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SUMMARY 
 

Sampling biases can have enormous impacts on studies of parasite biogeography.  While 

complete sampling is sometimes possible for local or regional patterns of parasitism, 

continental and global analyses often rely on data collected in a heterogeneous manner. 

At these larger scales, spatially-explicit methods to quantify and correct for geographic 

sampling biases are necessary.  Approaches based on “gap analysis” can contribute to the 

development of corrective measures by identifying geographical variation in our 

knowledge of parasites and quantifying how sampling varies in relation to host 

characteristics and habitat features.  In this chapter, we review these methods and 

describe how they have been applied to study gaps in our knowledge of primate parasites. 
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INTRODUCTION 
 

Studies of host-parasite biogeography, especially those looking beyond local 

analyses to regional or global scales, are influenced greatly by geographically 

inconsistent sampling patterns. A variety of factors result in heterogeneous sampling 

across space.  Global parasite sampling is often limited by logistical factors that include a 

lack of suitable roads or airports, risks arising from unstable political climates, and 

difficulty in acquiring and preserving samples in remote locations.  In addition, it is often 

easier to obtain funding to study parasites that have large economic impacts, including 

the potential for transmission to humans (zoonoses).  Last, any of these factors can 

change through time, producing temporal variation that can further complicate studies of 

parasite biogeography. 

In this chapter, we focus on quantifying these biases, regardless of their 

underlying causes.  Specifically, we demonstrate how global gap analysis—a method 

used in conservation biology to identify conservation targets—can be applied to identify 

and quantify bias in geographic sampling for parasites. We review and illustrate the 

principles of gap analysis by describing its recent application to identify geographic gaps 

in our knowledge of primate parasites (Hopkins & Nunn, 2007) .  We also provide new 

analyses to demonstrate how optimality techniques can be applied within a gap analysis 

framework to target sampling sites. The results from these analyses are important for 

those seeking to develop spatially-explicit corrections for sampling bias in regional and 

global analyses of host-parasite biogeography.  Such analyses also serve as a guide to 

future sampling efforts, by targeting areas where additional sampling would reduce 

geographic bias in large-scale datasets. 
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 Goals of spatial analyses of parasite sampling effort  

Understanding the evolutionary diversification of parasites and their hosts 

requires a better understanding of the geographic distribution of parasites in relation to 

host characteristics or ecological factors that vary at continental or global scales 

(Gregory, 1990; Poulin, 1997; Poulin & Morand, 2000). At the most basic level, parasite 

distributions are inextricably linked to the distributions of their hosts (Guegan & 

Kennedy, 1996; Poulin, 1997; Tripet et al., 2002; Lindenfors et al., 2007). Thus, any 

analysis of geographic sampling patterns for parasites must first take into account host 

ranges. Detailed analyses of parasite sampling may also choose to take into account 

whether parasites have been sampled across a diversity of host characteristics such as 

body mass, population density, home range size, and diet, as these factors have been 

suggested to impact parasite species richness (Poulin & Morand, 2000; Nunn et al., 2003; 

Araujo & Guisan, 2006). Furthermore, ensuring that parasite sampling incorporates 

environmental gradients such as distance from the equator, temperature, precipitation, 

and habitat variability may also be critical to understanding host-parasite biogeography 

(Nunn et al., 2005; Nunn & Altizer, 2006; Lindenfors et al., 2007; Krasnov et al., 2008). 

When evaluating host-parasite biogeography in relation to host or environmental 

factors that vary at continental scales, it is essential to ensure that sampling effort has 

been distributed evenly or in proportion to the expected abundance of parasites, and to 

take remedial action if sampling biases are present.  In other words, when interpreting 

observed trends in parasite-host biogeography, one has to be careful that the patterns 

generated do not simply reflect taxonomic or geographic biases in research effort (Poulin 

& Morand, 2000; Burke, 2007). The likelihood of such biases is liable to increase with 
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the scale of the analysis.  At a global scale, biases are especially likely because it is 

usually infeasible to achieve complete sampling; some regions, taxonomic groups, or 

subsets of parasites with different transmission modes are likely to be sampled better than 

others.  

