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ABSTRACT 

 The rapid expansion of unconventional oil and gas development (UOGD) changed the 

energy market in the past decade, both domestically and globally. Enabled by the technological 

advancements in hydraulic fracturing and directional drilling, the UOGD could produce crude oil 

and natural gas from the low-permeability geological formations that were uneconomic to 

develop in the past. By the end of 2018, carbohydrates extracted from these unconventional 

formations accounted for 96% and 97% of the domestic crude oil and natural gas production, 

respectively. Compared with the rapid expansion, our knowledge about its impacts on the 

environment and residents of neighboring communities is falling far behind. There is an 

increasing body of literature associating living nearby UOGD sites to adverse health outcomes 

and harmful environmental exposure. However, current studies are subject to common 

limitations, including a lack of knowledge regarding exposure pathways, a lack of reliable 

exposure assessment, and a lack of causal modeling methods applied in investigating the 

potential associations. This dissertation is designed to address these knowledge gaps partially.  

 In our first study, we investigated the causal association between exposure to UOGD and 

all-cause mortality in the Medicare beneficiaries residing in all major production regions of the 

U.S. We first estimated the association between all-cause mortality and the residential proximity 

to an active UOGD site; We subsequently divided the participants into two subgroups according 

to their relative position to the UOGD, a subgroup living upwind to UOGD, and a subgroup 

living downwind to UOGD, and re-evaluated the subgroup-specific effects. We found that 

UOGD has significantly greater effects on the residents living downwind, compared to those 
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living upwind, after adjusting for proximity. Due to the independence of wind direction to 

residential proximity to UOGD, this association is considered causal. 

 In our second study, we explored the association of UOGD activity to ambient particle 

radioactivity, which is a potential exposure pathway of UOGD. Ambient particle radioactivity is 

the radiometric character of particle matter, which in turn transports the radionuclides from the 

external to the internal environment, and then expose human tissues to high-energy α particles. 

We found a significantly positive association between the number of upwind UOGD wells and 

the gross-β radioactivity measurements monitored by a nationwide operational network. 

 In our third study, we investigated the association of all-cause mortality with residential 

exposure to radon, which is the primary source of particle radioactivity. We applied the 

Difference-in-Difference experimental design, which is a quasi-experimental approach, to 

investigate the causal linkage in all Medicare beneficiaries residing in New England. We found 

that a per-unit increase in residential radon exposure is associated with an increment of 4% of 

all-cause mortality. 
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INTRODUCTION 

  Unconventional Oil and Gas Development (UOGD) has changed the global energy 

landscape in the past decade. The large scale adoption of UOGD in the U.S, primarily enabled by 

the advancements in hydraulic fracturing (commonly referred to as fracking) and directional 

drilling, converted the U.S from a long-term energy importer to the largest producer of both 

crude oil and natural gas by the end of 2018. The extensive drilling activities, especially in areas 

without a significant previous existence of the oil and gas extractive industry, triggered concerns 

over their potential harmful impacts on the health of residents. Current health effect studies have 

associated living proximity to UOGD activities with a wide range of harmful outcomes. 

Simultaneously, there is a growing body of literature associating UOGD with different harmful 

environmental exposures, shedding light on the potential exposure pathways. 

Existing health effects analysis is subject to two significant limitations. First, all existing studies 

relied on proximity-based exposure assessment proxies, which are vulnerable to be confounded 

by the social-economic factors. Second, all existing studies associated health outcomes with 

construction-dependent or operation-dependent indicator, instead of with the chemical or non-

chemical agents emitted directly from UOGD. In this thesis, we partially addressed these 

knowledge gaps by three studies: 

 AIM I: Exploring the causal association between exposure to UOGD and mortality; 

 AIM II: Exploring the contribution of UOGD to ambient particle radioactivity; 

 AIM III: Exploring the association between residential radon exposure and mortality. 

AIM II, jointly with AIM III, formed a pathway through which UOGD could influence the health 

of residents, which is the hypothesis of the first study. 
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CHAPTER 1: Exposure to Unconventional Oil and Gas Development and All-cause Mortality in 

Medicare Beneficiaries 

Longxiang Li, M.S., Francesca Dominici, Ph.D., Annelise J. Blomberg, Sc.D., Joel D. Schwartz, Ph.D., 

Brent A. Coull, Ph.D., John D. Spengler, Ph.D., Yaguang Wei, M.S., Petros Koutrakis, Ph.D. 
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Abstract 

The wide-scale adoption of Unconventional Oil and Gas Development (UOGD) has changed the 

global energy landscape. However, little is known about whether and how UOGD impact all-

cause mortality. 

We studied Medicare beneficiaries (N=136,215,059 person-years) in all major UOGD regions in 

the conterminous U.S. from 2001 to 2015. We obtained records for more than 2.5 million oil and 

gas wells from Enverus™. For each person-year, we calculated proximity-based exposure (PE) 

to UOGD and categorized PE into four levels from high to low. To isolate the impact contributed 

by UOGD-related air pollutants, we calculated the proportion of PE contributed by upwind 

wells, defined as downwind exposure (DE) to UOGD. Each PE level was dichotomized into 

downwind and upwind sub-levels (DE+ and DE-) accordingly. We used Cox proportional hazard 

models to estimate the mortality risk associated with each PE level and DE sub-levels. Due to the 

independence of wind direction on potential confounders, the estimated associations are less 

vulnerable to unobserved confounding bias. 

High PE level was associated with a statistically significant increase in mortality risk compared 

to the unexposed group (hazard ratio [HR], 1.025; 95% confidence interval [CI], 1.021 to 1.029). 

Within high PE, the HR associated with DE+ is 1.031 (95% CI 1.025 to 1.037), significantly 

higher than that associated with DE- (HR 1.022, 95% CI, 1.016 to 1.027), when both are 

compared to the same unexposed group. 

Introduction 

Oil and natural gas development from the low-permeability unconventional geological formation 

(known as unconventional oil and gas development [UOGD]) has rapidly expanded over the past 

decade. As of 2015, over 100,000 onshore UOGD wells had been drilled via a practice involving 

directional drilling combined with multistage high-volume hydraulic fracturing (fracking).(U.S. 
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Energy Information Administration (EIA) 2019c) As of 2015, 17.6 million U.S. residents live 

within one kilometer of at least one active well.(Czolowski et al. 2017) Although, UOGD is 

typically more productive than conventional oil and gas development (COGD) in extracting 

hydrocarbons, it generally has more extended construction periods and requires larger water 

volumes, proppants and chemicals during the multi-stage fracking process resulting in larger 

waste volumes.(U.S. Enverionmental Preotection Agency (EPA) 2016)  

Proximity to UOGD has been associated with increased human exposure to both chemical and 

non-chemical agents. (Landrigan, Frumkin, and Lundberg 2020) UOGD-related air contaminants 

include volatile organic carbons (VOCs) (Allen 2014) nitrogen oxides (Cheadle et al. 2017) and 

naturally occurring radioactive materials. (Casey et al. 2015) UOGD operations were also 

associated with elevated concentrations of organic compounds,(Hill and Ma, n.d.) chloride, and 

total suspending solids in drinking water. (Olmstead et al. 2013) Elevated UOGD-related agents 

(noise(Blair et al. 2018) and night light(Franklin et al. 2019)) have been reported in nearby 

neighborhoods. Based on these findings, proximity-based exposure metrics (PEs) were designed 

as surrogates of UOGD exposure and applied in retrospective epidemiologic studies finding a 

significant association between UOGD exposure with adverse prenatal,(Casey et al. 2016) 

respiratory,(Rasmussen et al. 2016; Koehler et al. 2018) cardiovascular, and carcinogenic 

outcomes. (McKenzie et al. 2019) 

The link between UOGD exposure and all-cause mortality has not been investigated on a 

national scale. Existing studies regarding UOGD health effects are based on PEs which assume a 

uniform and isotropic (irrespective of spatial directionality) declining impact of UOGD as the 

distance between UOGD and subjects increases.(Health Effects Institute-Energy (HEI-Energy) 

Research Committee 2019b) These PEs fail to account for different transport pathways of 
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UOGD-related agents in environmental media. Existing studies based solely on PE cannot 

distinguish contributions from different exposure pathways. UOGD also has significant socio-

cultural impacts on host communities. (Kelsey, Partridge, and White 2016; Perry 2013) 

Associations found by previous observational studies based on PEs were vulnerable to be biased 

by unobserved confounding health determinants that are potentially influenced by UOGD. 

We conducted the most extensive study to date on the health effects of UOGD exposure to 

address these knowledge gaps. We hypothesized that mortality risks are higher for communities 

in proximity to, and downwind of, UOGD operations due to the role of air transport. We first 

calculated the PE for each person-year at risk and then calculated the proportion of PE 

contributed by wells located upwind of a given location (downwind exposure [DE]). Two 

survival models were fitted to associate UOGD exposure with all-cause mortality via PE only or 

via a PE and DE combination. Atmospheric movement is theoretically independent of potential 

confounders such as age, gender, and socioeconomic status (SES). The DE-based survival 

analysis created a quasi-experiment design to better control both measured and unmeasured 

confounding bias. (Dominici, Greenstone, and Sunstein 2014)  

Methods 

Mortality Data 

Our study area (Figure 1-1) includes all ZIP Codes within or around seven major shales defined 

by the U.S. Energy Information Administration (Figure 1-S1).(U.S. Energy Information 

Administration (EIA) 2019a) We grouped these ZIP Codes into three non-adjacent areas: 

northern, eastern, and southern subregions. The Medicare beneficiaries denominator file was 

obtained from the Center for Medicare and Medicaid Services.(ResDac 2018) We built an open 
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cohort with person-years of follow-up for Medicare beneficiaries 65 or older at enrollment and 

residing in the study area for at least one year during 2001-2015. For each person-year of follow-

up at risk, we extracted details including age, race, sex, Medicaid eligibility, residential ZIP 

Code, and date of death. 

 

Figure 1-1. Map of the study area, which contains over 120,000 active UOGD wells located in 9244 ZIP 

Codes in December 2015. 

UOGD Data  

We obtained information on domestic well location, construction, and production from 

Enverus™ (formerly Drillinginfo.com) through its Direct Access Service.(Enverus 2019) 

Additional information on Enverus™ is presented in Supplementary Appendix (SA)(Page. 18). 

We categorized horizontally-drilled wells as UOGD, and vertically-drilled wells as COGD.(U.S. 

Enverionmental Preotection Agency (EPA) 2016) Wells under construction or in production are 

considered active. 
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Exposure Assessment  

We used an inverse-distance-weighting (IDW) method to calculate monthly PE to UOGD. This 

metric incorporates the distances from UOGD wells and the number of UOGD wells nearby. We 

calculated distances between the grid center and each active well within a 15-km circular buffer 

in each month for each 1-km grid cell (Figure 1-2A). We then calculated grid-specific PE by 

summing the inverse of these distances (Figure 1-2B). This method gave higher weight to 

UOGD closer to the grid center. The spatial resolution of residential location information is ZIP 

Code-level in the Medicare cohort. As a result, we calculated ZIP Code-level PE by taking a 

weighted average of grid-level PE according to grid-level population density.(Doxsey-Whitfield 

et al. 2015)  

 

Figure 1-2. UOGD exposure assessment in an example ZIP Code and month (Washington, PA, 15301, 

August 2015). 

Communities downwind of UOGD wells are more likely to be affected by the air pollutants 

emitted on-site and transported by air. To characterize this phenomenon, we also calculated a 
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ZIP Code-level monthly DE ranging from 0 to 100%. First, a grid-specific monthly prevailing 

wind was estimated by downscaling the monthly wind field provided in North America Regional 

Reanalysis (NARR) by bilinear spline interpolation.(Mesinger et al. 2006) We calculated the 

monthly proportion of PE contributed by upwind wells, defined as wells within the windward 

circular sectional quadrant whose central angle is 90 degrees (Figure 2B). For example, if wells 

were evenly distributed within the circular buffer, then one-quarter of wells would fall within the 

windward quadrant, and the upwind contribution would be 25%. These grid-specific DE were 

also aggregated to ZIP Code-level weighted by population and averaged by year. 

Potential confounding variables  

To control for potential confounding bias, we considered the following individual-level 

covariates available in the Medicare denominator files: gender (male or female), race (White or 

Black), age, calendar year, and Medicaid eligibility (yes or no) as a proxy for low socioeconomic 

status. We considered ZIP Code Tabulation Area (ZCTA)-level indicators of socioeconomic 

status including annual median household income, owner-occupied housing units median value, 

population percent below the poverty line, population percent without high school diplomas, 

population density, and homeownership rate. These were obtained from the 2000 and 2010 US 

Census and the American Community Survey (ACS) and linearly extrapolated to account for the 

covariates’ time-varying nature. County-level covariates, including annual percent of non-

smokers and obese people, were obtained from the Behavioral Risk Factor Surveillance System 

(BRFSS).(CDC (Center for Disease Control and Prevention) 2013) 

Some air pollutants emitted by UOGD-related operations can also originate from other sources, 

such as traffic and COGD activities. To isolate specific UOGD effects, we included multiple 
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environmental covariates to control for non-UOGD sources. COGD exposure was calculated 

using the same approach used to generate UOGD exposure metrics. We also controlled for PM2.5 

exposures from other anthropogenic activities using gridded annual ambient levels of PM2.5 

predicted by a previously published national spatiotemporal model.(Di et al. 2016) We obtained 

annual land cover data from the U.S. Geological Survey(Earth Resources Observation and 

Science (EROS) Center 2012) and calculated the ZIP Code-specific percent of land surface 

covered by vegetation and developed area to represent the residential emission of pollutants 

other than PM2.5. 

Statistical Analysis 

We fitted two extended Cox proportional models with time-dependent covariates (Anderson-Gill 

model) to investigate the health effects of UOGD exposure.(Andersen and Gill 1982) Robust 

sandwich variance estimators were used to account for the nesting of observations within ZIP 

Code in both models.(Lee et al. 1992) We allowed baseline mortality rate to vary by gender, 

race, eligibility for Medicaid, age categories and calendar year categories in both models (SA 

Section 3). Model I relied on PE, estimating the health effects of living proximity to UGOD. 

Model Ⅱ was jointly based on PE and DE, and able to estimate the influence of UOGD on 

downwind communities specifically. 

In Model I, person-years with zero PE exposure were used as the unexposed group (reference 

level). Most of UOGD activities are within the shales included in this study. As a result, person-

years outside of our study area due to beneficiaries’ mobility were merged into the unexposed 

group. All person-years with non-zero PE were categorized by quartiles into four exposure 

groups: low (0, 25th percentile], medium-low (25th, 50th percentile], medium-high (50th, 75th 
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percentile] and high PE group (75th, 100th percentile]. We used subgroup analysis to evaluate 

specific populations effects and subregional analysis to evaluate consistency across three 

subregions. We also tested the sensitivity of these associations to breaking point selection by 

trying other categorization methods. Finally, we assessed the sensitivity of Model I to the 

inclusion and exclusion of covariates by refitting modified Model I with a subset of covariates. 

Model Ⅱ was fitted to investigate the difference in mortality effect estimates between downwind 

and upwind exposure to UOGD, holding the proximity constant. Toward this end, each PE level 

was divided into DE sub-level (upwind contribution of PE ≥ 25%, indicating the population in a 

ZIP Code is predominately downwind of wells, DE+) and upwind sub-level (upwind contribution 

< 25%, indicating the population in a ZIP Code is not predominately downwind of wells, DE-). 

Four PE groups in Model Ⅰ were divided into eight exposure groups of Model Ⅱ, four of which 

are for DE+, the other four are for DE-. The unexposed group in Model Ⅰ was not subdivided. 

This formulation was equivalent to adding an interaction term between PE and DE to the formula 

in Model Ⅰ (SA Section 3). We also performed subgroup, subregional and sensitivity analysis of 

Model II using similar approaches to those used for Model I. 

The analysis was conducted on the Cannon cluster, supported by the Research Computing 

Group, and on the Research Computing Environment, supported by the Institute for Quantitative 

Social Science, both at Harvard University, Faculty of Arts and Sciences. We used R software 

(version 3.4.2)(R Core Team 2017) and survival package (version 3.1.8)(Therneau 2019) to 

perform survival analysis. 
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Results 

Table 1-1. Characteristics of population grouped by PE and DE to UOGD.  

Covariates No-PE* Low-PE High-PE ASD† 

 -- DE- DE+ DE- DE+ 

DE+ 

vs 

DE- 

No. of Beneficiaries 13,176,937 1,221,558 790,820 753,219 717,874 -- 

No. of Person-years 110,093,570 4,321,587 2,505,366 3,236,837 3,025,157 -- 

No. of Deaths 5,434,451 214,430 127,428 154,964 143,965 -- 

Mortality (%) ‡ 4.9 5.0 5.1 4.8 4.8 -- 

Individual level        

Female (%) § 57.6 56.4 56.5 56.1 56.3 0.004 

White (%) 90.7 91.7 92.6 89.6 88.4 0.007 

Medicaid Eligibility 

(%) 10 12.2 12.9 11 10.8 
0.009 

Age (year) 75.1±7.6 74.8±7.5 74.9±7.5 74.6±7.5 74.6±7.5 0.005 

ZIP Code-level       

PE of COGD 5.0±14.0 12.0±19.9 12.9±19.4 15.4±25.7 13.7±22.9 0.007 

PM2.5 (μg/m3) 10.3±2.7 8.9±2.6 9.1±2.4 9.3±1.6 9.1±1.4 0.028 

Below Poverty (%) 18.1±4.1 20.8±4.9 20.8±4.9 23.0±4.0 23.3±4.0 0.018 

No High School (%) 8.2±5.8 9.7±5.5 10.1±5.6 8.8±5.8 8.6±6.2 0.041 

Pop Density  

(100 person/km2) 25.0±13.8 25.7±13.2 27.7±14.2 22.3±12.9 21.6±12.4 
0.007 

Mean Household 

Income (×103 $) 17.7±25.9 4.6± 8.8 3.5± 7.0 10.8±13.9 13.9±16.6 
0.011 

Median House  

Value (× 105 $) 51.8±20.9 46.8±16.8 44.1±12.3 52.9±21.1 53.7±20.4 
0.033 

County-level       

BMI ¶ 27.0±1.0 27.4±1.2 27.5±1.3 27.4±1.2 27.4±1.0 0.043 

Non-Smoker (%) 46.9±6.5 46.7±8.0 47.6±7.8 43.9±7.4 45.4±6.6 0.136 
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This cohort included 136,215,059 person-years from 15,198,496 subjects living in 9244 ZIP 

Code areas from 2001 to 2015. A total of 174,624 UOGD wells were completed during our study 

period (2001-2015) which increased PE in all three subregions (Table 1-S1and Figure 1-S3). The 

high PE group had a lower percentage of Medicaid eligibility and poverty rate; and higher 

average median income and median house value than the other three PE groups. This aligns with 

a previous study that found a higher SES in communities near UOGD (Table 1-1).(Boudet et al. 

2018) We found the absolute standardized difference (ASD) of each potential confounder 

between DE+ and DE- subgroups within each PE group is always lower than 10% (Table 1-1 and 

Figure 1-S2). This suggests that confounding bias is negligible. 

According to Model I all PE levels were associated with statistically significant mortality risk 

increases, compared to the unexposed level (Table 1-S3). The associated risks of mortality 

increase monotonically when the PE level increases from low to high (Figure 1-3A). High PE 

level was associated with a statistically significantly elevated risk of all-cause mortality (HR 

1.025; 95% CI, 1.021 to 1.029). According to the subgroup analysis, the estimated mortality risk 

associated with the female subgroup is greater than the male subgroup within each PE level 

(Figure 1-S5A). We did not find evidence of racial or age-dependent difference (Page 29). 

