER_negative 1.17 
(0.68, 2.03) 

0.57 
 

0.66 
(0.49, 0.91) 

0.011 

Ovarian 
Cancer 

All 0.58 
(0.34,1.01) 

0.053 
 

1.26 
(0.93,1.72) 

0.14 

Clear_cell 0.70 
(0.15,3.25) 

0.69 
 

1.44 
(0.60,3,43) 

0.42 

Endometrioid 0.67 
(0.22,2.03) 

0.47 0.84 
(0.43,1.64) 

0.61 

Serous 0.54 
(0.27,1.06) 

0.07 
 

1.43 
(0.98,2.10) 

0.062 

Prostate 
Cancer 

All 1.29 
(0.88,1.87) 

0.19 
 

1.09 
(0.86,1.37) 

0.48 

Aggressive 1.32 
(0.77,2.29) 

0.32 
 

1.24 
(0.89,1.73) 

0.20 

Lung 
Cancer 

All 0.90 
(0.63,1.28) 

0.55 
 

1.41 
(1.16,1.73) 

6.8x10-4 * 

Adenocarcinoma 1.06 
(0.62,1.83) 

0.83 1.00 
(0.74,1.36) 

0.99 

Squamous 0.66 
(0.38,1.14) 

0.13 1.73 
(1.27,2.38) 

5.3x10-4 * 

Colorectal 
Cancer 

All 0.85 
(0.48,1.50) 
 

0.57 
 

1.36 
(0.96,1.92 

0.08 

* denotes analyses that have p<0.001 after Bonferroni Correction for 48 tests 
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Table 1.4. Effect	estimates	from	Egger	regression	for	adult	BMI,	childhood	BMI,	birth	weight,	and	WHR	

	
Adult	BMI	 	 Egger	regression	
	 MR	OR	 Intercept	 Standard	

error	
p	 OR_egg	 Standard	

Error	
p	

Breast	cancer	 0.66	
(0.57,	0.77)	

0.0035	 0.0056	 0.53	 0.59	 0.1949	 0.0076	

Ovarian	Cancer	 1.35	
(1.05,1.72)	

-0.0093	 0.0088	 0.29	 1.80	 0.3082	 0.054	

Prostate	Cancer	 1.01	
(0.84,	1.21)	

0.0096	 0.0066	 0.15	 0.74	 0.2324	 0.19	

Lung	Cancer	 1.27	
(1.09,	1.49)	

0.011	 0.0057	 0.057	 0.90	 0.2000	 0.59	

Colorectal	 1.39	
(1.06,	1.82)	

0.0082	 0.0098	 0.40	 1.08	 0.3317	 0.82	

	
Childhood	BMI	 	 Egger	regression	
	 MR	OR	 Intercept	 Standard	

Error	
p	 OR_egg	 Standard	

Error	
p	

Breast	cancer	 0.71	
(0.60,	0.80)	

0.048	 0.0274	 0.026	 0.34	 0.2078	 0.0017	

Ovarian	Cancer	 1.07	
(0.82,	1.39)	

-0.053	 0.0436	 0.12	 2.44	 0.3271	 0.10	

Prostate	Cancer	 1.01	
(0.83,	1.22)	

-0.020	 0.0332	 0.42	 1.38	 0.2462	 0.42	

Lung	Cancer	 1.01	
(0.85,	1.2)	

-0.0015	 0.0877	 0.95	 1.04	 0.2076	 0.92	

Colorectal	 1.20	
(0.90,	1.59)	

-0.020	 0.1483	 0.41	 1.63	 0.3464	 0.22	

	
 

 



 

 

17 

 

 
Table 1.4. Effect estimates from Egger regression for adult BMI, childhood BMI, birth weight, and WHR (CONTINUED)	

	
WHR	 	 Egger	regression	
	 MR	OR	 Intercept	 Standard	

Error	
p	 OR_egg	 Standard	

Error	
p	

Breast	cancer	 0.73	
(0.53,1.00)	

0.0048	 0.0263	 0.85	 0.63	 0.8307	 0.58	

Ovarian	Cancer	 1.19	
(0.73,	1.94)	

-0.037	 0.0424	 0.38	 3.67	 1.3153	 0.32	

Prostate	Cancer	 1.02	
(0.72,	1.46)	

0.046	 0.0310	 0.14	 0.25	 0.9747	 0.15	

Lung	Cancer	 1.15	
(0.80,	1.66)	

-0.017	 0.0316	 0.60	 1.97	 1.0440	 0.52	

Colorectal	 1.29	
(0.75,	2.22)	

-0.068	 0.0458	 0.14	 10.38	 1.4318	 0.10	

	
Birth	
weight	

	 Egger	regression	

	 MR	OR	 Intercept	 Standard	
Error	

p	 OR_egg	 Standard	
Error	

p	

Breast	cancer	 1.22	
(0.93,	1.60)	

0.040	 0.0300	 0.18	 1.75	 0.5831	 0.34	

Ovarian	Cancer	 1.07	
(0.69,	1.65)	

0.069	 0.0480	 0.15	 3.46	 0.9274	 0.18	

Prostate	Cancer	 1.33	
(0.96,	1.82)	

0.0043	 0.0346	 0.90	 0.82	 0.6856	 0.77	

Lung	Cancer	 0.93	
(0.70,	1.23)	

0.0011	 0.0307	 0.97	 1.10	 0.6000	 0.88	

Colorectal	 0.69	
(0.44,	1.10)	

-0.026	 0.0510	 0.96	 1.38	 0.9950	 0.75	
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Associations between individual adiposity-related SNPs and cancer risk 

Figure 1.1 illustrates SNP-specific associations with risk of breast (top left), ovarian (top 

right), colorectal (bottom left), and lung cancer (bottom right) versus the documented 

associations between each SNP and adult BMI. After excluding potential outliers (rs1558902 

and rs17024393 for breast and ovarian cancer; rs17105752 for lung cancer), the MR analysis 

still show strong evidence for association between predicted adult BMI and cancer (for breast 

cancer, OR: 0.69 per s.d. increase in BMI, 95%CI: 0.58, 0.82, p=3.0x10-5; for ovarian cancer, OR: 

1.32 per s.d. increase in BMI; 95%CI: 1.01, 1.74, p=0.041; for lung cancer, OR: 1.30 per s.d. 

increase in BMI, 95%CI: 1.10, 1.52, p=1.5x10-3).  
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Figure 1.1: Scatterplot of SNP-specific effects for the associations with adult BMI and a) breast cancer, b) ovarian cancer risk, c) 
colorectal cancer, d) lung cancer for all 77 BMI-associated SNPs. SNP-specific vertical and horizontal bars correspond to standard 
errors for the breast/ovarian/colorectal/lung cancer association and BMI association respectively. The shaded region corresponds to 
95%CI of the association between BMI and cancer risk.  
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Figure 1.2: DAG demonstrating one potential explanation of how genetic variants influence postmenopausal breast cancer risk  
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1.4 Discussion 

In this study, we found an inverse association between the genetic scores for childhood 

BMI and adult BMI and risk of both overall and ER-negative breast cancer. Further, the genetic 

score for adult BMI was associated with increased risk of ovarian, lung, squamous lung, and 

colorectal cancer. 

Consistent with our results, observational studies have shown an inverse association 

between higher childhood BMI and both premenopausal and postmenopausal breast 

cancer(52, 75, 76).  In contrast to our findings, observational studies have found that higher 

adult BMI was positively associated with postmenopausal breast cancer (77, 78), this includes a 

recent instrumental variables analysis using offspring BMI as an instrument for parental BMI 

(79). However, we found decreased risk of breast cancer with higher adult BMI genetic score, 

even though the majority of women that contributed to our analysis were postmenopausal 

(62%). We did not have access to summary statistics stratified by menopausal status but 

findings from a recent MR analysis of a large data set from the Collaborative Oncological Gene-

Environment Study (COGS) are consistent with our study. The MR estimate from that study for 

5kg/m2 increase in BMI was 0.65 (95% CI: 0.56-0.75; p=3.32x10-10) for overall breast cancer. 

This inverse association was consistent across both pre- and post- menopausal women: OR: 

0.44, 95%CI: 0.31, 0.62, p=9.91x10-8 for premenopausal women, and OR: 0.57, 95%CI: 0.46, 

0.71, p=1.88 x10-6 for postmenopausal women(80). 

Thus, at first sight, our results might suggest that increasing adult BMI is associated with 

reduced postmenopausal breast cancer risk, contradicting the epidemiological evidence. There 

are several possible explanations for this discrepancy. One hypothesis to explain this is 
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illustrated in the causal graph in Figure 1.2. The positive association between observed adult 

BMI and postmenopausal breast cancer in observational studies may be driven by adult weight 

gain, which has been linked to increased postmenopausal breast cancer risk (81). This weight 

gain could be due to environmental factors that are not captured by genetic risk scores (82). 

The effects of the BMI-associated SNPs on breast cancer risk may be mediated through their 

effects on BMI in childhood and young adulthood, which have been shown to be inversely 

associated with postmenopausal breast cancer risk (as shown in Figure 1.2 by a negative 

sign)(52, 75, 76). It is also possible that the adult BMI genetic score is a stronger instrumental 

variable for early life BMI as compared to later life BMI that is largely determined by 

environment, and that the inverse association of early life BMI with breast cancer may 

counterbalance the association with BMI later in life.  

Consistent with our hypothesis, an observational study examining the association 

between weight change across the life-course and breast cancer risk in the Nurses Health Study 

(77,232 women from 1980-2012) found that weight at age 18 was inversely associated with 

both pre-and postmenopausal incidence of breast cancer. In contrast, adult weight gain was 

positively associated with both pre and post-menopausal breast cancer risks(83).  

Three of the four strongest (largest effect size) adult BMI SNPs are also associated with 

childhood BMI. In sensitivity analyses excluding overlapping loci from the adult and childhood 

BMI scores, we still observed an inverse association with breast cancer for the genetic score for 

adult BMI (OR:0.75, 95%CI: 0.62, 0.92, p=4.7x10-3). But the association between childhood BMI 

score and breast cancer was attenuated (Table 1.3). However, we found the genetic instrument 

for adult BMI was associated with childhood BMI (and vice versa, Supplementary Table 1.5) 
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even after removing the overlapping loci. This suggests care is required when interpreting these 

results. The association between predicted adult BMI and breast cancer risk may reflect effects 

on a pathway distinct from childhood BMI, or it may simply reflect the shared genetics of early- 

and later-life BMI. 

We found that a genetic risk score predicting higher BMI was associated with increased 

risk of lung cancer overall and lung squamous carcinoma in particular. Studies have found 

obesity to be associated with high insulin resistance(84) which is positively associated with lung 

cancer risk(85), suggesting the observed positive associations may be mediated by insulin 

resistance. Multiple studies have reported an inverse relationship between BMI and lung cancer 

among smokers but no or a weakened association among never smokers(50, 86-88). These 

results may be due to residual confounding, reverse causation, or effect modification by 

smoking(51, 87, 88). We did not have access to individual level genetic and smoking data for 

this study, so our Mendelian Randomization estimate of the effect of body mass index on 

cancer risk should be interpreted with care: it represents an average of the effects across 

smoking status. (83% of the participants in the lung cancer GWAS were ever smokers.) Future 

work in the large OncoArray Network will be able to perform stratified analysis by smoking 

status(89). 

Another concern with our MR analyses on adult BMI and lung cancer risk is that some 

BMI-associated SNPs are associated with neurological response and stress related behavior that 

affect smoking (69, 90, 91). To assess whether our results were driven by pleiotropic effects, we 

performed additional analysis excluding SNPs that are associated with smoking initiation or 

schizophrenia (rs1191560, rs11030104(69)). We still observe a positive association between 
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genetically predicted adult BMI and lung cancer (OR = 1.25; 95%CI: 1.07,1.47; p=6.0x10-3). It is 

also worth noting that although we detect limited directional pleiotropy for the association 

between predicted adult BMI and lung cancer risk, we found positive association between the 

genetically predicted adult BMI and lung cancer risk in the MR Egger regression analysis 

(p=0.59). This could be due to bias caused by other type of pleiotropy or lack of statistical 

power. 

Our MR results showed an increased risk in ovarian cancer with increasing adiposity 

measures across different life stages; this is consistent with previous observational studies(92, 

93). Obesity in adolescence is associated with increased risk of ovulatory infertility that may 

increase risk of ovarian cancer(94). In addition, obesity is also associated with an increased level 

of insulin-like growth factor 1(IGF-1)which increases cell proliferation and modulates synthesis 

and bioavailability of sex steroids hormones that are involved in ovarian cancer etiology(95, 96). 

The opposite risk profiles between breast and ovarian cancer also suggest that adiposity 

determined by genetic variants has different underlying mechanisms in relation to breast 

versus ovarian cancer carcinogenesis. 

Our analyses suggest that adult BMI is associated with increased risk of colorectal 

cancer, consistent with the published epidemiological literatures. Keimling et. al. found a 14% 

increase in colorectal cancer risk per s.d. increase in BMI(97). A recently published MR study 

also found that genetically influenced BMI was associated with higher risk of colorectal cancer 

(OR: 1.50 per 5kg/m2 increase, 95%CI: 1.13, 2.01)(98). The mechanisms linking adiposity and 

colorectal cancer are not yet fully understood. One possible explanation is that obese 

individuals have higher leptin secretion from the white adipose tissue, and the binding of leptin 
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to its receptor in the colon epithelium activates biological pathways implicated with colorectal 

cancer(99). 

Although there is evidence that genetically predicted BMI is associated with breast and 

lung cancer, the underlying mechanisms remain unknown. There are many factors that can 

influence both adiposity and cancer risks such as physical activity, mental stress, insulin 

resistance, and exposure to hormones secreted by adipose tissue. Further studies incorporating 

these factors might provide a better understanding of the mechanism underlying the 

relationship between adiposity and cancer risk.  As data on SNP-specific function emerges, 

future studies can also carefully categorize SNPs by their functionality, and perform MR analysis 

for different groups of SNPs. This will allow us to parse out specific set of SNPs and further 

evaluate which pathway(s) are of importance in the adiposity-cancer association. In addition, 

gene-environmental interaction can also provide additional insights in understanding the 

mechanism underlying adiposity and cancer risk. Although not feasible in the GAME-ON data, in 

the newly completed OncoArray data where we have individual data on menopausal status, 

hormone therapy, reproductive factors for breast cancer, and smoking status for lung cancer, 

we will be able to perform gene-environment interaction analysis in the near future(89). 

Our study has several limitations. The summary-level statistics approach does not allow 

us to perform analyses stratified by covariates such as menopausal or smoking status. The 

summary statistics also did not permit us to explore the non-linearity of the association 

between obesity and cancer risk, which have been observed in a previous study(50). We note 

that nonlinearity does not invalidate the test of association, although it may complicate the 

interpretation of the effect estimate(100).  Finally, the statistical power is limited by both the 
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proportion of the adiposity risk factors explained by the genetic instruments and the sample 

size in the cancer genetic association studies (101), and this is particularly an issue for analyses 

of rare cancer subtypes. 

MR analyses are only valid under a few strong assumptions(72, 102): a) valid association 

between SNPs and risk factors; b) SNPs are not associated with other confounders of the risk 

factors and outcome; c) SNPs only affect the outcome through their effect on the risk factors 

(no pleiotropic effects). The second and third assumptions are the most concerning and 

requires careful interpretation. For b), population stratification may be a source of confounding 

but the original studies saw little evidence for such bias and all have appropriately controlled 

for it. Assumption c) raises the most concern, especially for relationship between genetically 

predicted adult BMI and breast cancer risk. As noted before, the association between the 

genetic instrument for adult BMI and childhood BMI (and vice versa) makes the associations 

between these instruments and breast cancer difficult to distinguish. This is a situation where 

the InSIDE (Instrument Strength Independent of Direct Effects) assumption—the direct effect of 

a SNP on cancer risk is uncorrelated with its association with trait of interest—does not 

hold(74). There are other reasons why assumption c) might not hold. For example, two SNPs 

known to be associated with breast cancer are near the FTO gene, raising the possibility that 

obesity-related variants may affect cancer risk through other pathways (103). To test for and 

correct for bias due to pleiotropy where the InSIDE assumption holds, we performed Egger 

regression for all traits investigated (Table 1.4 and Supplementary Table 1.4). Egger regression 

show limited evidence for any directional pleiotropic effects influencing associations between 

genetically predicted adiposity traits and the cancer studied here. 
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Despite these issues, our study also has several important strengths. Many studies 

examining BMI and cancer risk in the past are susceptible for recall bias, confounding and 

reverse causation(104), none of which are concerns of MR studies.  In addition, we used 

summary statistics from the largest meta-analyses of primary GWAS of these cancer types to 

date, which improves our power of detecting real causal effects. Moreover, by comparing 

results across cancer types, we are able to demonstrate specificity of the association between 

genetic markers of adiposity and particular cancers.  

In summary, we found associations between genetic scores for higher adult BMI and 

increased risk of lung, colorectal and ovarian cancers. Additionally, we observed an inverse 

association of both genetically predicted childhood BMI and adult BMI with breast cancer. 

Given the strength of the epidemiological and biological studies linking obesity after 

menopause with increased risk of breast cancer, this highlights the need for caution when 

interpreting the results of MR analyses. Our study supports the hypothesis of dynamic 

relationships between genetic variation underlying obesity and different cancer risks 

throughout life. To better interpret the complexity of the relationship between adiposity and 

breast cancer, future investigations that effectively distinguish childhood versus adulthood 

obesity need to be undertaken. In addition, MR studies stratifying by menopausal status or 

smoking status can add additional insight in understanding the relationship between adiposity 

and breast or lung cancer risk.  

 

 

 



 

 28 

 
 
 
 
 
 

 
 
CHAPTER 2 
 
 
Validation of breast cancer risk prediction models in cohorts with 
long-term follow up 

 

2.1 Introduction  

Breast cancer is the most common cancer diagnosed in women in developed countries 

worldwide, with an estimate of over 252,710 new cases diagnosed and 40,610 deaths in United 

States in 2017(105). The five-year survival rate of breast cancer can be dramatically improved 

by almost 3.7 fold when comparing localized versus distant breast cancer(106), making early 

detection and effective screening of breast cancer especially important in clinical care(107, 

108). More importantly, stratification of women according to the risk of developing breast 

cancer could improve risk reduction and screening strategies by targeting those most likely to 

benefit(109). 

