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Abstract 

 
The current banking crisis highlights the challenges faced in the traditional lending model, 
particularly in terms of screening smaller borrowers. The recent growth in online peer-to-peer 
lending marketplaces offers opportunities to examine different lending models that rely on 
screening by multiple peers. This paper evaluates the screening ability of lenders in such peer-to-
peer markets. Our methodology takes advantage of the fact that lenders do not observe a 
borrower’s true credit score but only see an aggregate credit category. We find that lenders are able 
to use available information to infer a third of the variation in creditworthiness that is captured by 
a borrower’s credit score. This inference is economically significant and allows lenders to lend at a 
140-basis-points lower rate for borrowers with (unobserved to lenders) better credit scores within 
a credit category. While lenders infer the most from standard banking “hard” information, they 
also use non-standard (subjective) information. Our methodology shows, without needing to code 
subjective information that lenders learn even from such “softer” information, particularly when it 
is likely to provide credible signals regarding borrower creditworthiness. Our findings highlight the 
screening ability of peer-to-peer markets and suggest that these emerging markets may provide a 
viable complement to traditional lending markets, especially for smaller borrowers. 
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I. Introduction 

An important function of credit markets is to screen borrowers and allocate credit efficiently 

based on borrowers’ creditworthiness. Traditionally, banks have played the dominant role in 

allocating credit partly because they are attributed to have the financial expertise to evaluate 

borrowers and effectively intermediate capital (Diamond, 1984). While there is a broad consensus on 

the importance of banks in financial intermediation, the recent banking crisis has highlighted short-

comings in the traditional lending models, particularly in allocating credit to smaller borrowers.1 

While there is increasing debate in how these short-comings can be addressed, a variety of new 

lending models offer potentially valuable insights. Peer-to-peer online lending platforms provide a 

non-hierarchical market-based mechanism that facilitates screening by aggregating information on 

borrower creditworthiness over multiple (individual) lenders. While such markets may be better at 

utilizing non-standard/“softer” information, the (peer) lenders typically lack the financial and 

screening expertise of traditional banks. In this paper, we evaluate whether such lending platforms 

are able to effectively screen for borrower creditworthiness. Thus, we examine the viability of such 

lending platforms in improving small borrowers’ credit access, in turn complementing traditional 

lending models.  

Web-based peer-to-peer lending markets, such as Prosper, Zopa, Kiva, Myc4, Lending Club, 

Pertuity Direct, and Fynanz, have grown dramatically both in number and size. Prosper has funded 

over $178 million in loans and currently has 830,000 members. These markets are quickly gaining 

popularity in lending to smaller-scale borrowers such as individuals and small firms, both in 

developed and developing economies.2 The uncollateralized nature of lending in these online 

markets makes it particularly attractive for small borrowers who might otherwise turn to payday 

lenders or credit card debt, often at exorbitant rates (Adams, Einav, and Levin, 2009). However, as 

non-financial experts dominate peer-to-peer markets, their ability to judge financial risk and 

information is key to the viability of these markets. While there is some evidence from other 

contexts, such as prediction markets, that non-experts can extract information effectively (Wolfers 

                                                 
1 Moreover, there are both theoretical arguments and empirical evidence that banks do very little screening for small 
borrowers and rely excessively on collateral, thereby preventing some creditworthy borrowers from obtaining loans 
(Stiglitz and Weiss, 1981; Ang et al., 1995; Avery et al., 1998; Manove et al., 2001). 
2 While micro credit institutions have improved financial access for small borrowers in many economies, they primarily 
rely on group lending principles, which can sometimes make it difficult for individual borrowers to access credit. Equity 
and corporate debt markets also provide financing but they are typically limited to large-scale, mature borrowers.  
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and Zitzewitz, 2004), there is scant direct evidence on whether these peer-to-peer markets can 

effectively screen borrowers and allocate credit.3  

This paper uses unique loan-level data from an online peer-to-peer market, Prosper.com, to 

examine the extent to which multiple lenders can collectively infer borrowers’ underlying 

creditworthiness by exploiting the potentially rich information setting that peer-to-peer lending 

websites allow. We propose a methodology that takes advantage of the fact that we as 

econometricians observe a borrower’s exact credit score but lenders on Prosper.com only see an 

aggregated credit category. Thus, if lenders offer loans at lower interest rates to borrowers who have 

better credit scores within a given credit category, lenders must have correctly inferred that these 

borrowers are more creditworthy than others in the same credit category.4 Our methodology 

quantifies lenders’ inference of creditworthiness by comparing the degree to which the interest rate 

declines with the exact credit score within credit categories to the overall decline in the interest rate 

across credit categories. Our methodology also allows us to decompose the magnitude of inference 

associated with different types of information available to the lender.5 

We find that, within a given credit category, lenders are able to infer one-third of the 

differences in creditworthiness that are captured by a borrower’s exact credit score. This is an 

economically significant effect because inference allows lending at a 140-basis-points lower rate for 

borrowers at the top of a typical credit category relative to borrowers at the bottom of that category. 

Our results show that lenders exhibit greater inference for borrowers in higher credit categories. In 

addition, this inference is mostly based on hard, verified financial information that is also normally 

used by banks to screen borrowers (henceforth referred to as “standard banking” variables). Within 

such types of information, the greatest inference is derived from variables such as a borrower’s 

number of current delinquencies, debt-to-income ratio, amount delinquent, and the number of 

credit inquiries in the last six months, although there is variation in these variables’ relative 

importance across credit categories. For example, delinquencies (amount and number) are more 

                                                 
3 For example, small election markets, like the Iowa electronic markets, and event markets, like TradeSports, that rely on 
aggregating information from a relatively small number of (non-expert) individuals seem to provide reasonably accurate 
predictions.  
4 The final interest rate for a funded loan is determined through sequential bidding and reflects the lenders’ overall 
perception of the quality and, hence, the creditworthiness of the borrower. The loan is funded only if the total bids equal 
or exceed the amount requested by the borrower and the final interest rate is determined by the highest reservation rate 
among the set of lenders that successfully bids.  
5 The borrower listing contains hard, verified information obtained from the credit rating agency (past defaults, number 
of credit lines, etc.) and soft, subjective, non-verified information (picture, description, etc.) that borrowers voluntarily 
provide. Lenders do not have access to any additional information about borrowers apart from the listing. 
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informative in lower credit categories while the debt-to-income ratio is more salient for the higher 

credit categories.  

Lenders also learn from other softer, subjective (non-verified) information that is voluntarily 

posted by borrowers (henceforth referred to as “non-standard” variables), particularly in the lower 

credit categories. Of the non-standard variables, we find that lenders draw the most inference from 

the maximum interest rate that the borrower posts that she is willing to pay for the loan.  This rate is 

likely to serve as a credible and costly signal since borrowers posting too low a rate risk not having 

the loan funded, and this signal may be costlier for lower-quality borrowers with fewer alternate 

funding options. Our results suggest that, as one would expect, lenders pay greater attention to the 

most credible signals that borrowers can send.6 We also find, especially among the lower credit 

categories, a high degree of inference from the non-coded component of the listing.  

In general, coding soft information is challenging because it is difficult to quantify the 

information content of pictures or lengthy personal text descriptions. An advantage of our 

methodology is that we can measure the inference drawn from information without explicitly coding 

it since this inference is computed as a “residual,” i.e. the variation of interest rates with the exact 

credit score that remains after controlling for coded information. 

A concern with the interpretation of our findings may be that lenders directly learn 

borrowers’ exact credit scores from self-reported borrower information in the listing text or through 

public and private communication via Prosper’s “questions-and-answers” feature. However, this 

possibility is very unlikely. Prosper strongly discourages borrowers from revealing detailed personal 

information (like credit score or personal contact information) and a text search through all listing 

text indeed does not find any self-reported credit scores. While we do not have access to the 

“questions and answers” data to conduct a similar check, even if such information was reported it 

would not be credible as every borrower has an incentive to report the highest score in her credit 

category. Not surprisingly, restricting our sample to the period before the introduction of the 

question-and-answer feature provides similar results. We also show the robustness of our results to 

various policy changes introduced by Prosper, differences in usury laws, and group affiliation of 

borrowers.  

                                                 
6 The borrower maximum rate also censors our observations when the interest rate that the market requires to fund a 
listing exceeds the borrower maximum rate. As we explain in more detail in the methodology section, our estimation 
strategy corrects for this mechanical censoring effect. 
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An important caveat of our approach is that we use credit score as a plausible but imperfect 

proxy for true creditworthiness. An ideal inference test requires a measure of true creditworthiness, 

defined as the ex-ante probability that a given loan will default. Such ex-ante probabilities are, by 

definition, not observable. Ex-post, only a realization that depends on the true probability is 

observed, and only for the subsample of listings that are funded.  The true ex-ante default 

probability depends not only on the borrower’s attributes (both observed and unobserved) but also 

on the characteristics of the specific loan, including the amount borrowed, loan terms, and other 

elements of the loan.  The credit score provides an estimate of the true default probability, but it is 

only based on a subset of predictors.7 Despite this limitation, the credit score is the best available 

measure of the ex-ante default probability – credit bureaus have strong incentives to construct credit 

scores that are accurate predictors of future default likelihoods.8 Nevertheless, we interpret our 

results with care. There may be aspects of creditworthiness that are not fully captured by credit 

score. Lenders may also use listing content to infer along these alternative dimensions of 

creditworthiness. This affects our results in two ways. First, while our results suggest that lenders 

infer a third of the variation in creditworthiness that is captured by credit score, lender inference 

could be higher or lower for other dimensions of creditworthiness. Second, our decomposition of 

sources of inference shows what types of information are useful in terms of inferring credit score. 

While this is likely an estimate of the source of information’s overall contribution to inference of 

creditworthiness, we may overestimate or underestimate its value for inference of dimensions of 

creditworthiness not captured through credit score.  

Our paper adds to the recent literature that examines peer-to-peer credit markets. Recent 

work on Prosper in particular shows that these markets display discrimination based on personal 

attributes like race and physical appearance (Pope and Sydnor, 2008; Ravina, 2008; Theseira, 2008). 

If such discrimination is taste-based, it brings into question the ability of these markets to distribute 

credit based upon borrower creditworthiness. Our paper complements this literature by focusing 

instead on whether there is any direct evidence of lenders’ inferring borrower creditworthiness in 

such markets. We do find evidence of such inference, and we examine the types of information that 

                                                 
7 Specifically, the credit score disregards certain codable observable characteristics (such as race or location) because of 
legal restrictions, and by definition, it is not directly based on borrower characteristics that are not observable to the 
rating agency. Moreover, a credit score is person-specific rather than specific to a person and a loan, so it ignores the 
loan characteristics.  Finally, it is not practically feasible to condition the score on qualitative information, which is hard 
or impossible to code. 
8 While credit score is ostensibly based on “hard” factors like past borrower behavior and default history, these factors 
are also likely correlated with “softer” attributes such as a borrower’s personal description and narrative.  
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lenders use to infer underlying creditworthiness. To the extent that credit score does not capture all 

aspects of creditworthiness, a generalization of our inference results suggests that even if these 

markets started reporting the exact credit score of borrowers, one would expect that the listing 

content could still help lenders improve the accuracy of their estimates of borrower 

creditworthiness. 

