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WORKSHOP 

How Not to Lie with Statistics: Avoiding 
Common Mistakes in Quantitative 
Political Science * 

Gary King, New York University 

This article identifies a set of serious theoretical mistakes appearing with troublingly 
high frequency throughout the quantitative political science literature. These mistakes are all 
based on faulty statistical theory or on erroneous statistical analysis. Through algebraic and 
interpretive proofs, some of the most commonly made mistakes are explicated and illus- 
trated. The theoretical problem underlying each is highlighted, and suggested solutions are 
provided throughout. It is argued that closer attention to these problems and solutions will 
result in more reliable quantitative analyses and more useful theoretical contributions. 

One of the most glaring problems with much quantitative political sci- 
ence is its uneven sophistication and quality. Mistakes are often made but 
rarely noticed. In journal submissions, conference presentations, and stu- 
dent papers, problems occur with even more frequency. Having observed 
this situation for a few years, I noticed several patterns. First, the same 
mistakes are being made or "invented" over and over. Second, to refer a 
substantively orientated political scientist to an article in Econometrica, The 
Journal of the American Statistical Association, or even Political Methodol- 
ogy is to give advice that either is not helpful or is not followed. These 
problems are more than technical flaws; they often represent important theo- 
retical and conceptual misunderstandings.' However, in most cases, there 
are relatively simple solutions that can reduce or eliminate bias and other 
statistical problems, improve conceptualization, make the analysis easier to 
interpret, and make the results more general. 

In order to address these concerns, this paper presents proofs and 
illustrations of some of the most common statistical mistakes in the politi- 
cal science literature, along with theoretical arguments and suggested 

*An earlier version of this article first appeared at the annual Political Science Method- 
ology Society conference, Berkeley, California, July, 1985. I appreciate the comments from 
the participants at that meeting, particularly those of Christopher Achen and Nathaniel 
Beck. Thanks also to my colleagues at New York University, particularly Larry Mead, 
Bertell Ollman, and Paul Zarowin. Arthur Goldberger, Herbert M. Kritzer, AM R. Mc- 
Cann, Charles M. Pearson, Lyn Ragsdale, the editors, and the anonymous reviewers were 
also very helpful. 

I An example of a minor technical mistake is using ordinal level independent variables 
with statistics that assume interval level data. I refer to this as "minor" because it usually 
(although not always) has little substantive consequence and because it does not represent a 
conceptual misunderstanding. 
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corrections. It specifically omits problems with the newest and fanciest 
statistical techniques for two reasons. First, the problems considered be- 
low form the theoretical and statistical foundation to the more sophisti- 
cated methodologies; finding and filling cracks in the foundation should 
logically and chronologically precede the painting of shingles and shut- 
ters. Second, the great variety of newer techniques are being used by 
relatively few political scientists; thus, any criticism of the new techniques 
will apply only to a small audience. Although important, I will leave the 
newer techniques for a future paper. 

For each quantitative problem, I describe (1) the mistake, (2) the proof, 
and (3) the interpretation. The proofs, appearing in footnotes or appendices 
when excessively technical, are formal versions of, as well as algebraic or 
numerical evidence for, the assertions made in my discussion of the mis- 
take. Emphasis here is on the intuitive, so generality is often sacrificed in 
order to improve conceptual understanding. The final section includes a 
brief summary and gives implications of mistakes in the context of proposed 
solutions. Some sections are too brief to be divided into this triad and are 
therefore combined. This sort of methadological retrospective has been 
done in other disciplines, but although we can learn from some of these, 
most do not address problems specific enough to political science research. 
(See, for example, Leamer, 1983a; Smith, 1983; Friedman and Phillips, 
198 1; and Hendry, 1980; Gurel, 1968).~ 

Over three decades ago, Darrell Huff (1954) explained, in a book by 
the same name, How to Lie With Statistics. Because of the systematic 
precision required, we should realize by now that it is a lot harder (know- 
ingly or not) to lie (and get away with it) with statistics than without them. 

Regression on Residuals 

The Mistake. Suppose that y were regressed on two sets of independent 
variables XI  and ~ 2 . ~  The coefficients to be estimated are in the parameter 
vectors p l  and P2 in model 1: 

E(Y IXl,X2) = X I P I  +X2P2 (1) 

The standard and appropriate way to estimate P I  and pz in model 1 is by 
running a multiple regression of y on XI  and X2. The result 

j l = X l b l  +Xzbz+e (2) 

' I  do not cite every methodologically flawed political science work in this paper because 
the purpose here is to improve future research and to facilitate critical reading of all research. 
There is little gained by berating those on whose research we are trying to build. 

The word "regressed" is sometimes misused. Reading a regression equation from left to 
right, we say, "the dependent variable is regressed on the independent variables." In the text, y 
is the dependent variable; X ,  and X I  each represent a set of several independent variables. 
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is the least squares (LS) estimator. The sample estimates in equation 2 are 
used to infer to the population parameters in equation 1.  

Now consider an (incorrect) alternative procedure, called here the re- 
gression on residuals (ROR) estimator. This is a method of estimating p I and 
Pz often "invented" by first regressing y on XI,  resulting in this equation: 

where by is the first ROR estimator. 

We then regress e l ,  the residuals, on the second set of explanatory variables, 
X2, yielding 

where b; is the second ROR estimator. 