A number of methods to correct for uneven sampling effort have been developed, 

particularly in the context of studying parasite species richness (Walther et al., 1995; 

Poulin, 1998; Walther & Morand, 1998b; Walther & Martin, 2001; Cam et al., 2002; 

Robertson & Barker, 2006; Lobo, 2008).  These methods range in complexity from 

simply including the number of sampled sites or individuals as independent factors in 

regression analyses, to more complex adjustments such as developing accumulation 

curve models and non-parametric estimators of species richness.  Research has shown 

that certain performance estimates do better than others at low sampling effort (Walther 

& Morand, 1998a). However, few studies have incorporated spatially-explicit 

examinations of geographic variation in sampling effort when correcting for sampling 

bias.  

In order to be most effective, measures of geographic bias must move beyond 

simply counting the number of sites or ecosystems in which a parasite species has been 

sampled to spatially-explicit analyses that take into account both the characteristics of 

each sampling site as well as its actual location. These spatially-explicit explorations of 

geographic bias can provide critical information that is currently unaccounted for in 

global studies of parasites, and is the essential first step in the development of effective 

corrections for geographic sampling effort in studies at these larger regional or global 

scales. For example, using a measure such as the number of publications on a particular 
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host or parasite species, or the number of sampling localities at which a species has been 

sampled, leaves out critical information such as the following.  Were the sites at which 

sampling occurred extremely close together or far apart? Which hosts were present at that 

locality, and how many of these hosts were actually sampled? Were the sites at which 

sampling occurred representative of the range of environmental conditions in which the 

host/parasite occurs? What percentage of potential microhabitats in which the host occurs 

have been sampled?  

Developing an approach to correct for geographic bias that can incorporate 

answers to these questions requires that geographic bias first be quantified within a 

spatially-explicit framework that can compare the distribution of sampling localities to 

the distribution of factors thought to influence host-parasite biogeography (e.g. host 

ranges, environmental characteristics). Gap analysis provides such a framework 

(Jennings, 2000; Funk & Richardson, 2002; Funk et al., 2005).  

 

Gap Analysis 

Gap analysis provides a conceptual, technical, and organizational basis for 

identifying and quantifying gaps between two or more spatial distributions (Jennings, 

2000). In evaluating gaps between distributions, gap analysis may incorporate traditional 

measures of spatial data analysis such as display mapping and spatial statistics. However, 

these traditional measures form only a part of the gap analysis framework. Gap analysis 

encompasses an entire process ranging from the establishment of an ‘optimal’ 

distribution to the comparison of the observed and ‘optimal’ distributions and the 

subsequent targeting of actions to remedy gaps between these distributions. 
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Early gap analyses were developed to solve location-allocation (i.e. distance-

based) problems in a variety of fields including operations research and transportation 

engineering (Tansel et al., 1983; Brandeau & Chui, 1989). For example, urban planners 

use gap analysis to determine where cities should build fire stations, with the goal to 

minimize the distance between all homes and the nearest fire station. Recent extensions 

of gap analysis have moved beyond purely distance-based location-allocation problems to 

incorporate attribute data as well. For example, conservation biologists use both 

locational information as well as geographic distributions of attribute values such as 

habitat type, species richness, and projected levels of environmental change in order to 

distribute protected areas in such a way that the highest amount of biodiversity is 

conserved (Scott et al., 1987; Ferrier, 2002; Rodrigues et al., 2004; Sarkar et al., 2006). 

 Gap analysis has more recently been applied to guide spatial patterns in 

biological sampling efforts, including sampling for disease (Funk & Richardson, 2002; 

Funk et al., 2005; Hortal & Lobo, 2005; Hopkins & Nunn, 2007). These studies typically 

use both location and attribute data to determine whether sampling has been distributed 

along critical host or environmental gradients.  They also use optimization techniques to 

identify future sampling sites that have the highest probability of yielding additional 

biodiversity (Funk et al., 2005; Hortal & Lobo, 2005).   
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GAP ANALYSIS METHODS: A CASE-STUDY EXAMING GEOGRAPHIC 

PATTERNS OF SAMPLING FOR PRIMATE PARASITES 

In the following sections, we illustrate the most common steps of a gap analysis, 

providing illustrative examples based on our recent study of global primate parasite 

sampling (Hopkins & Nunn, 2007). 