Our paper also highlights how new lending platforms, such as peer-to-peer markets, may  

complement traditional lending models. One can think of these contributions in terms of (i) 

incentives and (ii) ability to screen. With regard to incentives, the setup of peer-to-peer markets is 

inherently competitive, with multiple lenders competing for the same borrower (see also Boot and 

Thakor, 1997).9 Peer-to-peer lenders may also provide stronger screening incentives because they 

lack access to securitization markets, which may in turn lead to lax screening (Keys et al., 2010). In 

addition, the hierarchy in a peer-to-peer structure is completely flat, thus reducing the impediments 

of using and transmitting “soft” information that could help evaluate creditworthiness of small 

borrowers (Aghion and Tirole, 1997; Stein, 2002; Liberti and Mian, 2009).10  

In terms of ability to screen, a concern is that peer-to-peer markets are likely to have lower 

individual financial expertise and experience to judge borrower creditworthiness. However, these 

markets may have participants who are skilled at judging particular aspects of the borrower that 

banks are unable to gauge . For example, a lender who works in the sector where the borrower 

proposes an entrepreneurial business idea may better assess the viability of the proposal. Peer-to-

peer markets may also make better use of social network information. While Freedman and Jin 

(2008) find evidence of adverse selection due to informational problems faced by lenders in Prosper, 

they also find that social networks (endorsements by friends) may help alleviate these problems. In a 

similar spirit, Lin et al. (2009) find that stronger and more verifiable relational networks help reduce 

the adverse selection problems in Prosper. Thus, the possibility of adverse selection further 

enhances the value of screening borrowers in these markets. Finally, the aggregation of information 

in these markets could lead to better judgment of the creditworthiness of borrowers. A large set of 

                                                 
9 Typically, small borrowers cannot simultaneously apply to a large number of banks. However, they can apply to a large 
set of lenders with a single loan application in a peer-to-peer market place. In addition, banks do not use multiple credit 
officers to screen small borrowers while peer-to-peer markets allow all lenders to potentially screen each borrower. 
10 This literature offers both theoretical and empirical evidence that, with respect to screening small borrowers, the 
organizational structure of banks may cause impediments in using subjective information to evaluate creditworthiness. A 
related literature on relationship banking documents the importance of soft information in allocating credit to small 
businesses and argues that flatter organizational structures increase the use of soft information (Berger and Udell, 2002; 
Santikian 2009).  
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individuals may collectively be better able to judge parts of the borrowers’ information, particularly 

the non-standard or subjective aspects.11  

Our results suggest that, despite not being financial experts, individual lenders in peer-to-peer 

markets can partly infer underlying borrower creditworthiness. Given these markets’ ability to make 

valuable inferences and their non-collateral-based lending structure, peer-to-peer markets can be 

particularly helpful for small borrowers who may otherwise be limited to costly sources of finance 

like payday lenders and credit-card debt. In addition, increasing the ability of borrowers to credibly 

signal their quality can help improve the screening function of these markets. However, the 

inference of lenders is incomplete, and combined with evidence of possible discrimination, it is clear 

that these markets have their shortcomings as well. In sum, our results suggest that new models, 

such as peer-to-peer lending can indeed complement existing lending models and improve access to 

credit, particularly for small individual borrowers.  

II. Context and Data 

A. Context  

 The marketplace model of peer-to-peer lending on the internet enables individual lenders to 

locate individual borrowers and vice-versa. There has been an explosive growth in the online peer-

to-peer market across the world. In the U.S alone, there are around twelve active online peer-to-peer 

lending sites. Furthermore, in Europe and Asia, online peer-to-peer lending markets are on the 

increase.12 In this paper, we exploit unique data from Prosper.com, an online peer-to-peer lending 

marketplace that was founded in February, 2006. It focuses on US clients and intermediates capital 

mostly between individual lenders and small borrowers. Prosper has funded over $178 million in 

loans and currently has 830,000 members. 

All Prosper loans are personal, three-year fixed-rate, unsecured loans. Borrowers request 

loans by creating a public listing on the Prosper.com website, and they can choose the amount of 

money to request (up to $25,000) and the duration of the loan listing (3, 5, 7, or 10 days). The online 

listing consists of three components: pictures, listing text, and credit information. The pictures and 

text contain unverified soft information provided voluntarily by the borrower. Often, borrowers 

describe why they need a loan, why they are a good credit risk, and their income and expenditure 

                                                 
11 The success of micro-credit is partly attributed to the importance of joint liability for screening (Stiglitz, 1990; Ghatak, 
2000). However, in the case of micro-credit, it is the other group members (who are jointly liable for the loan) that 
provide the screening rather than a larger set of individual lenders (typically unconnected to the borrower) who 
collectively screen the borrower in a more market-based setup. 
12 See http://en.wikipedia.org/wiki/Peer-to-peer_lending. 
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flows. Some borrowers also post optional pictures of themselves or of themes related to their loan 

purpose. The third listing component, credit information, contains verified hard information 

obtained by Prosper through a credit check. The credit information section contains information on 

each borrower’s delinquencies, credit lines, home ownership status, debt, inquiries, public records, 

and income. The Appendix provides one such sample listing. 

The credit information also contains the borrower’s credit category. According to the 

Prosper.com website, “a credit category is what potential lenders use to measure your likelihood of 

repaying money you have borrowed based on your past history.” Prosper assigns each borrower to 

one of seven credit categories based upon the borrower’s Experian Scorex Plus credit score. Of 

particular importance for the empirical strategy used in this paper is that the exact credit score is not 

observed by Prosper lenders or borrowers: participants in the Prosper marketplace observe only 

credit categories.  The relationship between credit scores and credit categories is shown below.13 

 

Category: HR E D C B A AA 
Score: 520-559 560-599 600-639 640-679 680-719 720-759 760-900 

 

 In addition, borrowers can join borrower groups led by “group leaders.” The ratings and 

financial rewards of group leaders depend on the payment profiles of the group’s members. 

Therefore, group leaders often pledge to exert social pressure on group members to repay loans. 

Group leaders can write public messages endorsing the borrower and can bid on group members’ 

loans. In addition, borrowers can become friends with other registered Prosper users. These friends 

can add public friend endorsement texts to listings and can cast friend bids on listings.  

 After listings are posted, lenders can browse through Prosper’s website for listings to bid on. 

Multiple lenders can bid on and fund each listing. Lenders can bid on portions of listings ($50 

minimum) and set their reservation rates, the lowest interest rate at which they are willing to fund 

the listing. The bidding begins at the maximum interest rate the borrower is willing to pay. The 

listing is funded only if the total amount of money bid by lenders exceeds the loan amount requested 

by the borrower. If the total amount bid by lenders is greater than the amount requested by the 

                                                 
13 The above credit category chart reflects the Prosper classification at the end of our sample period. A major change in 
credit category criteria occurred on February 12, 2007. Prior to the credit criteria change, the credit categories were set 
such that: HR(0-539), E(540-600). After February 12, 2007, credit scores below 520 were disqualified and the credit 
category stratification was finalized to the numbers described in the chart above. For consistency of results, we restrict 
our sample to the post February 12, 2007 period. However, results are robust to using the pre February 12, 2007 sample 
(see Table 4).  
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borrower, the interest rate is bid down. Lenders with lower reservation interest rates are given 

priority in the bidding hierarchy. The final interest rate is determined by the highest reservation 

interest rate among the set of lenders that successfully bids for the loan.  

 After the listing is funded and approved by the borrower, the borrower begins to make 

monthly payments that are divided across lenders according to each lender’s winning bid size. The 

borrower never directly interacts with the lenders, and all payments are routed via Prosper. If a 

borrower is late in making payments or defaults on the loan, his behavior is reported to the major 

credit agencies and the borrower’s credit rating suffers. If the borrower is late for more four or more 

months, Prosper sells the loan to a collection agency and splits the proceeds among the lenders.  

 

B. Data  

 Our dataset contains all credit information variables displayed on a borrower’s loan listing, 

as well as the text of the listing and the complete history of each borrower’s loan repayment stream. 

In addition, our data includes the credit score (unobserved by lenders and borrowers) for each 

borrower.14 Our sample contains all listings posted between February 12, 2007 and October 2008.15 

Our sample covers 194,033 listings, of which 17,212 were funded.  

Table 1 provides summary statistics of variables used in our analysis. We provide statistics 

for both the universe of listings (funded and unfunded) and the set of funded listings (listings that 

resulted in loans). We further divide the set of variables into standard banking variables and non-

standard variables. The standard banking variables include hard, verified financial information from 

the borrower’s credit report that is typically used by traditional banks. As expected, funded listings 

tend to have borrowers with better credit scores – in particular, funded listings tend to have far 

fewer “high risk” borrowers (those in the lowest credit categories). Among the universe of listings, 

the average loan amount requested is $8015. The average maximum interest rate borrowers are 

willing to pay is 21%. Bad credit categories and high debt-to-income ratios are disproportionately 

represented among Prosper listings.  For example, the average listing corresponds to a debt-to-

income ratio of 54%. Funded listings tend to have better credit variables because listings 

                                                 
14 Note that even borrowers do not have access to the exact credit score obtained from the credit rating agency. We are 
able to work with this data under a non-disclosure agreement that safeguards the confidential and proprietary nature of 
some of the variables in the dataset. 
15 We also use data from May 2006 to February 12, 2007 as part of a robustness check. However, we exclude data from 
this period in our baseline sample because the credit category boundaries changed in February 12, 2007.  See Section 2, 
Part A for more details. 
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representing individuals with better credit variables are much more likely to be funded.  For 

example, the debt-to-income ratio among funded listings is significantly lower at 33%. 

The set of non-standard variables includes borrower choice variables that are unique to the 

Prosper marketplace, as well as basic coded information drawn from soft/qualitative listing content 

(pictures, text descriptions, friend endorsements, etc.). Borrower choice variables include the 

maximum interest rate the borrower is willing to pay, the listing duration (number of days the listing 

remains public), and listing category (e.g., debt consolidation or student loan). We also code basic 

soft information such as whether the borrower posts a picture or the number of words used in the 

listing text descriptions. We code the soft information in order to roughly estimate the relative 

importance of pictures, listing text, friend endorsements, etc., for lender inference of borrower 

credit score. However, we do not attempt to fully quantify the large selection of soft information 

available in Prosper listings. Rather, as we explain in the next section, we develop a methodology to 

measure how much inference is drawn from residual uncoded sources of listing content. 

 

III. Methodology 

Our empirical strategy exploits the fact that credit scores are only reported as categorical 

variables to Prosper lenders. Thus, if we find that the interest rate at which lenders are willing to 

lend decreases with the exact credit score within a credit category, it must be that lenders are able to 

infer differences in creditworthiness across borrowers in the same credit category from other 

information provided on the website.16 Moreover, given that lenders do observe credit categories, we 

can quantify lenders’ inference of creditworthiness by comparing the degree to which the interest 

rate declines with the exact credit score within credit categories to the overall decline in the interest 

rate across credit categories. While the context is different, our method of using information not 

available to Prosper lenders to measure inference is similar to Farber and Gibbons (1996) and 

Altonji and Pierret (2001) who estimate employer inference of worker quality using AFQT scores, 

which are observed by the econometrician but not by the economic agents.  

