
Synergy and Discounting of Cooperation in Social 
Dilemmas

Citation
Hauert, Christoph, Franziska Michor, Martin A. Nowak, and Michael Doebeli. 2006. Synergy and 
discounting of cooperation in social dilemmas. Journal of Theoretical Biology 239(2): 195-202.

Published Version
doi:10.1016/j.jtbi.2005.08.040

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4317703

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:4317703
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Synergy%20and%20Discounting%20of%20Cooperation%20in%20Social%20Dilemmas&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=4433e538f9defa1e2f6f0212f32dbd59&departmentMathematics
https://dash.harvard.edu/pages/accessibility


Synergy and discounting of cooperation

in social dilemmas

Christoph Hauert∗,†,‡, Franziska Michor‡, Martin A. Nowak‡&

Michael Doebeli†

† Departments of Zoology and Mathematics, University of British Columbia,

6270 University Boulevard, Vancouver B.C. Canada, V6T 1Z4
‡ Program for Evolutionary Dynamics,

Department of Organismic and Evolutionary Biology,

Department of Mathematics, Harvard University,

One Brattle Square, Cambridge, MA 02138, USA

September 9, 2005

Key words: Evolution, Cooperation, Game Theory, Social Dilemmas

Corresponding author:
∗ Christoph Hauert

Program for Evolutionary Dynamics, Harvard University

One Brattle Square, Cambridge, MA 02138, USA

email: christoph hauert@harvard.edu

phone: (617) 496 5550, fax: (617) 496 4629

Manuscript information: 23 pages, including references and 3 figures.

1



Abstract

The emergence and maintainance of cooperation by natural selection is an

enduring conundrum in evolutionary biology, which has been studied us-

ing a variety of game theoretical models inspired by different biological

situations. The most widely studied games are the Prisoner’s Dilemma,

the Snowdrift game and by-product mutualism for pairwise interactions,

as well as Public Goods games in larger groups of interacting individuals.

Here we present a general framework for cooperation in social dilemmas

in which all the traditional scenarios can be recovered as special cases. In

social dilemmas cooperators provide a benefit to the group at some cost,

while defectors exploit the group by reaping the benefits without bearing

the costs of cooperation. Using the concepts of discounting and synergy

for describing how benefits accumulate when more than one cooperator

is present in a group of interacting individuals, we recover the four ba-

sic scenarios of evolutionary dynamics given by (i) dominating defection,

(ii) co-existence of defectors and cooperators, (iii) dominating cooperation

and (iv) bi-stability, in which cooperators and defectors cannot invade each

other. Generically, for groups of three or more interacting individuals fur-

ther, more complex, dynamics can occur. Our framework provides the first

unifying approach to model cooperation in different kinds of social dilem-

mas.
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1 Modeling Cooperation

The question of how natural selection can lead to cooperation has fascinated evolu-

tionary biologists since Darwin (Darwin, 1859, Hammerstein, 2003, Maynard Smith

& Szathmáry, 1995, Trivers, 1971). Cooperation among relatives is explained by kin

selection representing the idea that selfish genes lead to unselfish phenotypes (Frank,

1989, Hamilton, 1963). For the evolution of cooperation among genetically unre-

lated individuals various mechanisms have been put forward based on evolutionary

game theory: cooperators form groups and thus preferentially interact with other co-

operators (Sober & Wilson, 1998, Wilson & Sober, 1994); cooperators occupy spa-

tial positions in lattices or networks and interact with their neighbors who are also

cooperators (Hauert, 2001, Killingback et al., 1999, Nowak & May, 1992); optional

interactions can stabilize cooperation (Hauert et al., 2002, Semmann et al., 2003); re-

peated games enable the emergence of direct reciprocity (Axelrod & Hamilton, 1981,

Nowak & Sigmund, 1993); and reputation facilitates the evolution of cooperation via

indirect reciprocity (Alexander, 1987, Nowak & Sigmund, 1998) or punishment op-

portunities (Sigmund et al., 2001).