 

Isolation of an ‘Optimal Distribution’  

Gap analyses of parasite sampling effort rest on the assumption that while 

uniform data sampling may be suitable for studies of parasites at local or regional scales, 

uniform sampling is neither feasible nor the most representative sampling technique at 

continental or global scales. Instead, proportional sampling techniques may better inform 

studies of global biogeography (Schoereder et al., 2004; Hortal & Lobo, 2005; Kery et 

al., 2008). For example, since parasite distributions inevitably follow host distributions, 

one could argue that if the goal is to evenly sample parasite diversity, parasite sampling 

intensity should be allocated geographically according to host diversity. Alternatively, 

since ecological characteristics (such as the diversity of habitat types) have been 

hypothesized to increase parasite richness in a host species, it could be argued that 

comparatively more parasite sampling effort should be devoted to hosts in areas with 

higher host abundance and/or greater ecological diversity.  We conducted a gap analysis 

based on the assumption that global patterns of parasite sampling should be allocated 

proportionally to host diversity (i.e. species richness) (Hopkins & Nunn, 2007).  In the 

following sections, we provide examples from this research to illustrate typical gap 

analysis methods. 
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Data Acquisition 

Once the theoretical optimal distribution has been selected, the next step in any 

global gap analysis becomes data acquisition. While this step may seem self-evident, we 

include discussion of it here because in studies of the global biogeography of host-

parasite interactions, the acquisition of spatially-explicit sampling data may perhaps be 

the greatest challenge.  Global GIS clearinghouses increasingly distribute information on 

environmental characteristics (e.g. Earth Resources Observation Systems Data Center, 

The Geography Network, National Geospatial Intelligence Agency Products and 

Services, Tropical Rain Forest Information Center). However, data on parasite sampling 

is often derived from literature searches where authors frequently fail to geo-reference 

their sampling sites. For example, we obtained data for our analyses on primate parasite 

sampling from the Global Mammal Parasite Database (Nunn & Altizer, 2005).  Although 

this represents the most comprehensive database of parasites in wild primates, sufficient 

spatial information (coordinates or a unique locality name) to geo-reference parasite 

sampling sites was lacking in approximately one half of all primate parasite studies. This 

finding is consistent with previous studies of biodiversity sampling, which have urged 

scientist to adopt systematic georeferencing methods when collecting samples (Araujo & 

Guisan, 2006; Guralnick et al., 2007). This lack of georeferenced sampling localities 

considerably limits the amount of data that can be used in spatially-explicit analyses of 

host-parasite biogeography. However, while spatially-explicit analyses of sampling gaps 

cannot incorporate all previous studies, they do illustrate geographic sampling trends and 

guide future data collection efforts.  
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Display Mapping  

Increasingly widespread use of Geographic Information Systems (GIS) allows for 

the illumination of patterns that would be more difficult to discern if the data were 

analyzed in tabular form. For example, mapping the distribution of primate parasite 

sampling using data from Hopkins & Nunn (2007) indicates that primates have been 

sampled heavily in East Africa, and have been comparatively under-sampled in places 

such as Southeast Asia (Figure 1a). Gradient or proportional maps are commonly used to 

further illustrate numeric discrepancies between localities (Rodrigues et al., 2004; Rinaldi 

et al., 2006).  In our example, applying a proportional circle mapping technique to the 

number of primate parasite sampling records at each locality further emphasizes the 

higher abundance of studies on primate parasites in Africa, as compared to Asia and 

South America (Figure 1b).  

 

Quantifying Spatial Distributions  

While display maps yield general trends, further statistical analysis is needed to 

quantitatively compare two spatial distributions. Spatial statistics can be applied to 

continuous data, point data, or tessellated (“polygon”) data, in order to measure both first 

and second order spatial effects.  First order effects refer to spatial variation in the mean 

value of a process (i.e. a global trend). Second order effects refer to the spatial correlation 

structure or spatial dependence within the dataset, which may cause deviations from the 

global trend in specific smaller regions.  A number of spatial statistics software modules 

have recently become available, some of which are present within GIS frameworks (e.g. 
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ESRI’s geostatistical analyst/spatial analyst, GEODA, Mapping and Spatial Statistics 

