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Abstract

Background: The purpose of this study is to: i) develop a computational model of promoters of human histone-
encoding genes (shortly histone genes), an important class of genes that participate in various critical cellular
processes, ii) use the model so developed to identify regions across the human genome that have similar structure
as promoters of histone genes; such regions could represent potential genomic regulatory regions, e.g. promoters,
of genes that may be coregulated with histone genes, and iii/ identify in this way genes that have high likelihood
of being coregulated with the histone genes.

Results: We successfully developed a histone promoter model using a comprehensive collection of histone genes.
Based on leave-one-out cross-validation test, the model produced good prediction accuracy (94.1% sensitivity,
92.6% specificity, and 92.8% positive predictive value). We used this model to predict across the genome a number
of genes that shared similar promoter structures with the histone gene promoters. We thus hypothesize that these
predicted genes could be coregulated with histone genes. This hypothesis matches well with the available gene
expression, gene ontology, and pathways data. Jointly with promoters of the above-mentioned genes, we found
a large number of intergenic regions with similar structure as histone promoters.

Conclusions: This study represents one of the most comprehensive computational analyses conducted thus far on
a genome-wide scale of promoters of human histone genes. Our analysis suggests a number of other human
genes that share a high similarity of promoter structure with the histone genes and thus are highly likely to be
coregulated, and consequently coexpressed, with the histone genes. We also found that there are a large number
of intergenic regions across the genome with their structures similar to promoters of histone genes. These regions
may be promoters of yet unidentified genes, or may represent remote control regions that participate in regulation
of histone and histone-coregulated gene transcription initiation. While these hypotheses still remain to be verified,
we believe that these form a useful resource for researchers to further explore regulation of human histone genes
and human genome. It is worthwhile to note that the regulatory regions of the human genome remain largely
un-annotated even today and this study is an attempt to supplement our understanding of histone regulatory
regions.
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Background
Gene regulation represents a complex process that
determines which genes would express in a particular
cell, at a particular time, and by how much. Such suited
to purpose gene regulation programs are essential for
normal functioning of cells in all living organisms. In
order to understand these biologically important
mechanisms of gene regulation, it is crucial to unravel
genes that are likely coregulated with each other. Such
genes need not have the same function, but they gener-
ally coordinate their activities to provide proper cell
response on different conditions and stimuli. In this
study we focus on the histone-encoding gene (histone
genes, henceforth) coregulation problem. Histones have
been recognized to play a crucial role in various cellular
functions related to DNA packaging into nucleosomes,
chromatin composition, and gene transcription and reg-
ulation [1]. Using a computational methodology we have
conducted a genome-wide study with the aim to dis-
cover regions that have similar structures as promoters
of histone genes. Our assumption is that two genes with
sufficiently similar promoter structures have an
increased chance to be coregulated and consequently
coexpressed. This stems from the understanding that
one of the key point of gene regulation happens at the
transcription stage where the promoters play the most
crucial role. To determine these potential regulatory
regions, we developed a statistical model to capture reg-
ulatory signals in the promoters of human histone
genes, which we then used to analyze the human gen-
ome. This was done using Dragon Promoter Mapper
(DPM) tool, a Bayesian network based framework we
developed earlier [2] for modeling promoter of specific
classes of genes that may be coregulated. The resulting
histone promoter model showed an excellent perfor-
mance in leave-one-out cross-validation tests (94.1%
sensitivity, 92.6% specificity, and 92.8% positive predic-
tive value (ppv)). When applied the tool on a genome-
wide scale, we were able to not only recover correctly
the majority of the histone genes used for training, but
also predict a large number of other genes that share
similar promoter structures with histone genes and we
thus believe that they are likely to be coregulated and
thus coexpressed with the histone genes. These results
matched well with the known experimental data and we
found them to be statistically significant.
To the best of our knowledge this is the most com-

prehensive computational analysis conducted thus far
on a genome-wide scale where genes coregulated with
the histone genes were searched for based on the pro-
moter model derived from an extensive collection of
histone genes. Previous studies in this area have mostly
been conducted on either single histone genes [1,3-16]

or a handful of them [17-19]. There have been studies
of similar nature in the past that have been conducted
on other gene types, though they are very few probably
due to unavailability of sufficient, relevant and clean
data. Some of these include study done on muscle speci-
fic genes by Wasserman et al [20].

