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Abstract

The regulation of cleavage plane orientation is one of the key mechanisms driving epithelial morphogenesis. Still, many
aspects of the relationship between local cleavage patterns and tissue-level properties remain poorly understood. Here we
develop a topological model that simulates the dynamics of a 2D proliferating epithelium from generation to generation,
enabling the exploration of a wide variety of biologically plausible cleavage patterns. We investigate a spectrum of models
that incorporate the spatial impact of neighboring cells and the temporal influence of parent cells on the choice of cleavage
plane. Our findings show that cleavage patterns generate ‘‘signature’’ equilibrium distributions of polygonal cell shapes.
These signatures enable the inference of local cleavage parameters such as neighbor impact, maternal influence, and
division symmetry from global observations of the distribution of cell shape. Applying these insights to the proliferating
epithelia of five diverse organisms, we find that strong division symmetry and moderate neighbor/maternal influence are
required to reproduce the predominance of hexagonal cells and low variability in cell shape seen empirically. Furthermore,
we present two distinct cleavage pattern models, one stochastic and one deterministic, that can reproduce the empirical
distribution of cell shapes. Although the proliferating epithelia of the five diverse organisms show a highly conserved cell
shape distribution, there are multiple plausible cleavage patterns that can generate this distribution, and experimental
evidence suggests that indeed plants and fruitflies use distinct division mechanisms.

Citation: Patel AB, Gibson WT, Gibson MC, Nagpal R (2009) Modeling and Inferring Cleavage Patterns in Proliferating Epithelia. PLoS Comput Biol 5(6): e1000412.
doi:10.1371/journal.pcbi.1000412

Editor: Jeffrey Axelrod, Stanford University School of Medicine, United States of America

Received December 19, 2008; Accepted May 12, 2009; Published June 12, 2009

Copyright: � 2009 Patel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: ABP and RN were supported by a Microsoft Faculty Fellowship and the National Science Foundation (graduate fellowship, Career Grant). WTG and MCG
were supported by the Burroughs Wellcome Fund and the Stowers Institute for Medical Research. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rad@eecs.harvard.edu

Introduction

The spatial and temporal regulation of cell shape and cell

proliferation are key mechanisms that direct tissue morphogenesis

during development. Much of our knowledge of tissue morpho-

genesis comes from the study of simple epithelial monolayers, 2D

planar sheets of strongly adhering cells in which division occurs in

the plane of the epithelium. The strong structural constraints and

developmental importance of epithelia have inspired a multitude

of theoretical and computational models since the early 20th

century [1–6]. Of these, an important class is topological models,

where an epithelium is represented as a planar network (topology).

The topology of an epithelium is defined as the network of

connectivity between cells (Figure 1A and 1B). Some important

topological properties include a cell’s polygonal shape, defined as

its number of neighbors, and the overall distribution of cell shapes

within an epithelium. There are several reasons for considering

these properties. First, empirical evidence from our recent work

[5] shows that the distribution of cell shapes is conserved in the

proliferating epithelia of several diverse organisms, including the

Drosophila larval wing disc and the Xenopus tadpole tail epidermis

(Figure 1C and Table S1). Second, polygonal cell shape is linearly

correlated with cell surface area (Figure 1D), a longstanding

empirical observation known as Lewis’ Law [2,3]. Third,

important developmental processes such as cell division, migra-

tion, and intercalation fundamentally alter topology by creating

and breaking connections between cells.

For these reasons, topological models have been useful both

experimentally and theoretically in understanding proliferating

epithelia [4–8] and other non-biological lattices [9,10]. As early as

the 1920s, F.T. Lewis documented the connection between cell

proliferation and tissue topology, arguing that spatial control of

cell divisions could affect the overall distribution of polygonal cell

shapes [2,3]. Since that time, the relationships between cell shape,

proliferation and epithelial topology have been further investigated

using both topological models [4,5,9,10] and mechanical models

[11–13], exploring a wide variety of phenomena including

differential rates of division, adhesion forces, and stochastic

divisions. However, due to unknown parameters and simplifying

approximations, the specific mechanisms by which global tissue

morphology emerges from the local control of cell divisions in

epithelial monolayers still remains poorly understood. To better

understand proliferation within the larval wing disc of Drosophila

melanogaster, we recently developed a stochastic topological model

of cell division [5]. Our model mathematically predicts the

emergence of a specific equilibrium distribution of polygonal cell

shapes (p*), revealing how local stochastic cellular processes can

give rise to predictable global tissue properties.