Toolboxes for Matlab and S-Plus, SpaceStat Pack). For a discussion of available spatial 

statistics GIS modules see: (Anselin, 2005). We discuss several of the most common 

spatial statistical measures here that can be used to quantify geographic patterns of 

parasite sampling by measuring the degree of spatial clumping or correlation present in 

the dataset(s):  

a) Summary Statistics: When analyzing geographic datasets, it may be useful to 

identify anomalous regions or regions with high variability by calculating 

regional summary statistics. In this case, the entire dataset is usually divided 

into local regions (also called ‘windows’ or ‘neighborhoods’) of a size 

specified by the researcher. Rectangular windows are used for ease of 

calculation and the size of the window depends on the overall dimensions of 

the area being studied, as well as the average distances between data locations 

(Isaaks & Srivastava, 1989). For small datasets, or datasets in which the data 

are irregularly spaced, windows can be overlapped, offering a smoothing 

effect which can easily quantify regional trends and isolate outliers.  For 

example, Figure 2a quantifies the first order intensity of primate parasite 

sampling points in dense areas such as East Africa relative to sparsely 

populated areas such as East Asia, by applying a moving mean statistic with a 

5x5 decimal degree window.  

 

b) Measures of Clumping and Dispersion: When summary statistics indicate 

clumping of data points as in the primate parasite example, spatial statistics 
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can be applied to quantitatively determine the degree of clumping present, or 

whether the data observed are significantly more clumped than an expected 

distribution (i.e. random or uniform distributions).  Measures can be applied 

both globally and to local neighborhoods or regions. Examples include: 

Kernel estimation, nearest neighbor distances, K-function approaches, the 

Clark-Evans test, the Cuzick and Edwards method, the GAM/K method, and 

spatial scan statistics (Bailey & Gatrell, 1995; Kulldorff & Nagarwalla, 1995; 

Cuzick & Edwards, 1996; Openshaw et al., 1999; Ward & Carpenter, 2000; 

Anselin, 2005). These estimates have been critical in identifying clusters of 

disease in human and animal populations (Kulldorff & Nagarwalla, 1995; 

Cuzick & Edwards, 1996; Rinaldi et al., 2006; Wheeler, 2007).  

 

In field research, however, the researcher decides on the distribution of 

sample points.  Hence, the question is often not whether sample points are 

more clumped than random or uniform distributions. Rather, the question of 

interest becomes whether attribute values at some points are more similar to 

the values at closer points than the values at farther points.  When attribute 

values are spatially clustered, this phenomena is termed spatial 

autocorrelation.  

 

 
c) Spatial Autocorrelation: Measures of spatial autocorrelation can not only 

inform the researcher as to whether clustering in attribute values exists, but 

also to the scale and direction of that effect. In positive associations attribute 
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values increase in similarity the closer the sampling points. In negative 

associations, dissimilar values are found in close spatial association. Two of 

the most common measures of global spatial autocorrelation are Moran’s I 

and Geary’s C (Moran, 1950; Geary, 1954). The most common measures of 

local spatial autocorrelation are collectively known as the LISA statistics 

(Local Indicators of Spatial Association), and include both local Moran and 

Geary statistics as well as the Getis-Ord statistics (Getis & Ord, 1992; 

Anselin, 1995). These measures of spatial autocorrelation have been central to 

many epidemiological efforts seeking to identify spatial clumping in disease 

prevalence or intensity (Guernier et al., 2004; Zhang & Lin, 2007; Crighton et 

al., 2008; Jacob et al., 2008). In studies of parasite sampling, measures of 

spatial autocorrelation may be most useful as a means to identify violation of 

standard statistical assumptions when applying non-spatial statistical models 

to spatial data (see subsequent section on Measuring Spatial Correlation).  

 

 Data Modeling: Comparing two or more distributions 

a) Measuring Spatial Correlation: Studies of host-parasite biogeography 

often seek to correlate geographic attributes (e.g. host diversity or 

environmental characteristics) with parasite species richness, prevalence, 

intensity or abundance. Spatial correlation is also important for those seeking 

to understand factors driving spatial patterns of parasite sampling or seeking 

to understand how well observed sampling distributions correlate with optimal 

sampling distributions. Researchers often attempt to address correlation in 
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spatial variables with standard methods that do not incorporate a spatial 

component. However, spatial data often violate the central assumption of 

many standard statistical procedures, namely the independence of data points.  