Methods
We used the standalone version of DPM tool [2] to
develop a Bayesian network (BN) based histone promo-
ter model by exploiting several features that may reflect
the biology associated with these promoters. These fea-
tures include putative transcription factor binding sites
(TFBSs) present in the promoters, their order of occur-
rences, their locations, and the mutual distances among
them. These features essentially encode the modular
arrangement of the binding sites in the promoters
which could be critical to transcription regulation func-
tions, as having been shown earlier [17-23]

Data collected
Using Entrez Gene (http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db=gene), we identified 86 human histone
genes whose information was available in the database.
Of these 86 genes we randomly selected 68 (79%) for
training our histone promoter model. This was done in
order to see if our model was able to predict the left-
out genes during the whole genome scan analysis. Using
the UCSC Genome Browser (http://genome.ucsc.edu),
we then collected promoter segments of the 68 training
histone genes covering a region of [-500,+100] with
respect to the TSS (refer to Additional file 1 for the col-
lected sequences), which was based on their most 5’
transcript. This region around the TSS is known to con-
tain a large majority of binding sites that regulate his-
tone genes [3,17-19]. We also collected 68 background
sequences of the same length, selected randomly from
the human genome. Collectively, these 136 promoter
and background sequences formed the training
sequences which were used to train our model. We
used the balanced number of promoter and background
sequences in our training set to eliminate the effect of
class bias in the model prediction. In order to see the
effect of bias of background sequence selection on the
model performance, we analyzed the training sequence
data containing 10 separate background sequence sets
collected randomly from the genome. Using UCSC Gen-
ome Browser, we also collected for further analysis 25
human chromosomal sequences (build HG18), Chr1
through Chr22, ChrM, ChrX and ChrY.
In addition, we collected 10 position weight matrices

(PWMs) of binding boxes and TFBSs known to be pre-
sent in histone promoters. Selection of PWMs/binding
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sites was based on the experience we gained on histone
promoter binding sites in our previous analysis of his-
tone promoters [24]. The binding sites we used were,
TATA-box, CAAT-box, GC-box, E2F binding site, ATF/
CREB binding site, Octamer1-box, AC-box, H4TF2
binding site, RT1-box, and TG-box. The PWMs of these
boxes and binding sites were compiled by merging non-
redundant information gathered from the biological lit-
erature, Transfac database [25], and the ab-initio motif
discovery analysis we conducted earlier [24]. The col-
lected PWMs were then tuned by trial and error for
their cutoff threshold parameters on the training on his-
tone promoter sequences; the threshold was set based
on whether the PWM was able to identify 90% of the
known binding sites in histone promoters. The PWMs
with parameters used are shown in the Additional file 2.

Model building
Using the selected PWMs we scanned the training
sequences with the help of DPM tool and extracted
from these sequences our features of interest (motifs,
their order of appearance and strand location, and
mutual distance between them). All the training
sequences contained three motifs or more. We used the
extracted features (feature table shown in Additional file
3) to build a Bayesian network model of histone promo-
ter structure, as shown in Figure 1. The model con-
tained 24 nodes including, one Class node and 23 child
nodes. The Class node represents the classes of training
sequences, and 23 child nodes represent the features
associated with each of the motif positions (eight in
total) occurring in a training sequence (Mi - motif at
position i, and Si - its strand (+/-) for i = 1, .., 8,
i increases away from the rightmost end of a sequence,
and L(i+1)_i - mutual spacer length between motifs for
i = 1, .., 7). A motif position is defined as the relative
position of motif occurrence in a sequence with respect

to its rightmost (5’) end; thus the first motif that occurs
in a sequence from its right end is assigned the first
position, similarly the second motif is assigned the sec-
ond position and so on. The number of motif positions
is determined by DPM from the maximum number of
motifs present in any training sequence. If no motif
occurs in a training sequence for a particular motif posi-
tion, the associated nodes in the model are characterized
by a missing value in the feature table. The model nodes
and their states are shown in detail as model definition
in Additional file 4. Additional details on the DPM
modeling methodology are given in [2].
The promoter model we developed has a predefined
structure which reflects the background biology. We
relied on the hypothesis that if the promoters of genes
have a more conserved order of binding sites with
respect to the TSS, their strand location, and mutual
distance between them, then there are more chances
that genes with such promoters are coregulated. To sim-
plify the model we introduced several assumptions
about the dependence relationships between different
features in the histone promoters. For example, an aug-
menting edge between the feature nodes assumes that:
i) there is a direct dependence of the first order between
adjacent binding sites (i.e. a binding site depends
directly only on the preceding binding site), and ii) the
mutual distances between the binding sites and their
strands depend on the associated binding sites them-
selves. Each feature node was restricted to have a maxi-
mum of one augmenting edge pointing to it. In order to
see the effect of dependence relationships between our
model features on the performance, we compared our
model with a Naïve Bayes model which has no depen-
dence relationships between the features conditional on
the Class node.
We estimated the model parameters from the training