The predicted distribution p* was empirically confirmed in the

larval imaginal wing disc of Drosophila melanogaster, but also closely
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matched in the tadpole tail epidermis of Xenopus laevis, the outer

epidermis of the cnidarian Hydra vulgaris, and also Lewis’s

cucumber epidermis (Figure 1C). A common characteristic across

these diverse examples is that the epithelia-like tissue undergoes

rapid proliferation with minimal cell rearrangement. The

apparent conservation of p* across these systems is surprising. Is

p* the consequence of a conserved process of cell division across

these proliferating 2D epithelia? Or is it possible that distinct

processes of cell division converge upon the same final distribution

of shapes? More generally, how do widely varying division

strategies impact global epithelial organization?

Despite much experimental and theoretical progress, previous

models have limitations that make it difficult to address these

questions. The major difficulty lies in modeling the neighborhood

and lineage dependence in cleavage plane choice. For example,

our previous model encodes a mean-field approximation that

ignores the variability in the number of neighbors gained via the

division of neighboring cells [5]. The mathematical models of

Cowan et al. [9] do not account for neighboring divisions at all: a

cell never gains sides from its dividing neighbors. These models

cannot be used to study modes of cell division with any spatial or

temporal dependence, both of which are biologically relevant. For

example, cleavage patterns with mother-daughter or neighbor-

neighbor correlations in cleavage plane choice are common [14].

To explore and characterize the space of plausible cleavage

patterns, a more expressive model is required.

Here we present a computational model of cell division that

enables us to explore a much larger class of biologically plausible

division models by directly simulating the topology of a

proliferating epithelium from generation to generation. This

includes division schemes with spatial and temporal dependence

between neighboring cells and mother-daughter cells. Given a

division model, we can compute the equilibrium distribution of

polygonal cell shapes, along with other tissue-level topological

properties. Our findings show that the fraction of hexagons and

the variability in cell shape are both important global indicators of

local division parameters, and we propose that it may be possible

to infer these parameters from empirical data. Furthermore, we

describe several division schemes that can reproduce with high

accuracy the cell shape distribution seen in five diverse organisms.

We use this modeling framework to formulate and explore some of

the central theoretical and empirical questions regarding the local-

to-global regulation of cell shape in proliferating epithelia.

Model

The topology of an epithelial cell sheet can be described

mathematically as a planar network of trivalent vertices, edges,

and faces. The vertices represent tricellular junctions, the edges

represent cell sides, and the faces represent the cells themselves

(Figure 1A). This planar network captures the connectivity

between cells, but ignores geometric properties such as area,

perimeter or interior angles. In this paper, we are interested in a

cell’s topological shape, which is defined as its number of sides, or

equivalently, its number of neighbors in the planar network. Cell

division events within the network locally alter the topology of the

planar graph by adding new vertices, edges, and faces; multiple

rounds of proliferation can thus significantly alter global tissue

topology. By representing cell proliferation as a computation on an

epithelial network, one can simulate many different cell division

strategies and study the emergence of global properties such as the

distribution of topological cell shape.

The core of the topological model is the cleavage plane regulation

model (CPM), which describes how a cell determines which two of

its sides will be bisected by the cleavage plane (Figure 2A–C).

Based on experimental observations of the Drosophila larval wing

disc and other proliferating epithelia [5], we define the set of

assumptions that underlie our proliferation model.

Model Assumptions

(i) The epithelial network is only modified by cell division. We

do not consider any junctional rearrangements due to cell

repacking, cell migration, or cell death.

(ii) Each cell divides exactly once per division cycle and the

order in which cells divide is chosen uniformly at random

from all possible orderings. All cells in an epithelium use the

same algorithm, or CPM, for choosing their cleavage plane.

(iii) A parent cell divides into two daughter cells through the

creation of two trivalent vertices and one edge along the

chosen cleavage plane. Thus daughter cells always share an

edge (Figure 2A).

(iv) When a cell divides, its cleavage plane must consist of two

non-adjacent edges of the original cell. This precludes the

formation of tetravalent vertices and 3-sided cells, both of

which are rarely observed empirically.

This model describes a generic proliferating epithelium with no/

minimal cell rearrangement. The assumptions are based on

experimental evidence from the larval stage wing disc of Drosophila

melanogaster, where the absence of cell rearrangement, roughly

uniform cell division rates, and cleavage plane restrictions, appear

to hold [5]. These assumptions also appear to be approximately valid

for the other proliferating epithelia presented in Figure 1, for example

in plants, where rearrangement does not occur [2,3]. However in

some cases, rearrangement may occur more frequently and there

may be a higher occurrence of tetravalent vertices and three-sided

cells; for those systems the model can be modified to include those

aspects, although this is beyond the scope of the current paper.
Cleavage Plane Regulation Model (CPM). The CPM is

the core of the model and describes how mitotic cells select their

cleavage planes. The two main local parameters of a CPM that

affect global epithelial topology are: 1) The extent to which

cleavage plane orientation is directed by the local neighborhood

surrounding the cell; and 2) The symmetry with which a mitotic

cell’s neighbors are distributed to the two daughter cells.