Non-independent data can yield faulty statistical tests, and they can result in 

lower statistical power than models that incorporate spatial information. 

Thus, statistical analyses of spatially-distributed data should allow for the 

possibility that two data points may have similar values not due to one or 

more of the explanatory variables, but because the distance between these two 

data points is very small (i.e. spatial autocorrelation in the response variable is 

present). When using spatial data in statistical tests that are not spatially-

explicit (e.g. OLS regression), tests for autocorrelation of standard model 

residuals should be completed.  These tests can include the Moran’s I or 

Geary’s C methods above, as well as relatively recent calculations for this 

purpose using Lagrange Multipliers (Anselin, 1988; Anselin et al., 1996).  

If spatial autocorrelation is present, spatial models often result in better 

model fits (e.g. simultaneous autoregressive models (SAR) or conditional 

autoregressive models (CAR)).  For example, when conducting a regression 

analysis of the relationship between species richness (‘the optimal 

distribution’) and the intensity of primate parasite sampling (‘the observed 

distribution’), we found that the density of primate parasite sampling localities 

was correlated with host species richness, but that residuals from this 

regression model were spatially auto-correlated (Hopkins and Nunn 2007).  

When we applied an appropriate spatial regression model, the explanatory 
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power of the model increased from r2=0.008 to R2=0.05, but still was 

relatively poor, indicating that 95% of the variation in sampling effort could 

not be explained by host distributions.  If the researchers are confident of 

model specifications, the residuals from spatial models can themselves serve 

as a quantification of the relationship between an optimal distribution and 

observed sampling distribution. However, traditional gap analyses also 

commonly use spatial layer manipulations within a GIS to quantify and 

illustrate differences between distributions.  

 

b. Spatial Layer Manipulations: Spatial data within a GIS can be represented 

in two forms: feature data and raster data. Feature data are represented as the 

intersection of points, lines, and/or polygons. Raster data are represented in a 

grid format. When data are in raster format, two or more rasters can be 

combined by applying mathematical operations to each grid cell. In what 

follows, we provide two examples of spatial raster manipulations in which the 

distribution of primate parasite sampling points is compared to host 

distributions (from Hopkins and Nunn 2007). 

 

Example 1: Quantile Subtraction 

Quantile subtraction provides a straightforward means of quantifying 

dissimilarities between distributions, based on the concept of proportional 

sampling. Data from each layer are distributed evenly into bins (‘quantiles’) 

and the differences between layer quantile values are displayed according to 
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standard deviations from the mean. Resulting maps provide a geographic 

quantification of over- and under-sampling. Figure 2 (a-c) demonstrates this 

process for a comparison of primate parasite sampling distributions and 

primate host species richness. The resulting values clearly point to Central 

Africa, portions of the Amazon, and Borneo as the regions most in need of 

sampling for primate parasites.  

 

Example 2: Sampling Factor Estimation 

While quantile subtraction provides a straightforward means of quantifying 

dissimilarities in distributions, it fails to take into account pertinent factors 

other than geography, such as historical patterns of taxonomic sampling. The 

sampling factor approach is based upon conventional biodiversity gap 

analyses, which attempt to maximize species representation or 

complementarity in reserve networks. It combines geographic distributions of 

host species with historical sampling patterns to identify the sites that are the 

most under-sampled.  Specifically, the sampling factor approach uses the 

percentage of hosts within each cell that have not been sampled at any geo-

referenced location (Figure 3a) to determine the number of host species within 

a particular cell that need to be sampled in order to reach mean sampling 

levels (Figure 3b). Thus, it prioritizes areas both with high host species 

richness and high numbers of previously unsampled species, and pinpoints the 

geographic areas that would be most complementary to the current suite of 

sampled species and localities. 
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Sampling factor analyses applied to the distribution of primate parasite 

sampling revealed that while the overall mean percentage of unsampled 

primates at any given site is low (14%), this pattern varies extensively across 

regions. For example, up to 90% of the primates in large portions of Southeast 

Asia have not been sampled at a georeferenced location in the GMPD, and in 

order to reach mean sampling levels up to eight primate species would need to 

be sampled at some sites.  Thus, by allocating sampling points according to 

species complementarity instead of species richness, a different optimal 

distribution was created, and results differed from the quantile subtraction 

method. Where quantile subtraction highlighted large portions of Africa as the 

most in need of sampling, this analysis indicated that Africa is comparatively 

over-sampled and instead allocated most research effort towards Asia. 