Both genetic and lifestyle factors are implicated in the aetiology of breast cancer. In the 

past decades, epidemiological research have identified many lifestyle and environmental risk 

factors of breast cancer, including menstrual and reproductive history, use of hormone therapy, 

anthropometry, and alcohol consumption etc(110). Although each risk factor explains a modest 

proportion of the variation in disease risk, when combined together, they could have a 

substantial effect on breast cancer risk, suggesting an important utilization in risk 

prediction(111).  

The development of genome-wide association studies (GWAS) have led to the 

identification of common susceptibility loci of breast cancer marked by single nucleotide 
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polymorphisms (SNPs)(18, 20). These SNPs have only a small effect size but cumulatively 

explain substantial variation in risk, implying potential utility for breast cancer risk 

prediction(39). In fact, several studies have reported modest utility of SNPs for improving the 

discriminatory accuracy of breast cancer risk prediction models(112-115). In addition, 

Mavaddat et al. found that a polygenic risk score (PRS) defined using common risk-susceptible 

SNPs can be useful for providing substantial breast cancer risk stratification(39).  

In a recently published paper, Maas et al built a prediction model incorporating a PRS of 

77 identified breast cancer SNPs and known breast cancer risk factors such as BMI and 

menopausal hormone therapy use(116). Evidence have also shown that models utilizing both 

life risk factor and a PRS defined by known SNPs can provide better risk stratification of breast 

cancer(117). However, very few validation studies have been carried out in independent 

populations to further assess the generalizability of these models.  

External validation uses data on new participants, independent of the ones used for 

model development, to examine whether the model’s prediction is reliable in individuals from 

populations similar to but distinct from those used to train the model. External validation is 

essential for any model to be broadly adopted. External validation usually uses two measures to 

evaluate model performance: discrimination and calibration. Discrimination indicates how well 

the prediction model distinguishes cases versus controls, while calibration tests for how the 

predicted probability of risk matches with the actual observed risk.  

In addition, when validating 5-year absolute risk models, the accuracy of the estimate of 

discrimination and calibration is often limited by the number of cases diagnosed within the first 

five years from the baseline. For rare disease, this number can be small. Further, limiting the 
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follow-up time to the first five years after baseline ignore the remaining follow-up, which can 

be substantial. For example, there is over 21 years of follow-up after baseline (blood draw) for 

the Nurses Health Study (NHS) and 15 years of follow-up for Nurses Health Study II (NHSII). 

Using the subsequent follow up by combining data from non-overlapping time windows can 

potentially increase validation sample size, enabling analysis within studies with limited number 

of outcome but a long follow up time.  

In our analysis, we assessed and evaluated a synthetic breast cancer risk prediction 

model published by Montserrat Garcia-Closas et al. based on published estimates of risk 

parameters and a PRS using the most recently identified 313 breast cancer SNPs(20). To 

evaluate the model performance, we applied the model to data collected prospectively in both 

the NHS and NHSII using the Individualized Coherent Absolute Risk Estimator (iCARE) software. 

Three prediction models were assessed: one with only classical risk factor in the full cohort of 

Nurses; one with only PRS in the nested case-control study; and one with both classical risk 

factor and PRS in the nested case-control study of NHS and NHSII. We also describe a procedure 

that uses the subsequent follow up by combining data from non-overlapping time windows. We 

show by simulation that this procedure produces unbiased and more precise estimates of risk 

calibration and observed ten-year risks within expected risk categories. 

2.2 Materials and methods 

Study Population in the Validation cohort  

The Nurses' Health Studies (NHS and NHSII) are prospective cohort studies of women 

with updated exposure assessment for a broad range of classic risk factors, endogenous 

hormones and DNA, in relation to risk of cancer. NHS has 121,700 women aged 30–55 enrolled 
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in 1976 and NHSII has 116,000 women of 25–42 years of age enrolled in 1989. Both cohorts of 

women were asked to complete detailed questionnaires regarding their diet, classic 

epidemiological risk factors and disease outcome on bi-annual basis(118). Overall breast cancer 

cases (both in-situ and invasive) were identified either through self-report or by querying 

population based registries, followed by confirmation in the form of medical records and biopsy 

reports in Nurses Studies. Cases that occur within the first year of follow up must be excluded 

to remove any potentially prevalent cases from analyses.  

Blood samples were collected from 32,826 cohort members in NHS in 1989 and from 

29,240 women in NHS II in 1997. Cheek samples were also collected from 33,100 cohort 

members in NHS in 2002 and from 29,700 women in NHS II in 2005. We have GWAS data on a 

total of 18,531 women in NHS and 8285 women in NHS II—these data were generated as part 

of GWAS of 15 complex traits (including case-control studies of breast cancer, pancreatic 

cancer, ovarian cancer, colon cancer, endometrial cancer, cardiovascular disease, type 2 

diabetes, gout, venous thromboembolism, PTSD etc.(119). They were genotyped using five 

GWAS arrays including Affymetrix 6.0, IlluminaArray, Illumina OmniExpress, HumanCore, and 

OncoArray. Imputation was performed using 1000 Genomes Project ALL Phase I Integrated 

Release Version 3 as the reference panel(119). The classic risk factor only prediction model was 

evaluated in both the full blood sub-cohort and the nested samples where genetic information 

is available for NHS and NHSII. Models with PRS and life risk factors + PRS were evaluated in the 

nested case-control group within the full cohort.  

Polygenic Risk Score 
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The effects of cancer susceptibility variants on breast cancer were combined into a 

polygenic risk score (PRS). The PRS for any individual i was defined as the sum of the number of 

risk alleles across k variants weighted by the effect size of each variant: 

PRSi=β1x1i + … + βk xki 

where xki is the genotype of person i for variant k, expressed as the number of effect alleles (0, 

1, or 2), and βk is the per-allele log risk ratio (odds ratio [OR] or hazard ratio [HR]) associated 

with the effect allele of SNP k. Using the largest published GWAS on breast cancer risk to date, 

the PRS used in this analysis was generated using 313 breast cancer risk-associated SNPs. 

(Supplementary Table 2.1)  

 

Risk Prediction Model  

In this analysis, we focused on a synthetic model established by Garcia-Closas et al. 

based on published estimates of risk parameters of breast cancer and the assumption of 

multiplicative gene-environment interaction(117). The model included a polygenic risk score 

(PRS), nonmodifiable risk factors other than the PRS (ie: family history, age at first birth, parity, 

age at menarche, height, menopausal status, and age at menopause), along with modifiable risk 

factors (ie: body mass index [BMI; calculated as weight in kilograms divided by height in meter 

squared], post-menopausal hormone (PMH) use, and level of alcohol consumption. The model 

is primarily for risk prediction of women with European ancestry. It used two sets of relative 

risk estimates from large published studies for women less than 50 years of age and 50 years of 

age or greater(117).This age stratification accounts for modification of the relative risks for BMI, 
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family history, and benign breast cancer (BBD) , and the age-dependent distributions of several 

risk factors.  

Validation Analysis and Simulation 

Due to the small number of women who are <50 years old in NHS, we only performed 

validation analysis for women age ≥50 years old in NHS. In addition, since blood sample and 

cheek sample were collected at different times, the validation was first performed separately 

for blood samples taken in 1990 and for cheek sample taken in 2002; the results of these 

analyses were then meta-analyzed together for the final output in NHS (women ≥50 years old). 

Risk factor data were pulled from questionnaires corresponding to the time of DNA collection 

(1997 for blood and 2002 for cheek). Similarly, in NHS II, for women younger than 50 years old, 

analysis was first performed separately for blood samples taken in 1997 and for cheek samples 

taken in 2005; these results were then meta-analyzed. For women older than 50 years old in 

NHSII, the analysis was carried out using 2005 as the baseline for both blood and cheek samples 

in 2005, because of small number of women >= 50 at the blood collection in 1997. Table 2.1 A 

detailed summary of risk factor distributions for women older than 50 as well as younger than 

50 in both NHS and NHSII. 
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Table 2.1: Risk factor distribution by validation cohorts  

 NHS >=50 NHS II >=50 NHS II <50 
Baseline Risk Factors(% in the 
full cohort)  

 N=58,163 N=36,323 N=37,847  
 

Age at menopause 
 

   
<40 4.2% 2.8% --  
40-<45 6.7% 7.2% --  
45-<50 25.0% 21.1% --  
50-<55 56.6% 39.3% --  
≥55 7.3% 29.5% -- 

Age at menarche 
 

   
≤10 6.4% 7.8% 6.9%  
11 16.2% 16.7% 16.0%  
12 26.2% 30.5% 30.3%  
13 30.8% 28.0% 27.8%  
14 12.4% 10.1% 10.8%  
15 4.5% 3.9% 4.5%  
≥16 3.5% 3.2% 3.6% 

Parity 
  

   
Nulliparous 5.6% 23.1% 23.4%  
1 birth 6.5% 17.9% 16.5%  
2 births 26.7% 50.2% 50.5%  
3+ births 61.2% 8.8% 9.6% 

Age at first birth 
 

   
<20 0.8% 8.5% 6.0%  
20-24 51.6% 28.1% 21.8%  
25-29 37.9% 38.1% 43.1%  
≥30 9.7% 25.3% 29.1% 

BMI 
  

   
<25 48.2% 43.2% 54.5%*  
25-<30 32.8% 29.8% 25.5%  
≥30 18.9% 27.0% 20.0% 

Height 
(cm) 

  

 
 

 
Mean (sd) 163.8 (0.0026) 163.5(0.0063) 165.1 (0.035) 

Oral contraceptive use 
 

   
Never 52.2% 11.5% 14.0%  
Ever 47.8% 88.5% 86.0%* 
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Table 2.1: Risk factor distribution by validation cohorts (CONTINUED) 

Alcohol intake (g/day) 
 

   
None 40.1% 34.9% 37.1%  
<5 35.1% 36.3% 41.8%  
5-14 16.4% 18.2% 16.0%  
15-24 5.7% 6.4% 3.0%  
25-34 1.7% 1.4% 1.2%  
35-44 0.0% 1.9% 0.5%  
≥45 0.0% 0.9% 0.4% 

Hormone replacement 
therapy 

 
  

 
Never 28.5% 34.8% --  
Former 41.1% 29.4% --  
Current 30.4% 35.8% --  

Estrogen-
only users 39.6% 40.5% -- 

 
Combined 

type 
users 

60.4% 59.5% -- 

Breast cancer family history 
 

   
No 86.3% 89.7% 91.0%  
Yes 13.7% 10.3% 9.0% 

History of benign breast disease    
No 64.1% 53.1% 64.0%  
Yes 35.9% 46.9% 36.0% 

*: slightly different definition in the women <50 prediction model 
 

We used Individualized Coherent Absolute Risk Estimation (iCARE) R package developed 

by Chatterjee et al. to perform validation analyses(120).  Conditional age-specific incidence 

rates given risk factors were assumed to follow a Cox proportional hazards model(121), and age 

was used as the timescale in the incidence modeling. The five-year absolute risk of breast 

cancer was estimated using the relative risk estimates from published literature, age-specific 

breast cancer rates from the US National Cancer Institute-Surveillance, Epidemiology, and End 

Results Program(NCI-SEER), and data on competing hazards for mortality available from the 

Center for Disease Control (CDC) WONDER database(122). Both discrimination and calibration 
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analyses were performed using this R package.  

We used inverse probability weighting (IPW) to account for the non-random sampling of 

participants with GWAS data when calculating observed 5-year incidence rates. Logistic 

regression models were used to estimate the probability of an individual being selected as a 

control, adjusting for age and follow-up time. The inverse of this probability was used as a 

weight to balance the contribution of controls so that the distribution matched the underlying 

cohort. The cases were assigned to a weight of 1 assuming that all cases will be included in the 

cohort. 

To take advantage of the long follow up time in the NHS (22 years since blood draw), we 

also performed validation analyses among the participants in NHS blood cohort but at three 

different baselines: 1990, 1995 and 2000.  At each of the baseline, only samples that were free 

of breast cancer were used. Covariates were updated at each baseline. We ran validation 

analysis at each baseline individually as well as in a combined synthetic cohort, where we 

concatenated the baseline cohorts creating a larger validation population.  

 The combined synthetic cohort approach assumes that breast cancer outcomes from 

any individual who contributes to multiple baseline cohorts are conditionally independent 

across baselines, and therefore the usual Fisher information estimates of the variance in 

observed incidence rates is valid. If the model is mis-specified, for instance, by excluding a risk 

factor that affects incidence in a non-collapsible fashion, then the usual variance estimates is no 

longer valid and can over or under-estimate the variance in the predicted incidence rates. To 

assess the impact of this model mis-specification on estimation of observed incidence rate (and 

the ratio of the observed versus expected events) and on tests of calibration, we simulated 
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cohorts of 100,000 individuals assuming it will follow the true hazard for breast-cancer 

incidence 

"!($)&"!#$""% 

, where G represents known, observed risk factors and X represents unknown, unobserved risk 

factors. The baseline incidence "!($) is modeled using the incidence rate at 30 and 70 years old 

non-Hispanic white women in US (27.3 and 451.5 per 100,000). All women entered the cohort 

at age 30 and were followed up for 40 years. To perform calibration analyses on these 

simulated cohorts, we calculated predicted 10-year rates using the assumed (mis-specified) 

hazard:  

"!($)&"!#  

The observed 10-year incidence was calculated using the number of events divided by the 

number of at-risk people in that time interval in presence of G and X. We tested range of '#  

from 1, 1.25, 1.5, 2, 2.5, and 3, and a range of '% from 1, 1.25, and 1.5. For each combination of 

'#  and '%, we calculated the observed and expected incidence of breast cancer within each of 

the risk deciles using six methods: just using age group 30-40, age group 40-50, age group 50-

60, and age group 60-70, pooled analysis across the four age groups in the synthetic cohort, 

and meta-analysis of the four age groups’ specific results. The observed rate was plotted 

against the expected rate across each of the decile for each method. We also calculated the 

Hosmer-Lemeshow goodness of fit tests for all six methods, using both model-based and robust 

variance estimates. To assemble impact of model misspecification in the model-based variance 

estimate, we also calculated the variance of the observed rate for each replication as well as 

the mean of the variance of the observed rate across all replications (Table 2.3). 
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2.3 Results 

We evaluated the performance of three prediction models in both NHS and NHSII using 

the first five year of follow up time. 

1. Classic risk factors only model [including age at menopause, age at menarche, partiy , 

age at first birth, BMI, heigh, oral contraceptive use, alcohol intake, hormone 

replacement therapy, family history of breast cancer and history of benign breast 

disease] predicting 5-year risk of breast cancer in women greater than 50 years old and 

younger than 50 years old respectively, in the full cohort (58,163 women >=50 in NHS, 

36,323 women <50 in NHSII, and 37,847 women >=50 in NHSII) 

2. PRS only model predicting 5-year risk of breast cancer in women greater than 50 years 

old and younger than 50 years old respectively, in the nested case-control study (16,210 

women >=50 in NHS, 5,578 women <50 in NHSII, and 5,127 women >=50 in NHSII) 

3. Classic risk factor and PRS model predicting 5-year risk of breast cancer in women 

greater than 50 years old and younger than 50 years old respectively, in the nested 

case-control study (16,210 women >=50 in NHS, 5,578 women <50 in NHSII, and 5,127 

women >=50 in NHSII) 

The relative risks were well calibrated for models incorporating PRS (models 2 and 3) 

among women older than 50 years old in NHS, for all three models among women older than 50 

years in NHS II, and for all three models among women younger than 50 years in NHS II (Figure 

2.1-2.3). In NHS, the absolute risk calibration of the classic risk factor only model showed over-

estimation (observed risk > predicted risk) at the highest risk decile. In NHS II, the absolute risk 

calibration at the highest risk decile showed over-estimation for classic risk factor only model but 
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under-estimation for PRS only model. Comparing across all three prediction, the model 

incorporating both classic life risk factors and PRS had the best calibration both on the relative 

and absolute risk scale in NHS and NHS II.  

Classic risk factor only model in full cohort (N=58,163; case=1245) 

 
PRS only model in nested case-control study (N=16,210; case=725) 

 
Classic risk factor + PRS model in nested case-control study (N=16,210, case=725) 

 

Figure 2.1: Validation output for 5-year risk prediction model in NHS, women >=50 
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Classic risk factor only model in full cohort (N=58,163; case=1245) 

 
PRS only model in nested case-control study (N=5,578; case=254) 

 
Classic risk factor + PRS model in nested case-control study (N=5,578 , case=254) 

 

Figure 2.2: Validation output for 5-year risk prediction model in NHSII, women <50 
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Classic risk factor only model in full cohort (N=37,847; case=658) 

 
PRS only model in nested case-control study (N=5,127; case=420) 

 
Classic risk factor + PRS model in nested case-control study (N=5,127 , case=420) 

 

Figure 2.3: Validation output for 5-year risk prediction model in NHSII, women >=50 
 
For both age groups, adding the 313-SNP PRS to the classical risk factors substantially 

improved overall risk discrimination (Table 2.2). Age-adjusted AUC (95% CI) was 0.58 (0.56 to 

0.60) for risk factor only model, 0.63 (0.60 to 0.65) for PRS only model, and 0.65 (0.63 to 0.68) 
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for model with both life risk factor and PRS in NHS women ≥50 years old. Similar improvement 

was seen for NHS II women ≥50years old as well as women < 50 years old (Figure 2.2&2.3): AUC 

improved from 0.60 (0.58 to 0.62) to 0.65 (0.63-0.68) for women ≥50 years old and improved 

from 0.62 (0.59-0.65) to 0.69 (0.65 to 0.72) for women <50 years old.  

 

Table 2.2: AUC from all three prediction models among women older than 50 years old and 

among women younger than 50 years old in both NHS and NHS II. 

 Women >50 in NHS Women < 50 in NHS II Women > 50 in NHS 

Classic risk factor 
only model 

0.58  
(95%CI: 0.56, 0.60) 

0.62  
(95%CI: 0.59, 0.65) 

0.60  
(95%CI: 0.58, 0.62) 

PRS only model 
0.63  
(95%CI: 0.60, 0.65) 

0.67  
(95%CI: 0.64, 0.71) 

0.63  
(95%CI: 0.60, 0.66) 

Classic risk factor + 
PRS model 

0.65  
(95%CI: 0.63, 0.68) 

0.69  
(95%CI: 0.65, 0.72) 

0.65  
(95%CI: 0.63, 0.68) 

 
 

We also performed validation analysis using data from three non-overlapping baseline 

time windows (1990, 1995, 2000) in NHS, both individually at each baseline and combining 

across three time windows. As shown in the Supplementary Figure 2.1, it was notable that by 

utilizing data from a baseline closer to the reference incidence year (such as 1995 and 2000), 

the calibration of absolute risk improved. In addition, by increasing our sample size via 

combining across three baselines (Supplementary Figure 2.1.d and 2.1.e), we achieved more 

precision in our estimation, indicated by a tighter confidence interval by nearly 50%.  

