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We develop the first Bayesian model of decentralized college admissions, with
heterogeneous students, costly portfolio applications, and noisy college evalua-
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1 Introduction

The college admissions process has lately been the object of much scrutiny, both from

academics and in the popular press. This interest owes in part to the strategic nature of

college admissions. Schools competitively set admissions standards to attract the best

students, and students in turn respond most judiciously in making their application

decisions. This paper examines the joint behavior of students and colleges in equilibrium.

We develop and explore an equilibrium model of the college admissions process, with

decentralized matching of a heterogeneous population of students, and two colleges —

one better and one worse, respectively, called 1 and 2. The model captures two previously

unexplored frictions relevant in the “real-world”. First, college applications are costly

and so students must solve a nontrivial portfolio choice problem. Second, colleges seek to

fill their capacity with the best students possible, but only observe a noisy signal of each

student’s caliber. This tandem of costly and yet noisy applications feeds the intriguing

conflict at the heart of the student choice problem: Gamble on Harvard, settle for

Michigan, or apply to both. Meanwhile, college enrollments are interdependent, both

because the student portfolios depend on the joint college admissions standards, and

because students accepted at the better college will not attend the lesser one even if

accepted. This asymmetric interdependence leads to an array of surprising results.

Central to our paper is a theorem characterizing how student acceptance chances at

the colleges vary with student caliber. Building on our Bayesian foundation, we find that

as a student’s caliber rises, the ratio of his admission chances at college 1 to college 2

rises monotonically. This property, combined with student optimization, has strong and

testable implications for how portfolio choices across students are related. Next, we

consider the game induced among colleges by this optimal student behavior. We show

how to analyze equilibrium through the lens of supply and demand: When a college

raises its standards, its enrollment falls both because fewer students make the cut —

the standards effect — and as fewer will apply ex ante — the portfolio effect. Treating

admissions standards as prices, these effects reinforce each other. In equilibrium, we

uncover a “law of demand”, in which a college’s enrollment falls in its standard. Also,

the portfolio effect increases the elasticity of this demand curve.

Analogous to Bertrand competition with differentiated products, colleges choose ad-

missions standards to fill their desired enrollment, taking rival standards and the student

portfolios as given. An equilibrium occurs when both markets clear and students behave

optimally. The model frictions yield some novel comparative statics. For instance, the
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admissions standards at both colleges fall if college 2 raises its capacity, while lower ap-

plication costs at either school increase the admissions standards at the better college.

So UCLA cannot ignore admissions activity at the weaker cross-town rival USC.

The second part of the paper attacks the question of whether sorting occurs in

equilibrium: Do the better students apply more “aggressively”?1 Does the better college

impose higher admissions standards? Surprisingly, we show that neither form of sorting

need hold in general. For example, if both colleges set equal standards, the worse

college will still attract insurance applications from middling students. So given equal

standards that clear the market at college 1, if college 2 is small so that projected

enrollment exceeds capacity, then by our “law of demand” it must raise its standards

above college 1 in equilibrium. Conversely, we prove that all equilibria involve sorting if

the colleges differ sufficiently in quality and the higher ranked school is not too small.

To close the paper, we enrich the strategy space in our model to provide a unified

analysis of two seemingly unrelated topics: early admissions and affirmative action. We

let colleges offer different standards to observably different students — such as early

applicants or members of a target class of students. As occurs with third degree price

discrimination, we show that colleges act in both cases to equate the “shadow value”

of different groups. For instance, the worse college can use early admissions to poach

students from the better one. The reason is that an early acceptance there lowers a

student’s marginal benefit of a regular application to the better college.

We discover that when the better college initiates an affirmative action policy favoring

one group, the weaker college responds by penalizing that group. We broadly interpret

affirmative action to include favoring disadvantaged minorities, as well as the differential

preferential treatment for athletes, and state resident preferences or mandates on public

colleges. Since 90% of UCLA students are state residents, our result suggests that USC

should raise the bar for in-state students. This occurs because of an “acceptance curse”:

a favored student enrolling at the weaker college may have been rejected by the better

college despite affirmative action, and this is a bad signal of their caliber.

Our analysis highlights the role of frictions — costly and uncertain applications —

in college admissions. A natural question then is whether these frictions are important

in practice. Certainly, application outcomes are far from guaranteed: Students face ad-

missions rates well below 50% at the top colleges, and are routinely advised to construct

1Precisely, the best students apply just to college 1; weaker students insure by applying to both
colleges; even weaker ones apply just to college 2; and finally, the weakest apply nowhere.
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thoughtful portfolios that include both “safety” and “stretch” schools. Yet one might

wonder whether application costs — either in money or time — are sufficient to limit the

number of applications, given the large marginal benefit to attending a better college.

The answer is yes. Data from the Higher Education Research Institute’s freshman

survey reveal that the modal number of college applications has been one since 1975 (see

our supplementary appendix). The mean number of applications has risen over time, to

4.3 in 2006. This low level is consistent with a portfolio choice model, since the marginal

benefit to an additional application falls geometrically. For example, an average student

applying to identical average four-year colleges with 75% acceptance rate has a marginal

benefit to her 5th application scaled by 4−4 = 1/256; so that even if attending college

yields surplus of $20000, the marginal benefit of that application is only $59. The trend

in applications also accords with our model, which would predict more applications as

application costs have fallen due to the Internet and the Common Application.

Modeling frictions is not only important to match stylized facts, but also overturns a

number of conclusions reached in their absence. While sorting is trivial absent frictions,

it proves elusive with frictions. This adds to the literature on decentralized frictional

matching — e.g., Shimer and Smith (2000), Smith (2006), Chade (2006), and Anderson

and Smith (2007). Our finding that weaker colleges can sustain higher standards in

equilibrium is a cautionary tale to those who rank colleges by their admissions standards.

The student portfolio problem embedded in the model is a special case of the problem

solved in Chade and Smith (2006). But the acceptance chances here are endogenous,

since any one student’s acceptance chance depends on the equilibrium college admission

threshold. So our paper also contributes to the literature on equilibrium models with

non-sequential search (e.g. Burdett and Judd (1983), Burdett, Shi, and Wright (2001),

Albrecht, Gautier, and Vroman (2003) and Kircher and Galenianos (2006)).

The importance of college sorting has recently been documented in Hoxby (2009).

Our affirmative action result turns on the acceptance curse (Chade 2006). Finally, early

admissions serves as a poaching device in our setup. Both Lee (2009) and Avery and

Levin (2009) have shown that early admissions can be useful in a world with preference

heterogeneity, allowing students to signal their interest in attending a particular school

(for an overview of early admissions, see Avery, Fairbanks, and Zeckhauser (2003)).

After introducing the model, we do the student and college equilibrium analyses,

respectively. We then explore the sorting character of equilibria. We conclude with

explorations of affirmative action and early admissions. Proofs are found in the appendix.
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2 The Model

A. An Overview. The paper introduces three key features — heterogeneous students,

portfolio choices with unit application costs, and noisy evaluations by colleges. We

impose little additional structure. For instance, we ignore the important and realistic

consideration of heterogeneous student preferences over colleges.

A central feature of our analysis is modeling college portfolio applications. Student

choice is trivial if it is costless, and in practice, such costs can be quite high. Indeed, the

sole purpose of the Common Application is to lower the cost of multiple applications.2

Next, we assume noisy signals of student calibers. This informational friction cre-

ates uncertainty for students, and a Bayesian filtering problem for colleges. It captures

the difficulty faced by market participants, with students choosing “safety schools” and

“stretch schools”, and colleges trying to infer the best students from noisy signals. With-

out noise, sorting would be trivial: Better students would apply and be admitted to

better colleges, for their caliber would be correctly inferred and they would be accepted.

As we will see, sorting is less easily achieved with both application costs and evaluation

noise. Indeed, there is a richer role for student choice in this environment.

We also make two other key modeling choices. First, we assume just two colleges.

This is done for the sake of tractability. We discuss the applicability of our insights

for the much more challenging n-college problem en route. We also fix the capacity of

the two colleges. This is most defensible in the short run, and so it is best to interpret

our model as focusing on the “short run” analysis of college admissions. We explore

the simultaneous game in which students apply to college, and colleges decide whom to

admit. However, we later briefly explore the possibility of “early admissions”.

A model with both common and idiosyncratic components for student evaluation

is intractable. We can solve both extreme cases with perfectly correlated and condi-

tionally i.i.d. signals.3 But we restrict the analysis to the less trivial latter case. It is

arguably more realistic too, since admission to a better college often does not guarantee

admission to a lesser one. By contrast, perfect correlation would force this implication.

Conditionally i.i.d. signals exactly captures the case where students are apprised of all

variables (such as the ACT/SAT or their GPA) common to their applications before

2This general application form is used by almost 400 colleges, and simplifies college applications. It
eliminates idiosyncratic college requirements, but retains separate college application fees.

3Proof available upon request. Nagypál (2004) analyzes the decision problem facing a student with
perfectly correlated admissions.
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applying to college. Students are uncertain as to how these idiosyncratic elements such

as college-specific essays and interviews will be evaluated, but believe that the resulting

signals are conditionally independent across colleges.

B. The Model. There are two colleges 1 and 2 with capacities κ1 and κ2, and a

unit mass of students with calibers x whose distribution has a density f(x) over [0,∞).

We avoid trivialities, and assume that college capacity is insufficient for all students, as

κ1 + κ2 < 1. Each college application costs a student c > 0. All students preferring

college 1. Everyone receives payoff 1 for attending college 1, u ∈ (0, 1) for college 2, and

zero payoff for not attending college. To avoid trivialities, we later bound application

costs above. Students maximize expected college payoff less application costs. College

payoff equals the average enrolled student caliber times the measure of students enrolled.

Students know their caliber, and colleges do not. Colleges 1 and 2 each just ob-

serves a noisy conditionally independent signal of each applicant’s caliber. In particular,

they do not know where else students have applied. Signals σ are drawn from a condi-

tional density function g(σ|x) on a subinterval of R, with cdf G(σ|x). We assume that

g(σ|x) is continuous and obeys the strict monotone likelihood ratio property (MLRP).

So g(τ |x)/g(σ|x) is increasing in the student’s type x for all signals τ >σ.

Students apply simultaneously to either, both, or neither college, choosing for each

caliber x, a college application menu S(x) in {∅, {1}, {2}, {1, 2}}. Colleges choose the

set of acceptable students signals. They intuitively should use admission standards to

maximize their objective functions, so that college i admits students above a threshold

signal σ i. Appendix A.1 proves this given the MLRP property — despite an acceptance

curse that college 2 faces (as it may accept a reject of college 1).

For a fixed admission standard, we want to ensure that very high quality students

are almost never rejected, and very poor students are almost always rejected. For this,

we assume that for a fixed signal σ, we have G(σ|x) → 0 as x → ∞ and G(σ|x) → 1

as x → 0. For instance, exponentially distributed signals have this property G(σ|x) =

1− e−σ/x. More generally, this obtains for signals drawn from any “location family”, in

which the conditional cdf of signals σ is given by G((σ − x)/µ), for any smooth cdf G

and µ > 0 — e.g. normal, logistic, Cauchy, or uniformly distributed signals. The strict

MLRP then holds if the density is log-concave, so that logG′ is strictly concave.

