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Abstract
In human societies, cooperative behaviour in joint enterprises is often enforced through institutions
that impose sanctions on defectors. Many experiments on so-called public goods games have shown
that in the absence of such institutions, individuals are willing to punish defectors, even at a cost to
themselves. Theoretical models confirm that social norms prescribing the punishment of
uncooperative behaviour are stable: once established, they prevent dissident minorities from
spreading. But how can such costly punishing behaviour gain a foothold in the population? A
surprisingly simple model shows that if individuals have the option to stand aside and abstain from
the joint endeavour, this paves the way for the emergence and establishment of cooperative behaviour
based on the punishment of defectors. Paradoxically, the freedom to withdraw from the common
enterprise leads to enforcement of social norms. Joint enterprises which are compulsory rather than
voluntary are less likely to lead to cooperation.

Keywords
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interactions

An impressive body of evidence shows that many humans are willing to pay a personal cost
in order to punish wrong-doers (1–8). In particular, punishment is an effective mechanism to
ensure cooperation in public goods interactions (9–11). All human populations seem willing
to use costly punishment to varying degrees, and their willingness to punish correlates with
the propensity for altruistic contributions (12). This raises an evolutionary problem: in joint
enterprises, free-riding individuals who do not contribute, but exploit the efforts of others, fare
better than those who pay the cost of contributing. If successful behaviour spreads, for instance
through imitation, these defectors will eventually take over. Punishment reduces the defectors’
payoff, and thus may solve the social dilemma. But since punishment is costly, it also reduces
the punishers’ payoff. This raises a ’second order social dilemma’: costly punishment seems
to be an altruistic act, since individuals who contribute, but do not punish, are better off than
the punishers.
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The emergence of costly punishing behaviour is acknowledged to be a major puzzle in the
evolution of cooperation. ”We seem to have replaced the problem of explaining cooperation
with that of explaining altruistic punishment” (13).

This puzzle can be solved in situations where individuals can decide whether to take part in
the joint enterprise or not. We consider four strategies. The non-participants (individuals who,
by default, do not join the public enterprise) rely on some activity whose payoff is independent
of the other players’ behavior. Those who participate include defectors, who do not contribute
but exploit the contributions of the others; cooperators, who contribute, but do not punish; and
punishers, who not only contribute to the commonwealth, but also punish the defectors. We
show that in such a model, punishers will invade and predominate. However, in the absence
of the option to abstain from the joint enterprise, punishers are often unable to invade, and the
population is dominated by defectors. This means that if participation in the joint enterprise is
voluntary, cooperation-enforcing behaviour emerges. If participation is obligatory, then the
defectors are more likely to win.

This intriguing result was originally presented by Fowler (14) but his argument was based on
a model which lacked an explicit micro-economical foundation. It assumes (a) that single
cooperators can play the public goods game alone, which neglects the fact that contributing to
a joint effort is a risky investment, whose return depends on what other players are doing; (b)
that cooperators will be punished, even in the absence of defectors, which neglects the fact that
the cooperators’ unwillingness to punish cannot be observed in that case. Correcting for this
leads to a dynamics which is structurally unstable for infinitely large populations and hence
inconclusive (15). It is thus necessary to tackle the stochastic dynamics of finite populations.

We consider a well-mixed population of constant size M whose members live on a small, but
fixed income σ. In this situation, N individuals are randomly selected and offered the option
to participate instead in a risky, but potentially profitable public goods game. Those who
participate can decide whether or not to contribute an investment at a cost c to themselves. All
individual contributions are added up and multiplied with a factor r > 1. This amount is then
divided equally among all participants of the public good game. After this interaction, each
contributor can impose a fine β upon each defector, at a personal cost γ for each fine. By x we
denote the total number of cooperators, by y that of defectors, by z that of the non-participants,
and by w the number of punishers. Thus M = x + y + z + w.

Among the random sample of size N, there will be Nx cooperators, Ny defectors, Nz non-
participants and Nw punishers. These are random variables distributed according to a multivari-
ate distribution which describes sampling without replacement. Each non-participant receives
a constant payoff σ. The group of those willing to participate in the public goods game has size
S := Nx + Ny + Nw. If S > 1, each participant of the public goods game obtains an income r
(Nx + Nw)c/S. The payoff for the contributors (i.e. the cooperators and the punishers) is reduced
by c. The payoff for the defectors is reduced by βNw, and the payoff for punishers by γ Ny. The
social enterprise is risky in the sense that if all defect, the payoff is below that of the non-
participants; it is promising in the sense that if all cooperate, the payoff is larger than that of
the non-participants. This means that 0 < σ < (r − 1)c. This assumption offers players a non-
trivial choice: to stick with a safe, self-sufficient income, or to speculate on a joint effort whose
outcome is uncertain because it depends on the decisions of others. (If S = 1 then the public
goods game does not take place. In this case a single player who volunteers for the joint effort
receives the default payoff σ.)