In the simulation analysis across 1000 replicates, there was small differences at the tail 

between the mean of expected incidence rate (estimated only using '#) and the mean 

observed incidence rate (estimated using both '#  and '%) across all ranges of '#  from 1.25 to 3 
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(Figure 2.4). Such difference, although statistically significant in the goodness of fit test when 

'% was 1.5, was very small in absolute value (Table 2.3), suggesting that our estimation of the 

variance of '# , even in the presence of X, could still be valid. 
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Figure 2.4: Mean of the expected rate versus the mean of observed rate over 1000 replicates in the simulation study, across 

different range of !! . !!: the effect between Y and the measured exposure of interest G; !": the effect between Y and 
hypothetically unmeasured risk factor X. The G represents the known, observed risk factors and X represents unknown, unobserved 

risk factors. 
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Table 2.3: the variance of observed incidence rate for each replicate and the mean of variance across 1000 replicates for the 1st and 

10th risk decile, and the rate of type I error from the goodness of fit tests in the simulation study from the meta-analysis of all four 

age groups' results 

bG bX Var(obs)_1st decile E(Var(obs))_ 1st 
decile 

Var(obs)_10th 
decile 

E(Var(obs))_ 
10th decile 

Rate of Type 
I error from 
G.O.F. tests 

1.5000 1.0000 2.65E-04 2.61E-04 8.76E-04 9.08E-04 0.063  
1.2500 2.73E-04 2.64E-04 9.41E-04 9.18E-04 0.115  
1.5000 2.68E-04 2.72E-04 9.00E-04 9.40E-04 0.99 

2.5000 1.0000 1.89E-04 1.82E-04 8.31E-04 8.75E-04 0.078  
1.2500 1.90E-04 1.84E-04 8.42E-04 8.82E-04 0.114  
1.5000 1.96E-04 1.90E-04 8.62E-04 9.01E-04 0.984 

3.0000 1.0000 1.70E-04 1.64E-04 8.62E-04 8.93E-04 0.053  
1.2500 1.67E-04 1.66E-04 8.56E-04 9.00E-04 0.106  
1.5000 1.77E-04 1.71E-04 8.81E-04 9.16E-04 0.977 

 

 

 

 



 

 46 

2.4 Discussion 

Our study assessed the calibration of a breast cancer risk prediction models(20) 

incorporating questionnaire based factors and PRS in NHS and NHS II. We assessed the 

performance of models designed for women who are younger than 50 years old and women 

who are older than 50 years old. Among the three models we evaluated (classic risk factor only 

model, PRS only model, classic risk factor + PRS model), the integrated model with 313-SNP PRS 

and classical risk factors had the best performance. Specifically, the integrated models showed 

improvement on discrimination and good calibration especially on the relative risk scale.  

There is some overprediction (predicted risk > observed risk) at the highest risk decile of 

the absolute risk calibration especially for classic risk factor only models among women ≥50 

years old in NHS. Another validation study assessing the same model across a wide range of 

populations including studies in the U.S., UK, and Australia(123) also saw some miscalibration of 

absolute risk at the highest risk decile, although there was no systematic under- or over-

prediction across different studies. This suggests that the slight miscalibration in the absolute 

risk scale are likely due to random variation or differences between study populations (e.g., 

wide range of study time periods or differences in risk factor distributions or disease rates), 

rather than a reflection of intrinsic model properties. The mis-calibration on the absolute risk 

scales may also due to the effect estimates used in these prediction models were drawn from a 

synthetic model which is not mutually adjusted. Future prediction models using more accurate 

and well-adjusted effect estimates of risk factors may further improve absolute risk calibration. 

Overall, the relative risk calibration was much better than the absolute risk calibration 

especially in NHS. This may due to the differences between the validation population of NHS 
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(1990) and the reference population taken from SEER 2008-2012. This highlights the 

importance of absolute risk validation across multiple study populations, particularly using 

cohorts similar to the target populations, both in chronologic years of study and underlying 

risk(123).  

We explored the potential of using samples from cohorts with long follow-up but at 

three non-overlapping baselines. Comparing the validation results at different baseline time 

point (Supplementary Figure 2.1), the model performance did change slightly over time. 

Specifically, the calibration of absolute risk became better when the baseline population was 

closer to the reference population. In addition, by combining the three baseline cohorts, the 

model precision improved greatly as shown by the narrower confidence interval. This suggests 

that it is important to be aware of the time frame we used for validation studies and that the 

difference between the validation cohort baseline and the reference population baseline can 

yield different model performances. It is also possible that the small difference in model 

performance over time is due to random variation. In that case, researchers can take advantage 

of long follow-up time and combine cohorts from non-overlapping baselines together, which 

can greatly improve precision. 

Such combination across different baseline can produce valid results as long as our 

model is not mis-specified. To test that, we ran simulation analysis to examine 1) how different 

the estimation of the outcome incidence rate can be in the presence of X (the unobserved and 

unknown risk factors)? 2) how accurate our variance estimation of the effect size can be in 

presence of X?. As shown in figure 2.4, the expected rate estimated using G (the known, 

observed risk factors) was very similar to the observed rate using both G and X. There was slight 
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deviation from the diagonal line as the effect size of X increases but such differences were 

expected due to non-collapsibility. In addition, the small difference between the variance of the 

observed rate and the mean of the variances of observed rate across 1000 replications provide 

some confidence in our method combining cohort across baselines (Table 2.3). 

Our study does have some limitations. First, our model was designed for testing only 

among women with European ancestry. We cannot infer the utility of the prediction model in 

population other than ones of European ancestry and alternative models have only been 

evaluated in relatively small studies(124-126). In a recent work done by our group, we 

evaluated the same synthetic prediction model in a Korean population(127). We found 

significant overestimation of risk for women older than 50 years old and that recalibrating the 

model using Korean incidence rate, mortality rates and risk factor distributions could improve 

model performance(127). We expect that incorporating RRs from large population-based 

studies in Korea (rather than from studies of European ancestry) can further improve model 

performance. Secondly, our risk models do not adequately capture risk for women with strong 

family history or carrying high-risk variant in breast cancer predisposition genes. Future studies 

could integrate with family-based models, such as BOADICEA model(128) as well as effect 

estimates of rare mutation in BRCA1/BRCA2. Other risk factors such as mammographic density 

should also be considered. Thirdly, although iCARE can be used for risk predictions over any 

time period, our current study only evaluated the five-year risk prediction, and further work is 

needed to evaluate longer-term predictions used by some clinical guidelines. Finally, we only 

tested the risk of overall breast cancer (both invasive and in situ) rather than subtype specific 

cancer (ie: estrogen receptor positive and negative cancer). It has been shown from past 
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literature(129-131) that subtype specific tumors have very different risk profile and prognosis 

and hence future work on subtype-specific breast cancer is needed to obtain more precise 

screening and risk modeling strategies.   

In summary, we presented extensive validation of a breast cancer risk prediction model 

integrating both classical risk factors and genetic factors in form of PRS. We showed that adding 

PRS can substantially improve model performance which can be useful in future risk-stratified 

prevention and screening strategies. We also demonstrated that when model performance 

does not vary much over time, we can take advantage of long follow-up time by concatenating 

cohorts from non-overlapping baselines to boost precision.  
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CHAPTER 3 
 
The combined effect of polygenic risk score and pathogenic 
mutations in breast cancer predisposition genes in the general 
population 
 

3.1 Introduction 

Breast cancer is the most common cancer among women in the United States(132). 

Primary prevention such as tamoxifen can greatly reduce breast cancer risk, but also has side 

effects such as hot flashes, blood clots and uterine cancer(133). Early detection of breast cancer 

with screening can help detect cancer early and hence improve survival rates, but it may also 

result in overdiagnosis, over treatment, and increased medical cost(134). Hence, it is 

particularly important to effectively stratify women according to their risk of developing breast 

cancer and provide a more personalized approach to identify women most likely to benefit 

from these prevention and screening strategies(107, 108) and the best timing for these 

interventions. For instance, women who are at particularly high risk at young ages may initiate 

MRI screening at an earlier age.  

Pathogenic variants detected in multi-gene cancer predisposition panels are increasingly 

used to counsel women regarding their risk for breast cancer. In the past few decades, germline 

genetic testing has evolved substantially due to advances in genetic sequencing techniques and 

bioinformatics, enabling rapid and efficient detection of genetic variation(135). However, our 

understanding of how to transform the genetic information of a woman into actionable clinical 

recommendation still needs improvement. Pathogenic variants in high penetrance genes such 
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as BRCA1 and BRCA2 are well studied but the clinical implications of variants in moderate 

penetrance genes (e.g. CHEK2, ATM) remain unclear.  

Common variants (SNPs) found through genome-wide association studies (GWAS) have 

also shown to be associated with elevated breast cancer risks(38). The risk conferred by each 

individual SNP is small and not useful in risk prediction, however the combined effect of 

multiple SNPs in the form of a polygenic risk score (PRS) can achieve substantial effects(107-

109, 136). The most recent PRS study by Mavaddat et al. found that a one standard deviation 

change in PRS increases the odds of breast cancer risk by 61% (OR=1.61, 95%CI: 1.57-1.65), and 

the lifetime risk of overall breast cancer in the highest percentile of PRS was 32.6%. 

With information available for both the pathogenic variants in breast cancer 

predisposition genes and the common variants as PRS, a key question to understand is how 

pathogenetic variant and PRS interact: will the effect of PRS be different among carriers of 

pathogenic variants versus non-carriers?  Can PRS further stratify risk of breast cancer among 

carriers of pathogenic variants? Previous work found that PRS modified breast cancer risk in 

women with pathogenic variant in BRCA1 or BRCA2(137), but the joint effects of pathogenic 

variants and PRS have not been studied in samples drawn from the general population. There is 

also no published study evaluating the effect of PRS among women with pathogenic variants in 

genes other than BRCA1/2(137) and CHEK2(138).  

In this study, we evaluated the combined effect of polygenic risk score and pathogenic 

variants in nine established breast cancer predisposition genes in the general population using  

26,798 cases and 26,127 controls from 12 population based case-control studies. We evaluated 

the performance of an overall breast cancer PRS as well as an ER negative specific PRS. We also 
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estimated 5-year and lifetime absolute risk of developing breast cancer across percentiles of 

PRS for carriers of pathogenic variants as well as non-carriers. 

 

3.2 Materials and methods 

Study Population 

The study consists of subject from nine cohorts and three population-based case-control 

studies in the CAnceR RIsk Estimates Related to Susceptibility” (CARRIERS) consortium. The nine 

cohort studies are Cancer Prevention Study II (CPSII)(139), Cancer Prevention Study 3 

(CPS3)(140), California Teachers Study (CTS)(141), Multiethnic Cohort (MEC)(142), Mayo 

Mammography Health Study (MMHS)(143), Nurses Health Study (NHS)(144), Nurses Health 

Study II (NHSII)(145), Women’s Health Initiative (WHI)(146), and the SISTER study(147). The 

three population-based case-controls studies are the Women’s Circle of Health Study 

(WCHS)(148), Mayo Clinical Breast Cancer Study (MCBCS)(149), and Wisconsin Women’s Health 

Study (WWHS)(150). Cases were identified via self-report and confirmed by reviews of medical 

records or were identified through registry linkage. Controls from the CPSII, CTS, MEC, MCBCS, 

NHS, NHSII, WCHS, WHI, and WWHS were matched to cases by age. CPSIII, SISTER and MMHS 

utilized a case-cohort design, where the controls were breast-cancer-free members of 

reference sub-cohort. 

In total, we analyzed 52,925 non-Hispanic European-ancestry individuals (26,127 

controls and 26,798 cases). The number of cases and controls with respect to five age groups 

(age≤40, 40-50, 50-60, 60-70, >70) and family history status of 1st degree relatives including 

mom, sisters, and dad (yes or no) for each individual study is shown in Table 3.1.  
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Sequencing of rare variant in 9 cancer predisposition genes 

Genomic DNA samples were subjected to multiplex amplicon-based analysis of 746 

target regions covering all coding regions and consensus splice sites from 37 cancer 

predisposition genes using a QIAseq (QIAGEN) custom panel(151). The QIAseq protocol was 

optimized for high-throughput robotic processing of DNA samples and validated as previously 

described(152). Libraries were individually bar-coded by dual indexing and sequenced in pools 

of 768 on a HiSeq4000. Median sequence read depth was about 200X.  

Nine genes were evaluated in this study: ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, 

xsCHEK2, NF1, and PALB2. These genes were selected because of their common inclusion on 

clinical hereditary cancer genetic testing panels and because of previous reports suggesting 

associations with breast cancers(153-156). In addition, genotypes on 138 common variants 

were generated by sequencing the regions flanking these variants. The common variants 

included the 77 SNPs in previously published PRS by Mavadatt et al. (or proxies in high linkage 

disequilibrium with these SNPs) as well as other SNPs that were found to be associated with 

breast cancer or breast cancer subtypes in subsequent GWAS and fine-mapping studies. [make 

sure to reference to the main analysis paper once that is done by Fergus] 
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Table 3.1: Case control number by age group, and by family history status(1st degree relative) in CARRIERS consortium 
 Age group Family History of BC 
Study Total # Case control status <=40 41-50 51-60 61-70 >70 No Yes 
CPS 3 2739 Control 1397 362 413 482 140 0 1207 190 

51.0% 25.9% 29.6% 34.4% 10.0% 0.0% 86.4% 13.6% 
Case 1342 45 294 782 218 3 1004 338 

49.0% 3.4% 22.0% 58.2% 16.2% 0.2% 74.8% 25.2% 
CPS II 7762 Control 3843 0 9 338 1559 1937 3291 552 

49.5% 0.0% 0.2% 8.8% 40.6% 50.4% 85.6% 14.5% 
Case 3919 0 10 343 1592 1974 3159 760 

50.5% 0.0% 0.3% 8.8% 40.6% 50.4% 85.6% 14.5% 
CTS 3910 Control 1917 25 175 586 713 418 1669 248 

 49.6% 1.3% 9.2% 30.6% 37.2% 21.8% 87.1% 12.9% 
Case 1992 20 204 598 706 464 1649 343 
 50.5% 1.0% 10.2% 30.0% 35.4% 23.3% 82.8% 17.2% 

MCBCS  6926 Control 3152 181 585 899 849 638 2522 630 
 45.5% 5.7% 18.6% 28.5% 26.9% 20.2% 80.0% 20.0% 
Case 3774 251 810 1079 1004 630 2860 914 
 54.5% 6.7% 21.5% 28.6% 26.6% 16.7% 75.8% 24.2% 

MEC 1772 Control 893 0 14 188 363 328 798 95 
 50.4% 0.0% 1.6% 21.1% 40.6% 36.7% 89.4% 10.6% 
Case 879 0 25 192 325 337 729 150 
 49.6% 0.0% 2.8% 21.8% 37.0% 38.3% 82.9% 17.1% 

MMHS 1395 Control 1131 67 358 275 254 177 941 190 
 81.1% 5.9% 31.7% 24.3% 22.5% 15.6% 83.2% 16.8% 
Case 264 0 24 50 80 110 192 72 
 18.9% 0.0% 9.1% 18.9% 30.3% 41.7% 72.7% 27.3% 

NHS 4285 Control 2303 0 45 380 983 895 1953 350 
 53.7% 0.0% 2.0% 16.5% 42.7% 38.9% 84.8% 15.2% 
Case 1982 0 50 353 825 754 1525 457 
 46.3% 0.0% 2.5% 17.8% 41.6% 38.0% 76.9% 23.1% 



 

 

55  

 
Table 3.1: Case control number by age group, and by family history status(1st degree relative) in CARRIERS consortium (CONTINUED) 
 
NHS II 2239 Control 1355 26 512 750 67 0 1177 178 

 60.5% 1.9% 37.8% 55.4% 4.9% 0.0% 86.9% 13.1% 
Case 884 16 303 497 68 0 685 199 
 39.5% 1.8% 34.3% 56.2% 7.7% 0.0% 77.5% 22.5% 

SISTER 3599 Control 1561 64 369 610 432 86 0 1561 
 43.4% 4.1% 23.6% 39.1% 27.7% 5.5% 0.0% 100.0% 
Case 2038 9 279 659 730 361 0 2038 
 56.6% 0.4% 13.7% 32.3% 35.8% 17.7% 0.0% 100.0% 

WCHS 1120 Control 571 105 172 226 68 0 467 104 
 51.0% 18.4% 30.1% 39.6% 11.9% 0.0% 81.8% 18.2% 
Case 549 56 171 195 105 22 415 134 
 49.0% 10.2% 31.1% 35.5% 19.1% 4.0% 75.6% 24.4% 

WHI 9529 Control 4535 0 5 591 1888 2051 3819 716 
 47.6% 0.0% 0.1% 13.0% 41.6% 45.2% 84.2% 15.8% 
Case 4994 0 6 710 2138 2140 3958 1036 
 52.4% 0.0% 0.1% 14.2% 42.8% 42.9% 79.3% 20.7% 

WWHS 7650 Control 3469 194 815 1297 1163 0 2947 522 
 45.3% 5.6% 23.5% 37.4% 33.5% 0.0% 85.0% 15.0% 
Case 4181 238 1056 1569 1233 85 3267 914 
 54.7% 5.7% 25.3% 37.5% 29.5% 2.0% 78.1% 21.9% 

Total 52925 Control 26127 1024 3474 6621 8479 6530 20791 5336 
 49.4% 3.9% 13.3% 25.3% 32.5% 25.0% 79.6% 20.4% 
Case 26798 635 3233 7026 9024 6880 19423 7375 
 50.6% 2.4% 12.1% 26.2% 33.7% 25.7% 72.6% 27.4% 
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Polygenic Risk Score (PRS) 

We filtered the list of 138 SNPs by linkage disequilibrium in a stepwise fashion, firstly 

removing all SNPs with r2>0.2 with the smallest p-value (based on the largest published GWAS 

of overall breast cancer(20)), then removing all SNPs with r2>0.2 with the second-most 

significant remaining SNP, and so on. A total of 105 independent (r2<0.2) common variants 

were used to construct the final polygenic risk score (PRS) (Supplemental Table 3.1). For For any 

individual i, the PRS was calculated as the sum of the number of risk alleles across 105 variants 

weighted by the effect size of each variant: 

PRSi=β1x1i + … + βk xki. 

where xki is the genotype of person i of variant k, encoded as the number of effect alleles (0, 1, 

or 2), and βk is the per-allele log risk ratio associated with the effect allele of SNP k. The primary 

overall breast cancer PRS used in this analysis used effect estimates from the largest published 

breast cancer GWAS(20) (Supplementary Table 3.1). To construct ER negative specific PRS, we 

used a hybrid method to obtain the effect size, in which ER- effect sizes of the SNPs were used 

if the p-value from the heterogeneity test (ER positive versus ER negative disease) was <0.05, 

and effect sizes of overall breast cancer were used otherwise. Both the overall breast cancer 

PRS and ER- specific PRS were standardized to a mean of 0 and standard deviation of 1.  