The mistaken belief is that b; from the second regression in equation 
4 is equal to bz from equation 2; that is, since we have "controlled" for XI 
in equation 3, the result is the same as if we had originally computed 2. As 
is demonstrated in the proof appearing in appendix A, this is not true. 
The ROR estimator by in equation 3 is a biased estimate of P I ,  since the 
equation does not control for Xz. This is the well-known omitted vari- 
ables bias.4 Since el-the residuals from equation 3 and the dependent 
variable in equation 4-is calculated from the biased ROR estimator by, 
it too is biased. Thus, it follows that b; is also biased, since it is calculated 
from the regression of the biased e l  on the second set of explanatory 
variables x ~ . ~  

The Interpretation. Except for two very special cases, the ROR estima- 
tor is not the same as the ordinary least squares estimator and by itself has 
no useful interpretation. b* is also a biased estimate of P in model 1. In 
order to estimate p l  and pz correctly in model 1, both sets of variables XI  
and X2 should be put in the regression simultaneously. This gives an esti- 
mate ( b l )  of the influence of XI  on y (controlling for Xz), and an estimate 
(bz) of Xz on y (controlling for XI). 

An implication of this result is that one should not make too much of 
any interpretation of the residuals from a regression analysis. If it appears 
from an analysis of the residuals that some variable X3 is missing, then X3 
may be missing, but it is not possible to draw fair conclusions about the 

"he bias does not occur when either pz = 0 or XI  and X2 are uncorrelated or both. 
'Sometimes this process is continued: The second set of residuals e2 is regressed on 

another set of explanatory variables, X,, producing another ROR estimator and another set of 
residuals. This process has been extended to many stages. but I only consider the first two in 
the text. In the multi-stage ROR estimator, the bias is confounded even further. 
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influence of X 3  on y unless X 3  were actually measured and the full equa- 
tion were estimated. 

An example is Achen's (1 979) result that "Normal Vote" calculations 
are inconsistent: the Normal Vote was determined by a two-step process, 
roughly analogous to using the ROR estimator. 

In the statistical literature, the ROR estimation procedure is called 
"stepwise least squares." However, "stepwise regression" is very different 
from this procedure-although it is no less problematic.6 

The Race of the Variables 

In this section, the use of standardized coefficients ("beta weights"), 
correlation coefficients (Pearson's correlation), and R ("the coefficient of 
determination") are challenged. In most practical political science situa- 
tions, it makes little sense to use these statistics. They do not measure what 
they appear to; they substitute statistical jargon for political meaning; they 
can be highly misleading; and in nearly all situations, there are better ways 
to proceed. 

The Race (1): Standardized Fruit 

The Mistake: Apples, Oranges, and Perceptions. Imagine a situation 
where a researcher wanted to explain y, the number of visits to the doctor 
per year. The explanatory variables were X I ,  the number of apples eaten per 
week, and XZ, the number of oranges eaten per week. The multiple regres- 
sion equation was then estimated to be: 

6Stepwise regression (which has been called "unwise regression" [Leamer, 19851 or 
might be called a "Minimum Logic Estimator"), allows computer algorithms to replace 
logical decision processes in selecting variables for a regression analysis. There is nothing 
wrong with fitting many versions of the same model to analyze for sensitivity. After all, the 
goal of learning from data is as noble as the goal of using data to confirm a priori hypothe- 
ses. However, some a priori knowledge, or at least some logic, always exists to make 
selections better than an atheoretical computer algorithm. Edward Leamer ( 1  983b, p. 320) 
has noted, "Economists have avoided stepwise methods because they do not think nature is 
pleasant enough to guarantee orthogonal explanatory variables, and they realize that, if the 
true model does not have such a favorable design, then omitting correlated variables can 
have an obvious and disastrous effect on the estimates of the parameters." At the very least, 
stepwise regression, even if occasionally useful for special purposes, need not be presented 
in published work (see Lewis-Beck, 1978). The use of stepwise regression has caused an 
additional curious mistake. It is often said that the order in which variables are entered into 
a regression equation influences the values of the coefficients. A cursory look at the equa- 
tions used in the estimation (or at a sample computer run) will show that this is wrong. 
What does change is dependent upon the order variables are entered is the marginal in- 
crease in the R' statistic. 
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For every additional apple one eats per week, the average number of visits 
to the doctor per year decreases by one and a half. For each additional 
orange one eats, they decrease by one quarter of a visit. 

This hypothetical researcher now would like to make a statement 
about the comparative worth of apples and oranges in reducing doctor 
visits. He then asks the resident political science methodologist whether 
she can help him compare apples and oranges. The methodologist says that 
the answer depends upon the researcher stating his question more pre- 
cisely. If the researcher means: "I have only enough money for one apple or 
one orange, and I want to know which will make me healthier," then the 
answer is probably the apple. But suppose an apple costs 50 cents, while an 
orange costs only five cents. In this case, the researcher might ask, "What is 
the best use of my last dollar?" Here the decision would have to be in favor 
of the orange: For one dollar spent on two apples, doctor visits would 
decrease by about three, whereas the same dollar spent on 20 oranges 
would decrease doctor visits by five on average. 

Assuming the question is stated precisely enough, these comparisons 
make some sense. But they make sense only because there is a common unit 
of measurement-a piece of fruit or an amount of money. Suppose then that 
the researcher told the methodologist that he had torn off the computer 
printout just prior to the last coefficient estimate. The real equation, he 
explained, includes X3, the respondent's perception of doctors as beneficial, 
measured on a scale ranging from 1 (not beneficial) to 10 (very beneficial). 
The estimated equation should have appeared as this: 

i=  10 - 1.5XI - o.25X2 + 2x3 (6) 

The researcher now asks whether this means that perceptions are "more 
important" than apples. After all, he says, 2 is greater than 1.5. Any 
methodologist worth her 8087 chip would object to this, she asserts. In 
fact, were one to take this comparison to its logical extreme, one would 
conclude that perceiving doctors as more detrimental is more health- 
producing than eating an apple. Although both regressors seek to explain 
the same dependent variable, they are neither measured on, nor can they 
be converted to, meaningfully common units of measurement. 