The vast majority of models on the evolution of cooperation consider pairwise in-

teractions: a cooperator meeting another cooperator obtains the rewardR, but against

a defector the cooperator is left with the sucker’s payoff S. In contrast, the defector

exploits the cooperator and receives the temptation T , but when facing another defec-

tor each gets the punishment P . This terminology was introduced for the Prisoner’s

Dilemma, which is defined by the payoff ranking T > R > P > S. Hence defection

dominates cooperation because it is better to defect regardless of what the partner

does. In terms of costs c and benefits b of cooperation, the Prisoner’s Dilemma de-

scribes situations where costs incur to the cooperator but benefits accrue exclusively

to the partner, i.e. T = b, R = b− c, P = 0 and S = −c with b > c. This represents

the most stringent form of a social dilemma.
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1.1 Social Dilemmas

Social dilemmas are defined as interactions in groups of individuals where groups

of cooperators are better off than groups of defectors, but in any mixed group de-

fectors outperform cooperators (Dawes, 1980). The fact that defectors exploit coop-

erators requires that defectors are better off in any mixed group than in the absence

of cooperators, and conversely that cooperators are worse off in any mixed group

than in the absence of defectors. In the context of pairwise interactions this requires

R > P, T > S, T > P andR > S. These requirements are satisfied by the Prisoner’s

Dilemma but there are three additional rankings possible.

The Snowdrift game (Sugden, 1986) (also known as the Chicken or Hawk-Dove

game (Maynard Smith & Price, 1973)) is defined by T > R > S > P . To illustrate

this game, consider two drivers on their way home that are caught in a blizzard and

trapped on either side of a snowdrift. Each driver has the option to remove the snow-

drift and start shoveling or to remain in the car. In contrast to the Prisoner’s Dilemma,

the best choice now clearly depends on the other driver: if the other cooperates and

starts shoveling, it pays to defect and remain in the car but if the other defects, it is

better to shovel and get home than to wait for spring. Similar situations may occur

whenever the act of cooperation creates a common good that can be exploited by

others, i.e. whenever the benefits of cooperation accrue not only to the partner but

also to the cooperator itself. For example, foraging yeast cells produce and secrete

an enzyme in order to lyse their environment (Greig & Travisano, 2004). The result-

ing food resource represents a valuable common good prone to exploitation by other

cells. However, despite the prospects of being exploited, a single cell may be better

off (prevent starvation) by producing the enzyme if no one else does. This last twist

relaxes the social dilemma to some extent.

The dilemma is completely relaxed if R > T > S > P holds. This refers

to by-product mutualism where it is better to cooperate irrespective of the partner’s
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decision, i.e. cooperation dominates defection. However, note that in any mixed

group, defectors are still better off than cooperators but at the same time the payoff

of defecting individuals would increase upon switching to cooperation (because the

individual draws a net benefit from its own cooperative act). The remaining ranking is

R > T > P > S, for which the best choice again depends on the partner’s decision,

but now it is best to aim for mutual decisions: defect if the other defects and cooperate

if the other cooperates. The social dilemma presents itself as a coordination problem

with mutual cooperation as the preferred outcome.

Cooperative interactions in groups of N individuals have received much atten-

tion in the context of Public Goods games (Fehr & Gächter, 2002, Kagel & Roth,

1995). In typical Public Goods experiments, individuals can make an investment

into a common pool knowing that the experimenter will multiply the total invest-

ments and distribute it equally among all participants irrespective of their contribu-

tions. In essence, Public Goods games represent N -persons Prisoner’s Dilemmas

(Dugatkin, 1997, Hauert & Szabó, 2003), and defection invariably dominates coop-

eration. As in pairwise interactions, maintenance of cooperation requires additional

mechanisms such as iterated interactions (Boyd & Richerson, 1988, Hauert & Schus-

ter, 1997) or local interactions in spatially structured populations (Hauert & Doebeli,

2004, Pollock, 1989). Group interactions under less stringent conditions have hardly

been studied.

1.2 Evolutionary Dynamics in Groups ofN Individuals

In evolutionary dynamics we consider infinitely large populations consisting of a

fraction of cooperators x and 1 − x defectors. According to replicator dynamics

(Hofbauer & Sigmund, 1998), changes in x are determined by the relative perfor-

mance of cooperators as compared to defectors:

ẋ = x(1− x)(fC − fD) (1)
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where fC , fD denote the average fitness, i.e. the average payoff, of cooperators and

defectors, respectively. Here we present a general framework to study interactions of

cooperators and defectors in groups of N players. Cooperators are defined as indi-

viduals that provide a benefit to all members of the group at some cost to themselves.