Model Fitting 

We fitted a baseline model using logistic regression, with overall breast cancer 

(including both invasive and in-situ) as the outcome and the following explanatory variables: 

nine indicator variables denoting carriers status of pathogenic variant for each of the breast 

cancer predisposition genes, PRS as a continuous variable, age in five categories (age <=40, 41-
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50, 51-60, 61-70, >70) and an indicator variable for family history of breast cancer. Age was 

defined as the age of diagnosis for cases and age of baseline/age of matching date for controls. 

Family history of breast cancer was defined as the family history of 1st degree relative including 

mother, sisters, daughters and father. Missing values in age (0.9% missing) and family history 

(3.3% missing) were replaced using conditional draw imputation as implemented in the MICE R 

package(157). Because of well-established modification of BRCA1, BRCA2(137) and PRS(42) 

effects by age, we included product interaction terms between ordinally coded age categories 

and carriers status of BRCA1 and BRCA2, and PRS. In addition to the mutually adjusted baseline 

model, we evaluated the PRS effect modification on pathogenic variant in each individual gene 

in a simple logistic regression without adjusting for variants in other genes. We also tested 

whether the effect of PRS differ comparing non-carriers versus carriers of pathogenic variants in 

any of the nine genes(pvalue<0.005 after Bonferroni correction of multiple testing). 

To assess whether the discriminating ability of our model improved by allowing the 

effect of the PRS to change by pathogenic variant status, age and family history, we performed 

L1 penalized logistic regression using the glmnet R package(158). All covariates in the baseline 

model were pre-selected for inclusion. Additional covariates included all the other possible 

interactions between variant in predisposition genes and age, variant in predisposition genes 

and family history, variant in individual predisposition gene and PRS, PRS and family history, any 

variant in any of the predisposition genes and PRS, any variant in any of the predisposition 

genes and family history, any variant in any of the predisposition genes and age. The final 

model was chosen by 10-fold cross validation maximizing the AUC as a function of the L1 

penalty. An ER-negative specific PRS was used to model ER negative breast cancer. 
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Absolute Risk Estimation 

Using the log odds ratios from the final model and external estimates of breast cancer 

incidence and competing mortality, we estimated 5-year and lifetime absolute risk of 

developing breast cancer (both invasive and in-situ). The 5-year and lifetime absolute risk of a 

woman starting at age a was estimated using the following formula(159): 

! "!($) exp()"*) exp +−! ["!(.) exp()′*) + 1(.)]3.
#

$
43$

$%&

$
 

Here	8 represents the time window of interest; Z represents the risk factors of breast cancer; β 

represents the relative risk parameters; λ0(t) is the baseline hazard function and m(t) is the age-

specific morality rate. The marginal age-specific disease incidence was obtained from the SEER 

registry 2008-2012, and the competing mortality rate was obtained from CDC WONDER 

database 2008-2012. 

3.3 Results  

The best fitting risk model included pathogenic variant status for nine genes (BRCA1, 

BRCA2, ATM, CHEK2, BARD1, BRIP1, CDH1, NF1, PALB2), PRS, and age interaction for BRCA1, 

BRCA2 and PRS, adjusted for study, age and family history but did not include any PRS-by-

pathogenic variant interaction terms. Thus, in our final model, the relative risk gradient 

associated with per unit change in PRS among carriers of pathogenic variants was similar to that 

among non-carriers. Holding every other covariates constant, a one standard deviation change 

in the PRS was associated with 1.61x (95%CI: 1.54, 1.70) change in the odds of overall breast 

cancer for women who are younger than 40 years old (Table 3.2).  
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Table 3.2: Adjusted OR and its 95%CI of overall and ER negative breast cancer at different age group. Overall breast cancer PRS is 
used for overall breast cancer ER- specific PRS is used for ER- breast cancer. The OR is calculated from our best fitting model, 
adjusting for the following the explanatory variables: nine indicator variables denoting carriers status of pathogenic variant for each 
of the breast cancer predisposition genes, PRS as a continuous variable, age in five categories and an indicator variable for 1st 
degree family history.  
OR 
(95%CI) 

Overall Breast Cancer ER – Breast Cancer 

 <=40 41-50 51-60 61-70 >70 <=40 41-50 51-60 61-70 >70 

PRS* 1.62 
(1.54, 1.70) 

1.58  
(1.52, 1.63) 

1.54  
(1.50, 1.57) 

1.50 
(1.47, 1.53) 

1.46  
(1.42, 1.51) 

1.47  
(1.15, 1.87) 

1.47  
(1.15, 1.86) 

1.46  
(1.15, 1.86) 

1.46  
(1.16, 1.85) 

1.46  
(1.16, 1.84) 

BRCA1* 15.19  
(8.29, 29.39) 

9.31  
(6.13, 14.1) 

5.70  
(4.14, 7.86) 

3.49  
(2.28, 5.36) 

2.14  
(1.12, 4.07) 

54.92  
(25.6, 
125.1) 

33.19  
(19.8, 55.7) 

20.06  
(13.7, 29.5) 

12.12  
(7.24, 20.3) 

7.33  
(3.33, 16.1) 

BRCA2* 16.47  
(9.15, 31.12) 

10.91 
(7.19, 16.5) 

7.22  
(5.44, 9.59) 

4.78  
(3.52, 6.50) 

3.17  
(1.99, 5.03) 

12.75  
(5.29, 30.6) 

11.91  
(6.54, 21.7) 

11.13  
(7.45,16.64) 

10.40  
(6.92, 15.6) 

9.72  
(5.28, 17.9) 

ATM 1.87  
(1.56, 2.49) 

1.87  
(1.56, 2.49) 

1.87  
(1.56, 2.49) 

1.87  
(1.56, 2.49) 

1.87  
(1.56, 2.49) 

1.20  
(0.62, 2.13) 

1.20  
(0.62, 2.13) 

1.20  
(0.62, 2.13) 

1.20  
(0.62, 2.13) 

1.20  
(0.62, 2.13) 

CHEK2 2.37  
(1.95, 2.90) 

2.37  
(1.95, 2.90) 

2.37  
(1.95, 2.90) 

2.37  
(1.95, 2.90) 

2.37  
(1.95, 2.90) 

1.19  
(0.70, 1.92) 

1.19  
(0.70, 1.92) 

1.19  
(0.70, 1.92) 

1.19  
(0.70, 1.92) 

1.19  
(0.70, 1.92) 

PALB2 3.49  
(2.40, 5.21) 

3.49  
(2.40, 5.21) 

3.49  
(2.40, 5.21) 

3.49  
(2.40, 5.21) 

3.49  
(2.40, 5.21) 

7.82  
(4.39,13.80) 

7.82  
(4.39, 13.8) 

7.82  
(4.39,13.80) 

7.82  
(4.39, 13.8) 

7.82  
(4.39, 13.8) 

BARD1 1.59  
(0.98, 2.59) 

1.59  
(0.98, 2.59) 

1.59  
(0.98, 2.59) 

1.59  
(0.98, 2.59) 

1.59  
(0.98, 2.59) 

2.93  
(1.24, 6.34) 

2.93  
(1.24, 6.34) 

2.93  
(1.24, 6.34) 

2.93  
(1.24, 6.34) 

2.93  
(1.24, 6.34) 

BRIP1 1.47  
(0.99, 2.21) 

1.47  
(0.99, 2.21) 

1.47  
(0.99, 2.21) 

1.47  
(0.99, 2.21) 

1.47  
(0.99, 2.21) 

1.61  
(0.63, 3.54) 

1.61  
(0.63, 3.54) 

1.61  
(0.63, 3.54) 

1.61  
(0.63, 3.54) 

1.61  
(0.63, 3.54) 

CDH1 5.83  
(1.84, 25.8) 

5.83  
(1.84, 25.8) 

5.83  
(1.84, 25.8) 

5.83  
(1.84, 25.8) 

5.83  
(1.84, 25.8) 

5.71  
(0.26, 60.8) 

5.71  
(0.26, 60.8) 

5.71  
(0.26, 60.8) 

5.71  
(0.26, 60.8) 

5.71  
(0.26, 60.8) 

NF1 1.96  
(0.82, 5.10) 

1.96  
(0.82, 5.10) 

1.96  
(0.82, 5.10) 

1.96  
(0.82, 5.10) 

1.96  
(0.82, 5.10) 

0.83  
(0.13, 2.89) 

0.83  
(0.13, 2.89) 

0.83  
(0.13, 2.89) 

0.83  
(0.13, 2.89) 

0.83  
(0.13, 2.89) 

*: model includes ordinal age interaction 
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PRS-by-pathogenic variant interactions for each individual gene were not statistically 

significant(Supplemental Table 3.7), confirming our results from the best fitting, mutually 

adjusted model above. But the effect of PRS by pathogenic variant in any of the nine genes was 

statistically significant (p=0.0002). The results by forcing a PRS-by-pathogenic variant in any 

genes interaction in our final model can be found in Supplementary Table 3.8. 

The effect of PRS on breast cancer risk decreased with age: the OR of overall breast 

cancer per standard deviation change in PRS decreased from 1.61 (95%CI: 1.54, 1.70) among 

women <= 40 years old to 1.46 (95%CI: 1.42, 1.51) among women who were older than 70 

years old. The OR of overall breast cancer for each age group with respect to their PRS (10th 

percentile, median, 90th percentile) and variant carrier status could be found in Supplementary 

Table 3.2. Comparing the 90th percentile of PRS to the 10th percentile of PRS, the OR of breast 

cancer was 3.41, 3.19, 3.00, 2.81, 2.63-folds increase for women who are <= 40 years old, 41-50 

years old, 51-60 years old, 61-70 years old, and >70 years old respectively (Supplementary 

Table 3.2). 

We also examined the association between ER negative disease and ER negative specific 

PRS and the overall breast cancer PRS. The OR of ER negative breast cancer was 1.47 (95%CI: 

1.15, 1.86) for one standard deviation(s.d.) change in the ER negative PRS for women <= 40 

years old. By comparison, the OR for ER negative breast cancer for one s.d. change in overall 

breast cancer was 1.20 (95%CI: 1.07, 1.35) (Supplementary Table 3.4). The strength of the 

association between the ER negative PRS and ER negative breast cancer declined with age, but 

the magnitude of such change was small.  
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The estimated lifetime absolute risk by age 80 years in the 10th, 50th, and 90th percentile 

of overall breast cancer PRS by variant carrier status is shown in Table 3.3. As expected, 

pathogenic variants in breast cancer predisposition genes greatly increase the lifetime risk of 

breast cancer. Carriers of pathogenic variants in high penetrance genes like BRCA1 and BRCA2, 

had much higher lifetime risk than carriers of variant in moderate penetrance genes such as 

CHEK2 and ATM. The lifetime risk of breast cancer of non-carriers in the 10th and 90th percentile 

of PRS were 6.7% and 18.2% for women without family history and 9.1% and 23.9% for women 

with 1st degree family history of breast cancer. Going from the 10th percentile to the 90th 

percentile of PRS, the estimated lifetime risk of women without family history of breast cancer 

ranged from 12.8% to 32.1% for ATM carriers, 15.2% to 37.3% for CHEK2 carriers, and 21.4% to 

48.9% for PALB2 carriers, 10.5% to 27.1% for BARD1 carriers, 9.8% to 25.4% for BRIP1 carriers, 

23.8%  to 32.1% for NF1 carriers, suggesting that PRS significantly help to describe the breast 

cancer risk gradient among carriers of pathogenic variant in moderate penetrance genes.  
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Table 3.3: Lifetime absolute risk for different mutation carriers with respect to different PRS percentile and family history status.  
No Family History Family History 

OR 10th% PRS median PRS 90th% PRS 10th% PRS median PRS 90th% PRS 

non-carrier 0.067 0.111 0.182 0.091 0.148 0.239 
ATM carrier 0.128 0.205 0.323 0.170 0.268 0.409 
CHEK2 carrier 0.153 0.241 0.373 0.201 0.312 0.467 
PALB2 carrier 0.215 0.332 0.491 0.280 0.419 0.593 
BRCA1 carrier 0.288 0.438 0.627 0.369 0.540 0.729 
BRCA2 carrier 0.348 0.514 0.703 0.439 0.619 0.794 

BARD1 carrier 0.105 0.170 0.271 0.140 0.223 0.348 

BRIP1 carrier 0.098 0.158 0.254 0.131 0.209 0.327 

CDH1 carrier 0.329 0.482 0.660 0.416 0.584 0.754 

NF1 carrier 0.128 0.204 0.321 0.170 0.266 0.407 

 
 
Table 3.4: The % of total population identified by PRS for lifetime risk of breast cancer >20%, given their variant status and family 
history 
Lifetime risk (to age 80) of BC No Family History Family History 
non-carrier 6.06% 21.2% 
ATM carrier 52.5% 79.8% 
CHEK2 carrier 69.7% 89.9% 
PALB2 carrier 92.9% 98.0% 
BRCA1 carrier 98.0% 99.0% 
BRCA2 carrier 99.0% 99.0% 
BARD1 carrier 32.2% 61.6% 
BRIP1 carrier 26.3% 54.5% 
CDH1 carrier 98.9% 98.9% 
NF1 carrier 51.5% 78.8% 
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The US National Comprehensive Cancer Network (NCCN)(160, 161) recommends 

beginning MRI screening for women with a lifetime risk greater than 20%. Table 3.4 shows the 

percentage of women who have greater than 20% of lifetime risk based on their PRS, stratified 

by carrier status and family history of breast cancer. Most (>90%) carriers of pathogenic variant 

in BRCA1, BRCA2, and PALB2 have >20% lifetime risk. However, for ATM and CHEK2 carriers, 

only 52.5% and 69.7% are above the threshold without a first degree relative family history of 

breast cancer and 79.8% and 89.9% with a family history. This suggests that even if a woman is 

a carrier of pathogenic variant in ATM or CHEK2, her lifetime risk may be below the 20% 

lifetime risk threshold and thus may potentially avoid additional intervention at her early ages, 

depending on her PRS.  

We also estimated 5-year absolute risk of developing breast cancer across different 

percentile of PRS for women at age 40 and age 60 respectively (Figure 3.1). For 40 years old 

women, the estimated 5-year risk of breast cancer for BRCA1 or BRCA2 carriers were 

significantly larger than that of CHEK2/ATM/PALB2 carriers and noncarriers regardless of their 

family history status. Of note, many women with pathogenic variant in CHEK2 and ATM, 

particularly those in the lowest 50% of PRS with no first degree relative of breast cancer, have a 

low 5 year risk at age 40.  
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Figure 3.1: 5-year absolute risk of breast cancer across 1%-95%cetile of PRS for different mutation carriers at age 40 and 60, with 

and without family history. PRS is standardized with a mean of 0 and standard deviation of 1.
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3.4 Discussion 

In our large, population-based case-control study, we jointly evaluated the association 

between PRS and pathogenic variant in nine breast cancer predisposition genes and risk of 

breast cancer. The relative risk gradient associated with per unit change in PRS among carriers 

of pathogenic variants was similar to that among non-carriers. In addition, we have shown that 

PRS could be particularly important for estimating breast cancer risk among carriers of 

pathogenic variants in moderate penetrance genes such as CHEK2 and ATM, enabling more 

precise approach for MRI screening strategy and breast cancer risk management. 

Both common variants in form of PRS and rare variants in cancer predisposition genes 

contribute to breast cancer risk. Consistent with prior studies(20, 39, 136, 137), our results also 

showed that the odds ratio for PRS, BRCA1, and BRCA2 decreased with increasing age. The 

analysis of PRS-by-variant interaction for each individual gene did not show any significant 

results (Supplementary Table 3.7). However, the direction of effect was consistent with past 

literatures, indicating a decreasing effect of BRCA1 and BRCA2 on breast cancer risk as PRS 

increased. The effect of pathogenic variant in BRCA2 is slightly larger than that of BRCA1 (Table 

3.2) which may be due to random chance in our dataset and may due to the fact that there 

were more BRCA2 carriers than BRCA1 carriers in our samples.  

Breast MRI is recommended for women with a lifetime risk of breast cancer of 20%-

25%(160, 162). Our results suggest that PRS can help delineate which women with pathogenic 

variants in moderate penetrance genes fall above or below this level of risk. For instance, ATM 

carriers at the 10th percentile of PRS have an estimated lifetime risk of breast cancer of 12.8% 

which is similar to population average(163). Utilization of PRS could have clinical impact as it 
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can stratify risk among these carriers in order to create a targeted screening and more 

personalized prevention strategies. In addition, the addition of PRS in women with CHEK2 and 

ATM pathogenic variants, may help determine when to initiate screening by examining the 5 

year risk of breast cancer. 

 We also showed that ER negative PRS was more accurate in predicting ER negative 

breast cancer, suggesting that subtype specific PRS could eventually be used to target screening 

or preventive interventions that are specific to particular subtypes although absolute risk 

estimates of ER negative breast cancer are low outside of BRCA1 mutations.  

Prior work found that the OR of breast cancer associated with per unit change in PRS 

among BRCA1 and BRCA2 variant carriers recruited from cancer genetics clinics was slightly 

smaller than the OR in the general population (137). The difference between those findings and 

ours may be due to the smaller number of BRCA1 and BRCA2 variant carriers in our study, and 

hence smaller power to detect subtle differences in PRS ORs between carriers and non-carriers. 