sequence feature vectors by the EM algorithm [26]
using uniform Dirichlet parameter priors. The trained
model was used to classify a query feature vector to one
of the two predefined training sequence classes (histone
or background). This was done by assigning a probabil-
ity value to the query instance for its belonging to one
of the two target classes.

Genome analysis
As a preprocessing step, using the ‘long sequence proces-
sing’ module of DPM, we scanned the entire genome
with the PWM of the CAAT-box. This is because
CAAT-box was the most frequently occurring pattern in
the training histone promoters (60 out of 68 histone
promoters). Whenever the CAAT-box was detected on
the genome (Figure 2), a segment [-425,+175] with
respect to the motif was extracted for further analysis if
its GC-nucleotide content was over 37% (which was the
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Figure 1 Bayesian network model of histone promoter structure.
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minimum value in our training promoter set). The seg-
ment coordinates with respect to the CAAT-box were
chosen based on the fact that the CAAT-box usually
occurs around 75 nucleotides upstream of the TSS in
the histone promoters, which means it is located in the
proximal promoter region upstream of the TATA-box
(~30 nucleotides upstream of TSS) [27]. Biologically, the
CAAT-box is a commonly found promoter element that
is involved in control of temporal and spatial expression
of the associated gene. The genomic segments obtained
after the CAAT-box genome scan were all separately
scanned with all the 10 PWMs we used in this study.
After the PWM scanning, those segments that contained
three or more motifs were short listed and fed to the
DPM system as query sequences. The DPM system
applied the developed histone promoter model to the
query sequences, and classified each query sequence to
one of the two predefined classes, histone or non-his-
tone. This way, we obtained regions on the genome that
DPM predicted as the class of histone promoters.

Prediction mapping with RefSeq genes
Each of the genomic segment predicted by DPM as his-
tone promoter class was then checked for any gene
annotation available for this region using RefSeq human
gene data, build HG18, in UCSC Genome Browser. The
RefSeq data contained entries for 20,580 unique human
genes. The genes whose given TSS was overlapped/cov-
ered by the predicted segment on the same strand as
the gene in question, were analyzed further.

Coexpression analysis
We conducted a coexpression analysis on those RefSeq
genes whose promoter regions were predicted by our
model as ‘histone class’. Based on promoter similarity,
we expect that these genes could be coregulated with
histone genes. Coexpression could be considered as an
indirect, although not necessarily always a correct way,
of reflecting coregulation. Coexpression analysis was
done to see if we could relate promoter structure simi-
larity to gene expression profile similarity. Typically, we
validated two hypotheses in our analysis. First, in

general, genes sharing similar promoter structure with
histone genes tend to have a higher coexpression level
with histone genes compared to those genes that do not
share promoter structure with histone genes. Second is
in a way a reverse of the first, genes highly coexpressed
with histone genes tend to share similar promoter struc-
tures with histone genes as well.
To make the coexpression analysis, we downloaded

GNF Atlas2 gene expression dataset, which is composed
of 79 different human tissues with 2 technical replicates
for each tissue, and 33,689 probe sets with 22,283 probe
sets contained in Affymetrix HG-U133a platform, and
the other 11,406 probe sets designed specially by Affy-
metrix [28]. The data was first reduced to mono-tissue
by taking average of each probe set between two techni-
cal replicates. Then, the data was log-transformed and
median centralized in each array. Finally, all entries in
a single array were normalized to be 1 as a sum-of-
squares (see Additional file 5 for downloaded raw data,
and Additional file 6 for data after pre-processing). In
our GNF expression dataset there were 93 probe sets
that belong to histone genes (referred to as histone
probe set) with their sequences completely contained in
histone genes. In addition, there were 1207 probe sets
(denoted as histone coexpression set), that we found by
mapping GeneIDs from RefSeq and chip annotation of
GNF Atlas2, to be fully covered by 1,453 genes (denoted
as histone coregulation set) that we predicted with his-
tone-like promoter structure genome-wide (see Results
section for details; also Additional file 7 for the lists of
probe sets).