As we detail below, our strategy also sheds light on the extent to which lenders rely on 

different types of information to make their inference about creditworthiness. While it may seem 

challenging to quantify or code qualitative data (such as pictures and other personal details), an 

advantage of our strategy is that we can still derive the contribution of such information: the 

                                                 
16 Even if lenders are not consciously doing so, they act as if they are discerning between shades of creditworthiness 
since they are bidding on interest rates based upon their inferred potential returns to an investment.  
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contribution of non-quantified information is inferred from the remaining relation between the 

exact credit score and interest rate within credit categories while controlling for a flexible functional 

form of all quantified information.  

The data section already described the listing information available to lenders. As noted 

previously, we categorize the information provided by borrowers based on whether it consists of 

standard banking variables (typically hard and verified financial information) or non-standard 

banking variables (typically soft and unverified information such as pictures or textual descriptions). 

The idea behind this classification is to distinguish between the information traditional lenders like 

banks typically use and the more subjective, softer, and non-verified information that is commonly 

available in peer-to-peer markets.  

  

A. Estimating Overall Inference 

 We illustrate our empirical methodology with a stylized graph of the relationship between 

the exact credit score and the market interest rate. The x-axis of Figure 1 plots the borrower’s exact 

credit score, which is a proxy for creditworthiness. Since the repayment probability is higher for 

more creditworthy people, the market interest rate should fall monotonically in the credit score if 

lenders could observe the true score (as shown by the dashed blue line). In this stylized figure, we 

assume that this hypothetical relationship is linear. We denote the credit score at the border between 

category k-1 and category k by ck, and in this stylized figure, we assume that all credit categories are 

of equal size. If the credit-score categories were the only information that lenders observed, the 

interest rate would be constant within categories and would only jump at the category borders. Thus, 

if we observe that the interest rate falls within credit-score categories, it must be the case that lenders 

are able to infer information about the borrowers’ creditworthiness from information other than the 

categorical credit-score variable (as illustrated by the discontinuous downward sloping red line). 

The degree to which lenders are able to infer creditworthiness from this other information is 

given by the amount by which the interest rate falls within credit-score categories relative to the total 

drop in interest rates both within and between credit-score categories. In the figure, the interest rate 

drops by an amount β within each credit-score category and discontinuously drops by an amount α 

at each credit-score boundary. Hence, the total drop over one credit category (including one 

boundary) equals α + β. We denote this total drop by δ ≡ α + β. Of this total drop, the interest rate 

falls by β due to the change in creditworthiness that lenders inferred from information other than 
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credit category. We denote the fraction of information learned from all sources other than credit 

category by the symbol γ ≡ β / δ = β / (α + β ), and refer to γ as the amount of “inference” made 

by lenders. 

In this stylized setup, the following regression yields parameter estimates α and β from 

which the fraction of information inferred, γ, can be calculated: 

 

InterestRatei = μ  + α Cat(CreditScorei) + β CreditScorei / CatSize + εi                      (1) 

 

where InterestRatei is the interest rate charged on loan i, CreditScorei is the exact credit score of the 

borrower of loan i, and Cat(.) is a scalar that denotes the category of the credit score. As there are 7 

credit-score categories, Cat(.) takes on the integers 1 through 7. CatSize is a constant that is equal to 

the range of credit scores that each credit category spans. This means that CreditScorei / CatSize 

increases by exactly one if we move from the starting point of a credit category to the ending point. 

Finally, ε denotes the error term and the remaining Greek symbols are parameters to be estimated. 

If we move from the starting point of one credit category to the starting point of the next 

category, the interest rate changes by α at the credit-category border (because Cat(CreditScorei) 

increases by one at the border) and changes by β within the credit category (since CreditScorei / 

CatSize increase by exactly one within each credit category). The fraction of this total change that 

lenders infer from information other than the credit-score categories is given by γ = β /(α+β ). 

Thus, a γ of zero means that lenders are not at all able to infer creditworthiness from information 

other than the credit-score categories, while a γ of one implies that lenders are perfectly able to infer 

creditworthiness from the information provided. Our methodology does not rule out perverse 

values of γ : negative values of γ indicate that lenders interpret information that is related to higher 

exact credit scores as signs of lower creditworthiness, and values of γ greater than one mean that 

lenders place too much value on information indicating higher creditworthiness. 

 The benefit of this stylized setup and the corresponding regression is that it is simple. 

However, if the true credit score were observable, the underlying relationship between interest rate 

and exact credit score could very well be non-linear. Moreover, credit categories are not all of equal 

size. Figure 2 depicts this more realistic situation. The dashed blue line shows the underlying 

relationship between interest rate and exact credit score for the hypothetical scenario that exact 
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credit score were observable by lenders. This relationship is now allowed to be non-linear. As a 

result of this non-linearity, the slope of the observed relationship between market interest rate and 

credit score need not be the same within each credit category, and the jump in market interest rate at 

the category borders may vary. The solid red line depicts the estimated relationship between market 

interest rate and exact credit score. This line falls by βk within category k and falls by αk at the 

border between category k-1 and category k.  

 To determine the amount of inference, we first calculate the total fall in interest rate over 

each credit category. To do so, we need to decide what part of the jump of size αk at the border 

between category k-1 and category k can be attributed to category k-1 and what part to category k. 

It appears most natural to attribute this jump proportionally to the size of each category, but results 

are similar when we attribute it evenly across the two bordering categories. Let λk denote the size of 

category k-1 as a fraction of the combined size of categories k-1 and k. Then the part of the drop in 

interest rate at the border of categories k-1 and k that is attributed to category k is equal to (1-λk)αk. 

Similarly, the part of the drop at the next category border that is attributed to category k is λk+1αk+1. 

Since the interest rate falls by βk within category k, the total drop in interest associated with category 

k is δk = (1-λk)αk + λk+1αk+1 + βk.17 The fraction of information inferred within this category, γk, can 

then be calculated as βk /δk. 

 To estimate these parameters, we regress the interest rate on a spline in the exact credit score 

and cumulative dummies for the credit-score categories: 

 

  
InterestRatei = μ + αkIk

Cum (CreditScorei )+
k=2

N

∑ βkFracGapk(CreditScorei )
k=1

N

∑ + ε i ,          (2) 

 

where InterestRatei is the interest rate charged on loan i, CreditScorei is the exact credit score of the 

borrower of loan i,   Ik
Cum (CreditScorei )  are cumulative credit-score dummies, and FracGapk is a variable 

that increases linearly with exact credit score within credit category k and is constant everywhere 

else. The coefficient αk measures the jump in interest rate at the credit-score boundary between 

                                                 
17 By definition, we cannot estimate a jump at the lower border of the bottom credit category nor at the upper border of 
the top credit category. When calculating the gammas for the first (bottom) and seventh (top) category, we assume that 
jumps at the lower and upper borders are of equal size: we assume that (1-λ1)α1 equals λ2 α2 and that λ8α8 equals (1-
λ7)α7. 
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credit categories k-1 and k, the coefficient βk measures the change in interest rate within category k, 

and εi is the error term. Formally, we define Ik
Cum (CreditScorei )  as an indicator variable that equals one 

if borrower i is in credit category k or higher: 

 

  
Ik

Cum (CreditScorei ) =
0   if   CreditScorei < ck

1   if   CreditScorei ≥ ck

⎧
⎨
⎩⎪

,             (3) 

 

where ck is the credit score that forms the boundary between categories k-1 and k. Formally, 

  FracGapk(CreditScorei ) is defined as:  

  

FracGapk(CreditScorei ) =

0 if CreditScorei ≤ ck

CreditScorei − ck

ck+1 − ck

if ck < CreditScorei ≤ ck+1

1 if ck+1 < CreditScorei

⎧

⎨
⎪
⎪

⎩
⎪
⎪

,         (4) 

 

Thus, FracGapk increases linearly from 0 to 1 as we move from the lowest to the highest credit score 

within category k. Further, FracGapk is 0 for values below ck and equals 1 for all credit scores above 

ck+1. 

When we estimate equation (2), the test βk = 0 tests the hypothesis that lenders are not able 

to infer variation in creditworthiness within category k (along the dimension measured by exact 

credit score) from all the information provided in the listing. Since the estimates of the βk may be 

relatively imprecise, we also test the joint hypothesis that all βk are equal to zero. Because the 

coefficients αk measure the jumps in interest rate at the credit-score boundaries, we can reject the 

hypothesis that lenders are perfectly able to infer creditworthiness (along the dimension measured by 

exact credit score) from the information on the listing if these αs are jointly statistically significant.  

Because we estimate the γ parameters separately for each credit category, they are each based 

on relatively few observations. As a result, the parameters may not be estimated very precisely for 

particular categories, even if they are jointly significant. We therefore also present a combined γ 

estimate, which is the weighted average across credit-score categories of γk, where the weights are 

the precision with which the parameter is estimated in each category.  
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When we estimate equations (1) or (2), we hope to recover the effect of the listing 

characteristics on the interest rate that lenders require to compensate them for the perceived credit 

risk of that listing. If this interest rate exceeds the maximum interest rate that the borrower is willing 

to pay (as specified by the variable borrower maximum rate), the listing will not be funded and we 

consequently do not observe the interest rate that lenders require. Thus, our observations of the 

interest rate are censored at the borrower maximum rate.18 This censoring problem would bias our 

estimates of inference if we estimate equations (1) or (2) using ordinary least squares. Instead, we 

estimate equations (1) and (2) as censored regressions with the censoring occurring at the borrower 

maximum rate specified by each listing. The censored regressions, which are a generalization of the 

Tobit model, rest on the implicit assumption that listings that were not funded would have been 

funded at some interest rate larger than the observed borrower maximum rate. If the error term has 

a homoskedastic and normal distribution, the estimates from the censored regressions will yield 

consistent estimates of the parameters determining the interest rates that lenders require to fund a 

listing.  

We use a modified version of equation (2) to test whether the exact credit score is predictive 

of default. In particular, we use an indicator for whether the loan defaulted as the dependent variable 

(rather than the interest rate). In this case, the βk measures the predictive power of the exact credit 

score for default while the αk measures whether the probability of default jumps at the credit- 

category boundaries.  

 

B. Decomposing Inference by Source of Information 

 So far, the inference parameter γ measures the contribution of all sources of information on 

the Prosper website, whether or not this information can be coded as a quantitative variable.  To 

measure the contributions of various information sources, we add to regression (2) controls for all 

the quantified listing variables:   

 

  
InterestRatei = μ + αkIk

Cum (CreditScorei )+
k=2

N

∑ βk
Resid FracGapk(CreditScorei )

k=1

N

∑ + xi
mϕm

m=1

M

∑ + ε i ,       (5) 

 

                                                 
18 State usury laws limit the maximum interest rate that borrowers may set for loans (most states allow a maximum 
interest rate of 36%). Thus, when state usury caps censor the market interest rate, the usury cap censors at the borrower 
maximum rate. 
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where xi
m  denotes the mth quantitative variable in the listing of borrower i and ϕm  denotes the 

corresponding regression coefficient.19 In regression (5), the fitted interest rate can change with 

credit score within a credit category for two reasons. First, even after controlling for all the 

observable characteristics, there still may be a residual correlation between exact credit score and 

interest rate within a credit category due to inference from listing content outside the set of controls 

xi
m . Since we measure exact credit scores within credit categories by FracGap, this residual 

correlation is measured by  βk
Resid . Second, the fitted interest rate may vary within a credit category 

because (i) listings with higher values of FracGap may have different observable characteristics and 

(ii) the interest rate responds to these characteristics.  We measure component (i) – the degree to 

which observable characteristic xm  varies with FracGap – by running a regression of the 

observations of xm  within category k on FracGapk and a constant term.  We denote the coefficient 

on FracGapk in this bivariate regression by θk
m .  We measure component (ii) – the degree to which 

the interest rate responds to characteristic xm  – by the regression coefficient ϕm .  The total 

contribution of variable xm  to the relationship between FracGap and interest rate within category k 

is given by the product of these two components: θk
mϕ m ≡ βk

m .  