The differences may also be due to differences in ascertainment (high-risk individuals versus 

the general population) or analysis (retrospective survival analysis versus prospective logistic 

regression). Another prior study examined the combined effect of PRS and CHEK2 variant 

carriage and they found the effect gradient by PRS was similar in carriers vs non-carriers, 

consistent with our results(138). Although our study had smaller number of BRCA1, BRCA2 and 

CHEK2 carriers compared to previous studies (Supplementary Table 3.5 & 3.6), our study is the 

first to evaluate the joint effect of PRS and pathogenic variant in nine different breast cancer 

predisposition genes in the general population. We were able to examine breast cancer 

predisposition genes other than BRCA1, BRCA2 and CHEK2.  
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Our study also has certain limitations. First, the PRS was calculated based on 105 SNPs 

whereas the most recent PRS has been updated to include 313 SNPs(20). Future studies should 

perform using the updated PRS incorporating more SNPs. Second, our study only used women 

with non-Hispanic European ancestry. PRS constructed specifically for European ancestry has 

been found to be less precise for other ancestry groups such as African Americans(164). A 

multi-ethnic cohort can shed further light in understanding the genetic contribution to breast 

cancer risk in other ethnicities. In addition, we have limited numbers of ER negative breast 

cancer cases which may limit our statistical power in examining subtype specific effect 

estimates. Although we are one of the largest studies to study the combined effect of PRS and 

rare variant on breast cancer risk, an even larger sample size could potentially provide more 

power in detecting interactions between PRS and pathogenic variants in breast cancer 

predisposition genes, as well as increased precision modeling risk in the tails of the PRS among 

carriers.  

As many multigene testing panels becomes readily available and the cost of genotyping 

and sequencing goes down, women can obtain their genetic information for both rare variants 

in breast cancer predisposition genes and common variants. Hence, future guidelines and 

prediction models should increasingly consider the joint usage of both common and rare 

variants. Our study shows that when common variants are jointly analyzed as PRS, they can 

contribute significantly to the risk prediction of rare variant carriers of moderate penetrance 

genes, suggesting future breast cancer risk prediction models should include both PRS and rare 

variants to provide a more precise and personalized estimate of risk for variant carriers. Further 

studies (such as simulated screening studies to assess surveillance strategies) are also needed 
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to validate the effect estimates of our final model and try to understand the clinical implication 

of using both rare variant in genes in addition to BRCA and PRS. 
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Appendix 

Supplemental Materials for Chapter 1 

Supplemental Table 1.1: trait-specific and cancer-specific effect of lead SNPs and proxy SNPs in birth weight, childhood obesity, and 
adult BMI. Trait beta, se, and nearest gene were obtained from published GWAS studies; cancer-specific beta and p-value were 
obtained from GAME-ON consortium studies. bw=birth weight; c_bmi=childhood BMI; BMI= adult BMI; WHR=waist-hip-ratio; 
EA=effect allele; BC=breast cancer; OC=ovarian cancer; PC=prostate cancer; LC=lung cancer; CC=colorectal cancer; b=beta; p=p-value 
Trait SNP EA Trait-

beta 
Trait-
se 

Trait-
gene 

BC_b BC_p OC_b OC_p PC-b PC_p LC_b LC_p CC_b CC_p 

bw rs1801253 G 0.041 0.007 ADRB1 -0.009 0.628 0.012 0.694 0.003 0.889 -0.008 0.670 -0.028 0.395 

bw rs1042725 T 0.047 0.005 HMGA2 0.011 0.537 0.007 0.810 0.008 0.705 -0.012 0.504  -0.021* 0.483* 

bw rs9883204 C 0.059 0.006 ADCY5 0.004 0.824 0.026 0.408 -0.009 0.728 -0.017 0.406 -0.089 0.008 

bw rs900400 C 0.072 0.006 CCNL1 -0.005 0.765 -0.023 0.406 0.022 0.289 0.004 0.823 -0.007 0.823 

bw rs724577 C 0.042 0.006 LCORL 0.024 0.208 -0.011 0.712 0.032 0.159 -0.027 0.165 0.027* 0.43* 

bw rs4432842 C 0.034 0.006 5q11.2 0.023 0.228 0.054 0.066 0.002 0.930 0.024 0.215 -0.030 0.363 

bw rs6931514 G 0.050 0.006 CDKAL1 0.042 0.031 -0.010 0.748 0.035 0.096 0.011 0.578 0.016 0.639 

c_bmi rs7550711 T 0.105 0.019 GPR61 -0.128 0.012 0.059 0.457 0.025 0.690 -0.040 0.408 -0.083 0.360 

c_bmi rs543874 G 0.077 0.009 SEC16B -0.045 0.038 0.035 0.311 0.014 0.602 -0.008 0.720 0.007 0.844 

c_bmi rs12041852 G 0.046 0.007 TNNI3K -0.031 0.072 -0.005 0.864 -0.001 0.966 NA NA 0.039 0.193 

c_bmi rs7132908 A 0.066 0.008 FAIM2 -0.004 0.812 -0.027 0.329 0.052 0.007 -0.030 0.095 -0.020 0.498 

c_bmi rs12429545 A 0.076 0.010 OLFM4 -0.003 0.896 -0.026 0.528 0.002 0.934 0.028 0.297 -0.035 0.429 

c_bmi rs1421085 C 0.059 0.007 FTO -0.045 0.009 0.015 0.589 -0.021 0.329 -0.011 0.543 0.009 0.755 

c_bmi rs8092503 G 0.045 0.008 RAB27B -0.039 0.058 -0.071 0.029 -0.028 0.211 -0.026 0.213 -0.005 0.898 

c_bmi rs6567160 C 0.05 0.008 MC4R -0.042 0.038 0.023 0.468 -0.023 0.364 0.025 0.229 -0.012 0.724 

c_bmi rs13387838 A 0.139 0.025 ADAM2
3 

-0.161 0.156 -0.038 0.781 -0.083 0.376 0.150 0.121 0.005 0.963 

c_bmi rs11676272 G 0.068 0.007 ADCY3 -0.033 0.056 -0.017 0.549 0.009 0.662 0.022 0.205 0.017 0.559 

c_bmi rs4854349 C 0.09 0.009 TMEM1
8 

-0.042 0.063 0.049 0.175 0.023 0.374 0.014 0.536 0.062 0.094 



 

 
 
 

70  

Supplemental Table 1.1: trait-specific and cancer-specific effect of lead SNPs and proxy SNPs in birth weight, childhood obesity, 
and adult BMI. (CONTINUED) 
c_bmi rs13130484 T 0.067 0.007 GNPDA

2 
-0.030 0.082 0.020 0.479 -0.026 0.175 -0.017 0.354 0.028 0.341 

c_bmi rs987237 G 0.062 0.009 TFAP2B 0.043 0.055 0.057 0.101 -0.028 0.214 0.000 0.997 0.021 0.578 

c_bmi rs13253111 A 0.042 0.007 ELP3 -0.004 0.831 0.003 0.902 0.023 0.196 0.022 0.210 0.009 0.763 

c_bmi rs3829849 T 0.041 0.007 LMX1B 0.067 0.000 -0.031 0.283 -0.017 0.417 0.002 0.902 -0.018 0.559 

BMI rs17024393 C 0.066 0.009 GNAT2 -0.122 0.016 0.043 0.581 0.020 0.742 -0.037 0.438 0.083 0.360 

BMI rs543874 G 0.048 0.004 SEC16B -0.045 0.038 0.035 0.311 0.014 0.602 -0.008 0.720 0.007 0.844 

BMI rs2820292 C 0.020 0.003 NAV1 0.006 0.721 0.056 0.040 0.012 0.593 0.022 0.217 0.013 0.652 

BMI rs657452 A 0.023 0.003 AGBL4 -0.011 0.520 -0.024 0.390 -0.005 0.811 -0.001 0.978 NA NA 

BMI rs11583200 C 0.018 0.003 ELAVL4 -0.015 0.388 -0.027 0.341 -0.014 0.535 0.006 0.760 0.058* 0.051* 

BMI rs3101336 C 0.033 0.003 NEGR1 -0.028 0.104 -0.019 0.493 -0.008 0.706 -0.013 0.491 -0.059 0.055 

BMI rs12566985 G 0.024 0.003 FPGT-

TNNI3K 

-0.031 0.070 -0.005 0.867 -0.001 0.965  -

0.009* 

0.96* 0.038 0.196 

BMI rs12401738 A 0.021 0.003 FUBP1 -0.036 0.045 0.014 0.618 -0.022 0.265 0.054 0.004 -0.032 0.311 

BMI rs11165643 T 0.022 0.003 PTBP2 -0.005 0.779 -0.001 0.976 -0.004 0.851 0.024* 0.177

* 

0.035* 0.229* 

BMI rs17094222 C 0.025 0.004 HIF1AN -0.014 0.515 0.031 0.355 0.042 0.119 0.019 0.386 -0.017 0.632 

BMI rs11191560 C 0.031 0.005 NT5C2 -0.017 0.561 -0.059 0.250 -0.007 0.833 0.007 0.810  -0.008* 0.872* 

BMI rs7903146 C 0.023 0.003 TCF7L2 -0.052 0.007 0.074 0.014 0.011 0.654 0.024 0.216 NA NA 

BMI rs7899106 G 0.040 0.007 GRID1 0.004 0.935 0.060 0.349 -0.017 0.735 -0.113 0.008  -0.107* 0.115* 

BMI rs12286929 G 0.022 0.003 CADM1 0.010 0.572 -0.016 0.570 -0.018 0.345 0.051 0.004 0.015 0.602 

BMI rs11030104 A 0.041 0.004 BDNF 0.048 0.028 0.001 0.975 -0.030 0.256 0.036 0.091 -0.022 0.538 

BMI rs2176598 T 0.020 0.004 HSD17B

12 

0.003 0.882 0.021 0.512 0.025 0.248 0.007 0.718 -0.040 0.235 

BMI rs3817334 T 0.026 0.003 MTCH2 0.023 0.194 -0.007 0.809 0.000 0.985 0.007 0.707 -0.025 0.410 

BMI rs4256980 G 0.021 0.003 TRIM66 0.001 0.944 -0.008 0.781 -0.008 0.714 -0.003 0.884 -0.011 0.720 

BMI rs11057405 G 0.031 0.006 CLIP1 0.037 0.197 -0.026 0.558 0.026 0.536 -0.005 0.861 0.099 0.061 

BMI rs7138803 A 0.032 0.003 BCDIN3D 0.002 0.932 -0.016 0.569 0.045 0.018 -0.030 0.094 0.020 0.498 
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Supplemental Table 1.1: trait-specific and cancer-specific effect of lead SNPs and proxy SNPs in birth weight, childhood obesity, 
and adult BMI. (CONTINUED) 
BMI rs9581854 T 0.030 0.005 MTIF3 -0.059 0.008 -0.002 0.945 0.016 0.546 -0.011 0.614 0.014 0.717 

BMI rs12429545 A 0.033 0.005 OLFM4 -0.003 0.896 -0.026 0.528 0.002 0.934 0.028 0.297 0.035 0.429 

BMI rs10132280 C 0.023 0.003 STXBP6 -0.012 0.514 -0.045 0.134 -0.008 0.718 0.014 0.457 -0.054 0.081 

BMI rs12885454 C 0.021 0.003 PRKD1 0.003 0.874 0.045 0.112 0.006 0.775 0.047 0.012 0.025 0.422 

BMI rs11847697 T 0.049 0.008 PRKD1 -0.010 0.835 0.039 0.577 -0.037 0.506 0.061 0.183 0.076 0.290 

BMI rs7141420 T 0.024 0.003 NRXN3 0.003 0.862 0.007 0.786 -0.005 0.812 -0.017 0.329 -0.003 0.925 

BMI rs3736485 A 0.018 0.003 DMXL2 -0.017 0.360 0.051 0.067 -0.011 0.549 0.026 0.154 0.003 0.929 

BMI rs16951275 T 0.031 0.004 MAP2K

5 

-0.025 0.228 0.049 0.131 -0.045 0.079 0.023 0.283 -0.074 0.028 

BMI rs12446632 G 0.040 0.005 GPRC5B 0.013 0.616 0.094 0.015 -0.026 0.413 0.003 0.910 0.025 0.548 

BMI rs2650492 A 0.021 0.004 SBK1 0.021 0.281 0.014 0.632 -0.022 0.354 0.041 0.032 -0.026 0.434 

BMI rs3888190 A 0.031 0.003 ATP2A1 0.011 0.546 0.059 0.033 -0.013 0.558 0.046 0.011 -0.071 0.018 

BMI rs9925964 A 0.019 0.003 KAT8 -0.040 0.023 0.020 0.474 -0.043 0.020 0.036 0.046 -0.005 0.860 

BMI rs758747 T 0.023 0.004 NLRC3 0.022 0.283 0.010 0.751 0.050 0.045 0.045 0.021 NA NA 

BMI rs1558902 A 0.082 0.003 FTO -0.046 0.009 0.015 0.578 -0.022 0.312  -

0.011* 

0.543

* 

-0.009 0.755 

BMI rs1000940 G 0.019 0.003 RABEP1 0.031 0.104 -0.017 0.565 -0.024 0.258 -0.003 0.871 0.003* 0.913* 

BMI rs12940622 G 0.018 0.003 RPTOR -0.035 0.043 -0.023 0.409 -0.010 0.600 -0.024 0.170 -0.020 0.501 

BMI rs1808579 C 0.017 0.003 C18orf8 -0.038 0.025 0.003 0.912 0.040 0.060 0.023 0.193 0.0006* 0.985* 

BMI rs7243357 T 0.022 0.004 GRP -0.027 0.227 -0.005 0.880 0.009 0.747 0.014 0.526 0.038 0.318 

BMI rs6567160 C 0.056 0.004 MC4R -0.042 0.038 0.023 0.468 -0.023 0.364 0.025 0.229 -0.012 0.724 

BMI rs17724992 A 0.019 0.004 PGPEP1 0.021 0.301 -0.008 0.785 0.008 0.720 0.023 0.251 -0.023 0.481 

BMI rs29941 G 0.018 0.003 KCTD15 -0.029 0.111 -0.014 0.635 -0.009 0.706 0.005 0.804 NA NA 

BMI rs2075650 A 0.026 0.005 TOMM4

0 

-0.003 0.906 0.002 0.956 0.062 0.050 0.040 0.107 -0.047 0.270 

BMI rs2287019 C 0.036 0.004 QPCTL -0.040 0.063 0.027 0.437 -0.002 0.952 -0.010 0.639 -0.014 0.696 

BMI rs3810291 A 0.028 0.004 ZC3H4 -0.056 0.008 -0.038 0.208 -0.002 0.932 0.018 0.371 0.011 0.735 



 

 
 
 

72  

Supplemental Table 1.1: trait-specific and cancer-specific effect of lead SNPs and proxy SNPs in birth weight, childhood obesity, 
and adult BMI. (CONTINUED) 
BMI rs2121279 T 0.025 0.004 LRP1B 0.034 0.178 0.040 0.328 -0.024 0.425 0.012 0.643 0.009 0.837 

BMI rs1528435 T 0.018 0.003 UBE2E3 -0.014 0.434 -0.009 0.738 0.006 0.770 0.005 0.764 -0.018 0.538 

BMI rs7599312 G 0.022 0.003 ERBB4 -0.022 0.257 -0.044 0.157 -0.001 0.977 0.002 0.901 0.0312* 0.354* 

                

BMI rs10182181 G 0.031 0.003 ADCY3 -0.033 0.054 -0.020 0.471 0.009 0.637 0.027 0.132 0.013 0.661 

BMI rs11126666 A 0.021 0.003 KCNK3 0.006 0.752 0.034 0.261 0.024 0.286 -0.010 0.592 NA NA 

BMI rs1016287 T 0.023 0.003 FLJ3083

8 

-0.005 0.794 0.029 0.321 0.020 0.360 -0.024 0.216 0.017* 0.598* 

BMI rs11688816 G 0.017 0.003 EHBP1 0.000 0.984 -0.020 0.474 0.058 0.001 -0.002 0.922 NA NA 

BMI rs13021737 G 0.060 0.004 TMEM1

8 

-0.045 0.049 0.057 0.116 0.025 0.348 0.020 0.387 0.063 0.093 

BMI rs16851483 T 0.048 0.008 RASA2 -0.008 0.829 -0.007 0.897 0.002 0.954 0.002 0.949 -0.011 0.845 

BMI rs1516725 C 0.045 0.005 ETV5 0.013 0.622 -0.012 0.775 -0.013 0.647 -0.026 0.327 0.016 0.701 

BMI rs6804842 G 0.019 0.003 RARB -0.006 0.727 -0.008 0.759 -0.013 0.539 -0.027 0.141 0.001 0.972 

BMI rs2365389 C 0.020 0.003 FHIT 0.025 0.154 -0.015 0.586 -0.005 0.816 -0.020 0.270 -0.059 0.048 

BMI rs3849570 A 0.019 0.003 GBE1 0.033 0.076 0.049 0.082 0.029 0.161 -0.001 0.953 -0.002 0.952 

BMI rs13078960 G 0.030 0.004 CADM2 -0.027 0.223 0.033 0.340 0.011 0.671 -0.001 0.973 -0.076 0.030 

BMI rs13107325 T 0.048 0.007 SLC39A

8 

-0.055 0.158 0.028 0.600 0.001 0.979 0.052 0.122 -0.026 0.612 

BMI rs11727676 T 0.036 0.006 HHIP 0.071 0.106 0.029 0.596 0.083 0.046 0.037 0.337 NA NA 

BMI rs10938397 G 0.040 0.003 GNPDA

2 

-0.031 0.077 0.025 0.363 -0.025 0.193 -0.016 0.368 0.027 0.349 

BMI rs17001654 G 0.031 0.005 SCARB2 -0.050 0.046 -0.018 0.649 0.052 0.084 0.040 0.116 -0.007 0.870 

BMI rs2112347 T 0.026 0.003 POC5 -0.032 0.072 -0.028 0.326 -0.004 0.868 0.017 0.362 -0.003 0.913 

BMI rs9400239 C 0.019 0.003 FOXO3 0.006 0.753 0.001 0.960 0.046 0.048 -0.013 0.473 -0.008 0.797 

BMI rs13191362 A 0.028 0.005 PARK2 0.036 0.174 0.035 0.410 0.014 0.658 0.039 0.165 -0.057 0.207 

BMI rs205262 G 0.022 0.004 C6orf10

6 

-0.006 0.765 -0.011 0.718 0.029 0.177 0.028 0.155 0.0187* 0.556* 
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Supplemental Table 1.1: trait-specific and cancer-specific effect of lead SNPs and proxy SNPs in birth weight, childhood obesity, 
and adult BMI. (CONTINUED) 
BMI rs2033529 G 0.019 0.003 TDRG1 -0.021 0.259 0.002 0.934 -0.018 0.418 -0.017 0.374 0.022 0.494 

