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The Effect of Line of Sight Temperature Variation and Noise on
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ABSTRACT

We investigate the effect of line of sight temperature variations and noise on

two commonly used methods to determine dust properties from dust continuum

observations of dense cores. One method employs a direct fit to a modified black-

body SED; the other involves a comparison of flux ratios to an analytical pre-

diction. Fitting fluxes near the SED peak produces inaccurate temperature and

dust spectral index estimates due to the line of sight temperature (and density)

variations. Longer wavelength fluxes in the Rayleigh-Jeans part of the spectrum

( >
∼ 600 µm for typical cores) may more accurately recover the spectral index, but

both methods are very sensitive to noise. The temperature estimate approaches

the density weighted temperature, or “column temperature,” of the source as

short wavelength fluxes are excluded. An inverse temperature - spectral index

correlation naturally results from SED fitting, due to the inaccurate isothermal

assumption, as well as noise uncertainties. We show that above some “threshold”

temperature, the temperatures estimated through the flux ratio method can be

highly inaccurate. In general, observations with widely separated wavelengths,

and including shorter wavelengths, result in higher threshold temperatures; such

observations thus allow for more accurate temperature estimates of sources with

temperatures less than the threshold temperature. When only three fluxes are

available, a constrained fit, where the spectral index is fixed, produces less scatter

in the temperature estimate when compared to the estimate from the flux ratio

method.

1Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138

2Initiative for Innovative Computing, Harvard University, 60 Oxford Street, Cambridge, MA, 02138

3Division of Physics, Mathematics, and Astronomy, California Institute of Technology, 770 South Wilson

Avenue, Pasadena CA 91125

4Institute for Astronomy, Madingley Rd, Cambridge, CB3 OHA, UK

http://arXiv.org/abs/0902.3477v1


– 2 –

Subject headings: dust – infrared:ISM – ISM:clouds – methods: miscellaneous –
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1. Introduction

Some of the coolest regions in molecular clouds are dense, starless cores. These dust en-

shrouded objects are often in the process of forming one (or a few) protostar(s) (Benson & Myers

1989). Determining the physical properties of cores, such as temperature, composition, and

density, is necessary for a complete understanding of the environmental conditions prior to

the formation of a star or protostar. There has been much progress in the study of cores

containing central protostars, including the success of theory in explaining the variety of

emergent spectral energy distributions (SED) as an evolutionary sequence (e.g. Adams et al.

1987; Lada 1987; Andre et al. 1993). On the other hand, the structure and evolution of cores

that have yet to form a central protostar is not as well understood, and is thus an active

area in current star formation research.

Dust presents one avenue to observationally investigate starless cores. Dust is prevalent

in the ISM, and it is responsible for most of the extinction of starlight. For cores positioned

in front of sources of known luminosity or color, the level of extinction can be an indicator of

the dust content in the attenuating core (Lada et al. 1994; Alves et al. 2001). Additionally,

scattered light from cores surrounded by diffuse background radiation may be used to deter-

mine the dust content (Foster & Goodman 2006). Dust can also be directly detected through

its thermal emission. Since the temperatures of the cores are <
∼ 15 K, the emergent contin-

uum SED peaks in the far-infrared (FIR) or sub-millimeter wavelength regimes (see Fig. 1).

Ground and space based observations by SCUBA, MAMBO, Bolocam, 2MASS, IRAS, ISO

and Spitzer have detected dust emission from many environments, and they have provided

much information about starless cores (e.g. Ward-Thompson et al. 2002; Schnee et al. 2007;

Kauffmann et al. 2008). The upcoming Planck and Herschel missions, which are capable of

FIR observations, are also well suited for detecting dust emission. Thus, a thorough con-

sideration of the nature of dust continuum emission, and the uncertainty associated with

measuring it, is timely.

The main characteristics of the dust that determine the form of the emergent SED

are the column density, temperature, and emissivity. Observationally quantifying these

characteristics should constrain models of dense starless cores. Radial density profiles are

often compared with a stable isothermal Bonnor-Ebert sphere (Bonnor 1956; Ebert 1955),

for which the volume density is constant near the center, but drops as r−2 at larger radii

(e.g. Bacmann et al. 2000; Schnee & Goodman 2005). The density gradients may vary from
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core to core, which in turn may (or may not) be due to an evolutionary sequence as cores

continually collapse to form a protostar.

Though gas temperatures in a stable Bonnor-Ebert sphere are constant, theoretical

results have suggested that dust temperatures decrease towards the center to values as low

as ∼ 7 K (e.g. Leung 1975; Evans et al. 2001; Zucconi et al. 2001). And, recent observational

investigations have in fact identified cores with such gradients in the dust temperatures

(e.g. Schnee et al. 2007; Ward-Thompson et al. 2002). Though the dust mass is only a

fraction of the gas mass (∼ 1/100), gas temperatures may also exhibit gradients, due to the

coupling between dust and gas at high enough densities (Goldsmith 2001; Crapsi et al. 2007).

The (recent and upcoming) availability of higher quality observational data will require a

thorough interpretation of emergent SEDs to accurately assess the temperature, as well as

density, profiles of the observed sources.

The common assumption is that the emergent SED from interstellar dust is similar to

the Planck function of a blackbody, modified by a power-law dependence on the frequency

(Hildebrand 1983). The spectral index of the dust emissivity power-law, β, is dependent

on the bulk and surface properties of the dust grains. As shown by Keene et al. (1980),

observations limited by sparse flux sampling may be consistent with various SEDs described

by different values of β. A precise estimate of the value of β is necessary to accurately derive

other properties of the observed source, such as the temperature and the mass of a cold core.

The emissivity-modified blackbody spectrum is the basis for many analyses of dust properties

in observed cores (e.g Kramer et al. 2003; Schnee et al. 2005; Ward-Thompson et al. 2002;

Kirk et al. 2007).

Dupac and coworkers fit observed FIR and sub-millimeter fluxes with a modified black-

body spectrum, and they suggested that β decreases with increasing temperatures, from ∼ 2

in cold regions to 0.8 - 1.6 in warmer regions (T ∼ 35 - 80 K; Dupac et al. 2001, 2002, 2003).

Such analyses may be sensitive to the simplified assumption of a constant temperature along

the line of sight. Using radiative transfer calculations of embedded sources, Doty & Leung

(1994) demonstrated that the accuracy of the parameters estimated from measured fluxes

is sensitive to the precise nature of the source (e.g. opacity, temperature distribution); they

found that the Rayleigh-Jeans (R-J) regime of the emergent spectrum is better suited for an

accurate determination of the dust spectral index. Doty & Palotti (2002) found that the use

of flux ratios to estimate the spectral index is sensitive to which wavelengths (of the given

fluxes) are used in the ratio; they also found that β is more accurately determined when

fluxes at longer wavelengths are used in a fit. Schnee et al. (2006) also showed that various

ratios of fluxes (with different wavelengths) give different estimates for dust temperature and

column density, due to an inaccurate isothermal assumption.
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Here, we systematically investigate how line of sight density and temperature varia-

tions, similar to those in dense cores, as well as noise uncertainties, affect the temperature

and spectral index estimated from IR and sub-millimeter observations. We focus on two

commonly employed methods. The first method uses a direct fit of a modified blackbody

SED. For the second method, ratios of the fluxes are used to determine the temperature and

β from an analytical prediction. Both methods usually rely upon an assumption of constant

temperature along the line of sight. Using simple radiative transfer calculations of model

sources, and Monte Carlo experiments, we assess how well the resulting temperature and

spectral index estimates recover properties of known input sources.

This paper is organized as follows. In the next section (§2), we present the analytical

expression of the power-law modified blackbody spectrum, and briefly introduce two well

known methods used to estimate the dust properties from IR and sub-millimeter continuum

observations. In our analysis of the two methods, we consider numerous scenarios typical

of observations of star forming regions. Table 1 shows the particular scenario considered

in each subsection, and may be used as a brief guide to §3 - §6. We begin our analysis

by considering non-isothermal sources in the ideal limit where a large range of fluxes at

different wavelengths are available for fitting an SED. We then systematically exclude fluxes,

culminating with the scenario where only a few fluxes are available, in which case the flux

ratio method is employed. Throughout our analysis, we also consider the effect of noise

in the observations, of both isothermal and non-isothermal sources. In §3, we describe the

method to estimate source temperatures using direct SED fitting; we investigate how line

of sight variations, noise, and the sampling of different regions of the emergent SED affect

the resulting temperature estimates. We also discuss our findings in the context of recent

published works. In the following section (§4) we analyze the flux ratio method focusing

on the effect of noise, through the use Monte Carlo simulations. We then compare the two

methods using a radiative transfer simulation to model the emission from an isolated starless

core in §5. After a discussion in §6, we summarize our findings in §7.

2. Dust Emission: Common Assumptions and Methods

2.1. Isothermal Sources

The emergent continuum SED due to dust is often expressed analytically as the product

of a blackbody spectrum Bν(T ) at the dust temperature T and the frequency dependent dust

opacity κν . The observed flux density associated with this SED takes the form

Sν = ΩBν(T )κνN, (1)
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where Ω is the solid angle of the observing beam, and N is the column density of the emitting

material. The opacity κν is empirically determined to have a power law dependence on the

frequency (Hildebrand 1983):

κν = κ0

(

ν

ν0

)β

. (2)

The spectral index β depends on the physical and chemical properties of the dust. For

silicate and graphite dust composition common in much of the ISM, β ∼ 2 (Draine & Lee

1984). However, observations have shown that β can reach values as low as <
∼ 1 and as high

as >
∼ 3 in various environments (e.g. Oldham et al. 1994; Kuan et al. 1996; Mathis 1990).