We decompose our original estimate βk from the regression without the controls for 

quantified listing characteristics (regression 2) as follows:20 

 

  
βk = βk

Resid + θk
m

m=1

M

∑ ϕ m ≡ βk
Resid + βk

m

m=1

M

∑ .                  (6) 

 

In equation (6), 
  

βk
m

m=1

M

∑  is the part of the within-category drop in interest rates that can be attributed 

to quantified information, while the remainder is explained by non-coded information. Thus, rather 
                                                 
19 In all specifications, we define the x variables to be specific within credit categories, which means that we estimate the 
ϕ coefficients for the control variables separately by credit category.  We correct the α coefficients for any jumps in the 
interest rate at credit category boundaries that are absorbed by the interactions of x and the credit categories or for 
jumps in the x variables themselves. This correction ensures that the α coefficients fully capture the jumps in the interest 
rate at the category boundaries.  
20 This is an application of the standard omitted variable bias formula.  For a derivation and explanation of the omitted 
variable bias formula, see for example pages 245-246 of Greene (1993). The omitted variable bias formula holds by 
construction if the equation is estimated by OLS. However, because we estimate our model as a censored regression, the 
omitted variable bias decomposition holds only in expectation. As a result, our decomposition will not add up exactly. 
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than attempting to quantify the qualitative information (quantification of which, by definition, will 

be highly imperfect), we infer its information content from βk
Resid , which measures the extent to 

which the interest rate varies with exact credit scores within credit-score categories after controlling 

for all quantitative information.  To ensure that βk
Resid  reflects qualitative information rather than 

omitted higher-order terms of the x variables, we include all x variables as quadratics and interact 

them with credit-category indicators.  Instead of reporting each single βk
m , we report a sum of the βs 

that correspond to standard banking variables and a sum of the βs that correspond to non-standard 

variables.  We also include  βk
Resid , which measures the contribution of non-coded information, with 

the non-standard variables.  Finally, the corresponding inference parameters, γ k
m , are calculated by 

dividing each type of βk by δk. 

We should note that this decomposition is accurate provided that listing characteristic xm  

affects interest rates only through the aspect of creditworthiness captured by credit score. 

Alternately, ϕm  may capture an effect of xm  on the interest rate that is mediated both through the 

credit-score dimension and another dimension of creditworthiness. In that case we would ascribe 

less (more) inference to xm  if it has a similar (opposite) impact on this other dimension of 

creditworthiness (compared to the credit-score dimension). 

 

IV. Results 

We now present the results. We first show that credit score is indeed a proxy for 

creditworthiness. We then examine whether, and to what extent, lenders can infer the dimension of 

creditworthiness captured by credit score and explore what information they use to do so. 

 

A. Does Credit Score Matter? 

Table 2 first examines whether credit score is indeed related to underlying creditworthiness. 

While almost all credit scoring models use credit score as a predictor of creditworthiness and recent 

research supports the usefulness of credit score in mitigating adverse selection (e.g. Adams, Einav, 

Levin, 2009), we provide direct support for this by examining whether it predicts actual borrower 

behavior in our sample, such as the likelihood that a borrower will default on the loan. We take a 

conservative approach and classify a loan as in default if it is two or more months late. 
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We indeed find that credit score predicts the likelihood of default. Column (1) shows that, 

for every 40-point increase in underlying credit score, the likelihood of default decreases by 1.0 

percentage point. We use 40-point intervals for ease of comparison given that Prosper defines 

categories based on 40-point intervals.  The regression fit is not very strong in these regressions but 

this is to be expected since our outcome variable consists of default realizations on loans that have 

by and large not reached maturity while the exact credit score predicts default rate probabilities over 

the long term. 

Since lenders observe credit categories, a related question is whether credit score is still 

predictive of default conditional on credit categories. Column (2) examines this possibility and shows 

that variation in credit scores within categories is indeed important in predicting borrower default. 

Within each credit category an increase of 40 points in credit scores implies a 1.2 percentage point 

lower default rate. While this measure is more relevant when we look at the interest rate as an 

outcome variable, we also provide the combined “gamma” value for this regression, i.e. the fraction 

of the underlying relationship between credit score and default rate that is captured within each credit 

category. Since the outcome in question is default rate, a factor likely based mostly on borrower 

behavior rather than lender inferences, and because default probability should be a continuous 

decreasing function of credit score, one would expect gamma to be close to one here. Column (2) 

shows that gamma is 1.16. We cannot reject that gamma is significantly different from one (p-value: 

0.67). Column (3) implements a more flexible specification that is the equivalent of equation (2) in 

the methodology section but where we use default rate as the outcome variable. Here, the betas 

estimate how much within-category credit-score variation impacts the default rate, and the alphas 

capture the additional impact of each credit category.  In addition to reporting the gamma for each 

credit category, we also calculate a combined gamma that, as described in the methodology section, 

is the weighted average of category-specific gammas. The combined gamma estimate is 1.04, and we 

cannot reject that it is different from one (the same holds for the individual gammas as well). The 

combined gamma reported in both Column (2) and Column (3) being close to one is reassuring and 

offers an informal check on our methodology because in cases where the outcome variable is a 

direct outcome of credit score (in other words, it is not inferred by lenders), one would expect that 

gamma would be close to one.  

Column (4) performs a robustness check on our definition of default and shows that the 

same results hold when we replicate Column (3) but define a loan to be in default if it is more than 

one month late.  
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B. Can Lenders Infer Creditworthiness? 

Having provided evidence that credit score captures a dimension of creditworthiness (since 

it predicts default behavior), we now turn to the main question of the paper: Are lenders are able to 

infer this dimension of creditworthiness from information provided in the listing?  

Before turning to our regressions, we present the empirical analogue to Figures 1 and 2.  In 

Figure 3, we plot raw market interest rates against credit score. As is clear from the figure, the 

average interest rate declines by about 18 percentage points as we move from an average interest 

rate of about 26% at the lowest credit scores to an average interest rate of about 8% at the highest 

credit scores. Importantly, the figure shows that the interest rate also declines with credit score within 

credit categories, suggesting that lenders are able to infer credit score from other listing information.  

In addition, there are discrete jumps in interest rates at the credit-category boundaries, which shows 

that lenders exhibit imperfect inference of the full information content of credit score.  

To test the significance of the decline in interest rates within credit categories, we first run a 

simple OLS regression of the market interest rate on credit score/40 and credit category (measured 

as a variable that is 1 for category HR, 2 for category E, … , and 7 for category AA).  Column (1) of 

Table 3 presents this regression.  The coefficient on credit score/40 shows that the interest rate falls 

by 0.54 percentage points within the typical credit category, which has a width of 40 points in the 

credit score.  This decline is highly statistically significant and confirms the intuition from the figure 

that lenders are able infer variation in creditworthiness within credit categories from other 

information in the listing.  The coefficient on credit category shows that the interest rate falls by a 

statistically significant 2.17 percentage points at the typical credit-category border. Of the 18.3 

percentage point fall in the interest rate from the lowest to the highest credit score, 13.1 percentage 

points (= 6 × 2.17) occurs at the category borders and the remaining 5.2 percentage points occur 

within credit categories. Hence, a first take on the magnitude of inference would be that lenders are 

able to infer 5.2/18.3 = 28% of the variation in creditworthiness (along the dimension of credit 

score) from other listing information.   

There are two reasons why the analysis from Figure 1 and the first regression in Table 3 is 

only suggestive. First, the regression in column (1) has a rigid functional form that imposes a 

constant slope of interest rate with respect to credit score and a constant size of the jumps in 

interest rate at the credit-category boundaries. To relax these functional form restrictions, we will 

estimate the more flexible model as specified in equation (2).  Second, and more fundamentally, the 
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market interest rate is a censored variable: it is only observed when the interest rate at which lenders 

are willing to lend is lower than the maximum interest rate that the borrower has specified.  Hence, 

the market interest rate could mechanically fall within a credit category if borrowers with higher 

credit scores within a credit category specify lower borrower maximum rates and the rate at which 

lenders are willing to lend has a random component. Such a decline would reflect borrower behavior 

rather than lender inference. To capture only lender behavior, we need to estimate how the offer 

rate, i.e., the uncensored interest rate at which lenders are willing to lend, varies with credit score 

within credit categories. If the loan occurs, the market rate is equal to the offer rate. If the listing 

remains unfunded, we infer that the offer rate exceeds the borrower maximum rate. To properly 

take this censoring issue into account, we will estimate the regression as a censored regression, 

where the censoring takes place at the listing-specific borrower maximum rate.  

Column (2) of Table 3 implements our preferred approach (equation (2) in the methodology 

section) and estimates directly the extent of inference that takes places.  While we allow for a flexible 

form that estimates inference separately for each credit category, we focus on the combined gamma 

as discussed in the methodology section. The results show that, on average, lenders are able to infer 

a third (0.33) of the difference in creditworthiness (along the dimension measured by credit score) 

between the most creditworthy and the least creditworthy borrowers within a given credit category. 

The large magnitude of our estimate of combined gamma suggests that, despite not being financial 

experts, lenders are collectively able to exploit other information provided on the Prosper site in 

order to infer creditworthiness. 

To understand the economic significance of this result, note that the αs and βs sum to 39 

percentage points. In order words, the mean offer rate falls by 39 percentage points as we go from 

the lowest credit score (520) to the highest (900), which corresponds to a 411 basis-point decline 

(=3900*40/(900-520)) for a typical 40-point credit category.  This decline in the offer rate is greater 

than the decline in the market interest rate because the censoring is much more severe in the lowest 

credit categories than in the highest credit categories.  In particular, only 1.8% of listings are funded 

in the lowest credit category while 30.9% of listings are funded in the highest credit category.  The 

inference estimate of 0.330 means that lenders infer about a third of the 411 basis-point decline in 

the offer rate from information other than credit category, which implies that they are willing to 

offer an interest rate that is 137 (= 0.330 × 411) basis points lower to the borrowers with the highest 

credit score within a credit category relative to the borrowers with the lowest credit score in that 

category, despite not observing exact credit score. 
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While we focus on the combined gamma, we should note that there is considerable variation 

in the gammas measuring inference within each credit category and that one can reject that they are 

all equal. The results from Column (2) show that all but one of the category-specific gammas are 

positive and that six of the seven gammas are statistically significant at the ten-percent level or 

better. The inference is the largest (0.45) for the highest credit category, but we caution against 

making too much of the comparisons between the separate gammas for each category since each 

individual estimate is not precisely estimated given the smaller sample sizes that one necessarily faces 

within each credit category. Our preferred approach is to therefore compare high and low credit 

categories by grouping individual ones, and we will do so later.  