BMI rs2207139 G 0.045 0.004 TFAP2B 0.049 0.028 0.068 0.057 -0.016 0.509 0.008 0.739 0.052 0.182 

BMI rs1167827 G 0.020 0.003 HIP1 0.004 0.850 0.014 0.622 -0.037 0.070 -0.012 0.490 NA NA 

BMI rs2245368 C 0.032 0.006 PMS2L1

1 

-0.015 0.679 -0.019 0.652 -0.017 0.596 NA NA -0.043 0.255 

BMI rs17405819 T 0.022 0.003 HNF4G 0.000 0.999 0.009 0.754 0.005 0.807 0.001 0.961 -0.040 0.209 

BMI rs2033732 C 0.019 0.004 RALYL -0.044 0.029 0.005 0.868 -0.027 0.267 -0.015 0.462 -0.006 0.848 

BMI rs6477694 C 0.017 0.003 EPB41L

4B 

-0.010 0.575 -0.015 0.597 -0.018 0.324 -0.010 0.603 0.053 0.089 

BMI rs1928295 T 0.019 0.003 TLR4 -0.018 0.293 0.030 0.282 0.032 0.108 0.010 0.587  -0.021* 0.474* 

BMI rs10733682 A 0.017 0.003 LMX1B -0.012 0.500 -0.018 0.515 0.018 0.420 -0.001 0.974 0.046 0.114 

BMI rs4740619 T 0.018 0.003 C9orf93 0.002 0.915 -0.023 0.405 0.009 0.644 0.023 0.202 -0.083 0.004 

BMI rs10968576 G 0.025 0.003 LINGO2 0.002 0.936 0.007 0.808 -0.008 0.704 -0.003 0.893 0.081 0.010 

WHR rs984222 G 0.034 0.003 TBX15-

WARS2 

-0.030 0.085 0.010 0.716 -0.027 0.161 NA NA 0.011* 0.700* 

WHR rs1011731 G 0.028 0.003 DNM3-

PIGC 

-0.031 0.070 0.025 0.359 0.020 0.346 0.004 0.831  -0.015* 0.613* 

WHR rs4846567 G 0.034 0.004 LYPLAL1 0.032 0.092 0.063 0.038 0.026 0.214 0.029 0.147 -0.037 0.252 

WHR rs718314 G 0.030 0.004 ITPR2-

SSPN 

0.005 0.806 0.050 0.107 0.023 0.312 0.000 0.995  -0.037* 0.271* 

WHR rs1443512 A 0.031 0.004 HOXC13 -0.022 0.284 -0.024 0.470 0.028 0.248 -0.004 0.853 0.057* 0.095* 

WHR rs10195252 T 0.033 0.003 GRB14 -0.019 0.282 0.026 0.348 0.043 0.019 0.001 0.954 0.001 0.982 

WHR rs4823006 A 0.023 0.003 ZNRF3-

KREME

N1 

0.029 0.094 -0.055 0.045 0.020 0.310 0.006 0.724 -0.007 0.815 

WHR rs6784615 T 0.043 0.007 NISCH-

STAB1 

0.034 0.373 -0.048 0.399 -0.067 0.097 0.054 0.163 -0.007 0.921 

WHR rs6795735 C 0.025 0.003 ADAMT

S9 

0.023 0.176 0.016 0.555 -0.019 0.341 -0.004 0.838 0.018* 0.547* 

WHR rs6861681 A 0.022 0.004 CPEB4 -0.056 0.002 -0.029 0.316 -0.014 0.552 -0.012 0.538 -0.031 0.321 
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Supplemental Table 1.1: trait-specific and cancer-specific effect of lead SNPs and proxy SNPs in birth weight, childhood obesity, 
and adult BMI. (CONTINUED) 
WHR rs9491696 G 0.042 0.003 RSPO3 -0.014 0.398 0.020 0.460 0.018 0.401 NA NA 0.037 0.204 

WHR rs6905288 A 0.036 0.003 VEGFA -0.011 0.595 -0.032 0.281 -0.039 0.061 -0.018 0.370 0.033 0.262 

WHR rs1294421 G 0.028 0.003 LY86 -0.007 0.684 0.002 0.937 0.014 0.476 0.019 0.284 NA NA 

WHR rs1055144 T 0.040 0.004 NFE2L3 -0.042 0.053 -0.011 0.756 -0.066 0.008 0.003 0.897 0.045 0.233 

"*" denoates estimates obtained from the proxy SNP 
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Supplemental Table 1.2: A summary of final number of SNPs included in the analysis. OV= overall; ER-=ER negative; CC=Clear-cell 
type; EN=Endometroid type; S= Serous type; AG= Aggressive type; AD= Adenocarcinoma; SQ= Squamous type 
  

Breast Cancer Ovarian Cancer Prostate Cancer Lung Cancer Colorectal Cancer 
 

OV ER - OV CC EN S OV AG OV AD SQ OV 
Birth Weight 7 7 7 7 7 7 7 7 7 7 7 7(2 proxy SNP used) 

Childhood 
Obesity 

15 15 15 15 15 15 15 15 14 14 14 15 (4 proxy SNPs 
used) 

Adult BMI 77 77 77 77 72 77 77 77 76 (3 proxy SNPs used) 69* 

WHR 14 14 14 14 14 14 14 14 12 13** 

*: 10 proxy SNPs used but no good proxy found for the remaining 8 unmatched leading SNPs 

**:5 proxy SNPs used but no good proxy for rs1294421 

 

 

Adult BMI:SNP rs12016871 has been merged into rs9581854 and thus rs9581854 was used for all the analyses instead. 
BMI_Lung Cancer Proxy: rs1558902 (sur: rs1421085 ,r2=1); rs12566985 (sur: rs10493544, r2=0.966); rs11165643 (sur: rs10489741, 
r2=1);  
BMI_Colorectal Cancer Proxy: rs11165643 (sur: rs10489741, r2=1); rs1016287 (sur: rs887912, r2=1); rs7599312 (sur:rs13427822, 
r2=1); rs205262 (sur: rs6457792, r2=0.959); rs1928295 (sur: rs9408902, r2=1); rs11191560 (sur: rs10883832, r2=1); rs1000940 (sur: 
rs3026101, r2=1); rs11583200 (sur: rs12028252, r2=1); rs7899106 (sur: rs17105752, r2=1); rs1808579 (sur: rs891386, r2=1));  
Childhood BMI_Colorectal Cancer Proxy: rs1421085 (sur: rs1558902 ,r2=1); rs7550711(sur: rs17024393, r2=0.85); rs7132908 (sur: 
rs7138803, r2=0.89); rs987237 (sur: rs2206277, r2=0.89);  
WHR_Colorectal Cancer Proxy:rs1011731(sur:rs2301453, r2=1); rs1443512(sur:rs9804784, r2=0.947); rs6795735(sur:rs9311910, 
r2=1); rs718314(sur:rs7132434, r2=1); rs984222(sur:rs10923712,r2=0.967) 
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Supplemental Table 1.3: Mendelian randomization odds ratios (ORs) of childhood BMI and adult BMI across five different cancer 
types obtained using summary data from GAME-ON consortium, ONLY for overlap regions (FTO, MC4R, TMEM18, SEC16B, TNNI3K, 
TFAP2B). 

 Childhood BMI  Adult BMI (77 SNP)  

OR (95%CI) p-value OR(95%CI) p-value 

Breast Cancer 
All 0.63 (0.52,0.76) 2.53x10-6 * 0.53 (0.42,0.70) 1.08x10-6* 

ER_negative 0.59 (0.44,0.80) 5.5x10-4 * 0.48 (0.32,0.71) 2.61x10-4* 

Ovarian Cancer 

All 1.29 (0.95,1.75) 0.099 1.53 (1.00,2.25) 0.047 

Clear_cell 1.82 (0.76,4.33) 0.17 2.21 (0.70,6.97) 0.18 

Endometrioid 1.88 (1.01, 3.49) 0.045 2.74 (1.21,6.22) 0.016 

Serous 1.07 (0.73,1.55) 0.74 1.1 (0.67,1.8) 0.72 

Prostate Cancer 
All 0.93 (0.74,1.16) 0.52 0.87 (0.65,1.18) 0.38 

Aggressive 1.03 (0.75,1.43) 0.84 0.91 (0.59,1.41) 0.68 

Lung Cancer 

All 1.05 (0.86,1.29) 0.62 1.06 (0.82,1.38) 0.65 

Adenocarcinoma 0.86 (0.63,1.17) 0.33 0.83 (0.56,1.24) 0.37 

Squamous 1.28 (0.93,1.76) 0.13 1.25 (0.83,1.88) 0.28 

Colorectal Cancer All 1.34 (0.97,1.86) 0.076 1.44 0.094 
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Supplemental Table 1.4. Effect estimates from Egger regression for adult BMI, childhood BMI, birth weight, and WHR with various 
cancer and cancer subtypes. 

Adult BMI MR Egger regression 
OR (95%CI) Intercept StdDev p OR_egg StdDev p 

Breast 
cancer 
  

Overall 0.66 (0.57, 0.77) 0.0035 0.0056 0.53 0.59 0.1949 0.0076 

ER-neg 0.59 (0.46, 0.75) 0.0022 0.0088 0.8 0.55 0.3050 0.049 

Ovarian 
Cancer 
  
  
  

Overall 1.35(1.05,1.72) -0.0093 0.0088 0.29 1.80 0.3082 0.054 

Clearcell 1.68 (0.84, 3.36) -0.043 0.0251 0.083 6.69 0.8775 0.03 

Endometrioid 1.34 (0.80, 2.26) -0.033 0.0184 0.078 3.74 0.6403 0.038 

Serous 1.3 (0.97, 1.76) 0.0032 0.0110 0.77 1.17 0.3742 0.68 

Prostate 
Cancer 
  

Overall 1.01 (0.84, 1.21) 0.0096 0.0066 0.15 0.74 0.2324 0.19 

Aggressive 1.11 (0.85, 1.44) 0.018 0.0095 0.062 0.63 0.3317 0.16 

Lung 
Cancer 
  
  

Overall 1.27 (1.09, 1.49) 0.011 0.0057 0.057 0.90 0.2000 0.59 

Adenocarcinoma 0.93 (0.73, 1.19) 0.0062 0.0088 0.48 0.76 0.3082 0.39 

Squamous 1.54 (1.20, 1.96) 0.013 0.0089 0.14 1.01 0.3130 0.98 

Colorectal 
Cancer 

Overall 1.39 (1.06, 1.82) 0.0082 0.0098 0.4 1.08 0.3317 0.82 
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Supplemental Table 1.4. Effect estimates from Egger regression for adult BMI, childhood BMI, birth weight, and WHR with various 
cancer and cancer subtypes. (CONTINUED) 

Childhood BMI MR Egger regression 
OR (95%CI) Intercept StdDev p OR_egg StdDev p 

Breast 
cancer 
  

Overall 0.71 (0.60, 0.80) 0.048 0.0214 0.026 0.34 0.3464 0.0017 

ER-neg 0.69 (0.53, 0.98) 0.049 0.0346 0.15 0.32 0.5568 0.039 

Ovarian 
Cancer 
  
  
  

Overall 1.07 (0.82, 1.39) -0.053 0.0332 0.12 2.44 0.5385 0.1 

Clearcell 1.45 (0.68, 3.09) -0.055 0.0954 0.57 3.42 1.5556 0.43 

Endometrioid 1.47 (0.86, 2.52) -0.18 0.0678 0.0094 23.81 1.0909 0.0037 

Serous 0.91 (0.65, 1.26) -0.035 0.0412 0.4 1.57 0.6708 0.5 

Prostate 
Cancer 
  

Overall 1.01 (0.83, 1.22) -0.02 0.0243 0.42 1.38 0.3873 0.42 

Aggressive 1.1 (0.83, 1.45) -0.013 0.0346 0.72 1.35 0.5745 0.61 

Lung 
Cancer 
  
  

Overall 1.01 (0.85, 1.2) -0.0015 0.0230 0.95 1.04 0.3742 0.92 

Adenocarcinoma 0.9 (0.69, 1.19) 0.0064 0.0361 0.86 0.82 0.5657 0.73 

Squamous 1.08 (0.82, 1.43) -0.009 0.0361 0.8 1.25 0.5745 0.7 

Colorectal 
Cancer 

Overall 1.2 (0.90, 1.59) -0.02 0.0249 0.41 1.63 0.4000 0.22 
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Supplemental Table 1.4. Effect estimates from Egger regression for adult BMI, childhood BMI, birth weight, and WHR with various 
cancer and cancer subtypes. (CONTINUED) 

WHR MR Egger regression 
OR (95%CI) Intercept StdDev p OR_egg StdDev p 

Breast 
cancer 
  

Overall 0.73 (0.53,1.00) 0.0048 0.0263 0.85 0.63 0.8307 0.58 

ER-neg 0.74 (0.45, 1.21) -0.0021 0.0412 0.96 0.79 1.3000 0.86 

Ovarian 
Cancer 
  
  
  

Overall 1.19 (0.73, 1.94) -0.037 0.0424 0.38 3.67 1.3153 0.32 

Clearcell 1.31 (0.32, 5.30) -0.027 0.1183 0.82 3.00 3.7683 0.77 

Endometrioid 1.03 (0.38, 2.84) -0.09 0.0860 0.3 16.61 2.7092 0.3 

Serous 1.34 (0.73, 2.46) -0.0019 0.0520 0.97 1.42 1.6217 0.83 

Prostate 
Cancer 
  

Overall 1.02 (0.72, 1.46) 0.046 0.0310 0.14 0.25 0.9747 0.15 

Aggressive 1.19 (0.71, 1.98) -0.0085 0.0447 0.85 1.54 1.4036 0.76 

Lung 
Cancer 
  
  

Overall 1.15 (0.80, 1.66) -0.017 0.0316 0.6 1.97 1.0440 0.52 

Adenocarcinoma 0.9 (0.51, 1.58) -0.076 0.0490 0.12 10.80 1.6125 0.14 

Squamous 1.33 (0.75, 2.36) -0.0005 0.0500 0.99 1.35 1.6340 0.86 

Colorectal 
Cancer 

Overall 1.29 (0.75, 2.22) -0.068 0.0458 0.14 10.38 1.4318 0.1 

 



 

 
 
 

80  

Supplemental Table 1.4. Effect estimates from Egger regression for adult BMI, childhood BMI, birth weight, and WHR with various 
cancer and cancer subtypes. (continued) 

Birth Weight MR Egger regression 
OR (95%CI) Intercept StdDev p OR_egg StdDev p 

Breast 
cancer 
  

Overall 1.22 (0.93, 1.60) 0.04 0.0300 0.18 1.75 1.3231 0.34 

ER-neg 1.01 (0.66, 1.53) 0.078 0.0469 0.1 4.35 2.0855 0.11 

Ovarian 
Cancer 
  
  
  

Overall 1.07 (0.69, 1.65) 0.069 0.0469 0.15 3.46 1.8589 0.18 

Clearcell 2.75 (0.82, 9.30) -0.2 0.1342 0.14 0.01 0.0939 0.07 

Endometrioid 0.79 (0.33, 1.92) -0.023 0.0980 0.82 0.83 0.9094 0.92 

Serous 0.85 (0.50, 1.45) 0.13 0.0583 0.025 14.01 3.7434 0.021 

Prostate 
Cancer 
  

Overall 1.33 (0.96, 1.82) 0.0043 0.0346 0.9 0.82 0.9048 0.77 

Aggressive 1.63 (1.03, 2.57) -0.042 0.0500 0.4 0.28 0.5273 0.19 

Lung 
Cancer 
  
  

Overall 0.93 (0.70, 1.23) 0.0011 0.0307 0.97 1.1 1.0466 0.88 

Adenocarcinoma 0.95 (0.62, 1.46) -0.0099 0.0469 0.83 0.87 0.9324 0.87 

Squamous 0.99 (0.64, 1.52) 0.01 0.0480 0.83 1.23 1.1107 0.82 

Colorectal 
Cancer 

Overall 0.69 (0.44, 1.10) -0.026 0.0510 0.96 1.38 1.1735 0.75 

 



 

 
 
 

81  

 
 
 
 
Supplemental Table 1.5. Association between various genetic score for different adiposity traits were associated with the other 
traits using summary results from genome-wide association studies for these traits 
 

 BMI WHR Childhood BMI 

Gbmi --- 
OR: 0.99 OR: 2.63 
95%CI: 0.96,1.02 95%CI: 2.45, 2.82 
p: 0.378 p<0.0001 

Gwhr 
OR: 0.82 

--- 
OR: 0.91 

95%CI: 0.77, 0.86 95%CI: 0.79, 1.05 
p: 3.9x10-13 p:0.21 

Gchd bmi 
OR: 1.87 OR: 0.96 

--- 95%CI: 1.82, 1.93 95%CI: 0.92, 0.99 
p<0.0001 p: 0.01 

Gbmi excluding overlap snps  --- --- 
OR: 2.16 
95%CI: 1.98, 2.37 
p<0.0001 

Gchd bmi excluding overlap snps  
OR: 1.40 

--- --- 95%CI: 1.31, 1.50 
p<0.0001 
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Supplemental Figure 1.1: Illustration of independent and overlap regions between any two traits of WHR, birth weight, childhood 
BMI and adult BMI 
Detailed overlap loci for the 10 genes are shown below: 
FTO(rs1421085 for CHD; rs1558902 for adult BMI)  

MC4R (rs6567160 for CHD; rs6567160 for adult BMI) 

TMEM18 (rs4854349 for CHD; rs13021737 for adult BMI) 

SEC16B (rs543874 for both CHD and adult BMI) 

TNNI3K (rs12041852 for CHD; and rs12566985 for adult BMI) 

TFAP2B (rs987237 for CHD; and rs2207139 for adult BMI) 

GPR61/GNAT2 (rs7550711 for CHD; and rs17024393 for adult BMI) 

OLFM4 (rs12429545 for CHD; and rs12429545 for adult BMI) 

ADCY3 (rs11676272 for CHD; and rs10182181 for adult BMI) 