Computationally, this is modeled as a two-stage algorithm that

first selects a cell side (Side1) based on local topology and then

selects a second side (Side2) based on topological symmetry

Author Summary

Cell division is one of the key mechanisms driving
organismal growth and morphogenesis. Yet many aspects
of the relationship between local cell division (how a cell
chooses an orientation to divide) and global tissue
architecture (e.g., regular versus irregular cells) remain
poorly understood. We present a computational frame-
work for studying topological networks that are created by
cell division; this framework reveals how certain tissue
statistics can be used to infer properties of the cell division
model. Recently it has been observed that five diverse
organisms show almost identical cell shape distributions in
their proliferating epithelial tissues, yet how this conser-
vation arises is not understood. Using our model we show
that the low variation observed in nature requires a strong
correlation between how neighboring cells divide and that
although the statistics of plants and fruitflies are almost
identical, it is likely that they have evolved distinct cell
division methods.

Polygon Patterns in Dividing Epithelia
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(Figure 2B and 2C). In the final step, cell division occurs through

creation of a new side connecting Side1 and Side2.

The selection of Side1 models the influence of local neighbor-

hood topology on cleavage plane orientation. Biologically, the

local topology surrounding the cell could impact cleavage

orientation if neighbors with fewer sides influence physical

properties such as tension in the mitotic cell cortex [12,13]. The

cleavage plane could also be influenced by a historical correlation

between the mother and daughter cleavage plane orientations

[14,15]. To model these effects, we simulated four strategies for

the choice of Side1: RANDOM1, SMALLEST NEIGHBOR1, LARGEST

NEIGHBOR1 and ORTHOGONAL1 (Figure 2B). The four Side1

strategies are described below (for equations see Text S1):

N RANDOM1. A critical default scenario for cleavage plane

orientation is that alignment of the mitotic spindle proceeds

without regard to local epithelial topology. To model this

situation, Side1 is chosen uniformly at random from all cell

sides. This strategy mimics a geometric model where neighbor

cells play no significant role in cleavage plane choice.

N SMALLEST NEIGHBOR1. A second conceivable mechanism for

cleavage plane orientation is that the mitotic spindle apparatus

senses local topology and aligns such that the smallest neighbor

will gain a side in the subsequent division. To model this

situation, Side 1 is chosen to be the neighbor with the smallest

number of neighbors. This strategy topologically mimics the

case where the smallest neighbor exerts the most tension on the

cell and the cleavage plane attempts to relieve some of that

tension by dividing in its direction.

N LARGEST NEIGHBOR1. Again we assume that the local topology is

sensed by the dividing cell. However, in contrast to the SMALLEST

NEIGHBOR1 model, here Side1 is chosen from the neighboring cell

with the largest number of neighbors. Though biologically

implausible, it will help us assess the impact of division asymmetry

on global tissue topology.

Figure 1. Topological properties of natural epithelia. (A) Polygonal lattice approximation of a larval stage wing disc epithelium from
Drosophila melanogaster. Color encodes polygonal shape i.e. the number of neighbors. [darkblue = 4, blue = 5, green = 6, orange = 7, maroon = 8] (B)
Underlying topology of cell-cell connections in (A); each node represents the center of a cell and edges denote cell-cell adjacency. (C) Distribution of
polygonal cell shapes from the epithelia of five disparate organisms: Drosophila melanogaster (third instar larval wing), Xenopus laevis (tadpole tail
epidermis), Hydra vulgaris (outer epidermis), Anagallis arvensis (meristem), cucumber epidermis [2,5,16]. Number of cells per sample is indicated in the
legend. (D) Correlation between a cell’s polygonal shape and its area in the larval Drosophila wing disc (2,172 cells). Cell area as a fraction of total area
is shown in blue; the average area of an n-sided cell, An, is shown in red. The solid line shows the expected prediction of Lewis’ Law [4], An = Aavg

(n22)/4, with the average area per cell Aavg = 1 without loss of generality.
doi:10.1371/journal.pcbi.1000412.g001

Polygon Patterns in Dividing Epithelia
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N ORTHOGONAL1. This CPM mimics orthogonal regulation, a

strategy known to be common in plants [14,15], where the

cleavage plane rotates by 90u with each successive cell division.

Topologically, the side that a cell shares with its sister cell from

the previous division will be chosen as Side1.