C. Equilibrium. We consider a simultaneous move game by colleges and students.

This yields the same equilibrium prediction as when students move first, as they are
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atomless.4 A Nash equilibrium is a triple (S∗(·), σ∗1, σ∗2) such that:

(a) Given (σ∗1, σ
∗
2), S∗(x) is an optimal college application portfolio for each x,

(b) Given (S∗(·), σ∗j), college i’s payoff is maximized by admissions standard σ∗i.

In a sorting equilibrium, colleges’ and students’ strategies are monotone. This means

that the better college is more selective (σ∗1 > σ∗2) and higher caliber students are

increasingly aggressive in their portfolio choice: The weakest apply nowhere; better

students apply to the “easier” college 2; even better ones “gamble” by applying also to

college 1; the next tier up shoot an “insurance” application to college 2; finally, the top

students confidently just apply to college 1. Monotone strategies ensure the intuitive

result that the distribution of student calibers at college 1 first-order stochastically

dominates that of college 2 (see Claim 3 in Appendix A.8), so that all top student

quantiles are larger at college 1. This is the most compelling notion of student sorting

in our environment with noise (Chade 2006).

Our concern with a sorting equilibrium may be motivated on efficiency grounds. If

there are complementarities between student caliber and college quality, so that welfare

is maximized by assigning the best students to the best colleges, any decentralized

matching system must necessarily satisfy sorting to be (constrained) efficient. Since

formalizing this idea would add notation and offer little additional insight, we have

abstracted from these normative issues and focused on the positive analysis of the model.

3 Equilibrium Analysis for Students

3.1 The Student Optimization Problem

We begin by solving for the optimal college application set for a given pair of admission

chances at the two colleges.5 Consider the portfolio choice problem for a student facing

the admission chances 0 ≤ α1, α2 ≤ 1. The expected payoff of applying to both colleges

is α1 + (1 − α1)α2u. The marginal benefit MBij of adding college i to a portfolio of

4See Appendix A.2. Alternatively, colleges could move first, committing to an admission standard.
This is arguably not the case, but regardless, it too yields the same equilibria until we study affirmative
action and early admissions (proof omitted). In the interests of a unified treatment throughout the
paper, we proceed in the simultaneous move world.

5Chade and Smith (2006) provide an algorithm that would be useful in the n-college case. In our
two college world, their analysis is trivial, and is not needed here.
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Figure 1: Optimal Decision Regions. The left panel depicts (i) a dashed box, inside
which applying anywhere is dominated; (ii) the indifference line for solo applications to col-
leges 1 and 2; and (iii) the marginal benefit curves MB12 = c and MB21 = c for adding
colleges 1 or 2. The right panel shows the optimal application regions. A student in the blank
region Φ does not apply to college. He applies to college 2 only in the vertical shaded region C2;
to both colleges in the hashed region B, and to college 1 only in the horizontal shaded region C1.

college j is then:

MB21 ≡ [α1 + (1− α1)α2u]− α1 = (1− α1)α2u (1)

MB12 ≡ [α1 + (1− α1)α2u]− α2u = α1(1− α2u) (2)

The optimal application strategy is then given by the following rule:

(a) Apply nowhere if costs are prohibitive: c > α1 and c > α2u.

(b) Apply just to college 1, if it beats applying just to college 2 (α1 ≥ α2u), and

nowhere (α1 ≥ c), and to both colleges (MB21 < c, i.e. adding college 2 is worse).

(c) Apply just to college 2, if it beats applying just to college 1 (α2u ≥ α1), and

nowhere (α2u ≥ c), and to both colleges (MB12 < c, i.e. adding college 1 is worse).

(d) Apply to both colleges if this beats applying just to college 1 (MB21 ≥ c), and

just to college 2 (MB12 ≥ c), for then, these solo application options respectively

beat applying to nowhere, as α1 > MB12 ≥ c and α2u > MB21 ≥ c by (1)–(2).

This optimization problem admits an illuminating and rigorous graphical analysis.

The left panel of Figure 1 depicts three critical curves: MB21 = c,MB12 = c, α1 = uα2.
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From (1) and (2), we see that all three curves share a crossing point, sinceMB21 = MB12,

when α1 = uα2. Since MB12 = c(1− c) < c, this crossing point lies above and right of

the point α1 = uα2 = c, below which applying anywhere is dominated.

Throughout the paper, we assume that c < u(1 − u). For if not, then the curves

MB21 = c and MB12 = c cross a second time inside the unit square.6 The analysis then

trivializes because multiple college applications need not occur.

Cases (a)–(d) partition the unit square into regions of (α1, α2) that correspond to

each portfolio choice, suggestively denoted Φ, C2, B, C1. These regions are shaded in

the right panel of Figure 1. This picture summarizes the optimal portfolio choice of a

student with arbitrary admissions chances (α1, α2).

For an alternative insight into the student optimization, we could apply the marginal

improvement algorithm of Chade and Smith (2006). There, a student first decides

whether she should apply anywhere. If so, she asks which college is the best singleton.

In Figure 1 at the left, college 1 is best right of the line α1 = uα2, and college 2 is best

left of it. Next, she asks whether she should apply anywhere else. Intuitively, there

are two distinct reasons for applying to both colleges that we can now parse: Either

college 1 is a “stretch” school (as a gamble) — namely, added second as a lower-chance

higher payoff option — or college 2 is a “safety school”, added second for insurance. In

Figure 1, these are the parts of region B above and below the line α1 = uα2, respectively.

3.2 Admission Chances and Student Calibers

For known acceptance chances, we have seen that the optimization is rather straightfor-

ward. But we wish to predict the portfolio decisions of a heterogeneous continuum of

students whose acceptance chances are endogenous. To this end, we now derive a map-

ping from student types to student application portfolios. Let us fix the thresholds σ 1

and σ 2 set by college 1 and college 2. Student x’s acceptance chance at college i is now

given by αi(x) ≡ 1 − G(σ i|x). Since a higher caliber student generates stochastically

higher signals, αi(x) is increasing in x. In fact, it is a smoothly monotone onto function

— namely, it is strictly increasing and differentiable, with 0 < α1(x) < 1, and the limit

behavior limx→0 α1(x) = 0 and limx→∞ α1(x) = 1.

Taking the acceptance chances as given, each student of caliber x faces the portfolio

optimization problem of §3.1. She must choose a set S(x) of colleges to apply to, and

6For if α2 = 1, then MB21 = c and MB12 = c respectively force α1 = 1− (c/u) and α1 = c/(1− u).
Now, 1− (c/u) > c/(1− u) exactly when c < u(1− u).
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Figure 2: The Acceptance Function with Exponential Signals. The figure depicts
the acceptance function ψ(α1) for the case of exponential signals. Students apply to nowhere
(Φ), college 2 only (C2), both colleges (B) and college 1 only (C1) as caliber x increases.
Student behavior is therefore monotone for the acceptance function depicted.

accept the offer of the best school that admits her. We now translate the sets Φ, C2, B, C1

of acceptance chance vectors into corresponding sets of calibers. Let C1 be the set of

calibers that apply just to college 1. Likewise define C2 and B.

Key to our graphical analysis is a quantile-quantile function relating student admis-

sion chances at the colleges: Since αi(x) strictly rises in the student’s type x, a student’s

admission chance α2 to college 2 is strictly increasing in his admission chance α1 to

college 1. Inverting the admission chance in the type x, the inverse function ξ(α, σ)

is the student type accepted with chance α given the admission standard σ, namely

α≡1−G(σ|ξ(α, σ)). This yields an implied differentiable acceptance function

α2 = ψ(α1|σ 1, σ 2) = 1−G(σ2|ξ(α1, σ1)) (3)

We prove in the appendix that the acceptance function rises in college 1’s standard σ 1

and falls in college 2’s standard σ 2, and tends to 0 and 1 as thresholds near extremes.

Observe from Figure 2 that any pair of secants drawn to a point along the acceptance

function have a falling slope. To capture this, say that a function h : [0, 1] → [0, 1] has

the double secant property if h(α) is a weakly increasing function on [0, 1] with h(0) = 0,

h(1) = 1, and the two secant slopes h(α)/α and (1 − h(α))/(1 − α) weakly fall in α.

This description fully captures how our acceptance chances relate to one another.
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Theorem 1 (The Acceptance Function) If σ 1 > σ 2, then the acceptance function

α2 = ψ(α1) has the double secant property. Conversely, for any smoothly monotone

onto function α1(x), and any function h with the double secant property, there exists

a continuous signal density g(σ|x) with the strict MLRP, and thresholds σ 1 > σ 2, for

which admission chances of student x to colleges 1 and 2 are α1(x) and h(α1(x)).

This result gives a complete characterization of how student admission chances at two

ranked universities should compare. It says that if a student is so good that he is

guaranteed to get into college 1, then he is likewise a sure bet at college 2; likewise, if

he is so bad that college 2 surely rejects him, then college 1 follows suit. More subtly,

we arrive at the following testable implication about college acceptance chances:

Corollary 1 As a student’s caliber rises, the ratio of his acceptance chances at college 1

to college 2 rises, as does the ratio of his rejection chances at college 2 to college 1.

For an example, suppose that caliber signals have the exponential density g(σ|x) =

(1/x)e−σ/x. The acceptance function is then given by the geometric function ψ(α1) =

α
σ 2/σ 1
1 , as seen in Figure 2. This is increasing and concave — and so regular — when

college 2 has a lower admission standard. In turn, the acceptance relation for the location

family is easily seen to be ψ(α1) = 1−G((σ 2 − σ 1)/µ+G−1(1− α1)).

4 Equilibrium Analysis for Colleges

4.1 A Supply and Demand Approach

Each college i must choose an admission standard σ i as a best response to its rival’s

threshold σ j and the student portfolios. With a continuum of students, the resulting

enrollment Ei at colleges i = 1, 2 is a non-stochastic number:

E1(σ 1, σ 2) =

∫
B∪C1

α1(x)f(x) dx (4)

E2(σ 1, σ 2) =

∫
C2
α2(x)f(x) dx+

∫
B
α2(x) (1− α1(x)) f(x) dx, (5)

suppressing the dependence of the sets B, C1 and C2 on the student application strategy.

To understand (4) and (5), observe that caliber x student is admitted to college 1 with

chance α1(x), to college 2 with chance α2(x), and finally to college 2 but not college 1 with
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chance α2(x)(1 − α1(x)). Also, anyone that college 1 admits will enroll automatically,

while college 2 only enrolls those who either did not apply or got rejected from college 1.

If we substitute optimal student portfolios into the enrollment equations (4)–(5),

then they behave like demand curves where the admissions standards are the prices. Our

framework affords analogues to the substitution and income effects in demand theory.

The admission rate of any student obviously falls in its anticipated admission standard —

the standards effect. But there is a compounding portfolio effect — that enrollment also

falls due to an application portfolio shift. Each college’s applicant pool shrinks in its own

admissions threshold. We then deduce in the appendix the following “law of demand”:

If a college raises its admission standard, then its enrollment falls. Because of our

portfolio effect, a college faces a more elastic demand for slots than purely predicted by

the standards effect. A lower admission bar will invite applications from new students.7

The law of demand generally applies outside two college setting. For an intuition,

suppose that the admissions standard at a college rises. Absent any student portfolio

changes, fewer students meet its tougher admission threshold (the standards effect),

and its enrollment falls. The portfolio adjustment reinforces this effect. Those who had

marginally chosen to add this college to their portfolios now excise it (the portfolio effect).