This is precisely the point: Only when explanatory variables are on 
meaningfully common units of measurement is there a chance of compari- 
son. If there is no common unit of measurement, there is no chance of 
meaningful comparison. 

However, there is another sense in which even "common-unit" com- 
parisons are unfair. The apple coefficient, for example, represents the effect 
of apples (holding constant the influence of oranges and perceptions). The 
estimated coefficient for oranges has a different set of control variables 
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(since it includes apples and not oranges). This may make a comparison 
between apples and oranges more difficult, if not logically impossible. 

The Mistake Continued: Standardized Fruit. Convinced about not 
comparing unstandardized coefficients, our hypothetical researcher pro- 
poses using the standardized coefficients on his computer printout. The 
methodologist retorts that, if it is of little use to compare apples and percep- 
tions, then it is of considerably less use to compare standardized apples and 
standardized perceptions. Standardization does not add information. If 
there were no basis for comparison prior to standardization, then there is no 
basis for comparison after standardization. 

A relatively common rebuttal is that for explanatory variables with 
unclear or difficult-to-understand units of measurement, standardized co- 
efficients should increase interpretability. The problem is that if the origi- 
nal data were meaningless, then the standardized regression coefficients 
are precisely as meaningless; if standardized coefficients do not add infor- 
mation, they certainly do not add meaning. "To replace the unmeasurable 
by the unmeaningful is not progress" (Achen, 1977, p. 806). 

Using a superscript "s" to denote standardized variables, I present the 
results for our hypothetical case:' 

We now must interpret equation 7 to mean, for example, that as we eat one 
additional standard deviation of apples, the number of visits to the doctor 
decreases by nine tenths of a standard deviation-not a very appealing 
conceptualization. 

Three observations: First, standardizing makes the coefficients sub- 
stantially more difficult to interpret. Second, standardization still does not 
enable us to compare this first effect to the one-half standard deviation 
increase in doctor visits resulting from a one standard deviation increase 
in perceptions of doctors. 

Third, and most serious, while the original coefficients are estimates of 
the relationships between the respective explanatory variables and the de- 
pendent variable (controlling for the other explanatory variables), the stan- 
dardized variables are measures of this relationship as well as of the variance 
of the independent variable. Since researchers are typically interested in 
measuring only the relationship, or at least interested in the two separately, 

'There are two methods that can produce the same standardized coefficients: (1) stan- 
dardize each of the original variables (subtract the sample mean and divide by the sample 
standard deviation) and run a regression on these standardized variables; or (2) run a regres- 
sion and multiply each unstandardized coefficient by the ratio of the standard deviation of 
the respective indepe~dent variable to the standard deviation of the dependent variable. 
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it makes little sense to use standardized variables. A simple numerical proof 
will demonstrate this point.' 

The Proof: Imagine a simple experiment where only three observa- 
tions on one dependent and one independent variable are taken. The ob- 
servations are y' = (5, 5, 6) and X'  = (2, 4, 4). Calculated from these three 
observations with a constant term included, the regression is: 

and the standardized coefficients are: 

y S =  0.50XS 

Suppose further that another year went by, and another data point was 
collected on y (9.5) and on X (20). Because this random draw worked out 
well, the unstandardized coefficients in equation 8 do not change at all with 
the introduction of this additional observation. However, the new observa- 
tion increases the sample standard deviation of X from 1.16 to 8.39 (which is 
what one would generally expect as n increases). Although this did not 
change the original coefficients in equation 8, the standardized coefficient 
nearly doubles in the four observation case (compare equations 9 and 10): 

Under situations with different variances of the independent variables 
but identical relationships, the standardized coefficient is constrained only 
to have the same sign as the unstandardized coefficient. Standardized 
coefficients may be either under- or over-estimates. This intuitive proof 
extends directly to situations with multiple independent variables. 

The Interpretation. In summary, standardized coefficients are in gen- 
eral (1) more difficult to interpret, (2) do not add any information that may 
help to compare effects from different explanatory variables, and (3) may 
add seriously misleading information. The original, unstandardized coeffi- 
cients are meaningful and are not subject to these problems, although they 
generally cannot be compared for importance. 

There are two important qualifications to these points. First, if one 
must include a variable that is difficult to interpret as a control, then 
perhaps standardizing just this variable would capitalize on the standard- 
ized coefficient's simpler descriptive properties (Blalock, 1967a). This par- 
tial standardization procedure is certainly better than standardizing all 

' k r n  and Mueller (1976) also show that changes in the covariances of the included 
variables and of the variances of the included and excluded variables in a system of equations 
also affect the standardized (but not the unstandardized) coefficients. 
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the  variable^.^ Second, some argue that standardized measures seem to be 
the more natural scale for variables like test scores.1° For example, Har- 
gens (1976) argues that standardized coefficients can sometimes be struc- 
tural parameters. Although Kim and Ferree (1981) successfully refute 
most of this argument on theoretical grounds, there is one sense in which it 
may be correct for some studies. To make this point, it is useful to consider 
a very different type of standardization commonly used and generally 
accepted in economic studies of time series data. 

The raw consumer price index (CPI,) is not usually included in regres- 
sion models for two reasons. First, the series is nonstationary and may, there- 
fore, lead to spurious findings. Second, for example, an increase in the price 
of a typical market basket of food from $10.00 to $1 1.00 is likely to have 
more of an influence on any dependent variable than if the increase were 
from $100.00 to $10 1.00. For both of these reasons, the proportional change 
in CPI, is used; this "standardized" measure is commonly called the infla- 
tion rate. l '  In this case, the standardized variable is usually considered more 
natural and substantively meaningful than the "unstandardized" CPI, . 