 The fact that inference is incomplete (γ <1) implies that borrowers just below a category 

boundary pay a significantly higher interest rate than borrowers just above the boundary.  One may 

therefore expect that Prosper disproportionally attracts listings by individuals with credit scores in 

the lower ranges of each category, and Freedman and Jin (2008) present evidence consistent with 

such adverse selection.  Adverse selection, however, does not bias our estimates since we observe 

exact credit score and our estimator does not depend on the density of observations by credit score 

within a category. 

 

C. Robustness of Lender Inference: 

While the results in Table 3 suggest that lenders are able to infer a part of borrower 

creditworthiness (proxied by the credit score), one may raise the concern that this finding does not 

reflect inference but rather direct communication of the exact credit score by the borrowers to the 

lenders. We do not think such concerns are valid in practice for several reasons. First, Prosper 

prohibits any direct contact between borrower and lenders. While it does allow borrowers to post 

information in the listing and also has a facility for questions and answers (intermediated via 

Prosper), this information is unverified. Moreover, in an automated text search of listing text, we did 

not find any instance of borrowers’ reporting their credit scores. Additionally, in personal 

communications with Prosper staff we were told that great care was taken by Prosper to purge any 

personal references. Information such as credit score or social security numbers would be strictly 

unacceptable, and efforts were taken to ensure no such information was posted or seen. 

Nevertheless, as a robustness check, we also estimate lender inference in the sample period (prior to 
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February 12, 2007) when there was no facility for question and answers (Table 4, row 2).21 As the 

results show, we find that even in this sample period, the inference parameter gamma is 0.46. This 

confirms that our estimate of inference is not a result of direct communication but indeed due to 

inference by lenders. 

Another potential concern is that Prosper introduced several changes in its policy over the 

sample period and that these may, in turn, affect our inference estimates and interpretation. For 

example, one could imagine that suggested ranges provided by Prosper to the borrowers in setting 

the borrower maximum rate might impact the extent of inference. Also, Prosper introduced 

portfolio plans that could have a similar impact if the portfolio lenders were guided by Prosper. 

However, our results suggest these changes are not a concern in practice. In Table 4, rows 3 and 4, 

we estimate the gamma for the sample before and after these changes. We find that the combined 

gamma is similar both in the pre- and post change period. Another concern could be that borrowers 

in some states are subject to usury laws (Rigbi, 2009). These laws may create an artificial ceiling on 

the interest rates and impact the extent of inference. As a robustness check, we also estimate the 

gamma for the period without usury law restrictions, and we again find a gamma of 0.32 (row 5). We 

also carry out several other robustness checks. To address the concern that some borrowers are 

affiliated with groups where group members might know each other and share personal information, 

we also estimate the gamma for a sample restricted to borrowers that are not affiliated with any 

groups and find similar results (row 6). In addition, to make sure that the inference is not driven by 

learning about individual borrowers from previous listings or other loans availed by the same 

borrower (e.g., default observed in previous loans), we estimated the gamma for a sample restricted 

to first-time loans and listings (row 7) and to first-time loans (row 8). We again find similar results.  

Since our methodology relies on taking advantage of boundaries between credit categories and 

because the two extreme categories do not have boundaries on both sides, we also estimated the 

gamma excluding the top and the bottom credit categories and find that our results remain robust 

(row 9).  

The estimate of inference in our baseline specification draws both on the observed interest 

rate for the subsample of funded listings and the information contained in whether a listing is 

funded or not. In a final pair of robustness tests, we estimate inference if we only use one of these 

two sources of information. In row 10, we ignore information contained in the observed interest 

rate by estimating a censored probit of a dummy for whether the listing is funded on the same 
                                                 
21 For documentation of this implementation date, see http://www.prosper.com/help/topics/whats_new.aspx. 
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explanatory variables as in our baseline regression. In row 11, we ignore information contained in 

the funding decision by running a truncated regression on the subsample of funded listings. In both 

specifications, we estimate a statistically significant gamma that is similar in magnitude to our 

baseline estimate. 

In row 12, we estimate our baseline model using OLS for the subsample of funded listings.  

This is not strictly speaking a robustness test since the OLS regression does not properly account for 

censoring. We find a gamma of 0.39, suggesting that our estimate of overall inference would not be 

severely biased if we failed to correct for censoring on the borrower maximum rate. However, as 

discussed later, correcting for censoring turns out to be important in order to correctly decompose 

inference of credit score from different sources of information.  

Figure 4 presents an illustration of how combined gamma varies over time. We divide the 

data up into bi-monthly time periods and plot the gamma for each period. While, as expected, there 

is some variation given the sample periods, sizes, and policy changes, by and large, the inference in 

each period is substantial, and differences over time are within the margin of error shown by the 95-

percent confidence intervals. 

 

D. What Information Do Lenders Use to Infer Creditworthiness? 

While it is remarkable that lenders in a peer-to-peer market are able to infer a third of the 

variation in creditworthiness captured by credit score, what sources of information allow them to do 

so? As detailed in the methodology section, we can decompose our “inference parameter” gamma 

into the separate gammas for each of the variables that the borrower observes. We group 

information into two broad categories of interest: standard banking variables (variables generally 

used by banks) and non-standard variables (variables chosen by the borrower). Generally speaking, 

standard banking variables are more likely to be hard, verifiable, “screening type” variables, while 

non-standard variables are likely to be subjective, non-financial, potentially harder to verify, and 

more likely to behave like “signals.”  

The standard banking variables are readily coded, and we provided the details and summary 

statistics of variables included in this category in Table 1. Non-standard variables – the various 

“softer” pieces of information such as pictures, individual background, description, and online 

exchanges – while readily identified, are much harder to code in a way that is suitable for empirical 

analysis. For example, one may be able to code whether a listing has a picture or even attributes 

about the picture, but it is not clear to which attributes a particular lender may react.  
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However, a key strength of our strategy is that, provided we appropriately control for all the 

hard information, we do not need to code or specify the soft information if we are only interested in 

understanding how much a lender is able to infer from such information. The idea is that the 

residual “gamma” ( γ
Resid ) will reflect the inference contribution from all such variables. Before 

presenting the results, we should note two caveats that we discussed previously. First, the 

decomposition presented is for inference drawn for the dimension of creditworthiness that is 

captured by credit score. Thus, the contribution of a variable in drawing inference along the credit-

score dimension of creditworthiness need not equal its contribution to inference along a dimension 

of creditworthiness that is not captured by credit score. Second, if a particular variable impacts both 

the credit-score dimension of creditworthiness and another dimension, this may bias our estimate of 

the variable’s contribution to the credit-score dimension. We will overestimate its contribution if the 

variable impacts the other dimension of creditworthiness in the same direction as the dimension 

captured by credit score (since part of the inference which we attribute to the credit-score dimension 

is really due to the other dimension) and underestimate it otherwise. 

Table 5 presents the result of our decomposition. For the sake of brevity, we only present 

the combined inference parameter, gamma, in Table 5. The first column presents the results from a 

single regression (equation (5) in the methodology section) that decomposes the total combined 

gamma into components that are explained by specific variables in the listing. The next two columns 

present this decomposition separately for the low credit categories (HR, E, D, and C) and for the 

high credit categories (B, A, and AA).22 The last column presents the p-value from a test of whether 

the combined gamma is equal across the low and high categories.  

We start by presenting analogous results from our baseline specification in Table 3 (Column 

(2)). As before, the total combined gamma is 0.33.23 We find that the gamma for the lower credit 

categories is 0.25, while the gamma for the high credit categories is 0.41. An F-test rejects equality of 

estimates between the high and the low credit categories, suggesting that there is differential 

inference across credit categories. The next rows present the contributions that the standard banking 

and non-standard banking variables make to the total combined gamma. We report both the 

aggregate gammas for these sub-categories and the gammas for the variables within each sub-

                                                 
22 We chose this categorization as it roughly provides us with an equal number of loans in both categories. 
23 In the first line of Table 5, we report the sum of all the components of γ.  As noted in the methodology section, the 
decomposition of gamma into its components only holds in expectation in the case of a censored regression. As a result, 
the estimate of the sum of the components, 0.328 from equations (5) and (6), is close but not identical to the direct 
estimate of gamma, 0.330 from equation (2), that we presented in Table 3.  
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category that show the largest (in magnitude) inference. The Appendix Table presents the individual 

gammas for all the variables separately.  

Reading down the first column in Table 5, we see that of the total gamma of 0.328, most of 

the inference comes from standard banking variables (0.312 or 95%). The inference from the non-

standard banking variables is only 0.016 or 5%. However, part of the reason there is less inference 

drawn from non-standard banking variables is that gamma is negative for some of these variables, 

masking the positive contribution to inference of other non-standard banking variables. We revisit 

this issue of negative contributions to inference later in this section. We take away four main points 

from the decomposition of the total gamma and the comparison of this decomposition between 

high and low credit categories. 

First, in general, lenders learn more from standard banking variables, which are more 

financial and “hard,” than from variables that are voluntarily posted by borrowers. This is not 

unexpected since one would, ex-ante, think that the former are not only more directly related to a 

borrower’s creditworthiness but also are verified and therefore less subject to the possible “cheap 

talk” concerns of voluntarily posted and unverified information. Moreover, it is possible that the 

standard banking variables are more closely associated with the dimension of credit score captured 

by creditworthiness, although credit score is likely to be influenced by “softer” borrower attributes, 

as well. 

Second, in examining which variables are used by lenders to draw inferences among the 

standard banking variables, we find that most of the inference is driven by variables that traditionally 

proxy for the likelihood of borrower distress. The number of current delinquencies, the number of 

credit inquiries in the last six months, the amount delinquent, and the debt-to-income ratio are 

variables that have high inference content. Examining whether the inference from these variables is 

similar across the low and high credit categories, we find that the inference for current 

delinquencies, amount delinquent and number of credit inquiries in the last six months is greater in 

the lower credit categories. However, for the debt-to-income ratio, there is greater relative inference 

in the higher credit categories.  

To provide some insight into such differences in relative inference, we offer a mechanical 

explanation of why the magnitude of the inference changes for a given variable across the high and 

low credit categories. In the methodology section, we explained how each variable’s contribution to 

inference can be thought of as the product of two coefficients - the (partial) coefficient from a 

regression of interest rate on the variable (that reflects how lenders value this variable) and the 
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coefficient from a regression of the variable on credit score (that reflects how borrowers' 

attributes/choices are related to their credit score). Thus, inference may increase for a variable across 

credit categories if either (or both) of the coefficients increase. For example, in the case of current 

delinquencies, an examination of these coefficients shows that the large magnitude in lower 

categories is primarily driven by the fact that credit score is more strongly (negatively) associated 

with current delinquencies in the lower credit categories.  Conversely, debt-to-income accounts for a 

greater fraction of inference in the higher credit categories because the partial coefficient from a 

regression of interest rate on debt-to-income is greater in magnitude in higher credit categories. This 

reflects the fact that lenders place more weight on debt-to-income as credit score increases. 