In consumer demand theory, the “price” of one good affects the demand for the other,

and in the two good world, they are substitutes. Analogously, we prove in the appendix,

that in our model, a college’s enrollment rises in its rival’s admission standard. This

owes to a portfolio spillover effect. If it grows tougher to gain admission to college i,

then those who only applied to its rival continue to do so, some who were applying to

both now apply just to j (which helps college j when it is the lesser school), and also

some at the margin who applied just to i now also add college j to their portfolios.8

Since capacities imply vertical supply curves, we have now justified a supply and

demand analysis, in which the colleges are selling differentiated products:

κ1 = E1(σ 1, σ 2) and κ2 = E2(σ 1, σ 2) (6)

For now, we ignore the possibility that some college might not fill its capacity. Then

equilibrium without excess capacity requires that both markets clear, or (6) holds. Since

7The portfolio effect may act with a lag — for instance, a college may unexpectedly ease admission
standards on year, and see their applicant pool expand the next year when this becomes understood.

8As in consumer theory, complementarity may emerge with three or more goods available. With
ranked colleges 1, 2, and 3, college 3 may be harmed by tougher admissions at college 1, if this encourages
enough applications at college 2.
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each enrollment (demand) function is falling in its own threshold, we may invert these

equations. This yields for each school i the threshold that “best responds” to its rival’s

admissions threshold σ j so as to fill their capacity κi:

σ 1 = Σ1(σ 2, κ1) and σ 2 = Σ2(σ 1, κ2) (7)

Given the discussion of the enrollment functions, we can treat Σi as a “best response

function” of college i. It rises in its rival’s admission standard and falls in its own ca-

pacity. That is, the admissions standards at the two colleges are strategic complements.

Figure 3 depicts an equilibrium as a crossing of these increasing best response functions.

By way of contrast, observe that without noise or without application costs, the

better college is completely insulated from the actions of its lesser rival — Σ1 is vertical.

The equilibrium analysis is straightforward, and there is necessarily a unique equilibrium.

In either case, the applicant pool of college 1 is independent of what college 2 does. For

when the application signal is noiseless, just the top students apply to college 1. And

when applications are free, all students apply to college 1, and will enroll if accepted.

With application costs and noise, Σ1 is upward-sloping, as application pools depend

on both college thresholds. When college 2 adjusts its admission standard, the student

incentives to gamble on college 1 are affected. This feedback is critical in our paper. It

leads to a richer interaction among the colleges, and perhaps to multiple equilibria.

In Figure 3, the best response function Σ1 is steeper than Σ2 at the crossing point.

Let us call any such equilibrium stable. It is robust in the following sense: Suppose

that whenever enrollment falls below capacity, the college eases its admission standards,

and vice versa. Then this dynamic adjustment process pushes us back towards the

equilibrium. Then at this theoretical level, admission thresholds act as prices in a

Walrasian tatonnement. Unstable equilibria should be rare: They require that a college’s

enrollment responds more to the other school’s admission standard than its own.

We show in the appendix that a stable equilibrium exists, and in any such equilibrium,

college 1 fills its capacity, while college 2 has excess capacity if college 1 is big enough.

Surprisingly, college spaces can go unfilled despite insufficient capacity for the applicant

pool. If college 1 is “too big” relative to college 2, then college 2 is left with excess

capacity. There is excess demand for college slots, and yet due to the informational

frictions, there is also excess supply of slots at college 2, even at “zero price”.

When college 2 has excess capacity, it optimally accepts all applicants. Since college 1

maintains an admissions standard, college behavior is monotone. But this forces α2 = 1

12
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Figure 3: College Responses and a Stable Equilibrium. The functions Σ1 (solid) and
Σ2 (dashed) give pairs of thresholds so that colleges 1 and 2 fill their capacities in equilibrium.

for all students, and so the acceptance function traverses the top side of the unit square in

Figure 2. In other words, as student caliber rises, the lowest students apply to college {2},
higher students to both colleges, and the best students just apply to college {1}. Let us

observe in passing that this is a sorting equilibrium.

4.2 Changing College Sizes and Application Costs

We now continue to explore the supply and demand metaphor, and derive some basic

comparative statics. Observe that without a noisy admission process, the lesser college

cannot possibly impact the better one. But with noise, the applicant pool at college 1 is

sensitive to the admission threshold at college 2, and so the best response function Σ1 is

positively sloped. This is the source of the novel comparative statics in our model. The

lesser-ranked college imposes an “externality” upon the better college in equilibrium.

The potential multiplicity of equilibria makes a comparative statics exercise difficult.9

But fortunately, our analysis applies to all stable equilibria. Indeed, greater capacity

at either college lowers both college admissions thresholds. This result speaks to the

equilibrium effects at play. Greater capacity at one school, or an exogenous downward

shift in the “demand” for slots, reduces the “price” (admission standard) at both schools.

The graph in Figure 4 — which depicts equations (7) — constitutes the proof of part (a).

For an intuition, consider a sorting equilibrium, where students apply as in Figure 2.

Suppose that college 2 raises its capacity κ2 (as in the right panel of Figure 4). Fixing

9It is not easy to ensure uniqueness of equilibrium. One case in which this holds is when c is
sufficiently small. This follows by continuity from the uniqueness of equilibrium in the costless case.
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Figure 4: Equilibrium Comparative Statics. The figure illustrates how the equilib-
rium is affected by changing capacities κ1, κ2. The best response functions Σ1 (solid) and Σ2

(dashed) are drawn. The left panel considers a rise in κ1, shifting Σ1 left, thereby lowering
both college thresholds. The right panel depicts the analogous rise in κ2, and shift Σ2.

the admission standard σ 1, this depresses σ 2. The marginal student that was indifferent

between applying to college 2 only (C2) and both colleges (B) now prefers to apply to

college 2 only. So fewer apply to college 1. Given this portfolio shift, college 1 drops its

admission standards. The left panel depicts the same comparative static for college 1.

Next, we argue that, in a sorting equilibrium, if the application cost at either col-

lege slightly falls, then the admission standard at college 1 rises and its student caliber

distribution stochastically worsens. The argument is intuitive. If the application cost

at college 2 falls, then more students apply, and it is forced to raise its standards. The

marginal benefit (2) of a stretch application to college 1 thus rises. To counter this,

college 1 responds with a higher standard, but it still gains more applicants at its lower

end, and its caliber distribution stochastically worsens. By contrast, college 2 loses not

only its worst students, but also top ones for whom it was insurance; its caliber change

is ambiguous. Graphically, a fall in the application cost at college 2 shifts Σ2 upwards

without affecting Σ1 — as the applicant pool at college 1 depends only indirectly on the

college 2 application cost via portfolio effects as the college 2 standard changes.

The argument is more complex when the application cost at college 1 falls, since the

applicant pools at both colleges depend on it. The direct impact is an expansion in

the applicant pool at college 1 — consisting of those who send stretch applications to

it — and a contraction in the applicant pool of college 2, triggering an increase in the

admission standard at college 1 and a decrease in that of college 2. The changes in the

admissions thresholds lead to further portfolio student reallocation, and the net effect
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is a priori ambiguous. Graphically, a lower application cost at college 1 simultaneously

shifts Σ1 (leftwards) and Σ2 (downwards). We show in the appendix that the portfolio

effects at both colleges cancel out for those calibers who send stretch applications to

college 1; on balance, its admission standard rises, and yet its applicant pool worsens.

The logic underlying this section does not essentially depend on the assumption that

there are two colleges. For instance, whenever colleges have overlapping applicant pools,

a rise in capacity at either depresses the admission standards at both.

5 Do Colleges and Students Sort in Equilibrium?

Casual empiricism suggests that the best students apply to and attend the best colleges,

and any imperfections of the sorting owe to the noise in the application process. We now

explain why both pieces of this compelling logic are false without stronger assumptions.

There are two reasons why the best students need not apply to the better college.

First, as seen in Figure 5, the acceptance function may multiply cross the MB12 = c

curve, where students are indifferent between applying to both colleges and just college 2.

Such a possibility would preclude sorting: For some calibers gamble up by applying to

both colleges, while higher calibers play it safe by applying to college 2 only. Figure 5

depicts a non-monotone sequence of application sets Φ, {2}, {1, 2}, {2}, {1, 2}, {1} as

caliber rises.10 We show that if college 2 yields payoff u ≤ 0.5, then this cannot happen.

For then if a student applies to college 1, then any higher caliber student also does.

The next problematic case for sorting applies when college 1 is insufficiently more

selective than college 2. For an extreme case, suppose that both colleges impose the same

standards. In this case, the worst students who apply anywhere will choose college 1,

while better students will find it worthwhile applying to both schools. This case is

captured in the right panel of Figure 5. It is impossible to preclude this behavior using

primitives of the student optimization alone. Rather, the college capacities must induce

a sufficiently higher (endogenous) admission standard at college 1 than at college 2.

Precluding the above two problematic cases, we show in the appendix that higher

caliber students apply more aggressively if college 2 offers a sufficiently low payoff, and

if it imposes a low enough admissions standard relative to college 1.

We argue in the appendix that the first condition implies that if a student applies to

10The marginal benefit MB12 in (2) rises in the expected payoff α1 of college 1 and falls in the
expected payoff α2u of college 2. If α2u rises faster than α1, then a better student may drop.
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Figure 5: Non-Monotone Behavior. In the left panel, the signal structure induces a
piecewise linear acceptance function. Student behavior is non-monotone, since there are both
low and high caliber students who apply to college 2 only (C2), while intermediate ones insure
by applying to both. In the right panel, equal thresholds at both colleges induce an acceptance
function along the diagonal, α1 = α2. Student behavior is non-monotone, as both low and
high caliber students apply to college 1 only (C1), while middling caliber students apply to
both. Such an acceptance function also arises when caliber signals are very noisy.

college 1, then so does any better student. Intuitively, the marginal benefit of applying

to college 1 in addition to college 2 falls in the quality of this lesser foregone alternative.

Further, Theorem 1 argues that a better student has a proportionately better chance

of gaining admission to college 1. The appendix combines these two insights and de-

duces that when college 2 has a low enough payoff u, a better student always has a

greater marginal gain from adding college 1. Summarizing, this case addresses “stretch

applications”, ensuring that the acceptance function traverses region C2 before region B.

The next condition instead turns on “safety schools” — graphically, that the accep-

tance function hits region B before region C1. We show that if college 2 imposes a low

enough admission standard, then the weakest students will always first choose it. And as

noted, better students have proportionately better admission chances at college 1 than

college 2 (Theorem 1). From these two insights we deduce in the appendix that when

any student portfolio includes college 2, then no worse student applies just to college 1.

So inspired, we next provide sufficient conditions on the fundamentals — college

capacity and quality — that deliver sorting in equilibrium for colleges and students. We

show that these conditions are needed if sorting emerges for any signal distribution.
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Theorem 2 (Non-Sorting and Sorting in Equilibrium)

(a) If college 2 is “too good” (i.e., u > 0.5), then there exists a continuous MLRP density

g(σ|x) that yields a stable equilibrium with non-monotone student behavior.

(b) If college 2 is not too big relative to college 1, then college 2 sets a higher admissions

standard than college 1 in some equilibrium.