GNPDA2 (rs13130484 for CHD; and rs10938397 for adult BMI) 
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Supplemental Figure 1.2: Illustrative figure of results from mendelian randomization analysis of birth weight, childhood obesity, 
adult BMI, and waist-hip-ratio across five different cancer types using summary data from GAME-ON consortium.  
*:statistically significance p>0.05 
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Supplemental Figure 1.3: Scatterplot of SNP-specific effects for the associations with birthweight and aggressive prostate cancer, for 
all 7 birthweight-associated SNPs. SNP-specific vertical and horizontal bars correspond to standard errors for the aggressive prostate 
cancer association and BMI association respectively. The shaded region corresponds to 95%CI of the association between BMI and 
aggressive prostate cancer risk 
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Supplemental Materials for Chapter 2 

Supplemental Table 2.1: Effect sizes of 313 SNPs used to compute the PRS score 
chr: pos Reference_allele Effect_allele beta_Overall.Breast.Cancer 
1:100880328 A T 0.0373 
1:10566215 A G -0.0586 
1:110198129 CAAA C 0.0458 
1:114445880 G A 0.0621 
1:118141492 A C 0.0452 
1:120257110 T C 0.0385 
1:121280613 A G 0.0881 
1:121287994 A G -0.0673 
1:145604302 C CT -0.0399 
1:149906413 T C 0.0548 
1:155556971 G A 0.0499 
1:168171052 CA C -0.068 
1:172328767 T TA -0.0435 
1:18807339 T C -0.0564 
1:201437832 C T 0.0917 
1:202184600 C T -0.0065 
1:203770448 T A 0.0498 
1:204502514 T TTCTGAAACAGGG -0.0321 
1:208076291 G A -0.0366 
1:217053815 T G 0.0417 
1:217220574 G A -0.044 
1:220671050 C T 0.0418 
1:242034263 A G 0.1428 
1:41380440 C T 0.0426 
1:41389220 T C 0.155 
1:46670206 TC T 0.0447 
1:51467096 CT C 0.0374 
1:7917076 G A -0.0409 
1:88156923 G A 0.0494 
1:88428199 C A -0.0387 
10:114777670 C T 0.0472 
10:115128491 T C -0.0592 
10:123095209 G A -0.0538 
10:123340107 A G 0.1508 
10:123340431 GC G -0.2408 
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Supplemental Table 2.1: Effect sizes of 313 SNPs used to compute the PRS score 
(CONTINUED) 
chr: pos Reference_allele Effect_allele beta_Overall.Breast.Cancer 
10:123349324 A T -0.2609 
10:13892298 G A 0.0371 
10:22032942 A G -0.058 
10:22477776 ACC A 0.1687 
10:22861490 A C 0.0875 
10:38523626 C A 0.0404 
10:5794652 A G 0.047 
10:64299890 A G -0.1345 
10:64819996 G T 0.0472 
10:71335574 C T -0.0404 
10:80851257 G T -0.0805 
10:80886726 A G 0.0762 
10:95292187 CAA C -0.0512 
11:103614438 T G 0.0147 
11:108267402 C CA -0.0022 
11:111696440 T C -0.0396 
11:116727936 A T -0.0423 
11:122966626 A G -0.0383 
11:129243417 T G -0.0543 
11:129461016 A G 0.0453 
11:18664241 T G 0.0461 
11:1895708 C A -0.0762 
11:42844441 C T -0.0336 
11:433617 T C -0.0437 
11:44368892 G A 0.0374 
11:46318032 C G -0.0748 
11:65553492 C A 0.0425 
11:65572431 G A -0.0347 
11:69328130 A T -0.0423 
11:69330983 G A 0.1022 
11:69331418 C T 0.1782 
11:803017 A G 0.0457 
12:103097887 C T 0.0546 
12:111600134 G T -0.0442 
12:115108136 T C 0.0465 
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Supplemental Table 2.1: Effect sizes of 313 SNPs (CONTINUED) 
chr: pos Reference_allele Effect_allele beta_Overall.Breast.Cancer 
12:115796577 A G -0.0428 
12:115835836 T C -0.0813 
12:120832146 C T 0.0516 
12:14413931 G C 0.0484 
12:28149568 C T -0.062 
12:28174817 C T -0.0856 
12:28347382 C T -0.0521 
12:29140260 G A 0.0647 
12:293626 A G 0.0401 
12:57146069 T G -0.0579 
12:70798355 A T 0.0469 
12:83064195 G GA 0.0671 
12:85004551 C T 0.0348 
12:96027759 A G -0.0867 
13:32839990 G A 0.0424 
13:32972626 A T 0.2687 
13:43501356 A G 0.0517 
13:73806982 T C 0.0345 
13:73960952 A G 0.0399 
14:105213978 T G 0.0399 
14:37128564 C A -0.0733 
14:37228504 C T 0.039 
14:68660428 T C -0.0474 
14:68979835 T C -0.0911 
14:91751788 TC T 0.038 
14:91841069 A G 0.0513 
14:93070286 C T -0.0577 
15:100905819 A C -0.0608 
15:46680811 C A -0.1973 
15:50694306 A G -0.0417 
15:66630569 G A -0.0369 
15:67457698 A G 0.0782 
15:75750383 T C -0.0413 
15:91512267 G T -0.0589 
16:10706580 G A -0.074 
16:23007047 G T 0.1218 
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Supplemental Table 2.1: Effect sizes of 313 SNPs (CONTINUED) 
chr: pos Reference_allele Effect_allele beta_Overall.Breast.Cancer 
16:4008542 CAAAAA C -0.0329 
16:4106788 C A -0.03 
16:52538825 C A 0.1147 
16:52599188 C T 0.107 
16:53809123 C T -0.0704 
16:53861139 C T -0.0338 
16:53861592 G A -0.0337 
16:54682064 G A 0.0477 
16:6963972 C G 0.0354 
16:80648296 A G 0.0839 
16:85145977 T C -0.0211 
16:87086492 T C -0.0469 
17:29168077 G T -0.0568 
17:39251123 T C 0.0799 
17:40127060 T C 0.0174 
17:40485239 G T -0.0571 
17:40744470 G A 0.2017 
17:43212339 C CT 0.0438 
17:44283858 G A -0.054 
17:53209774 A C -0.0793 
17:77781725 A G -0.0401 
18:11696613 C T -0.0381 
18:20634253 C T -0.0415 
18:24125857 T C 0.0346 
18:24337424 C G 0.0455 
18:24518050 AT A -0.0599 
18:25407513 C G 0.0399 
18:29981526 G A -0.1058 
18:42411803 G C -0.0877 
18:42888797 T C -0.0542 
19:13249921 G T 0.0956 
19:17393925 C A 0.0378 
19:18569492 C T -0.0719 
19:19517054 C CGGGCG 0.0437 
19:44283031 T C 0.0619 
19:46166073 T C -0.036 
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Supplemental Table 2.1: Effect sizes of 313 SNPs (CONTINUED) 
chr: pos Reference_allele Effect_allele beta_Overall.Breast.Cancer 
19:55816678 C T -0.0359 
2:10138983 T C 0.0603 
2:121058254 A G -0.0334 
2:121089731 T C -0.0427 
2:121159205 G A -0.044 
2:121246568 T C 0.0992 
2:172974566 C G -0.0473 
2:174212910 A G 0.0593 
2:192381934 C T 0.0316 
2:19315675 T A -0.0331 
2:202204741 T C -0.0492 
2:217920769 G T -0.1318 
2:217955896 GA G -0.2016 
2:218292158 C G -0.0757 
2:218714845 G A -0.0431 
2:241388857 C A -0.1232 
2:25129473 A G -0.0427 
2:29179452 G C -0.0066 
2:29615233 T C -0.0427 
2:39699510 C CT -0.0402 
2:70172587 G A -0.0412 
2:88358825 G C 0.0473 
20:11379842 T C 0.0844 
20:41613706 C G 0.0315 
20:52296849 G A 0.044 
20:5948227 G A 0.076 
21:16364756 T G 0.0646 
21:16566350 A G 0.0595 
21:16574455 C A -0.0707 
21:47762932 G A 0.0946 
22:19766137 C T -0.0367 
22:29121087 A G 0.1839 
22:29135543 G A 0.0654 
22:29203724 C T 0.1405 
22:29551872 A G -0.1716 
22:38583315 AAAAG AAAAGAAAG -0.0471 
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Supplemental Table 2.1: Effect sizes of 313 SNPs (CONTINUED) 
chr: pos Reference_allele Effect_allele beta_Overall.Breast.Cancer 
22:39343916 T A 0.0407 
22:40904707 CT C 0.1148 
22:43433100 C T -0.06 
22:45319953 G A -0.0134 
22:46283297 G A 0.0736 
3:141112859 CTT C 0.0551 
3:172285237 G A 0.0422 
3:189774456 C T -0.0478 
3:27353716 C A 0.0748 
3:27388664 C G 0.0502 
3:29294845 C T -0.1281 
3:30684907 C T 0.0592 
3:46888198 T C -0.0806 
3:4742251 A G 0.0616 
3:49709912 C CT -0.0367 
3:55970777 A AT -0.1195 
3:59373745 C T -0.0394 
3:63887449 T TTG 0.0648 
3:71620370 T G -0.0374 
3:87037543 A G -0.0723 
3:99403877 G A -0.0376 
4:106069013 G T 0.0471 
4:126752992 A AAT -0.0377 
4:143467195 C T -0.0569 
4:151218296 CATATTT C 0.0388 
4:175842495 G A -0.0898 
4:175847436 C A 0.0348 
4:187503758 A T 0.0357 
4:38784633 G T 0.0489 
4:84370124 TAA TA -0.0464 
4:89240476 G A 0.0352 
4:92594859 TTCTTTC T -0.0407 
5:104300273 G T -0.0487 
5:122478676 C A -0.0386 
5:122705244 C T 0.0944 
5:1279790 C T 0.0617 
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Supplemental Table 2.1: Effect sizes of 313 SNPs (CONTINUED) 
chr: pos Reference_allele Effect_allele beta_Overall.Breast.Cancer 
5:1296255 A AG -0.0549 
5:131640536 A G 0.0392 
5:132407058 C T -0.0388 
5:1353077 T C 0.1552 
5:158244083 C T -0.0677 
5:16231194 G C -0.0426 
5:169591460 T C 0.0412 
5:173358154 G A 0.0365 
5:176134882 T C 0.0363 
5:2777029 G A 0.0391 
5:32579616 TCA T 0.0363 
5:345109 T C 0.084 
5:44508264 G GT -0.1177 
5:44619502 A G -0.1101 
5:44649944 C T 0.0492 
5:44706498 A G 0.0497 
5:44853593 G C -0.0336 
5:52679539 C CA 0.0571 
5:55662540 C CT -0.0458 
5:55965167 C T 0.0394 
5:56023083 T G 0.1366 
5:56042972 C T 0.0865 
5:56045081 T C -0.0564 
5:58241712 C T -0.0434 
5:71965007 G A -0.041 
5:73234583 T C -0.0363 
5:77155397 GT G -0.0408 
5:79180995 G GA 0.0328 
5:81512947 TA T -0.0598 
5:90789470 G A -0.0564 
6:130341728 C CT 0.0472 
6:13713366 G C -0.0553 
6:149595505 T C -0.0476 
6:151949806 A C 0.0703 
6:151955914 A G 0.1449 
6:152022664 CAAAAAAA C 0.0137 



 

 
 
 

92 

Supplemental Table 2.1: Effect sizes of 313 SNPs (CONTINUED) 
chr: pos Reference_allele Effect_allele beta_Overall.Breast.Cancer 
6:152023191 G A 0.0626 
6:152055978 A T 0.074 
6:152432902 C T 0.0649 
6:16399557 C T -0.0373 
6:169006947 C G -0.0308 
6:170332621 T C 0.0373 
6:18783140 G A 0.0326 
6:20537845 CA C -0.0391 
6:21923810 T C -0.0321 
6:27425644 G C -0.0737 
6:43227141 G A -0.064 
6:82263549 AAT A 0.0477 
6:85912194 CAA C 0.0762 
6:87803819 T C 0.0383 
7:101552440 G A -0.0568 
7:102481842 T C 0.0418 
7:130656911 C T -0.0476 
7:130674481 G A 0.0416 
7:139943702 CT C 0.0582 
7:144048902 G T -0.0563 
7:21940960 A G -0.0467 
7:25569548 C T -0.0486 
7:28869017 G A -0.0572 
7:55192256 A C -0.0349 
7:91459189 A ATT 0.0452 
7:94113799 T C 0.0449 
7:98005235 G A -0.0467 
7:99948655 T G 0.042 
8:102483100 T C 0.0593 
8:106358620 A T -0.0745 
8:117209548 A G -0.0417 
8:120862186 A G 0.0527 
8:124563705 T C 0.0477 
8:124571581 G A 0.034 
8:124739913 T G 0.0466 
8:128213561 C CA -0.043 
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Supplemental Table 2.1: Effect sizes of 313 SNPs (CONTINUED) 
chr: pos Reference_allele Effect_allele beta_Overall.Breast.Cancer 
8:128370949 C G 0.0642 
8:128372172 A G 0.0597 
8:129199566 G A 0.0615 
8:143669254 A G -0.0346 
8:170692 T C 0.0477 
8:17787610 CT C -0.0377 
8:23447496 A G -0.0389 
8:23663653 C A 0.0335 
8:29509616 A C -0.0601 
8:36858483 A G -0.076 
8:76230943 A G 0.0755 
8:76333056 C T 0.1129 
8:76378165 G T -0.0391 
9:110303808 TAA T 0.0797 
9:110837073 A G 0.1158 
9:110837176 C T 0.0653 
9:110849525 G T 0.0153 
9:110885479 C T 0.0877 
9:119313486 A G -0.0462 
9:129424719 A G -0.0382 
9:136146597 C T 0.04 
9:21964882 CAAAA C 0.055 
9:22041998 C G 0.0289 
9:36928288 T C 0.0249 
9:6880263 A G 0.0348 
9:87782211 T C 0.0361 
9:98362587 T C 0.0576 
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a)  NHS Blood cohort using 1990 as the baseline  d) NHS blood cohort with 1990 and 1995 baseline combined 

    
b) NHS blood cohort using 1995 as the baseline  e) NHS blood cohort with 1990, 1995 and 2000 basline combined 

 
c) NHS blood cohort using 2000 as the baseline 

Supplemental Figure 2.1: Validation analysis results of classic risk factor only model using only NHS blood cohort at different 
baseline time frames. 
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Supplemental Materials for Chapter 3 

Supplemental Table 3.1: effect sizes for 105 SNPs used to construct overall breast cancer and ER negative-specific PRSs 

chr_positiona rs_number effect allele reference 
allele 

Overall 
BC_beta 

ER-negative_beta ER-
positive_beta 

1_10566215 rs616488 A G 0.0604 0.105 0.0604 
1_114448389 rs11552449 T C 0.0543 0.0543 0.0557 
1_121280613 rs11249433 G A 0.0988 0.0101 0.0988 
1_145644984 rs12405132 C T 0.0406 0.0157 0.0406 
1_149927034 rs12048493 C A 0.0496 0.0396 0.0496 
1_202187176 rs6678914 G A 0.0066 0.0823 0.0066 
1_204518842 rs4245739 C A 0.0272 0.127 0.0272 
1_242034263 rs72755295 G A 0.1376 0.1376 0.1481 
10_114773927 rs7904519 G A 0.0456 0.0691 0.0456 
10_123093901 rs11199914 C T 0.0456 0.0045 0.0456 
10_123337335 rs2981579 A G 0.2376 0.0419 0.2376 
10_22032942 rs7072776 A G 0.0618 0.0193 0.0618 
10_22315843 rs11814448 C A 0.1846 0.1188 0.1846 
10_5886734 rs2380205 C T 0.0234 0.0234 0.0261 
10_64261198 rs16917302 A C 0.0421 0.0421 0.0367 
10_64278682 rs10995190 G A 0.129 0.0932 0.129 
10_80841148 rs704010 T C 0.0787 0.0504 0.0787 
11_129461171 rs11820646 C T 0.0482 0.0482 0.0442 
11_1941946 rs909116 T C 0.0676 0.0371 0.0676 
11_65583066 rs3903072 G T 0.0434 0.0253 0.0434 
11_69331418 rs78540526 T C 0.2758 0.0076 0.2758 
12_115836522 rs1292011 A G 0.0822 0.0209 0.0822 
12_14413931 rs12422552 C G 0.0552 0.0552 0.0483 
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Supplemental Table 3.1: effect sizes for 105 SNPs used to construct overall breast cancer and ER negative-specific PRSs 
(CONTINUED) 
chr_positiona rs_number effect allele reference 

allele 
Overall 
BC_beta 

ER-negative_beta ER-
positive_beta 

12_28124305 rs27633 G T 0.0054 0.0054 0.0114 
12_28155080 rs10771399 A G 0.1492 0.1641 0.1492 
12_96027759 rs17356907 A G 0.0898 0.0694 0.0898 
13_32972626 rs11571833 T A 0.2727 0.4346 0.2727 
13_73957681 rs6562760 G A 0.0443 0.0826 0.0443 
14_37132769 rs2236007 G A 0.0719 0.0368 0.0719 
14_68660428 rs2588809 T C 0.0628 0.0047 0.0628 
14_69034682 rs999737 C T 0.0967 0.0752 0.0967 
14_91841069 rs941764 G A 0.0463 0.0186 0.0463 
14_93104072 rs11627032 T C 0.0481 0.0481 0.0438 
16_52586341 rs3803662 A G 0.2032 0.1254 0.2032 
16_53813367 rs17817449 T G 0.0599 0.0736 0.0599 
16_53855291 rs11075995 A T 0.0421 0.086 0.0421 
16_80650805 rs13329835 G A 0.0786 0.0426 0.0786 
17_48274291 rs2075555 G T 0.0106 0.0106 0.012 
17_53056471 rs6504950 G A 0.0676 0.0321 0.0676 
17_77781725 rs745570 A G 0.0389 0.0389 0.0349 
18_24337424 rs527616 G C 0.0499 0.0178 0.0499 
18_24570667 rs1436904 T G 0.0489 0.0056 0.0489 
18_42399590 rs6507583 A G 0.087 0.034 0.087 
19_17389704 rs8170 A G 0.0415 0.1479 0.0415 
19_18571141 rs4808801 A G 0.0718 0.0541 0.0718 
19_41858921 rs1800470 G A 0.0012 0.0012 0.007 
19_44286513 rs3760982 A G 0.051 0.051 0.0521 
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Supplemental Table 3.1: effect sizes for 105 SNPs used to construct overall breast cancer and ER negative-specific PRSs 
(CONTINUED) 
chr_positiona rs_number effect allele reference 