The third main finding from the decomposition exercise is that inference from non-standard 

banking variables is relatively more important for lower credit categories, especially when we 

consider some of the specific variables (such as borrower maximum rate) in this category.24 This may 

not be surprising if one believes that (variation in) financial information is less revealing to 

distinguish between low-quality borrowers (e.g., differences between someone being delinquent ten 

times versus twelve may be less revealing than zero versus two times) This leaves more room in the 

lower credit categories to rely on non-traditional methods of screening. However, as evidenced by 

several variables that show negative inference, this also leaves more room for incorrect inferences 

being drawn by lenders. 

Among the coded non-standard variables, inference content is highest for the borrower 

maximum rate (the maximum interest rate the borrower is willing to pay to get the loan funded) - 

the average inference is 0.064 (or 19% of total inference) across all credit categories and is greater 

for lower (33.9%) than higher credit categories (10.2%). The fact that the borrower maximum rate 

generates much more inference than other information in the non-standard variables group is not 

surprising for two reasons. First, this information is verified. Second, and perhaps more importantly, 

it is likely to serve as a credible signal of creditworthiness. As one would expect, borrowers that post 

a lower borrower maximum rate have a lower probability of their listing being funded, even 

conditional on credit score (results not reported). Since more creditworthy borrowers likely have 

better “outside” borrowing options (since exact credit scores are observable by banks), it is less 

costly for them, relative to less creditworthy borrowers, to post a lower borrower maximum rate.  

                                                 
24 Note that since credit score is likely to be more directly influenced by hard information and standard banking 
variables, our estimate on importance of soft information likely represents a lower bound, and soft information may be 
more valuable along dimensions of creditworthiness other than credit score. 
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While establishing this as a separating equilibrium requires further assumptions that we do not have 

the data to test for, it does strongly suggest that such a single crossing property may in fact be 

generated in equilibrium. Examining the results in more detail shows that there is greater inference 

for borrower maximum rate in lower credit categories because these categories show a higher 

sensitivity of the interest rate to this borrower choice variable. 

The fourth main finding from Table 5 concerns the importance of inference from uncoded 

soft information (the “residual” inference). While the residual gamma is insignificant for the whole 

sample, we estimate a statistically significant residual gamma of 0.096 (39% of total inference) from 

uncoded sources in the lower credit categories. This suggests that, in the lower credit categories, 

lenders draw inferences from subjective listing content that we did not code. We find similar results 

when we estimate the “residual” inference using specifications where we use linear controls or cubic 

controls for all of our x variables (results not reported), suggesting that this estimate is robust to the 

form of the specification.  

We further note that not all measured inference is positive. For some variables, like amount 

requested, this negative inference likely reflects inference along other dimensions of creditworthiness 

since it is plausible that, holding credit score constant, larger loan amounts increase default 

likelihood.25 For other variables (to the extent that we believe lenders are driven by profit motives), 

this negative inference may be indicative of mistakes lenders make. An alternate interpretation could 

be that lenders do know that a borrower is more likely to default but still offer her a better interest 

rate due to charitable motives. Whether such incorrect or non-profit maximizing inference can be 

sustained in equilibrium is a more complicated question. However, it does suggest that there may be 

pitfalls and challenges to inference, particularly from (non-verified) information that borrowers 

choose to post.  

 

                                                 
25 Amount requested displays large negative inference in lower categories but large positive inference in higher 
categories. While we would normally interpret negative inference as reflecting systematic lender mistakes (for example, 
they incorrectly believe that a variable representing a negative borrower attribute is positively correlated with credit score 
and mistakenly offer lower interest rates for higher values of that variable), in the case of amount requested, we believe 
that this is due to the concern regarding our decomposition exercise, namely that amount requested is also likely to have 
an impact through a non-credit-score dimension of creditworthiness. Unlike other variables, which mostly proxy for a 
borrower’s attributes, amount requested is a feature of the loan. On the one hand, higher amount requested likely 
predicts higher credit score because creditworthy individuals may believe that they can ask for larger amounts (which is 
generally the case in our data). On the other hand, all else equal, one expects that those who borrow more are more 
likely to default because they face larger repayment obligations. Thus, amount requested affects interest rates both 
through the credit-score dimension of creditworthiness and through the loan-size dimension. Hence, we are likely to 
underestimate the degree of inference about creditworthiness from amount requested. In our discussions we therefore 
deemphasize amount requested, focusing instead on variables for which the inference estimate is less likely to be biased. 
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V. Conclusion 

Our results show that lenders in peer-to-peer markets are able to partly infer borrowers’ 

creditworthiness using the rich information set that these markets provide. Moreover, while lenders 

in these markets mostly rely on standard banking variables to draw inferences on creditworthiness, 

they also use non-standard or soft sources of information in their screening process, especially in the 

lower credit categories. In addition, the use of credible signals (like borrower maximum rate) in 

screening suggests that enhancing the opportunity for borrowers to post credible signals can further 

help in facilitating the screening process. While this finding is reassuring in that it suggests that these 

markets are not entirely influenced by “cheap” talk, there is the caveat that lenders in these markets 

may sometimes make incorrect inferences. 

The broader question, though, is to what extent peer-to-peer markets can complement 

traditional lenders such as banks. In a very narrow sense, one may argue that if the only thing these 

markets can infer is the credit score, then revealing the score would take away the need to make such 

inference. However, it is implausible to think that creditworthiness is fully captured by an 

individual’s credit score. We focus on credit score only because it provides us with a strategy to 

identify how much lenders can infer about a factor that reflects creditworthiness. To the extent that 

such inference is similar for other dimensions (besides credit score) that reflect creditworthiness but 

which may be much harder to quantify or verify, this paper suggests that peer-to-peer markets hold 

significant promise. Moreover, our results show greater lender inference from credible information, 

which suggests that modifications to the design of these markets (by facilitating such credible 

signals) may further improve screening from subjective information. The uncollateralized nature of 

lending and the ability of lenders to partly screen suggests that peer-to-peer markets can indeed 

complement existing lending models and improve access to credit, particularly for small individual 

borrowers who may otherwise be limited to costly sources of finance like payday lenders and credit-

card debt. How best to design these markets to further enhance their role in allocating credit is a 

promising direction for future enquiry. The current financial crises may provide the additional 

interest and impetus to do so.  
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Figure 1: Stylized Relationship between Interest Rate and Credit Score

This figure shows the stylized hypothesized relationship between a borrower's credit score and the market interest rate on her (funded) loan.

Figure 2: Relationship between Interest Rate and Credit Score

This figure shows a more realistic hypothesized relationship between a borrower's credit score and the market interest rate on her (funded) loan.
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Figure 4: Inference Over Time

Figure 3: Market Interest Rate and Credit Scores

This figure shows the "raw" relationship between a borrower's credit score and the interest rate on her funded loan. 

Each point in the graph plots the average interest rate over an eight-point range in credit scores. Solid lines separate 

the seven credit categories. Starting from left to right, the categories are: HR, E, D, C, B, A, AA. Lenders observe 

the borrower's credit category but do not observe the borrower's exact credit score. 

This figure shows our measure of inference, γ, for each two-month window from February 2007 to September 

2008. Dotted lines represent 95% confidence intervals for each two month γ estimate.
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Mean S.D. Mean S.D.

General

Credit Score 609.5 73.8 676.0 74.5

Credit Category Dummies

  Credit Category HR 0.343 0.068

  Credit Category E 0.164 0.074

  Credit Category D 0.178 0.173

  Credit Category C 0.136 0.211

  Credit Category B 0.082 0.183

  Credit Category A 0.055 0.140

  Credit Category AA 0.044 0.152

Loan Outcomes

Annual Lender Interest Rate 0.166 0.068

Fraction 1 or more months late 0.063

Fraction 2 or more months late 0.044

Fraction 3 or more months late 0.031

Fraction of Listings Funded 0.089

Standard Banking Variables

Amount Requested ($) 8015 6577 6761 5788

Number of Current Delinquencies 2.89 4.54 0.77 2.28

Number of Delinquencies, Last 7 Years 9.68 15.78 4.30 10.52

Number of Public Record Requests, Last 10 Years 0.57 1.20 0.33 0.83

Total Number of Credit Lines 25.61 14.57 24.30 14.29

Number of Credit Score Inquiries, Last 6 Months 3.71 4.45 2.38 3.35

Amount Delinquent ($) 3191 12662 855 4504

Bank Card Utilization (total balances/total limits) 0.63 0.42 0.54 0.37

Number of Public Records, Last 12 Months 0.07 0.34 0.03 0.22

Number of Current Credit Lines 8.52 6.08 9.70 5.89

Number of Open Credit Lines 7.51 5.41 8.34 5.22

Revolving Credit Balance ($) 13446 33874 16773 38030

Debt-to-Income Ratio 0.54 1.37 0.33 0.90

Fraction Homeowners 0.37 0.48

Credit History Age (years) 13.3 7.1 13.4 7.2

Employment Status Dummies

Full-Time 0.812 0.859

Part-Time 0.041 0.040

Self-Employed 0.096 0.074

Retired 0.028 0.020

Not Employed 0.023 0.008

Length of Current Employment Status (months) 20.91 51.90 22.73 53.52

Personal Annual Income Dummies

N/A or Unable to Verify 0.053 0.025

Not Employed 0.021 0.007

$1- $24,999 0.163 0.120

$25,000 - $49,999 0.402 0.372

$50,000 - $74,999 0.211 0.253

$75,000 - $99,999 0.078 0.117

$100,000+ 0.064 0.101

Table 1: Summary Statistics

All Listings Funded Listings
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Mean S.D. Mean S.D.

Non-Standard Variables

Borrower Maximum Rate 0.21 0.09 0.21 0.08

Duration of Loan Listing Dummies

3 Days 0.044 0.037

5 Days 0.046 0.055

7 Days 0.693 0.661

10 Days 0.218 0.247

Listing Category Dummies

Not Available 0.386 0.380

Debt Consolidation 0.281 0.262

Home Improvement Loan 0.024 0.033

Business Loan 0.098 0.100

Personal Loan 0.114 0.121

Student Loan 0.025 0.024

Auto Loan 0.017 0.017

Other 0.056 0.063

Bank Draft Annual Fee Dummy 0.010 0.007

Borrower Lists City of Residence Dummy 0.11 0.16

Borrower Provides Image Dummy 0.54 0.69

Characteristics of Listing Text

HTML Character Number 283 271 309 350

Text Character Number 963 716 1106 806

Average Word Length 4.63 0.58 4.59 0.55

Average Sentence Length 122.75 97.14 106.96 68.62

Number of Numerics 13.03 11.31 14.49 14.32

Percent of Words Misspelled 0.03% 0.03% 0.03% 0.04%

Number of Dollar Signs 8.98 5.78 8.49 7.25

Percent of Listing as Signs 0.23% 0.88% 0.46% 1.26%

Number of Characters in Listing Title 30.76 13.74 32.36 13.54

Member of Group Dummy 0.18 0.30

Group Leader Reward Rate Dummies

0% 0.916 0.867

0.25% 0.002 0.010

0.50% 0.015 0.046

0.75% 0.001 0.002

1.00% 0.034 0.047

1.50% 0.004 0.007

2.00% 0.019 0.017

3.00% 0.006 0.003

4.00% 0.003 0.001

Number of Friend Endorsements 0.324 0.769 0.519 0.973

Observations 194033 17212

For the sake of brevity, we do not provide summary statistics of 66 borrower occupation dummies and 52 borrower state of 

residence dummies (50 states, District of Columbia and Puerto Rico). However, these variables are included as controls in 

the specifications in Table 5 and in the Appendix tables. Definitions of variables that may not be self-explanatory are as 

follows: Percent of Listings as Signs  refers to the percentage of the listing text that is composed of non alpha-numeric signs, 

e.g. $/.,{}(). HTML Character Number  refers to the number of characters in the listing text used to specify html formatting 

and reflects the extent to which borrowers formatted the text of their listings. Public Records  includes information like 

bankruptcies, judgments, tax liens, state, and country court records, and, in some states, overdue child support, found in the 

borrowers' credit reports. Bank Draft Annual Fee Dummy  equals one if the borrower elected to pay a 1% annual fee charged 

for not using the electronic funds transfer option.