 

Remedying Sampling Gaps 

 The final step in most gap analyses is to provide enough information on 

discrepancies between the observed and optimal distributions such that future sampling 

efforts can be targeted to remedy these discrepancies. Both measures of spatial 

correlation and spatial layer manipulations, such as the quantile subtraction and sampling 

factor methods listed above, provide quantitative measures of how geographic patterns of 

parasite sampling differ from geographic patterns of host species distributions. These 

methods are useful for quantifying geographic trends. However, researchers seeking to 

target just a few of the most under-sampled sites for future sampling efforts might benefit 
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from incorporating optimization techniques with traditional gap analysis techniques. For 

example, a number of sites in Southeast Asia and the Central Amazon have up to eight 

primate species that need to be sampled in order to reach global mean levels of parasite 

sampling. Optimization techniques can prioritize the sites to visit and even the order in 

which to visit them. 

 

GUIDING FUTURE RESEARCH EFFORTS: TARGETING THE MOST 

UNDERSAMPLED SITES 

 

Prioritizing sites for future sampling efforts 

Optimization approaches derived from operations research and transportation 

engineering are increasingly being used in conservation biology to predict patterns of 

biodiversity (e.g. ‘covering’ problems, ‘p-dispersion’ problems, ‘p-center problems’, ‘p-

median problems’, cluster analysis, compositional dissimilarity (Tansel et al., 1983; 

Brandeau & Chui, 1989; Faith & Walker, 1996; Snelder et al., 2006; Arponen et al., 

2008). With only minor modifications, these methods can be used to prioritize future 

parasite sampling sites. 

Optimization techniques can be distance-based and/or attribute based. Distance 

methods use Euclidean distances between sites in order to place a site in an under-

sampled area. Distance-based methods are most frequently applied to select sampling 

sites in epidemiological analyses conducted at smaller regional scales, where regular 

sampling is often a pre-requisite for statistical methods that create continuous disease-risk 

surfaces (e.g. Kriging or Bayesian Surface Estimation, (Best et al., 2005; Rinaldi et al., 
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2006)).   In larger scale analyses, attribute values may have equal or greater weight than 

distance values. In these cases, non-Euclidean distances can be incorporated into 

analyses. Imagine, for example, that a researcher wishes to prioritize one of two sites that 

each contain one unsampled host species and an equal number of sampled species (the 

sites may or may not have host species in common).  In such a case, it might be valuable 

to increase the phylogenetic breadth of sampling. In this example, phylogenetic distance 

between the unsampled species and its closest sampled relative at the site could serve as a 

‘non-Euclidean’ distance. 

In the next section, we use both Euclidean distances and non-Euclidean distances 

(phylogenetic relationships between unsampled and sampled host species) to illustrate 

two of the most common optimality approaches used currently for site selection for 

biological sampling. The first method follows a traditional gap analysis approach in 

which the site that is most different from the current suite of sites is selected. This 

approach has been used in a variety of contexts, and given a number of names (Faith & 

Norris, 1989; Belbin, 1993; Faith & Walker, 1996). Here, we refer to this approach as the 

F-N criteria after Faith and Norris (1989). The second optimality approach—‘the p-

median problem’—differs from the F-N criteria in that it seeks to identify the site (or a 

suite of p sites) that, if sampled, would reduce the overall mean distance between 

unsampled sites and the most similar sampled site (Tansel et al., 1983; Faith & Walker, 

1996). Thus, the p-median approach identifies the suite of sites that is most representative 

of all remaining target sites, whereas the F-N criteria selects the suite of sites that are 

most dissimilar from currently sampled sites. Both approaches allow for the incorporation 

of Euclidean and non-Euclidean (attribute based) distances.  In this section, we apply 
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both approaches to the dataset from Hopkins & Nunn (2007) on primate parasite 

sampling to illustrate differences between these approaches. 