In contrast, defectors attempt to exploit the common enterprise, avoid the costs and

provide no benefit. We denote by PC(k) and PD(k), respectively, the payoff for a

single cooperator and a single defector in a group that contains k cooperators. Note

that for the payoff of a cooperator, PC(k), the cooperator is one of the k cooperators

in the group. Thus, PC(k) is defined for k = 1, . . . , N , while PD(k) is meaning-

ful for k = 0, . . . , N − 1. Also note that, in accordance with social dilemmas,

PC(k) < PD(k) must hold for all k = 1, . . . , N − 1, so that in any given group each

defector has a higher payoff than each cooperator.

In groups that are formed at random according to binomial sampling, the average

fitness of cooperators and defectors is given by

fC =
N−1�

j=0

�
N − 1

j

�
xj(1− x)N−1−jPC(j + 1) (2a)

fD =
N−1�

j=0

�
N − 1

j

�
xj(1− x)N−1−jPD(j). (2b)

Here
�

N−1
j

�
xj(1 − x)N−1−j is the probability that there are j cooperators among

the N − 1 other individuals in a group of size N in which the focal cooperator or

defector finds itself. Consequently, the formulas above represent weighted averages

of the payoffs of a focal cooperator (focal defector) facing j cooperators among the

N − 1 co-players.

2 A Framework of Cooperation

In natural systems, the actual value of the benefits provided by cooperators may

depend on the number of cooperators in the group. For example, in the case of
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foraging yeast cells, the benefit provided by the first cooperator may be critical for

survival, whereas the value of additional food decreases until, eventually, more food

becomes useless because the cells are saturated. Similarly, cooperators may produce

enzymes for enzyme-mediated reactions. The efficiency of the reaction may exhibit a

faster than linear increase with concentration such that additional enzyme production

has an enhanced value (Fersht, 1977, Hammes, 1982). This leads to discounted or

synergistically enhanced benefits based on the number of cooperators in groups of

interacting individuals.

2.1 Synergy and Discounting

In order to model the synergistically enhanced as well as the discounted net value of

accumulated cooperative benefits, we assume that defectors and cooperators, respec-

tively, receive the following payoffs in a group with k cooperators:

PD(k) =
b

N
(1 + w + w2 + . . . + wk−1) =

b

N

1− wk

1− w
(3a)

PC(k) = PD(k)− c. (3b)

Hence, the first cooperator provides a benefit b which is shared by all N members of

the group (including itself), the second one increases everyone’s benefit by b/N · w,

and so on, to the last of the k cooperators in the group providing an additional benefit

of b/N · wk−1. The costs of cooperation c, however, incur only to cooperators. If

w = 1, then all cooperators provide the same incremental benefit b/N . This corre-

sponds to the traditional formulation of Public Goods games with PD(k) = rkc/N

(or b = rc) where r denotes the multiplication factor of the common pool. If w < 1,

then the benefits are discounted and the value of the benefits provided by each ad-

ditional cooperator is lower than the previous one. If w > 1, then the benefits are

synergistically enhanced, and each additional cooperator provides incremental bene-

fits of increasing value. At this point it is important to note that neither discounting
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nor synergy involve temporal components, i.e. this does not refer to potential future

benefits in iterated interactions, which is an entirely different line of research with

strong roots in economics (Fudenberg & Maskin, 1986).

Substituting the payoff functions Eq. (3) into Eq. (2) determines the average per-

formance of cooperators and defectors in a population with a fraction x of coopera-

tors:

fC =
b

N(1− w)

�
1− w(1− x + wx)N−1

�
− c (4a)

fD =
b

N(1− w)

�
1− (1− x + wx)N−1

�
. (4b)

It is easy to see from these expression that the equation fC(x∗) = fD(x∗) has at

most one solution x∗ in the open interval (0, 1), which, if it exists, is given by x∗ =

[1 − (cN/b)1/(N−1)]/[1 − w] (see Fig. 1). Therefore, the replicator dynamics (see

Eq. (1)) has at most one interior equilibrium. It follows that the dynamics can be

determined by considering the invasion capabilities of cooperators and defectors, i.e.

the stability of the two trivial equilibria x = 0 and x = 1.