A second important factor in the determination of cleavage plane

orientation is the manner in which a mitotic cell’s neighbors are

segregated between the two daughter cells. We refer to cell divisions

that equally segregate neighbors as symmetric, while divisions that

segregate neighbors unequally are asymmetric. The symmetry of a

CPM is governed by the choice of Side2, the second edge of the

cleavage plane. We simulated four strategies for the selection of

Side2: RANDOM2, EQUALSPLIT2, BINOMIAL2, and UNEQUALSPLIT2, all

of which are illustrated in Figure 2C. The four Side2 strategies are

described below (for equations see Text S1):

N RANDOM2 (indifferent). Side2 is chosen uniformly at random

from all edges not adjacent to Side1. Under this strategy,

symmetric cleavage planes are as equally likely to be chosen as

asymmetric ones.

N EQUALSPLIT2 (maximally symmetric). Side2 is chosen so as to

divide a mitotic cell’s tricellular junctions as equally as

possible amongst its two daughters. This strategy mimics a

typical geometric model where cell junctions are (roughly)

evenly spaced around the cell and cleavage planes are

diameters that cut the cell into two daughters of approxi-

mately equal area.

N BINOMIAL2 (moderately symmetric). Side2 is chosen according

to a binomial distribution from all edges not adjacent to Side1.

In this strategy, symmetric outcomes are more probable than

asymmetric ones. The geometric equivalent of this topological

strategy assumes that junctions are placed uniformly at

random around the cell periphery. Thus each cell junction

has equal chance of belonging to either daughter upon division

provided the cleavage plane does not produce 3-sided cells.

This strategy was modeled mathematically in [5].

Figure 2. Simulating cleavage plane models. (A) A cell’s cleavage plane model (CPM) specifies the stochastic rule by which a cell chooses its cleavage
plane for the next division. In this example, the hexagonal mother cell has equal chance of dividing into two pentagons or one hexagonal and one
quadrilateral cell. The choice of cleavage orientation can also affect the neighbor cells in more than one way, for example it may be biased towards smaller
neighboring cells. After division, daughter cells lose sides on average, while two neighboring cells gain sides (orange). (B,C) A CPM is specified by the choice
of first edge (B) and second edge (C). The possible cleavage planes are shown as dashed white lines. Probabilities of choosing a cleavage plane are shown
adjacent to the second edge. (D,E) Dynamics of the ORTHOGONAL|EQUALSPLIT CPM for 12 generations for an initial condition of one hexagonal cell. (D)
Generations t = 1,2,3,6,9,12 are shown. Color encodes polygonal shape. Note that the diagram represents topological connectivity between cells and does
not model areas, angles, and perimeters of cells. (E) Shape distribution for ORTHOGONAL|EQUALSPLIT CPM for all 12 generations of a single run.
doi:10.1371/journal.pcbi.1000412.g002

Polygon Patterns in Dividing Epithelia
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N UNEQUALSPLIT2 (maximally asymmetric). Side2 is chosen such

that the cleavage plane divides a cell as unequally as possible.

Under this strategy, an n-sided cell will produce one 4-sided

daughter and one n-sided daughter after division. This

biologically implausible strategy tests the impact of severely

asymmetric divisions.

Simulation methodology. Each pair of Side1 and Side2

algorithms constitutes a distinct CPM, denoted by Side1|Side2. We

simulated each of the 16 possible CPMs for a total of 12 generations

of cell division. In each generation, every cell divides once and the

order in which cells divide is random. We simulated many different

initial conditions (a single m-sided polygon for 3,m,250). For each

initial condition, the simulation was run 100 times. All simulations

yielded 212 = 4,096 cells. For each simulation, we recorded the final

topological shape distribution and the CPM mean and standard

deviation over 100 trials (Figure 3A and Table S2, S3, and S4). As

an example, results from the simulation of the

ORTHOGONAL|EQUALSPLIT CPM are shown in Figure 2D and 2E.

Simulation models were implemented in Java and data analysis was

done using MATLAB and Microsoft Excel.

Results/Discussion

Characterizing the Space of CPMs
All CPMs generate an equilibrium cell shape

distribution. Previous work suggests that proliferating

epithelia with a specific CPM will converge to an equilibrium

distribution of polygonal cell shapes [4,5]. Whether this holds true

for every possible (SIDE1|SIDE2) CPM remains an important

question. We find that simulations of a completely random

CPM (RANDOM|RANDOM) and a completely deterministic CPM

(ORTHOGONAL|EQUALSPLIT) both converged to distinct

equilibrium distributions independent of initial conditions; the

standard deviation in the percentage of hexagons was less than

0.5% for both CPMs over widely varying initial conditions

(Figure 3B and Table S2, S3, and S4). Similar results were

obtained with the 14 other CPMs (Table S4). Together, these

findings indicate that all CPMs converge to a predictable, fixed

distribution of polygonal cell shapes independent of the initial

topology. The intuition is that the initial conditions become

statistically insignificant as the number of cells expands

exponentially through division.
Frequency of hexagons and overall cell shape variability

characterize cleavage patterns. Assuming negligible

boundary effects, every CPM described herein should converge

at an exponential rate to a mean shape of 6 sides [2,3,5] (Text S1).