We next specify how strategies propagate within the population. We only need to assume that
players can imitate each other, and are more likely to imitate those with a higher payoff. This
can be done in various ways (see (16) and (17)). For simplicity, let us assume here that players
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can update their strategy from time to time by imitating a player chosen with a probability
which is linearly increasing with that player’s payoff. In addition, we shall assume that with a
small probability μ, a player can switch to another strategy irrespective of its payoff (we refer
to this as ’mutation’ without implying a genetic cause: it simply corresponds to blindly
experimenting with the alternatives).

The analysis of the corresponding stochastic dynamics is greatly simplified in the limiting case.
μ→ 0 The population consists almost always of one or two types at most. Indeed, for μ= 0 the
four monomorphic states are absorbing: if all individuals use the same strategy, imitation will
not introduce any change. For sufficiently small μ the fate of a mutant (i.e. its elimination or
fixation) is settled before the next mutant appears (18). This allows to calculate the probability
that the population is in the vicinity of a pure state (i.e. composed almost exclusively of one
type) (17). Computer simulations show that the approximation also holds for larger mutation
rates (on the order of 1/M).

The outcome is striking: in the limit of rare mutations, the system spends most of the time in
the homogeneous state with punishers only, irrespective of the initial composition of the
population. For large populations (M = 1000 can be considered large for most of our prehistory)
and small mutation rates, the system spends most of the time in or near the punisher state (Figs.
1a and 2a, as well as Fig. S1). The outcome is robust with respect to changes in σand r (Fig.
S1).

The situation is very different in the traditional case of a public goods game where participation
is compulsory. If only cooperators and defectors are present, defectors obviously win. Adding
the punishers as a third strategy does not change the qualitative outcome: In the limit of rare
mutations, the system spends most of the time in or near the state with defectors only. For the
same parameter values as before, the state is time dominated by defectors, and there is hardly
any economic benefit from the interaction (Fig. 1b and 2b, and Fig. S2).

Volunteering in the absence of punishment leads to a more cooperative outcome than for the
obligatory game, but not to the fixation of the cooperative state (Fig. 3a). Instead, the system
exhibits a strong tendency to cycle (from cooperation to defection to non-participation and
back to cooperation), due to a rock-paper-scissors mechanism (19–21). If there are many
defectors, it does not pay to participate in the joint enterprise, but if most players refuse to
participate, then the typical group size can become sufficiently small such that the social
dilemma disappears: cooperators earn on average more than defectors (and non-participants).
However, this is a fleeting state only: quickly cooperators spread, group size increases, the
social dilemma returns and the cycle continues.

The gist of the analysis for small mutation rates is captured in Fig. 2. The effect of substantial
mutation rates can only be handled by numerical simulations ((17) and (22)). In the absence
of punishers, defectors do worst, whereas non-participants and cooperators perform
comparably well. In the compulsory game, punishers do not prevail, except for large mutation
rates, in which case mutational drift supplying defectors keeps the punishers active and prevents
them from being undermined by cooperators. If all four types are admitted, punishers prevail.

This result remains unaffected if we assume that the punishers are also punishing the
cooperators (who are not punishing defectors, and thus can be viewed as second-order
defectors). It is well-known that any norm that includes the rule to punish those who deviate
is evolutionarily stable: once established, it cannot be displaced by an invading minority of
dissidents (9). But how can such punishing behaviour gain a foothold in the population? The
trait has to be rare, initially, and thus will incur huge costs by ceaselessly punishing. To model
this situation it seems plausible to assume that for this second type of punishment, fines and
costs are reduced by a factor α, with 0 ≤ α ≤ 1 (14). Thus the payoff for cooperators is reduced
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by α βNw, and that for punishers by α γNx, provided that Ny > 0 (if there are no defectors in the
group, non-punishing behaviour will go unnoticed). As it turns out, whether cooperators who
fail to punish are punished or not plays a surprisingly small role. The parameter α has little
influence on the dynamics (17). The reason is that for small μ, the three types of punishers,
cooperators and defectors rarely co-exist: hence punishers cannot hold cooperators accountable
for not punishing defectors. Interestingly, experimental evidence for the punishment of non-
punishers (i.e. for non-vanishing α) seems to be lacking (23).

We could also assume that punishers penalise non-participants, with a fine δβ and the cost to
the punisher δγ (with 0 ≤ δ ≤ 1). Although this further stabilizes punishment once it is
established, it also hinders the emergence of punishment (see Fig. 3b, and (17)). It follows that
resorting to stricter forms of social coercion may not be an efficient way to increase
cooperation: second order punishment (α > 0) barely affects the outcome whereas punishing
non-participants (δ > 0) can even lead to contrary effects. The system responds to an increase
in compulsion with a decrease in cooperation.