Analysis of Biological terms
For genes that we identified as having similar promoter
structure as histone promoters, we tested for enriched
Gene Ontology (GO) annotation and protein interaction
networks with GOEAST [29] and Ingenuity Pathway
Analysis (IPA) system (http://www.ingenuity.com). It
was expected that these genes, sharing similar promoter
structures with histone genes, would also share with
them some molecular functions and biological processes
annotation.

Chromosomal sequence

Genome Scan

CAAT-box

Forward read

Forward read

175 bp425 bp

Extracted segments

Figure 2 Extraction of segments by scanning the genome using the CAAT-box PWM.
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Results
We tested the performance of our histone promoter BN
model on the training dataset based on leave-one-out
cross-validation. We tested the model on 10 different
training sets each with different background sequences
and found the performance to be robust with low variabil-
ity (overall accuracy: 91.3±2.0% with sensitivity: 91.8±2.1%,
specificity: 90.7±3.7%, and positive predictive value (ppv)/
precision: 90.9±3.2%); the best performance on an indivi-
dual dataset achieved is: overall accuracy of 93.4%, with
sensitivity of 94.1%, specificity of 92.6% and ppv of 92.8%
(the best performing dataset is given in Additional file 1).
We also found that our model with feature dependencies
outperformed a Naive Bayes model which assumes no
dependencies between the feature nodes (overall accuracy
of Naïve Bayes model was: 88.5±2.1% with sensitivity: 86.9
±2.3%, specificity: 90.0±2.7%, and ppv: 89.7±2.6%). We
used our best performing model dataset further for the
genome scan analysis.

In the genome analysis, we extracted 2,710,508 geno-
mic segments based on the CAAT-box predictions by
DPM in the initial genome scan. Of these query seg-
ments we extracted around the CAAT-box motif, DPM
qualified 1,018,182 segments with three motifs or more
(refer Additional files 8, 9). Of these, DPM predicted
200,180 as histone class (refer Additional files 10, 11).
Of these histone class predictions, 30,611 predictions
were associated with 12,899 gene transcripts and their
distribution across different chromosomes is shown in
Figure 3 (details in Additional file 12). Thus, the major-
ity of the histone-class predictions (169,569) fell in the
intergenic regions. The distance between these inter-
genic predictions with respect to their nearest genes is
shown in Figure 4 and varies from a maximum median
value in chromosome Y to a minimum value in chromo-
some 19. We also observed that many of our predictions
overlapped with each other. The 200,180 histone class
predictions formed 102,670 non-overlapping clusters;
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equivalent to one histone-class cluster prediction per
29,220 bases.
The 12,899 gene transcripts that were associated with
DPM predictions correspond to 8,486 known genes. We
observed that a large number of predictions that are
associated with these known genes fell within their loci,
particularly their introns, as can be observed from Fig-
ures 5 and 6. This suggests that there could be regula-
tory regions within the gene loci. Similar observations
have previously been reported [30]. Of 8,486 genes that
are associated with our predictions, there are 1,453
genes (2,009 transcripts) that form our histone coregula-
tion set, whose promoter regions along with the TSS
were covered/mapped by our 2,486 predictions (refer to
Additional file 13 for details). These 1,453 genes in the
histone coregulation set included 63 histone gene pro-
moters and 1,390 non histone gene promoters that con-
tain the CAAT-box. Of 63 histone promoters, 53 (84%)
were part of the training data (refer Table 1), while the
remaining ten were from the left-out histone promoters.
Thus 77% of 13 histone promoters not used for training
were identified by our predictions. In addition, there
were two training histone genes (IDs: 94239, 255626)
whose TSSs were missed by a narrow margin of 14 and