Indeed, the spectral index is a key parameter and accurately determining its value, along

with the column density N and the temperature T , is crucial for a thorough description of

dust properties in an observed region. Those are the three parameters that are required to

accurately describe an observed flux density (per beam, i.e. Sν/Ω).

Figure 1 shows SEDs from a 20 K source with different values of β, but constant column

densities. For comparison, the SED from a 5 K source with the same column density and β =

2 is also shown. The SEDs are all calibrated using an equivalent κ0 = κ230 GHz, which is why

all the 20 K SEDs intersect at 230 GHz. Sources with higher spectral indices (β) produce

SEDs with steeper slopes at long wavelengths (in the R-J regime), increasing peak fluxes,

and shorter peak wavelengths. Similar to Wien’s Law for a pure blackbody, for a given value

of β, a modified Wien’s Law indicating the wavelength corresponding to the peak in Sν ,

λmax, can be determined numerically.1 For β = 2, λmax ≃ (2900 µm K)/T , and for β=1,

λmax ≃ (3670 µm K)/T . Doty & Palotti (2002) find that λmax = (4620e−0.2357β µm K)/T is

a good fit for 1 < β < 2.

2.2. Non-Isothermal Sources: A Simple Example

Equations (1)-(2) describe the spectrum emitted from dust at a single temperature T .

For a 3D source with various dust characteristics, the emergent SED will be a combination

of SEDs from all the dust in the source. For optically thin emission, the emergent SED is

simply the integrated SED from each dust grain. Here, we briefly consider the effect of using

equations (1)-(2) to characterize an SED from a source with two different dust populations.

1This modified Wien’s Law gives the wavelength that corresponds to the peak in Sν . In other texts, λmax

sometimes refers to the wavelength corresponding to the peak of Sλ.
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This relatively simple analysis is a prelude to the effect of line of sight temperature variations

on commonly employed methods to estimate dust properties.

Figure 2 shows the emergent SED from a source with two populations of dust grains,

along with the SED from each individual component: the temperature and column density

of the cool component is T1 = 10 K and N1, respectively; for the warm component, T2 = 15

K and N2 = 0.1N1. Physically, such a system is similar to a 10 K dense core surrounded by

a 15 diffuse envelope. The spectral indices for both components are set to β = 2.

The peak of the emergent SED in Figure 2 occurs at λmax = 251 µm. Using the

modified Wien’s Law for β=2, the temperature of an isothermal source that would produce

a spectrum which peaks at that wavelength is 11.6 K. Though this temperature occurs

somewhere between the temperatures of the two isothermal sources that contribute to the

emergent SED, in practice knowledge of the peak of the SED of an unknown source is not

easily determined. Further, it is not obvious how one should interpret the temperature

assigned to a source which itself is not isothermal.

In subsequent sections, we assess how well emergent SEDs are described by equations

(1)-(2), and what information about the source temperature can be garnered from continuum

observations that span different regions of the SED. We also consider the more realistic

constraint of limited sampling of the emergent SED. One question we aim to address, for

instance, is whether fluxes in different parts of an emergent SED, such as the Wien or R-J

regimes, are preferable for determining the dust properties.

Two commonly employed methods to determine the properties of dust from continuum

observations are: (1) a direct fitting of equations (1) & (2); and (2) the use of ratios of

observed flux densities at 2 or more wavelengths. For isothermal sources, and with ideal

observations with no uncertainties, both methods will accurately recover T , β, N , and κν .

However, all sources are unlikely to be isothermal, and even the most accurate observations

include some level of intrinsic noise. In the following sections, we quantify how these factors

affect the accuracy of the derived parameters. After describing the two methods in further

detail, we use simple numerical experiments to evaluate the accuracy of the methods in

determining the dust properties from observations of star forming cores.

3. Direct SED Fitting

A minimized χ2 fit of equations (1)-(2) to a number of observed fluxes can be performed

to estimate the dust properties. There are essentially three parameters to be fit, the tem-

perature T , the spectral index β and the absolute scaling, which is just the product of the
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column density N and the opacity at a given frequency κ0. Since a fit will only produce the

scaling (which is the optical depth at a particular frequency, e.g. τ230 = Nκ230 at 230 GHz),

other assumptions and/or techniques are necessary to obtain estimates of N and κ0. For

example, if the opacity at a wavelength is known (e.g. κ0 = κ230 for ν0 = 230 GHz), then

the fit can estimate N directly. Extinction studies are another avenue to estimate N ; the

level of attenuation (usually from optical and NIR observations) due to dust in dark clouds

in front of the stellar background is directly related to the column density of the dust (e.g.

Lada et al. 1994). This method is advantageous since it provides an independent estimate of

N , but also requires assumptions, such as the ratio of total-to-selective extinction RV (e.g.

Hildebrand 1983; Mathis 1990, and references therein). Further, to obtain the total column

density along the line of sight, and not just that of the dust, an additional assumption of the

dust-to-gas ratio is required. In our analysis, we will assume that only IR and sub-millimeter

observations are available, and thus will limit our analysis to the estimation of T and β. Our

focus here is to investigate how well a given method can reproduce temperatures and spectral

indices only; estimation of the absolute column density and opacity is beyond the scope of

this work.

3.1. Effect of Line of Sight Temperature Variations

3.1.1. Two-Component Sources

We begin by considering ideal (i.e. error-free) observations of simple two-component

sources. Fitting experiments involving sources with two dust populations have been explored

by Dupac et al. (2002); their aim was to determine the amount of cold dust, along lines of

sight with warmer dust, that is necessary to reproduce the fit results of their observations.

Here, we simply evaluate the resulting fits when fluxes at different wavelengths are available.

The temperatures of the cold and warm media are T1 and T2, respectively, and the

column density ratio is N2/N1. Such systems are analogous to isothermal (spherical) dense

cores surrounded by warmer envelopes. Modified blackbody SEDs (eqns. [1]-[2]) are con-

structed for the two media, both with β = 2. A particular example SED of this general case

is shown in Figure 2. We then fit equation (1) to the integrated SEDs, solving for T and β

(as well as the scaling factor Nκ0). Figure 3 shows the fit temperatures and spectral indices

from observations of a variety of two-component systems, along with the wavelength range

of the fluxes considered in the fit.

Since T varies along the line of sight, the best fit T will likely not be equal to the tem-

perature of one of the two sources. One characteristic temperature of this two-component
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medium is the density weighted temperature (e.g. Doty & Palotti 2002). Since this density

weighted temperature is analogous to the column density, we will call it the “column temper-

ature,” Tcol. The estimated temperature from a fit can be compared with this true column

temperature.

As shown in Figure 3, the best fit temperature is systematically too high when all fluxes

at (integer) wavelengths between 10 - 3000 µm are considered in the fit. In fact, when

the temperature difference between the two components is large, the best fit temperature is

actually larger than the warmer medium, as in “2COMPc” and “2COMPd,” lines of sight

containing dust at 10 and 20 K. Further, when all wavelengths are considered, the fit value

of β is always lower than the actual value of 2. However, when shorter wavelengths are

systematically excluded from the fit, the best fit temperature decreases and approaches the

column temperature. The best fit β also approaches the model value of 2 when fluxes in

the R-J wavelength regime are the only ones used in the fit, consistent with the findings of

Doty & Leung (1994). In practice, for deriving dust properties from the emergent SED, it

may be necessary to exclude fluxes with λ <
∼ 100 µm due to the contribution of embedded

sources as well as transiently heated very small grains (Li & Draine 2001), depending on the

environment.

3.1.2. Cores with Density and Temperature Gradients

Recent theoretical and observational studies have indicated that the dust temperature in

starless cores decreases toward the center, reaching low values <
∼ 7 K (e.g. Evans et al. 2001;

Crapsi et al. 2007; Schnee et al. 2007; Ward-Thompson et al. 2002). We thus investigate the

emergent SED from cores containing temperature gradients like those observed, and whether

any useful information can be obtained from fitting a single power-law modified blackbody

spectrum to that SED.

To construct the model cores, we use the density and dust temperature profiles presented

by Evans et al. (2001), who performed radiative transfer simulations on a variety of model

cores with a range of density profiles. Though the resulting dust temperature profiles T (r)

are sensitive to the model density profiles, the relationship between T and column density

N is relatively uniform between models with different (volume) density profiles (see Fig. 9

of Evans et al. 2001). In our analysis of emergent SEDs from starless cores, we construct

two cores, with temperatures ranging between 8 - 12 K and 5 - 12 K; the column densities

are as indicated in Figure 9 of Evans et al. (2001): N increases with decreasing temperature

(and thus with decreasing core radius). At the outer edge of the core, at a temperature of

12 K, the column density is set to 2×1021 cm−2; the temperature drops to 8 K in model
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Core 1 and to 5 K in model Core 2, with column densities of 1.25×1022 cm−2 and 1×1023

cm−2, respectively. Besides these isolated cores, without any surrounding medium, we also

consider cases where the cores are surrounded by an envelope with a temperature of 20 K

and a column density of 1×1021 cm−2.

As described in §3.1.1 we begin by fitting the emergent SED assuming that fluxes at

various wavelength ranges are available. Figure 4 shows the resulting best fit temperatures

and spectral indices for the two cores. The SEDs from the cores without an envelope are

analogous to an SED obtained by accurately subtracting off flux due to larger scale emission

from the surrounding region, or an SED from a truly isolated core. When equation (1) is fit

to fluxes at 100 - 600 µm, the best fit temperature is ∼ 3 K (∼ 15%) off from the column

temperature of Core 1, but differs from the column temperature of Core 2 by ∼ 6 K (∼

50%). The best fit spectral index also shows large variation between the two cores. For

Core 1 (T ∈ 8 − 12 K) the fit β of 1.65 is within 20% of the model value of 2. However,

for Core 2 (T ∈ 5 − 12 K), the best fit β of 0.81 is erroneous by over a factor of 2. As

more short wavelength fluxes (in the Wien regime) are excluded, the fits recover the model

spectral index more accurately; the temperature estimate also decreases, approaching the

column temperature of the core.