In a similar manner, subtracting the sample mean from a variable under 
analysis and dividing it by the sample standard deviation may be the more 
natural measure for some concepts, particularly for some psychological 
scales and attitudinal measures. In part, it may even be a matter of personal 
taste and custom (Blalock, 1967b). However, decisions about whether each 
variable is to be standardized should be made and justified on an individual 
basis rather than "a habitual reliance on the standardized coefficients" (Kim 
and Ferree, 198 1, p. 207). Just as we should not routinely calculate propor- 
tional changes for every variable in a time series analysis, variables in cross- 
sectional analyses should not be automatically standardized. 

A more important and final point is that most times scholars are not 
interested in finding out which variable will win the race. Most often it is 
theoretically "good enough" to say that even after controlling for a set of 

'If the dependent variable is too difficult to understand, then I would give up on the 
regression, collect better data, or try to figure out a more meaningful interpretation. 

''AS an example of the problem this sometimes causes, consider the Educational Testing 
Service's (ETS's) standardized Graduate Record Examination (GRE). University admission 
offices across the country make important decisions based in part on small differences in 
scores on this exam, whereas ETS reports that the GRE can only correctly distinguish 
students who are more than one hundred points apart (on a scale from 200 to 800) two out of 
three times (i.e., a 66% confidence interval!). Perhaps if this score were not standardized or if 
there were a more meaningful substantive interpretation, we would be better prepared to use 
GREs for admission decisions. 

' I  The most intuitive way to calculate the inflation rate is as (CPI, - CP1,- I)/CPI,.I, but a 
nearly exact measure, which for technical reasons is actually better and is used most every- 
where, is log(CP1,) - log(CP1, I). See King and Benjamin (1985) for a political application. 



674 Gary King 

variables (i.e., plausible rival hypotheses, possible confounding influences), 
the variable in which we are interested still seems to have an important 
influence on the dependent variable. This is precisely the empirical evi- 
dence for which we search to substantiate or refute our theoretical expecta- 
tions. Usually, little political understanding is gained by hypothesizing a 
winner in a race of the variables. 

The Race (2): The Correlation Problem 

The Mistake. Many great things are attributed to the simple correla- 
tion coefficient. It purportedly needs to assume covariation, while regression 
must assume causation. The specific statistical assumptions are thought to 
be less severe than for regression. It is said to be a better guide when one's 
theory argues only that "the variables generally go together" rather than 
there being a "one-to-one, cause and effect relationship." It also supposedly 
makes results easier to interpret. 

Each of these statements is false. There are several approaches to de- 
scribing why these common arguments are invalid (Tufte, 1974). Two are 
most useful for present purposes. 

The Proof: Consider, first, the case of a standardized coefficient on one 
independent and one dependent variable. Through some simple algebraic 
manipulation, it can be shown that this standardized coefficient is equal to 
the correlation coefficient.12 Thus, every argument that applies to the stan- 
dardized regression coefficient, applies also to the correlation coefficient. 

Next, consider the population parameters to which the sample correla- 
tion attempts to infer. The most likely relevant probability distribution is 
the bivariate normal, which has five parameters: the marginal mean and 
variance for each variable and p, the population correlation coefficient. 
The problem is that if r were considered an estimator of p we would need to 
assume that x and y were drawn from a bivariate normal distribution. 
Since the marginal distributions of a bivariate normal distribution are 
normally distributed, we would need to make all the assumptions of re- 

" With no loss of generality, assume each variable has a mean of zero. This proof demon- 
strates that the standardized coefficient (b ' )  for one independent and one dependent variable is 
equal to the correlation coefficient (r): 

=+ = , -- 
- o x ,  4 y ;  

For the case of multiple independent variables, standardized coefficients are not the same as 
correlation coefficients or partial correlation coefficients. The results presented here therefore 
are not completely general. but the substantive conclusions and recommendations still apply. 
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gression and, in addition, the assumptions that X is normally distributed 
and that x and yare jointly normally distributed. In many political science 
examples, this is unreasonable. For example, any use of a dichotomous 
independent variable (malelfemale, agreeldisagree, etc.) violates the as- 
sumption. Moreover, one can use regression, make fewer assumptions, and 
get more reasonable and interpretable results. 

The Interpretation. All of the problems attributed to standardized 
coefficients apply to correlation coefficients. 

Furthermore, there is nothing in statistical theory that attributes 
causal assumptions to regression coefficients; regression is simply a sample 
estimate of a (population) conditional expected value. The assumptions 
are about the conditional probability distribution, not about the influence 
of x on y. Nothing can or should stop an applied researcher from stating 
that x causes y, but it is crucial to understand that statistical analysis does 
not usually provide evidence with which to evaluate this assertion (see 
Granger (1969) and Sims (1980) for more direct attempts). 

There is also nothing that attributes causal assumptions to the correla- 
tion coefficient. Correlations are sample estimates of the population pa- 
rameter p from the bivariate normal distribution. Thus, arguments about 
causality, association, and correlation are not required for either regression 
or correlation and do not form a basis for choosing between the two. 

Furthermore, as a result of the distributional requirements, the as- 
sumptions for correlation coefficients are far more demanding than for 
regression analysis. Unstandardized regression coefficients are almost al- 
ways the best option. 

The Race (3): Coefficient of Determination? 

R 2  is often called the "coefficient of determination." The result (or 
cause) of this unfortunate terminology is that the R statistic is sometimes 
interpreted as a measure of the influence o fX on y. Others consider it to be 
a measure'of the fit between the statistical model and the true model. A 
high R is considered to be proof that the correct model has been specified 
or that the theory being tested is correct. A higher R 2  in one model is 
taken to mean that that model is better. 