According to Model Ⅱ, living downwind of UOGD wells was associated with a higher risk of 

death compared to living upwind of UOGD (Figure 3B, Table S3). More specifically, within the 

high PE level, we found evidence of a statistically significant increase in the risk of death when 

comparing the DE+ subgroup with the unexposed group (HR 1.031; 95% CI, 1.025 to 1.037). 

When comparing the DE- subgroup to the unexposed group, the associated HR is 1.022 (95% CI, 

1.017 to 1.028), significantly lower than the HR associated with the downwind subgroup (95% 

CI, 0.003 to 0.014, p-value<0.001). The significant downwind-upwind difference in the 
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increased risk of mortality persisted in the medium-high and medium-low PE levels (Table 

1-S3). According to the subgroup analysis, the downwind-upwind difference is more remarkable 

in male and younger subgroups compared to female and elder subgroups (Figure 1-S5). 

When we stratified the analysis by subregions, we found similar associations between UOGD 

exposure, both PE and DE, and all-cause mortality (Figure 4). The effects of UOGD exposure on 

mortality in the northern and eastern subregions were larger than those in the southern subregion. 

The associations found in Model I and Model II were robust to the breaking point selection in 

categorization (Page 29). 

 

 

Figure 1-3. The estimated relative risk of mortality associated with each level of proximity-based 

exposure to UOGD (PE) and both sub-levels of downwind exposure to UOGD (DE) within each PE level.  

Panel A shows the result of Model Ⅰ, which investigates whether the relative risk of mortality associated 

with each PE level when compared to the no-exposure group is significantly higher than 1. Panel B shows 

the result of Model II. Model II first investigated the association between PE and all-cause mortality in 

DE+ groups and DE- groups, respectively. We can compare the relative risks associated with the DE+ 

subgroup and DE- subgroup within each PE levels. 
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Figure 1-4. The relative risk associated with exposure to UOGD in each subregion. 

Panel A shows the extent of northern subregion; Panels B and C show the result of two corresponding 

models respectively; Panel D shows the extent of eastern subregion; Panels E and F show the result of 

two corresponding models; Panel G shows the extent of southern; Panels H and I show the result of two 

corresponding models. 

Discussion 

We found that residential exposure to UOGD, characterized by PE and DE exposure metrics, 

was associated with a significantly elevated risk of mortality in Medicare beneficiaries. This was 

observed in all three subregions (Figure 1-3), both genders, all age groups, and major races (Page 

29). These findings indicate that the past decade of extensive expansion of onshore UOGD has 

impacted the health of nearby communities regardless of geological, environmental, or 

demographic factors. 

Communities surrounding UOGD are exposed to diverse chemical and physical pollutants. We 

recognized that proximity-based exposure, such as the PE we constructed, assumed a uniform 
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distance-decay gradient of UOGD exposure and does not account for transport mechanisms. To 

address this, we leveraged the quasi-random variation of wind direction to isolate the impact 

contributed by agents transported by air. We found pronounced difference in the mortality risks 

associated with DE+ and DE- sublevels within three PE levels (Table 1-S3). These results 

indicate that airborne contaminants emitted at UOGD and transported downwind contribute to 

the increased mortality. We also found statistically significant, but lower relative risk, for 

populations residing upwind of UOGD wells. These associations could be due to other agents 

whose transport are independent of atmospheric movement, such as surface and groundwater 

contaminants, traffic-dependent impacts, noise, light pollution, and lifestyle disruption. They 

could also be explained by UOGD-related airborne pollutants transported to upwind 

communities but at a lower frequency than downwind communities.  

Previous studies on adverse health outcomes of UOGD exposure were challenged by the Health 

Effects Institute in its recently-released literature review for relying on exposure surrogates 

instead of utilizing specific measurements of UOGD-related contaminants.(Health Effects 

Institute-Energy (HEI-Energy) Research Committee 2019b) However, airborne pollutants 

emitted by UOGD can originate from other sources, making it difficult to disentangle the 

specific contribution of UOGD to human health.(Health Effects Institute-Energy (HEI-Energy) 

Research Committee 2019a) Currently operating population-oriented monitor networks are not 

designed to characterize neighborhood-scale gradients of UOGD emitted airborne pollutants. As 

a result, exposure surrogates are essential for large-scale population-based studies even though 

direct measurements of exposures may be possible in smaller cohort studies. Our novel 

methodology specifically assesses the contribution of UOGD-related airborne pollution and may 

be used to investigate the health effects of other industrial activities with complex, difficult-to-
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measure pollution profiles. 

A key strength of our study is the application of wind direction to create a quasi-experiment 

(detailed in Model II). For previous observational UOGD health effects studies, a primary 

challenge was the study population could not be randomly assigned to exposed and nonexposed 

groups, suggesting that people who live closer to UOGD have different initial health conditions 

(likely due to different SES) from those further distances from UOGD operations. Observational 

studies based solely on proximity-based exposure metrics are vulnerable to unobserved 

confounding factors bias – a key limitation in existing studies.(Health Effects Institute-Energy 

(HEI-Energy) Research Committee 2019b) In this study, the assignment of DE sub-levels was 

determined by wind direction whose variation is theoretically independent of the potential 

confounding factors such as SES (SA Section 4). This quasi-experiment design could mitigate 

confounding and omitted covariates bias in the estimated association.(Dominici, Greenstone, and 

Sunstein 2014) 

Our study also used a nationwide cohort of over 15 million Medicare beneficiaries, starting prior 

to UOGD expansion, and a comprehensive database covering over 2.5 million oil and gas wells. 

Medicare beneficiaries include over 95% of U.S. citizens 65 or older.(Schwartz et al. 2018) Our 

study population is nationally-representative and has a low influence of occupational UOGD 

exposure. The comprehensive geographic coverage, encompassing all shales, allowed us to 

analyze nationally and regionally associations. Previous regional studies have not examined the 

regional heterogeneity of observed associations. The subregional analysis could be regarded as 

three independently conducted epidemiology studies involving the association based on an 

identical exposure-outcome pair. 
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A limitation of our study is that we were unable to estimate associations between mortality and 

specific UOGD-related airborne agent(s), due to unavailability of high-resolution exposure data 

of air pollutants other than PM2.5. Instead, our study estimates the effects of an air pollutants mix 

originating from UOGD wells. Further observational studies near UOGD, especially in both 

wind directions, are necessary to identify air pollutant(s) responsible for the health effects 

observed in this study. We were not able account for well characteristics including drilling depth, 

product type, well age, productivity, operator, and wastewater management method in our 

exposure assessment due to a lack of information for all domestic major shales. These factors 

could contribute to between-well variations in emission intensity and thus could help further 

improve the exposure metrics. 

Considering the increased rate and scale of the expansion of UOGD, it is critical to understand 

the potential health risks associated with this industry. In this study, we designed two metrics and 

employed them to estimate the health effects of living close to, and downwind of, UOGD 

respectively. According to our models, we conclude that residential exposure to UOGD is 

positively associated with an elevated risk of all-cause mortality in Medicare population.  
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Appendix: Supplementary Material 

Appendix 1.1: Details of study extent 

Our study extent (shown in Figure 1-1) covers all counties around or within major UOGD 

production regions. A total of 9244 ZIP Codes within these counties were included. The target 

formations (shales) underground these regions include Bakken formation primarily underneath 

western North Dakota; Niobrara formation primarily underneath eastern Colorado and northern 

Utah; Marcellus and Utica formation underneath Pennsylvania, West Virginia, eastern Ohio and 

southern New York; Woodford formation underneath Oklahoma; Fayetteville formation 

underneath central Arkansas; Permian formation underneath southeastern New Mexico and 

western Texas; Barnett formation underneath central and northern Texas; Eagle Ford formation 

underneath southern Texas and Haynesville formation underneath eastern Texas and western 

Louisiana.  

The boundaries of this formation are determined by EIA and shown as dark yellow polygons. 

Most UOGD wells completed by the end of 2015 (shown as red dots in Figure 1-1) are 

positioned to this extent. Counties around Bakken shale and Niobrara shale are clustered as a 

northern subregion. Counties around Marcellus shale and Utica shale are clustered as an eastern 

subregion. All other counties were grouped as a southern subregion. 

Appendix 1.2: Data source of exposure assessment 

State energy agencies are the primary data source of Enverus™. Wells in Enverus™ database are 

classified into horizontal wells, vertical wells, and directional wells. However, the definition of 

directional wells varies among states. For example, directionally drilled wells and horizontally 
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drilled wells are both grouped in a single class in Colorado as directional well, while are kept 

separated in New Mexico. As a result, there is a visually remarkable difference in the percentage 

of horizontal wells, which is considered unconventional wells in our study, across the state line 

even though they share the target geological formation and apply similar drilling methods. 

 

 

Figure 1-S1.The extent of major UOGD production regions defined by the US. Energy 

Information Administration, a subsidiary of the U.S Department of Energy. 

Consequently, it is not reliable to assume that all directionally drilled wells are UOGD. Also, the 

raw dataset from Enverus™ does not provide drilling type information for more than 75% of the 

wells, mostly drilled before 2000. It is also inaccurate to assume that all wells without drilling 
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type information as conventional because some state agencies do not require drilling type. To 

solve these problems, we need to predict the binary drilling type based on the drilling types of its 

neighbor wells and other secondary information. 

We trained a random forest model to perform this binary prediction. Random forest is a 

regression tree-based algorithm good at capturing the non-linear relation between the primary 

variable and secondary variables, thus suitable for solving this binary classification problem. 

Secondary variables incorporated in the model include: 1) the drilling type of the nearest well 

with known drilling type information; 2) the distance to the nearest conventional/unconventional 

well; 3) the percentage of conventional and unconventional wells of the nearest 10 wells with 

known drilling type; 4) the O&G reservoir where the well is positioned; 5) the 

spudding/completion time; 6) the drilling depth; 7) the natural gas /liquid production in the first 6 

months; 8) the production declining rate of gas/liquid. After running a grid search for optimal 

performance, the parameters of this model were set as the following: the number of trees is 100, 

maximum depth is 15, the minimum size of a node is 5. The accuracy of this model is 99.83% 

for conventional O&G wells and 93.1% for unconventional O&G wells. The performance 

difference is potentially caused by the re-fracturing process of some conventional O&G wells. 

As shown in Figure S2, the covariates with the three highest importance are the number of 

conventional wells within 10 km, the number of unconventional wells within 10 km, the drilling 

type of the closest well with known drilling type. We used the random forest algorithm 

implemented in h2o to fit and evaluate our model. 

We excluded wells without any temporal information about spudding, completion, production, 

and abandonment. We then calculated the annual region-specific average length of the 

construction period and estimated the construction-related dates for wells with only production 
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records. 

 

Figure 1-S2.The relative importance of covariates in the random forest model. 

 Full names of the variables from top to bottom: Number of conventional wells within 10km, number of 

unconventional wells within 10 km; the drilling type of the closest well with known drilling type. total 

drilling depth, spudding date, the date of the first production record, completion date, the date of peak 

million cubic feet of gas equivalent production, the date of peak natural gas production, the date of peak 

barrel of oil equivalent production. 

Appendix 1.3: Details about statistical analysis 

In Model I, we used the following formula: 

 

λ(𝑡|𝒁(𝑡)) = 𝜆0𝑒𝑥𝑝(𝜷 × 𝒁(𝑡)) 
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𝒁(𝑡) = 𝑷𝑬(𝑡) + Exposure term of Model I 

 strata(𝐺𝑒𝑛𝑑𝑒𝑟, 𝑅𝑎𝑐𝑒, 𝑀𝑒𝑑𝑖𝑐𝑎𝑖𝑑, 𝑌𝑒𝑎𝑟, 𝐴𝑔𝑒(𝑡)) + Individual-level factors  

 𝑃𝑀2.5(𝑡) + %𝐷𝑒𝑣𝑒𝑙𝑜𝑝(𝑡) + %𝑉𝑒𝑔(𝑡) +  𝐶𝑂𝐺𝐷(𝑡) + ZIP Code-level environmental 

factors 

 %𝐻𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙(𝑡) +  %𝑃𝑜𝑣𝑒𝑟𝑡𝑦(𝑡) + 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑡) + 

𝐻𝑜𝑢𝑠𝑒𝑣𝑎𝑙𝑢𝑒(𝑡) + 𝐼𝑛𝑐𝑜𝑚𝑒(𝑡) + %𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝(𝑡) + 

ZIP Code-level socioeconomic 

factors 

 %𝑆𝑚𝑜𝑘𝑖𝑛𝑔(𝑡) + 𝐵𝑀𝐼(𝑡) County-level behavior risk factors 

where 𝒁(𝑡) is a mix of time-varying covariates, including the exposure term, individual-level 

demographic factors, ZIP Code-level environmental factors, ZIP Code-level socioeconomic 

factors, and county-level behavior risk factors. The hazard at time 𝑡 (denoted as λ(t)) depends on 

the value of covariates at that time (denoted as 𝒁(𝑡)). The regression coefficient of 𝒁(∙), denoted 

as 𝜷, is constant over time. The stratification term 𝑠𝑡𝑟𝑎𝑡𝑎(𝐺𝑒𝑛𝑑𝑒𝑟, 𝑅𝑎𝑐𝑒, 𝑀𝑒𝑑𝑖𝑐𝑎𝑖𝑑, 𝑌𝑒𝑎𝑟, 𝐴𝑔𝑒(𝑡)) 

allows the baseline function, denoted as 𝜆0To vary across subgroups. The exposure term of 

Model I is only PE (denoted as 𝑷𝑬(𝑡)). 

We added an interaction term between downwind-based exposure to UOGD (DE) and proximity-

based exposure to UOGD (PE) to the formula of Model I. In this way, we had a modified 𝒁∗(𝑡) 

as 

𝒁∗(𝑡) = 𝑫𝑬(𝑡) × 𝑷𝑬(𝑡) + 𝑷𝑬(𝑡) Exposure term of Model II 

 strata(𝐺𝑒𝑛𝑑𝑒𝑟, 𝑅𝑎𝑐𝑒, 𝑀𝑒𝑑𝑖𝑐𝑎𝑖𝑑, 𝑌𝑒𝑎𝑟, 𝐴𝑔𝑒(𝑡)) + Individual-level factors 

 𝑃𝑀2.5(𝑡) + %𝐷𝑒𝑣𝑒𝑙𝑜𝑝(𝑡) + %𝑉𝑒𝑔(𝑡) + 𝐶𝑂𝐺𝐷(𝑡) + ZIP Code-level environmental 

factors 

 %𝐻𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙(𝑡) +  %𝑃𝑜𝑣𝑒𝑟𝑡𝑦(𝑡) + 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑡) + 

𝐻𝑜𝑢𝑠𝑒𝑣𝑎𝑙𝑢𝑒(𝑡) + 𝐼𝑛𝑐𝑜𝑚𝑒(𝑡) + %𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝(𝑡) + 

ZIP Code-level socioeconomic 

factors 

 %𝑆𝑚𝑜𝑘𝑖𝑛𝑔(𝑡) + 𝐵𝑀𝐼(𝑡) County-level behavior risk factors 
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Appendix 1.4: Balance of covariates between exposure groups 

As shown in Table 1-1, the absolute standardized difference (ASD) of the individual- and ZIP 

Code-level covariates are all below 10% except for the county-level smoking rate, indicating an 

overall balanced assignment of DE+ and DE- sublevels. We also calculated ASD between DE+ 

and DE- sublevels within each PE levels (Figure 1-S3.The absolute standardized difference of all 

covariates between DE+ and DE- sub-levels within each PE level.). Individual-level covariates, 

including race, age, gender, eligibility for Medicaid, were well balanced in each PE levels 

because all ASD were smaller than 10%. ZIP Code- and county-level covariates were not as well 

balanced. However, most of the ASDs were below 10%, with a few exceptions over 20%, 

indicating a general balanced assignment. 

 

Figure 1-S3.The absolute standardized difference of all covariates between DE+ and DE- sub-

levels within each PE level. 
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Appendix 1.5: Spatio-temporal patterns of UOGD and COGD exposure 

During our study period, UOGD expanded rapidly across major shale regions (Figure 1-S4). We 

calculated the average PE levels for both UOGD and COGD in each subregion during our study 

period (Figure 1-S4). Due to the rapid expansion of UOGD, the mean of PE to UOGD increased, 

especially after 2007 in southern subregion and after 2011 in northern and eastern subregions. 

Meanwhile, the expansion of COGD was not as rapid. The COGD exposure even declined 

slightly in southern subregion. At the beginning of our study period (Figure 1-S4 (A)), UOGD 

was not widely adopted for economic reasons. Only two small areas, one above Eagle Ford shale 

and one above Bakken shale, were in high PE level. Approximately 40,000 residents lived in 

these regions. At then end of our study period (Figure 1-S4 (B)), over 18 million U.S residents 

were living within the high PE to UOGD level regions across conterminous U.S. 

Table 1-S1. The spatio-temporal variability of PE to UOGD and PE to COGD during 2001-2015 

Years PE to UOGD PE to COGD Person-Years Deaths Mortality 

Northern Region 

[2001,2003] 0.021 2.920 1,761,323 87,398 4.96% 

[2004,2007] 0.032 3.370 2,524,946 115,638 4.58% 

[2008,2011] 0.071 3.400 2,849,780 122,281 4.29% 

[2012,2015] 0.403 3.700 3,256,531 132,032 4.05% 

Eastern Region 

[2001,2003] 0.001 7.340 14,662,750 791,712 5.40% 

[2004,2007] 0.002 8.100 19,642,761 1,015,742 5.17% 

[2008,2011] 0.065 8.920 20,397,279 1,004,922 4.93% 

[2012,2015] 0.417 9.080 21,635,110 1,032,606 4.77% 

Southern Region 

[2001,2003] 0.235 4.620 8,739,250 474,872 5.43% 

[2004,2007] 0.656 5.040 12,341,594 627,732 5.09% 

[2008,2011] 3.100 5.450 13,540,645 644,641 4.76% 

[2012,2015] 4.890 5.350 14,863,090 682,075 4.59% 
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Figure 1-S4. The comparison between PE to UOGD in the beginning (Panel A) and at the end 

(Panel B) of our study period. 
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Appendix 1.6: Spatio-temporal patterns of mortality 

We calculated the raw mortality (ratio between the number of events and the number of person-

years at risk of event) for each subregion and year range pair (Table 1-S2). The mortality 

declined gradually in each PE levels due to advances in health care during our study period. 

Higher PE to UOGD groups has higher mortality than lower PE to UOGD groups besides few 

exceptions. 