When punishers are common, individual level selection against them is weak (since only little
punishment occurs), and may be overcome by selection among groups (10). Several other
models confirm that the punishment of defectors is stable, if it is the prevalent norm. This
happens for example if some degree of conformism in the population is assumed (11):
individuals preferentially copy what is frequent. Similarly, cooperation in the public goods
game can also be stabilised through additional rounds of pairwise interactions based on indirect
reciprocity: in this case, players can reward contributors (24,25). But in each case, the
emergence of the pro-social norm remains an open problem (26,27).

Our model, in contrast, shows that even when initially rare, punishing behaviour can be
advantageous, and is likely to become fixed. We consider the most challenging scenario,
namely a single well-mixed population whose members imitate preferentially what fares better,
not what is more common. Once established, group selection, conformism, and reputation
effects may maintain pro-social norms and promote their spreading. Eventually, institutions
for punishing free-riders may arise, or genetic predispositions to punish dissidents.

Recent experiments show that if players can choose between joining a public goods game either
with or without punishment, they prefer the former (28). The interpretation seems clear:
whoever freely accepts that defection may be punished is unlikely to be a defector. For
contributors, it is thus less risky to join such a group. Players voluntarily commit themselves
to sanctioning rules. This voluntary submission is not immediate, however: in the majority of
cases it requires a few preliminary rounds. Many players appear to have initial reservations
against the possibility of sanctions and need a learning phase. In another series of experiments,
it has been shown that a threat of punishment can decrease the level of cooperation in trust
games (29). Experimental evidence for costly punishment can also be found in the ultimatum
game (rejecting an unfair offer is costly to both players) (2) and in indirect reciprocity (by not
helping defectors, players reduce their own chances of being helped) (30). If punishment is
combined with rewarding through indirect reciprocity, punishment is focussed on the worst
offenders, and is otherwise strongly reduced in favour of rewarding contributors (31). In all
these investigations, and in the experiments on voluntary public goods games without
punishment (21), there is ample evidence that players can adapt their strategy from one round
to the next, as a reaction to the current state of the population. Our model is based on this
aptitude for social learning.

In our framework, the joint effort represents an innovation, a new type of interaction which
improves the payoff of participants if it succeeds, but costs dear if it fails. Abstaining from
such a risky enterprise does not mean living a hermit’s life. It means collecting mushrooms
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instead of participating in a collective hunt; remaining at home in lieu of joining a raiding party;
dispersing in the woods rather than erecting a stronghold against an invader; growing potatoes
on one’s plot of land instead of handing it over to a commons likely to be ruined by overgrazing.

Our model predicts that if the joint enterprise is optional, cooperation backed by punishment
is more likely than if the joint enterprise is obligatory. Sometimes, public goods cannot be
opted out of: the preservation of our climate is one example (32). In that case, participation is
obligatory – and defection widespread.

Reports from present-day hunter-gatherer societies often stress their egalitarian and
’democratic’ features: individuals have a great deal of freedom (33). This creates favourable
conditions for voluntary participation. On the other hand, ostracism was probably an early form
of severe punishment. There seems to be a smooth transition between choosing not to take part
in a joint enterprise, and being excluded. Together, these two alternatives may explain the
emergence of rule-enforcing institutions promoting pro-social behaviour, following Hardin’s
recipe for overcoming the tragedy of the commons: mutual coercion, mutually agreed upon
(34).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Punishment and abstaining in joint effort games. (a) Simulations of finite populations
consisting of four types of players show that after some initial oscillations, punishers usually
dominate the population. In longer runs, their regime can occasionally break down, because
cooperators invade by neutral drift, but after another series of oscillations punishers will emerge
again. The transient oscillations generally display a rock-paper-scissors-like succession of
cooperators, defectors and non-participants. When non-participants are frequent, groups are
small, and punishing therefore is less costly, so that punishers have a chance to invade. (b) If
participation is compulsory (no non-participants), defectors take over in the long run, even if
the population consisted initially of punishers. Parameter values are M = 100, N = 5, r = 3, σ
= 1, γ = 0.3, β = 1, c = 1, μ = 0.01.c
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Figure 2.
Stationary probability distributions, transition probabilities and fixation times can be computed
analytically for sufficiently small mutation rates, if we assume that players update their
strategies according to some specified rule. (Here, we use a Moran process with selection
strength s = 0.249, see (17)). The dynamics is reduced to transitions between homogeneous
population states consisting entirely of cooperators (C), defectors (D), non-participants (N) or
punishers (P). The transition probabilities ρ denote the probabilities that a single mutant takes
over, the conditional fixation time t indicates the average number of periods required for a
single mutant to reach fixation, provided that the mutant takes over. a voluntary participation
in the joint effort game with punishment, parameter values N = 5, r = 3, σ = 1, γ = 0.3, β = 1,
c = 1, M = 100. b compulsory participation in a joint effort game with punishment, for the same
parameter values.
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Figure 3.
Punishment is best directed at defectors only. a Same as in Fig. 2a, but without punishers. The
three remaining strategies supersede each other in a rock-paper-scissors type of cycle. b Same
as in Fig. 2a, but assuming that punishers equally punish the non-participants. This makes it
more difficult for punishers to dominate.
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