All these interpretations are wrong. R 2  is a measure of the spread of 
points around a regression line, and it is a poor measure of even that 
(Achen, 1982). Taking all variables as deviations from their means, R can 
be defined as the sum of all y2 (the sum of squares due to the regression) 
divided by the sum of all y2  (the sum of squares total): 

b6 'X 'Xb XXy  
~2 = - - 

y y ' y  z x 2 z y 2  



676 Gary King 

where the last equation moves from general notation to that for one inde- 
pendent variable. 

Note, however, that this is precisely the square of the correlation coeffi- 
cient (or the square of the standardized regression coefficient given in 
footnote 12). Therefore all of the criticisms of the correlation and standard- 
ized regression coefficients apply equally to the R ' statistic. 

Worse, however, is that there is no statistical theory behind the R' 
statistic. Thus, R' is not an estimator because there exists no relevant 
population parameter. All calculated values of R ' refer only to the partic- 
ular sample from which they come. This is clear from the standardized 
coefficient example in preceding paragraphs, but it is more graphically 
demonstrated in two (x, y)plots by Achen (1977, 808). In the first plot 
R = 0.2. In the second plot, the fit around the regression line is the same, 
but the variance of X is larger; here R' = 0.5. 

Ad hoc arguments for R 2  are often made in the form of the re- 
searcher's questions and the methodologist's answers: 

How can I tell how strongly my independent variables influence 
my dependent variable without R ? 
Interpret your unstandardized regression coefficients. 
But how can I tell how good these coefficients are? 
The standard errors are estimates of the variance of your esti- 
mates across samples. If they are small relative to your coeffi- 
cients, then you should be more confident that similar results 
would have emerged even if a sample of 1500 different people 
were interviewed. 
But how can I tell how good the regression is as a whole? 
If you want to test the hypothesis that all your coefficients are 
zero, use the F-test. More complex hypotheses about different 
theoretically relevant linear combinations of coefficients (e.g., 
that the first three coefficients are jointly zero, or that the next 
two add to 1.0) can also be tested. R' is associated with, but is a 
poor substitute for, test statistics. 
O.K. I guess I really mean to ask: How can I assess the spread of 
the points around my regression line? 
There is nothing intrinsically or politically interesting in the 
spread of points around a regression line. If you are interested in 
the precision with which you can confidently make inferences, 
then look at your standard errors. Alternatively, you might be 
interested in the precision of within-sample and out-of-sample 
forecasts. Forecasts correspond to the regression line (or to the 
extrapolated line for out-of-sample forecasts), given specified 
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values of your explanatory variables. It is perfectly reasonable to 
estimate and then make probabilistic statements about the fore- 
casts or even to calculate forecast confidence intervals. Surely if 
the observed point spread is large, the confidence interval will 
also be large. However, R' is also a poor substitute for going 
directly to confidence intervals. 
But do you really want me to stop using R ' ? After all, my R is 
higher than that of all my friends and higher than those in all the 
articles in the last issue of the APSR! 
If your goal is to get a big R 2 ,  then your goal is not the same as 
that for which regression analysis was designed. The purpose of 
regression analysis and all of parametric statistical analyses is to 
estimate interesting population parameters (regression coeffi- 
cients in this case). The best regression model usually has an R' 
that is lower than could be obtained otherwise. 

If the goal is just to get a big R 2 ,  then even though that is 
unlikely to be relevant to any political science research question, 
here is some "advice": Include independent variables that are 
very similar to the dependent variable. The "best" choice is the 
dependent variable; your R2 will be 1 .O. Lagged values of v usu- 
ally do quite well. In fact, the more right-hand-side variables 
included the bigger your R will get.13 Another choice is to add 
variables or selectively add or delete observations in order to 
increase the variance of the independent variables. 

These strategies will increase your R 2 ,  but they will add noth- 
ing to your analysis, nothing to your understanding of political 
phenomena, and nothing useful in explaining your results to oth- 
ers. The general strategy of analysis will likely destroy most of the 
desirable properties of regression analysis. 
Is there any thing useful about R ? 
Yes. There is at least one direct use and several indirect uses of R 2 .  

You can directly apply and evaluate R when comparing two equa- 
tions with different explanatory variables and identical dependent 
variables. The measure is, in this case, a convenient goodness-of-fit 
statistic, providing a rough way to assess model specification and 
sensitivity. For any one equation, R' can be considered a measure 
of the proportional reduction in error from the null model (with no 
explanatory variables) to current model. As such, it is a measure of 

"It is possible, but unlikely, for the R 2  to stay the same; in any case, it will never decrease 
as more variables are added. More generally, as the number of variables approaches the number 
of observations, R  approaches 1 .O. 
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the "proportion of variance explained," and, although this inter- 
pretation is commonly used, it is not clear how this interpretation 
adds meaning to political analyses. 

There are also a variety of indirect "uses" for R  2 .  It is often true that a 
high R 2  is accompanied by small standard errors, large coefficients, and 
narrow confidence intervals. Thus, a higher R  is generally good news; 
this is the reason why, ceteris paribus, R~ does not always mislead. How- 
ever, most of the useful information in R 2  is already available in other 
commonly reported statistics. Furthermore, these other statistics are more 
accurate measures: They can directly answer theoretically interesting 
questions. R  cannot. Of course, when one reads someone else's work, R  
may be a useful interpretive substitute if some of the more accurate mea- 
sures were not calculated. Consequently, although the odds of being misled 
are substantially higher with R  than with these other statistics, it is just as 
well that R 2  is routinely reported. It is the use of this information that 
should be changed. 