2.2 Classification of Social Dilemmas

Based on these calculations, we obtain a natural classification of the dynamics in N -

player group interactions, which generates the four basic scenarios of evolutionary

dynamics (Nowak & Sigmund, 2004):

(i) Defectors dominate cooperators if cN/b > 1 and cN/b > wN−1 because

fD > fC holds (Fig. 1a). The only stable equilibrium is x = 0. Note that

for cN/b > 1 the minimal benefit secured by a cooperator (arising from its

own act of cooperation) does not exceed the incurring costs. This parameter

region corresponds to the Prisoner’s Dilemma or Public Goods games.

(ii) If 1 > cN/b > wN−1 the two equilibria x = 0 and x = 1 are both unstable.

Cooperators and defectors can invade each other and coexist at a stable equi-
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librium x∗. This is reflected by fC > fD for x < x∗ but fC < fD for x > x∗

(Fig. 1b). This parameter region represents a generalization of the Snowdrift

game to groups of N players.

(iii) Cooperators dominate defectors if cN/b < 1 and cN/b < wN−1 because

fC > fD holds (Fig. 1c). Note, however, that defectors are still better off

in every (mixed) group (PD(k) > PC(k)), but each defector could further in-

crease its payoff by switching to cooperation (PC(k+1) > PD(k)). No interior

equilibrium exists and the only stable equilibrium is x = 1. In this parame-

ter region the social dilemma is completely relaxed and cooperation evolves

through by-product mutualism.

(iv) If wN−1 > cN/b > 1 the two equilibria x = 0 and x = 1 are both stable, i.e.

cooperators and defectors cannot invade each other. The basins of attraction

of the two equilibria are separated by the unstable equilibrium x∗. In this

bistable situation the evolutionary outcome depends on the initial fraction of

cooperators x0: if x0 > x∗ cooperation evolves (fC > fD) but if x0 < x∗

cooperation vanishes (fD > fC) (Fig. 1d).

Note that the conditions for successful invasions can be directly obtained from PC(k)

and PD(k), independent of binomial (or any other) sampling. The reason for this is

that if cooperators are rare, then they can only increase in abundance if a single

cooperator in a group of N − 1 defectors has a higher payoff than a group of N

defectors. Thus, cooperators can invade if PC(1) > PD(0). Likewise, if defectors

are rare, they invade only if PD(N − 1) > PC(N), i.e. if a single defector in a group

with N − 1 cooperators receives a higher payoff than a cooperator in a group of

N cooperators. These conditions are sufficient to generate the above classification.

Scenarios (i) and (ii), i.e. dominant defection and co-existence, are reminiscent of the

distinction between ’strong’ and ’weak’ altruism (Charlesworth, 1979, Wilson, 1979)
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where the act of cooperation incurs either absolute costs to the cooperator (b/N < c)

or only relative costs as compared to the performance of defectors (b/N > c).

The different dynamical regimes are summarized in Fig. 2 using phase diagrams.

The figure highlights the fact that transitions between the qualitatively different types

of evolutionary games can be generated by varying the parameters w, c/b, and N .

Not surprisingly, synergy (w > 1) generally favours cooperation as compared to

discounting (w < 1), whereas increasing the cost-to-benefit ratio c/b or the group

sizeN generally favours defection (Fig. 2). For discounted benefits,w < 1, defection

reigns for b/N < c whereas for b/N > c cooperators persist. In the latter case,

the critical group size given by nc = 1 + log(cN/b)/ log(w) separates by-product

mutualism and the (generalized) Snowdrift game: for N < nc cooperators dominate

defectors, whereas for N > nc cooperators and defectors coexist (Fig. 2b). For

synergistic interactions, w > 1, cooperation dominates for b/N > c whereas for

b/N < c defectors dominate if N > nc but if N < nc the dynamics becomes

bistable (Fig. 2b).

The suggested discount/synergy framework can be fully analyzed regardless of

the group size N because there exists at most a single interior equilibrium x∗. Since

this already holds for N = 2 no qualitatively different scenarios are found for larger

groups of interacting individuals (even though group size does have an effect on the

dynamics, see Fig. 2). The analysis hinges on the fact that the value of the benefits

provided by k cooperators in a group of N interacting players are captured in the

single parameter w.