(c) If college 1 is not too big relative to college 2, and college 2 is not too good (namely,

u ≤ 0.5), then there are only sorting equilibria and neither college has excess capacity.

We tackle part (a) constructively in the appendix, starting with the acceptance

function depicted in the left panel of Figure 5 and then appealing to Theorem 1 to

find some signal distribution that generates it. The message of part (b) is that even a

bad college 2 may maintain higher standards if it is sufficiently small. In other words,

admissions standards can be misleading measures of college quality — and this should

cast doubts on college rankings computed based on this measure. Because college 2 has

higher admissions standards and yields a lower payoff, it is no applicant’s first choice.

But some students may yet insure themselves with an application to college 2. If it is

sufficiently small, then it may entirely fill its capacity with these insurance applicants.

All told, parts (a) and (b) provide conditions under which sorting fails in some

equilibrium. Part (c) concludes with sufficient conditions for sorting in all equilibria.

6 The Spillover Effects of Affirmative Action

We now slightly enrich our model, and address the topical issue of affirmative action

in college admissions. Specifically, we explore how affirmative action at one college has

spillover effects at the other. We first assume that a fraction φ of the applicant pool

belongs to a target group. This may well be a under-represented minority, but it may

also be a majority group. For instance, many states favor their own students at state

colleges — Wisconsin public colleges can have at most 25% out-of-state students. Just

as well, some colleges strongly value athletes. We assume a common caliber distribution,

so that there is no other reason for differential treatment of the applicants.

Assume that students honestly report their “target group” status on their appli-

cations. Moreover, assume that students from both groups use monotone application

strategies. Reflecting the colleges’ desire for a more diverse student body, let college i

earn a bonus πi ≥ 0 for each enrolled target student. The colleges may set different
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thresholds for the two groups. Let colleges 1, 2 offer a “discount” ∆1,∆2 to target ap-

plicants. In other words, the respective standards for non-target and target groups are

(σ 1, σ 2) and (σ 1 −∆1, σ 2 −∆2). At each college, the expected payoff of the marginal

admits from the two groups should coincide — except of course at a corner solutions

(when a college admits all students from a group). This yields two new equilibrium

conditions that account for the fact that ex post, colleges behave rationally, and equate

their expected values of target and non-target applicants.

E[X + π1|σ = σ 1 −∆1, target] = E[X|σ 1, non-target] (8)

E[X + π2|σ = σ 2 −∆2, target, accepts] = E[X|σ 2, non-target, accepts] (9)

Here, X is the student caliber. So as with third degree price discrimination, colleges

equate the shadow cost of capacity across groups. Along with market clearing (6) at

each college, equilibrium requires solving four equations in four unknowns.

For any discounts ∆1,∆2, we let (σ 1(∆1,∆2), σ 2(∆1,∆2)) be admission standards

for non-target students that fill the capacity at both colleges — i.e. solving the equations

(6). As in Section 4, there could be multiple solutions. Consider a stable one.11 Then let

Vi(∆1,∆2, πi) be the shadow value difference in the LHS and RHS of (8)–(9), evaluated

at capacity-filling standards (σ 1, σ 2). An equilibrium is then a zero V1 = V2 = 0.

Naturally, without any group preference (π1 = π2 = 0), an equilibrium is ∆1 = ∆2 = 0.

Let us now define two new college best response functions. Write ∆i = Υi(∆j, πi) when

Vi(∆1,∆2, πi) = 0. An equilibrium is then a crossing point of Υ1,Υ2 in (∆1,∆2)-space.

It is a priori not clear what happens to the equilibrium as the group preferences π1

and π2 change. This hinges on the sign of the derivatives of Vi with respect to ∆1 and

∆2. To see the difficulty, consider for example what happens to V1 after the discount

∆1 at college 1 rises. The immediate effect is that V1 falls, as target students meet a

lower standard — fixing the non-target standards. But there are two feedback due to

capacity considerations alone. When the discount ∆i for a target student at college i

changes, there is an indirect effect — operating through the capacity equations — on

the non-target standard at college j. In the appendix, we show that this subtle feedback

are negligible locally around ∆1 = ∆2 = 0 with no affirmative action. From now on, we

ignore these two cross feedback effects in computing the total derivatives in ∆1,∆2.

It is critical to pin down the slopes of Υ1 and Υ2. From college 1’s perspective, shadow

11A simple modification of the proof of Claim 2 appendix gives existence of such a stable solution.
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value equalization requires that the discounts ∆1 and ∆2 rise or fall together. Why? We

argue that these discounts have opposite effects on the shadow value difference V1.

Lower standards for target students at college 1 not only depresses their average

caliber via the standards effect, but also encourages worse target applicants to apply —

i.e. the portfolio effect reinforces this. To fill capacity, the non-target student standard

must rise at college 1; their quality rises due to the portfolio and standards effects.

Altogether, the shadow value of non-target students rises relative to target students.

Conversely, lower standards for target students at college 2 deters the weakest target

“stretch” applicants at college 1, via the portfolio effect. So ignoring the cross effects,

the shadow value difference V1 rises in ∆2. To summarize, to maintain (8), an increase

in ∆1 must be accompanied by an increase in the discount ∆2, and thus Υ1 slopes up.

By contrast, the slope of the Υ2 is ambiguous. First, when college 1 favors some

students more, the portfolio and standards effects reinforce. College 2 loses some stellar

target “safety” applicants, but the remaining top tier of target applicants gain admission

to college 1 more often, and so are unavailable to college 2. Moreover, the pool of non-

target applicants at college 2 improves since their admission standard rises to meet the

capacity constraint. In short, the shadow value difference of target students less that of

non-target students falls. But this difference may rise or fall when college 2 favors target

students more. The standards effect is negative, but the portfolio effect is ambiguous:

Its favored applicant pool expands at the lower and upper ends.

We now resolve this indeterminacy and argue that the slope of the Υ2 is negative at

the stable equilibria. Assume that when the shadow value of a target student exceeds

that of a non-target student, college i responds by raising the target advantage ∆i. Call

the equilibrium shadow value stable if this dynamic adjustment process pushes us back

to the equilibrium. We argue that for any such equilibrium, the shadow value difference

of targeted over non-targeted students falls when college 2 favors the targeted students

more. For suppose not. Then we must have V2 > 0 whenever (∆1,∆2) lies above the

Υ2 schedule (along which V2 = 0). Thus, the adjustment process would lead to an even

higher ∆2, contrary to shadow value stability. Figure 6 illustrates this logic. So V2 must

fall in ∆2 at a shadow value stable equilibrium; therefore, Υ2 slopes down near any such

equilibrium, as in the right panel of Figure 6.

We are now ready to state the following result, whose proof is depicted graphically.
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Figure 6: Shadow Value Stable Equilibrium. The left panel illustrates a shadow
value unstable equilibrium, which happens when the best response Υ2 slopes upward. A
necessary condition for shadow value stability is that ∂V2/∂∆2 be negative, thus ensuring
that Υ2 slopes downward. The right panel depicts a shadow value stable equilibrium.

Theorem 3 (Affirmative Action) Fix π1 = π2 = 0. Assume that ∆1 = ∆2 = 0 is a

shadow value stable equilibrium with monotone student behavior.12 As the preference for

a target group at college 1 rises, it favors those students and college 2 penalizes them.

As the preference for target students at college 2 rises, both colleges favor them more.

Let’s highlight here an asymmetry. Affirmative action for target students by college 2

leads college 1 to follow suit. But affirmative action for target students at college 1

induces college 2 to penalize them. Two effects underpin this asymmetry. First, consider

the acceptance curse facing college 2. A student who enrolls at college 2 either just

applied there, or was strong enough to have applied to college 1 also — and was rejected.

So the event that a student enrolls at college 2 is a worse signal if college 1 has favored

them. College 2 must counters this with a penalty, which is further aggravated by a

portfolio effect: Indeed, the best favored students that previously applied to college 2

now just apply to college 1; therefore, the pool of favored applicants at college 2 worsens.

7 Early Admissions

In a final illustration of how student portfolio choice makes colleges interdependent,

we consider early admissions for students. We find a close parallel with the analysis of

12Such an equilibrium easily exists when c = 0, and by continuity for c small enough.
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Figure 7: Affirmative Action Comparative Statics. The left panel depicts a right
shift of the best response discount curve Υ1 as the minority preference π1 increases. The
equilibrium shifts to E1, with a higher discount ∆1 and a lower ∆2. This is justified for
small minority preferences in Theorem 3. The right panel depicts how the best response
Υ2 shifts up in π2, increasing both equilibrium discounts ∆1 and ∆2.

affirmative action. We assume that in addition to applying in the regular period, students

can also apply early. To stay focused, we analyze “early action” rather than early

decision, namely, non-binding early admission. We also assume that only one college has

an early admissions policy, and that its rejection is final: Applicants are not “deferred”.

While we can shed light on this important topic, we observe that this restriction precludes

the very difficult analysis of competing early admissions programs between colleges. As

in the analysis of affirmative action, college i may wish to discriminate between early

and regular applicants. So specifically, we assume an early standard σ i − ∆i and a

regular standard σ i, where the early “discount” ∆i may well be negative.

For our first insight, we consider the student application problem. Loosely, other

things equal, applying early is better. Formally, if college i offers early admissions,

and does not penalize early applicants (so that ∆i ≥ 0), then an early application to

it is weakly preferable to a regular application. Indeed, this is clear if just one regular

application is planned. Any student planning two regular applications can do better by

applying first to college i and then to college j in the regular period (if he so desires).

The equilibrium analysis requires an additional optimality condition upon the college

offering early admission. If it admits students in both early and regular periods, then

the expected caliber of the marginal enrollee in the two periods must coincide. In this
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way, we draw inspiration from the affirmative action section. By the logic of (8) and (9):

E[X|σ = σ i−∆i, applies early, accepts] = E[X|σ = σ i, applies regular, accepts] (10)

Namely, the shadow values of early and late applicants are equalized. To proceed, we

first suppose that a representative fraction µ ∈ (0, 1) of applicants has a “coupon” that

allows them to apply early, if they wish; thus, there always remain regular applicants,

and so (10) holds. Since µ can be very near 1, this assumption is weak. We assume

monotone student behavior in our standard setting without an early admission option.

Theorem 4 (Early Admissions) Assume monotone student behavior.

(a) If college 1 has an early admissions program, then it penalizes early applicants.

(b) In some equilibrium, college 2 favors early applicants, poaching from college 1.

The argument for part (a) is instructive. Suppose instead that it weakly favors them.

By our previous logic about early admissions at college 1, any students that would apply

in the regular period will apply early, but also, some lower caliber students are induced

to apply early. This is necessarily a lower set of students, with a lower shadow value,

than in the regular period — namely, those students without coupons. This violates

the required optimality condition (10). So college 1 must compensate by penalizing

early applicants. Intuitively, if the early standards are weakly lower, then portfolio and

standards effects reinforce each other, depressing the shadow value of early applicants.

We next turn to the more interesting case in part (b) when college 2 offers the early

admission program. We show that this enables it to “poach” students from college 1 —

namely, some students who would have applied to both colleges regular, will only apply

to college 2 early if they have a coupon, and will forego an extra application to college 1.