Table 1-S2. The spatio-temporal variation of all-cause mortality in study population. Mortality is 

reported as the ratio between number of event and number of person-year at risk 

 
Reference Low Medium Low Medium High High 

Northern Subregion 

2001-

2003 

77,983/1,575,

652 4.95% 

3,591/69,160 

5.19% 

3,888/79,830 

4.87% 

1,936/36,681 

5.28% 

0/0 

NA 

2004-

2007 

102,672/2,253

,425 4.56% 

4,358/93,009 

4.69% 

5,840/122,545 

4.77% 

2,701/54,730 

4.94% 

67/1,237 

5.42% 

2008-

2011 

104,579/2,449

,975 4.27% 

6,188/139,32

6 4.44% 

8,030/185,782 

4.32% 

3,088/67,022 

4.61% 

396/7,675 

5.16% 

2012-

2015 

98,960/2,449,

937 4.04% 

10,344/240,6

17 4.30% 

12,335/320,01

2 3.85% 

8,247/200,242 

4.12% 

2,146/45,723 

4.69% 

Eastern Subregion 

2001-

2003 

782,079/14,48

6,115 5.40% 

3,466/66,636 

5.20% 

3,285/59,185 

5.55% 

2,882/50,814 

5.67% 

0/0 

NA 

2004-

2007 

990,334/19,17

5,492 5.16% 

7,671/143,84

7 5.33% 

12,016/219,83

9 5.47% 

5,721/103,583 

5.52% 

0/0 

NA 

2008-

2011 

895,354/18,28

0,148 4.90% 

23,285/451,7

96 5.15% 

51,096/999,13

2 5.11% 

32,904/623,53

0 5.28% 

2,283/42,673 

5.35% 

2012-

2015 

825,715/17,52

7,948 4.71% 

20,883/418,6

62 4.99% 

71,607/1,425,

377 5.02% 

98,211/1,939,8

11 5.06% 

16,190/323,312 

5.01% 

Southern Subregion 

2001-

2003 

359,408/6,643

,702 5.41% 

24,759/446,5

03 5.55% 

57,969/1,048,

056 5.53% 

28,613/523,22

0 5.47% 

4,123/77,769 

5.30% 

2004-

2007 

416,667/8,262

,887 5.04% 

33,677/654,5

22 5.15% 

82,203/1,553,

188 5.29% 

77,392/1,504,5

25 5.14% 

17,793/366,472 

4.86% 

2008-

2011 

385,067/8,204

,443 4.69% 

37,033/772,9

09 4.79% 

79,931/1,602,

337 4.99% 

86,138/1,730,8

83 4.98% 

56,472/1,230,073 

4.59% 

2012-

2015 

395,633/8,783

,846 4.50% 

30,365/643,4

99 4.72% 

82,546/1,739,

660 4.74% 

100,088/2,056,

407 4.87% 

73,443/1,639,678 

4.48% 
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Appendix 1.7: Subgroup analysis 

We performed subgroup analysis by restricting person-years to a specific subgroup of population 

and refitting both Model I and Model II. As shown in Figure 1-S5(A), relative risks associated 

with PE levels in female enrollee are uniformly higher than those of male enrollee. As shown in 

Figure 1-S5(B), the the relative risks associated with DE+ subgroups are higher than those 

associated with the corresponding DE- subgroups, except for in the low PE level, regardless of 

the gender of the beneficiaries. However, the downwind-upwind difference is more pronounced 

in male beneficiareis compared to female beneficiaries. This difference could be explained by the 

gender-based behavior distinction. As shown in Figure 1-S5(C) and Figure 1-S5 (D), the 

estimated risks associated with each PE level in African American subgroups have wider CI than 

those for white beneficiaries, due to a smaller sample size. For this reason, most of the exposure 

levels are not significantly associated with elevated risk, thus making it difficult to investigate 

the ethnic-based difference in the association. As shown in Figure 1-S5 (E) and Figure 1-S5G), 

there is no remarkable difference in the PE-associated risks of mortality among four age groups. 

However, the downwind vs upwind difference in the associated risk is more pronounced in the 

younger two age subgroups ( a subgroup from 65 to 75 and a subgroup from 76 to 85), compared 

to the elder two age subgroups (a subgroup from 86 to 95 and a subgroup from 96 to 105). These 

age-dependent difference in the associated risk could also be explained by the behaviro 

distinction. For example, younger medicare beneficiaries are more active and thus spend more 

time outdoors compared to their senior counterparts. 
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Figure 1-S5.Results of the subgroup analysis of both models.  
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Appendix 1.8: Results of Model I and Model II 

Table 1-S3 The results of  full Model I and Model II (the data source of  Figure 1-3in the main 

text) 

PE 

level 

DE 

level 

Hazard 

Ratio 
95% CI P-value 

DE+ vs 

DE- Diff 
95%CI P-value 

Low -- 1.008 (1.004,1.011) <0.001 -- -- -- 

Med-

Low 
-- 1.013 (1.009,1.017) <0.001 -- -- -- 

Med-

High 
-- 1.018 (1.014,1.022) <0.001 -- -- -- 

High -- 1.025 (1.021,1.029) <0.001 -- -- -- 

Low DE- 1.010 (1.005,1.014) <0.001 -- -- -- 

Low DE+ 1.006 (1.001,1.012) 0.0142 -0.004 (-0.009, 0.002) 0.884 

Med-

Low 
DE- 1.008 (1.004,1.013) <0.001 -- -- -- 

Med-

Low 
DE+ 1.024 (1.018,1.030) <0.001 0.016 (0.010,0.022) <0.001 

Med-

High 
DE- 1.013 (1.008,1.018) <0.001 -- -- -- 

Med-

High 
DE+ 1.027 (1.022,1.033) <0.001 0.015 (0.009,0.020) <0.001 

High DE- 1.022 (1.017,1.028) <0.001 -- -- -- 

High DE+ 1.031 (1.025,1.037) <0.001 0.009 (0.003,0.014) <0.001 

Appendix 1.9: Robustness to the exclusion/inclusion of covariates 

Basic Model I and Model II do not account for any ZIP Code- or county-level covariates. 

According to the results of basic Model I (Figure 1-S6A), every PE level is significantly 

associated with an elevated risk of mortality. But the estimated risk is not monotonically 

increasing along with a higher PE level. In addition, the estimated risks are remarkably higher 
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than those predicted by full Model I. However, the downwind-upwind difference in the relative 

risk estimated by basic Model II is pronounced for three PE levels (Figure 1-S6B).

 

Figure 1-S6.A comparison between the full models and the basic models in which only 

individual-level factors are adjusted.  

Panel A shows the comparsion of a full Model I and a correpsonding basic Model I without adjusting for 

ZIP Code-level environmental factors, ZIP Code-level SES factor or county-level behavior risk; Panel B 

shows the comparison of a full Model II and a basic Model II without adjusting for ZIP Code-level 

environmental factors, ZIP Code-level SES factor or county-level behavior risk. 

 

Moderately simplified Model I and Model II only adjust for individual-level covariates and ZIP 

Code-level environmental factors. According to the moderately simplified Model I (Figure 

1-S8A), the association between PE to UOGD and all-cause mortality is still not monotonic. But 

the estimated relative risks are in the same magnitude with those from full Model I. According to 

the moderately simplified Model II (Figure 1-S8B), the downwind-upwind difference in the 

estimated risks is remarkable in all PE levels, not influenced by omitting ZIP Code-level 

covariates and county-level behavior risk factors.  

Lightly simplified Model I and Model II adjust for individual factors, ZIP Code-level 

environmental factors and ZIP Code-level SES covariates while omitting county-level behavior 

risk factors. As shown in Figure 1-S8(A), the lightly simplified Model I estimated lower relative 
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risk for each level of PE. However, omitting county-level behavior risk factor does not change 

the trend of the association. As shown in Figure 1-S8(B), the downwind-upwind difference in the 

estimated risk is robust to omitting county-level behavior risk factor. 

 

Figure 1-S7 A comparison between full models and the moderately simplified models in which 

only individual-level factor, ZIP Code-level environmental factors are adjusted. 

 Panel A shows the comparsion of a full Model I and a correpsonding moderately simplified Model I 

without adjusting for ZIP Code-level SES factor or county-level behavior risk; Panel B shows the 

comparison of a full Model II and a correspongind lightly modified Model II without adjusting for ZIP 

Code-level SES factor or county-level behavior risk. 

 

 

Figure 1-S8.A comparison between full models and the lightly simplied models in which only 

individual-level factor, ZIP Code-level environmental factor and social econocmical facotor are 

adjusted.  
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Panel A shows the comparsion of a full Model I and a correpsonding lightly modified Model I without 

adjusting for county-level behavior risk; Panel B shows the comparison of a full Model II and a 

correspongind lightly modified Model II without adjusting for county-level behavior risk. 

Then we focus on the influence of omitting COGD exposure terms which is highlighted in HEI’s 

review as a key limitation is some of the previously published studies. We fitted a single-

pollutant Model I which only contains PE to UOGD without adjusting for PE for COGD. As 

shown in Figure 1-S9(A), excluding COGD exposure term from the formula of Model I leads to 

a higher predicted risk associated with each UOGD PE level. This indicates the necessity to 

include COGD exposure in health effect studies concerning UOGD. Models unadjusted for 

COGD may overestimate the health effects of UOGD. Despite predicting greater risk, the results 

of the single-pollutant Model I still show a clear trend that greater PE to UOGD is associated 

with a greater risk of all-cause mortality (Figure 1-S9(A)). According to the results of single-

pollutant Model II (Figure 1-S9(B)), the downwind-upwind difference is robust to the omitting 

of COGD.  

 

Figure 1-S9.A comparison between full models and the modified models in which PE to COGD 

is omitted. 

Panel A shows the comparsion of a full Model I and a correpsonding modified Model I without adjusting 

for COGD; Panel B shows the comparison of a full Model II and a correspongind modified Model II 

without adjusting for COGD. 
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Appendix 1.10: Robustness to breaking points selection 

In the original analysis, we categorized above-zero continuous PE to UOGD by its quartiles into 

four levels, low level (0, 25th percentile], medium-low level (25th ,50th percentile], medium-high 

level (50th, 75th percentile] and high level (75th ,100th percentile]. The estimated relative risk 

associated with each PE level are shown in Figure S10 as bold black cross. We designed another 

four sets of percentile-based cutting points: Set 1 (15th, 50th and 85th percentiles), Set 2 (20th, 50th 

and 80th percentiles), Set 3 (30th, 50th, and 70th percentiles) and Set 4 (35th, 50th and 65th 

percentiles). We re-categorized the PE based on these four sets of cutting points and re-fitted 

both models respectively to test the robustness of the associations to the cutting points selection. 

The relative risks of mortality estimated by these four models are comparable because they are 

compared to the same reference group of no exposure. We can plot them together in Figure S10. 

Each estimated risk is visualized by a black cross whose horizontal line represents the range 

determined by the cutting points, whose vertical line represents the 95% CI of the estimated risk, 

whose center point is located in the mid-point of the percentile range. As shown in Figure 1-S10, 

the estimated mortality risk is in general linearly associated with the mid-point of PE range, 

indicating that the results of Model I is robust to cutting point selection.  

After re-categorizing populations based on four sets of cutting points, we further dichonomized 

the new PE-based subgroups into downwind and upwind subgroups in the same method with the 

original analysis. According to the results of the re-fitted Model IIs (Figure 1-S11), the 

downwind-upwind difference in the estimated mortality risk is pronounced in all medium-low 

and medium-high PE levels. When the high PE level starts higher than the 75th percentile ( > 80th 

percentile in Set 2 and >85th percentile in Set 1), the downwind-upwind difference is 
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pronounced. When the high PE level starts lower than 75th percentile (>65th percentile in Set 3 

and >60th percentile in Set 2), this difference is not as remarkable as the first two sets. 

 

Figure 1-S10. The estimated risk of mortality associated with each category of PE to UOGD 

according to the sensitivity anslysis.  

Bold black cross indicate the results of original Model I. 

 

Figure 1-S11. The estimated risk of mortality associated with each category of PE to UOGD 
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Abstract 

Unconventional Oil and Gas Development (UOGD) expanded extensively in the United States 

from the early 2000s. However, the influence of UOGD on the radioactivity of ambient 

particulate is not well understood. We used the ambient particle radioactivity (PR) measurements 

carried out by RadNet, an operational nationwide environmental radiation monitoring network. 

We then obtained the location and production information of over 1.5 million wells from the 

Enverus database. We investigated the association between the upwind UOGD well count and 

the downwind gross-beta radiation with the adjustment for environmental factors governing the 

natural emission and transport of radioactivity. Our statistical analysis found that an additional 

100 upwind UOGD wells within 20 km is associated with an increase of 0.024 mBq/m3 in the 

gross-beta particle radiation downwind from the wells. Based on the published health analysis of 

PR, the widespread UOGD could induce adverse health effects to residents living close to 

UOGD by elevating PR.  

Introduction 

The extraction of crude oil and natural gas from the low-permeability unconventional geological 

accumulating formation (known as unconventional oil and gas development [UOGD]) expanded 

extensively over the past decade. As of 2017, over 120,000 onshore UOGD wells had been 

drilled via a practice involving directional drilling combined with multistage high-volume 

hydraulic fracturing (fracking).(U.S. Energy Information Administration (EIA) 2019c) 

Meanwhile, numerous controversies have arisen, partially due to the potential harmful impacts 

on the local environment,(Allen 2014; Cheadle et al. 2017; Hill and Ma, n.d.; Olmstead et al. 

2013; Blair et al. 2018; Franklin et al. 2019) and on the health of nearby residents.(Casey et al. 
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2016; Rasmussen et al. 2016; Koehler et al. 2018; McKenzie et al. 2019) 

Naturally occurring radioactive material (NORM) is a common by-product in Oil and Gas 

(O&G) production industry. The concentration of Uranium-238 in sedimentary formation rich in 

organic matter, such as black shale, is significantly higher than the background level of in earth’s 

crust due to the natural attenuation process.(Commission 1961; Cordeiro et al. 2016) Before 

widespread UOGD, studies had detected above-background levels of Radium-226, a decay 

product of U-238, in the wastes of conventional oil and gas development (COGD).(Kolb and 

Wojcik 1985; Fisher 1998) Regarding UOGD, enhanced levels of U-238 and Ra-226 have 

recently been detected in the produced water from unconventional hydrocarbon 

reservoirs,(Torres, Yadav, and Khan 2018; Brown 2014) in the drill cuttings from the lateral 

drilling within the unconventional formation,(Eitrheim et al. 2016; Pennsylvania Department of 

Environmental Protection 2016; Zhang, Hammack, and Vidic 2015) in the impoundment 

sediments,(Rich and Crosby 2013) in the soil of brine spill accident scene,(Lauer, Harkness, and 

Vengosh 2016) and in the stream sediments near discharging sites.(Lauer, Warner, and Vengosh 

2018) Two studies in the Marcellus shale region found a positive association between UOGD 

activities and indoor levels of Radon-222, a gaseous decay product of Ra-226.(Casey et al. 2015; 

Xu, Sajja, and Kumar 2019)  

However, the influence of UOGD on the radioactivity of ambient particles (referred to as particle 

radioactivity [PR]) is not well understood. The particle-bound progeny of Radon-222 (referred to 

as radon in this study) contribute to the majority of PR.(Hernández et al. 2005; Baskaran 2011) 

Radon firstly decays into a chain of short-lived particle-reactive progeny. These short-lived 

radionuclides quickly react with the water molecules and atmospheric gases passing by, form 

ultrafine clusters and finally attach to airborne particles.(Porstendörfer 1994; Gründel and 
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Porstendörfer 2004; Mohery et al. 2014) The short-lived progeny on the ambient particles then 

decay into two long-lived progeny, Lead-210 and Polonium-210, which respectively account for 

most of the beta- and alpha-radiation emitted by the particulate.(Cabello et al. 2018; Hernández 

et al. 2005) UOGD could influence local PR level by increasing the emission rate of radon. 

There is an increasing interest in the health effects of PR because the particle-bound Lead-210 

and Polonium-210 tend to be deposited on the bronchial epithelium and expose neighboring cells 

to high-energy alpha particles that induce the carcinogenesis process.(Darby et al. 2005; Duan et 

al. 2015) Short-term exposure to PR has been associated with adverse health outcomes, including 

a decrease in lung function,(Nyhan et al. 2019) an increase in blood pressure,(Nyhan et al. 2018), 

and increased levels in biomarkers of inflammation.(Li et al. 2018; A. Blomberg et al. 2020) 

To our best knowledge, this is the first study to estimate the impact of UOGD on PR. 

Considering the potential emissions from UOGD-associated activities, we hypothesize that there 

is an association between upwind UOGD activities and downwind PR. For hypothesis testing, 

we first calculate daily upwind UOGD well count, then investigate its relationship with the PR 

measured at a downwind monitor. Furthermore, we evaluate the distance-dependent decay of the 

influence. Finally, we estimate the different impacts of UOGD and COGD. The results of our 

study contribute to the currently limited knowledge regarding the influence of UOGD on PR. 

Methods 

Ambient Particle Radioactivity Measurements 

We obtained PR data from the RadNet monitoring network, which is operated by the U.S. 

Environmental Protection Agency (EPA). This network measures the background environmental 

radiation levels in the air, precipitation, and drinking water under both routine and emergency 
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conditions. During the study period from 2001 to 2017, 157 RadNet sites (Figure 2-12) reported 

gross-beta measurements of various time lengths. Most RadNet monitors are located in 

metropolitan areas for better population coverage. At each site, total suspended particles (TSP) 

are collected using a high-volume sampler with a 4-inch diameter polyester fiber filter. Samplers 

are operated continuously for a 3- or 4-day integration. Filters are then sent to the National 

Analytical Radiation Environmental Laboratory (NAREL) for the measurement of gross-beta 

radiation.(Fraass 2015; U.S. Environmental Protection Agency (EPA) 2012) To create quasi-

daily values from the 3- or 4-day integrated samples, we assigned the same beta-radiation level 

to each day of the collection period. 

 

Figure 2-12. The location of RadNet monitors and the UOGD wells (completed by 2017) in the 

continental U.S 

The 157 RadNet monitors are categorized into O&G RadNet monitor (black edge) and Other RadNet 

monitors (no edge) based on whether a monitor is within 50 km of any O&G extractive activities.  
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Unconventional Oil and Gas Development Data 

We obtained position and production information of O&G wells from Enverus (formerly 

Drillinginfo), a third-party data vendor used by the Energy Information Administration (EIA) to 

prepare monthly fossil fuel production and marketing reports. The comprehensive data coverage 

of Enverus is achieved by compiling the permits, construction logs, and production records from 

state agencies. Details about this data source were presented in a previous study.(Czolowski et al. 

2017) Our dataset includes information for 2,159,858 wells stimulated from 01/01/1949 to 

12/31/2017. We used drilling type information as the primary indicator of whether a well is 

targeting an unconventional accumulation formation or not.(U.S. Enverionmental Preotection 

Agency (EPA) 2016) Specifically, we considered horizontally-drilled wells as UOGD wells and 

vertically-drilled wells as COGD wells. Directionally-drilled wells and wells without drilling type 

information were classified into UOGD or COGD wells based on their proximity to nearby UOGD 

wells and other secondary information using a Random Forest model (Supplementary Information 

Section 1.1). 

We used the number of completed wells to characterize the intensity of O&G production 

activity. We identified a well as completed when the operator received the well from the driller. 

If this information is unavailable, we used the first production date as a proxy. Considering the 

transport of airborne particles, we focused on the completed wells positioned upwind of the 

RadNet monitor. Specifically, we created a circular sectional buffer centered on the daily wind 

direction with an angle of 90° and a radius of 20 km (Figure 2-13). We counted the numbers of 

UOGD and COGD wells, respectively, within the buffer on a daily basis to detect the different 

impacts of the two types of wells. We also created a series of circular sectional buffers at 

distances ranging from 25 to 50 km by 5 km intervals to evaluate the potential dependency of 



 

41 

 

impact on the spatial scale. For security reasons, the exact location of RadNet monitors is not 

publicly accessible. We used the centroid of each RadNet city as a proxy to the sampling 

location (Figure 2-13). Because of the potential spatial mismatch, we do not run any analysis on 

a spatial scale smaller than 20 km.  