When the core is surrounded by a warmer envelope, or when the flux from extended

regions has not been properly accounted for, then the discrepancy between the best fit

parameters and the core properties increases, as expected. For Core 2, a fit to the fluxes

at 100 - 600 µm results in an estimate for β with an unphysical sign (-0.3). Including the

envelope, the discrepancy between the fit T and the column temperature at short wavelength

fluxes increases by ∼50%, compared with the cores without the envelope.

We performed such fits for cores surrounded by more diffuse envelopes, with a column

density that is a factor ∼ 10 - 100 times lower than that of the core (1×1020 cm−2). Such

envelopes only have a slight effect on the fit temperatures, because the column temperatures

are not significantly different compared to the isolated cores. The envelope does have an

appreciable effect on the best fit β when fluxes near the peak of the SED are considered

in the fit. However, excluding short wavelength fluxes still recovers the true spectral index

reasonably accurately, as Figure 1 would suggest.

Figure 5 shows the emergent SED from Core 2 (T ∈ 5-12 K) without an envelope,

along with the results from two fits, one to the fluxes from 100 - 600 µm, and the other to

fluxes from 1 - 3 mm. The fit at shorter wavelengths does indeed reproduce the peak and

shorter wavelength fluxes of the emergent SED reasonably well, but severely overestimates

the fluxes at longer wavelengths. On the other hand, the fit to long wavelength observation

reproduces the R-J tail of the spectrum accurately, but underestimates the fluxes at all
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shorter wavelengths.

The peak of the emergent SED from Core 2 occurs at λ = 324 µm. From the mod-

ified Wien’s Law (for β=2) λmax = (2900 µm K)/T , the temperature associated with this

wavelength is 8.9 K. This value is closer to the maximum temperature, 12 K, of the source,

than the column temperature Tcol=6.2 K. In this case, Tcol is dominated by the high density,

cold center, whereas the peak of the SED is primarily influenced by the warmer, low density

regions of the core. Since the SED has an exponential dependence on the temperature in

the Wien regime, which, for such a cold core, goes up to ∼ 100 µm, even low density regions

may dominate the total SED emerging from a region, due to the higher temperatures.

3.1.3. Summary of the Effect of Line of Sight Temperature Variations

As expected, the emergent SED at wavelengths near the peak is poorly described by a

simple power-law-modified-blackbody, due to temperature variations along the line of sight,

as previously documented in the literature (e.g. Doty & Palotti 2002; Schnee et al. 2006).

Nevertheless, the fits can still reveal properties of the observed source, namely that the

best fit temperature approaches the column temperature and the best fit β approaches the

model value as shorter wavelengths are excluded. There are also other revealing trends that

warrant further investigation. First, the systematic exclusion of short wavelength fluxes

results in different T and β estimates; for an isothermal source, the fit T would always

be the same (and equal to the temperature of the source). If this trend also occurs when

there are only a few observations, then short wavelength observations can still be used to

determine whether a source is isothermal or not. Second, there also appears to be an inverse

T - β relationship: whenever T is overestimated, β is underestimated. A similar relationship

has been discussed by Dupac and coworkers using observations at wavelengths < 600 µm

(Dupac et al. 2001, 2002, 2003). A thorough analysis of the sources observed by Dupac et

al. would be warranted to rule out that the inferred anti-correlation is simply due to line of

sight effects. As we discuss in the next section (§3.2), an inverse T - β trend may also arise

from SED fits due solely to noise in the observations.

3.2. Effect of Noise

Uncertainties in observed fluxes may also lead to incorrect temperature and spectral

index estimates from SED fitting. To assess the effect of noise, we first consider fluxes from

isothermal sources with modest 5% uncertainties in each observed flux. A number fluxes



– 11 –

from a range of (integer) wavelengths are considered in the fit: 100 - 600 µm, 500 - 1000 µm,

and 1000 - 1500 µm. In these Monte-Carlo experiments, each flux is modified by a random

value drawn from a Gaussian distribution, with σ = 0.05.

Figure 6 shows the best fit T and β estimates for isothermal sources, one with T = 10

K and β=2, and the other with T = 20 K and β=2. Each set of noisy fluxes, spanning the

different wavelength regimes, is generated 100 times; a modified blackbody is then fit to each

set. As expected, there is a spread in the best fit T and β.

Fits from both the 10 K and 20 K source show little scatter when only fluxes with

wavelengths 100 - 600 µm are considered in the fit, suggesting that an SED is not very

sensitive to noise in the Wien regime. However, at longer wavelengths, there is a large

spread in the estimated T and β. Including fluxes between 500 - 1000 µm, the fits from the

10 K source give β ∈ 1.6 - 2.3 (within ∼20% of the source value) and T ∈ 8 - 14 (within

∼40%). This range increases when including fluxes between 1000 - 1500 µm: β ∈ 1.5 − 2.6

(within ∼30%) and T ∈ 6 − 30 (within only ∼200%). That the longer wavelength fits show

more scatter is not unexpected given the shape of an SED (see Fig. [1]).

In the R-J tail, the SEDs from sources with different temperatures are similar in shape,

since the slope is determined primarily by β (see Fig. [1]). Thus, small errors in the observed

fluxes may result in inaccurate β (and thus T ) fits. At shorter wavelengths, T largely

determines the shape of the SED, so small uncertainties may be insufficient to significantly

alter the temperature that best matches the observation in a fit. For the 20 K source in

Figure 6, there is less of a difference between the spread in β and T for the fits to 500 - 1000

µm and 1000 - 1500 µm fluxes. This occurs because at 20 K, the range spanning the shorter

wavelengths (500 - 1000 µm) is already well enough into the R-J region of the spectrum (see

Fig. [1]), so the fit is already very sensitive to noise.

The clear inverse β - T trend that emerges from SED fits to noisy fluxes is similar to

the trends found from fits to noise-free fluxes from non-isothermal sources (as suggested by

Figs. 3 and 4). Apparently, whenever a fit underestimates the temperatures, the spectral

index is overestimated, and vice versa. This effect is amplified when noisy fluxes in the R-J

regime of the spectrum are considered in the fit, and can be understood when comparing

SEDs with different values of β. Consider a 20 K isothermal source, with β = 2, shown in

Figure 1. Assume the source is observed at various wavelengths, primarily at λ > 1 mm,

but that the peak is also sampled. Further, assume the noise level in the fluxes is such that

the least squares fit preferentially obtains a β of 1. The peak of the SED with β = 1 in

Figure 1 occurs at longer wavelength than the peak of the β = 2 SED, and so a fit T = 20 K,

with β = 1, would not reproduce the peak of the observed SED well. In order for the fit to

reproduce the peak of the SED from the 20 K source, but with a best fit β of 1, the best fit
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T must be held at a larger value than 20 K. In general, therefore, when a fit underestimates

β, T is overestimated.

We have shown that an inverse correlation between T and β can occur due to an incorrect

assumption of isothermality, or due to intrinsic noise in the observations. Such a trend

would of course also occur for noisy observations of non-isothermal sources. We discuss the

combination of noise and line of sight temperature variations when we discuss the additional

limitation of including only a small number of fluxes in §3.4.

3.3. Estimating T and β with Sparse Wavelength Coverages

The fitting experiments indicate that, for lines of sight with starless-core-like tempera-

ture and density gradients, the resulting fits produce lower temperatures and higher spectral

indices as shorter wavelength fluxes are excluded in the fit. In all our tests so far, we have

included all wavelengths within a given range. In practice, however, obtaining only a (small)

number of observations at different wavelengths of a source is typically feasible. Current

(e.g.Spitzer, SCUBA, Bolocam, MAMBO) and near future observations (e.g. Herschel and

Planck) can provide fluxes at a number of FIR and sub-millimeter wavelengths. However,

many of those wavebands provide fluxes at or near the peak of the integrated SEDs of dense

cores. Thus, SED fitting may not provide accurate estimates of the (column) temperature

and spectral index. Yet, determining whether or not a core contains temperature variations

is instructive in itself. Further, the temperature obtained from a fit to long wavelength fluxes

can be deemed the upper limit of the coldest region within the core. We thus investigate

whether the identification of temperature variations along the line of sight, as well as an

accurate estimate of the temperature limit, are still feasible when a small number of fluxes,

including those with wavelengths near the peak of the SED, is used in the fit. We begin by

describing the effect of fitting an SED to a limited number of noise-free fluxes. After that,

we consider the effect of noise in observations of sources with temperature variations, in §3.4.

We construct another optically thin 2 component medium, with T1 = 10 K, T2 = 15

K, N2/N1 = 0.02, and β=2, similar to “2COMPb” in Figure 3, but with a greater density

contrast. We perform a fit assuming fluxes were obtained at 60, 100, 200, 260, 360, and 580

µm. The reason we choose these particular parameters, which are realistic for innermost and

outermost regions of a core, is to assess whether any patterns emerge from fitting different

fluxes from a source with only slight temperature variations. We choose fluxes at wavelengths

near the peak for more direct comparisons with real observations of cores. The column of

panels in Figure 7(a) shows the fitting results. The bottom panel of Figure 7(a) indicates the

observed wavelengths, along with the emergent SED from the 2 component source. There are
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no significant differences in the fitting results when excluding the 60 µm flux. However, when

the additional flux at 100 µm is excluded, the best fit temperature decreases and spectral

index increases. We were unable to obtain a good fit with only three fluxes; we have found

that a minimum of four wavelengths is necessary to obtain a fit with three free parameters.2

Excluding short wavelength fluxes, even with a limited number of observations in the

Wien regime, results in a lower estimate of T and a higher estimate of β. We found the same

trend regardless of what wavelengths were considered in the fit, and for a variety of systems

with an inverse relationship between the column density and temperature.