Confusion with Dichotomous Variables 

In this section, I discuss common misuses of dichotomous variables. 
First, I consider the relationship between analysis of variance and regression 
in handling dichotomous independent variables. Then, I present common 
mistakes in using dichotomous dependent variables. Finally, I attempt to 
alleviate confusion about using dichotomous variables and mistaking de- 
pendent variables for independent variables in factor analysis. 

( I )  Dichotomous Independent Variables 

The Mistake. Consider a case where there are two populations with 
means p1  and p2, from which random samples sizes n l  and n2 are taken. 
The populations could be male and female, agree and disagree, Republi- 
can and Democrat or anything that could be represented by a meaningful 
explanatory dichotomous variable. A common problem is to test the hy- 
pothesis that the means are equal ( p I  - p2 = 0). In this case, the first thing 
we do is calculate the means, 5, and Y 2 ,  of the two samples. 

There are three approaches to this problem: ( I )  a difference in means 
test, (2) an analysis of variance (ANOVA) model, and (3) a regression model. 
Justifications for choosing one of these models over the others are often 
given. The difference in means test is sometimes seen as a quick way to get a 
feel for the data. ANOVA and the difference in means have been credited 
with requiring less restrictive assumptions about the data. Some think 
ANOVA can be safely used with dichotomous dependent variables; others say 
that ANOVA and not regression allows dichotomous independent variables. 
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These assertions are false. In fact, the three techniques are intimately 
related-conceptually, statistically, and even algebraically. The simplest 
but least general of the three is the difference in means test. Let 1; be a 
vector of observations from both populations and X be an indicator vari- 
able. Let the value for the first population be - 1 and the value for the 
second be 1. (These values are arbitrary choices that make later computa- 
tion easier.) Then the model is 

E ( y I X =  - l ) = p l  

The obvious sample statistic is the difference in the sample means, 
which, after dividing by the standard error of this difference, follows a 
t -distribution. l 4  

Analysis of variance (ANOVA) is a somewhat more general way to deal 
with this problem. The theoretical model is E ( y )  = p + 6 , ,  where p is the 
grand mean of both populations, i = 1, . . . , G, where G is the number of 
populations, and F i  is the deviation from the grand mean for population i. 

G 
We impose the restriction that ,L: ai = 0. In the special case of G = 2, 

1 = 1  

61 = - 62. The model can be restated for each population as 

The sample estimate of p is Y and of 6 ,  is d, .  By definition, 

y + d ,  = y l  andy +d2=>2. 

These means are, of course, identical to those that estimate model 1 1,  but 
d l  and d 2  represent deviations from the sample "grand" mean. The repre- 
sentation is slightly different, but the interpretation should be exactly the 
same. The test statistic for the hypothesis that 6 ,  = 62 = 0 follows the F- 
distribution, which is a trivial generalization of the t-distribution used for 
the difference in means test.15 

The final and most general approach to this problem is with regres- 
sion analysis (the general linear model). The model of interest here is 
E ( y  I X )  = Po + PIX, with X taking on the value - 1 for the first population 
and 1 for the second. The model is defined, for each population, as: 

14 The choice for an estimate of the standard error depends upon whether the two 
samples are independent. Although I consider here only the case of independence, there are 
straight-forward generalizations to the case of "nonspherical" disturbances. 

"Squaring a variable with a t-distribution (df= k) yields a variable with an F-distribution 
(dfi = k, df2 = I). 
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The sample estimates of P o  and P I  are bo and b l ,  respectively. Appendix B 
proves that bo and b I  are close algebraic relatives of the grand mean (y) and 
the deviations from that mean (d,) from the ANOVA model. Two points 
are demonstrated in Appendix B. First, bo is shown not to be the grand 
mean except when n l  = n2. Second, b l  is proven not to be the deviation 
from the grand mean (d,), except when n l  = n2. 

This inequality between ANOVA and regression only denotes differ- 
ent ways of representing the same underlying relationships. There are no 
differences in assumptions or empirical interpretation. Note that in the 
regression model, deviations from the grand mean can be represented in 
terms of the parameter estimates: 

- - - - 

Thus, for the special case of n I  = n2,  y - y l  = - b I  and y - y2 = b I  just as in 
ANOVA. When n l  # n2,  we interpret 2bl to be estimated difference be- 
tween the two population means. In fact, 2b1 is exactly the parameter 
estimate for the difference in means test. 

Note that in none of these models should dichotomous independent 
variables be standardized. The consequence of such a calculation is to 
make the standardized coefficient dependent not only upon the variance 
of the independent variable (as is always the case) but also upon its mean, 
since the variance of dichotomy is a function of its mean. 

The Interpretation. ANOVA, regression, and the difference of means 
test are all special cases of the general linear model. The assumptions 
required of one are required of the others as well. If there are dichotomous 
dependent variables, none of the techniques are appropriate. If there is a 
dichotomous independent variable, any one of the three will do. If, as is 
usually the case with political data, there are both discrete and continuous 
explanatory variables, then only regression will accommodate the research 
problem. 

There are generalizations of ANOVA that accommodate mixed models 
like "analysis of covariance," (which is not to be confused with "analysis of 



HOW NOT TO LIE WITH STATISTICS 68 I 

covariance structures"). Since, for experimental researchers, ANOVA often 
seems a more conceptually appropriate model, and since the same data 
requirements and resulting information is essentially equivalent to regres- 
sion analysis, the choice between the two is mostly a matter ofpersonal taste. 

My view is that for most political science research, regression is a sub- 
stantially more general model: It incorporates many types of ANOVA in 
one statistical model (and algebraic formula). Although specification issues 
apply to all three methods, they are usually only considered in a regression 
context. In addition, regression is also substantially easier to generalize in 
order to correct for nonspherical disturbances and other common prob- 
lems. By comparison, more general ANOVA models can get quite messy 
when they exist. For this reason, many ANOVA computer programs actu- 
ally do regression analyses and then transform the results into the ANOVA 
parameters for presentation. 