Thus, the mean cell shape in equilibrium cannot distinguish

between CPMs (Figure S1). In contrast, CPMs are strongly

distinguished by their equilibrium cell shape variance and also by

the percentage of hexagons and quadrilaterals in the population

(Figure 3C and Table S2 and S3). These statistics vary significantly

from CPM to CPM and are strongly correlated with two key

properties of the CPM: neighbor charitability and division symmetry.

Each division event splits one mitotic cell into two daughters with

fewer neighbors on average; simultaneously it increases the

number of sides for two neighbors of the mitotic cell. Charitability

refers to the tendency of the Side1 choice to confer sides to smaller

neighbors, potentially reducing cell shape variation within the

local neighborhood (Figure 2A, upper right and Figure 2B,

SMALLEST NEIGHBOR1). Symmetry refers to the tendency of the Side2

algorithm to create two daughter cells with equal numbers of

neighboring cells (e.g., Figure 2C, EQUALSPLIT2). Our findings

indicate that highly symmetric and charitable CPMs suppress

global cell shape variability.

Symmetric, charitable cleavage patterns amplify

percentage of hexagons and suppress variation in cell

shape. Our simulation results reveal a strong correlation

between the degree of division symmetry and the number of

hexagons in the population. For every Side1 strategy tested, the

percentage of hexagons in the population increased with increasingly

symmetric Side2 CPMs (Figure 3D). This increase in hexagons was

accompanied by a substantial decrease in the variance (Figure 3A and

3C). Consistent with this result, strongly asymmetric CPMs yielded an

equilibrium distribution with a mode of 4 or 5 sides, suggesting that

symmetric divisions may be critical to establishing the majority of

hexagonal cells observed in most natural epithelia.

The degree with which the Side1 CPM favors smaller neighbors

also had a noteworthy effect on the percentage of hexagons in the

population. One can order LARGESTNEIGHBOR1, RANDOM1, SMAL-

LESTNEIGHBOR1 as explicitly increasing in charitability. For every

Side2 algorithm tested, increasingly charitable Side1 CPMs led to an

increased percentage of hexagons and a correspondingly lower

variance (Figure 3A, 3C, and 3D and Table S2 and S3).

ORTHOGONAL1 appears to be implicitly charitable; the CPM favors

the recently divided sister cell which tends to have fewer sides due to

its recent division. The simulations suggest that this CPM lies between

RANDOM1 and SMALLESTNEIGHBOR1 in its ability to reduce shape

variance. The simulations also reveal some complexities overlooked

by our earlier Markov chain model [5], which assumes binomial

symmetry but approximates the effect of neighbor correlations using

a mean-field assumption. The simulations show that many cell shape

distributions are possible, given a binomial division symmetry model.

In order to produce a fraction of hexagons close to that observed in

natural epithelia (.40%), the Side1 model must have high

charitability (e.g., SMALLESTNEIGHBOR1|BINOMIAL2). Also, a different

CPM (ORTHOGONAL1|EQUALSPLIT2) can reproduce the cell shape

distribution observed in natural epithelia; this CPM has lower

charitability but higher symmetry. This illustrates that the interplay

between autonomous symmetry and non-autonomous charitability

critically determine the equilibrium shape distribution.

Minimum and Maximum Variance Cleavage

Patterns. The CPM that minimized the variance in polygonal

cell shape and produced the largest percentage of hexagons was

SMALLESTNBR1|EQUALSPLIT2, which is both maximally charitable

and maximally symmetric (p6 = 58%, s= 0.73 sides, p4 = 0%). At

the other end of the spectrum is LARGESTNBR|UNEQUALSPLIT, a

biologically implausible strategy that is maximally uncharitable

and maximally asymmetric, and which generates a highly distorted

topology dominated by quadrilaterals (p6 = 0.2%, s= 3.41 sides,

p4 = 97.2%, see Table S2, S3). These CPMs represent the

extremes for the symmetry and charitability parameters. Many

existing proliferation models [4,5,12] produce distributions within

this spectrum, and our results provide insights into the

distributions generated by mechanical models [12] as well as the

distributional shift observed in mitotic cells ([2–4] and see Text S1

and Table S5 for comparisons to other relevant models). Notably,

we were unable to find a CPM that generates more than 60%

hexagonal cells, suggesting that it may be difficult to achieve

higher hexagonal fractions with solely local information. Indeed,

natural epithelia with higher regularity (80% hexagonal) appear to

involve mechanisms with significant cellular rearrangement and

global signaling [8].