2.3 Extending the Framework

More generally, one could, for example, introduce N different parameters αj , j =

1, . . . , N describing these effects, so that PD(k) = α1 + . . . + αk−1 (and e.g. again

PC(k) = PD(k) − c). It is easy to see that, in principle, such systems can have
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anywhere between zero andN−1 interior equilibria because fC , fD are polynomials

in x of degreeN−1. Moreover, there are up to 2N different dynamical scenarios: N

different arrangements of interior equilibria with two alternative configurations each

because the stability of adjacent equilibria must alternate.

Competition among Defectors

To illustrate the possibility of multiple interior equilibria in a biologically motivated

setting, we first consider a situation that includes interactions among defectors. Let

us assume a vicious type of defector that not only avoids the costs of cooperation but

additionally competes with other defectors for their share of the benefit. The strength

of competition increases with the number of defectors in a group. For simplicity

we neglect competition among cooperators because if all individuals compete, the

overall benefit of cooperation would essentially decrease. Defector competition can

be described by changing their payoff to

PD(k) =
b

N

1− wk

1− w
uN−1−k (5)

i.e.

fD =
b

N(1− w)

�
(u− ux + x)N−1 − (u− ux + wx)N−1

�

where 0 < u < 1 measures how the strength of competition increases with the num-

ber of defectors: the defector payoff decreases due to the presence ofN−1−k other

defectors in the group, and this decrease is more pronounced for smaller u. The

cooperator payoff is assumed to be unchanged (see Eq. (3)). With this payoff struc-

ture, analytical solutions are no longer attainable in general, but Fig. 3 demonstrates

that the existence of a second interior equilibrium point can lead to dynamic regimes

not seen in the case without defector interaction. This is illustrated in Fig. 3a,b for

N = 3 and b/N < c. Competition among defectors supports cooperators such that
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they survive over a broader range of parameters. Moreover, this allows for stable co-

existence of cooperators and defectors for w < 1 and b/N < c, which is otherwise

impossible (c.f. Fig. 2). Note that for b/N > c the qualitative dynamics with u < 1

is the same as with u = 1, i.e., as in absence of defector interactions.

Variations in Effects of Discounting and Synergy

Multiple interior equilibria also occur if cooperators and defectors use different dis-

counting/synergy factors w and v, i.e. the value of the common good provided by the

cooperators is different for the two types. This could occur for example if the two

strategy types correspond to different physiological states such that cooperators and

defectors differ in their efficiency in taking advantage of the common resource. We

assume that the cooperator payoff remains the same as before (see Eqs. (3) and (4)),

and that the defector payoff becomes

PD(k) =
b

N

1− vk

1− v
, (6)

i.e.

fD =
b

N(1− v)

�
1− (1− x + vx)N−1

�
.

Only v = w allows for an analytical solution of fC = fD but in general there are

again up to N − 1 equilibria in (0, 1). This case is illustrated in Fig. 3c,d for N = 3.

For example, for b/N > c large v increase the domain of co-existence, whereas

small v promote dominance of cooperation. More complicated scenarios, including

coexistence of multiple stable interior equilibria, can be observed for larger N .

3 Conclusions

In this paper, we present a general framework for cooperation in evolutionary N -

player games that encompasses and recovers traditional games such as the Prisoner’s
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Dilemma or Public Goods games as special cases. The basis of our framework is

formed by the concept of discounting and synergy, which simply takes into account

that the actual value of the benefits provided by cooperators may depend on the total

number of cooperators in the group. Thus, with discounting the value of the benefit

provided by the first cooperator in a group is b, but the value of the benefits provided

by each additional cooperator is discounted by a factor w < 1 as compared to the

previous cooperator. All cooperators pay a cost c. For example, this leads to the defi-

nition of anN -player Snowdrift game if the discounting factor w and the cost-benefit

ratio cN/b are sufficiently small (Fig. 2). It is important to recall that discounting

does not refer to potential future benefits but rather to the process of accumulating

benefits provided by multiple cooperators. In the case of synergy, the value of the

benefit provided by each additional cooperator is synergistically enhanced by a factor

w > 1.