 

Figure 2-13. Methods to calculate the number of UOGD wells positioned upwind of the RadNet 

monitor at Dallas, TX in two example days  

(Panel A, Nov-26-2007; Panel B, Nov-26-2014). 

Due to the inaccessibility of the monitor’s exact location, we used the geometric center of the city of 

Dallas, TX as a proxy. Based on daily wind direction (black arrows), we created the circular sectional 

buffer with a radius of 20 km and angle of 90 degree. We created a series of buffers with radiuses ranging 

from 20 km to 50km, in order to investigate the scale dependency. We used the same method to count the 

daily number of COGD wells upwind of RadNet monitors. 

Predictors of Particle Radioactivity 

We collected data on environmental variables related to the emission of PR. To control for the 
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emanation rate of radon from soil, we downloaded ground surface concentration of U-238 at a 

spatial resolution of 3 km from the United States Geological Survey.(Joseph S. Duval, John M. 

Carson, Peter B. Holman 2005) PR is associated with the origin of air masses because the 

emanation rate of radon from the ocean is two orders lower than that from the 

continent.(Baskaran 2011) To capture this pattern, we modeled four 72-hour back-trajectories 

(arrival time 06:00, 12:00, 18:00, and 24:00) of each RadNet monitoring sites using the Hybrid 

Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model.(Stein et al. 2015) The 

proportion of trajectory over the continent was used as a proxy to the origin of the air mass with 

0% indicating a maritime air mass, while 100% indicating a continental air mass. Finally, we 

collected the monthly number of sunspots observed by the Royal Observatory of Belgium,(Royal 

Observatory of Belgium 2019) as an indicator of the strength of solar activity. This information 

was used to adjust for the contribution of beta-emitting cosmogenic radionuclides originating 

from upper atmosphere. 

We also obtained environmental factors influencing the transport of PR. Due to the scavenger 

effect of aerosol on the short-lived progeny of radon, PM2.5 concentration strongly influences the 

spatiotemporal distribution of radioactive isotopes in the atmosphere.(Baskaran 2011) We 

downloaded daily PM2.5 concentrations measured at EPA air quality monitors located within 50 

km of RadNet sites and calculated the daily average if more than one measurement was carried 

out. The behavior of PR is driven by multiple meteorological factors, including wind velocity, 

relative humidity, planetary boundary layer height (PBLH), temperature, and soil 

moisture.(Hernández et al. 2005; Baskaran 2011) We obtained these variables from the North 

America Regional Reanalysis (NARR) dataset, with a spatial resolution of 32 km.(Mesinger et 

al. 2006)  
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Statistical Analysis 

We applied linear mixed effect (LME) models to investigate the association between PR and 

UOGD activities. Dependency between daily PR measurements from the same monitor is 

controlled for by including monitor-specific random intercepts. We controlled for relevant 

environmental factors as fixed effects. We also adjusted for long-term temporal trend and 

seasonality by including polynomial terms based on the calendar year and temperature. We applied 

the LME as follows: 

P𝑅𝑖,𝑡 = (𝑐0 + γ𝑖) +𝑐1 ∙ 𝑁um𝑖,𝑡  

 +𝑐2 ∙ 𝑈𝑖 + 𝑐3 ∙ 𝑜𝑟𝑖𝑔𝑖𝑛𝑖,𝑡 + c4 ∙ 𝑠𝑢𝑛𝑡 : Emission of PR 

 +𝑐5 ∙ 𝑝𝑚𝑖,𝑡 + 𝑐6 ∙ 𝑝𝑏𝑙ℎ𝑖,𝑡
−1 + 𝑐7 ∙ rhum𝑖,𝑡 

+𝑐8 ∙ soilm𝑖,𝑡 + 𝑐9 ∙ vel𝑖,𝑡 

: Movement-related 

Environmental 

factors  

 +𝑐10 ∙ 𝑙𝑎𝑡𝑖 

+∑ 𝑐𝑝 ∙ 𝑦𝑒𝑎𝑟𝑡
𝑝−10

𝑝=11,12 + ∑ 𝑐𝑝 ∙ 𝑡𝑒𝑚𝑝𝑖,𝑡
𝑝−12

𝑝=13⋯15  

: Spatial and temporal 

trend 

 +𝑐16 ∙ sunspots𝑡 × lat𝑖 + 𝑐17 ∙ soilm𝑖,𝑡 × 𝑈𝑖 

+𝑐18 ∙ 𝑁𝑢𝑚𝑖,𝑡 × 𝑣𝑒𝑙𝑖,𝑡 

: Interactions 

where PRi,t is PR level of site i on day t; Num represents the number of upwind wells within the 

circular sectional buffer; c2 to c4 are the coefficients for the emission-dependent variables, 

including U for the ground surface concentration of U-238, origin for the origin of the air mass 

and sun for the number of sunspots; c5 to c9 are the coefficients for transport-related 

environmental factors, including pm for the concentration of PM2.5, pblh-1 for the inverse of 

HPBL, rhum for relative humidity, soilm for the moisture of soil and vel for wind velocity; c10 is 
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the coefficient for latitude-dependent spatial trend; c11 to c15 are the coefficients for temporal 

trends terms, represented by the polynomial terms of the calendar year (year) and temperature 

(temp); c16 to c18 are the coefficients for interactions terms between environmental factors. 

In the primary analysis, we associated daily PR levels with the daily number of upwind UOGD 

wells within 20 km with LME. To investigate the magnitude of UOGD’s impact, we calculated 

the increase in PR associated with the 95% percentile of upwind UOGD well count. To 

investigate the dependency of effects on the transport distance, we counted the number of O&G 

wells within a series of circular sectional buffers at distances ranging from 25 to 50 km by 5 km 

intervals, and then estimated the effects for each buffer distances. 

To investigate the influence of COGD wells, we associated daily PR with the upwind number of 

COGD wells within the same buffers. As a negative control, we counted the number of 

downwind UOGD wells within 20 km. To identify the potential regional heterogeneity in the 

effects of UOGD, we restricted our analysis to three separate subregions named after the shale 

formations underneath: Marcellus-Utica subregions, Permian-Haynesville subregion, and 

Bakken-Niobrara subregion (Supplementary Information Figure S3). For sensitivity analysis, we 

first re-evaluated the associations by calculating the upwind UOGD wells within circular 

sectional buffers using two another central angles (60° and 120°). We then performed a leave-

one-out sensitivity analysis to assess whether our estimates were sensitive to the omission of any 

single RadNet site. 

We used the LME methods implemented in lme4 package (version 1.1-21)(Bates et al. 2015) in 

R (version 3.4.2)(R Core Team 2017) to fit the models. The significance test was based on 

confidence intervals instead of p-values. The analysis was conducted on the Cannon cluster, 
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supported by the Research Computing Group at Harvard University, Faculty of Arts and 

Sciences. 

Results 

Table 2-4. Descriptive statistics of the ambient particle radioactivity and its environmental 

predictors.  

Variable Nationwide O&G Monitors Other Monitors 

Monitors (n) 157 43 114 

Observations (n) 320,796 106,057 259,090 

PR (mBq/m3) 0.35 (0.22, 0.43) 0.39 (0.26,0.47) 0.33 (0.20,0.41) 

238U (ppm) 1.82 (1.58, 2.17) 1.91 (1.62,2.19) 1.74 (1.33,2.12) 

Origin of Air Mass (%) 0.77 (0.57, 1.00) 0.82 (0.75,1.00) 0.75 (0.56,1.00) 

PM2.5 (µg/m3) 9.93 (5.74, 12.70) 10.80 (6.49,13.50) 9.63(5.47,12.05) 

Soil moisture (ton/m2) 0.51 (0.42, 0.62) 0.52 (0.42,0.61) 0.52 (0.43, 0.62) 

Relative humidity (%) 69.20 (62.1, 82.30) 65.80 (55.4,80.00) 71.30 (64.7,83.40) 

Temperature (°C) 13.90 (6.70, 22.10) 13.90 (6.48,22.32) 13.48 (6.21,21.63) 

PBLH (km) 0.91 (0.59, 1.13) 0.98 (0.66,1.18) 0.89 (0.57,1.11) 

Wind speed (m/s) 3.36 (2.07, 4.39) 3.51 (2.14, 4.51) 3.27 (1.96,4.23) 

Sunspots (n) 66.76 (19.00, 97.30) -- -- 

Continuous environmental factors are summarized as the mean and the interquartile range (from 25th 

percentile to 75th percentile). 

The unit of the gross-beta radiation is millibecquerel (mBq). 1 mBq/m3 is equal to 1×10-3Bq/m3. 1 

mBq/m3 is also equal to 0.027 pCi/L 

In this study, we analyzed 320,796 PR measurements carried out at 157 RadNet monitors across 

the continental United States from 2001 to 2017. We categorized these monitors into O&G 

RadNet monitors and other RadNet monitors, based on the existence of O&G extraction 
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activities within 50 km (Figure 2-12). As summarized in Table 2-4, the national average PR level 

is 0.35 mBq/m3, with an interquartile range (IQR) from 0.22 mBq/m3 to 0.43 mBq/m3. O&G 

RadNet monitors have a higher average PR (0.39 mBq/m3; IQR: 0.26,0.47 mBq/m3), compared 

to the average PR of other O&G RadNet monitors (0.33 mBq/m3; IQR: 0.20,0.41 mBq/m3). 

Concerning PR emission-related environmental factors, O&G RadNet monitors have a higher 

ground surface U-238 level, and a higher percentage of air mass originated from the continent. 

For PR movement-dependent factors, O&G RadNet monitors have higher PM2.5 concentrations, 

higher PBLHs, higher wind velocity, and lower relative humidity. 

After excluding wells without production records, there are 1,574,602 completed O&G wells by 

the end of 2017. Out of these O&G wells, 152,904 (9.7%) are UOGD wells, and 1,421,698 

(91.3%) are COGD wells (Supplementary Information Figure 2-S16). Out of the UOGD wells, 

4,611 (3.0%) are within 20 km of RadNet monitors and 28,016 (18.3%) are within the 50 km 

buffer. UOGD expanded rapidly in all three subregions during the study period (Supplementary 

Information Section 1.3). Fort Worth, Texas, had the highest average upwind UOGD count 

(mean 586, IQR: 504,661) within 20 km in 2017.  

According to our LME model, there is a statistically significant association between the 

downwind PR and the upwind UOGD activity. With adjustment for environmental factors 

regarding the natural emission and movement of PR, an additional 100 upwind UOGD wells 

within 20 km is associated with a 0.024 mBq/m3 increase in the level of PR (95% CI: 0.020, 

0.028 mBq/m3) for a wind velocity of 1m/s (Supplementary Information Section 2.1). Under the 

same wind condition, an additional 100 upwind COGD wells within 20 km is associated with a 

0.004 mBq/m3 increase in PR (95% CI: 0.003, 0.004 mB1/m3). Regarding the magnitude of the 

impact, UOGD and COGD could elevate the PR level by up to 0.13 mBq/m3 and 0.029 mBq/m3, 
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respectively. We also found significant negative interactions between wind velocity and the 

counts of both UOGD wells and COGD wells located upwind of RadNet monitors, suggesting 

lower influence when the wind is strong (Table 2-5). 

 

Figure 2-14.The association between upwind O&G production activities and downwind level of 

PR. 

The increase in PR associated with an additional 100 UOGD wells (blue bars) and COGD wells (red bars) 

at multiple buffer distance. Effect estimations are visualized as the points and the 95% Cis are visualized 

as the bars. The source data of this figure is provided in Supplementary Materials Table S2. 
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Table 2-5. The associations between PR and other environmental factors 

Term Estimation 95% CI  Details 

U (10-2) 4.88 (3.29, 6.48) U-238 level in ground surface material 

origin (10-2) 7.13 (6.85, 7.41) 

The origin of the air mass. 1 indicates purely 

continental air mass; 0 indicates purely 

oceanic air mass 

temp (10-1) -3.73 (-4.48, -2.99) 

The polynomial terms of air temperature. 

These are used to adjust for seasonality. 
temp2(10-3) 1.20 (0.93, 1.46) 

temp3(10-6) -1.27 (-1.58, -0.96) 

year(10-3) -1.63 (-2.21, -1.05) The polynomial terms of the calendar year. 

These are used to control for long-term trend year2(10-6) 9.29 (-18.72, 37.31) 

PBLH-1 16.53 (15.50, 17.64) Inverse of PBLH 

pm(10-2) 1.12 (1.11, 1.14) 
Average concentration of PM2.5 within 50 

km from the RadNet monitor. 

rhum(10-4) -3.04 (-3.50, -2.58) The relative humidity 2 meters above surface  

soilm(10-5) -4.84 (-6.46, -3.21) 
Liquid volumetric soil moisture in the top 

1m of soil 

sun(10-4) 1.45 (1.23, 1.67) Monthly number of sunspots 

lat(10-3) -6.84 (-9.51, -4.18) The latitude of the RadNet monitor. 

vel(10-3) -0.91 (-1.37, -0.45) Wind velocity 10 m above surface. 

U∙soilm(10-5) -6.57 (-7.43, -5.72) 
The interaction between U-238 concentration 

and soil moisture 

sun∙Lat(10-5) -2.52 (-2.90, -2.15) 
The interaction between monthly count of 

sunspots and latitude 

Furthermore, we found that PR is significantly associated with upwind UOGD at every buffer 

distance of our study (Figure 2-14). However, the influence of an additional 100 UOGD wells 

decreased gradually as the buffer radius increased from 20 km to 50 km. An additional 100 

UOGD wells within 50 km is associated with a 0.002 mBq/m3 increase in PR (95% CI: 0.002, 

0.003 mBq/m3). Meanwhile, the association between the upwind COGD well count and PR is 
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not statistically significant when the buffer radius is greater than 20 km. 

In the negative control analysis, we found PR level is statistically associated with the number of 

UOGD wells within 20 km downwind of a RadNet monitor. However, the increase of PR 

associated with an additional 100 downwind UOGD wells within 20 km is 0.021 mBq/m3 (95% 

CI: 0.017, 0.024 mBq/m3), which is smaller than the impact of an additional 100 upwind UOGD 

well (0.024 mBq/m3 ,95% CI: 0.020, 0.028 mBq/m3). We found that our results are not sensitive 

to the angle of the buffers (Supplementary Information Section 2.2, Figure 2-S18). The upwind-

downwind difference in the influence of UOGD wells is more significant when the angle of the 

circular sections is 60° compared to the quadrant buffer used in the primary analysis 

(Supplementary Information Table 2-S9). We also found that our results are robust to omitting 

one  

of the RadNet monitors in the analysis (Supplementary Information Section 2.3, Figure 2-S19). 

We found that the PR level is statistically associated with the emission- and movement-

dependent environmental covariates (Table 2-5). There are significant positive correlations 

between PR and the ground surface concentration of U-238, the proportion of continent-sourced 

air mass, the number of sunspots, PM2.5 concentration, and the inverse of PBLH. Meanwhile, PR 

is negatively associated with latitude, relative humidity, and soil moisture. 

In our subregional analysis, we found significant heterogeneity among the three subregions 

regarding the influence of UOGD on PR (Table 2-6). In the Marcellus-Utica subregion, PR is not 

statistically significantly associated with upwind UOGD wells for any buffer distances 

investigated. However, the association is significant for each buffer distance in the Permian-

Haynesville subregion. In the Bakken-Niobrara subregion, the association is not statistically 
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significant when the buffer radius is smaller than 30 km.  

Table 2-6. The associations between PR and upwind UOGD well count in three subregions of 

our study extent.  

The estimated influence (shown in columns named as Est) is presented as the increase in PR associated 

with an additional 100 UOGD wells within the radius.   

Discussion and Conclusion 

In this study, we analyzed the radioactivity of airborne particles collected at 157 RadNet 

monitors across the continental United States from 2001 to 2017 (Figure 2-12). To characterize 

upwind UOGD activities, we used the position and production records of 152,904 UOGD wells 

and counted the daily number of upwind UOGD wells. Our results add to the limited literature 

by evaluating the influence of UOGD on the radioactivity of ambient particles. 

These associations suggest the existence of some pathways by which UOGD activities could 

release NORM into the atmospheric environment. Likely mechanisms include the fugitive 

release of natural gas, which contains a higher-than-background level of radon at wellheads, 

 Marcellus-Utica 

Subregion 

Permian-Haynesville 

Subregion 

Bakken-Niobrara 

Subregion 

The whole study 

extent 

Radius 

(Km) 

Est 

(10-2) 

95%CI 

(10-2) 

Est 

(10-2) 

95%CI 

(10-2) 

Est 

(10-2) 

95%CI 

(10-2) 

Est 

(10-2) 

95%CI 

(10-2) 

20 17.96 (-3.06, 38.99) 1.33 (4.85,7.80) 1.26 (-4.52,13.79) 2.40 (1.97, 2.82) 

25 2.05 (-2.95, 7.05) 0.81 (2.79,4.12) 0.93 (-3.24,11.07) 1.35 (1.11, 1.59) 

30 0.24 (-1.16, 1.63) 0.54 (1.81,2.87) 3.61 (3.87,17.32) 0.81 (0.65, 0.96) 

35 0.11 (-0.57, 0.79) 0.38 (1.20,1.89) 3.64 (5.72,12.93) 0.58 (0.47, 0.69) 

40 0.08 (-0.35, 0.51) 0.29 (0.91,1.42) 2.12 (3.42,7.81) 0.44 (0.36, 0.53) 

45 0.07 (-0.24, 0.38) 0.21 (0.65,1.06) 1.51 (2.53,5.80) 0.33 (0.26, 0.40) 

50 0.09 (-0.17, 0.34) 0.17 (0.50,0.86) 1.05 (1.81,3.71) 0.27 (0.22, 0.33) 
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compressor stations, pipelines, and other associated facilities;48–50 the management, storage, 

discharge and disposal of flow-back and produced water which is rich in NORMs;16,51–53 the 

accidental spill or beneficial use of produced water in nearby communities;22 the handling, 

transport, management, and disposal of radioactive drill cuttings.18,19 To distinguish the 

contributions of these surface activities, more continuous measurements of PR, especially for 

some specific radionuclides, are needed at a finer spatiotemporal resolution. 

Our results show a remarkable distinction between the impacts of UOGD and COGD on PR. 

UOGD-specific processes, such as hydraulic fracturing and directional drilling, could potentially 

explain the larger associated impacts. The hydraulic fracturing process produced large volumes 

of flow-back water and drilling mud, which are subsequently stored in the temporary reserve pit 

adjacent to the drilling site. Most UOGD production states allow the operator to close the reserve 

pit within up to one year after completing the drilling.54 This practice potentially enables the 

NORMs in the produced water to decay into radon above the ground surface and release the 

radon into the ambient environment. The lateral drilling process produces large volumes of drill 

cuttings from the unconventional accumulating formation, whose levels of NORMs are higher 

than those produced during the vertical drilling stage. These drill cuttings are currently not 

considered hazardous wastes by U.S. EPA. The practice of beneficial use of drill cuttings and 

land treatment could potentially release radon into the ambient environment.55 

Our subregional analysis demonstrates remarkable heterogeneity in the estimated influences of 

UOGD in the three subregions. Due to a lack of monitors with UOGD wells nearby, the 

Marcellus-Utica subregional model did not have enough power to detect statistically significant 

associations. For a buffer radius of 20 km, the estimated influence of an additional 100 upwind 

UOGD wells is 17.96×10-2 mBq/m3 (95% CI: -3.06, 38.99 ×10-2 mBq/m3) in the Marcellus-Utica 
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subregion, approximately seven times the estimated effects of a nationwide model. The 

difference is likely caused by the relatively few UOGD wells near the RadNet monitors in the 

Marcellus-Utica subregion (Supplementary Information Section 1.3, Table 2-S7). In the Bakken-

Niobrara subregion, only two RadNet monitors (Casper, WY, and Navajo Lake, NM) have active 

UOGD wells around when the buffer radius is smaller than 30km. When we enlarged the radius 

to 30 km, two additional RadNet monitors (Denver, CO, and Grand Junction, CO) had UOGD 

within the buffer, enabling us to identify the significant association (Supplementary Information  

Figure 2-S17). 