Comparison to Empirical Data
The wide spectrum of shape distributions produced by different

CPMs raises the intriguing possibility of inferring the CPM based

solely on empirical observations of global epithelial topology. For

example, a hypothesis for a cell division strategy in a given

Polygon Patterns in Dividing Epithelia
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epithelium might be rejected simply by comparing the empirical

cell shape distribution with the one predicted by the CPM. Here

we present the results of comparing our simulated CPMs to cell

shape distribution data from natural proliferating epithelia in a

diverse array of organisms. We use data, collected and published

previously by our group [5], on Drosophila melanogaster (larval wing

disc, arthropod), Xenopus laevis (tadpole tail epidermis, vertebrate),

and Hydra (adult outer epidermis, cnidarian). In addition, we have

Figure 3. Convergence of proliferating epithelia to an equilibrium distribution. (A) Steady-state shape distributions for all simulated CPMs
(color), sorted from high to low cell shape variance. Also included are the proliferating epithelia (grayscale) from Figure 1; these epithelia have lower
variance than all but one simulated CPM (SmallestNeighbor|EqualSplit). (B) Equilibrium cell shape distributions for the stochastic RANDOM|RANDOM CPM
and the deterministic ORTHOGONAL|EQUALSPLIT CPM with an initial condition of a single cell with S0 sides, where S0 ranges from 4 to 250 sides.
Probabilities are mean over all runs and error bars represent range. (C) In the simulated CPMs, high hexagonal frequency is strongly correlated with
lower cell shape variability as measured by standard deviation. Proliferating epithelia data (green) shows a similar relationship between high
hexagonal frequency and low shape variability. (D) The fraction of hexagons in the equilibrium shape distribution for all simulated CPMs. Rows and
columns correspond to the choice of first and second edge, respectively, and colors encode the resulting fraction of hexagons after generation 12.
doi:10.1371/journal.pcbi.1000412.g003

Polygon Patterns in Dividing Epithelia
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included previously published data from two plants, Cucumis

(cucumber epidermis) from the paper by F.T. Lewis [3] and

Anagallis arvensis (meristem) courtesy of J. Dumais [16]. These

natural epithelia show a strongly conserved cell shape distribution

with between 42–48% hexagons and a standard deviation of 0.83–

0.98 sides (Figure 1C and Table S1).

Natural epithelia exhibit relatively low variation in cell

shape. To compare simulated CPMs with natural epithelia, we

sorted all distributions (simulated and empirical) by variance.

Compared with simulated topologies, natural distributions exhibit

a surprisingly low shape variance and a high percentage of

hexagons (Figure 3A and 3C). Only the SMALLESTNBR|EQUALSPLIT

CPM had a lower variance (s= 0.73 sides). It is unclear why

natural epithelia should exhibit such low variance in cell shape.

One conjecture is that if cell size (area) is proportional to cell shape

(number of sides), then low variability in cell shape is consistent

with low variability in cell size. To test this hypothesis, we

measured the correlation between a cell’s number of sides (n) and

its geometric area in the Drosophila wing disc. Our results, shown in

Figure 1C, show a linear correlation between n and An, the average

size of an n-sided cell, consistent with Lewis’ Law [2,3]. However,

there is significant variability in cell size about the mean An.

Alternatively, the low shape variability may be an indirect

outcome of other factors that favor specific division mechanisms.

Two distinct CPMs generate the distribution observed in

natural epithelia. Of all division models tested, the

ORTHOGONAL|EQUALSPLIT CPM most closely matched the

empirical natural cell shape distribution data (Figure 3A and 3B

and Table S1). Surprisingly, this CPM is deterministic: cells choose

cleavage planes based solely on the location of the last sister cell

(Figure 2B and 2D). It yields 46% hexagons, and a standard

deviation of s= 0.84 sides, similar to Drosophila and Cucumis [2,5].

Consistent with natural epithelia, it also generates a negligible

fraction of cells with 10 sides or greater (,1 in 104) and has a

nonzero fraction of 4-sided cells (p4 = 2.4%), close to the

empirically observed frequency of 2.95% in Drosophila. This

significantly improves upon the prediction of our Markov chain

model [5], where the mean-field approximation incorrectly yields

p4 = 0%. To a lesser extent, the SMALLESTNBR1|BINOMIAL2 CPM

also matches the empirical data, with 43% hexagons and a

standard deviation of 0.72 sides and 5.3% 4-sided cells. Although

this is significantly different from the conserved empirical

distribution, it is possible that a similar CPM with higher

symmetry than BINOMIAL2 but lower symmetry than EQUALSPLIT2

may generate the expected distribution. We have derived such a

CPM through simulation (Figure S2).

Is the conserved natural distribution due to a conserved

division strategy? Previous results raise the possibility that the

conserved distribution may arise from distinct division strategies in

different organisms. To test this possibility, we compare our

simulated distributions to those found in related work on cell

division in plants and in the larval wing disc of Drosophila melanogaster.