30 base pairs respectively, though still, we were able to
predict a large part of their proximal promoter region.
Thus, we were able to correctly recognize a large num-
ber of histone promoters from across the genome that
contained CAAT-box (63 out of 73 histone genes: 53
out of 60 training histone genes, and 10 out of 13 left-
out histone genes).
In our genome analysis, a large number of genomic
regions were predicted by DPM as histone class with
high probabilities (>0.9). Such regions included, as
expected, a large majority of promoters of histone genes
(57 of 63) and those of other genes (535 of 1,390); high
probability values suggest that the promoters of these
genes share certain similarity with histone promoters
and these genes thus may have higher likelihood of
being coregulated with histone genes.
In order to see how predictions were associated with

genes, we plotted the number of our predictions a gene
was associated with for the following categories: i) over-
lap TSS, ii) prediction within transcript, iii) intergenic,
and iv) all categories together. For intergenic prediction
category, we considered genes closest to the prediction.
The results of this analysis are shown in Figure 7. We
observed that there were many genes mapped by several
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predictions in all these categories: the maximum num-
bers being 9 for overlap TSS, 70 for within transcript,
204 for intergenic, and 204 for all categories together
(see Additional file 14 for details). These regions could
possibly be related to the regulatory mechanism of the
respective genes.
To validate the hypothesis that in general genes shar-

ing similar promoter structure with histone genes tend
to have a higher coexpression level compared to those
that do not share such similarity, we tried to estimate
the most significant coexpression with histone probe
sets for each probe set in the GNF chip dataset. For
this, Pearson’s centered correlation coefficient (CC) was
calculated between probe sets pairwise. The maximum
CC (denoted as maxCC) between a probe set and any of

the 93 histone probe sets was then used to indicate the
desired coexpression level between that probe set and
histone probe sets. Figure 8 shows the distribution of
the calculated maxCCs. All probe sets on the chip were
classified into two groups based on whether they were
covered by the genes predicted as histone class or not,
which are shown in Figure 8 as predicted and non-pre-
dicted, respectively; there were 1,207 probe sets in the
GNF dataset that were covered by 1,453 genes (histone
coregulated set) predicted as histone class. The mean
values of the two populations were 0.516, with 95% con-
fidence interval (CI) from 0.506 to 0.526, and 0.427,
with 95% CI from 0.426 to 0.428, respectively. The t-test
score of the difference between the mean of the two
populations was -17.164, with p-value<0.0001, which
suggests that the predicted group had a coexpression
profile significantly different (in our case higher) com-
pared to the non-histone-predicted group even under a
very strict statistical significance control. Figure 8 also
shows the box-plot for maxCC calculated for each his-
tone probe with respect to the other probes in the his-
tone group (mean value being 0.58, with 95% CI from
0.54 to 0.62), which indicates that the mean of histone
group is higher than the predicted group which is
expected since histone genes are generally known to
express in a fairly synchronized manner.

Table 1 Summary of training set and prediction results
for histone genes

# of histone genes predicted in genome scan

total 86

with CAAT-box 73 63

training set 68

training set with CAAT-box 60 53

left-out 18

left-out with CAAT-box 13 10

Figure 7 Distribution of prediction mapping with genes. GeneIDs (represented in the graph by their notional indices; refer Additional file 14 to
see actual geneIDs) on the left have higher number of mapped predictions.
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To validate the converse hypothesis that genes highly
coexpressed with histone genes also tend to share some
similarity in promoter structure with histone genes, we
performed a random test on highly coexpressed genes.
10000 groups of 94 probe sets were randomly selected.
For each group, 93 probe sets were treated as histone
probe sets and the remaining one was treated as a test
probe set to estimate the background of maxCC. The
previously calculated maxCC values for probes were
then converted into p-values by comparing with the
background. These p-values were further converted into
the false discovery rate (FDR) [31]. Using a threshold of
0.05 on FDR, we found that there were 141 highly co-
expressed probe sets. Out of these probe sets, 65 shared
similar promoter structure as histone probe sets while
76 did not. Based on the hypergeometric distribution,
we found that the enrichment in genes with promoters
similar to histone genes is statistically significant
(p-value of 2.12E-55, and corrected p-value for multipli-
city testing of 7.13E-51; with hypergeometric parameters
of N=33,596, n=141, K=1,207, k=65), thereby validating
our hypothesis.
Results of the biological term analysis conducted on

our putative/predicted list of 1,453 putative histone-cor-
egulated genes are shown in Table 2, which lists the
top-10 GO terms returned by GOEAST in the three
large GO categories, namely biological process, cellular
component and molecular function (see Additional files
15, 16, 17, 18 for details). As expected, biological pro-
cesses and molecular functions requiring histone activ-
ity, including nucleosome assembly (0006334),
nucleosome organization (0034728), DNA packaging
(0006323), chromatin assembly (0031497), DNA binding
(0003677), and nucleic acid binding (0003676), are
highly ranked. This suggests that many of our putative