All Listings Funded Listings

Table 1 - Continued: Summary Statistics
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Dependent Variable:

Estimate (S.E.) (S.E.) (S.E.) (S.E.)

Combined γ 1.160 *** (0.378) 1.036 *** (0.145) 0.927 *** (0.154)

Regression Coefficients

Credit score/40 -0.010 *** (0.001) -0.012 *** (0.004)

Credit category 0.002 (0.004)

α2: Change between HR and E 0.003 (0.012) 0.007 (0.014)

α3: Change between E and D -0.006 (0.010) -0.009 (0.012)

α4: Change between D and C 0.002 (0.008) -0.005 (0.009)

α5: Change between C and B 0.011 (0.009) 0.002 (0.010)

α6: Change between B and A 0.000 (0.011) 0.001 (0.012)

α7: Change between A and AA -0.012 (0.012) -0.010 (0.015)

β1: Change within HR -0.017 (0.015) -0.022 (0.018)

β2: Change within E 0.007 (0.012) -0.004 (0.015)

β3: Change within D -0.009 (0.010) -0.001 (0.012)

β4: Change within C -0.025 ** (0.010) -0.017 (0.012)

β5: Change within B -0.012 (0.011) -0.011 (0.013)

β6: Change within A -0.011 (0.016) -0.021 (0.018)

β7: Change within AA -0.017 (0.023) -0.037 (0.028)

N 17212 17212 17212 17212

R
2 0.077 0.077 0.079 0.071

γ1 = β1/δ1 1.190 (0.824) 1.488 (1.090)

γ2 = β2/δ2 1.266 (1.456) 0.796 (2.313)

γ3 = β3/δ3 0.842 (0.638) 0.163 (1.334)

γ4 = β4/δ4 1.382 *** (0.363) 0.936 ** (0.424)

γ5 = β5/δ5 1.951 (1.675) 1.162 (0.919)

γ6 = β6/δ6 0.800 (0.629) 0.908 ** (0.375)

γ7 = β7/δ7 0.501 (0.511) 0.704 * (0.390)

δ1: Overall Change for HR -0.015 (0.010) -0.015 (0.012)

δ2: Overall Change for E 0.006 (0.008) -0.005 (0.010)

δ3: Overall Change for D -0.011 (0.007) -0.008 (0.008)

δ4: Overall Change for E -0.018 *** (0.007) -0.019 ** (0.008)

δ5: Overall Change for B -0.006 (0.008) -0.010 (0.009)

δ6: Overall Change for A -0.013 (0.011) -0.023 * (0.013)

δ7: Overall Change for AA -0.035 (0.022) -0.053 * (0.027)

p-value: αi=0 0.813 0.938

p-value: γi=1 0.671 0.832 0.976

Implied Coefficients and Tests

 Default = Loan is 2 

or more months late

 Default = Loan is 2 

or more months late

Default = 1 or more 

months late

 Default = Loan is 2 

or more months late

Coefficient Coefficient Coefficient Coefficient

This table examines whether credit score predicts creditworthiness as represented by default rates. Each specification includes 

listing month fixed effects to control for listing age. Column (1) shows marginal effects from a probit regression of default 

(defined as two or more months late) on credit score divided by average credit category size. Column (2) examines whether 

credit score is predictive of default after conditioning on credit categories.  Column (3) implements a more flexible 

specification that is the equivalent of Equation (2), Section 3 except with default rate as the dependent variable. Column (4) 

shows that similar results hold when we replicate Column (3) but define a loan to be in default if it is one or more months 

late. Results are also robust when default is defined as three or more months late. Standard errors are allowed to be clustered 

by borrower (some borrowers hold more than one loan) and are in parentheses with * significant at 10%; ** significant at 5%; 

and *** significant at 1%.

Table 2: Default Rates
(2) (3) (4)(1)
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Dependent Variable: Interest Rate

Estimate (S.E.) (S.E.)

Combined γ: Inference 0.330 *** (0.033)

Regression Coefficients

Credit score/40 -0.005 *** (0.001)

Credit category -0.022 *** (0.001)

α2: Change between Categories HR and E -0.038 *** (0.005)

α3: Change between Categories E and D -0.059 *** (0.005)

α4: Change between Categories D and C -0.049 *** (0.004)

α5: Change between Categories C and B -0.051 *** (0.005)

α6: Change between Categories B and A -0.031 *** (0.005)

α7: Change between Categories A and AA -0.042 *** (0.005)

β1: Change within Category HR -0.011 * (0.006)

β2: Change within Category E -0.011 * (0.007)

β3: Change within Category D -0.027 *** (0.005)

β4: Change within Category C 0.000 (0.005)

β5: Change within Category B -0.014 ** (0.006)

β6: Change within Category A -0.005 (0.007)

β7: Change within Category AA -0.052 *** (0.008)

N 17212 194033

R
2 0.492 0.431

γ1 = β1/δ1: Inference in Credit Category HR 0.229 * (0.120)

γ2 = β2/δ2: Inference in Credit Category E 0.189 * (0.099)

γ3 = β3/δ3: Inference in Credit Category D 0.332 *** (0.056)

γ4 = β4/δ4: Inference in Credit Category C -0.006 (0.107)

γ5 = β5/δ5: Inference in Credit Category B 0.253 *** (0.092)

γ6 = β6/δ6: Inference in Credit Category A 0.165 (0.192)

γ7 = β7/δ7: Inference in Credit Category AA 0.450 *** (0.055)

δ1: Overall Change for Credit Category HR -0.049 *** (0.005)

δ2: Overall Change for Credit Category E -0.060 *** (0.004)

δ3: Overall Change for Credit Category D -0.081 *** (0.004)

δ4: Overall Change for Credit Category E -0.050 *** (0.003)

δ5: Overall Change for Credit Category B -0.055 *** (0.004)

δ6: Overall Change for Credit Category A -0.031 *** (0.005)

δ7: Overall Change for Credit Category AA -0.115 *** (0.008)

p-value: γi=γ 0.002

p-value: γi=0 0.000

Table 3: Inferring Creditworthiness 

(2)

This table examines the ability of lenders to infer borrower credit score. Column (1) takes a simple approach and asks 

whether, conditional on the observable credit category, credit score predicts the interest rate. It estimates an OLS 

specification in which the sample is restricted to funded listings. Column (2) implements our baseline specification 

described in Equation (2), Section 3 and estimates the extent of inference that takes place using the full baseline 

sample, including unfunded listings. In Column (2) and all tables hereafter unless otherwise noted, all coefficient, 

combined, and implied estimates are based upon censored normal regressions with interest rate as the dependent 

variable. Standard errors are allowed to be clustered by borrower (some borrowers apply for more than one loan) and 

are in parentheses with * significant at 10%; ** significant at 5%; and *** significant at 1%.

Censored Regression

Implied Coefficients and Tests

(1)

Coefficient Coefficient

OLS
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(S.E.) N

0.330 *** (0.033) 194033

0.461 *** (0.115) 5933

0.352 *** (0.051) 64485

0.343 ** (0.038) 129548

0.317 *** (0.050) 68658

0.351 *** (0.036) 159359

0.419 *** (0.044) 93117

0.355 *** (0.034) 183455

0.250 *** (0.042) 194033

0.287 *** (0.045) 194033

0.385 *** (0.077) 17212

0.390 *** (0.033) 17212

Period without usury law restrictions on interest rates (Post 4/15/2008, 

excluding Texas and South Dakota)

(11) Truncated regression, sample restricted to funded listings

(10) Censored probit specification, dependent variable: funded dummy

Sample restricted to first time listings

Period after suggested borrower maximum rate and portfolio plans 

(Post 10/30/2007)

Combined γ

(2) Period without question and answers (Pre 2/12/2007)

Estimations using:

(4)

(3)

This table supports the robustness of our inference estimates from Table 3. Combined gammas are calculated according to 

Equation (2), Section 3. Row (1) shows estimates from Column (2) of Table 3 based upon our baseline specification. Row 

(2) restricts our sample to the period before public and private questions were allowed between borrowers and lenders  (pre 

February 12, 2007). This ensures that inference is measured from lender inference rather than from possible direct exchanges 

of credit score information between borrowers and lenders. Note that our baseline sample excludes the pre February 12, 2007 

period because credit category cutoffs changed on February 12, 2007. Rows (3) and (4) restrict our sample to the periods 

before and after Prosper added (a) a web application to suggest borrower maximum rates to borrowers and (b) an application 

allowing automatic bids on loans through lender portfolio plans (pre and post October 30, 2007). Representatives from 

Prosper have confirmed that Prosper does not use exact credit score in its calculations of suggested borrower maximum rate 

or its implementation of lender portfolio plans. Row (5) restricts our sample to the period after Prosper became exempt from 

most state usury laws which capped the maximum interest rate (post April 15, 2008) and excludes the two states, Texas and 

South Dakota, for which usury laws are still enforced. Row (6) restricts the sample to listings posted by borrowers with no 

group affiliations. Rows (7) and (8) restrict the sample to listings that represent the first listing or first funded listing (loan) 

for borrowers, respectively. These tests confirm that our measurements of inference do not depend on information about the 

past repayment and listings history of borrowers who apply for more than one loan. Row (9) uses the full sample, but 

presents a combined gamma that excludes the lowest and highest credit categories, HR and AA. Row (10) shows the results 

from a censored probit specification with the dummy variable for whether the listing is funded as the dependent variable. 

Row (11) estimates a truncated regression using the funded listings sample, i.e. the sample where interest rate is not censored 

by the borrower maximum rate. Row (12) shows the results from an OLS specification with interest rate as the dependent 

variable, restricted to the funded listings sample. OLS does not account for the censoring of interest rates in unfunded listings 

by the borrower maximum rate. Standard errors are allowed to be clustered by borrower (some borrowers apply for more 

than one loan) and are in parentheses with * significant at 10%; ** significant at 5%; and *** significant at 1%.