 

Analysis 

We used both the F-N criterion and the p-median methods to calculate the top 5 

sites most in need of future sampling, according to two variables: Euclidean distance and 

phylogenetic distance(Bininda-Emonds et al., 2007, 2008).  These distances were chosen 

as a negative relationship has been observed between parasite community similarity and 

both distance between sampled habitats and phylogentic distance between hosts (Poulin, 

2003; Martiny et al., 2006; Davies & Pedersen, 2008). While a number of other factors 

could be incorporated in these analyses (e.g. ecosystem type, temperature, levels of 

precipitation), we feel that using just these two values illustrates the differences between 

the F-N and p-median approaches well, while allowing for comparison to spatial layer 

manipulations conducted in the previous section.  

 

The two distance metrics were calculated as follows: 

1. Euclidean Distance: Distance (km) between a potential future sampling site and 

the nearest already sampled site. Locations of primate parasite sampling were 

obtained from the Global Mammal Parasite Database, and include sampling 

through 2008. 

2. Phylogenetic Distance: Phylogenetic distance (millions of years) between an 

unsampled species and its closest sampled relative, summed for all species 

present at a site. Note: if a species has been sampled, its phylogenetic distance is 
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0. Phylogenetic distances between pairs of primate species were calculated as 

time to last common ancestor using the mammalian supertree from Bininda-

Emonds et al. (2007, 2008). 

 

Analyses were conducted in a similar grid format to Hopkins & Nunn (2007), with 5017 

one degree2 grid cells, to allow for appropriate comparisons.  All unsampled grid cells 

were considered as target sites in a discrete analysis. Each cell’s attribute value was 

normalized by the maximum value prior to calculations, and both calculations were 

executed using an iterative greedy algorithm (i.e. only one site was selected at a time). An 

iterative process was chosen, as the total number of future sites is unknown, and an 

iterative approach reduces the necessary computational power required for the analyses. 

Prioritization of sampled sites during each iteration proceeded as follows: 

 

F-N Criterion:  

                                                        (Eq.  1) 

In the next time step (t+1), sample the cell that has the maximum overall 

distance to its nearest cell (j) for all distance metrics (i), in the current 

time step (t). Relative impacts of distance metrics can be specified by 

giving each metric (i) different weights (wi). 

 

         P-Median:         

                          (Eq. 2) 
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In the next time step (t+1), sample the cell that would minimize the sum of 

the distances between all 5017 grid cells (k) and their nearest sampled 

neighbor (j) for all distance metrics (i). Relative impacts of distance 

metrics can be specified by giving each metric (i) different weights (wi). 

 

F-N and p-median values were generated for both distance metrics separately and 

together. Calculations using both criteria gave both Euclidean and phylogenetic distances 

equal weights. 

 

Site placement 

The placement and sequence of selected sites differed significantly depending 

upon how the optimal cell was calculated (F-N criterion or P-median), and which 

distance metrics were used (Euclidean Distance, Phylogenetic Distance, or Both).  The 

initial target site fell in the same general area (East and Southeast Asia), regardless of the 

method or distance metric used (Figures 4-5). However, substantial differences occurred 

between the remaining four sites. For example, the F-N criteria using only Euclidean 

distance prioritized the sites that are farthest from existing sampling sites, resulting in the 

selection of sites at the most northern and southern tips of Africa. Sites in these regions 

were not prioritized by any of the other methods. The least amount of variation between 

the F-N criterion and P-median methods is evident when considering phylogenetic 

distances alone (Figure 4 b-c). Using this criterion, three out of five sites remained the 

same, regardless of selection method. Most methods placed only one site in the Americas, 

although they differed somewhat in regional placement of this site. When both criteria 
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(Euclidean and Phylogenetic Distances) were given equal weights, the p-median and F-N 

approaches only converged at two localities. The p-median method using both criteria 

placed the most undersampled site in Myanmar, whereas the F-N method placed it in 

Laos.  