3.4. Implications to Recent Observations

We now perform a similar tests to published observations of cold star forming regions,

beginning with the observations presented by Stepnik et al. (2003). They analyzed a filament

in the Taurus molecular cloud using 60, 100, 200, 260, 360, and 580 µm fluxes observed from

IRAS and the balloon borne experiment PRONAOS/SPM. After subtracting off emission

attributed to the surrounding envelope, they fit the 6 data points to obtain an estimate of

the temperature and spectral index of the filament. We carry out the exact same procedure,

but also perform fits excluding the short wavelength fluxes. The fitting results are shown in

Figure 7(b). As with the two-component model shown in Figure 7(a), the exclusion of the 60

µm flux does not alter the fit. However, additionally excluding the 100 µm flux decreases the

fit T by ∼ 1 K, and increases β from 1.98 to 2.13. This variation is rather similar to the simple

2 component fit, indicating that there might be a temperature variation within the filament,

and that the actual value of the spectral index is greater than 2.1 (if the spectral index itself

is constant in the filament). A value of 11.13 ± 1.29 K can be assigned as an upper limit

for the column temperature of the filament. The interpretation of a temperature variation

within the filament cannot be definitive, however, due to the large uncertainties. Within

the uncertainties, the fit T and β are constant regardless of which fluxes are considered in

the fit. More observations, preferably at longer wavelengths, are necessary to confidently

determine whether there are temperature variations within the filament itself, and for an

accurate estimate of the spectral index.

Kirk et al. (2007) also employed SED fitting to Spitzer and ISO observations to estimate

the temperatures of numerous cores. We analyze their fluxes in a similar fashion. Though a

few of the cores did not show definitive temperature drop as shorter wavelength fluxes were

2As we discuss in §5, a good fit can be found with only three data points if one (or more) of the fit

parameters (β, T , or Nκ0) is held fixed.
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excluded, the well studied core B68 shows a clear drop in temperature and an increase in

the spectral index after short wavelength fluxes are excluded. The fitting results for B68

is shown in Figure 7(c).3 The best fit temperatures decreases by ∼ 5 K when the 70 and

90 µm fluxes are excluded in the fit. There is an additional 1 K temperature drop when

the 160 µm flux is excluded. There is also a corresponding increase in β from ∼ 1.2 to

∼2.4. One interpretation of such a high spectral index is that the dust grains are covered by

icy mantles (e.g. Kuan et al. 1996); this interpretation would be reasonable for B68, where

there is significant molecular depletion onto dust grains (Bergin et al. 2002). The variations

in the spectral index and temperature estimates when short wavelength fluxes are excluded

in the fit, along with the relatively small error bars, strongly suggests that there are dust

temperature (and corresponding inverse density) variations within B68. We thus assign an

upper limit of 10.8 ± 0.1 K for the coldest region within B68. Our fits also suggest that the

spectral index of dust in B68 >
∼ 2.4, if that property is constant throughout the core.

We perform the same test of the data presented by Dupac et al. (2001). They estimated

the temperature and spectral indices of regions in the Orion complex. One of the regions

appears to be a dense core without a central source, referred to as “Cloud 2” by Dupac et al.

(2001). Figure 7(d) shows our fitting results. For this core, longer wavelength data at 1.2

and 2.1 mm are available. In this case, the exclusion of short wavelength data reduces the

temperature by ∼ 2 K. The spectral index also increases, from ∼2.2 to ∼2.5. These results

are also suggestive of temperature variations within the core, but due to the relatively large

uncertainties, an isothermal description cannot be ruled out.

We have found that the systematic exclusion of short wavelength data for dense cores

results in lower best fit temperatures, and higher best fit spectral indices. A trend of de-

creasing β with increasing T has been put forward as a physical property of dust grains in

the ISM by Dupac et al. (2003). They find such a trend by fitting equation (1) to observed

fluxes primarily from PRONAOS/SPM, corresponding to wavelengths (in the range 100 -

600 µm) near the peak of the SEDs emitted by dust. Dupac et al. (2003) argue that line of

sight temperature variations only result in a slight variation of β with T , and that unreal-

istically high density contrasts (∼ 100 ×) are necessary to reproduce the magnitude of the

inverse T - β correlation (see also Dupac et al. 2002). We find that temperature variations in

realistic cores with a uniform spectral index would show an inverse T - β relationship when

observed at wavelengths near the peak of the emergent SED. Besides resulting in erroneous

β estimates, the best fit parameters vary as short wavelength fluxes are excluded in the fit,

3Using all 7 of their fluxes, Kirk et al. (2007) obtain a best fit T=12.5 K; the difference between their

value and ours arises because they kept β at a fixed value of 2. Our results agree when β is fixed at that

value in our fits.
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with the best fit β approaching the correct value when only long wavelengths are considered.

Further, we also find that modest errors, as low as 5%, in observed fluxes from isothermal

sources lead to erroneous β and T estimates. The trend in the points in a T - β plane

from a number of fits to noisy fluxes also show such an inverse correlation (Fig. [6]). It

would thus be informative to compare the form of the T - β relationship we find with that

of Dupac et al. (2003). We note that though we only consider objects with T ≤ 20 K in this

work, we investigate the derived inverse T - β relationship due to noise in observations of

isothermal sources with temperatures up to 100 K in an accompanying paper (Shetty et al.

2009).

3.4.1. A True Inverse T - β Correlation?

To further investigate the derived inverse T - β correlations, we again consider the two-

component medium “2COMPd,” with temperatures T1 = 10 K, T2 = 20 K, and a column

density ratio N2/N1 = 0.1. As shown in Figure 3, a modified blackbody SED fit results in a

T estimate of 23.3 K and a β estimate of 0.23, using fluxes measured between λ ∈ 10 - 3000

µm. To compare with realistic observations, we perform the fit to data sets each containing

fluxes at 5 wavelengths. Two sets of wavelengths are considered: one with fluxes near the

peak of the SED at 100, 200, 260, 360, and 580 µm, and the other with fluxes in the R-J

tail of the SED at 850, 1100, 1200, 1500, and 2100 µm. In order to account for the effect of

a ∼5% uncertainty in the observations, due to noise or calibration errors, for example, each

flux is multiplied by a random value drawn from a Gaussian distribution with a mean of 1.0

and dispersion of 0.05. We generate 100 sets of fluxes in this manner, and fit equation 1 to

each set of fluxes, as in the numerical experiments of isothermal sources presented in §3.2.

Figure 8 shows the fitting results from these simulated observations. The fits to the

observed fluxes at long wavelengths show a scatter in the T - β relation, due to the uncer-

tainties in the fluxes. The fits at shorter wavelengths do not show as much scatter, but the

best fit β and T are very poor estimates of the true β or the column temperature of 10.9 K.

As previously discussed, this inaccuracy at short wavelengths results because the emergent

SED from a non-isothermal source is not well fit by a single power law modified blackbody

spectrum.

Dupac et al. (2003) observe a variety of sources, including dense cores as well as much

warmer sources. After fitting modified blackbody SEDs to the observed fluxes, with wave-

lengths < 600 µm, they find that a hyperbolic form in β(T ) represents the fits well. They

investigated the effect of noise in a model with a range of uncorrelated T - β pairs, and

concluded that such a model is inconsistent with the observed data. The shape of the T - β
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correlation in Figure 8 from a model with a single β is remarkably similar to that shown in

Dupac et al. (2003). This suggests that an inverse, and possibly even hyperbolic-shaped, T

- β relationship is not necessarily due to real variations in the dust spectral index with dust

temperature. The relationship may simply be due to temperature variations along the line

of sight, along with uncertainties in the observed fluxes. At the short wavelengths considered

by Dupac et al. (2003), for the warmer sources the observed wavelengths may indeed fall in

the R-J part of the spectrum. For these sources, the “short wavelength” fits will be analogous

to the “long wavelength” set in Figure 8. For sources that are dense cores, if they are not

isothermal, the SEDs at those short wavelengths are not well fit by equation (1); a fit would

produce a large T estimate, relative to the column temperature, and would underestimate

β.

For isothermal sources (§3.2), the addition of noise to the observed fluxes further de-

grades the parameter estimates. Our analysis indicates that the SED fits to fluxes with λ <

600 µm from various warm isothermal sources with T >
∼ 60 K may all produce similar T and

β estimates (Shetty et al. 2009). Uncertainties in the observed fluxes of starless cores may

be responsible for some of the scatter in the T - β diagram shown by Dupac et al. (2003).

However, all of the spread is likely not a consequence solely of noise, since Dupac et al.

(2003) observe a variety of sources. One possibility is that the spectral index varies within

a source, which is a situation we do not model (see Table 1). The emergent SED from such

sources will of course be more complicated, for which alternative analysis techniques may

provide better parameter estimates. We note that the points in Figure 8 would simply be

systematically offset had we considered a source with a different (constant) spectral index

from β = 2 (Shetty et al. 2009). Thus, had we included multiple sources with different

(constant) values of β, the T - β diagram would be further populated. Though we cannot

exclude the possibility that the spectral index of dust decreases with increasing temperature,

we have shown that simple power-law-modified-blackbody fits to observed data can result in

misleading T - β relationships which appear like those sometimes claimed to be of physical

origin.