Table 4: Robustness of Measure of Inference

OLS specification, sample restricted to funded listings

(8) Sample restricted to first time loans

(9)

Period before suggested borrower maximum rate and portfolio plans 

(Pre 10/30/2007)

Coefficient

Baseline sample (All listings 2/12/2007 - 10/16/2008)(1)

Sample restricted to listings with no group affiliation

(7)

Baseline sample, measure of inference (γ) calculated excluding top and 

bottom credit categories

(12)

(6)

(5)
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(4)

Low = High    

p-value 

0.328*** *** 0.244*** *** 0.417*** *** 0.001

(0.027) (0.044) (0.028)

Decomposition of γ

0.312*** 0.210*** 0.421*** 0.000

(0.020) (0.020) (0.034)

0.079 *** 0.110 *** 0.045 *** 0.000

(0.006) (0.010) (0.007)

0.054 *** 0.073 *** 0.034 *** 0.000

(0.003) (0.004) (0.003)

0.051 *** 0.085 *** 0.015 *** 0.000

(0.006) (0.010) (0.006)

0.048 *** 0.001 0.099 *** 0.000

(0.007) (0.008) (0.011)

-0.005 -0.124 *** 0.122 *** 0.000

(0.005) (0.006) (0.009)

0.085 *** 0.065 *** 0.106 *** 0.226

(0.016) (0.017) (0.028)

0.016 0.034 -0.004 0.557

(0.032) (0.045) (0.044)

0.064 *** 0.083 *** 0.043 *** 0.000

(0.004) (0.005) (0.007)

-0.026 *** -0.048 *** -0.002 0.000

(0.003) (0.005) (0.005)

-0.016 *** -0.028 *** -0.003 *** 0.000

(0.002) (0.004) (0.001)

-0.015 *** -0.028 *** -0.002 0.000

(0.002) (0.004) (0.002)

-0.031 *** -0.042 *** -0.019 *** 0.025

(0.005) (0.008) (0.006)

0.040 0.096 ** -0.020 0.066

(0.032) (0.045) (0.044)

2.5 All Other Non Standard Variables

This table decomposes our estimate of inference presented in Table 3, Column (2) into sources of inference. The 

decomposition is based upon the baseline censored normal specification with the addition of 216 control variables, each 

interacted with seven credit category dummies, such that the coefficient on each control variable is allowed to vary by 

credit category. For the sake of brevity, we only present the estimate of inference parameter, gamma, and its 

decomposition. Column (1) presents the overall combined gamma, while the next two columns, (2)-(3), present the 

combined gamma separately for the lower  credit categories (C, D, E, and HR) and the higher credit categories (AA, A, and 

B). Column (4) presents the p-value from a test of whether the combined gammas for the lower and higher credit categories 

are equal. The top row presents our estimate of gamma. The rows below decompose the gamma in the top row into two 

groups: 1. standard banking variables and 2. nonstandard variables, and further break those down into subgroups 1.1 - 1.6 

and 2.1 - 2.6. Please refer to the Appendix for the full decomposition results. Standard errors are allowed to be clustered by 

borrower (some borrowers apply for more than one loan) and are in parentheses with * significant at 10%; ** significant at 

5%; and *** significant at 1%.

All Listing Content (γ)

1.4 Debt to Income Ratio

1.2 Number of Credit Inquiries, Last 6 

months

2.2 Listing Category

1.5 Amount Requested

2.6 Other (Residual) Inference

1. Standard Banking Variables

1.1 Number of Current Delinquencies

2. Non Standard Variables

2.1 Borrower Maximum Rate

2.3 Member of Group

1.3 Amount Delinquent

1.6 All Other Standard Banking 

Variables

2.4 Group Leader Reward Rate

Table 5: Decomposing Inference
(2) (3)(1)

Gamma Gamma Low Cat 

(1-4)

Gamma High 

Cat (5-7)
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(4)

Low = 

High    

p-value

Standard Banking Variables

No. of Current Delinquencies 0.079 (0.006) *** 0.110 (0.010) *** 0.045 (0.007) *** 0.000

No. of Credit Inquiries, Last 6 Months 0.054 (0.003) *** 0.073 (0.004) *** 0.034 (0.003) *** 0.000

Amount Delinquent 0.051 (0.006) *** 0.085 (0.010) *** 0.015 (0.006) *** 0.000

Debt-to-Income Ratio 0.048 (0.007) *** 0.001 (0.008) 0.099 (0.011) *** 0.000

Amount Requested -0.005 (0.005) -0.124 (0.006) *** 0.122 (0.009) *** 0.000

No. of Delinquencies, Last 7 Years 0.033 (0.004) *** 0.043 (0.006) *** 0.023 (0.005) *** 0.006

No. of Public Records, Last 10 Years 0.023 (0.002) *** 0.018 (0.004) *** 0.028 (0.003) *** 0.056

Total No. of Credit Lines -0.004 (0.005) -0.008 (0.009) 0.001 (0.005) 0.391

Bank Card Utilization Ratio -0.003 (0.011) 0.008 (0.006) -0.015 (0.021) 0.290

No. of Public Records, Last 12 Months 0.000 (0.002) -0.001 (0.002) 0.000 (0.003) 0.896

No. of Current Credit Lines 0.004 (0.008) 0.006 (0.015) 0.002 (0.006) 0.807

No. of Open Credit Lines -0.002 (0.008) -0.001 (0.014) -0.002 (0.006) 0.945

Revolving Credit Balance -0.011 (0.007) -0.025 (0.010) *** 0.005 (0.010) 0.028

Homeownership Dummy 0.024 (0.006) *** 0.011 (0.005) ** 0.039 (0.010) *** 0.013

Credit History Age 0.007 (0.005) 0.010 (0.007) 0.004 (0.007) 0.558

State of Residency (52 Dummies) -0.013 (0.005) *** -0.024 (0.007) *** -0.002 (0.006) 0.024

Employment Status (5 Dummies) 0.002 (0.002) 0.007 (0.004) * -0.004 (0.001) ** 0.009

Length of Current Employment Status -0.003 (0.001) ** -0.005 (0.002) ** -0.001 (0.001) 0.059

Personal Annual Income (7 Dummies) 0.014 (0.005) *** 0.012 (0.006) ** 0.016 (0.009) * 0.711

Borrower Occupation (62 Dummies) 0.011 (0.006) ** 0.011 (0.008) 0.011 (0.007) 0.990

Missing Data (2 Dummies) 0.001 (0.002) 0.003 (0.002) 0.000 (0.003) 0.464

This table shows the decomposition of our estimate of gamma presented in Table III, Column (2). The decomposition results 

are divided into standard banking variables, presented here, and non-standard variables, presented in the next page. The 

decomposition is based upon the baseline censored normal specification with the addition of 216 control variables, each 

interacted with seven credit category dummies, such that the coefficient on each control variable is allowed to vary by credit 

category. All controls except for dummy variables are entered as quadratics. Amount delinquent  and revolving credit balance 

are introduced as logs with dummies for values equal to zero and values less than or equal to 100. Missing Data  consists of 

two dummies equal to one when subsets of the standard banking variables are missing in the data (observations with missing 

standard banking variables account for less than one percent of our sample). For the sake of brevity, we only present the 

estimate of inference parameter, gamma, and its decomposition. Column (1) presents the overall combined gamma, while the 

next two columns, (2)-(3), present the combined gamma separately for the lower credit categories (C, D, E, and HR) and the 

higher credit categories (AA, A, and B). Column (4) presents the p-value from a test of whether the combined gamma for the 

lower and higher credit categories is equal. Standard errors are allowed to be clustered by borrower (some borrowers apply for 

more than one loan) and are in brackets with * significant at 10%; ** significant at 5%; and *** significant at 1%.

Appendix: Decomposing Inference, Part I (Standard Banking Variables)
(1) (2) (3)

Gamma Gamma Low Cat 

(1-4)

Gamma High 

Cat (5-7)
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(4)

Low = 

High    

p-value

Non-Standard Variables

Borrower Maximum Rate

0.064 (0.004)

***

0.083 (0.005)

***

0.043 (0.007)

***

0.000

Listing Category (8 Dummies) -0.026 (0.003) *** -0.048 (0.005) *** -0.002 (0.005) 0.000

Member of Group Dummy -0.016 (0.002) *** -0.028 (0.004) *** -0.003 (0.001) *** 0.000

Group Leader Reward Rate (9 Dummies)

-0.015 (0.002) *** -0.028 (0.004) *** -0.002 (0.002) 0.000

Duration of Loan Listing (4 Dummies)

-0.011 (0.002) *** -0.009 (0.003)

***

-0.012 (0.003) *** 0.447

Bank Draft Annual Fee Dummy 0.000 (0.001) 0.000 (0.001) 0.000 (0.001) 0.924

Borrower Lists City Dummy -0.001 (0.001) -0.001 (0.002) 0.000 (0.000) 0.623

Borrower Provides Image Dummy -0.002 (0.001) ** -0.004 (0.001) *** 0.000 (0.001) 0.044

HTML Character No. 0.000 (0.002) -0.001 (0.002) 0.001 (0.002) 0.542

Text Character No. -0.005 (0.002) *** -0.006 (0.004) -0.005 (0.001) *** 0.808

Average Word Length 0.002 (0.001) 0.004 (0.003) -0.001 (0.001) 0.075

Average Sentence Length -0.003 (0.001) ** -0.007 (0.002) *** 0.002 (0.001) ** 0.001

No. of Numerics -0.003 (0.004) 0.000 (0.003) -0.006 (0.008) 0.510

Percent Misspelled -0.001 (0.001) -0.001 (0.002) 0.000 (0.001) 0.502

No. of Dollar Signs -0.003 (0.004) -0.003 (0.003) -0.003 (0.008) 0.983

Percent of Listing as Signs 0.003 (0.002) ** 0.004 (0.003) 0.002 (0.001) 0.570

No. of Characters in Listing Title -0.001 (0.001) -0.002 (0.001) 0.000 (0.001) 0.292

No. of Friend Endorsements -0.007 (0.002) *** -0.016 (0.003) *** 0.003 (0.003) 0.000

Other Residual Inference 0.040 (0.032) 0.096 (0.045) ** -0.020 (0.044) 0.066

This table shows the decomposition of our estimate of gamma presented in Table III, Column (2). The decomposition results 

are divided into standard banking variables, presented in the previous page, and non-standard variables, presented here. The 

decomposition is based upon the baseline censored normal specification with the addition of 216 control variables, each 

interacted with seven credit category dummies, such that the coefficient on each control variable is allowed to vary by credit 

category. All controls except for dummy variables are entered as quadratics. For the sake of brevity, we only present the 

estimate of inference parameter, gamma, and its decomposition. Column (1) presents the overall combined gamma, while the 

next two columns, (2)-(3), present the combined gamma separately for the lower credit categories (C, D, E, and HR) and the 

higher credit categories (AA, A, and B). Column (4) presents the p-value from a test of whether the combined gamma for the 

lower and higher credit categories is equal. Standard errors are allowed to be clustered by borrower (some borrowers apply for 

more than one loan) and are in brackets with * significant at 10%; ** significant at 5%; and *** significant at 1%.

Appendix: Decomposing Inference, Part II (Non-Standard Variables)
(1) (2) (3)

Gamma Gamma Low Cat 

(1-4)

Gamma High 

Cat (5-7)
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Appendix: Sample Listing
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Appendix: Sample Listing - Continued
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