The point is that for the standard analysis, all three models come from 
the same general form. Each model provides a different representation of 
exactly the same information, and correct specification is required of all 
three. When the analysis is more complicated, the regression model may 
prove more tractable. 

(2) Dichotomous Dependent Vuriables 

The Mistake. The mistake here is using dichotomous dependent vari- 
ables in regression, ANOVA, or any other linear model. Doing this can yield 
predicted probabilities greater than one or less than zero, heteroskedasticity, 
inefficient estimates, biased standard errors, and useless test statistics. Of 
more importance is that a linear model applied to these data is of the wrong 
functional form; in other words, it is conceptually incorrect. 

Consider, for example, the influence of family income on the probabil- 
ity of a child attending college (measured as a dichotomous, college/no 
college realization). Hypothesizing a linear relationship in this situation 
implies that an additional thousand dollars of family income will increase 
the probability of going to college by the same amount regardless of the 
level of income. Surely this is not plausible. Imagine how little difference 
an additional $1000 would make for a family with $1,000,000, or for one 
with only $500, in annual family income. However, for a family at the 
threshold of having enough money to send a child to college, an additional 
thousand dollars would increase the probability of college attendance by a 
substantial amount. The relationship this implies is a steep regression line 
(representing a strong effect) at the middle range of income and a relatively 
flatter line (a weaker relationship) at the extremes. Extending this for all 
values of income produces the familiar logit or probit S-curve (for an 
application, see I n g ,  in press, 1986). 
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The solution is to model this relationship with a logit or probit (or 
some other appropriate non-linear) model. Scholarly footnotes to the con- 
trary, it is not possible to do logit and regression analyses and have them 
"come out the same." What exactly is meant by "come out the same"? It 
would be meaningless to compare logit and LS coefficients, standard er- 
rors, or test statistics. There is no such thing as R 2  in logit analysis, and 
although there are analogous statistics, comparisons make little sense; in 
any case, logit analysis will always have a fit to the data as good as or better 
than that of LS estimation. The interpretation cannot be the same, since 
the underlying theoretical models are very different. 

There is, however, one proper comparison between LS and logit esti- 
mation-between the fitted values of the two models expressed as propor- 
t i o n ~ . ' ~  A short-hand way to accomplish this for the logit model is by 
observing the first derivatives of the logit function, bp(1 - p ) ,  where b is 
the logit coefficient and p is the initial probability. The problem is that 
unlike LS, the effect on y for an additional unit increase in X is not 
constant over the range of X values. This "variable effect" is represented as 
a nonlinear logit function.17 

(3) Confusing Dichotomous Independent with Dichotomous 
Dependent Variables 

In the factor analysis model, there are many observed variables from 
which the goal is to derive underlying (unobserved) factors. A common 
mistake is to view the observed variables as causing the factor. This is 
incorrect. The correct model has observable dependent variables as func- 
tions of the underlying and unobservable factors. For example, if a set of 
opinion questions asked of the political elite is factor analyzed, underlying 
ideological dimensions are likely to result. It is the fundamental ideologies 
that cause the observed opinions, and it is precisely because these ideolo- 
gies are unobservable that we measure only the consequences of these 
ideologies. 

This has two practical consequences for the researcher. First, variables 

l 6  When the underlying probability for each observation remains within the 0.25 to 0.75 
probability interval, the logit and LS models produce very similar predicted values. However, 
standard errors and test statistics have little meaning; although they have somewhat more 
meaning when probabilities are within the 0.25 to 0.75 interval. Of course, projections of the 
underlying theoretical model are always implausible with LS. 

"For the special case of only nominal level independent variables, Kritzer (1978a; see 
also 1978b) shows that a minimum chi-square estimation procedure becomes a very intuitive 
weighted least squares on tabular data. This article is also a good example of the point made 
in the previous section-that many different statistical models can be organized under the 
regression framework. 
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like race, gender, and age should never be observed variables in a political 
scientist's factor analysis. It is doubtful that a researcher will ever find that 
party identification or ideology influences a person's gender or race. Sec- 
ond, since most factor analysis models are linear, they can no more handle 
dichotomous dependent (observed) variables than can regression analysis 
models. However, there are nonlinear factor analysis models, which are 
generalizations of the binary logit model, that may be appropriate in this 
situation (Christoffersson, 1975). 

Reporting Replicable Results 

I focus in this section on reporting results of statistical analyses. An 
erroneous reporting method, if not the most grievous offense, is certainly 
the most frustrating. After all, if a mistake is made and reported, then it is 
sometimes possible to assess the damage. If minimum reporting standards 
are not followed, then the only conclusions that can be drawn are based on 
blind faith in or rejection of the author's interpretative conclusions and 
methodological skills. Tabular information conveys information that usu- 
ally is not (and usually should not be) presented in the text. If the tables are 
not complete, then the report may be rendered useless. 

I have concentrated in this paper primarily on regression analysis, the 
most frequently used explicit statistical model in political science research 
and the most frequently abused. As an example, therefore, consider report- 
ing the results of a LS analysis. The required results should be ( I )  data 
descriptions (including the unit of measurement for each variable, the unit 
of analysis, and the number of observations and variables), (2) parameter 
estimates (regression coefficients and the estimated variance of the distur- 
bances), and (3) the standard errors (measures of the precision of the 
coefficient estimates). For time-series analyses and certain types of cross- 
sectional analyses, tests of or searches for nonspherical disturbances (e.g., 
autocorrelation and heteroskedasticity) should also appear.I8 If joint hy- 
pothesis tests are relevant, but not executed, relevant parts of the variance- 
covariance matrix of the regression coefficients (on the diagonal of which 
are the squares of the standard errors) should be included. Since they can 
be derived from the information presented, t-tests, F-tests, goodness-of-fit 
statistics, and marginal probability levels are optional. 