To see this, suppose that college 2 favors early applicants, with a discount ∆2 ≥ 0. Since

any student then enjoys a weakly greater admission chance early than regular, he will

apply early by our previous discussion. Also, of the students admitted at college 2, some

will then drop their regular application to college 1. Recalling the marginal benefit (2),

this incentive exists for students whose regular admission chances αR1 , α
R
2 satisfy

αR1 (x)(1− u) < c < αR1 (1− αR2 u) (11)

This inequality is possible because the marginal gain of applying regular to college 1

is smaller if one has already gained admission at college 2. This suggested behavior —
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Figure 8: Capturing Students with Early Action. The left and right panels depict the
optimal student strategy regions under regular and early action programs, respectively. The
key difference is the set of types on the solid (red) part of the acceptance function in the right
panel: Students without coupons apply to both colleges and accept college 1 if accepted, but
those with coupons apply early to college 2 and don’t bother to apply to college 1 if accepted.
College 2 successfully pre-empts college 1, and poaches the students.

depicted in Figure 8 — obtains in some equilibrium.

These insights are also robust beyond the two college world, where just one college

offers early admissions. If that college is the best, then it should penalize applicants. If

it is a lesser school, then it can profitably poach students from better colleges.

8 Concluding Remarks

We have reframed the college admissions problem with frictions: applications are costly,

students heterogeneous, and evaluations noisy. We have related student admission

chances at two ranked colleges, and built a graphical apparatus for analyzing student

and college choice. The student optimization introduces the distinction between stretch

and safety schools. In this Bayesian setting, admissions standards act as prices. College

enrollment obeys the law of demand not only because fewer students meet a tougher

admission standard, but also since not as many apply when the admission prospects are

not as bright. This portfolio effect raises the demand elasticity for student slots at a

college beyond that explained by the standards. This means, e.g., that a college might

meet a major enrollment mandate for target students with a minor standards shift.

We have shown that frictions may preclude sorting of students and colleges through
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two channels. First, better students need not apply more aggressively: For if the worse

college is either too good or too small, or the application process is noisy enough, one

student may gamble on the better college while a more talented one does not. Second,

college admissions standards needn’t reflect their quality — the worse college may set

higher standards if it is small enough. Large public schools might well be punished in

college rankings publications that use SAT scores of enrolled students in ranking schools.

We have also found how the applications frictions induce interdependencies among

the colleges: That lesser colleges can impact better rivals is an important and realistic

novelty missing from frictionless models of student-college matching. For instance, when

its lesser rival raises its capacity or lowers its application cost, the better one should lower

its admission standard and will see its student body composition shift.

One strength of our model is that it affords a unified treatment of a wide array of

seemingly unrelated questions about college admissions. Indeed, by allowing differenti-

ated consumer groups, we have also explored affirmative action and early admissions.

This richer model reveals that private colleges might wisely discriminate against state

residents. And we would argue that some top colleges have dropped early admissions

programs since it encourages aggressive applications by undesirable marginal students.

Tractability has forced us to assume common student preferences and restrict to two

colleges. Relaxing these restrictions is an important open problem. Our model is also

amenable to structural estimation, and Fu (2009) has taken a first step in this direction.

A Appendix: Proofs

A.1 Colleges Optimally Employ Admissions Thresholds

Let χi(σ) be the expected value of the student’s caliber given that he applies to college i,

his signal is σ, and he accepts. College i optimally employs a threshold rule if, and only

if, χi(σ) increases in σ. For college 1 this is immediate, since g(σ|x) enjoys the MLRP

property. We prove this for college 2, since it faces an acceptance curse. We assume that

students of calibers in set Ci apply to college i only, and in B apply to both colleges.13

χ2(σ) =

∫
C2 xg(σ|x)f(x)dx+

∫
B xG(σ 1|x)g(σ|x)f(x)dx∫

C2 g(σ|x)f(x)dx+
∫
BG(σ 1|x)g(σ|x)f(x)dx

(12)

13We assume that students employ pure strategies, which follows from our analysis of the student
optimization in §3.1. Measurability of sets B and C2 owe to the continuity of our functions αi(x) in §3.2.
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It is easy to show that χ2(σ) is less that the expectation without the cdf’s G — because

being accepted by a student reduces college 2’s estimate of his caliber, as there is a

positive probability that the student was rejected by college 1; i.e., college 2 suffers an

acceptance curse effect. Write (12) as χ2(σ) =
∫
B∪C2 xh2(x|σ)dx using indicator function

notation:

h2(x|σ) =
(IC2(x) + IBG(σ 1|x))g(σ|x)f(x)∫
B∪C2(IC2(t) + IBG(σ 1|t))g(σ|t)f(t)dt

, (13)

Then the ‘density’ h2(x|σ) has the MLRP. Therefore, χ2(σ) increases in σ. �

A.2 Simultaneous versus Sequential Timing

We claim that the subgame perfect equilibrium (SPE) outcomes of the two-stage game

with students moving first coincide with the Nash equilibria of the one-shot game.

First, consider the outcome of a SPE of the two-stage game, where students choose

application S = S(·) and then colleges choose standards σ 1(S) and σ 2(S). Then colleges

must be best responding to each other and to S (since S is realized when they choose).

Also, students can forecast how colleges would respond to S in an SPE of the two-stage

game, and so their applications must be best replies to the standards σ 1(S) and σ 2(S).

Thus, it is an equilibrium of the one-shot game.

Conversely, since each student has measure zero, he cannot affect the college stan-

dards by adjusting his application strategy. Hence, any equilibrium (S, σ 1(S), σ 2(S)) of

the one-shot game is also the outcome an SPE of the two-stage game. �

A.3 Acceptance Function and Signals

Since G(σ 1|x) is continuously differentiable in x, the acceptance function is continuously

differentiable on (0, 1]. Given α ≡ 1 − G(σ|ξ(α, σ)), partial derivatives have positive

slopes ξα, ξσ > 0. Differentiating (3),

∂ψ

∂α1

= −Gx(σ 2|ξ(α1, σ 1))ξα(α1, σ 1) > 0

∂ψ

∂σ 1

= −Gx(σ 2|ξ(α1, σ 1))ξσ(α1, σ 1) > 0

∂ψ

∂σ 2

= −g(σ 2|ξ(α1, σ 1)) < 0
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Properties of the cdf G imply ψ(0, σ 1, σ 2) ≥ 0 and ψ(1, σ 1, σ 2) = 1. The limits of ψ as

thresholds approach the supremum and infimum owe to limit properties of G. �

A.4 Acceptance Function Shape: Proof of Theorem 1

(⇒) The Acceptance Function is Regular. First, G(σ|x) and 1 − G(σ|x) are

strictly log-supermodular in (σ, x) since the density g(σ|x) obeys the strict MLRP. Since

x = ξ(α1, σ 1) is strictly increasing, G(s|ξ(α1, σ 1)) and 1−G(s|ξ(α1, σ 1)) are then strictly

log-supermodular in (s, α1). So the secant slopes below strictly fall in α1, since σ 1 > σ 2:

ψ(α1)

α1

=
1−G(σ 2|ξ(α1))

1−G(σ 1|ξ(α1))
and

1− ψ(α1)

1− α1

=
G(σ 2|ξ(α1))

G(σ 1|ξ(α1))

(⇐) Deriving a Signal Distribution. Conversely, fix a regular function h

and a smoothly monotone onto function α1(x). Also, put α2(x) = h(α1(x)), so that

α2(x) > α1(x). We must find a continuous signal density g(σ|x) with the strict MLRP

and thresholds σ1 > σ2 that rationalizes the h as the acceptance function consistent

with these thresholds and signal distribution.

Step 1: A Discrete Signal Distribution. Consider a discrete distribution with

realizations in {−1, 0, 1}: g1(x) = α1(x), g0(x) = α2(x)−α1(x) and g−1(x) = 1−α2(x).

Indeed, for each caliber x, gi ≥ 0 and sum to 1. This obeys the strict MLRP because

g0(x)

g1(x)
=
α2(x)− α1(x)

α1(x)
=
h(α1(x))

α1(x)
− 1

is strictly decreasing by the first secant property of h, and

g0(x)

g−1(x)
=
α2(x)− α1(x)

1− α2(x)
= −1 +

1− α1(x)

1− h(α1(x))

is strictly increasing in x by the second secant property of h.

Let the college thresholds be (σ 1, σ 2) = (0.5,−0.5). Then G(σ 1|x) = g−1(x) +

g0(x) = 1 − α1(x) and G(σ 2|x) = g−1(x) = 1 − α2(x). Rearranging yields α1(x) =

1 − G(σ 1|x) and α2(x) = 1 − G(σ 2|x). Inverting α1(x) and recalling that α2 = h(α1),

we obtain α2 = h(α1) = 1−G(σ 2|ξ(σ 1, α1)), thereby showing that h is the acceptance

function consistent with this signal distribution and thresholds.

Step 2: A Continuous Signal Density. To create an atomless signal dis-

tribution, we smooth this example using the triangular kernel k(s) = max{1 − s, 0}.
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Fix β > 0, and define g(σ|x) = β
∑

i={−1,0,1} gi(x)k(β(σ − i)). For any “bandwidth”

1/β ∈ (0, 1/2), acceptance chances remain the same as with the discrete signals, since

the masses at {−1, 0, 1} is not transferred past the (respective) thresholds {0.5,−0.5}.
The strict MLRP implies that gi(x) is strictly log-supermodular in (i, x). Also, the

function k(s) is concave in s, and thus log-concave in s too. This implies that k(β(σ−i))
is log-supermodular in (i, σ). This is in §1.5 in Karlin (1968), but for a self-contained

treatment, let’s assume twice differentiability: Then kσik− kσki > 0 iff −k′′k+ k′k′ > 0,

which holds iff k is log concave. Thus, gi(x)k(β(σ − i)) is log-supermodular in (i, x, σ).

Finally, partially summing over i = 1, 2, 3 yields a log-supermodular function of (x, σ),

by Proposition 3.2 in Karlin and Rinott (1980) — it is the MRLP property. �

A.5 Monotone Student Strategies

Lemma 1 (Monotone Applications) Student behavior is monotone in caliber if

(a) College 2 has payoff u ≤ 0.5, so that if a student applies to college 1, then any better

student will also apply to college 1, and

(b) College 2 imposes a low enough admissions standard relative to college 1 so that if a

student applies to college 2, then any worse student applies to college 2 or nowhere.

The proof proceeds as follows. First, we show that u ≤ 0.5 implies that if a caliber

applies to college 1, any higher caliber applies as well. Second, we produce a sufficient

condition that ensures that the admissions threshold at college 2 is sufficiently lower

than that of college 1, so that if a caliber applies to college 2, then any lower caliber

who applies to college sends an application to college 2, and calibers at the lower tail

apply nowhere. From these two results, monotone student behavior ensues.

Proof of Part (a), Step 1. We first show that the acceptance function α2 =

ψ(α1) crosses α2 = 1/u(1−c/α1) (i.e., MB12 ≡ α1(1−α2u) = c) only once when u ≤ 0.5.