allele 
Overall 
BC_beta 

ER-negative_beta ER-
positive_beta 

2_121245122 rs4849887 C T 0.095 0.1135 0.095 
2_172972971 rs2016394 G A 0.0425 0.0084 0.0425 
2_174212894 rs1550623 A G 0.0531 0.0202 0.0531 
2_19320803 rs12710696 T C 0.0365 0.0628 0.0365 
2_201717014 rs74943274 A G 0.0839 0.175 0.0839 
2_202149589 rs1045485 G C 0.0415 0.0415 0.027 
2_217905832 rs13387042 A G 0.1225 0.0484 0.1225 
2_218296508 rs16857609 T C 0.0727 0.0727 0.0721 
2_29119585 rs67073037 A T 0.0052 0.0851 0.0052 
2_38377405 rs184577 A G 0.007 0.0135 0.007 
20_32588095 rs2284378 T C 0.0142 0.0289 0.0142 
20_62157646 rs13039229 C A 0.0052 0.0052 0.0039 
20_62217589 rs311499 C T 0.014 0.0615 0.014 
21_16520832 rs2823093 G A 0.0653 0.0069 0.0653 
22_29621477 rs132390 C T 0.0945 0.0945 0.0824 
22_40876234 rs6001930 C T 0.1201 0.1201 0.1092 
3_27416013 rs4973768 T C 0.0985 0.0413 0.0985 
3_30682939 rs12493607 C G 0.0485 0.0016 0.0485 
3_46866866 rs6796502 G A 0.0828 0.0828 0.0892 
3_4742276 rs6762644 G A 0.055 0.0225 0.055 
3_63967900 rs1053338 G A 0.0588 0.0588 0.0554 
4_106084778 rs9790517 T C 0.0483 0.0125 0.0483 
4_175846426 rs6828523 C A 0.1019 0.0017 0.1019 
5_1279790 rs10069690 T C 0.0599 0.1613 0.0599 
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Supplemental Table 3.1: effect sizes for 105 SNPs used to construct overall breast cancer and ER negative-specific PRSs 
(CONTINUED) 
chr_positiona rs_number effect allele reference 

allele 
Overall 
BC_beta 

ER-negative_beta ER-
positive_beta 

5_1297488 rs2736108 C T 0.0622 0.1216 0.0622 
5_158244083 rs1432679 C T 0.0717 0.0717 0.0695 
5_16187528 rs13162653 G T 0.0321 0.0321 0.0287 
5_32567732 rs2012709 T C 0.0358 1.00E-04 0.0358 
5_44706498 rs10941679 G A 0.1278 0.0336 0.1278 
5_55995035 rs16886113 G T 0.1406 0.0264 0.1406 
5_56031884 rs889312 C A 0.1212 0.0594 0.1212 
5_58184061 rs10472076 C T 0.0364 0.0364 0.034 
5_58337481 rs1353747 T G 0.0625 0.0625 0.0629 
5_81538046 rs7707921 A T 0.0513 0.032 0.0513 
6_10456706 rs9348512 A C 0.0017 0.0017 0.0017 
6_127606588 rs6569479 T C 0.008 0.008 0.0121 
6_1318878 rs11242675 T C 0.0249 0.0249 0.02 
6_13722523 rs204247 G A 0.0445 0.016 0.0445 
6_149608874 rs9485372 G A 0.0371 0.0192 0.0371 
6_151948366 rs2046210 A G 0.084 0.1368 0.084 
6_151987357 rs9383938 T G 0.1424 0.2323 0.1424 
6_152523550 rs2253407 G T 0.0055 0.0055 0.0112 
6_28926220 rs9257408 C G 0.034 0.034 0.0339 
6_82128386 rs17529111 C T 0.045 0.0646 0.045 
7_130667121 rs4593472 C T 0.0438 0.0438 0.0455 
7_144074929 rs720475 G A 0.0488 3.00E-04 0.0488 
7_91630620 rs6964587 T G 0.0409 0.0231 0.0409 
8_117209548 rs13267382 A G 0.0437 0.0437 0.0427 
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Supplemental Table 3.1: effect sizes for 105 SNPs used to construct overall breast cancer and ER negative-specific PRSs 
(CONTINUED) 
chr_positiona rs_number effect allele reference 

allele 
Overall 
BC_beta 

ER-negative_beta ER-
positive_beta 

8_128355618 rs13281615 G A 0.1001 0.0507 0.1001 
8_128694006 rs4733664 C T 0.0142 0.0142 0.0174 
8_129194641 rs11780156 T C 0.0606 0.0606 0.0621 
8_29509616 rs9693444 A C 0.0626 0.0408 0.0626 
8_36858483 rs13365225 A G 0.0767 0.0963 0.0767 
8_76230301 rs6472903 T G 0.0778 0.0439 0.0778 
9_110306115 rs10759243 A C 0.0595 0.0278 0.0595 
9_110888478 rs865686 T G 0.0984 0.0208 0.0984 
9_21854740 rs10965163 C T 9.00E-04 9.00E-04 0.0003 
9_22062134 rs1011970 T G 0.066 0.066 0.0576 
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Supplemental Table 3.2: The OR of overall breast cancer for each age group with respect to their PRS (10th percentile, median, 90th 
percentile) and variant carrier status. Reference group: non carriers with median PRS and no family history 
<40 yr old No Family History Family History 
OR 10th% PRS median PRS 90th% PRS 10th% PRS median PRS 90th% PRS 
non-carrier 0.54 1.00 1.85 0.74 1.35 2.52 
ATM carrier 1.07 1.95 3.64 1.46 2.66 4.96 
CHEK2 carrier 1.28 2.34 4.36 1.74 3.18 5.94 
PALB2 carrier 1.89 3.45 6.44 2.57 4.69 8.76 
BRCA1 carrier 8.04 14.67 27.38 10.94 19.96 37.26 
BRCA2 carrier 9.01 16.44 30.68 12.26 22.37 41.75 
BARD1 carrier 0.86 1.57 2.93 1.18 2.15 4.00 
BRIP1 carrier 0.80 1.46 2.71 1.09 1.98 3.70 
CDH1 carrier 3.17 5.78 10.76 4.31 7.87 14.67 
NF1 carrier 1.06 1.94 3.62 1.45 2.64 4.93 
 

40-50 yr old No Family History Family History 
OR 10th% PRS median PRS 90th% PRS 10th% PRS median PRS 90th% PRS 
non-carrier 0.56 1.00 1.79 0.76 1.35 2.44 
ATM carrier 1.10 1.95 3.52 1.50 2.66 4.80 
CHEK2 carrier 1.33 2.35 4.24 1.81 3.20 5.78 
PALB2 carrier 1.96 3.46 6.25 2.67 4.72 8.51 
BRCA1 carrier 5.22 9.23 16.66 7.11 12.58 22.70 
BRCA2 carrier 6.12 10.82 19.52 8.33 14.74 26.60 
BARD1 carrier 0.89 1.57 2.84 1.21 2.15 3.87 
BRIP1 carrier 0.82 1.46 2.63 1.12 1.99 3.58 
CDH1 carrier 3.27 5.78 10.43 4.45 7.88 14.21 
NF1 carrier 1.10 1.94 3.50 1.50 2.65 4.77 
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Supplemental Table 3.2: The OR of overall breast cancer for each age group with respect to their PRS (10th percentile, median, 90th 
percentile) and variant carrier status. Reference group: non carriers with median PRS and no family history (CONTINUED) 
50-60 yr old No Family History Family History 
OR 10th% PRS median PRS 90th% PRS 10th% PRS median PRS 90th% PRS 
non-carrier 0.58 1.00 1.73 0.79 1.35 2.36 
ATM carrier 1.14 1.95 3.41 1.55 2.66 4.65 
CHEK2 carrier 1.37 2.35 4.11 1.87 3.21 5.60 
PALB2 carrier 2.02 3.46 6.05 2.75 4.72 8.25 
BRCA1 carrier 3.30 5.66 9.89 4.50 7.71 13.47 
BRCA2 carrier 4.18 7.17 12.52 5.69 9.76 17.06 
BARD1 carrier 0.92 1.58 2.75 1.25 2.15 3.75 
BRIP1 carrier 0.85 1.46 2.55 1.16 1.99 3.47 
CDH1 carrier 3.37 5.78 10.10 4.60 7.88 13.77 
NF1 carrier 1.13 1.94 3.39 1.54 2.65 4.62 
 

60-70 yr old No Family History Family History 
OR 10th% PRS median PRS 90th% PRS 10th% PRS median PRS 90th% PRS 
non-carrier 0.60 1.00 1.68 0.81 1.35 2.29 
ATM carrier 1.18 1.95 3.30 1.60 2.66 4.50 
CHEK2 carrier 1.42 2.35 3.98 1.93 3.21 5.43 
PALB2 carrier 2.09 3.47 5.86 2.84 4.72 7.99 
BRCA1 carrier 2.09 3.47 5.87 2.84 4.73 8.00 
BRCA2 carrier 2.86 4.75 8.03 3.89 6.47 10.94 
BARD1 carrier 0.95 1.58 2.67 1.29 2.15 3.63 
BRIP1 carrier 0.88 1.46 2.47 1.20 1.99 3.36 
CDH1 carrier 3.48 5.78 9.79 4.74 7.88 13.34 
NF1 carrier 1.17 1.94 3.29 1.59 2.65 4.48 



 

 
 
 

102 

 
 
 
 
 
 
 
Supplemental Table 3.2: The OR of overall breast cancer for each age group with respect to their PRS (10th percentile, median, 90th 
percentile) and variant carrier status. Reference group: non carriers with median PRS and no family history (CONTINUED) 
>=70 yr old No Family History Family History 
OR 10th% PRS median PRS 90th% PRS 10th% PRS median PRS 90th% PRS 
non-carrier 0.62 1.00 1.63 0.84 1.35 2.22 
ATM carrier 1.21 1.95 3.20 1.65 2.66 4.36 
CHEK2 carrier 1.46 2.36 3.86 1.99 3.21 5.26 
PALB2 carrier 2.15 3.47 5.68 2.93 4.72 7.74 
BRCA1 carrier 1.32 2.13 3.48 1.80 2.90 4.75 
BRCA2 carrier 1.95 3.14 5.15 2.66 4.28 7.02 
BARD1 carrier 0.98 1.58 2.58 1.33 2.15 3.52 
BRIP1 carrier 0.91 1.46 2.39 1.23 1.99 3.26 
CDH1 carrier 3.59 5.79 9.48 4.89 7.89 12.92 
NF1 carrier 1.21 1.94 3.18 1.64 2.65 4.34 
 

 

 

 

 

 



 

 
 
 

103 

Supplementary Table 3.3: predicted 5-year abolsute risk of developing breast cancer with respect to different PRS, carrier status, 
and family history. The estimated 5-year risk is displayed with start age of 45, 50 and 55, respectively. 
start age: 45 No Family History Family History 
OR 10th% PRS median PRS 90th% PRS 10th% PRS median PRS 90th% PRS 
non-carrier 0.004 0.007 0.012 0.005 0.009 0.016 
ATM carrier 0.007 0.013 0.023 0.010 0.018 0.032 
CHEK2 carrier 0.009 0.016 0.028 0.012 0.021 0.038 
PALB2 carrier 0.013 0.023 0.041 0.018 0.031 0.055 
BRCA1 carrier 0.038 0.066 0.118 0.051 0.090 0.159 
BRCA2 carrier 0.043 0.076 0.136 0.059 0.104 0.182 
start age: 50 No Family History Family History 
OR 10th% PRS median PRS 90th% PRS 10th% PRS median PRS 90th% PRS 
non-carrier 0.007 0.012 0.022 0.010 0.017 0.029 
ATM carrier 0.014 0.024 0.042 0.019 0.032 0.056 
CHEK2 carrier 0.017 0.029 0.050 0.023 0.039 0.068 
PALB2 carrier 0.025 0.042 0.073 0.033 0.057 0.098 
BRCA1 carrier 0.044 0.076 0.132 0.061 0.103 0.177 
BRCA2 carrier 0.055 0.094 0.162 0.075 0.127 0.217 

 

start age: 55 No Family History Family History 
OR 10th% PRS median PRS 90th% PRS 10th% PRS median PRS 90th% PRS 
non-carrier 0.009 0.014 0.024 0.011 0.019 0.033 
ATM carrier 0.016 0.027 0.047 0.022 0.037 0.064 
CHEK2 carrier 0.019 0.033 0.057 0.026 0.045 0.077 
PALB2 carrier 0.028 0.048 0.083 0.038 0.065 0.111 
BRCA1 carrier 0.046 0.078 0.132 0.062 0.105 0.177 
BRCA2 carrier 0.058 0.098 0.166 0.079 0.132 0.221 
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Supplemental Table 3.4: 

 

 

 

 

a) OR of ER- breast cancer for overall BC PRS and ER- PRS across age groups  
ER- specific PRS Overall BC PRS 

Age group OR 95%CI OR 95%CI 
<40 1.467 1.148, 1.874 1.203 1.072, 1.351 
40-50 1.465 1.151, 1.865 1.224 1.130, 1.327 
50-60 1.463 1.154, 1.856 1.246 1.184, 1.312 
60-70 1.462 1.157, 1.847 1.268 1.213, 1.326 
>70 1.46 1.161, 1.839 1.292 1.207, 1.381      

b) OR of ER+ breast cancer for overall BC PRS and ER+ PRS across age groups  
ER+ specific PRS Overall BC PRS 

Age group OR 95%CI OR 95%CI 
<40 1.928 1.684, 2.209 1.724 1.615, 1.840 
40-50 1.922 1.682, 2.196 1.664 1.591, 1.741 
50-60 1.916 1.680, 2.184 1.607 1.562, 1.654 
60-70 1.909 1.678, 2.173 1.552 1.516, 1.589 
>70 1.903 1.676, 2.161 1.499 1.448, 1.552 
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Supplemental Table 3.5: variant count by gene in the study (restrict to non-Hispanic Europeans) 

Gene Caco # of variant non-carriers % of variant in 
this case/control 
group 

total# of 
variant for this 
gene 

% of variant 
carriers in the 
total 
population 

BRCA1 control 49 26078 0.2% 300 0.6%  
case 251 26547 0.9% 

  

BRCA2 control 66 26061 0.3% 441 0.8%  
case 375 26423 1.4% 

  

BARD1 control 29 26098 0.1% 74 0.1%  
case 45 26753 0.2% 

  

ATM control 111 26016 0.4% 339 0.6%  
case 228 26570 0.9% 

  

BRIP1 control 45 26082 0.2% 109 0.2%  
case 64 26734 0.2% 

  

CDH1 control 3 26124 0.0% 18 0.0%  
case 15 26783 0.1% 

  

CHEK2 control 148 25979 0.6% 507 1.0%  
case 359 26439 1.3% 

  

PALB2 control 36 26091 0.1% 152 0.3%  
case 116 26682 0.4% 

  

NF1 control 8 26119 0.1% 23 0.0%  
case 15 26783 0.1% 
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Supplemental Table 3.6: ER- in the study population by age group 

Age Group ER- ER+ Ratio ER-/ER+ missing %missing 
<40 86 273 0.315 276 43.5% 
40-50 308 1560 0.197 1365 42.2% 
50-60 704 3504 0.201 2818 40.1% 
60-70 828 5074 0.163 3122 34.6% 
>70 711 4711 0.151 1458 21.2% 
total 2637 15122 0.1743817 9039 0.50898136 
 

 

Supplemental Table 3.7: The PRS-by-pathogenic variant interactions for each individual gene 

Gene OR** 95%CI pvalue 
BRCA1 0.63 0.46, 0.88 0.006 
BRCA2 0.82 0.62, 1.09 0.16 
ATM 1.15 0.89, 1.50 0.29 
CHEK2 0.9 0.74, 1.11 0.32 
PALB2 0.55 0.36, 0.86 0.0077 
BARD1 0.74 0.45, 1.23 0.24 
BRIP1 0.82 0.54, 1.27 0.37 
CDH1 0.36 0.081, 1.18 0.11 
NF1 0.72 0.27, 2.24 0.54 
Any genes* 0.81 0.73, 0.91 0.00022 

*: if there is a pathogenic variant in any of the nine genes tested 
**: this is the effect estimate of the gene x PRS interaction term 
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Supplemental Table 3.8: Sensitivity analysis from running the final model and including interaction term between carriers of  variant 
in any of the nine genes and PRS for overall Breast Cancer 
  <=40 40-50 50-60 60-70 >70 
PRS in non-carriers 1.63 1.58 1.54 1.51 1.47 
  (1.55, 1.71) (1.53, 1.64)  (1.51, 1.58) (1.48, 1.54) (1.42, 1.51) 
PRS in any carriers 1.4 1.36 1.33 1.3 1.26 
  (1.24, 1.58) (1.22, 1.53) (1.19, 1.49) (1.16, 1.45) (1.13, 1.42) 

BRCA1* 14.18 8.79 5.45 3.38 2.09 
  (7.74, 27.5) (5.79, 13.4) (3.96, 7.51) (2.21, 5.17) (1.10, 3.98) 
BRCA2* 15.6 10.4 6.93 4.62 3.08 
  (8.69, 29.4) (6.86, 15.8) (5.22, 9.20) (3.41, 6.27) (1.95, 4.88) 
ATM 1.96 1.96 1.96 1.96 1.96 
  (1.56, 2.48) (1.56, 2.48) (1.56, 2.48) (1.56, 2.48) (1.56, 2.48) 
CHEK2 2.35 2.35 2.35 2.35 2.35 
  (1.93, 2.87) (1.93, 2.87) (1.93, 2.87) (1.93, 2.87) (1.93, 2.87) 
PALB2 3.32 3.32 3.32 3.32 3.32 
  (2.28, 4.94) (2.28, 4.94) (2.28, 4.94) (2.28, 4.94) (2.28, 4.94) 

BARD1 1.56 1.56 1.56 1.56 1.56 
  (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) 
BRIP1 1.47 1.47 1.47 1.47 1.47 
  (0.99, 2.21) (0.99, 2.21) (0.99, 2.21) (0.99, 2.21) (0.99, 2.21) 

CDH1 5.46 5.46 5.46 5.46 5.46 
  (1.74, 24.0) (1.74, 24.0) (1.74, 24.0) (1.74, 24.0) (1.74, 24.0) 

NF1 1.03 1.03 1.03 1.03 1.03 
  (0.58, 1.86) (0.58, 1.86) (0.58, 1.86) (0.58, 1.86) (0.58, 1.86) 
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