One relatively common violation of these reporting rules is to replace 
any coefficient not meeting some significance level with "N.S." (Sometimes 

Automatic use of the Durbin-Watson statistic in time-series data is better than nothing, 
but it is far from the best approach. A better procedure is to analyze the autocorrelation and 
partial autocorrelation functions of the residuals. Although full reporting of these would be 
excessive, a sentence or two summarizing any odd results would be very helpful. 
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even the level at which these coefficients are not significant is not reported!) 
This procedure can be very misleading. In fact, I know of no political sci- 
ence research in which it makes sense to use a precise critical value. Any 
coefficient that is significant at the 0.05 level is as useful in this discipline as 
if it were 0.06 or 0.04. To delete and refuse to interpret a coefficient which is 
0.0 1 or 0.00 1 above a significance level makes little sense. Even if the author 
has a reason for it. at least readers could be permitted to come to their own 
conclusions. My recommendation is to present the marginal probability 
level (the exact "level of significance") for each coefficient, regardless of 
what it is; the author can argue whatever he or she wants and readers would 
still be able to draw their own conclusions. Statistical significance and sub- 
stantive importance have no necessary relationship. 

There are many other examples of incomplete tables, misleading foot- 
notes and useless appendices. The best general way to judge the adequacy 
of reporting is to determine if the analysis can be replicated. It, of course, 
need not be replicated, but in order to contribute methodological and 
theoretical information to its readers, a paper must report enough infor- 
mation so that the results it gives could be replicated if someone actually 
tried. 

Remarks 

This paper reviews some of the more common conceptual statistical 
mistakes in quantitative political science research. Although many mis- 
takes are caught by perceptive colleagues, many more slip by. Those pre- 
sented here are among the most systematically problematic. Too often, we 
learn each others' mistakes rather than learning from each others' mis- 
takes. Fortunately, in each case, there are plausible reasons for the initial 
mistaken "invention" or conceptual problem and a relatively painless solu- 
tion to the problem. 

In addition to the arguments given in the paper, there are two more 
general rules that should be applied to all political science data analyses. 

First, we should concentrate on interpretable statistics. If the statistics 
are complicated, that is fine, as long as they can be translated into informa- 
tion that is meaningful to, and interpretable by, nonstatisticians. 

Second, "getting a feel for data" is laudable, but presenting biased or 
incorrect results is not. Thus, we should try to use formal statistical mod- 
els. about which much more is known. The problem with ad hoc solutions 
is that the same mistakes can occur in these as with formal statistics; 
however, we are much less likely to discover them. For example, political 
scientists are prone to doing a few cross-tabulations and arguing the point 
from there. Omitted variable bias, dichotomous dependent variables with 
linear models, and other specification issues are many times missed with 
this "method." What is often not realized is that these informal methods 
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can usually be expressed in very simple formal statistical models. Their 
weaknesses then become immediately apparent. 

If these two rules were followed-and adequate information were 
provided with which to assess the quantitative analyses- many future 
mistakes could be avoided. 

Manuscript submitted 16 September 1985 
Final manuscript received 18 November 1985 

APPENDIX A 
A PROOF THAT REGRESSION ON RESIDUAL 

(ROR) ESTIMATORS ARE BIASED 

First, partition the coefficient vector as b '  = [bl bz] and the vector of independent vari- 
ables as X = [XI X2]. Also let Q = X'X, A = Q-I  X', and e = M y  be the vector of residuals 
(where M = I - XQX'). Then b in the full regression, equation 2, is the least squares (LS) 
estimator, where b = Ay. 

Now consider the regression on residual (ROR) estimator. First, let Q,, = X;X, for i = 1, 
2, j = 1, 2, A, = Q,; I X,' for i = 1, 2 and M I  = I  - X I  Qrl1 Xi. Then, calculate the coefficients 
and residuals with b; = Alyand e l  = M l y  from equation 3, b; is the first ROR estimator. Then 
regress e l  on the second set of explanatory variables X2 and get bf = A2el from equation 4, 
where, b; is the second ROR estimator. 

Now let b*' = [b; b;]. I will first prove that b # b.* 

substituting from equations 2 and 4: 

Then, rearranging terms and taking expected values, we have: 

Thus, both b; and b; are biased. The former represents standard omitted vari!ble bias.'" 
There are also two special cases. If XI  and X2 are orthogonal (i.e., X;X2 = 0), then b = b. Also, 

l9 It is easy to see from this formulation that an omitted variable bias exists only when 
both ( I )  the sample coefficients (AI Xz) resulting from the regression of the omitted variable 
on the included variables are nonzero and (2) the parameter on the omitted variable (P2) is 
nonzero (i.e., has some influence on y). There is no bias if either one, or thier product, is zero. 
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when bz  = 0, then b l  = b; .  Finally, when pz = 0, ~ ( b ; )  = PI.  A similar proof can be found in 
Goldberger (196 1). Furthermore, Goldberger and Jochems (196 1) have shown for the bivariate 
case, and Achen (1978) for the multivariate case, that b; is an underestimate of b2. 

APPENDIX B 
THE RELATIONSHIP BETWEEN REGRESSION 

AND ANALYSIS OF VARIANCE 

Note first that for the estimates of the model in equation 13, the following equalities hold: 

,I - 

X x y  = nzyz - n l y l  
, = I  

Now, expressing bo and bl in terms of y~ and yz: 

Also, 
- 

b o = y - b l x  
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