histone-coregulated genes also co-function or participate
in the same processes as histone genes. The metabolic
regulation of nucleotide is another branch of terms with
statistical significance (Figure 9a). The process of cell
cycle regulation is also enriched (Figure 9b), which is
also expected, since histone regulation plays a critical
role in cell proliferation [1].
Ingenuity Pathway Analysis (IPA) analysis returns a list
of closely associated networks, as well as molecular and
cellular functions with the predicted genes. The top
ranked networks include cell cycle, DNA replication,
gene expression, cellular assembly and organization, and
tissue development (see Additional file 19 for details).
Figure 10 shows the top ranked network. It involves for
example essential cell cycle regulator, CDK2, and cyclins
A and B, central DNA replication regulator, RNA poly-
merase II, and central DNA synthesis regulator E2F.
The significantly enriched functions by IPA includes,
cell cycle, gene expression, cellular movement, cellular
growth and proliferation and DNA replication (Figure
11), which is consistent with the result of GO term
enrichment, and further support our hypothesis that
genes with similar promoter structure as histone genes
tend to coregulate with them.

Discussion and conclusion
In this study, we developed a computational promoter
structure model of human histone genes, an important
class of genes that play a crucial role in various cellular
processes, such as gene transcription, regulation, chro-
mosome condensation, recombination and replication
[1]. The model we developed performed as per our
expectation and gave good cross-validation prediction
accuracy. In addition, the model was also able to identify
a large number of regions across the human genome

Figure 8 Distribution of CC between Predicted and Non-Predicted probe sets.
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that have similar structure as histone promoters. These
regions include most of our training and left-out histone
gene promoters, and suggest 1390 (1453 all predicted
gene promoters less 63 histone gene promoters) unique
promoters whose genes are likely to be coregulated with
histone genes.
Our genome analysis also revealed that a large num-

ber of the intragenic predictions (which all had three
motifs or more within a span of 600 nucleotides)
mapped with the introns located between the coding
exons (Figure 6). This suggests that intronic regions
might have regulatory function for these genes.
Although not validated, these regions may be worth

exploring further. Similar observations have also been
reported before [30]. In addition, we found that there
are some genes associated with a large number of pre-
dictions (Figure 7). This bias suggests a more complex
regulatory mechanism of these genes. We also observed
that there were no predictions on chromosome M. This
suggests that the mitochondrial genome contains no
gene coregulated with the histone genes. This is in con-
cordance with the fact that mitochondrial genome is
free of histones [32] and does not pack into chromatin,
which is in contrast to nuclear chromosomes that pack
into chromatin with the help of histones.
Our expression analysis demonstrates that genes

whose promoter structures were similar to those of his-
tone genes are likely to be ‘more’ coregulated/coex-
pressed (higher correlation) with them compared to
those genes that did not share that similarity
(p-value<0.0001). We also found that our pool of 1,453
genes, predicted to be coregulated with histone genes,
contained statistically significant number of genes that
also coexpressed with histone genes with high correla-
tion. Histone genes are known to have a widespread
expression in tissues, like housekeeping genes, both in
developmental and differentiated cell-lines [1,9]. This
widespread expression pattern of histone genes may be
due to the fact that histone proteins play a critical role
in variety of chromosomal processes [1], suggesting
many genes that are coregulated with histone genes.
Overall, our set of 1,453 genes represents possible can-
didate histone-coregulated genes. We need to emphasize
here that coexpression is considered an indirect, though
not necessarily completely correct way, of reflecting
coregulation.
Our biological term analysis reveals that several genes

from our putative list of 1,390 histone coregulated genes
share many biological annotation terms amongst them-
selves. Many of these terms are known to be associated
with the histone activity description, indicating that
these predicted genes may also have biological function
and processes related to histone genes. Thus, there
appears a relationship between promoter structure simi-
larity and biological annotation term similarity. This
suggests that many of these genes could possibly share
similar regulatory mechanism/biological behavior which
is also indicative from our coexpression analysis.
In our analysis, we also found that a large majority of

histone genes (73 of 86) contain CAAT-box in their
promoters, which suggests that histone genes have a
strong regulatory and functional relationship with the
general transcription factor NF-Y that binds to CAAT-
box. It is interesting to note that NF-Y is a trimer com-
plex comprising YA and two histone H2A-H2B like
YB-YC subunits [33], and that NF-Y is known to have a
close constitutive association with core histone proteins