Cell division in plants. Orthogonal regulation is a common

mode of division in plant development [1,2,15,16]. For example,

spindles in some plant cells use microtubules to find the longest

axis and divide perpendicular to that axis [2,15–18]. This

corresponds topologically to the CPM

ORTHOGONAL|EQUALSPLIT, provided that cell growth is isotropic

and daughter cells are roughly equal in size, as is the case in the

Cucumis epidermis and the central region of the Anagallis meristem.

To illustrate, consider a rectangular cell with width greater than its

height. Division along the short vertical axis will yield two

rectangular cells of height greater than width; thus the next

cleavage plane will be in the horizontal direction, perpendicular to

the parent’s cleavage plane [18]. Since the next cleavage plane

usually emanates from the newly created cell wall, this is consistent

with the ORTHOGONAL1 rule. Thus, the ORTHOGONAL|EQUALSPLIT

CPM is a good topological approximation to the original

geometric rule in some plants.

Cell division in the Drosophila wing disc. Although the

Drosophila wing disc has a shape distribution almost identical to

that of the plants Anagallis and Cucumis, there is significant evidence

to suggest that orthogonal regulation does not occur in the fly.

Specifically, it is known that the orientation of the first cell division

is often maintained in subsequent divisions, with 57% of four-cell

clones forming a straight line of one cell width [19]. Also, most

clones in the wing blade are elongated and grow along the

proximal-distal axis, perpendicular to the dorsal-ventral border

[20]. This type of region-specific oriented division rules out purely

orthogonal regulation, where four-cell clones should form 262

diamonds. In addition, orthogonal regulation predicts roughly

circular clone shapes.

Given the evidence against ORTHOGONAL|EQUALSPLIT in the

fruitfly, our simulations suggest trying a maximally charitable and

moderately symmetric CPM that lies somewhere between

SMALLESTNEIGHBOR|EQUALSPLIT and SMALLESTNEIGHBOR|BINO-

MIAL. To test this idea, we interpolate between the two CPMs

using a parameter 0,a,1, and we find that a good fit to the

empirical shape distribution is achieved at a = 0.75 (Figure S2).

However, it is unclear how the SMALLESTNEIGHBOR1 might

translate into a physical mechanism. One possibility is that for a

given cell, the longest edge is adjacent to the smallest neighbor and

thus more likely to be cut by a cleavage plane or exert the most

tension [13]. Alternatively, favorable neighbor correlations might

arise indirectly, as a result of globally aligned divisions [19].

Nevertheless, it is clear that some form of charitability is required.

A recent mechanical model of cell division in the wing [12] uses

data-derived parameters to replicate cell geometry but assumes

that the division orientation is unaffected by cell neighbors. Our

topological model predicts that such a system, with moderate

symmetry but indifferent to local neighborhood, is likely to have

more 5-sided cells than 6-sided cells, as observed in the mechanical

model. Understanding how charitability arises will require a more

thorough investigation of the division parameters in the Drosophila

wing, which are still poorly understood.

By comparing natural and simulated cell shape distributions, we

can make several inferences about proliferating epithelia. First, the

observed low variability in cell shape implies that division strategies

are not only highly symmetric, but also moderately charitable: they

directly or indirectly favor adding sides to smaller neighbors.

Second, although the proliferating epithelia of five diverse

organisms show a highly conserved shape distribution, there are

multiple plausible CPMs that can generate this distribution, and

experimental evidence suggests that indeed plants and fruitflies do

have distinct division mechanisms. This raises the possibility that

different organisms may have evolved distinct mechanisms to

suppress shape variability during proliferation. Alternatively, the

low shape variability may be an indirect outcome of other factors

that favor symmetric and charitable divisions. Looking forward, as

proliferation is better understood in other organisms, our

topological framework can provide a background for hypothesis

generation and testing as well as a basis for studying pattern

formation in the presence of proliferation.

Supporting Information

Figure S1 Hexagonal fraction p6* vs. mean shape. Most CPMs

produce a mean shape close to 6, even though the percentage of
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hexagons varies significantly. A mean of 6 is expected for all

CPMs, provided that the boundary effects are minimal. Only a few

CPMs, based on LargestNeighbor1 show a mean closer to 5, as

discussed in the Supplementary text.

Found at: doi:10.1371/journal.pcbi.1000412.s001 (3.46 MB TIF)

Figure S2 A SmallestNeighbor based CPM that matches

empirical data. We interpolate the symmetry value between

SmallestNeighbor|Binomial and SmallestNeighbor|EqualSplit by

having each cell execute the first method with probability a and

the second method with probability (1-a). Thus, a measures

distance from maximally symmetric to moderately symmetric

division. Best fit to empirical distribution (light and dark green)

and to the alternative CPM (Orthogonal|EqualSplit) is achieved

by a = 0.75 (blue).