By selecting a series of five complementary sites, these optimization approaches 

provided different information than was evident in the previous spatial layer 

manipulations.  Through the incorporation of phylogenetic distances, these approaches 

can prioritize sites with similar levels of sampling effort, as reflected by sampling factor 

calculations.  For example, although the sampling factor approach identified a large area 

in South America that requires between 3-8 primate species to be sampled in order to 

reach mean sampling levels (Figure 3b), the Americas were rarely prioritized using either 

the P-median or F-N methods.  This could be the case if more species in the Americas 

have closely sampled relatives, whereas unsampled species in East and Southeast Asia 

are comparatively unique from an evolutionary perspective. In addition, by using an 

iterative approach to select a complementary set of sites, we obtained an indication of 

how the static maps in the previous sections are likely to change with further sampling 

effort results. 

 

CONCLUSIONS 

In the previous sections, we used data on the geographic sampling patterns of 

primate parasites to illustrate the potential of gap analysis techniques to quantify 

geographic patterns of sampling effort. These methods are widely accessible due to their 

extensive use in fields ranging from conservation biology to transportation engineering, 
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and have user-friendly implementations within GIS frameworks. As a result, they have 

great potential to inform studies of host-parasite biogeography. At the most basic level, 

these studies can aid in illuminating geographic sampling biases. In addition, by 

quantifying geographic processes in a spatially-explicit way, these studies can provide the 

first necessary step towards developing quantitative measures to account for spatial 

biases in sampling effort. 

 Nevertheless, some qualification in the interpretation of results is necessary. Gap 

analyses ultimately rely on the optimal distribution selected. This selection invariably 

results from a subjective process that depends largely on the goals of the researcher. 

Thus, two gap analyses on the same dataset may differ in conclusions depending upon 

what host or environmental criteria are prioritized. In addition, due to a widespread lack 

of geo-referencing of sample sites, any spatially explicit analysis of sampling patterns 

must also be taken as a sample. Thus, results can only yield relative trends, and no 

absolute conclusions regarding historical sampling patterns.  Yet, even with these 

limitations, the quantitative measures of sampling yielded have enormous potential to aid 

those seeking to better understand how patterns of sampling effort impact our knowledge 

of host-parasite biogeography.   
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FIGURE LEGENDS 

 

Figure 1: Geographic distribution of sampling for primate parasites.  a) 

Distribution of primate parasite sampling points redrawn from Hopkins & Nunn 

(2007), using primate parasite records added to the Global Mammal Parasite 

Database (Nunn and Altizer, 2005) prior to 2009. b) Distribution of primate 

parasite sampling points, weighed by the number of records in the GMPD at each 

locality. 

 

Figure 2: a) Smoothed intensity of primate parasite sampling points (number of 

points per 1 degree2 cell). Redrawn from Hopkins & Nunn (2007), using an 

updated version of the Global Mammal Parasite Database (Nunn and Altizer, 

2005). A moving mean was calculated using overlapping windows of 5 x 5 

decimal degrees. Resulting values are displayed in 10 quantiles; b) Distribution of 

primate species richness, displayed in 10 quantiles; c) Quantile subtraction of 

parasite sampling intensity from primate species richness, displayed as standard 

deviations from the mean. Positive values indicate under-sampling. 

 

Figure 3. a) Percentage of unsampled primate species per 1x1 decimal degree cell. 

Redrawn from Hopkins and Nunn (2007), using an updated version of the Global 

Mammal Parasite Database (Nunn and Altizer, 2005). b) The number of species 

that need to be sampled in each cell in order to reach mean sampling levels. 

Values are distributed in 1 SD bins (mean value = 0.36) to allow for visual 
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comparison to the quantile subtraction approach (Figure 2c). Positive values 

indicate under-sampling. 

 

Figure 4.  Prioritization of five geographic areas in need of future sampling using 

two optimization methods: the F-N method (prioritization of the most dissimilar 

site) and the p-median method (prioritization of the site that reduces the mean 

dissimilarity of unsampled and sampled sites the most).  Values are selected 

according to a) Euclidean distance (F-N and p-median methods); b) Phylogenetic 

distance (F-N method); and c) Phylogenetic distance (p-median method). 

 

Figure 5.  Prioritization of 5 geographic areas in need of future sampling by 

giving equal weights to Euclidean and phylogenetic distances. Calculations made 

using a) the F-N method and b) the p-median method.  
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