Our results show a monotonic declining impact of O&G wells on PR as the buffer radius 

increases from 20 to 50 km (Figure 2-14). The attenuation of radon after being emanated can 

explain this pattern. The trend indicates a more significant influence on the PR level of 

communities close to intensive UOGD activities. Limited by the accuracy of RadNet monitor 

location information, we did not estimate the impacts on a buffer distance smaller than 20 km. 

To tentatively extrapolate our results to these neighborhoods, we modeled the estimated 

influences as a power function of the radiuses with a negative exponent (Supplementary 

Information Section 3.1, Figure 2-S20). Based on this tentative extrapolation, an additional 100 

UOGD wells within 10 km would be associated with an increase of 0.14 mBq/m3. However, the 

result of this extrapolation should be interpreted cautiously. Monitors closer to UOGD wells are 

needed to validate this extrapolation. 

One strength of our study is the nationwide monitor network of PR. The long-term measurement 

enables us to compare the current PR level with the baseline PR level in the absence of 

widespread UOGD. Furthermore, all filters were measured by NAREL using the same protocol, 
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excluding the uncertainties induced by the heterogeneous devices operated by different labs. The 

other strength is the comprehensive database covering O&G activities. The Enverus database 

facilitated distinguishing the distinct impacts of UOGD and COGD on PR. In addition, we 

obtained diverse environmental covariates related to the natural emissions and transport of PR. 

Adjustment for these factors allowed us to draw conclusions explicitly related to the impacts of 

O&G development by explaining the natural variation of PR. The associations between PR and 

these environmental factors, as summarized in Table 2-5, are in agreement with the findings of 

previous studies.26,56 

One limitation of this study is that we only associated PR with the existence of completed O&G 

wells. Other construction-dependent factors may also influence the emission rate. However, the 

O&G wells with a detailed construction records are rare in our database, making it difficult to 

know the duration of construction, thus limiting our ability to investigate the construction-

dependent association. Another limitation of our study is the simplification of the particle 

transport process. Our circular-sectional buffers are designed based on the Gaussian Dispersion 

Model. This calculation assumed a steady-state meteorological condition, which is reasonable in 

this case due to the short downwind distances. However, this computation could be improved by 

introducing advanced atmospheric dispersion models. 

Our results indicate the significant influence of UOGD on PR, a previously overlooked property 

of PM2.5. Particulate-bound radon progeny continue releasing ionizing radiation after being 

inhaled and thus could induce systemic oxidative stress and inflammation, even at the levels 

observed in this study. Nyhan et al. (2018 and 2019) found that a 0.07 mBq/m3 increase in 28-

day average gross-beta radiation is associated with a 2.95 mm-Hg increase in diastolic blood 

pressure, a 3.94 mm-Hg increase in systolic blood pressure, a 2.41% decrease in forced vital 
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capacity, and a 2.41% decrease in forced expiratory volume in Normative Ageing Study (NAS) 

population.34,35 Blomberg et al.(2020) reported that a 0.12 mBq/m3 increase in seven-day average 

gross-beta radiation is associated with a 4.9% increase in C-reactive protein, a 2.8% increase in 

intercellular adhesion molecule-1, and a 4.3% increase in vascular cell adhesion molecule-1 in 

the same study popultaion.37 Jointly with these associations, our results indicate that increase in 

PR due to the extensive UOGD could have already caused adverse health outcomes in nearby 

communities by elevating PR level (Supplementary Information Section 3.2). 

Conclusion 

Our analysis demonstrates that upwind UOGD activities could significantly elevate the PR level 

in downwind communities. UOGD has a larger impact on PR, compared to COGD. Based on 

previously published health effect analysis of PR, it is possible that the widespread of UOGD 

could induce adverse health effects to residents in proximity by elevating the PR. 
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Appendix 

Methods and Materials 

Prediction of Drilling Type 

 

Figure 2-S15. Relative importance of covariates in the random forest model.  

Full names of the variables from top to bottom: Number of conventional wells within 10km, number of 

unconventional wells within 10 km, the drilling type of the closest well with known drilling type,  total 

drilling depth, spudding date, the date of the first production record, completion date, the date of peak 

million cubic feet of gas equivalent production, the date of peak natural gas production, the date of peak 

barrel of oil equivalent production 

State energy agencies are the primary data source of Enverus (formerly Drillinginfo). Directional 

drilling has different definitions among states. For example, drilled wells and horizontally drilled 

wells are both grouped in a single class in Colorado as directional wells, while the two are separate 

in New Mexico. As a result, there is a visually remarkable difference in the percentage of 

horizontal wells, which are considered unconventional wells, across the state line even though they 
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share the target geological formation. As a result, it is not reliable to assume that all directionally 

drilled wells are unconventional wells nationally. Besides, the raw dataset from Enverus does not 

provide drilling type information for more than 75% of the wells, mostly drilled before 2000. 

However, it is also inaccurate to assume all wells without drilling type information are 

conventional because drilling type is not required by a state agency but reported by the operators 

voluntarily. Almost all wells in Alabama do not have drilling type information. To solve these 

problems, we need to predict the binary drilling type based on known drilling types of nearby wells 

and other secondary information. 

We fitted a random forest model to perform this prediction. Random forest is a regression tree-

based algorithm good at capturing the non-linear relationship between the primary variable and 

secondary variables, thus suitable for solving this binary classification problem1. Secondary 

variables incorporated in the model include: 1) drilling type of the nearest well with known drilling 

type information; 2) distance to the nearest conventional/unconventional well; 3) fractions of 

conventional and unconventional wells of the nearest 10 wells with known drilling type; 4) O&G 

reservoir where the well is positioned; 5) spudding/completion time; 6) drilling depth; 7) natural 

gas /liquid production in the first 6 months, and; 8) production declining rate of gas/liquid. After 

running a grid search for optimal performance, the parameters of this model were set as follows: 

the number of trees was 100, the maximum depth was 15, the minimum size of node was 5. The 

accuracy of this model was 99.83% for COGD wells and 93.1% for UOGD wells. The 

performance difference is potentially caused by the re-fracturing process of some conventional 

O&G wells. As shown in Figure 2-S15, the 10 most important covariates were: number of COGD 

wells within 10 km, number of UOGD wells within 10 km, the drilling type of the closest well 

with known drilling type, the total drilling depth (vertical drilling length plus lateral drilling 
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length), spudding date, the first production date, completion date, the date of peak million cubic 

feet of gas equivalent production, the date of peak natural gas production, the date of peak barrel 

of oil equivalent production. 

We used the Distributed Random Forest (DRF) method implemented in h2o package (version 

3.26.0.2) in R (version 3.4.2) to fit the models. 

Location of COGD Wells 

 

Figure 2-S16. The location of COGD wells completed by December 2017. 

Temporal Trend of UOGD 

Most O&G wells, especially UOGD wells, are relatively distant from metropolitan areas where 

the RadNet monitors are located. As a result, the average upwind UOGD well count does not 

fully represent the temporal trend of UOGD expansion. As summarized in Table 2-S7, we 
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selected one RadNet monitor from each of the three subregions to represent the temporal trend of 

upwind UOGD well count. 

Table 2-S7. Annual average upwind UOGD count in three representative cities of three 

subregions. 

 Pittsburg, PA Fort Worth, TX Navajo Lake, NM 

 20 km 50 km 20km 50km 20km 50km 

2000 0.0 0.0 0.0 0.0 0.0 0.0 

2001 0.0 0.0 0.0 0.0 0.0 0.0 

2002 0.0 0.0 0.0 0.0 0.0 0.0 

2003 0.0 0.0 0.0 0.0 0.0 0.0 

2004 0.0 0.0 0.0 0.0 0.0 0.0 

2005 0.0 0.0 0.0 0.0 0.0 0.0 

2006 0.0 2.5 0.0 0.0 0.0 0.0 

2007 0.0 5.7 143.1 980.2 0.0 0.0 

2008 0.0 24.0 216.6 1561.0 0.0 0.0 

2009 0.0 41.2 293.6 2020.6 0.0 0.0 

2010 0.0 105.5 372.4 2502.8 43.0 111.5 

2011 1.0 174.1 466.3 3076.5 46.9 112.6 

2012 1.0 232.0 523.6 3179.9 47.6 135.0 

2013 1.9 314.3 533.4 3060.2 53.8 155.8 

2014 11.8 380.8 559.0 3143.0 45.0 141.3 

2015 12.0 456.0 572.0 3196.5 55.1 154.9 

2016 12.0 540.2 573.1 3095.0 56.9 155.7 

2017 12.0 575.1 585.8 3240.9 59.3 162.8 
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Extent of Subregions 

 

Figure 2-S17. Subregions of our study extent, primarily determined by the shale formations. 

Inner circles represent the circular buffers with a radius of 20 km. Outer circles represent the circular 

buffers with a radius of 50 km. Panel A shows the extent of Bakken-Niobrara subregion, which includes 

MT, ND, SD, WY, UT, CO, and NM; Panel B shows the extent of Marcellus-Utica subregion, which 

includes PA, OH, WV, NY, NJ, and MD; Panel C shows the extent of Permian-Haynesville subregion 

which covers TX, OK, AR, LA, MS, and AL. 
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Results 

Results of Primary Analysis 

Table 2-S8. Source data for Figure 3 in the main text 

Variable 
Radius 

(km) 

Coefficient 

(mBq/m3 per 100 wells) 

95% CI 

Lower Bound 

95% CI 

Upper Bound 

Upwind UOGD 20 2.40E-02 1.97E-02 2.82E-02 

Upwind UOGD 25 1.35E-02 1.11E-02 1.59E-02 

Upwind UOGD 30 8.05E-03 6.54E-03 9.55E-03 

Upwind UOGD 35 5.78E-03 4.69E-03 6.87E-03 

Upwind UOGD 40 4.43E-03 3.57E-03 5.28E-03 

Upwind UOGD 45 3.29E-03 2.62E-03 3.96E-03 

Upwind UOGD 50 2.72E-03 2.15E-03 3.28E-03 

Upwind COGD 20 3.60E-03 2.91E-03 4.29E-03 

Upwind COGD 25 5.27E-04 -9.41E-06 1.06E-03 

Upwind COGD 30 -2.39E-04 -5.49E-04 7.02E-05 

Upwind COGD 35 -7.67E-05 -2.64E-04 1.10E-04 

Upwind COGD 40 9.85E-08 -1.52E-04 1.53E-04 

Upwind COGD 45 7.63E-05 -5.22E-05 2.05E-04 

Upwind COGD 50 8.15E-05 -2.77E-05 1.91E-04 

 

Sensitivity to the Angle of Circular Sectional Buffer 

In our primary analysis, we counted the number of O&G wells within circular sectional buffers, 

whose central angle was 90° (As shown in Figure 2-13). We re-calculated the upwind UOGD 



 

61 

 

well in buffers with two additional central angles (60° and 120°), to test the sensitivity of our 

estimated effects. As shown in Figure 2-S18, our results are not sensitive to the variation in 

angle. The estimated effects for a smaller angle (60°) were larger than our original results, while 

the estimated effects for a larger angle (120°) were smaller than our original results. The negative 

correlation between the estimated effects and buffer angle is in agreement with the atmospheric 

dispersion model. 

 

Figure 2-S18. The increment in PR associated with an increase of 100 upwind UOGD wells in 

circular sectional buffers with different central angles.  
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We visualized the estimated effects as points and 95% CI as bars. The source data is attached in Table 2-

S9.  

Table 2-S9. The source data table of Figure 2-S18. 

Central Angle of the 

buffer (Degree) 
Radius (km) 

Coefficient 

(mBq/m3 per 100 

wells) 

95% CI Lower 

Bound 

95% CI Upper 

Bound 

30 20 3.38E-02 2.76E-02 4.01E-02 

45 20 2.40E-02 1.97E-02 2.82E-02 

60 20 1.80E-02 1.49E-02 2.12E-02 

45 25 1.35E-02 1.11E-02 1.59E-02 

30 25 1.88E-02 1.54E-02 2.22E-02 

60 25 1.08E-02 8.97E-03 1.27E-02 

45 30 8.05E-03 6.54E-03 9.55E-03 

30 30 1.03E-02 8.27E-03 1.24E-02 

60 30 7.01E-03 5.80E-03 8.23E-03 

45 35 5.78E-03 4.69E-03 6.87E-03 

30 35 7.20E-03 5.74E-03 8.66E-03 

60 35 5.19E-03 4.29E-03 6.09E-03 

45 40 4.43E-03 3.57E-03 5.28E-03 

30 40 5.46E-03 4.32E-03 6.61E-03 

60 40 4.04E-03 3.32E-03 4.76E-03 

45 45 3.29E-03 2.62E-03 3.96E-03 

30 45 4.10E-03 3.20E-03 4.99E-03 

60 45 3.00E-03 2.44E-03 3.57E-03 

45 50 2.72E-03 2.15E-03 3.28E-03 

30 50 3.38E-03 2.62E-03 4.13E-03 

60 50 2.46E-03 1.99E-03 2.94E-03 

 

Sensitivity to Omitting a Monitor 

We carried out a leave-one-out analysis to investigate the likelihood that our estimated result is 

driven by a single RadNet monitor. Specifically, we iteratively exclude all PR measurements of a 

RadNet monitor and re-estimate the estimated effect with the remaining monitors using the same 

model formation. As shown in Figure 2-S19, our result was not sensitive to omitting a single 

RadNet monitor. 
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Figure 2-S19. The influence of omitting one monitor on the estimated association between PR 

and upwind UOGD well count within 20 km. 
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Discussion 

1.1 Extrapolation of the Results 

We observed an apparent distance-dependent decay in the effects of UOGD on PR (Figure 2-14). 

This trend suggests that we could tentatively extrapolate our results to a finer spatial scale. We 

used a power function with a negative exponent to fit the decay. As shown in Figure 2-S20, the 

exponent with the best fit is -2.5, between -2 (indicates a two-dimensional dispersion) and -3 

(indicates a three-dimensional dispersion). 

 

Figure 2-S20. The observed distance-dependent decay of the estimated effects and the modeled 

distance decay by power functions with negative exponents. 

Y-axis represents the ratio between the estimated effects at the specific distance and the estimated effects 

at 20 km. The solid curve indicates the observed distance-decay of the estimated effects (“coef”). 
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1.2 The Scale of the Influence 

As shown in Figure 2-12, the majority of UOGD wells are not drilled close to metropolitan 

regions. Likely, the PR levels in some communities distant from RadNet monitors could also be 

elevated by the extensive UOGD activities nearby. To identify these communities, we mapped 

the 1 km grids whose annually-averaged upwind UOGD well count was over 580 (the 95% 

percentile of upwind UOGD well count from the modelling area) and over 100 at the end of 

2017. As shown in Figure 2-S21, there are several regions, including the core part of Eagle Ford 

shale, Barnett shale, Fayetteville shale, and Niobrara shale, with an annual average UOGD over 

580. The total area of these regions is 10,724 km2. Over 1.2 million people reside in these areas. 

Based on the health studies cited in the main text, residents living in these communities are more 

likely to show adverse symptoms, including higher blood pressure, decreased lung function, and 

increased level of the inflammatory biomarker, if the PR increase downwind of UOGD wells in 

these regions are consistent with those of our study. 
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Figure 2-S21. Regions with annual average upwind UOGD wells over 580. 

Wind vectors (black arrows in the figure) indicate the annual prevailing wind field, which was 

used to calculate upwind O&G development. UOGD wells used to calculate upwind activities 

were completed before 12/31/2017. 
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Abstract 

Background: Associations between residential exposure to radon and harmful health outcomes 

were well-documented. However, causal modeling methods have never been used to evaluate the 

impacts of residential radon exposure.  

Objectives: We estimated the causal effect of long-term residential radon exposure on mortality 

rate in Medicare beneficiaries in the New England region.  

Methods: We calculated the all-cause mortality of Medicare beneficiaries for 1,240 Zip Code in 

New England from 2000 to 2015. We obtained 141,665 basement radon measurements from 

Spruce Environmental Technologies, Inc and estimated the annual ZIP Code-specific average 

basement radon level. The multi-panel nature of the data allowed us to estimate the impacts of 

residential radon with a difference-in-difference (DiD) experimental design. We applied a 

logistic regression model adjusted for age, gender, race, eligible for Medicaid, particulate matter, 

and temperature to estimate the percent increase in mortality associated with a unit increase in 

residential radon. To improve the plausibility of the DiD design assumption, we split the study 

population by county, restricted the analysis to each county, and then used a meta-analysis 

method to aggregate the county-specific effects. We performed a subgroup analysis to identify 

the population or region with a higher risk. Furthermore, we investigated the effects of 

residential radon on the mortality rate of beneficiaries with chronic underlying health issues. 

Results: For each unit increase in annual average radon (1 pCi/L), the all-cause mortality rate in 

Medicare participants increases by 4.0% [95% confidence interval (CI): 0.9%, 7.2%]. The 

percentage increment of mortality in female participant is 5.0% (95% CI: 0.8%, 9.3%), higher 

than that in male participants (percent increase: 2.8% , 95% CI: -1.2%, 6.7%). Furthermore, 
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residential radon exposure is statistically associated with a significantly elevated mortality rate in 

the beneficiaries with underlying chronic cardiovascular disease (percent increase: 3.6%, 95% 

CI: 0.2%, 7.0%). 

Conclusions: Residential exposure to radon is casually associated with a statistically 

significantly elevated all-cause mortality in the Medicare population in New England.  
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Introduction 

Radon-222 is an odorless and chemically inert gaseous radioactive material with a half-life of 3.8 

days. It arises naturally from the decay of Uranium-238, which is ubiquitous in the crust.(Otton 

1992) Radon-222 (referred to as radon in this paper) then decays through a chain of short-lived 

and long-lived intermediates, to the stable Lead-206. Before decaying, radon gas can diffuse 

through the soil and get emanated into the atmosphere. It can also infiltrate into residential 

buildings through the openings in the foundation and water supply system. Radon concentration 

can build up to a high level in the building with a high radon infiltration rate and poor ventilation 

condition.(National Council on Radiation Protection and Measurements. 1984; “Radon in 

Homes: Report of the Council on Scientific Affairs, American Medical Association” 1987) 

Residential exposure to radon is the leading cause of lung cancer for non-smokers in the 

U.S.(“Health Effects of Radon Exposure: Report of the Council on Scientific Affairs, American 

Medical Association” 1991) This health hazard does not come primarily from radon itself, but 

rather from its radioactive progenies.(National Research Council 2006) The short-lived 

immediate progenies of radon quickly bond with the passing by water vapor and atmospheric 

gases and form ultrafine clusters. Part of these clusters then attach to airborne particles and 

become inhalable.(Porstendörfer 1994; Gründel and Porstendörfer 2004) After being inhaled, 

these radioactive progenies tend to be deposited on the bronchial epithelium, thus expose 

neighboring cells to high-energy α particles that induce the carcinogenesis process.(Darby et al. 