Table 2 Top GO terms enriched by GOEAST

GO ID GO TERM P-Value

Biological Process

GO:0006334 nucleosome assembly 3.81E-27

GO:0034728 nucleosome organization 5.08E-27

GO:0006323 DNA packaging 8.63E-27

GO:0031497 chromatin assembly 2.57E-26

GO:0065004 protein-DNA complex assembly 2.82E-25

GO:0006333 chromatin assembly or disassembly 9.14E-25

GO:0006996 organelle organization 3.86E-17

GO:0034621 cellular macromolecular complex subunit
organization

2.01E-16

GO:0006325 chromatin organization 2.14E-15

GO:0034622 cellular macromolecular complex assembly 4.93E-15

Cellular Component

GO:0043229 intracellular organelle 9.23E-38

GO:0043227 membrane-bounded organelle 1.75E-37

GO:0043226 organelle 1.79E-37

GO:0043231 intracellular membrane-bounded organelle 2.76E-37

GO:0044424 intracellular part 1.32E-35

GO:0005622 intracellular 4.57E-34

GO:0005634 nucleus 2.81E-33

GO:0000786 nucleosome 5.46E-31

GO:0032993 protein-DNA complex 1.40E-29

GO:0044446 intracellular organelle part 5.47E-24

Molecular Function

GO:0003677 DNA binding 6.43E-25

GO:0003676 nucleic acid binding 7.34E-24

GO:0005488 binding 2.39E-08

GO:0015093 ferrous iron transmembrane transporter
activity

1.13E-05

GO:0030528 transcription regulator activity 9.42E-05

GO:0005515 protein binding 6.41E-04

GO:0003747 translation release factor activity 9.13E-04

GO:0008079 translation termination factor activity 9.13E-04

GO:0003690 double-stranded DNA binding 1.07E-03

GO:0043566 structure-specific DNA binding 1.55E-03
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of the chromatin complex and can sometimes substitute
some of them for functionality [34]. NF-Y is also known
to play a key role in the transcription regulation of a
large number of genes and is believed to activate about
25% of eukaryotic genes [33].
Functional CAAT-box core (i.e. CCAAT) is known

to be extremely conserved in the human genome [33].

In our genome-wide scan, we identified 1,355,254 per-
fect match ‘CCAAT’ sites; this is equivalent to 4,500
nucleotides per prediction. Based on our histone class
predictions, we estimate that there could be about
200,000 putative CAAT-box sites in the genome
equivalent to one prediction per about 31,000 nucleo-
tides. We also observed that the frequency of the

Figure 9 (a) Enriched GO term branch of nucleotide metabolism; (b) Enriched GO term branch of cell cycle regulation.
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Figure 10 Top ranked network enriched by the predicted gene list with IPA.

Figure 11 Enriched functions with IPA.
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CAAT-box predictions per nucleotide in genes and
their promoter regions was nearly six times higher
than that in the intergenic regions (assuming 3% of
human genome comprises genes and their promoters).
This significant bias of the CAAT-box in different
genomic regulatory regions has previously been
observed [33]. Most of the CAAT-box sites in the gen-
ome still remain uncharacterized [35] and this study
provides candidates that could be used by researchers
for experimental verification.
Human genome remains largely uncharacterized even

today, particularly with regard to annotation of regula-
tory regions and their functions. The reason for this
may be attributed to the complexity of the problem.
Our study is an attempt to characterize the human gen-
ome in the context of histone gene regulation. The
methodology that we have demonstrated in this study
with CAAT-box can potentially be used to analyze regu-
latory regions that are associated with other target gen-
eral transcription factors that may have wide spread
activity. Our analysis has resulted in a freely accessible
dataset of putative genomic regulatory regions with spe-
cific similarity in structure to histone promoters, which
we believe is worth exploring further. Apart from being
possible false cases, these regions may in part represent
regulatory regions (such as promoters, enhancers, silen-
cers and others) associated with genes that are both
known and that are possibly yet to be discovered.
Further investigations are required for validating func-
tionality of these regions.
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