We have demonstrated that the assumption of isothermality can lead to significant errors

in estimates of T and β from SED fits. Noise contributes to additional uncertainty in the

estimated parameters. In the next section, we describe the effect of noise on a different

method commonly used to estimate T and β, by means of flux ratios, focusing on isothermal

sources. We then compare the flux ratio estimates to those derived from SED fitting for

sources with line of sight temperature variations.
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4. Flux Ratios

An alternative to full SED fitting for estimating the temperature is through the use of

ratios of observed fluxes. For a given observation, the known quantities in equation (1) are

the flux density Sν and the beam size Ω. With two observations (smoothed to a uniform

resolution) at different frequencies ν1 and ν2, corresponding to wavelengths λ1 and λ2, the

ratio of Sν1
/Sν2

produces an equation where the two unknown quantities are T and β:

Sν1

Sν2

=

(

λ2

λ1

)3+β
exp(λT /λ2) − 1

exp(λT /λ1) − 1
, (3)

where λT = hc/kT . The main assumptions made to derive this equation are that T and β are

constant along the line of sight. If β is known a priori (or otherwise assumed to be known),

then equation (3) can be used to estimate the temperature from only two observations (e.g.

Kramer et al. 2003; Schnee & Goodman 2005; Ward-Thompson et al. 2002; Schlegel et al.

1998).

Including a third observation at frequency ν3, corresponding to wavelength λ3, taking

ratios using all three flux densities produces

log

(

Sν1

Sν2

)

log

(

λ3

λ2

)

− log

(

Sν2

Sν3

)

log

(

λ2

λ1

)

= (4a)

log

[

exp(λT /λ2) − 1

exp(λT /λ1) − 1

]

log

(

λ3

λ2

)

− log

[

exp(λT /λ3) − 1

exp(λT /λ2) − 1

]

log

(

λ2

λ1

)

. (4b)

The advantage of using this equation to estimate the temperature is that no assumption for

the value of β is required, though β is assumed to be constant along the line of sight. A

similar equation can be derived for observations at four wavelengths. However, as we discuss

in §6, in that case a direct fit of equation (1) is reliable. We will hereafter refer to the

left hand side of equation (4) as the “flux ratio,” and the right hand side as the “analytic

prediction.”

Schnee et al. (2007) used fluxes from observations of the starless core TMC-1C at 450,

850, and 1200 µm in equation (4). They found that the errors in the observations would

have to be <
∼ 2% in order to accurately estimate the temperature (of an isothermal source).

The goal of that study, besides mapping the temperature, was also to map the spectral index

and column density. Once an estimate for the temperature is obtained, the spectral index

can be estimated through the use of the ratio of any two fluxes as:

β = log

[

Sν1

Sν2

exp(λT /λ1) − 1

exp(λT /λ2) − 1

]

/ log

(

λ2

λ1

)

− 3 (5)
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In principle one can also estimate the column density N , modulo κ0, once T and β are

derived from equations (4)-(5) (e.g. Schnee et al. 2006). As discussed in §3, however, addi-

tional assumptions for the opacity and/or the dust-to-gas ratio may be required if extinction

observations are unavailable. Since our focus is on the temperature and spectral index, we

do not consider those assumptions here.

4.1. Determining Temperatures from Two Fluxes

We begin our analysis of the flux ratio method by considering equation (3) to estimate

the temperature, given two fluxes at different wavelengths. We consider both an isothermal

source and a two-component source (as in §3.1.1). We then compare the fluxes at two

chosen wavelengths to the analytical prediction from the right-hand-side of equation (3).

We analyze the effect of noise, as well as of an incorrect assumption of β, on the temperature

estimate. For the analysis including noise, we add a random component drawn from a

Gaussian distribution with a chosen dispersion to the flux, and then use these “noisy” fluxes

in equation (3). We repeat this simple experiment 10,000 times to obtain better statistics

on the temperature estimates.

Table 2 shows the temperature estimates using observations with different noise levels,

and assuming different values of β. Column (1) shows the wavelengths of the two fluxes.

Column (2) shows the assumed value of β in equation (3); the spectral index of the model

source is 2.0. Column (3) indicates the level of noise added to the fluxes. Column (4) shows

the true column temperature; for the isothermal source, the column temperature is just the

actual source temperature. The last column gives the derived temperature. For the fluxes

that are altered by noise, we show the 1σ distribution in the estimated temperatures.

For an isothermal source, the shorter wavelength pair is less sensitive to noise and/or

errors in the assumed value of β. For the two-component source “2COMPd” (see Fig.

[3]) without noise, the longer wavelength pair gives a (slightly) more accurate measure of

the column temperature than the shorter wavelength pair, when the correct value of β

is assumed. However, when modest levels of noise are included in the fluxes, the long

wavelength pair produces temperature estimates that deviates from the true temperature

(or column temperature) more than the short wavelength pair. Additionally, the longer

wavelength pair is more sensitive to the assumed value of β.

These trends are as expected given the shape of the modified blackbody (Fig. 1). As

we demonstrated in §3 using a direct SED fit, fluxes in the R-J part of the spectrum provide

more accurate T and β estimates, though the fits are more sensitive to noise. Similarly,
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the flux ratio involving wavelengths in the R-J part of the spectrum is more sensitive to

the assumed value of the spectral index, as well as noise, indicating that short wavelength

fluxes are preferable. However, when large temperature gradients are present (see §3.1.1 and

§3.1.2), the temperature estimate from the short wavelength pair will deviate significantly

from the column temperature.

For isothermal sources, the source temperature, as well as the assumed value of β

determines how well fluxes at different wavelengths could recover the temperature. For noise

free observations of a 10 K source at 450 and 850 µm, and when β is assumed to be within

5% of the source value, T can be recovered within 10%. The accuracy of the T estimate

degrades to ∼20% with 1200 and 2100 µm observations. For warmer sources (T >> 10 K),

450 and 850 µm fluxes would be well into the R-J part of the spectrum. These fluxes would

thus be more sensitive to noise and β than those 450 and 850 µm fluxes from a 10 K source.

Lower temperature sources always give better (i.e. less uncertain) temperature estimates.

The flux ratio method, however, still requires a reasonable assumption for β.

For non-isothermal sources, the estimates become more uncertain. As shown in Table

2, low noise levels and an accurate assumption of β can reasonably recover the column

temperature of a simple 2 component medium. Since equation (3) is derived from the

isothermal assumption, the estimated temperature becomes less accurate for more complex

sources, even when comparing with the column temperature. In our subsequent analysis of

flux ratios, we will hereafter concentrate on deriving temperatures of isothermal sources.

4.2. Determining Temperatures from Three Fluxes

We next investigate the accuracy in estimating temperatures from observations at 3

wavelengths, using Equation (4). We first consider observations at 450, 850, and 1200

µm, the three “popular” wavelengths used in the Schnee et al. (2007) study. Figure (9)

shows the analytic prediction used to determine T from expression (4b) for temperatures

between 1 - 100 K. At temperatures T <
∼ 7 - 10 K, the analytic prediction is very sensitive

to the temperature. Thus, even though errors in the fluxes will produce an inaccurate

value in expression (4a) for comparison with the analytic prediction of expression (4b), the

derived temperature will still be close to the actual temperature of the emitting medium.

At temperatures T >
∼ 7 - 10 K, however, the analytic prediction is not very sensitive to the

temperature. Thus, even small errors in the flux, due to noise and/or other observational

uncertainties, will result in grossly erroneous temperature estimates.

To investigate the effect of noise on the determination of temperature using equation
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4, we have run a number of Monte-Carlo simulations. In these simulations, the emergent

flux of a source at constant temperature (eqn. [1]) is modified by some chosen level of

Gaussian noise, representing random errors in real observations. These “observed” fluxes

at three wavelengths are used in expression (4a) to compare with the analytic prediction of

expression (4b).

The uncertainties in the observations of Schnee et al. (2007) were estimated at 12%, 4%,

and 10% for the 450, 850, and 1200 µm observations, respectively. We use those uncertainties

in our first simulated observations. We “observe” the extended source at 10,000 positions

(or, equivalently, 10,000 times at a single location on the sky) at those three wavelengths.

The flux ratios, using the noisy fluxes in expression (4a), from two sources at 10 K and 5

K are shown in Figure 10. The mean values of the flux ratio recovers the true temperature

reasonably accurately. Also marked are the ±2σ levels (as well as the ±3σ levels for the

5 K source). At 10 K, even at the +2σ level, the flux ratio does not lie in the 1 - 100

K range of the analytic prediction shown in Figure 9. However, for the source at 5 K, at

the 3σ level the derived temperature only differs from the true temperature by a factor of

∼ 2.4. At 10 K (and higher) temperatures, Figure 9 shows that the analytic prediction

does not vary much with temperature, so any error in the flux ratio will correspond to a

temperature that deviates significantly from the true temperature. For a 5 K source, the

analytic prediction varies significantly with slight variations in temperature, so errors in

the flux ratio will still produce reasonably accurate temperature estimates. This test has

shown that with observations at 450, 850, and 1200 µm, one can only be confident in the

ratio method if the estimated temperatures are <
∼ 5 K. For temperatures greater than the

turn-over temperature in Figure 9 (∼ 7 - 10 K), the derived temperatures cannot be deemed

accurate.

The temperature at which analytic prediction shifts from a strong temperature depen-

dence to a weak temperature dependence is determined by the particular wavelengths used

in expression (4b). In this sense, the ideal set of three wavelengths would shift the turn-

over temperature to much higher values. In order to test the sensitivity of the turn-over

temperature to the particular values of wavelengths, we have run a series of Monte-Carlo

simulations as described above; we varied both the set of 3 wavelengths, as well as the

(constant) temperature of the source.