2005; Duan et al. 2015) 

Particulate-bound radon progenies are absorbed into the circulatory system, alimentary tract, and 

lymphatics.(Marsh and Bailey 2013) The long-lived progenies, including α-emitting Po-210, 
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could accumulate in the central nervous system and pulmonary tissues and thus could induce 

deleterious biological effects on tissues other than the respiratory tract.(Santos et al. 2020; 

Momcilovic et al. 2001) Blomberg et al. 2019 reported the modification effect of residential 

radon on the association between fine particulate matter (PM2.5) and all-cause mortality in urban 

Medicare beneficiaries.(A. J. Blomberg et al. 2019) Yitshak-Sade et al. 2019 associated 

residential radon exposure with the mortality in Medicare beneficiaries residing in Mid-Atlantic 

and Northeastern U.S states.(Yitshak-Sade et al. 2019) However, Turner et al. 2012 found no 

clear associations between radon and nonrespiratory mortality in the Cancer Prevention Study II 

cohort.(Turner et al. 2012) Contradictory evidence reported by published studies highlight the 

importance of narrowing down the uncertainty in the association through a casual modeling 

method. Furthermore, existing studies regarding this topic are subject to limitations in the 

exposure assessment, including the coarse resolution of exposure assessment, a lack of temporal 

variation in the exposure. 

We applied the Difference-in-Difference (DiD) experimental design, a quasi-experiment 

approach, to estimate the impacts of residential radon on all-cause mortality in all Medicare 

beneficiaries. We obtained residential radon measurements undertaken by a local radon test 

service provider. This data source allowed us to investigate the spatiotemporal variation of 

residential radon and predict residential exposure to radon at a higher resolution than previous 

studies. 

Materials and Methods 

Mortality Data  

We obtained the Medicare beneficiary denominator file from the Center for Medicare and 
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Medicaid Services.(ResDac 2018) Our study population is composed of all Medicare 

beneficiaries 65 or older at enrollment and residing in the study area (Figure 3-1) for at least one 

year from 2000-2015. For each yearly record of a beneficiary, we extracted details including age, 

race, sex, Medicaid eligibility, residential ZIP Code, and date of death. The outcome of this study 

is the annual ZIP Code-level all-cause mortality rate in the Medicare beneficiaries. We also 

calculated the outcome in specific populations, including male/female subgroups, white/non-

white subgroups, age-dependent subgroups, and Medicaid eligible/ineligible subgroups. 

We obtained the emergency admission records of the beneficiaries enrolled in the Fee-For-

Service program of Medicare. A participant was defined as having the specific chronic health 

issue after having an emergency admission for the causes (either primary cause or secondary 

cause), including chronic obstructive pulmonary diseases (COPD; ICD-9 490-496, except 493), 

cardiovascular diseases (CVD; ICD-9 390–459 and 410–414), congestive heart failure (CHF; 

ICD-9 428) and diabetes mellitus (DM; ICD-9 250). We calculated the annual mortality rates in 

the participants with these underlying health.  

Residential Radon Data 

We obtained radon measurements from Spruce Environmental Technologies, Inc, which detected 

the residential radon level in 8,9076 buildings in the New England region during our study 

period. We selected radon measurements detected by activated charcoal adsorption devices (AC) 

in the lowest livable level of each place under closed-house conditions. We did not have access 

to the street address information of clients. Instead, we used the 5-digit ZIP Code of the building 

as a proxy to the residential address. We subsequently estimated the monthly ZIP Code-level 

residential radon level based on the measurements conducted in the ZIP Code and month.  
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To approximate a random sampling of all buildings within the community, we only selected the 

measurements conducted before mitigation or during realty property transactions. We selected 

7,6767 radon measurements from 5,8214 buildings (Figure 3-S1). We calculated 1,173 monthly 

ZIP Code average residential radon levels for 317 ZIP Codes with over five measurements in at 

least one month during our study period. We trained a Random Forest model(Breiman 2001) to 

predict the ZIP Code-specific monthly radon based on predictors including radon potential, the 

concentration of Uranium-238 in topsoil,(Joseph S. Duval, John M. Carson, Peter B. Holman 

2005) the slope of the terrain, the granularity of ground surface material,(David R. Soller, Marith 

C. Reheis, Christopher P. Garrity 2009) soil moisture, air temperature, the height of planetary 

boundary layer, season and calendar year. We optimized the model through a grid-search method 

and evaluated the uncertainty of the model via ten-fold cross-validation. Finally, we predicted 

the monthly residential radon level for 1,240 ZIP Codes based on the fitted model (Figure 3-1).  
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Figure 3-1 Study region and the average predicted Zip Code-specific* basement radon level from 

2001 to 2015.   

* Radon levels in the Zip Codes with fewer than three measurements were not predicted. Shown as light 

gray polygons, these ZIP Codes are mostly in northern Maine, where population density is low. 
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Potential Confounding Factors  

We collected potential environmental confounding factors that associate mortality and residential 

radon simultaneously. Our 1 km×1 km grid-based fine particulate matter (PM2.5) estimation was 

from a previously published model.(Di et al. 2016) The model predicts daily PM2.5 concentration 

from remote sensing-based aerosol optical depth, land use information, and chemical transport 

model through a neural network algorithm. We first aggregated the daily prediction by year and 

then calculated the annual population-weighted average concentration of  PM2.5 for each ZIP 

Code.(Doxsey-Whitfield et al. 2015) We obtained the highest and lowest monthly temperatures 

for each ZIP Code and year from North America Regional Reanalysis dataset.(Mesinger et al. 

2006) 

We first obtained ZIP Code-level demographic and social-economic confounding factors by 

aggregating the individual-level information provided in mortality data. We then obtained ZIP 

Code-level potential social-economic confounding factors, including annual median household 

income, owner-occupied housing units median value, population percent below the poverty line, 

population percent without high school diplomas, and homeownership rate. These were obtained 

from the 2000 and 2010 US Census and the American Community Survey (ACS) and linearly 

extrapolated to account for the covariates’ time-varying nature. 

Analysis Methods  

We used Difference-in-Difference (DiD) method,(Dimick and Ryan 2014; Wing, Simon, and 

Bello-Gomez 2018) a quasi-experimental design, to investigate the causal association between 

residential radon exposure and the mortality rate. A pair of health economic studies applied the 
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DiD approach to evaluate the effects of the 2011 Accreditation Council for Graduate Medical 

Education duty hour reforms.(Rajaram et al. 2014; Patel et al. 2014) The classic DiD method 

designed for dummy policy intervention can be generalized to estimate the effects of continuous 

treatment. Specially, we compared a treatment ZIP Code whose change in mortality and radon 

level during time t are ∆MortT and ∆RnT with the contemporary control ZIP Code, whose 

variation in mortality and residential radon are ∆MortC and ∆RnC, respectively. We can estimate 

the association between mortality rate and residential radon based on this two-by-two 

comparison as follows: (∆MortT-∆MortC)/(∆RnT-∆RnC). The association is considered causal 

under the assumption that the trends of outcome in the treatment group and control group are the 

same in case they are exposed to the same level (referred to as parallel trend assumption).   

Instead of permutating all two-by-two comparisons, we treated residential radon exposure as a 

fixed effect in a regression model to estimate the impacts based on the repeated cross-sectional 

dataset.(Wang et al. 2016) The fixed effect estimator enables us to estimate the uncertainty in the 

predicted effect. Additionally, we can use the generalized linear model to allow for a dependent 

variable whose residuals do not follow the normal distribution. Another benefit of employing the 

regression model includes the flexibility of adjusting for the observed potential confounding 

factor, which varies both spatially and temporarily. In the context of regression analysis, the 

parallel trend assumption is equivalent to the assumption that there is no unobserved confounder 

varying both across the region and over time. We used a logistic regression model with 

overdispersion to implement the DiD design as follows: 

𝐿𝑜𝑔𝑖𝑡(𝑌𝑝,𝑡) = 𝛽0 + 𝛽1𝑅𝑛𝑝,𝑡 + ∑ 𝛽𝑖 𝑋𝑖,𝑝,𝑡

𝑖=2…5

+ ∑ 𝛽𝑗  𝑍𝑖,𝑝,𝑡 + ∑ 𝛽𝑝𝐼𝑝 + ∑ 𝛽𝑡𝐼𝑡

𝑡≠𝑡𝑅𝑝≠𝑝𝑅𝑗=6,7,8

 

where Yp,t is the annual ZIP Code-level all-cause mortality rate (count of death out of all persons 



 

77 

 

at the beginning of the year) in ZIP Code p at year t, Rnp,t represents the previously-estimated 

residential exposure to radon. X2…5,p,t represents four ZIP Code-level demographic and social-

economic factors obtained by aggregating individual-level data, including average age, percent 

of female beneficiaries, percent of white beneficiaries, and the percent of beneficiaries eligible 

for Medicaid. Z6,…8,p,t represents three potential environmental confounding factors, including the 

concentration of PM2.5, the highest monthly temperature in the summer, and the lowest monthly 

temperature in the winter; Ip and It represent indicators functions for each ZIP Code and year. In 

summary, the DiD approach controlled for four categories of factors, including 1) residential 

radon, the exposure of interest; 2) spatially-varying but temporally-invariant factors, adjusted for 

by the ZIP Code indicator function; 3) temporally-varying but spatially-invariant factors, 

adjusted for by the year indicator function; 4) observed potential confounding factors which vary 

spatiotemporally, represented by X and Z.  

To make the estimated association a causal relationship, we have to assume the non-existence of 

spatiotemporally varying confounder because its variation can not fully be captured by Ip and It. 

Specifically, the assumption is violated under the condition that an unobserved confounder factor 

changes distinctly over time across ZIP Codes. This assumption is hard to hold because of the 

heterogeneity of demographic and environmental conditions of our study extent. For instance, 

winter temperature is a well-understood confounder of this association because of its negative 

association with mortality and positive correlation with basement radon.(“Radon in Homes: 

Report of the Council on Scientific Affairs, American Medical Association” 1987) The trend of 

winter temperature in the coastal area is not parallel with the corresponding trend in inland 

regions. However, this assumption is more plausible when the treatment and control ZIP Codes 

are from the same county because they share the same healthcare facilities, grocery chains, fast 
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food restaurants, tobacco retailers, and have a similar climate. Methodologically, we first split 

the study region by counties, then fitted the logistic regression model in each county, and finally 

used a random-effects meta-analysis method to aggregated the results from the county-level 

models. 

We first associated mortality rate to residential radon in the whole study population. We then 

restricted the analysis to gender- and Medicaid eligibility-based subgroups to evaluate the health 

effects in diverse subgroups. We did not perform the analysis for ethnic minority subgroups due 

to a lack of power. Furthermore, we investigated the impact of radon in the subgroups with a 

history of chronic health conditions, including COPD, CVD, CHF, and DM. To evaluate the 

likelihood of violating the parallel trend assumption, we tested the sensitivity of our results to 

outside potential socio-economic confounders other than those originally included. The 

assumption does not hold if the estimated effects differ significantly between the original model 

and the modified model adjusting for outside social-economic potential confounders. 

The analysis was conducted on the Cannon cluster, supported by the Research Computing 

Group, and on the Research Computing Environment, supported by the Institute for Quantitative 

Social Science, both at Harvard University, Faculty of Arts and Sciences. We used R software 

(version 3.4.2), stats package (version 3.6.2),(R Core Team 2017), and metaphor package 

(version 2.1.0)(Viechtbauer 2010) to perform the analysis. 

Results 

We studied 1,240 ZIP Codes in New England during 2000-2015. Our primary study population 

is 56.5% female, 96.5% white, and 11.0% dual-eligible for Medicaid. Out of the study 

participants, 10.7% had a history of COPD, 38.2% had a history of CVD, 11.6% had a history of 
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DM, and 11.4% had a history of CHF. 

Table 3-1. Distribution of the Zip Code-specific exposure, outcomes, and the potential 

confounding factors among the 1752 Zip Code in New England from 2000 to 2015. 

Variable Mean 
5th 

Percentile 

25th 

Percentile 
Median 

75th 

Percentile 

95th 

Percentile 

Exposure: 

  Basement Radon (pCi/L) 
3.9 2.3 3.0 3.8 4.7 6.3 

Outcome: Mortality rate (%)       

    All participants 4.6% 2.9% 3.9% 4.6% 5.3% 6.5% 

    Male 4.8% 2.4% 3.8% 4.8% 5.7% 7.3% 

    Female 4.5% 2.4% 3.7% 4.5% 5.3% 6.7% 

    White 4.0% 2.9% 4.0% 4.7% 5.4% 6.5% 

    Non-white 7.5% 0.0% 2.9% 4.5% 7.7% 14.3% 

    Eligible for Medicaid 8.8% 0.0% 5.7% 8.1% 11.1% 17.9% 

    Ineligible for Medicaid 4.2% 2.5% 3.6% 4.2% 4.9% 6.0% 

    Age in [65, 75) 1.9% 0.6% 1.3% 1.8% 2.4% 3.4% 

    Age in [75, 85) 5.2% 2.5% 4.1% 5.1% 6.1% 8.1% 

    Age in [85, 95) 13.3% 6.7% 10.8% 13.0% 15.4% 20.8% 

Chronic obstructive  

pulmonary disease (COPD) 
20.5% 6.7% 15.4% 20.1% 25.0% 35.4% 

Cardiovascular disease  

(CVD) 
13.5% 7.1% 10.8% 13.0% 15.7% 21.7% 

Congestive heart failure  

(CHF) 
24.1% 9.5% 19.0% 23.8% 28.8% 39.4% 

    Diabetes mellitus (DM) 15.4% 4.0% 10.9% 14.9% 19.2% 28.6% 

Potential Confounders       

    PM2.5 (μg/m3) 7.4 4.6 5.9 7.1 8.7 10.9 

    Summer Temperature (°C) 21.5 19.1 20.6 21.8 22.6 23.3 

    Winter Temperature (°C) -4.4 -9.0 -6.4 -4.1 -2.5 0.2 

    White 97.0% 91.5% 96.8% 98.1% 99.0% 99.6% 

    Medicaid 10.6% 2.0% 4.8% 8.1% 13.6% 28.2% 

 

Table 3-1 summarise the mortality rate in the whole study population and the sub-populations. 

The average mortality rate in our study population is 4.6% [Interquartile range (IQR): 3.9, 5.3%]. 

Female beneficiaries, white beneficiaries, and the participants non-eligible for Medicaid have 

lower mortality rates than their complementary subgroups, respectively. The average mortality 
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rates are higher in the sub-populations with a history of chronic disease, compared to the primary 

study population. 

We evaluated the performance of the radon prediction model with a ten-fold cross-validation 

method (Figure 3-2). The standard deviation of the prediction residual is 1.43 pCi/L; the 

correlation (R2) between the predicted and the measured is 0.68. There is no clear pattern of 

residual concerning the predicted radon level (Figure 3-2B), indicating that the potential 

exposure misclassification is independent of the actual exposure level, and thus is unable to bias 

our effect estimation, but would increase the confidence interval. 

 

Figure 3-2. Diagnosis plots of the residential basement radon prediction model. 

Based on this prediction model, the average radon level over the study period is 3.94 pCi/L, 

slightly lower than EPA’s guideline level (4 pCi/L) for mitigation. As shown in Figure 3-1, ZIP 

Codes with high radon levels are in northern New Hampshire and southern Maine. The average 

residential radon decreased gradually during the study period (Figure 3-S1), probably due to the 

increasing prevalence of radon mitigation. From 2000 to 2015, the percent of ZIP Code, with >4 

pCi/L radon level decreased from 46.6% to 39.2%.  

Based on the meta-analysis of pooling county-level effects, a unit increase in residential 
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basement radon level was casually associated with a 4.0% increase (95% CI, 0.9,7.2%) in all-

cause mortality in Medicare beneficiaries in New England during 2000-2015. By restricting the 

study population to female Medicare beneficiaries, we found a 5.0% increase (95% CI, 0.8, 

9.3%) in mortality per unit increase in residential radon. Meanwhile, the impact on male 

beneficiaries is not statistically significant (the percent increase is 2.8%, 95% CI: -1.2, 6.8%). 

For white beneficiaries and the beneficiaries non-eligible for Medicaid, the percent changes in 

mortality are 4.9% (95% CI: 1.8, 8.0%) and 4.0 (95% CI: 0.0, 8.0%), respectively. We also 

investigated the state-level health effects by pooling the county-level impacts estimated for each 

county within the state (Figure.3). The state-specific associations are not statistically significant 

other than in Connecticut (percent change 4.3%, 95% CI: 0.4, 8.1%). 

The percent change in mortality of a subgroup with a history of CVD is 3.6% (95% CI: 0.2, 

7.0%). The associations between mortality and residential radon exposure are not statistically 

significant in subgroups with other chronic diseases. For participants with a history of COPD, 

DM, and CHF, the associated percent changes are 3.9% (95% CI: -2.7, 10.4%), 5.1% (95%CI: -

1.1, 11.3%), and 0.6% (95% CI: -3.6%, 4.8%), respectively. A lack of power, jointly with the 

uncertainties of exposure assessment, probably caused the wide confidence intervals.  

We evaluated the plausibility of the parallel trend assumption by testing the sensitivity of 

estimated effects to the potential social-economic confounders from Census datasets. For 

instance, ZIP Code-level median house value significantly associates with a lower mortality 

(R2=0.24, p-value<0.01), and a higher residual radon level (R2= 0.035, p-value<0.001). As 

summarized in Table.3, the estimated effects based on modified models are similar to that based 

on the original model. After adding median house value, the percent increase is  3.5% (95% CI: 

0.9, 6.0%). We further evaluated the sensitivity of our estimated effects to the exclusion of 
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observed covariate. As summarized in Table 3-3, the estimated effects based on the deducted 

models are similar to the original model. 

Table 3-2. The results of subgroup analysis 

Subgroup 
Percent Increase 

Estimation 

95% Confidence 

Interval 

All participants 4.0% (0.9% ,7.2%) 

Male 2.8% (-1.2% ,6.8%) 

Female 5.0% (0.8% ,9.3%) 

Non-white 0.5% (-6.7% ,7.7%) 

White 4.0% (0.0% ,8.0%) 

Non-eligible for Medicaid 4.9% (1.8% ,8.0%) 

Age in [65, 75) 6.3% (-0.2% ,12.8%) 

Age in [75, 85) 3.5% (-1.6% ,8.6%) 

Age in [85, 95) -0.7% (-5.5% ,4.1%) 

Chronic obstructive pulmonary 

disease (COPD) 
3.9% (-2.7% ,10.4%) 

Cardiovascular disease (CVD) 3.6% (0.2% ,7.0%) 

Diabetes mellitus (DM) 5.1% (-1.1% ,11.3%) 

Congestive heart failure (CHF) 0.6% (-3.6% ,4.8%) 

Connecticut 4.3% (0.4% ,8.1%) 

Maine 6.8% (-6.6% ,20.2%) 

Massachusetts 3.9% (-0.5% ,8.3%) 

New Hampshire 1.4% (-4.0% ,6.9%) 

Rhode Island -1.6% (-27.7% ,24.6%) 

Vermont 8.6% (-16.0% ,33.1%) 

Discussion 

In this study, we investigated the impact of long-term residential exposure to radon on all-cause 

mortality in Medicare beneficiaries in New England. After adjusting for the observed 
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confounders in the logistic regression model, we found a significant association between radon 

exposure and mortality rate on ZIP Code-level. To our best knowledge, this is the first study to 

estimate the causal health impacts of this ubiquitous environmental exposure. 