Found at: doi:10.1371/journal.pcbi.1000412.s002 (5.22 MB TIF)

Table S1 Empirical Cell Shape Distribution Data from Five

Diverse Organisms. Shape distribution data for proliferating

epithelial in several organisms of interest. The data for Drosophila

melanogaster (third instar larval wing disc), Xenopus laevis (tadpole tail

epidermis), Hydra vulgaris (adult outer epidermis) comes from our

previous work [3]. The data for Anagallis arvensis (meristem) was

given to us courtesy of Jacques Dumais and derived from Figure 1

in [4]. The cucumber epidermis data was taken from F.T. Lewis’

original papers [5,6]. Modes are shown in red.

Found at: doi:10.1371/journal.pcbi.1000412.s003 (0.04 MB

DOC)

Table S2 Cell shape distribution data for all CPMs. Distribution

data for simulated CPMs. Each data point is a result of 100

simulations, each with 12 generations of division and 4,096 cells.

Modes of distributions are shown in red. This data supports the

existence of an equilibrium distribution that depends on the CPM

but is independent of initial conditions.

Found at: doi:10.1371/journal.pcbi.1000412.s004 (0.07 MB

DOC)

Table S3 Cell shape distribution data for all CPMS (Sorted by

percentage of hexagons). The same shape distribution data for

simulated CPMs as shown in Table 2 but here sorted by the steady

state fraction of hexagonal cells. As in Table 2, each data point is a

result of 100 simulations, each with 12 generations of division and

4,096 cells. Modes of distributions are shown in red. Hexagonal

frequencies are shown in bold. As division becomes more

symmetric and charitable, the fraction of hexagons increases and

eventually hexagons become the mode of the shape distribution.

Found at: doi:10.1371/journal.pcbi.1000412.s005 (0.08 MB

DOC)

Table S4 Standard Deviation (%) of Equilibrium Fraction of n-

sided cells. Standard deviation of distribution data for simulated

CPMs. To test convergence, each simulated CPM was run on

several initial conditions with 100 independent runs each to

calculate the equilibrium cell shape distributions shown in Tables

S2 and S3. This table shows the standard deviation for each cell

shape category across different runs. Almost all simulations show

less than 1% deviation in cell shape percentages, indicating that

each division rule (CPM) generates a robust signature distribution

with little variability. Large standard deviations (exceeding 1.0%)

are shown in blue. Rules with maximally uncharitable division

strategies (LARGESTNEIGHBOR1 Side1 strategy) appear more likely to

exhibit high variability in equilibrium shape frequency. The large

variance appears to be a result of conflicting effects that increase

and decrease shape variance (e.g. LARGESTNEIGHBOR|EQUALSPLIT)

causing the overall topology to be unstable. In contrast LARGEST-

NEIGHBOR|UNEQUALSPLIT quickly converges to a stable situation

with 99.9% quadrilaterals and one extremely large cell.

Found at: doi:10.1371/journal.pcbi.1000412.s006 (0.07 MB

DOC)

Table S5 Comparison to other Relevant Models.

Found at: doi:10.1371/journal.pcbi.1000412.s007 (0.03 MB

DOC)

Text S1 Includes relevant data, methodologies, and equations

that supplement the main manuscript.

Found at: doi:10.1371/journal.pcbi.1000412.s008 (0.05 MB

DOC)
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Experimental and theoretical study of mitotic spindle orientation. Nature 447:

493–498.

14. Feldman J, Geimer S, Marshall W (2007) The mother centriole plays an

instructive role in defining cell geometry. PLoS Biol 5: e149. doi:10.1371/

journal.pbio.0050149.

15. Dumais J (2007) Can mechanics control pattern formation in plants? Curr Opin

Plant Biol 10: 58–62.

16. Kwiatkowska D, Dumais J (2003) Growth and morphogenesis at the vegetative

shoot apex of Anagallis arvensis. J Exp Bot 54: 1585–1595.

17. Miller J (1980) Orientation of the plane of cell division in fern gametophytes: the

roles of cell shape and stress. Am J Bot 67: 534–542.

18. Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, et al. (2006)

A plausible model of phyllotaxis. Proc Natl Acad Sci U S A 103: 1301–1306.

19. Baena-Lopez L, Baonza A, Garcia-Bellido A (2005) The orientation of cell

divisions determines the shape of Drosophila organs. Curr Biol 15: 1640–1644.

20. Resino J, Salama-Cohen P, Garcia-Bellido A (2002) Determining the role of

patterned cell proliferation in the shape and size of the Drosophila wing. Proc

Natl Acad Sci U S A 99: 7502–7507.

Polygon Patterns in Dividing Epithelia

PLoS Computational Biology | www.ploscompbiol.org 8 June 2009 | Volume 5 | Issue 6 | e1000412