Viewing the traditional games from the perspective of this general framework

emphasizes that the various scenarios - Prisoner’s Dilemma or Public Goods games,

Snowdrift games, by-product mutualism, and bistability - are interconnected through

variations of the continuous parameters w, c/b and the group size N , which seam-

lessly relates seemingly disparate biological situations. For example, the discomfort

with the Prisoner’s Dilemma as the sole model for cooperation is increasing (Clutton-

Brock, 2002, Heinsohn & Parker, 1995, West et al., 2002), but viewing cooperation

in the framework of discounting opens up natural connections to related scenarios,

such as the Snowdrift game. In this way, our framework could prove to be helpful in

bridging the gap between theoretical advances and experimental evidence.

In experimental settings it is notoriously difficult to quantitatively assess the fit-

ness of strategic/behavioral patterns. For example, sticklebacks inspect their preda-

tors preferably in pairs and are believed to be trapped in a Prisoner’s Dilemma (Milin-

ski, 1987). However, despite tremendous efforts, only the payoff ranking T > R > S
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has been experimentally confirmed (Milinski et al., 1997). Consequently, it re-

mains unresolved whether the fish indeed engage in a Prisoner’s Dilemma (requiring

R > P > S) or rather in a Snowdrift game (R > S > P ). In another exam-

ple, a Prisoner’s Dilemma interaction has been shown to occur between RNA phages

within host cells (Turner & Chao, 1999), but selection alters the payoff structure such

that cooperative and defective phage strains coexist in a Snowdrift game (Turner &

Chao, 2003).

Similarly, it has been argued that Prisoner’s Dilemma interactions occur in the

aforementioned case of enzyme production in foraging yeast cells (Greig & Trav-

isano, 2004). Despite the apparent connection to the Prisoner’s Dilemma game given

by the possibility of cheating, such frequency dependent benefits may be better cap-

tured by the Snowdrift game: if cooperators abound, defection is dominant and self-

ish individuals exploit the accrued benefits but as cooperators become rare, the costly

enzyme production, may provide sufficient advantage to the producing individual de-

spite by-product benefits to others, such that cooperation becomes dominant. Indeed,

Greig & Travisano (2004) report that cheating was beneficial only if a substantial

fraction of the yeast population was cooperating, i.e., producing the enzyme.

Outside of biology, the study of social dilemmas has received particular attention

by experimental economists and anthropologists (Fehr & Gächter, 2002, Henrich

et al., 2001, Panchanathan & Boyd, 2004). Humans display an apparently irrational,

high readiness to cooperate in Public Goods and Ultimatum games (Güth et al., 1982,

Nowak et al., 2000), which confounds the basic rationality assumptions of homo oe-

conomicus. In both games, defection is dominant but the Ultimatum game adds

aspects of punishment because it can be interpreted as a Prisoner’s Dilemma interac-

tion followed by a round of (costly) punishment (Sigmund et al., 2001). Punishment

and reputation have been identified as very potent promoters of human cooperation in

social dilemmas (Fehr & Gächter, 2002, Milinski et al., 2002, Wedekind & Milinski,
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2000). Such additional mechanisms can be easily incorporated into our framework.

However, already in Public Goods interactions, where only the multiplication factor

of the common good depends on the total amount invested, qualitatively different

outcomes can be generated, which allow e.g. for co-existence of cooperators and de-

fectors in a generalized Snowdrift game. In experimental settings, variations of the

multiplication factor could test the sensitivity of human behavior to quantitative and

qualitative changes of the interaction characteristics.

In summary, Snowdrift games can be considered as social dilemmas that are in-

termediate between Prisoner’s Dilemma games (or Public Goods games in larger

groups) and by-product mutualism, which occur whenever ordinary selfish behavior

benefits others (Brown, 1983, West-Eberhard, 1975). By-product mutualism has also

been put forth to challenge the Prisoner’s Dilemma for explaining patterns of coop-

eration in natural populations (Connor, 1995, 1996, Dugatkin, 1996, Milinski, 1996).