We found a remarkable gender-dependent difference in the percent increase of mortality rate 

associated with a unit increase in radon. However, the two proportional hazards cannot be 

compared directly because of the different baseline mortality rate. After adjusting for the 

difference, the impact on female participants is still higher than that on male participants. This 

distinction can be explained by the longer hours female beneficiaries stay indoor, compared to 

male participants. Similarly, we found a higher proportional hazard in the subgroup with age in 

[65, 75) compared to the elder subgroup with age in [75,85). After adjusting for the difference in 

the baseline, the elder subgroup has a higher absolute hazard, relative to the younger subgroup. 

In this study, we found that residential radon only significantly impacts the mortality in 

beneficiaries with a history of CVD (Table 3-2). The impacts on the participants with a history of 

COPD or a history of DM are positive, but not statistically significant. After adjusting for the 

baseline mortality in CVD patients (Table 3-1), the absolute impact associated with a unit 

increase in residential radon is approximately elevating the mortality rate from 13.5% to 14%, 

significantly larger than the impact on the whole study population. This result indicated that 

beneficiaries with CVD are more susceptible to radon effect. 
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Table 3-3. The increases in mortality casually associated with a unit increment of residential 

radon. 

Model Modification 
Percent Increase 

Estimation 
95% Confidence Interval 

Excluding existing terms   

    Excluding Race 4.1% (1.1% ,7.2%) 

    Excluding Medicaid 4.1% (0.5% ,7.6%) 

    Excluding Age 4.0% (0.8% ,7.3%) 

    Excluding Gender 4.5% (1.5% ,7.6%) 

    Excluding PM2.5 4.0% (1.2% ,6.8%) 

    Excluding Summer Temperature 4.4% (1.7% ,7.2%) 

    Excluding Winter Temperature 3.9% (1.1% ,6.7%) 

Adding SES confounders   

    Adding Poverty 4.0% (1.1% ,6.8%) 

    Adding Median House Value 3.5% (0.9% ,6.0%) 

    Adding Mean Household Income 4.4% (1.5% ,7.3%) 

    Adding Percent Cccupied by the 

Owner 
3.9% (1.0% ,6.8%) 

Adding Percent Without High School 

Diploma 
4.1% (1.2% ,6.9%) 

For comparison with the previously-published study, we first adjusted our percent increase in 

mortality to reflect a 0.7 pCi/L increase in exposure. We found a 2.8% (95% CI: 0.6, 5.0%) 

increase in all-cause mortality in Medicare beneficiaries of New England in consistence with that 

of 2.62% (95% CI: 2.52, 2.73%) found in the Medicare population living in the Mid-Atlantic and 

Northeastern U.S states by Yitshak-Sade et al. 2020. We then converted our percent increase to 
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reflect a 2.7 pCi/L (100 Bq/m3) increase in radon concentration. We found 10.9% (95% CI: -7.1, 

30.6%) increase in mortality of Medicare beneficiaries with COPD. By comparison, Turner et al. 

2012 reported an increase of 13% (95% CI 5.0, 21%) in 1.2 million participants of the American 

Cancer Study.  

We used the DiD method to simulate the counterfactual mortality, thus to investigate the causal 

link through the observational study. The validity of this simulation largely depends on the 

plausibility of the parallel trend assumption. Under this assumption, adding an extra 

spatiotemporally varying covariate in the model could not change the estimated effect 

remarkably. We first investigated the sensitivity to omitting an “observed confounder” that was 

calculated from the individual-level information provided in the mortality dataset. We then 

introduced outside social-economic confounders to serve as “unobserved” confounders and 

evaluated the sensitivity of the estimated effects to these potential confounders. The results of the 

sensitivity analysis (Table 3-3) suggest that our model is robust to be changed by unobserved 

confounding factors. 

One major strength of this study is the exposure assessment. Previous studies concerning the 

health effects of residential radon commonly used the county mean radon levels that were 

modeled by Lawrence Berkeley National Laboratory partially based on the EPA/ State 

Residential Radon Survey short-term measurements conducted before 1992.(Price and Nero 

1996) Although geological condition primarily determines the indoor radon level, meteorological 

factors, such as soil moisture, barometric pressure, and temperature, played essential roles by 

affecting the radon pressure difference between the basement and the underground.(“Radon in 

Homes: Report of the Council on Scientific Affairs, American Medical Association” 1987) 

There is a nearly monotonic declining trend in residential radon levels across our study region, 
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partially due to an increasing prevalence of radon mitigation service and a wide-adoption of 

radon-resistance materials in the new construction. Ignoring the temporal trend in residential 

radon exposure induces non-random exposure misclassification, thus may bias the estimated 

association. Additional uncertainty is induced by assigning the same residential radon level to all 

residents living within the same county, regardless of the heterogeneity of geological conditions 

whose variation takes place at a smaller spatial scale. 

We used the predicted ZIP Code-level annually average basement radon as a proxy to residential 

exposure to radon. Even though we collected diverse geological and meteorological covariates to 

train the random forest model, the R2 of the model is 0.68, meaning over 30% of the variation 

was left unexplained. The pronounced within-ZIP Code variation partially causes low explaining 

power and induce additional uncertainties in the exposure measurement error. Furthermore, 

radon concentrations within a house decrease significantly from the basement to the living rooms 

and vary remarkably from room to room. Actual individual-level radon exposure also depends on 

the amount of time spent indoors. All these sources of uncertainties are theoretically independent 

of the actual level, and thus considered random exposure error. These random residuals may not 

bias the result but may enlarge the uncertainty in the estimated effects.  

One limitation of this study is that we investigated the association of interest on the ZIP Code-

level. To comply with the spatial resolution of exposure assessment, we aggregated individual-

level death records to the ZIP Code-level mortality rate in an ecological form. However, an 

ecological model of aggregated events is technically equivalent to an individual-level model 

when the exposure is assigned to each individual in the unit.(Lu and Zeger 2007; Wang et al. 

2016) Another limitation of this study is the lack of potential confounders concerning lifestyle 

behavior, such as smoking history and body weight index. It is reasonable to assume that our 
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estimated results are not sensitive to these factors because there are well-understood associations 

between lifestyle behavior risks and the social-economic factors adjusted for in our 

model.(Hiscock et al. 2012; Morgenstern, Sargent, and Hanewinkel 2009) Also, these factors can 

be considered time-variant only in a small region because the participants share the same facility 

and retailer, thus did not influence our estimated associations. 

Conclusions  

We found a causal association between residential exposure to radon and all-cause mortality rate 

in Medicare beneficiaries in New England. Also, beneficiaries with underlying chronic 

cardiovascular disease are more susceptible to the impacts.  
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Appendix: Supplementary Materials 

 

Figure 3-S1. The number of residential radon measurements undertaken by Spurce Environmetal 

Technologies, Inc in each ZIP Code in New England from 1996 to 2018. 
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Table 3-S1. The spatial-temporal variation of residential radon exposure (annually average and 

interquartile range of the ZIP Code-level radon, pCi/L). 

Year CT ME MA NH RI VT 

2000 
3.90 

(2.80,4.68) 

4.63 

(3.26,6.05) 

3.93 

(2.75,4.80) 

4.60 

(3.20,5.63) 

3.80 

(2.65,4.64) 

3.35 

(2.93,3.75) 

2001 
3.87 

(2.80,4.63) 

4.64 

(3.21,6.05) 

3.90 

(2.73,4.76) 

4.57 

(3.14,5.68) 

3.78 

(2.63,4.62) 

3.35 

(2.93,3.70) 

2002 
3.89 

(2.79,4.66) 

4.72 

(3.32,6.05) 

4.01 

(2.80,4.93) 

4.63 

(3.22,5.83) 

3.84 

(2.66,4.68) 

3.43 

(3.03,3.80) 

2003 
3.84 

(2.74,4.60) 

4.63 

(3.20,5.94) 

3.88 

(2.70,4.70) 

4.57 

(3.22,5.58) 

3.73 

(2.56,4.58) 

3.46 

(3.08,3.85) 

2004 
3.91 

(2.78,4.70) 

4.63 

(3.32,5.91) 

3.94 

(2.76,4.83) 

4.55 

(3.06,5.63) 

3.77 

(2.63,4.57) 

3.41 

(3.00,3.77) 

2005 
3.86 

(2.80,4.61) 

4.61 

(3.33,5.91) 

3.96 

(2.82,4.83) 

4.52 

(3.04,5.62) 

3.79 

(2.66,4.53) 

3.32 

(2.93,3.66) 

2006 
3.84 

(2.81,4.60) 

4.57 

(3.24,5.87) 

3.91 

(2.78,4.77) 

4.47 

(2.97,5.59) 

3.79 

(2.67,4.53) 

3.30 

(2.89,3.60) 

2007 
3.83 

(2.77,4.56) 

4.60 

(3.35,5.81) 

3.96 

(2.80,4.91) 

4.49 

(2.98,5.66) 

3.80 

(2.64,4.53) 

3.26 

(2.95,3.54) 

2008 
3.85 

(2.81,4.58) 

4.57 

(3.36,5.79) 

3.91 

(2.80,4.77) 

4.49 

(3.04,5.63) 

3.78 

(2.68,4.49) 

3.27 

(2.92,3.53) 

2009 
3.87 

(2.86,4.57) 

4.58 

(3.35,5.79) 

3.92 

(2.84,4.77) 

4.52 

(3.08,5.65) 

3.80 

(2.76,4.50) 

3.30 

(3.02,3.56) 

2010 
3.85 

(2.87,4.55) 

4.63 

(3.39,5.85) 

3.97 

(2.89,4.89) 

4.48 

(3.01,5.64) 

3.80 

(2.73,4.52) 

3.27 

(3.02,3.49) 

2011 
3.73 

(2.79,4.41) 

4.48 

(3.35,5.54) 

3.81 

(2.81,4.64) 

4.35 

(3.03,5.40) 

3.72 

(2.77,4.50) 

3.26 

(2.97,3.48) 

2012 
3.66 

(2.81,4.26) 

4.44 

(3.31,5.54) 

3.78 

(2.79,4.64) 

4.30 

(3.04,5.27) 

3.65 

(2.71,4.35) 

3.26 

(3.00,3.49) 

2013 
3.67 

(2.86,4.29) 

4.44 

(3.32,5.54) 

3.80 

(2.82,4.65) 

4.27 

(3.04,5.24) 

3.72 

(2.80,4.43) 

3.27 

(3.01,3.53) 

2014 
3.63 

(2.82,4.25) 

4.39 

(3.29,5.40) 

3.79 

(2.80,4.66) 

4.25 

(2.99,5.21) 

3.67 

(2.74,4.39) 

3.20 

(2.98,3.40) 

2015 
3.59 

(2.79,4.19) 

4.39 

(3.35,5.45) 

3.75 

(2.76,4.60) 

4.20 

(2.95,5.18) 

3.64 

(2.73,4.36) 

3.15 

(2.94,3.36) 
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CONCLUSIONS 

In this dissertation, we investigated the links among UOGD, ambient particle radioactivity, and 

health. We started by estimating the impact of UOGD on all-cause mortality. Subsequently, we 

investigated the contribution of extensive UOGD on the radioactivity of ambient particulate 

matter that could serve as an overlooked exposure pathway. Finally, we estimated the causal 

association of radon, the primary source of residential radioactivity exposure, to all-cause 

mortality. 

 In our first study, we found a significantly elevated risk of mortality for the medicare 

beneficiaries residing downwind of the UOGD site, compared to those living upwind, after 

adjusting the proximity. This association is considered causal because of the independence 

between wind direction and drilling activities. In our second study, we found a significant 

contribution of UOGD activities to local ambient particle radioactivity levels. In our third study, 

we found a significant association between residential radon exposure and all-cause mortality. 

The results of the second and third study jointly suggest an overlooked UOGD exposure pathway 

  



 

91 

 

BIBLIOGRAPHY 

Allen, David T. 2014. “Atmospheric Emissions and Air Quality Impacts from Natural Gas 

Production and Use.” Annual Review of Chemical and Biomolecular Engineering 5 (1): 55–

75. https://doi.org/10.1146/annurev-chembioeng-060713-035938. 

Andersen, P K, and R D Gill. 1982. “Cox’s Regression Model for Counting Processes: A Large 

Sample Study.” The Annals of Statistics 10 (4): 1100–1120. 

Baskaran, M. 2011. “Po-210 and Pb-210 as Atmospheric Tracers and Global Atmospheric Pb-

210 Fallout: A Review.” Journal of Environmental Radioactivity 102 (5): 500–513. 

https://doi.org/10.1016/J.JENVRAD.2010.10.007. 

Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-

Effects Models Using Lme4.” Journal of Statistical Software 67 (1): 1–48. 

https://doi.org/10.18637/jss.v067.i01. 

Blair, Benjamin D., Stephen Brindley, Eero Dinkeloo, Lisa M. McKenzie, and John L. Adgate. 

2018. “Residential Noise from Nearby Oil and Gas Well Construction and Drilling.” 

Journal of Exposure Science and Environmental Epidemiology 28 (6): 538–47. 

Blomberg, Annelise J., Brent A. Coull, Iny Jhun, Carolina L.Z. Vieira, Antonella Zanobetti, Eric 

Garshick, Joel Schwartz, and Petros Koutrakis. 2019. “Effect Modification of Ambient 

Particle Mortality by Radon: A Time Series Analysis in 108 U.S. Cities.” Journal of the Air 

and Waste Management Association 69 (3): 266–76. 

https://doi.org/10.1080/10962247.2018.1523071. 

Blomberg, Annelise, Marguerite Nyhan, Marie-Abèle Bind, Pantel Vokonas, Brent Coull, Joel 

Schwartz, and Petros Koutrakis. 2020. “The Role of Ambient Particle Radioactivity in 

Inflammation and Endothelial Function in an Elderly Cohort.” Epidemiology 31 (4). 

Boudet, Hilary S., Chad M. Zanocco, Peter D. Howe, and Christopher E. Clarke. 2018. “The 

Effect of Geographic Proximity to Unconventional Oil and Gas Development on Public 

Support for Hydraulic Fracturing.” Risk Analysis 38 (9): 1871–90. 

https://doi.org/10.1111/risa.12989. 

Breiman, Leo. 2001. “Random Forests.” Machine Learning 45: 5–32. 

Brown, Valeria J. 2014. “Radionuclides in Fracking Wastewater: Managing a Toxic Blend.” 

Environmental Health Perspectives 122 (2): A50-5. https://doi.org/10.1289/ehp.122-A50. 

Cabello, María, Concepción Dueñas, Esperanza Liger, Elisa Gordo, and Sergio Cañete. 2018. 

“Variables Influencing the Gross Alpha and Gross Beta Activities in Airborne Particulate 

Samples in Málaga, Spain.” Journal of Radioanalytical and Nuclear Chemistry 315 (2): 

299–307. https://doi.org/10.1007/s10967-017-5674-3. 

Casey, Joan A., Elizabeth L. Ogburn, Sara G. Rasmussen, Jennifer K. Irving, Jonathan Pollak, 

Paul A. Locke, and Brian S. Schwartz. 2015. “Predictors of Indoor Radon Concentrations in 

Pennsylvania, 1989–2013.” Environmental Health Perspectives 123 (11): 1130–37. 

https://doi.org/10.1289/ehp.1409014. 



 

92 

 

Casey, Joan A, David A Savitz, Sara G Rasmussen, Elizabeth L Ogburn, Jonathan Pollak, Dione 

G Mercer, and Brian S Schwartz. 2016. “Unconventional Natural Gas Development and 

Birth Outcomes in Pennsylvania, USA.” Epidemiology (Cambridge, Mass.) 27 (2): 163–72. 

https://doi.org/10.1097/EDE.0000000000000387. 

CDC (Center for Disease Control and Prevention). 2013. “Behavior Risk Factor Surveillance 

System. BRFSS 2013 Survey Data and Documentation.” 2013. 

https://www.cdc.gov/brfss/annual_data/annual_2013.html. 

Cheadle, L. C., S. J. Oltmans, G. Petron, R. C. Schnell, E. J. Mattson, S. C. Herndon, A. M. 

Thompson, D. R. Blake, and A. McClure-Begley. 2017. “Surface Ozone in the Colorado 

Northern Front Range and the Influence of Oil and Gas Development during 

FRAPPE/DISCOVER-AQ in Summer 2014.” Elem Sci Anth 5 (0): 61. 

https://doi.org/10.1525/elementa.254. 

Commission, U S Atomic Energy. 1961. “Geology and Geochemistry of Uranium in Marine 

Black Shales A Review Geology and Geochemistry of Uranium in Marine Black Shales A 

Review.” Washington, D.C. https://pubs.usgs.gov/pp/0356c/report.pdf. 

Cordeiro, Cristina, Paulo J.C. Favas, João Pratas, Santosh Kumar Sarkar, and Perumal 

Venkatachalam. 2016. “Uranium Accumulation in Aquatic Macrophytes in an Uraniferous 

Region: Relevance to Natural Attenuation.” Chemosphere 156 (August): 76–87. 

https://doi.org/10.1016/J.CHEMOSPHERE.2016.04.105. 

Czolowski, Eliza D., Renee L. Santoro, Tanja Srebotnjak, and Seth B.C. Shonkoff. 2017. 

“Toward Consistent Methodology to Quantify Populations in Proximity to Oil and Gas 

Development: A National Spatial Analysis and Review.” Environmental Health 

Perspectives 125 (8): 086004. https://doi.org/10.1289/EHP1535. 

Darby, S., D. Hill, A. Auvinen, J. M. Barros-Dios, H. Baysson, F. Bochicchio, H. Deo, et al. 

2005. “Radon in Homes and Risk of Lung Cancer: Collaborative Analysis of Individual 

Data from 13 European Case-Control Studies.” British Medical Journal 330 (7485): 223–

26. https://doi.org/10.1136/bmj.38308.477650.63. 

David R. Soller, Marith C. Reheis, Christopher P. Garrity, and D.R. Van Sistine. 2009. Map 

Database for Surficial Materials in the Conterminous United States: U.S. Geological 

Survey Data Series 425, Scale 1:5,000,000. Reston, VA: U.S. Geological Survey. 

Di, Qian, Itai Kloog, Petros Koutrakis, Alexei Lyapustin, Yujie Wang, and Joel Schwartz. 2016. 

“Assessing PM 2.5 Exposures with High Spatiotemporal Resolution across the Continental 

United States.” Environmental Science & Technology 50 (9): 4712–21. 

https://doi.org/10.1021/acs.est.5b06121. 

Dimick, Justin B., and Andrew M. Ryan. 2014. “Methods for Evaluating Changes in Health Care 

Policy: The Difference-in-Differences Approach.” JAMA - Journal of the American 

Medical Association 312 (22): 2401–2. https://doi.org/10.1001/jama.2014.16153. 

Dominici, Francesca, Michael Greenstone, and Cass R. Sunstein. 2014. “Particulate Matter 

Matters.” Science. American Association for the Advancement of Science. 

https://doi.org/10.1126/science.1247348. 



 

93 

 

Doxsey-Whitfield, Erin, Kytt MacManus, Susana B. Adamo, Linda Pistolesi, John Squires, 

Olena Borkovska, and Sandra R. Baptista. 2015. “Taking Advantage of the Improved 

Availability of Census Data: A First Look at the Gridded Population of the World, Version 

4.” Papers in Applied Geography 1 (3): 226–34. 

https://doi.org/10.1080/23754931.2015.1014272. 