Since (i) the acceptance function starts at α1 = 0 and ends at α1 = 1, (ii) MB12 = c

starts at α1 = c and ends at α1 = c/(1 − u), and (iii) both functions are continuous,

there exists a crossing point. Clearly, they intersect when α1(1− ψ(α1)u) = c. Now,

[(1−ψ(α1)u)α1]′= 1−uψ(α1)−α1uψ
′(α1)>1−uψ(α1)−uψ(α1)=1−2uψ(α1)≥1−2u≥0,

where the first inequality exploits ψ(α1)/α1 falling in α1 (Theorem 1), i.e. ψ′(α1) <

ψ(α1)/α1; the next two inequalities use ψ(α1) ≤ 1 and u ≤ 0.5. Since MB12 is rising in

α1 when the acceptance relation hits α2 = (1− c/α1)/u, the intersection is unique.
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Proof of Part (a), Step 2. We now show that Step 1 implies the following

single crossing property in terms of x: if caliber x applies to college 1 (i.e., if 1 ∈ S(x),

then any caliber y > x also applies to college 1 (i.e., 1 ∈ S(y)). Suppose not; i.e.,

assume that either S(y) = ∅ or S(y) = {2}. If S(y) = ∅, then S(x) = ∅ as well,

as α1(x) < α1(y) and α2(x) < α2(y), contradicting the hypothesis that 1 ∈ S(x). If

S(y) = {2}, then there are two cases: S(x) = {1} or S(x) = {1, 2}. The first cannot

occur, for by Theorem 1 α2(x)/α1(x) > α2(y)/α1(y), and thus α2(y)u ≥ α1(y) implies

α2(x)u > α1(x), contradicting S(x) = {1}. In turn, the second case is ruled out by the

monotonicity of MB12 derived above, as caliber y has greater incentives than x to add

college 1 to its portfolio, and thus S(y) = {2} cannot be optimal.

Proof of Part (b), Step 1. We first show that if the acceptance function passes

above the point (ᾱ1, ᾱ2) =
(
u(1−

√
1− 4c/u)/2, (1−

√
1− 4c/u)/2

)
— point P in the

right panel of Figure 5 — then there is a unique crossing of the acceptance function and

α2 = c/u(1− α1), i.e. MB21 = c. Now, the acceptance function passes above (ᾱ1, ᾱ2) if

ψ(ᾱ1, σ 1, σ 2) ≥ ᾱ2. (14)

This condition relates σ 1 and σ 2. Rewrite (14) using Theorem 1 as σ 2 ≤ η(σ 1) < σ 1,

requiring a large enough “wedge” between the standards of the two colleges.

To show that (14) implies a unique crossing, consider the secant of α2 = c/u(1−α1)

(the curve MB21 = c). It has an increasing secant if and only if α1 ≥ 1/2. To see this,

differentiate α2/α1 = c/uα1(1 − α1) in α1. Notice also that MB12 = c intersects the

diagonal α2 = α1 at the points (α`1, α
`
2) = (1/2 −

√
1− c/4u/2, 1/2u −

√
1− c/4u/2u)

and (αh1 , α
h
2) = (1/2 +

√
1− c/4u/2, 1/2u+

√
1− c/4u/2u) > (1/2, 1/2u).

Condition (14) gives ψ(α`1, σ 1, σ 2) > α`2. Since σ 2 < σ 1, we have ψ(α1, σ 1, σ 2) ≥ α2

for all α1. Thus, the acceptance function crosses MB21 = c at or above (αh1 , α
h
2). And

since αh1 > 1/2, the secant of MB21 = c must be increasing at any intersection with the

acceptance function. Hence, there must be a single crossing point.

Proof of Part (b), Step 2. We now show that this single crossing property in α

implies another in x: If caliber x applies to college 2 (i.e., if 2 ∈ S(x)), then any caliber

y < x that applies somewhere also applies to college 2 (i.e., 2 ∈ S(y) if S(y) 6= ∅).

Suppose not; i.e., assume that S(y) = {1}. Then there are two cases: S(x) = {2} or

S(x) = {1, 2}. The first cannot occur, for by Theorem 1 α2(x)/α1(x) < α2(y)/α1(y), and

thus α2(x)u ≥ α1(x) implies α2(y)u > α1(y), contradicting S(x) = {2}. The second case
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is ruled out by the monotonicity of MB21 given condition (14), as caliber y has greater

incentives than x to apply to college 2, and thus S(y) = {1} cannot be optimal. Finally,

S(y) = ∅ if α2(y)u < c by (14), which happens for low calibers below a threshold. �

A.6 The Law of Demand

Claim 1 (The Falling Demand Curve) If either college raises its admission stan-

dard, then its enrollment falls, and thus its rival’s enrollment rises.

Proof Step 1: The applicant pool at college 1 Shrinks. When σ 1 in-

creases, the acceptance relation shifts up by Theorem 1, and thus the above type sets

change as well. Fix a caliber x ∈ C2 or x ∈ Φ, so that 1 /∈ S(x).14 We will show that x

continues to apply either to college 2 only or nowhere, and thus the pool of applicants at

college 1 shrinks. If x ∈ C2, then α2(x)u− c ≥ 0 and α2(x)u ≥ α1(x), and this continues

to hold after the increase in σ 1, since α(x) falls while α2(x) is constant. And if x ∈ Φ,

then clearly caliber x will continue to apply nowhere when σ 1 increases.

Proof Step 2: The applicant pool at college 2 expands. Fix a caliber x ∈
C2 or x ∈ B, so that 2 ∈ S(x). It suffices to show that caliber x continues to apply to

college 2 when the admission standard at college 1 increases. If x ∈ C2, then α2(x)u−c ≥
0 and α2(x)u ≥ α1(x); these inequalities continue to hold after σ 1 rises, since α1(x) falls

while α2(x) remains constant. And if x ∈ B, then MB21 = (1 − α1(x))α2(x)u rises in

σ 1, encouraging caliber x to apply to college 2. Thus, x /∈ C1∪Φ. Since x was arbitrary,

it follows that the applicant pool at college 2, B ∪ C2, expands when σ 1 increases. �

A.7 Existence of a Stable Equilibrium

Claim 2 (Existence) A stable equilibrium exists. College 1 fills its capacity. Also,

there exists κ̄1(κ2, c) < 1 − κ2 satisfying limc→0 κ̄1(κ2, c) = 1 − κ2 such that if κ1 ≤
κ̄1(κ2, c), then college 2 also fills its capacity in any equilibrium. If κ1 > κ̄1(κ2, c), then

college 2 has excess capacity in some equilibrium.

Proof: For some insight, we choose the capacity κ̄1 given κ2 so that when college 2

has no standards, both colleges exactly fill their capacity. This borderline capacity is

less than 1 − κ2 since a positive mass of students — perversely, those with the highest

14With a slight abuse of notation, we let Φ denote the set of calibers that apply nowhere. The same
symbol was previously used to denote the analogous set in α-space.
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Figure 9: Equilibrium Existence. In the left panel, since κ1 > κ̄1(κ2), the best response
functions Σ1 and Σ2 do not intersect, and equilibrium is at E with σ 2 = 0. The right panel
depicts the proof of Claim 2 for the case κ1 < κ̄1(κ2).

calibers — applies just to college 1, and some are rejected. (This happens whenever

one’s admission chance at college 1 is at least 1− c/u, by (1).)

For definiteness, we now denote the infimum signal by −∞, and the supremum signal

by ∞. Fix any κ2 ∈ (0, 1), and let σl1(κ2) be the unique solution to κ2 = E2(σ 1,−∞),

i.e., when college 2 accepts everybody. (Existence and uniqueness of σl1(κ2) follows from

E2(−∞,−∞) = 0, E2(∞,−∞) = 1, and E2(σ 1,−∞) increasing and continuous in σ 1.)

Define κ̄1(κ2) = E1(σl1(κ2),−∞). Let κ1 ≥ κ̄1(κ2). We claim that there exists an

equilibrium in which college 2 accepts everybody, and college 1 sets a threshold σ`1(κ1),

the unique solution to κ1 = E1(σ 1,−∞), which satisfies σ`1(κ1) ≤ σl1(κ2). For since

college 2 rejects no one, σ`1(κ1) fills college 1’s capacity exactly. The enrollment at

college 2 is then E2(σ`1(κ1),−∞) ≤ κ2 (as σ`1(κ1) ≤ σl1(κ2) and E2(σ 1, σ 2) is increasing

in σ 1), so by accepting everybody college 2 fills as much capacity as it can. This

equilibrium is trivially stable, as Σ2 is ‘flat’ at the crossing point (see Figure 9, left

panel). Moreover, if κ1 > κ̄1(κ2), then college 2 has excess capacity in this equilibrium.

Assume now κ1 < κ̄1(κ2). We will show that the continuous functions Σ1 and Σ2

must cross at least once (i.e., an equilibrium exists), and that the slope condition is met

(i.e., it is stable). First, in this case σl1(κ2) < σ`1(κ1) or, equivalently, Σ−1
2 (−∞, κ2) <

Σ1(−∞, κ1). Second, as the standard of college 2 goes to infinity, college 1’s threshold

converges to σu1(κ1) < ∞, the unique solution to κ1 = E1(σ 1,∞). This is the largest

threshold that college 1 can set given κ1. Similarly, as the standard of college 1 goes

to infinity, college 2’s threshold converges to σu2(κ2) < ∞, the unique solution to κ2 =

E2(∞, σ 2), i.e. the largest threshold that college 2 can set given κ2. Third, for ε > 0 small

enough, the unique solution to κ1 = E1(σ 1, σ
u
2(κ2)− ε) lies below the unique solution to
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κ2 = E2(σ 1, σ
u
2(κ2)− ε). Equivalently, Σ−1

2 (σu2(κ2)− ε, κ2) > Σ1(σu2(κ2)− ε, κ1).

Since Σ−1
2 (−∞, κ2) < Σ1(−∞, κ1) and Σ−1

2 (σu2(κ2) − ε, κ2) > Σ1(σu2(κ2) − ε, κ1)

(graphically, point A is to the left of point B in Figure 9), and Σ1 and Σ2 are continu-

ous, by the Intermediate Value Theorem, they must cross at least once with the slope

condition being satisfied (see Figure 9, right panel). Thus, a stable equilibrium exists

when κ1 < κ̄1(κ2). Moreover, in any equilibrium there is no excess capacity at either

college, since Σ−1
2 (−∞, κ2) < Σ1(−∞, κ1).

Hence, a stable equilibrium exists for any κ2 ∈ (0, 1). Capacities are exactly filled

when κ1 ≤ κ̄1(κ2), while there can be excess capacity at college 2 whenever κ1 > κ̄1(κ2).

Since κ2 = E1(σl1(κ2),−∞), κ̄1(κ2) equals 1−κ2 plus the mass of students who only

applied to, and were rejected by, college 1. This mass vanishes as c vanishes, for then

everybody applies to both colleges. So κ̄1(κ2) converges to 1− κ2 as c goes to zero. �

A.8 Sorting Equilibrium Implies Stochastic Dominance of Types

Claim 3 (Sorting and the Caliber Distribution) In any sorting equilibrium, the

caliber distribution at college 1 first-order stochastically dominates that at college 2.

Proof: A monotone student strategy is represented by the partition of the set of types:

Φ = [0, ξ2), C2 = [ξ2, ξB),B = [ξB, ξ1), C1 = [ξ1,∞) (15)

where ξ2 < ξB < ξ1 are defined by the intersection of the acceptance function with c/u,

α2 = (1−c/α1)/u (i.e., MB12 = c), and α2 = c/[u(1−α1)] (i.e., MB21 = c), respectively.