Our general theoretical framework for cooperation in social dilemmas seems capable

of reconciling the different viewpoints and emphasizes that the different dynamical

domains of social dilemmas are related by continuous changes in biologically mean-

ingful parameters.
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Figure 1: Full classification of the evolutionary dynamics for discounted and syner-

gistically enhanced benefits of cooperation in social dilemma interactions in groups

of arbitrary size. The average payoff of cooperators, fC (solid line), and defec-

tors, fD (dashed line) is shown as a function of the frequency of cooperators x

for different discount/synergy factors w. a Defection dominates for b/N < c and

w < wc = (c/b)1/(N−1) (fD > fC for all x). This corresponds to Public Goods (Pris-

oner’s Dilemma) interactions. b For larger benefits (b/N > c,w < wc) the game

dynamics has a stable equilibrium x∗ (fC > fD for x < x∗ but fC < fD for x > x∗).

This generalizes the Snowdrift game to interactions in groups of arbitrary size. c For

larger w > wc (b/N > c) cooperation becomes dominant (fC > fD for all x). This

scenario describes by-product mutualism. d For b/N < c and w > wc the dynamics

is bi-stable: for x < x∗ cooperators vanish (fD > fC) but for x > x∗ cooperators dom-

inate (fC > fD). Parameters: N = 5, b = 10 and a c = 3, w = 3/4; b c = 1, w = 3/4;

c c = 1, w = 4/3; d c = 3, w = 4/3.
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Figure 2: Phase diagrams illustrating the different dynamical regimes. The dash-
dotted line separates discounted and synergistically enhanced benefits (w = 1). a
For any fixed group size (here N = 5) the dynamics is determined by the cost-to-
benefit ratio c/b and the discount/synergy factor w. In the case of discounting (w < 1)
decreasing c/b facilitates cooperation and may lead to transitions from dominant de-
fection (Prisoner’s Dilemma) to co-existence of cooperators and defectors (Snow-
drift games) and finally to dominant cooperation (by-product mutualism). Along the
dashed line the interior fixed point is x∗ = 0.5. Similarly, in the case of synergy
(w > 1), increasing the benefits turns dominant defection into bi-stability and ends
with dominant cooperation. Note that for w < 1 cooperators can only survive if
cN/b < 1. This condition is not necessary for w > 1. Also note that coexistence re-
quires w < 1 and bi-stability w > 1, whereas dominant cooperation or defection can
occur for w greater, less or equal to one. Increasing N leaves the qualitative results
unchanged and merely increases the slope of the boundary between co-existence
and cooperation (defection and bi-stability) but it always runs through cN/b = w = 1.
b Dynamics as determined by group size N and discount/synergy w for c/b = 2/10.
Decreasing N favors cooperation by increasing the domain of cooperation, decreas-
ing the domain of defection and, additionally, by shifting the co-existence equilibrium
towards cooperation as well as by increasing the basin of attraction of the coopera-
tive state in the case of bi-stable dynamics. The dashed line again marks x∗ = 0.5.
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Figure 3: Multiple interior equilibria can occur in groups of N ≥ 3 interacting individ-
uals. Positions of stable (solid line) and unstable (dashed line) equilibria are shown
as a function of the discount/synergy factor w, which acts as a bifurcation parame-
ter. a An unstable interior fixed point appears upon increasing w and the dynamics
changes from dominating defection to bi-stability (b/N < c). b Same as a but includ-
ing competition among defectors within each group (see Eq. (5)). This introduces a
saddle-node bifurcation as w is increased, such that cooperators either go extinct or
co-exist with a small fraction of defectors. For further increases in w the stable inte-
rior equilibrium leaves the interval (0, 1) resulting in a transcritical bifurcation which
leads to bi-stability. c Cooperators and defectors have different discount/synergy
factors w and v, respectively (see Eq. (6)). For b/N > c and larger v the region
of co-existence extends into the realm of synergy (w > 1). This never happens in
the case v = w (c.f. Fig. 2). d Same as c but for smaller v: another saddle-node
bifurcation occurs as w is decreased, which changes the regime of dominant coop-
eration into a regime of bi-stability, where pure cooperation as well as co-existence
with a minority of cooperators are stable. Decreasing w further leads to another
transcritical bifurcation as the unstable equilibrium leaves (0, 1) and results in glob-
ally stable coexistence. Parameters: N = 3, b = 3 and a c = 1.1; b c = 1.1, u = 0.5;
c c = 0.9, v = 1.8; d c = 0.9, v = 0.2.
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