Duan, Peng, Chao Quan, Chunhui Hu, Jicai Zhang, Fei Xie, Xiuxue Hu, Zongtao Yu, et al. 2015. 

“Nonlinear Dose-Response Relationship between Radon Exposure and the Risk of Lung 

Cancer: Evidence from a Meta-Analysis of Published Observational Studies.” European 

Journal of Cancer Prevention. Lippincott Williams and Wilkins. 

https://doi.org/10.1097/CEJ.0000000000000066. 

Earth Resources Observation and Science (EROS) Center. 2012. “The National Land Cover 

Database.” Reston, Virginia. 

Eitrheim, Eric S., Dustin May, Tori Z. Forbes, and Andrew W. Nelson. 2016. “Disequilibrium of 

Naturally Occurring Radioactive Materials (NORM) in Drill Cuttings from a Horizontal 

Drilling Operation.” Environmental Science & Technology Letters 3 (12): 425–29. 

https://doi.org/10.1021/acs.estlett.6b00439. 

Enverus. 2019. “Enverus Drillinginfo Direct Access Application Programming Interface.” 2019. 

https://app.drillinginfo.com/direct/. 

Fisher, R Stephen. 1998. “Geologic and Geochemical Controls on Naturally Occurring 

Radioactive Materials (NORM) in Produced Water from Oil, Gas, and Geothermal 

Operations.” Environmental Geosciences 5 (3): 139–50. 

Fraass, Ronald. 2015. “RadNet National Air Monitoring Program.” In Nuclear Terrorism and 

National Preparedness, 117–23. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-

9891-4_11. 

Franklin, Meredith, Khang Chau, Lara J. Cushing, and Jill E. Johnston. 2019. “Characterizing 

Flaring from Unconventional Oil and Gas Operations in South Texas Using Satellite 

Observations.” Environmental Science & Technology 53 (4): 2220–28. 

https://doi.org/10.1021/acs.est.8b05355. 

Gründel, M., and J. Porstendörfer. 2004. “Differences between the Activity Size Distributions of 

the Different Natural Radionuclide Aerosols in Outdoor Air.” Atmospheric Environment 38 

(22): 3723–28. https://doi.org/10.1016/J.ATMOSENV.2004.01.043. 

Health Effects Institute-Energy (HEI-Energy) Research Committee. 2019a. “Human Exposure 

To Unconventionl Oil and Gas Development: A Literature Survery For Research Planning 

(Draft For Public Comment).” Boston, MA. 

———. 2019b. “Potential Human Health Effects Associated With Unconventional Oil and Gas 

Development : A Systematic Review Of The Epidemiology Literature.” Boston, MA. 

“Health Effects of Radon Exposure: Report of the Council on Scientific Affairs, American 

Medical Association.” 1991. Archives of Internal Medicine 151 (4): 674–77. 

https://doi.org/10.1001/archinte.1991.00400040028007. 



 

94 

 

Hernández, F., J. Hernández-Armas, A. Catalán, J.C. Fernández-Aldecoa, and L. Karlsson. 2005. 

“Gross Alpha, Gross Beta Activities and Gamma Emitting Radionuclides Composition of 

Airborne Particulate Samples in an Oceanic Island.” Atmospheric Environment 39 (22): 

4057–66. https://doi.org/10.1016/J.ATMOSENV.2005.03.035. 

Hill, Elaine, and Lala Ma. n.d. “Shale Gas Development and Drinking Water Quality.” American 

Economic Review: Papers & Proceedings 2017 (5): 522–25. 

https://doi.org/10.1257/aer.p20171133. 

Hiscock, Rosemary, Linda Bauld, Amanda Amos, Jennifer A. Fidler, and Marcus Munafò. 2012. 

“Socioeconomic Status and Smoking: A Review.” Annals of the New York Academy of 

Sciences. Blackwell Publishing Inc. https://doi.org/10.1111/j.1749-6632.2011.06202.x. 

Joseph S. Duval, John M. Carson, Peter B. Holman, and Arthur G. Darnley. 2005. “Terrestrial 

Radioactivity and Gamma-Ray Exposure in the United States and Canada: U.S. Geological 

Survey Open-File Report 2005-1413.” https://pubs.usgs.gov/of/2005/1413/. 

Kelsey, Timothy W., Mark D. Partridge, and Nancy E. White. 2016. “Unconventional Gas and 

Oil Development in the United States: Economic Experience and Policy Issues.” Applied 

Economic Perspectives and Policy 38 (2): 191–214. 

Koehler, Kirsten, J Hugh Ellis, Joan A Casey, David Manthos, Karen Bandeen-Roche, 

Rutherford Platt, and Brian S Schwartz. 2018. “Exposure Assessment Using Secondary 

Data Sources in Unconventional Natural Gas Development and Health Studies.” Cite This: 

Environ. Sci. Technol 52: 6061–69. https://doi.org/10.1021/acs.est.8b00507. 

Kolb, W.A., and M. Wojcik. 1985. “Enhanced Radioactivity Due to Natural Oil and Gas 

Production and Related Radiological Problems.” Science of The Total Environment 45 

(October): 77–84. https://doi.org/10.1016/0048-9697(85)90206-2. 

Landrigan, Philip J., Howard Frumkin, and Brita E. Lundberg. 2020. “The False Promise of 

Natural Gas.” New England Journal of Medicine. https://doi.org/10.1056/NEJMp1913663. 

Lauer, Nancy E., Jennifer S. Harkness, and Avner Vengosh. 2016. “Brine Spills Associated with 

Unconventional Oil Development in North Dakota.” Environmental Science & Technology 

50 (10): 5389–97. https://doi.org/10.1021/acs.est.5b06349. 

Lauer, Nancy E, Nathaniel R Warner, and Avner Vengosh. 2018. “Sources of Radium 

Accumulation in Stream Sediments near Disposal Sites in Pennsylvania: Implications for 

Disposal of Conventional Oil and Gas Wastewater.” Environmental Science & Technology 

52 (3): 955–62. https://doi.org/10.1021/acs.est.7b04952. 

Lee, Eric W., L. J. Wei, David A. Amato, and Sue Leurgans. 1992. “Cox-Type Regression 

Analysis for Large Numbers of Small Groups of Correlated Failure Time Observations.” In 

Survival Analysis: State of the Art, 237–47. Springer Netherlands. 

https://doi.org/10.1007/978-94-015-7983-4_14. 

Li, Wenyuan, Marguerite M. Nyhan, Elissa H. Wilker, Carolina L.Z. Vieira, Honghuang Lin, 

Joel D. Schwartz, Diane R. Gold, et al. 2018. “Recent Exposure to Particle Radioactivity 

and Biomarkers of Oxidative Stress and Inflammation: The Framingham Heart Study.” 



 

95 

 

Environment International 121 (December): 1210–16. 

https://doi.org/10.1016/J.ENVINT.2018.10.039. 

Lu, Yun, and Scott L Zeger. 2007. “On the Equivalence of Case-Crossover and Time Series 

Methods in Environmental Epidemiology.” Biostatistics (Oxford, England) 8 (2): 337–44. 

https://doi.org/10.1093/biostatistics/kxl013. 

Marsh, J W, and M R Bailey. 2013. “A Review of Lung-to-Blood Absorption Rates for Radon 

Progeny.” Radiation Protection Dosimetry 157 (4): 499–514. 

https://doi.org/10.1093/rpd/nct179. 

McKenzie, Lisa M., James Crooks, Jennifer L. Peel, Benjamin D. Blair, Stephen Brindley, 

William B. Allshouse, Stephanie Malin, and John L. Adgate. 2019. “Relationships between 

Indicators of Cardiovascular Disease and Intensity of Oil and Natural Gas Activity in 

Northeastern Colorado.” Environmental Research 170 (March): 56–64. 

https://doi.org/10.1016/j.envres.2018.12.004. 

Mesinger, Fedor, Geoff DiMego, Eugenia Kalnay, Kenneth Mitchell, Perry C. Shafran, Wesley 

Ebisuzaki, Dušan Jović, et al. 2006. “North American Regional Reanalysis.” Bulletin of the 

American Meteorological Society 87 (3): 343–60. https://doi.org/10.1175/BAMS-87-3-343. 

Mohery, M., A. M. Abdallah, Z. M. Al-Amoudi, and S. S. Baz. 2014. “Activity Size Distribution 

of Some Natural Radionuclides.” Radiation Protection Dosimetry 158 (4): 435–41. 

https://doi.org/10.1093/rpd/nct250. 

Momcilovic, Berislav, H. A. Alkhatib, J. A. Duerre, M. Cooley, W. M. Long, T. R. Harris, and 

G. I. Lykken. 2001. “Environmental Lead-210 and Bismuth-210 Accrue Selectively in the 

Brain Proteins in Alzheimer Disease and Brain Lipids in Parkinson Disease.” In Alzheimer 

Disease and Associated Disorders, 15:106–15. https://doi.org/10.1097/00002093-

200104000-00012. 

Morgenstern, Matthis, James D. Sargent, and Reiner Hanewinkel. 2009. “Relation between 

Socioeconomic Status and Body Mass Index: Evidence of an Indirect Path via Television 

Use.” Archives of Pediatrics and Adolescent Medicine 163 (8): 731–38. 

https://doi.org/10.1001/archpediatrics.2009.78. 

National Council on Radiation Protection and Measurements. 1984. Evaluation of Occupational 

and Environmental Exposures to Radon and Radon Daughters in the United States. 

Bethesda, MD: NCRP. 

National Research Council. 2006. Health Risks from Exposure to Low Levels of Ionizing 

Radiation: BEIR VII Phase 2. Washington D.C: The National Academies Press. 

Nyhan, Marguerite M., Brent A. Coull, Annelise J. Blomberg, Carol L.Z. Vieira, Eric Garshick, 

Abdulaziz Aba, Pantel Vokonas, Diane R. Gold, Joel Schwartz, and Petros Koutrakis. 2018. 

“Associations Between Ambient Particle Radioactivity and Blood Pressure: The NAS 

(Normative Aging Study).” Journal of the American Heart Association 7 (6): e008245. 

https://doi.org/10.1161/JAHA.117.008245. 

Nyhan, Marguerite M., Mary Rice, Annelise Blomberg, Brent A. Coull, Eric Garshick, Pantel 



 

96 

 

Vokonas, Joel Schwartz, Diane R. Gold, and Petros Koutrakis. 2019. “Associations between 

Ambient Particle Radioactivity and Lung Function.” Environment International 130 

(September): 104795. https://doi.org/10.1016/J.ENVINT.2019.04.066. 

Olmstead, Sheila M., Lucija A. Muehlenbachs, Jhih Shyang Shih, Ziyan Chu, and Alan J. 

Krupnick. 2013. “Shale Gas Development Impacts on Surface Water Quality in 

Pennsylvania.” Proceedings of the National Academy of Sciences of the United States of 

America 110 (13): 4962–67. https://doi.org/10.1073/pnas.1213871110. 

Otton, James K. 1992. The Geology of Radon. Washington, D.C: United States Geological 

Survey. 

Patel, Mitesh S., Kevin G. Volpp, Dylan S. Small, Alexander S. Hill, Orit Even-Shoshan, Lisa 

Rosenbaum, Richard N. Ross, Lisa Bellini, Jingsan Zhu, and Jeffrey H. Silber. 2014. 

“Association of the 2011 ACGME Resident Duty Hour Reforms with Mortality and 

Readmissions among Hospitalized Medicare Patients.” JAMA - Journal of the American 

Medical Association 312 (22): 2364–73. https://doi.org/10.1001/jama.2014.15273. 

Pennsylvania Department of Environmental Protection. 2016. “Technologically Enhanced 

Naturally Occuring Radioactive Materials (TENORM) Study Report.” Harrisburg,PA. 

Perry, Simona L. 2013. “Using Ethnography to Monitor the Community Health Implications of 

Onshore Unconventional Oil and Gas Developments: Examples from Pennsylvania’s 

Marcellus Shale.” NEW SOLUTIONS: A Journal of Environmental and Occupational 

Health Policy 23 (1): 33–53. https://doi.org/10.2190/NS.23.1.d. 

Porstendörfer, J. 1994. “Properties and Behaviour of Radon and Thoron and Their Decay 

Products in the Air.” Journal of Aerosol Science 25 (2): 219–63. 

https://doi.org/10.1016/0021-8502(94)90077-9. 

Price, Phillip N, and Anthony V Nero. 1996. “Mapping of Mean Radon Concentrations, Using 

Survey Data and Covariates.” In International Radon Symposium. Berkley,CA. 

R Core Team. 2017. “R: A Language and Environment for Statistical Computing.” Vienna, 

Austria. 

“Radon in Homes: Report of the Council on Scientific Affairs, American Medical Association.” 

1987. JAMA: The Journal of the American Medical Association 258 (5): 668–72. 

https://doi.org/10.1001/jama.1987.03400050110038. 

Rajaram, Ravi, Jeanette W. Chung, Andrew T. Jones, Mark E. Cohen, Allison R. Dahlke, 

Clifford Y. Ko, John L. Tarpley, Frank R. Lewis, David B. Hoyt, and Karl Y. Bilimoria. 

2014. “Association of the 2011 ACGME Resident Duty Hour Reform with General Surgery 

Patient Outcomes and with Resident Examination Performance.” JAMA - Journal of the 

American Medical Association 312 (22): 2374–84. 

https://doi.org/10.1001/jama.2014.15277. 

Rasmussen, Sara G., Elizabeth L. Ogburn, Meredith McCormack, Joan A. Casey, Karen 

Bandeen-Roche, Dione G. Mercer, and Brian S. Schwartz. 2016. “Association Between 

Unconventional Natural Gas Development in the Marcellus Shale and Asthma 



 

97 

 

Exacerbations.” JAMA Internal Medicine 176 (9): 1334. 

https://doi.org/10.1001/jamainternmed.2016.2436. 

ResDac. 2018. “Master Beneficiary Summary File (MBSF) Base.” Resdac.Org. 2018. 

https://www.resdac.org/cms-data/files/mbsf-base. 

Rich, Alisa L, and Ernest C Crosby. 2013. “Analysis of Reserve Pit Sludge from Unconventional 

Natural Gas Hydraulic Fracturing and Drilling Operations for the Presence of 

Technologically Enhanced Naturally Occurring Radioactive Material (TENORM).” NEW 

SOLUTIONS 23 (1): 117–35. https://doi.org/10.2190/NS.23.1.h. 

Royal Observatory of Belgium. 2019. “Sunspot Data from the World Data Center SILSO.” 

https://doi.org/http://www.sidc.be/SILSO. 

Santos, Nathalia Villa dos, Carolina Leticia Zilli Vieira, Paulo Hilario Nascimento Saldiva, 

Barbara Paci Mazzilli, Mitiko Saiki, Catia Heloisa Saueia, Carmen Diva Saldiva De André, 

Lisie Tocci Justo, Marcelo Bessa Nisti, and Petros Koutrakis. 2020. “Levels of Polonium-

210 in Brain and Pulmonary Tissues: Preliminary Study in Autopsies Conducted in the City 

of Sao Paulo, Brazil.” Scientific Reports 10 (1): 1–7. https://doi.org/10.1038/s41598-019-

56973-z. 

Schwartz, Joel D., Yan Wang, Itai Kloog, Ma’Ayan Yitshak-Sade, Francesca Dominici, and 

Antonella Zanobetti. 2018. “Estimating the Effects of PM2.5 on Life Expectancy Using 

Causal Modeling Methods.” Environmental Health Perspectives 126 (12). 

https://doi.org/10.1289/EHP3130. 

Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, F. Ngan, A. F. Stein, et 

al. 2015. “NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System.” 

Bulletin of the American Meteorological Society 96 (12): 2059–77. 

https://doi.org/10.1175/BAMS-D-14-00110.1. 

Therneau, Terry M. 2019. “A Package for Survival Analysis in S.” https://cran.r-

project.org/package=survival. 

Torres, Luisa, Om Prakash Yadav, and Eakalak Khan. 2018. “Risk Assessment of Human 

Exposure to Ra-226 in Oil Produced Water from the Bakken Shale.” Science of the Total 

Environment 626: 867–74. 

Turner, Michelle C, Daniel Krewski, Yue Chen, C Arden Pope, Susan M Gapstur, and Michael J 

Thun. 2012. “Radon and Nonrespiratory Mortality in the American Cancer Society Cohort.” 

American Journal of Epidemiology 176 (9): 808–14. https://doi.org/10.1093/aje/kws198. 

U.S. Energy Information Administration (EIA). 2019a. “Drilling Productivity Report.” 2019. 

https://www.eia.gov/petroleum/drilling/. 

———. 2019b. “Horizontally Drilled Wells Dominate U.S. Tight Formation Production.” 2019. 

https://www.eia.gov/todayinenergy/detail.php?id=39752. 

———. 2019c. “The Distribution of U.S. Oil and Natural Gas Wells by Production Rate.” 

Washington, D.C. 



 

98 

 

U.S. Enverionmental Preotection Agency (EPA). 2016. “Hydraulic Fracturing For Oil And Gas: 

Impacts From The Hydraulic Fracturing Water Cycle On Drinking Water Resources In The 

United States (Final Report).” Washington D.C. 

U.S. Environmental Protection Agency (EPA). 2012. “Expansion and Upgrade of the RadNet Air 

Monitoring Network: Conceptual Plan and Implementation Process. Office of Radiation and 

Indoor Air. Vol. I, 2012.” 

Viechtbauer, Wolfgang. 2010. “Conducting Meta-Analyses in R with the Metafor Package.” 

Journal of Statistical Software 36 (3). 

Wang, Yan, Itai Kloog, Brent A. Coull, Anna Kosheleva, Antonella Zanobetti, and Joel D. 

Schwartz. 2016. “Estimating Causal Effects of Long-Term PM2.5 Exposure on Mortality in 

New Jersey.” Environmental Health Perspectives 124 (8): 1182–88. 

https://doi.org/10.1289/ehp.1409671. 

Wing, Coady, Kosali Simon, and Ricardo A. Bello-Gomez. 2018. “Designing Difference in 

Difference Studies: Best Practices for Public Health Policy Research.” Annual Review of 

Public Health 39 (1): 453–69. https://doi.org/10.1146/annurev-publhealth-040617-013507. 

Xu, Yanqing, Mounika Sajja, and Ashok Kumar. 2019. “Impact of the Hydraulic Fracturing on 

Indoor Radon Concentrations in Ohio: A Multilevel Modeling Approach.” Frontiers in 

Public Health 7 (April): 76. https://doi.org/10.3389/fpubh.2019.00076. 

Yitshak-Sade, Maayan, Annelise J. Blomberg, Antonella Zanobetti, Joel D. Schwartz, Brent A. 

Coull, Itai Kloog, Francesca Dominici, and Petros Koutrakis. 2019. “County-Level Radon 

Exposure and All-Cause Mortality Risk among Medicare Beneficiaries.” Environment 

International 130 (September): 104865. https://doi.org/10.1016/j.envint.2019.05.059. 

Zhang, Tieyuan, Richard W. Hammack, and Radisav D. Vidic. 2015. “Fate of Radium in 

Marcellus Shale Flowback Water Impoundments and Assessment of Associated Health 

Risks.” Environmental Science & Technology 49 (15): 9347–54. 

https://doi.org/10.1021/acs.est.5b01393. 

  