Fix σ 1 and σ 2. Let f1(x) and f2(x) be the densities of calibers accepted at colleges 1

and 2, respectively. Formally,

f1(x) =
α1(x)f(x)∫∞

ξB
α1(t)f(t)dt

I[ξB ,∞)(x) (16)

f2(x) =
I[ξ2,ξB ](x)α2(x)f(x) + (1− I[ξ2,ξB ](x))α2(x)(1− α1(x))f(x)∫ ξB

ξ2
α2(s)f(s)ds+

∫ ξ1
ξB
α2(s)(1− α1(s))f(s)ds

I[ξ2,ξ1](x), (17)

where IA is the indicator function of the set A.

We shall show that, if xL, xH ∈ [0,∞), with xH > xL, then f1(xH)f2(xL) ≥
f2(xH)f1(xL); i.e., fi(x) is log-supermodular in (−i, x), or it satisfies MLRP. The result

follows as MLRP implies that the cdfs are ordered by first-order stochastic dominance.
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Using (16) and (17), f1(xH)f2(xL) ≥ f2(xH)f1(xL) is equivalent to

α1HI[ξB ,∞)(xH)
(
I[ξ2,ξB ](xL)α2L + (1− I[ξ2,ξB ](xL))α2L(1− α1L)

)
I[ξ2,ξ1](xL) ≥

α1LI[ξB ,∞)(xL)
(
I[ξ2,ξB ](xH)α2H + (1− I[ξ2,ξB ](xH))α2H(1− α1H)

)
I[ξ2,ξ1](xH),

(18)

where αij = αi(xj), i = 1, 2, j = L,H. It is easy to show that the only nontrivial case is

when xL, xH ∈ [ξB, ξ1] (in all the other cases, either both sides are zero, or only the right

side is). If xL, xH ∈ [ξB, ξ1], then (18) becomes α1Hα2L(1− α1L) ≥ α1Lα2H(1− α1H), or

(1−G(σ 1 | xH))(1−G(σ 2 | xL))G(σ 1 | xL) ≥
(1−G(σ 1 | xL))(1−G(σ 2 | xH))G(σ 1 | xH).

(19)

Since g(σ | x) satisfies MLRP, it follows that G(σ | x) is decreasing in x, and hence

G(σ 1 | xL) ≥ G(σ 1 | xH). Next, 1−G(σ | x) is log-supermodular in (x, σ), and hence

(1−G(σ 1 | xH))(1−G(σ 2 | xL)) ≥ (1−G(σ 1 | xL))(1−G(σ 2 | xH)),

as σ 1 > σ 2 in a sorting equilibrium. Thus, (19) is satisfied, thereby proving that fi(x)

is log-supermodular in (−i, x), and so F1 first-order stochastically dominates F2. �

A.9 Changing Application Costs

Claim 4 (College Comparative Statics) If the application costs at college 2 rises,

then both admission standards fall. If the equilibrium is sorting, then the distribution of

calibers of student enrolled at college 1 stochastically improves.

Proof: Assume a sorting equilibrium. We modify (15) for different costs: ξ1 is defined

by MB21 = c2, ξB by MB12 = c1, and ξ2 by α2u = c2. If c2 rises, then ξ1 drops, ξ2 rises,

and ξB is unchanged; thus, the applicant pool at college 2 shrinks, and at college 1 is

unchanged. So the Σ2 curve shifts down, while Σ1 remains unchanged. The functions

now cross at a lower threshold pair, and so both standards σ 1, σ 2 both fall.

Next consider an increase in c1. This riases ξB, which shrinks the applicant pool at

college 1, and increases the enrollment at college 2, at a fixed admission standard. This

shifts Σ1 left and Σ2 up. While the effect on the standard σ 2 is ambiguous, we now

deduce that σ 1 falls. Differentiating (4) and (5) with respect to c1, and using Cramer’s

Rule:
∂σ 1

∂c1

=
(∂E2/∂c1)(∂E1/∂σ 2)− (∂E1/∂c1)(∂E2/∂σ 2)

(dE1/dσ 1)(dE2/dσ 2)− (dE2/dσ 1)(dE1/dσ 2)
(20)
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Since the equilibrium is stable, the slope of Σ1 is steeper that of Σ2, and thus the

denominator is positive. Let Pi(ξ|y) be the portfolio density shift to college i at type ξ

given an increment to standard or cost y, and let S2(A) be the own-standards effect at

college 2 in set A. Then parse the enrollment derivatives into the portfolio and standards

effects: dE1/dc1 = P1(ξB|c1) < 0, dE2/dσ 2 = Σi=2,B,1P2(ξi|σ 2) − S2(C2) − S2(B) < 0,

dE2/dc1 = P2(ξB|c1) > 0, and dE1/dσ 2 = P1(ξB|σ 2) > 0. If c1 slightly rises, then ξB

rises by some δ > 0. Thus, college 1 loses mass f(ξB)α1δ of students, and college 2 gains

mass f(ξB)α1α2δ of students who would have gone to college 1. Likewise, if σ 2 slightly

rises, then ξB falls by some δ′, and college 1 gains mass f(ξB)α1δ
′ and college 2 loses

mass f(ξB)α1α2δ
′. Thus, P1(ξB|σ 2)P2(ξB|c1)− P1(ξB|c1)P2(ξB|σ 2) equals

[f(ξB)α1δ
′][f(ξB)α1α2δ]− [f(ξB)α1δ][f(ξB)α1α2δ

′] = 0

Hence, the numerator in (20) reduces to

−P1(ξB|c1)[P2(ξ2|σ 2) + P (ξ1|σ 2)− S2(C2)− S2(B)] < 0

In a sorting equilibrium, the applicant pool at college 1 consists of calibers x ∈
[ξB,∞). From the last part, any cost increase depresses σ 1 in equilibrium. It follows

that ξB rises in equilibrium — since college 1 has the same capacity as before, if it is

to have lower standards, it must also have fewer applicants. Let (ξ0
B, σ

0
1) be the old

equilibrium pair and (ξ1
B, σ

1
1) the new one, with ξ0

B < ξ1
B and σ0

1 > σ1
1. Then the

distribution function of enrolled students at college 1 under equilibrium i = 0, 1 is:

F i
1(x) =

∫ x
ξi
B

(1−G(σi1|t)) f(t)dt∫∞
ξi
B

(1−G(σi1|t)) f(t)dt

We must show F 1
1 (x) ≤ F 0

1 (x) for all x ∈ [ξ1
B,∞). For any x, the denominators

on both sides equal k1, so cancel them. Now notice that 0 = F 1
1 (ξ1

B) < F 0
1 (ξ1

B)

and limx→∞ F
1
1 (x) = limx→∞ F

0
1 (x) = 1. Since both functions are continuous in x,

if ∂F 1
1 /∂x > ∂F 0

1 /∂x for all x ∈ [ξ1
B,∞), then F 1

1 (x) < F 0
1 (x). But this requires

(1−G(σ1
1|x)) f(x) > (1−G(σ0

1|x)) f(x), which follows from σ1
1 < σ0

1. �
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A.10 Sorting and Non-Sorting: Proof of Theorem 2

Part (a): College 2 is Too Good. We prove that there exists κ̄2(κ1) > 0 so that

college 2 sets a higher admissions standard than college 1 in a stable equilibrium, for

any capacity κ2 ≤ κ̄2(κ1). Fix any κ1, κ2, such that κ1 + κ2 < 1. We shall proceed

in two steps. First, we show that since u > 0.5, we can use Theorem 1 to construct

a non-sorting equilibrium in which colleges’ behavior is monotone but students’ is not.

Second, we show that all equilibria induce the same type of behavior.

Step 1: Towards an Acceptance Function. When u > 0.5, the secant from

the origin to MB12 = c falls as α1 tends to c/(1− u) — as in the left panel of Figure 5.

So for some z < c/(1− u)s, a line from the origin to (z, 1) slices the MB12 curve twice.

This would imply non-monotone student behavior if that line belonged to the acceptance

function, such as: h : [0, 1]→ [0, 1] by h(α) = α/z and on [0, z), and h(α1) = 1 for α1 ≥ z.

Step 2: A piecewise-linear acceptance chance α1. Choose ξ and ξ̄ that

uniquely solve κ1 =
∫∞
ξ̄
f(x)dx and κ2 =

∫ ξ̄
ξ
f(x)dx. Set α1(x) = 0 for x < ξ. This

function then jumps up to the rising line segment α1(x) = ω(x)z + (1− ω(x))c/(1− u)

for x ∈ [ξ, ξ̄), where ω(x) ≡ (ξ̄ − x)/(ξ̄ − ξ). Lastly, α1 jumps up α1(x) = 1 for x > ξ.

Step 3: Student Behavior. Observe that h(0) = 0 and h(1) = 1, and that h is

weakly increasing, with both h(α)/α and [1 − h(α)]/[1 − α] weakly decreasing. In this

sense, h is a weakly regular function. This suggests that we set α2(x) ≡ h(α1(x)).

In this case, students x ∈ [0, ξ) are accepted with zero chance at either college, and

so apply nowhere. Next, because h(z) = 1, any calibers x ∈ [ξ, ξ̄) are accepted with

chance one at college 2, and with chance between z and c/(1− u) at college 1. Further,

any student ξ̄ strictly prefers just to apply to college 2 (as in Figure 5). To see this,

observe that MB12 = (c/(1−u))(1−α2u) > (c/(1−u))(1−u) = c when α2 = c/(1−u)

and α1 = 1. Lastly, calibers x > ξ̄ are always accepted at college 1 and only apply there.

Step 4: Smoothing the Construction. By smoothly bending the function h

inside (0, 1), an arbitrarily close function h∗ is also regular. Next, we create a continuous

and smooth acceptance chance α̃. Any four small enough numbers, ε, ε, ε̄, ε̄ > 0, yield a

unique Bezier approximation α̃ tangent to α at the four points ξ−ε, ξ+ε, ξ̄−ε̄, ξ̄+ε̄. Then

α̃1 — and so the enrollment at college 1 — falls in ε̄, and rises in ε̄. Also, α̃2 = h∗(α̃1)

falls in ε̄, and rises in ε̄, and it also falls in ε, and rises in ε. Enrollment at college 2

shares this monotonicity, but the enrollment at college 1 is unaffected by ε and ε.

Fix a small ε̄ > 0. Choose ε̄ > 0 so that college 1 still fills its capacity. WLOG,
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Figure 10: Existence of Sorting and Non-Sorting Equilibria In the left panel, we
depict the non-sorting equilibrium constructed in the proof of Theorem 2. As κ2 decreases, Σ2

shifts up, leading to a non-sorting equilibrium at E1. The right panel illustrates the proof of
Theorem 2. As κ1 falls, the equilibrium standards at E1 are guaranteed to satisfy σ 2 < η(σ 1),
thereby obtaining a sorting equilibrium.

enrollment at college 2 has fallen. Then choose ε > 0 large enough so that college 2 is

over its capacity, then for some ε > 0, the former enrollment at college 2 is restored.

Theorem 1 now yields a signal density g(σ|x) and thresholds σ 1 > σ 2 such that h∗

is the acceptance function. We have thus constructed a non-sorting equilibrium. �

Part (b): College 2 is Too Small. The proof is constructive, exploiting our

graphical analysis. To begin, consider the point (α1, α2) = (c, c/u) on the line α2 = α1/u.