In order to locate the turn-over temperature, we define a threshold temperature Tth

such that a ±3σ range in the flux ratios corresponds to estimated temperatures Test that are

within a factor of 2 of the actual source temperature T0. For example, consider a source at T0

= 21 K observed at three given wavelengths. If the range of derived temperatures included

in the ±3σ level of the flux ratio includes temperatures > 42 K, then we know that Tth < 21
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K for that set of wavelengths. If we then run another simulation on a source with T0 = 20

K, with the same three wavelengths, and find that the maximum derived temperature in

the 3σ range is Test < 40 K, then we set Tth = 20 K for this set of three wavelengths. Our

definition of Tth is arbitrary, and can of course be set to correspond to a higher accuracy

temperature estimate; the goal here is simply to compare how well observations with varying

wavelengths can reproduce source temperatures to a chosen level of accuracy. We note that

at the -3σ level, the difference of |Test − T0| is always less than that difference at the +3σ

level, due to the logarithmic functional form of the analytic prediction; at lower flux ratios,

corresponding to lower values of the analytic prediction (eqn. [4b]), the derived temperature

is less sensitive to uncertainties in the fluxes (see Figs. 9 - 10).

Figure 11 shows the threshold temperatures, for given wavelength ratios λ3/λ2 and

λ2/λ1, where λ1 < λ2 < λ3.
4 For simplicity, we assume a 10% noise level in the fluxes at all

three wavelengths. A clear trend is immediately apparent in Figure 11. The highest values

of Tth occur when the two ratios λ3/λ2 and λ2/λ1 are simultaneously large. However, for a

given ratio λ3/λ2 or λ2/λ1 there is a limit to how large the other ratio can be, beyond which

Tth decreases. From Table 3, the highest Tth is achieved when λ1 = 70 µm and λ3 > 2000 µm.

At those wavelengths, both the Wien and R-J regimes of the SED for sources with T <
∼ 75

K are sampled.

Given two wavelengths that sample the Wien and R-J limits, the maximum temperature

that can be reliably found is set by the middle wavelength λ2: the maximum temperature is

roughly that determined by Wien’s displacement law using λ2 as the wavelength correspond-

ing to the flux peak. This general trend evidently dissolves as one or more of the boundary

wavelengths λ1 or λ3 approaches λ2. Since the wavelength corresponding to the SED peak is

inversely proportional to the temperature, an increase of all three wavelengths by a constant

factor would result in a decrease in Tth by that same factor. Table 3 indeed shows such a

trend. In short, the exact value of Tth is dependent on all three wavelengths, as would be

expected.

We have shown that given three wavelengths, one could determine a threshold tem-

perature above which the ratio method will not be able to accurately derive the source

temperature (to some chosen level of accuracy), due to uncertainties in the observations. In

general, lower temperatures regions, such as cold, dense cores, can be more accurately mea-

sured through this method. In principle one could also determine which three wavelengths,

4Table 3 in the Appendix explicitly lists the threshold temperatures Tth for various sets of wavelengths,

along with the wavelength ratios. Our choice of the three wavelengths span the range 70 - 3000 µm. These

particular wavelengths are shown because many of them are included in the wavebands of the upcoming

Herschel and Planck missions.
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and the associated uncertainties, are optimal to estimate a given temperature. However,

such an analysis would not be as practical, since observers do not have an arbitrary choice

as to what wavelengths they can observe, nor to any desired level of accuracy. After a brief

discussion on estimating β, we will show that fitting the SED directly to estimate the tem-

perature is much more accurate than the ratio method, regardless of what three wavelengths

are observed.

4.3. Estimating β

In the ratio method, once a temperature estimate is obtained, it may be used in equation

(5) to estimate β. Only two fluxes are required in equation (5). For isothermal sources, any

two fluxes will give good estimates of β. Since the SED is more sensitive to noise at longer

wavelengths, shorter wavelength fluxes will produce more accurate β estimates. However,

determining whether a source is isothermal itself is not trivial; as discussed in §3.4, with

numerous fluxes this can be accomplished by systematically excluding short wavelength

fluxes in a direct SED fit. When a source is not isothermal, the resulting temperature

estimates from short wavelength fluxes will be highly inaccurate. The use of these incorrect

temperatures in equation (5) will also produce incorrect β estimates. Thus, an accurate

estimate of T is required before accurately estimating β through equation (5).

Uncertainties in observations in the R-J tail will result in highly inaccurate β estimates

using the flux ratio method. For example, consider an isothermal source that is observed at

three wavelengths, 450, 850, and 1200 µm. Fluxes that are inaccurate by a mere 3% can

produce β estimates that deviate from the actual value by 25%. For the simple 2 component

source considered in §3.1.1 (and §4.1), and with flux uncertainties of only 5%, the estimated

β can be inaccurate by ∼50%. Thus, the flux ratio method gives highly uncertain estimates

of β.

5. Comparison of Fitting and Flux Ratio Methods involving Three Fluxes

In this section, using simulated observations of a dense core with temperature and

density gradients, we compare the temperature estimate from direct SED fit to that derived

from a flux ratio. Fluxes are only “observed” at three wavelengths, and include uncertainty

due to noise, requiring that one of the three parameters in the fit (T , β, or Nκ0) is held

fixed.

One approach to carry out the comparison would be to construct SEDs throughout the
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volume of the core, using equations (1)-(2), assuming a fixed value for β. We could then

integrate along all lines of sight to obtain the emergent intensity at three wavelengths, and

then carry out the fitting, as we did in §3, or use the flux ratio method to estimate the

temperature.

An alternative approach, which we choose to use here, is to utilize a radiative transfer

(RT) code. With an RT simulation, the dust properties can be set using real dust op-

tical constants. We thus use the radiative transfer code MOCASSIN (Ercolano et al. 2005).

MOCASSIN is a 3D code that uses a Monte Carlo approach to the transfer of radiation through

an arbitrary medium (Ercolano et al. 2003, 2008).

Our spherically symmetric model core emits radiation according to the emissivity prop-

erties of the dust. The physical properties of the core, such as the density and temperature

profiles, as well as the dust properties, are held constant. Since we are only interested in

the form the observed SED, and not the detailed distribution, the computational grid only

has 16 × 16 × 16 zones, which follows the propagation of radiation through one-quarter of

a spherical model core, with appropriate boundary conditions. The overall dimensions of

the grid is ∼0.1 pc3; the resolution of an individual zone is comparable to the resolution of

the TMC-1C maps presented by Schnee & Goodman (2005) and Schnee et al. (2007). As

radiation (or energy packets) from all spatial locations traverses through the cloud, it is

absorbed and re-emitted by the dust. However, we maintain the original temperature of

the dust throughout the simulation. In this sense, the temperature of the core is set by

some external source, such as an ambient interstellar radiation field, which is not explicitly

included in our model. Radiation that emerges out of the core contributes to the “observed”

flux. The emergent flux will thus be proportional to the density along the line of sight; the

resulting observed 2D map of the core will scale with the 3D density integrated over the line

of sight. We can then apply the flux ratio and fitting methods to estimate the temperature

at each location on the 2D map.

We construct a core with a Bonnor-Ebert like density profile, where the density is con-

stant in the central regions, but then drops off as the square of the radius. The temperature

of this core is also constant in the central regions, but then increases logarithmically with

radius. The temperature of the core varies from ∼7.5 K at the inner regions, to >
∼ 12 K at

the edge of the core. Such values span temperatures near the threshold temperature of the

flux ratio method using 450, 850, and 1200 µm fluxes, as well as temperatures well into the

regime where the method becomes extremely sensitive to noise.

Figure 12 shows the core temperatures, both the actual temperature and the recovered

ones. The ratio method produces a spread of temperatures at any given radius, due to noise

introduced by the finite number of photons tracked in the simulation. A similar simulation of
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a core with constant density and constant temperature produces normally distributed fluxes

with σ ≈ 10%. Despite the scatter in the observed fluxes, a general trend of decreasing

temperature with decreasing radius is apparent. Towards the innermost regions, the flux

ratio method overestimates the temperature more so than in the outer regions. This occurs

because in the inner regions of the 2D observed map there is still a contribution to the flux

from the warmer dust at larger radii, from matter lying above the colder central regions. At

large radii, line of sight variations in temperature and density is minimized, so the mean of

the flux ratio estimated temperatures corresponds well with the actual temperatures. Using

the estimated temperatures from the flux ratio method in equation 5 gives β = 2.0 ± 0.1.

This is in good agreement with our choice of silicate grains in the simulation, which should

have β=2 (Draine & Lee 1984).

In performing a fit to only three fluxes at each location, one of the free parameters must

be held fixed. Since the flux ratio method produces a β estimate that is well constrained, even

though T shows relatively higher levels of scatter, we hold β fixed at that value. As shown

in Figure 12, the temperatures obtained through such a fit are also overestimated at small

radii. But, the scatter in the estimated temperatures is much smaller using a constrained

SED fit (i.e. β fixed) compared with the flux ratio method.

Also plotted on Figure 12 is the true column temperature (i.e. density weighted tem-

perature). Each location (or grid zone) in the 2D map corresponds to a line of sight through

the 3D core. We integrate the temperature along the line of sight at each location in the 2D

map, weighted by the 3D densities used to construct the core. Evidently, the fit temperatures

coincide remarkably well with the column temperature. The range in temperatures from the

flux ratio method is also spread more evenly about the column temperature than the actual

3D temperature. At the innermost regions, there remains a slight offset. In general, though,

the temperature estimates are certainly more representative of the “column temperature”

than the true temperature of the core. This is not too surprising, because the observed flux

indeed encodes information about all matter along a line of sight.