Then the acceptance function evaluated at α1 = c is below c/u if and only if

ψ(c, σ 1, σ 2) < c/u. (21)

We will restrict attention to pairs (σ 1, σ 2) such that (21) holds. In this case, any student

who applies to college starts by adding college 1 to his portfolio, and this happens as

soon as α1(x) ≥ c, or when x ≥ ξ(c, σ 1). Then enrollment at college 1 is given by

E1(σ 1, σ 2) =

∫ ∞
ξ(c,σ 1)

(1−G(σ 1|x))f(x)dx,

which is independent of σ 2. Thus, for any capacity κ1 ∈ (0, 1), a unique threshold

σ 1(κ1) solves κ1 = E1(σ 1, σ 2). (The Σ−1
1 function is “vertical” when (21) holds, since

the applicant pool at college 1 does not depend on college 2’s admissions threshold.)

The analysis above allows us to restrict attention to finding equilibria within the set

of thresholds (σ 1, σ 2) such that σ 1 = σ 1(κ1) and σ 2 satisfies ψ(c, σ 1(κ1), σ 2) < c/u.
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Enrollment at college 2 is given by

E2(σ 1(κ1), σ 2) =

∫
B

G(σ 1(κ1)|x)(1−G(σ 2|x))f(x)dx,

which is continuous, decreasing in σ 2, and increasing in σ 1 (see Claim 1). Thus, κ2 =

E2(σ 1(κ1), σ 2) yields σ 2 = Σ2(σ 1(κ1), κ2), which is strictly decreasing in κ2.

Given κ1, let κ̄2(κ1) = E2(σ 1(κ1), σ 1(κ1)) be the level of college 2 capacity so that

equilibrium ensues if both colleges set the same threshold.15 Since Σ2 strictly falls in κ2,

for any κ2 < κ̄2(κ1), an equilibrium exists with σ 2 > σ 1(κ1). Then (a) for any κ1 ∈ (0, 1)

and κ2 ∈ (0, κ̄2(κ1)], there is a unique equilibrium with σ 1 = σ 1(κ1) and σ 2 ≥ σ 1(κ1),

having (b) non-monotone college and student behavior (Figure 10, left).16 �

Part (c): Conditions for Equilibrium Sorting. We prove that there exists

κ1(κ2) > 0 such that if κ1 ≤ κ1(κ2) and u ≤ 0.5, then there are only sorting equilibria

and neither college has excess capacity.

Fix κ2 ∈ (0, 1). We first show that the stable equilibrium with no excess capacity

derived in Claim 2 is also sorting when the capacity of college 1 is small enough. More

precisely, there is a threshold κ1(κ2), smaller than the bound κ̄1(κ2) defined in the proof

of Claim 2, such that for all κ1 ∈ (0, κ1(κ2)), there is a pair of admissions thresholds

(σ 1, σ 2) that satisfies κ1 = E1(σ 1, σ 2), κ2 = E2(σ 1, σ 2), and σ 2 < η(σ 1) (i.e., a sorting

equilibrium), and ∂Σ1/∂σ 2∂Σ2/∂σ 1 < 1 (i.e., the equilibrium is stable).

The proof uses three easily-verified properties of the function η: (a) η is strictly

increasing; (b) σ 2 = η(σ 1)→∞ as σ 1 →∞; (c) σ 1 = η−1(σ 2)→ −∞ as σ 2 → −∞.

For any κ1 ∈ (0, κ̄1(κ2)), we know from Claim 2 that there exists a pair (σ 1, σ 2) that

satisfies κ1 = E1(σ 1, σ 2) and κ2 = E2(σ 1, σ 2), with (∂Σ1/∂σ 2)(∂Σ2/∂σ 1) < 1.

Claim 5 The pair (σ 1, σ 2) is a sorting equilibrium when κ1 is sufficiently small.

Proof: Let M(κ2) = {(σ 1, σ 2)|κ2 = E2(σ 1, σ 2) and σ 2 = η(σ 1)}. Graphically, this is

the set of all pairs at which σ 2 = Σ2(σ 1, κ2) crosses σ 2 = η(σ 1).

If M(κ2) = ∅ we are done, for then σ 2 = Σ2(σ 1, κ2) < η(σ 1) for all σ 1, including

those at which κ1 = E1(σ 1, σ 2) and κ2 = E2(σ 1, σ 2). To see this, note that (i) σ 1 =

η−1(σ 2) → −∞ as σ 2 → −∞, while we proved in Claim 2 that σ 1 = Σ−1
2 (σ 2, κ2)

converges to σl1(κ2) > −∞. Also, (ii) σ 2 = η(σ 1)→∞ as σ 1 →∞, while we proved in

15It is not difficult to show that ψ(c, σ 1, σ 2) < c/u is satisfied if σ 2 ≥ σ 1(κ1).
16We are not ruling out the existence of another equilibrium that does not satisfy (21).
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Claim 2 that σ 2 = Σ2(σ 1, κ2) converges to σu2(κ2) < ∞. Properties (i) and (ii) reveal

that if Σ2 and η do not intersect, then Σ2 is everywhere below η.

If M(κ2) 6= ∅, let (σs1(κ2), σs2(κ2)) = supM(κ2), which is finite by property (b) of

η(σ 1) and since σ 2 = Σ2(σ 1, κ2) converges to σu2(κ2) < ∞ as σ 1 goes to infinity (see

the proof of Claim 2). Now, as κ1 goes to zero, σ 1 = Σ1(σ 2, κ1) goes to infinity for any

value of σ 2, for college 1 becomes increasingly more selective to fill its dwindling capacity.

Since σ 2 is bounded above by σu2(κ2), there exists a threshold κ1(κ2) ≤ κ̄1(κ2) such that,

for all κ1 ∈ (0, κ1(κ2)), the aforementioned pair (σ 1, σ 2) that satisfies κ1 = E1(σ 1, σ 2)

and κ2 = E2(σ 1, σ 2) is strictly bigger than (σs1(κ2), σs2(κ2)), thereby showing that it

also satisfies σ 2 < η(σ 1). Hence, a sorting stable equilibrium exists for any κ2 and

κ1 ∈ (0, κ1(κ2)), with both colleges filling their capacities (see Figure 10, right panel).

To finish the proof, notice that, if there are multiple equilibria, both colleges fill

their capacity in all of them (graphically, the conditions on capacities ensure that Σ2

starts above Σ1 for low values of σ 1 and eventually ends below it). Moreover, adjusting

the bound κ1(κ2) downward if needed, all equilibria are sorting (graphically, for κ1

sufficiently small, the set of pairs at which Σ1 and Σ2 intersect are all below η). �

A.11 Affirmative Action: Negligible Feedback Effects

We show that in a neighborhood of ∆1 = ∆2 = 0, changes in ∆i will have a negligible

impact on σ j, i, j = 1, 2 at any stable solution solution to the capacity equations (6).

(For this result alone, we also assume that the signal cdf derivative Gx is continuous.)

Given any discount pair (∆1,∆2), the capacity equations with two groups are:

κ1 = φEτ1 (σ 1 −∆1, σ 2 −∆2) + (1− φ)EN1 (σ 1, σ 2) (22)

κ2 = φEτ2 (σ 1 −∆1, σ 2 −∆2) + (1− φ)EN2 (σ 1, σ 2), (23)

where Eτi , ENi are the respective fractions of targeted and non-targeted groups enrolled at

college i, defined just as in (4) and (5), for the sets of signals (15). Since the signal density

g = Gσ and its derivative Gx are both continuous, all derivatives of the enrollment

function (using Leibnitz rule) are continuous too.
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Differentiating equations (22) and (23) with respect to ∆1:

J

φ

∂σ 1

∂∆1

=
∑
i=1,2

(−1)i+1 ∂Eτi
∂(σ 1 −∆1)

(
φ

∂Eτ3−i
∂(σ 2 −∆2)

+ (1− φ)
∂EN3−i
∂σ 2

)
J

φ

∂σ 2

∂∆1

=
∑
i=1,2

(−1)i
∂Eτi

∂(σ 1 −∆1)

(
φ

∂Eτ3−i
∂(σ 1 −∆1)

+ (1− φ)
∂EN3−i
∂σ 1

)

where the denominator, from Cramer’s Rule, equals

J =

(
φ

∂Eτ1
∂(σ 1 −∆1)

+ (1− φ)
∂EN1
∂σ 1

)(
φ

∂Eτ2
∂(σ 2 −∆2)

+ (1− φ)
∂EN2
∂σ 2

)
−
(
φ

∂Eτ1
∂(σ 2 −∆2)

+ (1− φ)
∂EN1
∂σ 2

)(
φ

∂Eτ2
∂(σ 1 −∆1)

+ (1− φ)
∂EN2
∂σ 1

)
is positive in any stable equilibrium — i.e. the two group version of the condition that

the slope of Σ1 exceed the slope of Σ2 in §4 and §A.9. Now, ∂σ 1/∂∆1 = φ > 0 and

∂σ 2/∂∆1 = 0 when ∆1 = ∆2 = 0, because the derivatives of the function Eτi , ENi at

colleges i = 1, 2 coincide. Thus, the feedback effects vanish when ∆1 = ∆2 = 0, and

are negligible in a neighborhood of it, by continuity of the enrollment derivatives. The

analysis of the derivatives of σ i, i = 1, 2, with respect to ∆2 is analogous. �

A.12 Student Poaching: Proof of Theorem 4

For simplicity, assuming that the infimum signal is σ = 0 — which is WLOG by a simple

monotone transformation of the signal. Let (∆∗2, σ
∗
1, σ

∗
2) solve the capacity equations

(6) as well as σ∗2 = ∆∗2 > 0. In other words, college 2 admits all early applicants.

Fix (σ∗1, σ
∗
2). Given ∆2, let V2(∆2) be the difference between early and regular

shadow values, namely, the LHS minus the RHS of equation (10).

If V2(∆∗2) ≥ 0, then (∆∗2, σ
∗
1, σ

∗
2) is an equilibrium where early applicants are favored,

since ∆∗2 > 0. For each college fills its capacity, and either V2(∆∗2) = 0, or V2(∆∗2) > 0

which is a maximum for college 2, since it admits all early applicants.

Assume instead that V2(∆∗2) < 0. We will show that for some intermediate discount

∆̂2 ∈ (0,∆∗2), college 2 favors its early applicants in some equilibrium.

Lemma 2 The shadow value difference is positive when ∆2 = 0, or V2(0) > 0.

Proof: The expected payoff for the lowest caliber that applies early or regular to college 2

equals the application cost. Also, MB21 = c for the highest caliber who applies early or
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regular to college 2 (see Figure 8). Altogether, the same set of students apply early and

regular to college 2 coincide when it sets the same standards for both groups.

Next, recalling the discussion around (11), a larger fraction of the early than the

regular group accept college 2 if admitted. Thus, college 2 suffers from less of an ac-

ceptance curse in the early than in the regular period. Thus, the shadow value of early

students exceeds that of regular students, proving the Lemma. �

Now, since the caliber and signal densities are continuous, V2(∆2) is also continuous

in ∆2. So by the Intermediate Value Theorem, there exists ∆̂2 ∈ (0,∆∗2) with V2(∆̂2) = 0.

Thus, (∆∗2, σ 1(∆∗2), σ 2(∆∗2)) is an equilibrium where early applicants are favored. �
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