Had we assumed a different (and thus incorrect) value of β that was held fixed in the fit,

the best fit temperature would be systematically offset from the column temperature. For a

10 K isothermal source, fixing β at 1.7 and 2.3 would produce fit temperatures of ∼ 12 and

∼ 9 K, respectively, using fluxes at 450, 850, and 1200 µm. The results of our simple tests

suggest that though the flux ratio method can give highly uncertain temperature estimates

from three fluxes, due to line of sight temperature variations, those temperatures can still

provide a decent first estimate for the (mean) spectral index (as found by Schnee et al. (2007)

for isothermal sources). This estimate for β can then be held fixed in a fit which will recover

temperatures with less scatter, and in close agreement with the column temperature.
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6. Discussion

A flux ratio method to estimate the temperatures can also be constructed with four

wavelengths. The form of the analytical prediction for four wavelengths is similar to ex-

pression (4b). We have also performed Monte Carlo simulations to test whether a flux ratio

method using four wavelengths produces more accurate estimates of the source temperature,

compared with a flux ratio method involving only three wavelengths. The general trends

we found for three wavelengths remains: lower wavelength observations produce less scatter

in the estimated temperatures, and that the fluxes should sample different regions of the

spectrum to obtain decent temperature estimates. However, the maximum temperature at

which the turn over occurs for any set of 4 wavelengths listed in Table 3 is ∼ 65 K, for our

definition of Tth in §4.2.

When fluxes at four wavelengths are available, however, a direct fit may be employed to

estimate β (and the absolute scaling Nκ0) along with the temperature. Since determining β

through the the flux ratio (eqn. [5]) could give contradictory estimates depending on which

the fluxes are used, a direct SED fit is preferable. We did not find any advantage of using

the flux ratio method to determine the temperature using four wavelengths compared with

a direct fit of a modified blackbody SED.

In all of our tests, we have only considered sources with constant spectral indices. A line

of sight may also have a variations in β, and would further complicate the estimation of dust

temperature. It may be reasonable to assume that the dust emissivity is constant within a

core, where temperatures only vary by ∼ 10 K. But for lines of sight extending through a

wider range in density and temperature, such as the lower density, warmer gas surrounding

sites of recent star formation, assigning a single value for the spectral index may lead to

errors in determining the temperature. A thorough investigation of spectral index variations

over a range of environments would be required to quantify its effect on the emergent SED.

7. Summary

We have investigated the effect of noise and line of sight temperature variations on

two common methods used to estimate the dust temperature and spectral index of cold

star forming cores using continuum observations. One method is a direct fit to a modified

blackbody spectrum. The second method involves the use of flux ratios.

We demonstrate that employing an isothermal modified blackbody equation (eqn. [1]-

[2]) may lead to highly inaccurate dust temperature and spectral index estimates. Least

squares SED fits to fluxes in the R-J regime, as opposed to the Wien regime, may provide
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accurate spectral index and density weighted temperature, or column temperature, estimates.

For conditions typical of starless cores, fluxes in the R-J regime have wavelengths >
∼ 600

µm. However, the fits to fluxes in the R-J regime are rather sensitive to observational

uncertainties, such as noise.

The flux ratio method may also provide inaccurate parameter estimates due to line of

sight temperature variations, and is also very sensitive to noise. In a comparison of the flux

ratio and least squares fitting methods when only three fluxes are available, we find that a

direct fit with the spectral index held fixed provides more accurate estimates of the column

temperature. The flux ratio method can be initially used to estimate the value of the spectral

index to be held fixed for a least-squares SED fit.

We summarize our main findings in more detail here:

1) Line of sight temperature variations can lead to inaccurate temperature and spectral

index estimates when fitting a power-law-modified blackbody SED to observed fluxes. Near

the SED peak of sources with temperature variations, the spectrum is poorly fit by an

isothermal spectrum. For longer wavelength observations in the Rayleigh-Jeans regime of

the spectrum, and with minimal observational uncertainties, a fit can accurately recover the

spectral index (if it is constant), and provides a good estimate of the upper limit of the

column temperature. However, at these long (Rayleigh-Jeans) wavelengths a fit is extremely

sensitive to noise.

2) Short wavelength observations (λ <
∼ 600 µm) are still useful, for they can indicate

whether an observed source contains temperature variations. For starless-core-like sources

with temperature variations, the resulting fit T decreases and fit β increases when system-

atically excluding short wavelength fluxes from the fit. Published data of sources in Taurus

and Orion by Stepnik et al. (2003) and Dupac et al. (2001), respectively, show these appar-

ent trends, but an isothermal description with no systematic variations in β still cannot be

strictly ruled out, due to the uncertainties. Observed fluxes by Kirk et al. (2007) of B68,

though, produce lower fit temperatures and higher fit spectral indices when short wavelength

fluxes are omitted, strongly suggestive of dust temperature variations along the line-of-sight.

We estimate an upper limit of 10.8 ± 0.1 K for the temperature of the coldest region within

B68; and if the spectral index is constant throughout the core, then we estimate β ≥ 2.4.

3) SED fits to fluxes in the Rayleigh-Jeans regime are very sensitive to noise, even for

isothermal sources. The fits may produce a spurious inverse T -β relationship, similar to the

trend discussed by Dupac et al. (2003). SED fits may be more accurate when fluxes with

wavelengths that span the SED peak are available, compared with fits to fluxes solely in

the Rayleigh-Jeans regime. However, fits to fluxes near the SED peak would be inaccurate
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if the source contains line of sight temperature variations. In general, for objects that are

cool pockets in higher density regions, such as starless cores, SED fits that produce higher

temperatures also (artificially) give lower spectral indices.

4) We find that, due to noise uncertainties in any observation, the flux ratio method

is most accurate for emission originating from cold isothermal regions. For a source with a

constant temperature, there may be a range in the estimated temperature, due to the uncer-

tainties in the observations. At low temperatures, this spread is small; at higher temperatures

the spread can be rather large, rendering the temperature estimate highly inaccurate. The

precise temperature, or threshold temperature, for which the method shifts from relatively

accurate to inaccurate is dependent on the observed wavelengths (as well as the desired level

of accuracy, see Fig. 11 and Table 3). For example, for fluxes at 450, 850, and 1200 µm, the

flux ratio method can provide accurate temperature estimates only for sources with T <
∼ 7

- 10 K (Fig. 9).

5) Using Monte Carlo simulations, we quantified the dependence of the turn over tem-

perature on the set of observed wavelengths. Ideally, as one might intuitively expect, two of

the three wavelengths should sample the Wien and the Rayleigh-Jeans regime of the SED,

with the final wavelength lying at intermediate values. Further, a greater separation be-

tween the wavelengths results in more accurate temperature estimates. In general, higher

temperatures can be more accurately measured when the observations include short wave-

length far-infrared observations λ <
∼ 100 µm; at short wavelengths, however, there may be

a contribution from stars and transiently heated very small grains to the observed flux.

6) A reasonably accurate estimate of β can be obtained from the mean of the estimates

derived from the flux ratio method involving three fluxes. For fluxes at 450, 850, and 1200

µm, with ∼10% uncertainties, β can be estimated to within 5% of the true source value.

This value can then be held fixed in a constrained SED fit to the three fluxes to estimate the

temperature with less scatter than an estimate from the flux ratio method (Fig. 12). With

four or more observations β may be one of the free parameters in the fit (and, of course, the

fit is better constrained).

7) The temperatures estimated through the SED fit and ratio methods, however, cannot

be used to assign the absolute temperature to a given 3D location in a cold core. The

projected SED contains information from all emitting matter along any line of sight. The

measured temperature is more representative of the column temperature. In this regard, the

estimated temperatures provide an upper limit for the coldest temperature along the line of

sight.
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A. Appendix

Table 3 shows the threshold temperatures Tth given fluxes at three wavelengths (see §

4.2). The ratios λ3/λ2 and λ2/λ1 are also provided. The table explicitly shows the quantities

used to produce Figure 11.
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Table 1. Overview of §3 - §6

Scenario §3.1 §3.2 §3.3 §3.4 §4.1 §4.2 §4.3 §5 §6

Least Squares Fitting X X X Appa
X

Flux Ratio Method X X X X

T constant X X X

Two T Medium X X X

Gradient in T X X

β constant X X X Appa Fixedb N/Ac Derivedd X

β variable X

Two Fluxes X

Three Fluxes X X

# Fluxes > 3 X Appa X

# Fluxes ≫ 3 X X

Without Noise X X X

With Noise X Appa X X X

aApplication: SED fits to fluxes from published observations

bChoice of β required in method

cβ is not required or recovered from method

dβ can derived from flux ratio method involving 2 fluxes
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Table 2. Temperature Estimates from 2-Flux Ratio Method

Observed λ1, λ2 Assumed βa σobs Source Tcol Derived T

(µm) (%) (K) (K)

Isothermal:

450,850 1.9 0 10 10.5

450,850 2.0 0 10 10.0

450,850 2.1 0 10 9.5

450,850 1.9 10 10 10.6 ± 1.3

450,850 2.0 10 10 10.0 ± 1.2

450,850 2.1 10 10 9.6 ± 1.0

1200,2100 1.9 0 10 12.1

1200,2100 2.0 0 10 10.0

1200,2100 2.1 0 10 8.6

1200,2100 1.9 10 10 14.5 ± 12.6

1200,2100 2.0 10 10 12.1 ± 9.4

1200,2100 2.1 10 10 10.2 ± 7.0

2-Component Source (2COMPd):

450,850 1.9 0 10.9 12.5

450,850 2.0 0 10.9 11.7

450,850 2.1 0 10.9 11.0

450,850 1.9 10 10.9 12.7 ± 2.0

450,850 2.0 10 10.9 11.8 ± 1.7

450,850 2.1 10 10.9 11.1 ± 1.5

1200,2100 1.9 0 10.9 13.8

1200,2100 2.0 0 10.9 11.1

1200,2100 2.1 0 10.9 9.3

1200,2100 1.9 10 10.9 15.4 ± 13.4

1200,2100 2.0 10 10.9 13.5 ± 10.9

1200,2100 2.1 10 10.9 11.3 ± 8.2
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aModel Spectral index β = 2.0
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Table 3. Threshold Temperatures in Ratio Method

λ1 λ2 λ3 λ3/λ2 λ2/λ1 Tth
a

70 110 170 1.55 1.57 18

70 110 350 3.18 1.57 38

70 110 450 4.09 1.57 41

70 110 850 7.73 1.57 47

70 110 1200 10.91 1.57 49

70 110 1380 12.55 1.57 50

70 110 2100 19.09 1.57 51

70 110 3000 27.27 1.57 52

70 170 350 2.06 2.43 39

70 170 450 2.65 2.43 47

70 170 850 5.00 2.43 55

70 170 1200 7.06 2.43 57

70 170 1380 8.12 2.43 58

70 170 2100 12.35 2.43 59

70 170 3000 17.65 2.43 60

70 350 450 1.29 5.00 18

70 350 850 2.43 5.00 47

70 350 1200 3.43 5.00 54

70 350 1380 3.94 5.00 55

70 350 2100 6.00 5.00 59

70 350 3000 8.57 5.00 61

70 450 850 1.89 6.43 37

70 450 1200 2.67 6.43 50

70 450 1380 3.07 6.43 52

70 450 2100 4.67 6.43 57

70 450 3000 6.67 6.43 60

70 850 1200 1.41 12.14 22

70 850 1380 1.62 12.14 28

70 850 2100 2.47 12.14 44

70 850 3000 3.53 12.14 52

70 1200 1380 1.15 17.14 9
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Table 3—Continued

λ1 λ2 λ3 λ3/λ2 λ2/λ1 Tth
a

70 1200 2100 1.75 17.14 29

70 1200 3000 2.50 17.14 42

70 1380 2100 1.52 19.71 23

70 1380 3000 2.17 19.71 37

70 2100 3000 1.43 30.00 19

110 170 350 2.06 1.55 18

110 170 450 2.65 1.55 21

110 170 850 5.00 1.55 27

110 170 1200 7.06 1.55 29

110 170 1380 8.12 1.55 30

110 170 2100 12.35 1.55 31

110 170 3000 17.65 1.55 33

110 350 450 1.29 3.18 11

110 350 850 2.43 3.18 30

110 350 1200 3.43 3.18 36

110 350 1380 3.94 3.18 37

110 350 2100 6.00 3.18 42

110 350 3000 8.57 3.18 45

110 450 850 1.89 4.09 24

110 450 1200 2.67 4.09 32

110 450 1380 3.07 4.09 34

110 450 2100 4.67 4.09 41

110 450 3000 6.67 4.09 44

110 850 1200 1.41 7.73 14

110 850 1380 1.62 7.73 19

110 850 2100 2.47 7.73 29

110 850 3000 3.53 7.73 36

110 1200 1380 1.15 10.91 6

110 1200 2100 1.75 10.91 20

110 1200 3000 2.50 10.91 29

110 1380 2100 1.52 12.55 15
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Table 3—Continued

λ1 λ2 λ3 λ3/λ2 λ2/λ1 Tth
a

110 1380 3000 2.17 12.55 25

110 2100 3000 1.43 19.09 13

170 350 450 1.29 2.06 6

170 350 850 2.43 2.06 17

170 350 1200 3.43 2.06 20

170 350 1380 3.94 2.06 21

170 350 2100 6.00 2.06 23

170 350 3000 8.57 2.06 25

170 450 850 1.89 2.65 15

170 450 1200 2.67 2.65 19

170 450 1380 3.07 2.65 21

170 450 2100 4.67 2.65 24

170 450 3000 6.67 2.65 27

170 850 1200 1.41 5.00 10

170 850 1380 1.62 5.00 12

170 850 2100 2.47 5.00 19

170 850 3000 3.53 5.00 24

170 1200 2100 1.75 7.06 14

170 1200 3000 2.50 7.06 19

170 1380 2100 1.52 8.12 11

170 1380 3000 2.17 8.12 17

170 2100 3000 1.43 12.35 9

350 450 2100 4.67 1.29 5

350 450 3000 6.67 1.29 6

350 850 1380 1.62 2.43 6

350 850 2100 2.47 2.43 9

350 850 3000 3.53 2.43 10

350 1380 3000 2.17 3.94 8
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aTth chosen as the temperature at which ±3σ is

within a factor of 2 of the source temperature.
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Fig. 1.— Emissivity modified blackbodies with different spectral indices β, but constant

column density, from a 20 K source. Dashed SED is from a 5 K source with β = 2. Thin

solid vertical lines indicate the peak wavelength of the SEDs.
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Fig. 2.— Modified blackbody SEDs from a two-component source with temperatures T= 10

K (solid) and T = 15 K (dashed). The column density of the cooler source is a factor of 10

larger than that of the warm source. The boundary of the shaded region is the integrated

SED, from a line of sight containing both sources.



– 40 –

Fig. 3.— Best fit T (solid) and β (dashed) to emergent SEDs from two-component sources,

using fluxes in different wavelength ranges. The top and middle rows show the best fit T

and β; the left ordinate shows T and the right ordinate shows β. The dark line shows the

column temperature Tcol, and the light line indicates the β. The bottom row shows the

corresponding wavelength ranges of the fluxes used in each fit. The emergent SED from

“2COMPb” is shown in Figure 2.
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Fig. 4.— Best fit T (solid) and β (dashed) for two cores with and without an envelope,

using fluxes in different wavelength ranges, as in Figure 3. For Core 1, T varies between

8-12 K and N between 2×1021 - 1.25× 1022 cm−2; For Core 2, T varies between 5-12 K and

N between 2×1021 - 1 × 1023 cm−2. For the Envelope, T = 20 K and N = 1021 cm−2. The

dark line shows the column temperature, and the light line indicates the spectral index.
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Fig. 5.— Actual and fit SEDs from model Core 2 (see text). The boundary of the shaded

region is the emergent SED of the core. The dashed SED shows the best fit to fluxes between

100 - 600 µm (marked by squares). The solid line shows the best fit to fluxes between 1000 -

3000 µm (marked by triangles). The green and red lines marks the extent of the wavelength

ranges used in the two fits.



– 43 –

Fig. 6.— Best fit T and β from Monte Carlo simulations of noisy fluxes from 10 K (tri-

angles) and 20 K (squares) isothermal sources. The vertical lines indicate the true source

temperatures, and the horizontal line marks the true spectral index. Different wavelengths

fluxes were considered in each fit: 100-600 µm (blue), 500-1000 µm (green), and 1000-1500

µm (red). Gaussian distributed noise is added to each flux, with σ = 5%.
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Fig. 7.— Best fit T (top row) and β (middle row) to small number of observed fluxes, marked

by the line segments in the bottom row. a) A 2 component source (with T1 = 10 K, T2 =

15 K, and N2/N1=0.02), observed at λ = 60, 100, 200, 260, 360, and 580 µm. The bottom

panel also shows the emergent SED from this source, with the abscissa corresponding to

log(Sν); b) Filament in Taurus, observed at λ = 60, 100, 200, 260, 360, and 580 µm by

Stepnik et al. (2003); c) B68, observed at λ = 70, 90, 160, 170, 200, 450, and 850 µm by

Kirk et al. (2007); and d) Core in Orion, observed at λ = 200, 260, 360, 580, 1200, and 2100

µm by Dupac et al. (2001).
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Fig. 8.— Best fit β and T to observed fluxes from the 2 component source “2COMPd” (with

T1 = 10 K, T2 = 20 K, and N2/N1=0.1; see Fig. [3]). Five fluxes are used in each fit: 850,

1100, 1200, 1500, and 2100 µm (squares), or 100, 200, 260, 360, and 580 µm (triangles).

Each flux includes a small (Gaussian distributed) random component, with σ = 5%. The

lines indicate the model parameters β = 2 and column temperature = 10.9 K.
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Fig. 9.— Analytic prediction log
[

exp(λT /λ2)−1
exp(λT /λ1)−1

]

log
(

λ3

λ2

)

− log
[

exp(λT /λ3)−1
exp(λT /λ2)−1

]

log
(

λ2

λ1

)

(RHS in

eqn. [4]) for three observations at λ1 =450, λ2 =850, and λ3 =1200 µm.
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Fig. 10.— Histogram of flux ratios (LHS of eqn. [4]), including noise, for sources at (a) 10

K and (b) 5 K. Noise levels were set at 12%, 4%, and 10% for the 450, 850, and 1200 µm

observations, respectively. Mean flux ratio corresponds to (left) 9.8 K, and (right) 5.0 K.

Lines on the 10 K histogram show the ±2σ level, corresponding to temperatures of > 100 K

and 5.5 K (see Fig. 9). Lines on the 5 K histogram show ±2σ levels, corresponding to 8.0

K and 3.6 K, and ±3σ, corresponding to 11.9 K and 3.1 K.
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Fig. 11.— Threshold temperature Tth (see §4.2) from the flux ratio method, for given ratios

λ3/λ2 and λ2/λ1, where λ1 < λ2 < λ3.
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Fig. 12.— Comparison of flux ratio and SED fitting methods to estimate fluxes. Solid black

line shows actual (3D) temperature profile of core. The red squares show temperatures

derived using flux ratio method. Blue crosses show best fit SED temperatures assuming a

fixed value of β = 2.0. The green line shows the integrated temperature along the line of

sight, weighted by the density, or “column temperature.”
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